1 /* TI PRU assembler. 2 Copyright (C) 2014-2020 Free Software Foundation, Inc. 3 Contributed by Dimitar Dimitrov <dimitar@dinux.eu> 4 Based on tc-nios2.c 5 6 This file is part of GAS, the GNU Assembler. 7 8 GAS is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3, or (at your option) 11 any later version. 12 13 GAS is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GAS; see the file COPYING. If not, write to the Free 20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 21 02110-1301, USA. */ 22 23 #include "as.h" 24 #include "bfd_stdint.h" 25 #include "opcode/pru.h" 26 #include "elf/pru.h" 27 #include "tc-pru.h" 28 #include "bfd.h" 29 #include "dwarf2dbg.h" 30 #include "subsegs.h" 31 #include "safe-ctype.h" 32 #include "dw2gencfi.h" 33 34 #ifndef OBJ_ELF 35 /* We are not supporting any other target so we throw a compile time error. */ 36 #error "OBJ_ELF not defined" 37 #endif 38 39 /* This array holds the chars that always start a comment. If the 40 pre-processor is disabled, these aren't very useful. */ 41 const char comment_chars[] = "#;"; 42 43 /* This array holds the chars that only start a comment at the beginning of 44 a line. If the line seems to have the form '# 123 filename' 45 .line and .file directives will appear in the pre-processed output. */ 46 /* Note that input_file.c hand checks for '#' at the beginning of the 47 first line of the input file. This is because the compiler outputs 48 #NO_APP at the beginning of its output. */ 49 /* Also note that C style comments are always supported. */ 50 const char line_comment_chars[] = "#;*"; 51 52 /* This array holds machine specific line separator characters. */ 53 const char line_separator_chars[] = ""; 54 55 /* Chars that can be used to separate mant from exp in floating point nums. */ 56 const char EXP_CHARS[] = "eE"; 57 58 /* Chars that mean this number is a floating point constant. 59 As in 0f12.456 60 or 0d1.2345e12 */ 61 const char FLT_CHARS[] = "rRsSfFdDxXpP"; 62 63 /* Machine-dependent command-line options. */ 64 65 struct pru_opt_s 66 { 67 /* -mno-link-relax / -mlink-relax: generate (or not) 68 relocations for linker relaxation. */ 69 bfd_boolean link_relax; 70 71 /* -mno-warn-regname-label: do not output a warning that a label name 72 matches a register name. */ 73 bfd_boolean warn_regname_label; 74 }; 75 76 static struct pru_opt_s pru_opt = { TRUE, TRUE }; 77 78 const char *md_shortopts = "r"; 79 80 enum options 81 { 82 OPTION_LINK_RELAX = OPTION_MD_BASE + 1, 83 OPTION_NO_LINK_RELAX, 84 OPTION_NO_WARN_REGNAME_LABEL, 85 }; 86 87 struct option md_longopts[] = { 88 { "mlink-relax", no_argument, NULL, OPTION_LINK_RELAX }, 89 { "mno-link-relax", no_argument, NULL, OPTION_NO_LINK_RELAX }, 90 { "mno-warn-regname-label", no_argument, NULL, 91 OPTION_NO_WARN_REGNAME_LABEL }, 92 { NULL, no_argument, NULL, 0 } 93 }; 94 95 size_t md_longopts_size = sizeof (md_longopts); 96 97 typedef struct pru_insn_reloc 98 { 99 /* Any expression in the instruction is parsed into this field, 100 which is passed to fix_new_exp () to generate a fixup. */ 101 expressionS reloc_expression; 102 103 /* The type of the relocation to be applied. */ 104 bfd_reloc_code_real_type reloc_type; 105 106 /* PC-relative. */ 107 unsigned int reloc_pcrel; 108 109 /* The next relocation to be applied to the instruction. */ 110 struct pru_insn_reloc *reloc_next; 111 } pru_insn_relocS; 112 113 /* This struct is used to hold state when assembling instructions. */ 114 typedef struct pru_insn_info 115 { 116 /* Assembled instruction. */ 117 unsigned long insn_code; 118 /* Used for assembling LDI32. */ 119 unsigned long ldi32_imm32; 120 121 /* Pointer to the relevant bit of the opcode table. */ 122 const struct pru_opcode *insn_pru_opcode; 123 /* After parsing ptrs to the tokens in the instruction fill this array 124 it is terminated with a null pointer (hence the first +1). 125 The second +1 is because in some parts of the code the opcode 126 is not counted as a token, but still placed in this array. */ 127 const char *insn_tokens[PRU_MAX_INSN_TOKENS + 1 + 1]; 128 129 /* This holds information used to generate fixups 130 and eventually relocations if it is not null. */ 131 pru_insn_relocS *insn_reloc; 132 } pru_insn_infoS; 133 134 /* Opcode hash table. */ 135 static struct hash_control *pru_opcode_hash = NULL; 136 #define pru_opcode_lookup(NAME) \ 137 ((struct pru_opcode *) hash_find (pru_opcode_hash, (NAME))) 138 139 /* Register hash table. */ 140 static struct hash_control *pru_reg_hash = NULL; 141 #define pru_reg_lookup(NAME) \ 142 ((struct pru_reg *) hash_find (pru_reg_hash, (NAME))) 143 144 /* The known current alignment of the current section. */ 145 static int pru_current_align; 146 static segT pru_current_align_seg; 147 148 static int pru_auto_align_on = 1; 149 150 /* The last seen label in the current section. This is used to auto-align 151 labels preceding instructions. */ 152 static symbolS *pru_last_label; 153 154 155 /** Utility routines. */ 156 /* Function md_chars_to_number takes the sequence of 157 bytes in buf and returns the corresponding value 158 in an int. n must be 1, 2, 4 or 8. */ 159 static uint64_t 160 md_chars_to_number (char *buf, int n) 161 { 162 int i; 163 uint64_t val; 164 165 gas_assert (n == 1 || n == 2 || n == 4 || n == 8); 166 167 val = 0; 168 for (i = 0; i < n; ++i) 169 val = val | ((buf[i] & 0xff) << 8 * i); 170 return val; 171 } 172 173 174 /* This function turns a C long int, short int or char 175 into the series of bytes that represent the number 176 on the target machine. */ 177 void 178 md_number_to_chars (char *buf, valueT val, int n) 179 { 180 gas_assert (n == 1 || n == 2 || n == 4 || n == 8); 181 number_to_chars_littleendian (buf, val, n); 182 } 183 184 /* Turn a string in input_line_pointer into a floating point constant 185 of type TYPE, and store the appropriate bytes in *LITP. The number 186 of LITTLENUMS emitted is stored in *SIZEP. An error message is 187 returned, or NULL on OK. */ 188 const char * 189 md_atof (int type, char *litP, int *sizeP) 190 { 191 return ieee_md_atof (type, litP, sizeP, FALSE); 192 } 193 194 /* Return true if STR starts with PREFIX, which should be a string literal. */ 195 #define strprefix(STR, PREFIX) \ 196 (strncmp ((STR), PREFIX, strlen (PREFIX)) == 0) 197 198 /* nop fill pattern for text section. */ 199 static char const nop[4] = { 0xe0, 0xe0, 0xe0, 0x12 }; 200 201 /* Handles all machine-dependent alignment needs. */ 202 static void 203 pru_align (int log_size, const char *pfill, symbolS *label) 204 { 205 int align; 206 long max_alignment = 15; 207 208 /* The front end is prone to changing segments out from under us 209 temporarily when -g is in effect. */ 210 int switched_seg_p = (pru_current_align_seg != now_seg); 211 212 align = log_size; 213 if (align > max_alignment) 214 { 215 align = max_alignment; 216 as_bad (_("Alignment too large: %d assumed"), align); 217 } 218 else if (align < 0) 219 { 220 as_warn (_("Alignment negative: 0 assumed")); 221 align = 0; 222 } 223 224 if (align != 0) 225 { 226 if (subseg_text_p (now_seg) && align >= 2) 227 { 228 /* First, make sure we're on a four-byte boundary, in case 229 someone has been putting .byte values the text section. */ 230 if (pru_current_align < 2 || switched_seg_p) 231 frag_align (2, 0, 0); 232 233 /* Now fill in the alignment pattern. */ 234 if (pfill != NULL) 235 frag_align_pattern (align, pfill, sizeof nop, 0); 236 else 237 frag_align (align, 0, 0); 238 } 239 else 240 frag_align (align, 0, 0); 241 242 if (!switched_seg_p) 243 pru_current_align = align; 244 245 /* If the last label was in a different section we can't align it. */ 246 if (label != NULL && !switched_seg_p) 247 { 248 symbolS *sym; 249 int label_seen = FALSE; 250 struct frag *old_frag; 251 valueT old_value; 252 valueT new_value; 253 254 gas_assert (S_GET_SEGMENT (label) == now_seg); 255 256 old_frag = symbol_get_frag (label); 257 old_value = S_GET_VALUE (label); 258 new_value = (valueT) frag_now_fix (); 259 260 /* It is possible to have more than one label at a particular 261 address, especially if debugging is enabled, so we must 262 take care to adjust all the labels at this address in this 263 fragment. To save time we search from the end of the symbol 264 list, backwards, since the symbols we are interested in are 265 almost certainly the ones that were most recently added. 266 Also to save time we stop searching once we have seen at least 267 one matching label, and we encounter a label that is no longer 268 in the target fragment. Note, this search is guaranteed to 269 find at least one match when sym == label, so no special case 270 code is necessary. */ 271 for (sym = symbol_lastP; sym != NULL; sym = symbol_previous (sym)) 272 if (symbol_get_frag (sym) == old_frag 273 && S_GET_VALUE (sym) == old_value) 274 { 275 label_seen = TRUE; 276 symbol_set_frag (sym, frag_now); 277 S_SET_VALUE (sym, new_value); 278 } 279 else if (label_seen && symbol_get_frag (sym) != old_frag) 280 break; 281 } 282 record_alignment (now_seg, align); 283 } 284 } 285 286 287 /** Support for self-check mode. */ 288 289 /* Mode of the assembler. */ 290 typedef enum 291 { 292 PRU_MODE_ASSEMBLE, /* Ordinary operation. */ 293 PRU_MODE_TEST /* Hidden mode used for self testing. */ 294 } PRU_MODE; 295 296 static PRU_MODE pru_mode = PRU_MODE_ASSEMBLE; 297 298 /* This function is used to in self-checking mode 299 to check the assembled instruction. 300 OPCODE should be the assembled opcode, and exp_opcode 301 the parsed string representing the expected opcode. */ 302 303 static void 304 pru_check_assembly (unsigned int opcode, const char *exp_opcode) 305 { 306 if (pru_mode == PRU_MODE_TEST) 307 { 308 if (exp_opcode == NULL) 309 as_bad (_("expecting opcode string in self test mode")); 310 else if (opcode != strtoul (exp_opcode, NULL, 16)) 311 as_bad (_("assembly 0x%08x, expected %s"), opcode, exp_opcode); 312 } 313 } 314 315 316 /** Support for machine-dependent assembler directives. */ 317 /* Handle the .align pseudo-op. This aligns to a power of two. It 318 also adjusts any current instruction label. We treat this the same 319 way the MIPS port does: .align 0 turns off auto alignment. */ 320 static void 321 s_pru_align (int ignore ATTRIBUTE_UNUSED) 322 { 323 int align; 324 char fill; 325 const char *pfill = NULL; 326 long max_alignment = 15; 327 328 align = get_absolute_expression (); 329 if (align > max_alignment) 330 { 331 align = max_alignment; 332 as_bad (_("Alignment too large: %d assumed"), align); 333 } 334 else if (align < 0) 335 { 336 as_warn (_("Alignment negative: 0 assumed")); 337 align = 0; 338 } 339 340 if (*input_line_pointer == ',') 341 { 342 input_line_pointer++; 343 fill = get_absolute_expression (); 344 pfill = (const char *) &fill; 345 } 346 else if (subseg_text_p (now_seg)) 347 pfill = (const char *) &nop; 348 else 349 { 350 pfill = NULL; 351 pru_last_label = NULL; 352 } 353 354 if (align != 0) 355 { 356 pru_auto_align_on = 1; 357 pru_align (align, pfill, pru_last_label); 358 pru_last_label = NULL; 359 } 360 else 361 pru_auto_align_on = 0; 362 363 demand_empty_rest_of_line (); 364 } 365 366 /* Handle the .text pseudo-op. This is like the usual one, but it 367 clears the saved last label and resets known alignment. */ 368 static void 369 s_pru_text (int i) 370 { 371 s_text (i); 372 pru_last_label = NULL; 373 pru_current_align = 0; 374 pru_current_align_seg = now_seg; 375 } 376 377 /* Handle the .data pseudo-op. This is like the usual one, but it 378 clears the saved last label and resets known alignment. */ 379 static void 380 s_pru_data (int i) 381 { 382 s_data (i); 383 pru_last_label = NULL; 384 pru_current_align = 0; 385 pru_current_align_seg = now_seg; 386 } 387 388 /* Handle the .section pseudo-op. This is like the usual one, but it 389 clears the saved last label and resets known alignment. */ 390 static void 391 s_pru_section (int ignore) 392 { 393 obj_elf_section (ignore); 394 pru_last_label = NULL; 395 pru_current_align = 0; 396 pru_current_align_seg = now_seg; 397 } 398 399 /* Explicitly unaligned cons. */ 400 static void 401 s_pru_ucons (int nbytes) 402 { 403 int hold; 404 hold = pru_auto_align_on; 405 pru_auto_align_on = 0; 406 cons (nbytes); 407 pru_auto_align_on = hold; 408 } 409 410 /* .set sets assembler options. */ 411 static void 412 s_pru_set (int equiv) 413 { 414 char *save = input_line_pointer; 415 char *directive; 416 char delim = get_symbol_name (&directive); 417 char *endline = input_line_pointer; 418 419 (void) restore_line_pointer (delim); 420 421 /* We only want to handle ".set XXX" if the 422 user has tried ".set XXX, YYY" they are not 423 trying a directive. This prevents 424 us from polluting the name space. */ 425 SKIP_WHITESPACE (); 426 if (is_end_of_line[(unsigned char) *input_line_pointer]) 427 { 428 bfd_boolean done = TRUE; 429 *endline = 0; 430 431 if (!strcmp (directive, "no_warn_regname_label")) 432 pru_opt.warn_regname_label = FALSE; 433 else 434 done = FALSE; 435 436 if (done) 437 { 438 *endline = delim; 439 demand_empty_rest_of_line (); 440 return; 441 } 442 } 443 444 /* If we fall through to here, either we have ".set XXX, YYY" 445 or we have ".set XXX" where XXX is unknown or we have 446 a syntax error. */ 447 input_line_pointer = save; 448 s_set (equiv); 449 } 450 451 /* Machine-dependent assembler directives. 452 Format of each entry is: 453 { "directive", handler_func, param } */ 454 const pseudo_typeS md_pseudo_table[] = { 455 {"align", s_pru_align, 0}, 456 {"text", s_pru_text, 0}, 457 {"data", s_pru_data, 0}, 458 {"section", s_pru_section, 0}, 459 {"section.s", s_pru_section, 0}, 460 {"sect", s_pru_section, 0}, 461 {"sect.s", s_pru_section, 0}, 462 /* .dword and .half are included for compatibility with MIPS. */ 463 {"dword", cons, 8}, 464 {"half", cons, 2}, 465 /* PRU native word size is 4 bytes, so we override 466 the GAS default of 2. */ 467 {"word", cons, 4}, 468 /* Explicitly unaligned directives. */ 469 {"2byte", s_pru_ucons, 2}, 470 {"4byte", s_pru_ucons, 4}, 471 {"8byte", s_pru_ucons, 8}, 472 {"16byte", s_pru_ucons, 16}, 473 {"set", s_pru_set, 0}, 474 {NULL, NULL, 0} 475 }; 476 477 478 int 479 md_estimate_size_before_relax (fragS *fragp ATTRIBUTE_UNUSED, 480 asection *seg ATTRIBUTE_UNUSED) 481 { 482 abort (); 483 return 0; 484 } 485 486 void 487 md_convert_frag (bfd *headers ATTRIBUTE_UNUSED, segT segment ATTRIBUTE_UNUSED, 488 fragS *fragp ATTRIBUTE_UNUSED) 489 { 490 abort (); 491 } 492 493 494 static bfd_boolean 495 relaxable_section (asection *sec) 496 { 497 return ((sec->flags & SEC_DEBUGGING) == 0 498 && (sec->flags & SEC_CODE) != 0 499 && (sec->flags & SEC_ALLOC) != 0); 500 } 501 502 /* Does whatever the xtensa port does. */ 503 int 504 pru_validate_fix_sub (fixS *fix) 505 { 506 segT add_symbol_segment, sub_symbol_segment; 507 508 /* The difference of two symbols should be resolved by the assembler when 509 linkrelax is not set. If the linker may relax the section containing 510 the symbols, then an Xtensa DIFF relocation must be generated so that 511 the linker knows to adjust the difference value. */ 512 if (!linkrelax || fix->fx_addsy == NULL) 513 return 0; 514 515 /* Make sure both symbols are in the same segment, and that segment is 516 "normal" and relaxable. If the segment is not "normal", then the 517 fix is not valid. If the segment is not "relaxable", then the fix 518 should have been handled earlier. */ 519 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy); 520 if (! SEG_NORMAL (add_symbol_segment) 521 || ! relaxable_section (add_symbol_segment)) 522 return 0; 523 524 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy); 525 return (sub_symbol_segment == add_symbol_segment); 526 } 527 528 /* TC_FORCE_RELOCATION hook. */ 529 530 /* If linkrelax is turned on, and the symbol to relocate 531 against is in a relaxable segment, don't compute the value - 532 generate a relocation instead. */ 533 int 534 pru_force_relocation (fixS *fix) 535 { 536 if (linkrelax && fix->fx_addsy 537 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy))) 538 return 1; 539 540 return generic_force_reloc (fix); 541 } 542 543 544 545 /** Fixups and overflow checking. */ 546 547 /* Check a fixup for overflow. */ 548 static bfd_reloc_status_type 549 pru_check_overflow (valueT fixup, reloc_howto_type *howto) 550 { 551 bfd_reloc_status_type ret; 552 553 ret = bfd_check_overflow (howto->complain_on_overflow, 554 howto->bitsize, 555 howto->rightshift, 556 bfd_get_reloc_size (howto) * 8, 557 fixup); 558 559 return ret; 560 } 561 562 /* Emit diagnostic for fixup overflow. */ 563 static void 564 pru_diagnose_overflow (valueT fixup, reloc_howto_type *howto, 565 fixS *fixP, valueT value) 566 { 567 if (fixP->fx_r_type == BFD_RELOC_8 568 || fixP->fx_r_type == BFD_RELOC_16 569 || fixP->fx_r_type == BFD_RELOC_32) 570 /* These relocs are against data, not instructions. */ 571 as_bad_where (fixP->fx_file, fixP->fx_line, 572 _("immediate value 0x%x truncated to 0x%x"), 573 (unsigned int) fixup, 574 (unsigned int) (~(~(valueT) 0 << howto->bitsize) & fixup)); 575 else 576 { 577 /* What opcode is the instruction? This will determine 578 whether we check for overflow in immediate values 579 and what error message we get. */ 580 const struct pru_opcode *opcode; 581 enum overflow_type overflow_msg_type; 582 unsigned int range_min; 583 unsigned int range_max; 584 unsigned int address; 585 gas_assert (fixP->fx_size == 4); 586 opcode = pru_find_opcode (value); 587 gas_assert (opcode); 588 overflow_msg_type = opcode->overflow_msg; 589 switch (overflow_msg_type) 590 { 591 case call_target_overflow: 592 range_min 593 = ((fixP->fx_frag->fr_address + fixP->fx_where) & 0xf0000000); 594 range_max = range_min + 0x0fffffff; 595 address = fixup | range_min; 596 597 as_bad_where (fixP->fx_file, fixP->fx_line, 598 _("call target address 0x%08x out of range 0x%08x to 0x%08x"), 599 address, range_min, range_max); 600 break; 601 case qbranch_target_overflow: 602 as_bad_where (fixP->fx_file, fixP->fx_line, 603 _("quick branch offset %d out of range %d to %d"), 604 (int)fixup, -((1<<9) * 4), (1 << 9) * 4); 605 break; 606 case address_offset_overflow: 607 as_bad_where (fixP->fx_file, fixP->fx_line, 608 _("%s offset %d out of range %d to %d"), 609 opcode->name, (int)fixup, -32768, 32767); 610 break; 611 case signed_immed16_overflow: 612 as_bad_where (fixP->fx_file, fixP->fx_line, 613 _("immediate value %d out of range %d to %d"), 614 (int)fixup, -32768, 32767); 615 break; 616 case unsigned_immed32_overflow: 617 as_bad_where (fixP->fx_file, fixP->fx_line, 618 _("immediate value %llu out of range %u to %lu"), 619 (unsigned long long)fixup, 0, 0xfffffffflu); 620 break; 621 case unsigned_immed16_overflow: 622 as_bad_where (fixP->fx_file, fixP->fx_line, 623 _("immediate value %u out of range %u to %u"), 624 (unsigned int)fixup, 0, 65535); 625 break; 626 case unsigned_immed5_overflow: 627 as_bad_where (fixP->fx_file, fixP->fx_line, 628 _("immediate value %u out of range %u to %u"), 629 (unsigned int)fixup, 0, 31); 630 break; 631 default: 632 as_bad_where (fixP->fx_file, fixP->fx_line, 633 _("overflow in immediate argument")); 634 break; 635 } 636 } 637 } 638 639 /* Apply a fixup to the object file. */ 640 void 641 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED) 642 { 643 unsigned char *where; 644 valueT value = *valP; 645 646 /* Assert that the fixup is one we can handle. */ 647 gas_assert (fixP != NULL && valP != NULL 648 && (fixP->fx_r_type == BFD_RELOC_8 649 || fixP->fx_r_type == BFD_RELOC_16 650 || fixP->fx_r_type == BFD_RELOC_32 651 || fixP->fx_r_type == BFD_RELOC_64 652 || fixP->fx_r_type == BFD_RELOC_PRU_LDI32 653 || fixP->fx_r_type == BFD_RELOC_PRU_U16 654 || fixP->fx_r_type == BFD_RELOC_PRU_U16_PMEMIMM 655 || fixP->fx_r_type == BFD_RELOC_PRU_S10_PCREL 656 || fixP->fx_r_type == BFD_RELOC_PRU_U8_PCREL 657 || fixP->fx_r_type == BFD_RELOC_PRU_32_PMEM 658 || fixP->fx_r_type == BFD_RELOC_PRU_16_PMEM 659 /* Add other relocs here as we generate them. */ 660 )); 661 662 if (fixP->fx_r_type == BFD_RELOC_64) 663 { 664 /* We may reach here due to .8byte directives, but we never output 665 BFD_RELOC_64; it must be resolved. */ 666 if (fixP->fx_addsy != NULL) 667 as_bad_where (fixP->fx_file, fixP->fx_line, 668 _("cannot create 64-bit relocation")); 669 else 670 { 671 md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, 672 *valP, 8); 673 fixP->fx_done = 1; 674 } 675 return; 676 } 677 678 /* gas_assert (had_errors () || !fixP->fx_subsy); */ 679 680 /* In general, fix instructions with immediate 681 constants. But leave LDI32 for the linker, 682 which is prepared to shorten insns. */ 683 if (fixP->fx_addsy == (symbolS *) NULL 684 && fixP->fx_r_type != BFD_RELOC_PRU_LDI32) 685 fixP->fx_done = 1; 686 687 else if (fixP->fx_pcrel) 688 { 689 segT s = S_GET_SEGMENT (fixP->fx_addsy); 690 691 if (s == seg || s == absolute_section) 692 { 693 /* Blindly copied from AVR, but I don't understand why 694 this is needed in the first place. Fail hard to catch 695 when this curious code snippet is utilized. */ 696 as_bad_where (fixP->fx_file, fixP->fx_line, 697 _("unexpected PC relative expression")); 698 value += S_GET_VALUE (fixP->fx_addsy); 699 fixP->fx_done = 1; 700 } 701 } 702 else if (linkrelax && fixP->fx_subsy) 703 { 704 /* For a subtraction relocation expression, generate one 705 of the DIFF relocs, with the value being the difference. 706 Note that a sym1 - sym2 expression is adjusted into a 707 section_start_sym + sym4_offset_from_section_start - sym1 708 expression. fixP->fx_addsy holds the section start symbol, 709 fixP->fx_offset holds sym2's offset, and fixP->fx_subsy 710 holds sym1. Calculate the current difference and write value, 711 but leave fx_offset as is - during relaxation, 712 fx_offset - value gives sym1's value. */ 713 714 offsetT diffval; /* valueT is unsigned, so use offsetT. */ 715 716 diffval = S_GET_VALUE (fixP->fx_addsy) 717 + fixP->fx_offset - S_GET_VALUE (fixP->fx_subsy); 718 719 switch (fixP->fx_r_type) 720 { 721 case BFD_RELOC_8: 722 fixP->fx_r_type = BFD_RELOC_PRU_GNU_DIFF8; 723 break; 724 case BFD_RELOC_16: 725 fixP->fx_r_type = BFD_RELOC_PRU_GNU_DIFF16; 726 break; 727 case BFD_RELOC_32: 728 fixP->fx_r_type = BFD_RELOC_PRU_GNU_DIFF32; 729 break; 730 case BFD_RELOC_PRU_16_PMEM: 731 fixP->fx_r_type = BFD_RELOC_PRU_GNU_DIFF16_PMEM; 732 if (diffval % 4) 733 as_bad_where (fixP->fx_file, fixP->fx_line, 734 _("residual low bits in pmem diff relocation")); 735 diffval /= 4; 736 break; 737 case BFD_RELOC_PRU_32_PMEM: 738 fixP->fx_r_type = BFD_RELOC_PRU_GNU_DIFF32_PMEM; 739 if (diffval % 4) 740 as_bad_where (fixP->fx_file, fixP->fx_line, 741 _("residual low bits in pmem diff relocation")); 742 diffval /= 4; 743 break; 744 default: 745 as_bad_where (fixP->fx_file, fixP->fx_line, 746 _("expression too complex")); 747 break; 748 } 749 750 value = *valP = diffval; 751 752 fixP->fx_subsy = NULL; 753 } 754 /* We don't actually support subtracting a symbol. */ 755 if (fixP->fx_subsy != (symbolS *) NULL) 756 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex")); 757 758 /* For the DIFF relocs, write the value into the object file while still 759 keeping fx_done FALSE, as both the difference (recorded in the object file) 760 and the sym offset (part of fixP) are needed at link relax time. */ 761 where = (unsigned char *) fixP->fx_frag->fr_literal + fixP->fx_where; 762 switch (fixP->fx_r_type) 763 { 764 case BFD_RELOC_PRU_GNU_DIFF8: 765 *where = value; 766 break; 767 case BFD_RELOC_PRU_GNU_DIFF16: 768 case BFD_RELOC_PRU_GNU_DIFF16_PMEM: 769 bfd_putl16 ((bfd_vma) value, where); 770 break; 771 case BFD_RELOC_PRU_GNU_DIFF32: 772 case BFD_RELOC_PRU_GNU_DIFF32_PMEM: 773 bfd_putl32 ((bfd_vma) value, where); 774 break; 775 default: 776 break; 777 } 778 779 if (fixP->fx_done) 780 /* Fully resolved fixup. */ 781 { 782 reloc_howto_type *howto 783 = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type); 784 785 if (howto == NULL) 786 as_bad_where (fixP->fx_file, fixP->fx_line, 787 _("relocation is not supported")); 788 else 789 { 790 valueT fixup = value; 791 uint64_t insn; 792 char *buf; 793 794 /* Get the instruction or data to be fixed up. */ 795 buf = fixP->fx_frag->fr_literal + fixP->fx_where; 796 insn = md_chars_to_number (buf, fixP->fx_size); 797 798 /* Check for overflow, emitting a diagnostic if necessary. */ 799 if (pru_check_overflow (fixup, howto) != bfd_reloc_ok) 800 pru_diagnose_overflow (fixup, howto, fixP, insn); 801 802 /* Apply the right shift. */ 803 fixup = (offsetT) fixup >> howto->rightshift; 804 805 /* Truncate the fixup to right size. */ 806 if (howto->bitsize == 0) 807 fixup = 0; 808 else 809 fixup &= ((valueT) 2 << (howto->bitsize - 1)) - 1; 810 811 /* Fix up the instruction. Non-contiguous bitfields need 812 special handling. */ 813 if (fixP->fx_r_type == BFD_RELOC_PRU_LDI32) 814 { 815 /* As the only 64-bit "insn", LDI32 needs special handling. */ 816 uint32_t insn1 = insn & 0xffffffff; 817 uint32_t insn2 = insn >> 32; 818 SET_INSN_FIELD (IMM16, insn1, fixup >> 16); 819 SET_INSN_FIELD (IMM16, insn2, fixup & 0xffff); 820 821 SET_INSN_FIELD (RDSEL, insn1, RSEL_31_16); 822 SET_INSN_FIELD (RDSEL, insn2, RSEL_15_0); 823 824 md_number_to_chars (buf, insn1, 4); 825 md_number_to_chars (buf + 4, insn2, 4); 826 } 827 else 828 { 829 if (fixP->fx_r_type == BFD_RELOC_PRU_S10_PCREL) 830 SET_BROFF_URAW (insn, fixup); 831 else 832 insn = (insn & ~howto->dst_mask) | (fixup << howto->bitpos); 833 md_number_to_chars (buf, insn, fixP->fx_size); 834 } 835 } 836 837 fixP->fx_done = 1; 838 } 839 840 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT) 841 { 842 fixP->fx_done = 0; 843 if (fixP->fx_addsy 844 && !S_IS_DEFINED (fixP->fx_addsy) && !S_IS_WEAK (fixP->fx_addsy)) 845 S_SET_WEAK (fixP->fx_addsy); 846 } 847 else if (fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY) 848 fixP->fx_done = 0; 849 } 850 851 852 853 /** Instruction parsing support. */ 854 855 /* Creates a new pru_insn_relocS and returns a pointer to it. */ 856 static pru_insn_relocS * 857 pru_insn_reloc_new (bfd_reloc_code_real_type reloc_type, unsigned int pcrel) 858 { 859 pru_insn_relocS *retval; 860 retval = XNEW (pru_insn_relocS); 861 if (retval == NULL) 862 { 863 as_bad (_("can't create relocation")); 864 abort (); 865 } 866 867 /* Fill out the fields with default values. */ 868 retval->reloc_next = NULL; 869 retval->reloc_type = reloc_type; 870 retval->reloc_pcrel = pcrel; 871 return retval; 872 } 873 874 /* Frees up memory previously allocated by pru_insn_reloc_new (). */ 875 static void 876 pru_insn_reloc_destroy (pru_insn_relocS *reloc) 877 { 878 pru_insn_relocS *next; 879 880 while (reloc) 881 { 882 next = reloc->reloc_next; 883 free (reloc); 884 reloc = next; 885 } 886 } 887 888 /* The various pru_assemble_* functions call this 889 function to generate an expression from a string representing an expression. 890 It then tries to evaluate the expression, and if it can, returns its value. 891 If not, it creates a new pru_insn_relocS and stores the expression and 892 reloc_type for future use. */ 893 static unsigned long 894 pru_assemble_expression (const char *exprstr, 895 pru_insn_infoS *insn, 896 pru_insn_relocS *prev_reloc, 897 bfd_reloc_code_real_type reloc_type, 898 unsigned int pcrel) 899 { 900 expressionS *ep; 901 pru_insn_relocS *reloc; 902 char *saved_line_ptr; 903 unsigned short value; 904 905 gas_assert (exprstr != NULL); 906 gas_assert (insn != NULL); 907 908 /* We use this blank keyword to distinguish register from 909 label operands. */ 910 if (strstr (exprstr, "%label") != NULL) 911 { 912 exprstr += strlen ("%label") + 1; 913 } 914 915 /* Check for pmem relocation operator. 916 Change the relocation type and advance the ptr to the start of 917 the expression proper. */ 918 if (strstr (exprstr, "%pmem") != NULL) 919 { 920 reloc_type = BFD_RELOC_PRU_U16_PMEMIMM; 921 exprstr += strlen ("%pmem") + 1; 922 } 923 924 /* We potentially have a relocation. */ 925 reloc = pru_insn_reloc_new (reloc_type, pcrel); 926 if (prev_reloc != NULL) 927 prev_reloc->reloc_next = reloc; 928 else 929 insn->insn_reloc = reloc; 930 931 /* Parse the expression string. */ 932 ep = &reloc->reloc_expression; 933 saved_line_ptr = input_line_pointer; 934 input_line_pointer = (char *) exprstr; 935 SKIP_WHITESPACE (); 936 expression (ep); 937 SKIP_WHITESPACE (); 938 if (*input_line_pointer) 939 as_bad (_("trailing garbage after expression: %s"), input_line_pointer); 940 input_line_pointer = saved_line_ptr; 941 942 943 if (ep->X_op == O_illegal || ep->X_op == O_absent) 944 as_bad (_("expected expression, got %s"), exprstr); 945 946 /* This is redundant as the fixup will put this into 947 the instruction, but it is included here so that 948 self-test mode (-r) works. */ 949 value = 0; 950 if (pru_mode == PRU_MODE_TEST && ep->X_op == O_constant) 951 value = ep->X_add_number; 952 953 return (unsigned long) value; 954 } 955 956 /* Try to parse a non-relocatable expression. */ 957 static unsigned long 958 pru_assemble_noreloc_expression (const char *exprstr) 959 { 960 expressionS exp; 961 char *saved_line_ptr; 962 unsigned long val; 963 964 gas_assert (exprstr != NULL); 965 966 saved_line_ptr = input_line_pointer; 967 input_line_pointer = (char *) exprstr; 968 SKIP_WHITESPACE (); 969 expression (&exp); 970 SKIP_WHITESPACE (); 971 if (*input_line_pointer) 972 as_bad (_("trailing garbage after expression: %s"), input_line_pointer); 973 input_line_pointer = saved_line_ptr; 974 975 val = 0; 976 if (exp.X_op != O_constant) 977 as_bad (_("expected constant expression, got %s"), exprstr); 978 else 979 val = exp.X_add_number; 980 981 return val; 982 } 983 984 /* Argument assemble functions. 985 All take an instruction argument string, and a pointer 986 to an instruction opcode. Upon return the insn_opcode 987 has the relevant fields filled in to represent the arg 988 string. The return value is NULL if successful, or 989 an error message if an error was detected. */ 990 991 static void 992 pru_assemble_arg_d (pru_insn_infoS *insn_info, const char *argstr) 993 { 994 struct pru_reg *dst = pru_reg_lookup (argstr); 995 996 if (dst == NULL) 997 as_bad (_("unknown register %s"), argstr); 998 else 999 { 1000 SET_INSN_FIELD (RD, insn_info->insn_code, dst->index); 1001 SET_INSN_FIELD (RDSEL, insn_info->insn_code, dst->regsel); 1002 } 1003 } 1004 1005 static void 1006 pru_assemble_arg_D (pru_insn_infoS *insn_info, const char *argstr) 1007 { 1008 struct pru_reg *dst; 1009 1010 /* The leading & before an address register is optional. */ 1011 if (*argstr == '&') 1012 argstr++; 1013 1014 dst = pru_reg_lookup (argstr); 1015 1016 if (dst == NULL) 1017 as_bad (_("unknown register %s"), argstr); 1018 else 1019 { 1020 unsigned long rxb = 0; 1021 1022 switch (dst->regsel) 1023 { 1024 case RSEL_31_0: rxb = 0; break; /* whole register defaults to .b0 */ 1025 case RSEL_7_0: rxb = 0; break; 1026 case RSEL_15_8: rxb = 1; break; 1027 case RSEL_23_16: rxb = 2; break; 1028 case RSEL_31_24: rxb = 3; break; 1029 default: 1030 as_bad (_("data transfer register cannot be halfword")); 1031 } 1032 1033 SET_INSN_FIELD (RD, insn_info->insn_code, dst->index); 1034 SET_INSN_FIELD (RDB, insn_info->insn_code, rxb); 1035 } 1036 } 1037 1038 static void 1039 pru_assemble_arg_R (pru_insn_infoS *insn_info, const char *argstr) 1040 { 1041 struct pru_reg *dst = pru_reg_lookup (argstr); 1042 1043 if (dst == NULL) 1044 as_bad (_("unknown register %s"), argstr); 1045 else 1046 { 1047 if (dst->regsel != RSEL_31_0) 1048 { 1049 as_bad (_("destination register must be full-word")); 1050 } 1051 1052 SET_INSN_FIELD (RD, insn_info->insn_code, dst->index); 1053 SET_INSN_FIELD (RDSEL, insn_info->insn_code, dst->regsel); 1054 } 1055 } 1056 1057 static void 1058 pru_assemble_arg_s (pru_insn_infoS *insn_info, const char *argstr) 1059 { 1060 struct pru_reg *src1 = pru_reg_lookup (argstr); 1061 1062 if (src1 == NULL) 1063 as_bad (_("unknown register %s"), argstr); 1064 else 1065 { 1066 SET_INSN_FIELD (RS1, insn_info->insn_code, src1->index); 1067 SET_INSN_FIELD (RS1SEL, insn_info->insn_code, src1->regsel); 1068 } 1069 } 1070 1071 static void 1072 pru_assemble_arg_S (pru_insn_infoS *insn_info, const char *argstr) 1073 { 1074 struct pru_reg *src1 = pru_reg_lookup (argstr); 1075 1076 if (src1 == NULL) 1077 as_bad (_("unknown register %s"), argstr); 1078 else 1079 { 1080 if (src1->regsel != RSEL_31_0) 1081 as_bad (_("cannot use partial register %s for addressing"), argstr); 1082 SET_INSN_FIELD (RS1, insn_info->insn_code, src1->index); 1083 } 1084 } 1085 1086 static void 1087 pru_assemble_arg_b (pru_insn_infoS *insn_info, const char *argstr) 1088 { 1089 struct pru_reg *src2 = pru_reg_lookup (argstr); 1090 if (src2 == NULL) 1091 { 1092 unsigned long imm8 = pru_assemble_noreloc_expression (argstr); 1093 if (imm8 >= 0x100) 1094 as_bad (_("value %lu is too large for a byte operand"), imm8); 1095 SET_INSN_FIELD (IMM8, insn_info->insn_code, imm8); 1096 SET_INSN_FIELD (IO, insn_info->insn_code, 1); 1097 } 1098 else 1099 { 1100 SET_INSN_FIELD (IO, insn_info->insn_code, 0); 1101 SET_INSN_FIELD (RS2, insn_info->insn_code, src2->index); 1102 SET_INSN_FIELD (RS2SEL, insn_info->insn_code, src2->regsel); 1103 } 1104 1105 } 1106 1107 static void 1108 pru_assemble_arg_B (pru_insn_infoS *insn_info, const char *argstr) 1109 { 1110 struct pru_reg *src2 = pru_reg_lookup (argstr); 1111 if (src2 == NULL) 1112 { 1113 unsigned long imm8; 1114 imm8 = pru_assemble_noreloc_expression (argstr); 1115 if (!imm8 || imm8 > 0xff) 1116 as_bad (_("loop count constant %ld is out of range [1..%d]"), 1117 imm8, 0xff); 1118 /* Note: HW expects the immediate loop count field 1119 to be one less than the actual loop count. */ 1120 SET_INSN_FIELD (IMM8, insn_info->insn_code, imm8 - 1); 1121 SET_INSN_FIELD (IO, insn_info->insn_code, 1); 1122 } 1123 else 1124 { 1125 SET_INSN_FIELD (IO, insn_info->insn_code, 0); 1126 SET_INSN_FIELD (RS2, insn_info->insn_code, src2->index); 1127 SET_INSN_FIELD (RS2SEL, insn_info->insn_code, src2->regsel); 1128 } 1129 } 1130 1131 static void 1132 pru_assemble_arg_i (pru_insn_infoS *insn_info, const char *argstr) 1133 { 1134 unsigned long imm32; 1135 1136 /* We must not generate PRU_LDI32 relocation if relaxation is disabled in 1137 GAS. Consider the following scenario: GAS relaxation is disabled, so 1138 DIFF* expressions are fixed and not emitted as relocations. Then if LD 1139 has relaxation enabled, it may shorten LDI32 but will not update 1140 accordingly the DIFF expressions. */ 1141 if (pru_opt.link_relax) 1142 imm32 = pru_assemble_expression (argstr, insn_info, 1143 insn_info->insn_reloc, 1144 BFD_RELOC_PRU_LDI32, 0); 1145 else 1146 imm32 = pru_assemble_noreloc_expression (argstr); 1147 1148 /* QUIRK: LDI must clear IO bit high, even though it has immediate arg. */ 1149 SET_INSN_FIELD (IO, insn_info->insn_code, 0); 1150 SET_INSN_FIELD (RDSEL, insn_info->insn_code, RSEL_31_16); 1151 SET_INSN_FIELD (IMM16, insn_info->insn_code, imm32 >> 16); 1152 insn_info->ldi32_imm32 = imm32; 1153 } 1154 1155 static void 1156 pru_assemble_arg_j (pru_insn_infoS *insn_info, const char *argstr) 1157 { 1158 struct pru_reg *src2 = pru_reg_lookup (argstr); 1159 1160 if (src2 == NULL) 1161 { 1162 unsigned long imm16 = pru_assemble_expression (argstr, insn_info, 1163 insn_info->insn_reloc, 1164 BFD_RELOC_PRU_U16_PMEMIMM, 1165 0); 1166 SET_INSN_FIELD (IMM16, insn_info->insn_code, imm16); 1167 SET_INSN_FIELD (IO, insn_info->insn_code, 1); 1168 } 1169 else 1170 { 1171 SET_INSN_FIELD (IO, insn_info->insn_code, 0); 1172 SET_INSN_FIELD (RS2, insn_info->insn_code, src2->index); 1173 SET_INSN_FIELD (RS2SEL, insn_info->insn_code, src2->regsel); 1174 } 1175 } 1176 1177 static void 1178 pru_assemble_arg_W (pru_insn_infoS *insn_info, const char *argstr) 1179 { 1180 unsigned long imm16 = pru_assemble_expression (argstr, insn_info, 1181 insn_info->insn_reloc, 1182 BFD_RELOC_PRU_U16, 0); 1183 /* QUIRK: LDI must clear IO bit high, even though it has immediate arg. */ 1184 SET_INSN_FIELD (IO, insn_info->insn_code, 0); 1185 SET_INSN_FIELD (IMM16, insn_info->insn_code, imm16); 1186 } 1187 1188 static void 1189 pru_assemble_arg_o (pru_insn_infoS *insn_info, const char *argstr) 1190 { 1191 unsigned long imm10 = pru_assemble_expression (argstr, insn_info, 1192 insn_info->insn_reloc, 1193 BFD_RELOC_PRU_S10_PCREL, 1); 1194 SET_BROFF_URAW (insn_info->insn_code, imm10); 1195 } 1196 1197 static void 1198 pru_assemble_arg_O (pru_insn_infoS *insn_info, const char *argstr) 1199 { 1200 unsigned long imm8 = pru_assemble_expression (argstr, insn_info, 1201 insn_info->insn_reloc, 1202 BFD_RELOC_PRU_U8_PCREL, 1); 1203 SET_INSN_FIELD (LOOP_JMPOFFS, insn_info->insn_code, imm8); 1204 } 1205 1206 static void 1207 pru_assemble_arg_l (pru_insn_infoS *insn_info, const char *argstr) 1208 { 1209 unsigned long burstlen = 0; 1210 struct pru_reg *blreg = pru_reg_lookup (argstr); 1211 1212 if (blreg == NULL) 1213 { 1214 burstlen = pru_assemble_noreloc_expression (argstr); 1215 if (!burstlen || burstlen > LSSBBO_BYTECOUNT_R0_BITS7_0) 1216 as_bad (_("byte count constant %ld is out of range [1..%d]"), 1217 burstlen, LSSBBO_BYTECOUNT_R0_BITS7_0); 1218 burstlen--; 1219 } 1220 else 1221 { 1222 if (blreg->index != 0) 1223 as_bad (_("only r0 can be used as byte count register")); 1224 else if (blreg->regsel > RSEL_31_24) 1225 as_bad (_("only r0.bX byte fields of r0 can be used as byte count")); 1226 else 1227 burstlen = LSSBBO_BYTECOUNT_R0_BITS7_0 + blreg->regsel; 1228 } 1229 SET_BURSTLEN (insn_info->insn_code, burstlen); 1230 } 1231 1232 static void 1233 pru_assemble_arg_n (pru_insn_infoS *insn_info, const char *argstr) 1234 { 1235 unsigned long burstlen = 0; 1236 struct pru_reg *blreg = pru_reg_lookup (argstr); 1237 1238 if (blreg == NULL) 1239 { 1240 burstlen = pru_assemble_noreloc_expression (argstr); 1241 if (!burstlen || burstlen > LSSBBO_BYTECOUNT_R0_BITS7_0) 1242 as_bad (_("byte count constant %ld is out of range [1..%d]"), 1243 burstlen, LSSBBO_BYTECOUNT_R0_BITS7_0); 1244 burstlen--; 1245 } 1246 else 1247 { 1248 if (blreg->index != 0) 1249 as_bad (_("only r0 can be used as byte count register")); 1250 else if (blreg->regsel > RSEL_31_24) 1251 as_bad (_("only r0.bX byte fields of r0 can be used as byte count")); 1252 else 1253 burstlen = LSSBBO_BYTECOUNT_R0_BITS7_0 + blreg->regsel; 1254 } 1255 SET_INSN_FIELD (XFR_LENGTH, insn_info->insn_code, burstlen); 1256 } 1257 1258 static void 1259 pru_assemble_arg_c (pru_insn_infoS *insn_info, const char *argstr) 1260 { 1261 unsigned long cb = pru_assemble_noreloc_expression (argstr); 1262 1263 if (cb > 31) 1264 as_bad (_("invalid constant table offset %ld"), cb); 1265 else 1266 SET_INSN_FIELD (CB, insn_info->insn_code, cb); 1267 } 1268 1269 static void 1270 pru_assemble_arg_w (pru_insn_infoS *insn_info, const char *argstr) 1271 { 1272 unsigned long wk = pru_assemble_noreloc_expression (argstr); 1273 1274 if (wk != 0 && wk != 1) 1275 as_bad (_("invalid WakeOnStatus %ld"), wk); 1276 else 1277 SET_INSN_FIELD (WAKEONSTATUS, insn_info->insn_code, wk); 1278 } 1279 1280 static void 1281 pru_assemble_arg_x (pru_insn_infoS *insn_info, const char *argstr) 1282 { 1283 unsigned long wba = pru_assemble_noreloc_expression (argstr); 1284 1285 if (wba > 255) 1286 as_bad (_("invalid XFR WideBus Address %ld"), wba); 1287 else 1288 SET_INSN_FIELD (XFR_WBA, insn_info->insn_code, wba); 1289 } 1290 1291 /* The function consume_arg takes a pointer into a string 1292 of instruction tokens (args) and a pointer into a string 1293 representing the expected sequence of tokens and separators. 1294 It checks whether the first argument in argstr is of the 1295 expected type, throwing an error if it is not, and returns 1296 the pointer argstr. */ 1297 static char * 1298 pru_consume_arg (char *argstr, const char *parsestr) 1299 { 1300 char *temp; 1301 1302 switch (*parsestr) 1303 { 1304 case 'W': 1305 if (*argstr == '%') 1306 { 1307 if (strprefix (argstr, "%pmem") || strprefix (argstr, "%label")) 1308 { 1309 /* We zap the parentheses because we don't want them confused 1310 with separators. */ 1311 temp = strchr (argstr, '('); 1312 if (temp != NULL) 1313 *temp = ' '; 1314 temp = strchr (argstr, ')'); 1315 if (temp != NULL) 1316 *temp = ' '; 1317 } 1318 else 1319 as_bad (_("badly formed expression near %s"), argstr); 1320 } 1321 break; 1322 1323 case 'j': 1324 case 'o': 1325 case 'O': 1326 if (*argstr == '%') 1327 { 1328 /* Only 'j' really requires %label for distinguishing registers 1329 from labels, but we include 'o' and 'O' here to avoid 1330 confusing assembler programmers. Thus for completeness all 1331 jump operands can be prefixed with %label. */ 1332 if (strprefix (argstr, "%label")) 1333 { 1334 /* We zap the parentheses because we don't want them confused 1335 with separators. */ 1336 temp = strchr (argstr, '('); 1337 if (temp != NULL) 1338 *temp = ' '; 1339 temp = strchr (argstr, ')'); 1340 if (temp != NULL) 1341 *temp = ' '; 1342 } 1343 else 1344 as_bad (_("badly formed expression near %s"), argstr); 1345 } 1346 break; 1347 1348 case 'b': 1349 case 'B': 1350 case 'c': 1351 case 'd': 1352 case 'D': 1353 case 'E': 1354 case 'i': 1355 case 's': 1356 case 'S': 1357 case 'l': 1358 case 'n': 1359 case 'R': 1360 case 'w': 1361 case 'x': 1362 /* We can't have %pmem here. */ 1363 if (*argstr == '%') 1364 as_bad (_("badly formed expression near %s"), argstr); 1365 break; 1366 default: 1367 BAD_CASE (*parsestr); 1368 break; 1369 } 1370 1371 return argstr; 1372 } 1373 1374 /* The function consume_separator takes a pointer into a string 1375 of instruction tokens (args) and a pointer into a string representing 1376 the expected sequence of tokens and separators. It finds the first 1377 instance of the character pointed to by separator in argstr, and 1378 returns a pointer to the next element of argstr, which is the 1379 following token in the sequence. */ 1380 static char * 1381 pru_consume_separator (char *argstr, const char *separator) 1382 { 1383 char *p; 1384 1385 p = strchr (argstr, *separator); 1386 1387 if (p != NULL) 1388 *p++ = 0; 1389 else 1390 as_bad (_("expecting %c near %s"), *separator, argstr); 1391 return p; 1392 } 1393 1394 1395 /* The principal argument parsing function which takes a string argstr 1396 representing the instruction arguments for insn, and extracts the argument 1397 tokens matching parsestr into parsed_args. */ 1398 static void 1399 pru_parse_args (pru_insn_infoS *insn ATTRIBUTE_UNUSED, char *argstr, 1400 const char *parsestr, char **parsed_args) 1401 { 1402 char *p; 1403 char *end = NULL; 1404 int i; 1405 p = argstr; 1406 i = 0; 1407 bfd_boolean terminate = FALSE; 1408 1409 /* This rest of this function is it too fragile and it mostly works, 1410 therefore special case this one. */ 1411 if (*parsestr == 0 && argstr != 0) 1412 { 1413 as_bad (_("too many arguments")); 1414 parsed_args[0] = NULL; 1415 return; 1416 } 1417 1418 while (p != NULL && !terminate && i < PRU_MAX_INSN_TOKENS) 1419 { 1420 parsed_args[i] = pru_consume_arg (p, parsestr); 1421 ++parsestr; 1422 if (*parsestr != '\0') 1423 { 1424 p = pru_consume_separator (p, parsestr); 1425 ++parsestr; 1426 } 1427 else 1428 { 1429 /* Check that the argument string has no trailing arguments. */ 1430 /* If we've got a %pmem relocation, we've zapped the parens with 1431 spaces. */ 1432 if (strprefix (p, "%pmem") || strprefix (p, "%label")) 1433 end = strpbrk (p, ","); 1434 else 1435 end = strpbrk (p, " ,"); 1436 1437 if (end != NULL) 1438 as_bad (_("too many arguments")); 1439 } 1440 1441 if (*parsestr == '\0' || (p != NULL && *p == '\0')) 1442 terminate = TRUE; 1443 ++i; 1444 } 1445 1446 parsed_args[i] = NULL; 1447 1448 /* There are no instructions with optional arguments; complain. */ 1449 if (*parsestr != '\0') 1450 as_bad (_("missing argument")); 1451 } 1452 1453 1454 /** Assembler output support. */ 1455 1456 /* Output a normal instruction. */ 1457 static void 1458 output_insn (pru_insn_infoS *insn) 1459 { 1460 char *f; 1461 pru_insn_relocS *reloc; 1462 1463 f = frag_more (4); 1464 /* This allocates enough space for the instruction 1465 and puts it in the current frag. */ 1466 md_number_to_chars (f, insn->insn_code, 4); 1467 /* Emit debug info. */ 1468 dwarf2_emit_insn (4); 1469 /* Create any fixups to be acted on later. */ 1470 for (reloc = insn->insn_reloc; reloc != NULL; reloc = reloc->reloc_next) 1471 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, 1472 &reloc->reloc_expression, reloc->reloc_pcrel, 1473 reloc->reloc_type); 1474 } 1475 1476 /* Output two LDI instructions from LDI32 macro */ 1477 static void 1478 output_insn_ldi32 (pru_insn_infoS *insn) 1479 { 1480 char *f; 1481 pru_insn_relocS *reloc; 1482 unsigned long insn2; 1483 1484 f = frag_more (8); 1485 SET_INSN_FIELD (IMM16, insn->insn_code, insn->ldi32_imm32 >> 16); 1486 SET_INSN_FIELD (RDSEL, insn->insn_code, RSEL_31_16); 1487 md_number_to_chars (f, insn->insn_code, 4); 1488 1489 insn2 = insn->insn_code; 1490 SET_INSN_FIELD (IMM16, insn2, insn->ldi32_imm32 & 0xffff); 1491 SET_INSN_FIELD (RDSEL, insn2, RSEL_15_0); 1492 md_number_to_chars (f + 4, insn2, 4); 1493 1494 /* Emit debug info. */ 1495 dwarf2_emit_insn (8); 1496 1497 /* Create any fixups to be acted on later. */ 1498 for (reloc = insn->insn_reloc; reloc != NULL; reloc = reloc->reloc_next) 1499 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, 1500 &reloc->reloc_expression, reloc->reloc_pcrel, 1501 reloc->reloc_type); 1502 } 1503 1504 1505 /** External interfaces. */ 1506 1507 /* The following functions are called by machine-independent parts of 1508 the assembler. */ 1509 int 1510 md_parse_option (int c, const char *arg ATTRIBUTE_UNUSED) 1511 { 1512 switch (c) 1513 { 1514 case 'r': 1515 /* Hidden option for self-test mode. */ 1516 pru_mode = PRU_MODE_TEST; 1517 break; 1518 case OPTION_LINK_RELAX: 1519 pru_opt.link_relax = TRUE; 1520 break; 1521 case OPTION_NO_LINK_RELAX: 1522 pru_opt.link_relax = FALSE; 1523 break; 1524 case OPTION_NO_WARN_REGNAME_LABEL: 1525 pru_opt.warn_regname_label = FALSE; 1526 break; 1527 default: 1528 return 0; 1529 break; 1530 } 1531 1532 return 1; 1533 } 1534 1535 const char * 1536 pru_target_format (void) 1537 { 1538 return "elf32-pru"; 1539 } 1540 1541 /* Machine-dependent usage message. */ 1542 void 1543 md_show_usage (FILE *stream) 1544 { 1545 fprintf (stream, 1546 _("PRU options:\n" 1547 " -mlink-relax generate relocations for linker relaxation (default).\n" 1548 " -mno-link-relax don't generate relocations for linker relaxation.\n" 1549 )); 1550 1551 } 1552 1553 /* This function is called once, at assembler startup time. 1554 It should set up all the tables, etc. that the MD part of the 1555 assembler will need. */ 1556 void 1557 md_begin (void) 1558 { 1559 int i; 1560 const char *inserted; 1561 1562 /* Create and fill a hashtable for the PRU opcodes, registers and 1563 arguments. */ 1564 pru_opcode_hash = hash_new (); 1565 pru_reg_hash = hash_new (); 1566 1567 for (i = 0; i < NUMOPCODES; ++i) 1568 { 1569 inserted 1570 = hash_insert (pru_opcode_hash, pru_opcodes[i].name, 1571 (PTR) & pru_opcodes[i]); 1572 if (inserted != NULL) 1573 { 1574 fprintf (stderr, _("internal error: can't hash `%s': %s\n"), 1575 pru_opcodes[i].name, inserted); 1576 /* Probably a memory allocation problem? Give up now. */ 1577 as_fatal (_("Broken assembler. No assembly attempted.")); 1578 } 1579 } 1580 1581 for (i = 0; i < pru_num_regs; ++i) 1582 { 1583 inserted 1584 = hash_insert (pru_reg_hash, pru_regs[i].name, 1585 (PTR) & pru_regs[i]); 1586 if (inserted != NULL) 1587 { 1588 fprintf (stderr, _("internal error: can't hash `%s': %s\n"), 1589 pru_regs[i].name, inserted); 1590 /* Probably a memory allocation problem? Give up now. */ 1591 as_fatal (_("Broken assembler. No assembly attempted.")); 1592 } 1593 1594 } 1595 1596 linkrelax = pru_opt.link_relax; 1597 /* Initialize the alignment data. */ 1598 pru_current_align_seg = now_seg; 1599 pru_last_label = NULL; 1600 pru_current_align = 0; 1601 } 1602 1603 1604 /* Assembles a single line of PRU assembly language. */ 1605 void 1606 md_assemble (char *op_str) 1607 { 1608 char *argstr; 1609 char *op_strdup = NULL; 1610 pru_insn_infoS thisinsn; 1611 pru_insn_infoS *insn = &thisinsn; 1612 1613 /* Make sure we are aligned on a 4-byte boundary. */ 1614 if (pru_current_align < 2) 1615 pru_align (2, NULL, pru_last_label); 1616 else if (pru_current_align > 2) 1617 pru_current_align = 2; 1618 pru_last_label = NULL; 1619 1620 /* We don't want to clobber to op_str 1621 because we want to be able to use it in messages. */ 1622 op_strdup = strdup (op_str); 1623 insn->insn_tokens[0] = strtok (op_strdup, " "); 1624 argstr = strtok (NULL, ""); 1625 1626 /* Assemble the opcode. */ 1627 insn->insn_pru_opcode = pru_opcode_lookup (insn->insn_tokens[0]); 1628 insn->insn_reloc = NULL; 1629 1630 if (insn->insn_pru_opcode != NULL) 1631 { 1632 const char *argsfmt = insn->insn_pru_opcode->args; 1633 const char **argtk = &insn->insn_tokens[1]; 1634 const char *argp; 1635 1636 /* Set the opcode for the instruction. */ 1637 insn->insn_code = insn->insn_pru_opcode->match; 1638 1639 if (pru_mode == PRU_MODE_TEST) 1640 { 1641 /* Add the "expected" instruction parameter used for validation. */ 1642 argsfmt = malloc (strlen (argsfmt) + 3); 1643 sprintf ((char *)argsfmt, "%s,E", insn->insn_pru_opcode->args); 1644 } 1645 pru_parse_args (insn, argstr, argsfmt, 1646 (char **) &insn->insn_tokens[1]); 1647 1648 for (argp = argsfmt; !had_errors () && *argp && *argtk; ++argp) 1649 { 1650 gas_assert (argtk <= &insn->insn_tokens[PRU_MAX_INSN_TOKENS]); 1651 1652 switch (*argp) 1653 { 1654 case ',': 1655 continue; 1656 1657 case 'd': 1658 pru_assemble_arg_d (insn, *argtk++); 1659 continue; 1660 case 'D': 1661 pru_assemble_arg_D (insn, *argtk++); 1662 continue; 1663 case 'R': 1664 pru_assemble_arg_R (insn, *argtk++); 1665 continue; 1666 case 's': 1667 pru_assemble_arg_s (insn, *argtk++); 1668 continue; 1669 case 'S': 1670 pru_assemble_arg_S (insn, *argtk++); 1671 continue; 1672 case 'b': 1673 pru_assemble_arg_b (insn, *argtk++); 1674 continue; 1675 case 'B': 1676 pru_assemble_arg_B (insn, *argtk++); 1677 continue; 1678 case 'i': 1679 pru_assemble_arg_i (insn, *argtk++); 1680 continue; 1681 case 'j': 1682 pru_assemble_arg_j (insn, *argtk++); 1683 continue; 1684 case 'W': 1685 pru_assemble_arg_W (insn, *argtk++); 1686 continue; 1687 case 'o': 1688 pru_assemble_arg_o (insn, *argtk++); 1689 continue; 1690 case 'O': 1691 pru_assemble_arg_O (insn, *argtk++); 1692 continue; 1693 case 'l': 1694 pru_assemble_arg_l (insn, *argtk++); 1695 continue; 1696 case 'n': 1697 pru_assemble_arg_n (insn, *argtk++); 1698 continue; 1699 case 'c': 1700 pru_assemble_arg_c (insn, *argtk++); 1701 continue; 1702 case 'w': 1703 pru_assemble_arg_w (insn, *argtk++); 1704 continue; 1705 case 'x': 1706 pru_assemble_arg_x (insn, *argtk++); 1707 continue; 1708 1709 case 'E': 1710 pru_check_assembly (insn->insn_code, *argtk++); 1711 continue; 1712 1713 default: 1714 BAD_CASE (*argp); 1715 } 1716 } 1717 1718 if (*argp && !had_errors ()) 1719 as_bad (_("missing argument")); 1720 1721 if (!had_errors ()) 1722 { 1723 if (insn->insn_pru_opcode->pinfo & PRU_INSN_LDI32) 1724 { 1725 output_insn_ldi32 (insn); 1726 } 1727 else 1728 { 1729 output_insn (insn); 1730 } 1731 } 1732 1733 if (pru_mode == PRU_MODE_TEST) 1734 free ((char *)argsfmt); 1735 } 1736 else 1737 /* Unrecognised instruction - error. */ 1738 as_bad (_("unrecognised instruction %s"), insn->insn_tokens[0]); 1739 1740 /* Don't leak memory. */ 1741 pru_insn_reloc_destroy (insn->insn_reloc); 1742 free (op_strdup); 1743 } 1744 1745 /* Round up section size. */ 1746 valueT 1747 md_section_align (asection *seg, valueT addr) 1748 { 1749 int align = bfd_section_alignment (seg); 1750 return ((addr + (1 << align) - 1) & (-((valueT) 1 << align))); 1751 } 1752 1753 /* Implement tc_fix_adjustable. */ 1754 int 1755 pru_fix_adjustable (fixS *fixp) 1756 { 1757 if (fixp->fx_addsy == NULL) 1758 return 1; 1759 1760 /* Prevent all adjustments to global symbols. */ 1761 if (OUTPUT_FLAVOR == bfd_target_elf_flavour 1762 && (S_IS_EXTERNAL (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy))) 1763 return 0; 1764 1765 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT 1766 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY) 1767 return 0; 1768 1769 /* Preserve relocations against symbols with function type. */ 1770 if (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION) 1771 return 0; 1772 1773 return 1; 1774 } 1775 1776 /* The function tc_gen_reloc creates a relocation structure for the 1777 fixup fixp, and returns a pointer to it. This structure is passed 1778 to bfd_install_relocation so that it can be written to the object 1779 file for linking. */ 1780 arelent * 1781 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp) 1782 { 1783 arelent *reloc = XNEW (arelent); 1784 reloc->sym_ptr_ptr = XNEW (asymbol *); 1785 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); 1786 1787 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; 1788 reloc->addend = fixp->fx_offset; /* fixp->fx_addnumber; */ 1789 1790 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); 1791 if (reloc->howto == NULL) 1792 { 1793 as_bad_where (fixp->fx_file, fixp->fx_line, 1794 _("can't represent relocation type %s"), 1795 bfd_get_reloc_code_name (fixp->fx_r_type)); 1796 1797 /* Set howto to a garbage value so that we can keep going. */ 1798 reloc->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32); 1799 gas_assert (reloc->howto != NULL); 1800 } 1801 return reloc; 1802 } 1803 1804 long 1805 md_pcrel_from (fixS *fixP ATTRIBUTE_UNUSED) 1806 { 1807 return fixP->fx_where + fixP->fx_frag->fr_address; 1808 } 1809 1810 /* Called just before the assembler exits. */ 1811 void 1812 md_end (void) 1813 { 1814 hash_die (pru_opcode_hash); 1815 hash_die (pru_reg_hash); 1816 } 1817 1818 symbolS * 1819 md_undefined_symbol (char *name ATTRIBUTE_UNUSED) 1820 { 1821 return NULL; 1822 } 1823 1824 /* Implement tc_frob_label. */ 1825 void 1826 pru_frob_label (symbolS *lab) 1827 { 1828 /* Emit dwarf information. */ 1829 dwarf2_emit_label (lab); 1830 1831 /* Update the label's address with the current output pointer. */ 1832 symbol_set_frag (lab, frag_now); 1833 S_SET_VALUE (lab, (valueT) frag_now_fix ()); 1834 1835 /* Record this label for future adjustment after we find out what 1836 kind of data it references, and the required alignment therewith. */ 1837 pru_last_label = lab; 1838 1839 if (pru_opt.warn_regname_label && pru_reg_lookup (S_GET_NAME (lab))) 1840 as_warn (_("Label \"%s\" matches a CPU register name"), S_GET_NAME (lab)); 1841 } 1842 1843 static inline char * 1844 skip_space (char *s) 1845 { 1846 while (*s == ' ' || *s == '\t') 1847 ++s; 1848 return s; 1849 } 1850 1851 /* Parse special CONS expression: pmem (expression). Idea from AVR. 1852 1853 Used to catch and mark code (program memory) in constant expression 1854 relocations. Return non-zero for program memory. */ 1855 1856 int 1857 pru_parse_cons_expression (expressionS *exp, int nbytes) 1858 { 1859 int is_pmem = FALSE; 1860 char *tmp; 1861 1862 tmp = input_line_pointer = skip_space (input_line_pointer); 1863 1864 if (nbytes == 4 || nbytes == 2) 1865 { 1866 const char *pmem_str = "%pmem"; 1867 int len = strlen (pmem_str); 1868 1869 if (strncasecmp (input_line_pointer, pmem_str, len) == 0) 1870 { 1871 input_line_pointer = skip_space (input_line_pointer + len); 1872 1873 if (*input_line_pointer == '(') 1874 { 1875 input_line_pointer = skip_space (input_line_pointer + 1); 1876 is_pmem = TRUE; 1877 expression (exp); 1878 1879 if (*input_line_pointer == ')') 1880 ++input_line_pointer; 1881 else 1882 { 1883 as_bad (_("`)' required")); 1884 is_pmem = FALSE; 1885 } 1886 1887 return is_pmem; 1888 } 1889 1890 input_line_pointer = tmp; 1891 } 1892 } 1893 1894 expression (exp); 1895 1896 return is_pmem; 1897 } 1898 1899 /* Implement TC_CONS_FIX_NEW. */ 1900 void 1901 pru_cons_fix_new (fragS *frag, int where, unsigned int nbytes, 1902 expressionS *exp, const int is_pmem) 1903 { 1904 bfd_reloc_code_real_type r; 1905 1906 switch (nbytes | (!!is_pmem << 8)) 1907 { 1908 case 1 | (0 << 8): r = BFD_RELOC_8; break; 1909 case 2 | (0 << 8): r = BFD_RELOC_16; break; 1910 case 4 | (0 << 8): r = BFD_RELOC_32; break; 1911 case 8 | (0 << 8): r = BFD_RELOC_64; break; 1912 case 2 | (1 << 8): r = BFD_RELOC_PRU_16_PMEM; break; 1913 case 4 | (1 << 8): r = BFD_RELOC_PRU_32_PMEM; break; 1914 default: 1915 as_bad (_("illegal %s relocation size: %d"), 1916 is_pmem ? "text" : "data", nbytes); 1917 return; 1918 } 1919 1920 fix_new_exp (frag, where, (int) nbytes, exp, 0, r); 1921 } 1922 1923 /* Implement tc_regname_to_dw2regnum, to convert REGNAME to a DWARF-2 1924 register number. Return the starting HW byte-register number. */ 1925 1926 int 1927 pru_regname_to_dw2regnum (char *regname) 1928 { 1929 static const unsigned int regstart[RSEL_NUM_ITEMS] = 1930 { 1931 [RSEL_7_0] = 0, 1932 [RSEL_15_8] = 1, 1933 [RSEL_23_16] = 2, 1934 [RSEL_31_24] = 3, 1935 [RSEL_15_0] = 0, 1936 [RSEL_23_8] = 1, 1937 [RSEL_31_16] = 2, 1938 [RSEL_31_0] = 0, 1939 }; 1940 1941 struct pru_reg *r = pru_reg_lookup (regname); 1942 1943 if (r == NULL || r->regsel >= RSEL_NUM_ITEMS) 1944 return -1; 1945 return r->index * 4 + regstart[r->regsel]; 1946 } 1947 1948 /* Implement tc_cfi_frame_initial_instructions, to initialize the DWARF-2 1949 unwind information for this procedure. */ 1950 void 1951 pru_frame_initial_instructions (void) 1952 { 1953 const unsigned fp_regno = 4 * 4; 1954 cfi_add_CFA_def_cfa (fp_regno, 0); 1955 } 1956 1957 bfd_boolean 1958 pru_allow_local_subtract (expressionS * left, 1959 expressionS * right, 1960 segT section) 1961 { 1962 /* If we are not in relaxation mode, subtraction is OK. */ 1963 if (!linkrelax) 1964 return TRUE; 1965 1966 /* If the symbols are not in a code section then they are OK. */ 1967 if ((section->flags & SEC_CODE) == 0) 1968 return TRUE; 1969 1970 if (left->X_add_symbol == right->X_add_symbol) 1971 return TRUE; 1972 1973 /* We have to assume that there may be instructions between the 1974 two symbols and that relaxation may increase the distance between 1975 them. */ 1976 return FALSE; 1977 } 1978