xref: /netbsd-src/external/gpl3/binutils.old/dist/gas/config/tc-sparc.c (revision 2dd295436a0082eb4f8d294f4aa73c223413d0f2)
1 /* tc-sparc.c -- Assemble for the SPARC
2    Copyright (C) 1989-2020 Free Software Foundation, Inc.
3    This file is part of GAS, the GNU Assembler.
4 
5    GAS is free software; you can redistribute it and/or modify
6    it under the terms of the GNU General Public License as published by
7    the Free Software Foundation; either version 3, or (at your option)
8    any later version.
9 
10    GAS is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU General Public License for more details.
14 
15    You should have received a copy of the GNU General Public
16    License along with GAS; see the file COPYING.  If not, write
17    to the Free Software Foundation, 51 Franklin Street - Fifth Floor,
18    Boston, MA 02110-1301, USA.  */
19 
20 #include "as.h"
21 #include "safe-ctype.h"
22 #include "subsegs.h"
23 
24 #include "opcode/sparc.h"
25 #include "dw2gencfi.h"
26 
27 #include "elf/sparc.h"
28 #include "dwarf2dbg.h"
29 
30 /* Some ancient Sun C compilers would not take such hex constants as
31    unsigned, and would end up sign-extending them to form an offsetT,
32    so use these constants instead.  */
33 #define U0xffffffff ((((unsigned long) 1 << 16) << 16) - 1)
34 #define U0x80000000 ((((unsigned long) 1 << 16) << 15))
35 
36 static int sparc_ip (char *, const struct sparc_opcode **);
37 static int parse_sparc_asi (char **, const sparc_asi **);
38 static int parse_keyword_arg (int (*) (const char *), char **, int *);
39 static int parse_const_expr_arg (char **, int *);
40 static int get_expression (char *);
41 
42 /* Default architecture.  */
43 /* ??? The default value should be V8, but sparclite support was added
44    by making it the default.  GCC now passes -Asparclite, so maybe sometime in
45    the future we can set this to V8.  */
46 #ifndef DEFAULT_ARCH
47 #define DEFAULT_ARCH "sparclite"
48 #endif
49 static const char *default_arch = DEFAULT_ARCH;
50 
51 /* Non-zero if the initial values of `max_architecture' and `sparc_arch_size'
52    have been set.  */
53 static int default_init_p;
54 
55 /* Current architecture.  We don't bump up unless necessary.  */
56 static enum sparc_opcode_arch_val current_architecture = SPARC_OPCODE_ARCH_V6;
57 
58 /* The maximum architecture level we can bump up to.
59    In a 32 bit environment, don't allow bumping up to v9 by default.
60    The native assembler works this way.  The user is required to pass
61    an explicit argument before we'll create v9 object files.  However, if
62    we don't see any v9 insns, a v8plus object file is not created.  */
63 static enum sparc_opcode_arch_val max_architecture;
64 
65 /* Either 32 or 64, selects file format.  */
66 static int sparc_arch_size;
67 /* Initial (default) value, recorded separately in case a user option
68    changes the value before md_show_usage is called.  */
69 static int default_arch_size;
70 
71 /* The currently selected v9 memory model.  Currently only used for
72    ELF.  */
73 static enum { MM_TSO, MM_PSO, MM_RMO } sparc_memory_model = MM_RMO;
74 
75 #ifndef TE_SOLARIS
76 /* Bitmask of instruction types seen so far, used to populate the
77    GNU attributes section with hwcap information.  */
78 static bfd_uint64_t hwcap_seen;
79 #endif
80 
81 static bfd_uint64_t hwcap_allowed;
82 
83 static int architecture_requested;
84 static int warn_on_bump;
85 
86 /* If warn_on_bump and the needed architecture is higher than this
87    architecture, issue a warning.  */
88 static enum sparc_opcode_arch_val warn_after_architecture;
89 
90 /* Non-zero if the assembler should generate error if an undeclared
91    g[23] register has been used in -64.  */
92 static int no_undeclared_regs;
93 
94 /* Non-zero if the assembler should generate a warning if an
95    unpredictable DCTI (delayed control transfer instruction) couple is
96    found.  */
97 static int dcti_couples_detect;
98 
99 /* Non-zero if we should try to relax jumps and calls.  */
100 static int sparc_relax;
101 
102 /* Non-zero if we are generating PIC code.  */
103 int sparc_pic_code;
104 
105 /* Non-zero if we should give an error when misaligned data is seen.  */
106 static int enforce_aligned_data;
107 
108 extern int target_big_endian;
109 
110 static int target_little_endian_data;
111 
112 /* Symbols for global registers on v9.  */
113 static symbolS *globals[8];
114 
115 /* The dwarf2 data alignment, adjusted for 32 or 64 bit.  */
116 int sparc_cie_data_alignment;
117 
118 /* V9 and 86x have big and little endian data, but instructions are always big
119    endian.  The sparclet has bi-endian support but both data and insns have
120    the same endianness.  Global `target_big_endian' is used for data.
121    The following macro is used for instructions.  */
122 #ifndef INSN_BIG_ENDIAN
123 #define INSN_BIG_ENDIAN (target_big_endian \
124 			 || default_arch_type == sparc86x \
125 			 || SPARC_OPCODE_ARCH_V9_P (max_architecture))
126 #endif
127 
128 /* Handle of the OPCODE hash table.  */
129 static struct hash_control *op_hash;
130 
131 static void s_data1 (void);
132 static void s_seg (int);
133 static void s_proc (int);
134 static void s_reserve (int);
135 static void s_common (int);
136 static void s_empty (int);
137 static void s_uacons (int);
138 static void s_ncons (int);
139 static void s_register (int);
140 
141 const pseudo_typeS md_pseudo_table[] =
142 {
143   {"align", s_align_bytes, 0},	/* Defaulting is invalid (0).  */
144   {"common", s_common, 0},
145   {"empty", s_empty, 0},
146   {"global", s_globl, 0},
147   {"half", cons, 2},
148   {"nword", s_ncons, 0},
149   {"optim", s_ignore, 0},
150   {"proc", s_proc, 0},
151   {"reserve", s_reserve, 0},
152   {"seg", s_seg, 0},
153   {"skip", s_space, 0},
154   {"word", cons, 4},
155   {"xword", cons, 8},
156   {"uahalf", s_uacons, 2},
157   {"uaword", s_uacons, 4},
158   {"uaxword", s_uacons, 8},
159   /* These are specific to sparc/svr4.  */
160   {"2byte", s_uacons, 2},
161   {"4byte", s_uacons, 4},
162   {"8byte", s_uacons, 8},
163   {"register", s_register, 0},
164   {NULL, 0, 0},
165 };
166 
167 /* This array holds the chars that always start a comment.  If the
168    pre-processor is disabled, these aren't very useful.  */
169 const char comment_chars[] = "!";	/* JF removed '|' from
170                                            comment_chars.  */
171 
172 /* This array holds the chars that only start a comment at the beginning of
173    a line.  If the line seems to have the form '# 123 filename'
174    .line and .file directives will appear in the pre-processed output.  */
175 /* Note that input_file.c hand checks for '#' at the beginning of the
176    first line of the input file.  This is because the compiler outputs
177    #NO_APP at the beginning of its output.  */
178 /* Also note that comments started like this one will always
179    work if '/' isn't otherwise defined.  */
180 const char line_comment_chars[] = "#";
181 
182 const char line_separator_chars[] = ";";
183 
184 /* Chars that can be used to separate mant from exp in floating point
185    nums.  */
186 const char EXP_CHARS[] = "eE";
187 
188 /* Chars that mean this number is a floating point constant.
189    As in 0f12.456
190    or    0d1.2345e12  */
191 const char FLT_CHARS[] = "rRsSfFdDxXpP";
192 
193 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
194    changed in read.c.  Ideally it shouldn't have to know about it at all,
195    but nothing is ideal around here.  */
196 
197 #define isoctal(c)  ((unsigned) ((c) - '0') < 8)
198 
199 struct sparc_it
200   {
201     const char *error;
202     unsigned long opcode;
203     struct nlist *nlistp;
204     expressionS exp;
205     expressionS exp2;
206     int pcrel;
207     bfd_reloc_code_real_type reloc;
208   };
209 
210 struct sparc_it the_insn, set_insn;
211 
212 static void output_insn (const struct sparc_opcode *, struct sparc_it *);
213 
214 /* Table of arguments to -A.
215    The sparc_opcode_arch table in sparc-opc.c is insufficient and incorrect
216    for this use.  That table is for opcodes only.  This table is for opcodes
217    and file formats.  */
218 
219 enum sparc_arch_types {v6, v7, v8, leon, sparclet, sparclite, sparc86x, v8plus,
220 		       v8plusa, v9, v9a, v9b, v9_64};
221 
222 static struct sparc_arch {
223   const char *name;
224   const char *opcode_arch;
225   enum sparc_arch_types arch_type;
226   /* Default word size, as specified during configuration.
227      A value of zero means can't be used to specify default architecture.  */
228   int default_arch_size;
229   /* Allowable arg to -A?  */
230   int user_option_p;
231   /* Extra hardware capabilities allowed.  These are added to the
232      hardware capabilities associated with the opcode
233      architecture.  */
234   int hwcap_allowed;
235   int hwcap2_allowed;
236 } sparc_arch_table[] = {
237   { "v6",         "v6",  v6,  0, 1, 0, 0 },
238   { "v7",         "v7",  v7,  0, 1, 0, 0 },
239   { "v8",         "v8",  v8, 32, 1, 0, 0 },
240   { "v8a",        "v8",  v8, 32, 1, 0, 0 },
241   { "sparc",      "v9",  v9,  0, 1, HWCAP_V8PLUS, 0 },
242   { "sparcvis",   "v9a", v9,  0, 1, 0, 0 },
243   { "sparcvis2",  "v9b", v9,  0, 1, 0, 0 },
244   { "sparcfmaf",  "v9b", v9,  0, 1, HWCAP_FMAF, 0 },
245   { "sparcima",   "v9b", v9,  0, 1, HWCAP_FMAF|HWCAP_IMA, 0 },
246   { "sparcvis3",  "v9b", v9,  0, 1, HWCAP_FMAF|HWCAP_VIS3|HWCAP_HPC, 0 },
247   { "sparcvis3r", "v9b", v9,  0, 1, HWCAP_FMAF|HWCAP_VIS3|HWCAP_HPC|HWCAP_FJFMAU, 0 },
248 
249   { "sparc4",     "v9v", v9,  0, 1, 0, 0 },
250   { "sparc5",     "v9m", v9,  0, 1, 0, 0 },
251   { "sparc6",     "m8",  v9,  0, 1, 0, 0 },
252 
253   { "leon",      "leon",      leon,      32, 1, 0, 0 },
254   { "sparclet",  "sparclet",  sparclet,  32, 1, 0, 0 },
255   { "sparclite", "sparclite", sparclite, 32, 1, 0, 0 },
256   { "sparc86x",  "sparclite", sparc86x,  32, 1, 0, 0 },
257 
258   { "v8plus",  "v9",  v9,  0, 1, HWCAP_V8PLUS, 0 },
259   { "v8plusa", "v9a", v9,  0, 1, HWCAP_V8PLUS, 0 },
260   { "v8plusb", "v9b", v9,  0, 1, HWCAP_V8PLUS, 0 },
261   { "v8plusc", "v9c", v9,  0, 1, HWCAP_V8PLUS, 0 },
262   { "v8plusd", "v9d", v9,  0, 1, HWCAP_V8PLUS, 0 },
263   { "v8pluse", "v9e", v9,  0, 1, HWCAP_V8PLUS, 0 },
264   { "v8plusv", "v9v", v9,  0, 1, HWCAP_V8PLUS, 0 },
265   { "v8plusm", "v9m", v9,  0, 1, HWCAP_V8PLUS, 0 },
266   { "v8plusm8", "m8", v9,  0, 1, HWCAP_V8PLUS, 0 },
267 
268   { "v9",      "v9",  v9,  0, 1, 0, 0 },
269   { "v9a",     "v9a", v9,  0, 1, 0, 0 },
270   { "v9b",     "v9b", v9,  0, 1, 0, 0 },
271   { "v9c",     "v9c", v9,  0, 1, 0, 0 },
272   { "v9d",     "v9d", v9,  0, 1, 0, 0 },
273   { "v9e",     "v9e", v9,  0, 1, 0, 0 },
274   { "v9v",     "v9v", v9,  0, 1, 0, 0 },
275   { "v9m",     "v9m", v9,  0, 1, 0, 0 },
276   { "v9m8",     "m8", v9,  0, 1, 0, 0 },
277 
278   /* This exists to allow configure.tgt to pass one
279      value to specify both the default machine and default word size.  */
280   { "v9-64",   "v9",  v9, 64, 0, 0, 0 },
281   { NULL, NULL, v8, 0, 0, 0, 0 }
282 };
283 
284 /* Variant of default_arch */
285 static enum sparc_arch_types default_arch_type;
286 
287 static struct sparc_arch *
288 lookup_arch (const char *name)
289 {
290   struct sparc_arch *sa;
291 
292   for (sa = &sparc_arch_table[0]; sa->name != NULL; sa++)
293     if (strcmp (sa->name, name) == 0)
294       break;
295   if (sa->name == NULL)
296     return NULL;
297   return sa;
298 }
299 
300 /* Initialize the default opcode arch and word size from the default
301    architecture name.  */
302 
303 static void
304 init_default_arch (void)
305 {
306   struct sparc_arch *sa = lookup_arch (default_arch);
307 
308   if (sa == NULL
309       || sa->default_arch_size == 0)
310     as_fatal (_("Invalid default architecture, broken assembler."));
311 
312   max_architecture = sparc_opcode_lookup_arch (sa->opcode_arch);
313   if (max_architecture == SPARC_OPCODE_ARCH_BAD)
314     as_fatal (_("Bad opcode table, broken assembler."));
315   default_arch_size = sparc_arch_size = sa->default_arch_size;
316   default_init_p = 1;
317   default_arch_type = sa->arch_type;
318 }
319 
320 /* Called by TARGET_MACH.  */
321 
322 unsigned long
323 sparc_mach (void)
324 {
325   /* We don't get a chance to initialize anything before we're called,
326      so handle that now.  */
327   if (! default_init_p)
328     init_default_arch ();
329 
330   return sparc_arch_size == 64 ? bfd_mach_sparc_v9 : bfd_mach_sparc;
331 }
332 
333 /* Called by TARGET_FORMAT.  */
334 
335 const char *
336 sparc_target_format (void)
337 {
338   /* We don't get a chance to initialize anything before we're called,
339      so handle that now.  */
340   if (! default_init_p)
341     init_default_arch ();
342 
343 #ifdef TE_VXWORKS
344   return "elf32-sparc-vxworks";
345 #endif
346 
347   return sparc_arch_size == 64 ? ELF64_TARGET_FORMAT : ELF_TARGET_FORMAT;
348 }
349 
350 /* md_parse_option
351  *	Invocation line includes a switch not recognized by the base assembler.
352  *	See if it's a processor-specific option.  These are:
353  *
354  *	-bump
355  *		Warn on architecture bumps.  See also -A.
356  *
357  *	-Av6, -Av7, -Av8, -Aleon, -Asparclite, -Asparclet
358  *		Standard 32 bit architectures.
359  *	-Av9, -Av9a, -Av9b
360  *		Sparc64 in either a 32 or 64 bit world (-32/-64 says which).
361  *		This used to only mean 64 bits, but properly specifying it
362  *		complicated gcc's ASM_SPECs, so now opcode selection is
363  *		specified orthogonally to word size (except when specifying
364  *		the default, but that is an internal implementation detail).
365  *	-Av8plus, -Av8plusa, -Av8plusb
366  *		Same as -Av9{,a,b}.
367  *	-xarch=v8plus, -xarch=v8plusa, -xarch=v8plusb
368  *		Same as -Av8plus{,a,b} -32, for compatibility with Sun's
369  *		assembler.
370  *	-xarch=v9, -xarch=v9a, -xarch=v9b
371  *		Same as -Av9{,a,b} -64, for compatibility with Sun's
372  *		assembler.
373  *
374  *		Select the architecture and possibly the file format.
375  *		Instructions or features not supported by the selected
376  *		architecture cause fatal errors.
377  *
378  *		The default is to start at v6, and bump the architecture up
379  *		whenever an instruction is seen at a higher level.  In 32 bit
380  *		environments, v9 is not bumped up to, the user must pass
381  * 		-Av8plus{,a,b}.
382  *
383  *		If -bump is specified, a warning is printing when bumping to
384  *		higher levels.
385  *
386  *		If an architecture is specified, all instructions must match
387  *		that architecture.  Any higher level instructions are flagged
388  *		as errors.  Note that in the 32 bit environment specifying
389  *		-Av8plus does not automatically create a v8plus object file, a
390  *		v9 insn must be seen.
391  *
392  *		If both an architecture and -bump are specified, the
393  *		architecture starts at the specified level, but bumps are
394  *		warnings.  Note that we can't set `current_architecture' to
395  *		the requested level in this case: in the 32 bit environment,
396  *		we still must avoid creating v8plus object files unless v9
397  * 		insns are seen.
398  *
399  * Note:
400  *		Bumping between incompatible architectures is always an
401  *		error.  For example, from sparclite to v9.
402  */
403 
404 const char *md_shortopts = "A:K:VQ:sq";
405 struct option md_longopts[] = {
406 #define OPTION_BUMP (OPTION_MD_BASE)
407   {"bump", no_argument, NULL, OPTION_BUMP},
408 #define OPTION_SPARC (OPTION_MD_BASE + 1)
409   {"sparc", no_argument, NULL, OPTION_SPARC},
410 #define OPTION_XARCH (OPTION_MD_BASE + 2)
411   {"xarch", required_argument, NULL, OPTION_XARCH},
412 #define OPTION_32 (OPTION_MD_BASE + 3)
413   {"32", no_argument, NULL, OPTION_32},
414 #define OPTION_64 (OPTION_MD_BASE + 4)
415   {"64", no_argument, NULL, OPTION_64},
416 #define OPTION_TSO (OPTION_MD_BASE + 5)
417   {"TSO", no_argument, NULL, OPTION_TSO},
418 #define OPTION_PSO (OPTION_MD_BASE + 6)
419   {"PSO", no_argument, NULL, OPTION_PSO},
420 #define OPTION_RMO (OPTION_MD_BASE + 7)
421   {"RMO", no_argument, NULL, OPTION_RMO},
422 #ifdef SPARC_BIENDIAN
423 #define OPTION_LITTLE_ENDIAN (OPTION_MD_BASE + 8)
424   {"EL", no_argument, NULL, OPTION_LITTLE_ENDIAN},
425 #define OPTION_BIG_ENDIAN (OPTION_MD_BASE + 9)
426   {"EB", no_argument, NULL, OPTION_BIG_ENDIAN},
427 #endif
428 #define OPTION_ENFORCE_ALIGNED_DATA (OPTION_MD_BASE + 10)
429   {"enforce-aligned-data", no_argument, NULL, OPTION_ENFORCE_ALIGNED_DATA},
430 #define OPTION_LITTLE_ENDIAN_DATA (OPTION_MD_BASE + 11)
431   {"little-endian-data", no_argument, NULL, OPTION_LITTLE_ENDIAN_DATA},
432 #define OPTION_NO_UNDECLARED_REGS (OPTION_MD_BASE + 12)
433   {"no-undeclared-regs", no_argument, NULL, OPTION_NO_UNDECLARED_REGS},
434 #define OPTION_UNDECLARED_REGS (OPTION_MD_BASE + 13)
435   {"undeclared-regs", no_argument, NULL, OPTION_UNDECLARED_REGS},
436 #define OPTION_RELAX (OPTION_MD_BASE + 14)
437   {"relax", no_argument, NULL, OPTION_RELAX},
438 #define OPTION_NO_RELAX (OPTION_MD_BASE + 15)
439   {"no-relax", no_argument, NULL, OPTION_NO_RELAX},
440 #define OPTION_DCTI_COUPLES_DETECT (OPTION_MD_BASE + 16)
441   {"dcti-couples-detect", no_argument, NULL, OPTION_DCTI_COUPLES_DETECT},
442   {NULL, no_argument, NULL, 0}
443 };
444 
445 size_t md_longopts_size = sizeof (md_longopts);
446 
447 int
448 md_parse_option (int c, const char *arg)
449 {
450   /* We don't get a chance to initialize anything before we're called,
451      so handle that now.  */
452   if (! default_init_p)
453     init_default_arch ();
454 
455   switch (c)
456     {
457     case OPTION_BUMP:
458       warn_on_bump = 1;
459       warn_after_architecture = SPARC_OPCODE_ARCH_V6;
460       break;
461 
462     case OPTION_XARCH:
463       if (!strncmp (arg, "v9", 2))
464 	md_parse_option (OPTION_64, NULL);
465       else
466 	{
467 	  if (!strncmp (arg, "v8", 2)
468 	      || !strncmp (arg, "v7", 2)
469 	      || !strncmp (arg, "v6", 2)
470 	      || !strcmp (arg, "sparclet")
471 	      || !strcmp (arg, "sparclite")
472 	      || !strcmp (arg, "sparc86x"))
473 	    md_parse_option (OPTION_32, NULL);
474 	}
475       /* Fall through.  */
476 
477     case 'A':
478       {
479 	struct sparc_arch *sa;
480 	enum sparc_opcode_arch_val opcode_arch;
481 
482 	sa = lookup_arch (arg);
483 	if (sa == NULL
484 	    || ! sa->user_option_p)
485 	  {
486 	    if (c == OPTION_XARCH)
487 	      as_bad (_("invalid architecture -xarch=%s"), arg);
488 	    else
489 	      as_bad (_("invalid architecture -A%s"), arg);
490 	    return 0;
491 	  }
492 
493 	opcode_arch = sparc_opcode_lookup_arch (sa->opcode_arch);
494 	if (opcode_arch == SPARC_OPCODE_ARCH_BAD)
495 	  as_fatal (_("Bad opcode table, broken assembler."));
496 
497 	if (!architecture_requested
498 	    || opcode_arch > max_architecture)
499 	  max_architecture = opcode_arch;
500 
501         /* The allowed hardware capabilities are the implied by the
502            opcodes arch plus any extra capabilities defined in the GAS
503            arch.  */
504         hwcap_allowed
505           = (hwcap_allowed
506              | (((bfd_uint64_t) sparc_opcode_archs[opcode_arch].hwcaps2) << 32)
507              | (((bfd_uint64_t) sa->hwcap2_allowed) << 32)
508              | sparc_opcode_archs[opcode_arch].hwcaps
509              | sa->hwcap_allowed);
510 	architecture_requested = 1;
511       }
512       break;
513 
514     case OPTION_SPARC:
515       /* Ignore -sparc, used by SunOS make default .s.o rule.  */
516       break;
517 
518     case OPTION_ENFORCE_ALIGNED_DATA:
519       enforce_aligned_data = 1;
520       break;
521 
522 #ifdef SPARC_BIENDIAN
523     case OPTION_LITTLE_ENDIAN:
524       target_big_endian = 0;
525       if (default_arch_type != sparclet)
526 	as_fatal ("This target does not support -EL");
527       break;
528     case OPTION_LITTLE_ENDIAN_DATA:
529       target_little_endian_data = 1;
530       target_big_endian = 0;
531       if (default_arch_type != sparc86x
532 	  && default_arch_type != v9)
533 	as_fatal ("This target does not support --little-endian-data");
534       break;
535     case OPTION_BIG_ENDIAN:
536       target_big_endian = 1;
537       break;
538 #endif
539 
540     case OPTION_32:
541     case OPTION_64:
542       {
543 	const char **list, **l;
544 
545 	sparc_arch_size = c == OPTION_32 ? 32 : 64;
546 	list = bfd_target_list ();
547 	for (l = list; *l != NULL; l++)
548 	  {
549 	    if (sparc_arch_size == 32)
550 	      {
551 		if (CONST_STRNEQ (*l, "elf32-sparc"))
552 		  break;
553 	      }
554 	    else
555 	      {
556 		if (CONST_STRNEQ (*l, "elf64-sparc"))
557 		  break;
558 	      }
559 	  }
560 	if (*l == NULL)
561 	  as_fatal (_("No compiled in support for %d bit object file format"),
562 		    sparc_arch_size);
563 	free (list);
564 
565 	if (sparc_arch_size == 64
566 	    && max_architecture < SPARC_OPCODE_ARCH_V9)
567 	  max_architecture = SPARC_OPCODE_ARCH_V9;
568       }
569       break;
570 
571     case OPTION_TSO:
572       sparc_memory_model = MM_TSO;
573       break;
574 
575     case OPTION_PSO:
576       sparc_memory_model = MM_PSO;
577       break;
578 
579     case OPTION_RMO:
580       sparc_memory_model = MM_RMO;
581       break;
582 
583     case 'V':
584       print_version_id ();
585       break;
586 
587     case 'Q':
588       /* Qy - do emit .comment
589 	 Qn - do not emit .comment.  */
590       break;
591 
592     case 's':
593       /* Use .stab instead of .stab.excl.  */
594       break;
595 
596     case 'q':
597       /* quick -- Native assembler does fewer checks.  */
598       break;
599 
600     case 'K':
601       if (strcmp (arg, "PIC") != 0)
602 	as_warn (_("Unrecognized option following -K"));
603       else
604 	sparc_pic_code = 1;
605       break;
606 
607     case OPTION_NO_UNDECLARED_REGS:
608       no_undeclared_regs = 1;
609       break;
610 
611     case OPTION_UNDECLARED_REGS:
612       no_undeclared_regs = 0;
613       break;
614 
615     case OPTION_RELAX:
616       sparc_relax = 1;
617       break;
618 
619     case OPTION_NO_RELAX:
620       sparc_relax = 0;
621       break;
622 
623     case OPTION_DCTI_COUPLES_DETECT:
624       dcti_couples_detect = 1;
625       break;
626 
627     default:
628       return 0;
629     }
630 
631   return 1;
632 }
633 
634 void
635 md_show_usage (FILE *stream)
636 {
637   const struct sparc_arch *arch;
638   int column;
639 
640   /* We don't get a chance to initialize anything before we're called,
641      so handle that now.  */
642   if (! default_init_p)
643     init_default_arch ();
644 
645   fprintf (stream, _("SPARC options:\n"));
646   column = 0;
647   for (arch = &sparc_arch_table[0]; arch->name; arch++)
648     {
649       if (!arch->user_option_p)
650 	continue;
651       if (arch != &sparc_arch_table[0])
652 	fprintf (stream, " | ");
653       if (column + strlen (arch->name) > 70)
654 	{
655 	  column = 0;
656 	  fputc ('\n', stream);
657 	}
658       column += 5 + 2 + strlen (arch->name);
659       fprintf (stream, "-A%s", arch->name);
660     }
661   for (arch = &sparc_arch_table[0]; arch->name; arch++)
662     {
663       if (!arch->user_option_p)
664 	continue;
665       fprintf (stream, " | ");
666       if (column + strlen (arch->name) > 65)
667 	{
668 	  column = 0;
669 	  fputc ('\n', stream);
670 	}
671       column += 5 + 7 + strlen (arch->name);
672       fprintf (stream, "-xarch=%s", arch->name);
673     }
674   fprintf (stream, _("\n\
675 			specify variant of SPARC architecture\n\
676 -bump			warn when assembler switches architectures\n\
677 -sparc			ignored\n\
678 --enforce-aligned-data	force .long, etc., to be aligned correctly\n\
679 -relax			relax jumps and branches (default)\n\
680 -no-relax		avoid changing any jumps and branches\n"));
681   fprintf (stream, _("\
682 -32			create 32 bit object file\n\
683 -64			create 64 bit object file\n"));
684   fprintf (stream, _("\
685 			[default is %d]\n"), default_arch_size);
686   fprintf (stream, _("\
687 -TSO			use Total Store Ordering\n\
688 -PSO			use Partial Store Ordering\n\
689 -RMO			use Relaxed Memory Ordering\n"));
690   fprintf (stream, _("\
691 			[default is %s]\n"), (default_arch_size == 64) ? "RMO" : "TSO");
692   fprintf (stream, _("\
693 -KPIC			generate PIC\n\
694 -V			print assembler version number\n\
695 -undeclared-regs	ignore application global register usage without\n\
696 			appropriate .register directive (default)\n\
697 -no-undeclared-regs	force error on application global register usage\n\
698 			without appropriate .register directive\n\
699 --dcti-couples-detect	warn when an unpredictable DCTI couple is found\n\
700 -q			ignored\n\
701 -Qy, -Qn		ignored\n\
702 -s			ignored\n"));
703 #ifdef SPARC_BIENDIAN
704   fprintf (stream, _("\
705 -EL			generate code for a little endian machine\n\
706 -EB			generate code for a big endian machine\n\
707 --little-endian-data	generate code for a machine having big endian\n\
708                         instructions and little endian data.\n"));
709 #endif
710 }
711 
712 /* Native operand size opcode translation.  */
713 static struct
714   {
715     const char *name;
716     const char *name32;
717     const char *name64;
718   } native_op_table[] =
719 {
720   {"ldn", "ld", "ldx"},
721   {"ldna", "lda", "ldxa"},
722   {"stn", "st", "stx"},
723   {"stna", "sta", "stxa"},
724   {"slln", "sll", "sllx"},
725   {"srln", "srl", "srlx"},
726   {"sran", "sra", "srax"},
727   {"casn", "cas", "casx"},
728   {"casna", "casa", "casxa"},
729   {"clrn", "clr", "clrx"},
730   {NULL, NULL, NULL},
731 };
732 
733 /* sparc64 privileged and hyperprivileged registers.  */
734 
735 struct priv_reg_entry
736 {
737   const char *name;
738   int regnum;
739 };
740 
741 struct priv_reg_entry priv_reg_table[] =
742 {
743   {"tpc", 0},
744   {"tnpc", 1},
745   {"tstate", 2},
746   {"tt", 3},
747   {"tick", 4},
748   {"tba", 5},
749   {"pstate", 6},
750   {"tl", 7},
751   {"pil", 8},
752   {"cwp", 9},
753   {"cansave", 10},
754   {"canrestore", 11},
755   {"cleanwin", 12},
756   {"otherwin", 13},
757   {"wstate", 14},
758   {"fq", 15},
759   {"gl", 16},
760   {"pmcdper", 23},
761   {"ver", 31},
762   {NULL, -1},			/* End marker.  */
763 };
764 
765 struct priv_reg_entry hpriv_reg_table[] =
766 {
767   {"hpstate", 0},
768   {"htstate", 1},
769   {"hintp", 3},
770   {"htba", 5},
771   {"hver", 6},
772   {"hmcdper", 23},
773   {"hmcddfr", 24},
774   {"hva_mask_nz", 27},
775   {"hstick_offset", 28},
776   {"hstick_enable", 29},
777   {"hstick_cmpr", 31},
778   {NULL, -1},			/* End marker.  */
779 };
780 
781 /* v9a or later specific ancillary state registers. */
782 
783 struct priv_reg_entry v9a_asr_table[] =
784 {
785   {"tick_cmpr", 23},
786   {"sys_tick_cmpr", 25},
787   {"sys_tick", 24},
788   {"stick_cmpr", 25},
789   {"stick", 24},
790   {"softint_clear", 21},
791   {"softint_set", 20},
792   {"softint", 22},
793   {"set_softint", 20},
794   {"pause", 27},
795   {"pic", 17},
796   {"pcr", 16},
797   {"mwait", 28},
798   {"gsr", 19},
799   {"dcr", 18},
800   {"cfr", 26},
801   {"clear_softint", 21},
802   {NULL, -1},			/* End marker.  */
803 };
804 
805 static int
806 cmp_reg_entry (const void *parg, const void *qarg)
807 {
808   const struct priv_reg_entry *p = (const struct priv_reg_entry *) parg;
809   const struct priv_reg_entry *q = (const struct priv_reg_entry *) qarg;
810 
811   if (p->name == q->name)
812     return 0;
813   else if (p->name == NULL)
814     return 1;
815   else if (q->name == NULL)
816     return -1;
817   else
818     return strcmp (q->name, p->name);
819 }
820 
821 /* sparc %-pseudo-operations.  */
822 
823 
824 #define F_POP_V9       0x1 /* The pseudo-op is for v9 only.  */
825 #define F_POP_PCREL    0x2 /* The pseudo-op can be used in pc-relative
826                               contexts.  */
827 #define F_POP_TLS_CALL 0x4 /* The pseudo-op marks a tls call.  */
828 #define F_POP_POSTFIX  0x8 /* The pseudo-op should appear after the
829                               last operand of an
830                               instruction. (Generally they can appear
831                               anywhere an immediate operand is
832                               expected.  */
833 struct pop_entry
834 {
835   /* The name as it appears in assembler.  */
836   const char *name;
837   /* The reloc this pseudo-op translates to.  */
838   bfd_reloc_code_real_type reloc;
839   /* Flags.  See F_POP_* above.  */
840   int flags;
841 };
842 
843 struct pop_entry pop_table[] =
844 {
845   { "hix",		BFD_RELOC_SPARC_HIX22,		F_POP_V9 },
846   { "lox",		BFD_RELOC_SPARC_LOX10, 		F_POP_V9 },
847   { "hi",		BFD_RELOC_HI22,			F_POP_PCREL },
848   { "lo",		BFD_RELOC_LO10,			F_POP_PCREL },
849   { "pc22",		BFD_RELOC_SPARC_PC22,		F_POP_PCREL },
850   { "pc10",		BFD_RELOC_SPARC_PC10,		F_POP_PCREL },
851   { "hh",		BFD_RELOC_SPARC_HH22,		F_POP_V9|F_POP_PCREL },
852   { "hm",		BFD_RELOC_SPARC_HM10,		F_POP_V9|F_POP_PCREL },
853   { "lm",		BFD_RELOC_SPARC_LM22,		F_POP_V9|F_POP_PCREL },
854   { "h34",		BFD_RELOC_SPARC_H34,		F_POP_V9 },
855   { "l34",		BFD_RELOC_SPARC_L44,		F_POP_V9 },
856   { "h44",		BFD_RELOC_SPARC_H44,		F_POP_V9 },
857   { "m44",		BFD_RELOC_SPARC_M44,		F_POP_V9 },
858   { "l44",		BFD_RELOC_SPARC_L44,		F_POP_V9 },
859   { "uhi",		BFD_RELOC_SPARC_HH22,		F_POP_V9 },
860   { "ulo",		BFD_RELOC_SPARC_HM10,		F_POP_V9 },
861   { "tgd_hi22",		BFD_RELOC_SPARC_TLS_GD_HI22, 	0 },
862   { "tgd_lo10",		BFD_RELOC_SPARC_TLS_GD_LO10, 	0 },
863   { "tldm_hi22",	BFD_RELOC_SPARC_TLS_LDM_HI22, 	0 },
864   { "tldm_lo10",	BFD_RELOC_SPARC_TLS_LDM_LO10, 	0 },
865   { "tldo_hix22",	BFD_RELOC_SPARC_TLS_LDO_HIX22, 	0 },
866   { "tldo_lox10",	BFD_RELOC_SPARC_TLS_LDO_LOX10, 	0 },
867   { "tie_hi22",		BFD_RELOC_SPARC_TLS_IE_HI22, 	0 },
868   { "tie_lo10",		BFD_RELOC_SPARC_TLS_IE_LO10, 	0 },
869   { "tle_hix22",	BFD_RELOC_SPARC_TLS_LE_HIX22, 	0 },
870   { "tle_lox10",	BFD_RELOC_SPARC_TLS_LE_LOX10, 	0 },
871   { "gdop_hix22",	BFD_RELOC_SPARC_GOTDATA_OP_HIX22, 0 },
872   { "gdop_lox10",	BFD_RELOC_SPARC_GOTDATA_OP_LOX10, 0 },
873   { "tgd_add", 		BFD_RELOC_SPARC_TLS_GD_ADD,	F_POP_POSTFIX },
874   { "tgd_call",		BFD_RELOC_SPARC_TLS_GD_CALL, 	F_POP_POSTFIX|F_POP_TLS_CALL },
875   { "tldm_add",		BFD_RELOC_SPARC_TLS_LDM_ADD, 	F_POP_POSTFIX },
876   { "tldm_call",	BFD_RELOC_SPARC_TLS_LDM_CALL,	F_POP_POSTFIX|F_POP_TLS_CALL },
877   { "tldo_add",		BFD_RELOC_SPARC_TLS_LDO_ADD, 	F_POP_POSTFIX },
878   { "tie_ldx",		BFD_RELOC_SPARC_TLS_IE_LDX, 	F_POP_POSTFIX },
879   { "tie_ld",		BFD_RELOC_SPARC_TLS_IE_LD,	F_POP_POSTFIX },
880   { "tie_add",		BFD_RELOC_SPARC_TLS_IE_ADD,	F_POP_POSTFIX },
881   { "gdop",	 	BFD_RELOC_SPARC_GOTDATA_OP,	F_POP_POSTFIX }
882 };
883 
884 /* Table of %-names that can appear in a sparc assembly program.  This
885    table is initialized in md_begin and contains entries for each
886    privileged/hyperprivileged/alternate register and %-pseudo-op.  */
887 
888 enum perc_entry_type
889 {
890   perc_entry_none = 0,
891   perc_entry_reg,
892   perc_entry_post_pop,
893   perc_entry_imm_pop
894 };
895 
896 struct perc_entry
897 {
898   /* Entry type.  */
899   enum perc_entry_type type;
900   /* Name of the %-entity.  */
901   const char *name;
902   /* strlen (name).  */
903   int len;
904   /* Value.  Either a pop or a reg depending on type.*/
905   union
906   {
907     struct pop_entry *pop;
908     struct priv_reg_entry *reg;
909   };
910 };
911 
912 #define NUM_PERC_ENTRIES \
913   (((sizeof (priv_reg_table) / sizeof (priv_reg_table[0])) - 1)         \
914    + ((sizeof (hpriv_reg_table) / sizeof (hpriv_reg_table[0])) - 1)     \
915    + ((sizeof (v9a_asr_table) / sizeof (v9a_asr_table[0])) - 1)         \
916    + ARRAY_SIZE (pop_table)						\
917    + 1)
918 
919 struct perc_entry perc_table[NUM_PERC_ENTRIES];
920 
921 static int
922 cmp_perc_entry (const void *parg, const void *qarg)
923 {
924   const struct perc_entry *p = (const struct perc_entry *) parg;
925   const struct perc_entry *q = (const struct perc_entry *) qarg;
926 
927   if (p->name == q->name)
928     return 0;
929   else if (p->name == NULL)
930     return 1;
931   else if (q->name == NULL)
932     return -1;
933   else
934     return strcmp (q->name, p->name);
935 }
936 
937 /* This function is called once, at assembler startup time.  It should
938    set up all the tables, etc. that the MD part of the assembler will
939    need.  */
940 
941 void
942 md_begin (void)
943 {
944   const char *retval = NULL;
945   int lose = 0;
946   unsigned int i = 0;
947 
948   /* We don't get a chance to initialize anything before md_parse_option
949      is called, and it may not be called, so handle default initialization
950      now if not already done.  */
951   if (! default_init_p)
952     init_default_arch ();
953 
954   sparc_cie_data_alignment = sparc_arch_size == 64 ? -8 : -4;
955   op_hash = hash_new ();
956 
957   while (i < (unsigned int) sparc_num_opcodes)
958     {
959       const char *name = sparc_opcodes[i].name;
960       retval = hash_insert (op_hash, name, (void *) &sparc_opcodes[i]);
961       if (retval != NULL)
962 	{
963 	  as_bad (_("Internal error: can't hash `%s': %s\n"),
964 		  sparc_opcodes[i].name, retval);
965 	  lose = 1;
966 	}
967       do
968 	{
969 	  if (sparc_opcodes[i].match & sparc_opcodes[i].lose)
970 	    {
971 	      as_bad (_("Internal error: losing opcode: `%s' \"%s\"\n"),
972 		      sparc_opcodes[i].name, sparc_opcodes[i].args);
973 	      lose = 1;
974 	    }
975 	  ++i;
976 	}
977       while (i < (unsigned int) sparc_num_opcodes
978 	     && !strcmp (sparc_opcodes[i].name, name));
979     }
980 
981   for (i = 0; native_op_table[i].name; i++)
982     {
983       const struct sparc_opcode *insn;
984       const char *name = ((sparc_arch_size == 32)
985 		    ? native_op_table[i].name32
986 		    : native_op_table[i].name64);
987       insn = (struct sparc_opcode *) hash_find (op_hash, name);
988       if (insn == NULL)
989 	{
990 	  as_bad (_("Internal error: can't find opcode `%s' for `%s'\n"),
991 		  name, native_op_table[i].name);
992 	  lose = 1;
993 	}
994       else
995 	{
996 	  retval = hash_insert (op_hash, native_op_table[i].name,
997 				(void *) insn);
998 	  if (retval != NULL)
999 	    {
1000 	      as_bad (_("Internal error: can't hash `%s': %s\n"),
1001 		      sparc_opcodes[i].name, retval);
1002 	      lose = 1;
1003 	    }
1004 	}
1005     }
1006 
1007   if (lose)
1008     as_fatal (_("Broken assembler.  No assembly attempted."));
1009 
1010   qsort (priv_reg_table, sizeof (priv_reg_table) / sizeof (priv_reg_table[0]),
1011 	 sizeof (priv_reg_table[0]), cmp_reg_entry);
1012   qsort (hpriv_reg_table, sizeof (hpriv_reg_table) / sizeof (hpriv_reg_table[0]),
1013 	 sizeof (hpriv_reg_table[0]), cmp_reg_entry);
1014   qsort (v9a_asr_table, sizeof (v9a_asr_table) / sizeof (v9a_asr_table[0]),
1015 	 sizeof (v9a_asr_table[0]), cmp_reg_entry);
1016 
1017   /* If -bump, record the architecture level at which we start issuing
1018      warnings.  The behaviour is different depending upon whether an
1019      architecture was explicitly specified.  If it wasn't, we issue warnings
1020      for all upwards bumps.  If it was, we don't start issuing warnings until
1021      we need to bump beyond the requested architecture or when we bump between
1022      conflicting architectures.  */
1023 
1024   if (warn_on_bump
1025       && architecture_requested)
1026     {
1027       /* `max_architecture' records the requested architecture.
1028 	 Issue warnings if we go above it.  */
1029       warn_after_architecture = max_architecture;
1030     }
1031 
1032   /* Find the highest architecture level that doesn't conflict with
1033      the requested one.  */
1034 
1035   if (warn_on_bump
1036       || !architecture_requested)
1037   {
1038     enum sparc_opcode_arch_val current_max_architecture
1039       = max_architecture;
1040 
1041     for (max_architecture = SPARC_OPCODE_ARCH_MAX;
1042 	 max_architecture > warn_after_architecture;
1043 	 --max_architecture)
1044       if (! SPARC_OPCODE_CONFLICT_P (max_architecture,
1045 				     current_max_architecture))
1046 	break;
1047   }
1048 
1049   /* Prepare the tables of %-pseudo-ops.  */
1050   {
1051     struct priv_reg_entry *reg_tables[]
1052       = {priv_reg_table, hpriv_reg_table, v9a_asr_table, NULL};
1053     struct priv_reg_entry **reg_table;
1054     int entry = 0;
1055 
1056     /* Add registers.  */
1057     for (reg_table = reg_tables; reg_table[0]; reg_table++)
1058       {
1059         struct priv_reg_entry *reg;
1060         for (reg = *reg_table; reg->name; reg++)
1061           {
1062             struct perc_entry *p = &perc_table[entry++];
1063             p->type = perc_entry_reg;
1064             p->name = reg->name;
1065             p->len = strlen (reg->name);
1066             p->reg = reg;
1067           }
1068       }
1069 
1070     /* Add %-pseudo-ops.  */
1071     for (i = 0; i < ARRAY_SIZE (pop_table); i++)
1072       {
1073 	struct perc_entry *p = &perc_table[entry++];
1074 	p->type = (pop_table[i].flags & F_POP_POSTFIX
1075 		   ? perc_entry_post_pop : perc_entry_imm_pop);
1076 	p->name = pop_table[i].name;
1077 	p->len = strlen (pop_table[i].name);
1078 	p->pop = &pop_table[i];
1079       }
1080 
1081     /* Last entry is the sentinel.  */
1082     perc_table[entry].type = perc_entry_none;
1083 
1084     qsort (perc_table, sizeof (perc_table) / sizeof (perc_table[0]),
1085            sizeof (perc_table[0]), cmp_perc_entry);
1086 
1087   }
1088 }
1089 
1090 /* Called after all assembly has been done.  */
1091 
1092 void
1093 sparc_md_end (void)
1094 {
1095   unsigned long mach;
1096 #ifndef TE_SOLARIS
1097   int hwcaps, hwcaps2;
1098 #endif
1099 
1100   if (sparc_arch_size == 64)
1101     switch (current_architecture)
1102       {
1103       case SPARC_OPCODE_ARCH_V9A: mach = bfd_mach_sparc_v9a; break;
1104       case SPARC_OPCODE_ARCH_V9B: mach = bfd_mach_sparc_v9b; break;
1105       case SPARC_OPCODE_ARCH_V9C: mach = bfd_mach_sparc_v9c; break;
1106       case SPARC_OPCODE_ARCH_V9D: mach = bfd_mach_sparc_v9d; break;
1107       case SPARC_OPCODE_ARCH_V9E: mach = bfd_mach_sparc_v9e; break;
1108       case SPARC_OPCODE_ARCH_V9V: mach = bfd_mach_sparc_v9v; break;
1109       case SPARC_OPCODE_ARCH_V9M: mach = bfd_mach_sparc_v9m; break;
1110       case SPARC_OPCODE_ARCH_M8:  mach = bfd_mach_sparc_v9m8; break;
1111       default: mach = bfd_mach_sparc_v9; break;
1112       }
1113   else
1114     switch (current_architecture)
1115       {
1116       case SPARC_OPCODE_ARCH_SPARCLET: mach = bfd_mach_sparc_sparclet; break;
1117       case SPARC_OPCODE_ARCH_V9: mach = bfd_mach_sparc_v8plus; break;
1118       case SPARC_OPCODE_ARCH_V9A: mach = bfd_mach_sparc_v8plusa; break;
1119       case SPARC_OPCODE_ARCH_V9B: mach = bfd_mach_sparc_v8plusb; break;
1120       case SPARC_OPCODE_ARCH_V9C: mach = bfd_mach_sparc_v8plusc; break;
1121       case SPARC_OPCODE_ARCH_V9D: mach = bfd_mach_sparc_v8plusd; break;
1122       case SPARC_OPCODE_ARCH_V9E: mach = bfd_mach_sparc_v8pluse; break;
1123       case SPARC_OPCODE_ARCH_V9V: mach = bfd_mach_sparc_v8plusv; break;
1124       case SPARC_OPCODE_ARCH_V9M: mach = bfd_mach_sparc_v8plusm; break;
1125       case SPARC_OPCODE_ARCH_M8:  mach = bfd_mach_sparc_v8plusm8; break;
1126       /* The sparclite is treated like a normal sparc.  Perhaps it shouldn't
1127 	 be but for now it is (since that's the way it's always been
1128 	 treated).  */
1129       default: mach = bfd_mach_sparc; break;
1130       }
1131   bfd_set_arch_mach (stdoutput, bfd_arch_sparc, mach);
1132 
1133 #ifndef TE_SOLARIS
1134   hwcaps = hwcap_seen & U0xffffffff;
1135   hwcaps2 = hwcap_seen >> 32;
1136 
1137   if (hwcaps)
1138     bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU, Tag_GNU_Sparc_HWCAPS, hwcaps);
1139   if (hwcaps2)
1140     bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU, Tag_GNU_Sparc_HWCAPS2, hwcaps2);
1141 #endif
1142 }
1143 
1144 /* Return non-zero if VAL is in the range -(MAX+1) to MAX.  */
1145 
1146 static inline int
1147 in_signed_range (bfd_signed_vma val, bfd_signed_vma max)
1148 {
1149   if (max <= 0)
1150     abort ();
1151   /* Sign-extend the value from the architecture word size, so that
1152      0xffffffff is always considered -1 on sparc32.  */
1153   if (sparc_arch_size == 32)
1154     {
1155       bfd_signed_vma sign = (bfd_signed_vma) 1 << 31;
1156       val = ((val & U0xffffffff) ^ sign) - sign;
1157     }
1158   if (val > max)
1159     return 0;
1160   if (val < ~max)
1161     return 0;
1162   return 1;
1163 }
1164 
1165 /* Return non-zero if VAL is in the range 0 to MAX.  */
1166 
1167 static inline int
1168 in_unsigned_range (bfd_vma val, bfd_vma max)
1169 {
1170   if (val > max)
1171     return 0;
1172   return 1;
1173 }
1174 
1175 /* Return non-zero if VAL is in the range -(MAX/2+1) to MAX.
1176    (e.g. -15 to +31).  */
1177 
1178 static inline int
1179 in_bitfield_range (bfd_signed_vma val, bfd_signed_vma max)
1180 {
1181   if (max <= 0)
1182     abort ();
1183   if (val > max)
1184     return 0;
1185   if (val < ~(max >> 1))
1186     return 0;
1187   return 1;
1188 }
1189 
1190 static int
1191 sparc_ffs (unsigned int mask)
1192 {
1193   int i;
1194 
1195   if (mask == 0)
1196     return -1;
1197 
1198   for (i = 0; (mask & 1) == 0; ++i)
1199     mask >>= 1;
1200   return i;
1201 }
1202 
1203 /* Implement big shift right.  */
1204 static bfd_vma
1205 BSR (bfd_vma val, int amount)
1206 {
1207   if (sizeof (bfd_vma) <= 4 && amount >= 32)
1208     as_fatal (_("Support for 64-bit arithmetic not compiled in."));
1209   return val >> amount;
1210 }
1211 
1212 /* For communication between sparc_ip and get_expression.  */
1213 static char *expr_end;
1214 
1215 /* Values for `special_case'.
1216    Instructions that require weird handling because they're longer than
1217    4 bytes.  */
1218 #define SPECIAL_CASE_NONE	0
1219 #define	SPECIAL_CASE_SET	1
1220 #define SPECIAL_CASE_SETSW	2
1221 #define SPECIAL_CASE_SETX	3
1222 /* FIXME: sparc-opc.c doesn't have necessary "S" trigger to enable this.  */
1223 #define	SPECIAL_CASE_FDIV	4
1224 
1225 /* Bit masks of various insns.  */
1226 #define NOP_INSN 0x01000000
1227 #define OR_INSN 0x80100000
1228 #define XOR_INSN 0x80180000
1229 #define FMOVS_INSN 0x81A00020
1230 #define SETHI_INSN 0x01000000
1231 #define SLLX_INSN 0x81281000
1232 #define SRA_INSN 0x81380000
1233 
1234 /* The last instruction to be assembled.  */
1235 static const struct sparc_opcode *last_insn;
1236 /* The assembled opcode of `last_insn'.  */
1237 static unsigned long last_opcode;
1238 
1239 /* Handle the set and setuw synthetic instructions.  */
1240 
1241 static void
1242 synthetize_setuw (const struct sparc_opcode *insn)
1243 {
1244   int need_hi22_p = 0;
1245   int rd = (the_insn.opcode & RD (~0)) >> 25;
1246 
1247   if (the_insn.exp.X_op == O_constant)
1248     {
1249       if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
1250 	{
1251 	  if (sizeof (offsetT) > 4
1252 	      && (the_insn.exp.X_add_number < 0
1253 		  || the_insn.exp.X_add_number > (offsetT) U0xffffffff))
1254 	    as_warn (_("set: number not in 0..4294967295 range"));
1255 	}
1256       else
1257 	{
1258 	  if (sizeof (offsetT) > 4
1259 	      && (the_insn.exp.X_add_number < -(offsetT) U0x80000000
1260 		  || the_insn.exp.X_add_number > (offsetT) U0xffffffff))
1261 	    as_warn (_("set: number not in -2147483648..4294967295 range"));
1262 	  the_insn.exp.X_add_number = (int) the_insn.exp.X_add_number;
1263 	}
1264     }
1265 
1266   /* See if operand is absolute and small; skip sethi if so.  */
1267   if (the_insn.exp.X_op != O_constant
1268       || the_insn.exp.X_add_number >= (1 << 12)
1269       || the_insn.exp.X_add_number < -(1 << 12))
1270     {
1271       the_insn.opcode = (SETHI_INSN | RD (rd)
1272 			 | ((the_insn.exp.X_add_number >> 10)
1273 			    & (the_insn.exp.X_op == O_constant
1274 			       ? 0x3fffff : 0)));
1275       the_insn.reloc = (the_insn.exp.X_op != O_constant
1276 			? BFD_RELOC_HI22 : BFD_RELOC_NONE);
1277       output_insn (insn, &the_insn);
1278       need_hi22_p = 1;
1279     }
1280 
1281   /* See if operand has no low-order bits; skip OR if so.  */
1282   if (the_insn.exp.X_op != O_constant
1283       || (need_hi22_p && (the_insn.exp.X_add_number & 0x3FF) != 0)
1284       || ! need_hi22_p)
1285     {
1286       the_insn.opcode = (OR_INSN | (need_hi22_p ? RS1 (rd) : 0)
1287 			 | RD (rd) | IMMED
1288 			 | (the_insn.exp.X_add_number
1289 			    & (the_insn.exp.X_op != O_constant
1290 			       ? 0 : need_hi22_p ? 0x3ff : 0x1fff)));
1291       the_insn.reloc = (the_insn.exp.X_op != O_constant
1292 			? BFD_RELOC_LO10 : BFD_RELOC_NONE);
1293       output_insn (insn, &the_insn);
1294     }
1295 }
1296 
1297 /* Handle the setsw synthetic instruction.  */
1298 
1299 static void
1300 synthetize_setsw (const struct sparc_opcode *insn)
1301 {
1302   int low32, rd, opc;
1303 
1304   rd = (the_insn.opcode & RD (~0)) >> 25;
1305 
1306   if (the_insn.exp.X_op != O_constant)
1307     {
1308       synthetize_setuw (insn);
1309 
1310       /* Need to sign extend it.  */
1311       the_insn.opcode = (SRA_INSN | RS1 (rd) | RD (rd));
1312       the_insn.reloc = BFD_RELOC_NONE;
1313       output_insn (insn, &the_insn);
1314       return;
1315     }
1316 
1317   if (sizeof (offsetT) > 4
1318       && (the_insn.exp.X_add_number < -(offsetT) U0x80000000
1319 	  || the_insn.exp.X_add_number > (offsetT) U0xffffffff))
1320     as_warn (_("setsw: number not in -2147483648..4294967295 range"));
1321 
1322   low32 = the_insn.exp.X_add_number;
1323 
1324   if (low32 >= 0)
1325     {
1326       synthetize_setuw (insn);
1327       return;
1328     }
1329 
1330   opc = OR_INSN;
1331 
1332   the_insn.reloc = BFD_RELOC_NONE;
1333   /* See if operand is absolute and small; skip sethi if so.  */
1334   if (low32 < -(1 << 12))
1335     {
1336       the_insn.opcode = (SETHI_INSN | RD (rd)
1337 			 | (((~the_insn.exp.X_add_number) >> 10) & 0x3fffff));
1338       output_insn (insn, &the_insn);
1339       low32 = 0x1c00 | (low32 & 0x3ff);
1340       opc = RS1 (rd) | XOR_INSN;
1341     }
1342 
1343   the_insn.opcode = (opc | RD (rd) | IMMED
1344 		     | (low32 & 0x1fff));
1345   output_insn (insn, &the_insn);
1346 }
1347 
1348 /* Handle the setx synthetic instruction.  */
1349 
1350 static void
1351 synthetize_setx (const struct sparc_opcode *insn)
1352 {
1353   int upper32, lower32;
1354   int tmpreg = (the_insn.opcode & RS1 (~0)) >> 14;
1355   int dstreg = (the_insn.opcode & RD (~0)) >> 25;
1356   int upper_dstreg;
1357   int need_hh22_p = 0, need_hm10_p = 0, need_hi22_p = 0, need_lo10_p = 0;
1358   int need_xor10_p = 0;
1359 
1360 #define SIGNEXT32(x) ((((x) & U0xffffffff) ^ U0x80000000) - U0x80000000)
1361   lower32 = SIGNEXT32 (the_insn.exp.X_add_number);
1362   upper32 = SIGNEXT32 (BSR (the_insn.exp.X_add_number, 32));
1363 #undef SIGNEXT32
1364 
1365   upper_dstreg = tmpreg;
1366   /* The tmp reg should not be the dst reg.  */
1367   if (tmpreg == dstreg)
1368     as_warn (_("setx: temporary register same as destination register"));
1369 
1370   /* ??? Obviously there are other optimizations we can do
1371      (e.g. sethi+shift for 0x1f0000000) and perhaps we shouldn't be
1372      doing some of these.  Later.  If you do change things, try to
1373      change all of this to be table driven as well.  */
1374   /* What to output depends on the number if it's constant.
1375      Compute that first, then output what we've decided upon.  */
1376   if (the_insn.exp.X_op != O_constant)
1377     {
1378       if (sparc_arch_size == 32)
1379 	{
1380 	  /* When arch size is 32, we want setx to be equivalent
1381 	     to setuw for anything but constants.  */
1382 	  the_insn.exp.X_add_number &= 0xffffffff;
1383 	  synthetize_setuw (insn);
1384 	  return;
1385 	}
1386       need_hh22_p = need_hm10_p = need_hi22_p = need_lo10_p = 1;
1387       lower32 = 0;
1388       upper32 = 0;
1389     }
1390   else
1391     {
1392       /* Reset X_add_number, we've extracted it as upper32/lower32.
1393 	 Otherwise fixup_segment will complain about not being able to
1394 	 write an 8 byte number in a 4 byte field.  */
1395       the_insn.exp.X_add_number = 0;
1396 
1397       /* Only need hh22 if `or' insn can't handle constant.  */
1398       if (upper32 < -(1 << 12) || upper32 >= (1 << 12))
1399 	need_hh22_p = 1;
1400 
1401       /* Does bottom part (after sethi) have bits?  */
1402       if ((need_hh22_p && (upper32 & 0x3ff) != 0)
1403 	  /* No hh22, but does upper32 still have bits we can't set
1404 	     from lower32?  */
1405 	  || (! need_hh22_p && upper32 != 0 && upper32 != -1))
1406 	need_hm10_p = 1;
1407 
1408       /* If the lower half is all zero, we build the upper half directly
1409 	 into the dst reg.  */
1410       if (lower32 != 0
1411 	  /* Need lower half if number is zero or 0xffffffff00000000.  */
1412 	  || (! need_hh22_p && ! need_hm10_p))
1413 	{
1414 	  /* No need for sethi if `or' insn can handle constant.  */
1415 	  if (lower32 < -(1 << 12) || lower32 >= (1 << 12)
1416 	      /* Note that we can't use a negative constant in the `or'
1417 		 insn unless the upper 32 bits are all ones.  */
1418 	      || (lower32 < 0 && upper32 != -1)
1419 	      || (lower32 >= 0 && upper32 == -1))
1420 	    need_hi22_p = 1;
1421 
1422 	  if (need_hi22_p && upper32 == -1)
1423 	    need_xor10_p = 1;
1424 
1425 	  /* Does bottom part (after sethi) have bits?  */
1426 	  else if ((need_hi22_p && (lower32 & 0x3ff) != 0)
1427 		   /* No sethi.  */
1428 		   || (! need_hi22_p && (lower32 & 0x1fff) != 0)
1429 		   /* Need `or' if we didn't set anything else.  */
1430 		   || (! need_hi22_p && ! need_hh22_p && ! need_hm10_p))
1431 	    need_lo10_p = 1;
1432 	}
1433       else
1434 	/* Output directly to dst reg if lower 32 bits are all zero.  */
1435 	upper_dstreg = dstreg;
1436     }
1437 
1438   if (!upper_dstreg && dstreg)
1439     as_warn (_("setx: illegal temporary register g0"));
1440 
1441   if (need_hh22_p)
1442     {
1443       the_insn.opcode = (SETHI_INSN | RD (upper_dstreg)
1444 			 | ((upper32 >> 10) & 0x3fffff));
1445       the_insn.reloc = (the_insn.exp.X_op != O_constant
1446 			? BFD_RELOC_SPARC_HH22 : BFD_RELOC_NONE);
1447       output_insn (insn, &the_insn);
1448     }
1449 
1450   if (need_hi22_p)
1451     {
1452       the_insn.opcode = (SETHI_INSN | RD (dstreg)
1453 			 | (((need_xor10_p ? ~lower32 : lower32)
1454 			     >> 10) & 0x3fffff));
1455       the_insn.reloc = (the_insn.exp.X_op != O_constant
1456 			? BFD_RELOC_SPARC_LM22 : BFD_RELOC_NONE);
1457       output_insn (insn, &the_insn);
1458     }
1459 
1460   if (need_hm10_p)
1461     {
1462       the_insn.opcode = (OR_INSN
1463 			 | (need_hh22_p ? RS1 (upper_dstreg) : 0)
1464 			 | RD (upper_dstreg)
1465 			 | IMMED
1466 			 | (upper32 & (need_hh22_p ? 0x3ff : 0x1fff)));
1467       the_insn.reloc = (the_insn.exp.X_op != O_constant
1468 			? BFD_RELOC_SPARC_HM10 : BFD_RELOC_NONE);
1469       output_insn (insn, &the_insn);
1470     }
1471 
1472   if (need_lo10_p)
1473     {
1474       /* FIXME: One nice optimization to do here is to OR the low part
1475 	 with the highpart if hi22 isn't needed and the low part is
1476 	 positive.  */
1477       the_insn.opcode = (OR_INSN | (need_hi22_p ? RS1 (dstreg) : 0)
1478 			 | RD (dstreg)
1479 			 | IMMED
1480 			 | (lower32 & (need_hi22_p ? 0x3ff : 0x1fff)));
1481       the_insn.reloc = (the_insn.exp.X_op != O_constant
1482 			? BFD_RELOC_LO10 : BFD_RELOC_NONE);
1483       output_insn (insn, &the_insn);
1484     }
1485 
1486   /* If we needed to build the upper part, shift it into place.  */
1487   if (need_hh22_p || need_hm10_p)
1488     {
1489       the_insn.opcode = (SLLX_INSN | RS1 (upper_dstreg) | RD (upper_dstreg)
1490 			 | IMMED | 32);
1491       the_insn.reloc = BFD_RELOC_NONE;
1492       output_insn (insn, &the_insn);
1493     }
1494 
1495   /* To get -1 in upper32, we do sethi %hi(~x), r; xor r, -0x400 | x, r.  */
1496   if (need_xor10_p)
1497     {
1498       the_insn.opcode = (XOR_INSN | RS1 (dstreg) | RD (dstreg) | IMMED
1499 			 | 0x1c00 | (lower32 & 0x3ff));
1500       the_insn.reloc = BFD_RELOC_NONE;
1501       output_insn (insn, &the_insn);
1502     }
1503 
1504   /* If we needed to build both upper and lower parts, OR them together.  */
1505   else if ((need_hh22_p || need_hm10_p) && (need_hi22_p || need_lo10_p))
1506     {
1507       the_insn.opcode = (OR_INSN | RS1 (dstreg) | RS2 (upper_dstreg)
1508 			 | RD (dstreg));
1509       the_insn.reloc = BFD_RELOC_NONE;
1510       output_insn (insn, &the_insn);
1511     }
1512 }
1513 
1514 /* Main entry point to assemble one instruction.  */
1515 
1516 void
1517 md_assemble (char *str)
1518 {
1519   const struct sparc_opcode *insn;
1520   int special_case;
1521 
1522   know (str);
1523   special_case = sparc_ip (str, &insn);
1524   if (insn == NULL)
1525     return;
1526 
1527   /* Certain instructions may not appear on delay slots.  Check for
1528      these situations.  */
1529   if (last_insn != NULL
1530       && (last_insn->flags & F_DELAYED) != 0)
1531     {
1532       /* Before SPARC V9 the effect of having a delayed branch
1533          instruction in the delay slot of a conditional delayed branch
1534          was undefined.
1535 
1536          In SPARC V9 DCTI couples are well defined.
1537 
1538          However, starting with the UltraSPARC Architecture 2005, DCTI
1539          couples (of all kind) are deprecated and should not be used,
1540          as they may be slow or behave differently to what the
1541          programmer expects.  */
1542       if (dcti_couples_detect
1543           && (insn->flags & F_DELAYED) != 0
1544           && ((max_architecture < SPARC_OPCODE_ARCH_V9
1545                && (last_insn->flags & F_CONDBR) != 0)
1546               || max_architecture >= SPARC_OPCODE_ARCH_V9C))
1547         as_warn (_("unpredictable DCTI couple"));
1548 
1549 
1550       /* We warn about attempts to put a floating point branch in a
1551          delay slot, unless the delay slot has been annulled.  */
1552       if ((insn->flags & F_FBR) != 0
1553           /* ??? This test isn't completely accurate.  We assume anything with
1554              F_{UNBR,CONDBR,FBR} set is annullable.  */
1555           && ((last_insn->flags & (F_UNBR | F_CONDBR | F_FBR)) == 0
1556               || (last_opcode & ANNUL) == 0))
1557         as_warn (_("FP branch in delay slot"));
1558     }
1559 
1560   /* SPARC before v9 does not allow a floating point compare
1561      directly before a floating point branch.  Insert a nop
1562      instruction if needed, with a warning.  */
1563   if (max_architecture < SPARC_OPCODE_ARCH_V9
1564       && last_insn != NULL
1565       && (insn->flags & F_FBR) != 0
1566       && (last_insn->flags & F_FLOAT) != 0
1567       && (last_insn->match & OP3 (0x35)) == OP3 (0x35))
1568     {
1569       struct sparc_it nop_insn;
1570 
1571       nop_insn.opcode = NOP_INSN;
1572       nop_insn.reloc = BFD_RELOC_NONE;
1573       output_insn (insn, &nop_insn);
1574       as_warn (_("FP branch preceded by FP compare; NOP inserted"));
1575     }
1576 
1577   switch (special_case)
1578     {
1579     case SPECIAL_CASE_NONE:
1580       /* Normal insn.  */
1581       output_insn (insn, &the_insn);
1582       break;
1583 
1584     case SPECIAL_CASE_SETSW:
1585       synthetize_setsw (insn);
1586       break;
1587 
1588     case SPECIAL_CASE_SET:
1589       synthetize_setuw (insn);
1590       break;
1591 
1592     case SPECIAL_CASE_SETX:
1593       synthetize_setx (insn);
1594       break;
1595 
1596     case SPECIAL_CASE_FDIV:
1597       {
1598 	int rd = (the_insn.opcode >> 25) & 0x1f;
1599 
1600 	output_insn (insn, &the_insn);
1601 
1602 	/* According to information leaked from Sun, the "fdiv" instructions
1603 	   on early SPARC machines would produce incorrect results sometimes.
1604 	   The workaround is to add an fmovs of the destination register to
1605 	   itself just after the instruction.  This was true on machines
1606 	   with Weitek 1165 float chips, such as the Sun-4/260 and /280.  */
1607 	gas_assert (the_insn.reloc == BFD_RELOC_NONE);
1608 	the_insn.opcode = FMOVS_INSN | rd | RD (rd);
1609 	output_insn (insn, &the_insn);
1610 	return;
1611       }
1612 
1613     default:
1614       as_fatal (_("failed special case insn sanity check"));
1615     }
1616 }
1617 
1618 static const char *
1619 get_hwcap_name (bfd_uint64_t mask)
1620 {
1621   if (mask & HWCAP_MUL32)
1622     return "mul32";
1623   if (mask & HWCAP_DIV32)
1624     return "div32";
1625   if (mask & HWCAP_FSMULD)
1626     return "fsmuld";
1627   if (mask & HWCAP_V8PLUS)
1628     return "v8plus";
1629   if (mask & HWCAP_POPC)
1630     return "popc";
1631   if (mask & HWCAP_VIS)
1632     return "vis";
1633   if (mask & HWCAP_VIS2)
1634     return "vis2";
1635   if (mask & HWCAP_ASI_BLK_INIT)
1636     return "ASIBlkInit";
1637   if (mask & HWCAP_FMAF)
1638     return "fmaf";
1639   if (mask & HWCAP_VIS3)
1640     return "vis3";
1641   if (mask & HWCAP_HPC)
1642     return "hpc";
1643   if (mask & HWCAP_RANDOM)
1644     return "random";
1645   if (mask & HWCAP_TRANS)
1646     return "trans";
1647   if (mask & HWCAP_FJFMAU)
1648     return "fjfmau";
1649   if (mask & HWCAP_IMA)
1650     return "ima";
1651   if (mask & HWCAP_ASI_CACHE_SPARING)
1652     return "cspare";
1653   if (mask & HWCAP_AES)
1654     return "aes";
1655   if (mask & HWCAP_DES)
1656     return "des";
1657   if (mask & HWCAP_KASUMI)
1658     return "kasumi";
1659   if (mask & HWCAP_CAMELLIA)
1660     return "camellia";
1661   if (mask & HWCAP_MD5)
1662     return "md5";
1663   if (mask & HWCAP_SHA1)
1664     return "sha1";
1665   if (mask & HWCAP_SHA256)
1666     return "sha256";
1667   if (mask & HWCAP_SHA512)
1668     return "sha512";
1669   if (mask & HWCAP_MPMUL)
1670     return "mpmul";
1671   if (mask & HWCAP_MONT)
1672     return "mont";
1673   if (mask & HWCAP_PAUSE)
1674     return "pause";
1675   if (mask & HWCAP_CBCOND)
1676     return "cbcond";
1677   if (mask & HWCAP_CRC32C)
1678     return "crc32c";
1679 
1680   mask = mask >> 32;
1681   if (mask & HWCAP2_FJATHPLUS)
1682     return "fjathplus";
1683   if (mask & HWCAP2_VIS3B)
1684     return "vis3b";
1685   if (mask & HWCAP2_ADP)
1686     return "adp";
1687   if (mask & HWCAP2_SPARC5)
1688     return "sparc5";
1689   if (mask & HWCAP2_MWAIT)
1690     return "mwait";
1691   if (mask & HWCAP2_XMPMUL)
1692     return "xmpmul";
1693   if (mask & HWCAP2_XMONT)
1694     return "xmont";
1695   if (mask & HWCAP2_NSEC)
1696     return "nsec";
1697   if (mask & HWCAP2_SPARC6)
1698     return "sparc6";
1699   if (mask & HWCAP2_ONADDSUB)
1700     return "onaddsub";
1701   if (mask & HWCAP2_ONMUL)
1702     return "onmul";
1703   if (mask & HWCAP2_ONDIV)
1704     return "ondiv";
1705   if (mask & HWCAP2_DICTUNP)
1706     return "dictunp";
1707   if (mask & HWCAP2_FPCMPSHL)
1708     return "fpcmpshl";
1709   if (mask & HWCAP2_RLE)
1710     return "rle";
1711   if (mask & HWCAP2_SHA3)
1712     return "sha3";
1713 
1714   return "UNKNOWN";
1715 }
1716 
1717 /* Subroutine of md_assemble to do the actual parsing.  */
1718 
1719 static int
1720 sparc_ip (char *str, const struct sparc_opcode **pinsn)
1721 {
1722   const char *error_message = "";
1723   char *s;
1724   const char *args;
1725   char c;
1726   const struct sparc_opcode *insn;
1727   char *argsStart;
1728   unsigned long opcode;
1729   unsigned int mask = 0;
1730   int match = 0;
1731   int comma = 0;
1732   int v9_arg_p;
1733   int special_case = SPECIAL_CASE_NONE;
1734   const sparc_asi *sasi = NULL;
1735 
1736   s = str;
1737   if (ISLOWER (*s))
1738     {
1739       do
1740 	++s;
1741       while (ISLOWER (*s) || ISDIGIT (*s) || *s == '_');
1742     }
1743 
1744   switch (*s)
1745     {
1746     case '\0':
1747       break;
1748 
1749     case ',':
1750       comma = 1;
1751       /* Fall through.  */
1752 
1753     case ' ':
1754       *s++ = '\0';
1755       break;
1756 
1757     default:
1758       as_bad (_("Unknown opcode: `%s'"), str);
1759       *pinsn = NULL;
1760       return special_case;
1761     }
1762   insn = (struct sparc_opcode *) hash_find (op_hash, str);
1763   *pinsn = insn;
1764   if (insn == NULL)
1765     {
1766       as_bad (_("Unknown opcode: `%s'"), str);
1767       return special_case;
1768     }
1769   if (comma)
1770     {
1771       *--s = ',';
1772     }
1773 
1774   argsStart = s;
1775   for (;;)
1776     {
1777       opcode = insn->match;
1778       memset (&the_insn, '\0', sizeof (the_insn));
1779       the_insn.reloc = BFD_RELOC_NONE;
1780       v9_arg_p = 0;
1781 
1782       /* Build the opcode, checking as we go to make sure that the
1783          operands match.  */
1784       for (args = insn->args;; ++args)
1785 	{
1786 	  switch (*args)
1787 	    {
1788 	    case 'K':
1789 	      {
1790 		int kmask = 0;
1791 
1792 		/* Parse a series of masks.  */
1793 		if (*s == '#')
1794 		  {
1795 		    while (*s == '#')
1796 		      {
1797 			int jmask;
1798 
1799 			if (! parse_keyword_arg (sparc_encode_membar, &s,
1800 						 &jmask))
1801 			  {
1802 			    error_message = _(": invalid membar mask name");
1803 			    goto error;
1804 			  }
1805 			kmask |= jmask;
1806 			while (*s == ' ')
1807 			  ++s;
1808 			if (*s == '|' || *s == '+')
1809 			  ++s;
1810 			while (*s == ' ')
1811 			  ++s;
1812 		      }
1813 		  }
1814 		else
1815 		  {
1816 		    if (! parse_const_expr_arg (&s, &kmask))
1817 		      {
1818 			error_message = _(": invalid membar mask expression");
1819 			goto error;
1820 		      }
1821 		    if (kmask < 0 || kmask > 127)
1822 		      {
1823 			error_message = _(": invalid membar mask number");
1824 			goto error;
1825 		      }
1826 		  }
1827 
1828 		opcode |= MEMBAR (kmask);
1829 		continue;
1830 	      }
1831 
1832 	    case '3':
1833 	      {
1834 		int smask = 0;
1835 
1836 		if (! parse_const_expr_arg (&s, &smask))
1837 		  {
1838 		    error_message = _(": invalid siam mode expression");
1839 		    goto error;
1840 		  }
1841 		if (smask < 0 || smask > 7)
1842 		  {
1843 		    error_message = _(": invalid siam mode number");
1844 		    goto error;
1845 		  }
1846 		opcode |= smask;
1847 		continue;
1848 	      }
1849 
1850 	    case '*':
1851 	      {
1852 		int fcn = 0;
1853 
1854 		/* Parse a prefetch function.  */
1855 		if (*s == '#')
1856 		  {
1857 		    if (! parse_keyword_arg (sparc_encode_prefetch, &s, &fcn))
1858 		      {
1859 			error_message = _(": invalid prefetch function name");
1860 			goto error;
1861 		      }
1862 		  }
1863 		else
1864 		  {
1865 		    if (! parse_const_expr_arg (&s, &fcn))
1866 		      {
1867 			error_message = _(": invalid prefetch function expression");
1868 			goto error;
1869 		      }
1870 		    if (fcn < 0 || fcn > 31)
1871 		      {
1872 			error_message = _(": invalid prefetch function number");
1873 			goto error;
1874 		      }
1875 		  }
1876 		opcode |= RD (fcn);
1877 		continue;
1878 	      }
1879 
1880 	    case '!':
1881 	    case '?':
1882 	      /* Parse a sparc64 privileged register.  */
1883 	      if (*s == '%')
1884 		{
1885 		  struct priv_reg_entry *p;
1886 		  unsigned int len = 9999999; /* Init to make gcc happy.  */
1887 
1888 		  s += 1;
1889                   for (p = priv_reg_table; p->name; p++)
1890                     if (p->name[0] == s[0])
1891                       {
1892                         len = strlen (p->name);
1893                         if (strncmp (p->name, s, len) == 0)
1894                           break;
1895                       }
1896 
1897 		  if (!p->name)
1898 		    {
1899 		      error_message = _(": unrecognizable privileged register");
1900 		      goto error;
1901 		    }
1902 
1903                   if (((opcode >> (*args == '?' ? 14 : 25)) & 0x1f) != (unsigned) p->regnum)
1904                     {
1905                       error_message = _(": unrecognizable privileged register");
1906                       goto error;
1907                     }
1908 
1909 		  s += len;
1910 		  continue;
1911 		}
1912 	      else
1913 		{
1914 		  error_message = _(": unrecognizable privileged register");
1915 		  goto error;
1916 		}
1917 
1918 	    case '$':
1919 	    case '%':
1920 	      /* Parse a sparc64 hyperprivileged register.  */
1921 	      if (*s == '%')
1922 		{
1923 		  struct priv_reg_entry *p;
1924 		  unsigned int len = 9999999; /* Init to make gcc happy.  */
1925 
1926 		  s += 1;
1927                   for (p = hpriv_reg_table; p->name; p++)
1928                     if (p->name[0] == s[0])
1929                       {
1930                         len = strlen (p->name);
1931                         if (strncmp (p->name, s, len) == 0)
1932                           break;
1933                       }
1934 
1935 		  if (!p->name)
1936 		    {
1937 		      error_message = _(": unrecognizable hyperprivileged register");
1938 		      goto error;
1939 		    }
1940 
1941                   if (((opcode >> (*args == '$' ? 14 : 25)) & 0x1f) != (unsigned) p->regnum)
1942                     {
1943                       error_message = _(": unrecognizable hyperprivileged register");
1944                       goto error;
1945                     }
1946 
1947                   s += len;
1948 		  continue;
1949 		}
1950 	      else
1951 		{
1952 		  error_message = _(": unrecognizable hyperprivileged register");
1953 		  goto error;
1954 		}
1955 
1956 	    case '_':
1957 	    case '/':
1958 	      /* Parse a v9a or later ancillary state register.  */
1959 	      if (*s == '%')
1960 		{
1961 		  struct priv_reg_entry *p;
1962 		  unsigned int len = 9999999; /* Init to make gcc happy.  */
1963 
1964 		  s += 1;
1965                   for (p = v9a_asr_table; p->name; p++)
1966                     if (p->name[0] == s[0])
1967                       {
1968                         len = strlen (p->name);
1969                         if (strncmp (p->name, s, len) == 0)
1970                           break;
1971                       }
1972 
1973 		  if (!p->name)
1974 		    {
1975 		      error_message = _(": unrecognizable ancillary state register");
1976 		      goto error;
1977 		    }
1978 
1979                   if (((opcode >> (*args == '/' ? 14 : 25)) & 0x1f) != (unsigned) p->regnum)
1980                      {
1981                        error_message = _(": unrecognizable ancillary state register");
1982                        goto error;
1983                      }
1984 
1985 		  s += len;
1986 		  continue;
1987 		}
1988 	      else
1989 		{
1990 		  error_message = _(": unrecognizable ancillary state register");
1991 		  goto error;
1992 		}
1993 
1994 	    case 'M':
1995 	    case 'm':
1996 	      if (strncmp (s, "%asr", 4) == 0)
1997 		{
1998 		  s += 4;
1999 
2000 		  if (ISDIGIT (*s))
2001 		    {
2002 		      long num = 0;
2003 
2004 		      while (ISDIGIT (*s))
2005 			{
2006 			  num = num * 10 + *s - '0';
2007 			  ++s;
2008 			}
2009 
2010                       /* We used to check here for the asr number to
2011                          be between 16 and 31 in V9 and later, as
2012                          mandated by the section C.1.1 "Register
2013                          Names" in the SPARC spec.  However, we
2014                          decided to remove this restriction as a) it
2015                          introduces problems when new V9 asr registers
2016                          are introduced, b) the Solaris assembler
2017                          doesn't implement this restriction and c) the
2018                          restriction will go away in future revisions
2019                          of the Oracle SPARC Architecture.  */
2020 
2021                       if (num < 0 || 31 < num)
2022                         {
2023                           error_message = _(": asr number must be between 0 and 31");
2024                           goto error;
2025                         }
2026 
2027 		      opcode |= (*args == 'M' ? RS1 (num) : RD (num));
2028 		      continue;
2029 		    }
2030 		  else
2031 		    {
2032 		      error_message = _(": expecting %asrN");
2033 		      goto error;
2034 		    }
2035 		} /* if %asr  */
2036 	      break;
2037 
2038 	    case 'I':
2039 	      the_insn.reloc = BFD_RELOC_SPARC_11;
2040 	      goto immediate;
2041 
2042 	    case 'j':
2043 	      the_insn.reloc = BFD_RELOC_SPARC_10;
2044 	      goto immediate;
2045 
2046 	    case ')':
2047 	      if (*s == ' ')
2048 		s++;
2049 	      if ((s[0] == '0' && s[1] == 'x' && ISXDIGIT (s[2]))
2050 		  || ISDIGIT (*s))
2051 		{
2052 		  long num = 0;
2053 
2054 		  if (s[0] == '0' && s[1] == 'x')
2055 		    {
2056 		      s += 2;
2057 		      while (ISXDIGIT (*s))
2058 			{
2059 			  num <<= 4;
2060 			  num |= hex_value (*s);
2061 			  ++s;
2062 			}
2063 		    }
2064 		  else
2065 		    {
2066 		      while (ISDIGIT (*s))
2067 			{
2068 			  num = num * 10 + *s - '0';
2069 			  ++s;
2070 			}
2071 		    }
2072 		  if (num < 0 || num > 31)
2073 		    {
2074 		      error_message = _(": crypto immediate must be between 0 and 31");
2075 		      goto error;
2076 		    }
2077 
2078 		  opcode |= RS3 (num);
2079 		  continue;
2080 		}
2081 	      else
2082 		{
2083 		  error_message = _(": expecting crypto immediate");
2084 		  goto error;
2085 		}
2086 
2087 	    case 'X':
2088 	      /* V8 systems don't understand BFD_RELOC_SPARC_5.  */
2089 	      if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2090 		the_insn.reloc = BFD_RELOC_SPARC_5;
2091 	      else
2092 		the_insn.reloc = BFD_RELOC_SPARC13;
2093 	      /* These fields are unsigned, but for upward compatibility,
2094 		 allow negative values as well.  */
2095 	      goto immediate;
2096 
2097 	    case 'Y':
2098 	      /* V8 systems don't understand BFD_RELOC_SPARC_6.  */
2099 	      if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2100 		the_insn.reloc = BFD_RELOC_SPARC_6;
2101 	      else
2102 		the_insn.reloc = BFD_RELOC_SPARC13;
2103 	      /* These fields are unsigned, but for upward compatibility,
2104 		 allow negative values as well.  */
2105 	      goto immediate;
2106 
2107 	    case 'k':
2108 	      the_insn.reloc = /* RELOC_WDISP2_14 */ BFD_RELOC_SPARC_WDISP16;
2109 	      the_insn.pcrel = 1;
2110 	      goto immediate;
2111 
2112 	    case '=':
2113 	      the_insn.reloc = /* RELOC_WDISP2_8 */ BFD_RELOC_SPARC_WDISP10;
2114 	      the_insn.pcrel = 1;
2115 	      goto immediate;
2116 
2117 	    case 'G':
2118 	      the_insn.reloc = BFD_RELOC_SPARC_WDISP19;
2119 	      the_insn.pcrel = 1;
2120 	      goto immediate;
2121 
2122 	    case 'N':
2123 	      if (*s == 'p' && s[1] == 'n')
2124 		{
2125 		  s += 2;
2126 		  continue;
2127 		}
2128 	      break;
2129 
2130 	    case 'T':
2131 	      if (*s == 'p' && s[1] == 't')
2132 		{
2133 		  s += 2;
2134 		  continue;
2135 		}
2136 	      break;
2137 
2138 	    case 'z':
2139 	      if (*s == ' ')
2140 		{
2141 		  ++s;
2142 		}
2143 	      if ((strncmp (s, "%icc", 4) == 0)
2144                   || (sparc_arch_size == 32 && strncmp (s, "%ncc", 4) == 0))
2145 		{
2146 		  s += 4;
2147 		  continue;
2148 		}
2149 	      break;
2150 
2151 	    case 'Z':
2152 	      if (*s == ' ')
2153 		{
2154 		  ++s;
2155 		}
2156               if ((strncmp (s, "%xcc", 4) == 0)
2157                   || (sparc_arch_size == 64 && strncmp (s, "%ncc", 4) == 0))
2158 		{
2159 		  s += 4;
2160 		  continue;
2161 		}
2162 	      break;
2163 
2164 	    case '6':
2165 	      if (*s == ' ')
2166 		{
2167 		  ++s;
2168 		}
2169 	      if (strncmp (s, "%fcc0", 5) == 0)
2170 		{
2171 		  s += 5;
2172 		  continue;
2173 		}
2174 	      break;
2175 
2176 	    case '7':
2177 	      if (*s == ' ')
2178 		{
2179 		  ++s;
2180 		}
2181 	      if (strncmp (s, "%fcc1", 5) == 0)
2182 		{
2183 		  s += 5;
2184 		  continue;
2185 		}
2186 	      break;
2187 
2188 	    case '8':
2189 	      if (*s == ' ')
2190 		{
2191 		  ++s;
2192 		}
2193 	      if (strncmp (s, "%fcc2", 5) == 0)
2194 		{
2195 		  s += 5;
2196 		  continue;
2197 		}
2198 	      break;
2199 
2200 	    case '9':
2201 	      if (*s == ' ')
2202 		{
2203 		  ++s;
2204 		}
2205 	      if (strncmp (s, "%fcc3", 5) == 0)
2206 		{
2207 		  s += 5;
2208 		  continue;
2209 		}
2210 	      break;
2211 
2212 	    case 'P':
2213 	      if (strncmp (s, "%pc", 3) == 0)
2214 		{
2215 		  s += 3;
2216 		  continue;
2217 		}
2218 	      break;
2219 
2220 	    case 'W':
2221 	      if (strncmp (s, "%tick", 5) == 0)
2222 		{
2223 		  s += 5;
2224 		  continue;
2225 		}
2226 	      break;
2227 
2228 	    case '\0':		/* End of args.  */
2229 	      if (s[0] == ',' && s[1] == '%')
2230 		{
2231 		  char *s1;
2232 		  int npar = 0;
2233                   const struct perc_entry *p;
2234 
2235                   for (p = perc_table; p->type != perc_entry_none; p++)
2236                     if ((p->type == perc_entry_post_pop || p->type == perc_entry_reg)
2237                         && strncmp (s + 2, p->name, p->len) == 0)
2238                       break;
2239                   if (p->type == perc_entry_none || p->type == perc_entry_reg)
2240                     break;
2241 
2242 		  if (s[p->len + 2] != '(')
2243 		    {
2244 		      as_bad (_("Illegal operands: %%%s requires arguments in ()"), p->name);
2245 		      return special_case;
2246 		    }
2247 
2248 		  if (! (p->pop->flags & F_POP_TLS_CALL)
2249                       && the_insn.reloc != BFD_RELOC_NONE)
2250 		    {
2251 		      as_bad (_("Illegal operands: %%%s cannot be used together with other relocs in the insn ()"),
2252 			      p->name);
2253 		      return special_case;
2254 		    }
2255 
2256 		  if ((p->pop->flags & F_POP_TLS_CALL)
2257 		      && (the_insn.reloc != BFD_RELOC_32_PCREL_S2
2258 			  || the_insn.exp.X_add_number != 0
2259 			  || the_insn.exp.X_add_symbol
2260 			     != symbol_find_or_make ("__tls_get_addr")))
2261 		    {
2262 		      as_bad (_("Illegal operands: %%%s can be only used with call __tls_get_addr"),
2263 			      p->name);
2264 		      return special_case;
2265 		    }
2266 
2267 		  the_insn.reloc = p->pop->reloc;
2268 		  memset (&the_insn.exp, 0, sizeof (the_insn.exp));
2269 		  s += p->len + 3;
2270 
2271 		  for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++)
2272 		    if (*s1 == '(')
2273 		      npar++;
2274 		    else if (*s1 == ')')
2275 		      {
2276 			if (!npar)
2277 			  break;
2278 			npar--;
2279 		      }
2280 
2281 		  if (*s1 != ')')
2282 		    {
2283 		      as_bad (_("Illegal operands: %%%s requires arguments in ()"), p->name);
2284 		      return special_case;
2285 		    }
2286 
2287 		  *s1 = '\0';
2288 		  (void) get_expression (s);
2289 		  *s1 = ')';
2290 		  s = s1 + 1;
2291 		}
2292 	      if (*s == '\0')
2293 		match = 1;
2294 	      break;
2295 
2296 	    case '+':
2297 	      if (*s == '+')
2298 		{
2299 		  ++s;
2300 		  continue;
2301 		}
2302 	      if (*s == '-')
2303 		{
2304 		  continue;
2305 		}
2306 	      break;
2307 
2308 	    case '[':		/* These must match exactly.  */
2309 	    case ']':
2310 	    case ',':
2311 	    case ' ':
2312 	      if (*s++ == *args)
2313 		continue;
2314 	      break;
2315 
2316 	    case '#':		/* Must be at least one digit.  */
2317 	      if (ISDIGIT (*s++))
2318 		{
2319 		  while (ISDIGIT (*s))
2320 		    {
2321 		      ++s;
2322 		    }
2323 		  continue;
2324 		}
2325 	      break;
2326 
2327 	    case 'C':		/* Coprocessor state register.  */
2328 	      if (strncmp (s, "%csr", 4) == 0)
2329 		{
2330 		  s += 4;
2331 		  continue;
2332 		}
2333 	      break;
2334 
2335 	    case 'b':		/* Next operand is a coprocessor register.  */
2336 	    case 'c':
2337 	    case 'D':
2338 	      if (*s++ == '%' && *s++ == 'c' && ISDIGIT (*s))
2339 		{
2340 		  mask = *s++;
2341 		  if (ISDIGIT (*s))
2342 		    {
2343 		      mask = 10 * (mask - '0') + (*s++ - '0');
2344 		      if (mask >= 32)
2345 			{
2346 			  break;
2347 			}
2348 		    }
2349 		  else
2350 		    {
2351 		      mask -= '0';
2352 		    }
2353 		  switch (*args)
2354 		    {
2355 
2356 		    case 'b':
2357 		      opcode |= mask << 14;
2358 		      continue;
2359 
2360 		    case 'c':
2361 		      opcode |= mask;
2362 		      continue;
2363 
2364 		    case 'D':
2365 		      opcode |= mask << 25;
2366 		      continue;
2367 		    }
2368 		}
2369 	      break;
2370 
2371 	    case 'r':		/* next operand must be a register */
2372 	    case 'O':
2373 	    case '1':
2374 	    case '2':
2375 	    case 'd':
2376 	      if (*s++ == '%')
2377 		{
2378 		  switch (c = *s++)
2379 		    {
2380 
2381 		    case 'f':	/* frame pointer */
2382 		      if (*s++ == 'p')
2383 			{
2384 			  mask = 0x1e;
2385 			  break;
2386 			}
2387 		      goto error;
2388 
2389 		    case 'g':	/* global register */
2390 		      c = *s++;
2391 		      if (isoctal (c))
2392 			{
2393 			  mask = c - '0';
2394 			  break;
2395 			}
2396 		      goto error;
2397 
2398 		    case 'i':	/* in register */
2399 		      c = *s++;
2400 		      if (isoctal (c))
2401 			{
2402 			  mask = c - '0' + 24;
2403 			  break;
2404 			}
2405 		      goto error;
2406 
2407 		    case 'l':	/* local register */
2408 		      c = *s++;
2409 		      if (isoctal (c))
2410 			{
2411 			  mask = (c - '0' + 16);
2412 			  break;
2413 			}
2414 		      goto error;
2415 
2416 		    case 'o':	/* out register */
2417 		      c = *s++;
2418 		      if (isoctal (c))
2419 			{
2420 			  mask = (c - '0' + 8);
2421 			  break;
2422 			}
2423 		      goto error;
2424 
2425 		    case 's':	/* stack pointer */
2426 		      if (*s++ == 'p')
2427 			{
2428 			  mask = 0xe;
2429 			  break;
2430 			}
2431 		      goto error;
2432 
2433 		    case 'r':	/* any register */
2434 		      if (!ISDIGIT ((c = *s++)))
2435 			{
2436 			  goto error;
2437 			}
2438 		      /* FALLTHROUGH */
2439 		    case '0':
2440 		    case '1':
2441 		    case '2':
2442 		    case '3':
2443 		    case '4':
2444 		    case '5':
2445 		    case '6':
2446 		    case '7':
2447 		    case '8':
2448 		    case '9':
2449 		      if (ISDIGIT (*s))
2450 			{
2451 			  if ((c = 10 * (c - '0') + (*s++ - '0')) >= 32)
2452 			    {
2453 			      goto error;
2454 			    }
2455 			}
2456 		      else
2457 			{
2458 			  c -= '0';
2459 			}
2460 		      mask = c;
2461 		      break;
2462 
2463 		    default:
2464 		      goto error;
2465 		    }
2466 
2467 		  if ((mask & ~1) == 2 && sparc_arch_size == 64
2468 		      && no_undeclared_regs && ! globals[mask])
2469 		    as_bad (_("detected global register use not covered by .register pseudo-op"));
2470 
2471 		  /* Got the register, now figure out where
2472 		     it goes in the opcode.  */
2473 		  switch (*args)
2474 		    {
2475 		    case '1':
2476 		      opcode |= mask << 14;
2477 		      continue;
2478 
2479 		    case '2':
2480 		      opcode |= mask;
2481 		      continue;
2482 
2483 		    case 'd':
2484 		      opcode |= mask << 25;
2485 		      continue;
2486 
2487 		    case 'r':
2488 		      opcode |= (mask << 25) | (mask << 14);
2489 		      continue;
2490 
2491 		    case 'O':
2492 		      opcode |= (mask << 25) | (mask << 0);
2493 		      continue;
2494 		    }
2495 		}
2496 	      break;
2497 
2498 	    case 'e':		/* next operand is a floating point register */
2499 	    case 'v':
2500 	    case 'V':
2501             case ';':
2502 
2503 	    case 'f':
2504 	    case 'B':
2505 	    case 'R':
2506             case ':':
2507             case '\'':
2508 
2509 	    case '4':
2510 	    case '5':
2511 
2512 	    case 'g':
2513 	    case 'H':
2514 	    case 'J':
2515 	    case '}':
2516             case '^':
2517 	      {
2518 		char format;
2519 
2520 		if (*s++ == '%'
2521 		    && ((format = *s) == 'f'
2522                         || format == 'd'
2523                         || format == 'q')
2524 		    && ISDIGIT (*++s))
2525 		  {
2526 		    for (mask = 0; ISDIGIT (*s); ++s)
2527 		      {
2528 			mask = 10 * mask + (*s - '0');
2529 		      }		/* read the number */
2530 
2531 		    if ((*args == 'v'
2532 			 || *args == 'B'
2533 			 || *args == '5'
2534 			 || *args == 'H'
2535                          || *args == '\''
2536 			 || format == 'd')
2537 			&& (mask & 1))
2538 		      {
2539                         /* register must be even numbered */
2540 			break;
2541 		      }
2542 
2543 		    if ((*args == 'V'
2544 			 || *args == 'R'
2545 			 || *args == 'J'
2546 			 || format == 'q')
2547 			&& (mask & 3))
2548 		      {
2549                         /* register must be multiple of 4 */
2550 			break;
2551 		      }
2552 
2553                     if ((*args == ':'
2554                          || *args == ';'
2555                          || *args == '^')
2556                         && (mask & 7))
2557                       {
2558                         /* register must be multiple of 8 */
2559                         break;
2560                       }
2561 
2562                     if (*args == '\'' && mask < 48)
2563                       {
2564                         /* register must be higher or equal than %f48 */
2565                         break;
2566                       }
2567 
2568 		    if (mask >= 64)
2569 		      {
2570 			if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2571 			  error_message = _(": There are only 64 f registers; [0-63]");
2572 			else
2573 			  error_message = _(": There are only 32 f registers; [0-31]");
2574 			goto error;
2575 		      }	/* on error */
2576 		    else if (mask >= 32)
2577 		      {
2578 			if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2579 			  {
2580 			    if (*args == 'e' || *args == 'f' || *args == 'g')
2581 			      {
2582 				error_message
2583 				  = _(": There are only 32 single precision f registers; [0-31]");
2584 				goto error;
2585 			      }
2586 			    v9_arg_p = 1;
2587 			    mask -= 31;	/* wrap high bit */
2588 			  }
2589 			else
2590 			  {
2591 			    error_message = _(": There are only 32 f registers; [0-31]");
2592 			    goto error;
2593 			  }
2594 		      }
2595 		  }
2596 		else
2597 		  {
2598 		    break;
2599 		  }	/* if not an 'f' register.  */
2600 
2601 		if (*args == '}' && mask != RS2 (opcode))
2602 		  {
2603 		    error_message
2604 		      = _(": Instruction requires frs2 and frsd must be the same register");
2605 		    goto error;
2606 		  }
2607 
2608 		switch (*args)
2609 		  {
2610 		  case 'v':
2611 		  case 'V':
2612 		  case 'e':
2613                   case ';':
2614 		    opcode |= RS1 (mask);
2615 		    continue;
2616 
2617 		  case 'f':
2618 		  case 'B':
2619 		  case 'R':
2620                   case ':':
2621 		    opcode |= RS2 (mask);
2622 		    continue;
2623 
2624                   case '\'':
2625                     opcode |= RS2 (mask & 0xe);
2626                     continue;
2627 
2628 		  case '4':
2629 		  case '5':
2630 		    opcode |= RS3 (mask);
2631 		    continue;
2632 
2633 		  case 'g':
2634 		  case 'H':
2635 		  case 'J':
2636 		  case '}':
2637                   case '^':
2638 		    opcode |= RD (mask);
2639 		    continue;
2640 		  }		/* Pack it in.  */
2641 
2642 		know (0);
2643 		break;
2644 	      }			/* float arg  */
2645 
2646 	    case 'F':
2647 	      if (strncmp (s, "%fsr", 4) == 0)
2648 		{
2649 		  s += 4;
2650 		  continue;
2651 		}
2652 	      break;
2653 
2654 	    case '(':
2655 	      if (strncmp (s, "%efsr", 5) == 0)
2656 		{
2657 		  s += 5;
2658 		  continue;
2659 		}
2660 	      break;
2661 
2662 	    case '0':		/* 64 bit immediate (set, setsw, setx insn)  */
2663 	      the_insn.reloc = BFD_RELOC_NONE; /* reloc handled elsewhere  */
2664 	      goto immediate;
2665 
2666 	    case 'l':		/* 22 bit PC relative immediate  */
2667 	      the_insn.reloc = BFD_RELOC_SPARC_WDISP22;
2668 	      the_insn.pcrel = 1;
2669 	      goto immediate;
2670 
2671 	    case 'L':		/* 30 bit immediate  */
2672 	      the_insn.reloc = BFD_RELOC_32_PCREL_S2;
2673 	      the_insn.pcrel = 1;
2674 	      goto immediate;
2675 
2676 	    case 'h':
2677 	    case 'n':		/* 22 bit immediate  */
2678 	      the_insn.reloc = BFD_RELOC_SPARC22;
2679 	      goto immediate;
2680 
2681 	    case 'i':		/* 13 bit immediate  */
2682 	      the_insn.reloc = BFD_RELOC_SPARC13;
2683 
2684 	      /* fallthrough */
2685 
2686 	    immediate:
2687 	      if (*s == ' ')
2688 		s++;
2689 
2690 	      {
2691 		char *s1;
2692 		const char *op_arg = NULL;
2693 		static expressionS op_exp;
2694 		bfd_reloc_code_real_type old_reloc = the_insn.reloc;
2695 
2696 		/* Check for %hi, etc.  */
2697 		if (*s == '%')
2698 		  {
2699                     const struct perc_entry *p;
2700 
2701                     for (p = perc_table; p->type != perc_entry_none; p++)
2702                       if ((p->type == perc_entry_imm_pop || p->type == perc_entry_reg)
2703                           && strncmp (s + 1, p->name, p->len) == 0)
2704                         break;
2705                     if (p->type == perc_entry_none || p->type == perc_entry_reg)
2706                       break;
2707 
2708 		    if (s[p->len + 1] != '(')
2709 		      {
2710 			as_bad (_("Illegal operands: %%%s requires arguments in ()"), p->name);
2711 			return special_case;
2712 		      }
2713 
2714 		    op_arg = p->name;
2715 		    the_insn.reloc = p->pop->reloc;
2716 		    s += p->len + 2;
2717 		    v9_arg_p = p->pop->flags & F_POP_V9;
2718 		  }
2719 
2720 		/* Note that if the get_expression() fails, we will still
2721 		   have created U entries in the symbol table for the
2722 		   'symbols' in the input string.  Try not to create U
2723 		   symbols for registers, etc.  */
2724 
2725 		/* This stuff checks to see if the expression ends in
2726 		   +%reg.  If it does, it removes the register from
2727 		   the expression, and re-sets 's' to point to the
2728 		   right place.  */
2729 
2730 		if (op_arg)
2731 		  {
2732 		    int npar = 0;
2733 
2734 		    for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++)
2735 		      if (*s1 == '(')
2736 			npar++;
2737 		      else if (*s1 == ')')
2738 			{
2739 			  if (!npar)
2740 			    break;
2741 			  npar--;
2742 			}
2743 
2744 		    if (*s1 != ')')
2745 		      {
2746 			as_bad (_("Illegal operands: %%%s requires arguments in ()"), op_arg);
2747 			return special_case;
2748 		      }
2749 
2750 		    *s1 = '\0';
2751 		    (void) get_expression (s);
2752 		    *s1 = ')';
2753 		    if (expr_end != s1)
2754 		      {
2755 			as_bad (_("Expression inside %%%s could not be parsed"), op_arg);
2756 			return special_case;
2757 		      }
2758 		    s = s1 + 1;
2759 		    if (*s == ',' || *s == ']' || !*s)
2760 		      continue;
2761 		    if (*s != '+' && *s != '-')
2762 		      {
2763 			as_bad (_("Illegal operands: Can't do arithmetics other than + and - involving %%%s()"), op_arg);
2764 			return special_case;
2765 		      }
2766 		    *s1 = '0';
2767 		    s = s1;
2768 		    op_exp = the_insn.exp;
2769 		    memset (&the_insn.exp, 0, sizeof (the_insn.exp));
2770 		  }
2771 
2772 		for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++)
2773 		  ;
2774 
2775 		if (s1 != s && ISDIGIT (s1[-1]))
2776 		  {
2777 		    if (s1[-2] == '%' && s1[-3] == '+')
2778 		      s1 -= 3;
2779 		    else if (strchr ("golir0123456789", s1[-2]) && s1[-3] == '%' && s1[-4] == '+')
2780 		      s1 -= 4;
2781 		    else if (s1[-3] == 'r' && s1[-4] == '%' && s1[-5] == '+')
2782 		      s1 -= 5;
2783 		    else
2784 		      s1 = NULL;
2785 		    if (s1)
2786 		      {
2787 			*s1 = '\0';
2788 			if (op_arg && s1 == s + 1)
2789 			  the_insn.exp.X_op = O_absent;
2790 			else
2791 			  (void) get_expression (s);
2792 			*s1 = '+';
2793 			if (op_arg)
2794 			  *s = ')';
2795 			s = s1;
2796 		      }
2797 		  }
2798 		else
2799 		  s1 = NULL;
2800 
2801 		if (!s1)
2802 		  {
2803 		    (void) get_expression (s);
2804 		    if (op_arg)
2805 		      *s = ')';
2806 		    s = expr_end;
2807 		  }
2808 
2809 		if (op_arg)
2810 		  {
2811 		    the_insn.exp2 = the_insn.exp;
2812 		    the_insn.exp = op_exp;
2813 		    if (the_insn.exp2.X_op == O_absent)
2814 		      the_insn.exp2.X_op = O_illegal;
2815 		    else if (the_insn.exp.X_op == O_absent)
2816 		      {
2817 			the_insn.exp = the_insn.exp2;
2818 			the_insn.exp2.X_op = O_illegal;
2819 		      }
2820 		    else if (the_insn.exp.X_op == O_constant)
2821 		      {
2822 			valueT val = the_insn.exp.X_add_number;
2823 			switch (the_insn.reloc)
2824 			  {
2825 			  default:
2826 			    break;
2827 
2828 			  case BFD_RELOC_SPARC_HH22:
2829 			    val = BSR (val, 32);
2830 			    /* Fall through.  */
2831 
2832 			  case BFD_RELOC_SPARC_LM22:
2833 			  case BFD_RELOC_HI22:
2834 			    val = (val >> 10) & 0x3fffff;
2835 			    break;
2836 
2837 			  case BFD_RELOC_SPARC_HM10:
2838 			    val = BSR (val, 32);
2839 			    /* Fall through.  */
2840 
2841 			  case BFD_RELOC_LO10:
2842 			    val &= 0x3ff;
2843 			    break;
2844 
2845 			  case BFD_RELOC_SPARC_H34:
2846 			    val >>= 12;
2847 			    val &= 0x3fffff;
2848 			    break;
2849 
2850 			  case BFD_RELOC_SPARC_H44:
2851 			    val >>= 22;
2852 			    val &= 0x3fffff;
2853 			    break;
2854 
2855 			  case BFD_RELOC_SPARC_M44:
2856 			    val >>= 12;
2857 			    val &= 0x3ff;
2858 			    break;
2859 
2860 			  case BFD_RELOC_SPARC_L44:
2861 			    val &= 0xfff;
2862 			    break;
2863 
2864 			  case BFD_RELOC_SPARC_HIX22:
2865 			    val = ~val;
2866 			    val = (val >> 10) & 0x3fffff;
2867 			    break;
2868 
2869 			  case BFD_RELOC_SPARC_LOX10:
2870 			    val = (val & 0x3ff) | 0x1c00;
2871 			    break;
2872 			  }
2873 			the_insn.exp = the_insn.exp2;
2874 			the_insn.exp.X_add_number += val;
2875 			the_insn.exp2.X_op = O_illegal;
2876 			the_insn.reloc = old_reloc;
2877 		      }
2878 		    else if (the_insn.exp2.X_op != O_constant)
2879 		      {
2880 			as_bad (_("Illegal operands: Can't add non-constant expression to %%%s()"), op_arg);
2881 			return special_case;
2882 		      }
2883 		    else
2884 		      {
2885 			if (old_reloc != BFD_RELOC_SPARC13
2886 			    || the_insn.reloc != BFD_RELOC_LO10
2887 			    || sparc_arch_size != 64
2888 			    || sparc_pic_code)
2889 			  {
2890 			    as_bad (_("Illegal operands: Can't do arithmetics involving %%%s() of a relocatable symbol"), op_arg);
2891 			    return special_case;
2892 			  }
2893 			the_insn.reloc = BFD_RELOC_SPARC_OLO10;
2894 		      }
2895 		  }
2896 	      }
2897 	      /* Check for constants that don't require emitting a reloc.  */
2898 	      if (the_insn.exp.X_op == O_constant
2899 		  && the_insn.exp.X_add_symbol == 0
2900 		  && the_insn.exp.X_op_symbol == 0)
2901 		{
2902 		  /* For pc-relative call instructions, we reject
2903 		     constants to get better code.  */
2904 		  if (the_insn.pcrel
2905 		      && the_insn.reloc == BFD_RELOC_32_PCREL_S2
2906 		      && in_signed_range (the_insn.exp.X_add_number, 0x3fff))
2907 		    {
2908 		      error_message = _(": PC-relative operand can't be a constant");
2909 		      goto error;
2910 		    }
2911 
2912 		  if (the_insn.reloc >= BFD_RELOC_SPARC_TLS_GD_HI22
2913 		      && the_insn.reloc <= BFD_RELOC_SPARC_TLS_TPOFF64)
2914 		    {
2915 		      error_message = _(": TLS operand can't be a constant");
2916 		      goto error;
2917 		    }
2918 
2919 		  /* Constants that won't fit are checked in md_apply_fix
2920 		     and bfd_install_relocation.
2921 		     ??? It would be preferable to install the constants
2922 		     into the insn here and save having to create a fixS
2923 		     for each one.  There already exists code to handle
2924 		     all the various cases (e.g. in md_apply_fix and
2925 		     bfd_install_relocation) so duplicating all that code
2926 		     here isn't right.  */
2927 
2928 		  /* This is a special case to handle cbcond instructions
2929 		     properly, which can need two relocations.  The first
2930 		     one is for the 5-bit immediate field and the latter
2931 		     is going to be for the WDISP10 branch part.  We
2932 		     handle the R_SPARC_5 immediate directly here so that
2933 		     we don't need to add support for multiple relocations
2934 		     in one instruction just yet.  */
2935 		  if (the_insn.reloc == BFD_RELOC_SPARC_5
2936                       && ((insn->match & OP(0x3)) == 0))
2937 		    {
2938 		      valueT val = the_insn.exp.X_add_number;
2939 
2940 		      the_insn.reloc = BFD_RELOC_NONE;
2941 		      if (! in_bitfield_range (val, 0x1f))
2942 			{
2943 			  error_message = _(": Immediate value in cbcond is out of range.");
2944 			  goto error;
2945 			}
2946 		      opcode |= val & 0x1f;
2947 		    }
2948 		}
2949 
2950 	      continue;
2951 
2952 	    case 'a':
2953 	      if (*s++ == 'a')
2954 		{
2955 		  opcode |= ANNUL;
2956 		  continue;
2957 		}
2958 	      break;
2959 
2960 	    case 'A':
2961 	      {
2962 		int asi = 0;
2963 
2964 		/* Parse an asi.  */
2965 		if (*s == '#')
2966 		  {
2967 		    if (! parse_sparc_asi (&s, &sasi))
2968 		      {
2969 			error_message = _(": invalid ASI name");
2970 			goto error;
2971 		      }
2972 		    asi = sasi->value;
2973 		  }
2974 		else
2975 		  {
2976 		    if (! parse_const_expr_arg (&s, &asi))
2977 		      {
2978 			error_message = _(": invalid ASI expression");
2979 			goto error;
2980 		      }
2981 		    if (asi < 0 || asi > 255)
2982 		      {
2983 			error_message = _(": invalid ASI number");
2984 			goto error;
2985 		      }
2986 		  }
2987 		opcode |= ASI (asi);
2988 		continue;
2989 	      }			/* Alternate space.  */
2990 
2991 	    case 'p':
2992 	      if (strncmp (s, "%psr", 4) == 0)
2993 		{
2994 		  s += 4;
2995 		  continue;
2996 		}
2997 	      break;
2998 
2999 	    case 'q':		/* Floating point queue.  */
3000 	      if (strncmp (s, "%fq", 3) == 0)
3001 		{
3002 		  s += 3;
3003 		  continue;
3004 		}
3005 	      break;
3006 
3007 	    case 'Q':		/* Coprocessor queue.  */
3008 	      if (strncmp (s, "%cq", 3) == 0)
3009 		{
3010 		  s += 3;
3011 		  continue;
3012 		}
3013 	      break;
3014 
3015 	    case 'S':
3016 	      if (strcmp (str, "set") == 0
3017 		  || strcmp (str, "setuw") == 0)
3018 		{
3019 		  special_case = SPECIAL_CASE_SET;
3020 		  continue;
3021 		}
3022 	      else if (strcmp (str, "setsw") == 0)
3023 		{
3024 		  special_case = SPECIAL_CASE_SETSW;
3025 		  continue;
3026 		}
3027 	      else if (strcmp (str, "setx") == 0)
3028 		{
3029 		  special_case = SPECIAL_CASE_SETX;
3030 		  continue;
3031 		}
3032 	      else if (strncmp (str, "fdiv", 4) == 0)
3033 		{
3034 		  special_case = SPECIAL_CASE_FDIV;
3035 		  continue;
3036 		}
3037 	      break;
3038 
3039 	    case 'o':
3040 	      if (strncmp (s, "%asi", 4) != 0)
3041 		break;
3042 	      s += 4;
3043 	      continue;
3044 
3045 	    case 's':
3046 	      if (strncmp (s, "%fprs", 5) != 0)
3047 		break;
3048 	      s += 5;
3049 	      continue;
3050 
3051 	    case '{':
3052 	      if (strncmp (s, "%mcdper",7) != 0)
3053 		break;
3054 	      s += 7;
3055 	      continue;
3056 
3057             case '&':
3058               if (strncmp (s, "%entropy", 8) != 0)
3059                 break;
3060               s += 8;
3061               continue;
3062 
3063 	    case 'E':
3064 	      if (strncmp (s, "%ccr", 4) != 0)
3065 		break;
3066 	      s += 4;
3067 	      continue;
3068 
3069 	    case 't':
3070 	      if (strncmp (s, "%tbr", 4) != 0)
3071 		break;
3072 	      s += 4;
3073 	      continue;
3074 
3075 	    case 'w':
3076 	      if (strncmp (s, "%wim", 4) != 0)
3077 		break;
3078 	      s += 4;
3079 	      continue;
3080 
3081             case '|':
3082               {
3083                 int imm2 = 0;
3084 
3085                 /* Parse a 2-bit immediate.  */
3086                 if (! parse_const_expr_arg (&s, &imm2))
3087                   {
3088                     error_message = _(": non-immdiate imm2 operand");
3089                     goto error;
3090                   }
3091                 if ((imm2 & ~0x3) != 0)
3092                   {
3093                     error_message = _(": imm2 immediate operand out of range (0-3)");
3094                     goto error;
3095                   }
3096 
3097                 opcode |= ((imm2 & 0x2) << 3) | (imm2 & 0x1);
3098                 continue;
3099               }
3100 
3101 	    case 'x':
3102 	      {
3103 		char *push = input_line_pointer;
3104 		expressionS e;
3105 
3106 		input_line_pointer = s;
3107 		expression (&e);
3108 		if (e.X_op == O_constant)
3109 		  {
3110 		    int n = e.X_add_number;
3111 		    if (n != e.X_add_number || (n & ~0x1ff) != 0)
3112 		      as_bad (_("OPF immediate operand out of range (0-0x1ff)"));
3113 		    else
3114 		      opcode |= e.X_add_number << 5;
3115 		  }
3116 		else
3117 		  as_bad (_("non-immediate OPF operand, ignored"));
3118 		s = input_line_pointer;
3119 		input_line_pointer = push;
3120 		continue;
3121 	      }
3122 
3123 	    case 'y':
3124 	      if (strncmp (s, "%y", 2) != 0)
3125 		break;
3126 	      s += 2;
3127 	      continue;
3128 
3129 	    case 'u':
3130 	    case 'U':
3131 	      {
3132 		/* Parse a sparclet cpreg.  */
3133 		int cpreg;
3134 		if (! parse_keyword_arg (sparc_encode_sparclet_cpreg, &s, &cpreg))
3135 		  {
3136 		    error_message = _(": invalid cpreg name");
3137 		    goto error;
3138 		  }
3139 		opcode |= (*args == 'U' ? RS1 (cpreg) : RD (cpreg));
3140 		continue;
3141 	      }
3142 
3143 	    default:
3144 	      as_fatal (_("failed sanity check."));
3145 	    }			/* switch on arg code.  */
3146 
3147 	  /* Break out of for() loop.  */
3148 	  break;
3149 	}			/* For each arg that we expect.  */
3150 
3151     error:
3152       if (match == 0)
3153 	{
3154 	  /* Args don't match.  */
3155 	  if (&insn[1] - sparc_opcodes < sparc_num_opcodes
3156 	      && (insn->name == insn[1].name
3157 		  || !strcmp (insn->name, insn[1].name)))
3158 	    {
3159 	      ++insn;
3160 	      s = argsStart;
3161 	      continue;
3162 	    }
3163 	  else
3164 	    {
3165 	      as_bad (_("Illegal operands%s"), error_message);
3166 	      return special_case;
3167 	    }
3168 	}
3169       else
3170 	{
3171 	  /* We have a match.  Now see if the architecture is OK.  */
3172 	  /* String to use in case of architecture warning.  */
3173 	  const char *msg_str = str;
3174 	  int needed_arch_mask = insn->architecture;
3175 
3176           /* Include the ASI architecture needed as well */
3177           if (sasi && needed_arch_mask > sasi->architecture)
3178             {
3179               needed_arch_mask = sasi->architecture;
3180               msg_str = sasi->name;
3181             }
3182 
3183           bfd_uint64_t hwcaps
3184 	    = (((bfd_uint64_t) insn->hwcaps2) << 32) | insn->hwcaps;
3185 
3186 #ifndef TE_SOLARIS
3187 	  if (hwcaps)
3188 		  hwcap_seen |= hwcaps;
3189 #endif
3190 	  if (v9_arg_p)
3191 	    {
3192 	      needed_arch_mask &=
3193 		~(SPARC_OPCODE_ARCH_MASK (SPARC_OPCODE_ARCH_V9) - 1);
3194 	      if (! needed_arch_mask)
3195 		needed_arch_mask =
3196 		  SPARC_OPCODE_ARCH_MASK (SPARC_OPCODE_ARCH_V9);
3197 	    }
3198 
3199 	  if (needed_arch_mask
3200 	      & SPARC_OPCODE_SUPPORTED (current_architecture))
3201 	    /* OK.  */
3202 	    ;
3203 	  /* Can we bump up the architecture?  */
3204 	  else if (needed_arch_mask
3205 		   & SPARC_OPCODE_SUPPORTED (max_architecture))
3206 	    {
3207 	      enum sparc_opcode_arch_val needed_architecture =
3208 		sparc_ffs (SPARC_OPCODE_SUPPORTED (max_architecture)
3209 			   & needed_arch_mask);
3210 
3211 	      gas_assert (needed_architecture <= SPARC_OPCODE_ARCH_MAX);
3212 	      if (warn_on_bump
3213 		  && needed_architecture > warn_after_architecture)
3214 		{
3215 		  as_warn (_("architecture bumped from \"%s\" to \"%s\" on \"%s\""),
3216 			   sparc_opcode_archs[current_architecture].name,
3217 			   sparc_opcode_archs[needed_architecture].name,
3218 			   msg_str);
3219 		  warn_after_architecture = needed_architecture;
3220 		}
3221 	      current_architecture = needed_architecture;
3222 	      hwcap_allowed
3223                 = (hwcap_allowed
3224                    | hwcaps
3225                    | (((bfd_uint64_t) sparc_opcode_archs[current_architecture].hwcaps2) << 32)
3226                    | sparc_opcode_archs[current_architecture].hwcaps);
3227 	    }
3228 	  /* Conflict.  */
3229 	  /* ??? This seems to be a bit fragile.  What if the next entry in
3230 	     the opcode table is the one we want and it is supported?
3231 	     It is possible to arrange the table today so that this can't
3232 	     happen but what about tomorrow?  */
3233 	  else
3234 	    {
3235 	      int arch, printed_one_p = 0;
3236 	      char *p;
3237 	      char required_archs[SPARC_OPCODE_ARCH_MAX * 16];
3238 
3239 	      /* Create a list of the architectures that support the insn.  */
3240 	      needed_arch_mask &= ~SPARC_OPCODE_SUPPORTED (max_architecture);
3241 	      p = required_archs;
3242 	      arch = sparc_ffs (needed_arch_mask);
3243 	      while ((1 << arch) <= needed_arch_mask)
3244 		{
3245 		  if ((1 << arch) & needed_arch_mask)
3246 		    {
3247 		      if (printed_one_p)
3248 			*p++ = '|';
3249 		      strcpy (p, sparc_opcode_archs[arch].name);
3250 		      p += strlen (p);
3251 		      printed_one_p = 1;
3252 		    }
3253 		  ++arch;
3254 		}
3255 
3256 	      as_bad (_("Architecture mismatch on \"%s %s\"."), str, argsStart);
3257 	      as_tsktsk (_("(Requires %s; requested architecture is %s.)"),
3258 			 required_archs,
3259 			 sparc_opcode_archs[max_architecture].name);
3260 	      return special_case;
3261 	    }
3262 
3263 	  /* Make sure the hwcaps used by the instruction are
3264 	     currently enabled.  */
3265 	  if (hwcaps & ~hwcap_allowed)
3266 	    {
3267 	      const char *hwcap_name = get_hwcap_name(hwcaps & ~hwcap_allowed);
3268 
3269 	      as_bad (_("Hardware capability \"%s\" not enabled for \"%s\"."),
3270 		      hwcap_name, str);
3271 	      return special_case;
3272 	    }
3273 	} /* If no match.  */
3274 
3275       break;
3276     } /* Forever looking for a match.  */
3277 
3278   the_insn.opcode = opcode;
3279   return special_case;
3280 }
3281 
3282 static char *
3283 skip_over_keyword (char *q)
3284 {
3285   for (q = q + (*q == '#' || *q == '%');
3286        ISALNUM (*q) || *q == '_';
3287        ++q)
3288     continue;
3289   return q;
3290 }
3291 
3292 static int
3293 parse_sparc_asi (char **input_pointer_p, const sparc_asi **value_p)
3294 {
3295   const sparc_asi *value;
3296   char c, *p, *q;
3297 
3298   p = *input_pointer_p;
3299   q = skip_over_keyword(p);
3300   c = *q;
3301   *q = 0;
3302   value = sparc_encode_asi (p);
3303   *q = c;
3304   if (value == NULL)
3305     return 0;
3306   *value_p = value;
3307   *input_pointer_p = q;
3308   return 1;
3309 }
3310 
3311 /* Parse an argument that can be expressed as a keyword.
3312    (eg: #StoreStore or %ccfr).
3313    The result is a boolean indicating success.
3314    If successful, INPUT_POINTER is updated.  */
3315 
3316 static int
3317 parse_keyword_arg (int (*lookup_fn) (const char *),
3318 		   char **input_pointerP,
3319 		   int *valueP)
3320 {
3321   int value;
3322   char c, *p, *q;
3323 
3324   p = *input_pointerP;
3325   q = skip_over_keyword(p);
3326   c = *q;
3327   *q = 0;
3328   value = (*lookup_fn) (p);
3329   *q = c;
3330   if (value == -1)
3331     return 0;
3332   *valueP = value;
3333   *input_pointerP = q;
3334   return 1;
3335 }
3336 
3337 /* Parse an argument that is a constant expression.
3338    The result is a boolean indicating success.  */
3339 
3340 static int
3341 parse_const_expr_arg (char **input_pointerP, int *valueP)
3342 {
3343   char *save = input_line_pointer;
3344   expressionS exp;
3345 
3346   input_line_pointer = *input_pointerP;
3347   /* The next expression may be something other than a constant
3348      (say if we're not processing the right variant of the insn).
3349      Don't call expression unless we're sure it will succeed as it will
3350      signal an error (which we want to defer until later).  */
3351   /* FIXME: It might be better to define md_operand and have it recognize
3352      things like %asi, etc. but continuing that route through to the end
3353      is a lot of work.  */
3354   if (*input_line_pointer == '%')
3355     {
3356       input_line_pointer = save;
3357       return 0;
3358     }
3359   expression (&exp);
3360   *input_pointerP = input_line_pointer;
3361   input_line_pointer = save;
3362   if (exp.X_op != O_constant)
3363     return 0;
3364   *valueP = exp.X_add_number;
3365   return 1;
3366 }
3367 
3368 /* Subroutine of sparc_ip to parse an expression.  */
3369 
3370 static int
3371 get_expression (char *str)
3372 {
3373   char *save_in;
3374   segT seg;
3375 
3376   save_in = input_line_pointer;
3377   input_line_pointer = str;
3378   seg = expression (&the_insn.exp);
3379   if (seg != absolute_section
3380       && seg != text_section
3381       && seg != data_section
3382       && seg != bss_section
3383       && seg != undefined_section)
3384     {
3385       the_insn.error = _("bad segment");
3386       expr_end = input_line_pointer;
3387       input_line_pointer = save_in;
3388       return 1;
3389     }
3390   expr_end = input_line_pointer;
3391   input_line_pointer = save_in;
3392   return 0;
3393 }
3394 
3395 /* Subroutine of md_assemble to output one insn.  */
3396 
3397 static void
3398 output_insn (const struct sparc_opcode *insn, struct sparc_it *theinsn)
3399 {
3400   char *toP = frag_more (4);
3401 
3402   /* Put out the opcode.  */
3403   if (INSN_BIG_ENDIAN)
3404     number_to_chars_bigendian (toP, (valueT) theinsn->opcode, 4);
3405   else
3406     number_to_chars_littleendian (toP, (valueT) theinsn->opcode, 4);
3407 
3408   /* Put out the symbol-dependent stuff.  */
3409   if (theinsn->reloc != BFD_RELOC_NONE)
3410     {
3411       fixS *fixP =  fix_new_exp (frag_now,	/* Which frag.  */
3412 				 (toP - frag_now->fr_literal),	/* Where.  */
3413 				 4,		/* Size.  */
3414 				 &theinsn->exp,
3415 				 theinsn->pcrel,
3416 				 theinsn->reloc);
3417       /* Turn off overflow checking in fixup_segment.  We'll do our
3418 	 own overflow checking in md_apply_fix.  This is necessary because
3419 	 the insn size is 4 and fixup_segment will signal an overflow for
3420 	 large 8 byte quantities.  */
3421       fixP->fx_no_overflow = 1;
3422       if (theinsn->reloc == BFD_RELOC_SPARC_OLO10)
3423 	fixP->tc_fix_data = theinsn->exp2.X_add_number;
3424     }
3425 
3426   last_insn = insn;
3427   last_opcode = theinsn->opcode;
3428 
3429   dwarf2_emit_insn (4);
3430 }
3431 
3432 const char *
3433 md_atof (int type, char *litP, int *sizeP)
3434 {
3435   return ieee_md_atof (type, litP, sizeP, target_big_endian);
3436 }
3437 
3438 /* Write a value out to the object file, using the appropriate
3439    endianness.  */
3440 
3441 void
3442 md_number_to_chars (char *buf, valueT val, int n)
3443 {
3444   if (target_big_endian)
3445     number_to_chars_bigendian (buf, val, n);
3446   else if (target_little_endian_data
3447 	   && ((n == 4 || n == 2) && ~now_seg->flags & SEC_ALLOC))
3448     /* Output debug words, which are not in allocated sections, as big
3449        endian.  */
3450     number_to_chars_bigendian (buf, val, n);
3451   else if (target_little_endian_data || ! target_big_endian)
3452     number_to_chars_littleendian (buf, val, n);
3453 }
3454 
3455 /* Apply a fixS to the frags, now that we know the value it ought to
3456    hold.  */
3457 
3458 void
3459 md_apply_fix (fixS *fixP, valueT *valP, segT segment ATTRIBUTE_UNUSED)
3460 {
3461   char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
3462   offsetT val = * (offsetT *) valP;
3463   long insn;
3464 
3465   gas_assert (fixP->fx_r_type < BFD_RELOC_UNUSED);
3466 
3467   fixP->fx_addnumber = val;	/* Remember value for emit_reloc.  */
3468 
3469   /* SPARC ELF relocations don't use an addend in the data field.  */
3470   if (fixP->fx_addsy != NULL)
3471     {
3472       switch (fixP->fx_r_type)
3473 	{
3474 	case BFD_RELOC_SPARC_TLS_GD_HI22:
3475 	case BFD_RELOC_SPARC_TLS_GD_LO10:
3476 	case BFD_RELOC_SPARC_TLS_GD_ADD:
3477 	case BFD_RELOC_SPARC_TLS_GD_CALL:
3478 	case BFD_RELOC_SPARC_TLS_LDM_HI22:
3479 	case BFD_RELOC_SPARC_TLS_LDM_LO10:
3480 	case BFD_RELOC_SPARC_TLS_LDM_ADD:
3481 	case BFD_RELOC_SPARC_TLS_LDM_CALL:
3482 	case BFD_RELOC_SPARC_TLS_LDO_HIX22:
3483 	case BFD_RELOC_SPARC_TLS_LDO_LOX10:
3484 	case BFD_RELOC_SPARC_TLS_LDO_ADD:
3485 	case BFD_RELOC_SPARC_TLS_IE_HI22:
3486 	case BFD_RELOC_SPARC_TLS_IE_LO10:
3487 	case BFD_RELOC_SPARC_TLS_IE_LD:
3488 	case BFD_RELOC_SPARC_TLS_IE_LDX:
3489 	case BFD_RELOC_SPARC_TLS_IE_ADD:
3490 	case BFD_RELOC_SPARC_TLS_LE_HIX22:
3491 	case BFD_RELOC_SPARC_TLS_LE_LOX10:
3492 	case BFD_RELOC_SPARC_TLS_DTPMOD32:
3493 	case BFD_RELOC_SPARC_TLS_DTPMOD64:
3494 	case BFD_RELOC_SPARC_TLS_DTPOFF32:
3495 	case BFD_RELOC_SPARC_TLS_DTPOFF64:
3496 	case BFD_RELOC_SPARC_TLS_TPOFF32:
3497 	case BFD_RELOC_SPARC_TLS_TPOFF64:
3498 	  S_SET_THREAD_LOCAL (fixP->fx_addsy);
3499 
3500 	default:
3501 	  break;
3502 	}
3503 
3504       return;
3505     }
3506 
3507   /* This is a hack.  There should be a better way to
3508      handle this.  Probably in terms of howto fields, once
3509      we can look at these fixups in terms of howtos.  */
3510   if (fixP->fx_r_type == BFD_RELOC_32_PCREL_S2 && fixP->fx_addsy)
3511     val += fixP->fx_where + fixP->fx_frag->fr_address;
3512 
3513   /* If this is a data relocation, just output VAL.  */
3514 
3515   if (fixP->fx_r_type == BFD_RELOC_8)
3516     {
3517       md_number_to_chars (buf, val, 1);
3518     }
3519   else if (fixP->fx_r_type == BFD_RELOC_16
3520 	   || fixP->fx_r_type == BFD_RELOC_SPARC_UA16)
3521     {
3522       md_number_to_chars (buf, val, 2);
3523     }
3524   else if (fixP->fx_r_type == BFD_RELOC_32
3525 	   || fixP->fx_r_type == BFD_RELOC_SPARC_UA32
3526 	   || fixP->fx_r_type == BFD_RELOC_SPARC_REV32)
3527     {
3528       md_number_to_chars (buf, val, 4);
3529     }
3530   else if (fixP->fx_r_type == BFD_RELOC_64
3531 	   || fixP->fx_r_type == BFD_RELOC_SPARC_UA64)
3532     {
3533       md_number_to_chars (buf, val, 8);
3534     }
3535   else if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3536            || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3537     {
3538       fixP->fx_done = 0;
3539       return;
3540     }
3541   else
3542     {
3543       /* It's a relocation against an instruction.  */
3544 
3545       if (INSN_BIG_ENDIAN)
3546 	insn = bfd_getb32 ((unsigned char *) buf);
3547       else
3548 	insn = bfd_getl32 ((unsigned char *) buf);
3549 
3550       switch (fixP->fx_r_type)
3551 	{
3552 	case BFD_RELOC_32_PCREL_S2:
3553 	  val = val >> 2;
3554 	  /* FIXME: This increment-by-one deserves a comment of why it's
3555 	     being done!  */
3556 	  if (! sparc_pic_code
3557 	      || fixP->fx_addsy == NULL
3558 	      || symbol_section_p (fixP->fx_addsy))
3559 	    ++val;
3560 
3561 	  insn |= val & 0x3fffffff;
3562 
3563 	  /* See if we have a delay slot.  In that case we attempt to
3564              optimize several cases transforming CALL instructions
3565              into branches.  But we can only do that if the relocation
3566              can be completely resolved here, i.e. if no undefined
3567              symbol is associated with it.  */
3568 	  if (sparc_relax && fixP->fx_addsy == NULL
3569 	      && fixP->fx_where + 8 <= fixP->fx_frag->fr_fix)
3570 	    {
3571 #define G0		0
3572 #define O7		15
3573 #define XCC		(2 << 20)
3574 #define COND(x)		(((x)&0xf)<<25)
3575 #define CONDA		COND(0x8)
3576 #define INSN_BPA	(F2(0,1) | CONDA | BPRED | XCC)
3577 #define INSN_BA		(F2(0,2) | CONDA)
3578 #define INSN_OR		F3(2, 0x2, 0)
3579 #define INSN_NOP	F2(0,4)
3580 
3581 	      long delay;
3582 
3583 	      /* If the instruction is a call with either:
3584 		 restore
3585 		 arithmetic instruction with rd == %o7
3586 		 where rs1 != %o7 and rs2 if it is register != %o7
3587 		 then we can optimize if the call destination is near
3588 		 by changing the call into a branch always.  */
3589 	      if (INSN_BIG_ENDIAN)
3590 		delay = bfd_getb32 ((unsigned char *) buf + 4);
3591 	      else
3592 		delay = bfd_getl32 ((unsigned char *) buf + 4);
3593 	      if ((insn & OP (~0)) != OP (1) || (delay & OP (~0)) != OP (2))
3594 		break;
3595 	      if ((delay & OP3 (~0)) != OP3 (0x3d) /* Restore.  */
3596 		  && ((delay & OP3 (0x28)) != 0 /* Arithmetic.  */
3597 		      || ((delay & RD (~0)) != RD (O7))))
3598 		break;
3599 	      if ((delay & RS1 (~0)) == RS1 (O7)
3600 		  || ((delay & F3I (~0)) == 0
3601 		      && (delay & RS2 (~0)) == RS2 (O7)))
3602 		break;
3603 	      /* Ensure the branch will fit into simm22.  */
3604 	      if ((val & 0x3fe00000)
3605 		  && (val & 0x3fe00000) != 0x3fe00000)
3606 		break;
3607 	      /* Check if the arch is v9 and branch will fit
3608 		 into simm19.  */
3609 	      if (((val & 0x3c0000) == 0
3610 		   || (val & 0x3c0000) == 0x3c0000)
3611 		  && (sparc_arch_size == 64
3612 		      || current_architecture >= SPARC_OPCODE_ARCH_V9))
3613 		/* ba,pt %xcc  */
3614 		insn = INSN_BPA | (val & 0x7ffff);
3615 	      else
3616 		/* ba  */
3617 		insn = INSN_BA | (val & 0x3fffff);
3618 	      if (fixP->fx_where >= 4
3619 		  && ((delay & (0xffffffff ^ RS1 (~0)))
3620 		      == (INSN_OR | RD (O7) | RS2 (G0))))
3621 		{
3622 		  long setter;
3623 		  int reg;
3624 
3625 		  if (INSN_BIG_ENDIAN)
3626 		    setter = bfd_getb32 ((unsigned char *) buf - 4);
3627 		  else
3628 		    setter = bfd_getl32 ((unsigned char *) buf - 4);
3629 		  if ((setter & (0xffffffff ^ RD (~0)))
3630 		      != (INSN_OR | RS1 (O7) | RS2 (G0)))
3631 		    break;
3632 		  /* The sequence was
3633 		     or %o7, %g0, %rN
3634 		     call foo
3635 		     or %rN, %g0, %o7
3636 
3637 		     If call foo was replaced with ba, replace
3638 		     or %rN, %g0, %o7 with nop.  */
3639 		  reg = (delay & RS1 (~0)) >> 14;
3640 		  if (reg != ((setter & RD (~0)) >> 25)
3641 		      || reg == G0 || reg == O7)
3642 		    break;
3643 
3644 		  if (INSN_BIG_ENDIAN)
3645 		    bfd_putb32 (INSN_NOP, (unsigned char *) buf + 4);
3646 		  else
3647 		    bfd_putl32 (INSN_NOP, (unsigned char *) buf + 4);
3648 		}
3649 	    }
3650 	  break;
3651 
3652 	case BFD_RELOC_SPARC_11:
3653 	  if (! in_signed_range (val, 0x7ff))
3654 	    as_bad_where (fixP->fx_file, fixP->fx_line,
3655 			  _("relocation overflow"));
3656 	  insn |= val & 0x7ff;
3657 	  break;
3658 
3659 	case BFD_RELOC_SPARC_10:
3660 	  if (! in_signed_range (val, 0x3ff))
3661 	    as_bad_where (fixP->fx_file, fixP->fx_line,
3662 			  _("relocation overflow"));
3663 	  insn |= val & 0x3ff;
3664 	  break;
3665 
3666 	case BFD_RELOC_SPARC_7:
3667 	  if (! in_bitfield_range (val, 0x7f))
3668 	    as_bad_where (fixP->fx_file, fixP->fx_line,
3669 			  _("relocation overflow"));
3670 	  insn |= val & 0x7f;
3671 	  break;
3672 
3673 	case BFD_RELOC_SPARC_6:
3674 	  if (! in_bitfield_range (val, 0x3f))
3675 	    as_bad_where (fixP->fx_file, fixP->fx_line,
3676 			  _("relocation overflow"));
3677 	  insn |= val & 0x3f;
3678 	  break;
3679 
3680 	case BFD_RELOC_SPARC_5:
3681 	  if (! in_bitfield_range (val, 0x1f))
3682 	    as_bad_where (fixP->fx_file, fixP->fx_line,
3683 			  _("relocation overflow"));
3684 	  insn |= val & 0x1f;
3685 	  break;
3686 
3687 	case BFD_RELOC_SPARC_WDISP10:
3688 	  if ((val & 3)
3689 	      || val >= 0x007fc
3690 	      || val <= -(offsetT) 0x808)
3691 	    as_bad_where (fixP->fx_file, fixP->fx_line,
3692 			  _("relocation overflow"));
3693 	  /* FIXME: The +1 deserves a comment.  */
3694 	  val = (val >> 2) + 1;
3695 	  insn |= ((val & 0x300) << 11)
3696 	    | ((val & 0xff) << 5);
3697 	  break;
3698 
3699 	case BFD_RELOC_SPARC_WDISP16:
3700 	  if ((val & 3)
3701 	      || val >= 0x1fffc
3702 	      || val <= -(offsetT) 0x20008)
3703 	    as_bad_where (fixP->fx_file, fixP->fx_line,
3704 			  _("relocation overflow"));
3705 	  /* FIXME: The +1 deserves a comment.  */
3706 	  val = (val >> 2) + 1;
3707 	  insn |= ((val & 0xc000) << 6) | (val & 0x3fff);
3708 	  break;
3709 
3710 	case BFD_RELOC_SPARC_WDISP19:
3711 	  if ((val & 3)
3712 	      || val >= 0xffffc
3713 	      || val <= -(offsetT) 0x100008)
3714 	    as_bad_where (fixP->fx_file, fixP->fx_line,
3715 			  _("relocation overflow"));
3716 	  /* FIXME: The +1 deserves a comment.  */
3717 	  val = (val >> 2) + 1;
3718 	  insn |= val & 0x7ffff;
3719 	  break;
3720 
3721 	case BFD_RELOC_SPARC_HH22:
3722 	  val = BSR (val, 32);
3723 	  /* Fall through.  */
3724 
3725 	case BFD_RELOC_SPARC_LM22:
3726 	case BFD_RELOC_HI22:
3727 	  if (!fixP->fx_addsy)
3728 	    insn |= (val >> 10) & 0x3fffff;
3729 	  else
3730 	    /* FIXME: Need comment explaining why we do this.  */
3731 	    insn &= ~0xffff;
3732 	  break;
3733 
3734 	case BFD_RELOC_SPARC22:
3735 	  if (val & ~0x003fffff)
3736 	    as_bad_where (fixP->fx_file, fixP->fx_line,
3737 			  _("relocation overflow"));
3738 	  insn |= (val & 0x3fffff);
3739 	  break;
3740 
3741 	case BFD_RELOC_SPARC_HM10:
3742 	  val = BSR (val, 32);
3743 	  /* Fall through.  */
3744 
3745 	case BFD_RELOC_LO10:
3746 	  if (!fixP->fx_addsy)
3747 	    insn |= val & 0x3ff;
3748 	  else
3749 	    /* FIXME: Need comment explaining why we do this.  */
3750 	    insn &= ~0xff;
3751 	  break;
3752 
3753 	case BFD_RELOC_SPARC_OLO10:
3754 	  val &= 0x3ff;
3755 	  val += fixP->tc_fix_data;
3756 	  /* Fall through.  */
3757 
3758 	case BFD_RELOC_SPARC13:
3759 	  if (! in_signed_range (val, 0x1fff))
3760 	    as_bad_where (fixP->fx_file, fixP->fx_line,
3761 			  _("relocation overflow"));
3762 	  insn |= val & 0x1fff;
3763 	  break;
3764 
3765 	case BFD_RELOC_SPARC_WDISP22:
3766 	  val = (val >> 2) + 1;
3767 	  /* Fall through.  */
3768 	case BFD_RELOC_SPARC_BASE22:
3769 	  insn |= val & 0x3fffff;
3770 	  break;
3771 
3772 	case BFD_RELOC_SPARC_H34:
3773 	  if (!fixP->fx_addsy)
3774 	    {
3775 	      bfd_vma tval = val;
3776 	      tval >>= 12;
3777 	      insn |= tval & 0x3fffff;
3778 	    }
3779 	  break;
3780 
3781 	case BFD_RELOC_SPARC_H44:
3782 	  if (!fixP->fx_addsy)
3783 	    {
3784 	      bfd_vma tval = val;
3785 	      tval >>= 22;
3786 	      insn |= tval & 0x3fffff;
3787 	    }
3788 	  break;
3789 
3790 	case BFD_RELOC_SPARC_M44:
3791 	  if (!fixP->fx_addsy)
3792 	    insn |= (val >> 12) & 0x3ff;
3793 	  break;
3794 
3795 	case BFD_RELOC_SPARC_L44:
3796 	  if (!fixP->fx_addsy)
3797 	    insn |= val & 0xfff;
3798 	  break;
3799 
3800 	case BFD_RELOC_SPARC_HIX22:
3801 	  if (!fixP->fx_addsy)
3802 	    {
3803 	      val ^= ~(offsetT) 0;
3804 	      insn |= (val >> 10) & 0x3fffff;
3805 	    }
3806 	  break;
3807 
3808 	case BFD_RELOC_SPARC_LOX10:
3809 	  if (!fixP->fx_addsy)
3810 	    insn |= 0x1c00 | (val & 0x3ff);
3811 	  break;
3812 
3813 	case BFD_RELOC_NONE:
3814 	default:
3815 	  as_bad_where (fixP->fx_file, fixP->fx_line,
3816 			_("bad or unhandled relocation type: 0x%02x"),
3817 			fixP->fx_r_type);
3818 	  break;
3819 	}
3820 
3821       if (INSN_BIG_ENDIAN)
3822 	bfd_putb32 (insn, (unsigned char *) buf);
3823       else
3824 	bfd_putl32 (insn, (unsigned char *) buf);
3825     }
3826 
3827   /* Are we finished with this relocation now?  */
3828   if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
3829     fixP->fx_done = 1;
3830 }
3831 
3832 /* Translate internal representation of relocation info to BFD target
3833    format.  */
3834 
3835 arelent **
3836 tc_gen_reloc (asection *section, fixS *fixp)
3837 {
3838   static arelent *relocs[3];
3839   arelent *reloc;
3840   bfd_reloc_code_real_type code;
3841 
3842   relocs[0] = reloc = XNEW (arelent);
3843   relocs[1] = NULL;
3844 
3845   reloc->sym_ptr_ptr = XNEW (asymbol *);
3846   *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
3847   reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
3848 
3849   switch (fixp->fx_r_type)
3850     {
3851     case BFD_RELOC_8:
3852     case BFD_RELOC_16:
3853     case BFD_RELOC_32:
3854     case BFD_RELOC_64:
3855       if (fixp->fx_pcrel)
3856 	{
3857 	  switch (fixp->fx_size)
3858 	    {
3859 	    default:
3860 	      as_bad_where (fixp->fx_file, fixp->fx_line,
3861 			    _("can not do %d byte pc-relative relocation"),
3862 			    fixp->fx_size);
3863 	      code = fixp->fx_r_type;
3864 	      fixp->fx_pcrel = 0;
3865 	      break;
3866 	    case 1: code = BFD_RELOC_8_PCREL;  break;
3867 	    case 2: code = BFD_RELOC_16_PCREL; break;
3868 	    case 4: code = BFD_RELOC_32_PCREL; break;
3869 #ifdef BFD64
3870 	    case 8: code = BFD_RELOC_64_PCREL; break;
3871 #endif
3872 	    }
3873 	  if (fixp->fx_pcrel)
3874 	    fixp->fx_addnumber = fixp->fx_offset;
3875 	  break;
3876 	}
3877       /* Fall through.  */
3878     case BFD_RELOC_HI22:
3879     case BFD_RELOC_LO10:
3880     case BFD_RELOC_32_PCREL_S2:
3881     case BFD_RELOC_SPARC13:
3882     case BFD_RELOC_SPARC22:
3883     case BFD_RELOC_SPARC_PC22:
3884     case BFD_RELOC_SPARC_PC10:
3885     case BFD_RELOC_SPARC_BASE13:
3886     case BFD_RELOC_SPARC_WDISP10:
3887     case BFD_RELOC_SPARC_WDISP16:
3888     case BFD_RELOC_SPARC_WDISP19:
3889     case BFD_RELOC_SPARC_WDISP22:
3890     case BFD_RELOC_SPARC_5:
3891     case BFD_RELOC_SPARC_6:
3892     case BFD_RELOC_SPARC_7:
3893     case BFD_RELOC_SPARC_10:
3894     case BFD_RELOC_SPARC_11:
3895     case BFD_RELOC_SPARC_HH22:
3896     case BFD_RELOC_SPARC_HM10:
3897     case BFD_RELOC_SPARC_LM22:
3898     case BFD_RELOC_SPARC_PC_HH22:
3899     case BFD_RELOC_SPARC_PC_HM10:
3900     case BFD_RELOC_SPARC_PC_LM22:
3901     case BFD_RELOC_SPARC_H34:
3902     case BFD_RELOC_SPARC_H44:
3903     case BFD_RELOC_SPARC_M44:
3904     case BFD_RELOC_SPARC_L44:
3905     case BFD_RELOC_SPARC_HIX22:
3906     case BFD_RELOC_SPARC_LOX10:
3907     case BFD_RELOC_SPARC_REV32:
3908     case BFD_RELOC_SPARC_OLO10:
3909     case BFD_RELOC_SPARC_UA16:
3910     case BFD_RELOC_SPARC_UA32:
3911     case BFD_RELOC_SPARC_UA64:
3912     case BFD_RELOC_8_PCREL:
3913     case BFD_RELOC_16_PCREL:
3914     case BFD_RELOC_32_PCREL:
3915     case BFD_RELOC_64_PCREL:
3916     case BFD_RELOC_SPARC_PLT32:
3917     case BFD_RELOC_SPARC_PLT64:
3918     case BFD_RELOC_VTABLE_ENTRY:
3919     case BFD_RELOC_VTABLE_INHERIT:
3920     case BFD_RELOC_SPARC_TLS_GD_HI22:
3921     case BFD_RELOC_SPARC_TLS_GD_LO10:
3922     case BFD_RELOC_SPARC_TLS_GD_ADD:
3923     case BFD_RELOC_SPARC_TLS_GD_CALL:
3924     case BFD_RELOC_SPARC_TLS_LDM_HI22:
3925     case BFD_RELOC_SPARC_TLS_LDM_LO10:
3926     case BFD_RELOC_SPARC_TLS_LDM_ADD:
3927     case BFD_RELOC_SPARC_TLS_LDM_CALL:
3928     case BFD_RELOC_SPARC_TLS_LDO_HIX22:
3929     case BFD_RELOC_SPARC_TLS_LDO_LOX10:
3930     case BFD_RELOC_SPARC_TLS_LDO_ADD:
3931     case BFD_RELOC_SPARC_TLS_IE_HI22:
3932     case BFD_RELOC_SPARC_TLS_IE_LO10:
3933     case BFD_RELOC_SPARC_TLS_IE_LD:
3934     case BFD_RELOC_SPARC_TLS_IE_LDX:
3935     case BFD_RELOC_SPARC_TLS_IE_ADD:
3936     case BFD_RELOC_SPARC_TLS_LE_HIX22:
3937     case BFD_RELOC_SPARC_TLS_LE_LOX10:
3938     case BFD_RELOC_SPARC_TLS_DTPOFF32:
3939     case BFD_RELOC_SPARC_TLS_DTPOFF64:
3940     case BFD_RELOC_SPARC_GOTDATA_OP_HIX22:
3941     case BFD_RELOC_SPARC_GOTDATA_OP_LOX10:
3942     case BFD_RELOC_SPARC_GOTDATA_OP:
3943       code = fixp->fx_r_type;
3944       break;
3945     default:
3946       abort ();
3947       return NULL;
3948     }
3949 
3950   /* If we are generating PIC code, we need to generate a different
3951      set of relocs.  */
3952 
3953 #define GOT_NAME "_GLOBAL_OFFSET_TABLE_"
3954 #ifdef TE_VXWORKS
3955 #define GOTT_BASE "__GOTT_BASE__"
3956 #define GOTT_INDEX "__GOTT_INDEX__"
3957 #endif
3958 
3959   /* This code must be parallel to tc_fix_adjustable.  */
3960 
3961   if (sparc_pic_code)
3962     {
3963       switch (code)
3964 	{
3965 	case BFD_RELOC_32_PCREL_S2:
3966 	  if (generic_force_reloc (fixp))
3967 	    code = BFD_RELOC_SPARC_WPLT30;
3968 	  break;
3969 	case BFD_RELOC_HI22:
3970 	  code = BFD_RELOC_SPARC_GOT22;
3971 	  if (fixp->fx_addsy != NULL)
3972 	    {
3973 	      if (strcmp (S_GET_NAME (fixp->fx_addsy), GOT_NAME) == 0)
3974 		code = BFD_RELOC_SPARC_PC22;
3975 #ifdef TE_VXWORKS
3976 	      if (strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_BASE) == 0
3977 		  || strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_INDEX) == 0)
3978 		code = BFD_RELOC_HI22; /* Unchanged.  */
3979 #endif
3980 	    }
3981 	  break;
3982 	case BFD_RELOC_LO10:
3983 	  code = BFD_RELOC_SPARC_GOT10;
3984 	  if (fixp->fx_addsy != NULL)
3985 	    {
3986 	      if (strcmp (S_GET_NAME (fixp->fx_addsy), GOT_NAME) == 0)
3987 		code = BFD_RELOC_SPARC_PC10;
3988 #ifdef TE_VXWORKS
3989 	      if (strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_BASE) == 0
3990 		  || strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_INDEX) == 0)
3991 		code = BFD_RELOC_LO10; /* Unchanged.  */
3992 #endif
3993 	    }
3994 	  break;
3995 	case BFD_RELOC_SPARC13:
3996 	  code = BFD_RELOC_SPARC_GOT13;
3997 	  break;
3998 	default:
3999 	  break;
4000 	}
4001     }
4002 
4003   /* Nothing is aligned in DWARF debugging sections.  */
4004   if (bfd_section_flags (section) & SEC_DEBUGGING)
4005     switch (code)
4006       {
4007       case BFD_RELOC_16: code = BFD_RELOC_SPARC_UA16; break;
4008       case BFD_RELOC_32: code = BFD_RELOC_SPARC_UA32; break;
4009       case BFD_RELOC_64: code = BFD_RELOC_SPARC_UA64; break;
4010       default: break;
4011       }
4012 
4013   if (code == BFD_RELOC_SPARC_OLO10)
4014     reloc->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_LO10);
4015   else
4016     reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
4017   if (reloc->howto == 0)
4018     {
4019       as_bad_where (fixp->fx_file, fixp->fx_line,
4020 		    _("internal error: can't export reloc type %d (`%s')"),
4021 		    fixp->fx_r_type, bfd_get_reloc_code_name (code));
4022       xfree (reloc);
4023       relocs[0] = NULL;
4024       return relocs;
4025     }
4026 
4027   /* @@ Why fx_addnumber sometimes and fx_offset other times?  */
4028   if (code != BFD_RELOC_32_PCREL_S2
4029       && code != BFD_RELOC_SPARC_WDISP22
4030       && code != BFD_RELOC_SPARC_WDISP16
4031       && code != BFD_RELOC_SPARC_WDISP19
4032       && code != BFD_RELOC_SPARC_WDISP10
4033       && code != BFD_RELOC_SPARC_WPLT30
4034       && code != BFD_RELOC_SPARC_TLS_GD_CALL
4035       && code != BFD_RELOC_SPARC_TLS_LDM_CALL)
4036     reloc->addend = fixp->fx_addnumber;
4037   else if (symbol_section_p (fixp->fx_addsy))
4038     reloc->addend = (section->vma
4039 		     + fixp->fx_addnumber
4040 		     + md_pcrel_from (fixp));
4041   else
4042     reloc->addend = fixp->fx_offset;
4043 
4044   /* We expand R_SPARC_OLO10 to R_SPARC_LO10 and R_SPARC_13
4045      on the same location.  */
4046   if (code == BFD_RELOC_SPARC_OLO10)
4047     {
4048       relocs[1] = reloc = XNEW (arelent);
4049       relocs[2] = NULL;
4050 
4051       reloc->sym_ptr_ptr = XNEW (asymbol *);
4052       *reloc->sym_ptr_ptr
4053 	= symbol_get_bfdsym (section_symbol (absolute_section));
4054       reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
4055       reloc->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_SPARC13);
4056       reloc->addend = fixp->tc_fix_data;
4057     }
4058 
4059   return relocs;
4060 }
4061 
4062 /* We have no need to default values of symbols.  */
4063 
4064 symbolS *
4065 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
4066 {
4067   return 0;
4068 }
4069 
4070 /* Round up a section size to the appropriate boundary.  */
4071 
4072 valueT
4073 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
4074 {
4075   return size;
4076 }
4077 
4078 /* Exactly what point is a PC-relative offset relative TO?
4079    On the sparc, they're relative to the address of the offset, plus
4080    its size.  This gets us to the following instruction.
4081    (??? Is this right?  FIXME-SOON)  */
4082 long
4083 md_pcrel_from (fixS *fixP)
4084 {
4085   long ret;
4086 
4087   ret = fixP->fx_where + fixP->fx_frag->fr_address;
4088   if (! sparc_pic_code
4089       || fixP->fx_addsy == NULL
4090       || symbol_section_p (fixP->fx_addsy))
4091     ret += fixP->fx_size;
4092   return ret;
4093 }
4094 
4095 /* Return log2 (VALUE), or -1 if VALUE is not an exact positive power
4096    of two.  */
4097 
4098 static int
4099 mylog2 (int value)
4100 {
4101   int shift;
4102 
4103   if (value <= 0)
4104     return -1;
4105 
4106   for (shift = 0; (value & 1) == 0; value >>= 1)
4107     ++shift;
4108 
4109   return (value == 1) ? shift : -1;
4110 }
4111 
4112 /* Sort of like s_lcomm.  */
4113 
4114 static void
4115 s_reserve (int ignore ATTRIBUTE_UNUSED)
4116 {
4117   char *name;
4118   char *p;
4119   char c;
4120   int align;
4121   int size;
4122   int temp;
4123   symbolS *symbolP;
4124 
4125   c = get_symbol_name (&name);
4126   p = input_line_pointer;
4127   *p = c;
4128   SKIP_WHITESPACE_AFTER_NAME ();
4129 
4130   if (*input_line_pointer != ',')
4131     {
4132       as_bad (_("Expected comma after name"));
4133       ignore_rest_of_line ();
4134       return;
4135     }
4136 
4137   ++input_line_pointer;
4138 
4139   if ((size = get_absolute_expression ()) < 0)
4140     {
4141       as_bad (_("BSS length (%d.) <0! Ignored."), size);
4142       ignore_rest_of_line ();
4143       return;
4144     }				/* Bad length.  */
4145 
4146   *p = 0;
4147   symbolP = symbol_find_or_make (name);
4148   *p = c;
4149 
4150   if (strncmp (input_line_pointer, ",\"bss\"", 6) != 0
4151       && strncmp (input_line_pointer, ",\".bss\"", 7) != 0)
4152     {
4153       as_bad (_("bad .reserve segment -- expected BSS segment"));
4154       return;
4155     }
4156 
4157   if (input_line_pointer[2] == '.')
4158     input_line_pointer += 7;
4159   else
4160     input_line_pointer += 6;
4161   SKIP_WHITESPACE ();
4162 
4163   if (*input_line_pointer == ',')
4164     {
4165       ++input_line_pointer;
4166 
4167       SKIP_WHITESPACE ();
4168       if (*input_line_pointer == '\n')
4169 	{
4170 	  as_bad (_("missing alignment"));
4171 	  ignore_rest_of_line ();
4172 	  return;
4173 	}
4174 
4175       align = (int) get_absolute_expression ();
4176 
4177       if (align < 0)
4178 	{
4179 	  as_bad (_("negative alignment"));
4180 	  ignore_rest_of_line ();
4181 	  return;
4182 	}
4183 
4184       if (align != 0)
4185 	{
4186 	  temp = mylog2 (align);
4187 	  if (temp < 0)
4188 	    {
4189 	      as_bad (_("alignment not a power of 2"));
4190 	      ignore_rest_of_line ();
4191 	      return;
4192 	    }
4193 
4194 	  align = temp;
4195 	}
4196 
4197       record_alignment (bss_section, align);
4198     }
4199   else
4200     align = 0;
4201 
4202   if (!S_IS_DEFINED (symbolP))
4203     {
4204       if (! need_pass_2)
4205 	{
4206 	  char *pfrag;
4207 	  segT current_seg = now_seg;
4208 	  subsegT current_subseg = now_subseg;
4209 
4210 	  /* Switch to bss.  */
4211 	  subseg_set (bss_section, 1);
4212 
4213 	  if (align)
4214 	    /* Do alignment.  */
4215 	    frag_align (align, 0, 0);
4216 
4217 	  /* Detach from old frag.  */
4218 	  if (S_GET_SEGMENT (symbolP) == bss_section)
4219 	    symbol_get_frag (symbolP)->fr_symbol = NULL;
4220 
4221 	  symbol_set_frag (symbolP, frag_now);
4222 	  pfrag = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP,
4223 			    (offsetT) size, (char *) 0);
4224 	  *pfrag = 0;
4225 
4226 	  S_SET_SEGMENT (symbolP, bss_section);
4227 
4228 	  subseg_set (current_seg, current_subseg);
4229 
4230 	  S_SET_SIZE (symbolP, size);
4231 	}
4232     }
4233   else
4234     {
4235       as_warn (_("Ignoring attempt to re-define symbol %s"),
4236 	       S_GET_NAME (symbolP));
4237     }
4238 
4239   demand_empty_rest_of_line ();
4240 }
4241 
4242 static void
4243 s_common (int ignore ATTRIBUTE_UNUSED)
4244 {
4245   char *name;
4246   char c;
4247   char *p;
4248   offsetT temp, size;
4249   symbolS *symbolP;
4250 
4251   c = get_symbol_name (&name);
4252   /* Just after name is now '\0'.  */
4253   p = input_line_pointer;
4254   *p = c;
4255   SKIP_WHITESPACE_AFTER_NAME ();
4256   if (*input_line_pointer != ',')
4257     {
4258       as_bad (_("Expected comma after symbol-name"));
4259       ignore_rest_of_line ();
4260       return;
4261     }
4262 
4263   /* Skip ','.  */
4264   input_line_pointer++;
4265 
4266   if ((temp = get_absolute_expression ()) < 0)
4267     {
4268       as_bad (_(".COMMon length (%lu) out of range ignored"),
4269 	      (unsigned long) temp);
4270       ignore_rest_of_line ();
4271       return;
4272     }
4273   size = temp;
4274   *p = 0;
4275   symbolP = symbol_find_or_make (name);
4276   *p = c;
4277   if (S_IS_DEFINED (symbolP) && ! S_IS_COMMON (symbolP))
4278     {
4279       as_bad (_("Ignoring attempt to re-define symbol"));
4280       ignore_rest_of_line ();
4281       return;
4282     }
4283   if (S_GET_VALUE (symbolP) != 0)
4284     {
4285       if (S_GET_VALUE (symbolP) != (valueT) size)
4286 	{
4287 	  as_warn (_("Length of .comm \"%s\" is already %ld. Not changed to %ld."),
4288 		   S_GET_NAME (symbolP), (long) S_GET_VALUE (symbolP), (long) size);
4289 	}
4290     }
4291   know (symbol_get_frag (symbolP) == &zero_address_frag);
4292   if (*input_line_pointer != ',')
4293     {
4294       as_bad (_("Expected comma after common length"));
4295       ignore_rest_of_line ();
4296       return;
4297     }
4298   input_line_pointer++;
4299   SKIP_WHITESPACE ();
4300   if (*input_line_pointer != '"')
4301     {
4302       temp = get_absolute_expression ();
4303 
4304       if (temp < 0)
4305 	{
4306 	  as_bad (_("negative alignment"));
4307 	  ignore_rest_of_line ();
4308 	  return;
4309 	}
4310 
4311       if (symbol_get_obj (symbolP)->local)
4312 	{
4313 	  segT old_sec;
4314 	  int old_subsec;
4315 	  int align;
4316 
4317 	  old_sec = now_seg;
4318 	  old_subsec = now_subseg;
4319 
4320 	  if (temp == 0)
4321 	    align = 0;
4322 	  else
4323 	    align = mylog2 (temp);
4324 
4325 	  if (align < 0)
4326 	    {
4327 	      as_bad (_("alignment not a power of 2"));
4328 	      ignore_rest_of_line ();
4329 	      return;
4330 	    }
4331 
4332 	  record_alignment (bss_section, align);
4333 	  subseg_set (bss_section, 0);
4334 	  if (align)
4335 	    frag_align (align, 0, 0);
4336 	  if (S_GET_SEGMENT (symbolP) == bss_section)
4337 	    symbol_get_frag (symbolP)->fr_symbol = 0;
4338 	  symbol_set_frag (symbolP, frag_now);
4339 	  p = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP,
4340 			(offsetT) size, (char *) 0);
4341 	  *p = 0;
4342 	  S_SET_SEGMENT (symbolP, bss_section);
4343 	  S_CLEAR_EXTERNAL (symbolP);
4344 	  S_SET_SIZE (symbolP, size);
4345 	  subseg_set (old_sec, old_subsec);
4346 	}
4347       else
4348 	{
4349 	allocate_common:
4350 	  S_SET_VALUE (symbolP, (valueT) size);
4351 	  S_SET_ALIGN (symbolP, temp);
4352 	  S_SET_SIZE (symbolP, size);
4353 	  S_SET_EXTERNAL (symbolP);
4354 	  S_SET_SEGMENT (symbolP, bfd_com_section_ptr);
4355 	}
4356     }
4357   else
4358     {
4359       input_line_pointer++;
4360       /* @@ Some use the dot, some don't.  Can we get some consistency??  */
4361       if (*input_line_pointer == '.')
4362 	input_line_pointer++;
4363       /* @@ Some say data, some say bss.  */
4364       if (strncmp (input_line_pointer, "bss\"", 4)
4365 	  && strncmp (input_line_pointer, "data\"", 5))
4366 	{
4367 	  while (*--input_line_pointer != '"')
4368 	    ;
4369 	  input_line_pointer--;
4370 	  goto bad_common_segment;
4371 	}
4372       while (*input_line_pointer++ != '"')
4373 	;
4374       goto allocate_common;
4375     }
4376 
4377   symbol_get_bfdsym (symbolP)->flags |= BSF_OBJECT;
4378 
4379   demand_empty_rest_of_line ();
4380   return;
4381 
4382   {
4383   bad_common_segment:
4384     p = input_line_pointer;
4385     while (*p && *p != '\n')
4386       p++;
4387     c = *p;
4388     *p = '\0';
4389     as_bad (_("bad .common segment %s"), input_line_pointer + 1);
4390     *p = c;
4391     input_line_pointer = p;
4392     ignore_rest_of_line ();
4393     return;
4394   }
4395 }
4396 
4397 /* Handle the .empty pseudo-op.  This suppresses the warnings about
4398    invalid delay slot usage.  */
4399 
4400 static void
4401 s_empty (int ignore ATTRIBUTE_UNUSED)
4402 {
4403   /* The easy way to implement is to just forget about the last
4404      instruction.  */
4405   last_insn = NULL;
4406 }
4407 
4408 static void
4409 s_seg (int ignore ATTRIBUTE_UNUSED)
4410 {
4411 
4412   if (strncmp (input_line_pointer, "\"text\"", 6) == 0)
4413     {
4414       input_line_pointer += 6;
4415       s_text (0);
4416       return;
4417     }
4418   if (strncmp (input_line_pointer, "\"data\"", 6) == 0)
4419     {
4420       input_line_pointer += 6;
4421       s_data (0);
4422       return;
4423     }
4424   if (strncmp (input_line_pointer, "\"data1\"", 7) == 0)
4425     {
4426       input_line_pointer += 7;
4427       s_data1 ();
4428       return;
4429     }
4430   if (strncmp (input_line_pointer, "\"bss\"", 5) == 0)
4431     {
4432       input_line_pointer += 5;
4433       /* We only support 2 segments -- text and data -- for now, so
4434 	 things in the "bss segment" will have to go into data for now.
4435 	 You can still allocate SEG_BSS stuff with .lcomm or .reserve.  */
4436       subseg_set (data_section, 255);	/* FIXME-SOMEDAY.  */
4437       return;
4438     }
4439   as_bad (_("Unknown segment type"));
4440   demand_empty_rest_of_line ();
4441 }
4442 
4443 static void
4444 s_data1 (void)
4445 {
4446   subseg_set (data_section, 1);
4447   demand_empty_rest_of_line ();
4448 }
4449 
4450 static void
4451 s_proc (int ignore ATTRIBUTE_UNUSED)
4452 {
4453   while (!is_end_of_line[(unsigned char) *input_line_pointer])
4454     {
4455       ++input_line_pointer;
4456     }
4457   ++input_line_pointer;
4458 }
4459 
4460 /* This static variable is set by s_uacons to tell sparc_cons_align
4461    that the expression does not need to be aligned.  */
4462 
4463 static int sparc_no_align_cons = 0;
4464 
4465 /* This handles the unaligned space allocation pseudo-ops, such as
4466    .uaword.  .uaword is just like .word, but the value does not need
4467    to be aligned.  */
4468 
4469 static void
4470 s_uacons (int bytes)
4471 {
4472   /* Tell sparc_cons_align not to align this value.  */
4473   sparc_no_align_cons = 1;
4474   cons (bytes);
4475   sparc_no_align_cons = 0;
4476 }
4477 
4478 /* This handles the native word allocation pseudo-op .nword.
4479    For sparc_arch_size 32 it is equivalent to .word,  for
4480    sparc_arch_size 64 it is equivalent to .xword.  */
4481 
4482 static void
4483 s_ncons (int bytes ATTRIBUTE_UNUSED)
4484 {
4485   cons (sparc_arch_size == 32 ? 4 : 8);
4486 }
4487 
4488 /* Handle the SPARC ELF .register pseudo-op.  This sets the binding of a
4489    global register.
4490    The syntax is:
4491 
4492    .register %g[2367],{#scratch|symbolname|#ignore}
4493 */
4494 
4495 static void
4496 s_register (int ignore ATTRIBUTE_UNUSED)
4497 {
4498   char c;
4499   int reg;
4500   int flags;
4501   char *regname;
4502 
4503   if (input_line_pointer[0] != '%'
4504       || input_line_pointer[1] != 'g'
4505       || ((input_line_pointer[2] & ~1) != '2'
4506 	  && (input_line_pointer[2] & ~1) != '6')
4507       || input_line_pointer[3] != ',')
4508     as_bad (_("register syntax is .register %%g[2367],{#scratch|symbolname|#ignore}"));
4509   reg = input_line_pointer[2] - '0';
4510   input_line_pointer += 4;
4511 
4512   if (*input_line_pointer == '#')
4513     {
4514       ++input_line_pointer;
4515       c = get_symbol_name (&regname);
4516       if (strcmp (regname, "scratch") && strcmp (regname, "ignore"))
4517 	as_bad (_("register syntax is .register %%g[2367],{#scratch|symbolname|#ignore}"));
4518       if (regname[0] == 'i')
4519 	regname = NULL;
4520       else
4521 	regname = (char *) "";
4522     }
4523   else
4524     {
4525       c = get_symbol_name (&regname);
4526     }
4527 
4528   if (sparc_arch_size == 64)
4529     {
4530       if (globals[reg])
4531 	{
4532 	  if ((regname && globals[reg] != (symbolS *) 1
4533 	       && strcmp (S_GET_NAME (globals[reg]), regname))
4534 	      || ((regname != NULL) ^ (globals[reg] != (symbolS *) 1)))
4535 	    as_bad (_("redefinition of global register"));
4536 	}
4537       else
4538 	{
4539 	  if (regname == NULL)
4540 	    globals[reg] = (symbolS *) 1;
4541 	  else
4542 	    {
4543 	      if (*regname)
4544 		{
4545 		  if (symbol_find (regname))
4546 		    as_bad (_("Register symbol %s already defined."),
4547 			    regname);
4548 		}
4549 	      globals[reg] = symbol_make (regname);
4550 	      flags = symbol_get_bfdsym (globals[reg])->flags;
4551 	      if (! *regname)
4552 		flags = flags & ~(BSF_GLOBAL|BSF_LOCAL|BSF_WEAK);
4553 	      if (! (flags & (BSF_GLOBAL|BSF_LOCAL|BSF_WEAK)))
4554 		flags |= BSF_GLOBAL;
4555 	      symbol_get_bfdsym (globals[reg])->flags = flags;
4556 	      S_SET_VALUE (globals[reg], (valueT) reg);
4557 	      S_SET_ALIGN (globals[reg], reg);
4558 	      S_SET_SIZE (globals[reg], 0);
4559 	      /* Although we actually want undefined_section here,
4560 		 we have to use absolute_section, because otherwise
4561 		 generic as code will make it a COM section.
4562 		 We fix this up in sparc_adjust_symtab.  */
4563 	      S_SET_SEGMENT (globals[reg], absolute_section);
4564 	      S_SET_OTHER (globals[reg], 0);
4565 	      elf_symbol (symbol_get_bfdsym (globals[reg]))
4566 		->internal_elf_sym.st_info =
4567 		  ELF_ST_INFO(STB_GLOBAL, STT_REGISTER);
4568 	      elf_symbol (symbol_get_bfdsym (globals[reg]))
4569 		->internal_elf_sym.st_shndx = SHN_UNDEF;
4570 	    }
4571 	}
4572     }
4573 
4574   (void) restore_line_pointer (c);
4575 
4576   demand_empty_rest_of_line ();
4577 }
4578 
4579 /* Adjust the symbol table.  We set undefined sections for STT_REGISTER
4580    symbols which need it.  */
4581 
4582 void
4583 sparc_adjust_symtab (void)
4584 {
4585   symbolS *sym;
4586 
4587   for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
4588     {
4589       if (ELF_ST_TYPE (elf_symbol (symbol_get_bfdsym (sym))
4590 		       ->internal_elf_sym.st_info) != STT_REGISTER)
4591 	continue;
4592 
4593       if (ELF_ST_TYPE (elf_symbol (symbol_get_bfdsym (sym))
4594 		       ->internal_elf_sym.st_shndx != SHN_UNDEF))
4595 	continue;
4596 
4597       S_SET_SEGMENT (sym, undefined_section);
4598     }
4599 }
4600 
4601 /* If the --enforce-aligned-data option is used, we require .word,
4602    et. al., to be aligned correctly.  We do it by setting up an
4603    rs_align_code frag, and checking in HANDLE_ALIGN to make sure that
4604    no unexpected alignment was introduced.
4605 
4606    The SunOS and Solaris native assemblers enforce aligned data by
4607    default.  We don't want to do that, because gcc can deliberately
4608    generate misaligned data if the packed attribute is used.  Instead,
4609    we permit misaligned data by default, and permit the user to set an
4610    option to check for it.  */
4611 
4612 void
4613 sparc_cons_align (int nbytes)
4614 {
4615   int nalign;
4616 
4617   /* Only do this if we are enforcing aligned data.  */
4618   if (! enforce_aligned_data)
4619     return;
4620 
4621   /* Don't align if this is an unaligned pseudo-op.  */
4622   if (sparc_no_align_cons)
4623     return;
4624 
4625   nalign = mylog2 (nbytes);
4626   if (nalign == 0)
4627     return;
4628 
4629   gas_assert (nalign > 0);
4630 
4631   if (now_seg == absolute_section)
4632     {
4633       if ((abs_section_offset & ((1 << nalign) - 1)) != 0)
4634 	as_bad (_("misaligned data"));
4635       return;
4636     }
4637 
4638   frag_var (rs_align_test, 1, 1, (relax_substateT) 0,
4639 	    (symbolS *) NULL, (offsetT) nalign, (char *) NULL);
4640 
4641   record_alignment (now_seg, nalign);
4642 }
4643 
4644 /* This is called from HANDLE_ALIGN in tc-sparc.h.  */
4645 
4646 void
4647 sparc_handle_align (fragS *fragp)
4648 {
4649   int count, fix;
4650   char *p;
4651 
4652   count = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
4653 
4654   switch (fragp->fr_type)
4655     {
4656     case rs_align_test:
4657       if (count != 0)
4658 	as_bad_where (fragp->fr_file, fragp->fr_line, _("misaligned data"));
4659       break;
4660 
4661     case rs_align_code:
4662       p = fragp->fr_literal + fragp->fr_fix;
4663       fix = 0;
4664 
4665       if (count & 3)
4666 	{
4667 	  fix = count & 3;
4668 	  memset (p, 0, fix);
4669 	  p += fix;
4670 	  count -= fix;
4671 	}
4672 
4673       if (SPARC_OPCODE_ARCH_V9_P (max_architecture) && count > 8)
4674 	{
4675 	  unsigned wval = (0x30680000 | count >> 2); /* ba,a,pt %xcc, 1f  */
4676 	  if (INSN_BIG_ENDIAN)
4677 	    number_to_chars_bigendian (p, wval, 4);
4678 	  else
4679 	    number_to_chars_littleendian (p, wval, 4);
4680 	  p += 4;
4681 	  count -= 4;
4682 	  fix += 4;
4683 	}
4684 
4685       if (INSN_BIG_ENDIAN)
4686 	number_to_chars_bigendian (p, 0x01000000, 4);
4687       else
4688 	number_to_chars_littleendian (p, 0x01000000, 4);
4689 
4690       fragp->fr_fix += fix;
4691       fragp->fr_var = 4;
4692       break;
4693 
4694     default:
4695       break;
4696     }
4697 }
4698 
4699 /* Some special processing for a Sparc ELF file.  */
4700 
4701 void
4702 sparc_elf_final_processing (void)
4703 {
4704   /* Set the Sparc ELF flag bits.  FIXME: There should probably be some
4705      sort of BFD interface for this.  */
4706   if (sparc_arch_size == 64)
4707     {
4708       switch (sparc_memory_model)
4709 	{
4710 	case MM_RMO:
4711 	  elf_elfheader (stdoutput)->e_flags |= EF_SPARCV9_RMO;
4712 	  break;
4713 	case MM_PSO:
4714 	  elf_elfheader (stdoutput)->e_flags |= EF_SPARCV9_PSO;
4715 	  break;
4716 	default:
4717 	  break;
4718 	}
4719     }
4720   else if (current_architecture >= SPARC_OPCODE_ARCH_V9)
4721     elf_elfheader (stdoutput)->e_flags |= EF_SPARC_32PLUS;
4722   if (current_architecture == SPARC_OPCODE_ARCH_V9A)
4723     elf_elfheader (stdoutput)->e_flags |= EF_SPARC_SUN_US1;
4724   else if (current_architecture == SPARC_OPCODE_ARCH_V9B)
4725     elf_elfheader (stdoutput)->e_flags |= EF_SPARC_SUN_US1|EF_SPARC_SUN_US3;
4726 }
4727 
4728 const char *
4729 sparc_cons (expressionS *exp, int size)
4730 {
4731   char *save;
4732   const char *sparc_cons_special_reloc = NULL;
4733 
4734   SKIP_WHITESPACE ();
4735   save = input_line_pointer;
4736   if (input_line_pointer[0] == '%'
4737       && input_line_pointer[1] == 'r'
4738       && input_line_pointer[2] == '_')
4739     {
4740       if (strncmp (input_line_pointer + 3, "disp", 4) == 0)
4741 	{
4742 	  input_line_pointer += 7;
4743 	  sparc_cons_special_reloc = "disp";
4744 	}
4745       else if (strncmp (input_line_pointer + 3, "plt", 3) == 0)
4746 	{
4747 	  if (size != 4 && size != 8)
4748 	    as_bad (_("Illegal operands: %%r_plt in %d-byte data field"), size);
4749 	  else
4750 	    {
4751 	      input_line_pointer += 6;
4752 	      sparc_cons_special_reloc = "plt";
4753 	    }
4754 	}
4755       else if (strncmp (input_line_pointer + 3, "tls_dtpoff", 10) == 0)
4756 	{
4757 	  if (size != 4 && size != 8)
4758 	    as_bad (_("Illegal operands: %%r_tls_dtpoff in %d-byte data field"), size);
4759 	  else
4760 	    {
4761 	      input_line_pointer += 13;
4762 	      sparc_cons_special_reloc = "tls_dtpoff";
4763 	    }
4764 	}
4765       if (sparc_cons_special_reloc)
4766 	{
4767 	  int bad = 0;
4768 
4769 	  switch (size)
4770 	    {
4771 	    case 1:
4772 	      if (*input_line_pointer != '8')
4773 		bad = 1;
4774 	      input_line_pointer--;
4775 	      break;
4776 	    case 2:
4777 	      if (input_line_pointer[0] != '1' || input_line_pointer[1] != '6')
4778 		bad = 1;
4779 	      break;
4780 	    case 4:
4781 	      if (input_line_pointer[0] != '3' || input_line_pointer[1] != '2')
4782 		bad = 1;
4783 	      break;
4784 	    case 8:
4785 	      if (input_line_pointer[0] != '6' || input_line_pointer[1] != '4')
4786 		bad = 1;
4787 	      break;
4788 	    default:
4789 	      bad = 1;
4790 	      break;
4791 	    }
4792 
4793 	  if (bad)
4794 	    {
4795 	      as_bad (_("Illegal operands: Only %%r_%s%d allowed in %d-byte data fields"),
4796 		      sparc_cons_special_reloc, size * 8, size);
4797 	    }
4798 	  else
4799 	    {
4800 	      input_line_pointer += 2;
4801 	      if (*input_line_pointer != '(')
4802 		{
4803 		  as_bad (_("Illegal operands: %%r_%s%d requires arguments in ()"),
4804 			  sparc_cons_special_reloc, size * 8);
4805 		  bad = 1;
4806 		}
4807 	    }
4808 
4809 	  if (bad)
4810 	    {
4811 	      input_line_pointer = save;
4812 	      sparc_cons_special_reloc = NULL;
4813 	    }
4814 	  else
4815 	    {
4816 	      int c;
4817 	      char *end = ++input_line_pointer;
4818 	      int npar = 0;
4819 
4820 	      while (! is_end_of_line[(c = *end)])
4821 		{
4822 		  if (c == '(')
4823 	  	    npar++;
4824 		  else if (c == ')')
4825 	  	    {
4826 		      if (!npar)
4827 	      		break;
4828 		      npar--;
4829 		    }
4830 	    	  end++;
4831 		}
4832 
4833 	      if (c != ')')
4834 		as_bad (_("Illegal operands: %%r_%s%d requires arguments in ()"),
4835 			sparc_cons_special_reloc, size * 8);
4836 	      else
4837 		{
4838 		  *end = '\0';
4839 		  expression (exp);
4840 		  *end = c;
4841 		  if (input_line_pointer != end)
4842 		    {
4843 		      as_bad (_("Illegal operands: %%r_%s%d requires arguments in ()"),
4844 			      sparc_cons_special_reloc, size * 8);
4845 		    }
4846 		  else
4847 		    {
4848 		      input_line_pointer++;
4849 		      SKIP_WHITESPACE ();
4850 		      c = *input_line_pointer;
4851 		      if (! is_end_of_line[c] && c != ',')
4852 			as_bad (_("Illegal operands: garbage after %%r_%s%d()"),
4853 			        sparc_cons_special_reloc, size * 8);
4854 		    }
4855 		}
4856 	    }
4857 	}
4858     }
4859   if (sparc_cons_special_reloc == NULL)
4860     expression (exp);
4861   return sparc_cons_special_reloc;
4862 }
4863 
4864 /* This is called by emit_expr via TC_CONS_FIX_NEW when creating a
4865    reloc for a cons.  We could use the definition there, except that
4866    we want to handle little endian relocs specially.  */
4867 
4868 void
4869 cons_fix_new_sparc (fragS *frag,
4870 		    int where,
4871 		    unsigned int nbytes,
4872 		    expressionS *exp,
4873 		    const char *sparc_cons_special_reloc)
4874 {
4875   bfd_reloc_code_real_type r;
4876 
4877   r = (nbytes == 1 ? BFD_RELOC_8 :
4878        (nbytes == 2 ? BFD_RELOC_16 :
4879 	(nbytes == 4 ? BFD_RELOC_32 : BFD_RELOC_64)));
4880 
4881   if (target_little_endian_data
4882       && nbytes == 4
4883       && now_seg->flags & SEC_ALLOC)
4884     r = BFD_RELOC_SPARC_REV32;
4885 
4886 #ifdef TE_SOLARIS
4887   /* The Solaris linker does not allow R_SPARC_UA64
4888      relocations for 32-bit executables.  */
4889   if (!target_little_endian_data
4890       && sparc_arch_size != 64
4891       && r == BFD_RELOC_64)
4892     r = BFD_RELOC_32;
4893 #endif
4894 
4895   if (sparc_cons_special_reloc)
4896     {
4897       if (*sparc_cons_special_reloc == 'd')
4898 	switch (nbytes)
4899 	  {
4900 	  case 1: r = BFD_RELOC_8_PCREL; break;
4901 	  case 2: r = BFD_RELOC_16_PCREL; break;
4902 	  case 4: r = BFD_RELOC_32_PCREL; break;
4903 	  case 8: r = BFD_RELOC_64_PCREL; break;
4904 	  default: abort ();
4905 	  }
4906       else if (*sparc_cons_special_reloc == 'p')
4907 	switch (nbytes)
4908 	  {
4909 	  case 4: r = BFD_RELOC_SPARC_PLT32; break;
4910 	  case 8: r = BFD_RELOC_SPARC_PLT64; break;
4911 	  }
4912       else
4913 	switch (nbytes)
4914 	  {
4915 	  case 4: r = BFD_RELOC_SPARC_TLS_DTPOFF32; break;
4916 	  case 8: r = BFD_RELOC_SPARC_TLS_DTPOFF64; break;
4917 	  }
4918     }
4919   else if (sparc_no_align_cons
4920 	   || /* PR 20803 - relocs in the .eh_frame section
4921 		 need to support unaligned access.  */
4922 	   strcmp (now_seg->name, ".eh_frame") == 0)
4923     {
4924       switch (nbytes)
4925 	{
4926 	case 2: r = BFD_RELOC_SPARC_UA16; break;
4927 	case 4: r = BFD_RELOC_SPARC_UA32; break;
4928 #ifdef TE_SOLARIS
4929         /* The Solaris linker does not allow R_SPARC_UA64
4930 	   relocations for 32-bit executables.  */
4931         case 8: r = sparc_arch_size == 64 ?
4932                     BFD_RELOC_SPARC_UA64 : BFD_RELOC_SPARC_UA32; break;
4933 #else
4934 	case 8: r = BFD_RELOC_SPARC_UA64; break;
4935 #endif
4936 	default: abort ();
4937 	}
4938    }
4939 
4940   fix_new_exp (frag, where, (int) nbytes, exp, 0, r);
4941 }
4942 
4943 void
4944 sparc_cfi_frame_initial_instructions (void)
4945 {
4946   cfi_add_CFA_def_cfa (14, sparc_arch_size == 64 ? 0x7ff : 0);
4947 }
4948 
4949 int
4950 sparc_regname_to_dw2regnum (char *regname)
4951 {
4952   char *q;
4953   int i;
4954 
4955   if (!regname[0])
4956     return -1;
4957 
4958   switch (regname[0])
4959     {
4960     case 'g': i = 0; break;
4961     case 'o': i = 1; break;
4962     case 'l': i = 2; break;
4963     case 'i': i = 3; break;
4964     default: i = -1; break;
4965     }
4966   if (i != -1)
4967     {
4968       if (regname[1] < '0' || regname[1] > '8' || regname[2])
4969 	return -1;
4970       return i * 8 + regname[1] - '0';
4971     }
4972   if (regname[0] == 's' && regname[1] == 'p' && !regname[2])
4973     return 14;
4974   if (regname[0] == 'f' && regname[1] == 'p' && !regname[2])
4975     return 30;
4976   if (regname[0] == 'f' || regname[0] == 'r')
4977     {
4978       unsigned int regnum;
4979 
4980       regnum = strtoul (regname + 1, &q, 10);
4981       if (q == NULL || *q)
4982         return -1;
4983       if (regnum >= ((regname[0] == 'f'
4984 		      && SPARC_OPCODE_ARCH_V9_P (max_architecture))
4985 		     ? 64 : 32))
4986 	return -1;
4987       if (regname[0] == 'f')
4988 	{
4989           regnum += 32;
4990           if (regnum >= 64 && (regnum & 1))
4991 	    return -1;
4992         }
4993       return regnum;
4994     }
4995   return -1;
4996 }
4997 
4998 void
4999 sparc_cfi_emit_pcrel_expr (expressionS *exp, unsigned int nbytes)
5000 {
5001   sparc_no_align_cons = 1;
5002   emit_expr_with_reloc (exp, nbytes, "disp");
5003   sparc_no_align_cons = 0;
5004 }
5005