1 // dynobj.cc -- dynamic object support for gold 2 3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. 4 // Written by Ian Lance Taylor <iant@google.com>. 5 6 // This file is part of gold. 7 8 // This program is free software; you can redistribute it and/or modify 9 // it under the terms of the GNU General Public License as published by 10 // the Free Software Foundation; either version 3 of the License, or 11 // (at your option) any later version. 12 13 // This program is distributed in the hope that it will be useful, 14 // but WITHOUT ANY WARRANTY; without even the implied warranty of 15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 // GNU General Public License for more details. 17 18 // You should have received a copy of the GNU General Public License 19 // along with this program; if not, write to the Free Software 20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 // MA 02110-1301, USA. 22 23 #include "gold.h" 24 25 #include <vector> 26 #include <cstring> 27 28 #include "elfcpp.h" 29 #include "parameters.h" 30 #include "script.h" 31 #include "symtab.h" 32 #include "dynobj.h" 33 34 namespace gold 35 { 36 37 // Class Dynobj. 38 39 // Sets up the default soname_ to use, in the (rare) cases we never 40 // see a DT_SONAME entry. 41 42 Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset) 43 : Object(name, input_file, true, offset), 44 needed_(), 45 unknown_needed_(UNKNOWN_NEEDED_UNSET) 46 { 47 // This will be overridden by a DT_SONAME entry, hopefully. But if 48 // we never see a DT_SONAME entry, our rule is to use the dynamic 49 // object's filename. The only exception is when the dynamic object 50 // is part of an archive (so the filename is the archive's 51 // filename). In that case, we use just the dynobj's name-in-archive. 52 if (input_file == NULL) 53 this->soname_ = name; 54 else 55 { 56 this->soname_ = input_file->found_name(); 57 if (this->offset() != 0) 58 { 59 std::string::size_type open_paren = this->name().find('('); 60 std::string::size_type close_paren = this->name().find(')'); 61 if (open_paren != std::string::npos 62 && close_paren != std::string::npos) 63 { 64 // It's an archive, and name() is of the form 'foo.a(bar.so)'. 65 open_paren += 1; 66 this->soname_ = this->name().substr(open_paren, 67 close_paren - open_paren); 68 } 69 } 70 } 71 } 72 73 // Class Sized_dynobj. 74 75 template<int size, bool big_endian> 76 Sized_dynobj<size, big_endian>::Sized_dynobj( 77 const std::string& name, 78 Input_file* input_file, 79 off_t offset, 80 const elfcpp::Ehdr<size, big_endian>& ehdr) 81 : Dynobj(name, input_file, offset), 82 elf_file_(this, ehdr), 83 dynsym_shndx_(-1U), 84 symbols_(NULL), 85 defined_count_(0) 86 { 87 } 88 89 // Set up the object. 90 91 template<int size, bool big_endian> 92 void 93 Sized_dynobj<size, big_endian>::setup() 94 { 95 const unsigned int shnum = this->elf_file_.shnum(); 96 this->set_shnum(shnum); 97 } 98 99 // Find the SHT_DYNSYM section and the various version sections, and 100 // the dynamic section, given the section headers. 101 102 template<int size, bool big_endian> 103 void 104 Sized_dynobj<size, big_endian>::find_dynsym_sections( 105 const unsigned char* pshdrs, 106 unsigned int* pversym_shndx, 107 unsigned int* pverdef_shndx, 108 unsigned int* pverneed_shndx, 109 unsigned int* pdynamic_shndx) 110 { 111 *pversym_shndx = -1U; 112 *pverdef_shndx = -1U; 113 *pverneed_shndx = -1U; 114 *pdynamic_shndx = -1U; 115 116 unsigned int symtab_shndx = 0; 117 unsigned int xindex_shndx = 0; 118 unsigned int xindex_link = 0; 119 const unsigned int shnum = this->shnum(); 120 const unsigned char* p = pshdrs; 121 for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size) 122 { 123 typename This::Shdr shdr(p); 124 125 unsigned int* pi; 126 switch (shdr.get_sh_type()) 127 { 128 case elfcpp::SHT_DYNSYM: 129 this->dynsym_shndx_ = i; 130 if (xindex_shndx > 0 && xindex_link == i) 131 { 132 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); 133 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx, 134 pshdrs); 135 this->set_xindex(xindex); 136 } 137 pi = NULL; 138 break; 139 case elfcpp::SHT_SYMTAB: 140 symtab_shndx = i; 141 pi = NULL; 142 break; 143 case elfcpp::SHT_GNU_versym: 144 pi = pversym_shndx; 145 break; 146 case elfcpp::SHT_GNU_verdef: 147 pi = pverdef_shndx; 148 break; 149 case elfcpp::SHT_GNU_verneed: 150 pi = pverneed_shndx; 151 break; 152 case elfcpp::SHT_DYNAMIC: 153 pi = pdynamic_shndx; 154 break; 155 case elfcpp::SHT_SYMTAB_SHNDX: 156 xindex_shndx = i; 157 xindex_link = this->adjust_shndx(shdr.get_sh_link()); 158 if (xindex_link == this->dynsym_shndx_) 159 { 160 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); 161 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx, 162 pshdrs); 163 this->set_xindex(xindex); 164 } 165 pi = NULL; 166 break; 167 default: 168 pi = NULL; 169 break; 170 } 171 172 if (pi == NULL) 173 continue; 174 175 if (*pi != -1U) 176 this->error(_("unexpected duplicate type %u section: %u, %u"), 177 shdr.get_sh_type(), *pi, i); 178 179 *pi = i; 180 } 181 182 // If there is no dynamic symbol table, use the normal symbol table. 183 // On some SVR4 systems, a shared library is stored in an archive. 184 // The version stored in the archive only has a normal symbol table. 185 // It has an SONAME entry which points to another copy in the file 186 // system which has a dynamic symbol table as usual. This is way of 187 // addressing the issues which glibc addresses using GROUP with 188 // libc_nonshared.a. 189 if (this->dynsym_shndx_ == -1U && symtab_shndx != 0) 190 { 191 this->dynsym_shndx_ = symtab_shndx; 192 if (xindex_shndx > 0 && xindex_link == symtab_shndx) 193 { 194 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); 195 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx, 196 pshdrs); 197 this->set_xindex(xindex); 198 } 199 } 200 } 201 202 // Read the contents of section SHNDX. PSHDRS points to the section 203 // headers. TYPE is the expected section type. LINK is the expected 204 // section link. Store the data in *VIEW and *VIEW_SIZE. The 205 // section's sh_info field is stored in *VIEW_INFO. 206 207 template<int size, bool big_endian> 208 void 209 Sized_dynobj<size, big_endian>::read_dynsym_section( 210 const unsigned char* pshdrs, 211 unsigned int shndx, 212 elfcpp::SHT type, 213 unsigned int link, 214 File_view** view, 215 section_size_type* view_size, 216 unsigned int* view_info) 217 { 218 if (shndx == -1U) 219 { 220 *view = NULL; 221 *view_size = 0; 222 *view_info = 0; 223 return; 224 } 225 226 typename This::Shdr shdr(pshdrs + shndx * This::shdr_size); 227 228 gold_assert(shdr.get_sh_type() == type); 229 230 if (this->adjust_shndx(shdr.get_sh_link()) != link) 231 this->error(_("unexpected link in section %u header: %u != %u"), 232 shndx, this->adjust_shndx(shdr.get_sh_link()), link); 233 234 *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(), 235 true, false); 236 *view_size = convert_to_section_size_type(shdr.get_sh_size()); 237 *view_info = shdr.get_sh_info(); 238 } 239 240 // Read the dynamic tags. Set the soname field if this shared object 241 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to 242 // the section headers. DYNAMIC_SHNDX is the section index of the 243 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the 244 // section index and contents of a string table which may be the one 245 // associated with the SHT_DYNAMIC section. 246 247 template<int size, bool big_endian> 248 void 249 Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs, 250 unsigned int dynamic_shndx, 251 unsigned int strtab_shndx, 252 const unsigned char* strtabu, 253 off_t strtab_size) 254 { 255 typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size); 256 gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC); 257 258 const off_t dynamic_size = dynamicshdr.get_sh_size(); 259 const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(), 260 dynamic_size, true, false); 261 262 const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link()); 263 if (link != strtab_shndx) 264 { 265 if (link >= this->shnum()) 266 { 267 this->error(_("DYNAMIC section %u link out of range: %u"), 268 dynamic_shndx, link); 269 return; 270 } 271 272 typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size); 273 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) 274 { 275 this->error(_("DYNAMIC section %u link %u is not a strtab"), 276 dynamic_shndx, link); 277 return; 278 } 279 280 strtab_size = strtabshdr.get_sh_size(); 281 strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false, 282 false); 283 } 284 285 const char* const strtab = reinterpret_cast<const char*>(strtabu); 286 287 for (const unsigned char* p = pdynamic; 288 p < pdynamic + dynamic_size; 289 p += This::dyn_size) 290 { 291 typename This::Dyn dyn(p); 292 293 switch (dyn.get_d_tag()) 294 { 295 case elfcpp::DT_NULL: 296 // We should always see DT_NULL at the end of the dynamic 297 // tags. 298 return; 299 300 case elfcpp::DT_SONAME: 301 { 302 off_t val = dyn.get_d_val(); 303 if (val >= strtab_size) 304 this->error(_("DT_SONAME value out of range: %lld >= %lld"), 305 static_cast<long long>(val), 306 static_cast<long long>(strtab_size)); 307 else 308 this->set_soname_string(strtab + val); 309 } 310 break; 311 312 case elfcpp::DT_NEEDED: 313 { 314 off_t val = dyn.get_d_val(); 315 if (val >= strtab_size) 316 this->error(_("DT_NEEDED value out of range: %lld >= %lld"), 317 static_cast<long long>(val), 318 static_cast<long long>(strtab_size)); 319 else 320 this->add_needed(strtab + val); 321 } 322 break; 323 324 default: 325 break; 326 } 327 } 328 329 this->error(_("missing DT_NULL in dynamic segment")); 330 } 331 332 // Read the symbols and sections from a dynamic object. We read the 333 // dynamic symbols, not the normal symbols. 334 335 template<int size, bool big_endian> 336 void 337 Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd) 338 { 339 this->read_section_data(&this->elf_file_, sd); 340 341 const unsigned char* const pshdrs = sd->section_headers->data(); 342 343 unsigned int versym_shndx; 344 unsigned int verdef_shndx; 345 unsigned int verneed_shndx; 346 unsigned int dynamic_shndx; 347 this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx, 348 &verneed_shndx, &dynamic_shndx); 349 350 unsigned int strtab_shndx = -1U; 351 352 sd->symbols = NULL; 353 sd->symbols_size = 0; 354 sd->external_symbols_offset = 0; 355 sd->symbol_names = NULL; 356 sd->symbol_names_size = 0; 357 sd->versym = NULL; 358 sd->versym_size = 0; 359 sd->verdef = NULL; 360 sd->verdef_size = 0; 361 sd->verdef_info = 0; 362 sd->verneed = NULL; 363 sd->verneed_size = 0; 364 sd->verneed_info = 0; 365 366 if (this->dynsym_shndx_ != -1U) 367 { 368 // Get the dynamic symbols. 369 typename This::Shdr dynsymshdr(pshdrs 370 + this->dynsym_shndx_ * This::shdr_size); 371 372 sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(), 373 dynsymshdr.get_sh_size(), true, 374 false); 375 sd->symbols_size = 376 convert_to_section_size_type(dynsymshdr.get_sh_size()); 377 378 // Get the symbol names. 379 strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link()); 380 if (strtab_shndx >= this->shnum()) 381 { 382 this->error(_("invalid dynamic symbol table name index: %u"), 383 strtab_shndx); 384 return; 385 } 386 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size); 387 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) 388 { 389 this->error(_("dynamic symbol table name section " 390 "has wrong type: %u"), 391 static_cast<unsigned int>(strtabshdr.get_sh_type())); 392 return; 393 } 394 395 sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(), 396 strtabshdr.get_sh_size(), 397 false, false); 398 sd->symbol_names_size = 399 convert_to_section_size_type(strtabshdr.get_sh_size()); 400 401 // Get the version information. 402 403 unsigned int dummy; 404 this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym, 405 this->dynsym_shndx_, 406 &sd->versym, &sd->versym_size, &dummy); 407 408 // We require that the version definition and need section link 409 // to the same string table as the dynamic symbol table. This 410 // is not a technical requirement, but it always happens in 411 // practice. We could change this if necessary. 412 413 this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef, 414 strtab_shndx, &sd->verdef, &sd->verdef_size, 415 &sd->verdef_info); 416 417 this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed, 418 strtab_shndx, &sd->verneed, &sd->verneed_size, 419 &sd->verneed_info); 420 } 421 422 // Read the SHT_DYNAMIC section to find whether this shared object 423 // has a DT_SONAME tag and to record any DT_NEEDED tags. This 424 // doesn't really have anything to do with reading the symbols, but 425 // this is a convenient place to do it. 426 if (dynamic_shndx != -1U) 427 this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx, 428 (sd->symbol_names == NULL 429 ? NULL 430 : sd->symbol_names->data()), 431 sd->symbol_names_size); 432 } 433 434 // Return the Xindex structure to use for object with lots of 435 // sections. 436 437 template<int size, bool big_endian> 438 Xindex* 439 Sized_dynobj<size, big_endian>::do_initialize_xindex() 440 { 441 gold_assert(this->dynsym_shndx_ != -1U); 442 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); 443 xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_); 444 return xindex; 445 } 446 447 // Lay out the input sections for a dynamic object. We don't want to 448 // include sections from a dynamic object, so all that we actually do 449 // here is check for .gnu.warning and .note.GNU-split-stack sections. 450 451 template<int size, bool big_endian> 452 void 453 Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab, 454 Layout*, 455 Read_symbols_data* sd) 456 { 457 const unsigned int shnum = this->shnum(); 458 if (shnum == 0) 459 return; 460 461 // Get the section headers. 462 const unsigned char* pshdrs = sd->section_headers->data(); 463 464 // Get the section names. 465 const unsigned char* pnamesu = sd->section_names->data(); 466 const char* pnames = reinterpret_cast<const char*>(pnamesu); 467 468 // Skip the first, dummy, section. 469 pshdrs += This::shdr_size; 470 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) 471 { 472 typename This::Shdr shdr(pshdrs); 473 474 if (shdr.get_sh_name() >= sd->section_names_size) 475 { 476 this->error(_("bad section name offset for section %u: %lu"), 477 i, static_cast<unsigned long>(shdr.get_sh_name())); 478 return; 479 } 480 481 const char* name = pnames + shdr.get_sh_name(); 482 483 this->handle_gnu_warning_section(name, i, symtab); 484 this->handle_split_stack_section(name); 485 } 486 487 delete sd->section_headers; 488 sd->section_headers = NULL; 489 delete sd->section_names; 490 sd->section_names = NULL; 491 } 492 493 // Add an entry to the vector mapping version numbers to version 494 // strings. 495 496 template<int size, bool big_endian> 497 void 498 Sized_dynobj<size, big_endian>::set_version_map( 499 Version_map* version_map, 500 unsigned int ndx, 501 const char* name) const 502 { 503 if (ndx >= version_map->size()) 504 version_map->resize(ndx + 1); 505 if ((*version_map)[ndx] != NULL) 506 this->error(_("duplicate definition for version %u"), ndx); 507 (*version_map)[ndx] = name; 508 } 509 510 // Add mappings for the version definitions to VERSION_MAP. 511 512 template<int size, bool big_endian> 513 void 514 Sized_dynobj<size, big_endian>::make_verdef_map( 515 Read_symbols_data* sd, 516 Version_map* version_map) const 517 { 518 if (sd->verdef == NULL) 519 return; 520 521 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data()); 522 section_size_type names_size = sd->symbol_names_size; 523 524 const unsigned char* pverdef = sd->verdef->data(); 525 section_size_type verdef_size = sd->verdef_size; 526 const unsigned int count = sd->verdef_info; 527 528 const unsigned char* p = pverdef; 529 for (unsigned int i = 0; i < count; ++i) 530 { 531 elfcpp::Verdef<size, big_endian> verdef(p); 532 533 if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT) 534 { 535 this->error(_("unexpected verdef version %u"), 536 verdef.get_vd_version()); 537 return; 538 } 539 540 const section_size_type vd_ndx = verdef.get_vd_ndx(); 541 542 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not 543 // sure why. 544 545 // The first Verdaux holds the name of this version. Subsequent 546 // ones are versions that this one depends upon, which we don't 547 // care about here. 548 const section_size_type vd_cnt = verdef.get_vd_cnt(); 549 if (vd_cnt < 1) 550 { 551 this->error(_("verdef vd_cnt field too small: %u"), 552 static_cast<unsigned int>(vd_cnt)); 553 return; 554 } 555 556 const section_size_type vd_aux = verdef.get_vd_aux(); 557 if ((p - pverdef) + vd_aux >= verdef_size) 558 { 559 this->error(_("verdef vd_aux field out of range: %u"), 560 static_cast<unsigned int>(vd_aux)); 561 return; 562 } 563 564 const unsigned char* pvda = p + vd_aux; 565 elfcpp::Verdaux<size, big_endian> verdaux(pvda); 566 567 const section_size_type vda_name = verdaux.get_vda_name(); 568 if (vda_name >= names_size) 569 { 570 this->error(_("verdaux vda_name field out of range: %u"), 571 static_cast<unsigned int>(vda_name)); 572 return; 573 } 574 575 this->set_version_map(version_map, vd_ndx, names + vda_name); 576 577 const section_size_type vd_next = verdef.get_vd_next(); 578 if ((p - pverdef) + vd_next >= verdef_size) 579 { 580 this->error(_("verdef vd_next field out of range: %u"), 581 static_cast<unsigned int>(vd_next)); 582 return; 583 } 584 585 p += vd_next; 586 } 587 } 588 589 // Add mappings for the required versions to VERSION_MAP. 590 591 template<int size, bool big_endian> 592 void 593 Sized_dynobj<size, big_endian>::make_verneed_map( 594 Read_symbols_data* sd, 595 Version_map* version_map) const 596 { 597 if (sd->verneed == NULL) 598 return; 599 600 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data()); 601 section_size_type names_size = sd->symbol_names_size; 602 603 const unsigned char* pverneed = sd->verneed->data(); 604 const section_size_type verneed_size = sd->verneed_size; 605 const unsigned int count = sd->verneed_info; 606 607 const unsigned char* p = pverneed; 608 for (unsigned int i = 0; i < count; ++i) 609 { 610 elfcpp::Verneed<size, big_endian> verneed(p); 611 612 if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT) 613 { 614 this->error(_("unexpected verneed version %u"), 615 verneed.get_vn_version()); 616 return; 617 } 618 619 const section_size_type vn_aux = verneed.get_vn_aux(); 620 621 if ((p - pverneed) + vn_aux >= verneed_size) 622 { 623 this->error(_("verneed vn_aux field out of range: %u"), 624 static_cast<unsigned int>(vn_aux)); 625 return; 626 } 627 628 const unsigned int vn_cnt = verneed.get_vn_cnt(); 629 const unsigned char* pvna = p + vn_aux; 630 for (unsigned int j = 0; j < vn_cnt; ++j) 631 { 632 elfcpp::Vernaux<size, big_endian> vernaux(pvna); 633 634 const unsigned int vna_name = vernaux.get_vna_name(); 635 if (vna_name >= names_size) 636 { 637 this->error(_("vernaux vna_name field out of range: %u"), 638 static_cast<unsigned int>(vna_name)); 639 return; 640 } 641 642 this->set_version_map(version_map, vernaux.get_vna_other(), 643 names + vna_name); 644 645 const section_size_type vna_next = vernaux.get_vna_next(); 646 if ((pvna - pverneed) + vna_next >= verneed_size) 647 { 648 this->error(_("verneed vna_next field out of range: %u"), 649 static_cast<unsigned int>(vna_next)); 650 return; 651 } 652 653 pvna += vna_next; 654 } 655 656 const section_size_type vn_next = verneed.get_vn_next(); 657 if ((p - pverneed) + vn_next >= verneed_size) 658 { 659 this->error(_("verneed vn_next field out of range: %u"), 660 static_cast<unsigned int>(vn_next)); 661 return; 662 } 663 664 p += vn_next; 665 } 666 } 667 668 // Create a vector mapping version numbers to version strings. 669 670 template<int size, bool big_endian> 671 void 672 Sized_dynobj<size, big_endian>::make_version_map( 673 Read_symbols_data* sd, 674 Version_map* version_map) const 675 { 676 if (sd->verdef == NULL && sd->verneed == NULL) 677 return; 678 679 // A guess at the maximum version number we will see. If this is 680 // wrong we will be less efficient but still correct. 681 version_map->reserve(sd->verdef_info + sd->verneed_info * 10); 682 683 this->make_verdef_map(sd, version_map); 684 this->make_verneed_map(sd, version_map); 685 } 686 687 // Add the dynamic symbols to the symbol table. 688 689 template<int size, bool big_endian> 690 void 691 Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab, 692 Read_symbols_data* sd, 693 Layout*) 694 { 695 if (sd->symbols == NULL) 696 { 697 gold_assert(sd->symbol_names == NULL); 698 gold_assert(sd->versym == NULL && sd->verdef == NULL 699 && sd->verneed == NULL); 700 return; 701 } 702 703 const int sym_size = This::sym_size; 704 const size_t symcount = sd->symbols_size / sym_size; 705 gold_assert(sd->external_symbols_offset == 0); 706 if (symcount * sym_size != sd->symbols_size) 707 { 708 this->error(_("size of dynamic symbols is not multiple of symbol size")); 709 return; 710 } 711 712 Version_map version_map; 713 this->make_version_map(sd, &version_map); 714 715 // If printing symbol counts or a cross reference table or 716 // preparing for an incremental link, we want to track symbols. 717 if (parameters->options().user_set_print_symbol_counts() 718 || parameters->options().cref() 719 || parameters->incremental()) 720 { 721 this->symbols_ = new Symbols(); 722 this->symbols_->resize(symcount); 723 } 724 725 const char* sym_names = 726 reinterpret_cast<const char*>(sd->symbol_names->data()); 727 symtab->add_from_dynobj(this, sd->symbols->data(), symcount, 728 sym_names, sd->symbol_names_size, 729 (sd->versym == NULL 730 ? NULL 731 : sd->versym->data()), 732 sd->versym_size, 733 &version_map, 734 this->symbols_, 735 &this->defined_count_); 736 737 delete sd->symbols; 738 sd->symbols = NULL; 739 delete sd->symbol_names; 740 sd->symbol_names = NULL; 741 if (sd->versym != NULL) 742 { 743 delete sd->versym; 744 sd->versym = NULL; 745 } 746 if (sd->verdef != NULL) 747 { 748 delete sd->verdef; 749 sd->verdef = NULL; 750 } 751 if (sd->verneed != NULL) 752 { 753 delete sd->verneed; 754 sd->verneed = NULL; 755 } 756 757 // This is normally the last time we will read any data from this 758 // file. 759 this->clear_view_cache_marks(); 760 } 761 762 template<int size, bool big_endian> 763 Archive::Should_include 764 Sized_dynobj<size, big_endian>::do_should_include_member(Symbol_table*, 765 Layout*, 766 Read_symbols_data*, 767 std::string*) 768 { 769 return Archive::SHOULD_INCLUDE_YES; 770 } 771 772 // Iterate over global symbols, calling a visitor class V for each. 773 774 template<int size, bool big_endian> 775 void 776 Sized_dynobj<size, big_endian>::do_for_all_global_symbols( 777 Read_symbols_data* sd, 778 Library_base::Symbol_visitor_base* v) 779 { 780 const char* sym_names = 781 reinterpret_cast<const char*>(sd->symbol_names->data()); 782 const unsigned char* syms = 783 sd->symbols->data() + sd->external_symbols_offset; 784 const int sym_size = elfcpp::Elf_sizes<size>::sym_size; 785 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset) 786 / sym_size); 787 const unsigned char* p = syms; 788 789 for (size_t i = 0; i < symcount; ++i, p += sym_size) 790 { 791 elfcpp::Sym<size, big_endian> sym(p); 792 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF 793 && sym.get_st_bind() != elfcpp::STB_LOCAL) 794 v->visit(sym_names + sym.get_st_name()); 795 } 796 } 797 798 // Iterate over local symbols, calling a visitor class V for each GOT offset 799 // associated with a local symbol. 800 801 template<int size, bool big_endian> 802 void 803 Sized_dynobj<size, big_endian>::do_for_all_local_got_entries( 804 Got_offset_list::Visitor*) const 805 { 806 } 807 808 // Get symbol counts. 809 810 template<int size, bool big_endian> 811 void 812 Sized_dynobj<size, big_endian>::do_get_global_symbol_counts( 813 const Symbol_table*, 814 size_t* defined, 815 size_t* used) const 816 { 817 *defined = this->defined_count_; 818 size_t count = 0; 819 for (typename Symbols::const_iterator p = this->symbols_->begin(); 820 p != this->symbols_->end(); 821 ++p) 822 if (*p != NULL 823 && (*p)->source() == Symbol::FROM_OBJECT 824 && (*p)->object() == this 825 && (*p)->is_defined() 826 && (*p)->has_dynsym_index()) 827 ++count; 828 *used = count; 829 } 830 831 // Given a vector of hash codes, compute the number of hash buckets to 832 // use. 833 834 unsigned int 835 Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes, 836 bool for_gnu_hash_table) 837 { 838 // FIXME: Implement optional hash table optimization. 839 840 // Array used to determine the number of hash table buckets to use 841 // based on the number of symbols there are. If there are fewer 842 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 843 // buckets, fewer than 37 we use 17 buckets, and so forth. We never 844 // use more than 262147 buckets. This is straight from the old GNU 845 // linker. 846 static const unsigned int buckets[] = 847 { 848 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, 849 16411, 32771, 65537, 131101, 262147 850 }; 851 const int buckets_count = sizeof buckets / sizeof buckets[0]; 852 853 unsigned int symcount = hashcodes.size(); 854 unsigned int ret = 1; 855 const double full_fraction 856 = 1.0 - parameters->options().hash_bucket_empty_fraction(); 857 for (int i = 0; i < buckets_count; ++i) 858 { 859 if (symcount < buckets[i] * full_fraction) 860 break; 861 ret = buckets[i]; 862 } 863 864 if (for_gnu_hash_table && ret < 2) 865 ret = 2; 866 867 return ret; 868 } 869 870 // The standard ELF hash function. This hash function must not 871 // change, as the dynamic linker uses it also. 872 873 uint32_t 874 Dynobj::elf_hash(const char* name) 875 { 876 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name); 877 uint32_t h = 0; 878 unsigned char c; 879 while ((c = *nameu++) != '\0') 880 { 881 h = (h << 4) + c; 882 uint32_t g = h & 0xf0000000; 883 if (g != 0) 884 { 885 h ^= g >> 24; 886 // The ELF ABI says h &= ~g, but using xor is equivalent in 887 // this case (since g was set from h) and may save one 888 // instruction. 889 h ^= g; 890 } 891 } 892 return h; 893 } 894 895 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN. 896 // DYNSYMS is a vector with all the global dynamic symbols. 897 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic 898 // symbol table. 899 900 void 901 Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms, 902 unsigned int local_dynsym_count, 903 unsigned char** pphash, 904 unsigned int* phashlen) 905 { 906 unsigned int dynsym_count = dynsyms.size(); 907 908 // Get the hash values for all the symbols. 909 std::vector<uint32_t> dynsym_hashvals(dynsym_count); 910 for (unsigned int i = 0; i < dynsym_count; ++i) 911 dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name()); 912 913 const unsigned int bucketcount = 914 Dynobj::compute_bucket_count(dynsym_hashvals, false); 915 916 std::vector<uint32_t> bucket(bucketcount); 917 std::vector<uint32_t> chain(local_dynsym_count + dynsym_count); 918 919 for (unsigned int i = 0; i < dynsym_count; ++i) 920 { 921 unsigned int dynsym_index = dynsyms[i]->dynsym_index(); 922 unsigned int bucketpos = dynsym_hashvals[i] % bucketcount; 923 chain[dynsym_index] = bucket[bucketpos]; 924 bucket[bucketpos] = dynsym_index; 925 } 926 927 unsigned int hashlen = ((2 928 + bucketcount 929 + local_dynsym_count 930 + dynsym_count) 931 * 4); 932 unsigned char* phash = new unsigned char[hashlen]; 933 934 if (parameters->target().is_big_endian()) 935 { 936 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG) 937 Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash, 938 hashlen); 939 #else 940 gold_unreachable(); 941 #endif 942 } 943 else 944 { 945 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE) 946 Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash, 947 hashlen); 948 #else 949 gold_unreachable(); 950 #endif 951 } 952 953 *pphash = phash; 954 *phashlen = hashlen; 955 } 956 957 // Fill in an ELF hash table. 958 959 template<bool big_endian> 960 void 961 Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket, 962 const std::vector<uint32_t>& chain, 963 unsigned char* phash, 964 unsigned int hashlen) 965 { 966 unsigned char* p = phash; 967 968 const unsigned int bucketcount = bucket.size(); 969 const unsigned int chaincount = chain.size(); 970 971 elfcpp::Swap<32, big_endian>::writeval(p, bucketcount); 972 p += 4; 973 elfcpp::Swap<32, big_endian>::writeval(p, chaincount); 974 p += 4; 975 976 for (unsigned int i = 0; i < bucketcount; ++i) 977 { 978 elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]); 979 p += 4; 980 } 981 982 for (unsigned int i = 0; i < chaincount; ++i) 983 { 984 elfcpp::Swap<32, big_endian>::writeval(p, chain[i]); 985 p += 4; 986 } 987 988 gold_assert(static_cast<unsigned int>(p - phash) == hashlen); 989 } 990 991 // The hash function used for the GNU hash table. This hash function 992 // must not change, as the dynamic linker uses it also. 993 994 uint32_t 995 Dynobj::gnu_hash(const char* name) 996 { 997 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name); 998 uint32_t h = 5381; 999 unsigned char c; 1000 while ((c = *nameu++) != '\0') 1001 h = (h << 5) + h + c; 1002 return h; 1003 } 1004 1005 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash 1006 // tables are an extension to ELF which are recognized by the GNU 1007 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH. 1008 // TARGET is the target. DYNSYMS is a vector with all the global 1009 // symbols which will be going into the dynamic symbol table. 1010 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic 1011 // symbol table. 1012 1013 void 1014 Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms, 1015 unsigned int local_dynsym_count, 1016 unsigned char** pphash, 1017 unsigned int* phashlen) 1018 { 1019 const unsigned int count = dynsyms.size(); 1020 1021 // Sort the dynamic symbols into two vectors. Symbols which we do 1022 // not want to put into the hash table we store into 1023 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into 1024 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS, 1025 // and records the hash codes. 1026 1027 std::vector<Symbol*> unhashed_dynsyms; 1028 unhashed_dynsyms.reserve(count); 1029 1030 std::vector<Symbol*> hashed_dynsyms; 1031 hashed_dynsyms.reserve(count); 1032 1033 std::vector<uint32_t> dynsym_hashvals; 1034 dynsym_hashvals.reserve(count); 1035 1036 for (unsigned int i = 0; i < count; ++i) 1037 { 1038 Symbol* sym = dynsyms[i]; 1039 1040 if (!sym->needs_dynsym_value() 1041 && (sym->is_undefined() 1042 || sym->is_from_dynobj() 1043 || sym->is_forced_local())) 1044 unhashed_dynsyms.push_back(sym); 1045 else 1046 { 1047 hashed_dynsyms.push_back(sym); 1048 dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name())); 1049 } 1050 } 1051 1052 // Put the unhashed symbols at the start of the global portion of 1053 // the dynamic symbol table. 1054 const unsigned int unhashed_count = unhashed_dynsyms.size(); 1055 unsigned int unhashed_dynsym_index = local_dynsym_count; 1056 for (unsigned int i = 0; i < unhashed_count; ++i) 1057 { 1058 unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index); 1059 ++unhashed_dynsym_index; 1060 } 1061 1062 // For the actual data generation we call out to a templatized 1063 // function. 1064 int size = parameters->target().get_size(); 1065 bool big_endian = parameters->target().is_big_endian(); 1066 if (size == 32) 1067 { 1068 if (big_endian) 1069 { 1070 #ifdef HAVE_TARGET_32_BIG 1071 Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms, 1072 dynsym_hashvals, 1073 unhashed_dynsym_index, 1074 pphash, 1075 phashlen); 1076 #else 1077 gold_unreachable(); 1078 #endif 1079 } 1080 else 1081 { 1082 #ifdef HAVE_TARGET_32_LITTLE 1083 Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms, 1084 dynsym_hashvals, 1085 unhashed_dynsym_index, 1086 pphash, 1087 phashlen); 1088 #else 1089 gold_unreachable(); 1090 #endif 1091 } 1092 } 1093 else if (size == 64) 1094 { 1095 if (big_endian) 1096 { 1097 #ifdef HAVE_TARGET_64_BIG 1098 Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms, 1099 dynsym_hashvals, 1100 unhashed_dynsym_index, 1101 pphash, 1102 phashlen); 1103 #else 1104 gold_unreachable(); 1105 #endif 1106 } 1107 else 1108 { 1109 #ifdef HAVE_TARGET_64_LITTLE 1110 Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms, 1111 dynsym_hashvals, 1112 unhashed_dynsym_index, 1113 pphash, 1114 phashlen); 1115 #else 1116 gold_unreachable(); 1117 #endif 1118 } 1119 } 1120 else 1121 gold_unreachable(); 1122 } 1123 1124 // Create the actual data for a GNU hash table. This is just a copy 1125 // of the code from the old GNU linker. 1126 1127 template<int size, bool big_endian> 1128 void 1129 Dynobj::sized_create_gnu_hash_table( 1130 const std::vector<Symbol*>& hashed_dynsyms, 1131 const std::vector<uint32_t>& dynsym_hashvals, 1132 unsigned int unhashed_dynsym_count, 1133 unsigned char** pphash, 1134 unsigned int* phashlen) 1135 { 1136 if (hashed_dynsyms.empty()) 1137 { 1138 // Special case for the empty hash table. 1139 unsigned int hashlen = 5 * 4 + size / 8; 1140 unsigned char* phash = new unsigned char[hashlen]; 1141 // One empty bucket. 1142 elfcpp::Swap<32, big_endian>::writeval(phash, 1); 1143 // Symbol index above unhashed symbols. 1144 elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count); 1145 // One word for bitmask. 1146 elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1); 1147 // Only bloom filter. 1148 elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0); 1149 // No valid hashes. 1150 elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0); 1151 // No hashes in only bucket. 1152 elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0); 1153 1154 *phashlen = hashlen; 1155 *pphash = phash; 1156 1157 return; 1158 } 1159 1160 const unsigned int bucketcount = 1161 Dynobj::compute_bucket_count(dynsym_hashvals, true); 1162 1163 const unsigned int nsyms = hashed_dynsyms.size(); 1164 1165 uint32_t maskbitslog2 = 1; 1166 uint32_t x = nsyms >> 1; 1167 while (x != 0) 1168 { 1169 ++maskbitslog2; 1170 x >>= 1; 1171 } 1172 if (maskbitslog2 < 3) 1173 maskbitslog2 = 5; 1174 else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0) 1175 maskbitslog2 += 3; 1176 else 1177 maskbitslog2 += 2; 1178 1179 uint32_t shift1; 1180 if (size == 32) 1181 shift1 = 5; 1182 else 1183 { 1184 if (maskbitslog2 == 5) 1185 maskbitslog2 = 6; 1186 shift1 = 6; 1187 } 1188 uint32_t mask = (1U << shift1) - 1U; 1189 uint32_t shift2 = maskbitslog2; 1190 uint32_t maskbits = 1U << maskbitslog2; 1191 uint32_t maskwords = 1U << (maskbitslog2 - shift1); 1192 1193 typedef typename elfcpp::Elf_types<size>::Elf_WXword Word; 1194 std::vector<Word> bitmask(maskwords); 1195 std::vector<uint32_t> counts(bucketcount); 1196 std::vector<uint32_t> indx(bucketcount); 1197 uint32_t symindx = unhashed_dynsym_count; 1198 1199 // Count the number of times each hash bucket is used. 1200 for (unsigned int i = 0; i < nsyms; ++i) 1201 ++counts[dynsym_hashvals[i] % bucketcount]; 1202 1203 unsigned int cnt = symindx; 1204 for (unsigned int i = 0; i < bucketcount; ++i) 1205 { 1206 indx[i] = cnt; 1207 cnt += counts[i]; 1208 } 1209 1210 unsigned int hashlen = (4 + bucketcount + nsyms) * 4; 1211 hashlen += maskbits / 8; 1212 unsigned char* phash = new unsigned char[hashlen]; 1213 1214 elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount); 1215 elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx); 1216 elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords); 1217 elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2); 1218 1219 unsigned char* p = phash + 16 + maskbits / 8; 1220 for (unsigned int i = 0; i < bucketcount; ++i) 1221 { 1222 if (counts[i] == 0) 1223 elfcpp::Swap<32, big_endian>::writeval(p, 0); 1224 else 1225 elfcpp::Swap<32, big_endian>::writeval(p, indx[i]); 1226 p += 4; 1227 } 1228 1229 for (unsigned int i = 0; i < nsyms; ++i) 1230 { 1231 Symbol* sym = hashed_dynsyms[i]; 1232 uint32_t hashval = dynsym_hashvals[i]; 1233 1234 unsigned int bucket = hashval % bucketcount; 1235 unsigned int val = ((hashval >> shift1) 1236 & ((maskbits >> shift1) - 1)); 1237 bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask); 1238 bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask); 1239 val = hashval & ~ 1U; 1240 if (counts[bucket] == 1) 1241 { 1242 // Last element terminates the chain. 1243 val |= 1; 1244 } 1245 elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4, 1246 val); 1247 --counts[bucket]; 1248 1249 sym->set_dynsym_index(indx[bucket]); 1250 ++indx[bucket]; 1251 } 1252 1253 p = phash + 16; 1254 for (unsigned int i = 0; i < maskwords; ++i) 1255 { 1256 elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]); 1257 p += size / 8; 1258 } 1259 1260 *phashlen = hashlen; 1261 *pphash = phash; 1262 } 1263 1264 // Verdef methods. 1265 1266 // Write this definition to a buffer for the output section. 1267 1268 template<int size, bool big_endian> 1269 unsigned char* 1270 Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const 1271 { 1272 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size; 1273 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size; 1274 1275 elfcpp::Verdef_write<size, big_endian> vd(pb); 1276 vd.set_vd_version(elfcpp::VER_DEF_CURRENT); 1277 vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0) 1278 | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0) 1279 | (this->is_info_ ? elfcpp::VER_FLG_INFO : 0)); 1280 vd.set_vd_ndx(this->index()); 1281 vd.set_vd_cnt(1 + this->deps_.size()); 1282 vd.set_vd_hash(Dynobj::elf_hash(this->name())); 1283 vd.set_vd_aux(verdef_size); 1284 vd.set_vd_next(is_last 1285 ? 0 1286 : verdef_size + (1 + this->deps_.size()) * verdaux_size); 1287 pb += verdef_size; 1288 1289 elfcpp::Verdaux_write<size, big_endian> vda(pb); 1290 vda.set_vda_name(dynpool->get_offset(this->name())); 1291 vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size); 1292 pb += verdaux_size; 1293 1294 Deps::const_iterator p; 1295 unsigned int i; 1296 for (p = this->deps_.begin(), i = 0; 1297 p != this->deps_.end(); 1298 ++p, ++i) 1299 { 1300 elfcpp::Verdaux_write<size, big_endian> vda(pb); 1301 vda.set_vda_name(dynpool->get_offset(*p)); 1302 vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size); 1303 pb += verdaux_size; 1304 } 1305 1306 return pb; 1307 } 1308 1309 // Verneed methods. 1310 1311 Verneed::~Verneed() 1312 { 1313 for (Need_versions::iterator p = this->need_versions_.begin(); 1314 p != this->need_versions_.end(); 1315 ++p) 1316 delete *p; 1317 } 1318 1319 // Add a new version to this file reference. 1320 1321 Verneed_version* 1322 Verneed::add_name(const char* name) 1323 { 1324 Verneed_version* vv = new Verneed_version(name); 1325 this->need_versions_.push_back(vv); 1326 return vv; 1327 } 1328 1329 // Set the version indexes starting at INDEX. 1330 1331 unsigned int 1332 Verneed::finalize(unsigned int index) 1333 { 1334 for (Need_versions::iterator p = this->need_versions_.begin(); 1335 p != this->need_versions_.end(); 1336 ++p) 1337 { 1338 (*p)->set_index(index); 1339 ++index; 1340 } 1341 return index; 1342 } 1343 1344 // Write this list of referenced versions to a buffer for the output 1345 // section. 1346 1347 template<int size, bool big_endian> 1348 unsigned char* 1349 Verneed::write(const Stringpool* dynpool, bool is_last, 1350 unsigned char* pb) const 1351 { 1352 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size; 1353 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size; 1354 1355 elfcpp::Verneed_write<size, big_endian> vn(pb); 1356 vn.set_vn_version(elfcpp::VER_NEED_CURRENT); 1357 vn.set_vn_cnt(this->need_versions_.size()); 1358 vn.set_vn_file(dynpool->get_offset(this->filename())); 1359 vn.set_vn_aux(verneed_size); 1360 vn.set_vn_next(is_last 1361 ? 0 1362 : verneed_size + this->need_versions_.size() * vernaux_size); 1363 pb += verneed_size; 1364 1365 Need_versions::const_iterator p; 1366 unsigned int i; 1367 for (p = this->need_versions_.begin(), i = 0; 1368 p != this->need_versions_.end(); 1369 ++p, ++i) 1370 { 1371 elfcpp::Vernaux_write<size, big_endian> vna(pb); 1372 vna.set_vna_hash(Dynobj::elf_hash((*p)->version())); 1373 // FIXME: We need to sometimes set VER_FLG_WEAK here. 1374 vna.set_vna_flags(0); 1375 vna.set_vna_other((*p)->index()); 1376 vna.set_vna_name(dynpool->get_offset((*p)->version())); 1377 vna.set_vna_next(i + 1 >= this->need_versions_.size() 1378 ? 0 1379 : vernaux_size); 1380 pb += vernaux_size; 1381 } 1382 1383 return pb; 1384 } 1385 1386 // Versions methods. 1387 1388 Versions::Versions(const Version_script_info& version_script, 1389 Stringpool* dynpool) 1390 : defs_(), needs_(), version_table_(), 1391 is_finalized_(false), version_script_(version_script), 1392 needs_base_version_(parameters->options().shared()) 1393 { 1394 if (!this->version_script_.empty()) 1395 { 1396 // Parse the version script, and insert each declared version into 1397 // defs_ and version_table_. 1398 std::vector<std::string> versions = this->version_script_.get_versions(); 1399 1400 if (this->needs_base_version_ && !versions.empty()) 1401 this->define_base_version(dynpool); 1402 1403 for (size_t k = 0; k < versions.size(); ++k) 1404 { 1405 Stringpool::Key version_key; 1406 const char* version = dynpool->add(versions[k].c_str(), 1407 true, &version_key); 1408 Verdef* const vd = new Verdef( 1409 version, 1410 this->version_script_.get_dependencies(version), 1411 false, false, false, false); 1412 this->defs_.push_back(vd); 1413 Key key(version_key, 0); 1414 this->version_table_.insert(std::make_pair(key, vd)); 1415 } 1416 } 1417 } 1418 1419 Versions::~Versions() 1420 { 1421 for (Defs::iterator p = this->defs_.begin(); 1422 p != this->defs_.end(); 1423 ++p) 1424 delete *p; 1425 1426 for (Needs::iterator p = this->needs_.begin(); 1427 p != this->needs_.end(); 1428 ++p) 1429 delete *p; 1430 } 1431 1432 // Define the base version of a shared library. The base version definition 1433 // must be the first entry in defs_. We insert it lazily so that defs_ is 1434 // empty if no symbol versioning is used. Then layout can just drop the 1435 // version sections. 1436 1437 void 1438 Versions::define_base_version(Stringpool* dynpool) 1439 { 1440 // If we do any versioning at all, we always need a base version, so 1441 // define that first. Nothing explicitly declares itself as part of base, 1442 // so it doesn't need to be in version_table_. 1443 gold_assert(this->defs_.empty()); 1444 const char* name = parameters->options().soname(); 1445 if (name == NULL) 1446 name = parameters->options().output_file_name(); 1447 name = dynpool->add(name, false, NULL); 1448 Verdef* vdbase = new Verdef(name, std::vector<std::string>(), 1449 true, false, false, true); 1450 this->defs_.push_back(vdbase); 1451 this->needs_base_version_ = false; 1452 } 1453 1454 // Return the dynamic object which a symbol refers to. 1455 1456 Dynobj* 1457 Versions::get_dynobj_for_sym(const Symbol_table* symtab, 1458 const Symbol* sym) const 1459 { 1460 if (sym->is_copied_from_dynobj()) 1461 return symtab->get_copy_source(sym); 1462 else 1463 { 1464 Object* object = sym->object(); 1465 gold_assert(object->is_dynamic()); 1466 return static_cast<Dynobj*>(object); 1467 } 1468 } 1469 1470 // Record version information for a symbol going into the dynamic 1471 // symbol table. 1472 1473 void 1474 Versions::record_version(const Symbol_table* symtab, 1475 Stringpool* dynpool, const Symbol* sym) 1476 { 1477 gold_assert(!this->is_finalized_); 1478 gold_assert(sym->version() != NULL); 1479 1480 Stringpool::Key version_key; 1481 const char* version = dynpool->add(sym->version(), false, &version_key); 1482 1483 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj()) 1484 { 1485 if (parameters->options().shared()) 1486 this->add_def(dynpool, sym, version, version_key); 1487 } 1488 else 1489 { 1490 // This is a version reference. 1491 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym); 1492 this->add_need(dynpool, dynobj->soname(), version, version_key); 1493 } 1494 } 1495 1496 // We've found a symbol SYM defined in version VERSION. 1497 1498 void 1499 Versions::add_def(Stringpool* dynpool, const Symbol* sym, const char* version, 1500 Stringpool::Key version_key) 1501 { 1502 Key k(version_key, 0); 1503 Version_base* const vbnull = NULL; 1504 std::pair<Version_table::iterator, bool> ins = 1505 this->version_table_.insert(std::make_pair(k, vbnull)); 1506 1507 if (!ins.second) 1508 { 1509 // We already have an entry for this version. 1510 Version_base* vb = ins.first->second; 1511 1512 // We have now seen a symbol in this version, so it is not 1513 // weak. 1514 gold_assert(vb != NULL); 1515 vb->clear_weak(); 1516 } 1517 else 1518 { 1519 // If we are creating a shared object, it is an error to 1520 // find a definition of a symbol with a version which is not 1521 // in the version script. 1522 if (parameters->options().shared()) 1523 { 1524 gold_error(_("symbol %s has undefined version %s"), 1525 sym->demangled_name().c_str(), version); 1526 if (this->needs_base_version_) 1527 this->define_base_version(dynpool); 1528 } 1529 else 1530 // We only insert a base version for shared library. 1531 gold_assert(!this->needs_base_version_); 1532 1533 // When creating a regular executable, automatically define 1534 // a new version. 1535 Verdef* vd = new Verdef(version, std::vector<std::string>(), 1536 false, false, false, false); 1537 this->defs_.push_back(vd); 1538 ins.first->second = vd; 1539 } 1540 } 1541 1542 // Add a reference to version NAME in file FILENAME. 1543 1544 void 1545 Versions::add_need(Stringpool* dynpool, const char* filename, const char* name, 1546 Stringpool::Key name_key) 1547 { 1548 Stringpool::Key filename_key; 1549 filename = dynpool->add(filename, true, &filename_key); 1550 1551 Key k(name_key, filename_key); 1552 Version_base* const vbnull = NULL; 1553 std::pair<Version_table::iterator, bool> ins = 1554 this->version_table_.insert(std::make_pair(k, vbnull)); 1555 1556 if (!ins.second) 1557 { 1558 // We already have an entry for this filename/version. 1559 return; 1560 } 1561 1562 // See whether we already have this filename. We don't expect many 1563 // version references, so we just do a linear search. This could be 1564 // replaced by a hash table. 1565 Verneed* vn = NULL; 1566 for (Needs::iterator p = this->needs_.begin(); 1567 p != this->needs_.end(); 1568 ++p) 1569 { 1570 if ((*p)->filename() == filename) 1571 { 1572 vn = *p; 1573 break; 1574 } 1575 } 1576 1577 if (vn == NULL) 1578 { 1579 // Create base version definition lazily for shared library. 1580 if (this->needs_base_version_) 1581 this->define_base_version(dynpool); 1582 1583 // We have a new filename. 1584 vn = new Verneed(filename); 1585 this->needs_.push_back(vn); 1586 } 1587 1588 ins.first->second = vn->add_name(name); 1589 } 1590 1591 // Set the version indexes. Create a new dynamic version symbol for 1592 // each new version definition. 1593 1594 unsigned int 1595 Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index, 1596 std::vector<Symbol*>* syms) 1597 { 1598 gold_assert(!this->is_finalized_); 1599 1600 unsigned int vi = 1; 1601 1602 for (Defs::iterator p = this->defs_.begin(); 1603 p != this->defs_.end(); 1604 ++p) 1605 { 1606 (*p)->set_index(vi); 1607 ++vi; 1608 1609 // Create a version symbol if necessary. 1610 if (!(*p)->is_symbol_created()) 1611 { 1612 Symbol* vsym = symtab->define_as_constant((*p)->name(), 1613 (*p)->name(), 1614 Symbol_table::PREDEFINED, 1615 0, 0, 1616 elfcpp::STT_OBJECT, 1617 elfcpp::STB_GLOBAL, 1618 elfcpp::STV_DEFAULT, 0, 1619 false, false); 1620 vsym->set_needs_dynsym_entry(); 1621 vsym->set_dynsym_index(dynsym_index); 1622 vsym->set_is_default(); 1623 ++dynsym_index; 1624 syms->push_back(vsym); 1625 // The name is already in the dynamic pool. 1626 } 1627 } 1628 1629 // Index 1 is used for global symbols. 1630 if (vi == 1) 1631 { 1632 gold_assert(this->defs_.empty()); 1633 vi = 2; 1634 } 1635 1636 for (Needs::iterator p = this->needs_.begin(); 1637 p != this->needs_.end(); 1638 ++p) 1639 vi = (*p)->finalize(vi); 1640 1641 this->is_finalized_ = true; 1642 1643 return dynsym_index; 1644 } 1645 1646 // Return the version index to use for a symbol. This does two hash 1647 // table lookups: one in DYNPOOL and one in this->version_table_. 1648 // Another approach alternative would be store a pointer in SYM, which 1649 // would increase the size of the symbol table. Or perhaps we could 1650 // use a hash table from dynamic symbol pointer values to Version_base 1651 // pointers. 1652 1653 unsigned int 1654 Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool, 1655 const Symbol* sym) const 1656 { 1657 Stringpool::Key version_key; 1658 const char* version = dynpool->find(sym->version(), &version_key); 1659 gold_assert(version != NULL); 1660 1661 Key k; 1662 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj()) 1663 { 1664 if (!parameters->options().shared()) 1665 return elfcpp::VER_NDX_GLOBAL; 1666 k = Key(version_key, 0); 1667 } 1668 else 1669 { 1670 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym); 1671 1672 Stringpool::Key filename_key; 1673 const char* filename = dynpool->find(dynobj->soname(), &filename_key); 1674 gold_assert(filename != NULL); 1675 1676 k = Key(version_key, filename_key); 1677 } 1678 1679 Version_table::const_iterator p = this->version_table_.find(k); 1680 gold_assert(p != this->version_table_.end()); 1681 1682 return p->second->index(); 1683 } 1684 1685 // Return an allocated buffer holding the contents of the symbol 1686 // version section. 1687 1688 template<int size, bool big_endian> 1689 void 1690 Versions::symbol_section_contents(const Symbol_table* symtab, 1691 const Stringpool* dynpool, 1692 unsigned int local_symcount, 1693 const std::vector<Symbol*>& syms, 1694 unsigned char** pp, 1695 unsigned int* psize) const 1696 { 1697 gold_assert(this->is_finalized_); 1698 1699 unsigned int sz = (local_symcount + syms.size()) * 2; 1700 unsigned char* pbuf = new unsigned char[sz]; 1701 1702 for (unsigned int i = 0; i < local_symcount; ++i) 1703 elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2, 1704 elfcpp::VER_NDX_LOCAL); 1705 1706 for (std::vector<Symbol*>::const_iterator p = syms.begin(); 1707 p != syms.end(); 1708 ++p) 1709 { 1710 unsigned int version_index; 1711 const char* version = (*p)->version(); 1712 if (version != NULL) 1713 version_index = this->version_index(symtab, dynpool, *p); 1714 else 1715 { 1716 if ((*p)->is_defined() && !(*p)->is_from_dynobj()) 1717 version_index = elfcpp::VER_NDX_GLOBAL; 1718 else 1719 version_index = elfcpp::VER_NDX_LOCAL; 1720 } 1721 // If the symbol was defined as foo@V1 instead of foo@@V1, add 1722 // the hidden bit. 1723 if ((*p)->version() != NULL && !(*p)->is_default()) 1724 version_index |= elfcpp::VERSYM_HIDDEN; 1725 elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2, 1726 version_index); 1727 } 1728 1729 *pp = pbuf; 1730 *psize = sz; 1731 } 1732 1733 // Return an allocated buffer holding the contents of the version 1734 // definition section. 1735 1736 template<int size, bool big_endian> 1737 void 1738 Versions::def_section_contents(const Stringpool* dynpool, 1739 unsigned char** pp, unsigned int* psize, 1740 unsigned int* pentries) const 1741 { 1742 gold_assert(this->is_finalized_); 1743 gold_assert(!this->defs_.empty()); 1744 1745 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size; 1746 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size; 1747 1748 unsigned int sz = 0; 1749 for (Defs::const_iterator p = this->defs_.begin(); 1750 p != this->defs_.end(); 1751 ++p) 1752 { 1753 sz += verdef_size + verdaux_size; 1754 sz += (*p)->count_dependencies() * verdaux_size; 1755 } 1756 1757 unsigned char* pbuf = new unsigned char[sz]; 1758 1759 unsigned char* pb = pbuf; 1760 Defs::const_iterator p; 1761 unsigned int i; 1762 for (p = this->defs_.begin(), i = 0; 1763 p != this->defs_.end(); 1764 ++p, ++i) 1765 pb = (*p)->write<size, big_endian>(dynpool, 1766 i + 1 >= this->defs_.size(), 1767 pb); 1768 1769 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz); 1770 1771 *pp = pbuf; 1772 *psize = sz; 1773 *pentries = this->defs_.size(); 1774 } 1775 1776 // Return an allocated buffer holding the contents of the version 1777 // reference section. 1778 1779 template<int size, bool big_endian> 1780 void 1781 Versions::need_section_contents(const Stringpool* dynpool, 1782 unsigned char** pp, unsigned int* psize, 1783 unsigned int* pentries) const 1784 { 1785 gold_assert(this->is_finalized_); 1786 gold_assert(!this->needs_.empty()); 1787 1788 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size; 1789 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size; 1790 1791 unsigned int sz = 0; 1792 for (Needs::const_iterator p = this->needs_.begin(); 1793 p != this->needs_.end(); 1794 ++p) 1795 { 1796 sz += verneed_size; 1797 sz += (*p)->count_versions() * vernaux_size; 1798 } 1799 1800 unsigned char* pbuf = new unsigned char[sz]; 1801 1802 unsigned char* pb = pbuf; 1803 Needs::const_iterator p; 1804 unsigned int i; 1805 for (p = this->needs_.begin(), i = 0; 1806 p != this->needs_.end(); 1807 ++p, ++i) 1808 pb = (*p)->write<size, big_endian>(dynpool, 1809 i + 1 >= this->needs_.size(), 1810 pb); 1811 1812 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz); 1813 1814 *pp = pbuf; 1815 *psize = sz; 1816 *pentries = this->needs_.size(); 1817 } 1818 1819 // Instantiate the templates we need. We could use the configure 1820 // script to restrict this to only the ones for implemented targets. 1821 1822 #ifdef HAVE_TARGET_32_LITTLE 1823 template 1824 class Sized_dynobj<32, false>; 1825 #endif 1826 1827 #ifdef HAVE_TARGET_32_BIG 1828 template 1829 class Sized_dynobj<32, true>; 1830 #endif 1831 1832 #ifdef HAVE_TARGET_64_LITTLE 1833 template 1834 class Sized_dynobj<64, false>; 1835 #endif 1836 1837 #ifdef HAVE_TARGET_64_BIG 1838 template 1839 class Sized_dynobj<64, true>; 1840 #endif 1841 1842 #ifdef HAVE_TARGET_32_LITTLE 1843 template 1844 void 1845 Versions::symbol_section_contents<32, false>( 1846 const Symbol_table*, 1847 const Stringpool*, 1848 unsigned int, 1849 const std::vector<Symbol*>&, 1850 unsigned char**, 1851 unsigned int*) const; 1852 #endif 1853 1854 #ifdef HAVE_TARGET_32_BIG 1855 template 1856 void 1857 Versions::symbol_section_contents<32, true>( 1858 const Symbol_table*, 1859 const Stringpool*, 1860 unsigned int, 1861 const std::vector<Symbol*>&, 1862 unsigned char**, 1863 unsigned int*) const; 1864 #endif 1865 1866 #ifdef HAVE_TARGET_64_LITTLE 1867 template 1868 void 1869 Versions::symbol_section_contents<64, false>( 1870 const Symbol_table*, 1871 const Stringpool*, 1872 unsigned int, 1873 const std::vector<Symbol*>&, 1874 unsigned char**, 1875 unsigned int*) const; 1876 #endif 1877 1878 #ifdef HAVE_TARGET_64_BIG 1879 template 1880 void 1881 Versions::symbol_section_contents<64, true>( 1882 const Symbol_table*, 1883 const Stringpool*, 1884 unsigned int, 1885 const std::vector<Symbol*>&, 1886 unsigned char**, 1887 unsigned int*) const; 1888 #endif 1889 1890 #ifdef HAVE_TARGET_32_LITTLE 1891 template 1892 void 1893 Versions::def_section_contents<32, false>( 1894 const Stringpool*, 1895 unsigned char**, 1896 unsigned int*, 1897 unsigned int*) const; 1898 #endif 1899 1900 #ifdef HAVE_TARGET_32_BIG 1901 template 1902 void 1903 Versions::def_section_contents<32, true>( 1904 const Stringpool*, 1905 unsigned char**, 1906 unsigned int*, 1907 unsigned int*) const; 1908 #endif 1909 1910 #ifdef HAVE_TARGET_64_LITTLE 1911 template 1912 void 1913 Versions::def_section_contents<64, false>( 1914 const Stringpool*, 1915 unsigned char**, 1916 unsigned int*, 1917 unsigned int*) const; 1918 #endif 1919 1920 #ifdef HAVE_TARGET_64_BIG 1921 template 1922 void 1923 Versions::def_section_contents<64, true>( 1924 const Stringpool*, 1925 unsigned char**, 1926 unsigned int*, 1927 unsigned int*) const; 1928 #endif 1929 1930 #ifdef HAVE_TARGET_32_LITTLE 1931 template 1932 void 1933 Versions::need_section_contents<32, false>( 1934 const Stringpool*, 1935 unsigned char**, 1936 unsigned int*, 1937 unsigned int*) const; 1938 #endif 1939 1940 #ifdef HAVE_TARGET_32_BIG 1941 template 1942 void 1943 Versions::need_section_contents<32, true>( 1944 const Stringpool*, 1945 unsigned char**, 1946 unsigned int*, 1947 unsigned int*) const; 1948 #endif 1949 1950 #ifdef HAVE_TARGET_64_LITTLE 1951 template 1952 void 1953 Versions::need_section_contents<64, false>( 1954 const Stringpool*, 1955 unsigned char**, 1956 unsigned int*, 1957 unsigned int*) const; 1958 #endif 1959 1960 #ifdef HAVE_TARGET_64_BIG 1961 template 1962 void 1963 Versions::need_section_contents<64, true>( 1964 const Stringpool*, 1965 unsigned char**, 1966 unsigned int*, 1967 unsigned int*) const; 1968 #endif 1969 1970 } // End namespace gold. 1971