1@c Copyright (C) 1991-2018 Free Software Foundation, Inc. 2@c This is part of the GAS manual. 3@c For copying conditions, see the file as.texinfo. 4@c man end 5 6@ifset GENERIC 7@page 8@node i386-Dependent 9@chapter 80386 Dependent Features 10@end ifset 11@ifclear GENERIC 12@node Machine Dependencies 13@chapter 80386 Dependent Features 14@end ifclear 15 16@cindex i386 support 17@cindex i80386 support 18@cindex x86-64 support 19 20The i386 version @code{@value{AS}} supports both the original Intel 386 21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture 22extending the Intel architecture to 64-bits. 23 24@menu 25* i386-Options:: Options 26* i386-Directives:: X86 specific directives 27* i386-Syntax:: Syntactical considerations 28* i386-Mnemonics:: Instruction Naming 29* i386-Regs:: Register Naming 30* i386-Prefixes:: Instruction Prefixes 31* i386-Memory:: Memory References 32* i386-Jumps:: Handling of Jump Instructions 33* i386-Float:: Floating Point 34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations 35* i386-LWP:: AMD's Lightweight Profiling Instructions 36* i386-BMI:: Bit Manipulation Instruction 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions 38* i386-16bit:: Writing 16-bit Code 39* i386-Arch:: Specifying an x86 CPU architecture 40* i386-Bugs:: AT&T Syntax bugs 41* i386-Notes:: Notes 42@end menu 43 44@node i386-Options 45@section Options 46 47@cindex options for i386 48@cindex options for x86-64 49@cindex i386 options 50@cindex x86-64 options 51 52The i386 version of @code{@value{AS}} has a few machine 53dependent options: 54 55@c man begin OPTIONS 56@table @gcctabopt 57@cindex @samp{--32} option, i386 58@cindex @samp{--32} option, x86-64 59@cindex @samp{--x32} option, i386 60@cindex @samp{--x32} option, x86-64 61@cindex @samp{--64} option, i386 62@cindex @samp{--64} option, x86-64 63@item --32 | --x32 | --64 64Select the word size, either 32 bits or 64 bits. @samp{--32} 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64} 66imply AMD x86-64 architecture with 32-bit or 64-bit word-size 67respectively. 68 69These options are only available with the ELF object file format, and 70require that the necessary BFD support has been included (on a 32-bit 71platform you have to add --enable-64-bit-bfd to configure enable 64-bit 72usage and use x86-64 as target platform). 73 74@item -n 75By default, x86 GAS replaces multiple nop instructions used for 76alignment within code sections with multi-byte nop instructions such 77as leal 0(%esi,1),%esi. This switch disables the optimization if a single 78byte nop (0x90) is explicitly specified as the fill byte for alignment. 79 80@cindex @samp{--divide} option, i386 81@item --divide 82On SVR4-derived platforms, the character @samp{/} is treated as a comment 83character, which means that it cannot be used in expressions. The 84@samp{--divide} option turns @samp{/} into a normal character. This does 85not disable @samp{/} at the beginning of a line starting a comment, or 86affect using @samp{#} for starting a comment. 87 88@cindex @samp{-march=} option, i386 89@cindex @samp{-march=} option, x86-64 90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}] 91This option specifies the target processor. The assembler will 92issue an error message if an attempt is made to assemble an instruction 93which will not execute on the target processor. The following 94processor names are recognized: 95@code{i8086}, 96@code{i186}, 97@code{i286}, 98@code{i386}, 99@code{i486}, 100@code{i586}, 101@code{i686}, 102@code{pentium}, 103@code{pentiumpro}, 104@code{pentiumii}, 105@code{pentiumiii}, 106@code{pentium4}, 107@code{prescott}, 108@code{nocona}, 109@code{core}, 110@code{core2}, 111@code{corei7}, 112@code{l1om}, 113@code{k1om}, 114@code{iamcu}, 115@code{k6}, 116@code{k6_2}, 117@code{athlon}, 118@code{opteron}, 119@code{k8}, 120@code{amdfam10}, 121@code{bdver1}, 122@code{bdver2}, 123@code{bdver3}, 124@code{bdver4}, 125@code{znver1}, 126@code{znver2}, 127@code{btver1}, 128@code{btver2}, 129@code{generic32} and 130@code{generic64}. 131 132In addition to the basic instruction set, the assembler can be told to 133accept various extension mnemonics. For example, 134@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and 135@var{vmx}. The following extensions are currently supported: 136@code{8087}, 137@code{287}, 138@code{387}, 139@code{687}, 140@code{no87}, 141@code{no287}, 142@code{no387}, 143@code{no687}, 144@code{mmx}, 145@code{nommx}, 146@code{sse}, 147@code{sse2}, 148@code{sse3}, 149@code{ssse3}, 150@code{sse4.1}, 151@code{sse4.2}, 152@code{sse4}, 153@code{nosse}, 154@code{nosse2}, 155@code{nosse3}, 156@code{nossse3}, 157@code{nosse4.1}, 158@code{nosse4.2}, 159@code{nosse4}, 160@code{avx}, 161@code{avx2}, 162@code{noavx}, 163@code{noavx2}, 164@code{adx}, 165@code{rdseed}, 166@code{prfchw}, 167@code{smap}, 168@code{mpx}, 169@code{sha}, 170@code{rdpid}, 171@code{ptwrite}, 172@code{cet}, 173@code{gfni}, 174@code{vaes}, 175@code{vpclmulqdq}, 176@code{prefetchwt1}, 177@code{clflushopt}, 178@code{se1}, 179@code{clwb}, 180@code{movdiri}, 181@code{movdir64b}, 182@code{avx512f}, 183@code{avx512cd}, 184@code{avx512er}, 185@code{avx512pf}, 186@code{avx512vl}, 187@code{avx512bw}, 188@code{avx512dq}, 189@code{avx512ifma}, 190@code{avx512vbmi}, 191@code{avx512_4fmaps}, 192@code{avx512_4vnniw}, 193@code{avx512_vpopcntdq}, 194@code{avx512_vbmi2}, 195@code{avx512_vnni}, 196@code{avx512_bitalg}, 197@code{noavx512f}, 198@code{noavx512cd}, 199@code{noavx512er}, 200@code{noavx512pf}, 201@code{noavx512vl}, 202@code{noavx512bw}, 203@code{noavx512dq}, 204@code{noavx512ifma}, 205@code{noavx512vbmi}, 206@code{noavx512_4fmaps}, 207@code{noavx512_4vnniw}, 208@code{noavx512_vpopcntdq}, 209@code{noavx512_vbmi2}, 210@code{noavx512_vnni}, 211@code{noavx512_bitalg}, 212@code{vmx}, 213@code{vmfunc}, 214@code{smx}, 215@code{xsave}, 216@code{xsaveopt}, 217@code{xsavec}, 218@code{xsaves}, 219@code{aes}, 220@code{pclmul}, 221@code{fsgsbase}, 222@code{rdrnd}, 223@code{f16c}, 224@code{bmi2}, 225@code{fma}, 226@code{movbe}, 227@code{ept}, 228@code{lzcnt}, 229@code{hle}, 230@code{rtm}, 231@code{invpcid}, 232@code{clflush}, 233@code{mwaitx}, 234@code{clzero}, 235@code{wbnoinvd}, 236@code{pconfig}, 237@code{waitpkg}, 238@code{cldemote}, 239@code{lwp}, 240@code{fma4}, 241@code{xop}, 242@code{cx16}, 243@code{syscall}, 244@code{rdtscp}, 245@code{3dnow}, 246@code{3dnowa}, 247@code{sse4a}, 248@code{sse5}, 249@code{svme}, 250@code{abm} and 251@code{padlock}. 252Note that rather than extending a basic instruction set, the extension 253mnemonics starting with @code{no} revoke the respective functionality. 254 255When the @code{.arch} directive is used with @option{-march}, the 256@code{.arch} directive will take precedent. 257 258@cindex @samp{-mtune=} option, i386 259@cindex @samp{-mtune=} option, x86-64 260@item -mtune=@var{CPU} 261This option specifies a processor to optimize for. When used in 262conjunction with the @option{-march} option, only instructions 263of the processor specified by the @option{-march} option will be 264generated. 265 266Valid @var{CPU} values are identical to the processor list of 267@option{-march=@var{CPU}}. 268 269@cindex @samp{-msse2avx} option, i386 270@cindex @samp{-msse2avx} option, x86-64 271@item -msse2avx 272This option specifies that the assembler should encode SSE instructions 273with VEX prefix. 274 275@cindex @samp{-msse-check=} option, i386 276@cindex @samp{-msse-check=} option, x86-64 277@item -msse-check=@var{none} 278@itemx -msse-check=@var{warning} 279@itemx -msse-check=@var{error} 280These options control if the assembler should check SSE instructions. 281@option{-msse-check=@var{none}} will make the assembler not to check SSE 282instructions, which is the default. @option{-msse-check=@var{warning}} 283will make the assembler issue a warning for any SSE instruction. 284@option{-msse-check=@var{error}} will make the assembler issue an error 285for any SSE instruction. 286 287@cindex @samp{-mavxscalar=} option, i386 288@cindex @samp{-mavxscalar=} option, x86-64 289@item -mavxscalar=@var{128} 290@itemx -mavxscalar=@var{256} 291These options control how the assembler should encode scalar AVX 292instructions. @option{-mavxscalar=@var{128}} will encode scalar 293AVX instructions with 128bit vector length, which is the default. 294@option{-mavxscalar=@var{256}} will encode scalar AVX instructions 295with 256bit vector length. 296 297@cindex @samp{-mevexlig=} option, i386 298@cindex @samp{-mevexlig=} option, x86-64 299@item -mevexlig=@var{128} 300@itemx -mevexlig=@var{256} 301@itemx -mevexlig=@var{512} 302These options control how the assembler should encode length-ignored 303(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG 304EVEX instructions with 128bit vector length, which is the default. 305@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will 306encode LIG EVEX instructions with 256bit and 512bit vector length, 307respectively. 308 309@cindex @samp{-mevexwig=} option, i386 310@cindex @samp{-mevexwig=} option, x86-64 311@item -mevexwig=@var{0} 312@itemx -mevexwig=@var{1} 313These options control how the assembler should encode w-ignored (WIG) 314EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG 315EVEX instructions with evex.w = 0, which is the default. 316@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with 317evex.w = 1. 318 319@cindex @samp{-mmnemonic=} option, i386 320@cindex @samp{-mmnemonic=} option, x86-64 321@item -mmnemonic=@var{att} 322@itemx -mmnemonic=@var{intel} 323This option specifies instruction mnemonic for matching instructions. 324The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will 325take precedent. 326 327@cindex @samp{-msyntax=} option, i386 328@cindex @samp{-msyntax=} option, x86-64 329@item -msyntax=@var{att} 330@itemx -msyntax=@var{intel} 331This option specifies instruction syntax when processing instructions. 332The @code{.att_syntax} and @code{.intel_syntax} directives will 333take precedent. 334 335@cindex @samp{-mnaked-reg} option, i386 336@cindex @samp{-mnaked-reg} option, x86-64 337@item -mnaked-reg 338This option specifies that registers don't require a @samp{%} prefix. 339The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent. 340 341@cindex @samp{-madd-bnd-prefix} option, i386 342@cindex @samp{-madd-bnd-prefix} option, x86-64 343@item -madd-bnd-prefix 344This option forces the assembler to add BND prefix to all branches, even 345if such prefix was not explicitly specified in the source code. 346 347@cindex @samp{-mshared} option, i386 348@cindex @samp{-mshared} option, x86-64 349@item -mno-shared 350On ELF target, the assembler normally optimizes out non-PLT relocations 351against defined non-weak global branch targets with default visibility. 352The @samp{-mshared} option tells the assembler to generate code which 353may go into a shared library where all non-weak global branch targets 354with default visibility can be preempted. The resulting code is 355slightly bigger. This option only affects the handling of branch 356instructions. 357 358@cindex @samp{-mbig-obj} option, x86-64 359@item -mbig-obj 360On x86-64 PE/COFF target this option forces the use of big object file 361format, which allows more than 32768 sections. 362 363@cindex @samp{-momit-lock-prefix=} option, i386 364@cindex @samp{-momit-lock-prefix=} option, x86-64 365@item -momit-lock-prefix=@var{no} 366@itemx -momit-lock-prefix=@var{yes} 367These options control how the assembler should encode lock prefix. 368This option is intended as a workaround for processors, that fail on 369lock prefix. This option can only be safely used with single-core, 370single-thread computers 371@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes. 372@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual, 373which is the default. 374 375@cindex @samp{-mfence-as-lock-add=} option, i386 376@cindex @samp{-mfence-as-lock-add=} option, x86-64 377@item -mfence-as-lock-add=@var{no} 378@itemx -mfence-as-lock-add=@var{yes} 379These options control how the assembler should encode lfence, mfence and 380sfence. 381@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and 382sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and 383@samp{lock addl $0x0, (%esp)} in 32-bit mode. 384@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and 385sfence as usual, which is the default. 386 387@cindex @samp{-mrelax-relocations=} option, i386 388@cindex @samp{-mrelax-relocations=} option, x86-64 389@item -mrelax-relocations=@var{no} 390@itemx -mrelax-relocations=@var{yes} 391These options control whether the assembler should generate relax 392relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and 393R_X86_64_REX_GOTPCRELX, in 64-bit mode. 394@option{-mrelax-relocations=@var{yes}} will generate relax relocations. 395@option{-mrelax-relocations=@var{no}} will not generate relax 396relocations. The default can be controlled by a configure option 397@option{--enable-x86-relax-relocations}. 398 399@cindex @samp{-mevexrcig=} option, i386 400@cindex @samp{-mevexrcig=} option, x86-64 401@item -mevexrcig=@var{rne} 402@itemx -mevexrcig=@var{rd} 403@itemx -mevexrcig=@var{ru} 404@itemx -mevexrcig=@var{rz} 405These options control how the assembler should encode SAE-only 406EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits 407of EVEX instruction with 00, which is the default. 408@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}} 409and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions 410with 01, 10 and 11 RC bits, respectively. 411 412@cindex @samp{-mamd64} option, x86-64 413@cindex @samp{-mintel64} option, x86-64 414@item -mamd64 415@itemx -mintel64 416This option specifies that the assembler should accept only AMD64 or 417Intel64 ISA in 64-bit mode. The default is to accept both. 418 419@cindex @samp{-O0} option, i386 420@cindex @samp{-O0} option, x86-64 421@cindex @samp{-O} option, i386 422@cindex @samp{-O} option, x86-64 423@cindex @samp{-O1} option, i386 424@cindex @samp{-O1} option, x86-64 425@cindex @samp{-O2} option, i386 426@cindex @samp{-O2} option, x86-64 427@cindex @samp{-Os} option, i386 428@cindex @samp{-Os} option, x86-64 429@item -O0 | -O | -O1 | -O2 | -Os 430Optimize instruction encoding with smaller instruction size. @samp{-O} 431and @samp{-O1} encode 64-bit register load instructions with 64-bit 432immediate as 32-bit register load instructions with 31-bit or 32-bits 433immediates and encode 64-bit register clearing instructions with 32-bit 434register clearing instructions. @samp{-O2} includes @samp{-O1} 435optimization plus encodes 256-bit and 512-bit vector register clearing 436instructions with 128-bit vector register clearing instructions. 437@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit 438and 64-bit register tests with immediate as 8-bit register test with 439immediate. @samp{-O0} turns off this optimization. 440 441@end table 442@c man end 443 444@node i386-Directives 445@section x86 specific Directives 446 447@cindex machine directives, x86 448@cindex x86 machine directives 449@table @code 450 451@cindex @code{lcomm} directive, COFF 452@item .lcomm @var{symbol} , @var{length}[, @var{alignment}] 453Reserve @var{length} (an absolute expression) bytes for a local common 454denoted by @var{symbol}. The section and value of @var{symbol} are 455those of the new local common. The addresses are allocated in the bss 456section, so that at run-time the bytes start off zeroed. Since 457@var{symbol} is not declared global, it is normally not visible to 458@code{@value{LD}}. The optional third parameter, @var{alignment}, 459specifies the desired alignment of the symbol in the bss section. 460 461This directive is only available for COFF based x86 targets. 462 463@cindex @code{largecomm} directive, ELF 464@item .largecomm @var{symbol} , @var{length}[, @var{alignment}] 465This directive behaves in the same way as the @code{comm} directive 466except that the data is placed into the @var{.lbss} section instead of 467the @var{.bss} section @ref{Comm}. 468 469The directive is intended to be used for data which requires a large 470amount of space, and it is only available for ELF based x86_64 471targets. 472 473@c FIXME: Document other x86 specific directives ? Eg: .code16gcc, 474 475@end table 476 477@node i386-Syntax 478@section i386 Syntactical Considerations 479@menu 480* i386-Variations:: AT&T Syntax versus Intel Syntax 481* i386-Chars:: Special Characters 482@end menu 483 484@node i386-Variations 485@subsection AT&T Syntax versus Intel Syntax 486 487@cindex i386 intel_syntax pseudo op 488@cindex intel_syntax pseudo op, i386 489@cindex i386 att_syntax pseudo op 490@cindex att_syntax pseudo op, i386 491@cindex i386 syntax compatibility 492@cindex syntax compatibility, i386 493@cindex x86-64 intel_syntax pseudo op 494@cindex intel_syntax pseudo op, x86-64 495@cindex x86-64 att_syntax pseudo op 496@cindex att_syntax pseudo op, x86-64 497@cindex x86-64 syntax compatibility 498@cindex syntax compatibility, x86-64 499 500@code{@value{AS}} now supports assembly using Intel assembler syntax. 501@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches 502back to the usual AT&T mode for compatibility with the output of 503@code{@value{GCC}}. Either of these directives may have an optional 504argument, @code{prefix}, or @code{noprefix} specifying whether registers 505require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite 506different from Intel syntax. We mention these differences because 507almost all 80386 documents use Intel syntax. Notable differences 508between the two syntaxes are: 509 510@cindex immediate operands, i386 511@cindex i386 immediate operands 512@cindex register operands, i386 513@cindex i386 register operands 514@cindex jump/call operands, i386 515@cindex i386 jump/call operands 516@cindex operand delimiters, i386 517 518@cindex immediate operands, x86-64 519@cindex x86-64 immediate operands 520@cindex register operands, x86-64 521@cindex x86-64 register operands 522@cindex jump/call operands, x86-64 523@cindex x86-64 jump/call operands 524@cindex operand delimiters, x86-64 525@itemize @bullet 526@item 527AT&T immediate operands are preceded by @samp{$}; Intel immediate 528operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}). 529AT&T register operands are preceded by @samp{%}; Intel register operands 530are undelimited. AT&T absolute (as opposed to PC relative) jump/call 531operands are prefixed by @samp{*}; they are undelimited in Intel syntax. 532 533@cindex i386 source, destination operands 534@cindex source, destination operands; i386 535@cindex x86-64 source, destination operands 536@cindex source, destination operands; x86-64 537@item 538AT&T and Intel syntax use the opposite order for source and destination 539operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The 540@samp{source, dest} convention is maintained for compatibility with 541previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and 542instructions with 2 immediate operands, such as the @samp{enter} 543instruction, do @emph{not} have reversed order. @ref{i386-Bugs}. 544 545@cindex mnemonic suffixes, i386 546@cindex sizes operands, i386 547@cindex i386 size suffixes 548@cindex mnemonic suffixes, x86-64 549@cindex sizes operands, x86-64 550@cindex x86-64 size suffixes 551@item 552In AT&T syntax the size of memory operands is determined from the last 553character of the instruction mnemonic. Mnemonic suffixes of @samp{b}, 554@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long 555(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes 556this by prefixing memory operands (@emph{not} the instruction mnemonics) with 557@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus, 558Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T 559syntax. 560 561In 64-bit code, @samp{movabs} can be used to encode the @samp{mov} 562instruction with the 64-bit displacement or immediate operand. 563 564@cindex return instructions, i386 565@cindex i386 jump, call, return 566@cindex return instructions, x86-64 567@cindex x86-64 jump, call, return 568@item 569Immediate form long jumps and calls are 570@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the 571Intel syntax is 572@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return 573instruction 574is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is 575@samp{ret far @var{stack-adjust}}. 576 577@cindex sections, i386 578@cindex i386 sections 579@cindex sections, x86-64 580@cindex x86-64 sections 581@item 582The AT&T assembler does not provide support for multiple section 583programs. Unix style systems expect all programs to be single sections. 584@end itemize 585 586@node i386-Chars 587@subsection Special Characters 588 589@cindex line comment character, i386 590@cindex i386 line comment character 591The presence of a @samp{#} appearing anywhere on a line indicates the 592start of a comment that extends to the end of that line. 593 594If a @samp{#} appears as the first character of a line then the whole 595line is treated as a comment, but in this case the line can also be a 596logical line number directive (@pxref{Comments}) or a preprocessor 597control command (@pxref{Preprocessing}). 598 599If the @option{--divide} command line option has not been specified 600then the @samp{/} character appearing anywhere on a line also 601introduces a line comment. 602 603@cindex line separator, i386 604@cindex statement separator, i386 605@cindex i386 line separator 606The @samp{;} character can be used to separate statements on the same 607line. 608 609@node i386-Mnemonics 610@section i386-Mnemonics 611@subsection Instruction Naming 612 613@cindex i386 instruction naming 614@cindex instruction naming, i386 615@cindex x86-64 instruction naming 616@cindex instruction naming, x86-64 617 618Instruction mnemonics are suffixed with one character modifiers which 619specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l} 620and @samp{q} specify byte, word, long and quadruple word operands. If 621no suffix is specified by an instruction then @code{@value{AS}} tries to 622fill in the missing suffix based on the destination register operand 623(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent 624to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to 625@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix 626assembler which assumes that a missing mnemonic suffix implies long 627operand size. (This incompatibility does not affect compiler output 628since compilers always explicitly specify the mnemonic suffix.) 629 630Almost all instructions have the same names in AT&T and Intel format. 631There are a few exceptions. The sign extend and zero extend 632instructions need two sizes to specify them. They need a size to 633sign/zero extend @emph{from} and a size to zero extend @emph{to}. This 634is accomplished by using two instruction mnemonic suffixes in AT&T 635syntax. Base names for sign extend and zero extend are 636@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx} 637and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes 638are tacked on to this base name, the @emph{from} suffix before the 639@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for 640``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes, 641thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word), 642@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word), 643@samp{wq} (from word to quadruple word), and @samp{lq} (from long to 644quadruple word). 645 646@cindex encoding options, i386 647@cindex encoding options, x86-64 648 649Different encoding options can be specified via pseudo prefixes: 650 651@itemize @bullet 652@item 653@samp{@{disp8@}} -- prefer 8-bit displacement. 654 655@item 656@samp{@{disp32@}} -- prefer 32-bit displacement. 657 658@item 659@samp{@{load@}} -- prefer load-form instruction. 660 661@item 662@samp{@{store@}} -- prefer store-form instruction. 663 664@item 665@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction. 666 667@item 668@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction. 669 670@item 671@samp{@{evex@}} -- encode with EVEX prefix. 672 673@item 674@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector 675instructions (x86-64 only). Note that this differs from the @samp{rex} 676prefix which generates REX prefix unconditionally. 677 678@item 679@samp{@{nooptimize@}} -- disable instruction size optimization. 680@end itemize 681 682@cindex conversion instructions, i386 683@cindex i386 conversion instructions 684@cindex conversion instructions, x86-64 685@cindex x86-64 conversion instructions 686The Intel-syntax conversion instructions 687 688@itemize @bullet 689@item 690@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax}, 691 692@item 693@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax}, 694 695@item 696@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax}, 697 698@item 699@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax}, 700 701@item 702@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax} 703(x86-64 only), 704 705@item 706@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in 707@samp{%rdx:%rax} (x86-64 only), 708@end itemize 709 710@noindent 711are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and 712@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these 713instructions. 714 715@cindex jump instructions, i386 716@cindex call instructions, i386 717@cindex jump instructions, x86-64 718@cindex call instructions, x86-64 719Far call/jump instructions are @samp{lcall} and @samp{ljmp} in 720AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel 721convention. 722 723@subsection AT&T Mnemonic versus Intel Mnemonic 724 725@cindex i386 mnemonic compatibility 726@cindex mnemonic compatibility, i386 727 728@code{@value{AS}} supports assembly using Intel mnemonic. 729@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and 730@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T 731syntax for compatibility with the output of @code{@value{GCC}}. 732Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp}, 733@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp}, 734@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386 735assembler with different mnemonics from those in Intel IA32 specification. 736@code{@value{GCC}} generates those instructions with AT&T mnemonic. 737 738@node i386-Regs 739@section Register Naming 740 741@cindex i386 registers 742@cindex registers, i386 743@cindex x86-64 registers 744@cindex registers, x86-64 745Register operands are always prefixed with @samp{%}. The 80386 registers 746consist of 747 748@itemize @bullet 749@item 750the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx}, 751@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the 752frame pointer), and @samp{%esp} (the stack pointer). 753 754@item 755the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx}, 756@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}. 757 758@item 759the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh}, 760@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These 761are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx}, 762@samp{%cx}, and @samp{%dx}) 763 764@item 765the 6 section registers @samp{%cs} (code section), @samp{%ds} 766(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs}, 767and @samp{%gs}. 768 769@item 770the 5 processor control registers @samp{%cr0}, @samp{%cr2}, 771@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}. 772 773@item 774the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2}, 775@samp{%db3}, @samp{%db6}, and @samp{%db7}. 776 777@item 778the 2 test registers @samp{%tr6} and @samp{%tr7}. 779 780@item 781the 8 floating point register stack @samp{%st} or equivalently 782@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)}, 783@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}. 784These registers are overloaded by 8 MMX registers @samp{%mm0}, 785@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5}, 786@samp{%mm6} and @samp{%mm7}. 787 788@item 789the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2}, 790@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}. 791@end itemize 792 793The AMD x86-64 architecture extends the register set by: 794 795@itemize @bullet 796@item 797enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the 798accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi}, 799@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack 800pointer) 801 802@item 803the 8 extended registers @samp{%r8}--@samp{%r15}. 804 805@item 806the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}. 807 808@item 809the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}. 810 811@item 812the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}. 813 814@item 815the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}. 816 817@item 818the 8 debug registers: @samp{%db8}--@samp{%db15}. 819 820@item 821the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}. 822@end itemize 823 824With the AVX extensions more registers were made available: 825 826@itemize @bullet 827 828@item 829the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8 830available in 32-bit mode). The bottom 128 bits are overlaid with the 831@samp{xmm0}--@samp{xmm15} registers. 832 833@end itemize 834 835The AVX2 extensions made in 64-bit mode more registers available: 836 837@itemize @bullet 838 839@item 840the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit 841registers @samp{%ymm16}--@samp{%ymm31}. 842 843@end itemize 844 845The AVX512 extensions added the following registers: 846 847@itemize @bullet 848 849@item 850the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8 851available in 32-bit mode). The bottom 128 bits are overlaid with the 852@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are 853overlaid with the @samp{%ymm0}--@samp{%ymm31} registers. 854 855@item 856the 8 mask registers @samp{%k0}--@samp{%k7}. 857 858@end itemize 859 860@node i386-Prefixes 861@section Instruction Prefixes 862 863@cindex i386 instruction prefixes 864@cindex instruction prefixes, i386 865@cindex prefixes, i386 866Instruction prefixes are used to modify the following instruction. They 867are used to repeat string instructions, to provide section overrides, to 868perform bus lock operations, and to change operand and address sizes. 869(Most instructions that normally operate on 32-bit operands will use 87016-bit operands if the instruction has an ``operand size'' prefix.) 871Instruction prefixes are best written on the same line as the instruction 872they act upon. For example, the @samp{scas} (scan string) instruction is 873repeated with: 874 875@smallexample 876 repne scas %es:(%edi),%al 877@end smallexample 878 879You may also place prefixes on the lines immediately preceding the 880instruction, but this circumvents checks that @code{@value{AS}} does 881with prefixes, and will not work with all prefixes. 882 883Here is a list of instruction prefixes: 884 885@cindex section override prefixes, i386 886@itemize @bullet 887@item 888Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es}, 889@samp{fs}, @samp{gs}. These are automatically added by specifying 890using the @var{section}:@var{memory-operand} form for memory references. 891 892@cindex size prefixes, i386 893@item 894Operand/Address size prefixes @samp{data16} and @samp{addr16} 895change 32-bit operands/addresses into 16-bit operands/addresses, 896while @samp{data32} and @samp{addr32} change 16-bit ones (in a 897@code{.code16} section) into 32-bit operands/addresses. These prefixes 898@emph{must} appear on the same line of code as the instruction they 899modify. For example, in a 16-bit @code{.code16} section, you might 900write: 901 902@smallexample 903 addr32 jmpl *(%ebx) 904@end smallexample 905 906@cindex bus lock prefixes, i386 907@cindex inhibiting interrupts, i386 908@item 909The bus lock prefix @samp{lock} inhibits interrupts during execution of 910the instruction it precedes. (This is only valid with certain 911instructions; see a 80386 manual for details). 912 913@cindex coprocessor wait, i386 914@item 915The wait for coprocessor prefix @samp{wait} waits for the coprocessor to 916complete the current instruction. This should never be needed for the 91780386/80387 combination. 918 919@cindex repeat prefixes, i386 920@item 921The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added 922to string instructions to make them repeat @samp{%ecx} times (@samp{%cx} 923times if the current address size is 16-bits). 924@cindex REX prefixes, i386 925@item 926The @samp{rex} family of prefixes is used by x86-64 to encode 927extensions to i386 instruction set. The @samp{rex} prefix has four 928bits --- an operand size overwrite (@code{64}) used to change operand size 929from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the 930register set. 931 932You may write the @samp{rex} prefixes directly. The @samp{rex64xyz} 933instruction emits @samp{rex} prefix with all the bits set. By omitting 934the @code{64}, @code{x}, @code{y} or @code{z} you may write other 935prefixes as well. Normally, there is no need to write the prefixes 936explicitly, since gas will automatically generate them based on the 937instruction operands. 938@end itemize 939 940@node i386-Memory 941@section Memory References 942 943@cindex i386 memory references 944@cindex memory references, i386 945@cindex x86-64 memory references 946@cindex memory references, x86-64 947An Intel syntax indirect memory reference of the form 948 949@smallexample 950@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}] 951@end smallexample 952 953@noindent 954is translated into the AT&T syntax 955 956@smallexample 957@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale}) 958@end smallexample 959 960@noindent 961where @var{base} and @var{index} are the optional 32-bit base and 962index registers, @var{disp} is the optional displacement, and 963@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index} 964to calculate the address of the operand. If no @var{scale} is 965specified, @var{scale} is taken to be 1. @var{section} specifies the 966optional section register for the memory operand, and may override the 967default section register (see a 80386 manual for section register 968defaults). Note that section overrides in AT&T syntax @emph{must} 969be preceded by a @samp{%}. If you specify a section override which 970coincides with the default section register, @code{@value{AS}} does @emph{not} 971output any section register override prefixes to assemble the given 972instruction. Thus, section overrides can be specified to emphasize which 973section register is used for a given memory operand. 974 975Here are some examples of Intel and AT&T style memory references: 976 977@table @asis 978@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]} 979@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is 980missing, and the default section is used (@samp{%ss} for addressing with 981@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing. 982 983@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]} 984@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is 985@samp{foo}. All other fields are missing. The section register here 986defaults to @samp{%ds}. 987 988@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]} 989This uses the value pointed to by @samp{foo} as a memory operand. 990Note that @var{base} and @var{index} are both missing, but there is only 991@emph{one} @samp{,}. This is a syntactic exception. 992 993@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo} 994This selects the contents of the variable @samp{foo} with section 995register @var{section} being @samp{%gs}. 996@end table 997 998Absolute (as opposed to PC relative) call and jump operands must be 999prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}} 1000always chooses PC relative addressing for jump/call labels. 1001 1002Any instruction that has a memory operand, but no register operand, 1003@emph{must} specify its size (byte, word, long, or quadruple) with an 1004instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q}, 1005respectively). 1006 1007The x86-64 architecture adds an RIP (instruction pointer relative) 1008addressing. This addressing mode is specified by using @samp{rip} as a 1009base register. Only constant offsets are valid. For example: 1010 1011@table @asis 1012@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]} 1013Points to the address 1234 bytes past the end of the current 1014instruction. 1015 1016@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]} 1017Points to the @code{symbol} in RIP relative way, this is shorter than 1018the default absolute addressing. 1019@end table 1020 1021Other addressing modes remain unchanged in x86-64 architecture, except 1022registers used are 64-bit instead of 32-bit. 1023 1024@node i386-Jumps 1025@section Handling of Jump Instructions 1026 1027@cindex jump optimization, i386 1028@cindex i386 jump optimization 1029@cindex jump optimization, x86-64 1030@cindex x86-64 jump optimization 1031Jump instructions are always optimized to use the smallest possible 1032displacements. This is accomplished by using byte (8-bit) displacement 1033jumps whenever the target is sufficiently close. If a byte displacement 1034is insufficient a long displacement is used. We do not support 1035word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump 1036instruction with the @samp{data16} instruction prefix), since the 80386 1037insists upon masking @samp{%eip} to 16 bits after the word displacement 1038is added. (See also @pxref{i386-Arch}) 1039 1040Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz}, 1041@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte 1042displacements, so that if you use these instructions (@code{@value{GCC}} does 1043not use them) you may get an error message (and incorrect code). The AT&T 104480386 assembler tries to get around this problem by expanding @samp{jcxz foo} 1045to 1046 1047@smallexample 1048 jcxz cx_zero 1049 jmp cx_nonzero 1050cx_zero: jmp foo 1051cx_nonzero: 1052@end smallexample 1053 1054@node i386-Float 1055@section Floating Point 1056 1057@cindex i386 floating point 1058@cindex floating point, i386 1059@cindex x86-64 floating point 1060@cindex floating point, x86-64 1061All 80387 floating point types except packed BCD are supported. 1062(BCD support may be added without much difficulty). These data 1063types are 16-, 32-, and 64- bit integers, and single (32-bit), 1064double (64-bit), and extended (80-bit) precision floating point. 1065Each supported type has an instruction mnemonic suffix and a constructor 1066associated with it. Instruction mnemonic suffixes specify the operand's 1067data type. Constructors build these data types into memory. 1068 1069@cindex @code{float} directive, i386 1070@cindex @code{single} directive, i386 1071@cindex @code{double} directive, i386 1072@cindex @code{tfloat} directive, i386 1073@cindex @code{float} directive, x86-64 1074@cindex @code{single} directive, x86-64 1075@cindex @code{double} directive, x86-64 1076@cindex @code{tfloat} directive, x86-64 1077@itemize @bullet 1078@item 1079Floating point constructors are @samp{.float} or @samp{.single}, 1080@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats. 1081These correspond to instruction mnemonic suffixes @samp{s}, @samp{l}, 1082and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387 1083only supports this format via the @samp{fldt} (load 80-bit real to stack 1084top) and @samp{fstpt} (store 80-bit real and pop stack) instructions. 1085 1086@cindex @code{word} directive, i386 1087@cindex @code{long} directive, i386 1088@cindex @code{int} directive, i386 1089@cindex @code{quad} directive, i386 1090@cindex @code{word} directive, x86-64 1091@cindex @code{long} directive, x86-64 1092@cindex @code{int} directive, x86-64 1093@cindex @code{quad} directive, x86-64 1094@item 1095Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and 1096@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The 1097corresponding instruction mnemonic suffixes are @samp{s} (single), 1098@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format, 1099the 64-bit @samp{q} format is only present in the @samp{fildq} (load 1100quad integer to stack top) and @samp{fistpq} (store quad integer and pop 1101stack) instructions. 1102@end itemize 1103 1104Register to register operations should not use instruction mnemonic suffixes. 1105@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you 1106wrote @samp{fst %st, %st(1)}, since all register to register operations 1107use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem}, 1108which converts @samp{%st} from 80-bit to 64-bit floating point format, 1109then stores the result in the 4 byte location @samp{mem}) 1110 1111@node i386-SIMD 1112@section Intel's MMX and AMD's 3DNow! SIMD Operations 1113 1114@cindex MMX, i386 1115@cindex 3DNow!, i386 1116@cindex SIMD, i386 1117@cindex MMX, x86-64 1118@cindex 3DNow!, x86-64 1119@cindex SIMD, x86-64 1120 1121@code{@value{AS}} supports Intel's MMX instruction set (SIMD 1122instructions for integer data), available on Intel's Pentium MMX 1123processors and Pentium II processors, AMD's K6 and K6-2 processors, 1124Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@: 1125instruction set (SIMD instructions for 32-bit floating point data) 1126available on AMD's K6-2 processor and possibly others in the future. 1127 1128Currently, @code{@value{AS}} does not support Intel's floating point 1129SIMD, Katmai (KNI). 1130 1131The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0}, 1132@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four 113316-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit 1134floating point values. The MMX registers cannot be used at the same time 1135as the floating point stack. 1136 1137See Intel and AMD documentation, keeping in mind that the operand order in 1138instructions is reversed from the Intel syntax. 1139 1140@node i386-LWP 1141@section AMD's Lightweight Profiling Instructions 1142 1143@cindex LWP, i386 1144@cindex LWP, x86-64 1145 1146@code{@value{AS}} supports AMD's Lightweight Profiling (LWP) 1147instruction set, available on AMD's Family 15h (Orochi) processors. 1148 1149LWP enables applications to collect and manage performance data, and 1150react to performance events. The collection of performance data 1151requires no context switches. LWP runs in the context of a thread and 1152so several counters can be used independently across multiple threads. 1153LWP can be used in both 64-bit and legacy 32-bit modes. 1154 1155For detailed information on the LWP instruction set, see the 1156@cite{AMD Lightweight Profiling Specification} available at 1157@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}. 1158 1159@node i386-BMI 1160@section Bit Manipulation Instructions 1161 1162@cindex BMI, i386 1163@cindex BMI, x86-64 1164 1165@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set. 1166 1167BMI instructions provide several instructions implementing individual 1168bit manipulation operations such as isolation, masking, setting, or 1169resetting. 1170 1171@c Need to add a specification citation here when available. 1172 1173@node i386-TBM 1174@section AMD's Trailing Bit Manipulation Instructions 1175 1176@cindex TBM, i386 1177@cindex TBM, x86-64 1178 1179@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM) 1180instruction set, available on AMD's BDVER2 processors (Trinity and 1181Viperfish). 1182 1183TBM instructions provide instructions implementing individual bit 1184manipulation operations such as isolating, masking, setting, resetting, 1185complementing, and operations on trailing zeros and ones. 1186 1187@c Need to add a specification citation here when available. 1188 1189@node i386-16bit 1190@section Writing 16-bit Code 1191 1192@cindex i386 16-bit code 1193@cindex 16-bit code, i386 1194@cindex real-mode code, i386 1195@cindex @code{code16gcc} directive, i386 1196@cindex @code{code16} directive, i386 1197@cindex @code{code32} directive, i386 1198@cindex @code{code64} directive, i386 1199@cindex @code{code64} directive, x86-64 1200While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code 1201or 64-bit x86-64 code depending on the default configuration, 1202it also supports writing code to run in real mode or in 16-bit protected 1203mode code segments. To do this, put a @samp{.code16} or 1204@samp{.code16gcc} directive before the assembly language instructions to 1205be run in 16-bit mode. You can switch @code{@value{AS}} to writing 120632-bit code with the @samp{.code32} directive or 64-bit code with the 1207@samp{.code64} directive. 1208 1209@samp{.code16gcc} provides experimental support for generating 16-bit 1210code from gcc, and differs from @samp{.code16} in that @samp{call}, 1211@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop}, 1212@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions 1213default to 32-bit size. This is so that the stack pointer is 1214manipulated in the same way over function calls, allowing access to 1215function parameters at the same stack offsets as in 32-bit mode. 1216@samp{.code16gcc} also automatically adds address size prefixes where 1217necessary to use the 32-bit addressing modes that gcc generates. 1218 1219The code which @code{@value{AS}} generates in 16-bit mode will not 1220necessarily run on a 16-bit pre-80386 processor. To write code that 1221runs on such a processor, you must refrain from using @emph{any} 32-bit 1222constructs which require @code{@value{AS}} to output address or operand 1223size prefixes. 1224 1225Note that writing 16-bit code instructions by explicitly specifying a 1226prefix or an instruction mnemonic suffix within a 32-bit code section 1227generates different machine instructions than those generated for a 122816-bit code segment. In a 32-bit code section, the following code 1229generates the machine opcode bytes @samp{66 6a 04}, which pushes the 1230value @samp{4} onto the stack, decrementing @samp{%esp} by 2. 1231 1232@smallexample 1233 pushw $4 1234@end smallexample 1235 1236The same code in a 16-bit code section would generate the machine 1237opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which 1238is correct since the processor default operand size is assumed to be 16 1239bits in a 16-bit code section. 1240 1241@node i386-Arch 1242@section Specifying CPU Architecture 1243 1244@cindex arch directive, i386 1245@cindex i386 arch directive 1246@cindex arch directive, x86-64 1247@cindex x86-64 arch directive 1248 1249@code{@value{AS}} may be told to assemble for a particular CPU 1250(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This 1251directive enables a warning when gas detects an instruction that is not 1252supported on the CPU specified. The choices for @var{cpu_type} are: 1253 1254@multitable @columnfractions .20 .20 .20 .20 1255@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386} 1256@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium} 1257@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4} 1258@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2} 1259@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu} 1260@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8} 1261@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3} 1262@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1} 1263@item @samp{btver2} @samp{generic32} @tab @samp{generic64} 1264@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} 1265@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4} 1266@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept} 1267@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt} 1268@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase} 1269@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2} 1270@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle} 1271@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw} 1272@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1} 1273@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1} 1274@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf} 1275@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma} 1276@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw} 1277@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni} 1278@item @samp{.avx512_bitalg} 1279@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt} 1280@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote} 1281@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq} 1282@item @samp{.movdiri} @tab @samp{.movdir64b} 1283@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5} 1284@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm} 1285@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16} 1286@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} 1287@end multitable 1288 1289Apart from the warning, there are only two other effects on 1290@code{@value{AS}} operation; Firstly, if you specify a CPU other than 1291@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax} 1292will automatically use a two byte opcode sequence. The larger three 1293byte opcode sequence is used on the 486 (and when no architecture is 1294specified) because it executes faster on the 486. Note that you can 1295explicitly request the two byte opcode by writing @samp{sarl %eax}. 1296Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286}, 1297@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset 1298conditional jumps will be promoted when necessary to a two instruction 1299sequence consisting of a conditional jump of the opposite sense around 1300an unconditional jump to the target. 1301 1302Following the CPU architecture (but not a sub-architecture, which are those 1303starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to 1304control automatic promotion of conditional jumps. @samp{jumps} is the 1305default, and enables jump promotion; All external jumps will be of the long 1306variety, and file-local jumps will be promoted as necessary. 1307(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as 1308byte offset jumps, and warns about file-local conditional jumps that 1309@code{@value{AS}} promotes. 1310Unconditional jumps are treated as for @samp{jumps}. 1311 1312For example 1313 1314@smallexample 1315 .arch i8086,nojumps 1316@end smallexample 1317 1318@node i386-Bugs 1319@section AT&T Syntax bugs 1320 1321The UnixWare assembler, and probably other AT&T derived ix86 Unix 1322assemblers, generate floating point instructions with reversed source 1323and destination registers in certain cases. Unfortunately, gcc and 1324possibly many other programs use this reversed syntax, so we're stuck 1325with it. 1326 1327For example 1328 1329@smallexample 1330 fsub %st,%st(3) 1331@end smallexample 1332@noindent 1333results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather 1334than the expected @samp{%st(3) - %st}. This happens with all the 1335non-commutative arithmetic floating point operations with two register 1336operands where the source register is @samp{%st} and the destination 1337register is @samp{%st(i)}. 1338 1339@node i386-Notes 1340@section Notes 1341 1342@cindex i386 @code{mul}, @code{imul} instructions 1343@cindex @code{mul} instruction, i386 1344@cindex @code{imul} instruction, i386 1345@cindex @code{mul} instruction, x86-64 1346@cindex @code{imul} instruction, x86-64 1347There is some trickery concerning the @samp{mul} and @samp{imul} 1348instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding 1349multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5 1350for @samp{imul}) can be output only in the one operand form. Thus, 1351@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply; 1352the expanding multiply would clobber the @samp{%edx} register, and this 1353would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the 135464-bit product in @samp{%edx:%eax}. 1355 1356We have added a two operand form of @samp{imul} when the first operand 1357is an immediate mode expression and the second operand is a register. 1358This is just a shorthand, so that, multiplying @samp{%eax} by 69, for 1359example, can be done with @samp{imul $69, %eax} rather than @samp{imul 1360$69, %eax, %eax}. 1361 1362