xref: /netbsd-src/external/gpl3/binutils.old/dist/gas/config/tc-ns32k.c (revision d90047b5d07facf36e6c01dcc0bded8997ce9cc2)
1 /* ns32k.c  -- Assemble on the National Semiconductor 32k series
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4    This file is part of GAS, the GNU Assembler.
5 
6    GAS is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GAS is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GAS; see the file COPYING.  If not, write to the Free
18    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19    02110-1301, USA.  */
20 
21 /*#define SHOW_NUM 1*//* Uncomment for debugging.  */
22 
23 #include "as.h"
24 #include "opcode/ns32k.h"
25 
26 #include "obstack.h"
27 
28 /* Macros.  */
29 #define IIF_ENTRIES 13		/* Number of entries in iif.  */
30 #define PRIVATE_SIZE 256	/* Size of my garbage memory.  */
31 #define MAX_ARGS 4
32 #define DEFAULT	-1		/* addr_mode returns this value when
33                                    plain constant or label is
34                                    encountered.  */
35 
36 #define IIF(ptr,a1,c1,e1,g1,i1,k1,m1,o1,q1,s1,u1)	\
37     iif.iifP[ptr].type = a1;				\
38     iif.iifP[ptr].size = c1;				\
39     iif.iifP[ptr].object = e1;				\
40     iif.iifP[ptr].object_adjust = g1;			\
41     iif.iifP[ptr].pcrel = i1;				\
42     iif.iifP[ptr].pcrel_adjust = k1;			\
43     iif.iifP[ptr].im_disp = m1;				\
44     iif.iifP[ptr].relax_substate = o1;			\
45     iif.iifP[ptr].bit_fixP = q1;			\
46     iif.iifP[ptr].addr_mode = s1;			\
47     iif.iifP[ptr].bsr = u1;
48 
49 #ifdef SEQUENT_COMPATABILITY
50 #define LINE_COMMENT_CHARS "|"
51 #define ABSOLUTE_PREFIX '@'
52 #define IMMEDIATE_PREFIX '#'
53 #endif
54 
55 #ifndef LINE_COMMENT_CHARS
56 #define LINE_COMMENT_CHARS "#"
57 #endif
58 
59 const char comment_chars[] = "#";
60 const char line_comment_chars[] = LINE_COMMENT_CHARS;
61 const char line_separator_chars[] = ";";
62 static int default_disp_size = 4; /* Displacement size for external refs.  */
63 
64 #if !defined(ABSOLUTE_PREFIX) && !defined(IMMEDIATE_PREFIX)
65 #define ABSOLUTE_PREFIX '@'	/* One or the other MUST be defined.  */
66 #endif
67 
68 struct addr_mode
69 {
70   signed char mode;		/* Addressing mode of operand (0-31).  */
71   signed char scaled_mode;	/* Mode combined with scaled mode.  */
72   char scaled_reg;		/* Register used in scaled+1 (1-8).  */
73   char float_flag;		/* Set if R0..R7 was F0..F7 ie a
74 				   floating-point-register.  */
75   char am_size;			/* Estimated max size of general addr-mode
76 				   parts.  */
77   char im_disp;			/* If im_disp==1 we have a displacement.  */
78   char pcrel;			/* 1 if pcrel, this is really redundant info.  */
79   char disp_suffix[2];		/* Length of displacement(s), 0=undefined.  */
80   char *disp[2];		/* Pointer(s) at displacement(s)
81 				   or immediates(s)     (ascii).  */
82   char index_byte;		/* Index byte.  */
83 };
84 typedef struct addr_mode addr_modeS;
85 
86 char *freeptr, *freeptr_static;	/* Points at some number of free bytes.  */
87 struct hash_control *inst_hash_handle;
88 
89 struct ns32k_opcode *desc;	/* Pointer at description of instruction.  */
90 addr_modeS addr_modeP;
91 const char EXP_CHARS[] = "eE";
92 const char FLT_CHARS[] = "fd";	/* We don't want to support lowercase,
93                                    do we?  */
94 
95 /* UPPERCASE denotes live names when an instruction is built, IIF is
96    used as an intermediate form to store the actual parts of the
97    instruction. A ns32k machine instruction can be divided into a
98    couple of sub PARTs. When an instruction is assembled the
99    appropriate PART get an assignment. When an IIF has been completed
100    it is converted to a FRAGment as specified in AS.H.  */
101 
102 /* Internal structs.  */
103 struct ns32k_option
104 {
105   const char *pattern;
106   unsigned long or;
107   unsigned long and;
108 };
109 
110 typedef struct
111 {
112   int type;			/* How to interpret object.  */
113   int size;			/* Estimated max size of object.  */
114   unsigned long object;		/* Binary data.  */
115   int object_adjust;		/* Number added to object.  */
116   int pcrel;			/* True if object is pcrel.  */
117   int pcrel_adjust;		/* Length in bytes from the instruction
118 				   start to the	displacement.  */
119   int im_disp;			/* True if the object is a displacement.  */
120   relax_substateT relax_substate;/*Initial relaxsubstate.  */
121   bit_fixS *bit_fixP;		/* Pointer at bit_fix struct.  */
122   int addr_mode;		/* What addrmode do we associate with this
123 				   iif-entry.  */
124   char bsr;			/* Sequent hack.  */
125 } iif_entryT;			/* Internal Instruction Format.  */
126 
127 struct int_ins_form
128 {
129   int instr_size;		/* Max size of instruction in bytes.  */
130   iif_entryT iifP[IIF_ENTRIES + 1];
131 };
132 
133 struct int_ins_form iif;
134 expressionS exprP;
135 
136 /* Description of the PARTs in IIF
137   object[n]:
138    0	total length in bytes of entries in iif
139    1	opcode
140    2	index_byte_a
141    3	index_byte_b
142    4	disp_a_1
143    5	disp_a_2
144    6	disp_b_1
145    7	disp_b_2
146    8	imm_a
147    9	imm_b
148    10	implied1
149    11	implied2
150 
151    For every entry there is a data length in bytes. This is stored in size[n].
152   	 0,	the object length is not explicitly given by the instruction
153   		and the operand is undefined. This is a case for relaxation.
154   		Reserve 4 bytes for the final object.
155 
156   	 1,	the entry contains one byte
157   	 2,	the entry contains two bytes
158   	 3,	the entry contains three bytes
159   	 4,	the entry contains four bytes
160   	etc
161 
162    Furthermore, every entry has a data type identifier in type[n].
163 
164    	 0,	the entry is void, ignore it.
165    	 1,	the entry is a binary number.
166   	 2,	the entry is a pointer at an expression.
167   		Where expression may be as simple as a single '1',
168   		and as complicated as  foo-bar+12,
169    		foo and bar may be undefined but suffixed by :{b|w|d} to
170   		control the length of the object.
171 
172   	 3,	the entry is a pointer at a bignum struct
173 
174    The low-order-byte corresponds to low physical memory.
175    Obviously a FRAGment must be created for each valid disp in PART whose
176    data length is undefined (to bad) .
177    The case where just the expression is undefined is less severe and is
178    handled by fix. Here the number of bytes in the object file is known.
179    With this representation we simplify the assembly and separates the
180    machine dependent/independent parts in a more clean way (said OE).  */
181 
182 struct ns32k_option opt1[] =		/* restore, exit.  */
183 {
184   {"r0", 0x80, 0xff},
185   {"r1", 0x40, 0xff},
186   {"r2", 0x20, 0xff},
187   {"r3", 0x10, 0xff},
188   {"r4", 0x08, 0xff},
189   {"r5", 0x04, 0xff},
190   {"r6", 0x02, 0xff},
191   {"r7", 0x01, 0xff},
192   {0, 0x00, 0xff}
193 };
194 struct ns32k_option opt2[] =		/* save, enter.  */
195 {
196   {"r0", 0x01, 0xff},
197   {"r1", 0x02, 0xff},
198   {"r2", 0x04, 0xff},
199   {"r3", 0x08, 0xff},
200   {"r4", 0x10, 0xff},
201   {"r5", 0x20, 0xff},
202   {"r6", 0x40, 0xff},
203   {"r7", 0x80, 0xff},
204   {0, 0x00, 0xff}
205 };
206 struct ns32k_option opt3[] =		/* setcfg.  */
207 {
208   {"c", 0x8, 0xff},
209   {"m", 0x4, 0xff},
210   {"f", 0x2, 0xff},
211   {"i", 0x1, 0xff},
212   {0, 0x0, 0xff}
213 };
214 struct ns32k_option opt4[] =		/* cinv.  */
215 {
216   {"a", 0x4, 0xff},
217   {"i", 0x2, 0xff},
218   {"d", 0x1, 0xff},
219   {0, 0x0, 0xff}
220 };
221 struct ns32k_option opt5[] =		/* String inst.  */
222 {
223   {"b", 0x2, 0xff},
224   {"u", 0xc, 0xff},
225   {"w", 0x4, 0xff},
226   {0, 0x0, 0xff}
227 };
228 struct ns32k_option opt6[] =		/* Plain reg ext,cvtp etc.  */
229 {
230   {"r0", 0x00, 0xff},
231   {"r1", 0x01, 0xff},
232   {"r2", 0x02, 0xff},
233   {"r3", 0x03, 0xff},
234   {"r4", 0x04, 0xff},
235   {"r5", 0x05, 0xff},
236   {"r6", 0x06, 0xff},
237   {"r7", 0x07, 0xff},
238   {0, 0x00, 0xff}
239 };
240 
241 #if !defined(NS32032) && !defined(NS32532)
242 #define NS32532
243 #endif
244 
245 struct ns32k_option cpureg_532[] =	/* lpr spr.  */
246 {
247   {"us", 0x0, 0xff},
248   {"dcr", 0x1, 0xff},
249   {"bpc", 0x2, 0xff},
250   {"dsr", 0x3, 0xff},
251   {"car", 0x4, 0xff},
252   {"fp", 0x8, 0xff},
253   {"sp", 0x9, 0xff},
254   {"sb", 0xa, 0xff},
255   {"usp", 0xb, 0xff},
256   {"cfg", 0xc, 0xff},
257   {"psr", 0xd, 0xff},
258   {"intbase", 0xe, 0xff},
259   {"mod", 0xf, 0xff},
260   {0, 0x00, 0xff}
261 };
262 struct ns32k_option mmureg_532[] =	/* lmr smr.  */
263 {
264   {"mcr", 0x9, 0xff},
265   {"msr", 0xa, 0xff},
266   {"tear", 0xb, 0xff},
267   {"ptb0", 0xc, 0xff},
268   {"ptb1", 0xd, 0xff},
269   {"ivar0", 0xe, 0xff},
270   {"ivar1", 0xf, 0xff},
271   {0, 0x0, 0xff}
272 };
273 
274 struct ns32k_option cpureg_032[] =	/* lpr spr.  */
275 {
276   {"upsr", 0x0, 0xff},
277   {"fp", 0x8, 0xff},
278   {"sp", 0x9, 0xff},
279   {"sb", 0xa, 0xff},
280   {"psr", 0xd, 0xff},
281   {"intbase", 0xe, 0xff},
282   {"mod", 0xf, 0xff},
283   {0, 0x0, 0xff}
284 };
285 struct ns32k_option mmureg_032[] =	/* lmr smr.  */
286 {
287   {"bpr0", 0x0, 0xff},
288   {"bpr1", 0x1, 0xff},
289   {"pf0", 0x4, 0xff},
290   {"pf1", 0x5, 0xff},
291   {"sc", 0x8, 0xff},
292   {"msr", 0xa, 0xff},
293   {"bcnt", 0xb, 0xff},
294   {"ptb0", 0xc, 0xff},
295   {"ptb1", 0xd, 0xff},
296   {"eia", 0xf, 0xff},
297   {0, 0x0, 0xff}
298 };
299 
300 #if defined(NS32532)
301 struct ns32k_option *cpureg = cpureg_532;
302 struct ns32k_option *mmureg = mmureg_532;
303 #else
304 struct ns32k_option *cpureg = cpureg_032;
305 struct ns32k_option *mmureg = mmureg_032;
306 #endif
307 
308 
309 const pseudo_typeS md_pseudo_table[] =
310 {					/* So far empty.  */
311   {0, 0, 0}
312 };
313 
314 #define IND(x,y)	(((x)<<2)+(y))
315 
316 /* Those are index's to relax groups in md_relax_table ie it must be
317    multiplied by 4 to point at a group start. Viz IND(x,y) Se function
318    relax_segment in write.c for more info.  */
319 
320 #define BRANCH		1
321 #define PCREL		2
322 
323 /* Those are index's to entries in a relax group.  */
324 
325 #define BYTE		0
326 #define WORD		1
327 #define DOUBLE		2
328 #define UNDEF           3
329 /* Those limits are calculated from the displacement start in memory.
330    The ns32k uses the beginning of the instruction as displacement
331    base.  This type of displacements could be handled here by moving
332    the limit window up or down. I choose to use an internal
333    displacement base-adjust as there are other routines that must
334    consider this. Also, as we have two various offset-adjusts in the
335    ns32k (acb versus br/brs/jsr/bcond), two set of limits would have
336    had to be used.  Now we don't have to think about that.  */
337 
338 const relax_typeS md_relax_table[] =
339 {
340   {1, 1, 0, 0},
341   {1, 1, 0, 0},
342   {1, 1, 0, 0},
343   {1, 1, 0, 0},
344 
345   {(63), (-64), 1, IND (BRANCH, WORD)},
346   {(8192), (-8192), 2, IND (BRANCH, DOUBLE)},
347   {0, 0, 4, 0},
348   {1, 1, 0, 0}
349 };
350 
351 /* Array used to test if mode contains displacements.
352    Value is true if mode contains displacement.  */
353 
354 char disp_test[] =
355 {0, 0, 0, 0, 0, 0, 0, 0,
356  1, 1, 1, 1, 1, 1, 1, 1,
357  1, 1, 1, 0, 0, 1, 1, 0,
358  1, 1, 1, 1, 1, 1, 1, 1};
359 
360 /* Array used to calculate max size of displacements.  */
361 
362 char disp_size[] =
363 {4, 1, 2, 0, 4};
364 
365 /* Parse a general operand into an addressing mode struct
366 
367    In:  pointer at operand in ascii form
368         pointer at addr_mode struct for result
369         the level of recursion. (always 0 or 1)
370 
371    Out: data in addr_mode struct.  */
372 
373 static int
374 addr_mode (char *operand,
375 	   addr_modeS *addrmodeP,
376 	   int recursive_level)
377 {
378   char *str;
379   int i;
380   int strl;
381   int mode;
382   int j;
383 
384   mode = DEFAULT;		/* Default.  */
385   addrmodeP->scaled_mode = 0;	/* Why not.  */
386   addrmodeP->scaled_reg = 0;	/* If 0, not scaled index.  */
387   addrmodeP->float_flag = 0;
388   addrmodeP->am_size = 0;
389   addrmodeP->im_disp = 0;
390   addrmodeP->pcrel = 0;	/* Not set in this function.  */
391   addrmodeP->disp_suffix[0] = 0;
392   addrmodeP->disp_suffix[1] = 0;
393   addrmodeP->disp[0] = NULL;
394   addrmodeP->disp[1] = NULL;
395   str = operand;
396 
397   if (str[0] == 0)
398     return 0;
399 
400   strl = strlen (str);
401 
402   switch (str[0])
403     {
404       /* The following three case statements controls the mode-chars
405 	 this is the place to ed if you want to change them.  */
406 #ifdef ABSOLUTE_PREFIX
407     case ABSOLUTE_PREFIX:
408       if (str[strl - 1] == ']')
409 	break;
410       addrmodeP->mode = 21;	/* absolute */
411       addrmodeP->disp[0] = str + 1;
412       return -1;
413 #endif
414 #ifdef IMMEDIATE_PREFIX
415     case IMMEDIATE_PREFIX:
416       if (str[strl - 1] == ']')
417 	break;
418       addrmodeP->mode = 20;	/* immediate */
419       addrmodeP->disp[0] = str + 1;
420       return -1;
421 #endif
422     case '.':
423       if (str[strl - 1] != ']')
424 	{
425 	  switch (str[1])
426 	    {
427 	    case '-':
428 	    case '+':
429 	      if (str[2] != '\000')
430 		{
431 		  addrmodeP->mode = 27;	/* pc-relative */
432 		  addrmodeP->disp[0] = str + 2;
433 		  return -1;
434 		}
435 	      /* Fall through.  */
436 	    default:
437 	      as_bad (_("Invalid syntax in PC-relative addressing mode"));
438 	      return 0;
439 	    }
440 	}
441       break;
442     case 'e':
443       if (str[strl - 1] != ']')
444 	{
445 	  if ((!strncmp (str, "ext(", 4)) && strl > 7)
446 	    {				/* external */
447 	      addrmodeP->disp[0] = str + 4;
448 	      i = 0;
449 	      j = 2;
450 	      do
451 		{			/* disp[0]'s termination point.  */
452 		  j += 1;
453 		  if (str[j] == '(')
454 		    i++;
455 		  if (str[j] == ')')
456 		    i--;
457 		}
458 	      while (j < strl && i != 0);
459 	      if (i != 0 || !(str[j + 1] == '-' || str[j + 1] == '+'))
460 		{
461 		  as_bad (_("Invalid syntax in External addressing mode"));
462 		  return (0);
463 		}
464 	      str[j] = '\000';		/* null terminate disp[0] */
465 	      addrmodeP->disp[1] = str + j + 2;
466 	      addrmodeP->mode = 22;
467 	      return -1;
468 	    }
469 	}
470       break;
471 
472     default:
473       ;
474     }
475 
476   strl = strlen (str);
477 
478   switch (strl)
479     {
480     case 2:
481       switch (str[0])
482 	{
483 	case 'f':
484 	  addrmodeP->float_flag = 1;
485 	  /* Fall through.  */
486 	case 'r':
487 	  if (str[1] >= '0' && str[1] < '8')
488 	    {
489 	      addrmodeP->mode = str[1] - '0';
490 	      return -1;
491 	    }
492 	  break;
493 	default:
494 	  break;
495 	}
496       /* Drop through.  */
497 
498     case 3:
499       if (!strncmp (str, "tos", 3))
500 	{
501 	  addrmodeP->mode = 23;	/* TopOfStack */
502 	  return -1;
503 	}
504       break;
505 
506     default:
507       break;
508     }
509 
510   if (strl > 4)
511     {
512       if (str[strl - 1] == ')')
513 	{
514 	  if (str[strl - 2] == ')')
515 	    {
516 	      if (!strncmp (&str[strl - 5], "(fp", 3))
517 		mode = 16;		/* Memory Relative.  */
518 	      else if (!strncmp (&str[strl - 5], "(sp", 3))
519 		mode = 17;
520 	      else if (!strncmp (&str[strl - 5], "(sb", 3))
521 		mode = 18;
522 
523 	      if (mode != DEFAULT)
524 		{
525 		  /* Memory relative.  */
526 		  addrmodeP->mode = mode;
527 		  j = strl - 5;		/* Temp for end of disp[0].  */
528 		  i = 0;
529 
530 		  do
531 		    {
532 		      strl -= 1;
533 		      if (str[strl] == ')')
534 			i++;
535 		      if (str[strl] == '(')
536 			i--;
537 		    }
538 		  while (strl > -1 && i != 0);
539 
540 		  if (i != 0)
541 		    {
542 		      as_bad (_("Invalid syntax in Memory Relative addressing mode"));
543 		      return (0);
544 		    }
545 
546 		  addrmodeP->disp[1] = str;
547 		  addrmodeP->disp[0] = str + strl + 1;
548 		  str[j] = '\000';	/* Null terminate disp[0] .  */
549 		  str[strl] = '\000';	/* Null terminate disp[1].  */
550 
551 		  return -1;
552 		}
553 	    }
554 
555 	  switch (str[strl - 3])
556 	    {
557 	    case 'r':
558 	    case 'R':
559 	      if (str[strl - 2] >= '0'
560 		  && str[strl - 2] < '8'
561 		  && str[strl - 4] == '(')
562 		{
563 		  addrmodeP->mode = str[strl - 2] - '0' + 8;
564 		  addrmodeP->disp[0] = str;
565 		  str[strl - 4] = 0;
566 		  return -1;		/* reg rel */
567 		}
568 	      /* Fall through.  */
569 
570 	    default:
571 	      if (!strncmp (&str[strl - 4], "(fp", 3))
572 		mode = 24;
573 	      else if (!strncmp (&str[strl - 4], "(sp", 3))
574 		mode = 25;
575 	      else if (!strncmp (&str[strl - 4], "(sb", 3))
576 		mode = 26;
577 	      else if (!strncmp (&str[strl - 4], "(pc", 3))
578 		mode = 27;
579 
580 	      if (mode != DEFAULT)
581 		{
582 		  addrmodeP->mode = mode;
583 		  addrmodeP->disp[0] = str;
584 		  str[strl - 4] = '\0';
585 
586 		  return -1;		/* Memory space.  */
587 		}
588 	    }
589 	}
590 
591       /* No trailing ')' do we have a ']' ?  */
592       if (str[strl - 1] == ']')
593 	{
594 	  switch (str[strl - 2])
595 	    {
596 	    case 'b':
597 	      mode = 28;
598 	      break;
599 	    case 'w':
600 	      mode = 29;
601 	      break;
602 	    case 'd':
603 	      mode = 30;
604 	      break;
605 	    case 'q':
606 	      mode = 31;
607 	      break;
608 	    default:
609 	      as_bad (_("Invalid scaled-indexed mode, use (b,w,d,q)"));
610 
611 	      if (str[strl - 3] != ':' || str[strl - 6] != '['
612 		  || str[strl - 5] == 'r' || str[strl - 4] < '0'
613 		  || str[strl - 4] > '7')
614 		as_bad (_("Syntax in scaled-indexed mode, use [Rn:m] where n=[0..7] m={b,w,d,q}"));
615 	    } /* Scaled index.  */
616 
617 	  if (recursive_level > 0)
618 	    {
619 	      as_bad (_("Scaled-indexed addressing mode combined with scaled-index"));
620 	      return 0;
621 	    }
622 
623 	  addrmodeP->am_size += 1;	/* scaled index byte.  */
624 	  j = str[strl - 4] - '0';	/* store temporary.  */
625 	  str[strl - 6] = '\000';	/* null terminate for recursive call.  */
626 	  i = addr_mode (str, addrmodeP, 1);
627 
628 	  if (!i || addrmodeP->mode == 20)
629 	    {
630 	      as_bad (_("Invalid or illegal addressing mode combined with scaled-index"));
631 	      return 0;
632 	    }
633 
634 	  addrmodeP->scaled_mode = addrmodeP->mode;	/* Store the inferior mode.  */
635 	  addrmodeP->mode = mode;
636 	  addrmodeP->scaled_reg = j + 1;
637 
638 	  return -1;
639 	}
640     }
641 
642   addrmodeP->mode = DEFAULT;	/* Default to whatever.  */
643   addrmodeP->disp[0] = str;
644 
645   return -1;
646 }
647 
648 static void
649 evaluate_expr (expressionS *resultP, char *ptr)
650 {
651   char *tmp_line;
652 
653   tmp_line = input_line_pointer;
654   input_line_pointer = ptr;
655   expression (resultP);
656   input_line_pointer = tmp_line;
657 }
658 
659 /* ptr points at string addr_modeP points at struct with result This
660    routine calls addr_mode to determine the general addr.mode of the
661    operand. When this is ready it parses the displacements for size
662    specifying suffixes and determines size of immediate mode via
663    ns32k-opcode.  Also builds index bytes if needed.  */
664 
665 static int
666 get_addr_mode (char *ptr, addr_modeS *addrmodeP)
667 {
668   int tmp;
669 
670   addr_mode (ptr, addrmodeP, 0);
671 
672   if (addrmodeP->mode == DEFAULT || addrmodeP->scaled_mode == -1)
673     {
674       /* Resolve ambiguous operands, this shouldn't be necessary if
675 	 one uses standard NSC operand syntax. But the sequent
676 	 compiler doesn't!!!  This finds a proper addressing mode
677 	 if it is implicitly stated. See ns32k-opcode.h.  */
678       (void) evaluate_expr (&exprP, ptr); /* This call takes time Sigh!  */
679 
680       if (addrmodeP->mode == DEFAULT)
681 	{
682 	  if (exprP.X_add_symbol || exprP.X_op_symbol)
683 	    addrmodeP->mode = desc->default_model; /* We have a label.  */
684 	  else
685 	    addrmodeP->mode = desc->default_modec; /* We have a constant.  */
686 	}
687       else
688 	{
689 	  if (exprP.X_add_symbol || exprP.X_op_symbol)
690 	    addrmodeP->scaled_mode = desc->default_model;
691 	  else
692 	    addrmodeP->scaled_mode = desc->default_modec;
693 	}
694 
695       /* Must put this mess down in addr_mode to handle the scaled
696          case better.  */
697     }
698 
699   /* It appears as the sequent compiler wants an absolute when we have
700      a label without @. Constants becomes immediates besides the addr
701      case.  Think it does so with local labels too, not optimum, pcrel
702      is better.  When I have time I will make gas check this and
703      select pcrel when possible Actually that is trivial.  */
704   if ((tmp = addrmodeP->scaled_reg))
705     {				/* Build indexbyte.  */
706       tmp--;			/* Remember regnumber comes incremented for
707 				   flag purpose.  */
708       tmp |= addrmodeP->scaled_mode << 3;
709       addrmodeP->index_byte = (char) tmp;
710       addrmodeP->am_size += 1;
711     }
712 
713   gas_assert (addrmodeP->mode >= 0);
714   if (disp_test[(unsigned int) addrmodeP->mode])
715     {
716       char c;
717       char suffix;
718       char suffix_sub;
719       int i;
720       char *toP;
721       char *fromP;
722 
723       /* There was a displacement, probe for length  specifying suffix.  */
724       addrmodeP->pcrel = 0;
725 
726       gas_assert (addrmodeP->mode >= 0);
727       if (disp_test[(unsigned int) addrmodeP->mode])
728 	{
729 	  /* There is a displacement.  */
730 	  if (addrmodeP->mode == 27 || addrmodeP->scaled_mode == 27)
731 	    /* Do we have pcrel. mode.  */
732 	    addrmodeP->pcrel = 1;
733 
734 	  addrmodeP->im_disp = 1;
735 
736 	  for (i = 0; i < 2; i++)
737 	    {
738 	      suffix_sub = suffix = 0;
739 
740 	      if ((toP = addrmodeP->disp[i]))
741 		{
742 		  /* Suffix of expression, the largest size rules.  */
743 		  fromP = toP;
744 
745 		  while ((c = *fromP++))
746 		    {
747 		      *toP++ = c;
748 		      if (c == ':')
749 			{
750 			  switch (*fromP)
751 			    {
752 			    case '\0':
753 			      as_warn (_("Premature end of suffix -- Defaulting to d"));
754 			      suffix = 4;
755 			      continue;
756 			    case 'b':
757 			      suffix_sub = 1;
758 			      break;
759 			    case 'w':
760 			      suffix_sub = 2;
761 			      break;
762 			    case 'd':
763 			      suffix_sub = 4;
764 			      break;
765 			    default:
766 			      as_warn (_("Bad suffix after ':' use {b|w|d} Defaulting to d"));
767 			      suffix = 4;
768 			    }
769 
770 			  fromP ++;
771 			  toP --;	/* So we write over the ':' */
772 
773 			  if (suffix < suffix_sub)
774 			    suffix = suffix_sub;
775 			}
776 		    }
777 
778 		  *toP = '\0'; /* Terminate properly.  */
779 		  addrmodeP->disp_suffix[i] = suffix;
780 		  addrmodeP->am_size += suffix ? suffix : 4;
781 		}
782 	    }
783 	}
784     }
785   else
786     {
787       if (addrmodeP->mode == 20)
788 	{
789 	  /* Look in ns32k_opcode for size.  */
790 	  addrmodeP->disp_suffix[0] = addrmodeP->am_size = desc->im_size;
791 	  addrmodeP->im_disp = 0;
792 	}
793     }
794 
795   return addrmodeP->mode;
796 }
797 
798 /* Read an option list.  */
799 
800 static void
801 optlist (char *str,			/* The string to extract options from.  */
802 	 struct ns32k_option *optionP,	/* How to search the string.  */
803 	 unsigned long *default_map)	/* Default pattern and output.  */
804 {
805   int i, j, k, strlen1, strlen2;
806   const char *patternP, *strP;
807 
808   strlen1 = strlen (str);
809 
810   if (strlen1 < 1)
811     as_fatal (_("Very short instr to option, ie you can't do it on a NULLstr"));
812 
813   for (i = 0; optionP[i].pattern != 0; i++)
814     {
815       strlen2 = strlen (optionP[i].pattern);
816 
817       for (j = 0; j < strlen1; j++)
818 	{
819 	  patternP = optionP[i].pattern;
820 	  strP = &str[j];
821 
822 	  for (k = 0; k < strlen2; k++)
823 	    {
824 	      if (*(strP++) != *(patternP++))
825 		break;
826 	    }
827 
828 	  if (k == strlen2)
829 	    {			/* match */
830 	      *default_map |= optionP[i].or;
831 	      *default_map &= optionP[i].and;
832 	    }
833 	}
834     }
835 }
836 
837 /* Search struct for symbols.
838    This function is used to get the short integer form of reg names in
839    the instructions lmr, smr, lpr, spr return true if str is found in
840    list.  */
841 
842 static int
843 list_search (char *str,				/* The string to match.  */
844 	     struct ns32k_option *optionP,	/* List to search.  */
845 	     unsigned long *default_map)	/* Default pattern and output.  */
846 {
847   int i;
848 
849   for (i = 0; optionP[i].pattern != 0; i++)
850     {
851       if (!strncmp (optionP[i].pattern, str, 20))
852 	{
853 	  /* Use strncmp to be safe.  */
854 	  *default_map |= optionP[i].or;
855 	  *default_map &= optionP[i].and;
856 
857 	  return -1;
858 	}
859     }
860 
861   as_bad (_("No such entry in list. (cpu/mmu register)"));
862   return 0;
863 }
864 
865 /* Create a bit_fixS in obstack 'notes'.
866    This struct is used to profile the normal fix. If the bit_fixP is a
867    valid pointer (not NULL) the bit_fix data will be used to format
868    the fix.  */
869 
870 static bit_fixS *
871 bit_fix_new (int size,		/* Length of bitfield.  */
872 	     int offset,	/* Bit offset to bitfield.  */
873 	     long min,		/* Signextended min for bitfield.  */
874 	     long max,		/* Signextended max for bitfield.  */
875 	     long add,		/* Add mask, used for huffman prefix.  */
876 	     long base_type,	/* 0 or 1, if 1 it's exploded to opcode ptr.  */
877 	     long base_adj)
878 {
879   bit_fixS *bit_fixP;
880 
881   bit_fixP = XOBNEW (&notes, bit_fixS);
882 
883   bit_fixP->fx_bit_size = size;
884   bit_fixP->fx_bit_offset = offset;
885   bit_fixP->fx_bit_base = base_type;
886   bit_fixP->fx_bit_base_adj = base_adj;
887   bit_fixP->fx_bit_max = max;
888   bit_fixP->fx_bit_min = min;
889   bit_fixP->fx_bit_add = add;
890 
891   return bit_fixP;
892 }
893 
894 /* Convert operands to iif-format and adds bitfields to the opcode.
895    Operands are parsed in such an order that the opcode is updated from
896    its most significant bit, that is when the operand need to alter the
897    opcode.
898    Be careful not to put to objects in the same iif-slot.  */
899 
900 static void
901 encode_operand (int argc,
902 		char **argv,
903 		const char *operandsP,
904 		const char *suffixP,
905 		char im_size ATTRIBUTE_UNUSED,
906 		char opcode_bit_ptr)
907 {
908   int i, j;
909   char d;
910   int pcrel, b, loop, pcrel_adjust;
911   unsigned long tmp;
912 
913   for (loop = 0; loop < argc; loop++)
914     {
915       /* What operand are we supposed to work on.  */
916       i = operandsP[loop << 1] - '1';
917       if (i > 3)
918 	as_fatal (_("Internal consistency error.  check ns32k-opcode.h"));
919 
920       pcrel = 0;
921       pcrel_adjust = 0;
922       tmp = 0;
923 
924       switch ((d = operandsP[(loop << 1) + 1]))
925 	{
926 	case 'f':		/* Operand of sfsr turns out to be a nasty
927 				   special-case.  */
928 	  opcode_bit_ptr -= 5;
929 	  /* Fall through.  */
930 	case 'Z':		/* Float not immediate.  */
931 	case 'F':		/* 32 bit float	general form.  */
932 	case 'L':		/* 64 bit float.  */
933 	case 'I':		/* Integer not immediate.  */
934 	case 'B':		/* Byte	 */
935 	case 'W':		/* Word	 */
936 	case 'D':		/* Double-word.  */
937 	case 'A':		/* Double-word	gen-address-form ie no regs
938 				   allowed.  */
939 	  get_addr_mode (argv[i], &addr_modeP);
940 
941 	  if ((addr_modeP.mode == 20) &&
942 	     (d == 'I' || d == 'Z' || d == 'A'))
943 	    as_fatal (d == 'A'? _("Address of immediate operand"):
944 			_("Invalid immediate write operand."));
945 
946 	  if (opcode_bit_ptr == desc->opcode_size)
947 	    b = 4;
948 	  else
949 	    b = 6;
950 
951 	  for (j = b; j < (b + 2); j++)
952 	    {
953 	      if (addr_modeP.disp[j - b])
954 		{
955 		  IIF (j,
956 		       2,
957 		       addr_modeP.disp_suffix[j - b],
958 		       (unsigned long) addr_modeP.disp[j - b],
959 		       0,
960 		       addr_modeP.pcrel,
961 		       iif.instr_size,
962 		       addr_modeP.im_disp,
963 		       IND (BRANCH, BYTE),
964 		       NULL,
965 		       (addr_modeP.scaled_reg ? addr_modeP.scaled_mode
966 			: addr_modeP.mode),
967 		       0);
968 		}
969 	    }
970 
971 	  opcode_bit_ptr -= 5;
972 	  iif.iifP[1].object |= ((long) addr_modeP.mode) << opcode_bit_ptr;
973 
974 	  if (addr_modeP.scaled_reg)
975 	    {
976 	      j = b / 2;
977 	      IIF (j, 1, 1, (unsigned long) addr_modeP.index_byte,
978 		   0, 0, 0, 0, 0, NULL, -1, 0);
979 	    }
980 	  break;
981 
982 	case 'b':		/* Multiple instruction disp.  */
983 	  freeptr++;		/* OVE:this is an useful hack.  */
984 	  sprintf (freeptr, "((%s-1)*%d)", argv[i], desc->im_size);
985 	  argv[i] = freeptr;
986 	  pcrel -= 1;		/* Make pcrel 0 in spite of what case 'p':
987 				   wants.  */
988 	  /* fallthru */
989 	case 'p':		/* Displacement - pc relative addressing.  */
990 	  pcrel += 1;
991 	  /* fallthru */
992 	case 'd':		/* Displacement.  */
993 	  iif.instr_size += suffixP[i] ? suffixP[i] : 4;
994 	  IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
995 	       pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 0);
996 	  break;
997 	case 'H':		/* Sequent-hack: the linker wants a bit set
998 				   when bsr.  */
999 	  pcrel = 1;
1000 	  iif.instr_size += suffixP[i] ? suffixP[i] : 4;
1001 	  IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
1002 	       pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 1);
1003 	  break;
1004 	case 'q':		/* quick */
1005 	  opcode_bit_ptr -= 4;
1006 	  IIF (11, 2, 42, (unsigned long) argv[i], 0, 0, 0, 0, 0,
1007 	       bit_fix_new (4, opcode_bit_ptr, -8, 7, 0, 1, 0), -1, 0);
1008 	  break;
1009 	case 'r':		/* Register number (3 bits).  */
1010 	  list_search (argv[i], opt6, &tmp);
1011 	  opcode_bit_ptr -= 3;
1012 	  iif.iifP[1].object |= tmp << opcode_bit_ptr;
1013 	  break;
1014 	case 'O':		/* Setcfg instruction options list.  */
1015 	  optlist (argv[i], opt3, &tmp);
1016 	  opcode_bit_ptr -= 4;
1017 	  iif.iifP[1].object |= tmp << 15;
1018 	  break;
1019 	case 'C':		/* Cinv instruction options list.  */
1020 	  optlist (argv[i], opt4, &tmp);
1021 	  opcode_bit_ptr -= 4;
1022 	  iif.iifP[1].object |= tmp << 15; /* Insert the regtype in opcode.  */
1023 	  break;
1024 	case 'S':		/* String instruction options list.  */
1025 	  optlist (argv[i], opt5, &tmp);
1026 	  opcode_bit_ptr -= 4;
1027 	  iif.iifP[1].object |= tmp << 15;
1028 	  break;
1029 	case 'u':
1030 	case 'U':		/* Register list.  */
1031 	  IIF (10, 1, 1, 0, 0, 0, 0, 0, 0, NULL, -1, 0);
1032 	  switch (operandsP[(i << 1) + 1])
1033 	    {
1034 	    case 'u':		/* Restore, exit.  */
1035 	      optlist (argv[i], opt1, &iif.iifP[10].object);
1036 	      break;
1037 	    case 'U':		/* Save, enter.  */
1038 	      optlist (argv[i], opt2, &iif.iifP[10].object);
1039 	      break;
1040 	    }
1041 	  iif.instr_size += 1;
1042 	  break;
1043 	case 'M':		/* MMU register.  */
1044 	  list_search (argv[i], mmureg, &tmp);
1045 	  opcode_bit_ptr -= 4;
1046 	  iif.iifP[1].object |= tmp << opcode_bit_ptr;
1047 	  break;
1048 	case 'P':		/* CPU register.  */
1049 	  list_search (argv[i], cpureg, &tmp);
1050 	  opcode_bit_ptr -= 4;
1051 	  iif.iifP[1].object |= tmp << opcode_bit_ptr;
1052 	  break;
1053 	case 'g':		/* Inss exts.  */
1054 	  iif.instr_size += 1;	/* 1 byte is allocated after the opcode.  */
1055 	  IIF (10, 2, 1,
1056 	       (unsigned long) argv[i],	/* i always 2 here.  */
1057 	       0, 0, 0, 0, 0,
1058 	       bit_fix_new (3, 5, 0, 7, 0, 0, 0), /* A bit_fix is targeted to
1059 						     the byte.  */
1060 	       -1, 0);
1061 	  break;
1062 	case 'G':
1063 	  IIF (11, 2, 42,
1064 	       (unsigned long) argv[i],	/* i always 3 here.  */
1065 	       0, 0, 0, 0, 0,
1066 	       bit_fix_new (5, 0, 1, 32, -1, 0, -1), -1, 0);
1067 	  break;
1068 	case 'i':
1069 	  iif.instr_size += 1;
1070 	  b = 2 + i;		/* Put the extension byte after opcode.  */
1071 	  IIF (b, 2, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0);
1072 	  break;
1073 	default:
1074 	  as_fatal (_("Bad opcode-table-option, check in file ns32k-opcode.h"));
1075 	}
1076     }
1077 }
1078 
1079 /* in:  instruction line
1080    out: internal structure of instruction
1081    that has been prepared for direct conversion to fragment(s) and
1082    fixes in a systematical fashion
1083    Return-value = recursive_level.  */
1084 /* Build iif of one assembly text line.  */
1085 
1086 static int
1087 parse (const char *line, int recursive_level)
1088 {
1089   const char *lineptr;
1090   char c, suffix_separator;
1091   int i;
1092   unsigned int argc;
1093   int arg_type;
1094   char sqr, sep;
1095   char suffix[MAX_ARGS], *argv[MAX_ARGS];	/* No more than 4 operands.  */
1096 
1097   if (recursive_level <= 0)
1098     {
1099       /* Called from md_assemble.  */
1100       for (lineptr = line; (*lineptr) != '\0' && (*lineptr) != ' '; lineptr++)
1101 	continue;
1102 
1103       c = *lineptr;
1104       *(char *) lineptr = '\0';
1105 
1106       if (!(desc = (struct ns32k_opcode *) hash_find (inst_hash_handle, line)))
1107 	as_fatal (_("No such opcode"));
1108 
1109       *(char *) lineptr = c;
1110     }
1111   else
1112     lineptr = line;
1113 
1114   argc = 0;
1115 
1116   if (*desc->operands)
1117     {
1118       if (*lineptr++ != '\0')
1119 	{
1120 	  sqr = '[';
1121 	  sep = ',';
1122 
1123 	  while (*lineptr != '\0')
1124 	    {
1125 	      if (desc->operands[argc << 1])
1126 		{
1127 		  suffix[argc] = 0;
1128 		  arg_type = desc->operands[(argc << 1) + 1];
1129 
1130 		  switch (arg_type)
1131 		    {
1132 		    case 'd':
1133 		    case 'b':
1134 		    case 'p':
1135 		    case 'H':
1136 		      /* The operand is supposed to be a displacement.  */
1137 		      /* Hackwarning: do not forget to update the 4
1138                          cases above when editing ns32k-opcode.h.  */
1139 		      suffix_separator = ':';
1140 		      break;
1141 		    default:
1142 		      /* If this char occurs we loose.  */
1143 		      suffix_separator = '\255';
1144 		      break;
1145 		    }
1146 
1147 		  suffix[argc] = 0; /* 0 when no ':' is encountered.  */
1148 		  argv[argc] = freeptr;
1149 		  *freeptr = '\0';
1150 
1151 		  while ((c = *lineptr) != '\0' && c != sep)
1152 		    {
1153 		      if (c == sqr)
1154 			{
1155 			  if (sqr == '[')
1156 			    {
1157 			      sqr = ']';
1158 			      sep = '\0';
1159 			    }
1160 			  else
1161 			    {
1162 			      sqr = '[';
1163 			      sep = ',';
1164 			    }
1165 			}
1166 
1167 		      if (c == suffix_separator)
1168 			{
1169 			  /* ':' - label/suffix separator.  */
1170 			  switch (lineptr[1])
1171 			    {
1172 			    case 'b':
1173 			      suffix[argc] = 1;
1174 			      break;
1175 			    case 'w':
1176 			      suffix[argc] = 2;
1177 			      break;
1178 			    case 'd':
1179 			      suffix[argc] = 4;
1180 			      break;
1181 			    default:
1182 			      as_warn (_("Bad suffix, defaulting to d"));
1183 			      suffix[argc] = 4;
1184 			      if (lineptr[1] == '\0' || lineptr[1] == sep)
1185 				{
1186 				  lineptr += 1;
1187 				  continue;
1188 				}
1189 			      break;
1190 			    }
1191 
1192 			  lineptr += 2;
1193 			  continue;
1194 			}
1195 
1196 		      *freeptr++ = c;
1197 		      lineptr++;
1198 		    }
1199 
1200 		  *freeptr++ = '\0';
1201 		  argc += 1;
1202 
1203 		  if (*lineptr == '\0')
1204 		    continue;
1205 
1206 		  lineptr += 1;
1207 		}
1208 	      else
1209 		as_fatal (_("Too many operands passed to instruction"));
1210 	    }
1211 	}
1212     }
1213 
1214   if (argc != strlen (desc->operands) / 2)
1215     {
1216       if (strlen (desc->default_args))
1217 	{
1218 	  /* We can apply default, don't goof.  */
1219 	  if (parse (desc->default_args, 1) != 1)
1220 	    /* Check error in default.  */
1221 	    as_fatal (_("Wrong numbers of operands in default, check ns32k-opcodes.h"));
1222 	}
1223       else
1224 	as_fatal (_("Wrong number of operands"));
1225     }
1226 
1227   for (i = 0; i < IIF_ENTRIES; i++)
1228     /* Mark all entries as void.  */
1229     iif.iifP[i].type = 0;
1230 
1231   /* Build opcode iif-entry.  */
1232   iif.instr_size = desc->opcode_size / 8;
1233   IIF (1, 1, iif.instr_size, desc->opcode_seed, 0, 0, 0, 0, 0, 0, -1, 0);
1234 
1235   /* This call encodes operands to iif format.  */
1236   if (argc)
1237     encode_operand (argc, argv, &desc->operands[0],
1238 		    &suffix[0], desc->im_size, desc->opcode_size);
1239 
1240   return recursive_level;
1241 }
1242 
1243 /* This functionality should really be in the bfd library.  */
1244 
1245 static bfd_reloc_code_real_type
1246 reloc (int size, int pcrel, int type)
1247 {
1248   int length, rel_index;
1249   bfd_reloc_code_real_type relocs[] =
1250   {
1251     BFD_RELOC_NS32K_IMM_8,
1252     BFD_RELOC_NS32K_IMM_16,
1253     BFD_RELOC_NS32K_IMM_32,
1254     BFD_RELOC_NS32K_IMM_8_PCREL,
1255     BFD_RELOC_NS32K_IMM_16_PCREL,
1256     BFD_RELOC_NS32K_IMM_32_PCREL,
1257 
1258     /* ns32k displacements.  */
1259     BFD_RELOC_NS32K_DISP_8,
1260     BFD_RELOC_NS32K_DISP_16,
1261     BFD_RELOC_NS32K_DISP_32,
1262     BFD_RELOC_NS32K_DISP_8_PCREL,
1263     BFD_RELOC_NS32K_DISP_16_PCREL,
1264     BFD_RELOC_NS32K_DISP_32_PCREL,
1265 
1266     /* Normal 2's complement.  */
1267     BFD_RELOC_8,
1268     BFD_RELOC_16,
1269     BFD_RELOC_32,
1270     BFD_RELOC_8_PCREL,
1271     BFD_RELOC_16_PCREL,
1272     BFD_RELOC_32_PCREL
1273   };
1274 
1275   switch (size)
1276     {
1277     case 1:
1278       length = 0;
1279       break;
1280     case 2:
1281       length = 1;
1282       break;
1283     case 4:
1284       length = 2;
1285       break;
1286     default:
1287       length = -1;
1288       break;
1289     }
1290 
1291   rel_index = length + 3 * pcrel + 6 * type;
1292 
1293   if (rel_index >= 0 && (unsigned int) rel_index < sizeof (relocs) / sizeof (relocs[0]))
1294     return relocs[rel_index];
1295 
1296   if (pcrel)
1297     as_bad (_("Can not do %d byte pc-relative relocation for storage type %d"),
1298 	    size, type);
1299   else
1300     as_bad (_("Can not do %d byte relocation for storage type %d"),
1301 	    size, type);
1302 
1303   return BFD_RELOC_NONE;
1304 
1305 }
1306 
1307 static void
1308 fix_new_ns32k (fragS *frag,		/* Which frag? */
1309 	       int where,		/* Where in that frag? */
1310 	       int size,		/* 1, 2  or 4 usually.  */
1311 	       symbolS *add_symbol,	/* X_add_symbol.  */
1312 	       long offset,		/* X_add_number.  */
1313 	       int pcrel,		/* True if PC-relative relocation.  */
1314 	       char im_disp,		/* True if the value to write is a
1315 					   displacement.  */
1316 	       bit_fixS *bit_fixP,	/* Pointer at struct of bit_fix's, ignored if
1317 					   NULL.  */
1318 	       char bsr,		/* Sequent-linker-hack: 1 when relocobject is
1319 					   a bsr.  */
1320 	       fragS *opcode_frag,
1321 	       unsigned int opcode_offset)
1322 {
1323   fixS *fixP = fix_new (frag, where, size, add_symbol,
1324 			offset, pcrel,
1325 			bit_fixP ? NO_RELOC : reloc (size, pcrel, im_disp)
1326 			);
1327 
1328   fix_opcode_frag (fixP) = opcode_frag;
1329   fix_opcode_offset (fixP) = opcode_offset;
1330   fix_im_disp (fixP) = im_disp;
1331   fix_bsr (fixP) = bsr;
1332   fix_bit_fixP (fixP) = bit_fixP;
1333   /* We have a MD overflow check for displacements.  */
1334   fixP->fx_no_overflow = (im_disp != 0);
1335 }
1336 
1337 static void
1338 fix_new_ns32k_exp (fragS *frag,		/* Which frag? */
1339 		   int where,		/* Where in that frag? */
1340 		   int size,		/* 1, 2  or 4 usually.  */
1341 		   expressionS *exp,	/* Expression.  */
1342 		   int pcrel,		/* True if PC-relative relocation.  */
1343 		   char im_disp,	/* True if the value to write is a
1344 					   displacement.  */
1345 		   bit_fixS *bit_fixP,	/* Pointer at struct of bit_fix's, ignored if
1346 					   NULL.  */
1347 		   char bsr,		/* Sequent-linker-hack: 1 when relocobject is
1348 					   a bsr.  */
1349 		   fragS *opcode_frag,
1350 		   unsigned int opcode_offset)
1351 {
1352   fixS *fixP = fix_new_exp (frag, where, size, exp, pcrel,
1353 			    bit_fixP ? NO_RELOC : reloc (size, pcrel, im_disp)
1354 			    );
1355 
1356   fix_opcode_frag (fixP) = opcode_frag;
1357   fix_opcode_offset (fixP) = opcode_offset;
1358   fix_im_disp (fixP) = im_disp;
1359   fix_bsr (fixP) = bsr;
1360   fix_bit_fixP (fixP) = bit_fixP;
1361   /* We have a MD overflow check for displacements.  */
1362   fixP->fx_no_overflow = (im_disp != 0);
1363 }
1364 
1365 /* Convert number to chars in correct order.  */
1366 
1367 void
1368 md_number_to_chars (char *buf, valueT value, int nbytes)
1369 {
1370   number_to_chars_littleendian (buf, value, nbytes);
1371 }
1372 
1373 /* This is a variant of md_numbers_to_chars. The reason for its
1374    existence is the fact that ns32k uses Huffman coded
1375    displacements. This implies that the bit order is reversed in
1376    displacements and that they are prefixed with a size-tag.
1377 
1378    binary: msb -> lsb
1379    0xxxxxxx				byte
1380    10xxxxxx xxxxxxxx			word
1381    11xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx	double word
1382 
1383    This must be taken care of and we do it here!  */
1384 
1385 static void
1386 md_number_to_disp (char *buf, long val, int n)
1387 {
1388   switch (n)
1389     {
1390     case 1:
1391       if (val < -64 || val > 63)
1392 	as_bad (_("value of %ld out of byte displacement range."), val);
1393       val &= 0x7f;
1394 #ifdef SHOW_NUM
1395       printf ("%x ", val & 0xff);
1396 #endif
1397       *buf++ = val;
1398       break;
1399 
1400     case 2:
1401       if (val < -8192 || val > 8191)
1402 	as_bad (_("value of %ld out of word displacement range."), val);
1403       val &= 0x3fff;
1404       val |= 0x8000;
1405 #ifdef SHOW_NUM
1406       printf ("%x ", val >> 8 & 0xff);
1407 #endif
1408       *buf++ = (val >> 8);
1409 #ifdef SHOW_NUM
1410       printf ("%x ", val & 0xff);
1411 #endif
1412       *buf++ = val;
1413       break;
1414 
1415     case 4:
1416       if (val < -0x20000000 || val >= 0x20000000)
1417 	as_bad (_("value of %ld out of double word displacement range."), val);
1418       val |= 0xc0000000;
1419 #ifdef SHOW_NUM
1420       printf ("%x ", val >> 24 & 0xff);
1421 #endif
1422       *buf++ = (val >> 24);
1423 #ifdef SHOW_NUM
1424       printf ("%x ", val >> 16 & 0xff);
1425 #endif
1426       *buf++ = (val >> 16);
1427 #ifdef SHOW_NUM
1428       printf ("%x ", val >> 8 & 0xff);
1429 #endif
1430       *buf++ = (val >> 8);
1431 #ifdef SHOW_NUM
1432       printf ("%x ", val & 0xff);
1433 #endif
1434       *buf++ = val;
1435       break;
1436 
1437     default:
1438       as_fatal (_("Internal logic error.  Line %d, file: \"%s\""),
1439 		__LINE__, __FILE__);
1440     }
1441 }
1442 
1443 static void
1444 md_number_to_imm (char *buf, long val, int n)
1445 {
1446   switch (n)
1447     {
1448     case 1:
1449 #ifdef SHOW_NUM
1450       printf ("%x ", val & 0xff);
1451 #endif
1452       *buf++ = val;
1453       break;
1454 
1455     case 2:
1456 #ifdef SHOW_NUM
1457       printf ("%x ", val >> 8 & 0xff);
1458 #endif
1459       *buf++ = (val >> 8);
1460 #ifdef SHOW_NUM
1461       printf ("%x ", val & 0xff);
1462 #endif
1463       *buf++ = val;
1464       break;
1465 
1466     case 4:
1467 #ifdef SHOW_NUM
1468       printf ("%x ", val >> 24 & 0xff);
1469 #endif
1470       *buf++ = (val >> 24);
1471 #ifdef SHOW_NUM
1472       printf ("%x ", val >> 16 & 0xff);
1473 #endif
1474       *buf++ = (val >> 16);
1475 #ifdef SHOW_NUM
1476       printf ("%x ", val >> 8 & 0xff);
1477 #endif
1478       *buf++ = (val >> 8);
1479 #ifdef SHOW_NUM
1480       printf ("%x ", val & 0xff);
1481 #endif
1482       *buf++ = val;
1483       break;
1484 
1485     default:
1486       as_fatal (_("Internal logic error. line %d, file \"%s\""),
1487 		__LINE__, __FILE__);
1488     }
1489 }
1490 
1491 /* Fast bitfiddling support.  */
1492 /* Mask used to zero bitfield before oring in the true field.  */
1493 
1494 static unsigned long l_mask[] =
1495 {
1496   0xffffffff, 0xfffffffe, 0xfffffffc, 0xfffffff8,
1497   0xfffffff0, 0xffffffe0, 0xffffffc0, 0xffffff80,
1498   0xffffff00, 0xfffffe00, 0xfffffc00, 0xfffff800,
1499   0xfffff000, 0xffffe000, 0xffffc000, 0xffff8000,
1500   0xffff0000, 0xfffe0000, 0xfffc0000, 0xfff80000,
1501   0xfff00000, 0xffe00000, 0xffc00000, 0xff800000,
1502   0xff000000, 0xfe000000, 0xfc000000, 0xf8000000,
1503   0xf0000000, 0xe0000000, 0xc0000000, 0x80000000,
1504 };
1505 static unsigned long r_mask[] =
1506 {
1507   0x00000000, 0x00000001, 0x00000003, 0x00000007,
1508   0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f,
1509   0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff,
1510   0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff,
1511   0x0000ffff, 0x0001ffff, 0x0003ffff, 0x0007ffff,
1512   0x000fffff, 0x001fffff, 0x003fffff, 0x007fffff,
1513   0x00ffffff, 0x01ffffff, 0x03ffffff, 0x07ffffff,
1514   0x0fffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff,
1515 };
1516 #define MASK_BITS 31
1517 /* Insert bitfield described by field_ptr and val at buf
1518    This routine is written for modification of the first 4 bytes pointed
1519    to by buf, to yield speed.
1520    The ifdef stuff is for selection between a ns32k-dependent routine
1521    and a general version. (My advice: use the general version!).  */
1522 
1523 static void
1524 md_number_to_field (char *buf, long val, bit_fixS *field_ptr)
1525 {
1526   unsigned long object;
1527   unsigned long mask;
1528   /* Define ENDIAN on a ns32k machine.  */
1529 #ifdef ENDIAN
1530   unsigned long *mem_ptr;
1531 #else
1532   char *mem_ptr;
1533 #endif
1534 
1535   if (field_ptr->fx_bit_min <= val && val <= field_ptr->fx_bit_max)
1536     {
1537 #ifdef ENDIAN
1538       if (field_ptr->fx_bit_base)
1539 	/* Override buf.  */
1540 	mem_ptr = (unsigned long *) field_ptr->fx_bit_base;
1541       else
1542 	mem_ptr = (unsigned long *) buf;
1543 
1544       mem_ptr = ((unsigned long *)
1545 		 ((char *) mem_ptr + field_ptr->fx_bit_base_adj));
1546 #else
1547       if (field_ptr->fx_bit_base)
1548 	mem_ptr = (char *) field_ptr->fx_bit_base;
1549       else
1550 	mem_ptr = buf;
1551 
1552       mem_ptr += field_ptr->fx_bit_base_adj;
1553 #endif
1554 #ifdef ENDIAN
1555       /* We have a nice ns32k machine with lowbyte at low-physical mem.  */
1556       object = *mem_ptr;	/* get some bytes */
1557 #else /* OVE Goof! the machine is a m68k or dito.  */
1558       /* That takes more byte fiddling.  */
1559       object = 0;
1560       object |= mem_ptr[3] & 0xff;
1561       object <<= 8;
1562       object |= mem_ptr[2] & 0xff;
1563       object <<= 8;
1564       object |= mem_ptr[1] & 0xff;
1565       object <<= 8;
1566       object |= mem_ptr[0] & 0xff;
1567 #endif
1568       mask = 0;
1569       mask |= (r_mask[field_ptr->fx_bit_offset]);
1570       mask |= (l_mask[field_ptr->fx_bit_offset + field_ptr->fx_bit_size]);
1571       object &= mask;
1572       val += field_ptr->fx_bit_add;
1573       object |= ((val << field_ptr->fx_bit_offset) & (mask ^ 0xffffffff));
1574 #ifdef ENDIAN
1575       *mem_ptr = object;
1576 #else
1577       mem_ptr[0] = (char) object;
1578       object >>= 8;
1579       mem_ptr[1] = (char) object;
1580       object >>= 8;
1581       mem_ptr[2] = (char) object;
1582       object >>= 8;
1583       mem_ptr[3] = (char) object;
1584 #endif
1585     }
1586   else
1587     as_bad (_("Bit field out of range"));
1588 }
1589 
1590 /* Convert iif to fragments.  From this point we start to dribble with
1591    functions in other files than this one.(Except hash.c) So, if it's
1592    possible to make an iif for an other CPU, you don't need to know
1593    what frags, relax, obstacks, etc is in order to port this
1594    assembler. You only need to know if it's possible to reduce your
1595    cpu-instruction to iif-format (takes some work) and adopt the other
1596    md_? parts according to given instructions Note that iif was
1597    invented for the clean ns32k`s architecture.  */
1598 
1599 /* GAS for the ns32k has a problem. PC relative displacements are
1600    relative to the address of the opcode, not the address of the
1601    operand. We used to keep track of the offset between the operand
1602    and the opcode in pcrel_adjust for each frag and each fix. However,
1603    we get into trouble where there are two or more pc-relative
1604    operands and the size of the first one can't be determined. Then in
1605    the relax phase, the size of the first operand will change and
1606    pcrel_adjust will no longer be correct.  The current solution is
1607    keep a pointer to the frag with the opcode in it and the offset in
1608    that frag for each frag and each fix. Then, when needed, we can
1609    always figure out how far it is between the opcode and the pcrel
1610    object.  See also md_pcrel_adjust and md_fix_pcrel_adjust.  For
1611    objects not part of an instruction, the pointer to the opcode frag
1612    is always zero.  */
1613 
1614 static void
1615 convert_iif (void)
1616 {
1617   int i;
1618   bit_fixS *j;
1619   fragS *inst_frag;
1620   unsigned int inst_offset;
1621   char *inst_opcode;
1622   char *memP;
1623   int l;
1624   int k;
1625   char type;
1626   char size = 0;
1627 
1628   frag_grow (iif.instr_size);	/* This is important.  */
1629   memP = frag_more (0);
1630   inst_opcode = memP;
1631   inst_offset = (memP - frag_now->fr_literal);
1632   inst_frag = frag_now;
1633 
1634   for (i = 0; i < IIF_ENTRIES; i++)
1635     {
1636       if ((type = iif.iifP[i].type))
1637 	{
1638 	  /* The object exist, so handle it.  */
1639 	  switch (size = iif.iifP[i].size)
1640 	    {
1641 	    case 42:
1642 	      size = 0;
1643 	      /* It's a bitfix that operates on an existing object.  */
1644 	      if (iif.iifP[i].bit_fixP->fx_bit_base)
1645 		/* Expand fx_bit_base to point at opcode.  */
1646 		iif.iifP[i].bit_fixP->fx_bit_base = (long) inst_opcode;
1647 	      /* Fall through.  */
1648 
1649 	    case 8:		/* bignum or doublefloat.  */
1650 	    case 1:
1651 	    case 2:
1652 	    case 3:
1653 	    case 4:
1654 	      /* The final size in objectmemory is known.  */
1655 	      memP = frag_more (size);
1656 	      j = iif.iifP[i].bit_fixP;
1657 
1658 	      switch (type)
1659 		{
1660 		case 1:	/* The object is pure binary.  */
1661 		  if (j)
1662 		    md_number_to_field (memP, exprP.X_add_number, j);
1663 
1664 		  else if (iif.iifP[i].pcrel)
1665 		    fix_new_ns32k (frag_now,
1666 				   (long) (memP - frag_now->fr_literal),
1667 				   size,
1668 				   0,
1669 				   iif.iifP[i].object,
1670 				   iif.iifP[i].pcrel,
1671 				   iif.iifP[i].im_disp,
1672 				   0,
1673 				   iif.iifP[i].bsr,	/* Sequent hack.  */
1674 				   inst_frag, inst_offset);
1675 		  else
1676 		    {
1677 		      /* Good, just put them bytes out.  */
1678 		      switch (iif.iifP[i].im_disp)
1679 			{
1680 			case 0:
1681 			  md_number_to_chars (memP, iif.iifP[i].object, size);
1682 			  break;
1683 			case 1:
1684 			  md_number_to_disp (memP, iif.iifP[i].object, size);
1685 			  break;
1686 			default:
1687 			  as_fatal (_("iif convert internal pcrel/binary"));
1688 			}
1689 		    }
1690 		  break;
1691 
1692 		case 2:
1693 		  /* The object is a pointer at an expression, so
1694                      unpack it, note that bignums may result from the
1695                      expression.  */
1696 		  evaluate_expr (&exprP, (char *) iif.iifP[i].object);
1697 		  if (exprP.X_op == O_big || size == 8)
1698 		    {
1699 		      if ((k = exprP.X_add_number) > 0)
1700 			{
1701 			  /* We have a bignum ie a quad. This can only
1702                              happens in a long suffixed instruction.  */
1703 			  if (k * 2 > size)
1704 			    as_bad (_("Bignum too big for long"));
1705 
1706 			  if (k == 3)
1707 			    memP += 2;
1708 
1709 			  for (l = 0; k > 0; k--, l += 2)
1710 			    md_number_to_chars (memP + l,
1711 						generic_bignum[l >> 1],
1712 						sizeof (LITTLENUM_TYPE));
1713 			}
1714 		      else
1715 			{
1716 			  /* flonum.  */
1717 			  LITTLENUM_TYPE words[4];
1718 
1719 			  switch (size)
1720 			    {
1721 			    case 4:
1722 			      gen_to_words (words, 2, 8);
1723 			      md_number_to_imm (memP, (long) words[0],
1724 						sizeof (LITTLENUM_TYPE));
1725 			      md_number_to_imm (memP + sizeof (LITTLENUM_TYPE),
1726 						(long) words[1],
1727 						sizeof (LITTLENUM_TYPE));
1728 			      break;
1729 			    case 8:
1730 			      gen_to_words (words, 4, 11);
1731 			      md_number_to_imm (memP, (long) words[0],
1732 						sizeof (LITTLENUM_TYPE));
1733 			      md_number_to_imm (memP + sizeof (LITTLENUM_TYPE),
1734 						(long) words[1],
1735 						sizeof (LITTLENUM_TYPE));
1736 			      md_number_to_imm ((memP + 2
1737 						 * sizeof (LITTLENUM_TYPE)),
1738 						(long) words[2],
1739 						sizeof (LITTLENUM_TYPE));
1740 			      md_number_to_imm ((memP + 3
1741 						 * sizeof (LITTLENUM_TYPE)),
1742 						(long) words[3],
1743 						sizeof (LITTLENUM_TYPE));
1744 			      break;
1745 			    }
1746 			}
1747 		      break;
1748 		    }
1749 		  if (exprP.X_add_symbol ||
1750 		      exprP.X_op_symbol ||
1751 		      iif.iifP[i].pcrel)
1752 		    {
1753 		      /* The expression was undefined due to an
1754                          undefined label. Create a fix so we can fix
1755                          the object later.  */
1756 		      exprP.X_add_number += iif.iifP[i].object_adjust;
1757 		      fix_new_ns32k_exp (frag_now,
1758 					 (long) (memP - frag_now->fr_literal),
1759 					 size,
1760 					 &exprP,
1761 					 iif.iifP[i].pcrel,
1762 					 iif.iifP[i].im_disp,
1763 					 j,
1764 					 iif.iifP[i].bsr,
1765 					 inst_frag, inst_offset);
1766 		    }
1767 		  else if (j)
1768 		    md_number_to_field (memP, exprP.X_add_number, j);
1769 		  else
1770 		    {
1771 		      /* Good, just put them bytes out.  */
1772 		      switch (iif.iifP[i].im_disp)
1773 			{
1774 			case 0:
1775 			  md_number_to_imm (memP, exprP.X_add_number, size);
1776 			  break;
1777 			case 1:
1778 			  md_number_to_disp (memP, exprP.X_add_number, size);
1779 			  break;
1780 			default:
1781 			  as_fatal (_("iif convert internal pcrel/pointer"));
1782 			}
1783 		    }
1784 		  break;
1785 		default:
1786 		  as_fatal (_("Internal logic error in iif.iifP[n].type"));
1787 		}
1788 	      break;
1789 
1790 	    case 0:
1791 	      /* Too bad, the object may be undefined as far as its
1792 		 final nsize in object memory is concerned.  The size
1793 		 of the object in objectmemory is not explicitly
1794 		 given.  If the object is defined its length can be
1795 		 determined and a fix can replace the frag.  */
1796 	      {
1797 		evaluate_expr (&exprP, (char *) iif.iifP[i].object);
1798 
1799 		if ((exprP.X_add_symbol || exprP.X_op_symbol) &&
1800 		    !iif.iifP[i].pcrel)
1801 		  {
1802 		    /* Size is unknown until link time so have to default.  */
1803 		    size = default_disp_size; /* Normally 4 bytes.  */
1804 		    memP = frag_more (size);
1805 		    fix_new_ns32k_exp (frag_now,
1806 				       (long) (memP - frag_now->fr_literal),
1807 				       size,
1808 				       &exprP,
1809 				       0, /* never iif.iifP[i].pcrel, */
1810 				       1, /* always iif.iifP[i].im_disp */
1811 				       (bit_fixS *) 0, 0,
1812 				       inst_frag,
1813 				       inst_offset);
1814 		    break;		/* Exit this absolute hack.  */
1815 		  }
1816 
1817 		if (exprP.X_add_symbol || exprP.X_op_symbol)
1818 		  {
1819 		    /* Frag it.  */
1820 		    if (exprP.X_op_symbol)
1821 		      /* We can't relax this case.  */
1822 		      as_fatal (_("Can't relax difference"));
1823 		    else
1824 		      {
1825 			/* Size is not important.  This gets fixed by
1826 			   relax, but we assume 0 in what follows.  */
1827 			memP = frag_more (4); /* Max size.  */
1828 			size = 0;
1829 
1830 			{
1831 			  fragS *old_frag = frag_now;
1832 			  frag_variant (rs_machine_dependent,
1833 					4, /* Max size.  */
1834 					0, /* Size.  */
1835 					IND (BRANCH, UNDEF), /* Expecting
1836                                                                 the worst.  */
1837 					exprP.X_add_symbol,
1838 					exprP.X_add_number,
1839 					inst_opcode);
1840 			  frag_opcode_frag (old_frag) = inst_frag;
1841 			  frag_opcode_offset (old_frag) = inst_offset;
1842 			  frag_bsr (old_frag) = iif.iifP[i].bsr;
1843 			}
1844 		      }
1845 		  }
1846 		else
1847 		  {
1848 		    /* This duplicates code in md_number_to_disp.  */
1849 		    if (-64 <= exprP.X_add_number && exprP.X_add_number <= 63)
1850 		      size = 1;
1851 		    else
1852 		      {
1853 			if (-8192 <= exprP.X_add_number
1854 			    && exprP.X_add_number <= 8191)
1855 			  size = 2;
1856 			else
1857 			  {
1858 			    if (-0x20000000 <= exprP.X_add_number
1859 				&& exprP.X_add_number<=0x1fffffff)
1860 			      size = 4;
1861 			    else
1862 			      {
1863 				as_bad (_("Displacement too large for :d"));
1864 				size = 4;
1865 			      }
1866 			  }
1867 		      }
1868 
1869 		    memP = frag_more (size);
1870 		    md_number_to_disp (memP, exprP.X_add_number, size);
1871 		  }
1872 	      }
1873 	      break;
1874 
1875 	    default:
1876 	      as_fatal (_("Internal logic error in iif.iifP[].type"));
1877 	    }
1878 	}
1879     }
1880 }
1881 
1882 void
1883 md_assemble (char *line)
1884 {
1885   freeptr = freeptr_static;
1886   parse (line, 0);		/* Explode line to more fix form in iif.  */
1887   convert_iif ();		/* Convert iif to frags, fix's etc.  */
1888 #ifdef SHOW_NUM
1889   printf (" \t\t\t%s\n", line);
1890 #endif
1891 }
1892 
1893 void
1894 md_begin (void)
1895 {
1896   /* Build a hashtable of the instructions.  */
1897   const struct ns32k_opcode *ptr;
1898   const char *status;
1899   const struct ns32k_opcode *endop;
1900 
1901   inst_hash_handle = hash_new ();
1902 
1903   endop = ns32k_opcodes + sizeof (ns32k_opcodes) / sizeof (ns32k_opcodes[0]);
1904   for (ptr = ns32k_opcodes; ptr < endop; ptr++)
1905     {
1906       if ((status = hash_insert (inst_hash_handle, ptr->name, (char *) ptr)))
1907 	/* Fatal.  */
1908 	as_fatal (_("Can't hash %s: %s"), ptr->name, status);
1909     }
1910 
1911   /* Some private space please!  */
1912   freeptr_static = XNEWVEC (char, PRIVATE_SIZE);
1913 }
1914 
1915 /* Turn the string pointed to by litP into a floating point constant
1916    of type TYPE, and emit the appropriate bytes.  The number of
1917    LITTLENUMS emitted is stored in *SIZEP.  An error message is
1918    returned, or NULL on OK.  */
1919 
1920 const char *
1921 md_atof (int type, char *litP, int *sizeP)
1922 {
1923   return ieee_md_atof (type, litP, sizeP, FALSE);
1924 }
1925 
1926 int
1927 md_pcrel_adjust (fragS *fragP)
1928 {
1929   fragS *opcode_frag;
1930   addressT opcode_address;
1931   unsigned int offset;
1932 
1933   opcode_frag = frag_opcode_frag (fragP);
1934   if (opcode_frag == 0)
1935     return 0;
1936 
1937   offset = frag_opcode_offset (fragP);
1938   opcode_address = offset + opcode_frag->fr_address;
1939 
1940   return fragP->fr_address + fragP->fr_fix - opcode_address;
1941 }
1942 
1943 static int
1944 md_fix_pcrel_adjust (fixS *fixP)
1945 {
1946   fragS *opcode_frag;
1947   addressT opcode_address;
1948   unsigned int offset;
1949 
1950   opcode_frag = fix_opcode_frag (fixP);
1951   if (opcode_frag == 0)
1952     return 0;
1953 
1954   offset = fix_opcode_offset (fixP);
1955   opcode_address = offset + opcode_frag->fr_address;
1956 
1957   return fixP->fx_where + fixP->fx_frag->fr_address - opcode_address;
1958 }
1959 
1960 /* Apply a fixS (fixup of an instruction or data that we didn't have
1961    enough info to complete immediately) to the data in a frag.
1962 
1963    On the ns32k, everything is in a different format, so we have broken
1964    out separate functions for each kind of thing we could be fixing.
1965    They all get called from here.  */
1966 
1967 void
1968 md_apply_fix (fixS *fixP, valueT * valP, segT seg ATTRIBUTE_UNUSED)
1969 {
1970   long val = * (long *) valP;
1971   char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
1972 
1973   if (fix_bit_fixP (fixP))
1974     /* Bitfields to fix, sigh.  */
1975     md_number_to_field (buf, val, fix_bit_fixP (fixP));
1976   else switch (fix_im_disp (fixP))
1977     {
1978     case 0:
1979       /* Immediate field.  */
1980       md_number_to_imm (buf, val, fixP->fx_size);
1981       break;
1982 
1983     case 1:
1984       /* Displacement field.  */
1985       /* Calculate offset.  */
1986       md_number_to_disp (buf,
1987 			 (fixP->fx_pcrel ? val + md_fix_pcrel_adjust (fixP)
1988 			  : val), fixP->fx_size);
1989       break;
1990 
1991     case 2:
1992       /* Pointer in a data object.  */
1993       md_number_to_chars (buf, val, fixP->fx_size);
1994       break;
1995     }
1996 
1997   if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
1998     fixP->fx_done = 1;
1999 }
2000 
2001 /* Convert a relaxed displacement to ditto in final output.  */
2002 
2003 void
2004 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
2005 		 segT sec ATTRIBUTE_UNUSED,
2006 		 fragS *fragP)
2007 {
2008   long disp;
2009   long ext = 0;
2010   /* Address in gas core of the place to store the displacement.  */
2011   char *buffer_address = fragP->fr_fix + fragP->fr_literal;
2012   /* Address in object code of the displacement.  */
2013   int object_address;
2014 
2015   switch (fragP->fr_subtype)
2016     {
2017     case IND (BRANCH, BYTE):
2018       ext = 1;
2019       break;
2020     case IND (BRANCH, WORD):
2021       ext = 2;
2022       break;
2023     case IND (BRANCH, DOUBLE):
2024       ext = 4;
2025       break;
2026     }
2027 
2028   if (ext == 0)
2029     return;
2030 
2031   know (fragP->fr_symbol);
2032 
2033   object_address = fragP->fr_fix + fragP->fr_address;
2034 
2035   /* The displacement of the address, from current location.  */
2036   disp = (S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset) - object_address;
2037   disp += md_pcrel_adjust (fragP);
2038 
2039   md_number_to_disp (buffer_address, (long) disp, (int) ext);
2040   fragP->fr_fix += ext;
2041 }
2042 
2043 /* This function returns the estimated size a variable object will occupy,
2044    one can say that we tries to guess the size of the objects before we
2045    actually know it.  */
2046 
2047 int
2048 md_estimate_size_before_relax (fragS *fragP, segT segment)
2049 {
2050   if (fragP->fr_subtype == IND (BRANCH, UNDEF))
2051     {
2052       if (S_GET_SEGMENT (fragP->fr_symbol) != segment)
2053 	{
2054 	  /* We don't relax symbols defined in another segment.  The
2055 	     thing to do is to assume the object will occupy 4 bytes.  */
2056 	  fix_new_ns32k (fragP,
2057 			 (int) (fragP->fr_fix),
2058 			 4,
2059 			 fragP->fr_symbol,
2060 			 fragP->fr_offset,
2061 			 1,
2062 			 1,
2063 			 0,
2064 			 frag_bsr(fragP), /* Sequent hack.  */
2065 			 frag_opcode_frag (fragP),
2066 			 frag_opcode_offset (fragP));
2067 	  fragP->fr_fix += 4;
2068 	  frag_wane (fragP);
2069 	  return 4;
2070 	}
2071 
2072       /* Relaxable case.  Set up the initial guess for the variable
2073 	 part of the frag.  */
2074       fragP->fr_subtype = IND (BRANCH, BYTE);
2075     }
2076 
2077   if (fragP->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0]))
2078     abort ();
2079 
2080   /* Return the size of the variable part of the frag.  */
2081   return md_relax_table[fragP->fr_subtype].rlx_length;
2082 }
2083 
2084 int md_short_jump_size = 3;
2085 int md_long_jump_size = 5;
2086 
2087 void
2088 md_create_short_jump (char *ptr,
2089 		      addressT from_addr,
2090 		      addressT to_addr,
2091 		      fragS *frag ATTRIBUTE_UNUSED,
2092 		      symbolS *to_symbol ATTRIBUTE_UNUSED)
2093 {
2094   valueT offset;
2095 
2096   offset = to_addr - from_addr;
2097   md_number_to_chars (ptr, (valueT) 0xEA, 1);
2098   md_number_to_disp (ptr + 1, (valueT) offset, 2);
2099 }
2100 
2101 void
2102 md_create_long_jump (char *ptr,
2103 		     addressT from_addr,
2104 		     addressT to_addr,
2105 		     fragS *frag ATTRIBUTE_UNUSED,
2106 		     symbolS *to_symbol ATTRIBUTE_UNUSED)
2107 {
2108   valueT offset;
2109 
2110   offset = to_addr - from_addr;
2111   md_number_to_chars (ptr, (valueT) 0xEA, 1);
2112   md_number_to_disp (ptr + 1, (valueT) offset, 4);
2113 }
2114 
2115 const char *md_shortopts = "m:";
2116 
2117 struct option md_longopts[] =
2118 {
2119 #define OPTION_DISP_SIZE (OPTION_MD_BASE)
2120   {"disp-size-default", required_argument , NULL, OPTION_DISP_SIZE},
2121   {NULL, no_argument, NULL, 0}
2122 };
2123 
2124 size_t md_longopts_size = sizeof (md_longopts);
2125 
2126 int
2127 md_parse_option (int c, const char *arg)
2128 {
2129   switch (c)
2130     {
2131     case 'm':
2132       if (!strcmp (arg, "32032"))
2133 	{
2134 	  cpureg = cpureg_032;
2135 	  mmureg = mmureg_032;
2136 	}
2137       else if (!strcmp (arg, "32532"))
2138 	{
2139 	  cpureg = cpureg_532;
2140 	  mmureg = mmureg_532;
2141 	}
2142       else
2143 	{
2144 	  as_warn (_("invalid architecture option -m%s, ignored"), arg);
2145 	  return 0;
2146 	}
2147       break;
2148     case OPTION_DISP_SIZE:
2149       {
2150 	int size = atoi(arg);
2151 	switch (size)
2152 	  {
2153 	  case 1: case 2: case 4:
2154 	    default_disp_size = size;
2155 	    break;
2156 	  default:
2157 	    as_warn (_("invalid default displacement size \"%s\". Defaulting to %d."),
2158 		     arg, default_disp_size);
2159 	  }
2160 	break;
2161       }
2162 
2163     default:
2164       return 0;
2165     }
2166 
2167   return 1;
2168 }
2169 
2170 void
2171 md_show_usage (FILE *stream)
2172 {
2173   fprintf (stream, _("\
2174 NS32K options:\n\
2175 -m32032 | -m32532	select variant of NS32K architecture\n\
2176 --disp-size-default=<1|2|4>\n"));
2177 }
2178 
2179 /* This is TC_CONS_FIX_NEW, called by emit_expr in read.c.  */
2180 
2181 void
2182 cons_fix_new_ns32k (fragS *frag,	/* Which frag? */
2183 		    int where,		/* Where in that frag? */
2184 		    int size,		/* 1, 2  or 4 usually.  */
2185 		    expressionS *exp,	/* Expression.  */
2186 		    bfd_reloc_code_real_type r ATTRIBUTE_UNUSED)
2187 {
2188   fix_new_ns32k_exp (frag, where, size, exp,
2189 		     0, 2, 0, 0, 0, 0);
2190 }
2191 
2192 /* We have no need to default values of symbols.  */
2193 
2194 symbolS *
2195 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
2196 {
2197   return 0;
2198 }
2199 
2200 /* Round up a section size to the appropriate boundary.  */
2201 
2202 valueT
2203 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
2204 {
2205   return size;			/* Byte alignment is fine.  */
2206 }
2207 
2208 /* Exactly what point is a PC-relative offset relative TO?  On the
2209    ns32k, they're relative to the start of the instruction.  */
2210 
2211 long
2212 md_pcrel_from (fixS *fixP)
2213 {
2214   long res;
2215 
2216   res = fixP->fx_where + fixP->fx_frag->fr_address;
2217 #ifdef SEQUENT_COMPATABILITY
2218   if (frag_bsr (fixP->fx_frag))
2219     res += 0x12			/* FOO Kludge alert!  */
2220 #endif
2221       return res;
2222 }
2223 
2224 arelent *
2225 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
2226 {
2227   arelent *rel;
2228   bfd_reloc_code_real_type code;
2229 
2230   code = reloc (fixp->fx_size, fixp->fx_pcrel, fix_im_disp (fixp));
2231 
2232   rel = XNEW (arelent);
2233   rel->sym_ptr_ptr = XNEW (asymbol *);
2234   *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2235   rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
2236   if (fixp->fx_pcrel)
2237     rel->addend = fixp->fx_addnumber;
2238   else
2239     rel->addend = 0;
2240 
2241   rel->howto = bfd_reloc_type_lookup (stdoutput, code);
2242   if (!rel->howto)
2243     {
2244       const char *name;
2245 
2246       name = S_GET_NAME (fixp->fx_addsy);
2247       if (name == NULL)
2248 	name = _("<unknown>");
2249       as_fatal (_("Cannot find relocation type for symbol %s, code %d"),
2250 		name, (int) code);
2251     }
2252 
2253   return rel;
2254 }
2255