1 // arm.cc -- arm target support for gold. 2 3 // Copyright (C) 2009-2020 Free Software Foundation, Inc. 4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code 5 // by Ian Lance Taylor <iant@google.com>. 6 // This file also contains borrowed and adapted code from 7 // bfd/elf32-arm.c. 8 9 // This file is part of gold. 10 11 // This program is free software; you can redistribute it and/or modify 12 // it under the terms of the GNU General Public License as published by 13 // the Free Software Foundation; either version 3 of the License, or 14 // (at your option) any later version. 15 16 // This program is distributed in the hope that it will be useful, 17 // but WITHOUT ANY WARRANTY; without even the implied warranty of 18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 // GNU General Public License for more details. 20 21 // You should have received a copy of the GNU General Public License 22 // along with this program; if not, write to the Free Software 23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 24 // MA 02110-1301, USA. 25 26 #include "gold.h" 27 28 #include <cstring> 29 #include <limits> 30 #include <cstdio> 31 #include <string> 32 #include <algorithm> 33 #include <map> 34 #include <utility> 35 #include <set> 36 37 #include "elfcpp.h" 38 #include "parameters.h" 39 #include "reloc.h" 40 #include "arm.h" 41 #include "object.h" 42 #include "symtab.h" 43 #include "layout.h" 44 #include "output.h" 45 #include "copy-relocs.h" 46 #include "target.h" 47 #include "target-reloc.h" 48 #include "target-select.h" 49 #include "tls.h" 50 #include "defstd.h" 51 #include "gc.h" 52 #include "attributes.h" 53 #include "arm-reloc-property.h" 54 #include "nacl.h" 55 56 namespace 57 { 58 59 using namespace gold; 60 61 template<bool big_endian> 62 class Output_data_plt_arm; 63 64 template<bool big_endian> 65 class Output_data_plt_arm_short; 66 67 template<bool big_endian> 68 class Output_data_plt_arm_long; 69 70 template<bool big_endian> 71 class Stub_table; 72 73 template<bool big_endian> 74 class Arm_input_section; 75 76 class Arm_exidx_cantunwind; 77 78 class Arm_exidx_merged_section; 79 80 class Arm_exidx_fixup; 81 82 template<bool big_endian> 83 class Arm_output_section; 84 85 class Arm_exidx_input_section; 86 87 template<bool big_endian> 88 class Arm_relobj; 89 90 template<bool big_endian> 91 class Arm_relocate_functions; 92 93 template<bool big_endian> 94 class Arm_output_data_got; 95 96 template<bool big_endian> 97 class Target_arm; 98 99 // For convenience. 100 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address; 101 102 // Maximum branch offsets for ARM, THUMB and THUMB2. 103 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8); 104 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8); 105 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4); 106 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4); 107 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4); 108 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4); 109 110 // Thread Control Block size. 111 const size_t ARM_TCB_SIZE = 8; 112 113 // The arm target class. 114 // 115 // This is a very simple port of gold for ARM-EABI. It is intended for 116 // supporting Android only for the time being. 117 // 118 // TODOs: 119 // - Implement all static relocation types documented in arm-reloc.def. 120 // - Make PLTs more flexible for different architecture features like 121 // Thumb-2 and BE8. 122 // There are probably a lot more. 123 124 // Ideally we would like to avoid using global variables but this is used 125 // very in many places and sometimes in loops. If we use a function 126 // returning a static instance of Arm_reloc_property_table, it will be very 127 // slow in an threaded environment since the static instance needs to be 128 // locked. The pointer is below initialized in the 129 // Target::do_select_as_default_target() hook so that we do not spend time 130 // building the table if we are not linking ARM objects. 131 // 132 // An alternative is to process the information in arm-reloc.def in 133 // compilation time and generate a representation of it in PODs only. That 134 // way we can avoid initialization when the linker starts. 135 136 Arm_reloc_property_table* arm_reloc_property_table = NULL; 137 138 // Instruction template class. This class is similar to the insn_sequence 139 // struct in bfd/elf32-arm.c. 140 141 class Insn_template 142 { 143 public: 144 // Types of instruction templates. 145 enum Type 146 { 147 THUMB16_TYPE = 1, 148 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction 149 // templates with class-specific semantics. Currently this is used 150 // only by the Cortex_a8_stub class for handling condition codes in 151 // conditional branches. 152 THUMB16_SPECIAL_TYPE, 153 THUMB32_TYPE, 154 ARM_TYPE, 155 DATA_TYPE 156 }; 157 158 // Factory methods to create instruction templates in different formats. 159 160 static const Insn_template 161 thumb16_insn(uint32_t data) 162 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } 163 164 // A Thumb conditional branch, in which the proper condition is inserted 165 // when we build the stub. 166 static const Insn_template 167 thumb16_bcond_insn(uint32_t data) 168 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); } 169 170 static const Insn_template 171 thumb32_insn(uint32_t data) 172 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } 173 174 static const Insn_template 175 thumb32_b_insn(uint32_t data, int reloc_addend) 176 { 177 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24, 178 reloc_addend); 179 } 180 181 static const Insn_template 182 arm_insn(uint32_t data) 183 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); } 184 185 static const Insn_template 186 arm_rel_insn(unsigned data, int reloc_addend) 187 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); } 188 189 static const Insn_template 190 data_word(unsigned data, unsigned int r_type, int reloc_addend) 191 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } 192 193 // Accessors. This class is used for read-only objects so no modifiers 194 // are provided. 195 196 uint32_t 197 data() const 198 { return this->data_; } 199 200 // Return the instruction sequence type of this. 201 Type 202 type() const 203 { return this->type_; } 204 205 // Return the ARM relocation type of this. 206 unsigned int 207 r_type() const 208 { return this->r_type_; } 209 210 int32_t 211 reloc_addend() const 212 { return this->reloc_addend_; } 213 214 // Return size of instruction template in bytes. 215 size_t 216 size() const; 217 218 // Return byte-alignment of instruction template. 219 unsigned 220 alignment() const; 221 222 private: 223 // We make the constructor private to ensure that only the factory 224 // methods are used. 225 inline 226 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend) 227 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend) 228 { } 229 230 // Instruction specific data. This is used to store information like 231 // some of the instruction bits. 232 uint32_t data_; 233 // Instruction template type. 234 Type type_; 235 // Relocation type if there is a relocation or R_ARM_NONE otherwise. 236 unsigned int r_type_; 237 // Relocation addend. 238 int32_t reloc_addend_; 239 }; 240 241 // Macro for generating code to stub types. One entry per long/short 242 // branch stub 243 244 #define DEF_STUBS \ 245 DEF_STUB(long_branch_any_any) \ 246 DEF_STUB(long_branch_v4t_arm_thumb) \ 247 DEF_STUB(long_branch_thumb_only) \ 248 DEF_STUB(long_branch_v4t_thumb_thumb) \ 249 DEF_STUB(long_branch_v4t_thumb_arm) \ 250 DEF_STUB(short_branch_v4t_thumb_arm) \ 251 DEF_STUB(long_branch_any_arm_pic) \ 252 DEF_STUB(long_branch_any_thumb_pic) \ 253 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \ 254 DEF_STUB(long_branch_v4t_arm_thumb_pic) \ 255 DEF_STUB(long_branch_v4t_thumb_arm_pic) \ 256 DEF_STUB(long_branch_thumb_only_pic) \ 257 DEF_STUB(a8_veneer_b_cond) \ 258 DEF_STUB(a8_veneer_b) \ 259 DEF_STUB(a8_veneer_bl) \ 260 DEF_STUB(a8_veneer_blx) \ 261 DEF_STUB(v4_veneer_bx) 262 263 // Stub types. 264 265 #define DEF_STUB(x) arm_stub_##x, 266 typedef enum 267 { 268 arm_stub_none, 269 DEF_STUBS 270 271 // First reloc stub type. 272 arm_stub_reloc_first = arm_stub_long_branch_any_any, 273 // Last reloc stub type. 274 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic, 275 276 // First Cortex-A8 stub type. 277 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond, 278 // Last Cortex-A8 stub type. 279 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx, 280 281 // Last stub type. 282 arm_stub_type_last = arm_stub_v4_veneer_bx 283 } Stub_type; 284 #undef DEF_STUB 285 286 // Stub template class. Templates are meant to be read-only objects. 287 // A stub template for a stub type contains all read-only attributes 288 // common to all stubs of the same type. 289 290 class Stub_template 291 { 292 public: 293 Stub_template(Stub_type, const Insn_template*, size_t); 294 295 ~Stub_template() 296 { } 297 298 // Return stub type. 299 Stub_type 300 type() const 301 { return this->type_; } 302 303 // Return an array of instruction templates. 304 const Insn_template* 305 insns() const 306 { return this->insns_; } 307 308 // Return size of template in number of instructions. 309 size_t 310 insn_count() const 311 { return this->insn_count_; } 312 313 // Return size of template in bytes. 314 size_t 315 size() const 316 { return this->size_; } 317 318 // Return alignment of the stub template. 319 unsigned 320 alignment() const 321 { return this->alignment_; } 322 323 // Return whether entry point is in thumb mode. 324 bool 325 entry_in_thumb_mode() const 326 { return this->entry_in_thumb_mode_; } 327 328 // Return number of relocations in this template. 329 size_t 330 reloc_count() const 331 { return this->relocs_.size(); } 332 333 // Return index of the I-th instruction with relocation. 334 size_t 335 reloc_insn_index(size_t i) const 336 { 337 gold_assert(i < this->relocs_.size()); 338 return this->relocs_[i].first; 339 } 340 341 // Return the offset of the I-th instruction with relocation from the 342 // beginning of the stub. 343 section_size_type 344 reloc_offset(size_t i) const 345 { 346 gold_assert(i < this->relocs_.size()); 347 return this->relocs_[i].second; 348 } 349 350 private: 351 // This contains information about an instruction template with a relocation 352 // and its offset from start of stub. 353 typedef std::pair<size_t, section_size_type> Reloc; 354 355 // A Stub_template may not be copied. We want to share templates as much 356 // as possible. 357 Stub_template(const Stub_template&); 358 Stub_template& operator=(const Stub_template&); 359 360 // Stub type. 361 Stub_type type_; 362 // Points to an array of Insn_templates. 363 const Insn_template* insns_; 364 // Number of Insn_templates in insns_[]. 365 size_t insn_count_; 366 // Size of templated instructions in bytes. 367 size_t size_; 368 // Alignment of templated instructions. 369 unsigned alignment_; 370 // Flag to indicate if entry is in thumb mode. 371 bool entry_in_thumb_mode_; 372 // A table of reloc instruction indices and offsets. We can find these by 373 // looking at the instruction templates but we pre-compute and then stash 374 // them here for speed. 375 std::vector<Reloc> relocs_; 376 }; 377 378 // 379 // A class for code stubs. This is a base class for different type of 380 // stubs used in the ARM target. 381 // 382 383 class Stub 384 { 385 private: 386 static const section_offset_type invalid_offset = 387 static_cast<section_offset_type>(-1); 388 389 public: 390 Stub(const Stub_template* stub_template) 391 : stub_template_(stub_template), offset_(invalid_offset) 392 { } 393 394 virtual 395 ~Stub() 396 { } 397 398 // Return the stub template. 399 const Stub_template* 400 stub_template() const 401 { return this->stub_template_; } 402 403 // Return offset of code stub from beginning of its containing stub table. 404 section_offset_type 405 offset() const 406 { 407 gold_assert(this->offset_ != invalid_offset); 408 return this->offset_; 409 } 410 411 // Set offset of code stub from beginning of its containing stub table. 412 void 413 set_offset(section_offset_type offset) 414 { this->offset_ = offset; } 415 416 // Return the relocation target address of the i-th relocation in the 417 // stub. This must be defined in a child class. 418 Arm_address 419 reloc_target(size_t i) 420 { return this->do_reloc_target(i); } 421 422 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written. 423 void 424 write(unsigned char* view, section_size_type view_size, bool big_endian) 425 { this->do_write(view, view_size, big_endian); } 426 427 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template 428 // for the i-th instruction. 429 uint16_t 430 thumb16_special(size_t i) 431 { return this->do_thumb16_special(i); } 432 433 protected: 434 // This must be defined in the child class. 435 virtual Arm_address 436 do_reloc_target(size_t) = 0; 437 438 // This may be overridden in the child class. 439 virtual void 440 do_write(unsigned char* view, section_size_type view_size, bool big_endian) 441 { 442 if (big_endian) 443 this->do_fixed_endian_write<true>(view, view_size); 444 else 445 this->do_fixed_endian_write<false>(view, view_size); 446 } 447 448 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE 449 // instruction template. 450 virtual uint16_t 451 do_thumb16_special(size_t) 452 { gold_unreachable(); } 453 454 private: 455 // A template to implement do_write. 456 template<bool big_endian> 457 void inline 458 do_fixed_endian_write(unsigned char*, section_size_type); 459 460 // Its template. 461 const Stub_template* stub_template_; 462 // Offset within the section of containing this stub. 463 section_offset_type offset_; 464 }; 465 466 // Reloc stub class. These are stubs we use to fix up relocation because 467 // of limited branch ranges. 468 469 class Reloc_stub : public Stub 470 { 471 public: 472 static const unsigned int invalid_index = static_cast<unsigned int>(-1); 473 // We assume we never jump to this address. 474 static const Arm_address invalid_address = static_cast<Arm_address>(-1); 475 476 // Return destination address. 477 Arm_address 478 destination_address() const 479 { 480 gold_assert(this->destination_address_ != this->invalid_address); 481 return this->destination_address_; 482 } 483 484 // Set destination address. 485 void 486 set_destination_address(Arm_address address) 487 { 488 gold_assert(address != this->invalid_address); 489 this->destination_address_ = address; 490 } 491 492 // Reset destination address. 493 void 494 reset_destination_address() 495 { this->destination_address_ = this->invalid_address; } 496 497 // Determine stub type for a branch of a relocation of R_TYPE going 498 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set, 499 // the branch target is a thumb instruction. TARGET is used for look 500 // up ARM-specific linker settings. 501 static Stub_type 502 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address, 503 Arm_address branch_target, bool target_is_thumb); 504 505 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol 506 // and an addend. Since we treat global and local symbol differently, we 507 // use a Symbol object for a global symbol and a object-index pair for 508 // a local symbol. 509 class Key 510 { 511 public: 512 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and 513 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL 514 // and R_SYM must not be invalid_index. 515 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj, 516 unsigned int r_sym, int32_t addend) 517 : stub_type_(stub_type), addend_(addend) 518 { 519 if (symbol != NULL) 520 { 521 this->r_sym_ = Reloc_stub::invalid_index; 522 this->u_.symbol = symbol; 523 } 524 else 525 { 526 gold_assert(relobj != NULL && r_sym != invalid_index); 527 this->r_sym_ = r_sym; 528 this->u_.relobj = relobj; 529 } 530 } 531 532 ~Key() 533 { } 534 535 // Accessors: Keys are meant to be read-only object so no modifiers are 536 // provided. 537 538 // Return stub type. 539 Stub_type 540 stub_type() const 541 { return this->stub_type_; } 542 543 // Return the local symbol index or invalid_index. 544 unsigned int 545 r_sym() const 546 { return this->r_sym_; } 547 548 // Return the symbol if there is one. 549 const Symbol* 550 symbol() const 551 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; } 552 553 // Return the relobj if there is one. 554 const Relobj* 555 relobj() const 556 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; } 557 558 // Whether this equals to another key k. 559 bool 560 eq(const Key& k) const 561 { 562 return ((this->stub_type_ == k.stub_type_) 563 && (this->r_sym_ == k.r_sym_) 564 && ((this->r_sym_ != Reloc_stub::invalid_index) 565 ? (this->u_.relobj == k.u_.relobj) 566 : (this->u_.symbol == k.u_.symbol)) 567 && (this->addend_ == k.addend_)); 568 } 569 570 // Return a hash value. 571 size_t 572 hash_value() const 573 { 574 return (this->stub_type_ 575 ^ this->r_sym_ 576 ^ gold::string_hash<char>( 577 (this->r_sym_ != Reloc_stub::invalid_index) 578 ? this->u_.relobj->name().c_str() 579 : this->u_.symbol->name()) 580 ^ this->addend_); 581 } 582 583 // Functors for STL associative containers. 584 struct hash 585 { 586 size_t 587 operator()(const Key& k) const 588 { return k.hash_value(); } 589 }; 590 591 struct equal_to 592 { 593 bool 594 operator()(const Key& k1, const Key& k2) const 595 { return k1.eq(k2); } 596 }; 597 598 // Name of key. This is mainly for debugging. 599 std::string 600 name() const ATTRIBUTE_UNUSED; 601 602 private: 603 // Stub type. 604 Stub_type stub_type_; 605 // If this is a local symbol, this is the index in the defining object. 606 // Otherwise, it is invalid_index for a global symbol. 607 unsigned int r_sym_; 608 // If r_sym_ is an invalid index, this points to a global symbol. 609 // Otherwise, it points to a relobj. We used the unsized and target 610 // independent Symbol and Relobj classes instead of Sized_symbol<32> and 611 // Arm_relobj, in order to avoid making the stub class a template 612 // as most of the stub machinery is endianness-neutral. However, it 613 // may require a bit of casting done by users of this class. 614 union 615 { 616 const Symbol* symbol; 617 const Relobj* relobj; 618 } u_; 619 // Addend associated with a reloc. 620 int32_t addend_; 621 }; 622 623 protected: 624 // Reloc_stubs are created via a stub factory. So these are protected. 625 Reloc_stub(const Stub_template* stub_template) 626 : Stub(stub_template), destination_address_(invalid_address) 627 { } 628 629 ~Reloc_stub() 630 { } 631 632 friend class Stub_factory; 633 634 // Return the relocation target address of the i-th relocation in the 635 // stub. 636 Arm_address 637 do_reloc_target(size_t i) 638 { 639 // All reloc stub have only one relocation. 640 gold_assert(i == 0); 641 return this->destination_address_; 642 } 643 644 private: 645 // Address of destination. 646 Arm_address destination_address_; 647 }; 648 649 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit 650 // THUMB branch that meets the following conditions: 651 // 652 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of 653 // branch address is 0xffe. 654 // 2. The branch target address is in the same page as the first word of the 655 // branch. 656 // 3. The branch follows a 32-bit instruction which is not a branch. 657 // 658 // To do the fix up, we need to store the address of the branch instruction 659 // and its target at least. We also need to store the original branch 660 // instruction bits for the condition code in a conditional branch. The 661 // condition code is used in a special instruction template. We also want 662 // to identify input sections needing Cortex-A8 workaround quickly. We store 663 // extra information about object and section index of the code section 664 // containing a branch being fixed up. The information is used to mark 665 // the code section when we finalize the Cortex-A8 stubs. 666 // 667 668 class Cortex_a8_stub : public Stub 669 { 670 public: 671 ~Cortex_a8_stub() 672 { } 673 674 // Return the object of the code section containing the branch being fixed 675 // up. 676 Relobj* 677 relobj() const 678 { return this->relobj_; } 679 680 // Return the section index of the code section containing the branch being 681 // fixed up. 682 unsigned int 683 shndx() const 684 { return this->shndx_; } 685 686 // Return the source address of stub. This is the address of the original 687 // branch instruction. LSB is 1 always set to indicate that it is a THUMB 688 // instruction. 689 Arm_address 690 source_address() const 691 { return this->source_address_; } 692 693 // Return the destination address of the stub. This is the branch taken 694 // address of the original branch instruction. LSB is 1 if it is a THUMB 695 // instruction address. 696 Arm_address 697 destination_address() const 698 { return this->destination_address_; } 699 700 // Return the instruction being fixed up. 701 uint32_t 702 original_insn() const 703 { return this->original_insn_; } 704 705 protected: 706 // Cortex_a8_stubs are created via a stub factory. So these are protected. 707 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj, 708 unsigned int shndx, Arm_address source_address, 709 Arm_address destination_address, uint32_t original_insn) 710 : Stub(stub_template), relobj_(relobj), shndx_(shndx), 711 source_address_(source_address | 1U), 712 destination_address_(destination_address), 713 original_insn_(original_insn) 714 { } 715 716 friend class Stub_factory; 717 718 // Return the relocation target address of the i-th relocation in the 719 // stub. 720 Arm_address 721 do_reloc_target(size_t i) 722 { 723 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond) 724 { 725 // The conditional branch veneer has two relocations. 726 gold_assert(i < 2); 727 return i == 0 ? this->source_address_ + 4 : this->destination_address_; 728 } 729 else 730 { 731 // All other Cortex-A8 stubs have only one relocation. 732 gold_assert(i == 0); 733 return this->destination_address_; 734 } 735 } 736 737 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template. 738 uint16_t 739 do_thumb16_special(size_t); 740 741 private: 742 // Object of the code section containing the branch being fixed up. 743 Relobj* relobj_; 744 // Section index of the code section containing the branch begin fixed up. 745 unsigned int shndx_; 746 // Source address of original branch. 747 Arm_address source_address_; 748 // Destination address of the original branch. 749 Arm_address destination_address_; 750 // Original branch instruction. This is needed for copying the condition 751 // code from a condition branch to its stub. 752 uint32_t original_insn_; 753 }; 754 755 // ARMv4 BX Rx branch relocation stub class. 756 class Arm_v4bx_stub : public Stub 757 { 758 public: 759 ~Arm_v4bx_stub() 760 { } 761 762 // Return the associated register. 763 uint32_t 764 reg() const 765 { return this->reg_; } 766 767 protected: 768 // Arm V4BX stubs are created via a stub factory. So these are protected. 769 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg) 770 : Stub(stub_template), reg_(reg) 771 { } 772 773 friend class Stub_factory; 774 775 // Return the relocation target address of the i-th relocation in the 776 // stub. 777 Arm_address 778 do_reloc_target(size_t) 779 { gold_unreachable(); } 780 781 // This may be overridden in the child class. 782 virtual void 783 do_write(unsigned char* view, section_size_type view_size, bool big_endian) 784 { 785 if (big_endian) 786 this->do_fixed_endian_v4bx_write<true>(view, view_size); 787 else 788 this->do_fixed_endian_v4bx_write<false>(view, view_size); 789 } 790 791 private: 792 // A template to implement do_write. 793 template<bool big_endian> 794 void inline 795 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type) 796 { 797 const Insn_template* insns = this->stub_template()->insns(); 798 elfcpp::Swap<32, big_endian>::writeval(view, 799 (insns[0].data() 800 + (this->reg_ << 16))); 801 view += insns[0].size(); 802 elfcpp::Swap<32, big_endian>::writeval(view, 803 (insns[1].data() + this->reg_)); 804 view += insns[1].size(); 805 elfcpp::Swap<32, big_endian>::writeval(view, 806 (insns[2].data() + this->reg_)); 807 } 808 809 // A register index (r0-r14), which is associated with the stub. 810 uint32_t reg_; 811 }; 812 813 // Stub factory class. 814 815 class Stub_factory 816 { 817 public: 818 // Return the unique instance of this class. 819 static const Stub_factory& 820 get_instance() 821 { 822 static Stub_factory singleton; 823 return singleton; 824 } 825 826 // Make a relocation stub. 827 Reloc_stub* 828 make_reloc_stub(Stub_type stub_type) const 829 { 830 gold_assert(stub_type >= arm_stub_reloc_first 831 && stub_type <= arm_stub_reloc_last); 832 return new Reloc_stub(this->stub_templates_[stub_type]); 833 } 834 835 // Make a Cortex-A8 stub. 836 Cortex_a8_stub* 837 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx, 838 Arm_address source, Arm_address destination, 839 uint32_t original_insn) const 840 { 841 gold_assert(stub_type >= arm_stub_cortex_a8_first 842 && stub_type <= arm_stub_cortex_a8_last); 843 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx, 844 source, destination, original_insn); 845 } 846 847 // Make an ARM V4BX relocation stub. 848 // This method creates a stub from the arm_stub_v4_veneer_bx template only. 849 Arm_v4bx_stub* 850 make_arm_v4bx_stub(uint32_t reg) const 851 { 852 gold_assert(reg < 0xf); 853 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx], 854 reg); 855 } 856 857 private: 858 // Constructor and destructor are protected since we only return a single 859 // instance created in Stub_factory::get_instance(). 860 861 Stub_factory(); 862 863 // A Stub_factory may not be copied since it is a singleton. 864 Stub_factory(const Stub_factory&); 865 Stub_factory& operator=(Stub_factory&); 866 867 // Stub templates. These are initialized in the constructor. 868 const Stub_template* stub_templates_[arm_stub_type_last+1]; 869 }; 870 871 // A class to hold stubs for the ARM target. 872 873 template<bool big_endian> 874 class Stub_table : public Output_data 875 { 876 public: 877 Stub_table(Arm_input_section<big_endian>* owner) 878 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0), 879 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf), 880 prev_data_size_(0), prev_addralign_(1) 881 { } 882 883 ~Stub_table() 884 { } 885 886 // Owner of this stub table. 887 Arm_input_section<big_endian>* 888 owner() const 889 { return this->owner_; } 890 891 // Whether this stub table is empty. 892 bool 893 empty() const 894 { 895 return (this->reloc_stubs_.empty() 896 && this->cortex_a8_stubs_.empty() 897 && this->arm_v4bx_stubs_.empty()); 898 } 899 900 // Return the current data size. 901 off_t 902 current_data_size() const 903 { return this->current_data_size_for_child(); } 904 905 // Add a STUB using KEY. The caller is responsible for avoiding addition 906 // if a STUB with the same key has already been added. 907 void 908 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key) 909 { 910 const Stub_template* stub_template = stub->stub_template(); 911 gold_assert(stub_template->type() == key.stub_type()); 912 this->reloc_stubs_[key] = stub; 913 914 // Assign stub offset early. We can do this because we never remove 915 // reloc stubs and they are in the beginning of the stub table. 916 uint64_t align = stub_template->alignment(); 917 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align); 918 stub->set_offset(this->reloc_stubs_size_); 919 this->reloc_stubs_size_ += stub_template->size(); 920 this->reloc_stubs_addralign_ = 921 std::max(this->reloc_stubs_addralign_, align); 922 } 923 924 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS. 925 // The caller is responsible for avoiding addition if a STUB with the same 926 // address has already been added. 927 void 928 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub) 929 { 930 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub); 931 this->cortex_a8_stubs_.insert(value); 932 } 933 934 // Add an ARM V4BX relocation stub. A register index will be retrieved 935 // from the stub. 936 void 937 add_arm_v4bx_stub(Arm_v4bx_stub* stub) 938 { 939 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL); 940 this->arm_v4bx_stubs_[stub->reg()] = stub; 941 } 942 943 // Remove all Cortex-A8 stubs. 944 void 945 remove_all_cortex_a8_stubs(); 946 947 // Look up a relocation stub using KEY. Return NULL if there is none. 948 Reloc_stub* 949 find_reloc_stub(const Reloc_stub::Key& key) const 950 { 951 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key); 952 return (p != this->reloc_stubs_.end()) ? p->second : NULL; 953 } 954 955 // Look up an arm v4bx relocation stub using the register index. 956 // Return NULL if there is none. 957 Arm_v4bx_stub* 958 find_arm_v4bx_stub(const uint32_t reg) const 959 { 960 gold_assert(reg < 0xf); 961 return this->arm_v4bx_stubs_[reg]; 962 } 963 964 // Relocate stubs in this stub table. 965 void 966 relocate_stubs(const Relocate_info<32, big_endian>*, 967 Target_arm<big_endian>*, Output_section*, 968 unsigned char*, Arm_address, section_size_type); 969 970 // Update data size and alignment at the end of a relaxation pass. Return 971 // true if either data size or alignment is different from that of the 972 // previous relaxation pass. 973 bool 974 update_data_size_and_addralign(); 975 976 // Finalize stubs. Set the offsets of all stubs and mark input sections 977 // needing the Cortex-A8 workaround. 978 void 979 finalize_stubs(); 980 981 // Apply Cortex-A8 workaround to an address range. 982 void 983 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*, 984 unsigned char*, Arm_address, 985 section_size_type); 986 987 protected: 988 // Write out section contents. 989 void 990 do_write(Output_file*); 991 992 // Return the required alignment. 993 uint64_t 994 do_addralign() const 995 { return this->prev_addralign_; } 996 997 // Reset address and file offset. 998 void 999 do_reset_address_and_file_offset() 1000 { this->set_current_data_size_for_child(this->prev_data_size_); } 1001 1002 // Set final data size. 1003 void 1004 set_final_data_size() 1005 { this->set_data_size(this->current_data_size()); } 1006 1007 private: 1008 // Relocate one stub. 1009 void 1010 relocate_stub(Stub*, const Relocate_info<32, big_endian>*, 1011 Target_arm<big_endian>*, Output_section*, 1012 unsigned char*, Arm_address, section_size_type); 1013 1014 // Unordered map of relocation stubs. 1015 typedef 1016 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash, 1017 Reloc_stub::Key::equal_to> 1018 Reloc_stub_map; 1019 1020 // List of Cortex-A8 stubs ordered by addresses of branches being 1021 // fixed up in output. 1022 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list; 1023 // List of Arm V4BX relocation stubs ordered by associated registers. 1024 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list; 1025 1026 // Owner of this stub table. 1027 Arm_input_section<big_endian>* owner_; 1028 // The relocation stubs. 1029 Reloc_stub_map reloc_stubs_; 1030 // Size of reloc stubs. 1031 off_t reloc_stubs_size_; 1032 // Maximum address alignment of reloc stubs. 1033 uint64_t reloc_stubs_addralign_; 1034 // The cortex_a8_stubs. 1035 Cortex_a8_stub_list cortex_a8_stubs_; 1036 // The Arm V4BX relocation stubs. 1037 Arm_v4bx_stub_list arm_v4bx_stubs_; 1038 // data size of this in the previous pass. 1039 off_t prev_data_size_; 1040 // address alignment of this in the previous pass. 1041 uint64_t prev_addralign_; 1042 }; 1043 1044 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry 1045 // we add to the end of an EXIDX input section that goes into the output. 1046 1047 class Arm_exidx_cantunwind : public Output_section_data 1048 { 1049 public: 1050 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx) 1051 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx) 1052 { } 1053 1054 // Return the object containing the section pointed by this. 1055 Relobj* 1056 relobj() const 1057 { return this->relobj_; } 1058 1059 // Return the section index of the section pointed by this. 1060 unsigned int 1061 shndx() const 1062 { return this->shndx_; } 1063 1064 protected: 1065 void 1066 do_write(Output_file* of) 1067 { 1068 if (parameters->target().is_big_endian()) 1069 this->do_fixed_endian_write<true>(of); 1070 else 1071 this->do_fixed_endian_write<false>(of); 1072 } 1073 1074 // Write to a map file. 1075 void 1076 do_print_to_mapfile(Mapfile* mapfile) const 1077 { mapfile->print_output_data(this, _("** ARM cantunwind")); } 1078 1079 private: 1080 // Implement do_write for a given endianness. 1081 template<bool big_endian> 1082 void inline 1083 do_fixed_endian_write(Output_file*); 1084 1085 // The object containing the section pointed by this. 1086 Relobj* relobj_; 1087 // The section index of the section pointed by this. 1088 unsigned int shndx_; 1089 }; 1090 1091 // During EXIDX coverage fix-up, we compact an EXIDX section. The 1092 // Offset map is used to map input section offset within the EXIDX section 1093 // to the output offset from the start of this EXIDX section. 1094 1095 typedef std::map<section_offset_type, section_offset_type> 1096 Arm_exidx_section_offset_map; 1097 1098 // Arm_exidx_merged_section class. This represents an EXIDX input section 1099 // with some of its entries merged. 1100 1101 class Arm_exidx_merged_section : public Output_relaxed_input_section 1102 { 1103 public: 1104 // Constructor for Arm_exidx_merged_section. 1105 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section. 1106 // SECTION_OFFSET_MAP points to a section offset map describing how 1107 // parts of the input section are mapped to output. DELETED_BYTES is 1108 // the number of bytes deleted from the EXIDX input section. 1109 Arm_exidx_merged_section( 1110 const Arm_exidx_input_section& exidx_input_section, 1111 const Arm_exidx_section_offset_map& section_offset_map, 1112 uint32_t deleted_bytes); 1113 1114 // Build output contents. 1115 void 1116 build_contents(const unsigned char*, section_size_type); 1117 1118 // Return the original EXIDX input section. 1119 const Arm_exidx_input_section& 1120 exidx_input_section() const 1121 { return this->exidx_input_section_; } 1122 1123 // Return the section offset map. 1124 const Arm_exidx_section_offset_map& 1125 section_offset_map() const 1126 { return this->section_offset_map_; } 1127 1128 protected: 1129 // Write merged section into file OF. 1130 void 1131 do_write(Output_file* of); 1132 1133 bool 1134 do_output_offset(const Relobj*, unsigned int, section_offset_type, 1135 section_offset_type*) const; 1136 1137 private: 1138 // Original EXIDX input section. 1139 const Arm_exidx_input_section& exidx_input_section_; 1140 // Section offset map. 1141 const Arm_exidx_section_offset_map& section_offset_map_; 1142 // Merged section contents. We need to keep build the merged section 1143 // and save it here to avoid accessing the original EXIDX section when 1144 // we cannot lock the sections' object. 1145 unsigned char* section_contents_; 1146 }; 1147 1148 // A class to wrap an ordinary input section containing executable code. 1149 1150 template<bool big_endian> 1151 class Arm_input_section : public Output_relaxed_input_section 1152 { 1153 public: 1154 Arm_input_section(Relobj* relobj, unsigned int shndx) 1155 : Output_relaxed_input_section(relobj, shndx, 1), 1156 original_addralign_(1), original_size_(0), stub_table_(NULL), 1157 original_contents_(NULL) 1158 { } 1159 1160 ~Arm_input_section() 1161 { delete[] this->original_contents_; } 1162 1163 // Initialize. 1164 void 1165 init(); 1166 1167 // Whether this is a stub table owner. 1168 bool 1169 is_stub_table_owner() const 1170 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; } 1171 1172 // Return the stub table. 1173 Stub_table<big_endian>* 1174 stub_table() const 1175 { return this->stub_table_; } 1176 1177 // Set the stub_table. 1178 void 1179 set_stub_table(Stub_table<big_endian>* stub_table) 1180 { this->stub_table_ = stub_table; } 1181 1182 // Downcast a base pointer to an Arm_input_section pointer. This is 1183 // not type-safe but we only use Arm_input_section not the base class. 1184 static Arm_input_section<big_endian>* 1185 as_arm_input_section(Output_relaxed_input_section* poris) 1186 { return static_cast<Arm_input_section<big_endian>*>(poris); } 1187 1188 // Return the original size of the section. 1189 uint32_t 1190 original_size() const 1191 { return this->original_size_; } 1192 1193 protected: 1194 // Write data to output file. 1195 void 1196 do_write(Output_file*); 1197 1198 // Return required alignment of this. 1199 uint64_t 1200 do_addralign() const 1201 { 1202 if (this->is_stub_table_owner()) 1203 return std::max(this->stub_table_->addralign(), 1204 static_cast<uint64_t>(this->original_addralign_)); 1205 else 1206 return this->original_addralign_; 1207 } 1208 1209 // Finalize data size. 1210 void 1211 set_final_data_size(); 1212 1213 // Reset address and file offset. 1214 void 1215 do_reset_address_and_file_offset(); 1216 1217 // Output offset. 1218 bool 1219 do_output_offset(const Relobj* object, unsigned int shndx, 1220 section_offset_type offset, 1221 section_offset_type* poutput) const 1222 { 1223 if ((object == this->relobj()) 1224 && (shndx == this->shndx()) 1225 && (offset >= 0) 1226 && (offset <= 1227 convert_types<section_offset_type, uint32_t>(this->original_size_))) 1228 { 1229 *poutput = offset; 1230 return true; 1231 } 1232 else 1233 return false; 1234 } 1235 1236 private: 1237 // Copying is not allowed. 1238 Arm_input_section(const Arm_input_section&); 1239 Arm_input_section& operator=(const Arm_input_section&); 1240 1241 // Address alignment of the original input section. 1242 uint32_t original_addralign_; 1243 // Section size of the original input section. 1244 uint32_t original_size_; 1245 // Stub table. 1246 Stub_table<big_endian>* stub_table_; 1247 // Original section contents. We have to make a copy here since the file 1248 // containing the original section may not be locked when we need to access 1249 // the contents. 1250 unsigned char* original_contents_; 1251 }; 1252 1253 // Arm_exidx_fixup class. This is used to define a number of methods 1254 // and keep states for fixing up EXIDX coverage. 1255 1256 class Arm_exidx_fixup 1257 { 1258 public: 1259 Arm_exidx_fixup(Output_section* exidx_output_section, 1260 bool merge_exidx_entries = true) 1261 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE), 1262 last_inlined_entry_(0), last_input_section_(NULL), 1263 section_offset_map_(NULL), first_output_text_section_(NULL), 1264 merge_exidx_entries_(merge_exidx_entries) 1265 { } 1266 1267 ~Arm_exidx_fixup() 1268 { delete this->section_offset_map_; } 1269 1270 // Process an EXIDX section for entry merging. SECTION_CONTENTS points 1271 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return 1272 // number of bytes to be deleted in output. If parts of the input EXIDX 1273 // section are merged a heap allocated Arm_exidx_section_offset_map is store 1274 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is 1275 // responsible for releasing it. 1276 template<bool big_endian> 1277 uint32_t 1278 process_exidx_section(const Arm_exidx_input_section* exidx_input_section, 1279 const unsigned char* section_contents, 1280 section_size_type section_size, 1281 Arm_exidx_section_offset_map** psection_offset_map); 1282 1283 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last 1284 // input section, if there is not one already. 1285 void 1286 add_exidx_cantunwind_as_needed(); 1287 1288 // Return the output section for the text section which is linked to the 1289 // first exidx input in output. 1290 Output_section* 1291 first_output_text_section() const 1292 { return this->first_output_text_section_; } 1293 1294 private: 1295 // Copying is not allowed. 1296 Arm_exidx_fixup(const Arm_exidx_fixup&); 1297 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&); 1298 1299 // Type of EXIDX unwind entry. 1300 enum Unwind_type 1301 { 1302 // No type. 1303 UT_NONE, 1304 // EXIDX_CANTUNWIND. 1305 UT_EXIDX_CANTUNWIND, 1306 // Inlined entry. 1307 UT_INLINED_ENTRY, 1308 // Normal entry. 1309 UT_NORMAL_ENTRY, 1310 }; 1311 1312 // Process an EXIDX entry. We only care about the second word of the 1313 // entry. Return true if the entry can be deleted. 1314 bool 1315 process_exidx_entry(uint32_t second_word); 1316 1317 // Update the current section offset map during EXIDX section fix-up. 1318 // If there is no map, create one. INPUT_OFFSET is the offset of a 1319 // reference point, DELETED_BYTES is the number of deleted by in the 1320 // section so far. If DELETE_ENTRY is true, the reference point and 1321 // all offsets after the previous reference point are discarded. 1322 void 1323 update_offset_map(section_offset_type input_offset, 1324 section_size_type deleted_bytes, bool delete_entry); 1325 1326 // EXIDX output section. 1327 Output_section* exidx_output_section_; 1328 // Unwind type of the last EXIDX entry processed. 1329 Unwind_type last_unwind_type_; 1330 // Last seen inlined EXIDX entry. 1331 uint32_t last_inlined_entry_; 1332 // Last processed EXIDX input section. 1333 const Arm_exidx_input_section* last_input_section_; 1334 // Section offset map created in process_exidx_section. 1335 Arm_exidx_section_offset_map* section_offset_map_; 1336 // Output section for the text section which is linked to the first exidx 1337 // input in output. 1338 Output_section* first_output_text_section_; 1339 1340 bool merge_exidx_entries_; 1341 }; 1342 1343 // Arm output section class. This is defined mainly to add a number of 1344 // stub generation methods. 1345 1346 template<bool big_endian> 1347 class Arm_output_section : public Output_section 1348 { 1349 public: 1350 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list; 1351 1352 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section. 1353 Arm_output_section(const char* name, elfcpp::Elf_Word type, 1354 elfcpp::Elf_Xword flags) 1355 : Output_section(name, type, 1356 (type == elfcpp::SHT_ARM_EXIDX 1357 ? flags | elfcpp::SHF_LINK_ORDER 1358 : flags)) 1359 { 1360 if (type == elfcpp::SHT_ARM_EXIDX) 1361 this->set_always_keeps_input_sections(); 1362 } 1363 1364 ~Arm_output_section() 1365 { } 1366 1367 // Group input sections for stub generation. 1368 void 1369 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*); 1370 1371 // Downcast a base pointer to an Arm_output_section pointer. This is 1372 // not type-safe but we only use Arm_output_section not the base class. 1373 static Arm_output_section<big_endian>* 1374 as_arm_output_section(Output_section* os) 1375 { return static_cast<Arm_output_section<big_endian>*>(os); } 1376 1377 // Append all input text sections in this into LIST. 1378 void 1379 append_text_sections_to_list(Text_section_list* list); 1380 1381 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION 1382 // is a list of text input sections sorted in ascending order of their 1383 // output addresses. 1384 void 1385 fix_exidx_coverage(Layout* layout, 1386 const Text_section_list& sorted_text_section, 1387 Symbol_table* symtab, 1388 bool merge_exidx_entries, 1389 const Task* task); 1390 1391 // Link an EXIDX section into its corresponding text section. 1392 void 1393 set_exidx_section_link(); 1394 1395 private: 1396 // For convenience. 1397 typedef Output_section::Input_section Input_section; 1398 typedef Output_section::Input_section_list Input_section_list; 1399 1400 // Create a stub group. 1401 void create_stub_group(Input_section_list::const_iterator, 1402 Input_section_list::const_iterator, 1403 Input_section_list::const_iterator, 1404 Target_arm<big_endian>*, 1405 std::vector<Output_relaxed_input_section*>*, 1406 const Task* task); 1407 }; 1408 1409 // Arm_exidx_input_section class. This represents an EXIDX input section. 1410 1411 class Arm_exidx_input_section 1412 { 1413 public: 1414 static const section_offset_type invalid_offset = 1415 static_cast<section_offset_type>(-1); 1416 1417 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx, 1418 unsigned int link, uint32_t size, 1419 uint32_t addralign, uint32_t text_size) 1420 : relobj_(relobj), shndx_(shndx), link_(link), size_(size), 1421 addralign_(addralign), text_size_(text_size), has_errors_(false) 1422 { } 1423 1424 ~Arm_exidx_input_section() 1425 { } 1426 1427 // Accessors: This is a read-only class. 1428 1429 // Return the object containing this EXIDX input section. 1430 Relobj* 1431 relobj() const 1432 { return this->relobj_; } 1433 1434 // Return the section index of this EXIDX input section. 1435 unsigned int 1436 shndx() const 1437 { return this->shndx_; } 1438 1439 // Return the section index of linked text section in the same object. 1440 unsigned int 1441 link() const 1442 { return this->link_; } 1443 1444 // Return size of the EXIDX input section. 1445 uint32_t 1446 size() const 1447 { return this->size_; } 1448 1449 // Return address alignment of EXIDX input section. 1450 uint32_t 1451 addralign() const 1452 { return this->addralign_; } 1453 1454 // Return size of the associated text input section. 1455 uint32_t 1456 text_size() const 1457 { return this->text_size_; } 1458 1459 // Whether there are any errors in the EXIDX input section. 1460 bool 1461 has_errors() const 1462 { return this->has_errors_; } 1463 1464 // Set has-errors flag. 1465 void 1466 set_has_errors() 1467 { this->has_errors_ = true; } 1468 1469 private: 1470 // Object containing this. 1471 Relobj* relobj_; 1472 // Section index of this. 1473 unsigned int shndx_; 1474 // text section linked to this in the same object. 1475 unsigned int link_; 1476 // Size of this. For ARM 32-bit is sufficient. 1477 uint32_t size_; 1478 // Address alignment of this. For ARM 32-bit is sufficient. 1479 uint32_t addralign_; 1480 // Size of associated text section. 1481 uint32_t text_size_; 1482 // Whether this has any errors. 1483 bool has_errors_; 1484 }; 1485 1486 // Arm_relobj class. 1487 1488 template<bool big_endian> 1489 class Arm_relobj : public Sized_relobj_file<32, big_endian> 1490 { 1491 public: 1492 static const Arm_address invalid_address = static_cast<Arm_address>(-1); 1493 1494 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset, 1495 const typename elfcpp::Ehdr<32, big_endian>& ehdr) 1496 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr), 1497 stub_tables_(), local_symbol_is_thumb_function_(), 1498 attributes_section_data_(NULL), mapping_symbols_info_(), 1499 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(), 1500 output_local_symbol_count_needs_update_(false), 1501 merge_flags_and_attributes_(true) 1502 { } 1503 1504 ~Arm_relobj() 1505 { delete this->attributes_section_data_; } 1506 1507 // Return the stub table of the SHNDX-th section if there is one. 1508 Stub_table<big_endian>* 1509 stub_table(unsigned int shndx) const 1510 { 1511 gold_assert(shndx < this->stub_tables_.size()); 1512 return this->stub_tables_[shndx]; 1513 } 1514 1515 // Set STUB_TABLE to be the stub_table of the SHNDX-th section. 1516 void 1517 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table) 1518 { 1519 gold_assert(shndx < this->stub_tables_.size()); 1520 this->stub_tables_[shndx] = stub_table; 1521 } 1522 1523 // Whether a local symbol is a THUMB function. R_SYM is the symbol table 1524 // index. This is only valid after do_count_local_symbol is called. 1525 bool 1526 local_symbol_is_thumb_function(unsigned int r_sym) const 1527 { 1528 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size()); 1529 return this->local_symbol_is_thumb_function_[r_sym]; 1530 } 1531 1532 // Scan all relocation sections for stub generation. 1533 void 1534 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*, 1535 const Layout*); 1536 1537 // Convert regular input section with index SHNDX to a relaxed section. 1538 void 1539 convert_input_section_to_relaxed_section(unsigned shndx) 1540 { 1541 // The stubs have relocations and we need to process them after writing 1542 // out the stubs. So relocation now must follow section write. 1543 this->set_section_offset(shndx, -1ULL); 1544 this->set_relocs_must_follow_section_writes(); 1545 } 1546 1547 // Downcast a base pointer to an Arm_relobj pointer. This is 1548 // not type-safe but we only use Arm_relobj not the base class. 1549 static Arm_relobj<big_endian>* 1550 as_arm_relobj(Relobj* relobj) 1551 { return static_cast<Arm_relobj<big_endian>*>(relobj); } 1552 1553 // Processor-specific flags in ELF file header. This is valid only after 1554 // reading symbols. 1555 elfcpp::Elf_Word 1556 processor_specific_flags() const 1557 { return this->processor_specific_flags_; } 1558 1559 // Attribute section data This is the contents of the .ARM.attribute section 1560 // if there is one. 1561 const Attributes_section_data* 1562 attributes_section_data() const 1563 { return this->attributes_section_data_; } 1564 1565 // Mapping symbol location. 1566 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position; 1567 1568 // Functor for STL container. 1569 struct Mapping_symbol_position_less 1570 { 1571 bool 1572 operator()(const Mapping_symbol_position& p1, 1573 const Mapping_symbol_position& p2) const 1574 { 1575 return (p1.first < p2.first 1576 || (p1.first == p2.first && p1.second < p2.second)); 1577 } 1578 }; 1579 1580 // We only care about the first character of a mapping symbol, so 1581 // we only store that instead of the whole symbol name. 1582 typedef std::map<Mapping_symbol_position, char, 1583 Mapping_symbol_position_less> Mapping_symbols_info; 1584 1585 // Whether a section contains any Cortex-A8 workaround. 1586 bool 1587 section_has_cortex_a8_workaround(unsigned int shndx) const 1588 { 1589 return (this->section_has_cortex_a8_workaround_ != NULL 1590 && (*this->section_has_cortex_a8_workaround_)[shndx]); 1591 } 1592 1593 // Mark a section that has Cortex-A8 workaround. 1594 void 1595 mark_section_for_cortex_a8_workaround(unsigned int shndx) 1596 { 1597 if (this->section_has_cortex_a8_workaround_ == NULL) 1598 this->section_has_cortex_a8_workaround_ = 1599 new std::vector<bool>(this->shnum(), false); 1600 (*this->section_has_cortex_a8_workaround_)[shndx] = true; 1601 } 1602 1603 // Return the EXIDX section of an text section with index SHNDX or NULL 1604 // if the text section has no associated EXIDX section. 1605 const Arm_exidx_input_section* 1606 exidx_input_section_by_link(unsigned int shndx) const 1607 { 1608 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx); 1609 return ((p != this->exidx_section_map_.end() 1610 && p->second->link() == shndx) 1611 ? p->second 1612 : NULL); 1613 } 1614 1615 // Return the EXIDX section with index SHNDX or NULL if there is none. 1616 const Arm_exidx_input_section* 1617 exidx_input_section_by_shndx(unsigned shndx) const 1618 { 1619 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx); 1620 return ((p != this->exidx_section_map_.end() 1621 && p->second->shndx() == shndx) 1622 ? p->second 1623 : NULL); 1624 } 1625 1626 // Whether output local symbol count needs updating. 1627 bool 1628 output_local_symbol_count_needs_update() const 1629 { return this->output_local_symbol_count_needs_update_; } 1630 1631 // Set output_local_symbol_count_needs_update flag to be true. 1632 void 1633 set_output_local_symbol_count_needs_update() 1634 { this->output_local_symbol_count_needs_update_ = true; } 1635 1636 // Update output local symbol count at the end of relaxation. 1637 void 1638 update_output_local_symbol_count(); 1639 1640 // Whether we want to merge processor-specific flags and attributes. 1641 bool 1642 merge_flags_and_attributes() const 1643 { return this->merge_flags_and_attributes_; } 1644 1645 // Export list of EXIDX section indices. 1646 void 1647 get_exidx_shndx_list(std::vector<unsigned int>* list) const 1648 { 1649 list->clear(); 1650 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin(); 1651 p != this->exidx_section_map_.end(); 1652 ++p) 1653 { 1654 if (p->second->shndx() == p->first) 1655 list->push_back(p->first); 1656 } 1657 // Sort list to make result independent of implementation of map. 1658 std::sort(list->begin(), list->end()); 1659 } 1660 1661 protected: 1662 // Post constructor setup. 1663 void 1664 do_setup() 1665 { 1666 // Call parent's setup method. 1667 Sized_relobj_file<32, big_endian>::do_setup(); 1668 1669 // Initialize look-up tables. 1670 Stub_table_list empty_stub_table_list(this->shnum(), NULL); 1671 this->stub_tables_.swap(empty_stub_table_list); 1672 } 1673 1674 // Count the local symbols. 1675 void 1676 do_count_local_symbols(Stringpool_template<char>*, 1677 Stringpool_template<char>*); 1678 1679 void 1680 do_relocate_sections( 1681 const Symbol_table* symtab, const Layout* layout, 1682 const unsigned char* pshdrs, Output_file* of, 1683 typename Sized_relobj_file<32, big_endian>::Views* pivews); 1684 1685 // Read the symbol information. 1686 void 1687 do_read_symbols(Read_symbols_data* sd); 1688 1689 // Process relocs for garbage collection. 1690 void 1691 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*); 1692 1693 private: 1694 1695 // Whether a section needs to be scanned for relocation stubs. 1696 bool 1697 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&, 1698 const Relobj::Output_sections&, 1699 const Symbol_table*, const unsigned char*); 1700 1701 // Whether a section is a scannable text section. 1702 bool 1703 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int, 1704 const Output_section*, const Symbol_table*); 1705 1706 // Whether a section needs to be scanned for the Cortex-A8 erratum. 1707 bool 1708 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&, 1709 unsigned int, Output_section*, 1710 const Symbol_table*); 1711 1712 // Scan a section for the Cortex-A8 erratum. 1713 void 1714 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&, 1715 unsigned int, Output_section*, 1716 Target_arm<big_endian>*); 1717 1718 // Find the linked text section of an EXIDX section by looking at the 1719 // first relocation of the EXIDX section. PSHDR points to the section 1720 // headers of a relocation section and PSYMS points to the local symbols. 1721 // PSHNDX points to a location storing the text section index if found. 1722 // Return whether we can find the linked section. 1723 bool 1724 find_linked_text_section(const unsigned char* pshdr, 1725 const unsigned char* psyms, unsigned int* pshndx); 1726 1727 // 1728 // Make a new Arm_exidx_input_section object for EXIDX section with 1729 // index SHNDX and section header SHDR. TEXT_SHNDX is the section 1730 // index of the linked text section. 1731 void 1732 make_exidx_input_section(unsigned int shndx, 1733 const elfcpp::Shdr<32, big_endian>& shdr, 1734 unsigned int text_shndx, 1735 const elfcpp::Shdr<32, big_endian>& text_shdr); 1736 1737 // Return the output address of either a plain input section or a 1738 // relaxed input section. SHNDX is the section index. 1739 Arm_address 1740 simple_input_section_output_address(unsigned int, Output_section*); 1741 1742 typedef std::vector<Stub_table<big_endian>*> Stub_table_list; 1743 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*> 1744 Exidx_section_map; 1745 1746 // List of stub tables. 1747 Stub_table_list stub_tables_; 1748 // Bit vector to tell if a local symbol is a thumb function or not. 1749 // This is only valid after do_count_local_symbol is called. 1750 std::vector<bool> local_symbol_is_thumb_function_; 1751 // processor-specific flags in ELF file header. 1752 elfcpp::Elf_Word processor_specific_flags_; 1753 // Object attributes if there is an .ARM.attributes section or NULL. 1754 Attributes_section_data* attributes_section_data_; 1755 // Mapping symbols information. 1756 Mapping_symbols_info mapping_symbols_info_; 1757 // Bitmap to indicate sections with Cortex-A8 workaround or NULL. 1758 std::vector<bool>* section_has_cortex_a8_workaround_; 1759 // Map a text section to its associated .ARM.exidx section, if there is one. 1760 Exidx_section_map exidx_section_map_; 1761 // Whether output local symbol count needs updating. 1762 bool output_local_symbol_count_needs_update_; 1763 // Whether we merge processor flags and attributes of this object to 1764 // output. 1765 bool merge_flags_and_attributes_; 1766 }; 1767 1768 // Arm_dynobj class. 1769 1770 template<bool big_endian> 1771 class Arm_dynobj : public Sized_dynobj<32, big_endian> 1772 { 1773 public: 1774 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset, 1775 const elfcpp::Ehdr<32, big_endian>& ehdr) 1776 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr), 1777 processor_specific_flags_(0), attributes_section_data_(NULL) 1778 { } 1779 1780 ~Arm_dynobj() 1781 { delete this->attributes_section_data_; } 1782 1783 // Downcast a base pointer to an Arm_relobj pointer. This is 1784 // not type-safe but we only use Arm_relobj not the base class. 1785 static Arm_dynobj<big_endian>* 1786 as_arm_dynobj(Dynobj* dynobj) 1787 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); } 1788 1789 // Processor-specific flags in ELF file header. This is valid only after 1790 // reading symbols. 1791 elfcpp::Elf_Word 1792 processor_specific_flags() const 1793 { return this->processor_specific_flags_; } 1794 1795 // Attributes section data. 1796 const Attributes_section_data* 1797 attributes_section_data() const 1798 { return this->attributes_section_data_; } 1799 1800 protected: 1801 // Read the symbol information. 1802 void 1803 do_read_symbols(Read_symbols_data* sd); 1804 1805 private: 1806 // processor-specific flags in ELF file header. 1807 elfcpp::Elf_Word processor_specific_flags_; 1808 // Object attributes if there is an .ARM.attributes section or NULL. 1809 Attributes_section_data* attributes_section_data_; 1810 }; 1811 1812 // Functor to read reloc addends during stub generation. 1813 1814 template<int sh_type, bool big_endian> 1815 struct Stub_addend_reader 1816 { 1817 // Return the addend for a relocation of a particular type. Depending 1818 // on whether this is a REL or RELA relocation, read the addend from a 1819 // view or from a Reloc object. 1820 elfcpp::Elf_types<32>::Elf_Swxword 1821 operator()( 1822 unsigned int /* r_type */, 1823 const unsigned char* /* view */, 1824 const typename Reloc_types<sh_type, 1825 32, big_endian>::Reloc& /* reloc */) const; 1826 }; 1827 1828 // Specialized Stub_addend_reader for SHT_REL type relocation sections. 1829 1830 template<bool big_endian> 1831 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian> 1832 { 1833 elfcpp::Elf_types<32>::Elf_Swxword 1834 operator()( 1835 unsigned int, 1836 const unsigned char*, 1837 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const; 1838 }; 1839 1840 // Specialized Stub_addend_reader for RELA type relocation sections. 1841 // We currently do not handle RELA type relocation sections but it is trivial 1842 // to implement the addend reader. This is provided for completeness and to 1843 // make it easier to add support for RELA relocation sections in the future. 1844 1845 template<bool big_endian> 1846 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian> 1847 { 1848 elfcpp::Elf_types<32>::Elf_Swxword 1849 operator()( 1850 unsigned int, 1851 const unsigned char*, 1852 const typename Reloc_types<elfcpp::SHT_RELA, 32, 1853 big_endian>::Reloc& reloc) const 1854 { return reloc.get_r_addend(); } 1855 }; 1856 1857 // Cortex_a8_reloc class. We keep record of relocation that may need 1858 // the Cortex-A8 erratum workaround. 1859 1860 class Cortex_a8_reloc 1861 { 1862 public: 1863 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type, 1864 Arm_address destination) 1865 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination) 1866 { } 1867 1868 ~Cortex_a8_reloc() 1869 { } 1870 1871 // Accessors: This is a read-only class. 1872 1873 // Return the relocation stub associated with this relocation if there is 1874 // one. 1875 const Reloc_stub* 1876 reloc_stub() const 1877 { return this->reloc_stub_; } 1878 1879 // Return the relocation type. 1880 unsigned int 1881 r_type() const 1882 { return this->r_type_; } 1883 1884 // Return the destination address of the relocation. LSB stores the THUMB 1885 // bit. 1886 Arm_address 1887 destination() const 1888 { return this->destination_; } 1889 1890 private: 1891 // Associated relocation stub if there is one, or NULL. 1892 const Reloc_stub* reloc_stub_; 1893 // Relocation type. 1894 unsigned int r_type_; 1895 // Destination address of this relocation. LSB is used to distinguish 1896 // ARM/THUMB mode. 1897 Arm_address destination_; 1898 }; 1899 1900 // Arm_output_data_got class. We derive this from Output_data_got to add 1901 // extra methods to handle TLS relocations in a static link. 1902 1903 template<bool big_endian> 1904 class Arm_output_data_got : public Output_data_got<32, big_endian> 1905 { 1906 public: 1907 Arm_output_data_got(Symbol_table* symtab, Layout* layout) 1908 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout) 1909 { } 1910 1911 // Add a static entry for the GOT entry at OFFSET. GSYM is a global 1912 // symbol and R_TYPE is the code of a dynamic relocation that needs to be 1913 // applied in a static link. 1914 void 1915 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym) 1916 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); } 1917 1918 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object 1919 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic 1920 // relocation that needs to be applied in a static link. 1921 void 1922 add_static_reloc(unsigned int got_offset, unsigned int r_type, 1923 Sized_relobj_file<32, big_endian>* relobj, 1924 unsigned int index) 1925 { 1926 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj, 1927 index)); 1928 } 1929 1930 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries. 1931 // The first one is initialized to be 1, which is the module index for 1932 // the main executable and the second one 0. A reloc of the type 1933 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will 1934 // be applied by gold. GSYM is a global symbol. 1935 void 1936 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym); 1937 1938 // Same as the above but for a local symbol in OBJECT with INDEX. 1939 void 1940 add_tls_gd32_with_static_reloc(unsigned int got_type, 1941 Sized_relobj_file<32, big_endian>* object, 1942 unsigned int index); 1943 1944 protected: 1945 // Write out the GOT table. 1946 void 1947 do_write(Output_file*); 1948 1949 private: 1950 // This class represent dynamic relocations that need to be applied by 1951 // gold because we are using TLS relocations in a static link. 1952 class Static_reloc 1953 { 1954 public: 1955 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym) 1956 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true) 1957 { this->u_.global.symbol = gsym; } 1958 1959 Static_reloc(unsigned int got_offset, unsigned int r_type, 1960 Sized_relobj_file<32, big_endian>* relobj, unsigned int index) 1961 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false) 1962 { 1963 this->u_.local.relobj = relobj; 1964 this->u_.local.index = index; 1965 } 1966 1967 // Return the GOT offset. 1968 unsigned int 1969 got_offset() const 1970 { return this->got_offset_; } 1971 1972 // Relocation type. 1973 unsigned int 1974 r_type() const 1975 { return this->r_type_; } 1976 1977 // Whether the symbol is global or not. 1978 bool 1979 symbol_is_global() const 1980 { return this->symbol_is_global_; } 1981 1982 // For a relocation against a global symbol, the global symbol. 1983 Symbol* 1984 symbol() const 1985 { 1986 gold_assert(this->symbol_is_global_); 1987 return this->u_.global.symbol; 1988 } 1989 1990 // For a relocation against a local symbol, the defining object. 1991 Sized_relobj_file<32, big_endian>* 1992 relobj() const 1993 { 1994 gold_assert(!this->symbol_is_global_); 1995 return this->u_.local.relobj; 1996 } 1997 1998 // For a relocation against a local symbol, the local symbol index. 1999 unsigned int 2000 index() const 2001 { 2002 gold_assert(!this->symbol_is_global_); 2003 return this->u_.local.index; 2004 } 2005 2006 private: 2007 // GOT offset of the entry to which this relocation is applied. 2008 unsigned int got_offset_; 2009 // Type of relocation. 2010 unsigned int r_type_; 2011 // Whether this relocation is against a global symbol. 2012 bool symbol_is_global_; 2013 // A global or local symbol. 2014 union 2015 { 2016 struct 2017 { 2018 // For a global symbol, the symbol itself. 2019 Symbol* symbol; 2020 } global; 2021 struct 2022 { 2023 // For a local symbol, the object defining object. 2024 Sized_relobj_file<32, big_endian>* relobj; 2025 // For a local symbol, the symbol index. 2026 unsigned int index; 2027 } local; 2028 } u_; 2029 }; 2030 2031 // Symbol table of the output object. 2032 Symbol_table* symbol_table_; 2033 // Layout of the output object. 2034 Layout* layout_; 2035 // Static relocs to be applied to the GOT. 2036 std::vector<Static_reloc> static_relocs_; 2037 }; 2038 2039 // The ARM target has many relocation types with odd-sizes or noncontiguous 2040 // bits. The default handling of relocatable relocation cannot process these 2041 // relocations. So we have to extend the default code. 2042 2043 template<bool big_endian, typename Classify_reloc> 2044 class Arm_scan_relocatable_relocs : 2045 public Default_scan_relocatable_relocs<Classify_reloc> 2046 { 2047 public: 2048 // Return the strategy to use for a local symbol which is a section 2049 // symbol, given the relocation type. 2050 inline Relocatable_relocs::Reloc_strategy 2051 local_section_strategy(unsigned int r_type, Relobj*) 2052 { 2053 if (Classify_reloc::sh_type == elfcpp::SHT_RELA) 2054 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA; 2055 else 2056 { 2057 if (r_type == elfcpp::R_ARM_TARGET1 2058 || r_type == elfcpp::R_ARM_TARGET2) 2059 { 2060 const Target_arm<big_endian>* arm_target = 2061 Target_arm<big_endian>::default_target(); 2062 r_type = arm_target->get_real_reloc_type(r_type); 2063 } 2064 2065 switch(r_type) 2066 { 2067 // Relocations that write nothing. These exclude R_ARM_TARGET1 2068 // and R_ARM_TARGET2. 2069 case elfcpp::R_ARM_NONE: 2070 case elfcpp::R_ARM_V4BX: 2071 case elfcpp::R_ARM_TLS_GOTDESC: 2072 case elfcpp::R_ARM_TLS_CALL: 2073 case elfcpp::R_ARM_TLS_DESCSEQ: 2074 case elfcpp::R_ARM_THM_TLS_CALL: 2075 case elfcpp::R_ARM_GOTRELAX: 2076 case elfcpp::R_ARM_GNU_VTENTRY: 2077 case elfcpp::R_ARM_GNU_VTINHERIT: 2078 case elfcpp::R_ARM_THM_TLS_DESCSEQ16: 2079 case elfcpp::R_ARM_THM_TLS_DESCSEQ32: 2080 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0; 2081 // These should have been converted to something else above. 2082 case elfcpp::R_ARM_TARGET1: 2083 case elfcpp::R_ARM_TARGET2: 2084 gold_unreachable(); 2085 // Relocations that write full 32 bits and 2086 // have alignment of 1. 2087 case elfcpp::R_ARM_ABS32: 2088 case elfcpp::R_ARM_REL32: 2089 case elfcpp::R_ARM_SBREL32: 2090 case elfcpp::R_ARM_GOTOFF32: 2091 case elfcpp::R_ARM_BASE_PREL: 2092 case elfcpp::R_ARM_GOT_BREL: 2093 case elfcpp::R_ARM_BASE_ABS: 2094 case elfcpp::R_ARM_ABS32_NOI: 2095 case elfcpp::R_ARM_REL32_NOI: 2096 case elfcpp::R_ARM_PLT32_ABS: 2097 case elfcpp::R_ARM_GOT_ABS: 2098 case elfcpp::R_ARM_GOT_PREL: 2099 case elfcpp::R_ARM_TLS_GD32: 2100 case elfcpp::R_ARM_TLS_LDM32: 2101 case elfcpp::R_ARM_TLS_LDO32: 2102 case elfcpp::R_ARM_TLS_IE32: 2103 case elfcpp::R_ARM_TLS_LE32: 2104 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED; 2105 default: 2106 // For all other static relocations, return RELOC_SPECIAL. 2107 return Relocatable_relocs::RELOC_SPECIAL; 2108 } 2109 } 2110 } 2111 }; 2112 2113 template<bool big_endian> 2114 class Target_arm : public Sized_target<32, big_endian> 2115 { 2116 public: 2117 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian> 2118 Reloc_section; 2119 2120 // When were are relocating a stub, we pass this as the relocation number. 2121 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1); 2122 2123 Target_arm(const Target::Target_info* info = &arm_info) 2124 : Sized_target<32, big_endian>(info), 2125 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL), 2126 rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY), 2127 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false), 2128 stub_tables_(), stub_factory_(Stub_factory::get_instance()), 2129 should_force_pic_veneer_(false), 2130 arm_input_section_map_(), attributes_section_data_(NULL), 2131 fix_cortex_a8_(false), cortex_a8_relocs_info_(), 2132 target1_reloc_(elfcpp::R_ARM_ABS32), 2133 // This can be any reloc type but usually is R_ARM_GOT_PREL. 2134 target2_reloc_(elfcpp::R_ARM_GOT_PREL) 2135 { } 2136 2137 // Whether we force PCI branch veneers. 2138 bool 2139 should_force_pic_veneer() const 2140 { return this->should_force_pic_veneer_; } 2141 2142 // Set PIC veneer flag. 2143 void 2144 set_should_force_pic_veneer(bool value) 2145 { this->should_force_pic_veneer_ = value; } 2146 2147 // Whether we use THUMB-2 instructions. 2148 bool 2149 using_thumb2() const 2150 { 2151 Object_attribute* attr = 2152 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); 2153 int arch = attr->int_value(); 2154 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7; 2155 } 2156 2157 // Whether we use THUMB/THUMB-2 instructions only. 2158 bool 2159 using_thumb_only() const 2160 { 2161 Object_attribute* attr = 2162 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); 2163 2164 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M 2165 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M) 2166 return true; 2167 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7 2168 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M) 2169 return false; 2170 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile); 2171 return attr->int_value() == 'M'; 2172 } 2173 2174 // Whether we have an NOP instruction. If not, use mov r0, r0 instead. 2175 bool 2176 may_use_arm_nop() const 2177 { 2178 Object_attribute* attr = 2179 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); 2180 int arch = attr->int_value(); 2181 return (arch == elfcpp::TAG_CPU_ARCH_V6T2 2182 || arch == elfcpp::TAG_CPU_ARCH_V6K 2183 || arch == elfcpp::TAG_CPU_ARCH_V7 2184 || arch == elfcpp::TAG_CPU_ARCH_V7E_M); 2185 } 2186 2187 // Whether we have THUMB-2 NOP.W instruction. 2188 bool 2189 may_use_thumb2_nop() const 2190 { 2191 Object_attribute* attr = 2192 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); 2193 int arch = attr->int_value(); 2194 return (arch == elfcpp::TAG_CPU_ARCH_V6T2 2195 || arch == elfcpp::TAG_CPU_ARCH_V7 2196 || arch == elfcpp::TAG_CPU_ARCH_V7E_M); 2197 } 2198 2199 // Whether we have v4T interworking instructions available. 2200 bool 2201 may_use_v4t_interworking() const 2202 { 2203 Object_attribute* attr = 2204 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); 2205 int arch = attr->int_value(); 2206 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4 2207 && arch != elfcpp::TAG_CPU_ARCH_V4); 2208 } 2209 2210 // Whether we have v5T interworking instructions available. 2211 bool 2212 may_use_v5t_interworking() const 2213 { 2214 Object_attribute* attr = 2215 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); 2216 int arch = attr->int_value(); 2217 if (parameters->options().fix_arm1176()) 2218 return (arch == elfcpp::TAG_CPU_ARCH_V6T2 2219 || arch == elfcpp::TAG_CPU_ARCH_V7 2220 || arch == elfcpp::TAG_CPU_ARCH_V6_M 2221 || arch == elfcpp::TAG_CPU_ARCH_V6S_M 2222 || arch == elfcpp::TAG_CPU_ARCH_V7E_M); 2223 else 2224 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4 2225 && arch != elfcpp::TAG_CPU_ARCH_V4 2226 && arch != elfcpp::TAG_CPU_ARCH_V4T); 2227 } 2228 2229 // Process the relocations to determine unreferenced sections for 2230 // garbage collection. 2231 void 2232 gc_process_relocs(Symbol_table* symtab, 2233 Layout* layout, 2234 Sized_relobj_file<32, big_endian>* object, 2235 unsigned int data_shndx, 2236 unsigned int sh_type, 2237 const unsigned char* prelocs, 2238 size_t reloc_count, 2239 Output_section* output_section, 2240 bool needs_special_offset_handling, 2241 size_t local_symbol_count, 2242 const unsigned char* plocal_symbols); 2243 2244 // Scan the relocations to look for symbol adjustments. 2245 void 2246 scan_relocs(Symbol_table* symtab, 2247 Layout* layout, 2248 Sized_relobj_file<32, big_endian>* object, 2249 unsigned int data_shndx, 2250 unsigned int sh_type, 2251 const unsigned char* prelocs, 2252 size_t reloc_count, 2253 Output_section* output_section, 2254 bool needs_special_offset_handling, 2255 size_t local_symbol_count, 2256 const unsigned char* plocal_symbols); 2257 2258 // Finalize the sections. 2259 void 2260 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); 2261 2262 // Return the value to use for a dynamic symbol which requires special 2263 // treatment. 2264 uint64_t 2265 do_dynsym_value(const Symbol*) const; 2266 2267 // Return the plt address for globals. Since we have irelative plt entries, 2268 // address calculation is not as straightforward as plt_address + plt_offset. 2269 uint64_t 2270 do_plt_address_for_global(const Symbol* gsym) const 2271 { return this->plt_section()->address_for_global(gsym); } 2272 2273 // Return the plt address for locals. Since we have irelative plt entries, 2274 // address calculation is not as straightforward as plt_address + plt_offset. 2275 uint64_t 2276 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const 2277 { return this->plt_section()->address_for_local(relobj, symndx); } 2278 2279 // Relocate a section. 2280 void 2281 relocate_section(const Relocate_info<32, big_endian>*, 2282 unsigned int sh_type, 2283 const unsigned char* prelocs, 2284 size_t reloc_count, 2285 Output_section* output_section, 2286 bool needs_special_offset_handling, 2287 unsigned char* view, 2288 Arm_address view_address, 2289 section_size_type view_size, 2290 const Reloc_symbol_changes*); 2291 2292 // Scan the relocs during a relocatable link. 2293 void 2294 scan_relocatable_relocs(Symbol_table* symtab, 2295 Layout* layout, 2296 Sized_relobj_file<32, big_endian>* object, 2297 unsigned int data_shndx, 2298 unsigned int sh_type, 2299 const unsigned char* prelocs, 2300 size_t reloc_count, 2301 Output_section* output_section, 2302 bool needs_special_offset_handling, 2303 size_t local_symbol_count, 2304 const unsigned char* plocal_symbols, 2305 Relocatable_relocs*); 2306 2307 // Scan the relocs for --emit-relocs. 2308 void 2309 emit_relocs_scan(Symbol_table* symtab, 2310 Layout* layout, 2311 Sized_relobj_file<32, big_endian>* object, 2312 unsigned int data_shndx, 2313 unsigned int sh_type, 2314 const unsigned char* prelocs, 2315 size_t reloc_count, 2316 Output_section* output_section, 2317 bool needs_special_offset_handling, 2318 size_t local_symbol_count, 2319 const unsigned char* plocal_syms, 2320 Relocatable_relocs* rr); 2321 2322 // Emit relocations for a section. 2323 void 2324 relocate_relocs(const Relocate_info<32, big_endian>*, 2325 unsigned int sh_type, 2326 const unsigned char* prelocs, 2327 size_t reloc_count, 2328 Output_section* output_section, 2329 typename elfcpp::Elf_types<32>::Elf_Off 2330 offset_in_output_section, 2331 unsigned char* view, 2332 Arm_address view_address, 2333 section_size_type view_size, 2334 unsigned char* reloc_view, 2335 section_size_type reloc_view_size); 2336 2337 // Perform target-specific processing in a relocatable link. This is 2338 // only used if we use the relocation strategy RELOC_SPECIAL. 2339 void 2340 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo, 2341 unsigned int sh_type, 2342 const unsigned char* preloc_in, 2343 size_t relnum, 2344 Output_section* output_section, 2345 typename elfcpp::Elf_types<32>::Elf_Off 2346 offset_in_output_section, 2347 unsigned char* view, 2348 typename elfcpp::Elf_types<32>::Elf_Addr 2349 view_address, 2350 section_size_type view_size, 2351 unsigned char* preloc_out); 2352 2353 // Return whether SYM is defined by the ABI. 2354 bool 2355 do_is_defined_by_abi(const Symbol* sym) const 2356 { return strcmp(sym->name(), "__tls_get_addr") == 0; } 2357 2358 // Return whether there is a GOT section. 2359 bool 2360 has_got_section() const 2361 { return this->got_ != NULL; } 2362 2363 // Return the size of the GOT section. 2364 section_size_type 2365 got_size() const 2366 { 2367 gold_assert(this->got_ != NULL); 2368 return this->got_->data_size(); 2369 } 2370 2371 // Return the number of entries in the GOT. 2372 unsigned int 2373 got_entry_count() const 2374 { 2375 if (!this->has_got_section()) 2376 return 0; 2377 return this->got_size() / 4; 2378 } 2379 2380 // Return the number of entries in the PLT. 2381 unsigned int 2382 plt_entry_count() const; 2383 2384 // Return the offset of the first non-reserved PLT entry. 2385 unsigned int 2386 first_plt_entry_offset() const; 2387 2388 // Return the size of each PLT entry. 2389 unsigned int 2390 plt_entry_size() const; 2391 2392 // Get the section to use for IRELATIVE relocations, create it if necessary. 2393 Reloc_section* 2394 rel_irelative_section(Layout*); 2395 2396 // Map platform-specific reloc types 2397 unsigned int 2398 get_real_reloc_type(unsigned int r_type) const; 2399 2400 // 2401 // Methods to support stub-generations. 2402 // 2403 2404 // Return the stub factory 2405 const Stub_factory& 2406 stub_factory() const 2407 { return this->stub_factory_; } 2408 2409 // Make a new Arm_input_section object. 2410 Arm_input_section<big_endian>* 2411 new_arm_input_section(Relobj*, unsigned int); 2412 2413 // Find the Arm_input_section object corresponding to the SHNDX-th input 2414 // section of RELOBJ. 2415 Arm_input_section<big_endian>* 2416 find_arm_input_section(Relobj* relobj, unsigned int shndx) const; 2417 2418 // Make a new Stub_table 2419 Stub_table<big_endian>* 2420 new_stub_table(Arm_input_section<big_endian>*); 2421 2422 // Scan a section for stub generation. 2423 void 2424 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int, 2425 const unsigned char*, size_t, Output_section*, 2426 bool, const unsigned char*, Arm_address, 2427 section_size_type); 2428 2429 // Relocate a stub. 2430 void 2431 relocate_stub(Stub*, const Relocate_info<32, big_endian>*, 2432 Output_section*, unsigned char*, Arm_address, 2433 section_size_type); 2434 2435 // Get the default ARM target. 2436 static Target_arm<big_endian>* 2437 default_target() 2438 { 2439 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM 2440 && parameters->target().is_big_endian() == big_endian); 2441 return static_cast<Target_arm<big_endian>*>( 2442 parameters->sized_target<32, big_endian>()); 2443 } 2444 2445 // Whether NAME belongs to a mapping symbol. 2446 static bool 2447 is_mapping_symbol_name(const char* name) 2448 { 2449 return (name 2450 && name[0] == '$' 2451 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd') 2452 && (name[2] == '\0' || name[2] == '.')); 2453 } 2454 2455 // Whether we work around the Cortex-A8 erratum. 2456 bool 2457 fix_cortex_a8() const 2458 { return this->fix_cortex_a8_; } 2459 2460 // Whether we merge exidx entries in debuginfo. 2461 bool 2462 merge_exidx_entries() const 2463 { return parameters->options().merge_exidx_entries(); } 2464 2465 // Whether we fix R_ARM_V4BX relocation. 2466 // 0 - do not fix 2467 // 1 - replace with MOV instruction (armv4 target) 2468 // 2 - make interworking veneer (>= armv4t targets only) 2469 General_options::Fix_v4bx 2470 fix_v4bx() const 2471 { return parameters->options().fix_v4bx(); } 2472 2473 // Scan a span of THUMB code section for Cortex-A8 erratum. 2474 void 2475 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int, 2476 section_size_type, section_size_type, 2477 const unsigned char*, Arm_address); 2478 2479 // Apply Cortex-A8 workaround to a branch. 2480 void 2481 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address, 2482 unsigned char*, Arm_address); 2483 2484 protected: 2485 // Make the PLT-generator object. 2486 Output_data_plt_arm<big_endian>* 2487 make_data_plt(Layout* layout, 2488 Arm_output_data_got<big_endian>* got, 2489 Output_data_space* got_plt, 2490 Output_data_space* got_irelative) 2491 { return this->do_make_data_plt(layout, got, got_plt, got_irelative); } 2492 2493 // Make an ELF object. 2494 Object* 2495 do_make_elf_object(const std::string&, Input_file*, off_t, 2496 const elfcpp::Ehdr<32, big_endian>& ehdr); 2497 2498 Object* 2499 do_make_elf_object(const std::string&, Input_file*, off_t, 2500 const elfcpp::Ehdr<32, !big_endian>&) 2501 { gold_unreachable(); } 2502 2503 Object* 2504 do_make_elf_object(const std::string&, Input_file*, off_t, 2505 const elfcpp::Ehdr<64, false>&) 2506 { gold_unreachable(); } 2507 2508 Object* 2509 do_make_elf_object(const std::string&, Input_file*, off_t, 2510 const elfcpp::Ehdr<64, true>&) 2511 { gold_unreachable(); } 2512 2513 // Make an output section. 2514 Output_section* 2515 do_make_output_section(const char* name, elfcpp::Elf_Word type, 2516 elfcpp::Elf_Xword flags) 2517 { return new Arm_output_section<big_endian>(name, type, flags); } 2518 2519 void 2520 do_adjust_elf_header(unsigned char* view, int len); 2521 2522 // We only need to generate stubs, and hence perform relaxation if we are 2523 // not doing relocatable linking. 2524 bool 2525 do_may_relax() const 2526 { return !parameters->options().relocatable(); } 2527 2528 bool 2529 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*); 2530 2531 // Determine whether an object attribute tag takes an integer, a 2532 // string or both. 2533 int 2534 do_attribute_arg_type(int tag) const; 2535 2536 // Reorder tags during output. 2537 int 2538 do_attributes_order(int num) const; 2539 2540 // This is called when the target is selected as the default. 2541 void 2542 do_select_as_default_target() 2543 { 2544 // No locking is required since there should only be one default target. 2545 // We cannot have both the big-endian and little-endian ARM targets 2546 // as the default. 2547 gold_assert(arm_reloc_property_table == NULL); 2548 arm_reloc_property_table = new Arm_reloc_property_table(); 2549 if (parameters->options().user_set_target1_rel()) 2550 { 2551 // FIXME: This is not strictly compatible with ld, which allows both 2552 // --target1-abs and --target-rel to be given. 2553 if (parameters->options().user_set_target1_abs()) 2554 gold_error(_("Cannot use both --target1-abs and --target1-rel.")); 2555 else 2556 this->target1_reloc_ = elfcpp::R_ARM_REL32; 2557 } 2558 // We don't need to handle --target1-abs because target1_reloc_ is set 2559 // to elfcpp::R_ARM_ABS32 in the member initializer list. 2560 2561 if (parameters->options().user_set_target2()) 2562 { 2563 const char* target2 = parameters->options().target2(); 2564 if (strcmp(target2, "rel") == 0) 2565 this->target2_reloc_ = elfcpp::R_ARM_REL32; 2566 else if (strcmp(target2, "abs") == 0) 2567 this->target2_reloc_ = elfcpp::R_ARM_ABS32; 2568 else if (strcmp(target2, "got-rel") == 0) 2569 this->target2_reloc_ = elfcpp::R_ARM_GOT_PREL; 2570 else 2571 gold_unreachable(); 2572 } 2573 } 2574 2575 // Virtual function which is set to return true by a target if 2576 // it can use relocation types to determine if a function's 2577 // pointer is taken. 2578 virtual bool 2579 do_can_check_for_function_pointers() const 2580 { return true; } 2581 2582 // Whether a section called SECTION_NAME may have function pointers to 2583 // sections not eligible for safe ICF folding. 2584 virtual bool 2585 do_section_may_have_icf_unsafe_pointers(const char* section_name) const 2586 { 2587 return (!is_prefix_of(".ARM.exidx", section_name) 2588 && !is_prefix_of(".ARM.extab", section_name) 2589 && Target::do_section_may_have_icf_unsafe_pointers(section_name)); 2590 } 2591 2592 virtual void 2593 do_define_standard_symbols(Symbol_table*, Layout*); 2594 2595 virtual Output_data_plt_arm<big_endian>* 2596 do_make_data_plt(Layout* layout, 2597 Arm_output_data_got<big_endian>* got, 2598 Output_data_space* got_plt, 2599 Output_data_space* got_irelative) 2600 { 2601 gold_assert(got_plt != NULL && got_irelative != NULL); 2602 if (parameters->options().long_plt()) 2603 return new Output_data_plt_arm_long<big_endian>( 2604 layout, got, got_plt, got_irelative); 2605 else 2606 return new Output_data_plt_arm_short<big_endian>( 2607 layout, got, got_plt, got_irelative); 2608 } 2609 2610 private: 2611 // The class which scans relocations. 2612 class Scan 2613 { 2614 public: 2615 Scan() 2616 : issued_non_pic_error_(false) 2617 { } 2618 2619 static inline int 2620 get_reference_flags(unsigned int r_type); 2621 2622 inline void 2623 local(Symbol_table* symtab, Layout* layout, Target_arm* target, 2624 Sized_relobj_file<32, big_endian>* object, 2625 unsigned int data_shndx, 2626 Output_section* output_section, 2627 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type, 2628 const elfcpp::Sym<32, big_endian>& lsym, 2629 bool is_discarded); 2630 2631 inline void 2632 global(Symbol_table* symtab, Layout* layout, Target_arm* target, 2633 Sized_relobj_file<32, big_endian>* object, 2634 unsigned int data_shndx, 2635 Output_section* output_section, 2636 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type, 2637 Symbol* gsym); 2638 2639 inline bool 2640 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* , 2641 Sized_relobj_file<32, big_endian>* , 2642 unsigned int , 2643 Output_section* , 2644 const elfcpp::Rel<32, big_endian>& , 2645 unsigned int , 2646 const elfcpp::Sym<32, big_endian>&); 2647 2648 inline bool 2649 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* , 2650 Sized_relobj_file<32, big_endian>* , 2651 unsigned int , 2652 Output_section* , 2653 const elfcpp::Rel<32, big_endian>& , 2654 unsigned int , Symbol*); 2655 2656 private: 2657 static void 2658 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*, 2659 unsigned int r_type); 2660 2661 static void 2662 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*, 2663 unsigned int r_type, Symbol*); 2664 2665 void 2666 check_non_pic(Relobj*, unsigned int r_type); 2667 2668 // Almost identical to Symbol::needs_plt_entry except that it also 2669 // handles STT_ARM_TFUNC. 2670 static bool 2671 symbol_needs_plt_entry(const Symbol* sym) 2672 { 2673 // An undefined symbol from an executable does not need a PLT entry. 2674 if (sym->is_undefined() && !parameters->options().shared()) 2675 return false; 2676 2677 if (sym->type() == elfcpp::STT_GNU_IFUNC) 2678 return true; 2679 2680 return (!parameters->doing_static_link() 2681 && (sym->type() == elfcpp::STT_FUNC 2682 || sym->type() == elfcpp::STT_ARM_TFUNC) 2683 && (sym->is_from_dynobj() 2684 || sym->is_undefined() 2685 || sym->is_preemptible())); 2686 } 2687 2688 inline bool 2689 possible_function_pointer_reloc(unsigned int r_type); 2690 2691 // Whether a plt entry is needed for ifunc. 2692 bool 2693 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*, 2694 unsigned int r_type); 2695 2696 // Whether we have issued an error about a non-PIC compilation. 2697 bool issued_non_pic_error_; 2698 }; 2699 2700 // The class which implements relocation. 2701 class Relocate 2702 { 2703 public: 2704 Relocate() 2705 { } 2706 2707 ~Relocate() 2708 { } 2709 2710 // Return whether the static relocation needs to be applied. 2711 inline bool 2712 should_apply_static_reloc(const Sized_symbol<32>* gsym, 2713 unsigned int r_type, 2714 bool is_32bit, 2715 Output_section* output_section); 2716 2717 // Do a relocation. Return false if the caller should not issue 2718 // any warnings about this relocation. 2719 inline bool 2720 relocate(const Relocate_info<32, big_endian>*, unsigned int, 2721 Target_arm*, Output_section*, size_t, const unsigned char*, 2722 const Sized_symbol<32>*, const Symbol_value<32>*, 2723 unsigned char*, Arm_address, section_size_type); 2724 2725 // Return whether we want to pass flag NON_PIC_REF for this 2726 // reloc. This means the relocation type accesses a symbol not via 2727 // GOT or PLT. 2728 static inline bool 2729 reloc_is_non_pic(unsigned int r_type) 2730 { 2731 switch (r_type) 2732 { 2733 // These relocation types reference GOT or PLT entries explicitly. 2734 case elfcpp::R_ARM_GOT_BREL: 2735 case elfcpp::R_ARM_GOT_ABS: 2736 case elfcpp::R_ARM_GOT_PREL: 2737 case elfcpp::R_ARM_GOT_BREL12: 2738 case elfcpp::R_ARM_PLT32_ABS: 2739 case elfcpp::R_ARM_TLS_GD32: 2740 case elfcpp::R_ARM_TLS_LDM32: 2741 case elfcpp::R_ARM_TLS_IE32: 2742 case elfcpp::R_ARM_TLS_IE12GP: 2743 2744 // These relocate types may use PLT entries. 2745 case elfcpp::R_ARM_CALL: 2746 case elfcpp::R_ARM_THM_CALL: 2747 case elfcpp::R_ARM_JUMP24: 2748 case elfcpp::R_ARM_THM_JUMP24: 2749 case elfcpp::R_ARM_THM_JUMP19: 2750 case elfcpp::R_ARM_PLT32: 2751 case elfcpp::R_ARM_THM_XPC22: 2752 case elfcpp::R_ARM_PREL31: 2753 case elfcpp::R_ARM_SBREL31: 2754 return false; 2755 2756 default: 2757 return true; 2758 } 2759 } 2760 2761 private: 2762 // Do a TLS relocation. 2763 inline typename Arm_relocate_functions<big_endian>::Status 2764 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*, 2765 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int, 2766 const Sized_symbol<32>*, const Symbol_value<32>*, 2767 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr, 2768 section_size_type); 2769 2770 }; 2771 2772 // A class for inquiring about properties of a relocation, 2773 // used while scanning relocs during a relocatable link and 2774 // garbage collection. 2775 class Classify_reloc : 2776 public gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian> 2777 { 2778 public: 2779 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc 2780 Reltype; 2781 2782 // Return the explicit addend of the relocation (return 0 for SHT_REL). 2783 static typename elfcpp::Elf_types<32>::Elf_Swxword 2784 get_r_addend(const Reltype*) 2785 { return 0; } 2786 2787 // Return the size of the addend of the relocation (only used for SHT_REL). 2788 static unsigned int 2789 get_size_for_reloc(unsigned int, Relobj*); 2790 }; 2791 2792 // Adjust TLS relocation type based on the options and whether this 2793 // is a local symbol. 2794 static tls::Tls_optimization 2795 optimize_tls_reloc(bool is_final, int r_type); 2796 2797 // Get the GOT section, creating it if necessary. 2798 Arm_output_data_got<big_endian>* 2799 got_section(Symbol_table*, Layout*); 2800 2801 // Get the GOT PLT section. 2802 Output_data_space* 2803 got_plt_section() const 2804 { 2805 gold_assert(this->got_plt_ != NULL); 2806 return this->got_plt_; 2807 } 2808 2809 // Create the PLT section. 2810 void 2811 make_plt_section(Symbol_table* symtab, Layout* layout); 2812 2813 // Create a PLT entry for a global symbol. 2814 void 2815 make_plt_entry(Symbol_table*, Layout*, Symbol*); 2816 2817 // Create a PLT entry for a local STT_GNU_IFUNC symbol. 2818 void 2819 make_local_ifunc_plt_entry(Symbol_table*, Layout*, 2820 Sized_relobj_file<32, big_endian>* relobj, 2821 unsigned int local_sym_index); 2822 2823 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment. 2824 void 2825 define_tls_base_symbol(Symbol_table*, Layout*); 2826 2827 // Create a GOT entry for the TLS module index. 2828 unsigned int 2829 got_mod_index_entry(Symbol_table* symtab, Layout* layout, 2830 Sized_relobj_file<32, big_endian>* object); 2831 2832 // Get the PLT section. 2833 const Output_data_plt_arm<big_endian>* 2834 plt_section() const 2835 { 2836 gold_assert(this->plt_ != NULL); 2837 return this->plt_; 2838 } 2839 2840 // Get the dynamic reloc section, creating it if necessary. 2841 Reloc_section* 2842 rel_dyn_section(Layout*); 2843 2844 // Get the section to use for TLS_DESC relocations. 2845 Reloc_section* 2846 rel_tls_desc_section(Layout*) const; 2847 2848 // Return true if the symbol may need a COPY relocation. 2849 // References from an executable object to non-function symbols 2850 // defined in a dynamic object may need a COPY relocation. 2851 bool 2852 may_need_copy_reloc(Symbol* gsym) 2853 { 2854 return (gsym->type() != elfcpp::STT_ARM_TFUNC 2855 && gsym->may_need_copy_reloc()); 2856 } 2857 2858 // Add a potential copy relocation. 2859 void 2860 copy_reloc(Symbol_table* symtab, Layout* layout, 2861 Sized_relobj_file<32, big_endian>* object, 2862 unsigned int shndx, Output_section* output_section, 2863 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc) 2864 { 2865 unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info()); 2866 this->copy_relocs_.copy_reloc(symtab, layout, 2867 symtab->get_sized_symbol<32>(sym), 2868 object, shndx, output_section, 2869 r_type, reloc.get_r_offset(), 0, 2870 this->rel_dyn_section(layout)); 2871 } 2872 2873 // Whether two EABI versions are compatible. 2874 static bool 2875 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2); 2876 2877 // Merge processor-specific flags from input object and those in the ELF 2878 // header of the output. 2879 void 2880 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word); 2881 2882 // Get the secondary compatible architecture. 2883 static int 2884 get_secondary_compatible_arch(const Attributes_section_data*); 2885 2886 // Set the secondary compatible architecture. 2887 static void 2888 set_secondary_compatible_arch(Attributes_section_data*, int); 2889 2890 static int 2891 tag_cpu_arch_combine(const char*, int, int*, int, int); 2892 2893 // Helper to print AEABI enum tag value. 2894 static std::string 2895 aeabi_enum_name(unsigned int); 2896 2897 // Return string value for TAG_CPU_name. 2898 static std::string 2899 tag_cpu_name_value(unsigned int); 2900 2901 // Query attributes object to see if integer divide instructions may be 2902 // present in an object. 2903 static bool 2904 attributes_accept_div(int arch, int profile, 2905 const Object_attribute* div_attr); 2906 2907 // Query attributes object to see if integer divide instructions are 2908 // forbidden to be in the object. This is not the inverse of 2909 // attributes_accept_div. 2910 static bool 2911 attributes_forbid_div(const Object_attribute* div_attr); 2912 2913 // Merge object attributes from input object and those in the output. 2914 void 2915 merge_object_attributes(const char*, const Attributes_section_data*); 2916 2917 // Helper to get an AEABI object attribute 2918 Object_attribute* 2919 get_aeabi_object_attribute(int tag) const 2920 { 2921 Attributes_section_data* pasd = this->attributes_section_data_; 2922 gold_assert(pasd != NULL); 2923 Object_attribute* attr = 2924 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag); 2925 gold_assert(attr != NULL); 2926 return attr; 2927 } 2928 2929 // 2930 // Methods to support stub-generations. 2931 // 2932 2933 // Group input sections for stub generation. 2934 void 2935 group_sections(Layout*, section_size_type, bool, const Task*); 2936 2937 // Scan a relocation for stub generation. 2938 void 2939 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int, 2940 const Sized_symbol<32>*, unsigned int, 2941 const Symbol_value<32>*, 2942 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address); 2943 2944 // Scan a relocation section for stub. 2945 template<int sh_type> 2946 void 2947 scan_reloc_section_for_stubs( 2948 const Relocate_info<32, big_endian>* relinfo, 2949 const unsigned char* prelocs, 2950 size_t reloc_count, 2951 Output_section* output_section, 2952 bool needs_special_offset_handling, 2953 const unsigned char* view, 2954 elfcpp::Elf_types<32>::Elf_Addr view_address, 2955 section_size_type); 2956 2957 // Fix .ARM.exidx section coverage. 2958 void 2959 fix_exidx_coverage(Layout*, const Input_objects*, 2960 Arm_output_section<big_endian>*, Symbol_table*, 2961 const Task*); 2962 2963 // Functors for STL set. 2964 struct output_section_address_less_than 2965 { 2966 bool 2967 operator()(const Output_section* s1, const Output_section* s2) const 2968 { return s1->address() < s2->address(); } 2969 }; 2970 2971 // Information about this specific target which we pass to the 2972 // general Target structure. 2973 static const Target::Target_info arm_info; 2974 2975 // The types of GOT entries needed for this platform. 2976 // These values are exposed to the ABI in an incremental link. 2977 // Do not renumber existing values without changing the version 2978 // number of the .gnu_incremental_inputs section. 2979 enum Got_type 2980 { 2981 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol 2982 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset 2983 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset 2984 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair 2985 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair 2986 }; 2987 2988 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list; 2989 2990 // Map input section to Arm_input_section. 2991 typedef Unordered_map<Section_id, 2992 Arm_input_section<big_endian>*, 2993 Section_id_hash> 2994 Arm_input_section_map; 2995 2996 // Map output addresses to relocs for Cortex-A8 erratum. 2997 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*> 2998 Cortex_a8_relocs_info; 2999 3000 // The GOT section. 3001 Arm_output_data_got<big_endian>* got_; 3002 // The PLT section. 3003 Output_data_plt_arm<big_endian>* plt_; 3004 // The GOT PLT section. 3005 Output_data_space* got_plt_; 3006 // The GOT section for IRELATIVE relocations. 3007 Output_data_space* got_irelative_; 3008 // The dynamic reloc section. 3009 Reloc_section* rel_dyn_; 3010 // The section to use for IRELATIVE relocs. 3011 Reloc_section* rel_irelative_; 3012 // Relocs saved to avoid a COPY reloc. 3013 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_; 3014 // Offset of the GOT entry for the TLS module index. 3015 unsigned int got_mod_index_offset_; 3016 // True if the _TLS_MODULE_BASE_ symbol has been defined. 3017 bool tls_base_symbol_defined_; 3018 // Vector of Stub_tables created. 3019 Stub_table_list stub_tables_; 3020 // Stub factory. 3021 const Stub_factory &stub_factory_; 3022 // Whether we force PIC branch veneers. 3023 bool should_force_pic_veneer_; 3024 // Map for locating Arm_input_sections. 3025 Arm_input_section_map arm_input_section_map_; 3026 // Attributes section data in output. 3027 Attributes_section_data* attributes_section_data_; 3028 // Whether we want to fix code for Cortex-A8 erratum. 3029 bool fix_cortex_a8_; 3030 // Map addresses to relocs for Cortex-A8 erratum. 3031 Cortex_a8_relocs_info cortex_a8_relocs_info_; 3032 // What R_ARM_TARGET1 maps to. It can be R_ARM_REL32 or R_ARM_ABS32. 3033 unsigned int target1_reloc_; 3034 // What R_ARM_TARGET2 maps to. It should be one of R_ARM_REL32, R_ARM_ABS32 3035 // and R_ARM_GOT_PREL. 3036 unsigned int target2_reloc_; 3037 }; 3038 3039 template<bool big_endian> 3040 const Target::Target_info Target_arm<big_endian>::arm_info = 3041 { 3042 32, // size 3043 big_endian, // is_big_endian 3044 elfcpp::EM_ARM, // machine_code 3045 false, // has_make_symbol 3046 false, // has_resolve 3047 false, // has_code_fill 3048 true, // is_default_stack_executable 3049 false, // can_icf_inline_merge_sections 3050 '\0', // wrap_char 3051 "/usr/lib/libc.so.1", // dynamic_linker 3052 0x8000, // default_text_segment_address 3053 0x1000, // abi_pagesize (overridable by -z max-page-size) 3054 0x1000, // common_pagesize (overridable by -z common-page-size) 3055 false, // isolate_execinstr 3056 0, // rosegment_gap 3057 elfcpp::SHN_UNDEF, // small_common_shndx 3058 elfcpp::SHN_UNDEF, // large_common_shndx 3059 0, // small_common_section_flags 3060 0, // large_common_section_flags 3061 ".ARM.attributes", // attributes_section 3062 "aeabi", // attributes_vendor 3063 "_start", // entry_symbol_name 3064 32, // hash_entry_size 3065 elfcpp::SHT_PROGBITS, // unwind_section_type 3066 }; 3067 3068 // Arm relocate functions class 3069 // 3070 3071 template<bool big_endian> 3072 class Arm_relocate_functions : public Relocate_functions<32, big_endian> 3073 { 3074 public: 3075 typedef enum 3076 { 3077 STATUS_OKAY, // No error during relocation. 3078 STATUS_OVERFLOW, // Relocation overflow. 3079 STATUS_BAD_RELOC // Relocation cannot be applied. 3080 } Status; 3081 3082 private: 3083 typedef Relocate_functions<32, big_endian> Base; 3084 typedef Arm_relocate_functions<big_endian> This; 3085 3086 // Encoding of imm16 argument for movt and movw ARM instructions 3087 // from ARM ARM: 3088 // 3089 // imm16 := imm4 | imm12 3090 // 3091 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 3092 // +-------+---------------+-------+-------+-----------------------+ 3093 // | | |imm4 | |imm12 | 3094 // +-------+---------------+-------+-------+-----------------------+ 3095 3096 // Extract the relocation addend from VAL based on the ARM 3097 // instruction encoding described above. 3098 static inline typename elfcpp::Swap<32, big_endian>::Valtype 3099 extract_arm_movw_movt_addend( 3100 typename elfcpp::Swap<32, big_endian>::Valtype val) 3101 { 3102 // According to the Elf ABI for ARM Architecture the immediate 3103 // field is sign-extended to form the addend. 3104 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff)); 3105 } 3106 3107 // Insert X into VAL based on the ARM instruction encoding described 3108 // above. 3109 static inline typename elfcpp::Swap<32, big_endian>::Valtype 3110 insert_val_arm_movw_movt( 3111 typename elfcpp::Swap<32, big_endian>::Valtype val, 3112 typename elfcpp::Swap<32, big_endian>::Valtype x) 3113 { 3114 val &= 0xfff0f000; 3115 val |= x & 0x0fff; 3116 val |= (x & 0xf000) << 4; 3117 return val; 3118 } 3119 3120 // Encoding of imm16 argument for movt and movw Thumb2 instructions 3121 // from ARM ARM: 3122 // 3123 // imm16 := imm4 | i | imm3 | imm8 3124 // 3125 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 3126 // +---------+-+-----------+-------++-+-----+-------+---------------+ 3127 // | |i| |imm4 || |imm3 | |imm8 | 3128 // +---------+-+-----------+-------++-+-----+-------+---------------+ 3129 3130 // Extract the relocation addend from VAL based on the Thumb2 3131 // instruction encoding described above. 3132 static inline typename elfcpp::Swap<32, big_endian>::Valtype 3133 extract_thumb_movw_movt_addend( 3134 typename elfcpp::Swap<32, big_endian>::Valtype val) 3135 { 3136 // According to the Elf ABI for ARM Architecture the immediate 3137 // field is sign-extended to form the addend. 3138 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) 3139 | ((val >> 15) & 0x0800) 3140 | ((val >> 4) & 0x0700) 3141 | (val & 0x00ff)); 3142 } 3143 3144 // Insert X into VAL based on the Thumb2 instruction encoding 3145 // described above. 3146 static inline typename elfcpp::Swap<32, big_endian>::Valtype 3147 insert_val_thumb_movw_movt( 3148 typename elfcpp::Swap<32, big_endian>::Valtype val, 3149 typename elfcpp::Swap<32, big_endian>::Valtype x) 3150 { 3151 val &= 0xfbf08f00; 3152 val |= (x & 0xf000) << 4; 3153 val |= (x & 0x0800) << 15; 3154 val |= (x & 0x0700) << 4; 3155 val |= (x & 0x00ff); 3156 return val; 3157 } 3158 3159 // Calculate the smallest constant Kn for the specified residual. 3160 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32) 3161 static uint32_t 3162 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual) 3163 { 3164 int32_t msb; 3165 3166 if (residual == 0) 3167 return 0; 3168 // Determine the most significant bit in the residual and 3169 // align the resulting value to a 2-bit boundary. 3170 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2) 3171 ; 3172 // The desired shift is now (msb - 6), or zero, whichever 3173 // is the greater. 3174 return (((msb - 6) < 0) ? 0 : (msb - 6)); 3175 } 3176 3177 // Calculate the final residual for the specified group index. 3178 // If the passed group index is less than zero, the method will return 3179 // the value of the specified residual without any change. 3180 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32) 3181 static typename elfcpp::Swap<32, big_endian>::Valtype 3182 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual, 3183 const int group) 3184 { 3185 for (int n = 0; n <= group; n++) 3186 { 3187 // Calculate which part of the value to mask. 3188 uint32_t shift = calc_grp_kn(residual); 3189 // Calculate the residual for the next time around. 3190 residual &= ~(residual & (0xff << shift)); 3191 } 3192 3193 return residual; 3194 } 3195 3196 // Calculate the value of Gn for the specified group index. 3197 // We return it in the form of an encoded constant-and-rotation. 3198 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32) 3199 static typename elfcpp::Swap<32, big_endian>::Valtype 3200 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual, 3201 const int group) 3202 { 3203 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0; 3204 uint32_t shift = 0; 3205 3206 for (int n = 0; n <= group; n++) 3207 { 3208 // Calculate which part of the value to mask. 3209 shift = calc_grp_kn(residual); 3210 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form. 3211 gn = residual & (0xff << shift); 3212 // Calculate the residual for the next time around. 3213 residual &= ~gn; 3214 } 3215 // Return Gn in the form of an encoded constant-and-rotation. 3216 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8)); 3217 } 3218 3219 public: 3220 // Handle ARM long branches. 3221 static typename This::Status 3222 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*, 3223 unsigned char*, const Sized_symbol<32>*, 3224 const Arm_relobj<big_endian>*, unsigned int, 3225 const Symbol_value<32>*, Arm_address, Arm_address, bool); 3226 3227 // Handle THUMB long branches. 3228 static typename This::Status 3229 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*, 3230 unsigned char*, const Sized_symbol<32>*, 3231 const Arm_relobj<big_endian>*, unsigned int, 3232 const Symbol_value<32>*, Arm_address, Arm_address, bool); 3233 3234 3235 // Return the branch offset of a 32-bit THUMB branch. 3236 static inline int32_t 3237 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn) 3238 { 3239 // We use the Thumb-2 encoding (backwards compatible with Thumb-1) 3240 // involving the J1 and J2 bits. 3241 uint32_t s = (upper_insn & (1U << 10)) >> 10; 3242 uint32_t upper = upper_insn & 0x3ffU; 3243 uint32_t lower = lower_insn & 0x7ffU; 3244 uint32_t j1 = (lower_insn & (1U << 13)) >> 13; 3245 uint32_t j2 = (lower_insn & (1U << 11)) >> 11; 3246 uint32_t i1 = j1 ^ s ? 0 : 1; 3247 uint32_t i2 = j2 ^ s ? 0 : 1; 3248 3249 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22) 3250 | (upper << 12) | (lower << 1)); 3251 } 3252 3253 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction. 3254 // UPPER_INSN is the original upper instruction of the branch. Caller is 3255 // responsible for overflow checking and BLX offset adjustment. 3256 static inline uint16_t 3257 thumb32_branch_upper(uint16_t upper_insn, int32_t offset) 3258 { 3259 uint32_t s = offset < 0 ? 1 : 0; 3260 uint32_t bits = static_cast<uint32_t>(offset); 3261 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10); 3262 } 3263 3264 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction. 3265 // LOWER_INSN is the original lower instruction of the branch. Caller is 3266 // responsible for overflow checking and BLX offset adjustment. 3267 static inline uint16_t 3268 thumb32_branch_lower(uint16_t lower_insn, int32_t offset) 3269 { 3270 uint32_t s = offset < 0 ? 1 : 0; 3271 uint32_t bits = static_cast<uint32_t>(offset); 3272 return ((lower_insn & ~0x2fffU) 3273 | ((((bits >> 23) & 1) ^ !s) << 13) 3274 | ((((bits >> 22) & 1) ^ !s) << 11) 3275 | ((bits >> 1) & 0x7ffU)); 3276 } 3277 3278 // Return the branch offset of a 32-bit THUMB conditional branch. 3279 static inline int32_t 3280 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn) 3281 { 3282 uint32_t s = (upper_insn & 0x0400U) >> 10; 3283 uint32_t j1 = (lower_insn & 0x2000U) >> 13; 3284 uint32_t j2 = (lower_insn & 0x0800U) >> 11; 3285 uint32_t lower = (lower_insn & 0x07ffU); 3286 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU); 3287 3288 return Bits<21>::sign_extend32((upper << 12) | (lower << 1)); 3289 } 3290 3291 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper 3292 // instruction. UPPER_INSN is the original upper instruction of the branch. 3293 // Caller is responsible for overflow checking. 3294 static inline uint16_t 3295 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset) 3296 { 3297 uint32_t s = offset < 0 ? 1 : 0; 3298 uint32_t bits = static_cast<uint32_t>(offset); 3299 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12); 3300 } 3301 3302 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower 3303 // instruction. LOWER_INSN is the original lower instruction of the branch. 3304 // The caller is responsible for overflow checking. 3305 static inline uint16_t 3306 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset) 3307 { 3308 uint32_t bits = static_cast<uint32_t>(offset); 3309 uint32_t j2 = (bits & 0x00080000U) >> 19; 3310 uint32_t j1 = (bits & 0x00040000U) >> 18; 3311 uint32_t lo = (bits & 0x00000ffeU) >> 1; 3312 3313 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo; 3314 } 3315 3316 // R_ARM_ABS8: S + A 3317 static inline typename This::Status 3318 abs8(unsigned char* view, 3319 const Sized_relobj_file<32, big_endian>* object, 3320 const Symbol_value<32>* psymval) 3321 { 3322 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype; 3323 Valtype* wv = reinterpret_cast<Valtype*>(view); 3324 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv); 3325 int32_t addend = Bits<8>::sign_extend32(val); 3326 Arm_address x = psymval->value(object, addend); 3327 val = Bits<32>::bit_select32(val, x, 0xffU); 3328 elfcpp::Swap<8, big_endian>::writeval(wv, val); 3329 3330 // R_ARM_ABS8 permits signed or unsigned results. 3331 return (Bits<8>::has_signed_unsigned_overflow32(x) 3332 ? This::STATUS_OVERFLOW 3333 : This::STATUS_OKAY); 3334 } 3335 3336 // R_ARM_THM_ABS5: S + A 3337 static inline typename This::Status 3338 thm_abs5(unsigned char* view, 3339 const Sized_relobj_file<32, big_endian>* object, 3340 const Symbol_value<32>* psymval) 3341 { 3342 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; 3343 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; 3344 Valtype* wv = reinterpret_cast<Valtype*>(view); 3345 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); 3346 Reltype addend = (val & 0x7e0U) >> 6; 3347 Reltype x = psymval->value(object, addend); 3348 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U); 3349 elfcpp::Swap<16, big_endian>::writeval(wv, val); 3350 return (Bits<5>::has_overflow32(x) 3351 ? This::STATUS_OVERFLOW 3352 : This::STATUS_OKAY); 3353 } 3354 3355 // R_ARM_ABS12: S + A 3356 static inline typename This::Status 3357 abs12(unsigned char* view, 3358 const Sized_relobj_file<32, big_endian>* object, 3359 const Symbol_value<32>* psymval) 3360 { 3361 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; 3362 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; 3363 Valtype* wv = reinterpret_cast<Valtype*>(view); 3364 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); 3365 Reltype addend = val & 0x0fffU; 3366 Reltype x = psymval->value(object, addend); 3367 val = Bits<32>::bit_select32(val, x, 0x0fffU); 3368 elfcpp::Swap<32, big_endian>::writeval(wv, val); 3369 return (Bits<12>::has_overflow32(x) 3370 ? This::STATUS_OVERFLOW 3371 : This::STATUS_OKAY); 3372 } 3373 3374 // R_ARM_ABS16: S + A 3375 static inline typename This::Status 3376 abs16(unsigned char* view, 3377 const Sized_relobj_file<32, big_endian>* object, 3378 const Symbol_value<32>* psymval) 3379 { 3380 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype; 3381 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view); 3382 int32_t addend = Bits<16>::sign_extend32(val); 3383 Arm_address x = psymval->value(object, addend); 3384 val = Bits<32>::bit_select32(val, x, 0xffffU); 3385 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val); 3386 3387 // R_ARM_ABS16 permits signed or unsigned results. 3388 return (Bits<16>::has_signed_unsigned_overflow32(x) 3389 ? This::STATUS_OVERFLOW 3390 : This::STATUS_OKAY); 3391 } 3392 3393 // R_ARM_ABS32: (S + A) | T 3394 static inline typename This::Status 3395 abs32(unsigned char* view, 3396 const Sized_relobj_file<32, big_endian>* object, 3397 const Symbol_value<32>* psymval, 3398 Arm_address thumb_bit) 3399 { 3400 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype; 3401 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view); 3402 Valtype x = psymval->value(object, addend) | thumb_bit; 3403 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x); 3404 return This::STATUS_OKAY; 3405 } 3406 3407 // R_ARM_REL32: (S + A) | T - P 3408 static inline typename This::Status 3409 rel32(unsigned char* view, 3410 const Sized_relobj_file<32, big_endian>* object, 3411 const Symbol_value<32>* psymval, 3412 Arm_address address, 3413 Arm_address thumb_bit) 3414 { 3415 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype; 3416 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view); 3417 Valtype x = (psymval->value(object, addend) | thumb_bit) - address; 3418 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x); 3419 return This::STATUS_OKAY; 3420 } 3421 3422 // R_ARM_THM_JUMP24: (S + A) | T - P 3423 static typename This::Status 3424 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object, 3425 const Symbol_value<32>* psymval, Arm_address address, 3426 Arm_address thumb_bit); 3427 3428 // R_ARM_THM_JUMP6: S + A - P 3429 static inline typename This::Status 3430 thm_jump6(unsigned char* view, 3431 const Sized_relobj_file<32, big_endian>* object, 3432 const Symbol_value<32>* psymval, 3433 Arm_address address) 3434 { 3435 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; 3436 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype; 3437 Valtype* wv = reinterpret_cast<Valtype*>(view); 3438 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); 3439 // bit[9]:bit[7:3]:'0' (mask: 0x02f8) 3440 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2)); 3441 Reltype x = (psymval->value(object, addend) - address); 3442 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2); 3443 elfcpp::Swap<16, big_endian>::writeval(wv, val); 3444 // CZB does only forward jumps. 3445 return ((x > 0x007e) 3446 ? This::STATUS_OVERFLOW 3447 : This::STATUS_OKAY); 3448 } 3449 3450 // R_ARM_THM_JUMP8: S + A - P 3451 static inline typename This::Status 3452 thm_jump8(unsigned char* view, 3453 const Sized_relobj_file<32, big_endian>* object, 3454 const Symbol_value<32>* psymval, 3455 Arm_address address) 3456 { 3457 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; 3458 Valtype* wv = reinterpret_cast<Valtype*>(view); 3459 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); 3460 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1); 3461 int32_t x = (psymval->value(object, addend) - address); 3462 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00) 3463 | ((x & 0x01fe) >> 1))); 3464 // We do a 9-bit overflow check because x is right-shifted by 1 bit. 3465 return (Bits<9>::has_overflow32(x) 3466 ? This::STATUS_OVERFLOW 3467 : This::STATUS_OKAY); 3468 } 3469 3470 // R_ARM_THM_JUMP11: S + A - P 3471 static inline typename This::Status 3472 thm_jump11(unsigned char* view, 3473 const Sized_relobj_file<32, big_endian>* object, 3474 const Symbol_value<32>* psymval, 3475 Arm_address address) 3476 { 3477 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; 3478 Valtype* wv = reinterpret_cast<Valtype*>(view); 3479 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); 3480 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1); 3481 int32_t x = (psymval->value(object, addend) - address); 3482 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800) 3483 | ((x & 0x0ffe) >> 1))); 3484 // We do a 12-bit overflow check because x is right-shifted by 1 bit. 3485 return (Bits<12>::has_overflow32(x) 3486 ? This::STATUS_OVERFLOW 3487 : This::STATUS_OKAY); 3488 } 3489 3490 // R_ARM_BASE_PREL: B(S) + A - P 3491 static inline typename This::Status 3492 base_prel(unsigned char* view, 3493 Arm_address origin, 3494 Arm_address address) 3495 { 3496 Base::rel32(view, origin - address); 3497 return STATUS_OKAY; 3498 } 3499 3500 // R_ARM_BASE_ABS: B(S) + A 3501 static inline typename This::Status 3502 base_abs(unsigned char* view, 3503 Arm_address origin) 3504 { 3505 Base::rel32(view, origin); 3506 return STATUS_OKAY; 3507 } 3508 3509 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG 3510 static inline typename This::Status 3511 got_brel(unsigned char* view, 3512 typename elfcpp::Swap<32, big_endian>::Valtype got_offset) 3513 { 3514 Base::rel32(view, got_offset); 3515 return This::STATUS_OKAY; 3516 } 3517 3518 // R_ARM_GOT_PREL: GOT(S) + A - P 3519 static inline typename This::Status 3520 got_prel(unsigned char* view, 3521 Arm_address got_entry, 3522 Arm_address address) 3523 { 3524 Base::rel32(view, got_entry - address); 3525 return This::STATUS_OKAY; 3526 } 3527 3528 // R_ARM_PREL: (S + A) | T - P 3529 static inline typename This::Status 3530 prel31(unsigned char* view, 3531 const Sized_relobj_file<32, big_endian>* object, 3532 const Symbol_value<32>* psymval, 3533 Arm_address address, 3534 Arm_address thumb_bit) 3535 { 3536 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype; 3537 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view); 3538 Valtype addend = Bits<31>::sign_extend32(val); 3539 Valtype x = (psymval->value(object, addend) | thumb_bit) - address; 3540 val = Bits<32>::bit_select32(val, x, 0x7fffffffU); 3541 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val); 3542 return (Bits<31>::has_overflow32(x) 3543 ? This::STATUS_OVERFLOW 3544 : This::STATUS_OKAY); 3545 } 3546 3547 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is ) 3548 // R_ARM_MOVW_PREL_NC: (S + A) | T - P 3549 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S) 3550 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S) 3551 static inline typename This::Status 3552 movw(unsigned char* view, 3553 const Sized_relobj_file<32, big_endian>* object, 3554 const Symbol_value<32>* psymval, 3555 Arm_address relative_address_base, 3556 Arm_address thumb_bit, 3557 bool check_overflow) 3558 { 3559 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; 3560 Valtype* wv = reinterpret_cast<Valtype*>(view); 3561 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); 3562 Valtype addend = This::extract_arm_movw_movt_addend(val); 3563 Valtype x = ((psymval->value(object, addend) | thumb_bit) 3564 - relative_address_base); 3565 val = This::insert_val_arm_movw_movt(val, x); 3566 elfcpp::Swap<32, big_endian>::writeval(wv, val); 3567 return ((check_overflow && Bits<16>::has_overflow32(x)) 3568 ? This::STATUS_OVERFLOW 3569 : This::STATUS_OKAY); 3570 } 3571 3572 // R_ARM_MOVT_ABS: S + A (relative address base is 0) 3573 // R_ARM_MOVT_PREL: S + A - P 3574 // R_ARM_MOVT_BREL: S + A - B(S) 3575 static inline typename This::Status 3576 movt(unsigned char* view, 3577 const Sized_relobj_file<32, big_endian>* object, 3578 const Symbol_value<32>* psymval, 3579 Arm_address relative_address_base) 3580 { 3581 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; 3582 Valtype* wv = reinterpret_cast<Valtype*>(view); 3583 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); 3584 Valtype addend = This::extract_arm_movw_movt_addend(val); 3585 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16; 3586 val = This::insert_val_arm_movw_movt(val, x); 3587 elfcpp::Swap<32, big_endian>::writeval(wv, val); 3588 // FIXME: IHI0044D says that we should check for overflow. 3589 return This::STATUS_OKAY; 3590 } 3591 3592 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0) 3593 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P 3594 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S) 3595 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S) 3596 static inline typename This::Status 3597 thm_movw(unsigned char* view, 3598 const Sized_relobj_file<32, big_endian>* object, 3599 const Symbol_value<32>* psymval, 3600 Arm_address relative_address_base, 3601 Arm_address thumb_bit, 3602 bool check_overflow) 3603 { 3604 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; 3605 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; 3606 Valtype* wv = reinterpret_cast<Valtype*>(view); 3607 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) 3608 | elfcpp::Swap<16, big_endian>::readval(wv + 1); 3609 Reltype addend = This::extract_thumb_movw_movt_addend(val); 3610 Reltype x = 3611 (psymval->value(object, addend) | thumb_bit) - relative_address_base; 3612 val = This::insert_val_thumb_movw_movt(val, x); 3613 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16); 3614 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff); 3615 return ((check_overflow && Bits<16>::has_overflow32(x)) 3616 ? This::STATUS_OVERFLOW 3617 : This::STATUS_OKAY); 3618 } 3619 3620 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0) 3621 // R_ARM_THM_MOVT_PREL: S + A - P 3622 // R_ARM_THM_MOVT_BREL: S + A - B(S) 3623 static inline typename This::Status 3624 thm_movt(unsigned char* view, 3625 const Sized_relobj_file<32, big_endian>* object, 3626 const Symbol_value<32>* psymval, 3627 Arm_address relative_address_base) 3628 { 3629 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; 3630 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; 3631 Valtype* wv = reinterpret_cast<Valtype*>(view); 3632 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) 3633 | elfcpp::Swap<16, big_endian>::readval(wv + 1); 3634 Reltype addend = This::extract_thumb_movw_movt_addend(val); 3635 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16; 3636 val = This::insert_val_thumb_movw_movt(val, x); 3637 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16); 3638 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff); 3639 return This::STATUS_OKAY; 3640 } 3641 3642 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32) 3643 static inline typename This::Status 3644 thm_alu11(unsigned char* view, 3645 const Sized_relobj_file<32, big_endian>* object, 3646 const Symbol_value<32>* psymval, 3647 Arm_address address, 3648 Arm_address thumb_bit) 3649 { 3650 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; 3651 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; 3652 Valtype* wv = reinterpret_cast<Valtype*>(view); 3653 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) 3654 | elfcpp::Swap<16, big_endian>::readval(wv + 1); 3655 3656 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0 3657 // ----------------------------------------------------------------------- 3658 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8 3659 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8 3660 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8 3661 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8 3662 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8 3663 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8 3664 3665 // Determine a sign for the addend. 3666 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000 3667 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1; 3668 // Thumb2 addend encoding: 3669 // imm12 := i | imm3 | imm8 3670 int32_t addend = (insn & 0xff) 3671 | ((insn & 0x00007000) >> 4) 3672 | ((insn & 0x04000000) >> 15); 3673 // Apply a sign to the added. 3674 addend *= sign; 3675 3676 int32_t x = (psymval->value(object, addend) | thumb_bit) 3677 - (address & 0xfffffffc); 3678 Reltype val = abs(x); 3679 // Mask out the value and a distinct part of the ADD/SUB opcode 3680 // (bits 7:5 of opword). 3681 insn = (insn & 0xfb0f8f00) 3682 | (val & 0xff) 3683 | ((val & 0x700) << 4) 3684 | ((val & 0x800) << 15); 3685 // Set the opcode according to whether the value to go in the 3686 // place is negative. 3687 if (x < 0) 3688 insn |= 0x00a00000; 3689 3690 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16); 3691 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff); 3692 return ((val > 0xfff) ? 3693 This::STATUS_OVERFLOW : This::STATUS_OKAY); 3694 } 3695 3696 // R_ARM_THM_PC8: S + A - Pa (Thumb) 3697 static inline typename This::Status 3698 thm_pc8(unsigned char* view, 3699 const Sized_relobj_file<32, big_endian>* object, 3700 const Symbol_value<32>* psymval, 3701 Arm_address address) 3702 { 3703 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; 3704 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype; 3705 Valtype* wv = reinterpret_cast<Valtype*>(view); 3706 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv); 3707 Reltype addend = ((insn & 0x00ff) << 2); 3708 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc)); 3709 Reltype val = abs(x); 3710 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2); 3711 3712 elfcpp::Swap<16, big_endian>::writeval(wv, insn); 3713 return ((val > 0x03fc) 3714 ? This::STATUS_OVERFLOW 3715 : This::STATUS_OKAY); 3716 } 3717 3718 // R_ARM_THM_PC12: S + A - Pa (Thumb32) 3719 static inline typename This::Status 3720 thm_pc12(unsigned char* view, 3721 const Sized_relobj_file<32, big_endian>* object, 3722 const Symbol_value<32>* psymval, 3723 Arm_address address) 3724 { 3725 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; 3726 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; 3727 Valtype* wv = reinterpret_cast<Valtype*>(view); 3728 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) 3729 | elfcpp::Swap<16, big_endian>::readval(wv + 1); 3730 // Determine a sign for the addend (positive if the U bit is 1). 3731 const int sign = (insn & 0x00800000) ? 1 : -1; 3732 int32_t addend = (insn & 0xfff); 3733 // Apply a sign to the added. 3734 addend *= sign; 3735 3736 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc)); 3737 Reltype val = abs(x); 3738 // Mask out and apply the value and the U bit. 3739 insn = (insn & 0xff7ff000) | (val & 0xfff); 3740 // Set the U bit according to whether the value to go in the 3741 // place is positive. 3742 if (x >= 0) 3743 insn |= 0x00800000; 3744 3745 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16); 3746 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff); 3747 return ((val > 0xfff) ? 3748 This::STATUS_OVERFLOW : This::STATUS_OKAY); 3749 } 3750 3751 // R_ARM_V4BX 3752 static inline typename This::Status 3753 v4bx(const Relocate_info<32, big_endian>* relinfo, 3754 unsigned char* view, 3755 const Arm_relobj<big_endian>* object, 3756 const Arm_address address, 3757 const bool is_interworking) 3758 { 3759 3760 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; 3761 Valtype* wv = reinterpret_cast<Valtype*>(view); 3762 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); 3763 3764 // Ensure that we have a BX instruction. 3765 gold_assert((val & 0x0ffffff0) == 0x012fff10); 3766 const uint32_t reg = (val & 0xf); 3767 if (is_interworking && reg != 0xf) 3768 { 3769 Stub_table<big_endian>* stub_table = 3770 object->stub_table(relinfo->data_shndx); 3771 gold_assert(stub_table != NULL); 3772 3773 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg); 3774 gold_assert(stub != NULL); 3775 3776 int32_t veneer_address = 3777 stub_table->address() + stub->offset() - 8 - address; 3778 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET) 3779 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET)); 3780 // Replace with a branch to veneer (B <addr>) 3781 val = (val & 0xf0000000) | 0x0a000000 3782 | ((veneer_address >> 2) & 0x00ffffff); 3783 } 3784 else 3785 { 3786 // Preserve Rm (lowest four bits) and the condition code 3787 // (highest four bits). Other bits encode MOV PC,Rm. 3788 val = (val & 0xf000000f) | 0x01a0f000; 3789 } 3790 elfcpp::Swap<32, big_endian>::writeval(wv, val); 3791 return This::STATUS_OKAY; 3792 } 3793 3794 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P 3795 // R_ARM_ALU_PC_G0: ((S + A) | T) - P 3796 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P 3797 // R_ARM_ALU_PC_G1: ((S + A) | T) - P 3798 // R_ARM_ALU_PC_G2: ((S + A) | T) - P 3799 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S) 3800 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S) 3801 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S) 3802 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S) 3803 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S) 3804 static inline typename This::Status 3805 arm_grp_alu(unsigned char* view, 3806 const Sized_relobj_file<32, big_endian>* object, 3807 const Symbol_value<32>* psymval, 3808 const int group, 3809 Arm_address address, 3810 Arm_address thumb_bit, 3811 bool check_overflow) 3812 { 3813 gold_assert(group >= 0 && group < 3); 3814 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; 3815 Valtype* wv = reinterpret_cast<Valtype*>(view); 3816 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); 3817 3818 // ALU group relocations are allowed only for the ADD/SUB instructions. 3819 // (0x00800000 - ADD, 0x00400000 - SUB) 3820 const Valtype opcode = insn & 0x01e00000; 3821 if (opcode != 0x00800000 && opcode != 0x00400000) 3822 return This::STATUS_BAD_RELOC; 3823 3824 // Determine a sign for the addend. 3825 const int sign = (opcode == 0x00800000) ? 1 : -1; 3826 // shifter = rotate_imm * 2 3827 const uint32_t shifter = (insn & 0xf00) >> 7; 3828 // Initial addend value. 3829 int32_t addend = insn & 0xff; 3830 // Rotate addend right by shifter. 3831 addend = (addend >> shifter) | (addend << (32 - shifter)); 3832 // Apply a sign to the added. 3833 addend *= sign; 3834 3835 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address); 3836 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group); 3837 // Check for overflow if required 3838 if (check_overflow 3839 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0)) 3840 return This::STATUS_OVERFLOW; 3841 3842 // Mask out the value and the ADD/SUB part of the opcode; take care 3843 // not to destroy the S bit. 3844 insn &= 0xff1ff000; 3845 // Set the opcode according to whether the value to go in the 3846 // place is negative. 3847 insn |= ((x < 0) ? 0x00400000 : 0x00800000); 3848 // Encode the offset (encoded Gn). 3849 insn |= gn; 3850 3851 elfcpp::Swap<32, big_endian>::writeval(wv, insn); 3852 return This::STATUS_OKAY; 3853 } 3854 3855 // R_ARM_LDR_PC_G0: S + A - P 3856 // R_ARM_LDR_PC_G1: S + A - P 3857 // R_ARM_LDR_PC_G2: S + A - P 3858 // R_ARM_LDR_SB_G0: S + A - B(S) 3859 // R_ARM_LDR_SB_G1: S + A - B(S) 3860 // R_ARM_LDR_SB_G2: S + A - B(S) 3861 static inline typename This::Status 3862 arm_grp_ldr(unsigned char* view, 3863 const Sized_relobj_file<32, big_endian>* object, 3864 const Symbol_value<32>* psymval, 3865 const int group, 3866 Arm_address address) 3867 { 3868 gold_assert(group >= 0 && group < 3); 3869 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; 3870 Valtype* wv = reinterpret_cast<Valtype*>(view); 3871 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); 3872 3873 const int sign = (insn & 0x00800000) ? 1 : -1; 3874 int32_t addend = (insn & 0xfff) * sign; 3875 int32_t x = (psymval->value(object, addend) - address); 3876 // Calculate the relevant G(n-1) value to obtain this stage residual. 3877 Valtype residual = 3878 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1); 3879 if (residual >= 0x1000) 3880 return This::STATUS_OVERFLOW; 3881 3882 // Mask out the value and U bit. 3883 insn &= 0xff7ff000; 3884 // Set the U bit for non-negative values. 3885 if (x >= 0) 3886 insn |= 0x00800000; 3887 insn |= residual; 3888 3889 elfcpp::Swap<32, big_endian>::writeval(wv, insn); 3890 return This::STATUS_OKAY; 3891 } 3892 3893 // R_ARM_LDRS_PC_G0: S + A - P 3894 // R_ARM_LDRS_PC_G1: S + A - P 3895 // R_ARM_LDRS_PC_G2: S + A - P 3896 // R_ARM_LDRS_SB_G0: S + A - B(S) 3897 // R_ARM_LDRS_SB_G1: S + A - B(S) 3898 // R_ARM_LDRS_SB_G2: S + A - B(S) 3899 static inline typename This::Status 3900 arm_grp_ldrs(unsigned char* view, 3901 const Sized_relobj_file<32, big_endian>* object, 3902 const Symbol_value<32>* psymval, 3903 const int group, 3904 Arm_address address) 3905 { 3906 gold_assert(group >= 0 && group < 3); 3907 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; 3908 Valtype* wv = reinterpret_cast<Valtype*>(view); 3909 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); 3910 3911 const int sign = (insn & 0x00800000) ? 1 : -1; 3912 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign; 3913 int32_t x = (psymval->value(object, addend) - address); 3914 // Calculate the relevant G(n-1) value to obtain this stage residual. 3915 Valtype residual = 3916 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1); 3917 if (residual >= 0x100) 3918 return This::STATUS_OVERFLOW; 3919 3920 // Mask out the value and U bit. 3921 insn &= 0xff7ff0f0; 3922 // Set the U bit for non-negative values. 3923 if (x >= 0) 3924 insn |= 0x00800000; 3925 insn |= ((residual & 0xf0) << 4) | (residual & 0xf); 3926 3927 elfcpp::Swap<32, big_endian>::writeval(wv, insn); 3928 return This::STATUS_OKAY; 3929 } 3930 3931 // R_ARM_LDC_PC_G0: S + A - P 3932 // R_ARM_LDC_PC_G1: S + A - P 3933 // R_ARM_LDC_PC_G2: S + A - P 3934 // R_ARM_LDC_SB_G0: S + A - B(S) 3935 // R_ARM_LDC_SB_G1: S + A - B(S) 3936 // R_ARM_LDC_SB_G2: S + A - B(S) 3937 static inline typename This::Status 3938 arm_grp_ldc(unsigned char* view, 3939 const Sized_relobj_file<32, big_endian>* object, 3940 const Symbol_value<32>* psymval, 3941 const int group, 3942 Arm_address address) 3943 { 3944 gold_assert(group >= 0 && group < 3); 3945 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; 3946 Valtype* wv = reinterpret_cast<Valtype*>(view); 3947 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); 3948 3949 const int sign = (insn & 0x00800000) ? 1 : -1; 3950 int32_t addend = ((insn & 0xff) << 2) * sign; 3951 int32_t x = (psymval->value(object, addend) - address); 3952 // Calculate the relevant G(n-1) value to obtain this stage residual. 3953 Valtype residual = 3954 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1); 3955 if ((residual & 0x3) != 0 || residual >= 0x400) 3956 return This::STATUS_OVERFLOW; 3957 3958 // Mask out the value and U bit. 3959 insn &= 0xff7fff00; 3960 // Set the U bit for non-negative values. 3961 if (x >= 0) 3962 insn |= 0x00800000; 3963 insn |= (residual >> 2); 3964 3965 elfcpp::Swap<32, big_endian>::writeval(wv, insn); 3966 return This::STATUS_OKAY; 3967 } 3968 }; 3969 3970 // Relocate ARM long branches. This handles relocation types 3971 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25. 3972 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly 3973 // undefined and we do not use PLT in this relocation. In such a case, 3974 // the branch is converted into an NOP. 3975 3976 template<bool big_endian> 3977 typename Arm_relocate_functions<big_endian>::Status 3978 Arm_relocate_functions<big_endian>::arm_branch_common( 3979 unsigned int r_type, 3980 const Relocate_info<32, big_endian>* relinfo, 3981 unsigned char* view, 3982 const Sized_symbol<32>* gsym, 3983 const Arm_relobj<big_endian>* object, 3984 unsigned int r_sym, 3985 const Symbol_value<32>* psymval, 3986 Arm_address address, 3987 Arm_address thumb_bit, 3988 bool is_weakly_undefined_without_plt) 3989 { 3990 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; 3991 Valtype* wv = reinterpret_cast<Valtype*>(view); 3992 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); 3993 3994 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe) 3995 && ((val & 0x0f000000UL) == 0x0a000000UL); 3996 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL; 3997 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe) 3998 && ((val & 0x0f000000UL) == 0x0b000000UL); 3999 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL; 4000 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL; 4001 4002 // Check that the instruction is valid. 4003 if (r_type == elfcpp::R_ARM_CALL) 4004 { 4005 if (!insn_is_uncond_bl && !insn_is_blx) 4006 return This::STATUS_BAD_RELOC; 4007 } 4008 else if (r_type == elfcpp::R_ARM_JUMP24) 4009 { 4010 if (!insn_is_b && !insn_is_cond_bl) 4011 return This::STATUS_BAD_RELOC; 4012 } 4013 else if (r_type == elfcpp::R_ARM_PLT32) 4014 { 4015 if (!insn_is_any_branch) 4016 return This::STATUS_BAD_RELOC; 4017 } 4018 else if (r_type == elfcpp::R_ARM_XPC25) 4019 { 4020 // FIXME: AAELF document IH0044C does not say much about it other 4021 // than it being obsolete. 4022 if (!insn_is_any_branch) 4023 return This::STATUS_BAD_RELOC; 4024 } 4025 else 4026 gold_unreachable(); 4027 4028 // A branch to an undefined weak symbol is turned into a jump to 4029 // the next instruction unless a PLT entry will be created. 4030 // Do the same for local undefined symbols. 4031 // The jump to the next instruction is optimized as a NOP depending 4032 // on the architecture. 4033 const Target_arm<big_endian>* arm_target = 4034 Target_arm<big_endian>::default_target(); 4035 if (is_weakly_undefined_without_plt) 4036 { 4037 gold_assert(!parameters->options().relocatable()); 4038 Valtype cond = val & 0xf0000000U; 4039 if (arm_target->may_use_arm_nop()) 4040 val = cond | 0x0320f000; 4041 else 4042 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0. 4043 elfcpp::Swap<32, big_endian>::writeval(wv, val); 4044 return This::STATUS_OKAY; 4045 } 4046 4047 Valtype addend = Bits<26>::sign_extend32(val << 2); 4048 Valtype branch_target = psymval->value(object, addend); 4049 int32_t branch_offset = branch_target - address; 4050 4051 // We need a stub if the branch offset is too large or if we need 4052 // to switch mode. 4053 bool may_use_blx = arm_target->may_use_v5t_interworking(); 4054 Reloc_stub* stub = NULL; 4055 4056 if (!parameters->options().relocatable() 4057 && (Bits<26>::has_overflow32(branch_offset) 4058 || ((thumb_bit != 0) 4059 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))) 4060 { 4061 Valtype unadjusted_branch_target = psymval->value(object, 0); 4062 4063 Stub_type stub_type = 4064 Reloc_stub::stub_type_for_reloc(r_type, address, 4065 unadjusted_branch_target, 4066 (thumb_bit != 0)); 4067 if (stub_type != arm_stub_none) 4068 { 4069 Stub_table<big_endian>* stub_table = 4070 object->stub_table(relinfo->data_shndx); 4071 gold_assert(stub_table != NULL); 4072 4073 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend); 4074 stub = stub_table->find_reloc_stub(stub_key); 4075 gold_assert(stub != NULL); 4076 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0; 4077 branch_target = stub_table->address() + stub->offset() + addend; 4078 branch_offset = branch_target - address; 4079 gold_assert(!Bits<26>::has_overflow32(branch_offset)); 4080 } 4081 } 4082 4083 // At this point, if we still need to switch mode, the instruction 4084 // must either be a BLX or a BL that can be converted to a BLX. 4085 if (thumb_bit != 0) 4086 { 4087 // Turn BL to BLX. 4088 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL); 4089 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23); 4090 } 4091 4092 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL); 4093 elfcpp::Swap<32, big_endian>::writeval(wv, val); 4094 return (Bits<26>::has_overflow32(branch_offset) 4095 ? This::STATUS_OVERFLOW 4096 : This::STATUS_OKAY); 4097 } 4098 4099 // Relocate THUMB long branches. This handles relocation types 4100 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22. 4101 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly 4102 // undefined and we do not use PLT in this relocation. In such a case, 4103 // the branch is converted into an NOP. 4104 4105 template<bool big_endian> 4106 typename Arm_relocate_functions<big_endian>::Status 4107 Arm_relocate_functions<big_endian>::thumb_branch_common( 4108 unsigned int r_type, 4109 const Relocate_info<32, big_endian>* relinfo, 4110 unsigned char* view, 4111 const Sized_symbol<32>* gsym, 4112 const Arm_relobj<big_endian>* object, 4113 unsigned int r_sym, 4114 const Symbol_value<32>* psymval, 4115 Arm_address address, 4116 Arm_address thumb_bit, 4117 bool is_weakly_undefined_without_plt) 4118 { 4119 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; 4120 Valtype* wv = reinterpret_cast<Valtype*>(view); 4121 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); 4122 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); 4123 4124 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference 4125 // into account. 4126 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U; 4127 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U; 4128 4129 // Check that the instruction is valid. 4130 if (r_type == elfcpp::R_ARM_THM_CALL) 4131 { 4132 if (!is_bl_insn && !is_blx_insn) 4133 return This::STATUS_BAD_RELOC; 4134 } 4135 else if (r_type == elfcpp::R_ARM_THM_JUMP24) 4136 { 4137 // This cannot be a BLX. 4138 if (!is_bl_insn) 4139 return This::STATUS_BAD_RELOC; 4140 } 4141 else if (r_type == elfcpp::R_ARM_THM_XPC22) 4142 { 4143 // Check for Thumb to Thumb call. 4144 if (!is_blx_insn) 4145 return This::STATUS_BAD_RELOC; 4146 if (thumb_bit != 0) 4147 { 4148 gold_warning(_("%s: Thumb BLX instruction targets " 4149 "thumb function '%s'."), 4150 object->name().c_str(), 4151 (gsym ? gsym->name() : "(local)")); 4152 // Convert BLX to BL. 4153 lower_insn |= 0x1000U; 4154 } 4155 } 4156 else 4157 gold_unreachable(); 4158 4159 // A branch to an undefined weak symbol is turned into a jump to 4160 // the next instruction unless a PLT entry will be created. 4161 // The jump to the next instruction is optimized as a NOP.W for 4162 // Thumb-2 enabled architectures. 4163 const Target_arm<big_endian>* arm_target = 4164 Target_arm<big_endian>::default_target(); 4165 if (is_weakly_undefined_without_plt) 4166 { 4167 gold_assert(!parameters->options().relocatable()); 4168 if (arm_target->may_use_thumb2_nop()) 4169 { 4170 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af); 4171 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000); 4172 } 4173 else 4174 { 4175 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000); 4176 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00); 4177 } 4178 return This::STATUS_OKAY; 4179 } 4180 4181 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn); 4182 Arm_address branch_target = psymval->value(object, addend); 4183 4184 // For BLX, bit 1 of target address comes from bit 1 of base address. 4185 bool may_use_blx = arm_target->may_use_v5t_interworking(); 4186 if (thumb_bit == 0 && may_use_blx) 4187 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2); 4188 4189 int32_t branch_offset = branch_target - address; 4190 4191 // We need a stub if the branch offset is too large or if we need 4192 // to switch mode. 4193 bool thumb2 = arm_target->using_thumb2(); 4194 if (!parameters->options().relocatable() 4195 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset)) 4196 || (thumb2 && Bits<25>::has_overflow32(branch_offset)) 4197 || ((thumb_bit == 0) 4198 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx) 4199 || r_type == elfcpp::R_ARM_THM_JUMP24)))) 4200 { 4201 Arm_address unadjusted_branch_target = psymval->value(object, 0); 4202 4203 Stub_type stub_type = 4204 Reloc_stub::stub_type_for_reloc(r_type, address, 4205 unadjusted_branch_target, 4206 (thumb_bit != 0)); 4207 4208 if (stub_type != arm_stub_none) 4209 { 4210 Stub_table<big_endian>* stub_table = 4211 object->stub_table(relinfo->data_shndx); 4212 gold_assert(stub_table != NULL); 4213 4214 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend); 4215 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key); 4216 gold_assert(stub != NULL); 4217 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0; 4218 branch_target = stub_table->address() + stub->offset() + addend; 4219 if (thumb_bit == 0 && may_use_blx) 4220 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2); 4221 branch_offset = branch_target - address; 4222 } 4223 } 4224 4225 // At this point, if we still need to switch mode, the instruction 4226 // must either be a BLX or a BL that can be converted to a BLX. 4227 if (thumb_bit == 0) 4228 { 4229 gold_assert(may_use_blx 4230 && (r_type == elfcpp::R_ARM_THM_CALL 4231 || r_type == elfcpp::R_ARM_THM_XPC22)); 4232 // Make sure this is a BLX. 4233 lower_insn &= ~0x1000U; 4234 } 4235 else 4236 { 4237 // Make sure this is a BL. 4238 lower_insn |= 0x1000U; 4239 } 4240 4241 // For a BLX instruction, make sure that the relocation is rounded up 4242 // to a word boundary. This follows the semantics of the instruction 4243 // which specifies that bit 1 of the target address will come from bit 4244 // 1 of the base address. 4245 if ((lower_insn & 0x5000U) == 0x4000U) 4246 gold_assert((branch_offset & 3) == 0); 4247 4248 // Put BRANCH_OFFSET back into the insn. Assumes two's complement. 4249 // We use the Thumb-2 encoding, which is safe even if dealing with 4250 // a Thumb-1 instruction by virtue of our overflow check above. */ 4251 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset); 4252 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset); 4253 4254 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn); 4255 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn); 4256 4257 gold_assert(!Bits<25>::has_overflow32(branch_offset)); 4258 4259 return ((thumb2 4260 ? Bits<25>::has_overflow32(branch_offset) 4261 : Bits<23>::has_overflow32(branch_offset)) 4262 ? This::STATUS_OVERFLOW 4263 : This::STATUS_OKAY); 4264 } 4265 4266 // Relocate THUMB-2 long conditional branches. 4267 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly 4268 // undefined and we do not use PLT in this relocation. In such a case, 4269 // the branch is converted into an NOP. 4270 4271 template<bool big_endian> 4272 typename Arm_relocate_functions<big_endian>::Status 4273 Arm_relocate_functions<big_endian>::thm_jump19( 4274 unsigned char* view, 4275 const Arm_relobj<big_endian>* object, 4276 const Symbol_value<32>* psymval, 4277 Arm_address address, 4278 Arm_address thumb_bit) 4279 { 4280 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; 4281 Valtype* wv = reinterpret_cast<Valtype*>(view); 4282 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); 4283 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); 4284 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn); 4285 4286 Arm_address branch_target = psymval->value(object, addend); 4287 int32_t branch_offset = branch_target - address; 4288 4289 // ??? Should handle interworking? GCC might someday try to 4290 // use this for tail calls. 4291 // FIXME: We do support thumb entry to PLT yet. 4292 if (thumb_bit == 0) 4293 { 4294 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet.")); 4295 return This::STATUS_BAD_RELOC; 4296 } 4297 4298 // Put RELOCATION back into the insn. 4299 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset); 4300 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset); 4301 4302 // Put the relocated value back in the object file: 4303 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn); 4304 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn); 4305 4306 return (Bits<21>::has_overflow32(branch_offset) 4307 ? This::STATUS_OVERFLOW 4308 : This::STATUS_OKAY); 4309 } 4310 4311 // Get the GOT section, creating it if necessary. 4312 4313 template<bool big_endian> 4314 Arm_output_data_got<big_endian>* 4315 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout) 4316 { 4317 if (this->got_ == NULL) 4318 { 4319 gold_assert(symtab != NULL && layout != NULL); 4320 4321 // When using -z now, we can treat .got as a relro section. 4322 // Without -z now, it is modified after program startup by lazy 4323 // PLT relocations. 4324 bool is_got_relro = parameters->options().now(); 4325 Output_section_order got_order = (is_got_relro 4326 ? ORDER_RELRO_LAST 4327 : ORDER_DATA); 4328 4329 // Unlike some targets (.e.g x86), ARM does not use separate .got and 4330 // .got.plt sections in output. The output .got section contains both 4331 // PLT and non-PLT GOT entries. 4332 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout); 4333 4334 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, 4335 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), 4336 this->got_, got_order, is_got_relro); 4337 4338 // The old GNU linker creates a .got.plt section. We just 4339 // create another set of data in the .got section. Note that we 4340 // always create a PLT if we create a GOT, although the PLT 4341 // might be empty. 4342 this->got_plt_ = new Output_data_space(4, "** GOT PLT"); 4343 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, 4344 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), 4345 this->got_plt_, got_order, is_got_relro); 4346 4347 // The first three entries are reserved. 4348 this->got_plt_->set_current_data_size(3 * 4); 4349 4350 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT. 4351 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, 4352 Symbol_table::PREDEFINED, 4353 this->got_plt_, 4354 0, 0, elfcpp::STT_OBJECT, 4355 elfcpp::STB_LOCAL, 4356 elfcpp::STV_HIDDEN, 0, 4357 false, false); 4358 4359 // If there are any IRELATIVE relocations, they get GOT entries 4360 // in .got.plt after the jump slot entries. 4361 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT"); 4362 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, 4363 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), 4364 this->got_irelative_, 4365 got_order, is_got_relro); 4366 4367 } 4368 return this->got_; 4369 } 4370 4371 // Get the dynamic reloc section, creating it if necessary. 4372 4373 template<bool big_endian> 4374 typename Target_arm<big_endian>::Reloc_section* 4375 Target_arm<big_endian>::rel_dyn_section(Layout* layout) 4376 { 4377 if (this->rel_dyn_ == NULL) 4378 { 4379 gold_assert(layout != NULL); 4380 // Create both relocation sections in the same place, so as to ensure 4381 // their relative order in the output section. 4382 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc()); 4383 this->rel_irelative_ = new Reloc_section(false); 4384 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL, 4385 elfcpp::SHF_ALLOC, this->rel_dyn_, 4386 ORDER_DYNAMIC_RELOCS, false); 4387 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL, 4388 elfcpp::SHF_ALLOC, this->rel_irelative_, 4389 ORDER_DYNAMIC_RELOCS, false); 4390 } 4391 return this->rel_dyn_; 4392 } 4393 4394 4395 // Get the section to use for IRELATIVE relocs, creating it if necessary. These 4396 // go in .rela.dyn, but only after all other dynamic relocations. They need to 4397 // follow the other dynamic relocations so that they can refer to global 4398 // variables initialized by those relocs. 4399 4400 template<bool big_endian> 4401 typename Target_arm<big_endian>::Reloc_section* 4402 Target_arm<big_endian>::rel_irelative_section(Layout* layout) 4403 { 4404 if (this->rel_irelative_ == NULL) 4405 { 4406 // Delegate the creation to rel_dyn_section so as to ensure their order in 4407 // the output section. 4408 this->rel_dyn_section(layout); 4409 gold_assert(this->rel_irelative_ != NULL 4410 && (this->rel_dyn_->output_section() 4411 == this->rel_irelative_->output_section())); 4412 } 4413 return this->rel_irelative_; 4414 } 4415 4416 4417 // Insn_template methods. 4418 4419 // Return byte size of an instruction template. 4420 4421 size_t 4422 Insn_template::size() const 4423 { 4424 switch (this->type()) 4425 { 4426 case THUMB16_TYPE: 4427 case THUMB16_SPECIAL_TYPE: 4428 return 2; 4429 case ARM_TYPE: 4430 case THUMB32_TYPE: 4431 case DATA_TYPE: 4432 return 4; 4433 default: 4434 gold_unreachable(); 4435 } 4436 } 4437 4438 // Return alignment of an instruction template. 4439 4440 unsigned 4441 Insn_template::alignment() const 4442 { 4443 switch (this->type()) 4444 { 4445 case THUMB16_TYPE: 4446 case THUMB16_SPECIAL_TYPE: 4447 case THUMB32_TYPE: 4448 return 2; 4449 case ARM_TYPE: 4450 case DATA_TYPE: 4451 return 4; 4452 default: 4453 gold_unreachable(); 4454 } 4455 } 4456 4457 // Stub_template methods. 4458 4459 Stub_template::Stub_template( 4460 Stub_type type, const Insn_template* insns, 4461 size_t insn_count) 4462 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1), 4463 entry_in_thumb_mode_(false), relocs_() 4464 { 4465 off_t offset = 0; 4466 4467 // Compute byte size and alignment of stub template. 4468 for (size_t i = 0; i < insn_count; i++) 4469 { 4470 unsigned insn_alignment = insns[i].alignment(); 4471 size_t insn_size = insns[i].size(); 4472 gold_assert((offset & (insn_alignment - 1)) == 0); 4473 this->alignment_ = std::max(this->alignment_, insn_alignment); 4474 switch (insns[i].type()) 4475 { 4476 case Insn_template::THUMB16_TYPE: 4477 case Insn_template::THUMB16_SPECIAL_TYPE: 4478 if (i == 0) 4479 this->entry_in_thumb_mode_ = true; 4480 break; 4481 4482 case Insn_template::THUMB32_TYPE: 4483 if (insns[i].r_type() != elfcpp::R_ARM_NONE) 4484 this->relocs_.push_back(Reloc(i, offset)); 4485 if (i == 0) 4486 this->entry_in_thumb_mode_ = true; 4487 break; 4488 4489 case Insn_template::ARM_TYPE: 4490 // Handle cases where the target is encoded within the 4491 // instruction. 4492 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24) 4493 this->relocs_.push_back(Reloc(i, offset)); 4494 break; 4495 4496 case Insn_template::DATA_TYPE: 4497 // Entry point cannot be data. 4498 gold_assert(i != 0); 4499 this->relocs_.push_back(Reloc(i, offset)); 4500 break; 4501 4502 default: 4503 gold_unreachable(); 4504 } 4505 offset += insn_size; 4506 } 4507 this->size_ = offset; 4508 } 4509 4510 // Stub methods. 4511 4512 // Template to implement do_write for a specific target endianness. 4513 4514 template<bool big_endian> 4515 void inline 4516 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size) 4517 { 4518 const Stub_template* stub_template = this->stub_template(); 4519 const Insn_template* insns = stub_template->insns(); 4520 const bool enable_be8 = parameters->options().be8(); 4521 4522 unsigned char* pov = view; 4523 for (size_t i = 0; i < stub_template->insn_count(); i++) 4524 { 4525 switch (insns[i].type()) 4526 { 4527 case Insn_template::THUMB16_TYPE: 4528 if (enable_be8) 4529 elfcpp::Swap<16, false>::writeval(pov, insns[i].data() & 0xffff); 4530 else 4531 elfcpp::Swap<16, big_endian>::writeval(pov, 4532 insns[i].data() & 0xffff); 4533 break; 4534 case Insn_template::THUMB16_SPECIAL_TYPE: 4535 if (enable_be8) 4536 elfcpp::Swap<16, false>::writeval(pov, this->thumb16_special(i)); 4537 else 4538 elfcpp::Swap<16, big_endian>::writeval(pov, 4539 this->thumb16_special(i)); 4540 break; 4541 case Insn_template::THUMB32_TYPE: 4542 { 4543 uint32_t hi = (insns[i].data() >> 16) & 0xffff; 4544 uint32_t lo = insns[i].data() & 0xffff; 4545 if (enable_be8) 4546 { 4547 elfcpp::Swap<16, false>::writeval(pov, hi); 4548 elfcpp::Swap<16, false>::writeval(pov + 2, lo); 4549 } 4550 else 4551 { 4552 elfcpp::Swap<16, big_endian>::writeval(pov, hi); 4553 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo); 4554 } 4555 } 4556 break; 4557 case Insn_template::ARM_TYPE: 4558 if (enable_be8) 4559 elfcpp::Swap<32, false>::writeval(pov, insns[i].data()); 4560 else 4561 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data()); 4562 break; 4563 case Insn_template::DATA_TYPE: 4564 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data()); 4565 break; 4566 default: 4567 gold_unreachable(); 4568 } 4569 pov += insns[i].size(); 4570 } 4571 gold_assert(static_cast<section_size_type>(pov - view) == view_size); 4572 } 4573 4574 // Reloc_stub::Key methods. 4575 4576 // Dump a Key as a string for debugging. 4577 4578 std::string 4579 Reloc_stub::Key::name() const 4580 { 4581 if (this->r_sym_ == invalid_index) 4582 { 4583 // Global symbol key name 4584 // <stub-type>:<symbol name>:<addend>. 4585 const std::string sym_name = this->u_.symbol->name(); 4586 // We need to print two hex number and two colons. So just add 100 bytes 4587 // to the symbol name size. 4588 size_t len = sym_name.size() + 100; 4589 char* buffer = new char[len]; 4590 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_, 4591 sym_name.c_str(), this->addend_); 4592 gold_assert(c > 0 && c < static_cast<int>(len)); 4593 delete[] buffer; 4594 return std::string(buffer); 4595 } 4596 else 4597 { 4598 // local symbol key name 4599 // <stub-type>:<object>:<r_sym>:<addend>. 4600 const size_t len = 200; 4601 char buffer[len]; 4602 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_, 4603 this->u_.relobj, this->r_sym_, this->addend_); 4604 gold_assert(c > 0 && c < static_cast<int>(len)); 4605 return std::string(buffer); 4606 } 4607 } 4608 4609 // Reloc_stub methods. 4610 4611 // Determine the type of stub needed, if any, for a relocation of R_TYPE at 4612 // LOCATION to DESTINATION. 4613 // This code is based on the arm_type_of_stub function in 4614 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub 4615 // class simple. 4616 4617 Stub_type 4618 Reloc_stub::stub_type_for_reloc( 4619 unsigned int r_type, 4620 Arm_address location, 4621 Arm_address destination, 4622 bool target_is_thumb) 4623 { 4624 Stub_type stub_type = arm_stub_none; 4625 4626 // This is a bit ugly but we want to avoid using a templated class for 4627 // big and little endianities. 4628 bool may_use_blx; 4629 bool should_force_pic_veneer = parameters->options().pic_veneer(); 4630 bool thumb2; 4631 bool thumb_only; 4632 if (parameters->target().is_big_endian()) 4633 { 4634 const Target_arm<true>* big_endian_target = 4635 Target_arm<true>::default_target(); 4636 may_use_blx = big_endian_target->may_use_v5t_interworking(); 4637 should_force_pic_veneer |= big_endian_target->should_force_pic_veneer(); 4638 thumb2 = big_endian_target->using_thumb2(); 4639 thumb_only = big_endian_target->using_thumb_only(); 4640 } 4641 else 4642 { 4643 const Target_arm<false>* little_endian_target = 4644 Target_arm<false>::default_target(); 4645 may_use_blx = little_endian_target->may_use_v5t_interworking(); 4646 should_force_pic_veneer |= 4647 little_endian_target->should_force_pic_veneer(); 4648 thumb2 = little_endian_target->using_thumb2(); 4649 thumb_only = little_endian_target->using_thumb_only(); 4650 } 4651 4652 int64_t branch_offset; 4653 bool output_is_position_independent = 4654 parameters->options().output_is_position_independent(); 4655 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24) 4656 { 4657 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the 4658 // base address (instruction address + 4). 4659 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb) 4660 destination = Bits<32>::bit_select32(destination, location, 0x2); 4661 branch_offset = static_cast<int64_t>(destination) - location; 4662 4663 // Handle cases where: 4664 // - this call goes too far (different Thumb/Thumb2 max 4665 // distance) 4666 // - it's a Thumb->Arm call and blx is not available, or it's a 4667 // Thumb->Arm branch (not bl). A stub is needed in this case. 4668 if ((!thumb2 4669 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET 4670 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET))) 4671 || (thumb2 4672 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET 4673 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET))) 4674 || ((!target_is_thumb) 4675 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx) 4676 || (r_type == elfcpp::R_ARM_THM_JUMP24)))) 4677 { 4678 if (target_is_thumb) 4679 { 4680 // Thumb to thumb. 4681 if (!thumb_only) 4682 { 4683 stub_type = (output_is_position_independent 4684 || should_force_pic_veneer) 4685 // PIC stubs. 4686 ? ((may_use_blx 4687 && (r_type == elfcpp::R_ARM_THM_CALL)) 4688 // V5T and above. Stub starts with ARM code, so 4689 // we must be able to switch mode before 4690 // reaching it, which is only possible for 'bl' 4691 // (ie R_ARM_THM_CALL relocation). 4692 ? arm_stub_long_branch_any_thumb_pic 4693 // On V4T, use Thumb code only. 4694 : arm_stub_long_branch_v4t_thumb_thumb_pic) 4695 4696 // non-PIC stubs. 4697 : ((may_use_blx 4698 && (r_type == elfcpp::R_ARM_THM_CALL)) 4699 ? arm_stub_long_branch_any_any // V5T and above. 4700 : arm_stub_long_branch_v4t_thumb_thumb); // V4T. 4701 } 4702 else 4703 { 4704 stub_type = (output_is_position_independent 4705 || should_force_pic_veneer) 4706 ? arm_stub_long_branch_thumb_only_pic // PIC stub. 4707 : arm_stub_long_branch_thumb_only; // non-PIC stub. 4708 } 4709 } 4710 else 4711 { 4712 // Thumb to arm. 4713 4714 // FIXME: We should check that the input section is from an 4715 // object that has interwork enabled. 4716 4717 stub_type = (output_is_position_independent 4718 || should_force_pic_veneer) 4719 // PIC stubs. 4720 ? ((may_use_blx 4721 && (r_type == elfcpp::R_ARM_THM_CALL)) 4722 ? arm_stub_long_branch_any_arm_pic // V5T and above. 4723 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T. 4724 4725 // non-PIC stubs. 4726 : ((may_use_blx 4727 && (r_type == elfcpp::R_ARM_THM_CALL)) 4728 ? arm_stub_long_branch_any_any // V5T and above. 4729 : arm_stub_long_branch_v4t_thumb_arm); // V4T. 4730 4731 // Handle v4t short branches. 4732 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm) 4733 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET) 4734 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET)) 4735 stub_type = arm_stub_short_branch_v4t_thumb_arm; 4736 } 4737 } 4738 } 4739 else if (r_type == elfcpp::R_ARM_CALL 4740 || r_type == elfcpp::R_ARM_JUMP24 4741 || r_type == elfcpp::R_ARM_PLT32) 4742 { 4743 branch_offset = static_cast<int64_t>(destination) - location; 4744 if (target_is_thumb) 4745 { 4746 // Arm to thumb. 4747 4748 // FIXME: We should check that the input section is from an 4749 // object that has interwork enabled. 4750 4751 // We have an extra 2-bytes reach because of 4752 // the mode change (bit 24 (H) of BLX encoding). 4753 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2) 4754 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET) 4755 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx) 4756 || (r_type == elfcpp::R_ARM_JUMP24) 4757 || (r_type == elfcpp::R_ARM_PLT32)) 4758 { 4759 stub_type = (output_is_position_independent 4760 || should_force_pic_veneer) 4761 // PIC stubs. 4762 ? (may_use_blx 4763 ? arm_stub_long_branch_any_thumb_pic// V5T and above. 4764 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub. 4765 4766 // non-PIC stubs. 4767 : (may_use_blx 4768 ? arm_stub_long_branch_any_any // V5T and above. 4769 : arm_stub_long_branch_v4t_arm_thumb); // V4T. 4770 } 4771 } 4772 else 4773 { 4774 // Arm to arm. 4775 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET 4776 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)) 4777 { 4778 stub_type = (output_is_position_independent 4779 || should_force_pic_veneer) 4780 ? arm_stub_long_branch_any_arm_pic // PIC stubs. 4781 : arm_stub_long_branch_any_any; /// non-PIC. 4782 } 4783 } 4784 } 4785 4786 return stub_type; 4787 } 4788 4789 // Cortex_a8_stub methods. 4790 4791 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template. 4792 // I is the position of the instruction template in the stub template. 4793 4794 uint16_t 4795 Cortex_a8_stub::do_thumb16_special(size_t i) 4796 { 4797 // The only use of this is to copy condition code from a conditional 4798 // branch being worked around to the corresponding conditional branch in 4799 // to the stub. 4800 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond 4801 && i == 0); 4802 uint16_t data = this->stub_template()->insns()[i].data(); 4803 gold_assert((data & 0xff00U) == 0xd000U); 4804 data |= ((this->original_insn_ >> 22) & 0xf) << 8; 4805 return data; 4806 } 4807 4808 // Stub_factory methods. 4809 4810 Stub_factory::Stub_factory() 4811 { 4812 // The instruction template sequences are declared as static 4813 // objects and initialized first time the constructor runs. 4814 4815 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx 4816 // to reach the stub if necessary. 4817 static const Insn_template elf32_arm_stub_long_branch_any_any[] = 4818 { 4819 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4] 4820 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), 4821 // dcd R_ARM_ABS32(X) 4822 }; 4823 4824 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not 4825 // available. 4826 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] = 4827 { 4828 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0] 4829 Insn_template::arm_insn(0xe12fff1c), // bx ip 4830 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), 4831 // dcd R_ARM_ABS32(X) 4832 }; 4833 4834 // Thumb -> Thumb long branch stub. Used on M-profile architectures. 4835 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] = 4836 { 4837 Insn_template::thumb16_insn(0xb401), // push {r0} 4838 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8] 4839 Insn_template::thumb16_insn(0x4684), // mov ip, r0 4840 Insn_template::thumb16_insn(0xbc01), // pop {r0} 4841 Insn_template::thumb16_insn(0x4760), // bx ip 4842 Insn_template::thumb16_insn(0xbf00), // nop 4843 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), 4844 // dcd R_ARM_ABS32(X) 4845 }; 4846 4847 // V4T Thumb -> Thumb long branch stub. Using the stack is not 4848 // allowed. 4849 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] = 4850 { 4851 Insn_template::thumb16_insn(0x4778), // bx pc 4852 Insn_template::thumb16_insn(0x46c0), // nop 4853 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0] 4854 Insn_template::arm_insn(0xe12fff1c), // bx ip 4855 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), 4856 // dcd R_ARM_ABS32(X) 4857 }; 4858 4859 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not 4860 // available. 4861 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] = 4862 { 4863 Insn_template::thumb16_insn(0x4778), // bx pc 4864 Insn_template::thumb16_insn(0x46c0), // nop 4865 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4] 4866 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), 4867 // dcd R_ARM_ABS32(X) 4868 }; 4869 4870 // V4T Thumb -> ARM short branch stub. Shorter variant of the above 4871 // one, when the destination is close enough. 4872 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] = 4873 { 4874 Insn_template::thumb16_insn(0x4778), // bx pc 4875 Insn_template::thumb16_insn(0x46c0), // nop 4876 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8) 4877 }; 4878 4879 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use 4880 // blx to reach the stub if necessary. 4881 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] = 4882 { 4883 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc] 4884 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip 4885 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4), 4886 // dcd R_ARM_REL32(X-4) 4887 }; 4888 4889 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use 4890 // blx to reach the stub if necessary. We can not add into pc; 4891 // it is not guaranteed to mode switch (different in ARMv6 and 4892 // ARMv7). 4893 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] = 4894 { 4895 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4] 4896 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip 4897 Insn_template::arm_insn(0xe12fff1c), // bx ip 4898 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0), 4899 // dcd R_ARM_REL32(X) 4900 }; 4901 4902 // V4T ARM -> ARM long branch stub, PIC. 4903 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] = 4904 { 4905 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4] 4906 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip 4907 Insn_template::arm_insn(0xe12fff1c), // bx ip 4908 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0), 4909 // dcd R_ARM_REL32(X) 4910 }; 4911 4912 // V4T Thumb -> ARM long branch stub, PIC. 4913 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] = 4914 { 4915 Insn_template::thumb16_insn(0x4778), // bx pc 4916 Insn_template::thumb16_insn(0x46c0), // nop 4917 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0] 4918 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc 4919 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4), 4920 // dcd R_ARM_REL32(X) 4921 }; 4922 4923 // Thumb -> Thumb long branch stub, PIC. Used on M-profile 4924 // architectures. 4925 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] = 4926 { 4927 Insn_template::thumb16_insn(0xb401), // push {r0} 4928 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8] 4929 Insn_template::thumb16_insn(0x46fc), // mov ip, pc 4930 Insn_template::thumb16_insn(0x4484), // add ip, r0 4931 Insn_template::thumb16_insn(0xbc01), // pop {r0} 4932 Insn_template::thumb16_insn(0x4760), // bx ip 4933 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4), 4934 // dcd R_ARM_REL32(X) 4935 }; 4936 4937 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not 4938 // allowed. 4939 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] = 4940 { 4941 Insn_template::thumb16_insn(0x4778), // bx pc 4942 Insn_template::thumb16_insn(0x46c0), // nop 4943 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4] 4944 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip 4945 Insn_template::arm_insn(0xe12fff1c), // bx ip 4946 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0), 4947 // dcd R_ARM_REL32(X) 4948 }; 4949 4950 // Cortex-A8 erratum-workaround stubs. 4951 4952 // Stub used for conditional branches (which may be beyond +/-1MB away, 4953 // so we can't use a conditional branch to reach this stub). 4954 4955 // original code: 4956 // 4957 // b<cond> X 4958 // after: 4959 // 4960 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] = 4961 { 4962 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true 4963 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after 4964 Insn_template::thumb32_b_insn(0xf000b800, -4) // true: 4965 // b.w X 4966 }; 4967 4968 // Stub used for b.w and bl.w instructions. 4969 4970 static const Insn_template elf32_arm_stub_a8_veneer_b[] = 4971 { 4972 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest 4973 }; 4974 4975 static const Insn_template elf32_arm_stub_a8_veneer_bl[] = 4976 { 4977 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest 4978 }; 4979 4980 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w 4981 // instruction (which switches to ARM mode) to point to this stub. Jump to 4982 // the real destination using an ARM-mode branch. 4983 static const Insn_template elf32_arm_stub_a8_veneer_blx[] = 4984 { 4985 Insn_template::arm_rel_insn(0xea000000, -8) // b dest 4986 }; 4987 4988 // Stub used to provide an interworking for R_ARM_V4BX relocation 4989 // (bx r[n] instruction). 4990 static const Insn_template elf32_arm_stub_v4_veneer_bx[] = 4991 { 4992 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1 4993 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n> 4994 Insn_template::arm_insn(0xe12fff10) // bx r<n> 4995 }; 4996 4997 // Fill in the stub template look-up table. Stub templates are constructed 4998 // per instance of Stub_factory for fast look-up without locking 4999 // in a thread-enabled environment. 5000 5001 this->stub_templates_[arm_stub_none] = 5002 new Stub_template(arm_stub_none, NULL, 0); 5003 5004 #define DEF_STUB(x) \ 5005 do \ 5006 { \ 5007 size_t array_size \ 5008 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \ 5009 Stub_type type = arm_stub_##x; \ 5010 this->stub_templates_[type] = \ 5011 new Stub_template(type, elf32_arm_stub_##x, array_size); \ 5012 } \ 5013 while (0); 5014 5015 DEF_STUBS 5016 #undef DEF_STUB 5017 } 5018 5019 // Stub_table methods. 5020 5021 // Remove all Cortex-A8 stub. 5022 5023 template<bool big_endian> 5024 void 5025 Stub_table<big_endian>::remove_all_cortex_a8_stubs() 5026 { 5027 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin(); 5028 p != this->cortex_a8_stubs_.end(); 5029 ++p) 5030 delete p->second; 5031 this->cortex_a8_stubs_.clear(); 5032 } 5033 5034 // Relocate one stub. This is a helper for Stub_table::relocate_stubs(). 5035 5036 template<bool big_endian> 5037 void 5038 Stub_table<big_endian>::relocate_stub( 5039 Stub* stub, 5040 const Relocate_info<32, big_endian>* relinfo, 5041 Target_arm<big_endian>* arm_target, 5042 Output_section* output_section, 5043 unsigned char* view, 5044 Arm_address address, 5045 section_size_type view_size) 5046 { 5047 const Stub_template* stub_template = stub->stub_template(); 5048 if (stub_template->reloc_count() != 0) 5049 { 5050 // Adjust view to cover the stub only. 5051 section_size_type offset = stub->offset(); 5052 section_size_type stub_size = stub_template->size(); 5053 gold_assert(offset + stub_size <= view_size); 5054 5055 arm_target->relocate_stub(stub, relinfo, output_section, view + offset, 5056 address + offset, stub_size); 5057 } 5058 } 5059 5060 // Relocate all stubs in this stub table. 5061 5062 template<bool big_endian> 5063 void 5064 Stub_table<big_endian>::relocate_stubs( 5065 const Relocate_info<32, big_endian>* relinfo, 5066 Target_arm<big_endian>* arm_target, 5067 Output_section* output_section, 5068 unsigned char* view, 5069 Arm_address address, 5070 section_size_type view_size) 5071 { 5072 // If we are passed a view bigger than the stub table's. we need to 5073 // adjust the view. 5074 gold_assert(address == this->address() 5075 && (view_size 5076 == static_cast<section_size_type>(this->data_size()))); 5077 5078 // Relocate all relocation stubs. 5079 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin(); 5080 p != this->reloc_stubs_.end(); 5081 ++p) 5082 this->relocate_stub(p->second, relinfo, arm_target, output_section, view, 5083 address, view_size); 5084 5085 // Relocate all Cortex-A8 stubs. 5086 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin(); 5087 p != this->cortex_a8_stubs_.end(); 5088 ++p) 5089 this->relocate_stub(p->second, relinfo, arm_target, output_section, view, 5090 address, view_size); 5091 5092 // Relocate all ARM V4BX stubs. 5093 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin(); 5094 p != this->arm_v4bx_stubs_.end(); 5095 ++p) 5096 { 5097 if (*p != NULL) 5098 this->relocate_stub(*p, relinfo, arm_target, output_section, view, 5099 address, view_size); 5100 } 5101 } 5102 5103 // Write out the stubs to file. 5104 5105 template<bool big_endian> 5106 void 5107 Stub_table<big_endian>::do_write(Output_file* of) 5108 { 5109 off_t offset = this->offset(); 5110 const section_size_type oview_size = 5111 convert_to_section_size_type(this->data_size()); 5112 unsigned char* const oview = of->get_output_view(offset, oview_size); 5113 5114 // Write relocation stubs. 5115 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin(); 5116 p != this->reloc_stubs_.end(); 5117 ++p) 5118 { 5119 Reloc_stub* stub = p->second; 5120 Arm_address address = this->address() + stub->offset(); 5121 gold_assert(address 5122 == align_address(address, 5123 stub->stub_template()->alignment())); 5124 stub->write(oview + stub->offset(), stub->stub_template()->size(), 5125 big_endian); 5126 } 5127 5128 // Write Cortex-A8 stubs. 5129 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin(); 5130 p != this->cortex_a8_stubs_.end(); 5131 ++p) 5132 { 5133 Cortex_a8_stub* stub = p->second; 5134 Arm_address address = this->address() + stub->offset(); 5135 gold_assert(address 5136 == align_address(address, 5137 stub->stub_template()->alignment())); 5138 stub->write(oview + stub->offset(), stub->stub_template()->size(), 5139 big_endian); 5140 } 5141 5142 // Write ARM V4BX relocation stubs. 5143 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin(); 5144 p != this->arm_v4bx_stubs_.end(); 5145 ++p) 5146 { 5147 if (*p == NULL) 5148 continue; 5149 5150 Arm_address address = this->address() + (*p)->offset(); 5151 gold_assert(address 5152 == align_address(address, 5153 (*p)->stub_template()->alignment())); 5154 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(), 5155 big_endian); 5156 } 5157 5158 of->write_output_view(this->offset(), oview_size, oview); 5159 } 5160 5161 // Update the data size and address alignment of the stub table at the end 5162 // of a relaxation pass. Return true if either the data size or the 5163 // alignment changed in this relaxation pass. 5164 5165 template<bool big_endian> 5166 bool 5167 Stub_table<big_endian>::update_data_size_and_addralign() 5168 { 5169 // Go over all stubs in table to compute data size and address alignment. 5170 off_t size = this->reloc_stubs_size_; 5171 unsigned addralign = this->reloc_stubs_addralign_; 5172 5173 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin(); 5174 p != this->cortex_a8_stubs_.end(); 5175 ++p) 5176 { 5177 const Stub_template* stub_template = p->second->stub_template(); 5178 addralign = std::max(addralign, stub_template->alignment()); 5179 size = (align_address(size, stub_template->alignment()) 5180 + stub_template->size()); 5181 } 5182 5183 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin(); 5184 p != this->arm_v4bx_stubs_.end(); 5185 ++p) 5186 { 5187 if (*p == NULL) 5188 continue; 5189 5190 const Stub_template* stub_template = (*p)->stub_template(); 5191 addralign = std::max(addralign, stub_template->alignment()); 5192 size = (align_address(size, stub_template->alignment()) 5193 + stub_template->size()); 5194 } 5195 5196 // Check if either data size or alignment changed in this pass. 5197 // Update prev_data_size_ and prev_addralign_. These will be used 5198 // as the current data size and address alignment for the next pass. 5199 bool changed = size != this->prev_data_size_; 5200 this->prev_data_size_ = size; 5201 5202 if (addralign != this->prev_addralign_) 5203 changed = true; 5204 this->prev_addralign_ = addralign; 5205 5206 return changed; 5207 } 5208 5209 // Finalize the stubs. This sets the offsets of the stubs within the stub 5210 // table. It also marks all input sections needing Cortex-A8 workaround. 5211 5212 template<bool big_endian> 5213 void 5214 Stub_table<big_endian>::finalize_stubs() 5215 { 5216 off_t off = this->reloc_stubs_size_; 5217 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin(); 5218 p != this->cortex_a8_stubs_.end(); 5219 ++p) 5220 { 5221 Cortex_a8_stub* stub = p->second; 5222 const Stub_template* stub_template = stub->stub_template(); 5223 uint64_t stub_addralign = stub_template->alignment(); 5224 off = align_address(off, stub_addralign); 5225 stub->set_offset(off); 5226 off += stub_template->size(); 5227 5228 // Mark input section so that we can determine later if a code section 5229 // needs the Cortex-A8 workaround quickly. 5230 Arm_relobj<big_endian>* arm_relobj = 5231 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj()); 5232 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx()); 5233 } 5234 5235 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin(); 5236 p != this->arm_v4bx_stubs_.end(); 5237 ++p) 5238 { 5239 if (*p == NULL) 5240 continue; 5241 5242 const Stub_template* stub_template = (*p)->stub_template(); 5243 uint64_t stub_addralign = stub_template->alignment(); 5244 off = align_address(off, stub_addralign); 5245 (*p)->set_offset(off); 5246 off += stub_template->size(); 5247 } 5248 5249 gold_assert(off <= this->prev_data_size_); 5250 } 5251 5252 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS 5253 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address 5254 // of the address range seen by the linker. 5255 5256 template<bool big_endian> 5257 void 5258 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range( 5259 Target_arm<big_endian>* arm_target, 5260 unsigned char* view, 5261 Arm_address view_address, 5262 section_size_type view_size) 5263 { 5264 // Cortex-A8 stubs are sorted by addresses of branches being fixed up. 5265 for (Cortex_a8_stub_list::const_iterator p = 5266 this->cortex_a8_stubs_.lower_bound(view_address); 5267 ((p != this->cortex_a8_stubs_.end()) 5268 && (p->first < (view_address + view_size))); 5269 ++p) 5270 { 5271 // We do not store the THUMB bit in the LSB of either the branch address 5272 // or the stub offset. There is no need to strip the LSB. 5273 Arm_address branch_address = p->first; 5274 const Cortex_a8_stub* stub = p->second; 5275 Arm_address stub_address = this->address() + stub->offset(); 5276 5277 // Offset of the branch instruction relative to this view. 5278 section_size_type offset = 5279 convert_to_section_size_type(branch_address - view_address); 5280 gold_assert((offset + 4) <= view_size); 5281 5282 arm_target->apply_cortex_a8_workaround(stub, stub_address, 5283 view + offset, branch_address); 5284 } 5285 } 5286 5287 // Arm_input_section methods. 5288 5289 // Initialize an Arm_input_section. 5290 5291 template<bool big_endian> 5292 void 5293 Arm_input_section<big_endian>::init() 5294 { 5295 Relobj* relobj = this->relobj(); 5296 unsigned int shndx = this->shndx(); 5297 5298 // We have to cache original size, alignment and contents to avoid locking 5299 // the original file. 5300 this->original_addralign_ = 5301 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx)); 5302 5303 // This is not efficient but we expect only a small number of relaxed 5304 // input sections for stubs. 5305 section_size_type section_size; 5306 const unsigned char* section_contents = 5307 relobj->section_contents(shndx, §ion_size, false); 5308 this->original_size_ = 5309 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx)); 5310 5311 gold_assert(this->original_contents_ == NULL); 5312 this->original_contents_ = new unsigned char[section_size]; 5313 memcpy(this->original_contents_, section_contents, section_size); 5314 5315 // We want to make this look like the original input section after 5316 // output sections are finalized. 5317 Output_section* os = relobj->output_section(shndx); 5318 off_t offset = relobj->output_section_offset(shndx); 5319 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx)); 5320 this->set_address(os->address() + offset); 5321 this->set_file_offset(os->offset() + offset); 5322 5323 this->set_current_data_size(this->original_size_); 5324 this->finalize_data_size(); 5325 } 5326 5327 template<bool big_endian> 5328 void 5329 Arm_input_section<big_endian>::do_write(Output_file* of) 5330 { 5331 // We have to write out the original section content. 5332 gold_assert(this->original_contents_ != NULL); 5333 of->write(this->offset(), this->original_contents_, 5334 this->original_size_); 5335 5336 // If this owns a stub table and it is not empty, write it. 5337 if (this->is_stub_table_owner() && !this->stub_table_->empty()) 5338 this->stub_table_->write(of); 5339 } 5340 5341 // Finalize data size. 5342 5343 template<bool big_endian> 5344 void 5345 Arm_input_section<big_endian>::set_final_data_size() 5346 { 5347 off_t off = convert_types<off_t, uint64_t>(this->original_size_); 5348 5349 if (this->is_stub_table_owner()) 5350 { 5351 this->stub_table_->finalize_data_size(); 5352 off = align_address(off, this->stub_table_->addralign()); 5353 off += this->stub_table_->data_size(); 5354 } 5355 this->set_data_size(off); 5356 } 5357 5358 // Reset address and file offset. 5359 5360 template<bool big_endian> 5361 void 5362 Arm_input_section<big_endian>::do_reset_address_and_file_offset() 5363 { 5364 // Size of the original input section contents. 5365 off_t off = convert_types<off_t, uint64_t>(this->original_size_); 5366 5367 // If this is a stub table owner, account for the stub table size. 5368 if (this->is_stub_table_owner()) 5369 { 5370 Stub_table<big_endian>* stub_table = this->stub_table_; 5371 5372 // Reset the stub table's address and file offset. The 5373 // current data size for child will be updated after that. 5374 stub_table_->reset_address_and_file_offset(); 5375 off = align_address(off, stub_table_->addralign()); 5376 off += stub_table->current_data_size(); 5377 } 5378 5379 this->set_current_data_size(off); 5380 } 5381 5382 // Arm_exidx_cantunwind methods. 5383 5384 // Write this to Output file OF for a fixed endianness. 5385 5386 template<bool big_endian> 5387 void 5388 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of) 5389 { 5390 off_t offset = this->offset(); 5391 const section_size_type oview_size = 8; 5392 unsigned char* const oview = of->get_output_view(offset, oview_size); 5393 5394 Output_section* os = this->relobj_->output_section(this->shndx_); 5395 gold_assert(os != NULL); 5396 5397 Arm_relobj<big_endian>* arm_relobj = 5398 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_); 5399 Arm_address output_offset = 5400 arm_relobj->get_output_section_offset(this->shndx_); 5401 Arm_address section_start; 5402 section_size_type section_size; 5403 5404 // Find out the end of the text section referred by this. 5405 if (output_offset != Arm_relobj<big_endian>::invalid_address) 5406 { 5407 section_start = os->address() + output_offset; 5408 const Arm_exidx_input_section* exidx_input_section = 5409 arm_relobj->exidx_input_section_by_link(this->shndx_); 5410 gold_assert(exidx_input_section != NULL); 5411 section_size = 5412 convert_to_section_size_type(exidx_input_section->text_size()); 5413 } 5414 else 5415 { 5416 // Currently this only happens for a relaxed section. 5417 const Output_relaxed_input_section* poris = 5418 os->find_relaxed_input_section(this->relobj_, this->shndx_); 5419 gold_assert(poris != NULL); 5420 section_start = poris->address(); 5421 section_size = convert_to_section_size_type(poris->data_size()); 5422 } 5423 5424 // We always append this to the end of an EXIDX section. 5425 Arm_address output_address = section_start + section_size; 5426 5427 // Write out the entry. The first word either points to the beginning 5428 // or after the end of a text section. The second word is the special 5429 // EXIDX_CANTUNWIND value. 5430 uint32_t prel31_offset = output_address - this->address(); 5431 if (Bits<31>::has_overflow32(offset)) 5432 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry")); 5433 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview, 5434 prel31_offset & 0x7fffffffU); 5435 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4, 5436 elfcpp::EXIDX_CANTUNWIND); 5437 5438 of->write_output_view(this->offset(), oview_size, oview); 5439 } 5440 5441 // Arm_exidx_merged_section methods. 5442 5443 // Constructor for Arm_exidx_merged_section. 5444 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section. 5445 // SECTION_OFFSET_MAP points to a section offset map describing how 5446 // parts of the input section are mapped to output. DELETED_BYTES is 5447 // the number of bytes deleted from the EXIDX input section. 5448 5449 Arm_exidx_merged_section::Arm_exidx_merged_section( 5450 const Arm_exidx_input_section& exidx_input_section, 5451 const Arm_exidx_section_offset_map& section_offset_map, 5452 uint32_t deleted_bytes) 5453 : Output_relaxed_input_section(exidx_input_section.relobj(), 5454 exidx_input_section.shndx(), 5455 exidx_input_section.addralign()), 5456 exidx_input_section_(exidx_input_section), 5457 section_offset_map_(section_offset_map) 5458 { 5459 // If we retain or discard the whole EXIDX input section, we would 5460 // not be here. 5461 gold_assert(deleted_bytes != 0 5462 && deleted_bytes != this->exidx_input_section_.size()); 5463 5464 // Fix size here so that we do not need to implement set_final_data_size. 5465 uint32_t size = exidx_input_section.size() - deleted_bytes; 5466 this->set_data_size(size); 5467 this->fix_data_size(); 5468 5469 // Allocate buffer for section contents and build contents. 5470 this->section_contents_ = new unsigned char[size]; 5471 } 5472 5473 // Build the contents of a merged EXIDX output section. 5474 5475 void 5476 Arm_exidx_merged_section::build_contents( 5477 const unsigned char* original_contents, 5478 section_size_type original_size) 5479 { 5480 // Go over spans of input offsets and write only those that are not 5481 // discarded. 5482 section_offset_type in_start = 0; 5483 section_offset_type out_start = 0; 5484 section_offset_type in_max = 5485 convert_types<section_offset_type>(original_size); 5486 section_offset_type out_max = 5487 convert_types<section_offset_type>(this->data_size()); 5488 for (Arm_exidx_section_offset_map::const_iterator p = 5489 this->section_offset_map_.begin(); 5490 p != this->section_offset_map_.end(); 5491 ++p) 5492 { 5493 section_offset_type in_end = p->first; 5494 gold_assert(in_end >= in_start); 5495 section_offset_type out_end = p->second; 5496 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1); 5497 if (out_end != -1) 5498 { 5499 size_t out_chunk_size = 5500 convert_types<size_t>(out_end - out_start + 1); 5501 5502 gold_assert(out_chunk_size == in_chunk_size 5503 && in_end < in_max && out_end < out_max); 5504 5505 memcpy(this->section_contents_ + out_start, 5506 original_contents + in_start, 5507 out_chunk_size); 5508 out_start += out_chunk_size; 5509 } 5510 in_start += in_chunk_size; 5511 } 5512 } 5513 5514 // Given an input OBJECT, an input section index SHNDX within that 5515 // object, and an OFFSET relative to the start of that input 5516 // section, return whether or not the corresponding offset within 5517 // the output section is known. If this function returns true, it 5518 // sets *POUTPUT to the output offset. The value -1 indicates that 5519 // this input offset is being discarded. 5520 5521 bool 5522 Arm_exidx_merged_section::do_output_offset( 5523 const Relobj* relobj, 5524 unsigned int shndx, 5525 section_offset_type offset, 5526 section_offset_type* poutput) const 5527 { 5528 // We only handle offsets for the original EXIDX input section. 5529 if (relobj != this->exidx_input_section_.relobj() 5530 || shndx != this->exidx_input_section_.shndx()) 5531 return false; 5532 5533 section_offset_type section_size = 5534 convert_types<section_offset_type>(this->exidx_input_section_.size()); 5535 if (offset < 0 || offset >= section_size) 5536 // Input offset is out of valid range. 5537 *poutput = -1; 5538 else 5539 { 5540 // We need to look up the section offset map to determine the output 5541 // offset. Find the reference point in map that is first offset 5542 // bigger than or equal to this offset. 5543 Arm_exidx_section_offset_map::const_iterator p = 5544 this->section_offset_map_.lower_bound(offset); 5545 5546 // The section offset maps are build such that this should not happen if 5547 // input offset is in the valid range. 5548 gold_assert(p != this->section_offset_map_.end()); 5549 5550 // We need to check if this is dropped. 5551 section_offset_type ref = p->first; 5552 section_offset_type mapped_ref = p->second; 5553 5554 if (mapped_ref != Arm_exidx_input_section::invalid_offset) 5555 // Offset is present in output. 5556 *poutput = mapped_ref + (offset - ref); 5557 else 5558 // Offset is discarded owing to EXIDX entry merging. 5559 *poutput = -1; 5560 } 5561 5562 return true; 5563 } 5564 5565 // Write this to output file OF. 5566 5567 void 5568 Arm_exidx_merged_section::do_write(Output_file* of) 5569 { 5570 off_t offset = this->offset(); 5571 const section_size_type oview_size = this->data_size(); 5572 unsigned char* const oview = of->get_output_view(offset, oview_size); 5573 5574 Output_section* os = this->relobj()->output_section(this->shndx()); 5575 gold_assert(os != NULL); 5576 5577 memcpy(oview, this->section_contents_, oview_size); 5578 of->write_output_view(this->offset(), oview_size, oview); 5579 } 5580 5581 // Arm_exidx_fixup methods. 5582 5583 // Append an EXIDX_CANTUNWIND in the current output section if the last entry 5584 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry 5585 // points to the end of the last seen EXIDX section. 5586 5587 void 5588 Arm_exidx_fixup::add_exidx_cantunwind_as_needed() 5589 { 5590 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND 5591 && this->last_input_section_ != NULL) 5592 { 5593 Relobj* relobj = this->last_input_section_->relobj(); 5594 unsigned int text_shndx = this->last_input_section_->link(); 5595 Arm_exidx_cantunwind* cantunwind = 5596 new Arm_exidx_cantunwind(relobj, text_shndx); 5597 this->exidx_output_section_->add_output_section_data(cantunwind); 5598 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND; 5599 } 5600 } 5601 5602 // Process an EXIDX section entry in input. Return whether this entry 5603 // can be deleted in the output. SECOND_WORD in the second word of the 5604 // EXIDX entry. 5605 5606 bool 5607 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word) 5608 { 5609 bool delete_entry; 5610 if (second_word == elfcpp::EXIDX_CANTUNWIND) 5611 { 5612 // Merge if previous entry is also an EXIDX_CANTUNWIND. 5613 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND; 5614 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND; 5615 } 5616 else if ((second_word & 0x80000000) != 0) 5617 { 5618 // Inlined unwinding data. Merge if equal to previous. 5619 delete_entry = (merge_exidx_entries_ 5620 && this->last_unwind_type_ == UT_INLINED_ENTRY 5621 && this->last_inlined_entry_ == second_word); 5622 this->last_unwind_type_ = UT_INLINED_ENTRY; 5623 this->last_inlined_entry_ = second_word; 5624 } 5625 else 5626 { 5627 // Normal table entry. In theory we could merge these too, 5628 // but duplicate entries are likely to be much less common. 5629 delete_entry = false; 5630 this->last_unwind_type_ = UT_NORMAL_ENTRY; 5631 } 5632 return delete_entry; 5633 } 5634 5635 // Update the current section offset map during EXIDX section fix-up. 5636 // If there is no map, create one. INPUT_OFFSET is the offset of a 5637 // reference point, DELETED_BYTES is the number of deleted by in the 5638 // section so far. If DELETE_ENTRY is true, the reference point and 5639 // all offsets after the previous reference point are discarded. 5640 5641 void 5642 Arm_exidx_fixup::update_offset_map( 5643 section_offset_type input_offset, 5644 section_size_type deleted_bytes, 5645 bool delete_entry) 5646 { 5647 if (this->section_offset_map_ == NULL) 5648 this->section_offset_map_ = new Arm_exidx_section_offset_map(); 5649 section_offset_type output_offset; 5650 if (delete_entry) 5651 output_offset = Arm_exidx_input_section::invalid_offset; 5652 else 5653 output_offset = input_offset - deleted_bytes; 5654 (*this->section_offset_map_)[input_offset] = output_offset; 5655 } 5656 5657 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of 5658 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX 5659 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS. 5660 // If some entries are merged, also store a pointer to a newly created 5661 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller 5662 // owns the map and is responsible for releasing it after use. 5663 5664 template<bool big_endian> 5665 uint32_t 5666 Arm_exidx_fixup::process_exidx_section( 5667 const Arm_exidx_input_section* exidx_input_section, 5668 const unsigned char* section_contents, 5669 section_size_type section_size, 5670 Arm_exidx_section_offset_map** psection_offset_map) 5671 { 5672 Relobj* relobj = exidx_input_section->relobj(); 5673 unsigned shndx = exidx_input_section->shndx(); 5674 5675 if ((section_size % 8) != 0) 5676 { 5677 // Something is wrong with this section. Better not touch it. 5678 gold_error(_("uneven .ARM.exidx section size in %s section %u"), 5679 relobj->name().c_str(), shndx); 5680 this->last_input_section_ = exidx_input_section; 5681 this->last_unwind_type_ = UT_NONE; 5682 return 0; 5683 } 5684 5685 uint32_t deleted_bytes = 0; 5686 bool prev_delete_entry = false; 5687 gold_assert(this->section_offset_map_ == NULL); 5688 5689 for (section_size_type i = 0; i < section_size; i += 8) 5690 { 5691 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; 5692 const Valtype* wv = 5693 reinterpret_cast<const Valtype*>(section_contents + i + 4); 5694 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv); 5695 5696 bool delete_entry = this->process_exidx_entry(second_word); 5697 5698 // Entry deletion causes changes in output offsets. We use a std::map 5699 // to record these. And entry (x, y) means input offset x 5700 // is mapped to output offset y. If y is invalid_offset, then x is 5701 // dropped in the output. Because of the way std::map::lower_bound 5702 // works, we record the last offset in a region w.r.t to keeping or 5703 // dropping. If there is no entry (x0, y0) for an input offset x0, 5704 // the output offset y0 of it is determined by the output offset y1 of 5705 // the smallest input offset x1 > x0 that there is an (x1, y1) entry 5706 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1 5707 // y0 is also -1. 5708 if (delete_entry != prev_delete_entry && i != 0) 5709 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry); 5710 5711 // Update total deleted bytes for this entry. 5712 if (delete_entry) 5713 deleted_bytes += 8; 5714 5715 prev_delete_entry = delete_entry; 5716 } 5717 5718 // If section offset map is not NULL, make an entry for the end of 5719 // section. 5720 if (this->section_offset_map_ != NULL) 5721 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry); 5722 5723 *psection_offset_map = this->section_offset_map_; 5724 this->section_offset_map_ = NULL; 5725 this->last_input_section_ = exidx_input_section; 5726 5727 // Set the first output text section so that we can link the EXIDX output 5728 // section to it. Ignore any EXIDX input section that is completely merged. 5729 if (this->first_output_text_section_ == NULL 5730 && deleted_bytes != section_size) 5731 { 5732 unsigned int link = exidx_input_section->link(); 5733 Output_section* os = relobj->output_section(link); 5734 gold_assert(os != NULL); 5735 this->first_output_text_section_ = os; 5736 } 5737 5738 return deleted_bytes; 5739 } 5740 5741 // Arm_output_section methods. 5742 5743 // Create a stub group for input sections from BEGIN to END. OWNER 5744 // points to the input section to be the owner a new stub table. 5745 5746 template<bool big_endian> 5747 void 5748 Arm_output_section<big_endian>::create_stub_group( 5749 Input_section_list::const_iterator begin, 5750 Input_section_list::const_iterator end, 5751 Input_section_list::const_iterator owner, 5752 Target_arm<big_endian>* target, 5753 std::vector<Output_relaxed_input_section*>* new_relaxed_sections, 5754 const Task* task) 5755 { 5756 // We use a different kind of relaxed section in an EXIDX section. 5757 // The static casting from Output_relaxed_input_section to 5758 // Arm_input_section is invalid in an EXIDX section. We are okay 5759 // because we should not be calling this for an EXIDX section. 5760 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX); 5761 5762 // Currently we convert ordinary input sections into relaxed sections only 5763 // at this point but we may want to support creating relaxed input section 5764 // very early. So we check here to see if owner is already a relaxed 5765 // section. 5766 5767 Arm_input_section<big_endian>* arm_input_section; 5768 if (owner->is_relaxed_input_section()) 5769 { 5770 arm_input_section = 5771 Arm_input_section<big_endian>::as_arm_input_section( 5772 owner->relaxed_input_section()); 5773 } 5774 else 5775 { 5776 gold_assert(owner->is_input_section()); 5777 // Create a new relaxed input section. We need to lock the original 5778 // file. 5779 Task_lock_obj<Object> tl(task, owner->relobj()); 5780 arm_input_section = 5781 target->new_arm_input_section(owner->relobj(), owner->shndx()); 5782 new_relaxed_sections->push_back(arm_input_section); 5783 } 5784 5785 // Create a stub table. 5786 Stub_table<big_endian>* stub_table = 5787 target->new_stub_table(arm_input_section); 5788 5789 arm_input_section->set_stub_table(stub_table); 5790 5791 Input_section_list::const_iterator p = begin; 5792 Input_section_list::const_iterator prev_p; 5793 5794 // Look for input sections or relaxed input sections in [begin ... end]. 5795 do 5796 { 5797 if (p->is_input_section() || p->is_relaxed_input_section()) 5798 { 5799 // The stub table information for input sections live 5800 // in their objects. 5801 Arm_relobj<big_endian>* arm_relobj = 5802 Arm_relobj<big_endian>::as_arm_relobj(p->relobj()); 5803 arm_relobj->set_stub_table(p->shndx(), stub_table); 5804 } 5805 prev_p = p++; 5806 } 5807 while (prev_p != end); 5808 } 5809 5810 // Group input sections for stub generation. GROUP_SIZE is roughly the limit 5811 // of stub groups. We grow a stub group by adding input section until the 5812 // size is just below GROUP_SIZE. The last input section will be converted 5813 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add 5814 // input section after the stub table, effectively double the group size. 5815 // 5816 // This is similar to the group_sections() function in elf32-arm.c but is 5817 // implemented differently. 5818 5819 template<bool big_endian> 5820 void 5821 Arm_output_section<big_endian>::group_sections( 5822 section_size_type group_size, 5823 bool stubs_always_after_branch, 5824 Target_arm<big_endian>* target, 5825 const Task* task) 5826 { 5827 // States for grouping. 5828 typedef enum 5829 { 5830 // No group is being built. 5831 NO_GROUP, 5832 // A group is being built but the stub table is not found yet. 5833 // We keep group a stub group until the size is just under GROUP_SIZE. 5834 // The last input section in the group will be used as the stub table. 5835 FINDING_STUB_SECTION, 5836 // A group is being built and we have already found a stub table. 5837 // We enter this state to grow a stub group by adding input section 5838 // after the stub table. This effectively doubles the group size. 5839 HAS_STUB_SECTION 5840 } State; 5841 5842 // Any newly created relaxed sections are stored here. 5843 std::vector<Output_relaxed_input_section*> new_relaxed_sections; 5844 5845 State state = NO_GROUP; 5846 section_size_type off = 0; 5847 section_size_type group_begin_offset = 0; 5848 section_size_type group_end_offset = 0; 5849 section_size_type stub_table_end_offset = 0; 5850 Input_section_list::const_iterator group_begin = 5851 this->input_sections().end(); 5852 Input_section_list::const_iterator stub_table = 5853 this->input_sections().end(); 5854 Input_section_list::const_iterator group_end = this->input_sections().end(); 5855 for (Input_section_list::const_iterator p = this->input_sections().begin(); 5856 p != this->input_sections().end(); 5857 ++p) 5858 { 5859 section_size_type section_begin_offset = 5860 align_address(off, p->addralign()); 5861 section_size_type section_end_offset = 5862 section_begin_offset + p->data_size(); 5863 5864 // Check to see if we should group the previously seen sections. 5865 switch (state) 5866 { 5867 case NO_GROUP: 5868 break; 5869 5870 case FINDING_STUB_SECTION: 5871 // Adding this section makes the group larger than GROUP_SIZE. 5872 if (section_end_offset - group_begin_offset >= group_size) 5873 { 5874 if (stubs_always_after_branch) 5875 { 5876 gold_assert(group_end != this->input_sections().end()); 5877 this->create_stub_group(group_begin, group_end, group_end, 5878 target, &new_relaxed_sections, 5879 task); 5880 state = NO_GROUP; 5881 } 5882 else 5883 { 5884 // But wait, there's more! Input sections up to 5885 // stub_group_size bytes after the stub table can be 5886 // handled by it too. 5887 state = HAS_STUB_SECTION; 5888 stub_table = group_end; 5889 stub_table_end_offset = group_end_offset; 5890 } 5891 } 5892 break; 5893 5894 case HAS_STUB_SECTION: 5895 // Adding this section makes the post stub-section group larger 5896 // than GROUP_SIZE. 5897 if (section_end_offset - stub_table_end_offset >= group_size) 5898 { 5899 gold_assert(group_end != this->input_sections().end()); 5900 this->create_stub_group(group_begin, group_end, stub_table, 5901 target, &new_relaxed_sections, task); 5902 state = NO_GROUP; 5903 } 5904 break; 5905 5906 default: 5907 gold_unreachable(); 5908 } 5909 5910 // If we see an input section and currently there is no group, start 5911 // a new one. Skip any empty sections. We look at the data size 5912 // instead of calling p->relobj()->section_size() to avoid locking. 5913 if ((p->is_input_section() || p->is_relaxed_input_section()) 5914 && (p->data_size() != 0)) 5915 { 5916 if (state == NO_GROUP) 5917 { 5918 state = FINDING_STUB_SECTION; 5919 group_begin = p; 5920 group_begin_offset = section_begin_offset; 5921 } 5922 5923 // Keep track of the last input section seen. 5924 group_end = p; 5925 group_end_offset = section_end_offset; 5926 } 5927 5928 off = section_end_offset; 5929 } 5930 5931 // Create a stub group for any ungrouped sections. 5932 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION) 5933 { 5934 gold_assert(group_end != this->input_sections().end()); 5935 this->create_stub_group(group_begin, group_end, 5936 (state == FINDING_STUB_SECTION 5937 ? group_end 5938 : stub_table), 5939 target, &new_relaxed_sections, task); 5940 } 5941 5942 // Convert input section into relaxed input section in a batch. 5943 if (!new_relaxed_sections.empty()) 5944 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections); 5945 5946 // Update the section offsets 5947 for (size_t i = 0; i < new_relaxed_sections.size(); ++i) 5948 { 5949 Arm_relobj<big_endian>* arm_relobj = 5950 Arm_relobj<big_endian>::as_arm_relobj( 5951 new_relaxed_sections[i]->relobj()); 5952 unsigned int shndx = new_relaxed_sections[i]->shndx(); 5953 // Tell Arm_relobj that this input section is converted. 5954 arm_relobj->convert_input_section_to_relaxed_section(shndx); 5955 } 5956 } 5957 5958 // Append non empty text sections in this to LIST in ascending 5959 // order of their position in this. 5960 5961 template<bool big_endian> 5962 void 5963 Arm_output_section<big_endian>::append_text_sections_to_list( 5964 Text_section_list* list) 5965 { 5966 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0); 5967 5968 for (Input_section_list::const_iterator p = this->input_sections().begin(); 5969 p != this->input_sections().end(); 5970 ++p) 5971 { 5972 // We only care about plain or relaxed input sections. We also 5973 // ignore any merged sections. 5974 if (p->is_input_section() || p->is_relaxed_input_section()) 5975 list->push_back(Text_section_list::value_type(p->relobj(), 5976 p->shndx())); 5977 } 5978 } 5979 5980 template<bool big_endian> 5981 void 5982 Arm_output_section<big_endian>::fix_exidx_coverage( 5983 Layout* layout, 5984 const Text_section_list& sorted_text_sections, 5985 Symbol_table* symtab, 5986 bool merge_exidx_entries, 5987 const Task* task) 5988 { 5989 // We should only do this for the EXIDX output section. 5990 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX); 5991 5992 // We don't want the relaxation loop to undo these changes, so we discard 5993 // the current saved states and take another one after the fix-up. 5994 this->discard_states(); 5995 5996 // Remove all input sections. 5997 uint64_t address = this->address(); 5998 typedef std::list<Output_section::Input_section> Input_section_list; 5999 Input_section_list input_sections; 6000 this->reset_address_and_file_offset(); 6001 this->get_input_sections(address, std::string(""), &input_sections); 6002 6003 if (!this->input_sections().empty()) 6004 gold_error(_("Found non-EXIDX input sections in EXIDX output section")); 6005 6006 // Go through all the known input sections and record them. 6007 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set; 6008 typedef Unordered_map<Section_id, const Output_section::Input_section*, 6009 Section_id_hash> Text_to_exidx_map; 6010 Text_to_exidx_map text_to_exidx_map; 6011 for (Input_section_list::const_iterator p = input_sections.begin(); 6012 p != input_sections.end(); 6013 ++p) 6014 { 6015 // This should never happen. At this point, we should only see 6016 // plain EXIDX input sections. 6017 gold_assert(!p->is_relaxed_input_section()); 6018 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p); 6019 } 6020 6021 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries); 6022 6023 // Go over the sorted text sections. 6024 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set; 6025 Section_id_set processed_input_sections; 6026 for (Text_section_list::const_iterator p = sorted_text_sections.begin(); 6027 p != sorted_text_sections.end(); 6028 ++p) 6029 { 6030 Relobj* relobj = p->first; 6031 unsigned int shndx = p->second; 6032 6033 Arm_relobj<big_endian>* arm_relobj = 6034 Arm_relobj<big_endian>::as_arm_relobj(relobj); 6035 const Arm_exidx_input_section* exidx_input_section = 6036 arm_relobj->exidx_input_section_by_link(shndx); 6037 6038 // If this text section has no EXIDX section or if the EXIDX section 6039 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end 6040 // of the last seen EXIDX section. 6041 if (exidx_input_section == NULL || exidx_input_section->has_errors()) 6042 { 6043 exidx_fixup.add_exidx_cantunwind_as_needed(); 6044 continue; 6045 } 6046 6047 Relobj* exidx_relobj = exidx_input_section->relobj(); 6048 unsigned int exidx_shndx = exidx_input_section->shndx(); 6049 Section_id sid(exidx_relobj, exidx_shndx); 6050 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid); 6051 if (iter == text_to_exidx_map.end()) 6052 { 6053 // This is odd. We have not seen this EXIDX input section before. 6054 // We cannot do fix-up. If we saw a SECTIONS clause in a script, 6055 // issue a warning instead. We assume the user knows what he 6056 // or she is doing. Otherwise, this is an error. 6057 if (layout->script_options()->saw_sections_clause()) 6058 gold_warning(_("unwinding may not work because EXIDX input section" 6059 " %u of %s is not in EXIDX output section"), 6060 exidx_shndx, exidx_relobj->name().c_str()); 6061 else 6062 gold_error(_("unwinding may not work because EXIDX input section" 6063 " %u of %s is not in EXIDX output section"), 6064 exidx_shndx, exidx_relobj->name().c_str()); 6065 6066 exidx_fixup.add_exidx_cantunwind_as_needed(); 6067 continue; 6068 } 6069 6070 // We need to access the contents of the EXIDX section, lock the 6071 // object here. 6072 Task_lock_obj<Object> tl(task, exidx_relobj); 6073 section_size_type exidx_size; 6074 const unsigned char* exidx_contents = 6075 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false); 6076 6077 // Fix up coverage and append input section to output data list. 6078 Arm_exidx_section_offset_map* section_offset_map = NULL; 6079 uint32_t deleted_bytes = 6080 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section, 6081 exidx_contents, 6082 exidx_size, 6083 §ion_offset_map); 6084 6085 if (deleted_bytes == exidx_input_section->size()) 6086 { 6087 // The whole EXIDX section got merged. Remove it from output. 6088 gold_assert(section_offset_map == NULL); 6089 exidx_relobj->set_output_section(exidx_shndx, NULL); 6090 6091 // All local symbols defined in this input section will be dropped. 6092 // We need to adjust output local symbol count. 6093 arm_relobj->set_output_local_symbol_count_needs_update(); 6094 } 6095 else if (deleted_bytes > 0) 6096 { 6097 // Some entries are merged. We need to convert this EXIDX input 6098 // section into a relaxed section. 6099 gold_assert(section_offset_map != NULL); 6100 6101 Arm_exidx_merged_section* merged_section = 6102 new Arm_exidx_merged_section(*exidx_input_section, 6103 *section_offset_map, deleted_bytes); 6104 merged_section->build_contents(exidx_contents, exidx_size); 6105 6106 const std::string secname = exidx_relobj->section_name(exidx_shndx); 6107 this->add_relaxed_input_section(layout, merged_section, secname); 6108 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx); 6109 6110 // All local symbols defined in discarded portions of this input 6111 // section will be dropped. We need to adjust output local symbol 6112 // count. 6113 arm_relobj->set_output_local_symbol_count_needs_update(); 6114 } 6115 else 6116 { 6117 // Just add back the EXIDX input section. 6118 gold_assert(section_offset_map == NULL); 6119 const Output_section::Input_section* pis = iter->second; 6120 gold_assert(pis->is_input_section()); 6121 this->add_script_input_section(*pis); 6122 } 6123 6124 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx)); 6125 } 6126 6127 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary. 6128 exidx_fixup.add_exidx_cantunwind_as_needed(); 6129 6130 // Remove any known EXIDX input sections that are not processed. 6131 for (Input_section_list::const_iterator p = input_sections.begin(); 6132 p != input_sections.end(); 6133 ++p) 6134 { 6135 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx())) 6136 == processed_input_sections.end()) 6137 { 6138 // We discard a known EXIDX section because its linked 6139 // text section has been folded by ICF. We also discard an 6140 // EXIDX section with error, the output does not matter in this 6141 // case. We do this to avoid triggering asserts. 6142 Arm_relobj<big_endian>* arm_relobj = 6143 Arm_relobj<big_endian>::as_arm_relobj(p->relobj()); 6144 const Arm_exidx_input_section* exidx_input_section = 6145 arm_relobj->exidx_input_section_by_shndx(p->shndx()); 6146 gold_assert(exidx_input_section != NULL); 6147 if (!exidx_input_section->has_errors()) 6148 { 6149 unsigned int text_shndx = exidx_input_section->link(); 6150 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx)); 6151 } 6152 6153 // Remove this from link. We also need to recount the 6154 // local symbols. 6155 p->relobj()->set_output_section(p->shndx(), NULL); 6156 arm_relobj->set_output_local_symbol_count_needs_update(); 6157 } 6158 } 6159 6160 // Link exidx output section to the first seen output section and 6161 // set correct entry size. 6162 this->set_link_section(exidx_fixup.first_output_text_section()); 6163 this->set_entsize(8); 6164 6165 // Make changes permanent. 6166 this->save_states(); 6167 this->set_section_offsets_need_adjustment(); 6168 } 6169 6170 // Link EXIDX output sections to text output sections. 6171 6172 template<bool big_endian> 6173 void 6174 Arm_output_section<big_endian>::set_exidx_section_link() 6175 { 6176 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX); 6177 if (!this->input_sections().empty()) 6178 { 6179 Input_section_list::const_iterator p = this->input_sections().begin(); 6180 Arm_relobj<big_endian>* arm_relobj = 6181 Arm_relobj<big_endian>::as_arm_relobj(p->relobj()); 6182 unsigned exidx_shndx = p->shndx(); 6183 const Arm_exidx_input_section* exidx_input_section = 6184 arm_relobj->exidx_input_section_by_shndx(exidx_shndx); 6185 gold_assert(exidx_input_section != NULL); 6186 unsigned int text_shndx = exidx_input_section->link(); 6187 Output_section* os = arm_relobj->output_section(text_shndx); 6188 this->set_link_section(os); 6189 } 6190 } 6191 6192 // Arm_relobj methods. 6193 6194 // Determine if an input section is scannable for stub processing. SHDR is 6195 // the header of the section and SHNDX is the section index. OS is the output 6196 // section for the input section and SYMTAB is the global symbol table used to 6197 // look up ICF information. 6198 6199 template<bool big_endian> 6200 bool 6201 Arm_relobj<big_endian>::section_is_scannable( 6202 const elfcpp::Shdr<32, big_endian>& shdr, 6203 unsigned int shndx, 6204 const Output_section* os, 6205 const Symbol_table* symtab) 6206 { 6207 // Skip any empty sections, unallocated sections or sections whose 6208 // type are not SHT_PROGBITS. 6209 if (shdr.get_sh_size() == 0 6210 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0 6211 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS) 6212 return false; 6213 6214 // Skip any discarded or ICF'ed sections. 6215 if (os == NULL || symtab->is_section_folded(this, shndx)) 6216 return false; 6217 6218 // If this requires special offset handling, check to see if it is 6219 // a relaxed section. If this is not, then it is a merged section that 6220 // we cannot handle. 6221 if (this->is_output_section_offset_invalid(shndx)) 6222 { 6223 const Output_relaxed_input_section* poris = 6224 os->find_relaxed_input_section(this, shndx); 6225 if (poris == NULL) 6226 return false; 6227 } 6228 6229 return true; 6230 } 6231 6232 // Determine if we want to scan the SHNDX-th section for relocation stubs. 6233 // This is a helper for Arm_relobj::scan_sections_for_stubs() below. 6234 6235 template<bool big_endian> 6236 bool 6237 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning( 6238 const elfcpp::Shdr<32, big_endian>& shdr, 6239 const Relobj::Output_sections& out_sections, 6240 const Symbol_table* symtab, 6241 const unsigned char* pshdrs) 6242 { 6243 unsigned int sh_type = shdr.get_sh_type(); 6244 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA) 6245 return false; 6246 6247 // Ignore empty section. 6248 off_t sh_size = shdr.get_sh_size(); 6249 if (sh_size == 0) 6250 return false; 6251 6252 // Ignore reloc section with unexpected symbol table. The 6253 // error will be reported in the final link. 6254 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx()) 6255 return false; 6256 6257 unsigned int reloc_size; 6258 if (sh_type == elfcpp::SHT_REL) 6259 reloc_size = elfcpp::Elf_sizes<32>::rel_size; 6260 else 6261 reloc_size = elfcpp::Elf_sizes<32>::rela_size; 6262 6263 // Ignore reloc section with unexpected entsize or uneven size. 6264 // The error will be reported in the final link. 6265 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0) 6266 return false; 6267 6268 // Ignore reloc section with bad info. This error will be 6269 // reported in the final link. 6270 unsigned int index = this->adjust_shndx(shdr.get_sh_info()); 6271 if (index >= this->shnum()) 6272 return false; 6273 6274 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size; 6275 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size); 6276 return this->section_is_scannable(text_shdr, index, 6277 out_sections[index], symtab); 6278 } 6279 6280 // Return the output address of either a plain input section or a relaxed 6281 // input section. SHNDX is the section index. We define and use this 6282 // instead of calling Output_section::output_address because that is slow 6283 // for large output. 6284 6285 template<bool big_endian> 6286 Arm_address 6287 Arm_relobj<big_endian>::simple_input_section_output_address( 6288 unsigned int shndx, 6289 Output_section* os) 6290 { 6291 if (this->is_output_section_offset_invalid(shndx)) 6292 { 6293 const Output_relaxed_input_section* poris = 6294 os->find_relaxed_input_section(this, shndx); 6295 // We do not handle merged sections here. 6296 gold_assert(poris != NULL); 6297 return poris->address(); 6298 } 6299 else 6300 return os->address() + this->get_output_section_offset(shndx); 6301 } 6302 6303 // Determine if we want to scan the SHNDX-th section for non-relocation stubs. 6304 // This is a helper for Arm_relobj::scan_sections_for_stubs() below. 6305 6306 template<bool big_endian> 6307 bool 6308 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning( 6309 const elfcpp::Shdr<32, big_endian>& shdr, 6310 unsigned int shndx, 6311 Output_section* os, 6312 const Symbol_table* symtab) 6313 { 6314 if (!this->section_is_scannable(shdr, shndx, os, symtab)) 6315 return false; 6316 6317 // If the section does not cross any 4K-boundaries, it does not need to 6318 // be scanned. 6319 Arm_address address = this->simple_input_section_output_address(shndx, os); 6320 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU)) 6321 return false; 6322 6323 return true; 6324 } 6325 6326 // Scan a section for Cortex-A8 workaround. 6327 6328 template<bool big_endian> 6329 void 6330 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum( 6331 const elfcpp::Shdr<32, big_endian>& shdr, 6332 unsigned int shndx, 6333 Output_section* os, 6334 Target_arm<big_endian>* arm_target) 6335 { 6336 // Look for the first mapping symbol in this section. It should be 6337 // at (shndx, 0). 6338 Mapping_symbol_position section_start(shndx, 0); 6339 typename Mapping_symbols_info::const_iterator p = 6340 this->mapping_symbols_info_.lower_bound(section_start); 6341 6342 // There are no mapping symbols for this section. Treat it as a data-only 6343 // section. 6344 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx) 6345 return; 6346 6347 Arm_address output_address = 6348 this->simple_input_section_output_address(shndx, os); 6349 6350 // Get the section contents. 6351 section_size_type input_view_size = 0; 6352 const unsigned char* input_view = 6353 this->section_contents(shndx, &input_view_size, false); 6354 6355 // We need to go through the mapping symbols to determine what to 6356 // scan. There are two reasons. First, we should look at THUMB code and 6357 // THUMB code only. Second, we only want to look at the 4K-page boundary 6358 // to speed up the scanning. 6359 6360 while (p != this->mapping_symbols_info_.end() 6361 && p->first.first == shndx) 6362 { 6363 typename Mapping_symbols_info::const_iterator next = 6364 this->mapping_symbols_info_.upper_bound(p->first); 6365 6366 // Only scan part of a section with THUMB code. 6367 if (p->second == 't') 6368 { 6369 // Determine the end of this range. 6370 section_size_type span_start = 6371 convert_to_section_size_type(p->first.second); 6372 section_size_type span_end; 6373 if (next != this->mapping_symbols_info_.end() 6374 && next->first.first == shndx) 6375 span_end = convert_to_section_size_type(next->first.second); 6376 else 6377 span_end = convert_to_section_size_type(shdr.get_sh_size()); 6378 6379 if (((span_start + output_address) & ~0xfffUL) 6380 != ((span_end + output_address - 1) & ~0xfffUL)) 6381 { 6382 arm_target->scan_span_for_cortex_a8_erratum(this, shndx, 6383 span_start, span_end, 6384 input_view, 6385 output_address); 6386 } 6387 } 6388 6389 p = next; 6390 } 6391 } 6392 6393 // Scan relocations for stub generation. 6394 6395 template<bool big_endian> 6396 void 6397 Arm_relobj<big_endian>::scan_sections_for_stubs( 6398 Target_arm<big_endian>* arm_target, 6399 const Symbol_table* symtab, 6400 const Layout* layout) 6401 { 6402 unsigned int shnum = this->shnum(); 6403 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size; 6404 6405 // Read the section headers. 6406 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(), 6407 shnum * shdr_size, 6408 true, true); 6409 6410 // To speed up processing, we set up hash tables for fast lookup of 6411 // input offsets to output addresses. 6412 this->initialize_input_to_output_maps(); 6413 6414 const Relobj::Output_sections& out_sections(this->output_sections()); 6415 6416 Relocate_info<32, big_endian> relinfo; 6417 relinfo.symtab = symtab; 6418 relinfo.layout = layout; 6419 relinfo.object = this; 6420 6421 // Do relocation stubs scanning. 6422 const unsigned char* p = pshdrs + shdr_size; 6423 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size) 6424 { 6425 const elfcpp::Shdr<32, big_endian> shdr(p); 6426 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab, 6427 pshdrs)) 6428 { 6429 unsigned int index = this->adjust_shndx(shdr.get_sh_info()); 6430 Arm_address output_offset = this->get_output_section_offset(index); 6431 Arm_address output_address; 6432 if (output_offset != invalid_address) 6433 output_address = out_sections[index]->address() + output_offset; 6434 else 6435 { 6436 // Currently this only happens for a relaxed section. 6437 const Output_relaxed_input_section* poris = 6438 out_sections[index]->find_relaxed_input_section(this, index); 6439 gold_assert(poris != NULL); 6440 output_address = poris->address(); 6441 } 6442 6443 // Get the relocations. 6444 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(), 6445 shdr.get_sh_size(), 6446 true, false); 6447 6448 // Get the section contents. This does work for the case in which 6449 // we modify the contents of an input section. We need to pass the 6450 // output view under such circumstances. 6451 section_size_type input_view_size = 0; 6452 const unsigned char* input_view = 6453 this->section_contents(index, &input_view_size, false); 6454 6455 relinfo.reloc_shndx = i; 6456 relinfo.data_shndx = index; 6457 unsigned int sh_type = shdr.get_sh_type(); 6458 unsigned int reloc_size; 6459 if (sh_type == elfcpp::SHT_REL) 6460 reloc_size = elfcpp::Elf_sizes<32>::rel_size; 6461 else 6462 reloc_size = elfcpp::Elf_sizes<32>::rela_size; 6463 6464 Output_section* os = out_sections[index]; 6465 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs, 6466 shdr.get_sh_size() / reloc_size, 6467 os, 6468 output_offset == invalid_address, 6469 input_view, output_address, 6470 input_view_size); 6471 } 6472 } 6473 6474 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section 6475 // after its relocation section, if there is one, is processed for 6476 // relocation stubs. Merging this loop with the one above would have been 6477 // complicated since we would have had to make sure that relocation stub 6478 // scanning is done first. 6479 if (arm_target->fix_cortex_a8()) 6480 { 6481 const unsigned char* p = pshdrs + shdr_size; 6482 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size) 6483 { 6484 const elfcpp::Shdr<32, big_endian> shdr(p); 6485 if (this->section_needs_cortex_a8_stub_scanning(shdr, i, 6486 out_sections[i], 6487 symtab)) 6488 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i], 6489 arm_target); 6490 } 6491 } 6492 6493 // After we've done the relocations, we release the hash tables, 6494 // since we no longer need them. 6495 this->free_input_to_output_maps(); 6496 } 6497 6498 // Count the local symbols. The ARM backend needs to know if a symbol 6499 // is a THUMB function or not. For global symbols, it is easy because 6500 // the Symbol object keeps the ELF symbol type. For local symbol it is 6501 // harder because we cannot access this information. So we override the 6502 // do_count_local_symbol in parent and scan local symbols to mark 6503 // THUMB functions. This is not the most efficient way but I do not want to 6504 // slow down other ports by calling a per symbol target hook inside 6505 // Sized_relobj_file<size, big_endian>::do_count_local_symbols. 6506 6507 template<bool big_endian> 6508 void 6509 Arm_relobj<big_endian>::do_count_local_symbols( 6510 Stringpool_template<char>* pool, 6511 Stringpool_template<char>* dynpool) 6512 { 6513 // We need to fix-up the values of any local symbols whose type are 6514 // STT_ARM_TFUNC. 6515 6516 // Ask parent to count the local symbols. 6517 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool); 6518 const unsigned int loccount = this->local_symbol_count(); 6519 if (loccount == 0) 6520 return; 6521 6522 // Initialize the thumb function bit-vector. 6523 std::vector<bool> empty_vector(loccount, false); 6524 this->local_symbol_is_thumb_function_.swap(empty_vector); 6525 6526 // Read the symbol table section header. 6527 const unsigned int symtab_shndx = this->symtab_shndx(); 6528 elfcpp::Shdr<32, big_endian> 6529 symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); 6530 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); 6531 6532 // Read the local symbols. 6533 const int sym_size =elfcpp::Elf_sizes<32>::sym_size; 6534 gold_assert(loccount == symtabshdr.get_sh_info()); 6535 off_t locsize = loccount * sym_size; 6536 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), 6537 locsize, true, true); 6538 6539 // For mapping symbol processing, we need to read the symbol names. 6540 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link()); 6541 if (strtab_shndx >= this->shnum()) 6542 { 6543 this->error(_("invalid symbol table name index: %u"), strtab_shndx); 6544 return; 6545 } 6546 6547 elfcpp::Shdr<32, big_endian> 6548 strtabshdr(this, this->elf_file()->section_header(strtab_shndx)); 6549 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) 6550 { 6551 this->error(_("symbol table name section has wrong type: %u"), 6552 static_cast<unsigned int>(strtabshdr.get_sh_type())); 6553 return; 6554 } 6555 const char* pnames = 6556 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(), 6557 strtabshdr.get_sh_size(), 6558 false, false)); 6559 6560 // Loop over the local symbols and mark any local symbols pointing 6561 // to THUMB functions. 6562 6563 // Skip the first dummy symbol. 6564 psyms += sym_size; 6565 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values = 6566 this->local_values(); 6567 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) 6568 { 6569 elfcpp::Sym<32, big_endian> sym(psyms); 6570 elfcpp::STT st_type = sym.get_st_type(); 6571 Symbol_value<32>& lv((*plocal_values)[i]); 6572 Arm_address input_value = lv.input_value(); 6573 6574 // Check to see if this is a mapping symbol. 6575 const char* sym_name = pnames + sym.get_st_name(); 6576 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name)) 6577 { 6578 bool is_ordinary; 6579 unsigned int input_shndx = 6580 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary); 6581 gold_assert(is_ordinary); 6582 6583 // Strip of LSB in case this is a THUMB symbol. 6584 Mapping_symbol_position msp(input_shndx, input_value & ~1U); 6585 this->mapping_symbols_info_[msp] = sym_name[1]; 6586 } 6587 6588 if (st_type == elfcpp::STT_ARM_TFUNC 6589 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0))) 6590 { 6591 // This is a THUMB function. Mark this and canonicalize the 6592 // symbol value by setting LSB. 6593 this->local_symbol_is_thumb_function_[i] = true; 6594 if ((input_value & 1) == 0) 6595 lv.set_input_value(input_value | 1); 6596 } 6597 } 6598 } 6599 6600 // Relocate sections. 6601 template<bool big_endian> 6602 void 6603 Arm_relobj<big_endian>::do_relocate_sections( 6604 const Symbol_table* symtab, 6605 const Layout* layout, 6606 const unsigned char* pshdrs, 6607 Output_file* of, 6608 typename Sized_relobj_file<32, big_endian>::Views* pviews) 6609 { 6610 // Relocate the section data. 6611 this->relocate_section_range(symtab, layout, pshdrs, of, pviews, 6612 1, this->shnum() - 1); 6613 6614 // We do not generate stubs if doing a relocatable link. 6615 if (parameters->options().relocatable()) 6616 return; 6617 6618 // Relocate stub tables. 6619 unsigned int shnum = this->shnum(); 6620 6621 Target_arm<big_endian>* arm_target = 6622 Target_arm<big_endian>::default_target(); 6623 6624 Relocate_info<32, big_endian> relinfo; 6625 relinfo.symtab = symtab; 6626 relinfo.layout = layout; 6627 relinfo.object = this; 6628 6629 for (unsigned int i = 1; i < shnum; ++i) 6630 { 6631 Arm_input_section<big_endian>* arm_input_section = 6632 arm_target->find_arm_input_section(this, i); 6633 6634 if (arm_input_section != NULL 6635 && arm_input_section->is_stub_table_owner() 6636 && !arm_input_section->stub_table()->empty()) 6637 { 6638 // We cannot discard a section if it owns a stub table. 6639 Output_section* os = this->output_section(i); 6640 gold_assert(os != NULL); 6641 6642 relinfo.reloc_shndx = elfcpp::SHN_UNDEF; 6643 relinfo.reloc_shdr = NULL; 6644 relinfo.data_shndx = i; 6645 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size; 6646 6647 gold_assert((*pviews)[i].view != NULL); 6648 6649 // We are passed the output section view. Adjust it to cover the 6650 // stub table only. 6651 Stub_table<big_endian>* stub_table = arm_input_section->stub_table(); 6652 gold_assert((stub_table->address() >= (*pviews)[i].address) 6653 && ((stub_table->address() + stub_table->data_size()) 6654 <= (*pviews)[i].address + (*pviews)[i].view_size)); 6655 6656 off_t offset = stub_table->address() - (*pviews)[i].address; 6657 unsigned char* view = (*pviews)[i].view + offset; 6658 Arm_address address = stub_table->address(); 6659 section_size_type view_size = stub_table->data_size(); 6660 6661 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address, 6662 view_size); 6663 } 6664 6665 // Apply Cortex A8 workaround if applicable. 6666 if (this->section_has_cortex_a8_workaround(i)) 6667 { 6668 unsigned char* view = (*pviews)[i].view; 6669 Arm_address view_address = (*pviews)[i].address; 6670 section_size_type view_size = (*pviews)[i].view_size; 6671 Stub_table<big_endian>* stub_table = this->stub_tables_[i]; 6672 6673 // Adjust view to cover section. 6674 Output_section* os = this->output_section(i); 6675 gold_assert(os != NULL); 6676 Arm_address section_address = 6677 this->simple_input_section_output_address(i, os); 6678 uint64_t section_size = this->section_size(i); 6679 6680 gold_assert(section_address >= view_address 6681 && ((section_address + section_size) 6682 <= (view_address + view_size))); 6683 6684 unsigned char* section_view = view + (section_address - view_address); 6685 6686 // Apply the Cortex-A8 workaround to the output address range 6687 // corresponding to this input section. 6688 stub_table->apply_cortex_a8_workaround_to_address_range( 6689 arm_target, 6690 section_view, 6691 section_address, 6692 section_size); 6693 } 6694 // BE8 swapping 6695 if (parameters->options().be8()) 6696 { 6697 section_size_type span_start, span_end; 6698 elfcpp::Shdr<32, big_endian> 6699 shdr(pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size); 6700 Mapping_symbol_position section_start(i, 0); 6701 typename Mapping_symbols_info::const_iterator p = 6702 this->mapping_symbols_info_.lower_bound(section_start); 6703 unsigned char* view = (*pviews)[i].view; 6704 Arm_address view_address = (*pviews)[i].address; 6705 section_size_type view_size = (*pviews)[i].view_size; 6706 while (p != this->mapping_symbols_info_.end() 6707 && p->first.first == i) 6708 { 6709 typename Mapping_symbols_info::const_iterator next = 6710 this->mapping_symbols_info_.upper_bound(p->first); 6711 6712 // Only swap arm or thumb code. 6713 if ((p->second == 'a') || (p->second == 't')) 6714 { 6715 Output_section* os = this->output_section(i); 6716 gold_assert(os != NULL); 6717 Arm_address section_address = 6718 this->simple_input_section_output_address(i, os); 6719 span_start = convert_to_section_size_type(p->first.second); 6720 if (next != this->mapping_symbols_info_.end() 6721 && next->first.first == i) 6722 span_end = 6723 convert_to_section_size_type(next->first.second); 6724 else 6725 span_end = 6726 convert_to_section_size_type(shdr.get_sh_size()); 6727 unsigned char* section_view = 6728 view + (section_address - view_address); 6729 uint64_t section_size = this->section_size(i); 6730 6731 gold_assert(section_address >= view_address 6732 && ((section_address + section_size) 6733 <= (view_address + view_size))); 6734 6735 // Set Output view for swapping 6736 unsigned char *oview = section_view + span_start; 6737 unsigned int index = 0; 6738 if (p->second == 'a') 6739 { 6740 while (index + 3 < (span_end - span_start)) 6741 { 6742 typedef typename elfcpp::Swap<32, big_endian> 6743 ::Valtype Valtype; 6744 Valtype* wv = 6745 reinterpret_cast<Valtype*>(oview+index); 6746 uint32_t val = elfcpp::Swap<32, false>::readval(wv); 6747 elfcpp::Swap<32, true>::writeval(wv, val); 6748 index += 4; 6749 } 6750 } 6751 else if (p->second == 't') 6752 { 6753 while (index + 1 < (span_end - span_start)) 6754 { 6755 typedef typename elfcpp::Swap<16, big_endian> 6756 ::Valtype Valtype; 6757 Valtype* wv = 6758 reinterpret_cast<Valtype*>(oview+index); 6759 uint16_t val = elfcpp::Swap<16, false>::readval(wv); 6760 elfcpp::Swap<16, true>::writeval(wv, val); 6761 index += 2; 6762 } 6763 } 6764 } 6765 p = next; 6766 } 6767 } 6768 } 6769 } 6770 6771 // Find the linked text section of an EXIDX section by looking at the first 6772 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section 6773 // must be linked to its associated code section via the sh_link field of 6774 // its section header. However, some tools are broken and the link is not 6775 // always set. LD just drops such an EXIDX section silently, causing the 6776 // associated code not unwindabled. Here we try a little bit harder to 6777 // discover the linked code section. 6778 // 6779 // PSHDR points to the section header of a relocation section of an EXIDX 6780 // section. If we can find a linked text section, return true and 6781 // store the text section index in the location PSHNDX. Otherwise 6782 // return false. 6783 6784 template<bool big_endian> 6785 bool 6786 Arm_relobj<big_endian>::find_linked_text_section( 6787 const unsigned char* pshdr, 6788 const unsigned char* psyms, 6789 unsigned int* pshndx) 6790 { 6791 elfcpp::Shdr<32, big_endian> shdr(pshdr); 6792 6793 // If there is no relocation, we cannot find the linked text section. 6794 size_t reloc_size; 6795 if (shdr.get_sh_type() == elfcpp::SHT_REL) 6796 reloc_size = elfcpp::Elf_sizes<32>::rel_size; 6797 else 6798 reloc_size = elfcpp::Elf_sizes<32>::rela_size; 6799 size_t reloc_count = shdr.get_sh_size() / reloc_size; 6800 6801 // Get the relocations. 6802 const unsigned char* prelocs = 6803 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false); 6804 6805 // Find the REL31 relocation for the first word of the first EXIDX entry. 6806 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size) 6807 { 6808 Arm_address r_offset; 6809 typename elfcpp::Elf_types<32>::Elf_WXword r_info; 6810 if (shdr.get_sh_type() == elfcpp::SHT_REL) 6811 { 6812 typename elfcpp::Rel<32, big_endian> reloc(prelocs); 6813 r_info = reloc.get_r_info(); 6814 r_offset = reloc.get_r_offset(); 6815 } 6816 else 6817 { 6818 typename elfcpp::Rela<32, big_endian> reloc(prelocs); 6819 r_info = reloc.get_r_info(); 6820 r_offset = reloc.get_r_offset(); 6821 } 6822 6823 unsigned int r_type = elfcpp::elf_r_type<32>(r_info); 6824 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31) 6825 continue; 6826 6827 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); 6828 if (r_sym == 0 6829 || r_sym >= this->local_symbol_count() 6830 || r_offset != 0) 6831 continue; 6832 6833 // This is the relocation for the first word of the first EXIDX entry. 6834 // We expect to see a local section symbol. 6835 const int sym_size = elfcpp::Elf_sizes<32>::sym_size; 6836 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size); 6837 if (sym.get_st_type() == elfcpp::STT_SECTION) 6838 { 6839 bool is_ordinary; 6840 *pshndx = 6841 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary); 6842 gold_assert(is_ordinary); 6843 return true; 6844 } 6845 else 6846 return false; 6847 } 6848 6849 return false; 6850 } 6851 6852 // Make an EXIDX input section object for an EXIDX section whose index is 6853 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX 6854 // is the section index of the linked text section. 6855 6856 template<bool big_endian> 6857 void 6858 Arm_relobj<big_endian>::make_exidx_input_section( 6859 unsigned int shndx, 6860 const elfcpp::Shdr<32, big_endian>& shdr, 6861 unsigned int text_shndx, 6862 const elfcpp::Shdr<32, big_endian>& text_shdr) 6863 { 6864 // Create an Arm_exidx_input_section object for this EXIDX section. 6865 Arm_exidx_input_section* exidx_input_section = 6866 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(), 6867 shdr.get_sh_addralign(), 6868 text_shdr.get_sh_size()); 6869 6870 gold_assert(this->exidx_section_map_[shndx] == NULL); 6871 this->exidx_section_map_[shndx] = exidx_input_section; 6872 6873 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum()) 6874 { 6875 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"), 6876 this->section_name(shndx).c_str(), shndx, text_shndx, 6877 this->name().c_str()); 6878 exidx_input_section->set_has_errors(); 6879 } 6880 else if (this->exidx_section_map_[text_shndx] != NULL) 6881 { 6882 unsigned other_exidx_shndx = 6883 this->exidx_section_map_[text_shndx]->shndx(); 6884 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section" 6885 "%s(%u) in %s"), 6886 this->section_name(shndx).c_str(), shndx, 6887 this->section_name(other_exidx_shndx).c_str(), 6888 other_exidx_shndx, this->section_name(text_shndx).c_str(), 6889 text_shndx, this->name().c_str()); 6890 exidx_input_section->set_has_errors(); 6891 } 6892 else 6893 this->exidx_section_map_[text_shndx] = exidx_input_section; 6894 6895 // Check section flags of text section. 6896 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) 6897 { 6898 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) " 6899 " in %s"), 6900 this->section_name(shndx).c_str(), shndx, 6901 this->section_name(text_shndx).c_str(), text_shndx, 6902 this->name().c_str()); 6903 exidx_input_section->set_has_errors(); 6904 } 6905 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0) 6906 // I would like to make this an error but currently ld just ignores 6907 // this. 6908 gold_warning(_("EXIDX section %s(%u) links to non-executable section " 6909 "%s(%u) in %s"), 6910 this->section_name(shndx).c_str(), shndx, 6911 this->section_name(text_shndx).c_str(), text_shndx, 6912 this->name().c_str()); 6913 } 6914 6915 // Read the symbol information. 6916 6917 template<bool big_endian> 6918 void 6919 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd) 6920 { 6921 // Call parent class to read symbol information. 6922 this->base_read_symbols(sd); 6923 6924 // If this input file is a binary file, it has no processor 6925 // specific flags and attributes section. 6926 Input_file::Format format = this->input_file()->format(); 6927 if (format != Input_file::FORMAT_ELF) 6928 { 6929 gold_assert(format == Input_file::FORMAT_BINARY); 6930 this->merge_flags_and_attributes_ = false; 6931 return; 6932 } 6933 6934 // Read processor-specific flags in ELF file header. 6935 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset, 6936 elfcpp::Elf_sizes<32>::ehdr_size, 6937 true, false); 6938 elfcpp::Ehdr<32, big_endian> ehdr(pehdr); 6939 this->processor_specific_flags_ = ehdr.get_e_flags(); 6940 6941 // Go over the section headers and look for .ARM.attributes and .ARM.exidx 6942 // sections. 6943 std::vector<unsigned int> deferred_exidx_sections; 6944 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size; 6945 const unsigned char* pshdrs = sd->section_headers->data(); 6946 const unsigned char* ps = pshdrs + shdr_size; 6947 bool must_merge_flags_and_attributes = false; 6948 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size) 6949 { 6950 elfcpp::Shdr<32, big_endian> shdr(ps); 6951 6952 // Sometimes an object has no contents except the section name string 6953 // table and an empty symbol table with the undefined symbol. We 6954 // don't want to merge processor-specific flags from such an object. 6955 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB) 6956 { 6957 // Symbol table is not empty. 6958 const elfcpp::Elf_types<32>::Elf_WXword sym_size = 6959 elfcpp::Elf_sizes<32>::sym_size; 6960 if (shdr.get_sh_size() > sym_size) 6961 must_merge_flags_and_attributes = true; 6962 } 6963 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB) 6964 // If this is neither an empty symbol table nor a string table, 6965 // be conservative. 6966 must_merge_flags_and_attributes = true; 6967 6968 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES) 6969 { 6970 gold_assert(this->attributes_section_data_ == NULL); 6971 section_offset_type section_offset = shdr.get_sh_offset(); 6972 section_size_type section_size = 6973 convert_to_section_size_type(shdr.get_sh_size()); 6974 const unsigned char* view = 6975 this->get_view(section_offset, section_size, true, false); 6976 this->attributes_section_data_ = 6977 new Attributes_section_data(view, section_size); 6978 } 6979 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX) 6980 { 6981 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link()); 6982 if (text_shndx == elfcpp::SHN_UNDEF) 6983 deferred_exidx_sections.push_back(i); 6984 else 6985 { 6986 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs 6987 + text_shndx * shdr_size); 6988 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr); 6989 } 6990 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set. 6991 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0) 6992 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"), 6993 this->section_name(i).c_str(), this->name().c_str()); 6994 } 6995 } 6996 6997 // This is rare. 6998 if (!must_merge_flags_and_attributes) 6999 { 7000 gold_assert(deferred_exidx_sections.empty()); 7001 this->merge_flags_and_attributes_ = false; 7002 return; 7003 } 7004 7005 // Some tools are broken and they do not set the link of EXIDX sections. 7006 // We look at the first relocation to figure out the linked sections. 7007 if (!deferred_exidx_sections.empty()) 7008 { 7009 // We need to go over the section headers again to find the mapping 7010 // from sections being relocated to their relocation sections. This is 7011 // a bit inefficient as we could do that in the loop above. However, 7012 // we do not expect any deferred EXIDX sections normally. So we do not 7013 // want to slow down the most common path. 7014 typedef Unordered_map<unsigned int, unsigned int> Reloc_map; 7015 Reloc_map reloc_map; 7016 ps = pshdrs + shdr_size; 7017 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size) 7018 { 7019 elfcpp::Shdr<32, big_endian> shdr(ps); 7020 elfcpp::Elf_Word sh_type = shdr.get_sh_type(); 7021 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA) 7022 { 7023 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info()); 7024 if (info_shndx >= this->shnum()) 7025 gold_error(_("relocation section %u has invalid info %u"), 7026 i, info_shndx); 7027 Reloc_map::value_type value(info_shndx, i); 7028 std::pair<Reloc_map::iterator, bool> result = 7029 reloc_map.insert(value); 7030 if (!result.second) 7031 gold_error(_("section %u has multiple relocation sections " 7032 "%u and %u"), 7033 info_shndx, i, reloc_map[info_shndx]); 7034 } 7035 } 7036 7037 // Read the symbol table section header. 7038 const unsigned int symtab_shndx = this->symtab_shndx(); 7039 elfcpp::Shdr<32, big_endian> 7040 symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); 7041 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); 7042 7043 // Read the local symbols. 7044 const int sym_size =elfcpp::Elf_sizes<32>::sym_size; 7045 const unsigned int loccount = this->local_symbol_count(); 7046 gold_assert(loccount == symtabshdr.get_sh_info()); 7047 off_t locsize = loccount * sym_size; 7048 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), 7049 locsize, true, true); 7050 7051 // Process the deferred EXIDX sections. 7052 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i) 7053 { 7054 unsigned int shndx = deferred_exidx_sections[i]; 7055 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size); 7056 unsigned int text_shndx = elfcpp::SHN_UNDEF; 7057 Reloc_map::const_iterator it = reloc_map.find(shndx); 7058 if (it != reloc_map.end()) 7059 find_linked_text_section(pshdrs + it->second * shdr_size, 7060 psyms, &text_shndx); 7061 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs 7062 + text_shndx * shdr_size); 7063 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr); 7064 } 7065 } 7066 } 7067 7068 // Process relocations for garbage collection. The ARM target uses .ARM.exidx 7069 // sections for unwinding. These sections are referenced implicitly by 7070 // text sections linked in the section headers. If we ignore these implicit 7071 // references, the .ARM.exidx sections and any .ARM.extab sections they use 7072 // will be garbage-collected incorrectly. Hence we override the same function 7073 // in the base class to handle these implicit references. 7074 7075 template<bool big_endian> 7076 void 7077 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab, 7078 Layout* layout, 7079 Read_relocs_data* rd) 7080 { 7081 // First, call base class method to process relocations in this object. 7082 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd); 7083 7084 // If --gc-sections is not specified, there is nothing more to do. 7085 // This happens when --icf is used but --gc-sections is not. 7086 if (!parameters->options().gc_sections()) 7087 return; 7088 7089 unsigned int shnum = this->shnum(); 7090 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size; 7091 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(), 7092 shnum * shdr_size, 7093 true, true); 7094 7095 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references 7096 // to these from the linked text sections. 7097 const unsigned char* ps = pshdrs + shdr_size; 7098 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size) 7099 { 7100 elfcpp::Shdr<32, big_endian> shdr(ps); 7101 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX) 7102 { 7103 // Found an .ARM.exidx section, add it to the set of reachable 7104 // sections from its linked text section. 7105 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link()); 7106 symtab->gc()->add_reference(this, text_shndx, this, i); 7107 } 7108 } 7109 } 7110 7111 // Update output local symbol count. Owing to EXIDX entry merging, some local 7112 // symbols will be removed in output. Adjust output local symbol count 7113 // accordingly. We can only changed the static output local symbol count. It 7114 // is too late to change the dynamic symbols. 7115 7116 template<bool big_endian> 7117 void 7118 Arm_relobj<big_endian>::update_output_local_symbol_count() 7119 { 7120 // Caller should check that this needs updating. We want caller checking 7121 // because output_local_symbol_count_needs_update() is most likely inlined. 7122 gold_assert(this->output_local_symbol_count_needs_update_); 7123 7124 gold_assert(this->symtab_shndx() != -1U); 7125 if (this->symtab_shndx() == 0) 7126 { 7127 // This object has no symbols. Weird but legal. 7128 return; 7129 } 7130 7131 // Read the symbol table section header. 7132 const unsigned int symtab_shndx = this->symtab_shndx(); 7133 elfcpp::Shdr<32, big_endian> 7134 symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); 7135 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); 7136 7137 // Read the local symbols. 7138 const int sym_size = elfcpp::Elf_sizes<32>::sym_size; 7139 const unsigned int loccount = this->local_symbol_count(); 7140 gold_assert(loccount == symtabshdr.get_sh_info()); 7141 off_t locsize = loccount * sym_size; 7142 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), 7143 locsize, true, true); 7144 7145 // Loop over the local symbols. 7146 7147 typedef typename Sized_relobj_file<32, big_endian>::Output_sections 7148 Output_sections; 7149 const Output_sections& out_sections(this->output_sections()); 7150 unsigned int shnum = this->shnum(); 7151 unsigned int count = 0; 7152 // Skip the first, dummy, symbol. 7153 psyms += sym_size; 7154 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) 7155 { 7156 elfcpp::Sym<32, big_endian> sym(psyms); 7157 7158 Symbol_value<32>& lv((*this->local_values())[i]); 7159 7160 // This local symbol was already discarded by do_count_local_symbols. 7161 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry()) 7162 continue; 7163 7164 bool is_ordinary; 7165 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(), 7166 &is_ordinary); 7167 7168 if (shndx < shnum) 7169 { 7170 Output_section* os = out_sections[shndx]; 7171 7172 // This local symbol no longer has an output section. Discard it. 7173 if (os == NULL) 7174 { 7175 lv.set_no_output_symtab_entry(); 7176 continue; 7177 } 7178 7179 // Currently we only discard parts of EXIDX input sections. 7180 // We explicitly check for a merged EXIDX input section to avoid 7181 // calling Output_section_data::output_offset unless necessary. 7182 if ((this->get_output_section_offset(shndx) == invalid_address) 7183 && (this->exidx_input_section_by_shndx(shndx) != NULL)) 7184 { 7185 section_offset_type output_offset = 7186 os->output_offset(this, shndx, lv.input_value()); 7187 if (output_offset == -1) 7188 { 7189 // This symbol is defined in a part of an EXIDX input section 7190 // that is discarded due to entry merging. 7191 lv.set_no_output_symtab_entry(); 7192 continue; 7193 } 7194 } 7195 } 7196 7197 ++count; 7198 } 7199 7200 this->set_output_local_symbol_count(count); 7201 this->output_local_symbol_count_needs_update_ = false; 7202 } 7203 7204 // Arm_dynobj methods. 7205 7206 // Read the symbol information. 7207 7208 template<bool big_endian> 7209 void 7210 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd) 7211 { 7212 // Call parent class to read symbol information. 7213 this->base_read_symbols(sd); 7214 7215 // Read processor-specific flags in ELF file header. 7216 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset, 7217 elfcpp::Elf_sizes<32>::ehdr_size, 7218 true, false); 7219 elfcpp::Ehdr<32, big_endian> ehdr(pehdr); 7220 this->processor_specific_flags_ = ehdr.get_e_flags(); 7221 7222 // Read the attributes section if there is one. 7223 // We read from the end because gas seems to put it near the end of 7224 // the section headers. 7225 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size; 7226 const unsigned char* ps = 7227 sd->section_headers->data() + shdr_size * (this->shnum() - 1); 7228 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size) 7229 { 7230 elfcpp::Shdr<32, big_endian> shdr(ps); 7231 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES) 7232 { 7233 section_offset_type section_offset = shdr.get_sh_offset(); 7234 section_size_type section_size = 7235 convert_to_section_size_type(shdr.get_sh_size()); 7236 const unsigned char* view = 7237 this->get_view(section_offset, section_size, true, false); 7238 this->attributes_section_data_ = 7239 new Attributes_section_data(view, section_size); 7240 break; 7241 } 7242 } 7243 } 7244 7245 // Stub_addend_reader methods. 7246 7247 // Read the addend of a REL relocation of type R_TYPE at VIEW. 7248 7249 template<bool big_endian> 7250 elfcpp::Elf_types<32>::Elf_Swxword 7251 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()( 7252 unsigned int r_type, 7253 const unsigned char* view, 7254 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const 7255 { 7256 typedef class Arm_relocate_functions<big_endian> RelocFuncs; 7257 7258 switch (r_type) 7259 { 7260 case elfcpp::R_ARM_CALL: 7261 case elfcpp::R_ARM_JUMP24: 7262 case elfcpp::R_ARM_PLT32: 7263 { 7264 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; 7265 const Valtype* wv = reinterpret_cast<const Valtype*>(view); 7266 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); 7267 return Bits<26>::sign_extend32(val << 2); 7268 } 7269 7270 case elfcpp::R_ARM_THM_CALL: 7271 case elfcpp::R_ARM_THM_JUMP24: 7272 case elfcpp::R_ARM_THM_XPC22: 7273 { 7274 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; 7275 const Valtype* wv = reinterpret_cast<const Valtype*>(view); 7276 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); 7277 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); 7278 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn); 7279 } 7280 7281 case elfcpp::R_ARM_THM_JUMP19: 7282 { 7283 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; 7284 const Valtype* wv = reinterpret_cast<const Valtype*>(view); 7285 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); 7286 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); 7287 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn); 7288 } 7289 7290 default: 7291 gold_unreachable(); 7292 } 7293 } 7294 7295 // Arm_output_data_got methods. 7296 7297 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries. 7298 // The first one is initialized to be 1, which is the module index for 7299 // the main executable and the second one 0. A reloc of the type 7300 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will 7301 // be applied by gold. GSYM is a global symbol. 7302 // 7303 template<bool big_endian> 7304 void 7305 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc( 7306 unsigned int got_type, 7307 Symbol* gsym) 7308 { 7309 if (gsym->has_got_offset(got_type)) 7310 return; 7311 7312 // We are doing a static link. Just mark it as belong to module 1, 7313 // the executable. 7314 unsigned int got_offset = this->add_constant(1); 7315 gsym->set_got_offset(got_type, got_offset); 7316 got_offset = this->add_constant(0); 7317 this->static_relocs_.push_back(Static_reloc(got_offset, 7318 elfcpp::R_ARM_TLS_DTPOFF32, 7319 gsym)); 7320 } 7321 7322 // Same as the above but for a local symbol. 7323 7324 template<bool big_endian> 7325 void 7326 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc( 7327 unsigned int got_type, 7328 Sized_relobj_file<32, big_endian>* object, 7329 unsigned int index) 7330 { 7331 if (object->local_has_got_offset(index, got_type)) 7332 return; 7333 7334 // We are doing a static link. Just mark it as belong to module 1, 7335 // the executable. 7336 unsigned int got_offset = this->add_constant(1); 7337 object->set_local_got_offset(index, got_type, got_offset); 7338 got_offset = this->add_constant(0); 7339 this->static_relocs_.push_back(Static_reloc(got_offset, 7340 elfcpp::R_ARM_TLS_DTPOFF32, 7341 object, index)); 7342 } 7343 7344 template<bool big_endian> 7345 void 7346 Arm_output_data_got<big_endian>::do_write(Output_file* of) 7347 { 7348 // Call parent to write out GOT. 7349 Output_data_got<32, big_endian>::do_write(of); 7350 7351 // We are done if there is no fix up. 7352 if (this->static_relocs_.empty()) 7353 return; 7354 7355 gold_assert(parameters->doing_static_link()); 7356 7357 const off_t offset = this->offset(); 7358 const section_size_type oview_size = 7359 convert_to_section_size_type(this->data_size()); 7360 unsigned char* const oview = of->get_output_view(offset, oview_size); 7361 7362 Output_segment* tls_segment = this->layout_->tls_segment(); 7363 gold_assert(tls_segment != NULL); 7364 7365 // The thread pointer $tp points to the TCB, which is followed by the 7366 // TLS. So we need to adjust $tp relative addressing by this amount. 7367 Arm_address aligned_tcb_size = 7368 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment()); 7369 7370 for (size_t i = 0; i < this->static_relocs_.size(); ++i) 7371 { 7372 Static_reloc& reloc(this->static_relocs_[i]); 7373 7374 Arm_address value; 7375 if (!reloc.symbol_is_global()) 7376 { 7377 Sized_relobj_file<32, big_endian>* object = reloc.relobj(); 7378 const Symbol_value<32>* psymval = 7379 reloc.relobj()->local_symbol(reloc.index()); 7380 7381 // We are doing static linking. Issue an error and skip this 7382 // relocation if the symbol is undefined or in a discarded_section. 7383 bool is_ordinary; 7384 unsigned int shndx = psymval->input_shndx(&is_ordinary); 7385 if ((shndx == elfcpp::SHN_UNDEF) 7386 || (is_ordinary 7387 && shndx != elfcpp::SHN_UNDEF 7388 && !object->is_section_included(shndx) 7389 && !this->symbol_table_->is_section_folded(object, shndx))) 7390 { 7391 gold_error(_("undefined or discarded local symbol %u from " 7392 " object %s in GOT"), 7393 reloc.index(), reloc.relobj()->name().c_str()); 7394 continue; 7395 } 7396 7397 value = psymval->value(object, 0); 7398 } 7399 else 7400 { 7401 const Symbol* gsym = reloc.symbol(); 7402 gold_assert(gsym != NULL); 7403 if (gsym->is_forwarder()) 7404 gsym = this->symbol_table_->resolve_forwards(gsym); 7405 7406 // We are doing static linking. Issue an error and skip this 7407 // relocation if the symbol is undefined or in a discarded_section 7408 // unless it is a weakly_undefined symbol. 7409 if ((gsym->is_defined_in_discarded_section() 7410 || gsym->is_undefined()) 7411 && !gsym->is_weak_undefined()) 7412 { 7413 gold_error(_("undefined or discarded symbol %s in GOT"), 7414 gsym->name()); 7415 continue; 7416 } 7417 7418 if (!gsym->is_weak_undefined()) 7419 { 7420 const Sized_symbol<32>* sym = 7421 static_cast<const Sized_symbol<32>*>(gsym); 7422 value = sym->value(); 7423 } 7424 else 7425 value = 0; 7426 } 7427 7428 unsigned got_offset = reloc.got_offset(); 7429 gold_assert(got_offset < oview_size); 7430 7431 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; 7432 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset); 7433 Valtype x; 7434 switch (reloc.r_type()) 7435 { 7436 case elfcpp::R_ARM_TLS_DTPOFF32: 7437 x = value; 7438 break; 7439 case elfcpp::R_ARM_TLS_TPOFF32: 7440 x = value + aligned_tcb_size; 7441 break; 7442 default: 7443 gold_unreachable(); 7444 } 7445 elfcpp::Swap<32, big_endian>::writeval(wv, x); 7446 } 7447 7448 of->write_output_view(offset, oview_size, oview); 7449 } 7450 7451 // A class to handle the PLT data. 7452 // This is an abstract base class that handles most of the linker details 7453 // but does not know the actual contents of PLT entries. The derived 7454 // classes below fill in those details. 7455 7456 template<bool big_endian> 7457 class Output_data_plt_arm : public Output_section_data 7458 { 7459 public: 7460 // Unlike aarch64, which records symbol value in "addend" field of relocations 7461 // and could be done at the same time an IRelative reloc is created for the 7462 // symbol, arm puts the symbol value into "GOT" table, which, however, is 7463 // issued later in Output_data_plt_arm::do_write(). So we have a struct here 7464 // to keep necessary symbol information for later use in do_write. We usually 7465 // have only a very limited number of ifuncs, so the extra data required here 7466 // is also limited. 7467 7468 struct IRelative_data 7469 { 7470 IRelative_data(Sized_symbol<32>* sized_symbol) 7471 : symbol_is_global_(true) 7472 { 7473 u_.global = sized_symbol; 7474 } 7475 7476 IRelative_data(Sized_relobj_file<32, big_endian>* relobj, 7477 unsigned int index) 7478 : symbol_is_global_(false) 7479 { 7480 u_.local.relobj = relobj; 7481 u_.local.index = index; 7482 } 7483 7484 union 7485 { 7486 Sized_symbol<32>* global; 7487 7488 struct 7489 { 7490 Sized_relobj_file<32, big_endian>* relobj; 7491 unsigned int index; 7492 } local; 7493 } u_; 7494 7495 bool symbol_is_global_; 7496 }; 7497 7498 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian> 7499 Reloc_section; 7500 7501 Output_data_plt_arm(Layout* layout, uint64_t addralign, 7502 Arm_output_data_got<big_endian>* got, 7503 Output_data_space* got_plt, 7504 Output_data_space* got_irelative); 7505 7506 // Add an entry to the PLT. 7507 void 7508 add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym); 7509 7510 // Add the relocation for a plt entry. 7511 void 7512 add_relocation(Symbol_table* symtab, Layout* layout, 7513 Symbol* gsym, unsigned int got_offset); 7514 7515 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. 7516 unsigned int 7517 add_local_ifunc_entry(Symbol_table* symtab, Layout*, 7518 Sized_relobj_file<32, big_endian>* relobj, 7519 unsigned int local_sym_index); 7520 7521 // Return the .rel.plt section data. 7522 const Reloc_section* 7523 rel_plt() const 7524 { return this->rel_; } 7525 7526 // Return the PLT relocation container for IRELATIVE. 7527 Reloc_section* 7528 rel_irelative(Symbol_table*, Layout*); 7529 7530 // Return the number of PLT entries. 7531 unsigned int 7532 entry_count() const 7533 { return this->count_ + this->irelative_count_; } 7534 7535 // Return the offset of the first non-reserved PLT entry. 7536 unsigned int 7537 first_plt_entry_offset() const 7538 { return this->do_first_plt_entry_offset(); } 7539 7540 // Return the size of a PLT entry. 7541 unsigned int 7542 get_plt_entry_size() const 7543 { return this->do_get_plt_entry_size(); } 7544 7545 // Return the PLT address for globals. 7546 uint32_t 7547 address_for_global(const Symbol*) const; 7548 7549 // Return the PLT address for locals. 7550 uint32_t 7551 address_for_local(const Relobj*, unsigned int symndx) const; 7552 7553 protected: 7554 // Fill in the first PLT entry. 7555 void 7556 fill_first_plt_entry(unsigned char* pov, 7557 Arm_address got_address, 7558 Arm_address plt_address) 7559 { this->do_fill_first_plt_entry(pov, got_address, plt_address); } 7560 7561 void 7562 fill_plt_entry(unsigned char* pov, 7563 Arm_address got_address, 7564 Arm_address plt_address, 7565 unsigned int got_offset, 7566 unsigned int plt_offset) 7567 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); } 7568 7569 virtual unsigned int 7570 do_first_plt_entry_offset() const = 0; 7571 7572 virtual unsigned int 7573 do_get_plt_entry_size() const = 0; 7574 7575 virtual void 7576 do_fill_first_plt_entry(unsigned char* pov, 7577 Arm_address got_address, 7578 Arm_address plt_address) = 0; 7579 7580 virtual void 7581 do_fill_plt_entry(unsigned char* pov, 7582 Arm_address got_address, 7583 Arm_address plt_address, 7584 unsigned int got_offset, 7585 unsigned int plt_offset) = 0; 7586 7587 void 7588 do_adjust_output_section(Output_section* os); 7589 7590 // Write to a map file. 7591 void 7592 do_print_to_mapfile(Mapfile* mapfile) const 7593 { mapfile->print_output_data(this, _("** PLT")); } 7594 7595 private: 7596 // Set the final size. 7597 void 7598 set_final_data_size() 7599 { 7600 this->set_data_size(this->first_plt_entry_offset() 7601 + ((this->count_ + this->irelative_count_) 7602 * this->get_plt_entry_size())); 7603 } 7604 7605 // Write out the PLT data. 7606 void 7607 do_write(Output_file*); 7608 7609 // Record irelative symbol data. 7610 void insert_irelative_data(const IRelative_data& idata) 7611 { irelative_data_vec_.push_back(idata); } 7612 7613 // The reloc section. 7614 Reloc_section* rel_; 7615 // The IRELATIVE relocs, if necessary. These must follow the 7616 // regular PLT relocations. 7617 Reloc_section* irelative_rel_; 7618 // The .got section. 7619 Arm_output_data_got<big_endian>* got_; 7620 // The .got.plt section. 7621 Output_data_space* got_plt_; 7622 // The part of the .got.plt section used for IRELATIVE relocs. 7623 Output_data_space* got_irelative_; 7624 // The number of PLT entries. 7625 unsigned int count_; 7626 // Number of PLT entries with R_ARM_IRELATIVE relocs. These 7627 // follow the regular PLT entries. 7628 unsigned int irelative_count_; 7629 // Vector for irelative data. 7630 typedef std::vector<IRelative_data> IRelative_data_vec; 7631 IRelative_data_vec irelative_data_vec_; 7632 }; 7633 7634 // Create the PLT section. The ordinary .got section is an argument, 7635 // since we need to refer to the start. We also create our own .got 7636 // section just for PLT entries. 7637 7638 template<bool big_endian> 7639 Output_data_plt_arm<big_endian>::Output_data_plt_arm( 7640 Layout* layout, uint64_t addralign, 7641 Arm_output_data_got<big_endian>* got, 7642 Output_data_space* got_plt, 7643 Output_data_space* got_irelative) 7644 : Output_section_data(addralign), irelative_rel_(NULL), 7645 got_(got), got_plt_(got_plt), got_irelative_(got_irelative), 7646 count_(0), irelative_count_(0) 7647 { 7648 this->rel_ = new Reloc_section(false); 7649 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL, 7650 elfcpp::SHF_ALLOC, this->rel_, 7651 ORDER_DYNAMIC_PLT_RELOCS, false); 7652 } 7653 7654 template<bool big_endian> 7655 void 7656 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os) 7657 { 7658 os->set_entsize(0); 7659 } 7660 7661 // Add an entry to the PLT. 7662 7663 template<bool big_endian> 7664 void 7665 Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab, 7666 Layout* layout, 7667 Symbol* gsym) 7668 { 7669 gold_assert(!gsym->has_plt_offset()); 7670 7671 unsigned int* entry_count; 7672 Output_section_data_build* got; 7673 7674 // We have 2 different types of plt entry here, normal and ifunc. 7675 7676 // For normal plt, the offset begins with first_plt_entry_offset(20), and the 7677 // 1st entry offset would be 20, the second 32, third 44 ... etc. 7678 7679 // For ifunc plt, the offset begins with 0. So the first offset would 0, 7680 // second 12, third 24 ... etc. 7681 7682 // IFunc plt entries *always* come after *normal* plt entries. 7683 7684 // Notice, when computing the plt address of a certain symbol, "plt_address + 7685 // plt_offset" is no longer correct. Use target->plt_address_for_global() or 7686 // target->plt_address_for_local() instead. 7687 7688 int begin_offset = 0; 7689 if (gsym->type() == elfcpp::STT_GNU_IFUNC 7690 && gsym->can_use_relative_reloc(false)) 7691 { 7692 entry_count = &this->irelative_count_; 7693 got = this->got_irelative_; 7694 // For irelative plt entries, offset is relative to the end of normal plt 7695 // entries, so it starts from 0. 7696 begin_offset = 0; 7697 // Record symbol information. 7698 this->insert_irelative_data( 7699 IRelative_data(symtab->get_sized_symbol<32>(gsym))); 7700 } 7701 else 7702 { 7703 entry_count = &this->count_; 7704 got = this->got_plt_; 7705 // Note that for normal plt entries, when setting the PLT offset we skip 7706 // the initial reserved PLT entry. 7707 begin_offset = this->first_plt_entry_offset(); 7708 } 7709 7710 gsym->set_plt_offset(begin_offset 7711 + (*entry_count) * this->get_plt_entry_size()); 7712 7713 ++(*entry_count); 7714 7715 section_offset_type got_offset = got->current_data_size(); 7716 7717 // Every PLT entry needs a GOT entry which points back to the PLT 7718 // entry (this will be changed by the dynamic linker, normally 7719 // lazily when the function is called). 7720 got->set_current_data_size(got_offset + 4); 7721 7722 // Every PLT entry needs a reloc. 7723 this->add_relocation(symtab, layout, gsym, got_offset); 7724 7725 // Note that we don't need to save the symbol. The contents of the 7726 // PLT are independent of which symbols are used. The symbols only 7727 // appear in the relocations. 7728 } 7729 7730 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return 7731 // the PLT offset. 7732 7733 template<bool big_endian> 7734 unsigned int 7735 Output_data_plt_arm<big_endian>::add_local_ifunc_entry( 7736 Symbol_table* symtab, 7737 Layout* layout, 7738 Sized_relobj_file<32, big_endian>* relobj, 7739 unsigned int local_sym_index) 7740 { 7741 this->insert_irelative_data(IRelative_data(relobj, local_sym_index)); 7742 7743 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is 7744 // no longer correct. Use target->plt_address_for_local() instead. 7745 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size(); 7746 ++this->irelative_count_; 7747 7748 section_offset_type got_offset = this->got_irelative_->current_data_size(); 7749 7750 // Every PLT entry needs a GOT entry which points back to the PLT 7751 // entry. 7752 this->got_irelative_->set_current_data_size(got_offset + 4); 7753 7754 7755 // Every PLT entry needs a reloc. 7756 Reloc_section* rel = this->rel_irelative(symtab, layout); 7757 rel->add_symbolless_local_addend(relobj, local_sym_index, 7758 elfcpp::R_ARM_IRELATIVE, 7759 this->got_irelative_, got_offset); 7760 return plt_offset; 7761 } 7762 7763 7764 // Add the relocation for a PLT entry. 7765 7766 template<bool big_endian> 7767 void 7768 Output_data_plt_arm<big_endian>::add_relocation( 7769 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset) 7770 { 7771 if (gsym->type() == elfcpp::STT_GNU_IFUNC 7772 && gsym->can_use_relative_reloc(false)) 7773 { 7774 Reloc_section* rel = this->rel_irelative(symtab, layout); 7775 rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE, 7776 this->got_irelative_, got_offset); 7777 } 7778 else 7779 { 7780 gsym->set_needs_dynsym_entry(); 7781 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_, 7782 got_offset); 7783 } 7784 } 7785 7786 7787 // Create the irelative relocation data. 7788 7789 template<bool big_endian> 7790 typename Output_data_plt_arm<big_endian>::Reloc_section* 7791 Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab, 7792 Layout* layout) 7793 { 7794 if (this->irelative_rel_ == NULL) 7795 { 7796 // Since irelative relocations goes into 'rel.dyn', we delegate the 7797 // creation of irelative_rel_ to where rel_dyn section gets created. 7798 Target_arm<big_endian>* arm_target = 7799 Target_arm<big_endian>::default_target(); 7800 this->irelative_rel_ = arm_target->rel_irelative_section(layout); 7801 7802 // Make sure we have a place for the TLSDESC relocations, in 7803 // case we see any later on. 7804 // this->rel_tlsdesc(layout); 7805 if (parameters->doing_static_link()) 7806 { 7807 // A statically linked executable will only have a .rel.plt section to 7808 // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library 7809 // will use these symbols to locate the IRELATIVE relocs at program 7810 // startup time. 7811 symtab->define_in_output_data("__rel_iplt_start", NULL, 7812 Symbol_table::PREDEFINED, 7813 this->irelative_rel_, 0, 0, 7814 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, 7815 elfcpp::STV_HIDDEN, 0, false, true); 7816 symtab->define_in_output_data("__rel_iplt_end", NULL, 7817 Symbol_table::PREDEFINED, 7818 this->irelative_rel_, 0, 0, 7819 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, 7820 elfcpp::STV_HIDDEN, 0, true, true); 7821 } 7822 } 7823 return this->irelative_rel_; 7824 } 7825 7826 7827 // Return the PLT address for a global symbol. 7828 7829 template<bool big_endian> 7830 uint32_t 7831 Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const 7832 { 7833 uint64_t begin_offset = 0; 7834 if (gsym->type() == elfcpp::STT_GNU_IFUNC 7835 && gsym->can_use_relative_reloc(false)) 7836 { 7837 begin_offset = (this->first_plt_entry_offset() + 7838 this->count_ * this->get_plt_entry_size()); 7839 } 7840 return this->address() + begin_offset + gsym->plt_offset(); 7841 } 7842 7843 7844 // Return the PLT address for a local symbol. These are always 7845 // IRELATIVE relocs. 7846 7847 template<bool big_endian> 7848 uint32_t 7849 Output_data_plt_arm<big_endian>::address_for_local( 7850 const Relobj* object, 7851 unsigned int r_sym) const 7852 { 7853 return (this->address() 7854 + this->first_plt_entry_offset() 7855 + this->count_ * this->get_plt_entry_size() 7856 + object->local_plt_offset(r_sym)); 7857 } 7858 7859 7860 template<bool big_endian> 7861 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian> 7862 { 7863 public: 7864 Output_data_plt_arm_standard(Layout* layout, 7865 Arm_output_data_got<big_endian>* got, 7866 Output_data_space* got_plt, 7867 Output_data_space* got_irelative) 7868 : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative) 7869 { } 7870 7871 protected: 7872 // Return the offset of the first non-reserved PLT entry. 7873 virtual unsigned int 7874 do_first_plt_entry_offset() const 7875 { return sizeof(first_plt_entry); } 7876 7877 virtual void 7878 do_fill_first_plt_entry(unsigned char* pov, 7879 Arm_address got_address, 7880 Arm_address plt_address); 7881 7882 private: 7883 // Template for the first PLT entry. 7884 static const uint32_t first_plt_entry[5]; 7885 }; 7886 7887 // ARM PLTs. 7888 // FIXME: This is not very flexible. Right now this has only been tested 7889 // on armv5te. If we are to support additional architecture features like 7890 // Thumb-2 or BE8, we need to make this more flexible like GNU ld. 7891 7892 // The first entry in the PLT. 7893 template<bool big_endian> 7894 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] = 7895 { 7896 0xe52de004, // str lr, [sp, #-4]! 7897 0xe59fe004, // ldr lr, [pc, #4] 7898 0xe08fe00e, // add lr, pc, lr 7899 0xe5bef008, // ldr pc, [lr, #8]! 7900 0x00000000, // &GOT[0] - . 7901 }; 7902 7903 template<bool big_endian> 7904 void 7905 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry( 7906 unsigned char* pov, 7907 Arm_address got_address, 7908 Arm_address plt_address) 7909 { 7910 // Write first PLT entry. All but the last word are constants. 7911 const size_t num_first_plt_words = (sizeof(first_plt_entry) 7912 / sizeof(first_plt_entry[0])); 7913 for (size_t i = 0; i < num_first_plt_words - 1; i++) 7914 { 7915 if (parameters->options().be8()) 7916 { 7917 elfcpp::Swap<32, false>::writeval(pov + i * 4, 7918 first_plt_entry[i]); 7919 } 7920 else 7921 { 7922 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, 7923 first_plt_entry[i]); 7924 } 7925 } 7926 // Last word in first PLT entry is &GOT[0] - . 7927 elfcpp::Swap<32, big_endian>::writeval(pov + 16, 7928 got_address - (plt_address + 16)); 7929 } 7930 7931 // Subsequent entries in the PLT. 7932 // This class generates short (12-byte) entries, for displacements up to 2^28. 7933 7934 template<bool big_endian> 7935 class Output_data_plt_arm_short : public Output_data_plt_arm_standard<big_endian> 7936 { 7937 public: 7938 Output_data_plt_arm_short(Layout* layout, 7939 Arm_output_data_got<big_endian>* got, 7940 Output_data_space* got_plt, 7941 Output_data_space* got_irelative) 7942 : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative) 7943 { } 7944 7945 protected: 7946 // Return the size of a PLT entry. 7947 virtual unsigned int 7948 do_get_plt_entry_size() const 7949 { return sizeof(plt_entry); } 7950 7951 virtual void 7952 do_fill_plt_entry(unsigned char* pov, 7953 Arm_address got_address, 7954 Arm_address plt_address, 7955 unsigned int got_offset, 7956 unsigned int plt_offset); 7957 7958 private: 7959 // Template for subsequent PLT entries. 7960 static const uint32_t plt_entry[3]; 7961 }; 7962 7963 template<bool big_endian> 7964 const uint32_t Output_data_plt_arm_short<big_endian>::plt_entry[3] = 7965 { 7966 0xe28fc600, // add ip, pc, #0xNN00000 7967 0xe28cca00, // add ip, ip, #0xNN000 7968 0xe5bcf000, // ldr pc, [ip, #0xNNN]! 7969 }; 7970 7971 template<bool big_endian> 7972 void 7973 Output_data_plt_arm_short<big_endian>::do_fill_plt_entry( 7974 unsigned char* pov, 7975 Arm_address got_address, 7976 Arm_address plt_address, 7977 unsigned int got_offset, 7978 unsigned int plt_offset) 7979 { 7980 int32_t offset = ((got_address + got_offset) 7981 - (plt_address + plt_offset + 8)); 7982 if (offset < 0 || offset > 0x0fffffff) 7983 gold_error(_("PLT offset too large, try linking with --long-plt")); 7984 7985 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff); 7986 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff); 7987 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff); 7988 7989 if (parameters->options().be8()) 7990 { 7991 elfcpp::Swap<32, false>::writeval(pov, plt_insn0); 7992 elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1); 7993 elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2); 7994 } 7995 else 7996 { 7997 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0); 7998 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1); 7999 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2); 8000 } 8001 } 8002 8003 // This class generates long (16-byte) entries, for arbitrary displacements. 8004 8005 template<bool big_endian> 8006 class Output_data_plt_arm_long : public Output_data_plt_arm_standard<big_endian> 8007 { 8008 public: 8009 Output_data_plt_arm_long(Layout* layout, 8010 Arm_output_data_got<big_endian>* got, 8011 Output_data_space* got_plt, 8012 Output_data_space* got_irelative) 8013 : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative) 8014 { } 8015 8016 protected: 8017 // Return the size of a PLT entry. 8018 virtual unsigned int 8019 do_get_plt_entry_size() const 8020 { return sizeof(plt_entry); } 8021 8022 virtual void 8023 do_fill_plt_entry(unsigned char* pov, 8024 Arm_address got_address, 8025 Arm_address plt_address, 8026 unsigned int got_offset, 8027 unsigned int plt_offset); 8028 8029 private: 8030 // Template for subsequent PLT entries. 8031 static const uint32_t plt_entry[4]; 8032 }; 8033 8034 template<bool big_endian> 8035 const uint32_t Output_data_plt_arm_long<big_endian>::plt_entry[4] = 8036 { 8037 0xe28fc200, // add ip, pc, #0xN0000000 8038 0xe28cc600, // add ip, ip, #0xNN00000 8039 0xe28cca00, // add ip, ip, #0xNN000 8040 0xe5bcf000, // ldr pc, [ip, #0xNNN]! 8041 }; 8042 8043 template<bool big_endian> 8044 void 8045 Output_data_plt_arm_long<big_endian>::do_fill_plt_entry( 8046 unsigned char* pov, 8047 Arm_address got_address, 8048 Arm_address plt_address, 8049 unsigned int got_offset, 8050 unsigned int plt_offset) 8051 { 8052 int32_t offset = ((got_address + got_offset) 8053 - (plt_address + plt_offset + 8)); 8054 8055 uint32_t plt_insn0 = plt_entry[0] | (offset >> 28); 8056 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 20) & 0xff); 8057 uint32_t plt_insn2 = plt_entry[2] | ((offset >> 12) & 0xff); 8058 uint32_t plt_insn3 = plt_entry[3] | (offset & 0xfff); 8059 8060 if (parameters->options().be8()) 8061 { 8062 elfcpp::Swap<32, false>::writeval(pov, plt_insn0); 8063 elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1); 8064 elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2); 8065 elfcpp::Swap<32, false>::writeval(pov + 12, plt_insn3); 8066 } 8067 else 8068 { 8069 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0); 8070 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1); 8071 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2); 8072 elfcpp::Swap<32, big_endian>::writeval(pov + 12, plt_insn3); 8073 } 8074 } 8075 8076 // Write out the PLT. This uses the hand-coded instructions above, 8077 // and adjusts them as needed. This is all specified by the arm ELF 8078 // Processor Supplement. 8079 8080 template<bool big_endian> 8081 void 8082 Output_data_plt_arm<big_endian>::do_write(Output_file* of) 8083 { 8084 const off_t offset = this->offset(); 8085 const section_size_type oview_size = 8086 convert_to_section_size_type(this->data_size()); 8087 unsigned char* const oview = of->get_output_view(offset, oview_size); 8088 8089 const off_t got_file_offset = this->got_plt_->offset(); 8090 gold_assert(got_file_offset + this->got_plt_->data_size() 8091 == this->got_irelative_->offset()); 8092 const section_size_type got_size = 8093 convert_to_section_size_type(this->got_plt_->data_size() 8094 + this->got_irelative_->data_size()); 8095 unsigned char* const got_view = of->get_output_view(got_file_offset, 8096 got_size); 8097 unsigned char* pov = oview; 8098 8099 Arm_address plt_address = this->address(); 8100 Arm_address got_address = this->got_plt_->address(); 8101 8102 // Write first PLT entry. 8103 this->fill_first_plt_entry(pov, got_address, plt_address); 8104 pov += this->first_plt_entry_offset(); 8105 8106 unsigned char* got_pov = got_view; 8107 8108 memset(got_pov, 0, 12); 8109 got_pov += 12; 8110 8111 unsigned int plt_offset = this->first_plt_entry_offset(); 8112 unsigned int got_offset = 12; 8113 const unsigned int count = this->count_ + this->irelative_count_; 8114 gold_assert(this->irelative_count_ == this->irelative_data_vec_.size()); 8115 for (unsigned int i = 0; 8116 i < count; 8117 ++i, 8118 pov += this->get_plt_entry_size(), 8119 got_pov += 4, 8120 plt_offset += this->get_plt_entry_size(), 8121 got_offset += 4) 8122 { 8123 // Set and adjust the PLT entry itself. 8124 this->fill_plt_entry(pov, got_address, plt_address, 8125 got_offset, plt_offset); 8126 8127 Arm_address value; 8128 if (i < this->count_) 8129 { 8130 // For non-irelative got entries, the value is the beginning of plt. 8131 value = plt_address; 8132 } 8133 else 8134 { 8135 // For irelative got entries, the value is the (global/local) symbol 8136 // address. 8137 const IRelative_data& idata = 8138 this->irelative_data_vec_[i - this->count_]; 8139 if (idata.symbol_is_global_) 8140 { 8141 // Set the entry in the GOT for irelative symbols. The content is 8142 // the address of the ifunc, not the address of plt start. 8143 const Sized_symbol<32>* sized_symbol = idata.u_.global; 8144 gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC); 8145 value = sized_symbol->value(); 8146 } 8147 else 8148 { 8149 value = idata.u_.local.relobj->local_symbol_value( 8150 idata.u_.local.index, 0); 8151 } 8152 } 8153 elfcpp::Swap<32, big_endian>::writeval(got_pov, value); 8154 } 8155 8156 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size); 8157 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size); 8158 8159 of->write_output_view(offset, oview_size, oview); 8160 of->write_output_view(got_file_offset, got_size, got_view); 8161 } 8162 8163 8164 // Create a PLT entry for a global symbol. 8165 8166 template<bool big_endian> 8167 void 8168 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout, 8169 Symbol* gsym) 8170 { 8171 if (gsym->has_plt_offset()) 8172 return; 8173 8174 if (this->plt_ == NULL) 8175 this->make_plt_section(symtab, layout); 8176 8177 this->plt_->add_entry(symtab, layout, gsym); 8178 } 8179 8180 8181 // Create the PLT section. 8182 template<bool big_endian> 8183 void 8184 Target_arm<big_endian>::make_plt_section( 8185 Symbol_table* symtab, Layout* layout) 8186 { 8187 if (this->plt_ == NULL) 8188 { 8189 // Create the GOT section first. 8190 this->got_section(symtab, layout); 8191 8192 // GOT for irelatives is create along with got.plt. 8193 gold_assert(this->got_ != NULL 8194 && this->got_plt_ != NULL 8195 && this->got_irelative_ != NULL); 8196 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_, 8197 this->got_irelative_); 8198 8199 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS, 8200 (elfcpp::SHF_ALLOC 8201 | elfcpp::SHF_EXECINSTR), 8202 this->plt_, ORDER_PLT, false); 8203 symtab->define_in_output_data("$a", NULL, 8204 Symbol_table::PREDEFINED, 8205 this->plt_, 8206 0, 0, elfcpp::STT_NOTYPE, 8207 elfcpp::STB_LOCAL, 8208 elfcpp::STV_DEFAULT, 0, 8209 false, false); 8210 } 8211 } 8212 8213 8214 // Make a PLT entry for a local STT_GNU_IFUNC symbol. 8215 8216 template<bool big_endian> 8217 void 8218 Target_arm<big_endian>::make_local_ifunc_plt_entry( 8219 Symbol_table* symtab, Layout* layout, 8220 Sized_relobj_file<32, big_endian>* relobj, 8221 unsigned int local_sym_index) 8222 { 8223 if (relobj->local_has_plt_offset(local_sym_index)) 8224 return; 8225 if (this->plt_ == NULL) 8226 this->make_plt_section(symtab, layout); 8227 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout, 8228 relobj, 8229 local_sym_index); 8230 relobj->set_local_plt_offset(local_sym_index, plt_offset); 8231 } 8232 8233 8234 // Return the number of entries in the PLT. 8235 8236 template<bool big_endian> 8237 unsigned int 8238 Target_arm<big_endian>::plt_entry_count() const 8239 { 8240 if (this->plt_ == NULL) 8241 return 0; 8242 return this->plt_->entry_count(); 8243 } 8244 8245 // Return the offset of the first non-reserved PLT entry. 8246 8247 template<bool big_endian> 8248 unsigned int 8249 Target_arm<big_endian>::first_plt_entry_offset() const 8250 { 8251 return this->plt_->first_plt_entry_offset(); 8252 } 8253 8254 // Return the size of each PLT entry. 8255 8256 template<bool big_endian> 8257 unsigned int 8258 Target_arm<big_endian>::plt_entry_size() const 8259 { 8260 return this->plt_->get_plt_entry_size(); 8261 } 8262 8263 // Get the section to use for TLS_DESC relocations. 8264 8265 template<bool big_endian> 8266 typename Target_arm<big_endian>::Reloc_section* 8267 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const 8268 { 8269 return this->plt_section()->rel_tls_desc(layout); 8270 } 8271 8272 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment. 8273 8274 template<bool big_endian> 8275 void 8276 Target_arm<big_endian>::define_tls_base_symbol( 8277 Symbol_table* symtab, 8278 Layout* layout) 8279 { 8280 if (this->tls_base_symbol_defined_) 8281 return; 8282 8283 Output_segment* tls_segment = layout->tls_segment(); 8284 if (tls_segment != NULL) 8285 { 8286 bool is_exec = parameters->options().output_is_executable(); 8287 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL, 8288 Symbol_table::PREDEFINED, 8289 tls_segment, 0, 0, 8290 elfcpp::STT_TLS, 8291 elfcpp::STB_LOCAL, 8292 elfcpp::STV_HIDDEN, 0, 8293 (is_exec 8294 ? Symbol::SEGMENT_END 8295 : Symbol::SEGMENT_START), 8296 true); 8297 } 8298 this->tls_base_symbol_defined_ = true; 8299 } 8300 8301 // Create a GOT entry for the TLS module index. 8302 8303 template<bool big_endian> 8304 unsigned int 8305 Target_arm<big_endian>::got_mod_index_entry( 8306 Symbol_table* symtab, 8307 Layout* layout, 8308 Sized_relobj_file<32, big_endian>* object) 8309 { 8310 if (this->got_mod_index_offset_ == -1U) 8311 { 8312 gold_assert(symtab != NULL && layout != NULL && object != NULL); 8313 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout); 8314 unsigned int got_offset; 8315 if (!parameters->doing_static_link()) 8316 { 8317 got_offset = got->add_constant(0); 8318 Reloc_section* rel_dyn = this->rel_dyn_section(layout); 8319 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got, 8320 got_offset); 8321 } 8322 else 8323 { 8324 // We are doing a static link. Just mark it as belong to module 1, 8325 // the executable. 8326 got_offset = got->add_constant(1); 8327 } 8328 8329 got->add_constant(0); 8330 this->got_mod_index_offset_ = got_offset; 8331 } 8332 return this->got_mod_index_offset_; 8333 } 8334 8335 // Optimize the TLS relocation type based on what we know about the 8336 // symbol. IS_FINAL is true if the final address of this symbol is 8337 // known at link time. 8338 8339 template<bool big_endian> 8340 tls::Tls_optimization 8341 Target_arm<big_endian>::optimize_tls_reloc(bool, int) 8342 { 8343 // FIXME: Currently we do not do any TLS optimization. 8344 return tls::TLSOPT_NONE; 8345 } 8346 8347 // Get the Reference_flags for a particular relocation. 8348 8349 template<bool big_endian> 8350 int 8351 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type) 8352 { 8353 switch (r_type) 8354 { 8355 case elfcpp::R_ARM_NONE: 8356 case elfcpp::R_ARM_V4BX: 8357 case elfcpp::R_ARM_GNU_VTENTRY: 8358 case elfcpp::R_ARM_GNU_VTINHERIT: 8359 // No symbol reference. 8360 return 0; 8361 8362 case elfcpp::R_ARM_ABS32: 8363 case elfcpp::R_ARM_ABS16: 8364 case elfcpp::R_ARM_ABS12: 8365 case elfcpp::R_ARM_THM_ABS5: 8366 case elfcpp::R_ARM_ABS8: 8367 case elfcpp::R_ARM_BASE_ABS: 8368 case elfcpp::R_ARM_MOVW_ABS_NC: 8369 case elfcpp::R_ARM_MOVT_ABS: 8370 case elfcpp::R_ARM_THM_MOVW_ABS_NC: 8371 case elfcpp::R_ARM_THM_MOVT_ABS: 8372 case elfcpp::R_ARM_ABS32_NOI: 8373 return Symbol::ABSOLUTE_REF; 8374 8375 case elfcpp::R_ARM_REL32: 8376 case elfcpp::R_ARM_LDR_PC_G0: 8377 case elfcpp::R_ARM_SBREL32: 8378 case elfcpp::R_ARM_THM_PC8: 8379 case elfcpp::R_ARM_BASE_PREL: 8380 case elfcpp::R_ARM_MOVW_PREL_NC: 8381 case elfcpp::R_ARM_MOVT_PREL: 8382 case elfcpp::R_ARM_THM_MOVW_PREL_NC: 8383 case elfcpp::R_ARM_THM_MOVT_PREL: 8384 case elfcpp::R_ARM_THM_ALU_PREL_11_0: 8385 case elfcpp::R_ARM_THM_PC12: 8386 case elfcpp::R_ARM_REL32_NOI: 8387 case elfcpp::R_ARM_ALU_PC_G0_NC: 8388 case elfcpp::R_ARM_ALU_PC_G0: 8389 case elfcpp::R_ARM_ALU_PC_G1_NC: 8390 case elfcpp::R_ARM_ALU_PC_G1: 8391 case elfcpp::R_ARM_ALU_PC_G2: 8392 case elfcpp::R_ARM_LDR_PC_G1: 8393 case elfcpp::R_ARM_LDR_PC_G2: 8394 case elfcpp::R_ARM_LDRS_PC_G0: 8395 case elfcpp::R_ARM_LDRS_PC_G1: 8396 case elfcpp::R_ARM_LDRS_PC_G2: 8397 case elfcpp::R_ARM_LDC_PC_G0: 8398 case elfcpp::R_ARM_LDC_PC_G1: 8399 case elfcpp::R_ARM_LDC_PC_G2: 8400 case elfcpp::R_ARM_ALU_SB_G0_NC: 8401 case elfcpp::R_ARM_ALU_SB_G0: 8402 case elfcpp::R_ARM_ALU_SB_G1_NC: 8403 case elfcpp::R_ARM_ALU_SB_G1: 8404 case elfcpp::R_ARM_ALU_SB_G2: 8405 case elfcpp::R_ARM_LDR_SB_G0: 8406 case elfcpp::R_ARM_LDR_SB_G1: 8407 case elfcpp::R_ARM_LDR_SB_G2: 8408 case elfcpp::R_ARM_LDRS_SB_G0: 8409 case elfcpp::R_ARM_LDRS_SB_G1: 8410 case elfcpp::R_ARM_LDRS_SB_G2: 8411 case elfcpp::R_ARM_LDC_SB_G0: 8412 case elfcpp::R_ARM_LDC_SB_G1: 8413 case elfcpp::R_ARM_LDC_SB_G2: 8414 case elfcpp::R_ARM_MOVW_BREL_NC: 8415 case elfcpp::R_ARM_MOVT_BREL: 8416 case elfcpp::R_ARM_MOVW_BREL: 8417 case elfcpp::R_ARM_THM_MOVW_BREL_NC: 8418 case elfcpp::R_ARM_THM_MOVT_BREL: 8419 case elfcpp::R_ARM_THM_MOVW_BREL: 8420 case elfcpp::R_ARM_GOTOFF32: 8421 case elfcpp::R_ARM_GOTOFF12: 8422 case elfcpp::R_ARM_SBREL31: 8423 return Symbol::RELATIVE_REF; 8424 8425 case elfcpp::R_ARM_PLT32: 8426 case elfcpp::R_ARM_CALL: 8427 case elfcpp::R_ARM_JUMP24: 8428 case elfcpp::R_ARM_THM_CALL: 8429 case elfcpp::R_ARM_THM_JUMP24: 8430 case elfcpp::R_ARM_THM_JUMP19: 8431 case elfcpp::R_ARM_THM_JUMP6: 8432 case elfcpp::R_ARM_THM_JUMP11: 8433 case elfcpp::R_ARM_THM_JUMP8: 8434 // R_ARM_PREL31 is not used to relocate call/jump instructions but 8435 // in unwind tables. It may point to functions via PLTs. 8436 // So we treat it like call/jump relocations above. 8437 case elfcpp::R_ARM_PREL31: 8438 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF; 8439 8440 case elfcpp::R_ARM_GOT_BREL: 8441 case elfcpp::R_ARM_GOT_ABS: 8442 case elfcpp::R_ARM_GOT_PREL: 8443 // Absolute in GOT. 8444 return Symbol::ABSOLUTE_REF; 8445 8446 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic 8447 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic 8448 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic 8449 case elfcpp::R_ARM_TLS_IE32: // Initial-exec 8450 case elfcpp::R_ARM_TLS_LE32: // Local-exec 8451 return Symbol::TLS_REF; 8452 8453 case elfcpp::R_ARM_TARGET1: 8454 case elfcpp::R_ARM_TARGET2: 8455 case elfcpp::R_ARM_COPY: 8456 case elfcpp::R_ARM_GLOB_DAT: 8457 case elfcpp::R_ARM_JUMP_SLOT: 8458 case elfcpp::R_ARM_RELATIVE: 8459 case elfcpp::R_ARM_PC24: 8460 case elfcpp::R_ARM_LDR_SBREL_11_0_NC: 8461 case elfcpp::R_ARM_ALU_SBREL_19_12_NC: 8462 case elfcpp::R_ARM_ALU_SBREL_27_20_CK: 8463 default: 8464 // Not expected. We will give an error later. 8465 return 0; 8466 } 8467 } 8468 8469 // Report an unsupported relocation against a local symbol. 8470 8471 template<bool big_endian> 8472 void 8473 Target_arm<big_endian>::Scan::unsupported_reloc_local( 8474 Sized_relobj_file<32, big_endian>* object, 8475 unsigned int r_type) 8476 { 8477 gold_error(_("%s: unsupported reloc %u against local symbol"), 8478 object->name().c_str(), r_type); 8479 } 8480 8481 // We are about to emit a dynamic relocation of type R_TYPE. If the 8482 // dynamic linker does not support it, issue an error. The GNU linker 8483 // only issues a non-PIC error for an allocated read-only section. 8484 // Here we know the section is allocated, but we don't know that it is 8485 // read-only. But we check for all the relocation types which the 8486 // glibc dynamic linker supports, so it seems appropriate to issue an 8487 // error even if the section is not read-only. 8488 8489 template<bool big_endian> 8490 void 8491 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object, 8492 unsigned int r_type) 8493 { 8494 switch (r_type) 8495 { 8496 // These are the relocation types supported by glibc for ARM. 8497 case elfcpp::R_ARM_RELATIVE: 8498 case elfcpp::R_ARM_COPY: 8499 case elfcpp::R_ARM_GLOB_DAT: 8500 case elfcpp::R_ARM_JUMP_SLOT: 8501 case elfcpp::R_ARM_ABS32: 8502 case elfcpp::R_ARM_ABS32_NOI: 8503 case elfcpp::R_ARM_IRELATIVE: 8504 case elfcpp::R_ARM_PC24: 8505 // FIXME: The following 3 types are not supported by Android's dynamic 8506 // linker. 8507 case elfcpp::R_ARM_TLS_DTPMOD32: 8508 case elfcpp::R_ARM_TLS_DTPOFF32: 8509 case elfcpp::R_ARM_TLS_TPOFF32: 8510 return; 8511 8512 default: 8513 { 8514 // This prevents us from issuing more than one error per reloc 8515 // section. But we can still wind up issuing more than one 8516 // error per object file. 8517 if (this->issued_non_pic_error_) 8518 return; 8519 const Arm_reloc_property* reloc_property = 8520 arm_reloc_property_table->get_reloc_property(r_type); 8521 gold_assert(reloc_property != NULL); 8522 object->error(_("requires unsupported dynamic reloc %s; " 8523 "recompile with -fPIC"), 8524 reloc_property->name().c_str()); 8525 this->issued_non_pic_error_ = true; 8526 return; 8527 } 8528 8529 case elfcpp::R_ARM_NONE: 8530 gold_unreachable(); 8531 } 8532 } 8533 8534 8535 // Return whether we need to make a PLT entry for a relocation of the 8536 // given type against a STT_GNU_IFUNC symbol. 8537 8538 template<bool big_endian> 8539 bool 8540 Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc( 8541 Sized_relobj_file<32, big_endian>* object, 8542 unsigned int r_type) 8543 { 8544 int flags = Scan::get_reference_flags(r_type); 8545 if (flags & Symbol::TLS_REF) 8546 { 8547 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"), 8548 object->name().c_str(), r_type); 8549 return false; 8550 } 8551 return flags != 0; 8552 } 8553 8554 8555 // Scan a relocation for a local symbol. 8556 // FIXME: This only handles a subset of relocation types used by Android 8557 // on ARM v5te devices. 8558 8559 template<bool big_endian> 8560 inline void 8561 Target_arm<big_endian>::Scan::local(Symbol_table* symtab, 8562 Layout* layout, 8563 Target_arm* target, 8564 Sized_relobj_file<32, big_endian>* object, 8565 unsigned int data_shndx, 8566 Output_section* output_section, 8567 const elfcpp::Rel<32, big_endian>& reloc, 8568 unsigned int r_type, 8569 const elfcpp::Sym<32, big_endian>& lsym, 8570 bool is_discarded) 8571 { 8572 if (is_discarded) 8573 return; 8574 8575 r_type = target->get_real_reloc_type(r_type); 8576 8577 // A local STT_GNU_IFUNC symbol may require a PLT entry. 8578 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC; 8579 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type)) 8580 { 8581 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); 8582 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym); 8583 } 8584 8585 switch (r_type) 8586 { 8587 case elfcpp::R_ARM_NONE: 8588 case elfcpp::R_ARM_V4BX: 8589 case elfcpp::R_ARM_GNU_VTENTRY: 8590 case elfcpp::R_ARM_GNU_VTINHERIT: 8591 break; 8592 8593 case elfcpp::R_ARM_ABS32: 8594 case elfcpp::R_ARM_ABS32_NOI: 8595 // If building a shared library (or a position-independent 8596 // executable), we need to create a dynamic relocation for 8597 // this location. The relocation applied at link time will 8598 // apply the link-time value, so we flag the location with 8599 // an R_ARM_RELATIVE relocation so the dynamic loader can 8600 // relocate it easily. 8601 if (parameters->options().output_is_position_independent()) 8602 { 8603 Reloc_section* rel_dyn = target->rel_dyn_section(layout); 8604 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); 8605 // If we are to add more other reloc types than R_ARM_ABS32, 8606 // we need to add check_non_pic(object, r_type) here. 8607 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE, 8608 output_section, data_shndx, 8609 reloc.get_r_offset(), is_ifunc); 8610 } 8611 break; 8612 8613 case elfcpp::R_ARM_ABS16: 8614 case elfcpp::R_ARM_ABS12: 8615 case elfcpp::R_ARM_THM_ABS5: 8616 case elfcpp::R_ARM_ABS8: 8617 case elfcpp::R_ARM_BASE_ABS: 8618 case elfcpp::R_ARM_MOVW_ABS_NC: 8619 case elfcpp::R_ARM_MOVT_ABS: 8620 case elfcpp::R_ARM_THM_MOVW_ABS_NC: 8621 case elfcpp::R_ARM_THM_MOVT_ABS: 8622 // If building a shared library (or a position-independent 8623 // executable), we need to create a dynamic relocation for 8624 // this location. Because the addend needs to remain in the 8625 // data section, we need to be careful not to apply this 8626 // relocation statically. 8627 if (parameters->options().output_is_position_independent()) 8628 { 8629 check_non_pic(object, r_type); 8630 Reloc_section* rel_dyn = target->rel_dyn_section(layout); 8631 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); 8632 if (lsym.get_st_type() != elfcpp::STT_SECTION) 8633 rel_dyn->add_local(object, r_sym, r_type, output_section, 8634 data_shndx, reloc.get_r_offset()); 8635 else 8636 { 8637 gold_assert(lsym.get_st_value() == 0); 8638 unsigned int shndx = lsym.get_st_shndx(); 8639 bool is_ordinary; 8640 shndx = object->adjust_sym_shndx(r_sym, shndx, 8641 &is_ordinary); 8642 if (!is_ordinary) 8643 object->error(_("section symbol %u has bad shndx %u"), 8644 r_sym, shndx); 8645 else 8646 rel_dyn->add_local_section(object, shndx, 8647 r_type, output_section, 8648 data_shndx, reloc.get_r_offset()); 8649 } 8650 } 8651 break; 8652 8653 case elfcpp::R_ARM_REL32: 8654 case elfcpp::R_ARM_LDR_PC_G0: 8655 case elfcpp::R_ARM_SBREL32: 8656 case elfcpp::R_ARM_THM_CALL: 8657 case elfcpp::R_ARM_THM_PC8: 8658 case elfcpp::R_ARM_BASE_PREL: 8659 case elfcpp::R_ARM_PLT32: 8660 case elfcpp::R_ARM_CALL: 8661 case elfcpp::R_ARM_JUMP24: 8662 case elfcpp::R_ARM_THM_JUMP24: 8663 case elfcpp::R_ARM_SBREL31: 8664 case elfcpp::R_ARM_PREL31: 8665 case elfcpp::R_ARM_MOVW_PREL_NC: 8666 case elfcpp::R_ARM_MOVT_PREL: 8667 case elfcpp::R_ARM_THM_MOVW_PREL_NC: 8668 case elfcpp::R_ARM_THM_MOVT_PREL: 8669 case elfcpp::R_ARM_THM_JUMP19: 8670 case elfcpp::R_ARM_THM_JUMP6: 8671 case elfcpp::R_ARM_THM_ALU_PREL_11_0: 8672 case elfcpp::R_ARM_THM_PC12: 8673 case elfcpp::R_ARM_REL32_NOI: 8674 case elfcpp::R_ARM_ALU_PC_G0_NC: 8675 case elfcpp::R_ARM_ALU_PC_G0: 8676 case elfcpp::R_ARM_ALU_PC_G1_NC: 8677 case elfcpp::R_ARM_ALU_PC_G1: 8678 case elfcpp::R_ARM_ALU_PC_G2: 8679 case elfcpp::R_ARM_LDR_PC_G1: 8680 case elfcpp::R_ARM_LDR_PC_G2: 8681 case elfcpp::R_ARM_LDRS_PC_G0: 8682 case elfcpp::R_ARM_LDRS_PC_G1: 8683 case elfcpp::R_ARM_LDRS_PC_G2: 8684 case elfcpp::R_ARM_LDC_PC_G0: 8685 case elfcpp::R_ARM_LDC_PC_G1: 8686 case elfcpp::R_ARM_LDC_PC_G2: 8687 case elfcpp::R_ARM_ALU_SB_G0_NC: 8688 case elfcpp::R_ARM_ALU_SB_G0: 8689 case elfcpp::R_ARM_ALU_SB_G1_NC: 8690 case elfcpp::R_ARM_ALU_SB_G1: 8691 case elfcpp::R_ARM_ALU_SB_G2: 8692 case elfcpp::R_ARM_LDR_SB_G0: 8693 case elfcpp::R_ARM_LDR_SB_G1: 8694 case elfcpp::R_ARM_LDR_SB_G2: 8695 case elfcpp::R_ARM_LDRS_SB_G0: 8696 case elfcpp::R_ARM_LDRS_SB_G1: 8697 case elfcpp::R_ARM_LDRS_SB_G2: 8698 case elfcpp::R_ARM_LDC_SB_G0: 8699 case elfcpp::R_ARM_LDC_SB_G1: 8700 case elfcpp::R_ARM_LDC_SB_G2: 8701 case elfcpp::R_ARM_MOVW_BREL_NC: 8702 case elfcpp::R_ARM_MOVT_BREL: 8703 case elfcpp::R_ARM_MOVW_BREL: 8704 case elfcpp::R_ARM_THM_MOVW_BREL_NC: 8705 case elfcpp::R_ARM_THM_MOVT_BREL: 8706 case elfcpp::R_ARM_THM_MOVW_BREL: 8707 case elfcpp::R_ARM_THM_JUMP11: 8708 case elfcpp::R_ARM_THM_JUMP8: 8709 // We don't need to do anything for a relative addressing relocation 8710 // against a local symbol if it does not reference the GOT. 8711 break; 8712 8713 case elfcpp::R_ARM_GOTOFF32: 8714 case elfcpp::R_ARM_GOTOFF12: 8715 // We need a GOT section: 8716 target->got_section(symtab, layout); 8717 break; 8718 8719 case elfcpp::R_ARM_GOT_BREL: 8720 case elfcpp::R_ARM_GOT_PREL: 8721 { 8722 // The symbol requires a GOT entry. 8723 Arm_output_data_got<big_endian>* got = 8724 target->got_section(symtab, layout); 8725 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); 8726 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD)) 8727 { 8728 // If we are generating a shared object, we need to add a 8729 // dynamic RELATIVE relocation for this symbol's GOT entry. 8730 if (parameters->options().output_is_position_independent()) 8731 { 8732 Reloc_section* rel_dyn = target->rel_dyn_section(layout); 8733 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); 8734 rel_dyn->add_local_relative( 8735 object, r_sym, elfcpp::R_ARM_RELATIVE, got, 8736 object->local_got_offset(r_sym, GOT_TYPE_STANDARD)); 8737 } 8738 } 8739 } 8740 break; 8741 8742 case elfcpp::R_ARM_TARGET1: 8743 case elfcpp::R_ARM_TARGET2: 8744 // This should have been mapped to another type already. 8745 // Fall through. 8746 case elfcpp::R_ARM_COPY: 8747 case elfcpp::R_ARM_GLOB_DAT: 8748 case elfcpp::R_ARM_JUMP_SLOT: 8749 case elfcpp::R_ARM_RELATIVE: 8750 // These are relocations which should only be seen by the 8751 // dynamic linker, and should never be seen here. 8752 gold_error(_("%s: unexpected reloc %u in object file"), 8753 object->name().c_str(), r_type); 8754 break; 8755 8756 8757 // These are initial TLS relocs, which are expected when 8758 // linking. 8759 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic 8760 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic 8761 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic 8762 case elfcpp::R_ARM_TLS_IE32: // Initial-exec 8763 case elfcpp::R_ARM_TLS_LE32: // Local-exec 8764 { 8765 bool output_is_shared = parameters->options().shared(); 8766 const tls::Tls_optimization optimized_type 8767 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared, 8768 r_type); 8769 switch (r_type) 8770 { 8771 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic 8772 if (optimized_type == tls::TLSOPT_NONE) 8773 { 8774 // Create a pair of GOT entries for the module index and 8775 // dtv-relative offset. 8776 Arm_output_data_got<big_endian>* got 8777 = target->got_section(symtab, layout); 8778 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); 8779 unsigned int shndx = lsym.get_st_shndx(); 8780 bool is_ordinary; 8781 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary); 8782 if (!is_ordinary) 8783 { 8784 object->error(_("local symbol %u has bad shndx %u"), 8785 r_sym, shndx); 8786 break; 8787 } 8788 8789 if (!parameters->doing_static_link()) 8790 got->add_local_pair_with_rel(object, r_sym, shndx, 8791 GOT_TYPE_TLS_PAIR, 8792 target->rel_dyn_section(layout), 8793 elfcpp::R_ARM_TLS_DTPMOD32); 8794 else 8795 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, 8796 object, r_sym); 8797 } 8798 else 8799 // FIXME: TLS optimization not supported yet. 8800 gold_unreachable(); 8801 break; 8802 8803 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic 8804 if (optimized_type == tls::TLSOPT_NONE) 8805 { 8806 // Create a GOT entry for the module index. 8807 target->got_mod_index_entry(symtab, layout, object); 8808 } 8809 else 8810 // FIXME: TLS optimization not supported yet. 8811 gold_unreachable(); 8812 break; 8813 8814 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic 8815 break; 8816 8817 case elfcpp::R_ARM_TLS_IE32: // Initial-exec 8818 layout->set_has_static_tls(); 8819 if (optimized_type == tls::TLSOPT_NONE) 8820 { 8821 // Create a GOT entry for the tp-relative offset. 8822 Arm_output_data_got<big_endian>* got 8823 = target->got_section(symtab, layout); 8824 unsigned int r_sym = 8825 elfcpp::elf_r_sym<32>(reloc.get_r_info()); 8826 if (!parameters->doing_static_link()) 8827 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET, 8828 target->rel_dyn_section(layout), 8829 elfcpp::R_ARM_TLS_TPOFF32); 8830 else if (!object->local_has_got_offset(r_sym, 8831 GOT_TYPE_TLS_OFFSET)) 8832 { 8833 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET); 8834 unsigned int got_offset = 8835 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET); 8836 got->add_static_reloc(got_offset, 8837 elfcpp::R_ARM_TLS_TPOFF32, object, 8838 r_sym); 8839 } 8840 } 8841 else 8842 // FIXME: TLS optimization not supported yet. 8843 gold_unreachable(); 8844 break; 8845 8846 case elfcpp::R_ARM_TLS_LE32: // Local-exec 8847 layout->set_has_static_tls(); 8848 if (output_is_shared) 8849 { 8850 // We need to create a dynamic relocation. 8851 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION); 8852 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); 8853 Reloc_section* rel_dyn = target->rel_dyn_section(layout); 8854 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32, 8855 output_section, data_shndx, 8856 reloc.get_r_offset()); 8857 } 8858 break; 8859 8860 default: 8861 gold_unreachable(); 8862 } 8863 } 8864 break; 8865 8866 case elfcpp::R_ARM_PC24: 8867 case elfcpp::R_ARM_LDR_SBREL_11_0_NC: 8868 case elfcpp::R_ARM_ALU_SBREL_19_12_NC: 8869 case elfcpp::R_ARM_ALU_SBREL_27_20_CK: 8870 default: 8871 unsupported_reloc_local(object, r_type); 8872 break; 8873 } 8874 } 8875 8876 // Report an unsupported relocation against a global symbol. 8877 8878 template<bool big_endian> 8879 void 8880 Target_arm<big_endian>::Scan::unsupported_reloc_global( 8881 Sized_relobj_file<32, big_endian>* object, 8882 unsigned int r_type, 8883 Symbol* gsym) 8884 { 8885 gold_error(_("%s: unsupported reloc %u against global symbol %s"), 8886 object->name().c_str(), r_type, gsym->demangled_name().c_str()); 8887 } 8888 8889 template<bool big_endian> 8890 inline bool 8891 Target_arm<big_endian>::Scan::possible_function_pointer_reloc( 8892 unsigned int r_type) 8893 { 8894 switch (r_type) 8895 { 8896 case elfcpp::R_ARM_PC24: 8897 case elfcpp::R_ARM_THM_CALL: 8898 case elfcpp::R_ARM_PLT32: 8899 case elfcpp::R_ARM_CALL: 8900 case elfcpp::R_ARM_JUMP24: 8901 case elfcpp::R_ARM_THM_JUMP24: 8902 case elfcpp::R_ARM_SBREL31: 8903 case elfcpp::R_ARM_PREL31: 8904 case elfcpp::R_ARM_THM_JUMP19: 8905 case elfcpp::R_ARM_THM_JUMP6: 8906 case elfcpp::R_ARM_THM_JUMP11: 8907 case elfcpp::R_ARM_THM_JUMP8: 8908 // All the relocations above are branches except SBREL31 and PREL31. 8909 return false; 8910 8911 default: 8912 // Be conservative and assume this is a function pointer. 8913 return true; 8914 } 8915 } 8916 8917 template<bool big_endian> 8918 inline bool 8919 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer( 8920 Symbol_table*, 8921 Layout*, 8922 Target_arm<big_endian>* target, 8923 Sized_relobj_file<32, big_endian>*, 8924 unsigned int, 8925 Output_section*, 8926 const elfcpp::Rel<32, big_endian>&, 8927 unsigned int r_type, 8928 const elfcpp::Sym<32, big_endian>&) 8929 { 8930 r_type = target->get_real_reloc_type(r_type); 8931 return possible_function_pointer_reloc(r_type); 8932 } 8933 8934 template<bool big_endian> 8935 inline bool 8936 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer( 8937 Symbol_table*, 8938 Layout*, 8939 Target_arm<big_endian>* target, 8940 Sized_relobj_file<32, big_endian>*, 8941 unsigned int, 8942 Output_section*, 8943 const elfcpp::Rel<32, big_endian>&, 8944 unsigned int r_type, 8945 Symbol* gsym) 8946 { 8947 // GOT is not a function. 8948 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0) 8949 return false; 8950 8951 r_type = target->get_real_reloc_type(r_type); 8952 return possible_function_pointer_reloc(r_type); 8953 } 8954 8955 // Scan a relocation for a global symbol. 8956 8957 template<bool big_endian> 8958 inline void 8959 Target_arm<big_endian>::Scan::global(Symbol_table* symtab, 8960 Layout* layout, 8961 Target_arm* target, 8962 Sized_relobj_file<32, big_endian>* object, 8963 unsigned int data_shndx, 8964 Output_section* output_section, 8965 const elfcpp::Rel<32, big_endian>& reloc, 8966 unsigned int r_type, 8967 Symbol* gsym) 8968 { 8969 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got 8970 // section. We check here to avoid creating a dynamic reloc against 8971 // _GLOBAL_OFFSET_TABLE_. 8972 if (!target->has_got_section() 8973 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0) 8974 target->got_section(symtab, layout); 8975 8976 // A STT_GNU_IFUNC symbol may require a PLT entry. 8977 if (gsym->type() == elfcpp::STT_GNU_IFUNC 8978 && this->reloc_needs_plt_for_ifunc(object, r_type)) 8979 target->make_plt_entry(symtab, layout, gsym); 8980 8981 r_type = target->get_real_reloc_type(r_type); 8982 switch (r_type) 8983 { 8984 case elfcpp::R_ARM_NONE: 8985 case elfcpp::R_ARM_V4BX: 8986 case elfcpp::R_ARM_GNU_VTENTRY: 8987 case elfcpp::R_ARM_GNU_VTINHERIT: 8988 break; 8989 8990 case elfcpp::R_ARM_ABS32: 8991 case elfcpp::R_ARM_ABS16: 8992 case elfcpp::R_ARM_ABS12: 8993 case elfcpp::R_ARM_THM_ABS5: 8994 case elfcpp::R_ARM_ABS8: 8995 case elfcpp::R_ARM_BASE_ABS: 8996 case elfcpp::R_ARM_MOVW_ABS_NC: 8997 case elfcpp::R_ARM_MOVT_ABS: 8998 case elfcpp::R_ARM_THM_MOVW_ABS_NC: 8999 case elfcpp::R_ARM_THM_MOVT_ABS: 9000 case elfcpp::R_ARM_ABS32_NOI: 9001 // Absolute addressing relocations. 9002 { 9003 // Make a PLT entry if necessary. 9004 if (this->symbol_needs_plt_entry(gsym)) 9005 { 9006 target->make_plt_entry(symtab, layout, gsym); 9007 // Since this is not a PC-relative relocation, we may be 9008 // taking the address of a function. In that case we need to 9009 // set the entry in the dynamic symbol table to the address of 9010 // the PLT entry. 9011 if (gsym->is_from_dynobj() && !parameters->options().shared()) 9012 gsym->set_needs_dynsym_value(); 9013 } 9014 // Make a dynamic relocation if necessary. 9015 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) 9016 { 9017 if (!parameters->options().output_is_position_independent() 9018 && gsym->may_need_copy_reloc()) 9019 { 9020 target->copy_reloc(symtab, layout, object, 9021 data_shndx, output_section, gsym, reloc); 9022 } 9023 else if ((r_type == elfcpp::R_ARM_ABS32 9024 || r_type == elfcpp::R_ARM_ABS32_NOI) 9025 && gsym->type() == elfcpp::STT_GNU_IFUNC 9026 && gsym->can_use_relative_reloc(false) 9027 && !gsym->is_from_dynobj() 9028 && !gsym->is_undefined() 9029 && !gsym->is_preemptible()) 9030 { 9031 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC 9032 // symbol. This makes a function address in a PIE executable 9033 // match the address in a shared library that it links against. 9034 Reloc_section* rel_irelative = 9035 target->rel_irelative_section(layout); 9036 unsigned int r_type = elfcpp::R_ARM_IRELATIVE; 9037 rel_irelative->add_symbolless_global_addend( 9038 gsym, r_type, output_section, object, 9039 data_shndx, reloc.get_r_offset()); 9040 } 9041 else if ((r_type == elfcpp::R_ARM_ABS32 9042 || r_type == elfcpp::R_ARM_ABS32_NOI) 9043 && gsym->can_use_relative_reloc(false)) 9044 { 9045 Reloc_section* rel_dyn = target->rel_dyn_section(layout); 9046 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE, 9047 output_section, object, 9048 data_shndx, reloc.get_r_offset()); 9049 } 9050 else 9051 { 9052 check_non_pic(object, r_type); 9053 Reloc_section* rel_dyn = target->rel_dyn_section(layout); 9054 rel_dyn->add_global(gsym, r_type, output_section, object, 9055 data_shndx, reloc.get_r_offset()); 9056 } 9057 } 9058 } 9059 break; 9060 9061 case elfcpp::R_ARM_GOTOFF32: 9062 case elfcpp::R_ARM_GOTOFF12: 9063 // We need a GOT section. 9064 target->got_section(symtab, layout); 9065 break; 9066 9067 case elfcpp::R_ARM_REL32: 9068 case elfcpp::R_ARM_LDR_PC_G0: 9069 case elfcpp::R_ARM_SBREL32: 9070 case elfcpp::R_ARM_THM_PC8: 9071 case elfcpp::R_ARM_BASE_PREL: 9072 case elfcpp::R_ARM_MOVW_PREL_NC: 9073 case elfcpp::R_ARM_MOVT_PREL: 9074 case elfcpp::R_ARM_THM_MOVW_PREL_NC: 9075 case elfcpp::R_ARM_THM_MOVT_PREL: 9076 case elfcpp::R_ARM_THM_ALU_PREL_11_0: 9077 case elfcpp::R_ARM_THM_PC12: 9078 case elfcpp::R_ARM_REL32_NOI: 9079 case elfcpp::R_ARM_ALU_PC_G0_NC: 9080 case elfcpp::R_ARM_ALU_PC_G0: 9081 case elfcpp::R_ARM_ALU_PC_G1_NC: 9082 case elfcpp::R_ARM_ALU_PC_G1: 9083 case elfcpp::R_ARM_ALU_PC_G2: 9084 case elfcpp::R_ARM_LDR_PC_G1: 9085 case elfcpp::R_ARM_LDR_PC_G2: 9086 case elfcpp::R_ARM_LDRS_PC_G0: 9087 case elfcpp::R_ARM_LDRS_PC_G1: 9088 case elfcpp::R_ARM_LDRS_PC_G2: 9089 case elfcpp::R_ARM_LDC_PC_G0: 9090 case elfcpp::R_ARM_LDC_PC_G1: 9091 case elfcpp::R_ARM_LDC_PC_G2: 9092 case elfcpp::R_ARM_ALU_SB_G0_NC: 9093 case elfcpp::R_ARM_ALU_SB_G0: 9094 case elfcpp::R_ARM_ALU_SB_G1_NC: 9095 case elfcpp::R_ARM_ALU_SB_G1: 9096 case elfcpp::R_ARM_ALU_SB_G2: 9097 case elfcpp::R_ARM_LDR_SB_G0: 9098 case elfcpp::R_ARM_LDR_SB_G1: 9099 case elfcpp::R_ARM_LDR_SB_G2: 9100 case elfcpp::R_ARM_LDRS_SB_G0: 9101 case elfcpp::R_ARM_LDRS_SB_G1: 9102 case elfcpp::R_ARM_LDRS_SB_G2: 9103 case elfcpp::R_ARM_LDC_SB_G0: 9104 case elfcpp::R_ARM_LDC_SB_G1: 9105 case elfcpp::R_ARM_LDC_SB_G2: 9106 case elfcpp::R_ARM_MOVW_BREL_NC: 9107 case elfcpp::R_ARM_MOVT_BREL: 9108 case elfcpp::R_ARM_MOVW_BREL: 9109 case elfcpp::R_ARM_THM_MOVW_BREL_NC: 9110 case elfcpp::R_ARM_THM_MOVT_BREL: 9111 case elfcpp::R_ARM_THM_MOVW_BREL: 9112 // Relative addressing relocations. 9113 { 9114 // Make a dynamic relocation if necessary. 9115 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) 9116 { 9117 if (parameters->options().output_is_executable() 9118 && target->may_need_copy_reloc(gsym)) 9119 { 9120 target->copy_reloc(symtab, layout, object, 9121 data_shndx, output_section, gsym, reloc); 9122 } 9123 else 9124 { 9125 check_non_pic(object, r_type); 9126 Reloc_section* rel_dyn = target->rel_dyn_section(layout); 9127 rel_dyn->add_global(gsym, r_type, output_section, object, 9128 data_shndx, reloc.get_r_offset()); 9129 } 9130 } 9131 } 9132 break; 9133 9134 case elfcpp::R_ARM_THM_CALL: 9135 case elfcpp::R_ARM_PLT32: 9136 case elfcpp::R_ARM_CALL: 9137 case elfcpp::R_ARM_JUMP24: 9138 case elfcpp::R_ARM_THM_JUMP24: 9139 case elfcpp::R_ARM_SBREL31: 9140 case elfcpp::R_ARM_PREL31: 9141 case elfcpp::R_ARM_THM_JUMP19: 9142 case elfcpp::R_ARM_THM_JUMP6: 9143 case elfcpp::R_ARM_THM_JUMP11: 9144 case elfcpp::R_ARM_THM_JUMP8: 9145 // All the relocation above are branches except for the PREL31 ones. 9146 // A PREL31 relocation can point to a personality function in a shared 9147 // library. In that case we want to use a PLT because we want to 9148 // call the personality routine and the dynamic linkers we care about 9149 // do not support dynamic PREL31 relocations. An REL31 relocation may 9150 // point to a function whose unwinding behaviour is being described but 9151 // we will not mistakenly generate a PLT for that because we should use 9152 // a local section symbol. 9153 9154 // If the symbol is fully resolved, this is just a relative 9155 // local reloc. Otherwise we need a PLT entry. 9156 if (gsym->final_value_is_known()) 9157 break; 9158 // If building a shared library, we can also skip the PLT entry 9159 // if the symbol is defined in the output file and is protected 9160 // or hidden. 9161 if (gsym->is_defined() 9162 && !gsym->is_from_dynobj() 9163 && !gsym->is_preemptible()) 9164 break; 9165 target->make_plt_entry(symtab, layout, gsym); 9166 break; 9167 9168 case elfcpp::R_ARM_GOT_BREL: 9169 case elfcpp::R_ARM_GOT_ABS: 9170 case elfcpp::R_ARM_GOT_PREL: 9171 { 9172 // The symbol requires a GOT entry. 9173 Arm_output_data_got<big_endian>* got = 9174 target->got_section(symtab, layout); 9175 if (gsym->final_value_is_known()) 9176 { 9177 // For a STT_GNU_IFUNC symbol we want the PLT address. 9178 if (gsym->type() == elfcpp::STT_GNU_IFUNC) 9179 got->add_global_plt(gsym, GOT_TYPE_STANDARD); 9180 else 9181 got->add_global(gsym, GOT_TYPE_STANDARD); 9182 } 9183 else 9184 { 9185 // If this symbol is not fully resolved, we need to add a 9186 // GOT entry with a dynamic relocation. 9187 Reloc_section* rel_dyn = target->rel_dyn_section(layout); 9188 if (gsym->is_from_dynobj() 9189 || gsym->is_undefined() 9190 || gsym->is_preemptible() 9191 || (gsym->visibility() == elfcpp::STV_PROTECTED 9192 && parameters->options().shared()) 9193 || (gsym->type() == elfcpp::STT_GNU_IFUNC 9194 && parameters->options().output_is_position_independent())) 9195 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, 9196 rel_dyn, elfcpp::R_ARM_GLOB_DAT); 9197 else 9198 { 9199 // For a STT_GNU_IFUNC symbol we want to write the PLT 9200 // offset into the GOT, so that function pointer 9201 // comparisons work correctly. 9202 bool is_new; 9203 if (gsym->type() != elfcpp::STT_GNU_IFUNC) 9204 is_new = got->add_global(gsym, GOT_TYPE_STANDARD); 9205 else 9206 { 9207 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD); 9208 // Tell the dynamic linker to use the PLT address 9209 // when resolving relocations. 9210 if (gsym->is_from_dynobj() 9211 && !parameters->options().shared()) 9212 gsym->set_needs_dynsym_value(); 9213 } 9214 if (is_new) 9215 rel_dyn->add_global_relative( 9216 gsym, elfcpp::R_ARM_RELATIVE, got, 9217 gsym->got_offset(GOT_TYPE_STANDARD)); 9218 } 9219 } 9220 } 9221 break; 9222 9223 case elfcpp::R_ARM_TARGET1: 9224 case elfcpp::R_ARM_TARGET2: 9225 // These should have been mapped to other types already. 9226 // Fall through. 9227 case elfcpp::R_ARM_COPY: 9228 case elfcpp::R_ARM_GLOB_DAT: 9229 case elfcpp::R_ARM_JUMP_SLOT: 9230 case elfcpp::R_ARM_RELATIVE: 9231 // These are relocations which should only be seen by the 9232 // dynamic linker, and should never be seen here. 9233 gold_error(_("%s: unexpected reloc %u in object file"), 9234 object->name().c_str(), r_type); 9235 break; 9236 9237 // These are initial tls relocs, which are expected when 9238 // linking. 9239 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic 9240 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic 9241 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic 9242 case elfcpp::R_ARM_TLS_IE32: // Initial-exec 9243 case elfcpp::R_ARM_TLS_LE32: // Local-exec 9244 { 9245 const bool is_final = gsym->final_value_is_known(); 9246 const tls::Tls_optimization optimized_type 9247 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type); 9248 switch (r_type) 9249 { 9250 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic 9251 if (optimized_type == tls::TLSOPT_NONE) 9252 { 9253 // Create a pair of GOT entries for the module index and 9254 // dtv-relative offset. 9255 Arm_output_data_got<big_endian>* got 9256 = target->got_section(symtab, layout); 9257 if (!parameters->doing_static_link()) 9258 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR, 9259 target->rel_dyn_section(layout), 9260 elfcpp::R_ARM_TLS_DTPMOD32, 9261 elfcpp::R_ARM_TLS_DTPOFF32); 9262 else 9263 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym); 9264 } 9265 else 9266 // FIXME: TLS optimization not supported yet. 9267 gold_unreachable(); 9268 break; 9269 9270 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic 9271 if (optimized_type == tls::TLSOPT_NONE) 9272 { 9273 // Create a GOT entry for the module index. 9274 target->got_mod_index_entry(symtab, layout, object); 9275 } 9276 else 9277 // FIXME: TLS optimization not supported yet. 9278 gold_unreachable(); 9279 break; 9280 9281 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic 9282 break; 9283 9284 case elfcpp::R_ARM_TLS_IE32: // Initial-exec 9285 layout->set_has_static_tls(); 9286 if (optimized_type == tls::TLSOPT_NONE) 9287 { 9288 // Create a GOT entry for the tp-relative offset. 9289 Arm_output_data_got<big_endian>* got 9290 = target->got_section(symtab, layout); 9291 if (!parameters->doing_static_link()) 9292 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET, 9293 target->rel_dyn_section(layout), 9294 elfcpp::R_ARM_TLS_TPOFF32); 9295 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET)) 9296 { 9297 got->add_global(gsym, GOT_TYPE_TLS_OFFSET); 9298 unsigned int got_offset = 9299 gsym->got_offset(GOT_TYPE_TLS_OFFSET); 9300 got->add_static_reloc(got_offset, 9301 elfcpp::R_ARM_TLS_TPOFF32, gsym); 9302 } 9303 } 9304 else 9305 // FIXME: TLS optimization not supported yet. 9306 gold_unreachable(); 9307 break; 9308 9309 case elfcpp::R_ARM_TLS_LE32: // Local-exec 9310 layout->set_has_static_tls(); 9311 if (parameters->options().shared()) 9312 { 9313 // We need to create a dynamic relocation. 9314 Reloc_section* rel_dyn = target->rel_dyn_section(layout); 9315 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32, 9316 output_section, object, 9317 data_shndx, reloc.get_r_offset()); 9318 } 9319 break; 9320 9321 default: 9322 gold_unreachable(); 9323 } 9324 } 9325 break; 9326 9327 case elfcpp::R_ARM_PC24: 9328 case elfcpp::R_ARM_LDR_SBREL_11_0_NC: 9329 case elfcpp::R_ARM_ALU_SBREL_19_12_NC: 9330 case elfcpp::R_ARM_ALU_SBREL_27_20_CK: 9331 default: 9332 unsupported_reloc_global(object, r_type, gsym); 9333 break; 9334 } 9335 } 9336 9337 // Process relocations for gc. 9338 9339 template<bool big_endian> 9340 void 9341 Target_arm<big_endian>::gc_process_relocs( 9342 Symbol_table* symtab, 9343 Layout* layout, 9344 Sized_relobj_file<32, big_endian>* object, 9345 unsigned int data_shndx, 9346 unsigned int, 9347 const unsigned char* prelocs, 9348 size_t reloc_count, 9349 Output_section* output_section, 9350 bool needs_special_offset_handling, 9351 size_t local_symbol_count, 9352 const unsigned char* plocal_symbols) 9353 { 9354 typedef Target_arm<big_endian> Arm; 9355 typedef typename Target_arm<big_endian>::Scan Scan; 9356 9357 gold::gc_process_relocs<32, big_endian, Arm, Scan, Classify_reloc>( 9358 symtab, 9359 layout, 9360 this, 9361 object, 9362 data_shndx, 9363 prelocs, 9364 reloc_count, 9365 output_section, 9366 needs_special_offset_handling, 9367 local_symbol_count, 9368 plocal_symbols); 9369 } 9370 9371 // Scan relocations for a section. 9372 9373 template<bool big_endian> 9374 void 9375 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab, 9376 Layout* layout, 9377 Sized_relobj_file<32, big_endian>* object, 9378 unsigned int data_shndx, 9379 unsigned int sh_type, 9380 const unsigned char* prelocs, 9381 size_t reloc_count, 9382 Output_section* output_section, 9383 bool needs_special_offset_handling, 9384 size_t local_symbol_count, 9385 const unsigned char* plocal_symbols) 9386 { 9387 if (sh_type == elfcpp::SHT_RELA) 9388 { 9389 gold_error(_("%s: unsupported RELA reloc section"), 9390 object->name().c_str()); 9391 return; 9392 } 9393 9394 gold::scan_relocs<32, big_endian, Target_arm, Scan, Classify_reloc>( 9395 symtab, 9396 layout, 9397 this, 9398 object, 9399 data_shndx, 9400 prelocs, 9401 reloc_count, 9402 output_section, 9403 needs_special_offset_handling, 9404 local_symbol_count, 9405 plocal_symbols); 9406 } 9407 9408 // Finalize the sections. 9409 9410 template<bool big_endian> 9411 void 9412 Target_arm<big_endian>::do_finalize_sections( 9413 Layout* layout, 9414 const Input_objects* input_objects, 9415 Symbol_table*) 9416 { 9417 bool merged_any_attributes = false; 9418 // Merge processor-specific flags. 9419 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); 9420 p != input_objects->relobj_end(); 9421 ++p) 9422 { 9423 Arm_relobj<big_endian>* arm_relobj = 9424 Arm_relobj<big_endian>::as_arm_relobj(*p); 9425 if (arm_relobj->merge_flags_and_attributes()) 9426 { 9427 this->merge_processor_specific_flags( 9428 arm_relobj->name(), 9429 arm_relobj->processor_specific_flags()); 9430 this->merge_object_attributes(arm_relobj->name().c_str(), 9431 arm_relobj->attributes_section_data()); 9432 merged_any_attributes = true; 9433 } 9434 } 9435 9436 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin(); 9437 p != input_objects->dynobj_end(); 9438 ++p) 9439 { 9440 Arm_dynobj<big_endian>* arm_dynobj = 9441 Arm_dynobj<big_endian>::as_arm_dynobj(*p); 9442 this->merge_processor_specific_flags( 9443 arm_dynobj->name(), 9444 arm_dynobj->processor_specific_flags()); 9445 this->merge_object_attributes(arm_dynobj->name().c_str(), 9446 arm_dynobj->attributes_section_data()); 9447 merged_any_attributes = true; 9448 } 9449 9450 // Create an empty uninitialized attribute section if we still don't have it 9451 // at this moment. This happens if there is no attributes sections in all 9452 // inputs. 9453 if (this->attributes_section_data_ == NULL) 9454 this->attributes_section_data_ = new Attributes_section_data(NULL, 0); 9455 9456 const Object_attribute* cpu_arch_attr = 9457 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); 9458 // Check if we need to use Cortex-A8 workaround. 9459 if (parameters->options().user_set_fix_cortex_a8()) 9460 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8(); 9461 else 9462 { 9463 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on 9464 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown 9465 // profile. 9466 const Object_attribute* cpu_arch_profile_attr = 9467 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile); 9468 this->fix_cortex_a8_ = 9469 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7 9470 && (cpu_arch_profile_attr->int_value() == 'A' 9471 || cpu_arch_profile_attr->int_value() == 0)); 9472 } 9473 9474 // Check if we can use V4BX interworking. 9475 // The V4BX interworking stub contains BX instruction, 9476 // which is not specified for some profiles. 9477 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING 9478 && !this->may_use_v4t_interworking()) 9479 gold_error(_("unable to provide V4BX reloc interworking fix up; " 9480 "the target profile does not support BX instruction")); 9481 9482 // Fill in some more dynamic tags. 9483 const Reloc_section* rel_plt = (this->plt_ == NULL 9484 ? NULL 9485 : this->plt_->rel_plt()); 9486 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt, 9487 this->rel_dyn_, true, false); 9488 9489 // Emit any relocs we saved in an attempt to avoid generating COPY 9490 // relocs. 9491 if (this->copy_relocs_.any_saved_relocs()) 9492 this->copy_relocs_.emit(this->rel_dyn_section(layout)); 9493 9494 // Handle the .ARM.exidx section. 9495 Output_section* exidx_section = layout->find_output_section(".ARM.exidx"); 9496 9497 if (!parameters->options().relocatable()) 9498 { 9499 if (exidx_section != NULL 9500 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX) 9501 { 9502 // For the ARM target, we need to add a PT_ARM_EXIDX segment for 9503 // the .ARM.exidx section. 9504 if (!layout->script_options()->saw_phdrs_clause()) 9505 { 9506 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 9507 0) 9508 == NULL); 9509 Output_segment* exidx_segment = 9510 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R); 9511 exidx_segment->add_output_section_to_nonload(exidx_section, 9512 elfcpp::PF_R); 9513 } 9514 } 9515 } 9516 9517 // Create an .ARM.attributes section if we have merged any attributes 9518 // from inputs. 9519 if (merged_any_attributes) 9520 { 9521 Output_attributes_section_data* attributes_section = 9522 new Output_attributes_section_data(*this->attributes_section_data_); 9523 layout->add_output_section_data(".ARM.attributes", 9524 elfcpp::SHT_ARM_ATTRIBUTES, 0, 9525 attributes_section, ORDER_INVALID, 9526 false); 9527 } 9528 9529 // Fix up links in section EXIDX headers. 9530 for (Layout::Section_list::const_iterator p = layout->section_list().begin(); 9531 p != layout->section_list().end(); 9532 ++p) 9533 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX) 9534 { 9535 Arm_output_section<big_endian>* os = 9536 Arm_output_section<big_endian>::as_arm_output_section(*p); 9537 os->set_exidx_section_link(); 9538 } 9539 } 9540 9541 // Return whether a direct absolute static relocation needs to be applied. 9542 // In cases where Scan::local() or Scan::global() has created 9543 // a dynamic relocation other than R_ARM_RELATIVE, the addend 9544 // of the relocation is carried in the data, and we must not 9545 // apply the static relocation. 9546 9547 template<bool big_endian> 9548 inline bool 9549 Target_arm<big_endian>::Relocate::should_apply_static_reloc( 9550 const Sized_symbol<32>* gsym, 9551 unsigned int r_type, 9552 bool is_32bit, 9553 Output_section* output_section) 9554 { 9555 // If the output section is not allocated, then we didn't call 9556 // scan_relocs, we didn't create a dynamic reloc, and we must apply 9557 // the reloc here. 9558 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0) 9559 return true; 9560 9561 int ref_flags = Scan::get_reference_flags(r_type); 9562 9563 // For local symbols, we will have created a non-RELATIVE dynamic 9564 // relocation only if (a) the output is position independent, 9565 // (b) the relocation is absolute (not pc- or segment-relative), and 9566 // (c) the relocation is not 32 bits wide. 9567 if (gsym == NULL) 9568 return !(parameters->options().output_is_position_independent() 9569 && (ref_flags & Symbol::ABSOLUTE_REF) 9570 && !is_32bit); 9571 9572 // For global symbols, we use the same helper routines used in the 9573 // scan pass. If we did not create a dynamic relocation, or if we 9574 // created a RELATIVE dynamic relocation, we should apply the static 9575 // relocation. 9576 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags); 9577 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF) 9578 && gsym->can_use_relative_reloc(ref_flags 9579 & Symbol::FUNCTION_CALL); 9580 return !has_dyn || is_rel; 9581 } 9582 9583 // Perform a relocation. 9584 9585 template<bool big_endian> 9586 inline bool 9587 Target_arm<big_endian>::Relocate::relocate( 9588 const Relocate_info<32, big_endian>* relinfo, 9589 unsigned int, 9590 Target_arm* target, 9591 Output_section* output_section, 9592 size_t relnum, 9593 const unsigned char* preloc, 9594 const Sized_symbol<32>* gsym, 9595 const Symbol_value<32>* psymval, 9596 unsigned char* view, 9597 Arm_address address, 9598 section_size_type view_size) 9599 { 9600 if (view == NULL) 9601 return true; 9602 9603 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions; 9604 9605 const elfcpp::Rel<32, big_endian> rel(preloc); 9606 unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info()); 9607 r_type = target->get_real_reloc_type(r_type); 9608 const Arm_reloc_property* reloc_property = 9609 arm_reloc_property_table->get_implemented_static_reloc_property(r_type); 9610 if (reloc_property == NULL) 9611 { 9612 std::string reloc_name = 9613 arm_reloc_property_table->reloc_name_in_error_message(r_type); 9614 gold_error_at_location(relinfo, relnum, rel.get_r_offset(), 9615 _("cannot relocate %s in object file"), 9616 reloc_name.c_str()); 9617 return true; 9618 } 9619 9620 const Arm_relobj<big_endian>* object = 9621 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object); 9622 9623 // If the final branch target of a relocation is THUMB instruction, this 9624 // is 1. Otherwise it is 0. 9625 Arm_address thumb_bit = 0; 9626 Symbol_value<32> symval; 9627 bool is_weakly_undefined_without_plt = false; 9628 bool have_got_offset = false; 9629 unsigned int got_offset = 0; 9630 9631 // If the relocation uses the GOT entry of a symbol instead of the symbol 9632 // itself, we don't care about whether the symbol is defined or what kind 9633 // of symbol it is. 9634 if (reloc_property->uses_got_entry()) 9635 { 9636 // Get the GOT offset. 9637 // The GOT pointer points to the end of the GOT section. 9638 // We need to subtract the size of the GOT section to get 9639 // the actual offset to use in the relocation. 9640 // TODO: We should move GOT offset computing code in TLS relocations 9641 // to here. 9642 switch (r_type) 9643 { 9644 case elfcpp::R_ARM_GOT_BREL: 9645 case elfcpp::R_ARM_GOT_PREL: 9646 if (gsym != NULL) 9647 { 9648 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD)); 9649 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD) 9650 - target->got_size()); 9651 } 9652 else 9653 { 9654 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); 9655 gold_assert(object->local_has_got_offset(r_sym, 9656 GOT_TYPE_STANDARD)); 9657 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD) 9658 - target->got_size()); 9659 } 9660 have_got_offset = true; 9661 break; 9662 9663 default: 9664 break; 9665 } 9666 } 9667 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs) 9668 { 9669 if (gsym != NULL) 9670 { 9671 // This is a global symbol. Determine if we use PLT and if the 9672 // final target is THUMB. 9673 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type))) 9674 { 9675 // This uses a PLT, change the symbol value. 9676 symval.set_output_value(target->plt_address_for_global(gsym)); 9677 psymval = &symval; 9678 } 9679 else if (gsym->is_weak_undefined()) 9680 { 9681 // This is a weakly undefined symbol and we do not use PLT 9682 // for this relocation. A branch targeting this symbol will 9683 // be converted into an NOP. 9684 is_weakly_undefined_without_plt = true; 9685 } 9686 else if (gsym->is_undefined() && reloc_property->uses_symbol()) 9687 { 9688 // This relocation uses the symbol value but the symbol is 9689 // undefined. Exit early and have the caller reporting an 9690 // error. 9691 return true; 9692 } 9693 else 9694 { 9695 // Set thumb bit if symbol: 9696 // -Has type STT_ARM_TFUNC or 9697 // -Has type STT_FUNC, is defined and with LSB in value set. 9698 thumb_bit = 9699 (((gsym->type() == elfcpp::STT_ARM_TFUNC) 9700 || (gsym->type() == elfcpp::STT_FUNC 9701 && !gsym->is_undefined() 9702 && ((psymval->value(object, 0) & 1) != 0))) 9703 ? 1 9704 : 0); 9705 } 9706 } 9707 else 9708 { 9709 // This is a local symbol. Determine if the final target is THUMB. 9710 // We saved this information when all the local symbols were read. 9711 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info(); 9712 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); 9713 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0; 9714 9715 if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym)) 9716 { 9717 symval.set_output_value( 9718 target->plt_address_for_local(object, r_sym)); 9719 psymval = &symval; 9720 } 9721 } 9722 } 9723 else 9724 { 9725 // This is a fake relocation synthesized for a stub. It does not have 9726 // a real symbol. We just look at the LSB of the symbol value to 9727 // determine if the target is THUMB or not. 9728 thumb_bit = ((psymval->value(object, 0) & 1) != 0); 9729 } 9730 9731 // Strip LSB if this points to a THUMB target. 9732 if (thumb_bit != 0 9733 && reloc_property->uses_thumb_bit() 9734 && ((psymval->value(object, 0) & 1) != 0)) 9735 { 9736 Arm_address stripped_value = 9737 psymval->value(object, 0) & ~static_cast<Arm_address>(1); 9738 symval.set_output_value(stripped_value); 9739 psymval = &symval; 9740 } 9741 9742 // To look up relocation stubs, we need to pass the symbol table index of 9743 // a local symbol. 9744 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); 9745 9746 // Get the addressing origin of the output segment defining the 9747 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types). 9748 Arm_address sym_origin = 0; 9749 if (reloc_property->uses_symbol_base()) 9750 { 9751 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL) 9752 // R_ARM_BASE_ABS with the NULL symbol will give the 9753 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI 9754 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations). 9755 sym_origin = target->got_plt_section()->address(); 9756 else if (gsym == NULL) 9757 sym_origin = 0; 9758 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT) 9759 sym_origin = gsym->output_segment()->vaddr(); 9760 else if (gsym->source() == Symbol::IN_OUTPUT_DATA) 9761 sym_origin = gsym->output_data()->address(); 9762 9763 // TODO: Assumes the segment base to be zero for the global symbols 9764 // till the proper support for the segment-base-relative addressing 9765 // will be implemented. This is consistent with GNU ld. 9766 } 9767 9768 // For relative addressing relocation, find out the relative address base. 9769 Arm_address relative_address_base = 0; 9770 switch(reloc_property->relative_address_base()) 9771 { 9772 case Arm_reloc_property::RAB_NONE: 9773 // Relocations with relative address bases RAB_TLS and RAB_tp are 9774 // handled by relocate_tls. So we do not need to do anything here. 9775 case Arm_reloc_property::RAB_TLS: 9776 case Arm_reloc_property::RAB_tp: 9777 break; 9778 case Arm_reloc_property::RAB_B_S: 9779 relative_address_base = sym_origin; 9780 break; 9781 case Arm_reloc_property::RAB_GOT_ORG: 9782 relative_address_base = target->got_plt_section()->address(); 9783 break; 9784 case Arm_reloc_property::RAB_P: 9785 relative_address_base = address; 9786 break; 9787 case Arm_reloc_property::RAB_Pa: 9788 relative_address_base = address & 0xfffffffcU; 9789 break; 9790 default: 9791 gold_unreachable(); 9792 } 9793 9794 typename Arm_relocate_functions::Status reloc_status = 9795 Arm_relocate_functions::STATUS_OKAY; 9796 bool check_overflow = reloc_property->checks_overflow(); 9797 switch (r_type) 9798 { 9799 case elfcpp::R_ARM_NONE: 9800 break; 9801 9802 case elfcpp::R_ARM_ABS8: 9803 if (should_apply_static_reloc(gsym, r_type, false, output_section)) 9804 reloc_status = Arm_relocate_functions::abs8(view, object, psymval); 9805 break; 9806 9807 case elfcpp::R_ARM_ABS12: 9808 if (should_apply_static_reloc(gsym, r_type, false, output_section)) 9809 reloc_status = Arm_relocate_functions::abs12(view, object, psymval); 9810 break; 9811 9812 case elfcpp::R_ARM_ABS16: 9813 if (should_apply_static_reloc(gsym, r_type, false, output_section)) 9814 reloc_status = Arm_relocate_functions::abs16(view, object, psymval); 9815 break; 9816 9817 case elfcpp::R_ARM_ABS32: 9818 if (should_apply_static_reloc(gsym, r_type, true, output_section)) 9819 reloc_status = Arm_relocate_functions::abs32(view, object, psymval, 9820 thumb_bit); 9821 break; 9822 9823 case elfcpp::R_ARM_ABS32_NOI: 9824 if (should_apply_static_reloc(gsym, r_type, true, output_section)) 9825 // No thumb bit for this relocation: (S + A) 9826 reloc_status = Arm_relocate_functions::abs32(view, object, psymval, 9827 0); 9828 break; 9829 9830 case elfcpp::R_ARM_MOVW_ABS_NC: 9831 if (should_apply_static_reloc(gsym, r_type, false, output_section)) 9832 reloc_status = Arm_relocate_functions::movw(view, object, psymval, 9833 0, thumb_bit, 9834 check_overflow); 9835 break; 9836 9837 case elfcpp::R_ARM_MOVT_ABS: 9838 if (should_apply_static_reloc(gsym, r_type, false, output_section)) 9839 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0); 9840 break; 9841 9842 case elfcpp::R_ARM_THM_MOVW_ABS_NC: 9843 if (should_apply_static_reloc(gsym, r_type, false, output_section)) 9844 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval, 9845 0, thumb_bit, false); 9846 break; 9847 9848 case elfcpp::R_ARM_THM_MOVT_ABS: 9849 if (should_apply_static_reloc(gsym, r_type, false, output_section)) 9850 reloc_status = Arm_relocate_functions::thm_movt(view, object, 9851 psymval, 0); 9852 break; 9853 9854 case elfcpp::R_ARM_MOVW_PREL_NC: 9855 case elfcpp::R_ARM_MOVW_BREL_NC: 9856 case elfcpp::R_ARM_MOVW_BREL: 9857 reloc_status = 9858 Arm_relocate_functions::movw(view, object, psymval, 9859 relative_address_base, thumb_bit, 9860 check_overflow); 9861 break; 9862 9863 case elfcpp::R_ARM_MOVT_PREL: 9864 case elfcpp::R_ARM_MOVT_BREL: 9865 reloc_status = 9866 Arm_relocate_functions::movt(view, object, psymval, 9867 relative_address_base); 9868 break; 9869 9870 case elfcpp::R_ARM_THM_MOVW_PREL_NC: 9871 case elfcpp::R_ARM_THM_MOVW_BREL_NC: 9872 case elfcpp::R_ARM_THM_MOVW_BREL: 9873 reloc_status = 9874 Arm_relocate_functions::thm_movw(view, object, psymval, 9875 relative_address_base, 9876 thumb_bit, check_overflow); 9877 break; 9878 9879 case elfcpp::R_ARM_THM_MOVT_PREL: 9880 case elfcpp::R_ARM_THM_MOVT_BREL: 9881 reloc_status = 9882 Arm_relocate_functions::thm_movt(view, object, psymval, 9883 relative_address_base); 9884 break; 9885 9886 case elfcpp::R_ARM_REL32: 9887 reloc_status = Arm_relocate_functions::rel32(view, object, psymval, 9888 address, thumb_bit); 9889 break; 9890 9891 case elfcpp::R_ARM_THM_ABS5: 9892 if (should_apply_static_reloc(gsym, r_type, false, output_section)) 9893 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval); 9894 break; 9895 9896 // Thumb long branches. 9897 case elfcpp::R_ARM_THM_CALL: 9898 case elfcpp::R_ARM_THM_XPC22: 9899 case elfcpp::R_ARM_THM_JUMP24: 9900 reloc_status = 9901 Arm_relocate_functions::thumb_branch_common( 9902 r_type, relinfo, view, gsym, object, r_sym, psymval, address, 9903 thumb_bit, is_weakly_undefined_without_plt); 9904 break; 9905 9906 case elfcpp::R_ARM_GOTOFF32: 9907 { 9908 Arm_address got_origin; 9909 got_origin = target->got_plt_section()->address(); 9910 reloc_status = Arm_relocate_functions::rel32(view, object, psymval, 9911 got_origin, thumb_bit); 9912 } 9913 break; 9914 9915 case elfcpp::R_ARM_BASE_PREL: 9916 gold_assert(gsym != NULL); 9917 reloc_status = 9918 Arm_relocate_functions::base_prel(view, sym_origin, address); 9919 break; 9920 9921 case elfcpp::R_ARM_BASE_ABS: 9922 if (should_apply_static_reloc(gsym, r_type, false, output_section)) 9923 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin); 9924 break; 9925 9926 case elfcpp::R_ARM_GOT_BREL: 9927 gold_assert(have_got_offset); 9928 reloc_status = Arm_relocate_functions::got_brel(view, got_offset); 9929 break; 9930 9931 case elfcpp::R_ARM_GOT_PREL: 9932 gold_assert(have_got_offset); 9933 // Get the address origin for GOT PLT, which is allocated right 9934 // after the GOT section, to calculate an absolute address of 9935 // the symbol GOT entry (got_origin + got_offset). 9936 Arm_address got_origin; 9937 got_origin = target->got_plt_section()->address(); 9938 reloc_status = Arm_relocate_functions::got_prel(view, 9939 got_origin + got_offset, 9940 address); 9941 break; 9942 9943 case elfcpp::R_ARM_PLT32: 9944 case elfcpp::R_ARM_CALL: 9945 case elfcpp::R_ARM_JUMP24: 9946 case elfcpp::R_ARM_XPC25: 9947 gold_assert(gsym == NULL 9948 || gsym->has_plt_offset() 9949 || gsym->final_value_is_known() 9950 || (gsym->is_defined() 9951 && !gsym->is_from_dynobj() 9952 && !gsym->is_preemptible())); 9953 reloc_status = 9954 Arm_relocate_functions::arm_branch_common( 9955 r_type, relinfo, view, gsym, object, r_sym, psymval, address, 9956 thumb_bit, is_weakly_undefined_without_plt); 9957 break; 9958 9959 case elfcpp::R_ARM_THM_JUMP19: 9960 reloc_status = 9961 Arm_relocate_functions::thm_jump19(view, object, psymval, address, 9962 thumb_bit); 9963 break; 9964 9965 case elfcpp::R_ARM_THM_JUMP6: 9966 reloc_status = 9967 Arm_relocate_functions::thm_jump6(view, object, psymval, address); 9968 break; 9969 9970 case elfcpp::R_ARM_THM_JUMP8: 9971 reloc_status = 9972 Arm_relocate_functions::thm_jump8(view, object, psymval, address); 9973 break; 9974 9975 case elfcpp::R_ARM_THM_JUMP11: 9976 reloc_status = 9977 Arm_relocate_functions::thm_jump11(view, object, psymval, address); 9978 break; 9979 9980 case elfcpp::R_ARM_PREL31: 9981 reloc_status = Arm_relocate_functions::prel31(view, object, psymval, 9982 address, thumb_bit); 9983 break; 9984 9985 case elfcpp::R_ARM_V4BX: 9986 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE) 9987 { 9988 const bool is_v4bx_interworking = 9989 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING); 9990 reloc_status = 9991 Arm_relocate_functions::v4bx(relinfo, view, object, address, 9992 is_v4bx_interworking); 9993 } 9994 break; 9995 9996 case elfcpp::R_ARM_THM_PC8: 9997 reloc_status = 9998 Arm_relocate_functions::thm_pc8(view, object, psymval, address); 9999 break; 10000 10001 case elfcpp::R_ARM_THM_PC12: 10002 reloc_status = 10003 Arm_relocate_functions::thm_pc12(view, object, psymval, address); 10004 break; 10005 10006 case elfcpp::R_ARM_THM_ALU_PREL_11_0: 10007 reloc_status = 10008 Arm_relocate_functions::thm_alu11(view, object, psymval, address, 10009 thumb_bit); 10010 break; 10011 10012 case elfcpp::R_ARM_ALU_PC_G0_NC: 10013 case elfcpp::R_ARM_ALU_PC_G0: 10014 case elfcpp::R_ARM_ALU_PC_G1_NC: 10015 case elfcpp::R_ARM_ALU_PC_G1: 10016 case elfcpp::R_ARM_ALU_PC_G2: 10017 case elfcpp::R_ARM_ALU_SB_G0_NC: 10018 case elfcpp::R_ARM_ALU_SB_G0: 10019 case elfcpp::R_ARM_ALU_SB_G1_NC: 10020 case elfcpp::R_ARM_ALU_SB_G1: 10021 case elfcpp::R_ARM_ALU_SB_G2: 10022 reloc_status = 10023 Arm_relocate_functions::arm_grp_alu(view, object, psymval, 10024 reloc_property->group_index(), 10025 relative_address_base, 10026 thumb_bit, check_overflow); 10027 break; 10028 10029 case elfcpp::R_ARM_LDR_PC_G0: 10030 case elfcpp::R_ARM_LDR_PC_G1: 10031 case elfcpp::R_ARM_LDR_PC_G2: 10032 case elfcpp::R_ARM_LDR_SB_G0: 10033 case elfcpp::R_ARM_LDR_SB_G1: 10034 case elfcpp::R_ARM_LDR_SB_G2: 10035 reloc_status = 10036 Arm_relocate_functions::arm_grp_ldr(view, object, psymval, 10037 reloc_property->group_index(), 10038 relative_address_base); 10039 break; 10040 10041 case elfcpp::R_ARM_LDRS_PC_G0: 10042 case elfcpp::R_ARM_LDRS_PC_G1: 10043 case elfcpp::R_ARM_LDRS_PC_G2: 10044 case elfcpp::R_ARM_LDRS_SB_G0: 10045 case elfcpp::R_ARM_LDRS_SB_G1: 10046 case elfcpp::R_ARM_LDRS_SB_G2: 10047 reloc_status = 10048 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval, 10049 reloc_property->group_index(), 10050 relative_address_base); 10051 break; 10052 10053 case elfcpp::R_ARM_LDC_PC_G0: 10054 case elfcpp::R_ARM_LDC_PC_G1: 10055 case elfcpp::R_ARM_LDC_PC_G2: 10056 case elfcpp::R_ARM_LDC_SB_G0: 10057 case elfcpp::R_ARM_LDC_SB_G1: 10058 case elfcpp::R_ARM_LDC_SB_G2: 10059 reloc_status = 10060 Arm_relocate_functions::arm_grp_ldc(view, object, psymval, 10061 reloc_property->group_index(), 10062 relative_address_base); 10063 break; 10064 10065 // These are initial tls relocs, which are expected when 10066 // linking. 10067 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic 10068 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic 10069 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic 10070 case elfcpp::R_ARM_TLS_IE32: // Initial-exec 10071 case elfcpp::R_ARM_TLS_LE32: // Local-exec 10072 reloc_status = 10073 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval, 10074 view, address, view_size); 10075 break; 10076 10077 // The known and unknown unsupported and/or deprecated relocations. 10078 case elfcpp::R_ARM_PC24: 10079 case elfcpp::R_ARM_LDR_SBREL_11_0_NC: 10080 case elfcpp::R_ARM_ALU_SBREL_19_12_NC: 10081 case elfcpp::R_ARM_ALU_SBREL_27_20_CK: 10082 default: 10083 // Just silently leave the method. We should get an appropriate error 10084 // message in the scan methods. 10085 break; 10086 } 10087 10088 // Report any errors. 10089 switch (reloc_status) 10090 { 10091 case Arm_relocate_functions::STATUS_OKAY: 10092 break; 10093 case Arm_relocate_functions::STATUS_OVERFLOW: 10094 gold_error_at_location(relinfo, relnum, rel.get_r_offset(), 10095 _("relocation overflow in %s"), 10096 reloc_property->name().c_str()); 10097 break; 10098 case Arm_relocate_functions::STATUS_BAD_RELOC: 10099 gold_error_at_location( 10100 relinfo, 10101 relnum, 10102 rel.get_r_offset(), 10103 _("unexpected opcode while processing relocation %s"), 10104 reloc_property->name().c_str()); 10105 break; 10106 default: 10107 gold_unreachable(); 10108 } 10109 10110 return true; 10111 } 10112 10113 // Perform a TLS relocation. 10114 10115 template<bool big_endian> 10116 inline typename Arm_relocate_functions<big_endian>::Status 10117 Target_arm<big_endian>::Relocate::relocate_tls( 10118 const Relocate_info<32, big_endian>* relinfo, 10119 Target_arm<big_endian>* target, 10120 size_t relnum, 10121 const elfcpp::Rel<32, big_endian>& rel, 10122 unsigned int r_type, 10123 const Sized_symbol<32>* gsym, 10124 const Symbol_value<32>* psymval, 10125 unsigned char* view, 10126 elfcpp::Elf_types<32>::Elf_Addr address, 10127 section_size_type /*view_size*/ ) 10128 { 10129 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs; 10130 typedef Relocate_functions<32, big_endian> RelocFuncs; 10131 Output_segment* tls_segment = relinfo->layout->tls_segment(); 10132 10133 const Sized_relobj_file<32, big_endian>* object = relinfo->object; 10134 10135 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0); 10136 10137 const bool is_final = (gsym == NULL 10138 ? !parameters->options().shared() 10139 : gsym->final_value_is_known()); 10140 const tls::Tls_optimization optimized_type 10141 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type); 10142 switch (r_type) 10143 { 10144 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic 10145 { 10146 unsigned int got_type = GOT_TYPE_TLS_PAIR; 10147 unsigned int got_offset; 10148 if (gsym != NULL) 10149 { 10150 gold_assert(gsym->has_got_offset(got_type)); 10151 got_offset = gsym->got_offset(got_type) - target->got_size(); 10152 } 10153 else 10154 { 10155 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); 10156 gold_assert(object->local_has_got_offset(r_sym, got_type)); 10157 got_offset = (object->local_got_offset(r_sym, got_type) 10158 - target->got_size()); 10159 } 10160 if (optimized_type == tls::TLSOPT_NONE) 10161 { 10162 Arm_address got_entry = 10163 target->got_plt_section()->address() + got_offset; 10164 10165 // Relocate the field with the PC relative offset of the pair of 10166 // GOT entries. 10167 RelocFuncs::pcrel32_unaligned(view, got_entry, address); 10168 return ArmRelocFuncs::STATUS_OKAY; 10169 } 10170 } 10171 break; 10172 10173 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic 10174 if (optimized_type == tls::TLSOPT_NONE) 10175 { 10176 // Relocate the field with the offset of the GOT entry for 10177 // the module index. 10178 unsigned int got_offset; 10179 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL) 10180 - target->got_size()); 10181 Arm_address got_entry = 10182 target->got_plt_section()->address() + got_offset; 10183 10184 // Relocate the field with the PC relative offset of the pair of 10185 // GOT entries. 10186 RelocFuncs::pcrel32_unaligned(view, got_entry, address); 10187 return ArmRelocFuncs::STATUS_OKAY; 10188 } 10189 break; 10190 10191 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic 10192 RelocFuncs::rel32_unaligned(view, value); 10193 return ArmRelocFuncs::STATUS_OKAY; 10194 10195 case elfcpp::R_ARM_TLS_IE32: // Initial-exec 10196 if (optimized_type == tls::TLSOPT_NONE) 10197 { 10198 // Relocate the field with the offset of the GOT entry for 10199 // the tp-relative offset of the symbol. 10200 unsigned int got_type = GOT_TYPE_TLS_OFFSET; 10201 unsigned int got_offset; 10202 if (gsym != NULL) 10203 { 10204 gold_assert(gsym->has_got_offset(got_type)); 10205 got_offset = gsym->got_offset(got_type); 10206 } 10207 else 10208 { 10209 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); 10210 gold_assert(object->local_has_got_offset(r_sym, got_type)); 10211 got_offset = object->local_got_offset(r_sym, got_type); 10212 } 10213 10214 // All GOT offsets are relative to the end of the GOT. 10215 got_offset -= target->got_size(); 10216 10217 Arm_address got_entry = 10218 target->got_plt_section()->address() + got_offset; 10219 10220 // Relocate the field with the PC relative offset of the GOT entry. 10221 RelocFuncs::pcrel32_unaligned(view, got_entry, address); 10222 return ArmRelocFuncs::STATUS_OKAY; 10223 } 10224 break; 10225 10226 case elfcpp::R_ARM_TLS_LE32: // Local-exec 10227 // If we're creating a shared library, a dynamic relocation will 10228 // have been created for this location, so do not apply it now. 10229 if (!parameters->options().shared()) 10230 { 10231 gold_assert(tls_segment != NULL); 10232 10233 // $tp points to the TCB, which is followed by the TLS, so we 10234 // need to add TCB size to the offset. 10235 Arm_address aligned_tcb_size = 10236 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment()); 10237 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size); 10238 10239 } 10240 return ArmRelocFuncs::STATUS_OKAY; 10241 10242 default: 10243 gold_unreachable(); 10244 } 10245 10246 gold_error_at_location(relinfo, relnum, rel.get_r_offset(), 10247 _("unsupported reloc %u"), 10248 r_type); 10249 return ArmRelocFuncs::STATUS_BAD_RELOC; 10250 } 10251 10252 // Relocate section data. 10253 10254 template<bool big_endian> 10255 void 10256 Target_arm<big_endian>::relocate_section( 10257 const Relocate_info<32, big_endian>* relinfo, 10258 unsigned int sh_type, 10259 const unsigned char* prelocs, 10260 size_t reloc_count, 10261 Output_section* output_section, 10262 bool needs_special_offset_handling, 10263 unsigned char* view, 10264 Arm_address address, 10265 section_size_type view_size, 10266 const Reloc_symbol_changes* reloc_symbol_changes) 10267 { 10268 typedef typename Target_arm<big_endian>::Relocate Arm_relocate; 10269 gold_assert(sh_type == elfcpp::SHT_REL); 10270 10271 // See if we are relocating a relaxed input section. If so, the view 10272 // covers the whole output section and we need to adjust accordingly. 10273 if (needs_special_offset_handling) 10274 { 10275 const Output_relaxed_input_section* poris = 10276 output_section->find_relaxed_input_section(relinfo->object, 10277 relinfo->data_shndx); 10278 if (poris != NULL) 10279 { 10280 Arm_address section_address = poris->address(); 10281 section_size_type section_size = poris->data_size(); 10282 10283 gold_assert((section_address >= address) 10284 && ((section_address + section_size) 10285 <= (address + view_size))); 10286 10287 off_t offset = section_address - address; 10288 view += offset; 10289 address += offset; 10290 view_size = section_size; 10291 } 10292 } 10293 10294 gold::relocate_section<32, big_endian, Target_arm, Arm_relocate, 10295 gold::Default_comdat_behavior, Classify_reloc>( 10296 relinfo, 10297 this, 10298 prelocs, 10299 reloc_count, 10300 output_section, 10301 needs_special_offset_handling, 10302 view, 10303 address, 10304 view_size, 10305 reloc_symbol_changes); 10306 } 10307 10308 // Return the size of a relocation while scanning during a relocatable 10309 // link. 10310 10311 template<bool big_endian> 10312 unsigned int 10313 Target_arm<big_endian>::Classify_reloc::get_size_for_reloc( 10314 unsigned int r_type, 10315 Relobj* object) 10316 { 10317 Target_arm<big_endian>* arm_target = 10318 Target_arm<big_endian>::default_target(); 10319 r_type = arm_target->get_real_reloc_type(r_type); 10320 const Arm_reloc_property* arp = 10321 arm_reloc_property_table->get_implemented_static_reloc_property(r_type); 10322 if (arp != NULL) 10323 return arp->size(); 10324 else 10325 { 10326 std::string reloc_name = 10327 arm_reloc_property_table->reloc_name_in_error_message(r_type); 10328 gold_error(_("%s: unexpected %s in object file"), 10329 object->name().c_str(), reloc_name.c_str()); 10330 return 0; 10331 } 10332 } 10333 10334 // Scan the relocs during a relocatable link. 10335 10336 template<bool big_endian> 10337 void 10338 Target_arm<big_endian>::scan_relocatable_relocs( 10339 Symbol_table* symtab, 10340 Layout* layout, 10341 Sized_relobj_file<32, big_endian>* object, 10342 unsigned int data_shndx, 10343 unsigned int sh_type, 10344 const unsigned char* prelocs, 10345 size_t reloc_count, 10346 Output_section* output_section, 10347 bool needs_special_offset_handling, 10348 size_t local_symbol_count, 10349 const unsigned char* plocal_symbols, 10350 Relocatable_relocs* rr) 10351 { 10352 typedef Arm_scan_relocatable_relocs<big_endian, Classify_reloc> 10353 Scan_relocatable_relocs; 10354 10355 gold_assert(sh_type == elfcpp::SHT_REL); 10356 10357 gold::scan_relocatable_relocs<32, big_endian, Scan_relocatable_relocs>( 10358 symtab, 10359 layout, 10360 object, 10361 data_shndx, 10362 prelocs, 10363 reloc_count, 10364 output_section, 10365 needs_special_offset_handling, 10366 local_symbol_count, 10367 plocal_symbols, 10368 rr); 10369 } 10370 10371 // Scan the relocs for --emit-relocs. 10372 10373 template<bool big_endian> 10374 void 10375 Target_arm<big_endian>::emit_relocs_scan(Symbol_table* symtab, 10376 Layout* layout, 10377 Sized_relobj_file<32, big_endian>* object, 10378 unsigned int data_shndx, 10379 unsigned int sh_type, 10380 const unsigned char* prelocs, 10381 size_t reloc_count, 10382 Output_section* output_section, 10383 bool needs_special_offset_handling, 10384 size_t local_symbol_count, 10385 const unsigned char* plocal_syms, 10386 Relocatable_relocs* rr) 10387 { 10388 typedef gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian> 10389 Classify_reloc; 10390 typedef gold::Default_emit_relocs_strategy<Classify_reloc> 10391 Emit_relocs_strategy; 10392 10393 gold_assert(sh_type == elfcpp::SHT_REL); 10394 10395 gold::scan_relocatable_relocs<32, big_endian, Emit_relocs_strategy>( 10396 symtab, 10397 layout, 10398 object, 10399 data_shndx, 10400 prelocs, 10401 reloc_count, 10402 output_section, 10403 needs_special_offset_handling, 10404 local_symbol_count, 10405 plocal_syms, 10406 rr); 10407 } 10408 10409 // Emit relocations for a section. 10410 10411 template<bool big_endian> 10412 void 10413 Target_arm<big_endian>::relocate_relocs( 10414 const Relocate_info<32, big_endian>* relinfo, 10415 unsigned int sh_type, 10416 const unsigned char* prelocs, 10417 size_t reloc_count, 10418 Output_section* output_section, 10419 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section, 10420 unsigned char* view, 10421 Arm_address view_address, 10422 section_size_type view_size, 10423 unsigned char* reloc_view, 10424 section_size_type reloc_view_size) 10425 { 10426 gold_assert(sh_type == elfcpp::SHT_REL); 10427 10428 gold::relocate_relocs<32, big_endian, Classify_reloc>( 10429 relinfo, 10430 prelocs, 10431 reloc_count, 10432 output_section, 10433 offset_in_output_section, 10434 view, 10435 view_address, 10436 view_size, 10437 reloc_view, 10438 reloc_view_size); 10439 } 10440 10441 // Perform target-specific processing in a relocatable link. This is 10442 // only used if we use the relocation strategy RELOC_SPECIAL. 10443 10444 template<bool big_endian> 10445 void 10446 Target_arm<big_endian>::relocate_special_relocatable( 10447 const Relocate_info<32, big_endian>* relinfo, 10448 unsigned int sh_type, 10449 const unsigned char* preloc_in, 10450 size_t relnum, 10451 Output_section* output_section, 10452 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section, 10453 unsigned char* view, 10454 elfcpp::Elf_types<32>::Elf_Addr view_address, 10455 section_size_type, 10456 unsigned char* preloc_out) 10457 { 10458 // We can only handle REL type relocation sections. 10459 gold_assert(sh_type == elfcpp::SHT_REL); 10460 10461 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype; 10462 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write 10463 Reltype_write; 10464 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1; 10465 10466 const Arm_relobj<big_endian>* object = 10467 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object); 10468 const unsigned int local_count = object->local_symbol_count(); 10469 10470 Reltype reloc(preloc_in); 10471 Reltype_write reloc_write(preloc_out); 10472 10473 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info(); 10474 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); 10475 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info); 10476 10477 const Arm_reloc_property* arp = 10478 arm_reloc_property_table->get_implemented_static_reloc_property(r_type); 10479 gold_assert(arp != NULL); 10480 10481 // Get the new symbol index. 10482 // We only use RELOC_SPECIAL strategy in local relocations. 10483 gold_assert(r_sym < local_count); 10484 10485 // We are adjusting a section symbol. We need to find 10486 // the symbol table index of the section symbol for 10487 // the output section corresponding to input section 10488 // in which this symbol is defined. 10489 bool is_ordinary; 10490 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary); 10491 gold_assert(is_ordinary); 10492 Output_section* os = object->output_section(shndx); 10493 gold_assert(os != NULL); 10494 gold_assert(os->needs_symtab_index()); 10495 unsigned int new_symndx = os->symtab_index(); 10496 10497 // Get the new offset--the location in the output section where 10498 // this relocation should be applied. 10499 10500 Arm_address offset = reloc.get_r_offset(); 10501 Arm_address new_offset; 10502 if (offset_in_output_section != invalid_address) 10503 new_offset = offset + offset_in_output_section; 10504 else 10505 { 10506 section_offset_type sot_offset = 10507 convert_types<section_offset_type, Arm_address>(offset); 10508 section_offset_type new_sot_offset = 10509 output_section->output_offset(object, relinfo->data_shndx, 10510 sot_offset); 10511 gold_assert(new_sot_offset != -1); 10512 new_offset = new_sot_offset; 10513 } 10514 10515 // In an object file, r_offset is an offset within the section. 10516 // In an executable or dynamic object, generated by 10517 // --emit-relocs, r_offset is an absolute address. 10518 if (!parameters->options().relocatable()) 10519 { 10520 new_offset += view_address; 10521 if (offset_in_output_section != invalid_address) 10522 new_offset -= offset_in_output_section; 10523 } 10524 10525 reloc_write.put_r_offset(new_offset); 10526 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type)); 10527 10528 // Handle the reloc addend. 10529 // The relocation uses a section symbol in the input file. 10530 // We are adjusting it to use a section symbol in the output 10531 // file. The input section symbol refers to some address in 10532 // the input section. We need the relocation in the output 10533 // file to refer to that same address. This adjustment to 10534 // the addend is the same calculation we use for a simple 10535 // absolute relocation for the input section symbol. 10536 10537 const Symbol_value<32>* psymval = object->local_symbol(r_sym); 10538 10539 // Handle THUMB bit. 10540 Symbol_value<32> symval; 10541 Arm_address thumb_bit = 10542 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0; 10543 if (thumb_bit != 0 10544 && arp->uses_thumb_bit() 10545 && ((psymval->value(object, 0) & 1) != 0)) 10546 { 10547 Arm_address stripped_value = 10548 psymval->value(object, 0) & ~static_cast<Arm_address>(1); 10549 symval.set_output_value(stripped_value); 10550 psymval = &symval; 10551 } 10552 10553 unsigned char* paddend = view + offset; 10554 typename Arm_relocate_functions<big_endian>::Status reloc_status = 10555 Arm_relocate_functions<big_endian>::STATUS_OKAY; 10556 switch (r_type) 10557 { 10558 case elfcpp::R_ARM_ABS8: 10559 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object, 10560 psymval); 10561 break; 10562 10563 case elfcpp::R_ARM_ABS12: 10564 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object, 10565 psymval); 10566 break; 10567 10568 case elfcpp::R_ARM_ABS16: 10569 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object, 10570 psymval); 10571 break; 10572 10573 case elfcpp::R_ARM_THM_ABS5: 10574 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend, 10575 object, 10576 psymval); 10577 break; 10578 10579 case elfcpp::R_ARM_MOVW_ABS_NC: 10580 case elfcpp::R_ARM_MOVW_PREL_NC: 10581 case elfcpp::R_ARM_MOVW_BREL_NC: 10582 case elfcpp::R_ARM_MOVW_BREL: 10583 reloc_status = Arm_relocate_functions<big_endian>::movw( 10584 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow()); 10585 break; 10586 10587 case elfcpp::R_ARM_THM_MOVW_ABS_NC: 10588 case elfcpp::R_ARM_THM_MOVW_PREL_NC: 10589 case elfcpp::R_ARM_THM_MOVW_BREL_NC: 10590 case elfcpp::R_ARM_THM_MOVW_BREL: 10591 reloc_status = Arm_relocate_functions<big_endian>::thm_movw( 10592 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow()); 10593 break; 10594 10595 case elfcpp::R_ARM_THM_CALL: 10596 case elfcpp::R_ARM_THM_XPC22: 10597 case elfcpp::R_ARM_THM_JUMP24: 10598 reloc_status = 10599 Arm_relocate_functions<big_endian>::thumb_branch_common( 10600 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit, 10601 false); 10602 break; 10603 10604 case elfcpp::R_ARM_PLT32: 10605 case elfcpp::R_ARM_CALL: 10606 case elfcpp::R_ARM_JUMP24: 10607 case elfcpp::R_ARM_XPC25: 10608 reloc_status = 10609 Arm_relocate_functions<big_endian>::arm_branch_common( 10610 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit, 10611 false); 10612 break; 10613 10614 case elfcpp::R_ARM_THM_JUMP19: 10615 reloc_status = 10616 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object, 10617 psymval, 0, thumb_bit); 10618 break; 10619 10620 case elfcpp::R_ARM_THM_JUMP6: 10621 reloc_status = 10622 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval, 10623 0); 10624 break; 10625 10626 case elfcpp::R_ARM_THM_JUMP8: 10627 reloc_status = 10628 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval, 10629 0); 10630 break; 10631 10632 case elfcpp::R_ARM_THM_JUMP11: 10633 reloc_status = 10634 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval, 10635 0); 10636 break; 10637 10638 case elfcpp::R_ARM_PREL31: 10639 reloc_status = 10640 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0, 10641 thumb_bit); 10642 break; 10643 10644 case elfcpp::R_ARM_THM_PC8: 10645 reloc_status = 10646 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval, 10647 0); 10648 break; 10649 10650 case elfcpp::R_ARM_THM_PC12: 10651 reloc_status = 10652 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval, 10653 0); 10654 break; 10655 10656 case elfcpp::R_ARM_THM_ALU_PREL_11_0: 10657 reloc_status = 10658 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval, 10659 0, thumb_bit); 10660 break; 10661 10662 // These relocation truncate relocation results so we cannot handle them 10663 // in a relocatable link. 10664 case elfcpp::R_ARM_MOVT_ABS: 10665 case elfcpp::R_ARM_THM_MOVT_ABS: 10666 case elfcpp::R_ARM_MOVT_PREL: 10667 case elfcpp::R_ARM_MOVT_BREL: 10668 case elfcpp::R_ARM_THM_MOVT_PREL: 10669 case elfcpp::R_ARM_THM_MOVT_BREL: 10670 case elfcpp::R_ARM_ALU_PC_G0_NC: 10671 case elfcpp::R_ARM_ALU_PC_G0: 10672 case elfcpp::R_ARM_ALU_PC_G1_NC: 10673 case elfcpp::R_ARM_ALU_PC_G1: 10674 case elfcpp::R_ARM_ALU_PC_G2: 10675 case elfcpp::R_ARM_ALU_SB_G0_NC: 10676 case elfcpp::R_ARM_ALU_SB_G0: 10677 case elfcpp::R_ARM_ALU_SB_G1_NC: 10678 case elfcpp::R_ARM_ALU_SB_G1: 10679 case elfcpp::R_ARM_ALU_SB_G2: 10680 case elfcpp::R_ARM_LDR_PC_G0: 10681 case elfcpp::R_ARM_LDR_PC_G1: 10682 case elfcpp::R_ARM_LDR_PC_G2: 10683 case elfcpp::R_ARM_LDR_SB_G0: 10684 case elfcpp::R_ARM_LDR_SB_G1: 10685 case elfcpp::R_ARM_LDR_SB_G2: 10686 case elfcpp::R_ARM_LDRS_PC_G0: 10687 case elfcpp::R_ARM_LDRS_PC_G1: 10688 case elfcpp::R_ARM_LDRS_PC_G2: 10689 case elfcpp::R_ARM_LDRS_SB_G0: 10690 case elfcpp::R_ARM_LDRS_SB_G1: 10691 case elfcpp::R_ARM_LDRS_SB_G2: 10692 case elfcpp::R_ARM_LDC_PC_G0: 10693 case elfcpp::R_ARM_LDC_PC_G1: 10694 case elfcpp::R_ARM_LDC_PC_G2: 10695 case elfcpp::R_ARM_LDC_SB_G0: 10696 case elfcpp::R_ARM_LDC_SB_G1: 10697 case elfcpp::R_ARM_LDC_SB_G2: 10698 gold_error(_("cannot handle %s in a relocatable link"), 10699 arp->name().c_str()); 10700 break; 10701 10702 default: 10703 gold_unreachable(); 10704 } 10705 10706 // Report any errors. 10707 switch (reloc_status) 10708 { 10709 case Arm_relocate_functions<big_endian>::STATUS_OKAY: 10710 break; 10711 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW: 10712 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(), 10713 _("relocation overflow in %s"), 10714 arp->name().c_str()); 10715 break; 10716 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC: 10717 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(), 10718 _("unexpected opcode while processing relocation %s"), 10719 arp->name().c_str()); 10720 break; 10721 default: 10722 gold_unreachable(); 10723 } 10724 } 10725 10726 // Return the value to use for a dynamic symbol which requires special 10727 // treatment. This is how we support equality comparisons of function 10728 // pointers across shared library boundaries, as described in the 10729 // processor specific ABI supplement. 10730 10731 template<bool big_endian> 10732 uint64_t 10733 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const 10734 { 10735 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset()); 10736 return this->plt_address_for_global(gsym); 10737 } 10738 10739 // Map platform-specific relocs to real relocs 10740 // 10741 template<bool big_endian> 10742 unsigned int 10743 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type) const 10744 { 10745 switch (r_type) 10746 { 10747 case elfcpp::R_ARM_TARGET1: 10748 return this->target1_reloc_; 10749 10750 case elfcpp::R_ARM_TARGET2: 10751 return this->target2_reloc_; 10752 10753 default: 10754 return r_type; 10755 } 10756 } 10757 10758 // Whether if two EABI versions V1 and V2 are compatible. 10759 10760 template<bool big_endian> 10761 bool 10762 Target_arm<big_endian>::are_eabi_versions_compatible( 10763 elfcpp::Elf_Word v1, 10764 elfcpp::Elf_Word v2) 10765 { 10766 // v4 and v5 are the same spec before and after it was released, 10767 // so allow mixing them. 10768 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN) 10769 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5) 10770 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4)) 10771 return true; 10772 10773 return v1 == v2; 10774 } 10775 10776 // Combine FLAGS from an input object called NAME and the processor-specific 10777 // flags in the ELF header of the output. Much of this is adapted from the 10778 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data 10779 // in bfd/elf32-arm.c. 10780 10781 template<bool big_endian> 10782 void 10783 Target_arm<big_endian>::merge_processor_specific_flags( 10784 const std::string& name, 10785 elfcpp::Elf_Word flags) 10786 { 10787 if (this->are_processor_specific_flags_set()) 10788 { 10789 elfcpp::Elf_Word out_flags = this->processor_specific_flags(); 10790 10791 // Nothing to merge if flags equal to those in output. 10792 if (flags == out_flags) 10793 return; 10794 10795 // Complain about various flag mismatches. 10796 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags); 10797 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags); 10798 if (!this->are_eabi_versions_compatible(version1, version2) 10799 && parameters->options().warn_mismatch()) 10800 gold_error(_("Source object %s has EABI version %d but output has " 10801 "EABI version %d."), 10802 name.c_str(), 10803 (flags & elfcpp::EF_ARM_EABIMASK) >> 24, 10804 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24); 10805 } 10806 else 10807 { 10808 // If the input is the default architecture and had the default 10809 // flags then do not bother setting the flags for the output 10810 // architecture, instead allow future merges to do this. If no 10811 // future merges ever set these flags then they will retain their 10812 // uninitialised values, which surprise surprise, correspond 10813 // to the default values. 10814 if (flags == 0) 10815 return; 10816 10817 // This is the first time, just copy the flags. 10818 // We only copy the EABI version for now. 10819 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK); 10820 } 10821 } 10822 10823 // Adjust ELF file header. 10824 template<bool big_endian> 10825 void 10826 Target_arm<big_endian>::do_adjust_elf_header( 10827 unsigned char* view, 10828 int len) 10829 { 10830 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size); 10831 10832 elfcpp::Ehdr<32, big_endian> ehdr(view); 10833 elfcpp::Elf_Word flags = this->processor_specific_flags(); 10834 unsigned char e_ident[elfcpp::EI_NIDENT]; 10835 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT); 10836 10837 if (elfcpp::arm_eabi_version(flags) 10838 == elfcpp::EF_ARM_EABI_UNKNOWN) 10839 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM; 10840 else 10841 e_ident[elfcpp::EI_OSABI] = 0; 10842 e_ident[elfcpp::EI_ABIVERSION] = 0; 10843 10844 // Do EF_ARM_BE8 adjustment. 10845 if (parameters->options().be8() && !big_endian) 10846 gold_error("BE8 images only valid in big-endian mode."); 10847 if (parameters->options().be8()) 10848 { 10849 flags |= elfcpp::EF_ARM_BE8; 10850 this->set_processor_specific_flags(flags); 10851 } 10852 10853 // If we're working in EABI_VER5, set the hard/soft float ABI flags 10854 // as appropriate. 10855 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5) 10856 { 10857 elfcpp::Elf_Half type = ehdr.get_e_type(); 10858 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN) 10859 { 10860 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args); 10861 if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp) 10862 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD; 10863 else 10864 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT; 10865 this->set_processor_specific_flags(flags); 10866 } 10867 } 10868 elfcpp::Ehdr_write<32, big_endian> oehdr(view); 10869 oehdr.put_e_ident(e_ident); 10870 oehdr.put_e_flags(this->processor_specific_flags()); 10871 } 10872 10873 // do_make_elf_object to override the same function in the base class. 10874 // We need to use a target-specific sub-class of 10875 // Sized_relobj_file<32, big_endian> to store ARM specific information. 10876 // Hence we need to have our own ELF object creation. 10877 10878 template<bool big_endian> 10879 Object* 10880 Target_arm<big_endian>::do_make_elf_object( 10881 const std::string& name, 10882 Input_file* input_file, 10883 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr) 10884 { 10885 int et = ehdr.get_e_type(); 10886 // ET_EXEC files are valid input for --just-symbols/-R, 10887 // and we treat them as relocatable objects. 10888 if (et == elfcpp::ET_REL 10889 || (et == elfcpp::ET_EXEC && input_file->just_symbols())) 10890 { 10891 Arm_relobj<big_endian>* obj = 10892 new Arm_relobj<big_endian>(name, input_file, offset, ehdr); 10893 obj->setup(); 10894 return obj; 10895 } 10896 else if (et == elfcpp::ET_DYN) 10897 { 10898 Sized_dynobj<32, big_endian>* obj = 10899 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr); 10900 obj->setup(); 10901 return obj; 10902 } 10903 else 10904 { 10905 gold_error(_("%s: unsupported ELF file type %d"), 10906 name.c_str(), et); 10907 return NULL; 10908 } 10909 } 10910 10911 // Read the architecture from the Tag_also_compatible_with attribute, if any. 10912 // Returns -1 if no architecture could be read. 10913 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c. 10914 10915 template<bool big_endian> 10916 int 10917 Target_arm<big_endian>::get_secondary_compatible_arch( 10918 const Attributes_section_data* pasd) 10919 { 10920 const Object_attribute* known_attributes = 10921 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC); 10922 10923 // Note: the tag and its argument below are uleb128 values, though 10924 // currently-defined values fit in one byte for each. 10925 const std::string& sv = 10926 known_attributes[elfcpp::Tag_also_compatible_with].string_value(); 10927 if (sv.size() == 2 10928 && sv.data()[0] == elfcpp::Tag_CPU_arch 10929 && (sv.data()[1] & 128) != 128) 10930 return sv.data()[1]; 10931 10932 // This tag is "safely ignorable", so don't complain if it looks funny. 10933 return -1; 10934 } 10935 10936 // Set, or unset, the architecture of the Tag_also_compatible_with attribute. 10937 // The tag is removed if ARCH is -1. 10938 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c. 10939 10940 template<bool big_endian> 10941 void 10942 Target_arm<big_endian>::set_secondary_compatible_arch( 10943 Attributes_section_data* pasd, 10944 int arch) 10945 { 10946 Object_attribute* known_attributes = 10947 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC); 10948 10949 if (arch == -1) 10950 { 10951 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(""); 10952 return; 10953 } 10954 10955 // Note: the tag and its argument below are uleb128 values, though 10956 // currently-defined values fit in one byte for each. 10957 char sv[3]; 10958 sv[0] = elfcpp::Tag_CPU_arch; 10959 gold_assert(arch != 0); 10960 sv[1] = arch; 10961 sv[2] = '\0'; 10962 10963 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv); 10964 } 10965 10966 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags 10967 // into account. 10968 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c. 10969 10970 template<bool big_endian> 10971 int 10972 Target_arm<big_endian>::tag_cpu_arch_combine( 10973 const char* name, 10974 int oldtag, 10975 int* secondary_compat_out, 10976 int newtag, 10977 int secondary_compat) 10978 { 10979 #define T(X) elfcpp::TAG_CPU_ARCH_##X 10980 static const int v6t2[] = 10981 { 10982 T(V6T2), // PRE_V4. 10983 T(V6T2), // V4. 10984 T(V6T2), // V4T. 10985 T(V6T2), // V5T. 10986 T(V6T2), // V5TE. 10987 T(V6T2), // V5TEJ. 10988 T(V6T2), // V6. 10989 T(V7), // V6KZ. 10990 T(V6T2) // V6T2. 10991 }; 10992 static const int v6k[] = 10993 { 10994 T(V6K), // PRE_V4. 10995 T(V6K), // V4. 10996 T(V6K), // V4T. 10997 T(V6K), // V5T. 10998 T(V6K), // V5TE. 10999 T(V6K), // V5TEJ. 11000 T(V6K), // V6. 11001 T(V6KZ), // V6KZ. 11002 T(V7), // V6T2. 11003 T(V6K) // V6K. 11004 }; 11005 static const int v7[] = 11006 { 11007 T(V7), // PRE_V4. 11008 T(V7), // V4. 11009 T(V7), // V4T. 11010 T(V7), // V5T. 11011 T(V7), // V5TE. 11012 T(V7), // V5TEJ. 11013 T(V7), // V6. 11014 T(V7), // V6KZ. 11015 T(V7), // V6T2. 11016 T(V7), // V6K. 11017 T(V7) // V7. 11018 }; 11019 static const int v6_m[] = 11020 { 11021 -1, // PRE_V4. 11022 -1, // V4. 11023 T(V6K), // V4T. 11024 T(V6K), // V5T. 11025 T(V6K), // V5TE. 11026 T(V6K), // V5TEJ. 11027 T(V6K), // V6. 11028 T(V6KZ), // V6KZ. 11029 T(V7), // V6T2. 11030 T(V6K), // V6K. 11031 T(V7), // V7. 11032 T(V6_M) // V6_M. 11033 }; 11034 static const int v6s_m[] = 11035 { 11036 -1, // PRE_V4. 11037 -1, // V4. 11038 T(V6K), // V4T. 11039 T(V6K), // V5T. 11040 T(V6K), // V5TE. 11041 T(V6K), // V5TEJ. 11042 T(V6K), // V6. 11043 T(V6KZ), // V6KZ. 11044 T(V7), // V6T2. 11045 T(V6K), // V6K. 11046 T(V7), // V7. 11047 T(V6S_M), // V6_M. 11048 T(V6S_M) // V6S_M. 11049 }; 11050 static const int v7e_m[] = 11051 { 11052 -1, // PRE_V4. 11053 -1, // V4. 11054 T(V7E_M), // V4T. 11055 T(V7E_M), // V5T. 11056 T(V7E_M), // V5TE. 11057 T(V7E_M), // V5TEJ. 11058 T(V7E_M), // V6. 11059 T(V7E_M), // V6KZ. 11060 T(V7E_M), // V6T2. 11061 T(V7E_M), // V6K. 11062 T(V7E_M), // V7. 11063 T(V7E_M), // V6_M. 11064 T(V7E_M), // V6S_M. 11065 T(V7E_M) // V7E_M. 11066 }; 11067 static const int v8[] = 11068 { 11069 T(V8), // PRE_V4. 11070 T(V8), // V4. 11071 T(V8), // V4T. 11072 T(V8), // V5T. 11073 T(V8), // V5TE. 11074 T(V8), // V5TEJ. 11075 T(V8), // V6. 11076 T(V8), // V6KZ. 11077 T(V8), // V6T2. 11078 T(V8), // V6K. 11079 T(V8), // V7. 11080 T(V8), // V6_M. 11081 T(V8), // V6S_M. 11082 T(V8), // V7E_M. 11083 T(V8) // V8. 11084 }; 11085 static const int v4t_plus_v6_m[] = 11086 { 11087 -1, // PRE_V4. 11088 -1, // V4. 11089 T(V4T), // V4T. 11090 T(V5T), // V5T. 11091 T(V5TE), // V5TE. 11092 T(V5TEJ), // V5TEJ. 11093 T(V6), // V6. 11094 T(V6KZ), // V6KZ. 11095 T(V6T2), // V6T2. 11096 T(V6K), // V6K. 11097 T(V7), // V7. 11098 T(V6_M), // V6_M. 11099 T(V6S_M), // V6S_M. 11100 T(V7E_M), // V7E_M. 11101 T(V8), // V8. 11102 T(V4T_PLUS_V6_M) // V4T plus V6_M. 11103 }; 11104 static const int* comb[] = 11105 { 11106 v6t2, 11107 v6k, 11108 v7, 11109 v6_m, 11110 v6s_m, 11111 v7e_m, 11112 v8, 11113 // Pseudo-architecture. 11114 v4t_plus_v6_m 11115 }; 11116 11117 // Check we've not got a higher architecture than we know about. 11118 11119 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH) 11120 { 11121 gold_error(_("%s: unknown CPU architecture"), name); 11122 return -1; 11123 } 11124 11125 // Override old tag if we have a Tag_also_compatible_with on the output. 11126 11127 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T)) 11128 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M))) 11129 oldtag = T(V4T_PLUS_V6_M); 11130 11131 // And override the new tag if we have a Tag_also_compatible_with on the 11132 // input. 11133 11134 if ((newtag == T(V6_M) && secondary_compat == T(V4T)) 11135 || (newtag == T(V4T) && secondary_compat == T(V6_M))) 11136 newtag = T(V4T_PLUS_V6_M); 11137 11138 // Architectures before V6KZ add features monotonically. 11139 int tagh = std::max(oldtag, newtag); 11140 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ) 11141 return tagh; 11142 11143 int tagl = std::min(oldtag, newtag); 11144 int result = comb[tagh - T(V6T2)][tagl]; 11145 11146 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M) 11147 // as the canonical version. 11148 if (result == T(V4T_PLUS_V6_M)) 11149 { 11150 result = T(V4T); 11151 *secondary_compat_out = T(V6_M); 11152 } 11153 else 11154 *secondary_compat_out = -1; 11155 11156 if (result == -1) 11157 { 11158 gold_error(_("%s: conflicting CPU architectures %d/%d"), 11159 name, oldtag, newtag); 11160 return -1; 11161 } 11162 11163 return result; 11164 #undef T 11165 } 11166 11167 // Helper to print AEABI enum tag value. 11168 11169 template<bool big_endian> 11170 std::string 11171 Target_arm<big_endian>::aeabi_enum_name(unsigned int value) 11172 { 11173 static const char* aeabi_enum_names[] = 11174 { "", "variable-size", "32-bit", "" }; 11175 const size_t aeabi_enum_names_size = 11176 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]); 11177 11178 if (value < aeabi_enum_names_size) 11179 return std::string(aeabi_enum_names[value]); 11180 else 11181 { 11182 char buffer[100]; 11183 sprintf(buffer, "<unknown value %u>", value); 11184 return std::string(buffer); 11185 } 11186 } 11187 11188 // Return the string value to store in TAG_CPU_name. 11189 11190 template<bool big_endian> 11191 std::string 11192 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value) 11193 { 11194 static const char* name_table[] = { 11195 // These aren't real CPU names, but we can't guess 11196 // that from the architecture version alone. 11197 "Pre v4", 11198 "ARM v4", 11199 "ARM v4T", 11200 "ARM v5T", 11201 "ARM v5TE", 11202 "ARM v5TEJ", 11203 "ARM v6", 11204 "ARM v6KZ", 11205 "ARM v6T2", 11206 "ARM v6K", 11207 "ARM v7", 11208 "ARM v6-M", 11209 "ARM v6S-M", 11210 "ARM v7E-M", 11211 "ARM v8" 11212 }; 11213 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]); 11214 11215 if (value < name_table_size) 11216 return std::string(name_table[value]); 11217 else 11218 { 11219 char buffer[100]; 11220 sprintf(buffer, "<unknown CPU value %u>", value); 11221 return std::string(buffer); 11222 } 11223 } 11224 11225 // Query attributes object to see if integer divide instructions may be 11226 // present in an object. 11227 11228 template<bool big_endian> 11229 bool 11230 Target_arm<big_endian>::attributes_accept_div(int arch, int profile, 11231 const Object_attribute* div_attr) 11232 { 11233 switch (div_attr->int_value()) 11234 { 11235 case 0: 11236 // Integer divide allowed if instruction contained in 11237 // architecture. 11238 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M')) 11239 return true; 11240 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M) 11241 return true; 11242 else 11243 return false; 11244 11245 case 1: 11246 // Integer divide explicitly prohibited. 11247 return false; 11248 11249 default: 11250 // Unrecognised case - treat as allowing divide everywhere. 11251 case 2: 11252 // Integer divide allowed in ARM state. 11253 return true; 11254 } 11255 } 11256 11257 // Query attributes object to see if integer divide instructions are 11258 // forbidden to be in the object. This is not the inverse of 11259 // attributes_accept_div. 11260 11261 template<bool big_endian> 11262 bool 11263 Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr) 11264 { 11265 return div_attr->int_value() == 1; 11266 } 11267 11268 // Merge object attributes from input file called NAME with those of the 11269 // output. The input object attributes are in the object pointed by PASD. 11270 11271 template<bool big_endian> 11272 void 11273 Target_arm<big_endian>::merge_object_attributes( 11274 const char* name, 11275 const Attributes_section_data* pasd) 11276 { 11277 // Return if there is no attributes section data. 11278 if (pasd == NULL) 11279 return; 11280 11281 // If output has no object attributes, just copy. 11282 const int vendor = Object_attribute::OBJ_ATTR_PROC; 11283 if (this->attributes_section_data_ == NULL) 11284 { 11285 this->attributes_section_data_ = new Attributes_section_data(*pasd); 11286 Object_attribute* out_attr = 11287 this->attributes_section_data_->known_attributes(vendor); 11288 11289 // We do not output objects with Tag_MPextension_use_legacy - we move 11290 // the attribute's value to Tag_MPextension_use. */ 11291 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0) 11292 { 11293 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0 11294 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() 11295 != out_attr[elfcpp::Tag_MPextension_use].int_value()) 11296 { 11297 gold_error(_("%s has both the current and legacy " 11298 "Tag_MPextension_use attributes"), 11299 name); 11300 } 11301 11302 out_attr[elfcpp::Tag_MPextension_use] = 11303 out_attr[elfcpp::Tag_MPextension_use_legacy]; 11304 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0); 11305 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0); 11306 } 11307 11308 return; 11309 } 11310 11311 const Object_attribute* in_attr = pasd->known_attributes(vendor); 11312 Object_attribute* out_attr = 11313 this->attributes_section_data_->known_attributes(vendor); 11314 11315 // This needs to happen before Tag_ABI_FP_number_model is merged. */ 11316 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value() 11317 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value()) 11318 { 11319 // Ignore mismatches if the object doesn't use floating point. */ 11320 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() 11321 == elfcpp::AEABI_FP_number_model_none 11322 || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() 11323 != elfcpp::AEABI_FP_number_model_none 11324 && out_attr[elfcpp::Tag_ABI_VFP_args].int_value() 11325 == elfcpp::AEABI_VFP_args_compatible)) 11326 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value( 11327 in_attr[elfcpp::Tag_ABI_VFP_args].int_value()); 11328 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() 11329 != elfcpp::AEABI_FP_number_model_none 11330 && in_attr[elfcpp::Tag_ABI_VFP_args].int_value() 11331 != elfcpp::AEABI_VFP_args_compatible 11332 && parameters->options().warn_mismatch()) 11333 gold_error(_("%s uses VFP register arguments, output does not"), 11334 name); 11335 } 11336 11337 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i) 11338 { 11339 // Merge this attribute with existing attributes. 11340 switch (i) 11341 { 11342 case elfcpp::Tag_CPU_raw_name: 11343 case elfcpp::Tag_CPU_name: 11344 // These are merged after Tag_CPU_arch. 11345 break; 11346 11347 case elfcpp::Tag_ABI_optimization_goals: 11348 case elfcpp::Tag_ABI_FP_optimization_goals: 11349 // Use the first value seen. 11350 break; 11351 11352 case elfcpp::Tag_CPU_arch: 11353 { 11354 unsigned int saved_out_attr = out_attr->int_value(); 11355 // Merge Tag_CPU_arch and Tag_also_compatible_with. 11356 int secondary_compat = 11357 this->get_secondary_compatible_arch(pasd); 11358 int secondary_compat_out = 11359 this->get_secondary_compatible_arch( 11360 this->attributes_section_data_); 11361 out_attr[i].set_int_value( 11362 tag_cpu_arch_combine(name, out_attr[i].int_value(), 11363 &secondary_compat_out, 11364 in_attr[i].int_value(), 11365 secondary_compat)); 11366 this->set_secondary_compatible_arch(this->attributes_section_data_, 11367 secondary_compat_out); 11368 11369 // Merge Tag_CPU_name and Tag_CPU_raw_name. 11370 if (out_attr[i].int_value() == saved_out_attr) 11371 ; // Leave the names alone. 11372 else if (out_attr[i].int_value() == in_attr[i].int_value()) 11373 { 11374 // The output architecture has been changed to match the 11375 // input architecture. Use the input names. 11376 out_attr[elfcpp::Tag_CPU_name].set_string_value( 11377 in_attr[elfcpp::Tag_CPU_name].string_value()); 11378 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value( 11379 in_attr[elfcpp::Tag_CPU_raw_name].string_value()); 11380 } 11381 else 11382 { 11383 out_attr[elfcpp::Tag_CPU_name].set_string_value(""); 11384 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(""); 11385 } 11386 11387 // If we still don't have a value for Tag_CPU_name, 11388 // make one up now. Tag_CPU_raw_name remains blank. 11389 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "") 11390 { 11391 const std::string cpu_name = 11392 this->tag_cpu_name_value(out_attr[i].int_value()); 11393 // FIXME: If we see an unknown CPU, this will be set 11394 // to "<unknown CPU n>", where n is the attribute value. 11395 // This is different from BFD, which leaves the name alone. 11396 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name); 11397 } 11398 } 11399 break; 11400 11401 case elfcpp::Tag_ARM_ISA_use: 11402 case elfcpp::Tag_THUMB_ISA_use: 11403 case elfcpp::Tag_WMMX_arch: 11404 case elfcpp::Tag_Advanced_SIMD_arch: 11405 // ??? Do Advanced_SIMD (NEON) and WMMX conflict? 11406 case elfcpp::Tag_ABI_FP_rounding: 11407 case elfcpp::Tag_ABI_FP_exceptions: 11408 case elfcpp::Tag_ABI_FP_user_exceptions: 11409 case elfcpp::Tag_ABI_FP_number_model: 11410 case elfcpp::Tag_VFP_HP_extension: 11411 case elfcpp::Tag_CPU_unaligned_access: 11412 case elfcpp::Tag_T2EE_use: 11413 case elfcpp::Tag_Virtualization_use: 11414 case elfcpp::Tag_MPextension_use: 11415 // Use the largest value specified. 11416 if (in_attr[i].int_value() > out_attr[i].int_value()) 11417 out_attr[i].set_int_value(in_attr[i].int_value()); 11418 break; 11419 11420 case elfcpp::Tag_ABI_align8_preserved: 11421 case elfcpp::Tag_ABI_PCS_RO_data: 11422 // Use the smallest value specified. 11423 if (in_attr[i].int_value() < out_attr[i].int_value()) 11424 out_attr[i].set_int_value(in_attr[i].int_value()); 11425 break; 11426 11427 case elfcpp::Tag_ABI_align8_needed: 11428 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0) 11429 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0 11430 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value() 11431 == 0))) 11432 { 11433 // This error message should be enabled once all non-conforming 11434 // binaries in the toolchain have had the attributes set 11435 // properly. 11436 // gold_error(_("output 8-byte data alignment conflicts with %s"), 11437 // name); 11438 } 11439 // Fall through. 11440 case elfcpp::Tag_ABI_FP_denormal: 11441 case elfcpp::Tag_ABI_PCS_GOT_use: 11442 { 11443 // These tags have 0 = don't care, 1 = strong requirement, 11444 // 2 = weak requirement. 11445 static const int order_021[3] = {0, 2, 1}; 11446 11447 // Use the "greatest" from the sequence 0, 2, 1, or the largest 11448 // value if greater than 2 (for future-proofing). 11449 if ((in_attr[i].int_value() > 2 11450 && in_attr[i].int_value() > out_attr[i].int_value()) 11451 || (in_attr[i].int_value() <= 2 11452 && out_attr[i].int_value() <= 2 11453 && (order_021[in_attr[i].int_value()] 11454 > order_021[out_attr[i].int_value()]))) 11455 out_attr[i].set_int_value(in_attr[i].int_value()); 11456 } 11457 break; 11458 11459 case elfcpp::Tag_CPU_arch_profile: 11460 if (out_attr[i].int_value() != in_attr[i].int_value()) 11461 { 11462 // 0 will merge with anything. 11463 // 'A' and 'S' merge to 'A'. 11464 // 'R' and 'S' merge to 'R'. 11465 // 'M' and 'A|R|S' is an error. 11466 if (out_attr[i].int_value() == 0 11467 || (out_attr[i].int_value() == 'S' 11468 && (in_attr[i].int_value() == 'A' 11469 || in_attr[i].int_value() == 'R'))) 11470 out_attr[i].set_int_value(in_attr[i].int_value()); 11471 else if (in_attr[i].int_value() == 0 11472 || (in_attr[i].int_value() == 'S' 11473 && (out_attr[i].int_value() == 'A' 11474 || out_attr[i].int_value() == 'R'))) 11475 ; // Do nothing. 11476 else if (parameters->options().warn_mismatch()) 11477 { 11478 gold_error 11479 (_("conflicting architecture profiles %c/%c"), 11480 in_attr[i].int_value() ? in_attr[i].int_value() : '0', 11481 out_attr[i].int_value() ? out_attr[i].int_value() : '0'); 11482 } 11483 } 11484 break; 11485 case elfcpp::Tag_VFP_arch: 11486 { 11487 static const struct 11488 { 11489 int ver; 11490 int regs; 11491 } vfp_versions[7] = 11492 { 11493 {0, 0}, 11494 {1, 16}, 11495 {2, 16}, 11496 {3, 32}, 11497 {3, 16}, 11498 {4, 32}, 11499 {4, 16} 11500 }; 11501 11502 // Values greater than 6 aren't defined, so just pick the 11503 // biggest. 11504 if (in_attr[i].int_value() > 6 11505 && in_attr[i].int_value() > out_attr[i].int_value()) 11506 { 11507 *out_attr = *in_attr; 11508 break; 11509 } 11510 // The output uses the superset of input features 11511 // (ISA version) and registers. 11512 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver, 11513 vfp_versions[out_attr[i].int_value()].ver); 11514 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs, 11515 vfp_versions[out_attr[i].int_value()].regs); 11516 // This assumes all possible supersets are also a valid 11517 // options. 11518 int newval; 11519 for (newval = 6; newval > 0; newval--) 11520 { 11521 if (regs == vfp_versions[newval].regs 11522 && ver == vfp_versions[newval].ver) 11523 break; 11524 } 11525 out_attr[i].set_int_value(newval); 11526 } 11527 break; 11528 case elfcpp::Tag_PCS_config: 11529 if (out_attr[i].int_value() == 0) 11530 out_attr[i].set_int_value(in_attr[i].int_value()); 11531 else if (in_attr[i].int_value() != 0 11532 && out_attr[i].int_value() != 0 11533 && parameters->options().warn_mismatch()) 11534 { 11535 // It's sometimes ok to mix different configs, so this is only 11536 // a warning. 11537 gold_warning(_("%s: conflicting platform configuration"), name); 11538 } 11539 break; 11540 case elfcpp::Tag_ABI_PCS_R9_use: 11541 if (in_attr[i].int_value() != out_attr[i].int_value() 11542 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused 11543 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused 11544 && parameters->options().warn_mismatch()) 11545 { 11546 gold_error(_("%s: conflicting use of R9"), name); 11547 } 11548 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused) 11549 out_attr[i].set_int_value(in_attr[i].int_value()); 11550 break; 11551 case elfcpp::Tag_ABI_PCS_RW_data: 11552 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel 11553 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value() 11554 != elfcpp::AEABI_R9_SB) 11555 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value() 11556 != elfcpp::AEABI_R9_unused) 11557 && parameters->options().warn_mismatch()) 11558 { 11559 gold_error(_("%s: SB relative addressing conflicts with use " 11560 "of R9"), 11561 name); 11562 } 11563 // Use the smallest value specified. 11564 if (in_attr[i].int_value() < out_attr[i].int_value()) 11565 out_attr[i].set_int_value(in_attr[i].int_value()); 11566 break; 11567 case elfcpp::Tag_ABI_PCS_wchar_t: 11568 if (out_attr[i].int_value() 11569 && in_attr[i].int_value() 11570 && out_attr[i].int_value() != in_attr[i].int_value() 11571 && parameters->options().warn_mismatch() 11572 && parameters->options().wchar_size_warning()) 11573 { 11574 gold_warning(_("%s uses %u-byte wchar_t yet the output is to " 11575 "use %u-byte wchar_t; use of wchar_t values " 11576 "across objects may fail"), 11577 name, in_attr[i].int_value(), 11578 out_attr[i].int_value()); 11579 } 11580 else if (in_attr[i].int_value() && !out_attr[i].int_value()) 11581 out_attr[i].set_int_value(in_attr[i].int_value()); 11582 break; 11583 case elfcpp::Tag_ABI_enum_size: 11584 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused) 11585 { 11586 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused 11587 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide) 11588 { 11589 // The existing object is compatible with anything. 11590 // Use whatever requirements the new object has. 11591 out_attr[i].set_int_value(in_attr[i].int_value()); 11592 } 11593 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide 11594 && out_attr[i].int_value() != in_attr[i].int_value() 11595 && parameters->options().warn_mismatch() 11596 && parameters->options().enum_size_warning()) 11597 { 11598 unsigned int in_value = in_attr[i].int_value(); 11599 unsigned int out_value = out_attr[i].int_value(); 11600 gold_warning(_("%s uses %s enums yet the output is to use " 11601 "%s enums; use of enum values across objects " 11602 "may fail"), 11603 name, 11604 this->aeabi_enum_name(in_value).c_str(), 11605 this->aeabi_enum_name(out_value).c_str()); 11606 } 11607 } 11608 break; 11609 case elfcpp::Tag_ABI_VFP_args: 11610 // Already done. 11611 break; 11612 case elfcpp::Tag_ABI_WMMX_args: 11613 if (in_attr[i].int_value() != out_attr[i].int_value() 11614 && parameters->options().warn_mismatch()) 11615 { 11616 gold_error(_("%s uses iWMMXt register arguments, output does " 11617 "not"), 11618 name); 11619 } 11620 break; 11621 case Object_attribute::Tag_compatibility: 11622 // Merged in target-independent code. 11623 break; 11624 case elfcpp::Tag_ABI_HardFP_use: 11625 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). 11626 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2) 11627 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1)) 11628 out_attr[i].set_int_value(3); 11629 else if (in_attr[i].int_value() > out_attr[i].int_value()) 11630 out_attr[i].set_int_value(in_attr[i].int_value()); 11631 break; 11632 case elfcpp::Tag_ABI_FP_16bit_format: 11633 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0) 11634 { 11635 if (in_attr[i].int_value() != out_attr[i].int_value() 11636 && parameters->options().warn_mismatch()) 11637 gold_error(_("fp16 format mismatch between %s and output"), 11638 name); 11639 } 11640 if (in_attr[i].int_value() != 0) 11641 out_attr[i].set_int_value(in_attr[i].int_value()); 11642 break; 11643 11644 case elfcpp::Tag_DIV_use: 11645 { 11646 // A value of zero on input means that the divide 11647 // instruction may be used if available in the base 11648 // architecture as specified via Tag_CPU_arch and 11649 // Tag_CPU_arch_profile. A value of 1 means that the user 11650 // did not want divide instructions. A value of 2 11651 // explicitly means that divide instructions were allowed 11652 // in ARM and Thumb state. 11653 int arch = this-> 11654 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)-> 11655 int_value(); 11656 int profile = this-> 11657 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)-> 11658 int_value(); 11659 if (in_attr[i].int_value() == out_attr[i].int_value()) 11660 { 11661 // Do nothing. 11662 } 11663 else if (attributes_forbid_div(&in_attr[i]) 11664 && !attributes_accept_div(arch, profile, &out_attr[i])) 11665 out_attr[i].set_int_value(1); 11666 else if (attributes_forbid_div(&out_attr[i]) 11667 && attributes_accept_div(arch, profile, &in_attr[i])) 11668 out_attr[i].set_int_value(in_attr[i].int_value()); 11669 else if (in_attr[i].int_value() == 2) 11670 out_attr[i].set_int_value(in_attr[i].int_value()); 11671 } 11672 break; 11673 11674 case elfcpp::Tag_MPextension_use_legacy: 11675 // We don't output objects with Tag_MPextension_use_legacy - we 11676 // move the value to Tag_MPextension_use. 11677 if (in_attr[i].int_value() != 0 11678 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0) 11679 { 11680 if (in_attr[elfcpp::Tag_MPextension_use].int_value() 11681 != in_attr[i].int_value()) 11682 { 11683 gold_error(_("%s has both the current and legacy " 11684 "Tag_MPextension_use attributes"), 11685 name); 11686 } 11687 } 11688 11689 if (in_attr[i].int_value() 11690 > out_attr[elfcpp::Tag_MPextension_use].int_value()) 11691 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i]; 11692 11693 break; 11694 11695 case elfcpp::Tag_nodefaults: 11696 // This tag is set if it exists, but the value is unused (and is 11697 // typically zero). We don't actually need to do anything here - 11698 // the merge happens automatically when the type flags are merged 11699 // below. 11700 break; 11701 case elfcpp::Tag_also_compatible_with: 11702 // Already done in Tag_CPU_arch. 11703 break; 11704 case elfcpp::Tag_conformance: 11705 // Keep the attribute if it matches. Throw it away otherwise. 11706 // No attribute means no claim to conform. 11707 if (in_attr[i].string_value() != out_attr[i].string_value()) 11708 out_attr[i].set_string_value(""); 11709 break; 11710 11711 default: 11712 { 11713 const char* err_object = NULL; 11714 11715 // The "known_obj_attributes" table does contain some undefined 11716 // attributes. Ensure that there are unused. 11717 if (out_attr[i].int_value() != 0 11718 || out_attr[i].string_value() != "") 11719 err_object = "output"; 11720 else if (in_attr[i].int_value() != 0 11721 || in_attr[i].string_value() != "") 11722 err_object = name; 11723 11724 if (err_object != NULL 11725 && parameters->options().warn_mismatch()) 11726 { 11727 // Attribute numbers >=64 (mod 128) can be safely ignored. 11728 if ((i & 127) < 64) 11729 gold_error(_("%s: unknown mandatory EABI object attribute " 11730 "%d"), 11731 err_object, i); 11732 else 11733 gold_warning(_("%s: unknown EABI object attribute %d"), 11734 err_object, i); 11735 } 11736 11737 // Only pass on attributes that match in both inputs. 11738 if (!in_attr[i].matches(out_attr[i])) 11739 { 11740 out_attr[i].set_int_value(0); 11741 out_attr[i].set_string_value(""); 11742 } 11743 } 11744 } 11745 11746 // If out_attr was copied from in_attr then it won't have a type yet. 11747 if (in_attr[i].type() && !out_attr[i].type()) 11748 out_attr[i].set_type(in_attr[i].type()); 11749 } 11750 11751 // Merge Tag_compatibility attributes and any common GNU ones. 11752 this->attributes_section_data_->merge(name, pasd); 11753 11754 // Check for any attributes not known on ARM. 11755 typedef Vendor_object_attributes::Other_attributes Other_attributes; 11756 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor); 11757 Other_attributes::const_iterator in_iter = in_other_attributes->begin(); 11758 Other_attributes* out_other_attributes = 11759 this->attributes_section_data_->other_attributes(vendor); 11760 Other_attributes::iterator out_iter = out_other_attributes->begin(); 11761 11762 while (in_iter != in_other_attributes->end() 11763 || out_iter != out_other_attributes->end()) 11764 { 11765 const char* err_object = NULL; 11766 int err_tag = 0; 11767 11768 // The tags for each list are in numerical order. 11769 // If the tags are equal, then merge. 11770 if (out_iter != out_other_attributes->end() 11771 && (in_iter == in_other_attributes->end() 11772 || in_iter->first > out_iter->first)) 11773 { 11774 // This attribute only exists in output. We can't merge, and we 11775 // don't know what the tag means, so delete it. 11776 err_object = "output"; 11777 err_tag = out_iter->first; 11778 int saved_tag = out_iter->first; 11779 delete out_iter->second; 11780 out_other_attributes->erase(out_iter); 11781 out_iter = out_other_attributes->upper_bound(saved_tag); 11782 } 11783 else if (in_iter != in_other_attributes->end() 11784 && (out_iter != out_other_attributes->end() 11785 || in_iter->first < out_iter->first)) 11786 { 11787 // This attribute only exists in input. We can't merge, and we 11788 // don't know what the tag means, so ignore it. 11789 err_object = name; 11790 err_tag = in_iter->first; 11791 ++in_iter; 11792 } 11793 else // The tags are equal. 11794 { 11795 // As present, all attributes in the list are unknown, and 11796 // therefore can't be merged meaningfully. 11797 err_object = "output"; 11798 err_tag = out_iter->first; 11799 11800 // Only pass on attributes that match in both inputs. 11801 if (!in_iter->second->matches(*(out_iter->second))) 11802 { 11803 // No match. Delete the attribute. 11804 int saved_tag = out_iter->first; 11805 delete out_iter->second; 11806 out_other_attributes->erase(out_iter); 11807 out_iter = out_other_attributes->upper_bound(saved_tag); 11808 } 11809 else 11810 { 11811 // Matched. Keep the attribute and move to the next. 11812 ++out_iter; 11813 ++in_iter; 11814 } 11815 } 11816 11817 if (err_object && parameters->options().warn_mismatch()) 11818 { 11819 // Attribute numbers >=64 (mod 128) can be safely ignored. */ 11820 if ((err_tag & 127) < 64) 11821 { 11822 gold_error(_("%s: unknown mandatory EABI object attribute %d"), 11823 err_object, err_tag); 11824 } 11825 else 11826 { 11827 gold_warning(_("%s: unknown EABI object attribute %d"), 11828 err_object, err_tag); 11829 } 11830 } 11831 } 11832 } 11833 11834 // Stub-generation methods for Target_arm. 11835 11836 // Make a new Arm_input_section object. 11837 11838 template<bool big_endian> 11839 Arm_input_section<big_endian>* 11840 Target_arm<big_endian>::new_arm_input_section( 11841 Relobj* relobj, 11842 unsigned int shndx) 11843 { 11844 Section_id sid(relobj, shndx); 11845 11846 Arm_input_section<big_endian>* arm_input_section = 11847 new Arm_input_section<big_endian>(relobj, shndx); 11848 arm_input_section->init(); 11849 11850 // Register new Arm_input_section in map for look-up. 11851 std::pair<typename Arm_input_section_map::iterator, bool> ins = 11852 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section)); 11853 11854 // Make sure that it we have not created another Arm_input_section 11855 // for this input section already. 11856 gold_assert(ins.second); 11857 11858 return arm_input_section; 11859 } 11860 11861 // Find the Arm_input_section object corresponding to the SHNDX-th input 11862 // section of RELOBJ. 11863 11864 template<bool big_endian> 11865 Arm_input_section<big_endian>* 11866 Target_arm<big_endian>::find_arm_input_section( 11867 Relobj* relobj, 11868 unsigned int shndx) const 11869 { 11870 Section_id sid(relobj, shndx); 11871 typename Arm_input_section_map::const_iterator p = 11872 this->arm_input_section_map_.find(sid); 11873 return (p != this->arm_input_section_map_.end()) ? p->second : NULL; 11874 } 11875 11876 // Make a new stub table. 11877 11878 template<bool big_endian> 11879 Stub_table<big_endian>* 11880 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner) 11881 { 11882 Stub_table<big_endian>* stub_table = 11883 new Stub_table<big_endian>(owner); 11884 this->stub_tables_.push_back(stub_table); 11885 11886 stub_table->set_address(owner->address() + owner->data_size()); 11887 stub_table->set_file_offset(owner->offset() + owner->data_size()); 11888 stub_table->finalize_data_size(); 11889 11890 return stub_table; 11891 } 11892 11893 // Scan a relocation for stub generation. 11894 11895 template<bool big_endian> 11896 void 11897 Target_arm<big_endian>::scan_reloc_for_stub( 11898 const Relocate_info<32, big_endian>* relinfo, 11899 unsigned int r_type, 11900 const Sized_symbol<32>* gsym, 11901 unsigned int r_sym, 11902 const Symbol_value<32>* psymval, 11903 elfcpp::Elf_types<32>::Elf_Swxword addend, 11904 Arm_address address) 11905 { 11906 const Arm_relobj<big_endian>* arm_relobj = 11907 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object); 11908 11909 bool target_is_thumb; 11910 Symbol_value<32> symval; 11911 if (gsym != NULL) 11912 { 11913 // This is a global symbol. Determine if we use PLT and if the 11914 // final target is THUMB. 11915 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type))) 11916 { 11917 // This uses a PLT, change the symbol value. 11918 symval.set_output_value(this->plt_address_for_global(gsym)); 11919 psymval = &symval; 11920 target_is_thumb = false; 11921 } 11922 else if (gsym->is_undefined()) 11923 // There is no need to generate a stub symbol is undefined. 11924 return; 11925 else 11926 { 11927 target_is_thumb = 11928 ((gsym->type() == elfcpp::STT_ARM_TFUNC) 11929 || (gsym->type() == elfcpp::STT_FUNC 11930 && !gsym->is_undefined() 11931 && ((psymval->value(arm_relobj, 0) & 1) != 0))); 11932 } 11933 } 11934 else 11935 { 11936 // This is a local symbol. Determine if the final target is THUMB. 11937 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym); 11938 } 11939 11940 // Strip LSB if this points to a THUMB target. 11941 const Arm_reloc_property* reloc_property = 11942 arm_reloc_property_table->get_implemented_static_reloc_property(r_type); 11943 gold_assert(reloc_property != NULL); 11944 if (target_is_thumb 11945 && reloc_property->uses_thumb_bit() 11946 && ((psymval->value(arm_relobj, 0) & 1) != 0)) 11947 { 11948 Arm_address stripped_value = 11949 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1); 11950 symval.set_output_value(stripped_value); 11951 psymval = &symval; 11952 } 11953 11954 // Get the symbol value. 11955 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0); 11956 11957 // Owing to pipelining, the PC relative branches below actually skip 11958 // two instructions when the branch offset is 0. 11959 Arm_address destination; 11960 switch (r_type) 11961 { 11962 case elfcpp::R_ARM_CALL: 11963 case elfcpp::R_ARM_JUMP24: 11964 case elfcpp::R_ARM_PLT32: 11965 // ARM branches. 11966 destination = value + addend + 8; 11967 break; 11968 case elfcpp::R_ARM_THM_CALL: 11969 case elfcpp::R_ARM_THM_XPC22: 11970 case elfcpp::R_ARM_THM_JUMP24: 11971 case elfcpp::R_ARM_THM_JUMP19: 11972 // THUMB branches. 11973 destination = value + addend + 4; 11974 break; 11975 default: 11976 gold_unreachable(); 11977 } 11978 11979 Reloc_stub* stub = NULL; 11980 Stub_type stub_type = 11981 Reloc_stub::stub_type_for_reloc(r_type, address, destination, 11982 target_is_thumb); 11983 if (stub_type != arm_stub_none) 11984 { 11985 // Try looking up an existing stub from a stub table. 11986 Stub_table<big_endian>* stub_table = 11987 arm_relobj->stub_table(relinfo->data_shndx); 11988 gold_assert(stub_table != NULL); 11989 11990 // Locate stub by destination. 11991 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend); 11992 11993 // Create a stub if there is not one already 11994 stub = stub_table->find_reloc_stub(stub_key); 11995 if (stub == NULL) 11996 { 11997 // create a new stub and add it to stub table. 11998 stub = this->stub_factory().make_reloc_stub(stub_type); 11999 stub_table->add_reloc_stub(stub, stub_key); 12000 } 12001 12002 // Record the destination address. 12003 stub->set_destination_address(destination 12004 | (target_is_thumb ? 1 : 0)); 12005 } 12006 12007 // For Cortex-A8, we need to record a relocation at 4K page boundary. 12008 if (this->fix_cortex_a8_ 12009 && (r_type == elfcpp::R_ARM_THM_JUMP24 12010 || r_type == elfcpp::R_ARM_THM_JUMP19 12011 || r_type == elfcpp::R_ARM_THM_CALL 12012 || r_type == elfcpp::R_ARM_THM_XPC22) 12013 && (address & 0xfffU) == 0xffeU) 12014 { 12015 // Found a candidate. Note we haven't checked the destination is 12016 // within 4K here: if we do so (and don't create a record) we can't 12017 // tell that a branch should have been relocated when scanning later. 12018 this->cortex_a8_relocs_info_[address] = 12019 new Cortex_a8_reloc(stub, r_type, 12020 destination | (target_is_thumb ? 1 : 0)); 12021 } 12022 } 12023 12024 // This function scans a relocation sections for stub generation. 12025 // The template parameter Relocate must be a class type which provides 12026 // a single function, relocate(), which implements the machine 12027 // specific part of a relocation. 12028 12029 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type: 12030 // SHT_REL or SHT_RELA. 12031 12032 // PRELOCS points to the relocation data. RELOC_COUNT is the number 12033 // of relocs. OUTPUT_SECTION is the output section. 12034 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be 12035 // mapped to output offsets. 12036 12037 // VIEW is the section data, VIEW_ADDRESS is its memory address, and 12038 // VIEW_SIZE is the size. These refer to the input section, unless 12039 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to 12040 // the output section. 12041 12042 template<bool big_endian> 12043 template<int sh_type> 12044 void inline 12045 Target_arm<big_endian>::scan_reloc_section_for_stubs( 12046 const Relocate_info<32, big_endian>* relinfo, 12047 const unsigned char* prelocs, 12048 size_t reloc_count, 12049 Output_section* output_section, 12050 bool needs_special_offset_handling, 12051 const unsigned char* view, 12052 elfcpp::Elf_types<32>::Elf_Addr view_address, 12053 section_size_type) 12054 { 12055 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype; 12056 const int reloc_size = 12057 Reloc_types<sh_type, 32, big_endian>::reloc_size; 12058 12059 Arm_relobj<big_endian>* arm_object = 12060 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object); 12061 unsigned int local_count = arm_object->local_symbol_count(); 12062 12063 gold::Default_comdat_behavior default_comdat_behavior; 12064 Comdat_behavior comdat_behavior = CB_UNDETERMINED; 12065 12066 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size) 12067 { 12068 Reltype reloc(prelocs); 12069 12070 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info(); 12071 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); 12072 unsigned int r_type = elfcpp::elf_r_type<32>(r_info); 12073 12074 r_type = this->get_real_reloc_type(r_type); 12075 12076 // Only a few relocation types need stubs. 12077 if ((r_type != elfcpp::R_ARM_CALL) 12078 && (r_type != elfcpp::R_ARM_JUMP24) 12079 && (r_type != elfcpp::R_ARM_PLT32) 12080 && (r_type != elfcpp::R_ARM_THM_CALL) 12081 && (r_type != elfcpp::R_ARM_THM_XPC22) 12082 && (r_type != elfcpp::R_ARM_THM_JUMP24) 12083 && (r_type != elfcpp::R_ARM_THM_JUMP19) 12084 && (r_type != elfcpp::R_ARM_V4BX)) 12085 continue; 12086 12087 section_offset_type offset = 12088 convert_to_section_size_type(reloc.get_r_offset()); 12089 12090 if (needs_special_offset_handling) 12091 { 12092 offset = output_section->output_offset(relinfo->object, 12093 relinfo->data_shndx, 12094 offset); 12095 if (offset == -1) 12096 continue; 12097 } 12098 12099 // Create a v4bx stub if --fix-v4bx-interworking is used. 12100 if (r_type == elfcpp::R_ARM_V4BX) 12101 { 12102 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING) 12103 { 12104 // Get the BX instruction. 12105 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; 12106 const Valtype* wv = 12107 reinterpret_cast<const Valtype*>(view + offset); 12108 elfcpp::Elf_types<32>::Elf_Swxword insn = 12109 elfcpp::Swap<32, big_endian>::readval(wv); 12110 const uint32_t reg = (insn & 0xf); 12111 12112 if (reg < 0xf) 12113 { 12114 // Try looking up an existing stub from a stub table. 12115 Stub_table<big_endian>* stub_table = 12116 arm_object->stub_table(relinfo->data_shndx); 12117 gold_assert(stub_table != NULL); 12118 12119 if (stub_table->find_arm_v4bx_stub(reg) == NULL) 12120 { 12121 // create a new stub and add it to stub table. 12122 Arm_v4bx_stub* stub = 12123 this->stub_factory().make_arm_v4bx_stub(reg); 12124 gold_assert(stub != NULL); 12125 stub_table->add_arm_v4bx_stub(stub); 12126 } 12127 } 12128 } 12129 continue; 12130 } 12131 12132 // Get the addend. 12133 Stub_addend_reader<sh_type, big_endian> stub_addend_reader; 12134 elfcpp::Elf_types<32>::Elf_Swxword addend = 12135 stub_addend_reader(r_type, view + offset, reloc); 12136 12137 const Sized_symbol<32>* sym; 12138 12139 Symbol_value<32> symval; 12140 const Symbol_value<32> *psymval; 12141 bool is_defined_in_discarded_section; 12142 unsigned int shndx; 12143 const Symbol* gsym = NULL; 12144 if (r_sym < local_count) 12145 { 12146 sym = NULL; 12147 psymval = arm_object->local_symbol(r_sym); 12148 12149 // If the local symbol belongs to a section we are discarding, 12150 // and that section is a debug section, try to find the 12151 // corresponding kept section and map this symbol to its 12152 // counterpart in the kept section. The symbol must not 12153 // correspond to a section we are folding. 12154 bool is_ordinary; 12155 shndx = psymval->input_shndx(&is_ordinary); 12156 is_defined_in_discarded_section = 12157 (is_ordinary 12158 && shndx != elfcpp::SHN_UNDEF 12159 && !arm_object->is_section_included(shndx) 12160 && !relinfo->symtab->is_section_folded(arm_object, shndx)); 12161 12162 // We need to compute the would-be final value of this local 12163 // symbol. 12164 if (!is_defined_in_discarded_section) 12165 { 12166 typedef Sized_relobj_file<32, big_endian> ObjType; 12167 if (psymval->is_section_symbol()) 12168 symval.set_is_section_symbol(); 12169 typename ObjType::Compute_final_local_value_status status = 12170 arm_object->compute_final_local_value(r_sym, psymval, &symval, 12171 relinfo->symtab); 12172 if (status == ObjType::CFLV_OK) 12173 { 12174 // Currently we cannot handle a branch to a target in 12175 // a merged section. If this is the case, issue an error 12176 // and also free the merge symbol value. 12177 if (!symval.has_output_value()) 12178 { 12179 const std::string& section_name = 12180 arm_object->section_name(shndx); 12181 arm_object->error(_("cannot handle branch to local %u " 12182 "in a merged section %s"), 12183 r_sym, section_name.c_str()); 12184 } 12185 psymval = &symval; 12186 } 12187 else 12188 { 12189 // We cannot determine the final value. 12190 continue; 12191 } 12192 } 12193 } 12194 else 12195 { 12196 gsym = arm_object->global_symbol(r_sym); 12197 gold_assert(gsym != NULL); 12198 if (gsym->is_forwarder()) 12199 gsym = relinfo->symtab->resolve_forwards(gsym); 12200 12201 sym = static_cast<const Sized_symbol<32>*>(gsym); 12202 if (sym->has_symtab_index() && sym->symtab_index() != -1U) 12203 symval.set_output_symtab_index(sym->symtab_index()); 12204 else 12205 symval.set_no_output_symtab_entry(); 12206 12207 // We need to compute the would-be final value of this global 12208 // symbol. 12209 const Symbol_table* symtab = relinfo->symtab; 12210 const Sized_symbol<32>* sized_symbol = 12211 symtab->get_sized_symbol<32>(gsym); 12212 Symbol_table::Compute_final_value_status status; 12213 Arm_address value = 12214 symtab->compute_final_value<32>(sized_symbol, &status); 12215 12216 // Skip this if the symbol has not output section. 12217 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION) 12218 continue; 12219 symval.set_output_value(value); 12220 12221 if (gsym->type() == elfcpp::STT_TLS) 12222 symval.set_is_tls_symbol(); 12223 else if (gsym->type() == elfcpp::STT_GNU_IFUNC) 12224 symval.set_is_ifunc_symbol(); 12225 psymval = &symval; 12226 12227 is_defined_in_discarded_section = 12228 (gsym->is_defined_in_discarded_section() 12229 && gsym->is_undefined()); 12230 shndx = 0; 12231 } 12232 12233 Symbol_value<32> symval2; 12234 if (is_defined_in_discarded_section) 12235 { 12236 std::string name = arm_object->section_name(relinfo->data_shndx); 12237 12238 if (comdat_behavior == CB_UNDETERMINED) 12239 comdat_behavior = default_comdat_behavior.get(name.c_str()); 12240 12241 if (comdat_behavior == CB_PRETEND) 12242 { 12243 // FIXME: This case does not work for global symbols. 12244 // We have no place to store the original section index. 12245 // Fortunately this does not matter for comdat sections, 12246 // only for sections explicitly discarded by a linker 12247 // script. 12248 bool found; 12249 typename elfcpp::Elf_types<32>::Elf_Addr value = 12250 arm_object->map_to_kept_section(shndx, name, &found); 12251 if (found) 12252 symval2.set_output_value(value + psymval->input_value()); 12253 else 12254 symval2.set_output_value(0); 12255 } 12256 else 12257 { 12258 if (comdat_behavior == CB_ERROR) 12259 issue_discarded_error(relinfo, i, offset, r_sym, gsym); 12260 symval2.set_output_value(0); 12261 } 12262 symval2.set_no_output_symtab_entry(); 12263 psymval = &symval2; 12264 } 12265 12266 // If symbol is a section symbol, we don't know the actual type of 12267 // destination. Give up. 12268 if (psymval->is_section_symbol()) 12269 continue; 12270 12271 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval, 12272 addend, view_address + offset); 12273 } 12274 } 12275 12276 // Scan an input section for stub generation. 12277 12278 template<bool big_endian> 12279 void 12280 Target_arm<big_endian>::scan_section_for_stubs( 12281 const Relocate_info<32, big_endian>* relinfo, 12282 unsigned int sh_type, 12283 const unsigned char* prelocs, 12284 size_t reloc_count, 12285 Output_section* output_section, 12286 bool needs_special_offset_handling, 12287 const unsigned char* view, 12288 Arm_address view_address, 12289 section_size_type view_size) 12290 { 12291 if (sh_type == elfcpp::SHT_REL) 12292 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>( 12293 relinfo, 12294 prelocs, 12295 reloc_count, 12296 output_section, 12297 needs_special_offset_handling, 12298 view, 12299 view_address, 12300 view_size); 12301 else if (sh_type == elfcpp::SHT_RELA) 12302 // We do not support RELA type relocations yet. This is provided for 12303 // completeness. 12304 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>( 12305 relinfo, 12306 prelocs, 12307 reloc_count, 12308 output_section, 12309 needs_special_offset_handling, 12310 view, 12311 view_address, 12312 view_size); 12313 else 12314 gold_unreachable(); 12315 } 12316 12317 // Group input sections for stub generation. 12318 // 12319 // We group input sections in an output section so that the total size, 12320 // including any padding space due to alignment is smaller than GROUP_SIZE 12321 // unless the only input section in group is bigger than GROUP_SIZE already. 12322 // Then an ARM stub table is created to follow the last input section 12323 // in group. For each group an ARM stub table is created an is placed 12324 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further 12325 // extend the group after the stub table. 12326 12327 template<bool big_endian> 12328 void 12329 Target_arm<big_endian>::group_sections( 12330 Layout* layout, 12331 section_size_type group_size, 12332 bool stubs_always_after_branch, 12333 const Task* task) 12334 { 12335 // Group input sections and insert stub table 12336 Layout::Section_list section_list; 12337 layout->get_executable_sections(§ion_list); 12338 for (Layout::Section_list::const_iterator p = section_list.begin(); 12339 p != section_list.end(); 12340 ++p) 12341 { 12342 Arm_output_section<big_endian>* output_section = 12343 Arm_output_section<big_endian>::as_arm_output_section(*p); 12344 output_section->group_sections(group_size, stubs_always_after_branch, 12345 this, task); 12346 } 12347 } 12348 12349 // Relaxation hook. This is where we do stub generation. 12350 12351 template<bool big_endian> 12352 bool 12353 Target_arm<big_endian>::do_relax( 12354 int pass, 12355 const Input_objects* input_objects, 12356 Symbol_table* symtab, 12357 Layout* layout, 12358 const Task* task) 12359 { 12360 // No need to generate stubs if this is a relocatable link. 12361 gold_assert(!parameters->options().relocatable()); 12362 12363 // If this is the first pass, we need to group input sections into 12364 // stub groups. 12365 bool done_exidx_fixup = false; 12366 typedef typename Stub_table_list::iterator Stub_table_iterator; 12367 if (pass == 1) 12368 { 12369 // Determine the stub group size. The group size is the absolute 12370 // value of the parameter --stub-group-size. If --stub-group-size 12371 // is passed a negative value, we restrict stubs to be always after 12372 // the stubbed branches. 12373 int32_t stub_group_size_param = 12374 parameters->options().stub_group_size(); 12375 bool stubs_always_after_branch = stub_group_size_param < 0; 12376 section_size_type stub_group_size = abs(stub_group_size_param); 12377 12378 if (stub_group_size == 1) 12379 { 12380 // Default value. 12381 // Thumb branch range is +-4MB has to be used as the default 12382 // maximum size (a given section can contain both ARM and Thumb 12383 // code, so the worst case has to be taken into account). If we are 12384 // fixing cortex-a8 errata, the branch range has to be even smaller, 12385 // since wide conditional branch has a range of +-1MB only. 12386 // 12387 // This value is 48K less than that, which allows for 4096 12388 // 12-byte stubs. If we exceed that, then we will fail to link. 12389 // The user will have to relink with an explicit group size 12390 // option. 12391 stub_group_size = 4145152; 12392 } 12393 12394 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K 12395 // page as the first half of a 32-bit branch straddling two 4K pages. 12396 // This is a crude way of enforcing that. In addition, long conditional 12397 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8 12398 // erratum, limit the group size to (1M - 12k) to avoid unreachable 12399 // cortex-A8 stubs from long conditional branches. 12400 if (this->fix_cortex_a8_) 12401 { 12402 stubs_always_after_branch = true; 12403 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12); 12404 stub_group_size = std::max(stub_group_size, cortex_a8_group_size); 12405 } 12406 12407 group_sections(layout, stub_group_size, stubs_always_after_branch, task); 12408 12409 // Also fix .ARM.exidx section coverage. 12410 Arm_output_section<big_endian>* exidx_output_section = NULL; 12411 for (Layout::Section_list::const_iterator p = 12412 layout->section_list().begin(); 12413 p != layout->section_list().end(); 12414 ++p) 12415 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX) 12416 { 12417 if (exidx_output_section == NULL) 12418 exidx_output_section = 12419 Arm_output_section<big_endian>::as_arm_output_section(*p); 12420 else 12421 // We cannot handle this now. 12422 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a " 12423 "non-relocatable link"), 12424 exidx_output_section->name(), 12425 (*p)->name()); 12426 } 12427 12428 if (exidx_output_section != NULL) 12429 { 12430 this->fix_exidx_coverage(layout, input_objects, exidx_output_section, 12431 symtab, task); 12432 done_exidx_fixup = true; 12433 } 12434 } 12435 else 12436 { 12437 // If this is not the first pass, addresses and file offsets have 12438 // been reset at this point, set them here. 12439 for (Stub_table_iterator sp = this->stub_tables_.begin(); 12440 sp != this->stub_tables_.end(); 12441 ++sp) 12442 { 12443 Arm_input_section<big_endian>* owner = (*sp)->owner(); 12444 off_t off = align_address(owner->original_size(), 12445 (*sp)->addralign()); 12446 (*sp)->set_address_and_file_offset(owner->address() + off, 12447 owner->offset() + off); 12448 } 12449 } 12450 12451 // The Cortex-A8 stubs are sensitive to layout of code sections. At the 12452 // beginning of each relaxation pass, just blow away all the stubs. 12453 // Alternatively, we could selectively remove only the stubs and reloc 12454 // information for code sections that have moved since the last pass. 12455 // That would require more book-keeping. 12456 if (this->fix_cortex_a8_) 12457 { 12458 // Clear all Cortex-A8 reloc information. 12459 for (typename Cortex_a8_relocs_info::const_iterator p = 12460 this->cortex_a8_relocs_info_.begin(); 12461 p != this->cortex_a8_relocs_info_.end(); 12462 ++p) 12463 delete p->second; 12464 this->cortex_a8_relocs_info_.clear(); 12465 12466 // Remove all Cortex-A8 stubs. 12467 for (Stub_table_iterator sp = this->stub_tables_.begin(); 12468 sp != this->stub_tables_.end(); 12469 ++sp) 12470 (*sp)->remove_all_cortex_a8_stubs(); 12471 } 12472 12473 // Scan relocs for relocation stubs 12474 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin(); 12475 op != input_objects->relobj_end(); 12476 ++op) 12477 { 12478 Arm_relobj<big_endian>* arm_relobj = 12479 Arm_relobj<big_endian>::as_arm_relobj(*op); 12480 // Lock the object so we can read from it. This is only called 12481 // single-threaded from Layout::finalize, so it is OK to lock. 12482 Task_lock_obj<Object> tl(task, arm_relobj); 12483 arm_relobj->scan_sections_for_stubs(this, symtab, layout); 12484 } 12485 12486 // Check all stub tables to see if any of them have their data sizes 12487 // or addresses alignments changed. These are the only things that 12488 // matter. 12489 bool any_stub_table_changed = false; 12490 Unordered_set<const Output_section*> sections_needing_adjustment; 12491 for (Stub_table_iterator sp = this->stub_tables_.begin(); 12492 (sp != this->stub_tables_.end()) && !any_stub_table_changed; 12493 ++sp) 12494 { 12495 if ((*sp)->update_data_size_and_addralign()) 12496 { 12497 // Update data size of stub table owner. 12498 Arm_input_section<big_endian>* owner = (*sp)->owner(); 12499 uint64_t address = owner->address(); 12500 off_t offset = owner->offset(); 12501 owner->reset_address_and_file_offset(); 12502 owner->set_address_and_file_offset(address, offset); 12503 12504 sections_needing_adjustment.insert(owner->output_section()); 12505 any_stub_table_changed = true; 12506 } 12507 } 12508 12509 // Output_section_data::output_section() returns a const pointer but we 12510 // need to update output sections, so we record all output sections needing 12511 // update above and scan the sections here to find out what sections need 12512 // to be updated. 12513 for (Layout::Section_list::const_iterator p = layout->section_list().begin(); 12514 p != layout->section_list().end(); 12515 ++p) 12516 { 12517 if (sections_needing_adjustment.find(*p) 12518 != sections_needing_adjustment.end()) 12519 (*p)->set_section_offsets_need_adjustment(); 12520 } 12521 12522 // Stop relaxation if no EXIDX fix-up and no stub table change. 12523 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed; 12524 12525 // Finalize the stubs in the last relaxation pass. 12526 if (!continue_relaxation) 12527 { 12528 for (Stub_table_iterator sp = this->stub_tables_.begin(); 12529 (sp != this->stub_tables_.end()) && !any_stub_table_changed; 12530 ++sp) 12531 (*sp)->finalize_stubs(); 12532 12533 // Update output local symbol counts of objects if necessary. 12534 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin(); 12535 op != input_objects->relobj_end(); 12536 ++op) 12537 { 12538 Arm_relobj<big_endian>* arm_relobj = 12539 Arm_relobj<big_endian>::as_arm_relobj(*op); 12540 12541 // Update output local symbol counts. We need to discard local 12542 // symbols defined in parts of input sections that are discarded by 12543 // relaxation. 12544 if (arm_relobj->output_local_symbol_count_needs_update()) 12545 { 12546 // We need to lock the object's file to update it. 12547 Task_lock_obj<Object> tl(task, arm_relobj); 12548 arm_relobj->update_output_local_symbol_count(); 12549 } 12550 } 12551 } 12552 12553 return continue_relaxation; 12554 } 12555 12556 // Relocate a stub. 12557 12558 template<bool big_endian> 12559 void 12560 Target_arm<big_endian>::relocate_stub( 12561 Stub* stub, 12562 const Relocate_info<32, big_endian>* relinfo, 12563 Output_section* output_section, 12564 unsigned char* view, 12565 Arm_address address, 12566 section_size_type view_size) 12567 { 12568 Relocate relocate; 12569 const Stub_template* stub_template = stub->stub_template(); 12570 for (size_t i = 0; i < stub_template->reloc_count(); i++) 12571 { 12572 size_t reloc_insn_index = stub_template->reloc_insn_index(i); 12573 const Insn_template* insn = &stub_template->insns()[reloc_insn_index]; 12574 12575 unsigned int r_type = insn->r_type(); 12576 section_size_type reloc_offset = stub_template->reloc_offset(i); 12577 section_size_type reloc_size = insn->size(); 12578 gold_assert(reloc_offset + reloc_size <= view_size); 12579 12580 // This is the address of the stub destination. 12581 Arm_address target = stub->reloc_target(i) + insn->reloc_addend(); 12582 Symbol_value<32> symval; 12583 symval.set_output_value(target); 12584 12585 // Synthesize a fake reloc just in case. We don't have a symbol so 12586 // we use 0. 12587 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size]; 12588 memset(reloc_buffer, 0, sizeof(reloc_buffer)); 12589 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer); 12590 reloc_write.put_r_offset(reloc_offset); 12591 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type)); 12592 12593 relocate.relocate(relinfo, elfcpp::SHT_REL, this, output_section, 12594 this->fake_relnum_for_stubs, reloc_buffer, 12595 NULL, &symval, view + reloc_offset, 12596 address + reloc_offset, reloc_size); 12597 } 12598 } 12599 12600 // Determine whether an object attribute tag takes an integer, a 12601 // string or both. 12602 12603 template<bool big_endian> 12604 int 12605 Target_arm<big_endian>::do_attribute_arg_type(int tag) const 12606 { 12607 if (tag == Object_attribute::Tag_compatibility) 12608 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL 12609 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL); 12610 else if (tag == elfcpp::Tag_nodefaults) 12611 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL 12612 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT); 12613 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name) 12614 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL; 12615 else if (tag < 32) 12616 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL; 12617 else 12618 return ((tag & 1) != 0 12619 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL 12620 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL); 12621 } 12622 12623 // Reorder attributes. 12624 // 12625 // The ABI defines that Tag_conformance should be emitted first, and that 12626 // Tag_nodefaults should be second (if either is defined). This sets those 12627 // two positions, and bumps up the position of all the remaining tags to 12628 // compensate. 12629 12630 template<bool big_endian> 12631 int 12632 Target_arm<big_endian>::do_attributes_order(int num) const 12633 { 12634 // Reorder the known object attributes in output. We want to move 12635 // Tag_conformance to position 4 and Tag_conformance to position 5 12636 // and shift everything between 4 .. Tag_conformance - 1 to make room. 12637 if (num == 4) 12638 return elfcpp::Tag_conformance; 12639 if (num == 5) 12640 return elfcpp::Tag_nodefaults; 12641 if ((num - 2) < elfcpp::Tag_nodefaults) 12642 return num - 2; 12643 if ((num - 1) < elfcpp::Tag_conformance) 12644 return num - 1; 12645 return num; 12646 } 12647 12648 // Scan a span of THUMB code for Cortex-A8 erratum. 12649 12650 template<bool big_endian> 12651 void 12652 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum( 12653 Arm_relobj<big_endian>* arm_relobj, 12654 unsigned int shndx, 12655 section_size_type span_start, 12656 section_size_type span_end, 12657 const unsigned char* view, 12658 Arm_address address) 12659 { 12660 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where: 12661 // 12662 // The opcode is BLX.W, BL.W, B.W, Bcc.W 12663 // The branch target is in the same 4KB region as the 12664 // first half of the branch. 12665 // The instruction before the branch is a 32-bit 12666 // length non-branch instruction. 12667 section_size_type i = span_start; 12668 bool last_was_32bit = false; 12669 bool last_was_branch = false; 12670 while (i < span_end) 12671 { 12672 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; 12673 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i); 12674 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv); 12675 bool is_blx = false, is_b = false; 12676 bool is_bl = false, is_bcc = false; 12677 12678 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000; 12679 if (insn_32bit) 12680 { 12681 // Load the rest of the insn (in manual-friendly order). 12682 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1); 12683 12684 // Encoding T4: B<c>.W. 12685 is_b = (insn & 0xf800d000U) == 0xf0009000U; 12686 // Encoding T1: BL<c>.W. 12687 is_bl = (insn & 0xf800d000U) == 0xf000d000U; 12688 // Encoding T2: BLX<c>.W. 12689 is_blx = (insn & 0xf800d000U) == 0xf000c000U; 12690 // Encoding T3: B<c>.W (not permitted in IT block). 12691 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U 12692 && (insn & 0x07f00000U) != 0x03800000U); 12693 } 12694 12695 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc; 12696 12697 // If this instruction is a 32-bit THUMB branch that crosses a 4K 12698 // page boundary and it follows 32-bit non-branch instruction, 12699 // we need to work around. 12700 if (is_32bit_branch 12701 && ((address + i) & 0xfffU) == 0xffeU 12702 && last_was_32bit 12703 && !last_was_branch) 12704 { 12705 // Check to see if there is a relocation stub for this branch. 12706 bool force_target_arm = false; 12707 bool force_target_thumb = false; 12708 const Cortex_a8_reloc* cortex_a8_reloc = NULL; 12709 Cortex_a8_relocs_info::const_iterator p = 12710 this->cortex_a8_relocs_info_.find(address + i); 12711 12712 if (p != this->cortex_a8_relocs_info_.end()) 12713 { 12714 cortex_a8_reloc = p->second; 12715 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0; 12716 12717 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL 12718 && !target_is_thumb) 12719 force_target_arm = true; 12720 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL 12721 && target_is_thumb) 12722 force_target_thumb = true; 12723 } 12724 12725 off_t offset; 12726 Stub_type stub_type = arm_stub_none; 12727 12728 // Check if we have an offending branch instruction. 12729 uint16_t upper_insn = (insn >> 16) & 0xffffU; 12730 uint16_t lower_insn = insn & 0xffffU; 12731 typedef class Arm_relocate_functions<big_endian> RelocFuncs; 12732 12733 if (cortex_a8_reloc != NULL 12734 && cortex_a8_reloc->reloc_stub() != NULL) 12735 // We've already made a stub for this instruction, e.g. 12736 // it's a long branch or a Thumb->ARM stub. Assume that 12737 // stub will suffice to work around the A8 erratum (see 12738 // setting of always_after_branch above). 12739 ; 12740 else if (is_bcc) 12741 { 12742 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn, 12743 lower_insn); 12744 stub_type = arm_stub_a8_veneer_b_cond; 12745 } 12746 else if (is_b || is_bl || is_blx) 12747 { 12748 offset = RelocFuncs::thumb32_branch_offset(upper_insn, 12749 lower_insn); 12750 if (is_blx) 12751 offset &= ~3; 12752 12753 stub_type = (is_blx 12754 ? arm_stub_a8_veneer_blx 12755 : (is_bl 12756 ? arm_stub_a8_veneer_bl 12757 : arm_stub_a8_veneer_b)); 12758 } 12759 12760 if (stub_type != arm_stub_none) 12761 { 12762 Arm_address pc_for_insn = address + i + 4; 12763 12764 // The original instruction is a BL, but the target is 12765 // an ARM instruction. If we were not making a stub, 12766 // the BL would have been converted to a BLX. Use the 12767 // BLX stub instead in that case. 12768 if (this->may_use_v5t_interworking() && force_target_arm 12769 && stub_type == arm_stub_a8_veneer_bl) 12770 { 12771 stub_type = arm_stub_a8_veneer_blx; 12772 is_blx = true; 12773 is_bl = false; 12774 } 12775 // Conversely, if the original instruction was 12776 // BLX but the target is Thumb mode, use the BL stub. 12777 else if (force_target_thumb 12778 && stub_type == arm_stub_a8_veneer_blx) 12779 { 12780 stub_type = arm_stub_a8_veneer_bl; 12781 is_blx = false; 12782 is_bl = true; 12783 } 12784 12785 if (is_blx) 12786 pc_for_insn &= ~3; 12787 12788 // If we found a relocation, use the proper destination, 12789 // not the offset in the (unrelocated) instruction. 12790 // Note this is always done if we switched the stub type above. 12791 if (cortex_a8_reloc != NULL) 12792 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn); 12793 12794 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1); 12795 12796 // Add a new stub if destination address is in the same page. 12797 if (((address + i) & ~0xfffU) == (target & ~0xfffU)) 12798 { 12799 Cortex_a8_stub* stub = 12800 this->stub_factory_.make_cortex_a8_stub(stub_type, 12801 arm_relobj, shndx, 12802 address + i, 12803 target, insn); 12804 Stub_table<big_endian>* stub_table = 12805 arm_relobj->stub_table(shndx); 12806 gold_assert(stub_table != NULL); 12807 stub_table->add_cortex_a8_stub(address + i, stub); 12808 } 12809 } 12810 } 12811 12812 i += insn_32bit ? 4 : 2; 12813 last_was_32bit = insn_32bit; 12814 last_was_branch = is_32bit_branch; 12815 } 12816 } 12817 12818 // Apply the Cortex-A8 workaround. 12819 12820 template<bool big_endian> 12821 void 12822 Target_arm<big_endian>::apply_cortex_a8_workaround( 12823 const Cortex_a8_stub* stub, 12824 Arm_address stub_address, 12825 unsigned char* insn_view, 12826 Arm_address insn_address) 12827 { 12828 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; 12829 Valtype* wv = reinterpret_cast<Valtype*>(insn_view); 12830 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); 12831 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); 12832 off_t branch_offset = stub_address - (insn_address + 4); 12833 12834 typedef class Arm_relocate_functions<big_endian> RelocFuncs; 12835 switch (stub->stub_template()->type()) 12836 { 12837 case arm_stub_a8_veneer_b_cond: 12838 // For a conditional branch, we re-write it to be an unconditional 12839 // branch to the stub. We use the THUMB-2 encoding here. 12840 upper_insn = 0xf000U; 12841 lower_insn = 0xb800U; 12842 // Fall through. 12843 case arm_stub_a8_veneer_b: 12844 case arm_stub_a8_veneer_bl: 12845 case arm_stub_a8_veneer_blx: 12846 if ((lower_insn & 0x5000U) == 0x4000U) 12847 // For a BLX instruction, make sure that the relocation is 12848 // rounded up to a word boundary. This follows the semantics of 12849 // the instruction which specifies that bit 1 of the target 12850 // address will come from bit 1 of the base address. 12851 branch_offset = (branch_offset + 2) & ~3; 12852 12853 // Put BRANCH_OFFSET back into the insn. 12854 gold_assert(!Bits<25>::has_overflow32(branch_offset)); 12855 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset); 12856 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset); 12857 break; 12858 12859 default: 12860 gold_unreachable(); 12861 } 12862 12863 // Put the relocated value back in the object file: 12864 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn); 12865 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn); 12866 } 12867 12868 // Target selector for ARM. Note this is never instantiated directly. 12869 // It's only used in Target_selector_arm_nacl, below. 12870 12871 template<bool big_endian> 12872 class Target_selector_arm : public Target_selector 12873 { 12874 public: 12875 Target_selector_arm() 12876 : Target_selector(elfcpp::EM_ARM, 32, big_endian, 12877 (big_endian ? "elf32-bigarm" : "elf32-littlearm"), 12878 (big_endian ? "armelfb" : "armelf")) 12879 { } 12880 12881 Target* 12882 do_instantiate_target() 12883 { return new Target_arm<big_endian>(); } 12884 }; 12885 12886 // Fix .ARM.exidx section coverage. 12887 12888 template<bool big_endian> 12889 void 12890 Target_arm<big_endian>::fix_exidx_coverage( 12891 Layout* layout, 12892 const Input_objects* input_objects, 12893 Arm_output_section<big_endian>* exidx_section, 12894 Symbol_table* symtab, 12895 const Task* task) 12896 { 12897 // We need to look at all the input sections in output in ascending 12898 // order of output address. We do that by building a sorted list 12899 // of output sections by addresses. Then we looks at the output sections 12900 // in order. The input sections in an output section are already sorted 12901 // by addresses within the output section. 12902 12903 typedef std::set<Output_section*, output_section_address_less_than> 12904 Sorted_output_section_list; 12905 Sorted_output_section_list sorted_output_sections; 12906 12907 // Find out all the output sections of input sections pointed by 12908 // EXIDX input sections. 12909 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); 12910 p != input_objects->relobj_end(); 12911 ++p) 12912 { 12913 Arm_relobj<big_endian>* arm_relobj = 12914 Arm_relobj<big_endian>::as_arm_relobj(*p); 12915 std::vector<unsigned int> shndx_list; 12916 arm_relobj->get_exidx_shndx_list(&shndx_list); 12917 for (size_t i = 0; i < shndx_list.size(); ++i) 12918 { 12919 const Arm_exidx_input_section* exidx_input_section = 12920 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]); 12921 gold_assert(exidx_input_section != NULL); 12922 if (!exidx_input_section->has_errors()) 12923 { 12924 unsigned int text_shndx = exidx_input_section->link(); 12925 Output_section* os = arm_relobj->output_section(text_shndx); 12926 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0) 12927 sorted_output_sections.insert(os); 12928 } 12929 } 12930 } 12931 12932 // Go over the output sections in ascending order of output addresses. 12933 typedef typename Arm_output_section<big_endian>::Text_section_list 12934 Text_section_list; 12935 Text_section_list sorted_text_sections; 12936 for (typename Sorted_output_section_list::iterator p = 12937 sorted_output_sections.begin(); 12938 p != sorted_output_sections.end(); 12939 ++p) 12940 { 12941 Arm_output_section<big_endian>* arm_output_section = 12942 Arm_output_section<big_endian>::as_arm_output_section(*p); 12943 arm_output_section->append_text_sections_to_list(&sorted_text_sections); 12944 } 12945 12946 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab, 12947 merge_exidx_entries(), task); 12948 } 12949 12950 template<bool big_endian> 12951 void 12952 Target_arm<big_endian>::do_define_standard_symbols( 12953 Symbol_table* symtab, 12954 Layout* layout) 12955 { 12956 // Handle the .ARM.exidx section. 12957 Output_section* exidx_section = layout->find_output_section(".ARM.exidx"); 12958 12959 if (exidx_section != NULL) 12960 { 12961 // Create __exidx_start and __exidx_end symbols. 12962 symtab->define_in_output_data("__exidx_start", 12963 NULL, // version 12964 Symbol_table::PREDEFINED, 12965 exidx_section, 12966 0, // value 12967 0, // symsize 12968 elfcpp::STT_NOTYPE, 12969 elfcpp::STB_GLOBAL, 12970 elfcpp::STV_HIDDEN, 12971 0, // nonvis 12972 false, // offset_is_from_end 12973 true); // only_if_ref 12974 12975 symtab->define_in_output_data("__exidx_end", 12976 NULL, // version 12977 Symbol_table::PREDEFINED, 12978 exidx_section, 12979 0, // value 12980 0, // symsize 12981 elfcpp::STT_NOTYPE, 12982 elfcpp::STB_GLOBAL, 12983 elfcpp::STV_HIDDEN, 12984 0, // nonvis 12985 true, // offset_is_from_end 12986 true); // only_if_ref 12987 } 12988 else 12989 { 12990 // Define __exidx_start and __exidx_end even when .ARM.exidx 12991 // section is missing to match ld's behaviour. 12992 symtab->define_as_constant("__exidx_start", NULL, 12993 Symbol_table::PREDEFINED, 12994 0, 0, elfcpp::STT_OBJECT, 12995 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, 12996 true, false); 12997 symtab->define_as_constant("__exidx_end", NULL, 12998 Symbol_table::PREDEFINED, 12999 0, 0, elfcpp::STT_OBJECT, 13000 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, 13001 true, false); 13002 } 13003 } 13004 13005 // NaCl variant. It uses different PLT contents. 13006 13007 template<bool big_endian> 13008 class Output_data_plt_arm_nacl; 13009 13010 template<bool big_endian> 13011 class Target_arm_nacl : public Target_arm<big_endian> 13012 { 13013 public: 13014 Target_arm_nacl() 13015 : Target_arm<big_endian>(&arm_nacl_info) 13016 { } 13017 13018 protected: 13019 virtual Output_data_plt_arm<big_endian>* 13020 do_make_data_plt( 13021 Layout* layout, 13022 Arm_output_data_got<big_endian>* got, 13023 Output_data_space* got_plt, 13024 Output_data_space* got_irelative) 13025 { return new Output_data_plt_arm_nacl<big_endian>( 13026 layout, got, got_plt, got_irelative); } 13027 13028 private: 13029 static const Target::Target_info arm_nacl_info; 13030 }; 13031 13032 template<bool big_endian> 13033 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info = 13034 { 13035 32, // size 13036 big_endian, // is_big_endian 13037 elfcpp::EM_ARM, // machine_code 13038 false, // has_make_symbol 13039 false, // has_resolve 13040 false, // has_code_fill 13041 true, // is_default_stack_executable 13042 false, // can_icf_inline_merge_sections 13043 '\0', // wrap_char 13044 "/lib/ld-nacl-arm.so.1", // dynamic_linker 13045 0x20000, // default_text_segment_address 13046 0x10000, // abi_pagesize (overridable by -z max-page-size) 13047 0x10000, // common_pagesize (overridable by -z common-page-size) 13048 true, // isolate_execinstr 13049 0x10000000, // rosegment_gap 13050 elfcpp::SHN_UNDEF, // small_common_shndx 13051 elfcpp::SHN_UNDEF, // large_common_shndx 13052 0, // small_common_section_flags 13053 0, // large_common_section_flags 13054 ".ARM.attributes", // attributes_section 13055 "aeabi", // attributes_vendor 13056 "_start", // entry_symbol_name 13057 32, // hash_entry_size 13058 elfcpp::SHT_PROGBITS, // unwind_section_type 13059 }; 13060 13061 template<bool big_endian> 13062 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian> 13063 { 13064 public: 13065 Output_data_plt_arm_nacl( 13066 Layout* layout, 13067 Arm_output_data_got<big_endian>* got, 13068 Output_data_space* got_plt, 13069 Output_data_space* got_irelative) 13070 : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative) 13071 { } 13072 13073 protected: 13074 // Return the offset of the first non-reserved PLT entry. 13075 virtual unsigned int 13076 do_first_plt_entry_offset() const 13077 { return sizeof(first_plt_entry); } 13078 13079 // Return the size of a PLT entry. 13080 virtual unsigned int 13081 do_get_plt_entry_size() const 13082 { return sizeof(plt_entry); } 13083 13084 virtual void 13085 do_fill_first_plt_entry(unsigned char* pov, 13086 Arm_address got_address, 13087 Arm_address plt_address); 13088 13089 virtual void 13090 do_fill_plt_entry(unsigned char* pov, 13091 Arm_address got_address, 13092 Arm_address plt_address, 13093 unsigned int got_offset, 13094 unsigned int plt_offset); 13095 13096 private: 13097 inline uint32_t arm_movw_immediate(uint32_t value) 13098 { 13099 return (value & 0x00000fff) | ((value & 0x0000f000) << 4); 13100 } 13101 13102 inline uint32_t arm_movt_immediate(uint32_t value) 13103 { 13104 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12); 13105 } 13106 13107 // Template for the first PLT entry. 13108 static const uint32_t first_plt_entry[16]; 13109 13110 // Template for subsequent PLT entries. 13111 static const uint32_t plt_entry[4]; 13112 }; 13113 13114 // The first entry in the PLT. 13115 template<bool big_endian> 13116 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] = 13117 { 13118 // First bundle: 13119 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8 13120 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8 13121 0xe08cc00f, // add ip, ip, pc 13122 0xe52dc008, // str ip, [sp, #-8]! 13123 // Second bundle: 13124 0xe3ccc103, // bic ip, ip, #0xc0000000 13125 0xe59cc000, // ldr ip, [ip] 13126 0xe3ccc13f, // bic ip, ip, #0xc000000f 13127 0xe12fff1c, // bx ip 13128 // Third bundle: 13129 0xe320f000, // nop 13130 0xe320f000, // nop 13131 0xe320f000, // nop 13132 // .Lplt_tail: 13133 0xe50dc004, // str ip, [sp, #-4] 13134 // Fourth bundle: 13135 0xe3ccc103, // bic ip, ip, #0xc0000000 13136 0xe59cc000, // ldr ip, [ip] 13137 0xe3ccc13f, // bic ip, ip, #0xc000000f 13138 0xe12fff1c, // bx ip 13139 }; 13140 13141 template<bool big_endian> 13142 void 13143 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry( 13144 unsigned char* pov, 13145 Arm_address got_address, 13146 Arm_address plt_address) 13147 { 13148 // Write first PLT entry. All but first two words are constants. 13149 const size_t num_first_plt_words = (sizeof(first_plt_entry) 13150 / sizeof(first_plt_entry[0])); 13151 13152 int32_t got_displacement = got_address + 8 - (plt_address + 16); 13153 13154 elfcpp::Swap<32, big_endian>::writeval 13155 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement)); 13156 elfcpp::Swap<32, big_endian>::writeval 13157 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement)); 13158 13159 for (size_t i = 2; i < num_first_plt_words; ++i) 13160 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]); 13161 } 13162 13163 // Subsequent entries in the PLT. 13164 13165 template<bool big_endian> 13166 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] = 13167 { 13168 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8 13169 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8 13170 0xe08cc00f, // add ip, ip, pc 13171 0xea000000, // b .Lplt_tail 13172 }; 13173 13174 template<bool big_endian> 13175 void 13176 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry( 13177 unsigned char* pov, 13178 Arm_address got_address, 13179 Arm_address plt_address, 13180 unsigned int got_offset, 13181 unsigned int plt_offset) 13182 { 13183 // Calculate the displacement between the PLT slot and the 13184 // common tail that's part of the special initial PLT slot. 13185 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t)) 13186 - (plt_address + plt_offset 13187 + sizeof(plt_entry) + sizeof(uint32_t))); 13188 gold_assert((tail_displacement & 3) == 0); 13189 tail_displacement >>= 2; 13190 13191 gold_assert ((tail_displacement & 0xff000000) == 0 13192 || (-tail_displacement & 0xff000000) == 0); 13193 13194 // Calculate the displacement between the PLT slot and the entry 13195 // in the GOT. The offset accounts for the value produced by 13196 // adding to pc in the penultimate instruction of the PLT stub. 13197 const int32_t got_displacement = (got_address + got_offset 13198 - (plt_address + sizeof(plt_entry))); 13199 13200 elfcpp::Swap<32, big_endian>::writeval 13201 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement)); 13202 elfcpp::Swap<32, big_endian>::writeval 13203 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement)); 13204 elfcpp::Swap<32, big_endian>::writeval 13205 (pov + 8, plt_entry[2]); 13206 elfcpp::Swap<32, big_endian>::writeval 13207 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff)); 13208 } 13209 13210 // Target selectors. 13211 13212 template<bool big_endian> 13213 class Target_selector_arm_nacl 13214 : public Target_selector_nacl<Target_selector_arm<big_endian>, 13215 Target_arm_nacl<big_endian> > 13216 { 13217 public: 13218 Target_selector_arm_nacl() 13219 : Target_selector_nacl<Target_selector_arm<big_endian>, 13220 Target_arm_nacl<big_endian> >( 13221 "arm", 13222 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl", 13223 big_endian ? "armelfb_nacl" : "armelf_nacl") 13224 { } 13225 }; 13226 13227 Target_selector_arm_nacl<false> target_selector_arm; 13228 Target_selector_arm_nacl<true> target_selector_armbe; 13229 13230 } // End anonymous namespace. 13231