xref: /netbsd-src/external/gpl3/binutils.old/dist/gold/arm.cc (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 // arm.cc -- arm target support for gold.
2 
3 // Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8 
9 // This file is part of gold.
10 
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15 
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 // GNU General Public License for more details.
20 
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25 
26 #include "gold.h"
27 
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36 
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54 #include "nacl.h"
55 
56 namespace
57 {
58 
59 using namespace gold;
60 
61 template<bool big_endian>
62 class Output_data_plt_arm;
63 
64 template<bool big_endian>
65 class Output_data_plt_arm_standard;
66 
67 template<bool big_endian>
68 class Stub_table;
69 
70 template<bool big_endian>
71 class Arm_input_section;
72 
73 class Arm_exidx_cantunwind;
74 
75 class Arm_exidx_merged_section;
76 
77 class Arm_exidx_fixup;
78 
79 template<bool big_endian>
80 class Arm_output_section;
81 
82 class Arm_exidx_input_section;
83 
84 template<bool big_endian>
85 class Arm_relobj;
86 
87 template<bool big_endian>
88 class Arm_relocate_functions;
89 
90 template<bool big_endian>
91 class Arm_output_data_got;
92 
93 template<bool big_endian>
94 class Target_arm;
95 
96 // For convenience.
97 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98 
99 // Maximum branch offsets for ARM, THUMB and THUMB2.
100 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106 
107 // Thread Control Block size.
108 const size_t ARM_TCB_SIZE = 8;
109 
110 // The arm target class.
111 //
112 // This is a very simple port of gold for ARM-EABI.  It is intended for
113 // supporting Android only for the time being.
114 //
115 // TODOs:
116 // - Implement all static relocation types documented in arm-reloc.def.
117 // - Make PLTs more flexible for different architecture features like
118 //   Thumb-2 and BE8.
119 // There are probably a lot more.
120 
121 // Ideally we would like to avoid using global variables but this is used
122 // very in many places and sometimes in loops.  If we use a function
123 // returning a static instance of Arm_reloc_property_table, it will be very
124 // slow in an threaded environment since the static instance needs to be
125 // locked.  The pointer is below initialized in the
126 // Target::do_select_as_default_target() hook so that we do not spend time
127 // building the table if we are not linking ARM objects.
128 //
129 // An alternative is to to process the information in arm-reloc.def in
130 // compilation time and generate a representation of it in PODs only.  That
131 // way we can avoid initialization when the linker starts.
132 
133 Arm_reloc_property_table* arm_reloc_property_table = NULL;
134 
135 // Instruction template class.  This class is similar to the insn_sequence
136 // struct in bfd/elf32-arm.c.
137 
138 class Insn_template
139 {
140  public:
141   // Types of instruction templates.
142   enum Type
143     {
144       THUMB16_TYPE = 1,
145       // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
146       // templates with class-specific semantics.  Currently this is used
147       // only by the Cortex_a8_stub class for handling condition codes in
148       // conditional branches.
149       THUMB16_SPECIAL_TYPE,
150       THUMB32_TYPE,
151       ARM_TYPE,
152       DATA_TYPE
153     };
154 
155   // Factory methods to create instruction templates in different formats.
156 
157   static const Insn_template
158   thumb16_insn(uint32_t data)
159   { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
160 
161   // A Thumb conditional branch, in which the proper condition is inserted
162   // when we build the stub.
163   static const Insn_template
164   thumb16_bcond_insn(uint32_t data)
165   { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
166 
167   static const Insn_template
168   thumb32_insn(uint32_t data)
169   { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
170 
171   static const Insn_template
172   thumb32_b_insn(uint32_t data, int reloc_addend)
173   {
174     return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175 			 reloc_addend);
176   }
177 
178   static const Insn_template
179   arm_insn(uint32_t data)
180   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181 
182   static const Insn_template
183   arm_rel_insn(unsigned data, int reloc_addend)
184   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185 
186   static const Insn_template
187   data_word(unsigned data, unsigned int r_type, int reloc_addend)
188   { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
189 
190   // Accessors.  This class is used for read-only objects so no modifiers
191   // are provided.
192 
193   uint32_t
194   data() const
195   { return this->data_; }
196 
197   // Return the instruction sequence type of this.
198   Type
199   type() const
200   { return this->type_; }
201 
202   // Return the ARM relocation type of this.
203   unsigned int
204   r_type() const
205   { return this->r_type_; }
206 
207   int32_t
208   reloc_addend() const
209   { return this->reloc_addend_; }
210 
211   // Return size of instruction template in bytes.
212   size_t
213   size() const;
214 
215   // Return byte-alignment of instruction template.
216   unsigned
217   alignment() const;
218 
219  private:
220   // We make the constructor private to ensure that only the factory
221   // methods are used.
222   inline
223   Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224     : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
225   { }
226 
227   // Instruction specific data.  This is used to store information like
228   // some of the instruction bits.
229   uint32_t data_;
230   // Instruction template type.
231   Type type_;
232   // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233   unsigned int r_type_;
234   // Relocation addend.
235   int32_t reloc_addend_;
236 };
237 
238 // Macro for generating code to stub types. One entry per long/short
239 // branch stub
240 
241 #define DEF_STUBS \
242   DEF_STUB(long_branch_any_any) \
243   DEF_STUB(long_branch_v4t_arm_thumb) \
244   DEF_STUB(long_branch_thumb_only) \
245   DEF_STUB(long_branch_v4t_thumb_thumb) \
246   DEF_STUB(long_branch_v4t_thumb_arm) \
247   DEF_STUB(short_branch_v4t_thumb_arm) \
248   DEF_STUB(long_branch_any_arm_pic) \
249   DEF_STUB(long_branch_any_thumb_pic) \
250   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253   DEF_STUB(long_branch_thumb_only_pic) \
254   DEF_STUB(a8_veneer_b_cond) \
255   DEF_STUB(a8_veneer_b) \
256   DEF_STUB(a8_veneer_bl) \
257   DEF_STUB(a8_veneer_blx) \
258   DEF_STUB(v4_veneer_bx)
259 
260 // Stub types.
261 
262 #define DEF_STUB(x) arm_stub_##x,
263 typedef enum
264   {
265     arm_stub_none,
266     DEF_STUBS
267 
268     // First reloc stub type.
269     arm_stub_reloc_first = arm_stub_long_branch_any_any,
270     // Last  reloc stub type.
271     arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272 
273     // First Cortex-A8 stub type.
274     arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275     // Last Cortex-A8 stub type.
276     arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
277 
278     // Last stub type.
279     arm_stub_type_last = arm_stub_v4_veneer_bx
280   } Stub_type;
281 #undef DEF_STUB
282 
283 // Stub template class.  Templates are meant to be read-only objects.
284 // A stub template for a stub type contains all read-only attributes
285 // common to all stubs of the same type.
286 
287 class Stub_template
288 {
289  public:
290   Stub_template(Stub_type, const Insn_template*, size_t);
291 
292   ~Stub_template()
293   { }
294 
295   // Return stub type.
296   Stub_type
297   type() const
298   { return this->type_; }
299 
300   // Return an array of instruction templates.
301   const Insn_template*
302   insns() const
303   { return this->insns_; }
304 
305   // Return size of template in number of instructions.
306   size_t
307   insn_count() const
308   { return this->insn_count_; }
309 
310   // Return size of template in bytes.
311   size_t
312   size() const
313   { return this->size_; }
314 
315   // Return alignment of the stub template.
316   unsigned
317   alignment() const
318   { return this->alignment_; }
319 
320   // Return whether entry point is in thumb mode.
321   bool
322   entry_in_thumb_mode() const
323   { return this->entry_in_thumb_mode_; }
324 
325   // Return number of relocations in this template.
326   size_t
327   reloc_count() const
328   { return this->relocs_.size(); }
329 
330   // Return index of the I-th instruction with relocation.
331   size_t
332   reloc_insn_index(size_t i) const
333   {
334     gold_assert(i < this->relocs_.size());
335     return this->relocs_[i].first;
336   }
337 
338   // Return the offset of the I-th instruction with relocation from the
339   // beginning of the stub.
340   section_size_type
341   reloc_offset(size_t i) const
342   {
343     gold_assert(i < this->relocs_.size());
344     return this->relocs_[i].second;
345   }
346 
347  private:
348   // This contains information about an instruction template with a relocation
349   // and its offset from start of stub.
350   typedef std::pair<size_t, section_size_type> Reloc;
351 
352   // A Stub_template may not be copied.  We want to share templates as much
353   // as possible.
354   Stub_template(const Stub_template&);
355   Stub_template& operator=(const Stub_template&);
356 
357   // Stub type.
358   Stub_type type_;
359   // Points to an array of Insn_templates.
360   const Insn_template* insns_;
361   // Number of Insn_templates in insns_[].
362   size_t insn_count_;
363   // Size of templated instructions in bytes.
364   size_t size_;
365   // Alignment of templated instructions.
366   unsigned alignment_;
367   // Flag to indicate if entry is in thumb mode.
368   bool entry_in_thumb_mode_;
369   // A table of reloc instruction indices and offsets.  We can find these by
370   // looking at the instruction templates but we pre-compute and then stash
371   // them here for speed.
372   std::vector<Reloc> relocs_;
373 };
374 
375 //
376 // A class for code stubs.  This is a base class for different type of
377 // stubs used in the ARM target.
378 //
379 
380 class Stub
381 {
382  private:
383   static const section_offset_type invalid_offset =
384     static_cast<section_offset_type>(-1);
385 
386  public:
387   Stub(const Stub_template* stub_template)
388     : stub_template_(stub_template), offset_(invalid_offset)
389   { }
390 
391   virtual
392    ~Stub()
393   { }
394 
395   // Return the stub template.
396   const Stub_template*
397   stub_template() const
398   { return this->stub_template_; }
399 
400   // Return offset of code stub from beginning of its containing stub table.
401   section_offset_type
402   offset() const
403   {
404     gold_assert(this->offset_ != invalid_offset);
405     return this->offset_;
406   }
407 
408   // Set offset of code stub from beginning of its containing stub table.
409   void
410   set_offset(section_offset_type offset)
411   { this->offset_ = offset; }
412 
413   // Return the relocation target address of the i-th relocation in the
414   // stub.  This must be defined in a child class.
415   Arm_address
416   reloc_target(size_t i)
417   { return this->do_reloc_target(i); }
418 
419   // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
420   void
421   write(unsigned char* view, section_size_type view_size, bool big_endian)
422   { this->do_write(view, view_size, big_endian); }
423 
424   // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425   // for the i-th instruction.
426   uint16_t
427   thumb16_special(size_t i)
428   { return this->do_thumb16_special(i); }
429 
430  protected:
431   // This must be defined in the child class.
432   virtual Arm_address
433   do_reloc_target(size_t) = 0;
434 
435   // This may be overridden in the child class.
436   virtual void
437   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438   {
439     if (big_endian)
440       this->do_fixed_endian_write<true>(view, view_size);
441     else
442       this->do_fixed_endian_write<false>(view, view_size);
443   }
444 
445   // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446   // instruction template.
447   virtual uint16_t
448   do_thumb16_special(size_t)
449   { gold_unreachable(); }
450 
451  private:
452   // A template to implement do_write.
453   template<bool big_endian>
454   void inline
455   do_fixed_endian_write(unsigned char*, section_size_type);
456 
457   // Its template.
458   const Stub_template* stub_template_;
459   // Offset within the section of containing this stub.
460   section_offset_type offset_;
461 };
462 
463 // Reloc stub class.  These are stubs we use to fix up relocation because
464 // of limited branch ranges.
465 
466 class Reloc_stub : public Stub
467 {
468  public:
469   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470   // We assume we never jump to this address.
471   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472 
473   // Return destination address.
474   Arm_address
475   destination_address() const
476   {
477     gold_assert(this->destination_address_ != this->invalid_address);
478     return this->destination_address_;
479   }
480 
481   // Set destination address.
482   void
483   set_destination_address(Arm_address address)
484   {
485     gold_assert(address != this->invalid_address);
486     this->destination_address_ = address;
487   }
488 
489   // Reset destination address.
490   void
491   reset_destination_address()
492   { this->destination_address_ = this->invalid_address; }
493 
494   // Determine stub type for a branch of a relocation of R_TYPE going
495   // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
496   // the branch target is a thumb instruction.  TARGET is used for look
497   // up ARM-specific linker settings.
498   static Stub_type
499   stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 		      Arm_address branch_target, bool target_is_thumb);
501 
502   // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
503   // and an addend.  Since we treat global and local symbol differently, we
504   // use a Symbol object for a global symbol and a object-index pair for
505   // a local symbol.
506   class Key
507   {
508    public:
509     // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510     // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
511     // and R_SYM must not be invalid_index.
512     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 	unsigned int r_sym, int32_t addend)
514       : stub_type_(stub_type), addend_(addend)
515     {
516       if (symbol != NULL)
517 	{
518 	  this->r_sym_ = Reloc_stub::invalid_index;
519 	  this->u_.symbol = symbol;
520 	}
521       else
522 	{
523 	  gold_assert(relobj != NULL && r_sym != invalid_index);
524 	  this->r_sym_ = r_sym;
525 	  this->u_.relobj = relobj;
526 	}
527     }
528 
529     ~Key()
530     { }
531 
532     // Accessors: Keys are meant to be read-only object so no modifiers are
533     // provided.
534 
535     // Return stub type.
536     Stub_type
537     stub_type() const
538     { return this->stub_type_; }
539 
540     // Return the local symbol index or invalid_index.
541     unsigned int
542     r_sym() const
543     { return this->r_sym_; }
544 
545     // Return the symbol if there is one.
546     const Symbol*
547     symbol() const
548     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549 
550     // Return the relobj if there is one.
551     const Relobj*
552     relobj() const
553     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554 
555     // Whether this equals to another key k.
556     bool
557     eq(const Key& k) const
558     {
559       return ((this->stub_type_ == k.stub_type_)
560 	      && (this->r_sym_ == k.r_sym_)
561 	      && ((this->r_sym_ != Reloc_stub::invalid_index)
562 		  ? (this->u_.relobj == k.u_.relobj)
563 		  : (this->u_.symbol == k.u_.symbol))
564 	      && (this->addend_ == k.addend_));
565     }
566 
567     // Return a hash value.
568     size_t
569     hash_value() const
570     {
571       return (this->stub_type_
572 	      ^ this->r_sym_
573 	      ^ gold::string_hash<char>(
574 		    (this->r_sym_ != Reloc_stub::invalid_index)
575 		    ? this->u_.relobj->name().c_str()
576 		    : this->u_.symbol->name())
577 	      ^ this->addend_);
578     }
579 
580     // Functors for STL associative containers.
581     struct hash
582     {
583       size_t
584       operator()(const Key& k) const
585       { return k.hash_value(); }
586     };
587 
588     struct equal_to
589     {
590       bool
591       operator()(const Key& k1, const Key& k2) const
592       { return k1.eq(k2); }
593     };
594 
595     // Name of key.  This is mainly for debugging.
596     std::string
597     name() const;
598 
599    private:
600     // Stub type.
601     Stub_type stub_type_;
602     // If this is a local symbol, this is the index in the defining object.
603     // Otherwise, it is invalid_index for a global symbol.
604     unsigned int r_sym_;
605     // If r_sym_ is an invalid index, this points to a global symbol.
606     // Otherwise, it points to a relobj.  We used the unsized and target
607     // independent Symbol and Relobj classes instead of Sized_symbol<32> and
608     // Arm_relobj, in order to avoid making the stub class a template
609     // as most of the stub machinery is endianness-neutral.  However, it
610     // may require a bit of casting done by users of this class.
611     union
612     {
613       const Symbol* symbol;
614       const Relobj* relobj;
615     } u_;
616     // Addend associated with a reloc.
617     int32_t addend_;
618   };
619 
620  protected:
621   // Reloc_stubs are created via a stub factory.  So these are protected.
622   Reloc_stub(const Stub_template* stub_template)
623     : Stub(stub_template), destination_address_(invalid_address)
624   { }
625 
626   ~Reloc_stub()
627   { }
628 
629   friend class Stub_factory;
630 
631   // Return the relocation target address of the i-th relocation in the
632   // stub.
633   Arm_address
634   do_reloc_target(size_t i)
635   {
636     // All reloc stub have only one relocation.
637     gold_assert(i == 0);
638     return this->destination_address_;
639   }
640 
641  private:
642   // Address of destination.
643   Arm_address destination_address_;
644 };
645 
646 // Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
647 // THUMB branch that meets the following conditions:
648 //
649 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650 //    branch address is 0xffe.
651 // 2. The branch target address is in the same page as the first word of the
652 //    branch.
653 // 3. The branch follows a 32-bit instruction which is not a branch.
654 //
655 // To do the fix up, we need to store the address of the branch instruction
656 // and its target at least.  We also need to store the original branch
657 // instruction bits for the condition code in a conditional branch.  The
658 // condition code is used in a special instruction template.  We also want
659 // to identify input sections needing Cortex-A8 workaround quickly.  We store
660 // extra information about object and section index of the code section
661 // containing a branch being fixed up.  The information is used to mark
662 // the code section when we finalize the Cortex-A8 stubs.
663 //
664 
665 class Cortex_a8_stub : public Stub
666 {
667  public:
668   ~Cortex_a8_stub()
669   { }
670 
671   // Return the object of the code section containing the branch being fixed
672   // up.
673   Relobj*
674   relobj() const
675   { return this->relobj_; }
676 
677   // Return the section index of the code section containing the branch being
678   // fixed up.
679   unsigned int
680   shndx() const
681   { return this->shndx_; }
682 
683   // Return the source address of stub.  This is the address of the original
684   // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
685   // instruction.
686   Arm_address
687   source_address() const
688   { return this->source_address_; }
689 
690   // Return the destination address of the stub.  This is the branch taken
691   // address of the original branch instruction.  LSB is 1 if it is a THUMB
692   // instruction address.
693   Arm_address
694   destination_address() const
695   { return this->destination_address_; }
696 
697   // Return the instruction being fixed up.
698   uint32_t
699   original_insn() const
700   { return this->original_insn_; }
701 
702  protected:
703   // Cortex_a8_stubs are created via a stub factory.  So these are protected.
704   Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 		 unsigned int shndx, Arm_address source_address,
706 		 Arm_address destination_address, uint32_t original_insn)
707     : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708       source_address_(source_address | 1U),
709       destination_address_(destination_address),
710       original_insn_(original_insn)
711   { }
712 
713   friend class Stub_factory;
714 
715   // Return the relocation target address of the i-th relocation in the
716   // stub.
717   Arm_address
718   do_reloc_target(size_t i)
719   {
720     if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721       {
722 	// The conditional branch veneer has two relocations.
723 	gold_assert(i < 2);
724 	return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725       }
726     else
727       {
728 	// All other Cortex-A8 stubs have only one relocation.
729 	gold_assert(i == 0);
730 	return this->destination_address_;
731       }
732   }
733 
734   // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735   uint16_t
736   do_thumb16_special(size_t);
737 
738  private:
739   // Object of the code section containing the branch being fixed up.
740   Relobj* relobj_;
741   // Section index of the code section containing the branch begin fixed up.
742   unsigned int shndx_;
743   // Source address of original branch.
744   Arm_address source_address_;
745   // Destination address of the original branch.
746   Arm_address destination_address_;
747   // Original branch instruction.  This is needed for copying the condition
748   // code from a condition branch to its stub.
749   uint32_t original_insn_;
750 };
751 
752 // ARMv4 BX Rx branch relocation stub class.
753 class Arm_v4bx_stub : public Stub
754 {
755  public:
756   ~Arm_v4bx_stub()
757   { }
758 
759   // Return the associated register.
760   uint32_t
761   reg() const
762   { return this->reg_; }
763 
764  protected:
765   // Arm V4BX stubs are created via a stub factory.  So these are protected.
766   Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767     : Stub(stub_template), reg_(reg)
768   { }
769 
770   friend class Stub_factory;
771 
772   // Return the relocation target address of the i-th relocation in the
773   // stub.
774   Arm_address
775   do_reloc_target(size_t)
776   { gold_unreachable(); }
777 
778   // This may be overridden in the child class.
779   virtual void
780   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781   {
782     if (big_endian)
783       this->do_fixed_endian_v4bx_write<true>(view, view_size);
784     else
785       this->do_fixed_endian_v4bx_write<false>(view, view_size);
786   }
787 
788  private:
789   // A template to implement do_write.
790   template<bool big_endian>
791   void inline
792   do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793   {
794     const Insn_template* insns = this->stub_template()->insns();
795     elfcpp::Swap<32, big_endian>::writeval(view,
796 					   (insns[0].data()
797 					   + (this->reg_ << 16)));
798     view += insns[0].size();
799     elfcpp::Swap<32, big_endian>::writeval(view,
800 					   (insns[1].data() + this->reg_));
801     view += insns[1].size();
802     elfcpp::Swap<32, big_endian>::writeval(view,
803 					   (insns[2].data() + this->reg_));
804   }
805 
806   // A register index (r0-r14), which is associated with the stub.
807   uint32_t reg_;
808 };
809 
810 // Stub factory class.
811 
812 class Stub_factory
813 {
814  public:
815   // Return the unique instance of this class.
816   static const Stub_factory&
817   get_instance()
818   {
819     static Stub_factory singleton;
820     return singleton;
821   }
822 
823   // Make a relocation stub.
824   Reloc_stub*
825   make_reloc_stub(Stub_type stub_type) const
826   {
827     gold_assert(stub_type >= arm_stub_reloc_first
828 		&& stub_type <= arm_stub_reloc_last);
829     return new Reloc_stub(this->stub_templates_[stub_type]);
830   }
831 
832   // Make a Cortex-A8 stub.
833   Cortex_a8_stub*
834   make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 		      Arm_address source, Arm_address destination,
836 		      uint32_t original_insn) const
837   {
838     gold_assert(stub_type >= arm_stub_cortex_a8_first
839 		&& stub_type <= arm_stub_cortex_a8_last);
840     return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 			      source, destination, original_insn);
842   }
843 
844   // Make an ARM V4BX relocation stub.
845   // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846   Arm_v4bx_stub*
847   make_arm_v4bx_stub(uint32_t reg) const
848   {
849     gold_assert(reg < 0xf);
850     return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 			     reg);
852   }
853 
854  private:
855   // Constructor and destructor are protected since we only return a single
856   // instance created in Stub_factory::get_instance().
857 
858   Stub_factory();
859 
860   // A Stub_factory may not be copied since it is a singleton.
861   Stub_factory(const Stub_factory&);
862   Stub_factory& operator=(Stub_factory&);
863 
864   // Stub templates.  These are initialized in the constructor.
865   const Stub_template* stub_templates_[arm_stub_type_last+1];
866 };
867 
868 // A class to hold stubs for the ARM target.
869 
870 template<bool big_endian>
871 class Stub_table : public Output_data
872 {
873  public:
874   Stub_table(Arm_input_section<big_endian>* owner)
875     : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876       reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877       prev_data_size_(0), prev_addralign_(1)
878   { }
879 
880   ~Stub_table()
881   { }
882 
883   // Owner of this stub table.
884   Arm_input_section<big_endian>*
885   owner() const
886   { return this->owner_; }
887 
888   // Whether this stub table is empty.
889   bool
890   empty() const
891   {
892     return (this->reloc_stubs_.empty()
893 	    && this->cortex_a8_stubs_.empty()
894 	    && this->arm_v4bx_stubs_.empty());
895   }
896 
897   // Return the current data size.
898   off_t
899   current_data_size() const
900   { return this->current_data_size_for_child(); }
901 
902   // Add a STUB using KEY.  The caller is responsible for avoiding addition
903   // if a STUB with the same key has already been added.
904   void
905   add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906   {
907     const Stub_template* stub_template = stub->stub_template();
908     gold_assert(stub_template->type() == key.stub_type());
909     this->reloc_stubs_[key] = stub;
910 
911     // Assign stub offset early.  We can do this because we never remove
912     // reloc stubs and they are in the beginning of the stub table.
913     uint64_t align = stub_template->alignment();
914     this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915     stub->set_offset(this->reloc_stubs_size_);
916     this->reloc_stubs_size_ += stub_template->size();
917     this->reloc_stubs_addralign_ =
918       std::max(this->reloc_stubs_addralign_, align);
919   }
920 
921   // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
922   // The caller is responsible for avoiding addition if a STUB with the same
923   // address has already been added.
924   void
925   add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926   {
927     std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928     this->cortex_a8_stubs_.insert(value);
929   }
930 
931   // Add an ARM V4BX relocation stub. A register index will be retrieved
932   // from the stub.
933   void
934   add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935   {
936     gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937     this->arm_v4bx_stubs_[stub->reg()] = stub;
938   }
939 
940   // Remove all Cortex-A8 stubs.
941   void
942   remove_all_cortex_a8_stubs();
943 
944   // Look up a relocation stub using KEY.  Return NULL if there is none.
945   Reloc_stub*
946   find_reloc_stub(const Reloc_stub::Key& key) const
947   {
948     typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950   }
951 
952   // Look up an arm v4bx relocation stub using the register index.
953   // Return NULL if there is none.
954   Arm_v4bx_stub*
955   find_arm_v4bx_stub(const uint32_t reg) const
956   {
957     gold_assert(reg < 0xf);
958     return this->arm_v4bx_stubs_[reg];
959   }
960 
961   // Relocate stubs in this stub table.
962   void
963   relocate_stubs(const Relocate_info<32, big_endian>*,
964 		 Target_arm<big_endian>*, Output_section*,
965 		 unsigned char*, Arm_address, section_size_type);
966 
967   // Update data size and alignment at the end of a relaxation pass.  Return
968   // true if either data size or alignment is different from that of the
969   // previous relaxation pass.
970   bool
971   update_data_size_and_addralign();
972 
973   // Finalize stubs.  Set the offsets of all stubs and mark input sections
974   // needing the Cortex-A8 workaround.
975   void
976   finalize_stubs();
977 
978   // Apply Cortex-A8 workaround to an address range.
979   void
980   apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 					      unsigned char*, Arm_address,
982 					      section_size_type);
983 
984  protected:
985   // Write out section contents.
986   void
987   do_write(Output_file*);
988 
989   // Return the required alignment.
990   uint64_t
991   do_addralign() const
992   { return this->prev_addralign_; }
993 
994   // Reset address and file offset.
995   void
996   do_reset_address_and_file_offset()
997   { this->set_current_data_size_for_child(this->prev_data_size_); }
998 
999   // Set final data size.
1000   void
1001   set_final_data_size()
1002   { this->set_data_size(this->current_data_size()); }
1003 
1004  private:
1005   // Relocate one stub.
1006   void
1007   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 		Target_arm<big_endian>*, Output_section*,
1009 		unsigned char*, Arm_address, section_size_type);
1010 
1011   // Unordered map of relocation stubs.
1012   typedef
1013     Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 		  Reloc_stub::Key::equal_to>
1015     Reloc_stub_map;
1016 
1017   // List of Cortex-A8 stubs ordered by addresses of branches being
1018   // fixed up in output.
1019   typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1020   // List of Arm V4BX relocation stubs ordered by associated registers.
1021   typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1022 
1023   // Owner of this stub table.
1024   Arm_input_section<big_endian>* owner_;
1025   // The relocation stubs.
1026   Reloc_stub_map reloc_stubs_;
1027   // Size of reloc stubs.
1028   off_t reloc_stubs_size_;
1029   // Maximum address alignment of reloc stubs.
1030   uint64_t reloc_stubs_addralign_;
1031   // The cortex_a8_stubs.
1032   Cortex_a8_stub_list cortex_a8_stubs_;
1033   // The Arm V4BX relocation stubs.
1034   Arm_v4bx_stub_list arm_v4bx_stubs_;
1035   // data size of this in the previous pass.
1036   off_t prev_data_size_;
1037   // address alignment of this in the previous pass.
1038   uint64_t prev_addralign_;
1039 };
1040 
1041 // Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
1042 // we add to the end of an EXIDX input section that goes into the output.
1043 
1044 class Arm_exidx_cantunwind : public Output_section_data
1045 {
1046  public:
1047   Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048     : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049   { }
1050 
1051   // Return the object containing the section pointed by this.
1052   Relobj*
1053   relobj() const
1054   { return this->relobj_; }
1055 
1056   // Return the section index of the section pointed by this.
1057   unsigned int
1058   shndx() const
1059   { return this->shndx_; }
1060 
1061  protected:
1062   void
1063   do_write(Output_file* of)
1064   {
1065     if (parameters->target().is_big_endian())
1066       this->do_fixed_endian_write<true>(of);
1067     else
1068       this->do_fixed_endian_write<false>(of);
1069   }
1070 
1071   // Write to a map file.
1072   void
1073   do_print_to_mapfile(Mapfile* mapfile) const
1074   { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075 
1076  private:
1077   // Implement do_write for a given endianness.
1078   template<bool big_endian>
1079   void inline
1080   do_fixed_endian_write(Output_file*);
1081 
1082   // The object containing the section pointed by this.
1083   Relobj* relobj_;
1084   // The section index of the section pointed by this.
1085   unsigned int shndx_;
1086 };
1087 
1088 // During EXIDX coverage fix-up, we compact an EXIDX section.  The
1089 // Offset map is used to map input section offset within the EXIDX section
1090 // to the output offset from the start of this EXIDX section.
1091 
1092 typedef std::map<section_offset_type, section_offset_type>
1093 	Arm_exidx_section_offset_map;
1094 
1095 // Arm_exidx_merged_section class.  This represents an EXIDX input section
1096 // with some of its entries merged.
1097 
1098 class Arm_exidx_merged_section : public Output_relaxed_input_section
1099 {
1100  public:
1101   // Constructor for Arm_exidx_merged_section.
1102   // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103   // SECTION_OFFSET_MAP points to a section offset map describing how
1104   // parts of the input section are mapped to output.  DELETED_BYTES is
1105   // the number of bytes deleted from the EXIDX input section.
1106   Arm_exidx_merged_section(
1107       const Arm_exidx_input_section& exidx_input_section,
1108       const Arm_exidx_section_offset_map& section_offset_map,
1109       uint32_t deleted_bytes);
1110 
1111   // Build output contents.
1112   void
1113   build_contents(const unsigned char*, section_size_type);
1114 
1115   // Return the original EXIDX input section.
1116   const Arm_exidx_input_section&
1117   exidx_input_section() const
1118   { return this->exidx_input_section_; }
1119 
1120   // Return the section offset map.
1121   const Arm_exidx_section_offset_map&
1122   section_offset_map() const
1123   { return this->section_offset_map_; }
1124 
1125  protected:
1126   // Write merged section into file OF.
1127   void
1128   do_write(Output_file* of);
1129 
1130   bool
1131   do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 		  section_offset_type*) const;
1133 
1134  private:
1135   // Original EXIDX input section.
1136   const Arm_exidx_input_section& exidx_input_section_;
1137   // Section offset map.
1138   const Arm_exidx_section_offset_map& section_offset_map_;
1139   // Merged section contents.  We need to keep build the merged section
1140   // and save it here to avoid accessing the original EXIDX section when
1141   // we cannot lock the sections' object.
1142   unsigned char* section_contents_;
1143 };
1144 
1145 // A class to wrap an ordinary input section containing executable code.
1146 
1147 template<bool big_endian>
1148 class Arm_input_section : public Output_relaxed_input_section
1149 {
1150  public:
1151   Arm_input_section(Relobj* relobj, unsigned int shndx)
1152     : Output_relaxed_input_section(relobj, shndx, 1),
1153       original_addralign_(1), original_size_(0), stub_table_(NULL),
1154       original_contents_(NULL)
1155   { }
1156 
1157   ~Arm_input_section()
1158   { delete[] this->original_contents_; }
1159 
1160   // Initialize.
1161   void
1162   init();
1163 
1164   // Whether this is a stub table owner.
1165   bool
1166   is_stub_table_owner() const
1167   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168 
1169   // Return the stub table.
1170   Stub_table<big_endian>*
1171   stub_table() const
1172   { return this->stub_table_; }
1173 
1174   // Set the stub_table.
1175   void
1176   set_stub_table(Stub_table<big_endian>* stub_table)
1177   { this->stub_table_ = stub_table; }
1178 
1179   // Downcast a base pointer to an Arm_input_section pointer.  This is
1180   // not type-safe but we only use Arm_input_section not the base class.
1181   static Arm_input_section<big_endian>*
1182   as_arm_input_section(Output_relaxed_input_section* poris)
1183   { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184 
1185   // Return the original size of the section.
1186   uint32_t
1187   original_size() const
1188   { return this->original_size_; }
1189 
1190  protected:
1191   // Write data to output file.
1192   void
1193   do_write(Output_file*);
1194 
1195   // Return required alignment of this.
1196   uint64_t
1197   do_addralign() const
1198   {
1199     if (this->is_stub_table_owner())
1200       return std::max(this->stub_table_->addralign(),
1201 		      static_cast<uint64_t>(this->original_addralign_));
1202     else
1203       return this->original_addralign_;
1204   }
1205 
1206   // Finalize data size.
1207   void
1208   set_final_data_size();
1209 
1210   // Reset address and file offset.
1211   void
1212   do_reset_address_and_file_offset();
1213 
1214   // Output offset.
1215   bool
1216   do_output_offset(const Relobj* object, unsigned int shndx,
1217 		   section_offset_type offset,
1218 		   section_offset_type* poutput) const
1219   {
1220     if ((object == this->relobj())
1221 	&& (shndx == this->shndx())
1222 	&& (offset >= 0)
1223 	&& (offset <=
1224 	    convert_types<section_offset_type, uint32_t>(this->original_size_)))
1225       {
1226 	*poutput = offset;
1227 	return true;
1228       }
1229     else
1230       return false;
1231   }
1232 
1233  private:
1234   // Copying is not allowed.
1235   Arm_input_section(const Arm_input_section&);
1236   Arm_input_section& operator=(const Arm_input_section&);
1237 
1238   // Address alignment of the original input section.
1239   uint32_t original_addralign_;
1240   // Section size of the original input section.
1241   uint32_t original_size_;
1242   // Stub table.
1243   Stub_table<big_endian>* stub_table_;
1244   // Original section contents.  We have to make a copy here since the file
1245   // containing the original section may not be locked when we need to access
1246   // the contents.
1247   unsigned char* original_contents_;
1248 };
1249 
1250 // Arm_exidx_fixup class.  This is used to define a number of methods
1251 // and keep states for fixing up EXIDX coverage.
1252 
1253 class Arm_exidx_fixup
1254 {
1255  public:
1256   Arm_exidx_fixup(Output_section* exidx_output_section,
1257 		  bool merge_exidx_entries = true)
1258     : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259       last_inlined_entry_(0), last_input_section_(NULL),
1260       section_offset_map_(NULL), first_output_text_section_(NULL),
1261       merge_exidx_entries_(merge_exidx_entries)
1262   { }
1263 
1264   ~Arm_exidx_fixup()
1265   { delete this->section_offset_map_; }
1266 
1267   // Process an EXIDX section for entry merging.  SECTION_CONTENTS points
1268   // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269   // number of bytes to be deleted in output.  If parts of the input EXIDX
1270   // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271   // in the located PSECTION_OFFSET_MAP.   The caller owns the map and is
1272   // responsible for releasing it.
1273   template<bool big_endian>
1274   uint32_t
1275   process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1276 			const unsigned char* section_contents,
1277 			section_size_type section_size,
1278 			Arm_exidx_section_offset_map** psection_offset_map);
1279 
1280   // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281   // input section, if there is not one already.
1282   void
1283   add_exidx_cantunwind_as_needed();
1284 
1285   // Return the output section for the text section which is linked to the
1286   // first exidx input in output.
1287   Output_section*
1288   first_output_text_section() const
1289   { return this->first_output_text_section_; }
1290 
1291  private:
1292   // Copying is not allowed.
1293   Arm_exidx_fixup(const Arm_exidx_fixup&);
1294   Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295 
1296   // Type of EXIDX unwind entry.
1297   enum Unwind_type
1298   {
1299     // No type.
1300     UT_NONE,
1301     // EXIDX_CANTUNWIND.
1302     UT_EXIDX_CANTUNWIND,
1303     // Inlined entry.
1304     UT_INLINED_ENTRY,
1305     // Normal entry.
1306     UT_NORMAL_ENTRY,
1307   };
1308 
1309   // Process an EXIDX entry.  We only care about the second word of the
1310   // entry.  Return true if the entry can be deleted.
1311   bool
1312   process_exidx_entry(uint32_t second_word);
1313 
1314   // Update the current section offset map during EXIDX section fix-up.
1315   // If there is no map, create one.  INPUT_OFFSET is the offset of a
1316   // reference point, DELETED_BYTES is the number of deleted by in the
1317   // section so far.  If DELETE_ENTRY is true, the reference point and
1318   // all offsets after the previous reference point are discarded.
1319   void
1320   update_offset_map(section_offset_type input_offset,
1321 		    section_size_type deleted_bytes, bool delete_entry);
1322 
1323   // EXIDX output section.
1324   Output_section* exidx_output_section_;
1325   // Unwind type of the last EXIDX entry processed.
1326   Unwind_type last_unwind_type_;
1327   // Last seen inlined EXIDX entry.
1328   uint32_t last_inlined_entry_;
1329   // Last processed EXIDX input section.
1330   const Arm_exidx_input_section* last_input_section_;
1331   // Section offset map created in process_exidx_section.
1332   Arm_exidx_section_offset_map* section_offset_map_;
1333   // Output section for the text section which is linked to the first exidx
1334   // input in output.
1335   Output_section* first_output_text_section_;
1336 
1337   bool merge_exidx_entries_;
1338 };
1339 
1340 // Arm output section class.  This is defined mainly to add a number of
1341 // stub generation methods.
1342 
1343 template<bool big_endian>
1344 class Arm_output_section : public Output_section
1345 {
1346  public:
1347   typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348 
1349   // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1350   Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 		     elfcpp::Elf_Xword flags)
1352     : Output_section(name, type,
1353 		     (type == elfcpp::SHT_ARM_EXIDX
1354 		      ? flags | elfcpp::SHF_LINK_ORDER
1355 		      : flags))
1356   {
1357     if (type == elfcpp::SHT_ARM_EXIDX)
1358       this->set_always_keeps_input_sections();
1359   }
1360 
1361   ~Arm_output_section()
1362   { }
1363 
1364   // Group input sections for stub generation.
1365   void
1366   group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1367 
1368   // Downcast a base pointer to an Arm_output_section pointer.  This is
1369   // not type-safe but we only use Arm_output_section not the base class.
1370   static Arm_output_section<big_endian>*
1371   as_arm_output_section(Output_section* os)
1372   { return static_cast<Arm_output_section<big_endian>*>(os); }
1373 
1374   // Append all input text sections in this into LIST.
1375   void
1376   append_text_sections_to_list(Text_section_list* list);
1377 
1378   // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
1379   // is a list of text input sections sorted in ascending order of their
1380   // output addresses.
1381   void
1382   fix_exidx_coverage(Layout* layout,
1383 		     const Text_section_list& sorted_text_section,
1384 		     Symbol_table* symtab,
1385 		     bool merge_exidx_entries,
1386 		     const Task* task);
1387 
1388   // Link an EXIDX section into its corresponding text section.
1389   void
1390   set_exidx_section_link();
1391 
1392  private:
1393   // For convenience.
1394   typedef Output_section::Input_section Input_section;
1395   typedef Output_section::Input_section_list Input_section_list;
1396 
1397   // Create a stub group.
1398   void create_stub_group(Input_section_list::const_iterator,
1399 			 Input_section_list::const_iterator,
1400 			 Input_section_list::const_iterator,
1401 			 Target_arm<big_endian>*,
1402 			 std::vector<Output_relaxed_input_section*>*,
1403 			 const Task* task);
1404 };
1405 
1406 // Arm_exidx_input_section class.  This represents an EXIDX input section.
1407 
1408 class Arm_exidx_input_section
1409 {
1410  public:
1411   static const section_offset_type invalid_offset =
1412     static_cast<section_offset_type>(-1);
1413 
1414   Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1415 			  unsigned int link, uint32_t size,
1416 			  uint32_t addralign, uint32_t text_size)
1417     : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1418       addralign_(addralign), text_size_(text_size), has_errors_(false)
1419   { }
1420 
1421   ~Arm_exidx_input_section()
1422   { }
1423 
1424   // Accessors:  This is a read-only class.
1425 
1426   // Return the object containing this EXIDX input section.
1427   Relobj*
1428   relobj() const
1429   { return this->relobj_; }
1430 
1431   // Return the section index of this EXIDX input section.
1432   unsigned int
1433   shndx() const
1434   { return this->shndx_; }
1435 
1436   // Return the section index of linked text section in the same object.
1437   unsigned int
1438   link() const
1439   { return this->link_; }
1440 
1441   // Return size of the EXIDX input section.
1442   uint32_t
1443   size() const
1444   { return this->size_; }
1445 
1446   // Return address alignment of EXIDX input section.
1447   uint32_t
1448   addralign() const
1449   { return this->addralign_; }
1450 
1451   // Return size of the associated text input section.
1452   uint32_t
1453   text_size() const
1454   { return this->text_size_; }
1455 
1456   // Whether there are any errors in the EXIDX input section.
1457   bool
1458   has_errors() const
1459   { return this->has_errors_; }
1460 
1461   // Set has-errors flag.
1462   void
1463   set_has_errors()
1464   { this->has_errors_ = true; }
1465 
1466  private:
1467   // Object containing this.
1468   Relobj* relobj_;
1469   // Section index of this.
1470   unsigned int shndx_;
1471   // text section linked to this in the same object.
1472   unsigned int link_;
1473   // Size of this.  For ARM 32-bit is sufficient.
1474   uint32_t size_;
1475   // Address alignment of this.  For ARM 32-bit is sufficient.
1476   uint32_t addralign_;
1477   // Size of associated text section.
1478   uint32_t text_size_;
1479   // Whether this has any errors.
1480   bool has_errors_;
1481 };
1482 
1483 // Arm_relobj class.
1484 
1485 template<bool big_endian>
1486 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1487 {
1488  public:
1489   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490 
1491   Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1492 	     const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1493     : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1494       stub_tables_(), local_symbol_is_thumb_function_(),
1495       attributes_section_data_(NULL), mapping_symbols_info_(),
1496       section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1497       output_local_symbol_count_needs_update_(false),
1498       merge_flags_and_attributes_(true)
1499   { }
1500 
1501   ~Arm_relobj()
1502   { delete this->attributes_section_data_; }
1503 
1504   // Return the stub table of the SHNDX-th section if there is one.
1505   Stub_table<big_endian>*
1506   stub_table(unsigned int shndx) const
1507   {
1508     gold_assert(shndx < this->stub_tables_.size());
1509     return this->stub_tables_[shndx];
1510   }
1511 
1512   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513   void
1514   set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1515   {
1516     gold_assert(shndx < this->stub_tables_.size());
1517     this->stub_tables_[shndx] = stub_table;
1518   }
1519 
1520   // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
1521   // index.  This is only valid after do_count_local_symbol is called.
1522   bool
1523   local_symbol_is_thumb_function(unsigned int r_sym) const
1524   {
1525     gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526     return this->local_symbol_is_thumb_function_[r_sym];
1527   }
1528 
1529   // Scan all relocation sections for stub generation.
1530   void
1531   scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532 			  const Layout*);
1533 
1534   // Convert regular input section with index SHNDX to a relaxed section.
1535   void
1536   convert_input_section_to_relaxed_section(unsigned shndx)
1537   {
1538     // The stubs have relocations and we need to process them after writing
1539     // out the stubs.  So relocation now must follow section write.
1540     this->set_section_offset(shndx, -1ULL);
1541     this->set_relocs_must_follow_section_writes();
1542   }
1543 
1544   // Downcast a base pointer to an Arm_relobj pointer.  This is
1545   // not type-safe but we only use Arm_relobj not the base class.
1546   static Arm_relobj<big_endian>*
1547   as_arm_relobj(Relobj* relobj)
1548   { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1549 
1550   // Processor-specific flags in ELF file header.  This is valid only after
1551   // reading symbols.
1552   elfcpp::Elf_Word
1553   processor_specific_flags() const
1554   { return this->processor_specific_flags_; }
1555 
1556   // Attribute section data  This is the contents of the .ARM.attribute section
1557   // if there is one.
1558   const Attributes_section_data*
1559   attributes_section_data() const
1560   { return this->attributes_section_data_; }
1561 
1562   // Mapping symbol location.
1563   typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564 
1565   // Functor for STL container.
1566   struct Mapping_symbol_position_less
1567   {
1568     bool
1569     operator()(const Mapping_symbol_position& p1,
1570 	       const Mapping_symbol_position& p2) const
1571     {
1572       return (p1.first < p2.first
1573 	      || (p1.first == p2.first && p1.second < p2.second));
1574     }
1575   };
1576 
1577   // We only care about the first character of a mapping symbol, so
1578   // we only store that instead of the whole symbol name.
1579   typedef std::map<Mapping_symbol_position, char,
1580 		   Mapping_symbol_position_less> Mapping_symbols_info;
1581 
1582   // Whether a section contains any Cortex-A8 workaround.
1583   bool
1584   section_has_cortex_a8_workaround(unsigned int shndx) const
1585   {
1586     return (this->section_has_cortex_a8_workaround_ != NULL
1587 	    && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588   }
1589 
1590   // Mark a section that has Cortex-A8 workaround.
1591   void
1592   mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593   {
1594     if (this->section_has_cortex_a8_workaround_ == NULL)
1595       this->section_has_cortex_a8_workaround_ =
1596 	new std::vector<bool>(this->shnum(), false);
1597     (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598   }
1599 
1600   // Return the EXIDX section of an text section with index SHNDX or NULL
1601   // if the text section has no associated EXIDX section.
1602   const Arm_exidx_input_section*
1603   exidx_input_section_by_link(unsigned int shndx) const
1604   {
1605     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606     return ((p != this->exidx_section_map_.end()
1607 	     && p->second->link() == shndx)
1608 	    ? p->second
1609 	    : NULL);
1610   }
1611 
1612   // Return the EXIDX section with index SHNDX or NULL if there is none.
1613   const Arm_exidx_input_section*
1614   exidx_input_section_by_shndx(unsigned shndx) const
1615   {
1616     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617     return ((p != this->exidx_section_map_.end()
1618 	     && p->second->shndx() == shndx)
1619 	    ? p->second
1620 	    : NULL);
1621   }
1622 
1623   // Whether output local symbol count needs updating.
1624   bool
1625   output_local_symbol_count_needs_update() const
1626   { return this->output_local_symbol_count_needs_update_; }
1627 
1628   // Set output_local_symbol_count_needs_update flag to be true.
1629   void
1630   set_output_local_symbol_count_needs_update()
1631   { this->output_local_symbol_count_needs_update_ = true; }
1632 
1633   // Update output local symbol count at the end of relaxation.
1634   void
1635   update_output_local_symbol_count();
1636 
1637   // Whether we want to merge processor-specific flags and attributes.
1638   bool
1639   merge_flags_and_attributes() const
1640   { return this->merge_flags_and_attributes_; }
1641 
1642   // Export list of EXIDX section indices.
1643   void
1644   get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645   {
1646     list->clear();
1647     for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 	 p != this->exidx_section_map_.end();
1649 	 ++p)
1650       {
1651 	if (p->second->shndx() == p->first)
1652 	  list->push_back(p->first);
1653       }
1654     // Sort list to make result independent of implementation of map.
1655     std::sort(list->begin(), list->end());
1656   }
1657 
1658  protected:
1659   // Post constructor setup.
1660   void
1661   do_setup()
1662   {
1663     // Call parent's setup method.
1664     Sized_relobj_file<32, big_endian>::do_setup();
1665 
1666     // Initialize look-up tables.
1667     Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668     this->stub_tables_.swap(empty_stub_table_list);
1669   }
1670 
1671   // Count the local symbols.
1672   void
1673   do_count_local_symbols(Stringpool_template<char>*,
1674 			 Stringpool_template<char>*);
1675 
1676   void
1677   do_relocate_sections(
1678       const Symbol_table* symtab, const Layout* layout,
1679       const unsigned char* pshdrs, Output_file* of,
1680       typename Sized_relobj_file<32, big_endian>::Views* pivews);
1681 
1682   // Read the symbol information.
1683   void
1684   do_read_symbols(Read_symbols_data* sd);
1685 
1686   // Process relocs for garbage collection.
1687   void
1688   do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689 
1690  private:
1691 
1692   // Whether a section needs to be scanned for relocation stubs.
1693   bool
1694   section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 				    const Relobj::Output_sections&,
1696 				    const Symbol_table*, const unsigned char*);
1697 
1698   // Whether a section is a scannable text section.
1699   bool
1700   section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1701 		       const Output_section*, const Symbol_table*);
1702 
1703   // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704   bool
1705   section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 					unsigned int, Output_section*,
1707 					const Symbol_table*);
1708 
1709   // Scan a section for the Cortex-A8 erratum.
1710   void
1711   scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 				     unsigned int, Output_section*,
1713 				     Target_arm<big_endian>*);
1714 
1715   // Find the linked text section of an EXIDX section by looking at the
1716   // first relocation of the EXIDX section.  PSHDR points to the section
1717   // headers of a relocation section and PSYMS points to the local symbols.
1718   // PSHNDX points to a location storing the text section index if found.
1719   // Return whether we can find the linked section.
1720   bool
1721   find_linked_text_section(const unsigned char* pshdr,
1722 			   const unsigned char* psyms, unsigned int* pshndx);
1723 
1724   //
1725   // Make a new Arm_exidx_input_section object for EXIDX section with
1726   // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
1727   // index of the linked text section.
1728   void
1729   make_exidx_input_section(unsigned int shndx,
1730 			   const elfcpp::Shdr<32, big_endian>& shdr,
1731 			   unsigned int text_shndx,
1732 			   const elfcpp::Shdr<32, big_endian>& text_shdr);
1733 
1734   // Return the output address of either a plain input section or a
1735   // relaxed input section.  SHNDX is the section index.
1736   Arm_address
1737   simple_input_section_output_address(unsigned int, Output_section*);
1738 
1739   typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1740   typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741     Exidx_section_map;
1742 
1743   // List of stub tables.
1744   Stub_table_list stub_tables_;
1745   // Bit vector to tell if a local symbol is a thumb function or not.
1746   // This is only valid after do_count_local_symbol is called.
1747   std::vector<bool> local_symbol_is_thumb_function_;
1748   // processor-specific flags in ELF file header.
1749   elfcpp::Elf_Word processor_specific_flags_;
1750   // Object attributes if there is an .ARM.attributes section or NULL.
1751   Attributes_section_data* attributes_section_data_;
1752   // Mapping symbols information.
1753   Mapping_symbols_info mapping_symbols_info_;
1754   // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755   std::vector<bool>* section_has_cortex_a8_workaround_;
1756   // Map a text section to its associated .ARM.exidx section, if there is one.
1757   Exidx_section_map exidx_section_map_;
1758   // Whether output local symbol count needs updating.
1759   bool output_local_symbol_count_needs_update_;
1760   // Whether we merge processor flags and attributes of this object to
1761   // output.
1762   bool merge_flags_and_attributes_;
1763 };
1764 
1765 // Arm_dynobj class.
1766 
1767 template<bool big_endian>
1768 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769 {
1770  public:
1771   Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1772 	     const elfcpp::Ehdr<32, big_endian>& ehdr)
1773     : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774       processor_specific_flags_(0), attributes_section_data_(NULL)
1775   { }
1776 
1777   ~Arm_dynobj()
1778   { delete this->attributes_section_data_; }
1779 
1780   // Downcast a base pointer to an Arm_relobj pointer.  This is
1781   // not type-safe but we only use Arm_relobj not the base class.
1782   static Arm_dynobj<big_endian>*
1783   as_arm_dynobj(Dynobj* dynobj)
1784   { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785 
1786   // Processor-specific flags in ELF file header.  This is valid only after
1787   // reading symbols.
1788   elfcpp::Elf_Word
1789   processor_specific_flags() const
1790   { return this->processor_specific_flags_; }
1791 
1792   // Attributes section data.
1793   const Attributes_section_data*
1794   attributes_section_data() const
1795   { return this->attributes_section_data_; }
1796 
1797  protected:
1798   // Read the symbol information.
1799   void
1800   do_read_symbols(Read_symbols_data* sd);
1801 
1802  private:
1803   // processor-specific flags in ELF file header.
1804   elfcpp::Elf_Word processor_specific_flags_;
1805   // Object attributes if there is an .ARM.attributes section or NULL.
1806   Attributes_section_data* attributes_section_data_;
1807 };
1808 
1809 // Functor to read reloc addends during stub generation.
1810 
1811 template<int sh_type, bool big_endian>
1812 struct Stub_addend_reader
1813 {
1814   // Return the addend for a relocation of a particular type.  Depending
1815   // on whether this is a REL or RELA relocation, read the addend from a
1816   // view or from a Reloc object.
1817   elfcpp::Elf_types<32>::Elf_Swxword
1818   operator()(
1819     unsigned int /* r_type */,
1820     const unsigned char* /* view */,
1821     const typename Reloc_types<sh_type,
1822 			       32, big_endian>::Reloc& /* reloc */) const;
1823 };
1824 
1825 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826 
1827 template<bool big_endian>
1828 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829 {
1830   elfcpp::Elf_types<32>::Elf_Swxword
1831   operator()(
1832     unsigned int,
1833     const unsigned char*,
1834     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835 };
1836 
1837 // Specialized Stub_addend_reader for RELA type relocation sections.
1838 // We currently do not handle RELA type relocation sections but it is trivial
1839 // to implement the addend reader.  This is provided for completeness and to
1840 // make it easier to add support for RELA relocation sections in the future.
1841 
1842 template<bool big_endian>
1843 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844 {
1845   elfcpp::Elf_types<32>::Elf_Swxword
1846   operator()(
1847     unsigned int,
1848     const unsigned char*,
1849     const typename Reloc_types<elfcpp::SHT_RELA, 32,
1850 			       big_endian>::Reloc& reloc) const
1851   { return reloc.get_r_addend(); }
1852 };
1853 
1854 // Cortex_a8_reloc class.  We keep record of relocation that may need
1855 // the Cortex-A8 erratum workaround.
1856 
1857 class Cortex_a8_reloc
1858 {
1859  public:
1860   Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 		  Arm_address destination)
1862     : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863   { }
1864 
1865   ~Cortex_a8_reloc()
1866   { }
1867 
1868   // Accessors:  This is a read-only class.
1869 
1870   // Return the relocation stub associated with this relocation if there is
1871   // one.
1872   const Reloc_stub*
1873   reloc_stub() const
1874   { return this->reloc_stub_; }
1875 
1876   // Return the relocation type.
1877   unsigned int
1878   r_type() const
1879   { return this->r_type_; }
1880 
1881   // Return the destination address of the relocation.  LSB stores the THUMB
1882   // bit.
1883   Arm_address
1884   destination() const
1885   { return this->destination_; }
1886 
1887  private:
1888   // Associated relocation stub if there is one, or NULL.
1889   const Reloc_stub* reloc_stub_;
1890   // Relocation type.
1891   unsigned int r_type_;
1892   // Destination address of this relocation.  LSB is used to distinguish
1893   // ARM/THUMB mode.
1894   Arm_address destination_;
1895 };
1896 
1897 // Arm_output_data_got class.  We derive this from Output_data_got to add
1898 // extra methods to handle TLS relocations in a static link.
1899 
1900 template<bool big_endian>
1901 class Arm_output_data_got : public Output_data_got<32, big_endian>
1902 {
1903  public:
1904   Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905     : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906   { }
1907 
1908   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1909   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910   // applied in a static link.
1911   void
1912   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914 
1915   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1916   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1917   // relocation that needs to be applied in a static link.
1918   void
1919   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1920 		   Sized_relobj_file<32, big_endian>* relobj,
1921 		   unsigned int index)
1922   {
1923     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924 						index));
1925   }
1926 
1927   // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
1928   // The first one is initialized to be 1, which is the module index for
1929   // the main executable and the second one 0.  A reloc of the type
1930   // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931   // be applied by gold.  GSYM is a global symbol.
1932   void
1933   add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934 
1935   // Same as the above but for a local symbol in OBJECT with INDEX.
1936   void
1937   add_tls_gd32_with_static_reloc(unsigned int got_type,
1938 				 Sized_relobj_file<32, big_endian>* object,
1939 				 unsigned int index);
1940 
1941  protected:
1942   // Write out the GOT table.
1943   void
1944   do_write(Output_file*);
1945 
1946  private:
1947   // This class represent dynamic relocations that need to be applied by
1948   // gold because we are using TLS relocations in a static link.
1949   class Static_reloc
1950   {
1951    public:
1952     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954     { this->u_.global.symbol = gsym; }
1955 
1956     Static_reloc(unsigned int got_offset, unsigned int r_type,
1957 	  Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1958       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959     {
1960       this->u_.local.relobj = relobj;
1961       this->u_.local.index = index;
1962     }
1963 
1964     // Return the GOT offset.
1965     unsigned int
1966     got_offset() const
1967     { return this->got_offset_; }
1968 
1969     // Relocation type.
1970     unsigned int
1971     r_type() const
1972     { return this->r_type_; }
1973 
1974     // Whether the symbol is global or not.
1975     bool
1976     symbol_is_global() const
1977     { return this->symbol_is_global_; }
1978 
1979     // For a relocation against a global symbol, the global symbol.
1980     Symbol*
1981     symbol() const
1982     {
1983       gold_assert(this->symbol_is_global_);
1984       return this->u_.global.symbol;
1985     }
1986 
1987     // For a relocation against a local symbol, the defining object.
1988     Sized_relobj_file<32, big_endian>*
1989     relobj() const
1990     {
1991       gold_assert(!this->symbol_is_global_);
1992       return this->u_.local.relobj;
1993     }
1994 
1995     // For a relocation against a local symbol, the local symbol index.
1996     unsigned int
1997     index() const
1998     {
1999       gold_assert(!this->symbol_is_global_);
2000       return this->u_.local.index;
2001     }
2002 
2003    private:
2004     // GOT offset of the entry to which this relocation is applied.
2005     unsigned int got_offset_;
2006     // Type of relocation.
2007     unsigned int r_type_;
2008     // Whether this relocation is against a global symbol.
2009     bool symbol_is_global_;
2010     // A global or local symbol.
2011     union
2012     {
2013       struct
2014       {
2015 	// For a global symbol, the symbol itself.
2016 	Symbol* symbol;
2017       } global;
2018       struct
2019       {
2020 	// For a local symbol, the object defining object.
2021 	Sized_relobj_file<32, big_endian>* relobj;
2022 	// For a local symbol, the symbol index.
2023 	unsigned int index;
2024       } local;
2025     } u_;
2026   };
2027 
2028   // Symbol table of the output object.
2029   Symbol_table* symbol_table_;
2030   // Layout of the output object.
2031   Layout* layout_;
2032   // Static relocs to be applied to the GOT.
2033   std::vector<Static_reloc> static_relocs_;
2034 };
2035 
2036 // The ARM target has many relocation types with odd-sizes or noncontiguous
2037 // bits.  The default handling of relocatable relocation cannot process these
2038 // relocations.  So we have to extend the default code.
2039 
2040 template<bool big_endian, int sh_type, typename Classify_reloc>
2041 class Arm_scan_relocatable_relocs :
2042   public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043 {
2044  public:
2045   // Return the strategy to use for a local symbol which is a section
2046   // symbol, given the relocation type.
2047   inline Relocatable_relocs::Reloc_strategy
2048   local_section_strategy(unsigned int r_type, Relobj*)
2049   {
2050     if (sh_type == elfcpp::SHT_RELA)
2051       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052     else
2053       {
2054 	if (r_type == elfcpp::R_ARM_TARGET1
2055 	    || r_type == elfcpp::R_ARM_TARGET2)
2056 	  {
2057 	    const Target_arm<big_endian>* arm_target =
2058 	      Target_arm<big_endian>::default_target();
2059 	    r_type = arm_target->get_real_reloc_type(r_type);
2060 	  }
2061 
2062 	switch(r_type)
2063 	  {
2064 	  // Relocations that write nothing.  These exclude R_ARM_TARGET1
2065 	  // and R_ARM_TARGET2.
2066 	  case elfcpp::R_ARM_NONE:
2067 	  case elfcpp::R_ARM_V4BX:
2068 	  case elfcpp::R_ARM_TLS_GOTDESC:
2069 	  case elfcpp::R_ARM_TLS_CALL:
2070 	  case elfcpp::R_ARM_TLS_DESCSEQ:
2071 	  case elfcpp::R_ARM_THM_TLS_CALL:
2072 	  case elfcpp::R_ARM_GOTRELAX:
2073 	  case elfcpp::R_ARM_GNU_VTENTRY:
2074 	  case elfcpp::R_ARM_GNU_VTINHERIT:
2075 	  case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 	  case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 	  // These should have been converted to something else above.
2079 	  case elfcpp::R_ARM_TARGET1:
2080 	  case elfcpp::R_ARM_TARGET2:
2081 	    gold_unreachable();
2082 	  // Relocations that write full 32 bits and
2083 	  // have alignment of 1.
2084 	  case elfcpp::R_ARM_ABS32:
2085 	  case elfcpp::R_ARM_REL32:
2086 	  case elfcpp::R_ARM_SBREL32:
2087 	  case elfcpp::R_ARM_GOTOFF32:
2088 	  case elfcpp::R_ARM_BASE_PREL:
2089 	  case elfcpp::R_ARM_GOT_BREL:
2090 	  case elfcpp::R_ARM_BASE_ABS:
2091 	  case elfcpp::R_ARM_ABS32_NOI:
2092 	  case elfcpp::R_ARM_REL32_NOI:
2093 	  case elfcpp::R_ARM_PLT32_ABS:
2094 	  case elfcpp::R_ARM_GOT_ABS:
2095 	  case elfcpp::R_ARM_GOT_PREL:
2096 	  case elfcpp::R_ARM_TLS_GD32:
2097 	  case elfcpp::R_ARM_TLS_LDM32:
2098 	  case elfcpp::R_ARM_TLS_LDO32:
2099 	  case elfcpp::R_ARM_TLS_IE32:
2100 	  case elfcpp::R_ARM_TLS_LE32:
2101 	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2102 	  default:
2103 	    // For all other static relocations, return RELOC_SPECIAL.
2104 	    return Relocatable_relocs::RELOC_SPECIAL;
2105 	  }
2106       }
2107   }
2108 };
2109 
2110 template<bool big_endian>
2111 class Target_arm : public Sized_target<32, big_endian>
2112 {
2113  public:
2114   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115     Reloc_section;
2116 
2117   // When were are relocating a stub, we pass this as the relocation number.
2118   static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119 
2120   Target_arm(const Target::Target_info* info = &arm_info)
2121     : Sized_target<32, big_endian>(info),
2122       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2123       copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2124       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125       stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2126       should_force_pic_veneer_(false),
2127       arm_input_section_map_(), attributes_section_data_(NULL),
2128       fix_cortex_a8_(false), cortex_a8_relocs_info_()
2129   { }
2130 
2131   // Whether we force PCI branch veneers.
2132   bool
2133   should_force_pic_veneer() const
2134   { return this->should_force_pic_veneer_; }
2135 
2136   // Set PIC veneer flag.
2137   void
2138   set_should_force_pic_veneer(bool value)
2139   { this->should_force_pic_veneer_ = value; }
2140 
2141   // Whether we use THUMB-2 instructions.
2142   bool
2143   using_thumb2() const
2144   {
2145     Object_attribute* attr =
2146       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147     int arch = attr->int_value();
2148     return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2149   }
2150 
2151   // Whether we use THUMB/THUMB-2 instructions only.
2152   bool
2153   using_thumb_only() const
2154   {
2155     Object_attribute* attr =
2156       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2157 
2158     if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 	|| attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160       return true;
2161     if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 	&& attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163       return false;
2164     attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165     return attr->int_value() == 'M';
2166   }
2167 
2168   // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
2169   bool
2170   may_use_arm_nop() const
2171   {
2172     Object_attribute* attr =
2173       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174     int arch = attr->int_value();
2175     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 	    || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 	    || arch == elfcpp::TAG_CPU_ARCH_V7
2178 	    || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2179   }
2180 
2181   // Whether we have THUMB-2 NOP.W instruction.
2182   bool
2183   may_use_thumb2_nop() const
2184   {
2185     Object_attribute* attr =
2186       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187     int arch = attr->int_value();
2188     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 	    || arch == elfcpp::TAG_CPU_ARCH_V7
2190 	    || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2191   }
2192 
2193   // Whether we have v4T interworking instructions available.
2194   bool
2195   may_use_v4t_interworking() const
2196   {
2197     Object_attribute* attr =
2198       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199     int arch = attr->int_value();
2200     return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 	    && arch != elfcpp::TAG_CPU_ARCH_V4);
2202   }
2203 
2204   // Whether we have v5T interworking instructions available.
2205   bool
2206   may_use_v5t_interworking() const
2207   {
2208     Object_attribute* attr =
2209       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210     int arch = attr->int_value();
2211     if (parameters->options().fix_arm1176())
2212       return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 	      || arch == elfcpp::TAG_CPU_ARCH_V7
2214 	      || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 	      || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 	      || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217     else
2218       return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 	      && arch != elfcpp::TAG_CPU_ARCH_V4
2220 	      && arch != elfcpp::TAG_CPU_ARCH_V4T);
2221   }
2222 
2223   // Process the relocations to determine unreferenced sections for
2224   // garbage collection.
2225   void
2226   gc_process_relocs(Symbol_table* symtab,
2227 		    Layout* layout,
2228 		    Sized_relobj_file<32, big_endian>* object,
2229 		    unsigned int data_shndx,
2230 		    unsigned int sh_type,
2231 		    const unsigned char* prelocs,
2232 		    size_t reloc_count,
2233 		    Output_section* output_section,
2234 		    bool needs_special_offset_handling,
2235 		    size_t local_symbol_count,
2236 		    const unsigned char* plocal_symbols);
2237 
2238   // Scan the relocations to look for symbol adjustments.
2239   void
2240   scan_relocs(Symbol_table* symtab,
2241 	      Layout* layout,
2242 	      Sized_relobj_file<32, big_endian>* object,
2243 	      unsigned int data_shndx,
2244 	      unsigned int sh_type,
2245 	      const unsigned char* prelocs,
2246 	      size_t reloc_count,
2247 	      Output_section* output_section,
2248 	      bool needs_special_offset_handling,
2249 	      size_t local_symbol_count,
2250 	      const unsigned char* plocal_symbols);
2251 
2252   // Finalize the sections.
2253   void
2254   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2255 
2256   // Return the value to use for a dynamic symbol which requires special
2257   // treatment.
2258   uint64_t
2259   do_dynsym_value(const Symbol*) const;
2260 
2261   // Relocate a section.
2262   void
2263   relocate_section(const Relocate_info<32, big_endian>*,
2264 		   unsigned int sh_type,
2265 		   const unsigned char* prelocs,
2266 		   size_t reloc_count,
2267 		   Output_section* output_section,
2268 		   bool needs_special_offset_handling,
2269 		   unsigned char* view,
2270 		   Arm_address view_address,
2271 		   section_size_type view_size,
2272 		   const Reloc_symbol_changes*);
2273 
2274   // Scan the relocs during a relocatable link.
2275   void
2276   scan_relocatable_relocs(Symbol_table* symtab,
2277 			  Layout* layout,
2278 			  Sized_relobj_file<32, big_endian>* object,
2279 			  unsigned int data_shndx,
2280 			  unsigned int sh_type,
2281 			  const unsigned char* prelocs,
2282 			  size_t reloc_count,
2283 			  Output_section* output_section,
2284 			  bool needs_special_offset_handling,
2285 			  size_t local_symbol_count,
2286 			  const unsigned char* plocal_symbols,
2287 			  Relocatable_relocs*);
2288 
2289   // Relocate a section during a relocatable link.
2290   void
2291   relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2292 			   unsigned int sh_type,
2293 			   const unsigned char* prelocs,
2294 			   size_t reloc_count,
2295 			   Output_section* output_section,
2296 			   typename elfcpp::Elf_types<32>::Elf_Off
2297                              offset_in_output_section,
2298 			   const Relocatable_relocs*,
2299 			   unsigned char* view,
2300 			   Arm_address view_address,
2301 			   section_size_type view_size,
2302 			   unsigned char* reloc_view,
2303 			   section_size_type reloc_view_size);
2304 
2305   // Perform target-specific processing in a relocatable link.  This is
2306   // only used if we use the relocation strategy RELOC_SPECIAL.
2307   void
2308   relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2309 			       unsigned int sh_type,
2310 			       const unsigned char* preloc_in,
2311 			       size_t relnum,
2312 			       Output_section* output_section,
2313 			       typename elfcpp::Elf_types<32>::Elf_Off
2314                                  offset_in_output_section,
2315 			       unsigned char* view,
2316 			       typename elfcpp::Elf_types<32>::Elf_Addr
2317 				 view_address,
2318 			       section_size_type view_size,
2319 			       unsigned char* preloc_out);
2320 
2321   // Return whether SYM is defined by the ABI.
2322   bool
2323   do_is_defined_by_abi(const Symbol* sym) const
2324   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2325 
2326   // Return whether there is a GOT section.
2327   bool
2328   has_got_section() const
2329   { return this->got_ != NULL; }
2330 
2331   // Return the size of the GOT section.
2332   section_size_type
2333   got_size() const
2334   {
2335     gold_assert(this->got_ != NULL);
2336     return this->got_->data_size();
2337   }
2338 
2339   // Return the number of entries in the GOT.
2340   unsigned int
2341   got_entry_count() const
2342   {
2343     if (!this->has_got_section())
2344       return 0;
2345     return this->got_size() / 4;
2346   }
2347 
2348   // Return the number of entries in the PLT.
2349   unsigned int
2350   plt_entry_count() const;
2351 
2352   // Return the offset of the first non-reserved PLT entry.
2353   unsigned int
2354   first_plt_entry_offset() const;
2355 
2356   // Return the size of each PLT entry.
2357   unsigned int
2358   plt_entry_size() const;
2359 
2360   // Map platform-specific reloc types
2361   static unsigned int
2362   get_real_reloc_type(unsigned int r_type);
2363 
2364   //
2365   // Methods to support stub-generations.
2366   //
2367 
2368   // Return the stub factory
2369   const Stub_factory&
2370   stub_factory() const
2371   { return this->stub_factory_; }
2372 
2373   // Make a new Arm_input_section object.
2374   Arm_input_section<big_endian>*
2375   new_arm_input_section(Relobj*, unsigned int);
2376 
2377   // Find the Arm_input_section object corresponding to the SHNDX-th input
2378   // section of RELOBJ.
2379   Arm_input_section<big_endian>*
2380   find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2381 
2382   // Make a new Stub_table
2383   Stub_table<big_endian>*
2384   new_stub_table(Arm_input_section<big_endian>*);
2385 
2386   // Scan a section for stub generation.
2387   void
2388   scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2389 			 const unsigned char*, size_t, Output_section*,
2390 			 bool, const unsigned char*, Arm_address,
2391 			 section_size_type);
2392 
2393   // Relocate a stub.
2394   void
2395   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2396 		Output_section*, unsigned char*, Arm_address,
2397 		section_size_type);
2398 
2399   // Get the default ARM target.
2400   static Target_arm<big_endian>*
2401   default_target()
2402   {
2403     gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2404 		&& parameters->target().is_big_endian() == big_endian);
2405     return static_cast<Target_arm<big_endian>*>(
2406 	     parameters->sized_target<32, big_endian>());
2407   }
2408 
2409   // Whether NAME belongs to a mapping symbol.
2410   static bool
2411   is_mapping_symbol_name(const char* name)
2412   {
2413     return (name
2414 	    && name[0] == '$'
2415 	    && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2416 	    && (name[2] == '\0' || name[2] == '.'));
2417   }
2418 
2419   // Whether we work around the Cortex-A8 erratum.
2420   bool
2421   fix_cortex_a8() const
2422   { return this->fix_cortex_a8_; }
2423 
2424   // Whether we merge exidx entries in debuginfo.
2425   bool
2426   merge_exidx_entries() const
2427   { return parameters->options().merge_exidx_entries(); }
2428 
2429   // Whether we fix R_ARM_V4BX relocation.
2430   // 0 - do not fix
2431   // 1 - replace with MOV instruction (armv4 target)
2432   // 2 - make interworking veneer (>= armv4t targets only)
2433   General_options::Fix_v4bx
2434   fix_v4bx() const
2435   { return parameters->options().fix_v4bx(); }
2436 
2437   // Scan a span of THUMB code section for Cortex-A8 erratum.
2438   void
2439   scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2440 				  section_size_type, section_size_type,
2441 				  const unsigned char*, Arm_address);
2442 
2443   // Apply Cortex-A8 workaround to a branch.
2444   void
2445   apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2446 			     unsigned char*, Arm_address);
2447 
2448  protected:
2449   // Make the PLT-generator object.
2450   Output_data_plt_arm<big_endian>*
2451   make_data_plt(Layout* layout, Output_data_space* got_plt)
2452   { return this->do_make_data_plt(layout, got_plt); }
2453 
2454   // Make an ELF object.
2455   Object*
2456   do_make_elf_object(const std::string&, Input_file*, off_t,
2457 		     const elfcpp::Ehdr<32, big_endian>& ehdr);
2458 
2459   Object*
2460   do_make_elf_object(const std::string&, Input_file*, off_t,
2461 		     const elfcpp::Ehdr<32, !big_endian>&)
2462   { gold_unreachable(); }
2463 
2464   Object*
2465   do_make_elf_object(const std::string&, Input_file*, off_t,
2466 		      const elfcpp::Ehdr<64, false>&)
2467   { gold_unreachable(); }
2468 
2469   Object*
2470   do_make_elf_object(const std::string&, Input_file*, off_t,
2471 		     const elfcpp::Ehdr<64, true>&)
2472   { gold_unreachable(); }
2473 
2474   // Make an output section.
2475   Output_section*
2476   do_make_output_section(const char* name, elfcpp::Elf_Word type,
2477 			 elfcpp::Elf_Xword flags)
2478   { return new Arm_output_section<big_endian>(name, type, flags); }
2479 
2480   void
2481   do_adjust_elf_header(unsigned char* view, int len) const;
2482 
2483   // We only need to generate stubs, and hence perform relaxation if we are
2484   // not doing relocatable linking.
2485   bool
2486   do_may_relax() const
2487   { return !parameters->options().relocatable(); }
2488 
2489   bool
2490   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2491 
2492   // Determine whether an object attribute tag takes an integer, a
2493   // string or both.
2494   int
2495   do_attribute_arg_type(int tag) const;
2496 
2497   // Reorder tags during output.
2498   int
2499   do_attributes_order(int num) const;
2500 
2501   // This is called when the target is selected as the default.
2502   void
2503   do_select_as_default_target()
2504   {
2505     // No locking is required since there should only be one default target.
2506     // We cannot have both the big-endian and little-endian ARM targets
2507     // as the default.
2508     gold_assert(arm_reloc_property_table == NULL);
2509     arm_reloc_property_table = new Arm_reloc_property_table();
2510   }
2511 
2512   // Virtual function which is set to return true by a target if
2513   // it can use relocation types to determine if a function's
2514   // pointer is taken.
2515   virtual bool
2516   do_can_check_for_function_pointers() const
2517   { return true; }
2518 
2519   // Whether a section called SECTION_NAME may have function pointers to
2520   // sections not eligible for safe ICF folding.
2521   virtual bool
2522   do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2523   {
2524     return (!is_prefix_of(".ARM.exidx", section_name)
2525 	    && !is_prefix_of(".ARM.extab", section_name)
2526 	    && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2527   }
2528 
2529   virtual void
2530   do_define_standard_symbols(Symbol_table*, Layout*);
2531 
2532   virtual Output_data_plt_arm<big_endian>*
2533   do_make_data_plt(Layout* layout, Output_data_space* got_plt)
2534   {
2535     return new Output_data_plt_arm_standard<big_endian>(layout, got_plt);
2536   }
2537 
2538  private:
2539   // The class which scans relocations.
2540   class Scan
2541   {
2542    public:
2543     Scan()
2544       : issued_non_pic_error_(false)
2545     { }
2546 
2547     static inline int
2548     get_reference_flags(unsigned int r_type);
2549 
2550     inline void
2551     local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2552 	  Sized_relobj_file<32, big_endian>* object,
2553 	  unsigned int data_shndx,
2554 	  Output_section* output_section,
2555 	  const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2556 	  const elfcpp::Sym<32, big_endian>& lsym);
2557 
2558     inline void
2559     global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2560 	   Sized_relobj_file<32, big_endian>* object,
2561 	   unsigned int data_shndx,
2562 	   Output_section* output_section,
2563 	   const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2564 	   Symbol* gsym);
2565 
2566     inline bool
2567     local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2568 					Sized_relobj_file<32, big_endian>* ,
2569 					unsigned int ,
2570 					Output_section* ,
2571 					const elfcpp::Rel<32, big_endian>& ,
2572 					unsigned int ,
2573 					const elfcpp::Sym<32, big_endian>&);
2574 
2575     inline bool
2576     global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2577 					 Sized_relobj_file<32, big_endian>* ,
2578 					 unsigned int ,
2579 					 Output_section* ,
2580 					 const elfcpp::Rel<32, big_endian>& ,
2581 					 unsigned int , Symbol*);
2582 
2583    private:
2584     static void
2585     unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2586 			    unsigned int r_type);
2587 
2588     static void
2589     unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2590 			     unsigned int r_type, Symbol*);
2591 
2592     void
2593     check_non_pic(Relobj*, unsigned int r_type);
2594 
2595     // Almost identical to Symbol::needs_plt_entry except that it also
2596     // handles STT_ARM_TFUNC.
2597     static bool
2598     symbol_needs_plt_entry(const Symbol* sym)
2599     {
2600       // An undefined symbol from an executable does not need a PLT entry.
2601       if (sym->is_undefined() && !parameters->options().shared())
2602 	return false;
2603 
2604       return (!parameters->doing_static_link()
2605 	      && (sym->type() == elfcpp::STT_FUNC
2606 		  || sym->type() == elfcpp::STT_ARM_TFUNC)
2607 	      && (sym->is_from_dynobj()
2608 		  || sym->is_undefined()
2609 		  || sym->is_preemptible()));
2610     }
2611 
2612     inline bool
2613     possible_function_pointer_reloc(unsigned int r_type);
2614 
2615     // Whether we have issued an error about a non-PIC compilation.
2616     bool issued_non_pic_error_;
2617   };
2618 
2619   // The class which implements relocation.
2620   class Relocate
2621   {
2622    public:
2623     Relocate()
2624     { }
2625 
2626     ~Relocate()
2627     { }
2628 
2629     // Return whether the static relocation needs to be applied.
2630     inline bool
2631     should_apply_static_reloc(const Sized_symbol<32>* gsym,
2632 			      unsigned int r_type,
2633 			      bool is_32bit,
2634 			      Output_section* output_section);
2635 
2636     // Do a relocation.  Return false if the caller should not issue
2637     // any warnings about this relocation.
2638     inline bool
2639     relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2640 	     Output_section*,  size_t relnum,
2641 	     const elfcpp::Rel<32, big_endian>&,
2642 	     unsigned int r_type, const Sized_symbol<32>*,
2643 	     const Symbol_value<32>*,
2644 	     unsigned char*, Arm_address,
2645 	     section_size_type);
2646 
2647     // Return whether we want to pass flag NON_PIC_REF for this
2648     // reloc.  This means the relocation type accesses a symbol not via
2649     // GOT or PLT.
2650     static inline bool
2651     reloc_is_non_pic(unsigned int r_type)
2652     {
2653       switch (r_type)
2654 	{
2655 	// These relocation types reference GOT or PLT entries explicitly.
2656 	case elfcpp::R_ARM_GOT_BREL:
2657 	case elfcpp::R_ARM_GOT_ABS:
2658 	case elfcpp::R_ARM_GOT_PREL:
2659 	case elfcpp::R_ARM_GOT_BREL12:
2660 	case elfcpp::R_ARM_PLT32_ABS:
2661 	case elfcpp::R_ARM_TLS_GD32:
2662 	case elfcpp::R_ARM_TLS_LDM32:
2663 	case elfcpp::R_ARM_TLS_IE32:
2664 	case elfcpp::R_ARM_TLS_IE12GP:
2665 
2666 	// These relocate types may use PLT entries.
2667 	case elfcpp::R_ARM_CALL:
2668 	case elfcpp::R_ARM_THM_CALL:
2669 	case elfcpp::R_ARM_JUMP24:
2670 	case elfcpp::R_ARM_THM_JUMP24:
2671 	case elfcpp::R_ARM_THM_JUMP19:
2672 	case elfcpp::R_ARM_PLT32:
2673 	case elfcpp::R_ARM_THM_XPC22:
2674 	case elfcpp::R_ARM_PREL31:
2675 	case elfcpp::R_ARM_SBREL31:
2676 	  return false;
2677 
2678 	default:
2679 	  return true;
2680 	}
2681     }
2682 
2683    private:
2684     // Do a TLS relocation.
2685     inline typename Arm_relocate_functions<big_endian>::Status
2686     relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2687 		 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2688 		 const Sized_symbol<32>*, const Symbol_value<32>*,
2689 		 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2690 		 section_size_type);
2691 
2692   };
2693 
2694   // A class which returns the size required for a relocation type,
2695   // used while scanning relocs during a relocatable link.
2696   class Relocatable_size_for_reloc
2697   {
2698    public:
2699     unsigned int
2700     get_size_for_reloc(unsigned int, Relobj*);
2701   };
2702 
2703   // Adjust TLS relocation type based on the options and whether this
2704   // is a local symbol.
2705   static tls::Tls_optimization
2706   optimize_tls_reloc(bool is_final, int r_type);
2707 
2708   // Get the GOT section, creating it if necessary.
2709   Arm_output_data_got<big_endian>*
2710   got_section(Symbol_table*, Layout*);
2711 
2712   // Get the GOT PLT section.
2713   Output_data_space*
2714   got_plt_section() const
2715   {
2716     gold_assert(this->got_plt_ != NULL);
2717     return this->got_plt_;
2718   }
2719 
2720   // Create a PLT entry for a global symbol.
2721   void
2722   make_plt_entry(Symbol_table*, Layout*, Symbol*);
2723 
2724   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2725   void
2726   define_tls_base_symbol(Symbol_table*, Layout*);
2727 
2728   // Create a GOT entry for the TLS module index.
2729   unsigned int
2730   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2731 		      Sized_relobj_file<32, big_endian>* object);
2732 
2733   // Get the PLT section.
2734   const Output_data_plt_arm<big_endian>*
2735   plt_section() const
2736   {
2737     gold_assert(this->plt_ != NULL);
2738     return this->plt_;
2739   }
2740 
2741   // Get the dynamic reloc section, creating it if necessary.
2742   Reloc_section*
2743   rel_dyn_section(Layout*);
2744 
2745   // Get the section to use for TLS_DESC relocations.
2746   Reloc_section*
2747   rel_tls_desc_section(Layout*) const;
2748 
2749   // Return true if the symbol may need a COPY relocation.
2750   // References from an executable object to non-function symbols
2751   // defined in a dynamic object may need a COPY relocation.
2752   bool
2753   may_need_copy_reloc(Symbol* gsym)
2754   {
2755     return (gsym->type() != elfcpp::STT_ARM_TFUNC
2756 	    && gsym->may_need_copy_reloc());
2757   }
2758 
2759   // Add a potential copy relocation.
2760   void
2761   copy_reloc(Symbol_table* symtab, Layout* layout,
2762 	     Sized_relobj_file<32, big_endian>* object,
2763 	     unsigned int shndx, Output_section* output_section,
2764 	     Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2765   {
2766     this->copy_relocs_.copy_reloc(symtab, layout,
2767 				  symtab->get_sized_symbol<32>(sym),
2768 				  object, shndx, output_section, reloc,
2769 				  this->rel_dyn_section(layout));
2770   }
2771 
2772   // Whether two EABI versions are compatible.
2773   static bool
2774   are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2775 
2776   // Merge processor-specific flags from input object and those in the ELF
2777   // header of the output.
2778   void
2779   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2780 
2781   // Get the secondary compatible architecture.
2782   static int
2783   get_secondary_compatible_arch(const Attributes_section_data*);
2784 
2785   // Set the secondary compatible architecture.
2786   static void
2787   set_secondary_compatible_arch(Attributes_section_data*, int);
2788 
2789   static int
2790   tag_cpu_arch_combine(const char*, int, int*, int, int);
2791 
2792   // Helper to print AEABI enum tag value.
2793   static std::string
2794   aeabi_enum_name(unsigned int);
2795 
2796   // Return string value for TAG_CPU_name.
2797   static std::string
2798   tag_cpu_name_value(unsigned int);
2799 
2800   // Merge object attributes from input object and those in the output.
2801   void
2802   merge_object_attributes(const char*, const Attributes_section_data*);
2803 
2804   // Helper to get an AEABI object attribute
2805   Object_attribute*
2806   get_aeabi_object_attribute(int tag) const
2807   {
2808     Attributes_section_data* pasd = this->attributes_section_data_;
2809     gold_assert(pasd != NULL);
2810     Object_attribute* attr =
2811       pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2812     gold_assert(attr != NULL);
2813     return attr;
2814   }
2815 
2816   //
2817   // Methods to support stub-generations.
2818   //
2819 
2820   // Group input sections for stub generation.
2821   void
2822   group_sections(Layout*, section_size_type, bool, const Task*);
2823 
2824   // Scan a relocation for stub generation.
2825   void
2826   scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2827 		      const Sized_symbol<32>*, unsigned int,
2828 		      const Symbol_value<32>*,
2829 		      elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2830 
2831   // Scan a relocation section for stub.
2832   template<int sh_type>
2833   void
2834   scan_reloc_section_for_stubs(
2835       const Relocate_info<32, big_endian>* relinfo,
2836       const unsigned char* prelocs,
2837       size_t reloc_count,
2838       Output_section* output_section,
2839       bool needs_special_offset_handling,
2840       const unsigned char* view,
2841       elfcpp::Elf_types<32>::Elf_Addr view_address,
2842       section_size_type);
2843 
2844   // Fix .ARM.exidx section coverage.
2845   void
2846   fix_exidx_coverage(Layout*, const Input_objects*,
2847 		     Arm_output_section<big_endian>*, Symbol_table*,
2848 		     const Task*);
2849 
2850   // Functors for STL set.
2851   struct output_section_address_less_than
2852   {
2853     bool
2854     operator()(const Output_section* s1, const Output_section* s2) const
2855     { return s1->address() < s2->address(); }
2856   };
2857 
2858   // Information about this specific target which we pass to the
2859   // general Target structure.
2860   static const Target::Target_info arm_info;
2861 
2862   // The types of GOT entries needed for this platform.
2863   // These values are exposed to the ABI in an incremental link.
2864   // Do not renumber existing values without changing the version
2865   // number of the .gnu_incremental_inputs section.
2866   enum Got_type
2867   {
2868     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2869     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
2870     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
2871     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
2872     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
2873   };
2874 
2875   typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2876 
2877   // Map input section to Arm_input_section.
2878   typedef Unordered_map<Section_id,
2879 			Arm_input_section<big_endian>*,
2880 			Section_id_hash>
2881 	  Arm_input_section_map;
2882 
2883   // Map output addresses to relocs for Cortex-A8 erratum.
2884   typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2885 	  Cortex_a8_relocs_info;
2886 
2887   // The GOT section.
2888   Arm_output_data_got<big_endian>* got_;
2889   // The PLT section.
2890   Output_data_plt_arm<big_endian>* plt_;
2891   // The GOT PLT section.
2892   Output_data_space* got_plt_;
2893   // The dynamic reloc section.
2894   Reloc_section* rel_dyn_;
2895   // Relocs saved to avoid a COPY reloc.
2896   Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2897   // Space for variables copied with a COPY reloc.
2898   Output_data_space* dynbss_;
2899   // Offset of the GOT entry for the TLS module index.
2900   unsigned int got_mod_index_offset_;
2901   // True if the _TLS_MODULE_BASE_ symbol has been defined.
2902   bool tls_base_symbol_defined_;
2903   // Vector of Stub_tables created.
2904   Stub_table_list stub_tables_;
2905   // Stub factory.
2906   const Stub_factory &stub_factory_;
2907   // Whether we force PIC branch veneers.
2908   bool should_force_pic_veneer_;
2909   // Map for locating Arm_input_sections.
2910   Arm_input_section_map arm_input_section_map_;
2911   // Attributes section data in output.
2912   Attributes_section_data* attributes_section_data_;
2913   // Whether we want to fix code for Cortex-A8 erratum.
2914   bool fix_cortex_a8_;
2915   // Map addresses to relocs for Cortex-A8 erratum.
2916   Cortex_a8_relocs_info cortex_a8_relocs_info_;
2917 };
2918 
2919 template<bool big_endian>
2920 const Target::Target_info Target_arm<big_endian>::arm_info =
2921 {
2922   32,			// size
2923   big_endian,		// is_big_endian
2924   elfcpp::EM_ARM,	// machine_code
2925   false,		// has_make_symbol
2926   false,		// has_resolve
2927   false,		// has_code_fill
2928   true,			// is_default_stack_executable
2929   false,		// can_icf_inline_merge_sections
2930   '\0',			// wrap_char
2931   "/usr/lib/libc.so.1",	// dynamic_linker
2932   0x8000,		// default_text_segment_address
2933   0x1000,		// abi_pagesize (overridable by -z max-page-size)
2934   0x1000,		// common_pagesize (overridable by -z common-page-size)
2935   false,                // isolate_execinstr
2936   0,                    // rosegment_gap
2937   elfcpp::SHN_UNDEF,	// small_common_shndx
2938   elfcpp::SHN_UNDEF,	// large_common_shndx
2939   0,			// small_common_section_flags
2940   0,			// large_common_section_flags
2941   ".ARM.attributes",	// attributes_section
2942   "aeabi"		// attributes_vendor
2943 };
2944 
2945 // Arm relocate functions class
2946 //
2947 
2948 template<bool big_endian>
2949 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2950 {
2951  public:
2952   typedef enum
2953   {
2954     STATUS_OKAY,	// No error during relocation.
2955     STATUS_OVERFLOW,	// Relocation overflow.
2956     STATUS_BAD_RELOC	// Relocation cannot be applied.
2957   } Status;
2958 
2959  private:
2960   typedef Relocate_functions<32, big_endian> Base;
2961   typedef Arm_relocate_functions<big_endian> This;
2962 
2963   // Encoding of imm16 argument for movt and movw ARM instructions
2964   // from ARM ARM:
2965   //
2966   //     imm16 := imm4 | imm12
2967   //
2968   //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2969   // +-------+---------------+-------+-------+-----------------------+
2970   // |       |               |imm4   |       |imm12                  |
2971   // +-------+---------------+-------+-------+-----------------------+
2972 
2973   // Extract the relocation addend from VAL based on the ARM
2974   // instruction encoding described above.
2975   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2976   extract_arm_movw_movt_addend(
2977       typename elfcpp::Swap<32, big_endian>::Valtype val)
2978   {
2979     // According to the Elf ABI for ARM Architecture the immediate
2980     // field is sign-extended to form the addend.
2981     return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
2982   }
2983 
2984   // Insert X into VAL based on the ARM instruction encoding described
2985   // above.
2986   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2987   insert_val_arm_movw_movt(
2988       typename elfcpp::Swap<32, big_endian>::Valtype val,
2989       typename elfcpp::Swap<32, big_endian>::Valtype x)
2990   {
2991     val &= 0xfff0f000;
2992     val |= x & 0x0fff;
2993     val |= (x & 0xf000) << 4;
2994     return val;
2995   }
2996 
2997   // Encoding of imm16 argument for movt and movw Thumb2 instructions
2998   // from ARM ARM:
2999   //
3000   //     imm16 := imm4 | i | imm3 | imm8
3001   //
3002   //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0
3003   // +---------+-+-----------+-------++-+-----+-------+---------------+
3004   // |         |i|           |imm4   || |imm3 |       |imm8           |
3005   // +---------+-+-----------+-------++-+-----+-------+---------------+
3006 
3007   // Extract the relocation addend from VAL based on the Thumb2
3008   // instruction encoding described above.
3009   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3010   extract_thumb_movw_movt_addend(
3011       typename elfcpp::Swap<32, big_endian>::Valtype val)
3012   {
3013     // According to the Elf ABI for ARM Architecture the immediate
3014     // field is sign-extended to form the addend.
3015     return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3016 				   | ((val >> 15) & 0x0800)
3017 				   | ((val >> 4) & 0x0700)
3018 				   | (val & 0x00ff));
3019   }
3020 
3021   // Insert X into VAL based on the Thumb2 instruction encoding
3022   // described above.
3023   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3024   insert_val_thumb_movw_movt(
3025       typename elfcpp::Swap<32, big_endian>::Valtype val,
3026       typename elfcpp::Swap<32, big_endian>::Valtype x)
3027   {
3028     val &= 0xfbf08f00;
3029     val |= (x & 0xf000) << 4;
3030     val |= (x & 0x0800) << 15;
3031     val |= (x & 0x0700) << 4;
3032     val |= (x & 0x00ff);
3033     return val;
3034   }
3035 
3036   // Calculate the smallest constant Kn for the specified residual.
3037   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3038   static uint32_t
3039   calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3040   {
3041     int32_t msb;
3042 
3043     if (residual == 0)
3044       return 0;
3045     // Determine the most significant bit in the residual and
3046     // align the resulting value to a 2-bit boundary.
3047     for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3048       ;
3049     // The desired shift is now (msb - 6), or zero, whichever
3050     // is the greater.
3051     return (((msb - 6) < 0) ? 0 : (msb - 6));
3052   }
3053 
3054   // Calculate the final residual for the specified group index.
3055   // If the passed group index is less than zero, the method will return
3056   // the value of the specified residual without any change.
3057   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3058   static typename elfcpp::Swap<32, big_endian>::Valtype
3059   calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3060 		    const int group)
3061   {
3062     for (int n = 0; n <= group; n++)
3063       {
3064 	// Calculate which part of the value to mask.
3065 	uint32_t shift = calc_grp_kn(residual);
3066 	// Calculate the residual for the next time around.
3067 	residual &= ~(residual & (0xff << shift));
3068       }
3069 
3070     return residual;
3071   }
3072 
3073   // Calculate the value of Gn for the specified group index.
3074   // We return it in the form of an encoded constant-and-rotation.
3075   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3076   static typename elfcpp::Swap<32, big_endian>::Valtype
3077   calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3078 	      const int group)
3079   {
3080     typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3081     uint32_t shift = 0;
3082 
3083     for (int n = 0; n <= group; n++)
3084       {
3085 	// Calculate which part of the value to mask.
3086 	shift = calc_grp_kn(residual);
3087 	// Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3088 	gn = residual & (0xff << shift);
3089 	// Calculate the residual for the next time around.
3090 	residual &= ~gn;
3091       }
3092     // Return Gn in the form of an encoded constant-and-rotation.
3093     return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3094   }
3095 
3096  public:
3097   // Handle ARM long branches.
3098   static typename This::Status
3099   arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3100 		    unsigned char*, const Sized_symbol<32>*,
3101 		    const Arm_relobj<big_endian>*, unsigned int,
3102 		    const Symbol_value<32>*, Arm_address, Arm_address, bool);
3103 
3104   // Handle THUMB long branches.
3105   static typename This::Status
3106   thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3107 		      unsigned char*, const Sized_symbol<32>*,
3108 		      const Arm_relobj<big_endian>*, unsigned int,
3109 		      const Symbol_value<32>*, Arm_address, Arm_address, bool);
3110 
3111 
3112   // Return the branch offset of a 32-bit THUMB branch.
3113   static inline int32_t
3114   thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3115   {
3116     // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3117     // involving the J1 and J2 bits.
3118     uint32_t s = (upper_insn & (1U << 10)) >> 10;
3119     uint32_t upper = upper_insn & 0x3ffU;
3120     uint32_t lower = lower_insn & 0x7ffU;
3121     uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3122     uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3123     uint32_t i1 = j1 ^ s ? 0 : 1;
3124     uint32_t i2 = j2 ^ s ? 0 : 1;
3125 
3126     return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3127 				   | (upper << 12) | (lower << 1));
3128   }
3129 
3130   // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3131   // UPPER_INSN is the original upper instruction of the branch.  Caller is
3132   // responsible for overflow checking and BLX offset adjustment.
3133   static inline uint16_t
3134   thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3135   {
3136     uint32_t s = offset < 0 ? 1 : 0;
3137     uint32_t bits = static_cast<uint32_t>(offset);
3138     return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3139   }
3140 
3141   // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3142   // LOWER_INSN is the original lower instruction of the branch.  Caller is
3143   // responsible for overflow checking and BLX offset adjustment.
3144   static inline uint16_t
3145   thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3146   {
3147     uint32_t s = offset < 0 ? 1 : 0;
3148     uint32_t bits = static_cast<uint32_t>(offset);
3149     return ((lower_insn & ~0x2fffU)
3150 	    | ((((bits >> 23) & 1) ^ !s) << 13)
3151 	    | ((((bits >> 22) & 1) ^ !s) << 11)
3152 	    | ((bits >> 1) & 0x7ffU));
3153   }
3154 
3155   // Return the branch offset of a 32-bit THUMB conditional branch.
3156   static inline int32_t
3157   thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3158   {
3159     uint32_t s = (upper_insn & 0x0400U) >> 10;
3160     uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3161     uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3162     uint32_t lower = (lower_insn & 0x07ffU);
3163     uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3164 
3165     return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3166   }
3167 
3168   // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3169   // instruction.  UPPER_INSN is the original upper instruction of the branch.
3170   // Caller is responsible for overflow checking.
3171   static inline uint16_t
3172   thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3173   {
3174     uint32_t s = offset < 0 ? 1 : 0;
3175     uint32_t bits = static_cast<uint32_t>(offset);
3176     return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3177   }
3178 
3179   // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3180   // instruction.  LOWER_INSN is the original lower instruction of the branch.
3181   // The caller is responsible for overflow checking.
3182   static inline uint16_t
3183   thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3184   {
3185     uint32_t bits = static_cast<uint32_t>(offset);
3186     uint32_t j2 = (bits & 0x00080000U) >> 19;
3187     uint32_t j1 = (bits & 0x00040000U) >> 18;
3188     uint32_t lo = (bits & 0x00000ffeU) >> 1;
3189 
3190     return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3191   }
3192 
3193   // R_ARM_ABS8: S + A
3194   static inline typename This::Status
3195   abs8(unsigned char* view,
3196        const Sized_relobj_file<32, big_endian>* object,
3197        const Symbol_value<32>* psymval)
3198   {
3199     typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3200     Valtype* wv = reinterpret_cast<Valtype*>(view);
3201     Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3202     int32_t addend = Bits<8>::sign_extend32(val);
3203     Arm_address x = psymval->value(object, addend);
3204     val = Bits<32>::bit_select32(val, x, 0xffU);
3205     elfcpp::Swap<8, big_endian>::writeval(wv, val);
3206 
3207     // R_ARM_ABS8 permits signed or unsigned results.
3208     return (Bits<8>::has_signed_unsigned_overflow32(x)
3209 	    ? This::STATUS_OVERFLOW
3210 	    : This::STATUS_OKAY);
3211   }
3212 
3213   // R_ARM_THM_ABS5: S + A
3214   static inline typename This::Status
3215   thm_abs5(unsigned char* view,
3216        const Sized_relobj_file<32, big_endian>* object,
3217        const Symbol_value<32>* psymval)
3218   {
3219     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3220     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3221     Valtype* wv = reinterpret_cast<Valtype*>(view);
3222     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3223     Reltype addend = (val & 0x7e0U) >> 6;
3224     Reltype x = psymval->value(object, addend);
3225     val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3226     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3227     return (Bits<5>::has_overflow32(x)
3228 	    ? This::STATUS_OVERFLOW
3229 	    : This::STATUS_OKAY);
3230   }
3231 
3232   // R_ARM_ABS12: S + A
3233   static inline typename This::Status
3234   abs12(unsigned char* view,
3235 	const Sized_relobj_file<32, big_endian>* object,
3236 	const Symbol_value<32>* psymval)
3237   {
3238     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3239     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3240     Valtype* wv = reinterpret_cast<Valtype*>(view);
3241     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3242     Reltype addend = val & 0x0fffU;
3243     Reltype x = psymval->value(object, addend);
3244     val = Bits<32>::bit_select32(val, x, 0x0fffU);
3245     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3246     return (Bits<12>::has_overflow32(x)
3247 	    ? This::STATUS_OVERFLOW
3248 	    : This::STATUS_OKAY);
3249   }
3250 
3251   // R_ARM_ABS16: S + A
3252   static inline typename This::Status
3253   abs16(unsigned char* view,
3254 	const Sized_relobj_file<32, big_endian>* object,
3255 	const Symbol_value<32>* psymval)
3256   {
3257     typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3258     Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3259     int32_t addend = Bits<16>::sign_extend32(val);
3260     Arm_address x = psymval->value(object, addend);
3261     val = Bits<32>::bit_select32(val, x, 0xffffU);
3262     elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3263 
3264     // R_ARM_ABS16 permits signed or unsigned results.
3265     return (Bits<16>::has_signed_unsigned_overflow32(x)
3266 	    ? This::STATUS_OVERFLOW
3267 	    : This::STATUS_OKAY);
3268   }
3269 
3270   // R_ARM_ABS32: (S + A) | T
3271   static inline typename This::Status
3272   abs32(unsigned char* view,
3273 	const Sized_relobj_file<32, big_endian>* object,
3274 	const Symbol_value<32>* psymval,
3275 	Arm_address thumb_bit)
3276   {
3277     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3278     Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3279     Valtype x = psymval->value(object, addend) | thumb_bit;
3280     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3281     return This::STATUS_OKAY;
3282   }
3283 
3284   // R_ARM_REL32: (S + A) | T - P
3285   static inline typename This::Status
3286   rel32(unsigned char* view,
3287 	const Sized_relobj_file<32, big_endian>* object,
3288 	const Symbol_value<32>* psymval,
3289 	Arm_address address,
3290 	Arm_address thumb_bit)
3291   {
3292     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3293     Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3294     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3295     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3296     return This::STATUS_OKAY;
3297   }
3298 
3299   // R_ARM_THM_JUMP24: (S + A) | T - P
3300   static typename This::Status
3301   thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3302 	     const Symbol_value<32>* psymval, Arm_address address,
3303 	     Arm_address thumb_bit);
3304 
3305   // R_ARM_THM_JUMP6: S + A – P
3306   static inline typename This::Status
3307   thm_jump6(unsigned char* view,
3308 	    const Sized_relobj_file<32, big_endian>* object,
3309 	    const Symbol_value<32>* psymval,
3310 	    Arm_address address)
3311   {
3312     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3313     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3314     Valtype* wv = reinterpret_cast<Valtype*>(view);
3315     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3316     // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3317     Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3318     Reltype x = (psymval->value(object, addend) - address);
3319     val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
3320     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3321     // CZB does only forward jumps.
3322     return ((x > 0x007e)
3323 	    ? This::STATUS_OVERFLOW
3324 	    : This::STATUS_OKAY);
3325   }
3326 
3327   // R_ARM_THM_JUMP8: S + A – P
3328   static inline typename This::Status
3329   thm_jump8(unsigned char* view,
3330 	    const Sized_relobj_file<32, big_endian>* object,
3331 	    const Symbol_value<32>* psymval,
3332 	    Arm_address address)
3333   {
3334     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3335     Valtype* wv = reinterpret_cast<Valtype*>(view);
3336     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3337     int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3338     int32_t x = (psymval->value(object, addend) - address);
3339     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3340 						| ((x & 0x01fe) >> 1)));
3341     // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3342     return (Bits<9>::has_overflow32(x)
3343 	    ? This::STATUS_OVERFLOW
3344 	    : This::STATUS_OKAY);
3345   }
3346 
3347   // R_ARM_THM_JUMP11: S + A – P
3348   static inline typename This::Status
3349   thm_jump11(unsigned char* view,
3350 	    const Sized_relobj_file<32, big_endian>* object,
3351 	    const Symbol_value<32>* psymval,
3352 	    Arm_address address)
3353   {
3354     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3355     Valtype* wv = reinterpret_cast<Valtype*>(view);
3356     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3357     int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3358     int32_t x = (psymval->value(object, addend) - address);
3359     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3360 						| ((x & 0x0ffe) >> 1)));
3361     // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3362     return (Bits<12>::has_overflow32(x)
3363 	    ? This::STATUS_OVERFLOW
3364 	    : This::STATUS_OKAY);
3365   }
3366 
3367   // R_ARM_BASE_PREL: B(S) + A - P
3368   static inline typename This::Status
3369   base_prel(unsigned char* view,
3370 	    Arm_address origin,
3371 	    Arm_address address)
3372   {
3373     Base::rel32(view, origin - address);
3374     return STATUS_OKAY;
3375   }
3376 
3377   // R_ARM_BASE_ABS: B(S) + A
3378   static inline typename This::Status
3379   base_abs(unsigned char* view,
3380 	   Arm_address origin)
3381   {
3382     Base::rel32(view, origin);
3383     return STATUS_OKAY;
3384   }
3385 
3386   // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3387   static inline typename This::Status
3388   got_brel(unsigned char* view,
3389 	   typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3390   {
3391     Base::rel32(view, got_offset);
3392     return This::STATUS_OKAY;
3393   }
3394 
3395   // R_ARM_GOT_PREL: GOT(S) + A - P
3396   static inline typename This::Status
3397   got_prel(unsigned char* view,
3398 	   Arm_address got_entry,
3399 	   Arm_address address)
3400   {
3401     Base::rel32(view, got_entry - address);
3402     return This::STATUS_OKAY;
3403   }
3404 
3405   // R_ARM_PREL: (S + A) | T - P
3406   static inline typename This::Status
3407   prel31(unsigned char* view,
3408 	 const Sized_relobj_file<32, big_endian>* object,
3409 	 const Symbol_value<32>* psymval,
3410 	 Arm_address address,
3411 	 Arm_address thumb_bit)
3412   {
3413     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3414     Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3415     Valtype addend = Bits<31>::sign_extend32(val);
3416     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3417     val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3418     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3419     return (Bits<31>::has_overflow32(x)
3420 	    ? This::STATUS_OVERFLOW
3421 	    : This::STATUS_OKAY);
3422   }
3423 
3424   // R_ARM_MOVW_ABS_NC: (S + A) | T	(relative address base is )
3425   // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3426   // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3427   // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3428   static inline typename This::Status
3429   movw(unsigned char* view,
3430        const Sized_relobj_file<32, big_endian>* object,
3431        const Symbol_value<32>* psymval,
3432        Arm_address relative_address_base,
3433        Arm_address thumb_bit,
3434        bool check_overflow)
3435   {
3436     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3437     Valtype* wv = reinterpret_cast<Valtype*>(view);
3438     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3439     Valtype addend = This::extract_arm_movw_movt_addend(val);
3440     Valtype x = ((psymval->value(object, addend) | thumb_bit)
3441 		 - relative_address_base);
3442     val = This::insert_val_arm_movw_movt(val, x);
3443     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3444     return ((check_overflow && Bits<16>::has_overflow32(x))
3445 	    ? This::STATUS_OVERFLOW
3446 	    : This::STATUS_OKAY);
3447   }
3448 
3449   // R_ARM_MOVT_ABS: S + A	(relative address base is 0)
3450   // R_ARM_MOVT_PREL: S + A - P
3451   // R_ARM_MOVT_BREL: S + A - B(S)
3452   static inline typename This::Status
3453   movt(unsigned char* view,
3454        const Sized_relobj_file<32, big_endian>* object,
3455        const Symbol_value<32>* psymval,
3456        Arm_address relative_address_base)
3457   {
3458     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3459     Valtype* wv = reinterpret_cast<Valtype*>(view);
3460     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3461     Valtype addend = This::extract_arm_movw_movt_addend(val);
3462     Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3463     val = This::insert_val_arm_movw_movt(val, x);
3464     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3465     // FIXME: IHI0044D says that we should check for overflow.
3466     return This::STATUS_OKAY;
3467   }
3468 
3469   // R_ARM_THM_MOVW_ABS_NC: S + A | T		(relative_address_base is 0)
3470   // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3471   // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3472   // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3473   static inline typename This::Status
3474   thm_movw(unsigned char* view,
3475 	   const Sized_relobj_file<32, big_endian>* object,
3476 	   const Symbol_value<32>* psymval,
3477 	   Arm_address relative_address_base,
3478 	   Arm_address thumb_bit,
3479 	   bool check_overflow)
3480   {
3481     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3482     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3483     Valtype* wv = reinterpret_cast<Valtype*>(view);
3484     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3485 		  | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3486     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3487     Reltype x =
3488       (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3489     val = This::insert_val_thumb_movw_movt(val, x);
3490     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3491     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3492     return ((check_overflow && Bits<16>::has_overflow32(x))
3493 	    ? This::STATUS_OVERFLOW
3494 	    : This::STATUS_OKAY);
3495   }
3496 
3497   // R_ARM_THM_MOVT_ABS: S + A		(relative address base is 0)
3498   // R_ARM_THM_MOVT_PREL: S + A - P
3499   // R_ARM_THM_MOVT_BREL: S + A - B(S)
3500   static inline typename This::Status
3501   thm_movt(unsigned char* view,
3502 	   const Sized_relobj_file<32, big_endian>* object,
3503 	   const Symbol_value<32>* psymval,
3504 	   Arm_address relative_address_base)
3505   {
3506     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3507     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3508     Valtype* wv = reinterpret_cast<Valtype*>(view);
3509     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3510 		  | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3511     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3512     Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3513     val = This::insert_val_thumb_movw_movt(val, x);
3514     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3515     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3516     return This::STATUS_OKAY;
3517   }
3518 
3519   // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3520   static inline typename This::Status
3521   thm_alu11(unsigned char* view,
3522 	    const Sized_relobj_file<32, big_endian>* object,
3523 	    const Symbol_value<32>* psymval,
3524 	    Arm_address address,
3525 	    Arm_address thumb_bit)
3526   {
3527     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3528     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3529     Valtype* wv = reinterpret_cast<Valtype*>(view);
3530     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3531 		   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3532 
3533     //	      f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3534     // -----------------------------------------------------------------------
3535     // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
3536     // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
3537     // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
3538     // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
3539     // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
3540     // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8
3541 
3542     // Determine a sign for the addend.
3543     const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3544 		      || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3545     // Thumb2 addend encoding:
3546     // imm12 := i | imm3 | imm8
3547     int32_t addend = (insn & 0xff)
3548 		     | ((insn & 0x00007000) >> 4)
3549 		     | ((insn & 0x04000000) >> 15);
3550     // Apply a sign to the added.
3551     addend *= sign;
3552 
3553     int32_t x = (psymval->value(object, addend) | thumb_bit)
3554 		- (address & 0xfffffffc);
3555     Reltype val = abs(x);
3556     // Mask out the value and a distinct part of the ADD/SUB opcode
3557     // (bits 7:5 of opword).
3558     insn = (insn & 0xfb0f8f00)
3559 	   | (val & 0xff)
3560 	   | ((val & 0x700) << 4)
3561 	   | ((val & 0x800) << 15);
3562     // Set the opcode according to whether the value to go in the
3563     // place is negative.
3564     if (x < 0)
3565       insn |= 0x00a00000;
3566 
3567     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3568     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3569     return ((val > 0xfff) ?
3570 	    This::STATUS_OVERFLOW : This::STATUS_OKAY);
3571   }
3572 
3573   // R_ARM_THM_PC8: S + A - Pa (Thumb)
3574   static inline typename This::Status
3575   thm_pc8(unsigned char* view,
3576 	  const Sized_relobj_file<32, big_endian>* object,
3577 	  const Symbol_value<32>* psymval,
3578 	  Arm_address address)
3579   {
3580     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3581     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3582     Valtype* wv = reinterpret_cast<Valtype*>(view);
3583     Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3584     Reltype addend = ((insn & 0x00ff) << 2);
3585     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3586     Reltype val = abs(x);
3587     insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3588 
3589     elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3590     return ((val > 0x03fc)
3591 	    ? This::STATUS_OVERFLOW
3592 	    : This::STATUS_OKAY);
3593   }
3594 
3595   // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3596   static inline typename This::Status
3597   thm_pc12(unsigned char* view,
3598 	   const Sized_relobj_file<32, big_endian>* object,
3599 	   const Symbol_value<32>* psymval,
3600 	   Arm_address address)
3601   {
3602     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3603     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3604     Valtype* wv = reinterpret_cast<Valtype*>(view);
3605     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3606 		   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3607     // Determine a sign for the addend (positive if the U bit is 1).
3608     const int sign = (insn & 0x00800000) ? 1 : -1;
3609     int32_t addend = (insn & 0xfff);
3610     // Apply a sign to the added.
3611     addend *= sign;
3612 
3613     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3614     Reltype val = abs(x);
3615     // Mask out and apply the value and the U bit.
3616     insn = (insn & 0xff7ff000) | (val & 0xfff);
3617     // Set the U bit according to whether the value to go in the
3618     // place is positive.
3619     if (x >= 0)
3620       insn |= 0x00800000;
3621 
3622     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3623     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3624     return ((val > 0xfff) ?
3625 	    This::STATUS_OVERFLOW : This::STATUS_OKAY);
3626   }
3627 
3628   // R_ARM_V4BX
3629   static inline typename This::Status
3630   v4bx(const Relocate_info<32, big_endian>* relinfo,
3631        unsigned char* view,
3632        const Arm_relobj<big_endian>* object,
3633        const Arm_address address,
3634        const bool is_interworking)
3635   {
3636 
3637     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3638     Valtype* wv = reinterpret_cast<Valtype*>(view);
3639     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3640 
3641     // Ensure that we have a BX instruction.
3642     gold_assert((val & 0x0ffffff0) == 0x012fff10);
3643     const uint32_t reg = (val & 0xf);
3644     if (is_interworking && reg != 0xf)
3645       {
3646 	Stub_table<big_endian>* stub_table =
3647 	    object->stub_table(relinfo->data_shndx);
3648 	gold_assert(stub_table != NULL);
3649 
3650 	Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3651 	gold_assert(stub != NULL);
3652 
3653 	int32_t veneer_address =
3654 	    stub_table->address() + stub->offset() - 8 - address;
3655 	gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3656 		    && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3657 	// Replace with a branch to veneer (B <addr>)
3658 	val = (val & 0xf0000000) | 0x0a000000
3659 	      | ((veneer_address >> 2) & 0x00ffffff);
3660       }
3661     else
3662       {
3663 	// Preserve Rm (lowest four bits) and the condition code
3664 	// (highest four bits). Other bits encode MOV PC,Rm.
3665 	val = (val & 0xf000000f) | 0x01a0f000;
3666       }
3667     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3668     return This::STATUS_OKAY;
3669   }
3670 
3671   // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3672   // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
3673   // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3674   // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
3675   // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
3676   // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3677   // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
3678   // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3679   // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
3680   // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
3681   static inline typename This::Status
3682   arm_grp_alu(unsigned char* view,
3683 	const Sized_relobj_file<32, big_endian>* object,
3684 	const Symbol_value<32>* psymval,
3685 	const int group,
3686 	Arm_address address,
3687 	Arm_address thumb_bit,
3688 	bool check_overflow)
3689   {
3690     gold_assert(group >= 0 && group < 3);
3691     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3692     Valtype* wv = reinterpret_cast<Valtype*>(view);
3693     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3694 
3695     // ALU group relocations are allowed only for the ADD/SUB instructions.
3696     // (0x00800000 - ADD, 0x00400000 - SUB)
3697     const Valtype opcode = insn & 0x01e00000;
3698     if (opcode != 0x00800000 && opcode != 0x00400000)
3699       return This::STATUS_BAD_RELOC;
3700 
3701     // Determine a sign for the addend.
3702     const int sign = (opcode == 0x00800000) ? 1 : -1;
3703     // shifter = rotate_imm * 2
3704     const uint32_t shifter = (insn & 0xf00) >> 7;
3705     // Initial addend value.
3706     int32_t addend = insn & 0xff;
3707     // Rotate addend right by shifter.
3708     addend = (addend >> shifter) | (addend << (32 - shifter));
3709     // Apply a sign to the added.
3710     addend *= sign;
3711 
3712     int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3713     Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3714     // Check for overflow if required
3715     if (check_overflow
3716 	&& (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3717       return This::STATUS_OVERFLOW;
3718 
3719     // Mask out the value and the ADD/SUB part of the opcode; take care
3720     // not to destroy the S bit.
3721     insn &= 0xff1ff000;
3722     // Set the opcode according to whether the value to go in the
3723     // place is negative.
3724     insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3725     // Encode the offset (encoded Gn).
3726     insn |= gn;
3727 
3728     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3729     return This::STATUS_OKAY;
3730   }
3731 
3732   // R_ARM_LDR_PC_G0: S + A - P
3733   // R_ARM_LDR_PC_G1: S + A - P
3734   // R_ARM_LDR_PC_G2: S + A - P
3735   // R_ARM_LDR_SB_G0: S + A - B(S)
3736   // R_ARM_LDR_SB_G1: S + A - B(S)
3737   // R_ARM_LDR_SB_G2: S + A - B(S)
3738   static inline typename This::Status
3739   arm_grp_ldr(unsigned char* view,
3740 	const Sized_relobj_file<32, big_endian>* object,
3741 	const Symbol_value<32>* psymval,
3742 	const int group,
3743 	Arm_address address)
3744   {
3745     gold_assert(group >= 0 && group < 3);
3746     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3747     Valtype* wv = reinterpret_cast<Valtype*>(view);
3748     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3749 
3750     const int sign = (insn & 0x00800000) ? 1 : -1;
3751     int32_t addend = (insn & 0xfff) * sign;
3752     int32_t x = (psymval->value(object, addend) - address);
3753     // Calculate the relevant G(n-1) value to obtain this stage residual.
3754     Valtype residual =
3755 	Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3756     if (residual >= 0x1000)
3757       return This::STATUS_OVERFLOW;
3758 
3759     // Mask out the value and U bit.
3760     insn &= 0xff7ff000;
3761     // Set the U bit for non-negative values.
3762     if (x >= 0)
3763       insn |= 0x00800000;
3764     insn |= residual;
3765 
3766     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3767     return This::STATUS_OKAY;
3768   }
3769 
3770   // R_ARM_LDRS_PC_G0: S + A - P
3771   // R_ARM_LDRS_PC_G1: S + A - P
3772   // R_ARM_LDRS_PC_G2: S + A - P
3773   // R_ARM_LDRS_SB_G0: S + A - B(S)
3774   // R_ARM_LDRS_SB_G1: S + A - B(S)
3775   // R_ARM_LDRS_SB_G2: S + A - B(S)
3776   static inline typename This::Status
3777   arm_grp_ldrs(unsigned char* view,
3778 	const Sized_relobj_file<32, big_endian>* object,
3779 	const Symbol_value<32>* psymval,
3780 	const int group,
3781 	Arm_address address)
3782   {
3783     gold_assert(group >= 0 && group < 3);
3784     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3785     Valtype* wv = reinterpret_cast<Valtype*>(view);
3786     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3787 
3788     const int sign = (insn & 0x00800000) ? 1 : -1;
3789     int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3790     int32_t x = (psymval->value(object, addend) - address);
3791     // Calculate the relevant G(n-1) value to obtain this stage residual.
3792     Valtype residual =
3793 	Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3794    if (residual >= 0x100)
3795       return This::STATUS_OVERFLOW;
3796 
3797     // Mask out the value and U bit.
3798     insn &= 0xff7ff0f0;
3799     // Set the U bit for non-negative values.
3800     if (x >= 0)
3801       insn |= 0x00800000;
3802     insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3803 
3804     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3805     return This::STATUS_OKAY;
3806   }
3807 
3808   // R_ARM_LDC_PC_G0: S + A - P
3809   // R_ARM_LDC_PC_G1: S + A - P
3810   // R_ARM_LDC_PC_G2: S + A - P
3811   // R_ARM_LDC_SB_G0: S + A - B(S)
3812   // R_ARM_LDC_SB_G1: S + A - B(S)
3813   // R_ARM_LDC_SB_G2: S + A - B(S)
3814   static inline typename This::Status
3815   arm_grp_ldc(unsigned char* view,
3816       const Sized_relobj_file<32, big_endian>* object,
3817       const Symbol_value<32>* psymval,
3818       const int group,
3819       Arm_address address)
3820   {
3821     gold_assert(group >= 0 && group < 3);
3822     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3823     Valtype* wv = reinterpret_cast<Valtype*>(view);
3824     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3825 
3826     const int sign = (insn & 0x00800000) ? 1 : -1;
3827     int32_t addend = ((insn & 0xff) << 2) * sign;
3828     int32_t x = (psymval->value(object, addend) - address);
3829     // Calculate the relevant G(n-1) value to obtain this stage residual.
3830     Valtype residual =
3831       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3832     if ((residual & 0x3) != 0 || residual >= 0x400)
3833       return This::STATUS_OVERFLOW;
3834 
3835     // Mask out the value and U bit.
3836     insn &= 0xff7fff00;
3837     // Set the U bit for non-negative values.
3838     if (x >= 0)
3839       insn |= 0x00800000;
3840     insn |= (residual >> 2);
3841 
3842     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3843     return This::STATUS_OKAY;
3844   }
3845 };
3846 
3847 // Relocate ARM long branches.  This handles relocation types
3848 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3849 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3850 // undefined and we do not use PLT in this relocation.  In such a case,
3851 // the branch is converted into an NOP.
3852 
3853 template<bool big_endian>
3854 typename Arm_relocate_functions<big_endian>::Status
3855 Arm_relocate_functions<big_endian>::arm_branch_common(
3856     unsigned int r_type,
3857     const Relocate_info<32, big_endian>* relinfo,
3858     unsigned char* view,
3859     const Sized_symbol<32>* gsym,
3860     const Arm_relobj<big_endian>* object,
3861     unsigned int r_sym,
3862     const Symbol_value<32>* psymval,
3863     Arm_address address,
3864     Arm_address thumb_bit,
3865     bool is_weakly_undefined_without_plt)
3866 {
3867   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3868   Valtype* wv = reinterpret_cast<Valtype*>(view);
3869   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3870 
3871   bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3872 		    && ((val & 0x0f000000UL) == 0x0a000000UL);
3873   bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3874   bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3875 			  && ((val & 0x0f000000UL) == 0x0b000000UL);
3876   bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3877   bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3878 
3879   // Check that the instruction is valid.
3880   if (r_type == elfcpp::R_ARM_CALL)
3881     {
3882       if (!insn_is_uncond_bl && !insn_is_blx)
3883 	return This::STATUS_BAD_RELOC;
3884     }
3885   else if (r_type == elfcpp::R_ARM_JUMP24)
3886     {
3887       if (!insn_is_b && !insn_is_cond_bl)
3888 	return This::STATUS_BAD_RELOC;
3889     }
3890   else if (r_type == elfcpp::R_ARM_PLT32)
3891     {
3892       if (!insn_is_any_branch)
3893 	return This::STATUS_BAD_RELOC;
3894     }
3895   else if (r_type == elfcpp::R_ARM_XPC25)
3896     {
3897       // FIXME: AAELF document IH0044C does not say much about it other
3898       // than it being obsolete.
3899       if (!insn_is_any_branch)
3900 	return This::STATUS_BAD_RELOC;
3901     }
3902   else
3903     gold_unreachable();
3904 
3905   // A branch to an undefined weak symbol is turned into a jump to
3906   // the next instruction unless a PLT entry will be created.
3907   // Do the same for local undefined symbols.
3908   // The jump to the next instruction is optimized as a NOP depending
3909   // on the architecture.
3910   const Target_arm<big_endian>* arm_target =
3911     Target_arm<big_endian>::default_target();
3912   if (is_weakly_undefined_without_plt)
3913     {
3914       gold_assert(!parameters->options().relocatable());
3915       Valtype cond = val & 0xf0000000U;
3916       if (arm_target->may_use_arm_nop())
3917 	val = cond | 0x0320f000;
3918       else
3919 	val = cond | 0x01a00000;	// Using pre-UAL nop: mov r0, r0.
3920       elfcpp::Swap<32, big_endian>::writeval(wv, val);
3921       return This::STATUS_OKAY;
3922     }
3923 
3924   Valtype addend = Bits<26>::sign_extend32(val << 2);
3925   Valtype branch_target = psymval->value(object, addend);
3926   int32_t branch_offset = branch_target - address;
3927 
3928   // We need a stub if the branch offset is too large or if we need
3929   // to switch mode.
3930   bool may_use_blx = arm_target->may_use_v5t_interworking();
3931   Reloc_stub* stub = NULL;
3932 
3933   if (!parameters->options().relocatable()
3934       && (Bits<26>::has_overflow32(branch_offset)
3935 	  || ((thumb_bit != 0)
3936 	      && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3937     {
3938       Valtype unadjusted_branch_target = psymval->value(object, 0);
3939 
3940       Stub_type stub_type =
3941 	Reloc_stub::stub_type_for_reloc(r_type, address,
3942 					unadjusted_branch_target,
3943 					(thumb_bit != 0));
3944       if (stub_type != arm_stub_none)
3945 	{
3946 	  Stub_table<big_endian>* stub_table =
3947 	    object->stub_table(relinfo->data_shndx);
3948 	  gold_assert(stub_table != NULL);
3949 
3950 	  Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3951 	  stub = stub_table->find_reloc_stub(stub_key);
3952 	  gold_assert(stub != NULL);
3953 	  thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3954 	  branch_target = stub_table->address() + stub->offset() + addend;
3955 	  branch_offset = branch_target - address;
3956 	  gold_assert(!Bits<26>::has_overflow32(branch_offset));
3957 	}
3958     }
3959 
3960   // At this point, if we still need to switch mode, the instruction
3961   // must either be a BLX or a BL that can be converted to a BLX.
3962   if (thumb_bit != 0)
3963     {
3964       // Turn BL to BLX.
3965       gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3966       val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3967     }
3968 
3969   val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
3970   elfcpp::Swap<32, big_endian>::writeval(wv, val);
3971   return (Bits<26>::has_overflow32(branch_offset)
3972 	  ? This::STATUS_OVERFLOW
3973 	  : This::STATUS_OKAY);
3974 }
3975 
3976 // Relocate THUMB long branches.  This handles relocation types
3977 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3978 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3979 // undefined and we do not use PLT in this relocation.  In such a case,
3980 // the branch is converted into an NOP.
3981 
3982 template<bool big_endian>
3983 typename Arm_relocate_functions<big_endian>::Status
3984 Arm_relocate_functions<big_endian>::thumb_branch_common(
3985     unsigned int r_type,
3986     const Relocate_info<32, big_endian>* relinfo,
3987     unsigned char* view,
3988     const Sized_symbol<32>* gsym,
3989     const Arm_relobj<big_endian>* object,
3990     unsigned int r_sym,
3991     const Symbol_value<32>* psymval,
3992     Arm_address address,
3993     Arm_address thumb_bit,
3994     bool is_weakly_undefined_without_plt)
3995 {
3996   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3997   Valtype* wv = reinterpret_cast<Valtype*>(view);
3998   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3999   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4000 
4001   // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4002   // into account.
4003   bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4004   bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4005 
4006   // Check that the instruction is valid.
4007   if (r_type == elfcpp::R_ARM_THM_CALL)
4008     {
4009       if (!is_bl_insn && !is_blx_insn)
4010 	return This::STATUS_BAD_RELOC;
4011     }
4012   else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4013     {
4014       // This cannot be a BLX.
4015       if (!is_bl_insn)
4016 	return This::STATUS_BAD_RELOC;
4017     }
4018   else if (r_type == elfcpp::R_ARM_THM_XPC22)
4019     {
4020       // Check for Thumb to Thumb call.
4021       if (!is_blx_insn)
4022 	return This::STATUS_BAD_RELOC;
4023       if (thumb_bit != 0)
4024 	{
4025 	  gold_warning(_("%s: Thumb BLX instruction targets "
4026 			 "thumb function '%s'."),
4027 			 object->name().c_str(),
4028 			 (gsym ? gsym->name() : "(local)"));
4029 	  // Convert BLX to BL.
4030 	  lower_insn |= 0x1000U;
4031 	}
4032     }
4033   else
4034     gold_unreachable();
4035 
4036   // A branch to an undefined weak symbol is turned into a jump to
4037   // the next instruction unless a PLT entry will be created.
4038   // The jump to the next instruction is optimized as a NOP.W for
4039   // Thumb-2 enabled architectures.
4040   const Target_arm<big_endian>* arm_target =
4041     Target_arm<big_endian>::default_target();
4042   if (is_weakly_undefined_without_plt)
4043     {
4044       gold_assert(!parameters->options().relocatable());
4045       if (arm_target->may_use_thumb2_nop())
4046 	{
4047 	  elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4048 	  elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4049 	}
4050       else
4051 	{
4052 	  elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4053 	  elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4054 	}
4055       return This::STATUS_OKAY;
4056     }
4057 
4058   int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4059   Arm_address branch_target = psymval->value(object, addend);
4060 
4061   // For BLX, bit 1 of target address comes from bit 1 of base address.
4062   bool may_use_blx = arm_target->may_use_v5t_interworking();
4063   if (thumb_bit == 0 && may_use_blx)
4064     branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4065 
4066   int32_t branch_offset = branch_target - address;
4067 
4068   // We need a stub if the branch offset is too large or if we need
4069   // to switch mode.
4070   bool thumb2 = arm_target->using_thumb2();
4071   if (!parameters->options().relocatable()
4072       && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4073 	  || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4074 	  || ((thumb_bit == 0)
4075 	      && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4076 		  || r_type == elfcpp::R_ARM_THM_JUMP24))))
4077     {
4078       Arm_address unadjusted_branch_target = psymval->value(object, 0);
4079 
4080       Stub_type stub_type =
4081 	Reloc_stub::stub_type_for_reloc(r_type, address,
4082 					unadjusted_branch_target,
4083 					(thumb_bit != 0));
4084 
4085       if (stub_type != arm_stub_none)
4086 	{
4087 	  Stub_table<big_endian>* stub_table =
4088 	    object->stub_table(relinfo->data_shndx);
4089 	  gold_assert(stub_table != NULL);
4090 
4091 	  Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4092 	  Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4093 	  gold_assert(stub != NULL);
4094 	  thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4095 	  branch_target = stub_table->address() + stub->offset() + addend;
4096 	  if (thumb_bit == 0 && may_use_blx)
4097 	    branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4098 	  branch_offset = branch_target - address;
4099 	}
4100     }
4101 
4102   // At this point, if we still need to switch mode, the instruction
4103   // must either be a BLX or a BL that can be converted to a BLX.
4104   if (thumb_bit == 0)
4105     {
4106       gold_assert(may_use_blx
4107 		  && (r_type == elfcpp::R_ARM_THM_CALL
4108 		      || r_type == elfcpp::R_ARM_THM_XPC22));
4109       // Make sure this is a BLX.
4110       lower_insn &= ~0x1000U;
4111     }
4112   else
4113     {
4114       // Make sure this is a BL.
4115       lower_insn |= 0x1000U;
4116     }
4117 
4118   // For a BLX instruction, make sure that the relocation is rounded up
4119   // to a word boundary.  This follows the semantics of the instruction
4120   // which specifies that bit 1 of the target address will come from bit
4121   // 1 of the base address.
4122   if ((lower_insn & 0x5000U) == 0x4000U)
4123     gold_assert((branch_offset & 3) == 0);
4124 
4125   // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
4126   // We use the Thumb-2 encoding, which is safe even if dealing with
4127   // a Thumb-1 instruction by virtue of our overflow check above.  */
4128   upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4129   lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4130 
4131   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4132   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4133 
4134   gold_assert(!Bits<25>::has_overflow32(branch_offset));
4135 
4136   return ((thumb2
4137 	   ? Bits<25>::has_overflow32(branch_offset)
4138 	   : Bits<23>::has_overflow32(branch_offset))
4139 	  ? This::STATUS_OVERFLOW
4140 	  : This::STATUS_OKAY);
4141 }
4142 
4143 // Relocate THUMB-2 long conditional branches.
4144 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4145 // undefined and we do not use PLT in this relocation.  In such a case,
4146 // the branch is converted into an NOP.
4147 
4148 template<bool big_endian>
4149 typename Arm_relocate_functions<big_endian>::Status
4150 Arm_relocate_functions<big_endian>::thm_jump19(
4151     unsigned char* view,
4152     const Arm_relobj<big_endian>* object,
4153     const Symbol_value<32>* psymval,
4154     Arm_address address,
4155     Arm_address thumb_bit)
4156 {
4157   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4158   Valtype* wv = reinterpret_cast<Valtype*>(view);
4159   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4160   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4161   int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4162 
4163   Arm_address branch_target = psymval->value(object, addend);
4164   int32_t branch_offset = branch_target - address;
4165 
4166   // ??? Should handle interworking?  GCC might someday try to
4167   // use this for tail calls.
4168   // FIXME: We do support thumb entry to PLT yet.
4169   if (thumb_bit == 0)
4170     {
4171       gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4172       return This::STATUS_BAD_RELOC;
4173     }
4174 
4175   // Put RELOCATION back into the insn.
4176   upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4177   lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4178 
4179   // Put the relocated value back in the object file:
4180   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4181   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4182 
4183   return (Bits<21>::has_overflow32(branch_offset)
4184 	  ? This::STATUS_OVERFLOW
4185 	  : This::STATUS_OKAY);
4186 }
4187 
4188 // Get the GOT section, creating it if necessary.
4189 
4190 template<bool big_endian>
4191 Arm_output_data_got<big_endian>*
4192 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4193 {
4194   if (this->got_ == NULL)
4195     {
4196       gold_assert(symtab != NULL && layout != NULL);
4197 
4198       // When using -z now, we can treat .got as a relro section.
4199       // Without -z now, it is modified after program startup by lazy
4200       // PLT relocations.
4201       bool is_got_relro = parameters->options().now();
4202       Output_section_order got_order = (is_got_relro
4203 					? ORDER_RELRO_LAST
4204 					: ORDER_DATA);
4205 
4206       // Unlike some targets (.e.g x86), ARM does not use separate .got and
4207       // .got.plt sections in output.  The output .got section contains both
4208       // PLT and non-PLT GOT entries.
4209       this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4210 
4211       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4212 				      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4213 				      this->got_, got_order, is_got_relro);
4214 
4215       // The old GNU linker creates a .got.plt section.  We just
4216       // create another set of data in the .got section.  Note that we
4217       // always create a PLT if we create a GOT, although the PLT
4218       // might be empty.
4219       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4220       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4221 				      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4222 				      this->got_plt_, got_order, is_got_relro);
4223 
4224       // The first three entries are reserved.
4225       this->got_plt_->set_current_data_size(3 * 4);
4226 
4227       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4228       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4229 				    Symbol_table::PREDEFINED,
4230 				    this->got_plt_,
4231 				    0, 0, elfcpp::STT_OBJECT,
4232 				    elfcpp::STB_LOCAL,
4233 				    elfcpp::STV_HIDDEN, 0,
4234 				    false, false);
4235     }
4236   return this->got_;
4237 }
4238 
4239 // Get the dynamic reloc section, creating it if necessary.
4240 
4241 template<bool big_endian>
4242 typename Target_arm<big_endian>::Reloc_section*
4243 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4244 {
4245   if (this->rel_dyn_ == NULL)
4246     {
4247       gold_assert(layout != NULL);
4248       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4249       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4250 				      elfcpp::SHF_ALLOC, this->rel_dyn_,
4251 				      ORDER_DYNAMIC_RELOCS, false);
4252     }
4253   return this->rel_dyn_;
4254 }
4255 
4256 // Insn_template methods.
4257 
4258 // Return byte size of an instruction template.
4259 
4260 size_t
4261 Insn_template::size() const
4262 {
4263   switch (this->type())
4264     {
4265     case THUMB16_TYPE:
4266     case THUMB16_SPECIAL_TYPE:
4267       return 2;
4268     case ARM_TYPE:
4269     case THUMB32_TYPE:
4270     case DATA_TYPE:
4271       return 4;
4272     default:
4273       gold_unreachable();
4274     }
4275 }
4276 
4277 // Return alignment of an instruction template.
4278 
4279 unsigned
4280 Insn_template::alignment() const
4281 {
4282   switch (this->type())
4283     {
4284     case THUMB16_TYPE:
4285     case THUMB16_SPECIAL_TYPE:
4286     case THUMB32_TYPE:
4287       return 2;
4288     case ARM_TYPE:
4289     case DATA_TYPE:
4290       return 4;
4291     default:
4292       gold_unreachable();
4293     }
4294 }
4295 
4296 // Stub_template methods.
4297 
4298 Stub_template::Stub_template(
4299     Stub_type type, const Insn_template* insns,
4300      size_t insn_count)
4301   : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4302     entry_in_thumb_mode_(false), relocs_()
4303 {
4304   off_t offset = 0;
4305 
4306   // Compute byte size and alignment of stub template.
4307   for (size_t i = 0; i < insn_count; i++)
4308     {
4309       unsigned insn_alignment = insns[i].alignment();
4310       size_t insn_size = insns[i].size();
4311       gold_assert((offset & (insn_alignment - 1)) == 0);
4312       this->alignment_ = std::max(this->alignment_, insn_alignment);
4313       switch (insns[i].type())
4314 	{
4315 	case Insn_template::THUMB16_TYPE:
4316 	case Insn_template::THUMB16_SPECIAL_TYPE:
4317 	  if (i == 0)
4318 	    this->entry_in_thumb_mode_ = true;
4319 	  break;
4320 
4321 	case Insn_template::THUMB32_TYPE:
4322 	  if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4323 	    this->relocs_.push_back(Reloc(i, offset));
4324 	  if (i == 0)
4325 	    this->entry_in_thumb_mode_ = true;
4326 	  break;
4327 
4328 	case Insn_template::ARM_TYPE:
4329 	  // Handle cases where the target is encoded within the
4330 	  // instruction.
4331 	  if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4332 	    this->relocs_.push_back(Reloc(i, offset));
4333 	  break;
4334 
4335 	case Insn_template::DATA_TYPE:
4336 	  // Entry point cannot be data.
4337 	  gold_assert(i != 0);
4338 	  this->relocs_.push_back(Reloc(i, offset));
4339 	  break;
4340 
4341 	default:
4342 	  gold_unreachable();
4343 	}
4344       offset += insn_size;
4345     }
4346   this->size_ = offset;
4347 }
4348 
4349 // Stub methods.
4350 
4351 // Template to implement do_write for a specific target endianness.
4352 
4353 template<bool big_endian>
4354 void inline
4355 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4356 {
4357   const Stub_template* stub_template = this->stub_template();
4358   const Insn_template* insns = stub_template->insns();
4359 
4360   // FIXME:  We do not handle BE8 encoding yet.
4361   unsigned char* pov = view;
4362   for (size_t i = 0; i < stub_template->insn_count(); i++)
4363     {
4364       switch (insns[i].type())
4365 	{
4366 	case Insn_template::THUMB16_TYPE:
4367 	  elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4368 	  break;
4369 	case Insn_template::THUMB16_SPECIAL_TYPE:
4370 	  elfcpp::Swap<16, big_endian>::writeval(
4371 	      pov,
4372 	      this->thumb16_special(i));
4373 	  break;
4374 	case Insn_template::THUMB32_TYPE:
4375 	  {
4376 	    uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4377 	    uint32_t lo = insns[i].data() & 0xffff;
4378 	    elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4379 	    elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4380 	  }
4381 	  break;
4382 	case Insn_template::ARM_TYPE:
4383 	case Insn_template::DATA_TYPE:
4384 	  elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4385 	  break;
4386 	default:
4387 	  gold_unreachable();
4388 	}
4389       pov += insns[i].size();
4390     }
4391   gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4392 }
4393 
4394 // Reloc_stub::Key methods.
4395 
4396 // Dump a Key as a string for debugging.
4397 
4398 std::string
4399 Reloc_stub::Key::name() const
4400 {
4401   if (this->r_sym_ == invalid_index)
4402     {
4403       // Global symbol key name
4404       // <stub-type>:<symbol name>:<addend>.
4405       const std::string sym_name = this->u_.symbol->name();
4406       // We need to print two hex number and two colons.  So just add 100 bytes
4407       // to the symbol name size.
4408       size_t len = sym_name.size() + 100;
4409       char* buffer = new char[len];
4410       int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4411 		       sym_name.c_str(), this->addend_);
4412       gold_assert(c > 0 && c < static_cast<int>(len));
4413       delete[] buffer;
4414       return std::string(buffer);
4415     }
4416   else
4417     {
4418       // local symbol key name
4419       // <stub-type>:<object>:<r_sym>:<addend>.
4420       const size_t len = 200;
4421       char buffer[len];
4422       int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4423 		       this->u_.relobj, this->r_sym_, this->addend_);
4424       gold_assert(c > 0 && c < static_cast<int>(len));
4425       return std::string(buffer);
4426     }
4427 }
4428 
4429 // Reloc_stub methods.
4430 
4431 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4432 // LOCATION to DESTINATION.
4433 // This code is based on the arm_type_of_stub function in
4434 // bfd/elf32-arm.c.  We have changed the interface a little to keep the Stub
4435 // class simple.
4436 
4437 Stub_type
4438 Reloc_stub::stub_type_for_reloc(
4439    unsigned int r_type,
4440    Arm_address location,
4441    Arm_address destination,
4442    bool target_is_thumb)
4443 {
4444   Stub_type stub_type = arm_stub_none;
4445 
4446   // This is a bit ugly but we want to avoid using a templated class for
4447   // big and little endianities.
4448   bool may_use_blx;
4449   bool should_force_pic_veneer;
4450   bool thumb2;
4451   bool thumb_only;
4452   if (parameters->target().is_big_endian())
4453     {
4454       const Target_arm<true>* big_endian_target =
4455 	Target_arm<true>::default_target();
4456       may_use_blx = big_endian_target->may_use_v5t_interworking();
4457       should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4458       thumb2 = big_endian_target->using_thumb2();
4459       thumb_only = big_endian_target->using_thumb_only();
4460     }
4461   else
4462     {
4463       const Target_arm<false>* little_endian_target =
4464 	Target_arm<false>::default_target();
4465       may_use_blx = little_endian_target->may_use_v5t_interworking();
4466       should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4467       thumb2 = little_endian_target->using_thumb2();
4468       thumb_only = little_endian_target->using_thumb_only();
4469     }
4470 
4471   int64_t branch_offset;
4472   bool output_is_position_independent =
4473       parameters->options().output_is_position_independent();
4474   if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4475     {
4476       // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4477       // base address (instruction address + 4).
4478       if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4479 	destination = Bits<32>::bit_select32(destination, location, 0x2);
4480       branch_offset = static_cast<int64_t>(destination) - location;
4481 
4482       // Handle cases where:
4483       // - this call goes too far (different Thumb/Thumb2 max
4484       //   distance)
4485       // - it's a Thumb->Arm call and blx is not available, or it's a
4486       //   Thumb->Arm branch (not bl). A stub is needed in this case.
4487       if ((!thumb2
4488 	    && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4489 		|| (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4490 	  || (thumb2
4491 	      && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4492 		  || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4493 	  || ((!target_is_thumb)
4494 	      && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4495 		  || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4496 	{
4497 	  if (target_is_thumb)
4498 	    {
4499 	      // Thumb to thumb.
4500 	      if (!thumb_only)
4501 		{
4502 		  stub_type = (output_is_position_independent
4503 			       || should_force_pic_veneer)
4504 		    // PIC stubs.
4505 		    ? ((may_use_blx
4506 			&& (r_type == elfcpp::R_ARM_THM_CALL))
4507 		       // V5T and above. Stub starts with ARM code, so
4508 		       // we must be able to switch mode before
4509 		       // reaching it, which is only possible for 'bl'
4510 		       // (ie R_ARM_THM_CALL relocation).
4511 		       ? arm_stub_long_branch_any_thumb_pic
4512 		       // On V4T, use Thumb code only.
4513 		       : arm_stub_long_branch_v4t_thumb_thumb_pic)
4514 
4515 		    // non-PIC stubs.
4516 		    : ((may_use_blx
4517 			&& (r_type == elfcpp::R_ARM_THM_CALL))
4518 		       ? arm_stub_long_branch_any_any // V5T and above.
4519 		       : arm_stub_long_branch_v4t_thumb_thumb);	// V4T.
4520 		}
4521 	      else
4522 		{
4523 		  stub_type = (output_is_position_independent
4524 			       || should_force_pic_veneer)
4525 		    ? arm_stub_long_branch_thumb_only_pic	// PIC stub.
4526 		    : arm_stub_long_branch_thumb_only;	// non-PIC stub.
4527 		}
4528 	    }
4529 	  else
4530 	    {
4531 	      // Thumb to arm.
4532 
4533 	      // FIXME: We should check that the input section is from an
4534 	      // object that has interwork enabled.
4535 
4536 	      stub_type = (output_is_position_independent
4537 			   || should_force_pic_veneer)
4538 		// PIC stubs.
4539 		? ((may_use_blx
4540 		    && (r_type == elfcpp::R_ARM_THM_CALL))
4541 		   ? arm_stub_long_branch_any_arm_pic	// V5T and above.
4542 		   : arm_stub_long_branch_v4t_thumb_arm_pic)	// V4T.
4543 
4544 		// non-PIC stubs.
4545 		: ((may_use_blx
4546 		    && (r_type == elfcpp::R_ARM_THM_CALL))
4547 		   ? arm_stub_long_branch_any_any	// V5T and above.
4548 		   : arm_stub_long_branch_v4t_thumb_arm);	// V4T.
4549 
4550 	      // Handle v4t short branches.
4551 	      if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4552 		  && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4553 		  && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4554 		stub_type = arm_stub_short_branch_v4t_thumb_arm;
4555 	    }
4556 	}
4557     }
4558   else if (r_type == elfcpp::R_ARM_CALL
4559 	   || r_type == elfcpp::R_ARM_JUMP24
4560 	   || r_type == elfcpp::R_ARM_PLT32)
4561     {
4562       branch_offset = static_cast<int64_t>(destination) - location;
4563       if (target_is_thumb)
4564 	{
4565 	  // Arm to thumb.
4566 
4567 	  // FIXME: We should check that the input section is from an
4568 	  // object that has interwork enabled.
4569 
4570 	  // We have an extra 2-bytes reach because of
4571 	  // the mode change (bit 24 (H) of BLX encoding).
4572 	  if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4573 	      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4574 	      || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4575 	      || (r_type == elfcpp::R_ARM_JUMP24)
4576 	      || (r_type == elfcpp::R_ARM_PLT32))
4577 	    {
4578 	      stub_type = (output_is_position_independent
4579 			   || should_force_pic_veneer)
4580 		// PIC stubs.
4581 		? (may_use_blx
4582 		   ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4583 		   : arm_stub_long_branch_v4t_arm_thumb_pic)	// V4T stub.
4584 
4585 		// non-PIC stubs.
4586 		: (may_use_blx
4587 		   ? arm_stub_long_branch_any_any	// V5T and above.
4588 		   : arm_stub_long_branch_v4t_arm_thumb);	// V4T.
4589 	    }
4590 	}
4591       else
4592 	{
4593 	  // Arm to arm.
4594 	  if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4595 	      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4596 	    {
4597 	      stub_type = (output_is_position_independent
4598 			   || should_force_pic_veneer)
4599 		? arm_stub_long_branch_any_arm_pic	// PIC stubs.
4600 		: arm_stub_long_branch_any_any;		/// non-PIC.
4601 	    }
4602 	}
4603     }
4604 
4605   return stub_type;
4606 }
4607 
4608 // Cortex_a8_stub methods.
4609 
4610 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4611 // I is the position of the instruction template in the stub template.
4612 
4613 uint16_t
4614 Cortex_a8_stub::do_thumb16_special(size_t i)
4615 {
4616   // The only use of this is to copy condition code from a conditional
4617   // branch being worked around to the corresponding conditional branch in
4618   // to the stub.
4619   gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4620 	      && i == 0);
4621   uint16_t data = this->stub_template()->insns()[i].data();
4622   gold_assert((data & 0xff00U) == 0xd000U);
4623   data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4624   return data;
4625 }
4626 
4627 // Stub_factory methods.
4628 
4629 Stub_factory::Stub_factory()
4630 {
4631   // The instruction template sequences are declared as static
4632   // objects and initialized first time the constructor runs.
4633 
4634   // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4635   // to reach the stub if necessary.
4636   static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4637     {
4638       Insn_template::arm_insn(0xe51ff004),	// ldr   pc, [pc, #-4]
4639       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4640 						// dcd   R_ARM_ABS32(X)
4641     };
4642 
4643   // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4644   // available.
4645   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4646     {
4647       Insn_template::arm_insn(0xe59fc000),	// ldr   ip, [pc, #0]
4648       Insn_template::arm_insn(0xe12fff1c),	// bx    ip
4649       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4650 						// dcd   R_ARM_ABS32(X)
4651     };
4652 
4653   // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4654   static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4655     {
4656       Insn_template::thumb16_insn(0xb401),	// push {r0}
4657       Insn_template::thumb16_insn(0x4802),	// ldr  r0, [pc, #8]
4658       Insn_template::thumb16_insn(0x4684),	// mov  ip, r0
4659       Insn_template::thumb16_insn(0xbc01),	// pop  {r0}
4660       Insn_template::thumb16_insn(0x4760),	// bx   ip
4661       Insn_template::thumb16_insn(0xbf00),	// nop
4662       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4663 						// dcd  R_ARM_ABS32(X)
4664     };
4665 
4666   // V4T Thumb -> Thumb long branch stub. Using the stack is not
4667   // allowed.
4668   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4669     {
4670       Insn_template::thumb16_insn(0x4778),	// bx   pc
4671       Insn_template::thumb16_insn(0x46c0),	// nop
4672       Insn_template::arm_insn(0xe59fc000),	// ldr  ip, [pc, #0]
4673       Insn_template::arm_insn(0xe12fff1c),	// bx   ip
4674       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4675 						// dcd  R_ARM_ABS32(X)
4676     };
4677 
4678   // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4679   // available.
4680   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4681     {
4682       Insn_template::thumb16_insn(0x4778),	// bx   pc
4683       Insn_template::thumb16_insn(0x46c0),	// nop
4684       Insn_template::arm_insn(0xe51ff004),	// ldr   pc, [pc, #-4]
4685       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4686 						// dcd   R_ARM_ABS32(X)
4687     };
4688 
4689   // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4690   // one, when the destination is close enough.
4691   static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4692     {
4693       Insn_template::thumb16_insn(0x4778),		// bx   pc
4694       Insn_template::thumb16_insn(0x46c0),		// nop
4695       Insn_template::arm_rel_insn(0xea000000, -8),	// b    (X-8)
4696     };
4697 
4698   // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
4699   // blx to reach the stub if necessary.
4700   static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4701     {
4702       Insn_template::arm_insn(0xe59fc000),	// ldr   r12, [pc]
4703       Insn_template::arm_insn(0xe08ff00c),	// add   pc, pc, ip
4704       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4705 						// dcd   R_ARM_REL32(X-4)
4706     };
4707 
4708   // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
4709   // blx to reach the stub if necessary.  We can not add into pc;
4710   // it is not guaranteed to mode switch (different in ARMv6 and
4711   // ARMv7).
4712   static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4713     {
4714       Insn_template::arm_insn(0xe59fc004),	// ldr   r12, [pc, #4]
4715       Insn_template::arm_insn(0xe08fc00c),	// add   ip, pc, ip
4716       Insn_template::arm_insn(0xe12fff1c),	// bx    ip
4717       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4718 						// dcd   R_ARM_REL32(X)
4719     };
4720 
4721   // V4T ARM -> ARM long branch stub, PIC.
4722   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4723     {
4724       Insn_template::arm_insn(0xe59fc004),	// ldr   ip, [pc, #4]
4725       Insn_template::arm_insn(0xe08fc00c),	// add   ip, pc, ip
4726       Insn_template::arm_insn(0xe12fff1c),	// bx    ip
4727       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4728 						// dcd   R_ARM_REL32(X)
4729     };
4730 
4731   // V4T Thumb -> ARM long branch stub, PIC.
4732   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4733     {
4734       Insn_template::thumb16_insn(0x4778),	// bx   pc
4735       Insn_template::thumb16_insn(0x46c0),	// nop
4736       Insn_template::arm_insn(0xe59fc000),	// ldr  ip, [pc, #0]
4737       Insn_template::arm_insn(0xe08cf00f),	// add  pc, ip, pc
4738       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4739 						// dcd  R_ARM_REL32(X)
4740     };
4741 
4742   // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4743   // architectures.
4744   static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4745     {
4746       Insn_template::thumb16_insn(0xb401),	// push {r0}
4747       Insn_template::thumb16_insn(0x4802),	// ldr  r0, [pc, #8]
4748       Insn_template::thumb16_insn(0x46fc),	// mov  ip, pc
4749       Insn_template::thumb16_insn(0x4484),	// add  ip, r0
4750       Insn_template::thumb16_insn(0xbc01),	// pop  {r0}
4751       Insn_template::thumb16_insn(0x4760),	// bx   ip
4752       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4753 						// dcd  R_ARM_REL32(X)
4754     };
4755 
4756   // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4757   // allowed.
4758   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4759     {
4760       Insn_template::thumb16_insn(0x4778),	// bx   pc
4761       Insn_template::thumb16_insn(0x46c0),	// nop
4762       Insn_template::arm_insn(0xe59fc004),	// ldr  ip, [pc, #4]
4763       Insn_template::arm_insn(0xe08fc00c),	// add   ip, pc, ip
4764       Insn_template::arm_insn(0xe12fff1c),	// bx   ip
4765       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4766 						// dcd  R_ARM_REL32(X)
4767     };
4768 
4769   // Cortex-A8 erratum-workaround stubs.
4770 
4771   // Stub used for conditional branches (which may be beyond +/-1MB away,
4772   // so we can't use a conditional branch to reach this stub).
4773 
4774   // original code:
4775   //
4776   // 	b<cond> X
4777   // after:
4778   //
4779   static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4780     {
4781       Insn_template::thumb16_bcond_insn(0xd001),	//	b<cond>.n true
4782       Insn_template::thumb32_b_insn(0xf000b800, -4),	//	b.w after
4783       Insn_template::thumb32_b_insn(0xf000b800, -4)	// true:
4784 							//	b.w X
4785     };
4786 
4787   // Stub used for b.w and bl.w instructions.
4788 
4789   static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4790     {
4791       Insn_template::thumb32_b_insn(0xf000b800, -4)	// b.w dest
4792     };
4793 
4794   static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4795     {
4796       Insn_template::thumb32_b_insn(0xf000b800, -4)	// b.w dest
4797     };
4798 
4799   // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
4800   // instruction (which switches to ARM mode) to point to this stub.  Jump to
4801   // the real destination using an ARM-mode branch.
4802   static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4803     {
4804       Insn_template::arm_rel_insn(0xea000000, -8)	// b dest
4805     };
4806 
4807   // Stub used to provide an interworking for R_ARM_V4BX relocation
4808   // (bx r[n] instruction).
4809   static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4810     {
4811       Insn_template::arm_insn(0xe3100001),		// tst   r<n>, #1
4812       Insn_template::arm_insn(0x01a0f000),		// moveq pc, r<n>
4813       Insn_template::arm_insn(0xe12fff10)		// bx    r<n>
4814     };
4815 
4816   // Fill in the stub template look-up table.  Stub templates are constructed
4817   // per instance of Stub_factory for fast look-up without locking
4818   // in a thread-enabled environment.
4819 
4820   this->stub_templates_[arm_stub_none] =
4821     new Stub_template(arm_stub_none, NULL, 0);
4822 
4823 #define DEF_STUB(x)	\
4824   do \
4825     { \
4826       size_t array_size \
4827 	= sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4828       Stub_type type = arm_stub_##x; \
4829       this->stub_templates_[type] = \
4830 	new Stub_template(type, elf32_arm_stub_##x, array_size); \
4831     } \
4832   while (0);
4833 
4834   DEF_STUBS
4835 #undef DEF_STUB
4836 }
4837 
4838 // Stub_table methods.
4839 
4840 // Remove all Cortex-A8 stub.
4841 
4842 template<bool big_endian>
4843 void
4844 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4845 {
4846   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4847        p != this->cortex_a8_stubs_.end();
4848        ++p)
4849     delete p->second;
4850   this->cortex_a8_stubs_.clear();
4851 }
4852 
4853 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
4854 
4855 template<bool big_endian>
4856 void
4857 Stub_table<big_endian>::relocate_stub(
4858     Stub* stub,
4859     const Relocate_info<32, big_endian>* relinfo,
4860     Target_arm<big_endian>* arm_target,
4861     Output_section* output_section,
4862     unsigned char* view,
4863     Arm_address address,
4864     section_size_type view_size)
4865 {
4866   const Stub_template* stub_template = stub->stub_template();
4867   if (stub_template->reloc_count() != 0)
4868     {
4869       // Adjust view to cover the stub only.
4870       section_size_type offset = stub->offset();
4871       section_size_type stub_size = stub_template->size();
4872       gold_assert(offset + stub_size <= view_size);
4873 
4874       arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4875 				address + offset, stub_size);
4876     }
4877 }
4878 
4879 // Relocate all stubs in this stub table.
4880 
4881 template<bool big_endian>
4882 void
4883 Stub_table<big_endian>::relocate_stubs(
4884     const Relocate_info<32, big_endian>* relinfo,
4885     Target_arm<big_endian>* arm_target,
4886     Output_section* output_section,
4887     unsigned char* view,
4888     Arm_address address,
4889     section_size_type view_size)
4890 {
4891   // If we are passed a view bigger than the stub table's.  we need to
4892   // adjust the view.
4893   gold_assert(address == this->address()
4894 	      && (view_size
4895 		  == static_cast<section_size_type>(this->data_size())));
4896 
4897   // Relocate all relocation stubs.
4898   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4899       p != this->reloc_stubs_.end();
4900       ++p)
4901     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4902 			address, view_size);
4903 
4904   // Relocate all Cortex-A8 stubs.
4905   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4906        p != this->cortex_a8_stubs_.end();
4907        ++p)
4908     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4909 			address, view_size);
4910 
4911   // Relocate all ARM V4BX stubs.
4912   for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4913        p != this->arm_v4bx_stubs_.end();
4914        ++p)
4915     {
4916       if (*p != NULL)
4917 	this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4918 			    address, view_size);
4919     }
4920 }
4921 
4922 // Write out the stubs to file.
4923 
4924 template<bool big_endian>
4925 void
4926 Stub_table<big_endian>::do_write(Output_file* of)
4927 {
4928   off_t offset = this->offset();
4929   const section_size_type oview_size =
4930     convert_to_section_size_type(this->data_size());
4931   unsigned char* const oview = of->get_output_view(offset, oview_size);
4932 
4933   // Write relocation stubs.
4934   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4935       p != this->reloc_stubs_.end();
4936       ++p)
4937     {
4938       Reloc_stub* stub = p->second;
4939       Arm_address address = this->address() + stub->offset();
4940       gold_assert(address
4941 		  == align_address(address,
4942 				   stub->stub_template()->alignment()));
4943       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4944 		  big_endian);
4945     }
4946 
4947   // Write Cortex-A8 stubs.
4948   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4949        p != this->cortex_a8_stubs_.end();
4950        ++p)
4951     {
4952       Cortex_a8_stub* stub = p->second;
4953       Arm_address address = this->address() + stub->offset();
4954       gold_assert(address
4955 		  == align_address(address,
4956 				   stub->stub_template()->alignment()));
4957       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4958 		  big_endian);
4959     }
4960 
4961   // Write ARM V4BX relocation stubs.
4962   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4963        p != this->arm_v4bx_stubs_.end();
4964        ++p)
4965     {
4966       if (*p == NULL)
4967 	continue;
4968 
4969       Arm_address address = this->address() + (*p)->offset();
4970       gold_assert(address
4971 		  == align_address(address,
4972 				   (*p)->stub_template()->alignment()));
4973       (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4974 		  big_endian);
4975     }
4976 
4977   of->write_output_view(this->offset(), oview_size, oview);
4978 }
4979 
4980 // Update the data size and address alignment of the stub table at the end
4981 // of a relaxation pass.   Return true if either the data size or the
4982 // alignment changed in this relaxation pass.
4983 
4984 template<bool big_endian>
4985 bool
4986 Stub_table<big_endian>::update_data_size_and_addralign()
4987 {
4988   // Go over all stubs in table to compute data size and address alignment.
4989   off_t size = this->reloc_stubs_size_;
4990   unsigned addralign = this->reloc_stubs_addralign_;
4991 
4992   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4993        p != this->cortex_a8_stubs_.end();
4994        ++p)
4995     {
4996       const Stub_template* stub_template = p->second->stub_template();
4997       addralign = std::max(addralign, stub_template->alignment());
4998       size = (align_address(size, stub_template->alignment())
4999 	      + stub_template->size());
5000     }
5001 
5002   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5003        p != this->arm_v4bx_stubs_.end();
5004        ++p)
5005     {
5006       if (*p == NULL)
5007 	continue;
5008 
5009       const Stub_template* stub_template = (*p)->stub_template();
5010       addralign = std::max(addralign, stub_template->alignment());
5011       size = (align_address(size, stub_template->alignment())
5012 	      + stub_template->size());
5013     }
5014 
5015   // Check if either data size or alignment changed in this pass.
5016   // Update prev_data_size_ and prev_addralign_.  These will be used
5017   // as the current data size and address alignment for the next pass.
5018   bool changed = size != this->prev_data_size_;
5019   this->prev_data_size_ = size;
5020 
5021   if (addralign != this->prev_addralign_)
5022     changed = true;
5023   this->prev_addralign_ = addralign;
5024 
5025   return changed;
5026 }
5027 
5028 // Finalize the stubs.  This sets the offsets of the stubs within the stub
5029 // table.  It also marks all input sections needing Cortex-A8 workaround.
5030 
5031 template<bool big_endian>
5032 void
5033 Stub_table<big_endian>::finalize_stubs()
5034 {
5035   off_t off = this->reloc_stubs_size_;
5036   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5037        p != this->cortex_a8_stubs_.end();
5038        ++p)
5039     {
5040       Cortex_a8_stub* stub = p->second;
5041       const Stub_template* stub_template = stub->stub_template();
5042       uint64_t stub_addralign = stub_template->alignment();
5043       off = align_address(off, stub_addralign);
5044       stub->set_offset(off);
5045       off += stub_template->size();
5046 
5047       // Mark input section so that we can determine later if a code section
5048       // needs the Cortex-A8 workaround quickly.
5049       Arm_relobj<big_endian>* arm_relobj =
5050 	Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5051       arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5052     }
5053 
5054   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5055       p != this->arm_v4bx_stubs_.end();
5056       ++p)
5057     {
5058       if (*p == NULL)
5059 	continue;
5060 
5061       const Stub_template* stub_template = (*p)->stub_template();
5062       uint64_t stub_addralign = stub_template->alignment();
5063       off = align_address(off, stub_addralign);
5064       (*p)->set_offset(off);
5065       off += stub_template->size();
5066     }
5067 
5068   gold_assert(off <= this->prev_data_size_);
5069 }
5070 
5071 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5072 // and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
5073 // of the address range seen by the linker.
5074 
5075 template<bool big_endian>
5076 void
5077 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5078     Target_arm<big_endian>* arm_target,
5079     unsigned char* view,
5080     Arm_address view_address,
5081     section_size_type view_size)
5082 {
5083   // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5084   for (Cortex_a8_stub_list::const_iterator p =
5085 	 this->cortex_a8_stubs_.lower_bound(view_address);
5086        ((p != this->cortex_a8_stubs_.end())
5087 	&& (p->first < (view_address + view_size)));
5088        ++p)
5089     {
5090       // We do not store the THUMB bit in the LSB of either the branch address
5091       // or the stub offset.  There is no need to strip the LSB.
5092       Arm_address branch_address = p->first;
5093       const Cortex_a8_stub* stub = p->second;
5094       Arm_address stub_address = this->address() + stub->offset();
5095 
5096       // Offset of the branch instruction relative to this view.
5097       section_size_type offset =
5098 	convert_to_section_size_type(branch_address - view_address);
5099       gold_assert((offset + 4) <= view_size);
5100 
5101       arm_target->apply_cortex_a8_workaround(stub, stub_address,
5102 					     view + offset, branch_address);
5103     }
5104 }
5105 
5106 // Arm_input_section methods.
5107 
5108 // Initialize an Arm_input_section.
5109 
5110 template<bool big_endian>
5111 void
5112 Arm_input_section<big_endian>::init()
5113 {
5114   Relobj* relobj = this->relobj();
5115   unsigned int shndx = this->shndx();
5116 
5117   // We have to cache original size, alignment and contents to avoid locking
5118   // the original file.
5119   this->original_addralign_ =
5120     convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5121 
5122   // This is not efficient but we expect only a small number of relaxed
5123   // input sections for stubs.
5124   section_size_type section_size;
5125   const unsigned char* section_contents =
5126     relobj->section_contents(shndx, &section_size, false);
5127   this->original_size_ =
5128     convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5129 
5130   gold_assert(this->original_contents_ == NULL);
5131   this->original_contents_ = new unsigned char[section_size];
5132   memcpy(this->original_contents_, section_contents, section_size);
5133 
5134   // We want to make this look like the original input section after
5135   // output sections are finalized.
5136   Output_section* os = relobj->output_section(shndx);
5137   off_t offset = relobj->output_section_offset(shndx);
5138   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5139   this->set_address(os->address() + offset);
5140   this->set_file_offset(os->offset() + offset);
5141 
5142   this->set_current_data_size(this->original_size_);
5143   this->finalize_data_size();
5144 }
5145 
5146 template<bool big_endian>
5147 void
5148 Arm_input_section<big_endian>::do_write(Output_file* of)
5149 {
5150   // We have to write out the original section content.
5151   gold_assert(this->original_contents_ != NULL);
5152   of->write(this->offset(), this->original_contents_,
5153 	    this->original_size_);
5154 
5155   // If this owns a stub table and it is not empty, write it.
5156   if (this->is_stub_table_owner() && !this->stub_table_->empty())
5157     this->stub_table_->write(of);
5158 }
5159 
5160 // Finalize data size.
5161 
5162 template<bool big_endian>
5163 void
5164 Arm_input_section<big_endian>::set_final_data_size()
5165 {
5166   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5167 
5168   if (this->is_stub_table_owner())
5169     {
5170       this->stub_table_->finalize_data_size();
5171       off = align_address(off, this->stub_table_->addralign());
5172       off += this->stub_table_->data_size();
5173     }
5174   this->set_data_size(off);
5175 }
5176 
5177 // Reset address and file offset.
5178 
5179 template<bool big_endian>
5180 void
5181 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5182 {
5183   // Size of the original input section contents.
5184   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5185 
5186   // If this is a stub table owner, account for the stub table size.
5187   if (this->is_stub_table_owner())
5188     {
5189       Stub_table<big_endian>* stub_table = this->stub_table_;
5190 
5191       // Reset the stub table's address and file offset.  The
5192       // current data size for child will be updated after that.
5193       stub_table_->reset_address_and_file_offset();
5194       off = align_address(off, stub_table_->addralign());
5195       off += stub_table->current_data_size();
5196     }
5197 
5198   this->set_current_data_size(off);
5199 }
5200 
5201 // Arm_exidx_cantunwind methods.
5202 
5203 // Write this to Output file OF for a fixed endianness.
5204 
5205 template<bool big_endian>
5206 void
5207 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5208 {
5209   off_t offset = this->offset();
5210   const section_size_type oview_size = 8;
5211   unsigned char* const oview = of->get_output_view(offset, oview_size);
5212 
5213   Output_section* os = this->relobj_->output_section(this->shndx_);
5214   gold_assert(os != NULL);
5215 
5216   Arm_relobj<big_endian>* arm_relobj =
5217     Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5218   Arm_address output_offset =
5219     arm_relobj->get_output_section_offset(this->shndx_);
5220   Arm_address section_start;
5221   section_size_type section_size;
5222 
5223   // Find out the end of the text section referred by this.
5224   if (output_offset != Arm_relobj<big_endian>::invalid_address)
5225     {
5226       section_start = os->address() + output_offset;
5227       const Arm_exidx_input_section* exidx_input_section =
5228 	arm_relobj->exidx_input_section_by_link(this->shndx_);
5229       gold_assert(exidx_input_section != NULL);
5230       section_size =
5231 	convert_to_section_size_type(exidx_input_section->text_size());
5232     }
5233   else
5234     {
5235       // Currently this only happens for a relaxed section.
5236       const Output_relaxed_input_section* poris =
5237 	os->find_relaxed_input_section(this->relobj_, this->shndx_);
5238       gold_assert(poris != NULL);
5239       section_start = poris->address();
5240       section_size = convert_to_section_size_type(poris->data_size());
5241     }
5242 
5243   // We always append this to the end of an EXIDX section.
5244   Arm_address output_address = section_start + section_size;
5245 
5246   // Write out the entry.  The first word either points to the beginning
5247   // or after the end of a text section.  The second word is the special
5248   // EXIDX_CANTUNWIND value.
5249   uint32_t prel31_offset = output_address - this->address();
5250   if (Bits<31>::has_overflow32(offset))
5251     gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5252   elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5253 						   prel31_offset & 0x7fffffffU);
5254   elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5255 						   elfcpp::EXIDX_CANTUNWIND);
5256 
5257   of->write_output_view(this->offset(), oview_size, oview);
5258 }
5259 
5260 // Arm_exidx_merged_section methods.
5261 
5262 // Constructor for Arm_exidx_merged_section.
5263 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5264 // SECTION_OFFSET_MAP points to a section offset map describing how
5265 // parts of the input section are mapped to output.  DELETED_BYTES is
5266 // the number of bytes deleted from the EXIDX input section.
5267 
5268 Arm_exidx_merged_section::Arm_exidx_merged_section(
5269     const Arm_exidx_input_section& exidx_input_section,
5270     const Arm_exidx_section_offset_map& section_offset_map,
5271     uint32_t deleted_bytes)
5272   : Output_relaxed_input_section(exidx_input_section.relobj(),
5273 				 exidx_input_section.shndx(),
5274 				 exidx_input_section.addralign()),
5275     exidx_input_section_(exidx_input_section),
5276     section_offset_map_(section_offset_map)
5277 {
5278   // If we retain or discard the whole EXIDX input section,  we would
5279   // not be here.
5280   gold_assert(deleted_bytes != 0
5281 	      && deleted_bytes != this->exidx_input_section_.size());
5282 
5283   // Fix size here so that we do not need to implement set_final_data_size.
5284   uint32_t size = exidx_input_section.size() - deleted_bytes;
5285   this->set_data_size(size);
5286   this->fix_data_size();
5287 
5288   // Allocate buffer for section contents and build contents.
5289   this->section_contents_ = new unsigned char[size];
5290 }
5291 
5292 // Build the contents of a merged EXIDX output section.
5293 
5294 void
5295 Arm_exidx_merged_section::build_contents(
5296     const unsigned char* original_contents,
5297     section_size_type original_size)
5298 {
5299   // Go over spans of input offsets and write only those that are not
5300   // discarded.
5301   section_offset_type in_start = 0;
5302   section_offset_type out_start = 0;
5303   section_offset_type in_max =
5304     convert_types<section_offset_type>(original_size);
5305   section_offset_type out_max =
5306     convert_types<section_offset_type>(this->data_size());
5307   for (Arm_exidx_section_offset_map::const_iterator p =
5308 	this->section_offset_map_.begin();
5309       p != this->section_offset_map_.end();
5310       ++p)
5311     {
5312       section_offset_type in_end = p->first;
5313       gold_assert(in_end >= in_start);
5314       section_offset_type out_end = p->second;
5315       size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5316       if (out_end != -1)
5317 	{
5318 	  size_t out_chunk_size =
5319 	    convert_types<size_t>(out_end - out_start + 1);
5320 
5321 	  gold_assert(out_chunk_size == in_chunk_size
5322 		      && in_end < in_max && out_end < out_max);
5323 
5324 	  memcpy(this->section_contents_ + out_start,
5325 		 original_contents + in_start,
5326 		 out_chunk_size);
5327 	  out_start += out_chunk_size;
5328 	}
5329       in_start += in_chunk_size;
5330     }
5331 }
5332 
5333 // Given an input OBJECT, an input section index SHNDX within that
5334 // object, and an OFFSET relative to the start of that input
5335 // section, return whether or not the corresponding offset within
5336 // the output section is known.  If this function returns true, it
5337 // sets *POUTPUT to the output offset.  The value -1 indicates that
5338 // this input offset is being discarded.
5339 
5340 bool
5341 Arm_exidx_merged_section::do_output_offset(
5342     const Relobj* relobj,
5343     unsigned int shndx,
5344     section_offset_type offset,
5345     section_offset_type* poutput) const
5346 {
5347   // We only handle offsets for the original EXIDX input section.
5348   if (relobj != this->exidx_input_section_.relobj()
5349       || shndx != this->exidx_input_section_.shndx())
5350     return false;
5351 
5352   section_offset_type section_size =
5353     convert_types<section_offset_type>(this->exidx_input_section_.size());
5354   if (offset < 0 || offset >= section_size)
5355     // Input offset is out of valid range.
5356     *poutput = -1;
5357   else
5358     {
5359       // We need to look up the section offset map to determine the output
5360       // offset.  Find the reference point in map that is first offset
5361       // bigger than or equal to this offset.
5362       Arm_exidx_section_offset_map::const_iterator p =
5363 	this->section_offset_map_.lower_bound(offset);
5364 
5365       // The section offset maps are build such that this should not happen if
5366       // input offset is in the valid range.
5367       gold_assert(p != this->section_offset_map_.end());
5368 
5369       // We need to check if this is dropped.
5370      section_offset_type ref = p->first;
5371      section_offset_type mapped_ref = p->second;
5372 
5373       if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5374 	// Offset is present in output.
5375 	*poutput = mapped_ref + (offset - ref);
5376       else
5377 	// Offset is discarded owing to EXIDX entry merging.
5378 	*poutput = -1;
5379     }
5380 
5381   return true;
5382 }
5383 
5384 // Write this to output file OF.
5385 
5386 void
5387 Arm_exidx_merged_section::do_write(Output_file* of)
5388 {
5389   off_t offset = this->offset();
5390   const section_size_type oview_size = this->data_size();
5391   unsigned char* const oview = of->get_output_view(offset, oview_size);
5392 
5393   Output_section* os = this->relobj()->output_section(this->shndx());
5394   gold_assert(os != NULL);
5395 
5396   memcpy(oview, this->section_contents_, oview_size);
5397   of->write_output_view(this->offset(), oview_size, oview);
5398 }
5399 
5400 // Arm_exidx_fixup methods.
5401 
5402 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5403 // is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
5404 // points to the end of the last seen EXIDX section.
5405 
5406 void
5407 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5408 {
5409   if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5410       && this->last_input_section_ != NULL)
5411     {
5412       Relobj* relobj = this->last_input_section_->relobj();
5413       unsigned int text_shndx = this->last_input_section_->link();
5414       Arm_exidx_cantunwind* cantunwind =
5415 	new Arm_exidx_cantunwind(relobj, text_shndx);
5416       this->exidx_output_section_->add_output_section_data(cantunwind);
5417       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5418     }
5419 }
5420 
5421 // Process an EXIDX section entry in input.  Return whether this entry
5422 // can be deleted in the output.  SECOND_WORD in the second word of the
5423 // EXIDX entry.
5424 
5425 bool
5426 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5427 {
5428   bool delete_entry;
5429   if (second_word == elfcpp::EXIDX_CANTUNWIND)
5430     {
5431       // Merge if previous entry is also an EXIDX_CANTUNWIND.
5432       delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5433       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5434     }
5435   else if ((second_word & 0x80000000) != 0)
5436     {
5437       // Inlined unwinding data.  Merge if equal to previous.
5438       delete_entry = (merge_exidx_entries_
5439 		      && this->last_unwind_type_ == UT_INLINED_ENTRY
5440 		      && this->last_inlined_entry_ == second_word);
5441       this->last_unwind_type_ = UT_INLINED_ENTRY;
5442       this->last_inlined_entry_ = second_word;
5443     }
5444   else
5445     {
5446       // Normal table entry.  In theory we could merge these too,
5447       // but duplicate entries are likely to be much less common.
5448       delete_entry = false;
5449       this->last_unwind_type_ = UT_NORMAL_ENTRY;
5450     }
5451   return delete_entry;
5452 }
5453 
5454 // Update the current section offset map during EXIDX section fix-up.
5455 // If there is no map, create one.  INPUT_OFFSET is the offset of a
5456 // reference point, DELETED_BYTES is the number of deleted by in the
5457 // section so far.  If DELETE_ENTRY is true, the reference point and
5458 // all offsets after the previous reference point are discarded.
5459 
5460 void
5461 Arm_exidx_fixup::update_offset_map(
5462     section_offset_type input_offset,
5463     section_size_type deleted_bytes,
5464     bool delete_entry)
5465 {
5466   if (this->section_offset_map_ == NULL)
5467     this->section_offset_map_ = new Arm_exidx_section_offset_map();
5468   section_offset_type output_offset;
5469   if (delete_entry)
5470     output_offset = Arm_exidx_input_section::invalid_offset;
5471   else
5472     output_offset = input_offset - deleted_bytes;
5473   (*this->section_offset_map_)[input_offset] = output_offset;
5474 }
5475 
5476 // Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
5477 // bytes deleted.  SECTION_CONTENTS points to the contents of the EXIDX
5478 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5479 // If some entries are merged, also store a pointer to a newly created
5480 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The caller
5481 // owns the map and is responsible for releasing it after use.
5482 
5483 template<bool big_endian>
5484 uint32_t
5485 Arm_exidx_fixup::process_exidx_section(
5486     const Arm_exidx_input_section* exidx_input_section,
5487     const unsigned char* section_contents,
5488     section_size_type section_size,
5489     Arm_exidx_section_offset_map** psection_offset_map)
5490 {
5491   Relobj* relobj = exidx_input_section->relobj();
5492   unsigned shndx = exidx_input_section->shndx();
5493 
5494   if ((section_size % 8) != 0)
5495     {
5496       // Something is wrong with this section.  Better not touch it.
5497       gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5498 		 relobj->name().c_str(), shndx);
5499       this->last_input_section_ = exidx_input_section;
5500       this->last_unwind_type_ = UT_NONE;
5501       return 0;
5502     }
5503 
5504   uint32_t deleted_bytes = 0;
5505   bool prev_delete_entry = false;
5506   gold_assert(this->section_offset_map_ == NULL);
5507 
5508   for (section_size_type i = 0; i < section_size; i += 8)
5509     {
5510       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5511       const Valtype* wv =
5512 	  reinterpret_cast<const Valtype*>(section_contents + i + 4);
5513       uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5514 
5515       bool delete_entry = this->process_exidx_entry(second_word);
5516 
5517       // Entry deletion causes changes in output offsets.  We use a std::map
5518       // to record these.  And entry (x, y) means input offset x
5519       // is mapped to output offset y.  If y is invalid_offset, then x is
5520       // dropped in the output.  Because of the way std::map::lower_bound
5521       // works, we record the last offset in a region w.r.t to keeping or
5522       // dropping.  If there is no entry (x0, y0) for an input offset x0,
5523       // the output offset y0 of it is determined by the output offset y1 of
5524       // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5525       // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Otherwise, y1
5526       // y0 is also -1.
5527       if (delete_entry != prev_delete_entry && i != 0)
5528 	this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5529 
5530       // Update total deleted bytes for this entry.
5531       if (delete_entry)
5532 	deleted_bytes += 8;
5533 
5534       prev_delete_entry = delete_entry;
5535     }
5536 
5537   // If section offset map is not NULL, make an entry for the end of
5538   // section.
5539   if (this->section_offset_map_ != NULL)
5540     update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5541 
5542   *psection_offset_map = this->section_offset_map_;
5543   this->section_offset_map_ = NULL;
5544   this->last_input_section_ = exidx_input_section;
5545 
5546   // Set the first output text section so that we can link the EXIDX output
5547   // section to it.  Ignore any EXIDX input section that is completely merged.
5548   if (this->first_output_text_section_ == NULL
5549       && deleted_bytes != section_size)
5550     {
5551       unsigned int link = exidx_input_section->link();
5552       Output_section* os = relobj->output_section(link);
5553       gold_assert(os != NULL);
5554       this->first_output_text_section_ = os;
5555     }
5556 
5557   return deleted_bytes;
5558 }
5559 
5560 // Arm_output_section methods.
5561 
5562 // Create a stub group for input sections from BEGIN to END.  OWNER
5563 // points to the input section to be the owner a new stub table.
5564 
5565 template<bool big_endian>
5566 void
5567 Arm_output_section<big_endian>::create_stub_group(
5568   Input_section_list::const_iterator begin,
5569   Input_section_list::const_iterator end,
5570   Input_section_list::const_iterator owner,
5571   Target_arm<big_endian>* target,
5572   std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5573   const Task* task)
5574 {
5575   // We use a different kind of relaxed section in an EXIDX section.
5576   // The static casting from Output_relaxed_input_section to
5577   // Arm_input_section is invalid in an EXIDX section.  We are okay
5578   // because we should not be calling this for an EXIDX section.
5579   gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5580 
5581   // Currently we convert ordinary input sections into relaxed sections only
5582   // at this point but we may want to support creating relaxed input section
5583   // very early.  So we check here to see if owner is already a relaxed
5584   // section.
5585 
5586   Arm_input_section<big_endian>* arm_input_section;
5587   if (owner->is_relaxed_input_section())
5588     {
5589       arm_input_section =
5590 	Arm_input_section<big_endian>::as_arm_input_section(
5591 	  owner->relaxed_input_section());
5592     }
5593   else
5594     {
5595       gold_assert(owner->is_input_section());
5596       // Create a new relaxed input section.  We need to lock the original
5597       // file.
5598       Task_lock_obj<Object> tl(task, owner->relobj());
5599       arm_input_section =
5600 	target->new_arm_input_section(owner->relobj(), owner->shndx());
5601       new_relaxed_sections->push_back(arm_input_section);
5602     }
5603 
5604   // Create a stub table.
5605   Stub_table<big_endian>* stub_table =
5606     target->new_stub_table(arm_input_section);
5607 
5608   arm_input_section->set_stub_table(stub_table);
5609 
5610   Input_section_list::const_iterator p = begin;
5611   Input_section_list::const_iterator prev_p;
5612 
5613   // Look for input sections or relaxed input sections in [begin ... end].
5614   do
5615     {
5616       if (p->is_input_section() || p->is_relaxed_input_section())
5617 	{
5618 	  // The stub table information for input sections live
5619 	  // in their objects.
5620 	  Arm_relobj<big_endian>* arm_relobj =
5621 	    Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5622 	  arm_relobj->set_stub_table(p->shndx(), stub_table);
5623 	}
5624       prev_p = p++;
5625     }
5626   while (prev_p != end);
5627 }
5628 
5629 // Group input sections for stub generation.  GROUP_SIZE is roughly the limit
5630 // of stub groups.  We grow a stub group by adding input section until the
5631 // size is just below GROUP_SIZE.  The last input section will be converted
5632 // into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5633 // input section after the stub table, effectively double the group size.
5634 //
5635 // This is similar to the group_sections() function in elf32-arm.c but is
5636 // implemented differently.
5637 
5638 template<bool big_endian>
5639 void
5640 Arm_output_section<big_endian>::group_sections(
5641     section_size_type group_size,
5642     bool stubs_always_after_branch,
5643     Target_arm<big_endian>* target,
5644     const Task* task)
5645 {
5646   // We only care about sections containing code.
5647   if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5648     return;
5649 
5650   // States for grouping.
5651   typedef enum
5652   {
5653     // No group is being built.
5654     NO_GROUP,
5655     // A group is being built but the stub table is not found yet.
5656     // We keep group a stub group until the size is just under GROUP_SIZE.
5657     // The last input section in the group will be used as the stub table.
5658     FINDING_STUB_SECTION,
5659     // A group is being built and we have already found a stub table.
5660     // We enter this state to grow a stub group by adding input section
5661     // after the stub table.  This effectively doubles the group size.
5662     HAS_STUB_SECTION
5663   } State;
5664 
5665   // Any newly created relaxed sections are stored here.
5666   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5667 
5668   State state = NO_GROUP;
5669   section_size_type off = 0;
5670   section_size_type group_begin_offset = 0;
5671   section_size_type group_end_offset = 0;
5672   section_size_type stub_table_end_offset = 0;
5673   Input_section_list::const_iterator group_begin =
5674     this->input_sections().end();
5675   Input_section_list::const_iterator stub_table =
5676     this->input_sections().end();
5677   Input_section_list::const_iterator group_end = this->input_sections().end();
5678   for (Input_section_list::const_iterator p = this->input_sections().begin();
5679        p != this->input_sections().end();
5680        ++p)
5681     {
5682       section_size_type section_begin_offset =
5683 	align_address(off, p->addralign());
5684       section_size_type section_end_offset =
5685 	section_begin_offset + p->data_size();
5686 
5687       // Check to see if we should group the previously seen sections.
5688       switch (state)
5689 	{
5690 	case NO_GROUP:
5691 	  break;
5692 
5693 	case FINDING_STUB_SECTION:
5694 	  // Adding this section makes the group larger than GROUP_SIZE.
5695 	  if (section_end_offset - group_begin_offset >= group_size)
5696 	    {
5697 	      if (stubs_always_after_branch)
5698 		{
5699 		  gold_assert(group_end != this->input_sections().end());
5700 		  this->create_stub_group(group_begin, group_end, group_end,
5701 					  target, &new_relaxed_sections,
5702 					  task);
5703 		  state = NO_GROUP;
5704 		}
5705 	      else
5706 		{
5707 		  // But wait, there's more!  Input sections up to
5708 		  // stub_group_size bytes after the stub table can be
5709 		  // handled by it too.
5710 		  state = HAS_STUB_SECTION;
5711 		  stub_table = group_end;
5712 		  stub_table_end_offset = group_end_offset;
5713 		}
5714 	    }
5715 	    break;
5716 
5717 	case HAS_STUB_SECTION:
5718 	  // Adding this section makes the post stub-section group larger
5719 	  // than GROUP_SIZE.
5720 	  if (section_end_offset - stub_table_end_offset >= group_size)
5721 	   {
5722 	     gold_assert(group_end != this->input_sections().end());
5723 	     this->create_stub_group(group_begin, group_end, stub_table,
5724 				     target, &new_relaxed_sections, task);
5725 	     state = NO_GROUP;
5726 	   }
5727 	   break;
5728 
5729 	  default:
5730 	    gold_unreachable();
5731 	}
5732 
5733       // If we see an input section and currently there is no group, start
5734       // a new one.  Skip any empty sections.  We look at the data size
5735       // instead of calling p->relobj()->section_size() to avoid locking.
5736       if ((p->is_input_section() || p->is_relaxed_input_section())
5737 	  && (p->data_size() != 0))
5738 	{
5739 	  if (state == NO_GROUP)
5740 	    {
5741 	      state = FINDING_STUB_SECTION;
5742 	      group_begin = p;
5743 	      group_begin_offset = section_begin_offset;
5744 	    }
5745 
5746 	  // Keep track of the last input section seen.
5747 	  group_end = p;
5748 	  group_end_offset = section_end_offset;
5749 	}
5750 
5751       off = section_end_offset;
5752     }
5753 
5754   // Create a stub group for any ungrouped sections.
5755   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5756     {
5757       gold_assert(group_end != this->input_sections().end());
5758       this->create_stub_group(group_begin, group_end,
5759 			      (state == FINDING_STUB_SECTION
5760 			       ? group_end
5761 			       : stub_table),
5762 			       target, &new_relaxed_sections, task);
5763     }
5764 
5765   // Convert input section into relaxed input section in a batch.
5766   if (!new_relaxed_sections.empty())
5767     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5768 
5769   // Update the section offsets
5770   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5771     {
5772       Arm_relobj<big_endian>* arm_relobj =
5773 	Arm_relobj<big_endian>::as_arm_relobj(
5774 	  new_relaxed_sections[i]->relobj());
5775       unsigned int shndx = new_relaxed_sections[i]->shndx();
5776       // Tell Arm_relobj that this input section is converted.
5777       arm_relobj->convert_input_section_to_relaxed_section(shndx);
5778     }
5779 }
5780 
5781 // Append non empty text sections in this to LIST in ascending
5782 // order of their position in this.
5783 
5784 template<bool big_endian>
5785 void
5786 Arm_output_section<big_endian>::append_text_sections_to_list(
5787     Text_section_list* list)
5788 {
5789   gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5790 
5791   for (Input_section_list::const_iterator p = this->input_sections().begin();
5792        p != this->input_sections().end();
5793        ++p)
5794     {
5795       // We only care about plain or relaxed input sections.  We also
5796       // ignore any merged sections.
5797       if (p->is_input_section() || p->is_relaxed_input_section())
5798 	list->push_back(Text_section_list::value_type(p->relobj(),
5799 						      p->shndx()));
5800     }
5801 }
5802 
5803 template<bool big_endian>
5804 void
5805 Arm_output_section<big_endian>::fix_exidx_coverage(
5806     Layout* layout,
5807     const Text_section_list& sorted_text_sections,
5808     Symbol_table* symtab,
5809     bool merge_exidx_entries,
5810     const Task* task)
5811 {
5812   // We should only do this for the EXIDX output section.
5813   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5814 
5815   // We don't want the relaxation loop to undo these changes, so we discard
5816   // the current saved states and take another one after the fix-up.
5817   this->discard_states();
5818 
5819   // Remove all input sections.
5820   uint64_t address = this->address();
5821   typedef std::list<Output_section::Input_section> Input_section_list;
5822   Input_section_list input_sections;
5823   this->reset_address_and_file_offset();
5824   this->get_input_sections(address, std::string(""), &input_sections);
5825 
5826   if (!this->input_sections().empty())
5827     gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5828 
5829   // Go through all the known input sections and record them.
5830   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5831   typedef Unordered_map<Section_id, const Output_section::Input_section*,
5832 			Section_id_hash> Text_to_exidx_map;
5833   Text_to_exidx_map text_to_exidx_map;
5834   for (Input_section_list::const_iterator p = input_sections.begin();
5835        p != input_sections.end();
5836        ++p)
5837     {
5838       // This should never happen.  At this point, we should only see
5839       // plain EXIDX input sections.
5840       gold_assert(!p->is_relaxed_input_section());
5841       text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5842     }
5843 
5844   Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5845 
5846   // Go over the sorted text sections.
5847   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5848   Section_id_set processed_input_sections;
5849   for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5850        p != sorted_text_sections.end();
5851        ++p)
5852     {
5853       Relobj* relobj = p->first;
5854       unsigned int shndx = p->second;
5855 
5856       Arm_relobj<big_endian>* arm_relobj =
5857 	 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5858       const Arm_exidx_input_section* exidx_input_section =
5859 	 arm_relobj->exidx_input_section_by_link(shndx);
5860 
5861       // If this text section has no EXIDX section or if the EXIDX section
5862       // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5863       // of the last seen EXIDX section.
5864       if (exidx_input_section == NULL || exidx_input_section->has_errors())
5865 	{
5866 	  exidx_fixup.add_exidx_cantunwind_as_needed();
5867 	  continue;
5868 	}
5869 
5870       Relobj* exidx_relobj = exidx_input_section->relobj();
5871       unsigned int exidx_shndx = exidx_input_section->shndx();
5872       Section_id sid(exidx_relobj, exidx_shndx);
5873       Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5874       if (iter == text_to_exidx_map.end())
5875 	{
5876 	  // This is odd.  We have not seen this EXIDX input section before.
5877 	  // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
5878 	  // issue a warning instead.  We assume the user knows what he
5879 	  // or she is doing.  Otherwise, this is an error.
5880 	  if (layout->script_options()->saw_sections_clause())
5881 	    gold_warning(_("unwinding may not work because EXIDX input section"
5882 			   " %u of %s is not in EXIDX output section"),
5883 			 exidx_shndx, exidx_relobj->name().c_str());
5884 	  else
5885 	    gold_error(_("unwinding may not work because EXIDX input section"
5886 			 " %u of %s is not in EXIDX output section"),
5887 		       exidx_shndx, exidx_relobj->name().c_str());
5888 
5889 	  exidx_fixup.add_exidx_cantunwind_as_needed();
5890 	  continue;
5891 	}
5892 
5893       // We need to access the contents of the EXIDX section, lock the
5894       // object here.
5895       Task_lock_obj<Object> tl(task, exidx_relobj);
5896       section_size_type exidx_size;
5897       const unsigned char* exidx_contents =
5898 	exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5899 
5900       // Fix up coverage and append input section to output data list.
5901       Arm_exidx_section_offset_map* section_offset_map = NULL;
5902       uint32_t deleted_bytes =
5903 	exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5904 						      exidx_contents,
5905 						      exidx_size,
5906 						      &section_offset_map);
5907 
5908       if (deleted_bytes == exidx_input_section->size())
5909 	{
5910 	  // The whole EXIDX section got merged.  Remove it from output.
5911 	  gold_assert(section_offset_map == NULL);
5912 	  exidx_relobj->set_output_section(exidx_shndx, NULL);
5913 
5914 	  // All local symbols defined in this input section will be dropped.
5915 	  // We need to adjust output local symbol count.
5916 	  arm_relobj->set_output_local_symbol_count_needs_update();
5917 	}
5918       else if (deleted_bytes > 0)
5919 	{
5920 	  // Some entries are merged.  We need to convert this EXIDX input
5921 	  // section into a relaxed section.
5922 	  gold_assert(section_offset_map != NULL);
5923 
5924 	  Arm_exidx_merged_section* merged_section =
5925 	    new Arm_exidx_merged_section(*exidx_input_section,
5926 					 *section_offset_map, deleted_bytes);
5927 	  merged_section->build_contents(exidx_contents, exidx_size);
5928 
5929 	  const std::string secname = exidx_relobj->section_name(exidx_shndx);
5930 	  this->add_relaxed_input_section(layout, merged_section, secname);
5931 	  arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5932 
5933 	  // All local symbols defined in discarded portions of this input
5934 	  // section will be dropped.  We need to adjust output local symbol
5935 	  // count.
5936 	  arm_relobj->set_output_local_symbol_count_needs_update();
5937 	}
5938       else
5939 	{
5940 	  // Just add back the EXIDX input section.
5941 	  gold_assert(section_offset_map == NULL);
5942 	  const Output_section::Input_section* pis = iter->second;
5943 	  gold_assert(pis->is_input_section());
5944 	  this->add_script_input_section(*pis);
5945 	}
5946 
5947       processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5948     }
5949 
5950   // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5951   exidx_fixup.add_exidx_cantunwind_as_needed();
5952 
5953   // Remove any known EXIDX input sections that are not processed.
5954   for (Input_section_list::const_iterator p = input_sections.begin();
5955        p != input_sections.end();
5956        ++p)
5957     {
5958       if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5959 	  == processed_input_sections.end())
5960 	{
5961 	  // We discard a known EXIDX section because its linked
5962 	  // text section has been folded by ICF.  We also discard an
5963 	  // EXIDX section with error, the output does not matter in this
5964 	  // case.  We do this to avoid triggering asserts.
5965 	  Arm_relobj<big_endian>* arm_relobj =
5966 	    Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5967 	  const Arm_exidx_input_section* exidx_input_section =
5968 	    arm_relobj->exidx_input_section_by_shndx(p->shndx());
5969 	  gold_assert(exidx_input_section != NULL);
5970 	  if (!exidx_input_section->has_errors())
5971 	    {
5972 	      unsigned int text_shndx = exidx_input_section->link();
5973 	      gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5974 	    }
5975 
5976 	  // Remove this from link.  We also need to recount the
5977 	  // local symbols.
5978 	  p->relobj()->set_output_section(p->shndx(), NULL);
5979 	  arm_relobj->set_output_local_symbol_count_needs_update();
5980 	}
5981     }
5982 
5983   // Link exidx output section to the first seen output section and
5984   // set correct entry size.
5985   this->set_link_section(exidx_fixup.first_output_text_section());
5986   this->set_entsize(8);
5987 
5988   // Make changes permanent.
5989   this->save_states();
5990   this->set_section_offsets_need_adjustment();
5991 }
5992 
5993 // Link EXIDX output sections to text output sections.
5994 
5995 template<bool big_endian>
5996 void
5997 Arm_output_section<big_endian>::set_exidx_section_link()
5998 {
5999   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6000   if (!this->input_sections().empty())
6001     {
6002       Input_section_list::const_iterator p = this->input_sections().begin();
6003       Arm_relobj<big_endian>* arm_relobj =
6004 	Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6005       unsigned exidx_shndx = p->shndx();
6006       const Arm_exidx_input_section* exidx_input_section =
6007 	arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6008       gold_assert(exidx_input_section != NULL);
6009       unsigned int text_shndx = exidx_input_section->link();
6010       Output_section* os = arm_relobj->output_section(text_shndx);
6011       this->set_link_section(os);
6012     }
6013 }
6014 
6015 // Arm_relobj methods.
6016 
6017 // Determine if an input section is scannable for stub processing.  SHDR is
6018 // the header of the section and SHNDX is the section index.  OS is the output
6019 // section for the input section and SYMTAB is the global symbol table used to
6020 // look up ICF information.
6021 
6022 template<bool big_endian>
6023 bool
6024 Arm_relobj<big_endian>::section_is_scannable(
6025     const elfcpp::Shdr<32, big_endian>& shdr,
6026     unsigned int shndx,
6027     const Output_section* os,
6028     const Symbol_table* symtab)
6029 {
6030   // Skip any empty sections, unallocated sections or sections whose
6031   // type are not SHT_PROGBITS.
6032   if (shdr.get_sh_size() == 0
6033       || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6034       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6035     return false;
6036 
6037   // Skip any discarded or ICF'ed sections.
6038   if (os == NULL || symtab->is_section_folded(this, shndx))
6039     return false;
6040 
6041   // If this requires special offset handling, check to see if it is
6042   // a relaxed section.  If this is not, then it is a merged section that
6043   // we cannot handle.
6044   if (this->is_output_section_offset_invalid(shndx))
6045     {
6046       const Output_relaxed_input_section* poris =
6047 	os->find_relaxed_input_section(this, shndx);
6048       if (poris == NULL)
6049 	return false;
6050     }
6051 
6052   return true;
6053 }
6054 
6055 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6056 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6057 
6058 template<bool big_endian>
6059 bool
6060 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6061     const elfcpp::Shdr<32, big_endian>& shdr,
6062     const Relobj::Output_sections& out_sections,
6063     const Symbol_table* symtab,
6064     const unsigned char* pshdrs)
6065 {
6066   unsigned int sh_type = shdr.get_sh_type();
6067   if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6068     return false;
6069 
6070   // Ignore empty section.
6071   off_t sh_size = shdr.get_sh_size();
6072   if (sh_size == 0)
6073     return false;
6074 
6075   // Ignore reloc section with unexpected symbol table.  The
6076   // error will be reported in the final link.
6077   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6078     return false;
6079 
6080   unsigned int reloc_size;
6081   if (sh_type == elfcpp::SHT_REL)
6082     reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6083   else
6084     reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6085 
6086   // Ignore reloc section with unexpected entsize or uneven size.
6087   // The error will be reported in the final link.
6088   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6089     return false;
6090 
6091   // Ignore reloc section with bad info.  This error will be
6092   // reported in the final link.
6093   unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6094   if (index >= this->shnum())
6095     return false;
6096 
6097   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6098   const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6099   return this->section_is_scannable(text_shdr, index,
6100 				   out_sections[index], symtab);
6101 }
6102 
6103 // Return the output address of either a plain input section or a relaxed
6104 // input section.  SHNDX is the section index.  We define and use this
6105 // instead of calling Output_section::output_address because that is slow
6106 // for large output.
6107 
6108 template<bool big_endian>
6109 Arm_address
6110 Arm_relobj<big_endian>::simple_input_section_output_address(
6111     unsigned int shndx,
6112     Output_section* os)
6113 {
6114   if (this->is_output_section_offset_invalid(shndx))
6115     {
6116       const Output_relaxed_input_section* poris =
6117 	os->find_relaxed_input_section(this, shndx);
6118       // We do not handle merged sections here.
6119       gold_assert(poris != NULL);
6120       return poris->address();
6121     }
6122   else
6123     return os->address() + this->get_output_section_offset(shndx);
6124 }
6125 
6126 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6127 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6128 
6129 template<bool big_endian>
6130 bool
6131 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6132     const elfcpp::Shdr<32, big_endian>& shdr,
6133     unsigned int shndx,
6134     Output_section* os,
6135     const Symbol_table* symtab)
6136 {
6137   if (!this->section_is_scannable(shdr, shndx, os, symtab))
6138     return false;
6139 
6140   // If the section does not cross any 4K-boundaries, it does not need to
6141   // be scanned.
6142   Arm_address address = this->simple_input_section_output_address(shndx, os);
6143   if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6144     return false;
6145 
6146   return true;
6147 }
6148 
6149 // Scan a section for Cortex-A8 workaround.
6150 
6151 template<bool big_endian>
6152 void
6153 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6154     const elfcpp::Shdr<32, big_endian>& shdr,
6155     unsigned int shndx,
6156     Output_section* os,
6157     Target_arm<big_endian>* arm_target)
6158 {
6159   // Look for the first mapping symbol in this section.  It should be
6160   // at (shndx, 0).
6161   Mapping_symbol_position section_start(shndx, 0);
6162   typename Mapping_symbols_info::const_iterator p =
6163     this->mapping_symbols_info_.lower_bound(section_start);
6164 
6165   // There are no mapping symbols for this section.  Treat it as a data-only
6166   // section.  Issue a warning if section is marked as containing
6167   // instructions.
6168   if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6169     {
6170       if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6171 	gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6172 		       "erratum because it has no mapping symbols."),
6173 		     shndx, this->name().c_str());
6174       return;
6175     }
6176 
6177   Arm_address output_address =
6178     this->simple_input_section_output_address(shndx, os);
6179 
6180   // Get the section contents.
6181   section_size_type input_view_size = 0;
6182   const unsigned char* input_view =
6183     this->section_contents(shndx, &input_view_size, false);
6184 
6185   // We need to go through the mapping symbols to determine what to
6186   // scan.  There are two reasons.  First, we should look at THUMB code and
6187   // THUMB code only.  Second, we only want to look at the 4K-page boundary
6188   // to speed up the scanning.
6189 
6190   while (p != this->mapping_symbols_info_.end()
6191 	&& p->first.first == shndx)
6192     {
6193       typename Mapping_symbols_info::const_iterator next =
6194 	this->mapping_symbols_info_.upper_bound(p->first);
6195 
6196       // Only scan part of a section with THUMB code.
6197       if (p->second == 't')
6198 	{
6199 	  // Determine the end of this range.
6200 	  section_size_type span_start =
6201 	    convert_to_section_size_type(p->first.second);
6202 	  section_size_type span_end;
6203 	  if (next != this->mapping_symbols_info_.end()
6204 	      && next->first.first == shndx)
6205 	    span_end = convert_to_section_size_type(next->first.second);
6206 	  else
6207 	    span_end = convert_to_section_size_type(shdr.get_sh_size());
6208 
6209 	  if (((span_start + output_address) & ~0xfffUL)
6210 	      != ((span_end + output_address - 1) & ~0xfffUL))
6211 	    {
6212 	      arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6213 							  span_start, span_end,
6214 							  input_view,
6215 							  output_address);
6216 	    }
6217 	}
6218 
6219       p = next;
6220     }
6221 }
6222 
6223 // Scan relocations for stub generation.
6224 
6225 template<bool big_endian>
6226 void
6227 Arm_relobj<big_endian>::scan_sections_for_stubs(
6228     Target_arm<big_endian>* arm_target,
6229     const Symbol_table* symtab,
6230     const Layout* layout)
6231 {
6232   unsigned int shnum = this->shnum();
6233   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6234 
6235   // Read the section headers.
6236   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6237 					       shnum * shdr_size,
6238 					       true, true);
6239 
6240   // To speed up processing, we set up hash tables for fast lookup of
6241   // input offsets to output addresses.
6242   this->initialize_input_to_output_maps();
6243 
6244   const Relobj::Output_sections& out_sections(this->output_sections());
6245 
6246   Relocate_info<32, big_endian> relinfo;
6247   relinfo.symtab = symtab;
6248   relinfo.layout = layout;
6249   relinfo.object = this;
6250 
6251   // Do relocation stubs scanning.
6252   const unsigned char* p = pshdrs + shdr_size;
6253   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6254     {
6255       const elfcpp::Shdr<32, big_endian> shdr(p);
6256       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6257 						  pshdrs))
6258 	{
6259 	  unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6260 	  Arm_address output_offset = this->get_output_section_offset(index);
6261 	  Arm_address output_address;
6262 	  if (output_offset != invalid_address)
6263 	    output_address = out_sections[index]->address() + output_offset;
6264 	  else
6265 	    {
6266 	      // Currently this only happens for a relaxed section.
6267 	      const Output_relaxed_input_section* poris =
6268 	      out_sections[index]->find_relaxed_input_section(this, index);
6269 	      gold_assert(poris != NULL);
6270 	      output_address = poris->address();
6271 	    }
6272 
6273 	  // Get the relocations.
6274 	  const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6275 							shdr.get_sh_size(),
6276 							true, false);
6277 
6278 	  // Get the section contents.  This does work for the case in which
6279 	  // we modify the contents of an input section.  We need to pass the
6280 	  // output view under such circumstances.
6281 	  section_size_type input_view_size = 0;
6282 	  const unsigned char* input_view =
6283 	    this->section_contents(index, &input_view_size, false);
6284 
6285 	  relinfo.reloc_shndx = i;
6286 	  relinfo.data_shndx = index;
6287 	  unsigned int sh_type = shdr.get_sh_type();
6288 	  unsigned int reloc_size;
6289 	  if (sh_type == elfcpp::SHT_REL)
6290 	    reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6291 	  else
6292 	    reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6293 
6294 	  Output_section* os = out_sections[index];
6295 	  arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6296 					     shdr.get_sh_size() / reloc_size,
6297 					     os,
6298 					     output_offset == invalid_address,
6299 					     input_view, output_address,
6300 					     input_view_size);
6301 	}
6302     }
6303 
6304   // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
6305   // after its relocation section, if there is one, is processed for
6306   // relocation stubs.  Merging this loop with the one above would have been
6307   // complicated since we would have had to make sure that relocation stub
6308   // scanning is done first.
6309   if (arm_target->fix_cortex_a8())
6310     {
6311       const unsigned char* p = pshdrs + shdr_size;
6312       for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6313 	{
6314 	  const elfcpp::Shdr<32, big_endian> shdr(p);
6315 	  if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6316 							  out_sections[i],
6317 							  symtab))
6318 	    this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6319 						     arm_target);
6320 	}
6321     }
6322 
6323   // After we've done the relocations, we release the hash tables,
6324   // since we no longer need them.
6325   this->free_input_to_output_maps();
6326 }
6327 
6328 // Count the local symbols.  The ARM backend needs to know if a symbol
6329 // is a THUMB function or not.  For global symbols, it is easy because
6330 // the Symbol object keeps the ELF symbol type.  For local symbol it is
6331 // harder because we cannot access this information.   So we override the
6332 // do_count_local_symbol in parent and scan local symbols to mark
6333 // THUMB functions.  This is not the most efficient way but I do not want to
6334 // slow down other ports by calling a per symbol target hook inside
6335 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6336 
6337 template<bool big_endian>
6338 void
6339 Arm_relobj<big_endian>::do_count_local_symbols(
6340     Stringpool_template<char>* pool,
6341     Stringpool_template<char>* dynpool)
6342 {
6343   // We need to fix-up the values of any local symbols whose type are
6344   // STT_ARM_TFUNC.
6345 
6346   // Ask parent to count the local symbols.
6347   Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6348   const unsigned int loccount = this->local_symbol_count();
6349   if (loccount == 0)
6350     return;
6351 
6352   // Initialize the thumb function bit-vector.
6353   std::vector<bool> empty_vector(loccount, false);
6354   this->local_symbol_is_thumb_function_.swap(empty_vector);
6355 
6356   // Read the symbol table section header.
6357   const unsigned int symtab_shndx = this->symtab_shndx();
6358   elfcpp::Shdr<32, big_endian>
6359       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6360   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6361 
6362   // Read the local symbols.
6363   const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6364   gold_assert(loccount == symtabshdr.get_sh_info());
6365   off_t locsize = loccount * sym_size;
6366   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6367 					      locsize, true, true);
6368 
6369   // For mapping symbol processing, we need to read the symbol names.
6370   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6371   if (strtab_shndx >= this->shnum())
6372     {
6373       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6374       return;
6375     }
6376 
6377   elfcpp::Shdr<32, big_endian>
6378     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6379   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6380     {
6381       this->error(_("symbol table name section has wrong type: %u"),
6382 		  static_cast<unsigned int>(strtabshdr.get_sh_type()));
6383       return;
6384     }
6385   const char* pnames =
6386     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6387 						 strtabshdr.get_sh_size(),
6388 						 false, false));
6389 
6390   // Loop over the local symbols and mark any local symbols pointing
6391   // to THUMB functions.
6392 
6393   // Skip the first dummy symbol.
6394   psyms += sym_size;
6395   typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6396     this->local_values();
6397   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6398     {
6399       elfcpp::Sym<32, big_endian> sym(psyms);
6400       elfcpp::STT st_type = sym.get_st_type();
6401       Symbol_value<32>& lv((*plocal_values)[i]);
6402       Arm_address input_value = lv.input_value();
6403 
6404       // Check to see if this is a mapping symbol.
6405       const char* sym_name = pnames + sym.get_st_name();
6406       if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6407 	{
6408 	  bool is_ordinary;
6409 	  unsigned int input_shndx =
6410 	    this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6411 	  gold_assert(is_ordinary);
6412 
6413 	  // Strip of LSB in case this is a THUMB symbol.
6414 	  Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6415 	  this->mapping_symbols_info_[msp] = sym_name[1];
6416 	}
6417 
6418       if (st_type == elfcpp::STT_ARM_TFUNC
6419 	  || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6420 	{
6421 	  // This is a THUMB function.  Mark this and canonicalize the
6422 	  // symbol value by setting LSB.
6423 	  this->local_symbol_is_thumb_function_[i] = true;
6424 	  if ((input_value & 1) == 0)
6425 	    lv.set_input_value(input_value | 1);
6426 	}
6427     }
6428 }
6429 
6430 // Relocate sections.
6431 template<bool big_endian>
6432 void
6433 Arm_relobj<big_endian>::do_relocate_sections(
6434     const Symbol_table* symtab,
6435     const Layout* layout,
6436     const unsigned char* pshdrs,
6437     Output_file* of,
6438     typename Sized_relobj_file<32, big_endian>::Views* pviews)
6439 {
6440   // Call parent to relocate sections.
6441   Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6442 							  pshdrs, of, pviews);
6443 
6444   // We do not generate stubs if doing a relocatable link.
6445   if (parameters->options().relocatable())
6446     return;
6447 
6448   // Relocate stub tables.
6449   unsigned int shnum = this->shnum();
6450 
6451   Target_arm<big_endian>* arm_target =
6452     Target_arm<big_endian>::default_target();
6453 
6454   Relocate_info<32, big_endian> relinfo;
6455   relinfo.symtab = symtab;
6456   relinfo.layout = layout;
6457   relinfo.object = this;
6458 
6459   for (unsigned int i = 1; i < shnum; ++i)
6460     {
6461       Arm_input_section<big_endian>* arm_input_section =
6462 	arm_target->find_arm_input_section(this, i);
6463 
6464       if (arm_input_section != NULL
6465 	  && arm_input_section->is_stub_table_owner()
6466 	  && !arm_input_section->stub_table()->empty())
6467 	{
6468 	  // We cannot discard a section if it owns a stub table.
6469 	  Output_section* os = this->output_section(i);
6470 	  gold_assert(os != NULL);
6471 
6472 	  relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6473 	  relinfo.reloc_shdr = NULL;
6474 	  relinfo.data_shndx = i;
6475 	  relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6476 
6477 	  gold_assert((*pviews)[i].view != NULL);
6478 
6479 	  // We are passed the output section view.  Adjust it to cover the
6480 	  // stub table only.
6481 	  Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6482 	  gold_assert((stub_table->address() >= (*pviews)[i].address)
6483 		      && ((stub_table->address() + stub_table->data_size())
6484 			  <= (*pviews)[i].address + (*pviews)[i].view_size));
6485 
6486 	  off_t offset = stub_table->address() - (*pviews)[i].address;
6487 	  unsigned char* view = (*pviews)[i].view + offset;
6488 	  Arm_address address = stub_table->address();
6489 	  section_size_type view_size = stub_table->data_size();
6490 
6491 	  stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6492 				     view_size);
6493 	}
6494 
6495       // Apply Cortex A8 workaround if applicable.
6496       if (this->section_has_cortex_a8_workaround(i))
6497 	{
6498 	  unsigned char* view = (*pviews)[i].view;
6499 	  Arm_address view_address = (*pviews)[i].address;
6500 	  section_size_type view_size = (*pviews)[i].view_size;
6501 	  Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6502 
6503 	  // Adjust view to cover section.
6504 	  Output_section* os = this->output_section(i);
6505 	  gold_assert(os != NULL);
6506 	  Arm_address section_address =
6507 	    this->simple_input_section_output_address(i, os);
6508 	  uint64_t section_size = this->section_size(i);
6509 
6510 	  gold_assert(section_address >= view_address
6511 		      && ((section_address + section_size)
6512 			  <= (view_address + view_size)));
6513 
6514 	  unsigned char* section_view = view + (section_address - view_address);
6515 
6516 	  // Apply the Cortex-A8 workaround to the output address range
6517 	  // corresponding to this input section.
6518 	  stub_table->apply_cortex_a8_workaround_to_address_range(
6519 	      arm_target,
6520 	      section_view,
6521 	      section_address,
6522 	      section_size);
6523 	}
6524     }
6525 }
6526 
6527 // Find the linked text section of an EXIDX section by looking at the first
6528 // relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
6529 // must be linked to its associated code section via the sh_link field of
6530 // its section header.  However, some tools are broken and the link is not
6531 // always set.  LD just drops such an EXIDX section silently, causing the
6532 // associated code not unwindabled.   Here we try a little bit harder to
6533 // discover the linked code section.
6534 //
6535 // PSHDR points to the section header of a relocation section of an EXIDX
6536 // section.  If we can find a linked text section, return true and
6537 // store the text section index in the location PSHNDX.  Otherwise
6538 // return false.
6539 
6540 template<bool big_endian>
6541 bool
6542 Arm_relobj<big_endian>::find_linked_text_section(
6543     const unsigned char* pshdr,
6544     const unsigned char* psyms,
6545     unsigned int* pshndx)
6546 {
6547   elfcpp::Shdr<32, big_endian> shdr(pshdr);
6548 
6549   // If there is no relocation, we cannot find the linked text section.
6550   size_t reloc_size;
6551   if (shdr.get_sh_type() == elfcpp::SHT_REL)
6552       reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6553   else
6554       reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6555   size_t reloc_count = shdr.get_sh_size() / reloc_size;
6556 
6557   // Get the relocations.
6558   const unsigned char* prelocs =
6559       this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6560 
6561   // Find the REL31 relocation for the first word of the first EXIDX entry.
6562   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6563     {
6564       Arm_address r_offset;
6565       typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6566       if (shdr.get_sh_type() == elfcpp::SHT_REL)
6567 	{
6568 	  typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6569 	  r_info = reloc.get_r_info();
6570 	  r_offset = reloc.get_r_offset();
6571 	}
6572       else
6573 	{
6574 	  typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6575 	  r_info = reloc.get_r_info();
6576 	  r_offset = reloc.get_r_offset();
6577 	}
6578 
6579       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6580       if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6581 	continue;
6582 
6583       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6584       if (r_sym == 0
6585 	  || r_sym >= this->local_symbol_count()
6586 	  || r_offset != 0)
6587 	continue;
6588 
6589       // This is the relocation for the first word of the first EXIDX entry.
6590       // We expect to see a local section symbol.
6591       const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6592       elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6593       if (sym.get_st_type() == elfcpp::STT_SECTION)
6594 	{
6595 	  bool is_ordinary;
6596 	  *pshndx =
6597 	    this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6598 	  gold_assert(is_ordinary);
6599 	  return true;
6600 	}
6601       else
6602 	return false;
6603     }
6604 
6605   return false;
6606 }
6607 
6608 // Make an EXIDX input section object for an EXIDX section whose index is
6609 // SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
6610 // is the section index of the linked text section.
6611 
6612 template<bool big_endian>
6613 void
6614 Arm_relobj<big_endian>::make_exidx_input_section(
6615     unsigned int shndx,
6616     const elfcpp::Shdr<32, big_endian>& shdr,
6617     unsigned int text_shndx,
6618     const elfcpp::Shdr<32, big_endian>& text_shdr)
6619 {
6620   // Create an Arm_exidx_input_section object for this EXIDX section.
6621   Arm_exidx_input_section* exidx_input_section =
6622     new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6623 				shdr.get_sh_addralign(),
6624 				text_shdr.get_sh_size());
6625 
6626   gold_assert(this->exidx_section_map_[shndx] == NULL);
6627   this->exidx_section_map_[shndx] = exidx_input_section;
6628 
6629   if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6630     {
6631       gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6632 		 this->section_name(shndx).c_str(), shndx, text_shndx,
6633 		 this->name().c_str());
6634       exidx_input_section->set_has_errors();
6635     }
6636   else if (this->exidx_section_map_[text_shndx] != NULL)
6637     {
6638       unsigned other_exidx_shndx =
6639 	this->exidx_section_map_[text_shndx]->shndx();
6640       gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6641 		   "%s(%u) in %s"),
6642 		 this->section_name(shndx).c_str(), shndx,
6643 		 this->section_name(other_exidx_shndx).c_str(),
6644 		 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6645 		 text_shndx, this->name().c_str());
6646       exidx_input_section->set_has_errors();
6647     }
6648   else
6649      this->exidx_section_map_[text_shndx] = exidx_input_section;
6650 
6651   // Check section flags of text section.
6652   if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6653     {
6654       gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6655 		   " in %s"),
6656 		 this->section_name(shndx).c_str(), shndx,
6657 		 this->section_name(text_shndx).c_str(), text_shndx,
6658 		 this->name().c_str());
6659       exidx_input_section->set_has_errors();
6660     }
6661   else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6662     // I would like to make this an error but currently ld just ignores
6663     // this.
6664     gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6665 		   "%s(%u) in %s"),
6666 		 this->section_name(shndx).c_str(), shndx,
6667 		 this->section_name(text_shndx).c_str(), text_shndx,
6668 		 this->name().c_str());
6669 }
6670 
6671 // Read the symbol information.
6672 
6673 template<bool big_endian>
6674 void
6675 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6676 {
6677   // Call parent class to read symbol information.
6678   Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6679 
6680   // If this input file is a binary file, it has no processor
6681   // specific flags and attributes section.
6682   Input_file::Format format = this->input_file()->format();
6683   if (format != Input_file::FORMAT_ELF)
6684     {
6685       gold_assert(format == Input_file::FORMAT_BINARY);
6686       this->merge_flags_and_attributes_ = false;
6687       return;
6688     }
6689 
6690   // Read processor-specific flags in ELF file header.
6691   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6692 					      elfcpp::Elf_sizes<32>::ehdr_size,
6693 					      true, false);
6694   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6695   this->processor_specific_flags_ = ehdr.get_e_flags();
6696 
6697   // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6698   // sections.
6699   std::vector<unsigned int> deferred_exidx_sections;
6700   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6701   const unsigned char* pshdrs = sd->section_headers->data();
6702   const unsigned char* ps = pshdrs + shdr_size;
6703   bool must_merge_flags_and_attributes = false;
6704   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6705     {
6706       elfcpp::Shdr<32, big_endian> shdr(ps);
6707 
6708       // Sometimes an object has no contents except the section name string
6709       // table and an empty symbol table with the undefined symbol.  We
6710       // don't want to merge processor-specific flags from such an object.
6711       if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6712 	{
6713 	  // Symbol table is not empty.
6714 	  const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6715 	     elfcpp::Elf_sizes<32>::sym_size;
6716 	  if (shdr.get_sh_size() > sym_size)
6717 	    must_merge_flags_and_attributes = true;
6718 	}
6719       else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6720 	// If this is neither an empty symbol table nor a string table,
6721 	// be conservative.
6722 	must_merge_flags_and_attributes = true;
6723 
6724       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6725 	{
6726 	  gold_assert(this->attributes_section_data_ == NULL);
6727 	  section_offset_type section_offset = shdr.get_sh_offset();
6728 	  section_size_type section_size =
6729 	    convert_to_section_size_type(shdr.get_sh_size());
6730 	  const unsigned char* view =
6731 	     this->get_view(section_offset, section_size, true, false);
6732 	  this->attributes_section_data_ =
6733 	    new Attributes_section_data(view, section_size);
6734 	}
6735       else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6736 	{
6737 	  unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6738 	  if (text_shndx == elfcpp::SHN_UNDEF)
6739 	    deferred_exidx_sections.push_back(i);
6740 	  else
6741 	    {
6742 	      elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6743 						     + text_shndx * shdr_size);
6744 	      this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6745 	    }
6746 	  // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6747 	  if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6748 	    gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6749 			 this->section_name(i).c_str(), this->name().c_str());
6750 	}
6751     }
6752 
6753   // This is rare.
6754   if (!must_merge_flags_and_attributes)
6755     {
6756       gold_assert(deferred_exidx_sections.empty());
6757       this->merge_flags_and_attributes_ = false;
6758       return;
6759     }
6760 
6761   // Some tools are broken and they do not set the link of EXIDX sections.
6762   // We look at the first relocation to figure out the linked sections.
6763   if (!deferred_exidx_sections.empty())
6764     {
6765       // We need to go over the section headers again to find the mapping
6766       // from sections being relocated to their relocation sections.  This is
6767       // a bit inefficient as we could do that in the loop above.  However,
6768       // we do not expect any deferred EXIDX sections normally.  So we do not
6769       // want to slow down the most common path.
6770       typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6771       Reloc_map reloc_map;
6772       ps = pshdrs + shdr_size;
6773       for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6774 	{
6775 	  elfcpp::Shdr<32, big_endian> shdr(ps);
6776 	  elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6777 	  if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6778 	    {
6779 	      unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6780 	      if (info_shndx >= this->shnum())
6781 		gold_error(_("relocation section %u has invalid info %u"),
6782 			   i, info_shndx);
6783 	      Reloc_map::value_type value(info_shndx, i);
6784 	      std::pair<Reloc_map::iterator, bool> result =
6785 		reloc_map.insert(value);
6786 	      if (!result.second)
6787 		gold_error(_("section %u has multiple relocation sections "
6788 			     "%u and %u"),
6789 			   info_shndx, i, reloc_map[info_shndx]);
6790 	    }
6791 	}
6792 
6793       // Read the symbol table section header.
6794       const unsigned int symtab_shndx = this->symtab_shndx();
6795       elfcpp::Shdr<32, big_endian>
6796 	  symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6797       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6798 
6799       // Read the local symbols.
6800       const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6801       const unsigned int loccount = this->local_symbol_count();
6802       gold_assert(loccount == symtabshdr.get_sh_info());
6803       off_t locsize = loccount * sym_size;
6804       const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6805 						  locsize, true, true);
6806 
6807       // Process the deferred EXIDX sections.
6808       for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6809 	{
6810 	  unsigned int shndx = deferred_exidx_sections[i];
6811 	  elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6812 	  unsigned int text_shndx = elfcpp::SHN_UNDEF;
6813 	  Reloc_map::const_iterator it = reloc_map.find(shndx);
6814 	  if (it != reloc_map.end())
6815 	    find_linked_text_section(pshdrs + it->second * shdr_size,
6816 				     psyms, &text_shndx);
6817 	  elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6818 						 + text_shndx * shdr_size);
6819 	  this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6820 	}
6821     }
6822 }
6823 
6824 // Process relocations for garbage collection.  The ARM target uses .ARM.exidx
6825 // sections for unwinding.  These sections are referenced implicitly by
6826 // text sections linked in the section headers.  If we ignore these implicit
6827 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6828 // will be garbage-collected incorrectly.  Hence we override the same function
6829 // in the base class to handle these implicit references.
6830 
6831 template<bool big_endian>
6832 void
6833 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6834 					     Layout* layout,
6835 					     Read_relocs_data* rd)
6836 {
6837   // First, call base class method to process relocations in this object.
6838   Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6839 
6840   // If --gc-sections is not specified, there is nothing more to do.
6841   // This happens when --icf is used but --gc-sections is not.
6842   if (!parameters->options().gc_sections())
6843     return;
6844 
6845   unsigned int shnum = this->shnum();
6846   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6847   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6848 					       shnum * shdr_size,
6849 					       true, true);
6850 
6851   // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
6852   // to these from the linked text sections.
6853   const unsigned char* ps = pshdrs + shdr_size;
6854   for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6855     {
6856       elfcpp::Shdr<32, big_endian> shdr(ps);
6857       if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6858 	{
6859 	  // Found an .ARM.exidx section, add it to the set of reachable
6860 	  // sections from its linked text section.
6861 	  unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6862 	  symtab->gc()->add_reference(this, text_shndx, this, i);
6863 	}
6864     }
6865 }
6866 
6867 // Update output local symbol count.  Owing to EXIDX entry merging, some local
6868 // symbols  will be removed in output.  Adjust output local symbol count
6869 // accordingly.  We can only changed the static output local symbol count.  It
6870 // is too late to change the dynamic symbols.
6871 
6872 template<bool big_endian>
6873 void
6874 Arm_relobj<big_endian>::update_output_local_symbol_count()
6875 {
6876   // Caller should check that this needs updating.  We want caller checking
6877   // because output_local_symbol_count_needs_update() is most likely inlined.
6878   gold_assert(this->output_local_symbol_count_needs_update_);
6879 
6880   gold_assert(this->symtab_shndx() != -1U);
6881   if (this->symtab_shndx() == 0)
6882     {
6883       // This object has no symbols.  Weird but legal.
6884       return;
6885     }
6886 
6887   // Read the symbol table section header.
6888   const unsigned int symtab_shndx = this->symtab_shndx();
6889   elfcpp::Shdr<32, big_endian>
6890     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6891   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6892 
6893   // Read the local symbols.
6894   const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6895   const unsigned int loccount = this->local_symbol_count();
6896   gold_assert(loccount == symtabshdr.get_sh_info());
6897   off_t locsize = loccount * sym_size;
6898   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6899 					      locsize, true, true);
6900 
6901   // Loop over the local symbols.
6902 
6903   typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6904      Output_sections;
6905   const Output_sections& out_sections(this->output_sections());
6906   unsigned int shnum = this->shnum();
6907   unsigned int count = 0;
6908   // Skip the first, dummy, symbol.
6909   psyms += sym_size;
6910   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6911     {
6912       elfcpp::Sym<32, big_endian> sym(psyms);
6913 
6914       Symbol_value<32>& lv((*this->local_values())[i]);
6915 
6916       // This local symbol was already discarded by do_count_local_symbols.
6917       if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6918 	continue;
6919 
6920       bool is_ordinary;
6921       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6922 						  &is_ordinary);
6923 
6924       if (shndx < shnum)
6925 	{
6926 	  Output_section* os = out_sections[shndx];
6927 
6928 	  // This local symbol no longer has an output section.  Discard it.
6929 	  if (os == NULL)
6930 	    {
6931 	      lv.set_no_output_symtab_entry();
6932 	      continue;
6933 	    }
6934 
6935 	  // Currently we only discard parts of EXIDX input sections.
6936 	  // We explicitly check for a merged EXIDX input section to avoid
6937 	  // calling Output_section_data::output_offset unless necessary.
6938 	  if ((this->get_output_section_offset(shndx) == invalid_address)
6939 	      && (this->exidx_input_section_by_shndx(shndx) != NULL))
6940 	    {
6941 	      section_offset_type output_offset =
6942 		os->output_offset(this, shndx, lv.input_value());
6943 	      if (output_offset == -1)
6944 		{
6945 		  // This symbol is defined in a part of an EXIDX input section
6946 		  // that is discarded due to entry merging.
6947 		  lv.set_no_output_symtab_entry();
6948 		  continue;
6949 		}
6950 	    }
6951 	}
6952 
6953       ++count;
6954     }
6955 
6956   this->set_output_local_symbol_count(count);
6957   this->output_local_symbol_count_needs_update_ = false;
6958 }
6959 
6960 // Arm_dynobj methods.
6961 
6962 // Read the symbol information.
6963 
6964 template<bool big_endian>
6965 void
6966 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6967 {
6968   // Call parent class to read symbol information.
6969   Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6970 
6971   // Read processor-specific flags in ELF file header.
6972   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6973 					      elfcpp::Elf_sizes<32>::ehdr_size,
6974 					      true, false);
6975   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6976   this->processor_specific_flags_ = ehdr.get_e_flags();
6977 
6978   // Read the attributes section if there is one.
6979   // We read from the end because gas seems to put it near the end of
6980   // the section headers.
6981   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6982   const unsigned char* ps =
6983     sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6984   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6985     {
6986       elfcpp::Shdr<32, big_endian> shdr(ps);
6987       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6988 	{
6989 	  section_offset_type section_offset = shdr.get_sh_offset();
6990 	  section_size_type section_size =
6991 	    convert_to_section_size_type(shdr.get_sh_size());
6992 	  const unsigned char* view =
6993 	    this->get_view(section_offset, section_size, true, false);
6994 	  this->attributes_section_data_ =
6995 	    new Attributes_section_data(view, section_size);
6996 	  break;
6997 	}
6998     }
6999 }
7000 
7001 // Stub_addend_reader methods.
7002 
7003 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7004 
7005 template<bool big_endian>
7006 elfcpp::Elf_types<32>::Elf_Swxword
7007 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7008     unsigned int r_type,
7009     const unsigned char* view,
7010     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7011 {
7012   typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7013 
7014   switch (r_type)
7015     {
7016     case elfcpp::R_ARM_CALL:
7017     case elfcpp::R_ARM_JUMP24:
7018     case elfcpp::R_ARM_PLT32:
7019       {
7020 	typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7021 	const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7022 	Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7023 	return Bits<26>::sign_extend32(val << 2);
7024       }
7025 
7026     case elfcpp::R_ARM_THM_CALL:
7027     case elfcpp::R_ARM_THM_JUMP24:
7028     case elfcpp::R_ARM_THM_XPC22:
7029       {
7030 	typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7031 	const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7032 	Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7033 	Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7034 	return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7035       }
7036 
7037     case elfcpp::R_ARM_THM_JUMP19:
7038       {
7039 	typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7040 	const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7041 	Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7042 	Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7043 	return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7044       }
7045 
7046     default:
7047       gold_unreachable();
7048     }
7049 }
7050 
7051 // Arm_output_data_got methods.
7052 
7053 // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
7054 // The first one is initialized to be 1, which is the module index for
7055 // the main executable and the second one 0.  A reloc of the type
7056 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7057 // be applied by gold.  GSYM is a global symbol.
7058 //
7059 template<bool big_endian>
7060 void
7061 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7062     unsigned int got_type,
7063     Symbol* gsym)
7064 {
7065   if (gsym->has_got_offset(got_type))
7066     return;
7067 
7068   // We are doing a static link.  Just mark it as belong to module 1,
7069   // the executable.
7070   unsigned int got_offset = this->add_constant(1);
7071   gsym->set_got_offset(got_type, got_offset);
7072   got_offset = this->add_constant(0);
7073   this->static_relocs_.push_back(Static_reloc(got_offset,
7074 					      elfcpp::R_ARM_TLS_DTPOFF32,
7075 					      gsym));
7076 }
7077 
7078 // Same as the above but for a local symbol.
7079 
7080 template<bool big_endian>
7081 void
7082 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7083   unsigned int got_type,
7084   Sized_relobj_file<32, big_endian>* object,
7085   unsigned int index)
7086 {
7087   if (object->local_has_got_offset(index, got_type))
7088     return;
7089 
7090   // We are doing a static link.  Just mark it as belong to module 1,
7091   // the executable.
7092   unsigned int got_offset = this->add_constant(1);
7093   object->set_local_got_offset(index, got_type, got_offset);
7094   got_offset = this->add_constant(0);
7095   this->static_relocs_.push_back(Static_reloc(got_offset,
7096 					      elfcpp::R_ARM_TLS_DTPOFF32,
7097 					      object, index));
7098 }
7099 
7100 template<bool big_endian>
7101 void
7102 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7103 {
7104   // Call parent to write out GOT.
7105   Output_data_got<32, big_endian>::do_write(of);
7106 
7107   // We are done if there is no fix up.
7108   if (this->static_relocs_.empty())
7109     return;
7110 
7111   gold_assert(parameters->doing_static_link());
7112 
7113   const off_t offset = this->offset();
7114   const section_size_type oview_size =
7115     convert_to_section_size_type(this->data_size());
7116   unsigned char* const oview = of->get_output_view(offset, oview_size);
7117 
7118   Output_segment* tls_segment = this->layout_->tls_segment();
7119   gold_assert(tls_segment != NULL);
7120 
7121   // The thread pointer $tp points to the TCB, which is followed by the
7122   // TLS.  So we need to adjust $tp relative addressing by this amount.
7123   Arm_address aligned_tcb_size =
7124     align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7125 
7126   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7127     {
7128       Static_reloc& reloc(this->static_relocs_[i]);
7129 
7130       Arm_address value;
7131       if (!reloc.symbol_is_global())
7132 	{
7133 	  Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7134 	  const Symbol_value<32>* psymval =
7135 	    reloc.relobj()->local_symbol(reloc.index());
7136 
7137 	  // We are doing static linking.  Issue an error and skip this
7138 	  // relocation if the symbol is undefined or in a discarded_section.
7139 	  bool is_ordinary;
7140 	  unsigned int shndx = psymval->input_shndx(&is_ordinary);
7141 	  if ((shndx == elfcpp::SHN_UNDEF)
7142 	      || (is_ordinary
7143 		  && shndx != elfcpp::SHN_UNDEF
7144 		  && !object->is_section_included(shndx)
7145 		  && !this->symbol_table_->is_section_folded(object, shndx)))
7146 	    {
7147 	      gold_error(_("undefined or discarded local symbol %u from "
7148 			   " object %s in GOT"),
7149 			 reloc.index(), reloc.relobj()->name().c_str());
7150 	      continue;
7151 	    }
7152 
7153 	  value = psymval->value(object, 0);
7154 	}
7155       else
7156 	{
7157 	  const Symbol* gsym = reloc.symbol();
7158 	  gold_assert(gsym != NULL);
7159 	  if (gsym->is_forwarder())
7160 	    gsym = this->symbol_table_->resolve_forwards(gsym);
7161 
7162 	  // We are doing static linking.  Issue an error and skip this
7163 	  // relocation if the symbol is undefined or in a discarded_section
7164 	  // unless it is a weakly_undefined symbol.
7165 	  if ((gsym->is_defined_in_discarded_section()
7166 	       || gsym->is_undefined())
7167 	      && !gsym->is_weak_undefined())
7168 	    {
7169 	      gold_error(_("undefined or discarded symbol %s in GOT"),
7170 			 gsym->name());
7171 	      continue;
7172 	    }
7173 
7174 	  if (!gsym->is_weak_undefined())
7175 	    {
7176 	      const Sized_symbol<32>* sym =
7177 		static_cast<const Sized_symbol<32>*>(gsym);
7178 	      value = sym->value();
7179 	    }
7180 	  else
7181 	      value = 0;
7182 	}
7183 
7184       unsigned got_offset = reloc.got_offset();
7185       gold_assert(got_offset < oview_size);
7186 
7187       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7188       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7189       Valtype x;
7190       switch (reloc.r_type())
7191 	{
7192 	case elfcpp::R_ARM_TLS_DTPOFF32:
7193 	  x = value;
7194 	  break;
7195 	case elfcpp::R_ARM_TLS_TPOFF32:
7196 	  x = value + aligned_tcb_size;
7197 	  break;
7198 	default:
7199 	  gold_unreachable();
7200 	}
7201       elfcpp::Swap<32, big_endian>::writeval(wv, x);
7202     }
7203 
7204   of->write_output_view(offset, oview_size, oview);
7205 }
7206 
7207 // A class to handle the PLT data.
7208 // This is an abstract base class that handles most of the linker details
7209 // but does not know the actual contents of PLT entries.  The derived
7210 // classes below fill in those details.
7211 
7212 template<bool big_endian>
7213 class Output_data_plt_arm : public Output_section_data
7214 {
7215  public:
7216   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7217     Reloc_section;
7218 
7219   Output_data_plt_arm(Layout*, uint64_t addralign, Output_data_space*);
7220 
7221   // Add an entry to the PLT.
7222   void
7223   add_entry(Symbol* gsym);
7224 
7225   // Return the .rel.plt section data.
7226   const Reloc_section*
7227   rel_plt() const
7228   { return this->rel_; }
7229 
7230   // Return the number of PLT entries.
7231   unsigned int
7232   entry_count() const
7233   { return this->count_; }
7234 
7235   // Return the offset of the first non-reserved PLT entry.
7236   unsigned int
7237   first_plt_entry_offset() const
7238   { return this->do_first_plt_entry_offset(); }
7239 
7240   // Return the size of a PLT entry.
7241   unsigned int
7242   get_plt_entry_size() const
7243   { return this->do_get_plt_entry_size(); }
7244 
7245  protected:
7246   // Fill in the first PLT entry.
7247   void
7248   fill_first_plt_entry(unsigned char* pov,
7249 		       Arm_address got_address,
7250 		       Arm_address plt_address)
7251   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7252 
7253   void
7254   fill_plt_entry(unsigned char* pov,
7255 		 Arm_address got_address,
7256 		 Arm_address plt_address,
7257 		 unsigned int got_offset,
7258 		 unsigned int plt_offset)
7259   { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7260 
7261   virtual unsigned int
7262   do_first_plt_entry_offset() const = 0;
7263 
7264   virtual unsigned int
7265   do_get_plt_entry_size() const = 0;
7266 
7267   virtual void
7268   do_fill_first_plt_entry(unsigned char* pov,
7269 			  Arm_address got_address,
7270 			  Arm_address plt_address) = 0;
7271 
7272   virtual void
7273   do_fill_plt_entry(unsigned char* pov,
7274 		    Arm_address got_address,
7275 		    Arm_address plt_address,
7276 		    unsigned int got_offset,
7277 		    unsigned int plt_offset) = 0;
7278 
7279   void
7280   do_adjust_output_section(Output_section* os);
7281 
7282   // Write to a map file.
7283   void
7284   do_print_to_mapfile(Mapfile* mapfile) const
7285   { mapfile->print_output_data(this, _("** PLT")); }
7286 
7287  private:
7288   // Set the final size.
7289   void
7290   set_final_data_size()
7291   {
7292     this->set_data_size(this->first_plt_entry_offset()
7293 			+ this->count_ * this->get_plt_entry_size());
7294   }
7295 
7296   // Write out the PLT data.
7297   void
7298   do_write(Output_file*);
7299 
7300   // The reloc section.
7301   Reloc_section* rel_;
7302   // The .got.plt section.
7303   Output_data_space* got_plt_;
7304   // The number of PLT entries.
7305   unsigned int count_;
7306 };
7307 
7308 // Create the PLT section.  The ordinary .got section is an argument,
7309 // since we need to refer to the start.  We also create our own .got
7310 // section just for PLT entries.
7311 
7312 template<bool big_endian>
7313 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7314 						     uint64_t addralign,
7315 						     Output_data_space* got_plt)
7316   : Output_section_data(addralign), got_plt_(got_plt), count_(0)
7317 {
7318   this->rel_ = new Reloc_section(false);
7319   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7320 				  elfcpp::SHF_ALLOC, this->rel_,
7321 				  ORDER_DYNAMIC_PLT_RELOCS, false);
7322 }
7323 
7324 template<bool big_endian>
7325 void
7326 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7327 {
7328   os->set_entsize(0);
7329 }
7330 
7331 // Add an entry to the PLT.
7332 
7333 template<bool big_endian>
7334 void
7335 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7336 {
7337   gold_assert(!gsym->has_plt_offset());
7338 
7339   // Note that when setting the PLT offset we skip the initial
7340   // reserved PLT entry.
7341   gsym->set_plt_offset((this->count_) * this->get_plt_entry_size()
7342 		       + this->first_plt_entry_offset());
7343 
7344   ++this->count_;
7345 
7346   section_offset_type got_offset = this->got_plt_->current_data_size();
7347 
7348   // Every PLT entry needs a GOT entry which points back to the PLT
7349   // entry (this will be changed by the dynamic linker, normally
7350   // lazily when the function is called).
7351   this->got_plt_->set_current_data_size(got_offset + 4);
7352 
7353   // Every PLT entry needs a reloc.
7354   gsym->set_needs_dynsym_entry();
7355   this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7356 			 got_offset);
7357 
7358   // Note that we don't need to save the symbol.  The contents of the
7359   // PLT are independent of which symbols are used.  The symbols only
7360   // appear in the relocations.
7361 }
7362 
7363 template<bool big_endian>
7364 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7365 {
7366  public:
7367   Output_data_plt_arm_standard(Layout* layout, Output_data_space* got_plt)
7368     : Output_data_plt_arm<big_endian>(layout, 4, got_plt)
7369   { }
7370 
7371  protected:
7372   // Return the offset of the first non-reserved PLT entry.
7373   virtual unsigned int
7374   do_first_plt_entry_offset() const
7375   { return sizeof(first_plt_entry); }
7376 
7377   // Return the size of a PLT entry.
7378   virtual unsigned int
7379   do_get_plt_entry_size() const
7380   { return sizeof(plt_entry); }
7381 
7382   virtual void
7383   do_fill_first_plt_entry(unsigned char* pov,
7384 			  Arm_address got_address,
7385 			  Arm_address plt_address);
7386 
7387   virtual void
7388   do_fill_plt_entry(unsigned char* pov,
7389 		    Arm_address got_address,
7390 		    Arm_address plt_address,
7391 		    unsigned int got_offset,
7392 		    unsigned int plt_offset);
7393 
7394  private:
7395   // Template for the first PLT entry.
7396   static const uint32_t first_plt_entry[5];
7397 
7398   // Template for subsequent PLT entries.
7399   static const uint32_t plt_entry[3];
7400 };
7401 
7402 // ARM PLTs.
7403 // FIXME:  This is not very flexible.  Right now this has only been tested
7404 // on armv5te.  If we are to support additional architecture features like
7405 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7406 
7407 // The first entry in the PLT.
7408 template<bool big_endian>
7409 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7410 {
7411   0xe52de004,	// str   lr, [sp, #-4]!
7412   0xe59fe004,   // ldr   lr, [pc, #4]
7413   0xe08fe00e,	// add   lr, pc, lr
7414   0xe5bef008,	// ldr   pc, [lr, #8]!
7415   0x00000000,	// &GOT[0] - .
7416 };
7417 
7418 template<bool big_endian>
7419 void
7420 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7421     unsigned char* pov,
7422     Arm_address got_address,
7423     Arm_address plt_address)
7424 {
7425   // Write first PLT entry.  All but the last word are constants.
7426   const size_t num_first_plt_words = (sizeof(first_plt_entry)
7427 				      / sizeof(plt_entry[0]));
7428   for (size_t i = 0; i < num_first_plt_words - 1; i++)
7429     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7430   // Last word in first PLT entry is &GOT[0] - .
7431   elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7432 					 got_address - (plt_address + 16));
7433 }
7434 
7435 // Subsequent entries in the PLT.
7436 
7437 template<bool big_endian>
7438 const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
7439 {
7440   0xe28fc600,	// add   ip, pc, #0xNN00000
7441   0xe28cca00,	// add   ip, ip, #0xNN000
7442   0xe5bcf000,	// ldr   pc, [ip, #0xNNN]!
7443 };
7444 
7445 template<bool big_endian>
7446 void
7447 Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7448     unsigned char* pov,
7449     Arm_address got_address,
7450     Arm_address plt_address,
7451     unsigned int got_offset,
7452     unsigned int plt_offset)
7453 {
7454   int32_t offset = ((got_address + got_offset)
7455 		    - (plt_address + plt_offset + 8));
7456 
7457   gold_assert(offset >= 0 && offset < 0x0fffffff);
7458   uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7459   elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7460   uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7461   elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7462   uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7463   elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7464 }
7465 
7466 // Write out the PLT.  This uses the hand-coded instructions above,
7467 // and adjusts them as needed.  This is all specified by the arm ELF
7468 // Processor Supplement.
7469 
7470 template<bool big_endian>
7471 void
7472 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7473 {
7474   const off_t offset = this->offset();
7475   const section_size_type oview_size =
7476     convert_to_section_size_type(this->data_size());
7477   unsigned char* const oview = of->get_output_view(offset, oview_size);
7478 
7479   const off_t got_file_offset = this->got_plt_->offset();
7480   const section_size_type got_size =
7481     convert_to_section_size_type(this->got_plt_->data_size());
7482   unsigned char* const got_view = of->get_output_view(got_file_offset,
7483 						      got_size);
7484   unsigned char* pov = oview;
7485 
7486   Arm_address plt_address = this->address();
7487   Arm_address got_address = this->got_plt_->address();
7488 
7489   // Write first PLT entry.
7490   this->fill_first_plt_entry(pov, got_address, plt_address);
7491   pov += this->first_plt_entry_offset();
7492 
7493   unsigned char* got_pov = got_view;
7494 
7495   memset(got_pov, 0, 12);
7496   got_pov += 12;
7497 
7498   unsigned int plt_offset = this->first_plt_entry_offset();
7499   unsigned int got_offset = 12;
7500   const unsigned int count = this->count_;
7501   for (unsigned int i = 0;
7502        i < count;
7503        ++i,
7504 	 pov += this->get_plt_entry_size(),
7505 	 got_pov += 4,
7506 	 plt_offset += this->get_plt_entry_size(),
7507 	 got_offset += 4)
7508     {
7509       // Set and adjust the PLT entry itself.
7510       this->fill_plt_entry(pov, got_address, plt_address,
7511 			   got_offset, plt_offset);
7512 
7513       // Set the entry in the GOT.
7514       elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7515     }
7516 
7517   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7518   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7519 
7520   of->write_output_view(offset, oview_size, oview);
7521   of->write_output_view(got_file_offset, got_size, got_view);
7522 }
7523 
7524 // Create a PLT entry for a global symbol.
7525 
7526 template<bool big_endian>
7527 void
7528 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7529 				       Symbol* gsym)
7530 {
7531   if (gsym->has_plt_offset())
7532     return;
7533 
7534   if (this->plt_ == NULL)
7535     {
7536       // Create the GOT sections first.
7537       this->got_section(symtab, layout);
7538 
7539       this->plt_ = this->make_data_plt(layout, this->got_plt_);
7540 
7541       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7542 				      (elfcpp::SHF_ALLOC
7543 				       | elfcpp::SHF_EXECINSTR),
7544 				      this->plt_, ORDER_PLT, false);
7545     }
7546   this->plt_->add_entry(gsym);
7547 }
7548 
7549 // Return the number of entries in the PLT.
7550 
7551 template<bool big_endian>
7552 unsigned int
7553 Target_arm<big_endian>::plt_entry_count() const
7554 {
7555   if (this->plt_ == NULL)
7556     return 0;
7557   return this->plt_->entry_count();
7558 }
7559 
7560 // Return the offset of the first non-reserved PLT entry.
7561 
7562 template<bool big_endian>
7563 unsigned int
7564 Target_arm<big_endian>::first_plt_entry_offset() const
7565 {
7566   return this->plt_->first_plt_entry_offset();
7567 }
7568 
7569 // Return the size of each PLT entry.
7570 
7571 template<bool big_endian>
7572 unsigned int
7573 Target_arm<big_endian>::plt_entry_size() const
7574 {
7575   return this->plt_->get_plt_entry_size();
7576 }
7577 
7578 // Get the section to use for TLS_DESC relocations.
7579 
7580 template<bool big_endian>
7581 typename Target_arm<big_endian>::Reloc_section*
7582 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7583 {
7584   return this->plt_section()->rel_tls_desc(layout);
7585 }
7586 
7587 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7588 
7589 template<bool big_endian>
7590 void
7591 Target_arm<big_endian>::define_tls_base_symbol(
7592     Symbol_table* symtab,
7593     Layout* layout)
7594 {
7595   if (this->tls_base_symbol_defined_)
7596     return;
7597 
7598   Output_segment* tls_segment = layout->tls_segment();
7599   if (tls_segment != NULL)
7600     {
7601       bool is_exec = parameters->options().output_is_executable();
7602       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7603 				       Symbol_table::PREDEFINED,
7604 				       tls_segment, 0, 0,
7605 				       elfcpp::STT_TLS,
7606 				       elfcpp::STB_LOCAL,
7607 				       elfcpp::STV_HIDDEN, 0,
7608 				       (is_exec
7609 					? Symbol::SEGMENT_END
7610 					: Symbol::SEGMENT_START),
7611 				       true);
7612     }
7613   this->tls_base_symbol_defined_ = true;
7614 }
7615 
7616 // Create a GOT entry for the TLS module index.
7617 
7618 template<bool big_endian>
7619 unsigned int
7620 Target_arm<big_endian>::got_mod_index_entry(
7621     Symbol_table* symtab,
7622     Layout* layout,
7623     Sized_relobj_file<32, big_endian>* object)
7624 {
7625   if (this->got_mod_index_offset_ == -1U)
7626     {
7627       gold_assert(symtab != NULL && layout != NULL && object != NULL);
7628       Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7629       unsigned int got_offset;
7630       if (!parameters->doing_static_link())
7631 	{
7632 	  got_offset = got->add_constant(0);
7633 	  Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7634 	  rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7635 			     got_offset);
7636 	}
7637       else
7638 	{
7639 	  // We are doing a static link.  Just mark it as belong to module 1,
7640 	  // the executable.
7641 	  got_offset = got->add_constant(1);
7642 	}
7643 
7644       got->add_constant(0);
7645       this->got_mod_index_offset_ = got_offset;
7646     }
7647   return this->got_mod_index_offset_;
7648 }
7649 
7650 // Optimize the TLS relocation type based on what we know about the
7651 // symbol.  IS_FINAL is true if the final address of this symbol is
7652 // known at link time.
7653 
7654 template<bool big_endian>
7655 tls::Tls_optimization
7656 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7657 {
7658   // FIXME: Currently we do not do any TLS optimization.
7659   return tls::TLSOPT_NONE;
7660 }
7661 
7662 // Get the Reference_flags for a particular relocation.
7663 
7664 template<bool big_endian>
7665 int
7666 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7667 {
7668   switch (r_type)
7669     {
7670     case elfcpp::R_ARM_NONE:
7671     case elfcpp::R_ARM_V4BX:
7672     case elfcpp::R_ARM_GNU_VTENTRY:
7673     case elfcpp::R_ARM_GNU_VTINHERIT:
7674       // No symbol reference.
7675       return 0;
7676 
7677     case elfcpp::R_ARM_ABS32:
7678     case elfcpp::R_ARM_ABS16:
7679     case elfcpp::R_ARM_ABS12:
7680     case elfcpp::R_ARM_THM_ABS5:
7681     case elfcpp::R_ARM_ABS8:
7682     case elfcpp::R_ARM_BASE_ABS:
7683     case elfcpp::R_ARM_MOVW_ABS_NC:
7684     case elfcpp::R_ARM_MOVT_ABS:
7685     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7686     case elfcpp::R_ARM_THM_MOVT_ABS:
7687     case elfcpp::R_ARM_ABS32_NOI:
7688       return Symbol::ABSOLUTE_REF;
7689 
7690     case elfcpp::R_ARM_REL32:
7691     case elfcpp::R_ARM_LDR_PC_G0:
7692     case elfcpp::R_ARM_SBREL32:
7693     case elfcpp::R_ARM_THM_PC8:
7694     case elfcpp::R_ARM_BASE_PREL:
7695     case elfcpp::R_ARM_MOVW_PREL_NC:
7696     case elfcpp::R_ARM_MOVT_PREL:
7697     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7698     case elfcpp::R_ARM_THM_MOVT_PREL:
7699     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7700     case elfcpp::R_ARM_THM_PC12:
7701     case elfcpp::R_ARM_REL32_NOI:
7702     case elfcpp::R_ARM_ALU_PC_G0_NC:
7703     case elfcpp::R_ARM_ALU_PC_G0:
7704     case elfcpp::R_ARM_ALU_PC_G1_NC:
7705     case elfcpp::R_ARM_ALU_PC_G1:
7706     case elfcpp::R_ARM_ALU_PC_G2:
7707     case elfcpp::R_ARM_LDR_PC_G1:
7708     case elfcpp::R_ARM_LDR_PC_G2:
7709     case elfcpp::R_ARM_LDRS_PC_G0:
7710     case elfcpp::R_ARM_LDRS_PC_G1:
7711     case elfcpp::R_ARM_LDRS_PC_G2:
7712     case elfcpp::R_ARM_LDC_PC_G0:
7713     case elfcpp::R_ARM_LDC_PC_G1:
7714     case elfcpp::R_ARM_LDC_PC_G2:
7715     case elfcpp::R_ARM_ALU_SB_G0_NC:
7716     case elfcpp::R_ARM_ALU_SB_G0:
7717     case elfcpp::R_ARM_ALU_SB_G1_NC:
7718     case elfcpp::R_ARM_ALU_SB_G1:
7719     case elfcpp::R_ARM_ALU_SB_G2:
7720     case elfcpp::R_ARM_LDR_SB_G0:
7721     case elfcpp::R_ARM_LDR_SB_G1:
7722     case elfcpp::R_ARM_LDR_SB_G2:
7723     case elfcpp::R_ARM_LDRS_SB_G0:
7724     case elfcpp::R_ARM_LDRS_SB_G1:
7725     case elfcpp::R_ARM_LDRS_SB_G2:
7726     case elfcpp::R_ARM_LDC_SB_G0:
7727     case elfcpp::R_ARM_LDC_SB_G1:
7728     case elfcpp::R_ARM_LDC_SB_G2:
7729     case elfcpp::R_ARM_MOVW_BREL_NC:
7730     case elfcpp::R_ARM_MOVT_BREL:
7731     case elfcpp::R_ARM_MOVW_BREL:
7732     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7733     case elfcpp::R_ARM_THM_MOVT_BREL:
7734     case elfcpp::R_ARM_THM_MOVW_BREL:
7735     case elfcpp::R_ARM_GOTOFF32:
7736     case elfcpp::R_ARM_GOTOFF12:
7737     case elfcpp::R_ARM_SBREL31:
7738       return Symbol::RELATIVE_REF;
7739 
7740     case elfcpp::R_ARM_PLT32:
7741     case elfcpp::R_ARM_CALL:
7742     case elfcpp::R_ARM_JUMP24:
7743     case elfcpp::R_ARM_THM_CALL:
7744     case elfcpp::R_ARM_THM_JUMP24:
7745     case elfcpp::R_ARM_THM_JUMP19:
7746     case elfcpp::R_ARM_THM_JUMP6:
7747     case elfcpp::R_ARM_THM_JUMP11:
7748     case elfcpp::R_ARM_THM_JUMP8:
7749     // R_ARM_PREL31 is not used to relocate call/jump instructions but
7750     // in unwind tables. It may point to functions via PLTs.
7751     // So we treat it like call/jump relocations above.
7752     case elfcpp::R_ARM_PREL31:
7753       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7754 
7755     case elfcpp::R_ARM_GOT_BREL:
7756     case elfcpp::R_ARM_GOT_ABS:
7757     case elfcpp::R_ARM_GOT_PREL:
7758       // Absolute in GOT.
7759       return Symbol::ABSOLUTE_REF;
7760 
7761     case elfcpp::R_ARM_TLS_GD32:	// Global-dynamic
7762     case elfcpp::R_ARM_TLS_LDM32:	// Local-dynamic
7763     case elfcpp::R_ARM_TLS_LDO32:	// Alternate local-dynamic
7764     case elfcpp::R_ARM_TLS_IE32:	// Initial-exec
7765     case elfcpp::R_ARM_TLS_LE32:	// Local-exec
7766       return Symbol::TLS_REF;
7767 
7768     case elfcpp::R_ARM_TARGET1:
7769     case elfcpp::R_ARM_TARGET2:
7770     case elfcpp::R_ARM_COPY:
7771     case elfcpp::R_ARM_GLOB_DAT:
7772     case elfcpp::R_ARM_JUMP_SLOT:
7773     case elfcpp::R_ARM_RELATIVE:
7774     case elfcpp::R_ARM_PC24:
7775     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7776     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7777     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7778     default:
7779       // Not expected.  We will give an error later.
7780       return 0;
7781     }
7782 }
7783 
7784 // Report an unsupported relocation against a local symbol.
7785 
7786 template<bool big_endian>
7787 void
7788 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7789     Sized_relobj_file<32, big_endian>* object,
7790     unsigned int r_type)
7791 {
7792   gold_error(_("%s: unsupported reloc %u against local symbol"),
7793 	     object->name().c_str(), r_type);
7794 }
7795 
7796 // We are about to emit a dynamic relocation of type R_TYPE.  If the
7797 // dynamic linker does not support it, issue an error.  The GNU linker
7798 // only issues a non-PIC error for an allocated read-only section.
7799 // Here we know the section is allocated, but we don't know that it is
7800 // read-only.  But we check for all the relocation types which the
7801 // glibc dynamic linker supports, so it seems appropriate to issue an
7802 // error even if the section is not read-only.
7803 
7804 template<bool big_endian>
7805 void
7806 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7807 					    unsigned int r_type)
7808 {
7809   switch (r_type)
7810     {
7811     // These are the relocation types supported by glibc for ARM.
7812     case elfcpp::R_ARM_RELATIVE:
7813     case elfcpp::R_ARM_COPY:
7814     case elfcpp::R_ARM_GLOB_DAT:
7815     case elfcpp::R_ARM_JUMP_SLOT:
7816     case elfcpp::R_ARM_ABS32:
7817     case elfcpp::R_ARM_ABS32_NOI:
7818     case elfcpp::R_ARM_PC24:
7819     // FIXME: The following 3 types are not supported by Android's dynamic
7820     // linker.
7821     case elfcpp::R_ARM_TLS_DTPMOD32:
7822     case elfcpp::R_ARM_TLS_DTPOFF32:
7823     case elfcpp::R_ARM_TLS_TPOFF32:
7824       return;
7825 
7826     default:
7827       {
7828 	// This prevents us from issuing more than one error per reloc
7829 	// section.  But we can still wind up issuing more than one
7830 	// error per object file.
7831 	if (this->issued_non_pic_error_)
7832 	  return;
7833 	const Arm_reloc_property* reloc_property =
7834 	  arm_reloc_property_table->get_reloc_property(r_type);
7835 	gold_assert(reloc_property != NULL);
7836 	object->error(_("requires unsupported dynamic reloc %s; "
7837 		      "recompile with -fPIC"),
7838 		      reloc_property->name().c_str());
7839 	this->issued_non_pic_error_ = true;
7840 	return;
7841       }
7842 
7843     case elfcpp::R_ARM_NONE:
7844       gold_unreachable();
7845     }
7846 }
7847 
7848 // Scan a relocation for a local symbol.
7849 // FIXME: This only handles a subset of relocation types used by Android
7850 // on ARM v5te devices.
7851 
7852 template<bool big_endian>
7853 inline void
7854 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7855 				    Layout* layout,
7856 				    Target_arm* target,
7857 				    Sized_relobj_file<32, big_endian>* object,
7858 				    unsigned int data_shndx,
7859 				    Output_section* output_section,
7860 				    const elfcpp::Rel<32, big_endian>& reloc,
7861 				    unsigned int r_type,
7862 				    const elfcpp::Sym<32, big_endian>& lsym)
7863 {
7864   r_type = get_real_reloc_type(r_type);
7865   switch (r_type)
7866     {
7867     case elfcpp::R_ARM_NONE:
7868     case elfcpp::R_ARM_V4BX:
7869     case elfcpp::R_ARM_GNU_VTENTRY:
7870     case elfcpp::R_ARM_GNU_VTINHERIT:
7871       break;
7872 
7873     case elfcpp::R_ARM_ABS32:
7874     case elfcpp::R_ARM_ABS32_NOI:
7875       // If building a shared library (or a position-independent
7876       // executable), we need to create a dynamic relocation for
7877       // this location. The relocation applied at link time will
7878       // apply the link-time value, so we flag the location with
7879       // an R_ARM_RELATIVE relocation so the dynamic loader can
7880       // relocate it easily.
7881       if (parameters->options().output_is_position_independent())
7882 	{
7883 	  Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7884 	  unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7885 	  // If we are to add more other reloc types than R_ARM_ABS32,
7886 	  // we need to add check_non_pic(object, r_type) here.
7887 	  rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7888 				      output_section, data_shndx,
7889 				      reloc.get_r_offset());
7890 	}
7891       break;
7892 
7893     case elfcpp::R_ARM_ABS16:
7894     case elfcpp::R_ARM_ABS12:
7895     case elfcpp::R_ARM_THM_ABS5:
7896     case elfcpp::R_ARM_ABS8:
7897     case elfcpp::R_ARM_BASE_ABS:
7898     case elfcpp::R_ARM_MOVW_ABS_NC:
7899     case elfcpp::R_ARM_MOVT_ABS:
7900     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7901     case elfcpp::R_ARM_THM_MOVT_ABS:
7902       // If building a shared library (or a position-independent
7903       // executable), we need to create a dynamic relocation for
7904       // this location. Because the addend needs to remain in the
7905       // data section, we need to be careful not to apply this
7906       // relocation statically.
7907       if (parameters->options().output_is_position_independent())
7908 	{
7909 	  check_non_pic(object, r_type);
7910 	  Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7911 	  unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7912 	  if (lsym.get_st_type() != elfcpp::STT_SECTION)
7913 	    rel_dyn->add_local(object, r_sym, r_type, output_section,
7914 			       data_shndx, reloc.get_r_offset());
7915 	  else
7916 	    {
7917 	      gold_assert(lsym.get_st_value() == 0);
7918 	      unsigned int shndx = lsym.get_st_shndx();
7919 	      bool is_ordinary;
7920 	      shndx = object->adjust_sym_shndx(r_sym, shndx,
7921 					       &is_ordinary);
7922 	      if (!is_ordinary)
7923 		object->error(_("section symbol %u has bad shndx %u"),
7924 			      r_sym, shndx);
7925 	      else
7926 		rel_dyn->add_local_section(object, shndx,
7927 					   r_type, output_section,
7928 					   data_shndx, reloc.get_r_offset());
7929 	    }
7930 	}
7931       break;
7932 
7933     case elfcpp::R_ARM_REL32:
7934     case elfcpp::R_ARM_LDR_PC_G0:
7935     case elfcpp::R_ARM_SBREL32:
7936     case elfcpp::R_ARM_THM_CALL:
7937     case elfcpp::R_ARM_THM_PC8:
7938     case elfcpp::R_ARM_BASE_PREL:
7939     case elfcpp::R_ARM_PLT32:
7940     case elfcpp::R_ARM_CALL:
7941     case elfcpp::R_ARM_JUMP24:
7942     case elfcpp::R_ARM_THM_JUMP24:
7943     case elfcpp::R_ARM_SBREL31:
7944     case elfcpp::R_ARM_PREL31:
7945     case elfcpp::R_ARM_MOVW_PREL_NC:
7946     case elfcpp::R_ARM_MOVT_PREL:
7947     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7948     case elfcpp::R_ARM_THM_MOVT_PREL:
7949     case elfcpp::R_ARM_THM_JUMP19:
7950     case elfcpp::R_ARM_THM_JUMP6:
7951     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7952     case elfcpp::R_ARM_THM_PC12:
7953     case elfcpp::R_ARM_REL32_NOI:
7954     case elfcpp::R_ARM_ALU_PC_G0_NC:
7955     case elfcpp::R_ARM_ALU_PC_G0:
7956     case elfcpp::R_ARM_ALU_PC_G1_NC:
7957     case elfcpp::R_ARM_ALU_PC_G1:
7958     case elfcpp::R_ARM_ALU_PC_G2:
7959     case elfcpp::R_ARM_LDR_PC_G1:
7960     case elfcpp::R_ARM_LDR_PC_G2:
7961     case elfcpp::R_ARM_LDRS_PC_G0:
7962     case elfcpp::R_ARM_LDRS_PC_G1:
7963     case elfcpp::R_ARM_LDRS_PC_G2:
7964     case elfcpp::R_ARM_LDC_PC_G0:
7965     case elfcpp::R_ARM_LDC_PC_G1:
7966     case elfcpp::R_ARM_LDC_PC_G2:
7967     case elfcpp::R_ARM_ALU_SB_G0_NC:
7968     case elfcpp::R_ARM_ALU_SB_G0:
7969     case elfcpp::R_ARM_ALU_SB_G1_NC:
7970     case elfcpp::R_ARM_ALU_SB_G1:
7971     case elfcpp::R_ARM_ALU_SB_G2:
7972     case elfcpp::R_ARM_LDR_SB_G0:
7973     case elfcpp::R_ARM_LDR_SB_G1:
7974     case elfcpp::R_ARM_LDR_SB_G2:
7975     case elfcpp::R_ARM_LDRS_SB_G0:
7976     case elfcpp::R_ARM_LDRS_SB_G1:
7977     case elfcpp::R_ARM_LDRS_SB_G2:
7978     case elfcpp::R_ARM_LDC_SB_G0:
7979     case elfcpp::R_ARM_LDC_SB_G1:
7980     case elfcpp::R_ARM_LDC_SB_G2:
7981     case elfcpp::R_ARM_MOVW_BREL_NC:
7982     case elfcpp::R_ARM_MOVT_BREL:
7983     case elfcpp::R_ARM_MOVW_BREL:
7984     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7985     case elfcpp::R_ARM_THM_MOVT_BREL:
7986     case elfcpp::R_ARM_THM_MOVW_BREL:
7987     case elfcpp::R_ARM_THM_JUMP11:
7988     case elfcpp::R_ARM_THM_JUMP8:
7989       // We don't need to do anything for a relative addressing relocation
7990       // against a local symbol if it does not reference the GOT.
7991       break;
7992 
7993     case elfcpp::R_ARM_GOTOFF32:
7994     case elfcpp::R_ARM_GOTOFF12:
7995       // We need a GOT section:
7996       target->got_section(symtab, layout);
7997       break;
7998 
7999     case elfcpp::R_ARM_GOT_BREL:
8000     case elfcpp::R_ARM_GOT_PREL:
8001       {
8002 	// The symbol requires a GOT entry.
8003 	Arm_output_data_got<big_endian>* got =
8004 	  target->got_section(symtab, layout);
8005 	unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8006 	if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8007 	  {
8008 	    // If we are generating a shared object, we need to add a
8009 	    // dynamic RELATIVE relocation for this symbol's GOT entry.
8010 	    if (parameters->options().output_is_position_independent())
8011 	      {
8012 		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8013 		unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8014 		rel_dyn->add_local_relative(
8015 		    object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8016 		    object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8017 	      }
8018 	  }
8019       }
8020       break;
8021 
8022     case elfcpp::R_ARM_TARGET1:
8023     case elfcpp::R_ARM_TARGET2:
8024       // This should have been mapped to another type already.
8025       // Fall through.
8026     case elfcpp::R_ARM_COPY:
8027     case elfcpp::R_ARM_GLOB_DAT:
8028     case elfcpp::R_ARM_JUMP_SLOT:
8029     case elfcpp::R_ARM_RELATIVE:
8030       // These are relocations which should only be seen by the
8031       // dynamic linker, and should never be seen here.
8032       gold_error(_("%s: unexpected reloc %u in object file"),
8033 		 object->name().c_str(), r_type);
8034       break;
8035 
8036 
8037       // These are initial TLS relocs, which are expected when
8038       // linking.
8039     case elfcpp::R_ARM_TLS_GD32:	// Global-dynamic
8040     case elfcpp::R_ARM_TLS_LDM32:	// Local-dynamic
8041     case elfcpp::R_ARM_TLS_LDO32:	// Alternate local-dynamic
8042     case elfcpp::R_ARM_TLS_IE32:	// Initial-exec
8043     case elfcpp::R_ARM_TLS_LE32:	// Local-exec
8044       {
8045 	bool output_is_shared = parameters->options().shared();
8046 	const tls::Tls_optimization optimized_type
8047 	    = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8048 							 r_type);
8049 	switch (r_type)
8050 	  {
8051 	  case elfcpp::R_ARM_TLS_GD32:		// Global-dynamic
8052 	    if (optimized_type == tls::TLSOPT_NONE)
8053 	      {
8054 		// Create a pair of GOT entries for the module index and
8055 		// dtv-relative offset.
8056 		Arm_output_data_got<big_endian>* got
8057 		    = target->got_section(symtab, layout);
8058 		unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8059 		unsigned int shndx = lsym.get_st_shndx();
8060 		bool is_ordinary;
8061 		shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8062 		if (!is_ordinary)
8063 		  {
8064 		    object->error(_("local symbol %u has bad shndx %u"),
8065 				  r_sym, shndx);
8066 		    break;
8067 		  }
8068 
8069 		if (!parameters->doing_static_link())
8070 		  got->add_local_pair_with_rel(object, r_sym, shndx,
8071 					       GOT_TYPE_TLS_PAIR,
8072 					       target->rel_dyn_section(layout),
8073 					       elfcpp::R_ARM_TLS_DTPMOD32, 0);
8074 		else
8075 		  got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8076 						      object, r_sym);
8077 	      }
8078 	    else
8079 	      // FIXME: TLS optimization not supported yet.
8080 	      gold_unreachable();
8081 	    break;
8082 
8083 	  case elfcpp::R_ARM_TLS_LDM32:		// Local-dynamic
8084 	    if (optimized_type == tls::TLSOPT_NONE)
8085 	      {
8086 		// Create a GOT entry for the module index.
8087 		target->got_mod_index_entry(symtab, layout, object);
8088 	      }
8089 	    else
8090 	      // FIXME: TLS optimization not supported yet.
8091 	      gold_unreachable();
8092 	    break;
8093 
8094 	  case elfcpp::R_ARM_TLS_LDO32:		// Alternate local-dynamic
8095 	    break;
8096 
8097 	  case elfcpp::R_ARM_TLS_IE32:		// Initial-exec
8098 	    layout->set_has_static_tls();
8099 	    if (optimized_type == tls::TLSOPT_NONE)
8100 	      {
8101 		// Create a GOT entry for the tp-relative offset.
8102 		Arm_output_data_got<big_endian>* got
8103 		  = target->got_section(symtab, layout);
8104 		unsigned int r_sym =
8105 		   elfcpp::elf_r_sym<32>(reloc.get_r_info());
8106 		if (!parameters->doing_static_link())
8107 		    got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8108 					    target->rel_dyn_section(layout),
8109 					    elfcpp::R_ARM_TLS_TPOFF32);
8110 		else if (!object->local_has_got_offset(r_sym,
8111 						       GOT_TYPE_TLS_OFFSET))
8112 		  {
8113 		    got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8114 		    unsigned int got_offset =
8115 		      object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8116 		    got->add_static_reloc(got_offset,
8117 					  elfcpp::R_ARM_TLS_TPOFF32, object,
8118 					  r_sym);
8119 		  }
8120 	      }
8121 	    else
8122 	      // FIXME: TLS optimization not supported yet.
8123 	      gold_unreachable();
8124 	    break;
8125 
8126 	  case elfcpp::R_ARM_TLS_LE32:		// Local-exec
8127 	    layout->set_has_static_tls();
8128 	    if (output_is_shared)
8129 	      {
8130 		// We need to create a dynamic relocation.
8131 		gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8132 		unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8133 		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8134 		rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8135 				   output_section, data_shndx,
8136 				   reloc.get_r_offset());
8137 	      }
8138 	    break;
8139 
8140 	  default:
8141 	    gold_unreachable();
8142 	  }
8143       }
8144       break;
8145 
8146     case elfcpp::R_ARM_PC24:
8147     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8148     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8149     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8150     default:
8151       unsupported_reloc_local(object, r_type);
8152       break;
8153     }
8154 }
8155 
8156 // Report an unsupported relocation against a global symbol.
8157 
8158 template<bool big_endian>
8159 void
8160 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8161     Sized_relobj_file<32, big_endian>* object,
8162     unsigned int r_type,
8163     Symbol* gsym)
8164 {
8165   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8166 	     object->name().c_str(), r_type, gsym->demangled_name().c_str());
8167 }
8168 
8169 template<bool big_endian>
8170 inline bool
8171 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8172     unsigned int r_type)
8173 {
8174   switch (r_type)
8175     {
8176     case elfcpp::R_ARM_PC24:
8177     case elfcpp::R_ARM_THM_CALL:
8178     case elfcpp::R_ARM_PLT32:
8179     case elfcpp::R_ARM_CALL:
8180     case elfcpp::R_ARM_JUMP24:
8181     case elfcpp::R_ARM_THM_JUMP24:
8182     case elfcpp::R_ARM_SBREL31:
8183     case elfcpp::R_ARM_PREL31:
8184     case elfcpp::R_ARM_THM_JUMP19:
8185     case elfcpp::R_ARM_THM_JUMP6:
8186     case elfcpp::R_ARM_THM_JUMP11:
8187     case elfcpp::R_ARM_THM_JUMP8:
8188       // All the relocations above are branches except SBREL31 and PREL31.
8189       return false;
8190 
8191     default:
8192       // Be conservative and assume this is a function pointer.
8193       return true;
8194     }
8195 }
8196 
8197 template<bool big_endian>
8198 inline bool
8199 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8200   Symbol_table*,
8201   Layout*,
8202   Target_arm<big_endian>* target,
8203   Sized_relobj_file<32, big_endian>*,
8204   unsigned int,
8205   Output_section*,
8206   const elfcpp::Rel<32, big_endian>&,
8207   unsigned int r_type,
8208   const elfcpp::Sym<32, big_endian>&)
8209 {
8210   r_type = target->get_real_reloc_type(r_type);
8211   return possible_function_pointer_reloc(r_type);
8212 }
8213 
8214 template<bool big_endian>
8215 inline bool
8216 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8217   Symbol_table*,
8218   Layout*,
8219   Target_arm<big_endian>* target,
8220   Sized_relobj_file<32, big_endian>*,
8221   unsigned int,
8222   Output_section*,
8223   const elfcpp::Rel<32, big_endian>&,
8224   unsigned int r_type,
8225   Symbol* gsym)
8226 {
8227   // GOT is not a function.
8228   if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8229     return false;
8230 
8231   r_type = target->get_real_reloc_type(r_type);
8232   return possible_function_pointer_reloc(r_type);
8233 }
8234 
8235 // Scan a relocation for a global symbol.
8236 
8237 template<bool big_endian>
8238 inline void
8239 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8240 				     Layout* layout,
8241 				     Target_arm* target,
8242 				     Sized_relobj_file<32, big_endian>* object,
8243 				     unsigned int data_shndx,
8244 				     Output_section* output_section,
8245 				     const elfcpp::Rel<32, big_endian>& reloc,
8246 				     unsigned int r_type,
8247 				     Symbol* gsym)
8248 {
8249   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8250   // section.  We check here to avoid creating a dynamic reloc against
8251   // _GLOBAL_OFFSET_TABLE_.
8252   if (!target->has_got_section()
8253       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8254     target->got_section(symtab, layout);
8255 
8256   r_type = get_real_reloc_type(r_type);
8257   switch (r_type)
8258     {
8259     case elfcpp::R_ARM_NONE:
8260     case elfcpp::R_ARM_V4BX:
8261     case elfcpp::R_ARM_GNU_VTENTRY:
8262     case elfcpp::R_ARM_GNU_VTINHERIT:
8263       break;
8264 
8265     case elfcpp::R_ARM_ABS32:
8266     case elfcpp::R_ARM_ABS16:
8267     case elfcpp::R_ARM_ABS12:
8268     case elfcpp::R_ARM_THM_ABS5:
8269     case elfcpp::R_ARM_ABS8:
8270     case elfcpp::R_ARM_BASE_ABS:
8271     case elfcpp::R_ARM_MOVW_ABS_NC:
8272     case elfcpp::R_ARM_MOVT_ABS:
8273     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8274     case elfcpp::R_ARM_THM_MOVT_ABS:
8275     case elfcpp::R_ARM_ABS32_NOI:
8276       // Absolute addressing relocations.
8277       {
8278 	// Make a PLT entry if necessary.
8279 	if (this->symbol_needs_plt_entry(gsym))
8280 	  {
8281 	    target->make_plt_entry(symtab, layout, gsym);
8282 	    // Since this is not a PC-relative relocation, we may be
8283 	    // taking the address of a function. In that case we need to
8284 	    // set the entry in the dynamic symbol table to the address of
8285 	    // the PLT entry.
8286 	    if (gsym->is_from_dynobj() && !parameters->options().shared())
8287 	      gsym->set_needs_dynsym_value();
8288 	  }
8289 	// Make a dynamic relocation if necessary.
8290 	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8291 	  {
8292 	    if (gsym->may_need_copy_reloc())
8293 	      {
8294 		target->copy_reloc(symtab, layout, object,
8295 				   data_shndx, output_section, gsym, reloc);
8296 	      }
8297 	    else if ((r_type == elfcpp::R_ARM_ABS32
8298 		      || r_type == elfcpp::R_ARM_ABS32_NOI)
8299 		     && gsym->can_use_relative_reloc(false))
8300 	      {
8301 		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8302 		rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8303 					     output_section, object,
8304 					     data_shndx, reloc.get_r_offset());
8305 	      }
8306 	    else
8307 	      {
8308 		check_non_pic(object, r_type);
8309 		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8310 		rel_dyn->add_global(gsym, r_type, output_section, object,
8311 				    data_shndx, reloc.get_r_offset());
8312 	      }
8313 	  }
8314       }
8315       break;
8316 
8317     case elfcpp::R_ARM_GOTOFF32:
8318     case elfcpp::R_ARM_GOTOFF12:
8319       // We need a GOT section.
8320       target->got_section(symtab, layout);
8321       break;
8322 
8323     case elfcpp::R_ARM_REL32:
8324     case elfcpp::R_ARM_LDR_PC_G0:
8325     case elfcpp::R_ARM_SBREL32:
8326     case elfcpp::R_ARM_THM_PC8:
8327     case elfcpp::R_ARM_BASE_PREL:
8328     case elfcpp::R_ARM_MOVW_PREL_NC:
8329     case elfcpp::R_ARM_MOVT_PREL:
8330     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8331     case elfcpp::R_ARM_THM_MOVT_PREL:
8332     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8333     case elfcpp::R_ARM_THM_PC12:
8334     case elfcpp::R_ARM_REL32_NOI:
8335     case elfcpp::R_ARM_ALU_PC_G0_NC:
8336     case elfcpp::R_ARM_ALU_PC_G0:
8337     case elfcpp::R_ARM_ALU_PC_G1_NC:
8338     case elfcpp::R_ARM_ALU_PC_G1:
8339     case elfcpp::R_ARM_ALU_PC_G2:
8340     case elfcpp::R_ARM_LDR_PC_G1:
8341     case elfcpp::R_ARM_LDR_PC_G2:
8342     case elfcpp::R_ARM_LDRS_PC_G0:
8343     case elfcpp::R_ARM_LDRS_PC_G1:
8344     case elfcpp::R_ARM_LDRS_PC_G2:
8345     case elfcpp::R_ARM_LDC_PC_G0:
8346     case elfcpp::R_ARM_LDC_PC_G1:
8347     case elfcpp::R_ARM_LDC_PC_G2:
8348     case elfcpp::R_ARM_ALU_SB_G0_NC:
8349     case elfcpp::R_ARM_ALU_SB_G0:
8350     case elfcpp::R_ARM_ALU_SB_G1_NC:
8351     case elfcpp::R_ARM_ALU_SB_G1:
8352     case elfcpp::R_ARM_ALU_SB_G2:
8353     case elfcpp::R_ARM_LDR_SB_G0:
8354     case elfcpp::R_ARM_LDR_SB_G1:
8355     case elfcpp::R_ARM_LDR_SB_G2:
8356     case elfcpp::R_ARM_LDRS_SB_G0:
8357     case elfcpp::R_ARM_LDRS_SB_G1:
8358     case elfcpp::R_ARM_LDRS_SB_G2:
8359     case elfcpp::R_ARM_LDC_SB_G0:
8360     case elfcpp::R_ARM_LDC_SB_G1:
8361     case elfcpp::R_ARM_LDC_SB_G2:
8362     case elfcpp::R_ARM_MOVW_BREL_NC:
8363     case elfcpp::R_ARM_MOVT_BREL:
8364     case elfcpp::R_ARM_MOVW_BREL:
8365     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8366     case elfcpp::R_ARM_THM_MOVT_BREL:
8367     case elfcpp::R_ARM_THM_MOVW_BREL:
8368       // Relative addressing relocations.
8369       {
8370 	// Make a dynamic relocation if necessary.
8371 	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8372 	  {
8373 	    if (target->may_need_copy_reloc(gsym))
8374 	      {
8375 		target->copy_reloc(symtab, layout, object,
8376 				   data_shndx, output_section, gsym, reloc);
8377 	      }
8378 	    else
8379 	      {
8380 		check_non_pic(object, r_type);
8381 		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8382 		rel_dyn->add_global(gsym, r_type, output_section, object,
8383 				    data_shndx, reloc.get_r_offset());
8384 	      }
8385 	  }
8386       }
8387       break;
8388 
8389     case elfcpp::R_ARM_THM_CALL:
8390     case elfcpp::R_ARM_PLT32:
8391     case elfcpp::R_ARM_CALL:
8392     case elfcpp::R_ARM_JUMP24:
8393     case elfcpp::R_ARM_THM_JUMP24:
8394     case elfcpp::R_ARM_SBREL31:
8395     case elfcpp::R_ARM_PREL31:
8396     case elfcpp::R_ARM_THM_JUMP19:
8397     case elfcpp::R_ARM_THM_JUMP6:
8398     case elfcpp::R_ARM_THM_JUMP11:
8399     case elfcpp::R_ARM_THM_JUMP8:
8400       // All the relocation above are branches except for the PREL31 ones.
8401       // A PREL31 relocation can point to a personality function in a shared
8402       // library.  In that case we want to use a PLT because we want to
8403       // call the personality routine and the dynamic linkers we care about
8404       // do not support dynamic PREL31 relocations. An REL31 relocation may
8405       // point to a function whose unwinding behaviour is being described but
8406       // we will not mistakenly generate a PLT for that because we should use
8407       // a local section symbol.
8408 
8409       // If the symbol is fully resolved, this is just a relative
8410       // local reloc.  Otherwise we need a PLT entry.
8411       if (gsym->final_value_is_known())
8412 	break;
8413       // If building a shared library, we can also skip the PLT entry
8414       // if the symbol is defined in the output file and is protected
8415       // or hidden.
8416       if (gsym->is_defined()
8417 	  && !gsym->is_from_dynobj()
8418 	  && !gsym->is_preemptible())
8419 	break;
8420       target->make_plt_entry(symtab, layout, gsym);
8421       break;
8422 
8423     case elfcpp::R_ARM_GOT_BREL:
8424     case elfcpp::R_ARM_GOT_ABS:
8425     case elfcpp::R_ARM_GOT_PREL:
8426       {
8427 	// The symbol requires a GOT entry.
8428 	Arm_output_data_got<big_endian>* got =
8429 	  target->got_section(symtab, layout);
8430 	if (gsym->final_value_is_known())
8431 	  got->add_global(gsym, GOT_TYPE_STANDARD);
8432 	else
8433 	  {
8434 	    // If this symbol is not fully resolved, we need to add a
8435 	    // GOT entry with a dynamic relocation.
8436 	    Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8437 	    if (gsym->is_from_dynobj()
8438 		|| gsym->is_undefined()
8439 		|| gsym->is_preemptible()
8440 		|| (gsym->visibility() == elfcpp::STV_PROTECTED
8441 		    && parameters->options().shared()))
8442 	      got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8443 				       rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8444 	    else
8445 	      {
8446 		if (got->add_global(gsym, GOT_TYPE_STANDARD))
8447 		  rel_dyn->add_global_relative(
8448 		      gsym, elfcpp::R_ARM_RELATIVE, got,
8449 		      gsym->got_offset(GOT_TYPE_STANDARD));
8450 	      }
8451 	  }
8452       }
8453       break;
8454 
8455     case elfcpp::R_ARM_TARGET1:
8456     case elfcpp::R_ARM_TARGET2:
8457       // These should have been mapped to other types already.
8458       // Fall through.
8459     case elfcpp::R_ARM_COPY:
8460     case elfcpp::R_ARM_GLOB_DAT:
8461     case elfcpp::R_ARM_JUMP_SLOT:
8462     case elfcpp::R_ARM_RELATIVE:
8463       // These are relocations which should only be seen by the
8464       // dynamic linker, and should never be seen here.
8465       gold_error(_("%s: unexpected reloc %u in object file"),
8466 		 object->name().c_str(), r_type);
8467       break;
8468 
8469       // These are initial tls relocs, which are expected when
8470       // linking.
8471     case elfcpp::R_ARM_TLS_GD32:	// Global-dynamic
8472     case elfcpp::R_ARM_TLS_LDM32:	// Local-dynamic
8473     case elfcpp::R_ARM_TLS_LDO32:	// Alternate local-dynamic
8474     case elfcpp::R_ARM_TLS_IE32:	// Initial-exec
8475     case elfcpp::R_ARM_TLS_LE32:	// Local-exec
8476       {
8477 	const bool is_final = gsym->final_value_is_known();
8478 	const tls::Tls_optimization optimized_type
8479 	    = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8480 	switch (r_type)
8481 	  {
8482 	  case elfcpp::R_ARM_TLS_GD32:		// Global-dynamic
8483 	    if (optimized_type == tls::TLSOPT_NONE)
8484 	      {
8485 		// Create a pair of GOT entries for the module index and
8486 		// dtv-relative offset.
8487 		Arm_output_data_got<big_endian>* got
8488 		    = target->got_section(symtab, layout);
8489 		if (!parameters->doing_static_link())
8490 		  got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8491 						target->rel_dyn_section(layout),
8492 						elfcpp::R_ARM_TLS_DTPMOD32,
8493 						elfcpp::R_ARM_TLS_DTPOFF32);
8494 		else
8495 		  got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8496 	      }
8497 	    else
8498 	      // FIXME: TLS optimization not supported yet.
8499 	      gold_unreachable();
8500 	    break;
8501 
8502 	  case elfcpp::R_ARM_TLS_LDM32:		// Local-dynamic
8503 	    if (optimized_type == tls::TLSOPT_NONE)
8504 	      {
8505 		// Create a GOT entry for the module index.
8506 		target->got_mod_index_entry(symtab, layout, object);
8507 	      }
8508 	    else
8509 	      // FIXME: TLS optimization not supported yet.
8510 	      gold_unreachable();
8511 	    break;
8512 
8513 	  case elfcpp::R_ARM_TLS_LDO32:		// Alternate local-dynamic
8514 	    break;
8515 
8516 	  case elfcpp::R_ARM_TLS_IE32:		// Initial-exec
8517 	    layout->set_has_static_tls();
8518 	    if (optimized_type == tls::TLSOPT_NONE)
8519 	      {
8520 		// Create a GOT entry for the tp-relative offset.
8521 		Arm_output_data_got<big_endian>* got
8522 		  = target->got_section(symtab, layout);
8523 		if (!parameters->doing_static_link())
8524 		  got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8525 					   target->rel_dyn_section(layout),
8526 					   elfcpp::R_ARM_TLS_TPOFF32);
8527 		else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8528 		  {
8529 		    got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8530 		    unsigned int got_offset =
8531 		       gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8532 		    got->add_static_reloc(got_offset,
8533 					  elfcpp::R_ARM_TLS_TPOFF32, gsym);
8534 		  }
8535 	      }
8536 	    else
8537 	      // FIXME: TLS optimization not supported yet.
8538 	      gold_unreachable();
8539 	    break;
8540 
8541 	  case elfcpp::R_ARM_TLS_LE32:	// Local-exec
8542 	    layout->set_has_static_tls();
8543 	    if (parameters->options().shared())
8544 	      {
8545 		// We need to create a dynamic relocation.
8546 		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8547 		rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8548 				    output_section, object,
8549 				    data_shndx, reloc.get_r_offset());
8550 	      }
8551 	    break;
8552 
8553 	  default:
8554 	    gold_unreachable();
8555 	  }
8556       }
8557       break;
8558 
8559     case elfcpp::R_ARM_PC24:
8560     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8561     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8562     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8563     default:
8564       unsupported_reloc_global(object, r_type, gsym);
8565       break;
8566     }
8567 }
8568 
8569 // Process relocations for gc.
8570 
8571 template<bool big_endian>
8572 void
8573 Target_arm<big_endian>::gc_process_relocs(
8574     Symbol_table* symtab,
8575     Layout* layout,
8576     Sized_relobj_file<32, big_endian>* object,
8577     unsigned int data_shndx,
8578     unsigned int,
8579     const unsigned char* prelocs,
8580     size_t reloc_count,
8581     Output_section* output_section,
8582     bool needs_special_offset_handling,
8583     size_t local_symbol_count,
8584     const unsigned char* plocal_symbols)
8585 {
8586   typedef Target_arm<big_endian> Arm;
8587   typedef typename Target_arm<big_endian>::Scan Scan;
8588 
8589   gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8590 			  typename Target_arm::Relocatable_size_for_reloc>(
8591     symtab,
8592     layout,
8593     this,
8594     object,
8595     data_shndx,
8596     prelocs,
8597     reloc_count,
8598     output_section,
8599     needs_special_offset_handling,
8600     local_symbol_count,
8601     plocal_symbols);
8602 }
8603 
8604 // Scan relocations for a section.
8605 
8606 template<bool big_endian>
8607 void
8608 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8609 				    Layout* layout,
8610 				    Sized_relobj_file<32, big_endian>* object,
8611 				    unsigned int data_shndx,
8612 				    unsigned int sh_type,
8613 				    const unsigned char* prelocs,
8614 				    size_t reloc_count,
8615 				    Output_section* output_section,
8616 				    bool needs_special_offset_handling,
8617 				    size_t local_symbol_count,
8618 				    const unsigned char* plocal_symbols)
8619 {
8620   typedef typename Target_arm<big_endian>::Scan Scan;
8621   if (sh_type == elfcpp::SHT_RELA)
8622     {
8623       gold_error(_("%s: unsupported RELA reloc section"),
8624 		 object->name().c_str());
8625       return;
8626     }
8627 
8628   gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8629     symtab,
8630     layout,
8631     this,
8632     object,
8633     data_shndx,
8634     prelocs,
8635     reloc_count,
8636     output_section,
8637     needs_special_offset_handling,
8638     local_symbol_count,
8639     plocal_symbols);
8640 }
8641 
8642 // Finalize the sections.
8643 
8644 template<bool big_endian>
8645 void
8646 Target_arm<big_endian>::do_finalize_sections(
8647     Layout* layout,
8648     const Input_objects* input_objects,
8649     Symbol_table*)
8650 {
8651   bool merged_any_attributes = false;
8652   // Merge processor-specific flags.
8653   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8654        p != input_objects->relobj_end();
8655        ++p)
8656     {
8657       Arm_relobj<big_endian>* arm_relobj =
8658 	Arm_relobj<big_endian>::as_arm_relobj(*p);
8659       if (arm_relobj->merge_flags_and_attributes())
8660 	{
8661 	  this->merge_processor_specific_flags(
8662 	      arm_relobj->name(),
8663 	      arm_relobj->processor_specific_flags());
8664 	  this->merge_object_attributes(arm_relobj->name().c_str(),
8665 					arm_relobj->attributes_section_data());
8666 	  merged_any_attributes = true;
8667 	}
8668     }
8669 
8670   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8671        p != input_objects->dynobj_end();
8672        ++p)
8673     {
8674       Arm_dynobj<big_endian>* arm_dynobj =
8675 	Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8676       this->merge_processor_specific_flags(
8677 	  arm_dynobj->name(),
8678 	  arm_dynobj->processor_specific_flags());
8679       this->merge_object_attributes(arm_dynobj->name().c_str(),
8680 				    arm_dynobj->attributes_section_data());
8681       merged_any_attributes = true;
8682     }
8683 
8684   // Create an empty uninitialized attribute section if we still don't have it
8685   // at this moment.  This happens if there is no attributes sections in all
8686   // inputs.
8687   if (this->attributes_section_data_ == NULL)
8688     this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8689 
8690   const Object_attribute* cpu_arch_attr =
8691     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8692   // Check if we need to use Cortex-A8 workaround.
8693   if (parameters->options().user_set_fix_cortex_a8())
8694     this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8695   else
8696     {
8697       // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8698       // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8699       // profile.
8700       const Object_attribute* cpu_arch_profile_attr =
8701 	this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8702       this->fix_cortex_a8_ =
8703 	(cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8704 	 && (cpu_arch_profile_attr->int_value() == 'A'
8705 	     || cpu_arch_profile_attr->int_value() == 0));
8706     }
8707 
8708   // Check if we can use V4BX interworking.
8709   // The V4BX interworking stub contains BX instruction,
8710   // which is not specified for some profiles.
8711   if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8712       && !this->may_use_v4t_interworking())
8713     gold_error(_("unable to provide V4BX reloc interworking fix up; "
8714 		 "the target profile does not support BX instruction"));
8715 
8716   // Fill in some more dynamic tags.
8717   const Reloc_section* rel_plt = (this->plt_ == NULL
8718 				  ? NULL
8719 				  : this->plt_->rel_plt());
8720   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8721 				  this->rel_dyn_, true, false);
8722 
8723   // Emit any relocs we saved in an attempt to avoid generating COPY
8724   // relocs.
8725   if (this->copy_relocs_.any_saved_relocs())
8726     this->copy_relocs_.emit(this->rel_dyn_section(layout));
8727 
8728   // Handle the .ARM.exidx section.
8729   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8730 
8731   if (!parameters->options().relocatable())
8732     {
8733       if (exidx_section != NULL
8734 	  && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8735 	{
8736 	  // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8737 	  // the .ARM.exidx section.
8738 	  if (!layout->script_options()->saw_phdrs_clause())
8739 	    {
8740 	      gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8741 						      0)
8742 			  == NULL);
8743 	      Output_segment*  exidx_segment =
8744 		layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8745 	      exidx_segment->add_output_section_to_nonload(exidx_section,
8746 							   elfcpp::PF_R);
8747 	    }
8748 	}
8749     }
8750 
8751   // Create an .ARM.attributes section if we have merged any attributes
8752   // from inputs.
8753   if (merged_any_attributes)
8754     {
8755       Output_attributes_section_data* attributes_section =
8756       new Output_attributes_section_data(*this->attributes_section_data_);
8757       layout->add_output_section_data(".ARM.attributes",
8758 				      elfcpp::SHT_ARM_ATTRIBUTES, 0,
8759 				      attributes_section, ORDER_INVALID,
8760 				      false);
8761     }
8762 
8763   // Fix up links in section EXIDX headers.
8764   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8765        p != layout->section_list().end();
8766        ++p)
8767     if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8768       {
8769 	Arm_output_section<big_endian>* os =
8770 	  Arm_output_section<big_endian>::as_arm_output_section(*p);
8771 	os->set_exidx_section_link();
8772       }
8773 }
8774 
8775 // Return whether a direct absolute static relocation needs to be applied.
8776 // In cases where Scan::local() or Scan::global() has created
8777 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8778 // of the relocation is carried in the data, and we must not
8779 // apply the static relocation.
8780 
8781 template<bool big_endian>
8782 inline bool
8783 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8784     const Sized_symbol<32>* gsym,
8785     unsigned int r_type,
8786     bool is_32bit,
8787     Output_section* output_section)
8788 {
8789   // If the output section is not allocated, then we didn't call
8790   // scan_relocs, we didn't create a dynamic reloc, and we must apply
8791   // the reloc here.
8792   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8793       return true;
8794 
8795   int ref_flags = Scan::get_reference_flags(r_type);
8796 
8797   // For local symbols, we will have created a non-RELATIVE dynamic
8798   // relocation only if (a) the output is position independent,
8799   // (b) the relocation is absolute (not pc- or segment-relative), and
8800   // (c) the relocation is not 32 bits wide.
8801   if (gsym == NULL)
8802     return !(parameters->options().output_is_position_independent()
8803 	     && (ref_flags & Symbol::ABSOLUTE_REF)
8804 	     && !is_32bit);
8805 
8806   // For global symbols, we use the same helper routines used in the
8807   // scan pass.  If we did not create a dynamic relocation, or if we
8808   // created a RELATIVE dynamic relocation, we should apply the static
8809   // relocation.
8810   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8811   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8812 		 && gsym->can_use_relative_reloc(ref_flags
8813 						 & Symbol::FUNCTION_CALL);
8814   return !has_dyn || is_rel;
8815 }
8816 
8817 // Perform a relocation.
8818 
8819 template<bool big_endian>
8820 inline bool
8821 Target_arm<big_endian>::Relocate::relocate(
8822     const Relocate_info<32, big_endian>* relinfo,
8823     Target_arm* target,
8824     Output_section* output_section,
8825     size_t relnum,
8826     const elfcpp::Rel<32, big_endian>& rel,
8827     unsigned int r_type,
8828     const Sized_symbol<32>* gsym,
8829     const Symbol_value<32>* psymval,
8830     unsigned char* view,
8831     Arm_address address,
8832     section_size_type view_size)
8833 {
8834   typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8835 
8836   r_type = get_real_reloc_type(r_type);
8837   const Arm_reloc_property* reloc_property =
8838     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8839   if (reloc_property == NULL)
8840     {
8841       std::string reloc_name =
8842 	arm_reloc_property_table->reloc_name_in_error_message(r_type);
8843       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8844 			     _("cannot relocate %s in object file"),
8845 			     reloc_name.c_str());
8846       return true;
8847     }
8848 
8849   const Arm_relobj<big_endian>* object =
8850     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8851 
8852   // If the final branch target of a relocation is THUMB instruction, this
8853   // is 1.  Otherwise it is 0.
8854   Arm_address thumb_bit = 0;
8855   Symbol_value<32> symval;
8856   bool is_weakly_undefined_without_plt = false;
8857   bool have_got_offset = false;
8858   unsigned int got_offset = 0;
8859 
8860   // If the relocation uses the GOT entry of a symbol instead of the symbol
8861   // itself, we don't care about whether the symbol is defined or what kind
8862   // of symbol it is.
8863   if (reloc_property->uses_got_entry())
8864     {
8865       // Get the GOT offset.
8866       // The GOT pointer points to the end of the GOT section.
8867       // We need to subtract the size of the GOT section to get
8868       // the actual offset to use in the relocation.
8869       // TODO: We should move GOT offset computing code in TLS relocations
8870       // to here.
8871       switch (r_type)
8872 	{
8873 	case elfcpp::R_ARM_GOT_BREL:
8874 	case elfcpp::R_ARM_GOT_PREL:
8875 	  if (gsym != NULL)
8876 	    {
8877 	      gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8878 	      got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8879 			    - target->got_size());
8880 	    }
8881 	  else
8882 	    {
8883 	      unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8884 	      gold_assert(object->local_has_got_offset(r_sym,
8885 						       GOT_TYPE_STANDARD));
8886 	      got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8887 			    - target->got_size());
8888 	    }
8889 	  have_got_offset = true;
8890 	  break;
8891 
8892 	default:
8893 	  break;
8894 	}
8895     }
8896   else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8897     {
8898       if (gsym != NULL)
8899 	{
8900 	  // This is a global symbol.  Determine if we use PLT and if the
8901 	  // final target is THUMB.
8902 	  if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8903 	    {
8904 	      // This uses a PLT, change the symbol value.
8905 	      symval.set_output_value(target->plt_section()->address()
8906 				      + gsym->plt_offset());
8907 	      psymval = &symval;
8908 	    }
8909 	  else if (gsym->is_weak_undefined())
8910 	    {
8911 	      // This is a weakly undefined symbol and we do not use PLT
8912 	      // for this relocation.  A branch targeting this symbol will
8913 	      // be converted into an NOP.
8914 	      is_weakly_undefined_without_plt = true;
8915 	    }
8916 	  else if (gsym->is_undefined() && reloc_property->uses_symbol())
8917 	    {
8918 	      // This relocation uses the symbol value but the symbol is
8919 	      // undefined.  Exit early and have the caller reporting an
8920 	      // error.
8921 	      return true;
8922 	    }
8923 	  else
8924 	    {
8925 	      // Set thumb bit if symbol:
8926 	      // -Has type STT_ARM_TFUNC or
8927 	      // -Has type STT_FUNC, is defined and with LSB in value set.
8928 	      thumb_bit =
8929 		(((gsym->type() == elfcpp::STT_ARM_TFUNC)
8930 		 || (gsym->type() == elfcpp::STT_FUNC
8931 		     && !gsym->is_undefined()
8932 		     && ((psymval->value(object, 0) & 1) != 0)))
8933 		? 1
8934 		: 0);
8935 	    }
8936 	}
8937       else
8938 	{
8939 	  // This is a local symbol.  Determine if the final target is THUMB.
8940 	  // We saved this information when all the local symbols were read.
8941 	  elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8942 	  unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8943 	  thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8944 	}
8945     }
8946   else
8947     {
8948       // This is a fake relocation synthesized for a stub.  It does not have
8949       // a real symbol.  We just look at the LSB of the symbol value to
8950       // determine if the target is THUMB or not.
8951       thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8952     }
8953 
8954   // Strip LSB if this points to a THUMB target.
8955   if (thumb_bit != 0
8956       && reloc_property->uses_thumb_bit()
8957       && ((psymval->value(object, 0) & 1) != 0))
8958     {
8959       Arm_address stripped_value =
8960 	psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8961       symval.set_output_value(stripped_value);
8962       psymval = &symval;
8963     }
8964 
8965   // To look up relocation stubs, we need to pass the symbol table index of
8966   // a local symbol.
8967   unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8968 
8969   // Get the addressing origin of the output segment defining the
8970   // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8971   Arm_address sym_origin = 0;
8972   if (reloc_property->uses_symbol_base())
8973     {
8974       if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8975 	// R_ARM_BASE_ABS with the NULL symbol will give the
8976 	// absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8977 	// 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8978 	sym_origin = target->got_plt_section()->address();
8979       else if (gsym == NULL)
8980 	sym_origin = 0;
8981       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8982 	sym_origin = gsym->output_segment()->vaddr();
8983       else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8984 	sym_origin = gsym->output_data()->address();
8985 
8986       // TODO: Assumes the segment base to be zero for the global symbols
8987       // till the proper support for the segment-base-relative addressing
8988       // will be implemented.  This is consistent with GNU ld.
8989     }
8990 
8991   // For relative addressing relocation, find out the relative address base.
8992   Arm_address relative_address_base = 0;
8993   switch(reloc_property->relative_address_base())
8994     {
8995     case Arm_reloc_property::RAB_NONE:
8996     // Relocations with relative address bases RAB_TLS and RAB_tp are
8997     // handled by relocate_tls.  So we do not need to do anything here.
8998     case Arm_reloc_property::RAB_TLS:
8999     case Arm_reloc_property::RAB_tp:
9000       break;
9001     case Arm_reloc_property::RAB_B_S:
9002       relative_address_base = sym_origin;
9003       break;
9004     case Arm_reloc_property::RAB_GOT_ORG:
9005       relative_address_base = target->got_plt_section()->address();
9006       break;
9007     case Arm_reloc_property::RAB_P:
9008       relative_address_base = address;
9009       break;
9010     case Arm_reloc_property::RAB_Pa:
9011       relative_address_base = address & 0xfffffffcU;
9012       break;
9013     default:
9014       gold_unreachable();
9015     }
9016 
9017   typename Arm_relocate_functions::Status reloc_status =
9018 	Arm_relocate_functions::STATUS_OKAY;
9019   bool check_overflow = reloc_property->checks_overflow();
9020   switch (r_type)
9021     {
9022     case elfcpp::R_ARM_NONE:
9023       break;
9024 
9025     case elfcpp::R_ARM_ABS8:
9026       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9027 	reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9028       break;
9029 
9030     case elfcpp::R_ARM_ABS12:
9031       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9032 	reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9033       break;
9034 
9035     case elfcpp::R_ARM_ABS16:
9036       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9037 	reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9038       break;
9039 
9040     case elfcpp::R_ARM_ABS32:
9041       if (should_apply_static_reloc(gsym, r_type, true, output_section))
9042 	reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9043 						     thumb_bit);
9044       break;
9045 
9046     case elfcpp::R_ARM_ABS32_NOI:
9047       if (should_apply_static_reloc(gsym, r_type, true, output_section))
9048 	// No thumb bit for this relocation: (S + A)
9049 	reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9050 						     0);
9051       break;
9052 
9053     case elfcpp::R_ARM_MOVW_ABS_NC:
9054       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9055 	reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9056 						    0, thumb_bit,
9057 						    check_overflow);
9058       break;
9059 
9060     case elfcpp::R_ARM_MOVT_ABS:
9061       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9062 	reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9063       break;
9064 
9065     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9066       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9067 	reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9068 							0, thumb_bit, false);
9069       break;
9070 
9071     case elfcpp::R_ARM_THM_MOVT_ABS:
9072       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9073 	reloc_status = Arm_relocate_functions::thm_movt(view, object,
9074 							psymval, 0);
9075       break;
9076 
9077     case elfcpp::R_ARM_MOVW_PREL_NC:
9078     case elfcpp::R_ARM_MOVW_BREL_NC:
9079     case elfcpp::R_ARM_MOVW_BREL:
9080       reloc_status =
9081 	Arm_relocate_functions::movw(view, object, psymval,
9082 				     relative_address_base, thumb_bit,
9083 				     check_overflow);
9084       break;
9085 
9086     case elfcpp::R_ARM_MOVT_PREL:
9087     case elfcpp::R_ARM_MOVT_BREL:
9088       reloc_status =
9089 	Arm_relocate_functions::movt(view, object, psymval,
9090 				     relative_address_base);
9091       break;
9092 
9093     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9094     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9095     case elfcpp::R_ARM_THM_MOVW_BREL:
9096       reloc_status =
9097 	Arm_relocate_functions::thm_movw(view, object, psymval,
9098 					 relative_address_base,
9099 					 thumb_bit, check_overflow);
9100       break;
9101 
9102     case elfcpp::R_ARM_THM_MOVT_PREL:
9103     case elfcpp::R_ARM_THM_MOVT_BREL:
9104       reloc_status =
9105 	Arm_relocate_functions::thm_movt(view, object, psymval,
9106 					 relative_address_base);
9107       break;
9108 
9109     case elfcpp::R_ARM_REL32:
9110       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9111 						   address, thumb_bit);
9112       break;
9113 
9114     case elfcpp::R_ARM_THM_ABS5:
9115       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9116 	reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9117       break;
9118 
9119     // Thumb long branches.
9120     case elfcpp::R_ARM_THM_CALL:
9121     case elfcpp::R_ARM_THM_XPC22:
9122     case elfcpp::R_ARM_THM_JUMP24:
9123       reloc_status =
9124 	Arm_relocate_functions::thumb_branch_common(
9125 	    r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9126 	    thumb_bit, is_weakly_undefined_without_plt);
9127       break;
9128 
9129     case elfcpp::R_ARM_GOTOFF32:
9130       {
9131 	Arm_address got_origin;
9132 	got_origin = target->got_plt_section()->address();
9133 	reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9134 						     got_origin, thumb_bit);
9135       }
9136       break;
9137 
9138     case elfcpp::R_ARM_BASE_PREL:
9139       gold_assert(gsym != NULL);
9140       reloc_status =
9141 	  Arm_relocate_functions::base_prel(view, sym_origin, address);
9142       break;
9143 
9144     case elfcpp::R_ARM_BASE_ABS:
9145       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9146 	reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9147       break;
9148 
9149     case elfcpp::R_ARM_GOT_BREL:
9150       gold_assert(have_got_offset);
9151       reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9152       break;
9153 
9154     case elfcpp::R_ARM_GOT_PREL:
9155       gold_assert(have_got_offset);
9156       // Get the address origin for GOT PLT, which is allocated right
9157       // after the GOT section, to calculate an absolute address of
9158       // the symbol GOT entry (got_origin + got_offset).
9159       Arm_address got_origin;
9160       got_origin = target->got_plt_section()->address();
9161       reloc_status = Arm_relocate_functions::got_prel(view,
9162 						      got_origin + got_offset,
9163 						      address);
9164       break;
9165 
9166     case elfcpp::R_ARM_PLT32:
9167     case elfcpp::R_ARM_CALL:
9168     case elfcpp::R_ARM_JUMP24:
9169     case elfcpp::R_ARM_XPC25:
9170       gold_assert(gsym == NULL
9171 		  || gsym->has_plt_offset()
9172 		  || gsym->final_value_is_known()
9173 		  || (gsym->is_defined()
9174 		      && !gsym->is_from_dynobj()
9175 		      && !gsym->is_preemptible()));
9176       reloc_status =
9177 	Arm_relocate_functions::arm_branch_common(
9178 	    r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9179 	    thumb_bit, is_weakly_undefined_without_plt);
9180       break;
9181 
9182     case elfcpp::R_ARM_THM_JUMP19:
9183       reloc_status =
9184 	Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9185 					   thumb_bit);
9186       break;
9187 
9188     case elfcpp::R_ARM_THM_JUMP6:
9189       reloc_status =
9190 	Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9191       break;
9192 
9193     case elfcpp::R_ARM_THM_JUMP8:
9194       reloc_status =
9195 	Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9196       break;
9197 
9198     case elfcpp::R_ARM_THM_JUMP11:
9199       reloc_status =
9200 	Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9201       break;
9202 
9203     case elfcpp::R_ARM_PREL31:
9204       reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9205 						    address, thumb_bit);
9206       break;
9207 
9208     case elfcpp::R_ARM_V4BX:
9209       if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9210 	{
9211 	  const bool is_v4bx_interworking =
9212 	      (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9213 	  reloc_status =
9214 	    Arm_relocate_functions::v4bx(relinfo, view, object, address,
9215 					 is_v4bx_interworking);
9216 	}
9217       break;
9218 
9219     case elfcpp::R_ARM_THM_PC8:
9220       reloc_status =
9221 	Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9222       break;
9223 
9224     case elfcpp::R_ARM_THM_PC12:
9225       reloc_status =
9226 	Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9227       break;
9228 
9229     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9230       reloc_status =
9231 	Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9232 					  thumb_bit);
9233       break;
9234 
9235     case elfcpp::R_ARM_ALU_PC_G0_NC:
9236     case elfcpp::R_ARM_ALU_PC_G0:
9237     case elfcpp::R_ARM_ALU_PC_G1_NC:
9238     case elfcpp::R_ARM_ALU_PC_G1:
9239     case elfcpp::R_ARM_ALU_PC_G2:
9240     case elfcpp::R_ARM_ALU_SB_G0_NC:
9241     case elfcpp::R_ARM_ALU_SB_G0:
9242     case elfcpp::R_ARM_ALU_SB_G1_NC:
9243     case elfcpp::R_ARM_ALU_SB_G1:
9244     case elfcpp::R_ARM_ALU_SB_G2:
9245       reloc_status =
9246 	Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9247 					    reloc_property->group_index(),
9248 					    relative_address_base,
9249 					    thumb_bit, check_overflow);
9250       break;
9251 
9252     case elfcpp::R_ARM_LDR_PC_G0:
9253     case elfcpp::R_ARM_LDR_PC_G1:
9254     case elfcpp::R_ARM_LDR_PC_G2:
9255     case elfcpp::R_ARM_LDR_SB_G0:
9256     case elfcpp::R_ARM_LDR_SB_G1:
9257     case elfcpp::R_ARM_LDR_SB_G2:
9258       reloc_status =
9259 	  Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9260 					      reloc_property->group_index(),
9261 					      relative_address_base);
9262       break;
9263 
9264     case elfcpp::R_ARM_LDRS_PC_G0:
9265     case elfcpp::R_ARM_LDRS_PC_G1:
9266     case elfcpp::R_ARM_LDRS_PC_G2:
9267     case elfcpp::R_ARM_LDRS_SB_G0:
9268     case elfcpp::R_ARM_LDRS_SB_G1:
9269     case elfcpp::R_ARM_LDRS_SB_G2:
9270       reloc_status =
9271 	  Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9272 					       reloc_property->group_index(),
9273 					       relative_address_base);
9274       break;
9275 
9276     case elfcpp::R_ARM_LDC_PC_G0:
9277     case elfcpp::R_ARM_LDC_PC_G1:
9278     case elfcpp::R_ARM_LDC_PC_G2:
9279     case elfcpp::R_ARM_LDC_SB_G0:
9280     case elfcpp::R_ARM_LDC_SB_G1:
9281     case elfcpp::R_ARM_LDC_SB_G2:
9282       reloc_status =
9283 	  Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9284 					      reloc_property->group_index(),
9285 					      relative_address_base);
9286       break;
9287 
9288       // These are initial tls relocs, which are expected when
9289       // linking.
9290     case elfcpp::R_ARM_TLS_GD32:	// Global-dynamic
9291     case elfcpp::R_ARM_TLS_LDM32:	// Local-dynamic
9292     case elfcpp::R_ARM_TLS_LDO32:	// Alternate local-dynamic
9293     case elfcpp::R_ARM_TLS_IE32:	// Initial-exec
9294     case elfcpp::R_ARM_TLS_LE32:	// Local-exec
9295       reloc_status =
9296 	this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9297 			   view, address, view_size);
9298       break;
9299 
9300     // The known and unknown unsupported and/or deprecated relocations.
9301     case elfcpp::R_ARM_PC24:
9302     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9303     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9304     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9305     default:
9306       // Just silently leave the method. We should get an appropriate error
9307       // message in the scan methods.
9308       break;
9309     }
9310 
9311   // Report any errors.
9312   switch (reloc_status)
9313     {
9314     case Arm_relocate_functions::STATUS_OKAY:
9315       break;
9316     case Arm_relocate_functions::STATUS_OVERFLOW:
9317       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9318 			     _("relocation overflow in %s"),
9319 			     reloc_property->name().c_str());
9320       break;
9321     case Arm_relocate_functions::STATUS_BAD_RELOC:
9322       gold_error_at_location(
9323 	relinfo,
9324 	relnum,
9325 	rel.get_r_offset(),
9326 	_("unexpected opcode while processing relocation %s"),
9327 	reloc_property->name().c_str());
9328       break;
9329     default:
9330       gold_unreachable();
9331     }
9332 
9333   return true;
9334 }
9335 
9336 // Perform a TLS relocation.
9337 
9338 template<bool big_endian>
9339 inline typename Arm_relocate_functions<big_endian>::Status
9340 Target_arm<big_endian>::Relocate::relocate_tls(
9341     const Relocate_info<32, big_endian>* relinfo,
9342     Target_arm<big_endian>* target,
9343     size_t relnum,
9344     const elfcpp::Rel<32, big_endian>& rel,
9345     unsigned int r_type,
9346     const Sized_symbol<32>* gsym,
9347     const Symbol_value<32>* psymval,
9348     unsigned char* view,
9349     elfcpp::Elf_types<32>::Elf_Addr address,
9350     section_size_type /*view_size*/ )
9351 {
9352   typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9353   typedef Relocate_functions<32, big_endian> RelocFuncs;
9354   Output_segment* tls_segment = relinfo->layout->tls_segment();
9355 
9356   const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9357 
9358   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9359 
9360   const bool is_final = (gsym == NULL
9361 			 ? !parameters->options().shared()
9362 			 : gsym->final_value_is_known());
9363   const tls::Tls_optimization optimized_type
9364       = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9365   switch (r_type)
9366     {
9367     case elfcpp::R_ARM_TLS_GD32:	// Global-dynamic
9368 	{
9369 	  unsigned int got_type = GOT_TYPE_TLS_PAIR;
9370 	  unsigned int got_offset;
9371 	  if (gsym != NULL)
9372 	    {
9373 	      gold_assert(gsym->has_got_offset(got_type));
9374 	      got_offset = gsym->got_offset(got_type) - target->got_size();
9375 	    }
9376 	  else
9377 	    {
9378 	      unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9379 	      gold_assert(object->local_has_got_offset(r_sym, got_type));
9380 	      got_offset = (object->local_got_offset(r_sym, got_type)
9381 			    - target->got_size());
9382 	    }
9383 	  if (optimized_type == tls::TLSOPT_NONE)
9384 	    {
9385 	      Arm_address got_entry =
9386 		target->got_plt_section()->address() + got_offset;
9387 
9388 	      // Relocate the field with the PC relative offset of the pair of
9389 	      // GOT entries.
9390 	      RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9391 	      return ArmRelocFuncs::STATUS_OKAY;
9392 	    }
9393 	}
9394       break;
9395 
9396     case elfcpp::R_ARM_TLS_LDM32:	// Local-dynamic
9397       if (optimized_type == tls::TLSOPT_NONE)
9398 	{
9399 	  // Relocate the field with the offset of the GOT entry for
9400 	  // the module index.
9401 	  unsigned int got_offset;
9402 	  got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9403 			- target->got_size());
9404 	  Arm_address got_entry =
9405 	    target->got_plt_section()->address() + got_offset;
9406 
9407 	  // Relocate the field with the PC relative offset of the pair of
9408 	  // GOT entries.
9409 	  RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9410 	  return ArmRelocFuncs::STATUS_OKAY;
9411 	}
9412       break;
9413 
9414     case elfcpp::R_ARM_TLS_LDO32:	// Alternate local-dynamic
9415       RelocFuncs::rel32_unaligned(view, value);
9416       return ArmRelocFuncs::STATUS_OKAY;
9417 
9418     case elfcpp::R_ARM_TLS_IE32:	// Initial-exec
9419       if (optimized_type == tls::TLSOPT_NONE)
9420 	{
9421 	  // Relocate the field with the offset of the GOT entry for
9422 	  // the tp-relative offset of the symbol.
9423 	  unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9424 	  unsigned int got_offset;
9425 	  if (gsym != NULL)
9426 	    {
9427 	      gold_assert(gsym->has_got_offset(got_type));
9428 	      got_offset = gsym->got_offset(got_type);
9429 	    }
9430 	  else
9431 	    {
9432 	      unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9433 	      gold_assert(object->local_has_got_offset(r_sym, got_type));
9434 	      got_offset = object->local_got_offset(r_sym, got_type);
9435 	    }
9436 
9437 	  // All GOT offsets are relative to the end of the GOT.
9438 	  got_offset -= target->got_size();
9439 
9440 	  Arm_address got_entry =
9441 	    target->got_plt_section()->address() + got_offset;
9442 
9443 	  // Relocate the field with the PC relative offset of the GOT entry.
9444 	  RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9445 	  return ArmRelocFuncs::STATUS_OKAY;
9446 	}
9447       break;
9448 
9449     case elfcpp::R_ARM_TLS_LE32:	// Local-exec
9450       // If we're creating a shared library, a dynamic relocation will
9451       // have been created for this location, so do not apply it now.
9452       if (!parameters->options().shared())
9453 	{
9454 	  gold_assert(tls_segment != NULL);
9455 
9456 	  // $tp points to the TCB, which is followed by the TLS, so we
9457 	  // need to add TCB size to the offset.
9458 	  Arm_address aligned_tcb_size =
9459 	    align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9460 	  RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9461 
9462 	}
9463       return ArmRelocFuncs::STATUS_OKAY;
9464 
9465     default:
9466       gold_unreachable();
9467     }
9468 
9469   gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9470 			 _("unsupported reloc %u"),
9471 			 r_type);
9472   return ArmRelocFuncs::STATUS_BAD_RELOC;
9473 }
9474 
9475 // Relocate section data.
9476 
9477 template<bool big_endian>
9478 void
9479 Target_arm<big_endian>::relocate_section(
9480     const Relocate_info<32, big_endian>* relinfo,
9481     unsigned int sh_type,
9482     const unsigned char* prelocs,
9483     size_t reloc_count,
9484     Output_section* output_section,
9485     bool needs_special_offset_handling,
9486     unsigned char* view,
9487     Arm_address address,
9488     section_size_type view_size,
9489     const Reloc_symbol_changes* reloc_symbol_changes)
9490 {
9491   typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9492   gold_assert(sh_type == elfcpp::SHT_REL);
9493 
9494   // See if we are relocating a relaxed input section.  If so, the view
9495   // covers the whole output section and we need to adjust accordingly.
9496   if (needs_special_offset_handling)
9497     {
9498       const Output_relaxed_input_section* poris =
9499 	output_section->find_relaxed_input_section(relinfo->object,
9500 						   relinfo->data_shndx);
9501       if (poris != NULL)
9502 	{
9503 	  Arm_address section_address = poris->address();
9504 	  section_size_type section_size = poris->data_size();
9505 
9506 	  gold_assert((section_address >= address)
9507 		      && ((section_address + section_size)
9508 			  <= (address + view_size)));
9509 
9510 	  off_t offset = section_address - address;
9511 	  view += offset;
9512 	  address += offset;
9513 	  view_size = section_size;
9514 	}
9515     }
9516 
9517   gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9518 			 Arm_relocate>(
9519     relinfo,
9520     this,
9521     prelocs,
9522     reloc_count,
9523     output_section,
9524     needs_special_offset_handling,
9525     view,
9526     address,
9527     view_size,
9528     reloc_symbol_changes);
9529 }
9530 
9531 // Return the size of a relocation while scanning during a relocatable
9532 // link.
9533 
9534 template<bool big_endian>
9535 unsigned int
9536 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9537     unsigned int r_type,
9538     Relobj* object)
9539 {
9540   r_type = get_real_reloc_type(r_type);
9541   const Arm_reloc_property* arp =
9542       arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9543   if (arp != NULL)
9544     return arp->size();
9545   else
9546     {
9547       std::string reloc_name =
9548 	arm_reloc_property_table->reloc_name_in_error_message(r_type);
9549       gold_error(_("%s: unexpected %s in object file"),
9550 		 object->name().c_str(), reloc_name.c_str());
9551       return 0;
9552     }
9553 }
9554 
9555 // Scan the relocs during a relocatable link.
9556 
9557 template<bool big_endian>
9558 void
9559 Target_arm<big_endian>::scan_relocatable_relocs(
9560     Symbol_table* symtab,
9561     Layout* layout,
9562     Sized_relobj_file<32, big_endian>* object,
9563     unsigned int data_shndx,
9564     unsigned int sh_type,
9565     const unsigned char* prelocs,
9566     size_t reloc_count,
9567     Output_section* output_section,
9568     bool needs_special_offset_handling,
9569     size_t local_symbol_count,
9570     const unsigned char* plocal_symbols,
9571     Relocatable_relocs* rr)
9572 {
9573   gold_assert(sh_type == elfcpp::SHT_REL);
9574 
9575   typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9576     Relocatable_size_for_reloc> Scan_relocatable_relocs;
9577 
9578   gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9579       Scan_relocatable_relocs>(
9580     symtab,
9581     layout,
9582     object,
9583     data_shndx,
9584     prelocs,
9585     reloc_count,
9586     output_section,
9587     needs_special_offset_handling,
9588     local_symbol_count,
9589     plocal_symbols,
9590     rr);
9591 }
9592 
9593 // Relocate a section during a relocatable link.
9594 
9595 template<bool big_endian>
9596 void
9597 Target_arm<big_endian>::relocate_for_relocatable(
9598     const Relocate_info<32, big_endian>* relinfo,
9599     unsigned int sh_type,
9600     const unsigned char* prelocs,
9601     size_t reloc_count,
9602     Output_section* output_section,
9603     typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
9604     const Relocatable_relocs* rr,
9605     unsigned char* view,
9606     Arm_address view_address,
9607     section_size_type view_size,
9608     unsigned char* reloc_view,
9609     section_size_type reloc_view_size)
9610 {
9611   gold_assert(sh_type == elfcpp::SHT_REL);
9612 
9613   gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9614     relinfo,
9615     prelocs,
9616     reloc_count,
9617     output_section,
9618     offset_in_output_section,
9619     rr,
9620     view,
9621     view_address,
9622     view_size,
9623     reloc_view,
9624     reloc_view_size);
9625 }
9626 
9627 // Perform target-specific processing in a relocatable link.  This is
9628 // only used if we use the relocation strategy RELOC_SPECIAL.
9629 
9630 template<bool big_endian>
9631 void
9632 Target_arm<big_endian>::relocate_special_relocatable(
9633     const Relocate_info<32, big_endian>* relinfo,
9634     unsigned int sh_type,
9635     const unsigned char* preloc_in,
9636     size_t relnum,
9637     Output_section* output_section,
9638     typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
9639     unsigned char* view,
9640     elfcpp::Elf_types<32>::Elf_Addr view_address,
9641     section_size_type,
9642     unsigned char* preloc_out)
9643 {
9644   // We can only handle REL type relocation sections.
9645   gold_assert(sh_type == elfcpp::SHT_REL);
9646 
9647   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9648   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9649     Reltype_write;
9650   const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9651 
9652   const Arm_relobj<big_endian>* object =
9653     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9654   const unsigned int local_count = object->local_symbol_count();
9655 
9656   Reltype reloc(preloc_in);
9657   Reltype_write reloc_write(preloc_out);
9658 
9659   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9660   const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9661   const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9662 
9663   const Arm_reloc_property* arp =
9664     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9665   gold_assert(arp != NULL);
9666 
9667   // Get the new symbol index.
9668   // We only use RELOC_SPECIAL strategy in local relocations.
9669   gold_assert(r_sym < local_count);
9670 
9671   // We are adjusting a section symbol.  We need to find
9672   // the symbol table index of the section symbol for
9673   // the output section corresponding to input section
9674   // in which this symbol is defined.
9675   bool is_ordinary;
9676   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9677   gold_assert(is_ordinary);
9678   Output_section* os = object->output_section(shndx);
9679   gold_assert(os != NULL);
9680   gold_assert(os->needs_symtab_index());
9681   unsigned int new_symndx = os->symtab_index();
9682 
9683   // Get the new offset--the location in the output section where
9684   // this relocation should be applied.
9685 
9686   Arm_address offset = reloc.get_r_offset();
9687   Arm_address new_offset;
9688   if (offset_in_output_section != invalid_address)
9689     new_offset = offset + offset_in_output_section;
9690   else
9691     {
9692       section_offset_type sot_offset =
9693 	  convert_types<section_offset_type, Arm_address>(offset);
9694       section_offset_type new_sot_offset =
9695 	  output_section->output_offset(object, relinfo->data_shndx,
9696 					sot_offset);
9697       gold_assert(new_sot_offset != -1);
9698       new_offset = new_sot_offset;
9699     }
9700 
9701   // In an object file, r_offset is an offset within the section.
9702   // In an executable or dynamic object, generated by
9703   // --emit-relocs, r_offset is an absolute address.
9704   if (!parameters->options().relocatable())
9705     {
9706       new_offset += view_address;
9707       if (offset_in_output_section != invalid_address)
9708 	new_offset -= offset_in_output_section;
9709     }
9710 
9711   reloc_write.put_r_offset(new_offset);
9712   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9713 
9714   // Handle the reloc addend.
9715   // The relocation uses a section symbol in the input file.
9716   // We are adjusting it to use a section symbol in the output
9717   // file.  The input section symbol refers to some address in
9718   // the input section.  We need the relocation in the output
9719   // file to refer to that same address.  This adjustment to
9720   // the addend is the same calculation we use for a simple
9721   // absolute relocation for the input section symbol.
9722 
9723   const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9724 
9725   // Handle THUMB bit.
9726   Symbol_value<32> symval;
9727   Arm_address thumb_bit =
9728      object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9729   if (thumb_bit != 0
9730       && arp->uses_thumb_bit()
9731       && ((psymval->value(object, 0) & 1) != 0))
9732     {
9733       Arm_address stripped_value =
9734 	psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9735       symval.set_output_value(stripped_value);
9736       psymval = &symval;
9737     }
9738 
9739   unsigned char* paddend = view + offset;
9740   typename Arm_relocate_functions<big_endian>::Status reloc_status =
9741 	Arm_relocate_functions<big_endian>::STATUS_OKAY;
9742   switch (r_type)
9743     {
9744     case elfcpp::R_ARM_ABS8:
9745       reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9746 							      psymval);
9747       break;
9748 
9749     case elfcpp::R_ARM_ABS12:
9750       reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9751 							       psymval);
9752       break;
9753 
9754     case elfcpp::R_ARM_ABS16:
9755       reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9756 							       psymval);
9757       break;
9758 
9759     case elfcpp::R_ARM_THM_ABS5:
9760       reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9761 								  object,
9762 								  psymval);
9763       break;
9764 
9765     case elfcpp::R_ARM_MOVW_ABS_NC:
9766     case elfcpp::R_ARM_MOVW_PREL_NC:
9767     case elfcpp::R_ARM_MOVW_BREL_NC:
9768     case elfcpp::R_ARM_MOVW_BREL:
9769       reloc_status = Arm_relocate_functions<big_endian>::movw(
9770 	  paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9771       break;
9772 
9773     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9774     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9775     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9776     case elfcpp::R_ARM_THM_MOVW_BREL:
9777       reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9778 	  paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9779       break;
9780 
9781     case elfcpp::R_ARM_THM_CALL:
9782     case elfcpp::R_ARM_THM_XPC22:
9783     case elfcpp::R_ARM_THM_JUMP24:
9784       reloc_status =
9785 	Arm_relocate_functions<big_endian>::thumb_branch_common(
9786 	    r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9787 	    false);
9788       break;
9789 
9790     case elfcpp::R_ARM_PLT32:
9791     case elfcpp::R_ARM_CALL:
9792     case elfcpp::R_ARM_JUMP24:
9793     case elfcpp::R_ARM_XPC25:
9794       reloc_status =
9795 	Arm_relocate_functions<big_endian>::arm_branch_common(
9796 	    r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9797 	    false);
9798       break;
9799 
9800     case elfcpp::R_ARM_THM_JUMP19:
9801       reloc_status =
9802 	Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9803 						       psymval, 0, thumb_bit);
9804       break;
9805 
9806     case elfcpp::R_ARM_THM_JUMP6:
9807       reloc_status =
9808 	Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9809 						      0);
9810       break;
9811 
9812     case elfcpp::R_ARM_THM_JUMP8:
9813       reloc_status =
9814 	Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9815 						      0);
9816       break;
9817 
9818     case elfcpp::R_ARM_THM_JUMP11:
9819       reloc_status =
9820 	Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9821 						       0);
9822       break;
9823 
9824     case elfcpp::R_ARM_PREL31:
9825       reloc_status =
9826 	Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9827 						   thumb_bit);
9828       break;
9829 
9830     case elfcpp::R_ARM_THM_PC8:
9831       reloc_status =
9832 	Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9833 						    0);
9834       break;
9835 
9836     case elfcpp::R_ARM_THM_PC12:
9837       reloc_status =
9838 	Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9839 						     0);
9840       break;
9841 
9842     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9843       reloc_status =
9844 	Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9845 						      0, thumb_bit);
9846       break;
9847 
9848     // These relocation truncate relocation results so we cannot handle them
9849     // in a relocatable link.
9850     case elfcpp::R_ARM_MOVT_ABS:
9851     case elfcpp::R_ARM_THM_MOVT_ABS:
9852     case elfcpp::R_ARM_MOVT_PREL:
9853     case elfcpp::R_ARM_MOVT_BREL:
9854     case elfcpp::R_ARM_THM_MOVT_PREL:
9855     case elfcpp::R_ARM_THM_MOVT_BREL:
9856     case elfcpp::R_ARM_ALU_PC_G0_NC:
9857     case elfcpp::R_ARM_ALU_PC_G0:
9858     case elfcpp::R_ARM_ALU_PC_G1_NC:
9859     case elfcpp::R_ARM_ALU_PC_G1:
9860     case elfcpp::R_ARM_ALU_PC_G2:
9861     case elfcpp::R_ARM_ALU_SB_G0_NC:
9862     case elfcpp::R_ARM_ALU_SB_G0:
9863     case elfcpp::R_ARM_ALU_SB_G1_NC:
9864     case elfcpp::R_ARM_ALU_SB_G1:
9865     case elfcpp::R_ARM_ALU_SB_G2:
9866     case elfcpp::R_ARM_LDR_PC_G0:
9867     case elfcpp::R_ARM_LDR_PC_G1:
9868     case elfcpp::R_ARM_LDR_PC_G2:
9869     case elfcpp::R_ARM_LDR_SB_G0:
9870     case elfcpp::R_ARM_LDR_SB_G1:
9871     case elfcpp::R_ARM_LDR_SB_G2:
9872     case elfcpp::R_ARM_LDRS_PC_G0:
9873     case elfcpp::R_ARM_LDRS_PC_G1:
9874     case elfcpp::R_ARM_LDRS_PC_G2:
9875     case elfcpp::R_ARM_LDRS_SB_G0:
9876     case elfcpp::R_ARM_LDRS_SB_G1:
9877     case elfcpp::R_ARM_LDRS_SB_G2:
9878     case elfcpp::R_ARM_LDC_PC_G0:
9879     case elfcpp::R_ARM_LDC_PC_G1:
9880     case elfcpp::R_ARM_LDC_PC_G2:
9881     case elfcpp::R_ARM_LDC_SB_G0:
9882     case elfcpp::R_ARM_LDC_SB_G1:
9883     case elfcpp::R_ARM_LDC_SB_G2:
9884       gold_error(_("cannot handle %s in a relocatable link"),
9885 		 arp->name().c_str());
9886       break;
9887 
9888     default:
9889       gold_unreachable();
9890     }
9891 
9892   // Report any errors.
9893   switch (reloc_status)
9894     {
9895     case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9896       break;
9897     case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9898       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9899 			     _("relocation overflow in %s"),
9900 			     arp->name().c_str());
9901       break;
9902     case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9903       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9904 	_("unexpected opcode while processing relocation %s"),
9905 	arp->name().c_str());
9906       break;
9907     default:
9908       gold_unreachable();
9909     }
9910 }
9911 
9912 // Return the value to use for a dynamic symbol which requires special
9913 // treatment.  This is how we support equality comparisons of function
9914 // pointers across shared library boundaries, as described in the
9915 // processor specific ABI supplement.
9916 
9917 template<bool big_endian>
9918 uint64_t
9919 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9920 {
9921   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9922   return this->plt_section()->address() + gsym->plt_offset();
9923 }
9924 
9925 // Map platform-specific relocs to real relocs
9926 //
9927 template<bool big_endian>
9928 unsigned int
9929 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9930 {
9931   switch (r_type)
9932     {
9933     case elfcpp::R_ARM_TARGET1:
9934       // This is either R_ARM_ABS32 or R_ARM_REL32;
9935       return elfcpp::R_ARM_ABS32;
9936 
9937     case elfcpp::R_ARM_TARGET2:
9938       // This can be any reloc type but usually is R_ARM_GOT_PREL
9939       return elfcpp::R_ARM_GOT_PREL;
9940 
9941     default:
9942       return r_type;
9943     }
9944 }
9945 
9946 // Whether if two EABI versions V1 and V2 are compatible.
9947 
9948 template<bool big_endian>
9949 bool
9950 Target_arm<big_endian>::are_eabi_versions_compatible(
9951     elfcpp::Elf_Word v1,
9952     elfcpp::Elf_Word v2)
9953 {
9954   // v4 and v5 are the same spec before and after it was released,
9955   // so allow mixing them.
9956   if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9957       || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9958       || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9959     return true;
9960 
9961   return v1 == v2;
9962 }
9963 
9964 // Combine FLAGS from an input object called NAME and the processor-specific
9965 // flags in the ELF header of the output.  Much of this is adapted from the
9966 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9967 // in bfd/elf32-arm.c.
9968 
9969 template<bool big_endian>
9970 void
9971 Target_arm<big_endian>::merge_processor_specific_flags(
9972     const std::string& name,
9973     elfcpp::Elf_Word flags)
9974 {
9975   if (this->are_processor_specific_flags_set())
9976     {
9977       elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9978 
9979       // Nothing to merge if flags equal to those in output.
9980       if (flags == out_flags)
9981 	return;
9982 
9983       // Complain about various flag mismatches.
9984       elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9985       elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9986       if (!this->are_eabi_versions_compatible(version1, version2)
9987 	  && parameters->options().warn_mismatch())
9988 	gold_error(_("Source object %s has EABI version %d but output has "
9989 		     "EABI version %d."),
9990 		   name.c_str(),
9991 		   (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9992 		   (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9993     }
9994   else
9995     {
9996       // If the input is the default architecture and had the default
9997       // flags then do not bother setting the flags for the output
9998       // architecture, instead allow future merges to do this.  If no
9999       // future merges ever set these flags then they will retain their
10000       // uninitialised values, which surprise surprise, correspond
10001       // to the default values.
10002       if (flags == 0)
10003 	return;
10004 
10005       // This is the first time, just copy the flags.
10006       // We only copy the EABI version for now.
10007       this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10008     }
10009 }
10010 
10011 // Adjust ELF file header.
10012 template<bool big_endian>
10013 void
10014 Target_arm<big_endian>::do_adjust_elf_header(
10015     unsigned char* view,
10016     int len) const
10017 {
10018   gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10019 
10020   elfcpp::Ehdr<32, big_endian> ehdr(view);
10021   unsigned char e_ident[elfcpp::EI_NIDENT];
10022   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10023 
10024   if (elfcpp::arm_eabi_version(this->processor_specific_flags())
10025       == elfcpp::EF_ARM_EABI_UNKNOWN)
10026     e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10027   else
10028     e_ident[elfcpp::EI_OSABI] = 0;
10029   e_ident[elfcpp::EI_ABIVERSION] = 0;
10030 
10031   // FIXME: Do EF_ARM_BE8 adjustment.
10032 
10033   elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10034   oehdr.put_e_ident(e_ident);
10035 }
10036 
10037 // do_make_elf_object to override the same function in the base class.
10038 // We need to use a target-specific sub-class of
10039 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10040 // Hence we need to have our own ELF object creation.
10041 
10042 template<bool big_endian>
10043 Object*
10044 Target_arm<big_endian>::do_make_elf_object(
10045     const std::string& name,
10046     Input_file* input_file,
10047     off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10048 {
10049   int et = ehdr.get_e_type();
10050   // ET_EXEC files are valid input for --just-symbols/-R,
10051   // and we treat them as relocatable objects.
10052   if (et == elfcpp::ET_REL
10053       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10054     {
10055       Arm_relobj<big_endian>* obj =
10056 	new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10057       obj->setup();
10058       return obj;
10059     }
10060   else if (et == elfcpp::ET_DYN)
10061     {
10062       Sized_dynobj<32, big_endian>* obj =
10063 	new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10064       obj->setup();
10065       return obj;
10066     }
10067   else
10068     {
10069       gold_error(_("%s: unsupported ELF file type %d"),
10070 		 name.c_str(), et);
10071       return NULL;
10072     }
10073 }
10074 
10075 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10076 // Returns -1 if no architecture could be read.
10077 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10078 
10079 template<bool big_endian>
10080 int
10081 Target_arm<big_endian>::get_secondary_compatible_arch(
10082     const Attributes_section_data* pasd)
10083 {
10084   const Object_attribute* known_attributes =
10085     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10086 
10087   // Note: the tag and its argument below are uleb128 values, though
10088   // currently-defined values fit in one byte for each.
10089   const std::string& sv =
10090     known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10091   if (sv.size() == 2
10092       && sv.data()[0] == elfcpp::Tag_CPU_arch
10093       && (sv.data()[1] & 128) != 128)
10094    return sv.data()[1];
10095 
10096   // This tag is "safely ignorable", so don't complain if it looks funny.
10097   return -1;
10098 }
10099 
10100 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10101 // The tag is removed if ARCH is -1.
10102 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10103 
10104 template<bool big_endian>
10105 void
10106 Target_arm<big_endian>::set_secondary_compatible_arch(
10107     Attributes_section_data* pasd,
10108     int arch)
10109 {
10110   Object_attribute* known_attributes =
10111     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10112 
10113   if (arch == -1)
10114     {
10115       known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10116       return;
10117     }
10118 
10119   // Note: the tag and its argument below are uleb128 values, though
10120   // currently-defined values fit in one byte for each.
10121   char sv[3];
10122   sv[0] = elfcpp::Tag_CPU_arch;
10123   gold_assert(arch != 0);
10124   sv[1] = arch;
10125   sv[2] = '\0';
10126 
10127   known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10128 }
10129 
10130 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10131 // into account.
10132 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10133 
10134 template<bool big_endian>
10135 int
10136 Target_arm<big_endian>::tag_cpu_arch_combine(
10137     const char* name,
10138     int oldtag,
10139     int* secondary_compat_out,
10140     int newtag,
10141     int secondary_compat)
10142 {
10143 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10144   static const int v6t2[] =
10145     {
10146       T(V6T2),   // PRE_V4.
10147       T(V6T2),   // V4.
10148       T(V6T2),   // V4T.
10149       T(V6T2),   // V5T.
10150       T(V6T2),   // V5TE.
10151       T(V6T2),   // V5TEJ.
10152       T(V6T2),   // V6.
10153       T(V7),     // V6KZ.
10154       T(V6T2)    // V6T2.
10155     };
10156   static const int v6k[] =
10157     {
10158       T(V6K),    // PRE_V4.
10159       T(V6K),    // V4.
10160       T(V6K),    // V4T.
10161       T(V6K),    // V5T.
10162       T(V6K),    // V5TE.
10163       T(V6K),    // V5TEJ.
10164       T(V6K),    // V6.
10165       T(V6KZ),   // V6KZ.
10166       T(V7),     // V6T2.
10167       T(V6K)     // V6K.
10168     };
10169   static const int v7[] =
10170     {
10171       T(V7),     // PRE_V4.
10172       T(V7),     // V4.
10173       T(V7),     // V4T.
10174       T(V7),     // V5T.
10175       T(V7),     // V5TE.
10176       T(V7),     // V5TEJ.
10177       T(V7),     // V6.
10178       T(V7),     // V6KZ.
10179       T(V7),     // V6T2.
10180       T(V7),     // V6K.
10181       T(V7)      // V7.
10182     };
10183   static const int v6_m[] =
10184     {
10185       -1,        // PRE_V4.
10186       -1,        // V4.
10187       T(V6K),    // V4T.
10188       T(V6K),    // V5T.
10189       T(V6K),    // V5TE.
10190       T(V6K),    // V5TEJ.
10191       T(V6K),    // V6.
10192       T(V6KZ),   // V6KZ.
10193       T(V7),     // V6T2.
10194       T(V6K),    // V6K.
10195       T(V7),     // V7.
10196       T(V6_M)    // V6_M.
10197     };
10198   static const int v6s_m[] =
10199     {
10200       -1,        // PRE_V4.
10201       -1,        // V4.
10202       T(V6K),    // V4T.
10203       T(V6K),    // V5T.
10204       T(V6K),    // V5TE.
10205       T(V6K),    // V5TEJ.
10206       T(V6K),    // V6.
10207       T(V6KZ),   // V6KZ.
10208       T(V7),     // V6T2.
10209       T(V6K),    // V6K.
10210       T(V7),     // V7.
10211       T(V6S_M),  // V6_M.
10212       T(V6S_M)   // V6S_M.
10213     };
10214   static const int v7e_m[] =
10215     {
10216       -1,	// PRE_V4.
10217       -1,	// V4.
10218       T(V7E_M),	// V4T.
10219       T(V7E_M),	// V5T.
10220       T(V7E_M),	// V5TE.
10221       T(V7E_M),	// V5TEJ.
10222       T(V7E_M),	// V6.
10223       T(V7E_M),	// V6KZ.
10224       T(V7E_M),	// V6T2.
10225       T(V7E_M),	// V6K.
10226       T(V7E_M),	// V7.
10227       T(V7E_M),	// V6_M.
10228       T(V7E_M),	// V6S_M.
10229       T(V7E_M)	// V7E_M.
10230     };
10231   static const int v4t_plus_v6_m[] =
10232     {
10233       -1,		// PRE_V4.
10234       -1,		// V4.
10235       T(V4T),		// V4T.
10236       T(V5T),		// V5T.
10237       T(V5TE),		// V5TE.
10238       T(V5TEJ),		// V5TEJ.
10239       T(V6),		// V6.
10240       T(V6KZ),		// V6KZ.
10241       T(V6T2),		// V6T2.
10242       T(V6K),		// V6K.
10243       T(V7),		// V7.
10244       T(V6_M),		// V6_M.
10245       T(V6S_M),		// V6S_M.
10246       T(V7E_M),		// V7E_M.
10247       T(V4T_PLUS_V6_M)	// V4T plus V6_M.
10248     };
10249   static const int* comb[] =
10250     {
10251       v6t2,
10252       v6k,
10253       v7,
10254       v6_m,
10255       v6s_m,
10256       v7e_m,
10257       // Pseudo-architecture.
10258       v4t_plus_v6_m
10259     };
10260 
10261   // Check we've not got a higher architecture than we know about.
10262 
10263   if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10264     {
10265       gold_error(_("%s: unknown CPU architecture"), name);
10266       return -1;
10267     }
10268 
10269   // Override old tag if we have a Tag_also_compatible_with on the output.
10270 
10271   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10272       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10273     oldtag = T(V4T_PLUS_V6_M);
10274 
10275   // And override the new tag if we have a Tag_also_compatible_with on the
10276   // input.
10277 
10278   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10279       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10280     newtag = T(V4T_PLUS_V6_M);
10281 
10282   // Architectures before V6KZ add features monotonically.
10283   int tagh = std::max(oldtag, newtag);
10284   if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10285     return tagh;
10286 
10287   int tagl = std::min(oldtag, newtag);
10288   int result = comb[tagh - T(V6T2)][tagl];
10289 
10290   // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10291   // as the canonical version.
10292   if (result == T(V4T_PLUS_V6_M))
10293     {
10294       result = T(V4T);
10295       *secondary_compat_out = T(V6_M);
10296     }
10297   else
10298     *secondary_compat_out = -1;
10299 
10300   if (result == -1)
10301     {
10302       gold_error(_("%s: conflicting CPU architectures %d/%d"),
10303 		 name, oldtag, newtag);
10304       return -1;
10305     }
10306 
10307   return result;
10308 #undef T
10309 }
10310 
10311 // Helper to print AEABI enum tag value.
10312 
10313 template<bool big_endian>
10314 std::string
10315 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10316 {
10317   static const char* aeabi_enum_names[] =
10318     { "", "variable-size", "32-bit", "" };
10319   const size_t aeabi_enum_names_size =
10320     sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10321 
10322   if (value < aeabi_enum_names_size)
10323     return std::string(aeabi_enum_names[value]);
10324   else
10325     {
10326       char buffer[100];
10327       sprintf(buffer, "<unknown value %u>", value);
10328       return std::string(buffer);
10329     }
10330 }
10331 
10332 // Return the string value to store in TAG_CPU_name.
10333 
10334 template<bool big_endian>
10335 std::string
10336 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10337 {
10338   static const char* name_table[] = {
10339     // These aren't real CPU names, but we can't guess
10340     // that from the architecture version alone.
10341    "Pre v4",
10342    "ARM v4",
10343    "ARM v4T",
10344    "ARM v5T",
10345    "ARM v5TE",
10346    "ARM v5TEJ",
10347    "ARM v6",
10348    "ARM v6KZ",
10349    "ARM v6T2",
10350    "ARM v6K",
10351    "ARM v7",
10352    "ARM v6-M",
10353    "ARM v6S-M",
10354    "ARM v7E-M"
10355  };
10356  const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10357 
10358   if (value < name_table_size)
10359     return std::string(name_table[value]);
10360   else
10361     {
10362       char buffer[100];
10363       sprintf(buffer, "<unknown CPU value %u>", value);
10364       return std::string(buffer);
10365     }
10366 }
10367 
10368 // Merge object attributes from input file called NAME with those of the
10369 // output.  The input object attributes are in the object pointed by PASD.
10370 
10371 template<bool big_endian>
10372 void
10373 Target_arm<big_endian>::merge_object_attributes(
10374     const char* name,
10375     const Attributes_section_data* pasd)
10376 {
10377   // Return if there is no attributes section data.
10378   if (pasd == NULL)
10379     return;
10380 
10381   // If output has no object attributes, just copy.
10382   const int vendor = Object_attribute::OBJ_ATTR_PROC;
10383   if (this->attributes_section_data_ == NULL)
10384     {
10385       this->attributes_section_data_ = new Attributes_section_data(*pasd);
10386       Object_attribute* out_attr =
10387 	this->attributes_section_data_->known_attributes(vendor);
10388 
10389       // We do not output objects with Tag_MPextension_use_legacy - we move
10390       //  the attribute's value to Tag_MPextension_use.  */
10391       if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10392 	{
10393 	  if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10394 	      && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10395 		!= out_attr[elfcpp::Tag_MPextension_use].int_value())
10396 	    {
10397 	      gold_error(_("%s has both the current and legacy "
10398 			   "Tag_MPextension_use attributes"),
10399 			 name);
10400 	    }
10401 
10402 	  out_attr[elfcpp::Tag_MPextension_use] =
10403 	    out_attr[elfcpp::Tag_MPextension_use_legacy];
10404 	  out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10405 	  out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10406 	}
10407 
10408       return;
10409     }
10410 
10411   const Object_attribute* in_attr = pasd->known_attributes(vendor);
10412   Object_attribute* out_attr =
10413     this->attributes_section_data_->known_attributes(vendor);
10414 
10415   // This needs to happen before Tag_ABI_FP_number_model is merged.  */
10416   if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10417       != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10418     {
10419       // Ignore mismatches if the object doesn't use floating point.  */
10420       if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10421 	out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10422 	    in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10423       else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10424 	       && parameters->options().warn_mismatch())
10425 	gold_error(_("%s uses VFP register arguments, output does not"),
10426 		   name);
10427     }
10428 
10429   for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10430     {
10431       // Merge this attribute with existing attributes.
10432       switch (i)
10433 	{
10434 	case elfcpp::Tag_CPU_raw_name:
10435 	case elfcpp::Tag_CPU_name:
10436 	  // These are merged after Tag_CPU_arch.
10437 	  break;
10438 
10439 	case elfcpp::Tag_ABI_optimization_goals:
10440 	case elfcpp::Tag_ABI_FP_optimization_goals:
10441 	  // Use the first value seen.
10442 	  break;
10443 
10444 	case elfcpp::Tag_CPU_arch:
10445 	  {
10446 	    unsigned int saved_out_attr = out_attr->int_value();
10447 	    // Merge Tag_CPU_arch and Tag_also_compatible_with.
10448 	    int secondary_compat =
10449 	      this->get_secondary_compatible_arch(pasd);
10450 	    int secondary_compat_out =
10451 	      this->get_secondary_compatible_arch(
10452 		  this->attributes_section_data_);
10453 	    out_attr[i].set_int_value(
10454 		tag_cpu_arch_combine(name, out_attr[i].int_value(),
10455 				     &secondary_compat_out,
10456 				     in_attr[i].int_value(),
10457 				     secondary_compat));
10458 	    this->set_secondary_compatible_arch(this->attributes_section_data_,
10459 						secondary_compat_out);
10460 
10461 	    // Merge Tag_CPU_name and Tag_CPU_raw_name.
10462 	    if (out_attr[i].int_value() == saved_out_attr)
10463 	      ; // Leave the names alone.
10464 	    else if (out_attr[i].int_value() == in_attr[i].int_value())
10465 	      {
10466 		// The output architecture has been changed to match the
10467 		// input architecture.  Use the input names.
10468 		out_attr[elfcpp::Tag_CPU_name].set_string_value(
10469 		    in_attr[elfcpp::Tag_CPU_name].string_value());
10470 		out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10471 		    in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10472 	      }
10473 	    else
10474 	      {
10475 		out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10476 		out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10477 	      }
10478 
10479 	    // If we still don't have a value for Tag_CPU_name,
10480 	    // make one up now.  Tag_CPU_raw_name remains blank.
10481 	    if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10482 	      {
10483 		const std::string cpu_name =
10484 		  this->tag_cpu_name_value(out_attr[i].int_value());
10485 		// FIXME:  If we see an unknown CPU, this will be set
10486 		// to "<unknown CPU n>", where n is the attribute value.
10487 		// This is different from BFD, which leaves the name alone.
10488 		out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10489 	      }
10490 	  }
10491 	  break;
10492 
10493 	case elfcpp::Tag_ARM_ISA_use:
10494 	case elfcpp::Tag_THUMB_ISA_use:
10495 	case elfcpp::Tag_WMMX_arch:
10496 	case elfcpp::Tag_Advanced_SIMD_arch:
10497 	  // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10498 	case elfcpp::Tag_ABI_FP_rounding:
10499 	case elfcpp::Tag_ABI_FP_exceptions:
10500 	case elfcpp::Tag_ABI_FP_user_exceptions:
10501 	case elfcpp::Tag_ABI_FP_number_model:
10502 	case elfcpp::Tag_VFP_HP_extension:
10503 	case elfcpp::Tag_CPU_unaligned_access:
10504 	case elfcpp::Tag_T2EE_use:
10505 	case elfcpp::Tag_Virtualization_use:
10506 	case elfcpp::Tag_MPextension_use:
10507 	  // Use the largest value specified.
10508 	  if (in_attr[i].int_value() > out_attr[i].int_value())
10509 	    out_attr[i].set_int_value(in_attr[i].int_value());
10510 	  break;
10511 
10512 	case elfcpp::Tag_ABI_align8_preserved:
10513 	case elfcpp::Tag_ABI_PCS_RO_data:
10514 	  // Use the smallest value specified.
10515 	  if (in_attr[i].int_value() < out_attr[i].int_value())
10516 	    out_attr[i].set_int_value(in_attr[i].int_value());
10517 	  break;
10518 
10519 	case elfcpp::Tag_ABI_align8_needed:
10520 	  if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10521 	      && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10522 		  || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10523 		      == 0)))
10524 	    {
10525 	      // This error message should be enabled once all non-conforming
10526 	      // binaries in the toolchain have had the attributes set
10527 	      // properly.
10528 	      // gold_error(_("output 8-byte data alignment conflicts with %s"),
10529 	      // 	    name);
10530 	    }
10531 	  // Fall through.
10532 	case elfcpp::Tag_ABI_FP_denormal:
10533 	case elfcpp::Tag_ABI_PCS_GOT_use:
10534 	  {
10535 	    // These tags have 0 = don't care, 1 = strong requirement,
10536 	    // 2 = weak requirement.
10537 	    static const int order_021[3] = {0, 2, 1};
10538 
10539 	    // Use the "greatest" from the sequence 0, 2, 1, or the largest
10540 	    // value if greater than 2 (for future-proofing).
10541 	    if ((in_attr[i].int_value() > 2
10542 		 && in_attr[i].int_value() > out_attr[i].int_value())
10543 		|| (in_attr[i].int_value() <= 2
10544 		    && out_attr[i].int_value() <= 2
10545 		    && (order_021[in_attr[i].int_value()]
10546 			> order_021[out_attr[i].int_value()])))
10547 	      out_attr[i].set_int_value(in_attr[i].int_value());
10548 	  }
10549 	  break;
10550 
10551 	case elfcpp::Tag_CPU_arch_profile:
10552 	  if (out_attr[i].int_value() != in_attr[i].int_value())
10553 	    {
10554 	      // 0 will merge with anything.
10555 	      // 'A' and 'S' merge to 'A'.
10556 	      // 'R' and 'S' merge to 'R'.
10557 	      // 'M' and 'A|R|S' is an error.
10558 	      if (out_attr[i].int_value() == 0
10559 		  || (out_attr[i].int_value() == 'S'
10560 		      && (in_attr[i].int_value() == 'A'
10561 			  || in_attr[i].int_value() == 'R')))
10562 		out_attr[i].set_int_value(in_attr[i].int_value());
10563 	      else if (in_attr[i].int_value() == 0
10564 		       || (in_attr[i].int_value() == 'S'
10565 			   && (out_attr[i].int_value() == 'A'
10566 			       || out_attr[i].int_value() == 'R')))
10567 		; // Do nothing.
10568 	      else if (parameters->options().warn_mismatch())
10569 		{
10570 		  gold_error
10571 		    (_("conflicting architecture profiles %c/%c"),
10572 		     in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10573 		     out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10574 		}
10575 	    }
10576 	  break;
10577 	case elfcpp::Tag_VFP_arch:
10578 	    {
10579 	      static const struct
10580 	      {
10581 		  int ver;
10582 		  int regs;
10583 	      } vfp_versions[7] =
10584 		{
10585 		  {0, 0},
10586 		  {1, 16},
10587 		  {2, 16},
10588 		  {3, 32},
10589 		  {3, 16},
10590 		  {4, 32},
10591 		  {4, 16}
10592 		};
10593 
10594 	      // Values greater than 6 aren't defined, so just pick the
10595 	      // biggest.
10596 	      if (in_attr[i].int_value() > 6
10597 		  && in_attr[i].int_value() > out_attr[i].int_value())
10598 		{
10599 		  *out_attr = *in_attr;
10600 		  break;
10601 		}
10602 	      // The output uses the superset of input features
10603 	      // (ISA version) and registers.
10604 	      int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10605 				 vfp_versions[out_attr[i].int_value()].ver);
10606 	      int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10607 				  vfp_versions[out_attr[i].int_value()].regs);
10608 	      // This assumes all possible supersets are also a valid
10609 	      // options.
10610 	      int newval;
10611 	      for (newval = 6; newval > 0; newval--)
10612 		{
10613 		  if (regs == vfp_versions[newval].regs
10614 		      && ver == vfp_versions[newval].ver)
10615 		    break;
10616 		}
10617 	      out_attr[i].set_int_value(newval);
10618 	    }
10619 	  break;
10620 	case elfcpp::Tag_PCS_config:
10621 	  if (out_attr[i].int_value() == 0)
10622 	    out_attr[i].set_int_value(in_attr[i].int_value());
10623 	  else if (in_attr[i].int_value() != 0
10624 		   && out_attr[i].int_value() != 0
10625 		   && parameters->options().warn_mismatch())
10626 	    {
10627 	      // It's sometimes ok to mix different configs, so this is only
10628 	      // a warning.
10629 	      gold_warning(_("%s: conflicting platform configuration"), name);
10630 	    }
10631 	  break;
10632 	case elfcpp::Tag_ABI_PCS_R9_use:
10633 	  if (in_attr[i].int_value() != out_attr[i].int_value()
10634 	      && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10635 	      && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10636 	      && parameters->options().warn_mismatch())
10637 	    {
10638 	      gold_error(_("%s: conflicting use of R9"), name);
10639 	    }
10640 	  if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10641 	    out_attr[i].set_int_value(in_attr[i].int_value());
10642 	  break;
10643 	case elfcpp::Tag_ABI_PCS_RW_data:
10644 	  if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10645 	      && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10646 		  != elfcpp::AEABI_R9_SB)
10647 	      && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10648 		  != elfcpp::AEABI_R9_unused)
10649 	      && parameters->options().warn_mismatch())
10650 	    {
10651 	      gold_error(_("%s: SB relative addressing conflicts with use "
10652 			   "of R9"),
10653 			   name);
10654 	    }
10655 	  // Use the smallest value specified.
10656 	  if (in_attr[i].int_value() < out_attr[i].int_value())
10657 	    out_attr[i].set_int_value(in_attr[i].int_value());
10658 	  break;
10659 	case elfcpp::Tag_ABI_PCS_wchar_t:
10660 	  if (out_attr[i].int_value()
10661 	      && in_attr[i].int_value()
10662 	      && out_attr[i].int_value() != in_attr[i].int_value()
10663 	      && parameters->options().warn_mismatch()
10664 	      && parameters->options().wchar_size_warning())
10665 	    {
10666 	      gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10667 			     "use %u-byte wchar_t; use of wchar_t values "
10668 			     "across objects may fail"),
10669 			   name, in_attr[i].int_value(),
10670 			   out_attr[i].int_value());
10671 	    }
10672 	  else if (in_attr[i].int_value() && !out_attr[i].int_value())
10673 	    out_attr[i].set_int_value(in_attr[i].int_value());
10674 	  break;
10675 	case elfcpp::Tag_ABI_enum_size:
10676 	  if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10677 	    {
10678 	      if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10679 		  || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10680 		{
10681 		  // The existing object is compatible with anything.
10682 		  // Use whatever requirements the new object has.
10683 		  out_attr[i].set_int_value(in_attr[i].int_value());
10684 		}
10685 	      else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10686 		       && out_attr[i].int_value() != in_attr[i].int_value()
10687 		       && parameters->options().warn_mismatch()
10688 		       && parameters->options().enum_size_warning())
10689 		{
10690 		  unsigned int in_value = in_attr[i].int_value();
10691 		  unsigned int out_value = out_attr[i].int_value();
10692 		  gold_warning(_("%s uses %s enums yet the output is to use "
10693 				 "%s enums; use of enum values across objects "
10694 				 "may fail"),
10695 			       name,
10696 			       this->aeabi_enum_name(in_value).c_str(),
10697 			       this->aeabi_enum_name(out_value).c_str());
10698 		}
10699 	    }
10700 	  break;
10701 	case elfcpp::Tag_ABI_VFP_args:
10702 	  // Already done.
10703 	  break;
10704 	case elfcpp::Tag_ABI_WMMX_args:
10705 	  if (in_attr[i].int_value() != out_attr[i].int_value()
10706 	      && parameters->options().warn_mismatch())
10707 	    {
10708 	      gold_error(_("%s uses iWMMXt register arguments, output does "
10709 			   "not"),
10710 			 name);
10711 	    }
10712 	  break;
10713 	case Object_attribute::Tag_compatibility:
10714 	  // Merged in target-independent code.
10715 	  break;
10716 	case elfcpp::Tag_ABI_HardFP_use:
10717 	  // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10718 	  if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10719 	      || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10720 	    out_attr[i].set_int_value(3);
10721 	  else if (in_attr[i].int_value() > out_attr[i].int_value())
10722 	    out_attr[i].set_int_value(in_attr[i].int_value());
10723 	  break;
10724 	case elfcpp::Tag_ABI_FP_16bit_format:
10725 	  if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10726 	    {
10727 	      if (in_attr[i].int_value() != out_attr[i].int_value()
10728 		  && parameters->options().warn_mismatch())
10729 		gold_error(_("fp16 format mismatch between %s and output"),
10730 			   name);
10731 	    }
10732 	  if (in_attr[i].int_value() != 0)
10733 	    out_attr[i].set_int_value(in_attr[i].int_value());
10734 	  break;
10735 
10736 	case elfcpp::Tag_DIV_use:
10737 	  // This tag is set to zero if we can use UDIV and SDIV in Thumb
10738 	  // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10739 	  // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10740 	  // CPU.  We will merge as follows: If the input attribute's value
10741 	  // is one then the output attribute's value remains unchanged.  If
10742 	  // the input attribute's value is zero or two then if the output
10743 	  // attribute's value is one the output value is set to the input
10744 	  // value, otherwise the output value must be the same as the
10745 	  // inputs.  */
10746 	  if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10747 	    {
10748 	      if (in_attr[i].int_value() != out_attr[i].int_value())
10749 		{
10750 		  gold_error(_("DIV usage mismatch between %s and output"),
10751 			     name);
10752 		}
10753 	    }
10754 
10755 	  if (in_attr[i].int_value() != 1)
10756 	    out_attr[i].set_int_value(in_attr[i].int_value());
10757 
10758 	  break;
10759 
10760 	case elfcpp::Tag_MPextension_use_legacy:
10761 	  // We don't output objects with Tag_MPextension_use_legacy - we
10762 	  // move the value to Tag_MPextension_use.
10763 	  if (in_attr[i].int_value() != 0
10764 	      && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10765 	    {
10766 	      if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10767 		  != in_attr[i].int_value())
10768 		{
10769 		  gold_error(_("%s has has both the current and legacy "
10770 			       "Tag_MPextension_use attributes"),
10771 			     name);
10772 		}
10773 	    }
10774 
10775 	  if (in_attr[i].int_value()
10776 	      > out_attr[elfcpp::Tag_MPextension_use].int_value())
10777 	    out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10778 
10779 	  break;
10780 
10781 	case elfcpp::Tag_nodefaults:
10782 	  // This tag is set if it exists, but the value is unused (and is
10783 	  // typically zero).  We don't actually need to do anything here -
10784 	  // the merge happens automatically when the type flags are merged
10785 	  // below.
10786 	  break;
10787 	case elfcpp::Tag_also_compatible_with:
10788 	  // Already done in Tag_CPU_arch.
10789 	  break;
10790 	case elfcpp::Tag_conformance:
10791 	  // Keep the attribute if it matches.  Throw it away otherwise.
10792 	  // No attribute means no claim to conform.
10793 	  if (in_attr[i].string_value() != out_attr[i].string_value())
10794 	    out_attr[i].set_string_value("");
10795 	  break;
10796 
10797 	default:
10798 	  {
10799 	    const char* err_object = NULL;
10800 
10801 	    // The "known_obj_attributes" table does contain some undefined
10802 	    // attributes.  Ensure that there are unused.
10803 	    if (out_attr[i].int_value() != 0
10804 		|| out_attr[i].string_value() != "")
10805 	      err_object = "output";
10806 	    else if (in_attr[i].int_value() != 0
10807 		     || in_attr[i].string_value() != "")
10808 	      err_object = name;
10809 
10810 	    if (err_object != NULL
10811 		&& parameters->options().warn_mismatch())
10812 	      {
10813 		// Attribute numbers >=64 (mod 128) can be safely ignored.
10814 		if ((i & 127) < 64)
10815 		  gold_error(_("%s: unknown mandatory EABI object attribute "
10816 			       "%d"),
10817 			     err_object, i);
10818 		else
10819 		  gold_warning(_("%s: unknown EABI object attribute %d"),
10820 			       err_object, i);
10821 	      }
10822 
10823 	    // Only pass on attributes that match in both inputs.
10824 	    if (!in_attr[i].matches(out_attr[i]))
10825 	      {
10826 		out_attr[i].set_int_value(0);
10827 		out_attr[i].set_string_value("");
10828 	      }
10829 	  }
10830 	}
10831 
10832       // If out_attr was copied from in_attr then it won't have a type yet.
10833       if (in_attr[i].type() && !out_attr[i].type())
10834 	out_attr[i].set_type(in_attr[i].type());
10835     }
10836 
10837   // Merge Tag_compatibility attributes and any common GNU ones.
10838   this->attributes_section_data_->merge(name, pasd);
10839 
10840   // Check for any attributes not known on ARM.
10841   typedef Vendor_object_attributes::Other_attributes Other_attributes;
10842   const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10843   Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10844   Other_attributes* out_other_attributes =
10845     this->attributes_section_data_->other_attributes(vendor);
10846   Other_attributes::iterator out_iter = out_other_attributes->begin();
10847 
10848   while (in_iter != in_other_attributes->end()
10849 	 || out_iter != out_other_attributes->end())
10850     {
10851       const char* err_object = NULL;
10852       int err_tag = 0;
10853 
10854       // The tags for each list are in numerical order.
10855       // If the tags are equal, then merge.
10856       if (out_iter != out_other_attributes->end()
10857 	  && (in_iter == in_other_attributes->end()
10858 	      || in_iter->first > out_iter->first))
10859 	{
10860 	  // This attribute only exists in output.  We can't merge, and we
10861 	  // don't know what the tag means, so delete it.
10862 	  err_object = "output";
10863 	  err_tag = out_iter->first;
10864 	  int saved_tag = out_iter->first;
10865 	  delete out_iter->second;
10866 	  out_other_attributes->erase(out_iter);
10867 	  out_iter = out_other_attributes->upper_bound(saved_tag);
10868 	}
10869       else if (in_iter != in_other_attributes->end()
10870 	       && (out_iter != out_other_attributes->end()
10871 		   || in_iter->first < out_iter->first))
10872 	{
10873 	  // This attribute only exists in input. We can't merge, and we
10874 	  // don't know what the tag means, so ignore it.
10875 	  err_object = name;
10876 	  err_tag = in_iter->first;
10877 	  ++in_iter;
10878 	}
10879       else // The tags are equal.
10880 	{
10881 	  // As present, all attributes in the list are unknown, and
10882 	  // therefore can't be merged meaningfully.
10883 	  err_object = "output";
10884 	  err_tag = out_iter->first;
10885 
10886 	  //  Only pass on attributes that match in both inputs.
10887 	  if (!in_iter->second->matches(*(out_iter->second)))
10888 	    {
10889 	      // No match.  Delete the attribute.
10890 	      int saved_tag = out_iter->first;
10891 	      delete out_iter->second;
10892 	      out_other_attributes->erase(out_iter);
10893 	      out_iter = out_other_attributes->upper_bound(saved_tag);
10894 	    }
10895 	  else
10896 	    {
10897 	      // Matched.  Keep the attribute and move to the next.
10898 	      ++out_iter;
10899 	      ++in_iter;
10900 	    }
10901 	}
10902 
10903       if (err_object && parameters->options().warn_mismatch())
10904 	{
10905 	  // Attribute numbers >=64 (mod 128) can be safely ignored.  */
10906 	  if ((err_tag & 127) < 64)
10907 	    {
10908 	      gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10909 			 err_object, err_tag);
10910 	    }
10911 	  else
10912 	    {
10913 	      gold_warning(_("%s: unknown EABI object attribute %d"),
10914 			   err_object, err_tag);
10915 	    }
10916 	}
10917     }
10918 }
10919 
10920 // Stub-generation methods for Target_arm.
10921 
10922 // Make a new Arm_input_section object.
10923 
10924 template<bool big_endian>
10925 Arm_input_section<big_endian>*
10926 Target_arm<big_endian>::new_arm_input_section(
10927     Relobj* relobj,
10928     unsigned int shndx)
10929 {
10930   Section_id sid(relobj, shndx);
10931 
10932   Arm_input_section<big_endian>* arm_input_section =
10933     new Arm_input_section<big_endian>(relobj, shndx);
10934   arm_input_section->init();
10935 
10936   // Register new Arm_input_section in map for look-up.
10937   std::pair<typename Arm_input_section_map::iterator, bool> ins =
10938     this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10939 
10940   // Make sure that it we have not created another Arm_input_section
10941   // for this input section already.
10942   gold_assert(ins.second);
10943 
10944   return arm_input_section;
10945 }
10946 
10947 // Find the Arm_input_section object corresponding to the SHNDX-th input
10948 // section of RELOBJ.
10949 
10950 template<bool big_endian>
10951 Arm_input_section<big_endian>*
10952 Target_arm<big_endian>::find_arm_input_section(
10953     Relobj* relobj,
10954     unsigned int shndx) const
10955 {
10956   Section_id sid(relobj, shndx);
10957   typename Arm_input_section_map::const_iterator p =
10958     this->arm_input_section_map_.find(sid);
10959   return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10960 }
10961 
10962 // Make a new stub table.
10963 
10964 template<bool big_endian>
10965 Stub_table<big_endian>*
10966 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10967 {
10968   Stub_table<big_endian>* stub_table =
10969     new Stub_table<big_endian>(owner);
10970   this->stub_tables_.push_back(stub_table);
10971 
10972   stub_table->set_address(owner->address() + owner->data_size());
10973   stub_table->set_file_offset(owner->offset() + owner->data_size());
10974   stub_table->finalize_data_size();
10975 
10976   return stub_table;
10977 }
10978 
10979 // Scan a relocation for stub generation.
10980 
10981 template<bool big_endian>
10982 void
10983 Target_arm<big_endian>::scan_reloc_for_stub(
10984     const Relocate_info<32, big_endian>* relinfo,
10985     unsigned int r_type,
10986     const Sized_symbol<32>* gsym,
10987     unsigned int r_sym,
10988     const Symbol_value<32>* psymval,
10989     elfcpp::Elf_types<32>::Elf_Swxword addend,
10990     Arm_address address)
10991 {
10992   const Arm_relobj<big_endian>* arm_relobj =
10993     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10994 
10995   bool target_is_thumb;
10996   Symbol_value<32> symval;
10997   if (gsym != NULL)
10998     {
10999       // This is a global symbol.  Determine if we use PLT and if the
11000       // final target is THUMB.
11001       if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11002 	{
11003 	  // This uses a PLT, change the symbol value.
11004 	  symval.set_output_value(this->plt_section()->address()
11005 				  + gsym->plt_offset());
11006 	  psymval = &symval;
11007 	  target_is_thumb = false;
11008 	}
11009       else if (gsym->is_undefined())
11010 	// There is no need to generate a stub symbol is undefined.
11011 	return;
11012       else
11013 	{
11014 	  target_is_thumb =
11015 	    ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11016 	     || (gsym->type() == elfcpp::STT_FUNC
11017 		 && !gsym->is_undefined()
11018 		 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11019 	}
11020     }
11021   else
11022     {
11023       // This is a local symbol.  Determine if the final target is THUMB.
11024       target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11025     }
11026 
11027   // Strip LSB if this points to a THUMB target.
11028   const Arm_reloc_property* reloc_property =
11029     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11030   gold_assert(reloc_property != NULL);
11031   if (target_is_thumb
11032       && reloc_property->uses_thumb_bit()
11033       && ((psymval->value(arm_relobj, 0) & 1) != 0))
11034     {
11035       Arm_address stripped_value =
11036 	psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11037       symval.set_output_value(stripped_value);
11038       psymval = &symval;
11039     }
11040 
11041   // Get the symbol value.
11042   Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11043 
11044   // Owing to pipelining, the PC relative branches below actually skip
11045   // two instructions when the branch offset is 0.
11046   Arm_address destination;
11047   switch (r_type)
11048     {
11049     case elfcpp::R_ARM_CALL:
11050     case elfcpp::R_ARM_JUMP24:
11051     case elfcpp::R_ARM_PLT32:
11052       // ARM branches.
11053       destination = value + addend + 8;
11054       break;
11055     case elfcpp::R_ARM_THM_CALL:
11056     case elfcpp::R_ARM_THM_XPC22:
11057     case elfcpp::R_ARM_THM_JUMP24:
11058     case elfcpp::R_ARM_THM_JUMP19:
11059       // THUMB branches.
11060       destination = value + addend + 4;
11061       break;
11062     default:
11063       gold_unreachable();
11064     }
11065 
11066   Reloc_stub* stub = NULL;
11067   Stub_type stub_type =
11068     Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11069 				    target_is_thumb);
11070   if (stub_type != arm_stub_none)
11071     {
11072       // Try looking up an existing stub from a stub table.
11073       Stub_table<big_endian>* stub_table =
11074 	arm_relobj->stub_table(relinfo->data_shndx);
11075       gold_assert(stub_table != NULL);
11076 
11077       // Locate stub by destination.
11078       Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11079 
11080       // Create a stub if there is not one already
11081       stub = stub_table->find_reloc_stub(stub_key);
11082       if (stub == NULL)
11083 	{
11084 	  // create a new stub and add it to stub table.
11085 	  stub = this->stub_factory().make_reloc_stub(stub_type);
11086 	  stub_table->add_reloc_stub(stub, stub_key);
11087 	}
11088 
11089       // Record the destination address.
11090       stub->set_destination_address(destination
11091 				    | (target_is_thumb ? 1 : 0));
11092     }
11093 
11094   // For Cortex-A8, we need to record a relocation at 4K page boundary.
11095   if (this->fix_cortex_a8_
11096       && (r_type == elfcpp::R_ARM_THM_JUMP24
11097 	  || r_type == elfcpp::R_ARM_THM_JUMP19
11098 	  || r_type == elfcpp::R_ARM_THM_CALL
11099 	  || r_type == elfcpp::R_ARM_THM_XPC22)
11100       && (address & 0xfffU) == 0xffeU)
11101     {
11102       // Found a candidate.  Note we haven't checked the destination is
11103       // within 4K here: if we do so (and don't create a record) we can't
11104       // tell that a branch should have been relocated when scanning later.
11105       this->cortex_a8_relocs_info_[address] =
11106 	new Cortex_a8_reloc(stub, r_type,
11107 			    destination | (target_is_thumb ? 1 : 0));
11108     }
11109 }
11110 
11111 // This function scans a relocation sections for stub generation.
11112 // The template parameter Relocate must be a class type which provides
11113 // a single function, relocate(), which implements the machine
11114 // specific part of a relocation.
11115 
11116 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
11117 // SHT_REL or SHT_RELA.
11118 
11119 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
11120 // of relocs.  OUTPUT_SECTION is the output section.
11121 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11122 // mapped to output offsets.
11123 
11124 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11125 // VIEW_SIZE is the size.  These refer to the input section, unless
11126 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11127 // the output section.
11128 
11129 template<bool big_endian>
11130 template<int sh_type>
11131 void inline
11132 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11133     const Relocate_info<32, big_endian>* relinfo,
11134     const unsigned char* prelocs,
11135     size_t reloc_count,
11136     Output_section* output_section,
11137     bool needs_special_offset_handling,
11138     const unsigned char* view,
11139     elfcpp::Elf_types<32>::Elf_Addr view_address,
11140     section_size_type)
11141 {
11142   typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11143   const int reloc_size =
11144     Reloc_types<sh_type, 32, big_endian>::reloc_size;
11145 
11146   Arm_relobj<big_endian>* arm_object =
11147     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11148   unsigned int local_count = arm_object->local_symbol_count();
11149 
11150   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11151 
11152   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11153     {
11154       Reltype reloc(prelocs);
11155 
11156       typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11157       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11158       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11159 
11160       r_type = this->get_real_reloc_type(r_type);
11161 
11162       // Only a few relocation types need stubs.
11163       if ((r_type != elfcpp::R_ARM_CALL)
11164 	 && (r_type != elfcpp::R_ARM_JUMP24)
11165 	 && (r_type != elfcpp::R_ARM_PLT32)
11166 	 && (r_type != elfcpp::R_ARM_THM_CALL)
11167 	 && (r_type != elfcpp::R_ARM_THM_XPC22)
11168 	 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11169 	 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11170 	 && (r_type != elfcpp::R_ARM_V4BX))
11171 	continue;
11172 
11173       section_offset_type offset =
11174 	convert_to_section_size_type(reloc.get_r_offset());
11175 
11176       if (needs_special_offset_handling)
11177 	{
11178 	  offset = output_section->output_offset(relinfo->object,
11179 						 relinfo->data_shndx,
11180 						 offset);
11181 	  if (offset == -1)
11182 	    continue;
11183 	}
11184 
11185       // Create a v4bx stub if --fix-v4bx-interworking is used.
11186       if (r_type == elfcpp::R_ARM_V4BX)
11187 	{
11188 	  if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11189 	    {
11190 	      // Get the BX instruction.
11191 	      typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11192 	      const Valtype* wv =
11193 		reinterpret_cast<const Valtype*>(view + offset);
11194 	      elfcpp::Elf_types<32>::Elf_Swxword insn =
11195 		elfcpp::Swap<32, big_endian>::readval(wv);
11196 	      const uint32_t reg = (insn & 0xf);
11197 
11198 	      if (reg < 0xf)
11199 		{
11200 		  // Try looking up an existing stub from a stub table.
11201 		  Stub_table<big_endian>* stub_table =
11202 		    arm_object->stub_table(relinfo->data_shndx);
11203 		  gold_assert(stub_table != NULL);
11204 
11205 		  if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11206 		    {
11207 		      // create a new stub and add it to stub table.
11208 		      Arm_v4bx_stub* stub =
11209 			this->stub_factory().make_arm_v4bx_stub(reg);
11210 		      gold_assert(stub != NULL);
11211 		      stub_table->add_arm_v4bx_stub(stub);
11212 		    }
11213 		}
11214 	    }
11215 	  continue;
11216 	}
11217 
11218       // Get the addend.
11219       Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11220       elfcpp::Elf_types<32>::Elf_Swxword addend =
11221 	stub_addend_reader(r_type, view + offset, reloc);
11222 
11223       const Sized_symbol<32>* sym;
11224 
11225       Symbol_value<32> symval;
11226       const Symbol_value<32> *psymval;
11227       bool is_defined_in_discarded_section;
11228       unsigned int shndx;
11229       if (r_sym < local_count)
11230 	{
11231 	  sym = NULL;
11232 	  psymval = arm_object->local_symbol(r_sym);
11233 
11234 	  // If the local symbol belongs to a section we are discarding,
11235 	  // and that section is a debug section, try to find the
11236 	  // corresponding kept section and map this symbol to its
11237 	  // counterpart in the kept section.  The symbol must not
11238 	  // correspond to a section we are folding.
11239 	  bool is_ordinary;
11240 	  shndx = psymval->input_shndx(&is_ordinary);
11241 	  is_defined_in_discarded_section =
11242 	    (is_ordinary
11243 	     && shndx != elfcpp::SHN_UNDEF
11244 	     && !arm_object->is_section_included(shndx)
11245 	     && !relinfo->symtab->is_section_folded(arm_object, shndx));
11246 
11247 	  // We need to compute the would-be final value of this local
11248 	  // symbol.
11249 	  if (!is_defined_in_discarded_section)
11250 	    {
11251 	      typedef Sized_relobj_file<32, big_endian> ObjType;
11252 	      typename ObjType::Compute_final_local_value_status status =
11253 		arm_object->compute_final_local_value(r_sym, psymval, &symval,
11254 						      relinfo->symtab);
11255 	      if (status == ObjType::CFLV_OK)
11256 		{
11257 		  // Currently we cannot handle a branch to a target in
11258 		  // a merged section.  If this is the case, issue an error
11259 		  // and also free the merge symbol value.
11260 		  if (!symval.has_output_value())
11261 		    {
11262 		      const std::string& section_name =
11263 			arm_object->section_name(shndx);
11264 		      arm_object->error(_("cannot handle branch to local %u "
11265 					  "in a merged section %s"),
11266 					r_sym, section_name.c_str());
11267 		    }
11268 		  psymval = &symval;
11269 		}
11270 	      else
11271 		{
11272 		  // We cannot determine the final value.
11273 		  continue;
11274 		}
11275 	    }
11276 	}
11277       else
11278 	{
11279 	  const Symbol* gsym;
11280 	  gsym = arm_object->global_symbol(r_sym);
11281 	  gold_assert(gsym != NULL);
11282 	  if (gsym->is_forwarder())
11283 	    gsym = relinfo->symtab->resolve_forwards(gsym);
11284 
11285 	  sym = static_cast<const Sized_symbol<32>*>(gsym);
11286 	  if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11287 	    symval.set_output_symtab_index(sym->symtab_index());
11288 	  else
11289 	    symval.set_no_output_symtab_entry();
11290 
11291 	  // We need to compute the would-be final value of this global
11292 	  // symbol.
11293 	  const Symbol_table* symtab = relinfo->symtab;
11294 	  const Sized_symbol<32>* sized_symbol =
11295 	    symtab->get_sized_symbol<32>(gsym);
11296 	  Symbol_table::Compute_final_value_status status;
11297 	  Arm_address value =
11298 	    symtab->compute_final_value<32>(sized_symbol, &status);
11299 
11300 	  // Skip this if the symbol has not output section.
11301 	  if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11302 	    continue;
11303 	  symval.set_output_value(value);
11304 
11305 	  if (gsym->type() == elfcpp::STT_TLS)
11306 	    symval.set_is_tls_symbol();
11307 	  else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11308 	    symval.set_is_ifunc_symbol();
11309 	  psymval = &symval;
11310 
11311 	  is_defined_in_discarded_section =
11312 	    (gsym->is_defined_in_discarded_section()
11313 	     && gsym->is_undefined());
11314 	  shndx = 0;
11315 	}
11316 
11317       Symbol_value<32> symval2;
11318       if (is_defined_in_discarded_section)
11319 	{
11320 	  if (comdat_behavior == CB_UNDETERMINED)
11321 	    {
11322 	      std::string name = arm_object->section_name(relinfo->data_shndx);
11323 	      comdat_behavior = get_comdat_behavior(name.c_str());
11324 	    }
11325 	  if (comdat_behavior == CB_PRETEND)
11326 	    {
11327 	      // FIXME: This case does not work for global symbols.
11328 	      // We have no place to store the original section index.
11329 	      // Fortunately this does not matter for comdat sections,
11330 	      // only for sections explicitly discarded by a linker
11331 	      // script.
11332 	      bool found;
11333 	      typename elfcpp::Elf_types<32>::Elf_Addr value =
11334 		arm_object->map_to_kept_section(shndx, &found);
11335 	      if (found)
11336 		symval2.set_output_value(value + psymval->input_value());
11337 	      else
11338 		symval2.set_output_value(0);
11339 	    }
11340 	  else
11341 	    {
11342 	      if (comdat_behavior == CB_WARNING)
11343 		gold_warning_at_location(relinfo, i, offset,
11344 					 _("relocation refers to discarded "
11345 					   "section"));
11346 	      symval2.set_output_value(0);
11347 	    }
11348 	  symval2.set_no_output_symtab_entry();
11349 	  psymval = &symval2;
11350 	}
11351 
11352       // If symbol is a section symbol, we don't know the actual type of
11353       // destination.  Give up.
11354       if (psymval->is_section_symbol())
11355 	continue;
11356 
11357       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11358 				addend, view_address + offset);
11359     }
11360 }
11361 
11362 // Scan an input section for stub generation.
11363 
11364 template<bool big_endian>
11365 void
11366 Target_arm<big_endian>::scan_section_for_stubs(
11367     const Relocate_info<32, big_endian>* relinfo,
11368     unsigned int sh_type,
11369     const unsigned char* prelocs,
11370     size_t reloc_count,
11371     Output_section* output_section,
11372     bool needs_special_offset_handling,
11373     const unsigned char* view,
11374     Arm_address view_address,
11375     section_size_type view_size)
11376 {
11377   if (sh_type == elfcpp::SHT_REL)
11378     this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11379 	relinfo,
11380 	prelocs,
11381 	reloc_count,
11382 	output_section,
11383 	needs_special_offset_handling,
11384 	view,
11385 	view_address,
11386 	view_size);
11387   else if (sh_type == elfcpp::SHT_RELA)
11388     // We do not support RELA type relocations yet.  This is provided for
11389     // completeness.
11390     this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11391 	relinfo,
11392 	prelocs,
11393 	reloc_count,
11394 	output_section,
11395 	needs_special_offset_handling,
11396 	view,
11397 	view_address,
11398 	view_size);
11399   else
11400     gold_unreachable();
11401 }
11402 
11403 // Group input sections for stub generation.
11404 //
11405 // We group input sections in an output section so that the total size,
11406 // including any padding space due to alignment is smaller than GROUP_SIZE
11407 // unless the only input section in group is bigger than GROUP_SIZE already.
11408 // Then an ARM stub table is created to follow the last input section
11409 // in group.  For each group an ARM stub table is created an is placed
11410 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
11411 // extend the group after the stub table.
11412 
11413 template<bool big_endian>
11414 void
11415 Target_arm<big_endian>::group_sections(
11416     Layout* layout,
11417     section_size_type group_size,
11418     bool stubs_always_after_branch,
11419     const Task* task)
11420 {
11421   // Group input sections and insert stub table
11422   Layout::Section_list section_list;
11423   layout->get_allocated_sections(&section_list);
11424   for (Layout::Section_list::const_iterator p = section_list.begin();
11425        p != section_list.end();
11426        ++p)
11427     {
11428       Arm_output_section<big_endian>* output_section =
11429 	Arm_output_section<big_endian>::as_arm_output_section(*p);
11430       output_section->group_sections(group_size, stubs_always_after_branch,
11431 				     this, task);
11432     }
11433 }
11434 
11435 // Relaxation hook.  This is where we do stub generation.
11436 
11437 template<bool big_endian>
11438 bool
11439 Target_arm<big_endian>::do_relax(
11440     int pass,
11441     const Input_objects* input_objects,
11442     Symbol_table* symtab,
11443     Layout* layout,
11444     const Task* task)
11445 {
11446   // No need to generate stubs if this is a relocatable link.
11447   gold_assert(!parameters->options().relocatable());
11448 
11449   // If this is the first pass, we need to group input sections into
11450   // stub groups.
11451   bool done_exidx_fixup = false;
11452   typedef typename Stub_table_list::iterator Stub_table_iterator;
11453   if (pass == 1)
11454     {
11455       // Determine the stub group size.  The group size is the absolute
11456       // value of the parameter --stub-group-size.  If --stub-group-size
11457       // is passed a negative value, we restrict stubs to be always after
11458       // the stubbed branches.
11459       int32_t stub_group_size_param =
11460 	parameters->options().stub_group_size();
11461       bool stubs_always_after_branch = stub_group_size_param < 0;
11462       section_size_type stub_group_size = abs(stub_group_size_param);
11463 
11464       if (stub_group_size == 1)
11465 	{
11466 	  // Default value.
11467 	  // Thumb branch range is +-4MB has to be used as the default
11468 	  // maximum size (a given section can contain both ARM and Thumb
11469 	  // code, so the worst case has to be taken into account).  If we are
11470 	  // fixing cortex-a8 errata, the branch range has to be even smaller,
11471 	  // since wide conditional branch has a range of +-1MB only.
11472 	  //
11473 	  // This value is 48K less than that, which allows for 4096
11474 	  // 12-byte stubs.  If we exceed that, then we will fail to link.
11475 	  // The user will have to relink with an explicit group size
11476 	  // option.
11477 	    stub_group_size = 4145152;
11478 	}
11479 
11480       // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11481       // page as the first half of a 32-bit branch straddling two 4K pages.
11482       // This is a crude way of enforcing that.  In addition, long conditional
11483       // branches of THUMB-2 have a range of +-1M.  If we are fixing cortex-A8
11484       // erratum, limit the group size to  (1M - 12k) to avoid unreachable
11485       // cortex-A8 stubs from long conditional branches.
11486       if (this->fix_cortex_a8_)
11487 	{
11488 	  stubs_always_after_branch = true;
11489 	  const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11490 	  stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11491 	}
11492 
11493       group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11494 
11495       // Also fix .ARM.exidx section coverage.
11496       Arm_output_section<big_endian>* exidx_output_section = NULL;
11497       for (Layout::Section_list::const_iterator p =
11498 	     layout->section_list().begin();
11499 	   p != layout->section_list().end();
11500 	   ++p)
11501 	if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11502 	  {
11503 	    if (exidx_output_section == NULL)
11504 	      exidx_output_section =
11505 		Arm_output_section<big_endian>::as_arm_output_section(*p);
11506 	    else
11507 	      // We cannot handle this now.
11508 	      gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11509 			   "non-relocatable link"),
11510 			  exidx_output_section->name(),
11511 			  (*p)->name());
11512 	  }
11513 
11514       if (exidx_output_section != NULL)
11515 	{
11516 	  this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11517 				   symtab, task);
11518 	  done_exidx_fixup = true;
11519 	}
11520     }
11521   else
11522     {
11523       // If this is not the first pass, addresses and file offsets have
11524       // been reset at this point, set them here.
11525       for (Stub_table_iterator sp = this->stub_tables_.begin();
11526 	   sp != this->stub_tables_.end();
11527 	   ++sp)
11528 	{
11529 	  Arm_input_section<big_endian>* owner = (*sp)->owner();
11530 	  off_t off = align_address(owner->original_size(),
11531 				    (*sp)->addralign());
11532 	  (*sp)->set_address_and_file_offset(owner->address() + off,
11533 					     owner->offset() + off);
11534 	}
11535     }
11536 
11537   // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
11538   // beginning of each relaxation pass, just blow away all the stubs.
11539   // Alternatively, we could selectively remove only the stubs and reloc
11540   // information for code sections that have moved since the last pass.
11541   // That would require more book-keeping.
11542   if (this->fix_cortex_a8_)
11543     {
11544       // Clear all Cortex-A8 reloc information.
11545       for (typename Cortex_a8_relocs_info::const_iterator p =
11546 	     this->cortex_a8_relocs_info_.begin();
11547 	   p != this->cortex_a8_relocs_info_.end();
11548 	   ++p)
11549 	delete p->second;
11550       this->cortex_a8_relocs_info_.clear();
11551 
11552       // Remove all Cortex-A8 stubs.
11553       for (Stub_table_iterator sp = this->stub_tables_.begin();
11554 	   sp != this->stub_tables_.end();
11555 	   ++sp)
11556 	(*sp)->remove_all_cortex_a8_stubs();
11557     }
11558 
11559   // Scan relocs for relocation stubs
11560   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11561        op != input_objects->relobj_end();
11562        ++op)
11563     {
11564       Arm_relobj<big_endian>* arm_relobj =
11565 	Arm_relobj<big_endian>::as_arm_relobj(*op);
11566       // Lock the object so we can read from it.  This is only called
11567       // single-threaded from Layout::finalize, so it is OK to lock.
11568       Task_lock_obj<Object> tl(task, arm_relobj);
11569       arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11570     }
11571 
11572   // Check all stub tables to see if any of them have their data sizes
11573   // or addresses alignments changed.  These are the only things that
11574   // matter.
11575   bool any_stub_table_changed = false;
11576   Unordered_set<const Output_section*> sections_needing_adjustment;
11577   for (Stub_table_iterator sp = this->stub_tables_.begin();
11578        (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11579        ++sp)
11580     {
11581       if ((*sp)->update_data_size_and_addralign())
11582 	{
11583 	  // Update data size of stub table owner.
11584 	  Arm_input_section<big_endian>* owner = (*sp)->owner();
11585 	  uint64_t address = owner->address();
11586 	  off_t offset = owner->offset();
11587 	  owner->reset_address_and_file_offset();
11588 	  owner->set_address_and_file_offset(address, offset);
11589 
11590 	  sections_needing_adjustment.insert(owner->output_section());
11591 	  any_stub_table_changed = true;
11592 	}
11593     }
11594 
11595   // Output_section_data::output_section() returns a const pointer but we
11596   // need to update output sections, so we record all output sections needing
11597   // update above and scan the sections here to find out what sections need
11598   // to be updated.
11599   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11600       p != layout->section_list().end();
11601       ++p)
11602     {
11603       if (sections_needing_adjustment.find(*p)
11604 	  != sections_needing_adjustment.end())
11605 	(*p)->set_section_offsets_need_adjustment();
11606     }
11607 
11608   // Stop relaxation if no EXIDX fix-up and no stub table change.
11609   bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11610 
11611   // Finalize the stubs in the last relaxation pass.
11612   if (!continue_relaxation)
11613     {
11614       for (Stub_table_iterator sp = this->stub_tables_.begin();
11615 	   (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11616 	    ++sp)
11617 	(*sp)->finalize_stubs();
11618 
11619       // Update output local symbol counts of objects if necessary.
11620       for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11621 	   op != input_objects->relobj_end();
11622 	   ++op)
11623 	{
11624 	  Arm_relobj<big_endian>* arm_relobj =
11625 	    Arm_relobj<big_endian>::as_arm_relobj(*op);
11626 
11627 	  // Update output local symbol counts.  We need to discard local
11628 	  // symbols defined in parts of input sections that are discarded by
11629 	  // relaxation.
11630 	  if (arm_relobj->output_local_symbol_count_needs_update())
11631 	    {
11632 	      // We need to lock the object's file to update it.
11633 	      Task_lock_obj<Object> tl(task, arm_relobj);
11634 	      arm_relobj->update_output_local_symbol_count();
11635 	    }
11636 	}
11637     }
11638 
11639   return continue_relaxation;
11640 }
11641 
11642 // Relocate a stub.
11643 
11644 template<bool big_endian>
11645 void
11646 Target_arm<big_endian>::relocate_stub(
11647     Stub* stub,
11648     const Relocate_info<32, big_endian>* relinfo,
11649     Output_section* output_section,
11650     unsigned char* view,
11651     Arm_address address,
11652     section_size_type view_size)
11653 {
11654   Relocate relocate;
11655   const Stub_template* stub_template = stub->stub_template();
11656   for (size_t i = 0; i < stub_template->reloc_count(); i++)
11657     {
11658       size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11659       const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11660 
11661       unsigned int r_type = insn->r_type();
11662       section_size_type reloc_offset = stub_template->reloc_offset(i);
11663       section_size_type reloc_size = insn->size();
11664       gold_assert(reloc_offset + reloc_size <= view_size);
11665 
11666       // This is the address of the stub destination.
11667       Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11668       Symbol_value<32> symval;
11669       symval.set_output_value(target);
11670 
11671       // Synthesize a fake reloc just in case.  We don't have a symbol so
11672       // we use 0.
11673       unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11674       memset(reloc_buffer, 0, sizeof(reloc_buffer));
11675       elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11676       reloc_write.put_r_offset(reloc_offset);
11677       reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11678       elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11679 
11680       relocate.relocate(relinfo, this, output_section,
11681 			this->fake_relnum_for_stubs, rel, r_type,
11682 			NULL, &symval, view + reloc_offset,
11683 			address + reloc_offset, reloc_size);
11684     }
11685 }
11686 
11687 // Determine whether an object attribute tag takes an integer, a
11688 // string or both.
11689 
11690 template<bool big_endian>
11691 int
11692 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11693 {
11694   if (tag == Object_attribute::Tag_compatibility)
11695     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11696 	    | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11697   else if (tag == elfcpp::Tag_nodefaults)
11698     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11699 	    | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11700   else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11701     return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11702   else if (tag < 32)
11703     return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11704   else
11705     return ((tag & 1) != 0
11706 	    ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11707 	    : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11708 }
11709 
11710 // Reorder attributes.
11711 //
11712 // The ABI defines that Tag_conformance should be emitted first, and that
11713 // Tag_nodefaults should be second (if either is defined).  This sets those
11714 // two positions, and bumps up the position of all the remaining tags to
11715 // compensate.
11716 
11717 template<bool big_endian>
11718 int
11719 Target_arm<big_endian>::do_attributes_order(int num) const
11720 {
11721   // Reorder the known object attributes in output.  We want to move
11722   // Tag_conformance to position 4 and Tag_conformance to position 5
11723   // and shift everything between 4 .. Tag_conformance - 1 to make room.
11724   if (num == 4)
11725     return elfcpp::Tag_conformance;
11726   if (num == 5)
11727     return elfcpp::Tag_nodefaults;
11728   if ((num - 2) < elfcpp::Tag_nodefaults)
11729     return num - 2;
11730   if ((num - 1) < elfcpp::Tag_conformance)
11731     return num - 1;
11732   return num;
11733 }
11734 
11735 // Scan a span of THUMB code for Cortex-A8 erratum.
11736 
11737 template<bool big_endian>
11738 void
11739 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11740     Arm_relobj<big_endian>* arm_relobj,
11741     unsigned int shndx,
11742     section_size_type span_start,
11743     section_size_type span_end,
11744     const unsigned char* view,
11745     Arm_address address)
11746 {
11747   // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11748   //
11749   // The opcode is BLX.W, BL.W, B.W, Bcc.W
11750   // The branch target is in the same 4KB region as the
11751   // first half of the branch.
11752   // The instruction before the branch is a 32-bit
11753   // length non-branch instruction.
11754   section_size_type i = span_start;
11755   bool last_was_32bit = false;
11756   bool last_was_branch = false;
11757   while (i < span_end)
11758     {
11759       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11760       const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11761       uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11762       bool is_blx = false, is_b = false;
11763       bool is_bl = false, is_bcc = false;
11764 
11765       bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11766       if (insn_32bit)
11767 	{
11768 	  // Load the rest of the insn (in manual-friendly order).
11769 	  insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11770 
11771 	  // Encoding T4: B<c>.W.
11772 	  is_b = (insn & 0xf800d000U) == 0xf0009000U;
11773 	  // Encoding T1: BL<c>.W.
11774 	  is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11775 	  // Encoding T2: BLX<c>.W.
11776 	  is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11777 	  // Encoding T3: B<c>.W (not permitted in IT block).
11778 	  is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11779 		    && (insn & 0x07f00000U) != 0x03800000U);
11780 	}
11781 
11782       bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11783 
11784       // If this instruction is a 32-bit THUMB branch that crosses a 4K
11785       // page boundary and it follows 32-bit non-branch instruction,
11786       // we need to work around.
11787       if (is_32bit_branch
11788 	  && ((address + i) & 0xfffU) == 0xffeU
11789 	  && last_was_32bit
11790 	  && !last_was_branch)
11791 	{
11792 	  // Check to see if there is a relocation stub for this branch.
11793 	  bool force_target_arm = false;
11794 	  bool force_target_thumb = false;
11795 	  const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11796 	  Cortex_a8_relocs_info::const_iterator p =
11797 	    this->cortex_a8_relocs_info_.find(address + i);
11798 
11799 	  if (p != this->cortex_a8_relocs_info_.end())
11800 	    {
11801 	      cortex_a8_reloc = p->second;
11802 	      bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11803 
11804 	      if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11805 		  && !target_is_thumb)
11806 		force_target_arm = true;
11807 	      else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11808 		       && target_is_thumb)
11809 		force_target_thumb = true;
11810 	    }
11811 
11812 	  off_t offset;
11813 	  Stub_type stub_type = arm_stub_none;
11814 
11815 	  // Check if we have an offending branch instruction.
11816 	  uint16_t upper_insn = (insn >> 16) & 0xffffU;
11817 	  uint16_t lower_insn = insn & 0xffffU;
11818 	  typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11819 
11820 	  if (cortex_a8_reloc != NULL
11821 	      && cortex_a8_reloc->reloc_stub() != NULL)
11822 	    // We've already made a stub for this instruction, e.g.
11823 	    // it's a long branch or a Thumb->ARM stub.  Assume that
11824 	    // stub will suffice to work around the A8 erratum (see
11825 	    // setting of always_after_branch above).
11826 	    ;
11827 	  else if (is_bcc)
11828 	    {
11829 	      offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11830 							      lower_insn);
11831 	      stub_type = arm_stub_a8_veneer_b_cond;
11832 	    }
11833 	  else if (is_b || is_bl || is_blx)
11834 	    {
11835 	      offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11836 							 lower_insn);
11837 	      if (is_blx)
11838 		offset &= ~3;
11839 
11840 	      stub_type = (is_blx
11841 			   ? arm_stub_a8_veneer_blx
11842 			   : (is_bl
11843 			      ? arm_stub_a8_veneer_bl
11844 			      : arm_stub_a8_veneer_b));
11845 	    }
11846 
11847 	  if (stub_type != arm_stub_none)
11848 	    {
11849 	      Arm_address pc_for_insn = address + i + 4;
11850 
11851 	      // The original instruction is a BL, but the target is
11852 	      // an ARM instruction.  If we were not making a stub,
11853 	      // the BL would have been converted to a BLX.  Use the
11854 	      // BLX stub instead in that case.
11855 	      if (this->may_use_v5t_interworking() && force_target_arm
11856 		  && stub_type == arm_stub_a8_veneer_bl)
11857 		{
11858 		  stub_type = arm_stub_a8_veneer_blx;
11859 		  is_blx = true;
11860 		  is_bl = false;
11861 		}
11862 	      // Conversely, if the original instruction was
11863 	      // BLX but the target is Thumb mode, use the BL stub.
11864 	      else if (force_target_thumb
11865 		       && stub_type == arm_stub_a8_veneer_blx)
11866 		{
11867 		  stub_type = arm_stub_a8_veneer_bl;
11868 		  is_blx = false;
11869 		  is_bl = true;
11870 		}
11871 
11872 	      if (is_blx)
11873 		pc_for_insn &= ~3;
11874 
11875 	      // If we found a relocation, use the proper destination,
11876 	      // not the offset in the (unrelocated) instruction.
11877 	      // Note this is always done if we switched the stub type above.
11878 	      if (cortex_a8_reloc != NULL)
11879 		offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11880 
11881 	      Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11882 
11883 	      // Add a new stub if destination address in in the same page.
11884 	      if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11885 		{
11886 		  Cortex_a8_stub* stub =
11887 		    this->stub_factory_.make_cortex_a8_stub(stub_type,
11888 							    arm_relobj, shndx,
11889 							    address + i,
11890 							    target, insn);
11891 		  Stub_table<big_endian>* stub_table =
11892 		    arm_relobj->stub_table(shndx);
11893 		  gold_assert(stub_table != NULL);
11894 		  stub_table->add_cortex_a8_stub(address + i, stub);
11895 		}
11896 	    }
11897 	}
11898 
11899       i += insn_32bit ? 4 : 2;
11900       last_was_32bit = insn_32bit;
11901       last_was_branch = is_32bit_branch;
11902     }
11903 }
11904 
11905 // Apply the Cortex-A8 workaround.
11906 
11907 template<bool big_endian>
11908 void
11909 Target_arm<big_endian>::apply_cortex_a8_workaround(
11910     const Cortex_a8_stub* stub,
11911     Arm_address stub_address,
11912     unsigned char* insn_view,
11913     Arm_address insn_address)
11914 {
11915   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11916   Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11917   Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11918   Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11919   off_t branch_offset = stub_address - (insn_address + 4);
11920 
11921   typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11922   switch (stub->stub_template()->type())
11923     {
11924     case arm_stub_a8_veneer_b_cond:
11925       // For a conditional branch, we re-write it to be an unconditional
11926       // branch to the stub.  We use the THUMB-2 encoding here.
11927       upper_insn = 0xf000U;
11928       lower_insn = 0xb800U;
11929       // Fall through
11930     case arm_stub_a8_veneer_b:
11931     case arm_stub_a8_veneer_bl:
11932     case arm_stub_a8_veneer_blx:
11933       if ((lower_insn & 0x5000U) == 0x4000U)
11934 	// For a BLX instruction, make sure that the relocation is
11935 	// rounded up to a word boundary.  This follows the semantics of
11936 	// the instruction which specifies that bit 1 of the target
11937 	// address will come from bit 1 of the base address.
11938 	branch_offset = (branch_offset + 2) & ~3;
11939 
11940       // Put BRANCH_OFFSET back into the insn.
11941       gold_assert(!Bits<25>::has_overflow32(branch_offset));
11942       upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11943       lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11944       break;
11945 
11946     default:
11947       gold_unreachable();
11948     }
11949 
11950   // Put the relocated value back in the object file:
11951   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11952   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11953 }
11954 
11955 // Target selector for ARM.  Note this is never instantiated directly.
11956 // It's only used in Target_selector_arm_nacl, below.
11957 
11958 template<bool big_endian>
11959 class Target_selector_arm : public Target_selector
11960 {
11961  public:
11962   Target_selector_arm()
11963     : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11964 		      (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11965 		      (big_endian ? "armelfb" : "armelf"))
11966   { }
11967 
11968   Target*
11969   do_instantiate_target()
11970   { return new Target_arm<big_endian>(); }
11971 };
11972 
11973 // Fix .ARM.exidx section coverage.
11974 
11975 template<bool big_endian>
11976 void
11977 Target_arm<big_endian>::fix_exidx_coverage(
11978     Layout* layout,
11979     const Input_objects* input_objects,
11980     Arm_output_section<big_endian>* exidx_section,
11981     Symbol_table* symtab,
11982     const Task* task)
11983 {
11984   // We need to look at all the input sections in output in ascending
11985   // order of of output address.  We do that by building a sorted list
11986   // of output sections by addresses.  Then we looks at the output sections
11987   // in order.  The input sections in an output section are already sorted
11988   // by addresses within the output section.
11989 
11990   typedef std::set<Output_section*, output_section_address_less_than>
11991       Sorted_output_section_list;
11992   Sorted_output_section_list sorted_output_sections;
11993 
11994   // Find out all the output sections of input sections pointed by
11995   // EXIDX input sections.
11996   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11997        p != input_objects->relobj_end();
11998        ++p)
11999     {
12000       Arm_relobj<big_endian>* arm_relobj =
12001 	Arm_relobj<big_endian>::as_arm_relobj(*p);
12002       std::vector<unsigned int> shndx_list;
12003       arm_relobj->get_exidx_shndx_list(&shndx_list);
12004       for (size_t i = 0; i < shndx_list.size(); ++i)
12005 	{
12006 	  const Arm_exidx_input_section* exidx_input_section =
12007 	    arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12008 	  gold_assert(exidx_input_section != NULL);
12009 	  if (!exidx_input_section->has_errors())
12010 	    {
12011 	      unsigned int text_shndx = exidx_input_section->link();
12012 	      Output_section* os = arm_relobj->output_section(text_shndx);
12013 	      if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12014 		sorted_output_sections.insert(os);
12015 	    }
12016 	}
12017     }
12018 
12019   // Go over the output sections in ascending order of output addresses.
12020   typedef typename Arm_output_section<big_endian>::Text_section_list
12021       Text_section_list;
12022   Text_section_list sorted_text_sections;
12023   for (typename Sorted_output_section_list::iterator p =
12024 	sorted_output_sections.begin();
12025       p != sorted_output_sections.end();
12026       ++p)
12027     {
12028       Arm_output_section<big_endian>* arm_output_section =
12029 	Arm_output_section<big_endian>::as_arm_output_section(*p);
12030       arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12031     }
12032 
12033   exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12034 				    merge_exidx_entries(), task);
12035 }
12036 
12037 template<bool big_endian>
12038 void
12039 Target_arm<big_endian>::do_define_standard_symbols(
12040     Symbol_table* symtab,
12041     Layout* layout)
12042 {
12043   // Handle the .ARM.exidx section.
12044   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12045 
12046   if (exidx_section != NULL)
12047     {
12048       // Create __exidx_start and __exidx_end symbols.
12049       symtab->define_in_output_data("__exidx_start",
12050 				    NULL, // version
12051 				    Symbol_table::PREDEFINED,
12052 				    exidx_section,
12053 				    0, // value
12054 				    0, // symsize
12055 				    elfcpp::STT_NOTYPE,
12056 				    elfcpp::STB_GLOBAL,
12057 				    elfcpp::STV_HIDDEN,
12058 				    0, // nonvis
12059 				    false, // offset_is_from_end
12060 				    true); // only_if_ref
12061 
12062       symtab->define_in_output_data("__exidx_end",
12063 				    NULL, // version
12064 				    Symbol_table::PREDEFINED,
12065 				    exidx_section,
12066 				    0, // value
12067 				    0, // symsize
12068 				    elfcpp::STT_NOTYPE,
12069 				    elfcpp::STB_GLOBAL,
12070 				    elfcpp::STV_HIDDEN,
12071 				    0, // nonvis
12072 				    true, // offset_is_from_end
12073 				    true); // only_if_ref
12074     }
12075   else
12076     {
12077       // Define __exidx_start and __exidx_end even when .ARM.exidx
12078       // section is missing to match ld's behaviour.
12079       symtab->define_as_constant("__exidx_start", NULL,
12080 				 Symbol_table::PREDEFINED,
12081 				 0, 0, elfcpp::STT_OBJECT,
12082 				 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12083 				 true, false);
12084       symtab->define_as_constant("__exidx_end", NULL,
12085 				 Symbol_table::PREDEFINED,
12086 				 0, 0, elfcpp::STT_OBJECT,
12087 				 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12088 				 true, false);
12089     }
12090 }
12091 
12092 // NaCl variant.  It uses different PLT contents.
12093 
12094 template<bool big_endian>
12095 class Output_data_plt_arm_nacl;
12096 
12097 template<bool big_endian>
12098 class Target_arm_nacl : public Target_arm<big_endian>
12099 {
12100  public:
12101   Target_arm_nacl()
12102     : Target_arm<big_endian>(&arm_nacl_info)
12103   { }
12104 
12105  protected:
12106   virtual Output_data_plt_arm<big_endian>*
12107   do_make_data_plt(Layout* layout, Output_data_space* got_plt)
12108   { return new Output_data_plt_arm_nacl<big_endian>(layout, got_plt); }
12109 
12110  private:
12111   static const Target::Target_info arm_nacl_info;
12112 };
12113 
12114 template<bool big_endian>
12115 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12116 {
12117   32,			// size
12118   big_endian,		// is_big_endian
12119   elfcpp::EM_ARM,	// machine_code
12120   false,		// has_make_symbol
12121   false,		// has_resolve
12122   false,		// has_code_fill
12123   true,			// is_default_stack_executable
12124   false,		// can_icf_inline_merge_sections
12125   '\0',			// wrap_char
12126   "/lib/ld-nacl-arm.so.1", // dynamic_linker
12127   0x20000,		// default_text_segment_address
12128   0x10000,		// abi_pagesize (overridable by -z max-page-size)
12129   0x10000,		// common_pagesize (overridable by -z common-page-size)
12130   true,                 // isolate_execinstr
12131   0x10000000,           // rosegment_gap
12132   elfcpp::SHN_UNDEF,	// small_common_shndx
12133   elfcpp::SHN_UNDEF,	// large_common_shndx
12134   0,			// small_common_section_flags
12135   0,			// large_common_section_flags
12136   ".ARM.attributes",	// attributes_section
12137   "aeabi"		// attributes_vendor
12138 };
12139 
12140 template<bool big_endian>
12141 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12142 {
12143  public:
12144   Output_data_plt_arm_nacl(Layout* layout, Output_data_space* got_plt)
12145     : Output_data_plt_arm<big_endian>(layout, 16, got_plt)
12146   { }
12147 
12148  protected:
12149   // Return the offset of the first non-reserved PLT entry.
12150   virtual unsigned int
12151   do_first_plt_entry_offset() const
12152   { return sizeof(first_plt_entry); }
12153 
12154   // Return the size of a PLT entry.
12155   virtual unsigned int
12156   do_get_plt_entry_size() const
12157   { return sizeof(plt_entry); }
12158 
12159   virtual void
12160   do_fill_first_plt_entry(unsigned char* pov,
12161 			  Arm_address got_address,
12162 			  Arm_address plt_address);
12163 
12164   virtual void
12165   do_fill_plt_entry(unsigned char* pov,
12166 		    Arm_address got_address,
12167 		    Arm_address plt_address,
12168 		    unsigned int got_offset,
12169 		    unsigned int plt_offset);
12170 
12171  private:
12172   inline uint32_t arm_movw_immediate(uint32_t value)
12173   {
12174     return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12175   }
12176 
12177   inline uint32_t arm_movt_immediate(uint32_t value)
12178   {
12179     return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12180   }
12181 
12182   // Template for the first PLT entry.
12183   static const uint32_t first_plt_entry[16];
12184 
12185   // Template for subsequent PLT entries.
12186   static const uint32_t plt_entry[4];
12187 };
12188 
12189 // The first entry in the PLT.
12190 template<bool big_endian>
12191 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12192 {
12193   // First bundle:
12194   0xe300c000,                           // movw	ip, #:lower16:&GOT[2]-.+8
12195   0xe340c000,                           // movt	ip, #:upper16:&GOT[2]-.+8
12196   0xe08cc00f,                           // add	ip, ip, pc
12197   0xe52dc008,                           // str	ip, [sp, #-8]!
12198   // Second bundle:
12199   0xe3ccc103,                           // bic	ip, ip, #0xc0000000
12200   0xe59cc000,                           // ldr	ip, [ip]
12201   0xe3ccc13f,                           // bic	ip, ip, #0xc000000f
12202   0xe12fff1c,                           // bx	ip
12203   // Third bundle:
12204   0xe320f000,                           // nop
12205   0xe320f000,                           // nop
12206   0xe320f000,                           // nop
12207   // .Lplt_tail:
12208   0xe50dc004,                           // str	ip, [sp, #-4]
12209   // Fourth bundle:
12210   0xe3ccc103,                           // bic	ip, ip, #0xc0000000
12211   0xe59cc000,                           // ldr	ip, [ip]
12212   0xe3ccc13f,                           // bic	ip, ip, #0xc000000f
12213   0xe12fff1c,                           // bx	ip
12214 };
12215 
12216 template<bool big_endian>
12217 void
12218 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12219     unsigned char* pov,
12220     Arm_address got_address,
12221     Arm_address plt_address)
12222 {
12223   // Write first PLT entry.  All but first two words are constants.
12224   const size_t num_first_plt_words = (sizeof(first_plt_entry)
12225 				      / sizeof(first_plt_entry[0]));
12226 
12227   int32_t got_displacement = got_address + 8 - (plt_address + 16);
12228 
12229   elfcpp::Swap<32, big_endian>::writeval
12230     (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12231   elfcpp::Swap<32, big_endian>::writeval
12232     (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12233 
12234   for (size_t i = 2; i < num_first_plt_words; ++i)
12235     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12236 }
12237 
12238 // Subsequent entries in the PLT.
12239 
12240 template<bool big_endian>
12241 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12242 {
12243   0xe300c000,                           // movw	ip, #:lower16:&GOT[n]-.+8
12244   0xe340c000,                           // movt	ip, #:upper16:&GOT[n]-.+8
12245   0xe08cc00f,                           // add	ip, ip, pc
12246   0xea000000,                           // b	.Lplt_tail
12247 };
12248 
12249 template<bool big_endian>
12250 void
12251 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12252     unsigned char* pov,
12253     Arm_address got_address,
12254     Arm_address plt_address,
12255     unsigned int got_offset,
12256     unsigned int plt_offset)
12257 {
12258   // Calculate the displacement between the PLT slot and the
12259   // common tail that's part of the special initial PLT slot.
12260   int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12261 			       - (plt_address + plt_offset
12262 				  + sizeof(plt_entry) + sizeof(uint32_t)));
12263   gold_assert((tail_displacement & 3) == 0);
12264   tail_displacement >>= 2;
12265 
12266   gold_assert ((tail_displacement & 0xff000000) == 0
12267 	       || (-tail_displacement & 0xff000000) == 0);
12268 
12269   // Calculate the displacement between the PLT slot and the entry
12270   // in the GOT.  The offset accounts for the value produced by
12271   // adding to pc in the penultimate instruction of the PLT stub.
12272   const int32_t got_displacement = (got_address + got_offset
12273 				    - (plt_address + sizeof(plt_entry)));
12274 
12275   elfcpp::Swap<32, big_endian>::writeval
12276     (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12277   elfcpp::Swap<32, big_endian>::writeval
12278     (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12279   elfcpp::Swap<32, big_endian>::writeval
12280     (pov + 8, plt_entry[2]);
12281   elfcpp::Swap<32, big_endian>::writeval
12282     (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12283 }
12284 
12285 // Target selectors.
12286 
12287 template<bool big_endian>
12288 class Target_selector_arm_nacl
12289   : public Target_selector_nacl<Target_selector_arm<big_endian>,
12290 				Target_arm_nacl<big_endian> >
12291 {
12292  public:
12293   Target_selector_arm_nacl()
12294     : Target_selector_nacl<Target_selector_arm<big_endian>,
12295 			   Target_arm_nacl<big_endian> >(
12296 	  "arm",
12297 	  big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12298 	  big_endian ? "armelfb_nacl" : "armelf_nacl")
12299   { }
12300 };
12301 
12302 Target_selector_arm_nacl<false> target_selector_arm;
12303 Target_selector_arm_nacl<true> target_selector_armbe;
12304 
12305 } // End anonymous namespace.
12306