1 /* tc-m32c.c -- Assembler for the Renesas M32C. 2 Copyright (C) 2005-2016 Free Software Foundation, Inc. 3 Contributed by RedHat. 4 5 This file is part of GAS, the GNU Assembler. 6 7 GAS is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GAS is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GAS; see the file COPYING. If not, write to 19 the Free Software Foundation, 59 Temple Place - Suite 330, 20 Boston, MA 02111-1307, USA. */ 21 22 #include "as.h" 23 #include "subsegs.h" 24 #include "symcat.h" 25 #include "opcodes/m32c-desc.h" 26 #include "opcodes/m32c-opc.h" 27 #include "cgen.h" 28 #include "elf/common.h" 29 #include "elf/m32c.h" 30 #include "libbfd.h" 31 #include "safe-ctype.h" 32 33 /* Structure to hold all of the different components 34 describing an individual instruction. */ 35 typedef struct 36 { 37 const CGEN_INSN * insn; 38 const CGEN_INSN * orig_insn; 39 CGEN_FIELDS fields; 40 #if CGEN_INT_INSN_P 41 CGEN_INSN_INT buffer [1]; 42 #define INSN_VALUE(buf) (*(buf)) 43 #else 44 unsigned char buffer [CGEN_MAX_INSN_SIZE]; 45 #define INSN_VALUE(buf) (buf) 46 #endif 47 char * addr; 48 fragS * frag; 49 int num_fixups; 50 fixS * fixups [GAS_CGEN_MAX_FIXUPS]; 51 int indices [MAX_OPERAND_INSTANCES]; 52 } 53 m32c_insn; 54 55 #define rl_for(_insn) (CGEN_ATTR_CGEN_INSN_RL_TYPE_VALUE (&((_insn).insn->base->attrs))) 56 #define relaxable(_insn) (CGEN_ATTR_CGEN_INSN_RELAXABLE_VALUE (&((_insn).insn->base->attrs))) 57 58 const char comment_chars[] = ";"; 59 const char line_comment_chars[] = "#"; 60 const char line_separator_chars[] = "|"; 61 const char EXP_CHARS[] = "eE"; 62 const char FLT_CHARS[] = "dD"; 63 64 #define M32C_SHORTOPTS "" 65 const char * md_shortopts = M32C_SHORTOPTS; 66 67 /* assembler options */ 68 #define OPTION_CPU_M16C (OPTION_MD_BASE) 69 #define OPTION_CPU_M32C (OPTION_MD_BASE + 1) 70 #define OPTION_LINKRELAX (OPTION_MD_BASE + 2) 71 #define OPTION_H_TICK_HEX (OPTION_MD_BASE + 3) 72 73 struct option md_longopts[] = 74 { 75 { "m16c", no_argument, NULL, OPTION_CPU_M16C }, 76 { "m32c", no_argument, NULL, OPTION_CPU_M32C }, 77 { "relax", no_argument, NULL, OPTION_LINKRELAX }, 78 { "h-tick-hex", no_argument, NULL, OPTION_H_TICK_HEX }, 79 {NULL, no_argument, NULL, 0} 80 }; 81 size_t md_longopts_size = sizeof (md_longopts); 82 83 /* Default machine */ 84 85 #define DEFAULT_MACHINE bfd_mach_m16c 86 #define DEFAULT_FLAGS EF_M32C_CPU_M16C 87 88 static unsigned long m32c_mach = bfd_mach_m16c; 89 static int cpu_mach = (1 << MACH_M16C); 90 static int insn_size; 91 static int m32c_relax = 0; 92 93 /* Flags to set in the elf header */ 94 static flagword m32c_flags = DEFAULT_FLAGS; 95 96 static char default_isa = 1 << (7 - ISA_M16C); 97 static CGEN_BITSET m32c_isa = {1, & default_isa}; 98 99 static void 100 set_isa (enum isa_attr isa_num) 101 { 102 cgen_bitset_set (& m32c_isa, isa_num); 103 } 104 105 static void s_bss (int); 106 107 int 108 md_parse_option (int c, const char * arg ATTRIBUTE_UNUSED) 109 { 110 switch (c) 111 { 112 case OPTION_CPU_M16C: 113 m32c_flags = (m32c_flags & ~EF_M32C_CPU_MASK) | EF_M32C_CPU_M16C; 114 m32c_mach = bfd_mach_m16c; 115 cpu_mach = (1 << MACH_M16C); 116 set_isa (ISA_M16C); 117 break; 118 119 case OPTION_CPU_M32C: 120 m32c_flags = (m32c_flags & ~EF_M32C_CPU_MASK) | EF_M32C_CPU_M32C; 121 m32c_mach = bfd_mach_m32c; 122 cpu_mach = (1 << MACH_M32C); 123 set_isa (ISA_M32C); 124 break; 125 126 case OPTION_LINKRELAX: 127 m32c_relax = 1; 128 break; 129 130 case OPTION_H_TICK_HEX: 131 enable_h_tick_hex = 1; 132 break; 133 134 default: 135 return 0; 136 } 137 return 1; 138 } 139 140 void 141 md_show_usage (FILE * stream) 142 { 143 fprintf (stream, _(" M32C specific command line options:\n")); 144 } 145 146 static void 147 s_bss (int ignore ATTRIBUTE_UNUSED) 148 { 149 int temp; 150 151 temp = get_absolute_expression (); 152 subseg_set (bss_section, (subsegT) temp); 153 demand_empty_rest_of_line (); 154 } 155 156 /* The target specific pseudo-ops which we support. */ 157 const pseudo_typeS md_pseudo_table[] = 158 { 159 { "bss", s_bss, 0}, 160 { "3byte", cons, 3 }, 161 { "word", cons, 4 }, 162 { NULL, NULL, 0 } 163 }; 164 165 166 void 167 md_begin (void) 168 { 169 /* Initialize the `cgen' interface. */ 170 171 /* Set the machine number and endian. */ 172 gas_cgen_cpu_desc = m32c_cgen_cpu_open (CGEN_CPU_OPEN_MACHS, cpu_mach, 173 CGEN_CPU_OPEN_ENDIAN, 174 CGEN_ENDIAN_BIG, 175 CGEN_CPU_OPEN_ISAS, & m32c_isa, 176 CGEN_CPU_OPEN_END); 177 178 m32c_cgen_init_asm (gas_cgen_cpu_desc); 179 180 /* This is a callback from cgen to gas to parse operands. */ 181 cgen_set_parse_operand_fn (gas_cgen_cpu_desc, gas_cgen_parse_operand); 182 183 /* Set the ELF flags if desired. */ 184 if (m32c_flags) 185 bfd_set_private_flags (stdoutput, m32c_flags); 186 187 /* Set the machine type */ 188 bfd_default_set_arch_mach (stdoutput, bfd_arch_m32c, m32c_mach); 189 190 insn_size = 0; 191 } 192 193 void 194 m32c_md_end (void) 195 { 196 int i, n_nops; 197 198 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) 199 { 200 /* Pad with nops for objdump. */ 201 n_nops = (32 - ((insn_size) % 32)) / 8; 202 for (i = 1; i <= n_nops; i++) 203 md_assemble ((char *) "nop"); 204 } 205 } 206 207 void 208 m32c_start_line_hook (void) 209 { 210 #if 0 /* not necessary....handled in the .cpu file */ 211 char *s = input_line_pointer; 212 char *sg; 213 214 for (s = input_line_pointer ; s && s[0] != '\n'; s++) 215 { 216 if (s[0] == ':') 217 { 218 /* Remove :g suffix. Squeeze out blanks. */ 219 if (s[1] == 'g') 220 { 221 for (sg = s - 1; sg && sg >= input_line_pointer; sg--) 222 { 223 sg[2] = sg[0]; 224 } 225 sg[1] = ' '; 226 sg[2] = ' '; 227 input_line_pointer += 2; 228 } 229 } 230 } 231 #endif 232 } 233 234 /* Process [[indirect-operands]] in instruction str. */ 235 236 static bfd_boolean 237 m32c_indirect_operand (char *str) 238 { 239 char *new_str; 240 char *s; 241 char *ns; 242 int ns_len; 243 char *ns_end; 244 enum indirect_type {none, relative, absolute} ; 245 enum indirect_type indirection [3] = { none, none, none }; 246 int brace_n [3] = { 0, 0, 0 }; 247 int operand; 248 249 s = str; 250 operand = 1; 251 for (s = str; *s; s++) 252 { 253 if (s[0] == ',') 254 operand = 2; 255 /* [abs] where abs is not a0 or a1 */ 256 if (s[1] == '[' && ! (s[2] == 'a' && (s[3] == '0' || s[3] == '1')) 257 && (ISBLANK (s[0]) || s[0] == ',')) 258 indirection[operand] = absolute; 259 if (s[0] == ']' && s[1] == ']') 260 indirection[operand] = relative; 261 if (s[0] == '[' && s[1] == '[') 262 indirection[operand] = relative; 263 } 264 265 if (indirection[1] == none && indirection[2] == none) 266 return FALSE; 267 268 operand = 1; 269 ns_len = strlen (str); 270 new_str = XNEWVEC (char, ns_len); 271 ns = new_str; 272 ns_end = ns + ns_len; 273 274 for (s = str; *s; s++) 275 { 276 if (s[0] == ',') 277 operand = 2; 278 279 if (s[0] == '[' && ! brace_n[operand]) 280 { 281 brace_n[operand] += 1; 282 /* Squeeze [[ to [ if this is an indirect operand. */ 283 if (indirection[operand] != none) 284 continue; 285 } 286 287 else if (s[0] == '[' && brace_n[operand]) 288 { 289 brace_n[operand] += 1; 290 } 291 else if (s[0] == ']' && s[1] == ']' && indirection[operand] == relative) 292 { 293 s += 1; /* skip one ]. */ 294 brace_n[operand] -= 2; /* allow for 2 [. */ 295 } 296 else if (s[0] == ']' && indirection[operand] == absolute) 297 { 298 brace_n[operand] -= 1; 299 continue; /* skip closing ]. */ 300 } 301 else if (s[0] == ']') 302 { 303 brace_n[operand] -= 1; 304 } 305 *ns = s[0]; 306 ns += 1; 307 if (ns >= ns_end) 308 return FALSE; 309 if (s[0] == 0) 310 break; 311 } 312 *ns = '\0'; 313 for (operand = 1; operand <= 2; operand++) 314 if (brace_n[operand]) 315 { 316 fprintf (stderr, "Unmatched [[operand-%d]] %d\n", operand, brace_n[operand]); 317 } 318 319 if (indirection[1] != none && indirection[2] != none) 320 md_assemble ((char *) "src-dest-indirect"); 321 else if (indirection[1] != none) 322 md_assemble ((char *) "src-indirect"); 323 else if (indirection[2] != none) 324 md_assemble ((char *) "dest-indirect"); 325 326 md_assemble (new_str); 327 free (new_str); 328 return TRUE; 329 } 330 331 void 332 md_assemble (char * str) 333 { 334 static int last_insn_had_delay_slot = 0; 335 m32c_insn insn; 336 char * errmsg; 337 finished_insnS results; 338 int rl_type; 339 340 if (m32c_mach == bfd_mach_m32c && m32c_indirect_operand (str)) 341 return; 342 343 /* Initialize GAS's cgen interface for a new instruction. */ 344 gas_cgen_init_parse (); 345 346 insn.insn = m32c_cgen_assemble_insn 347 (gas_cgen_cpu_desc, str, & insn.fields, insn.buffer, & errmsg); 348 349 if (!insn.insn) 350 { 351 as_bad ("%s", errmsg); 352 return; 353 } 354 355 results.num_fixups = 0; 356 /* Doesn't really matter what we pass for RELAX_P here. */ 357 gas_cgen_finish_insn (insn.insn, insn.buffer, 358 CGEN_FIELDS_BITSIZE (& insn.fields), 1, &results); 359 360 last_insn_had_delay_slot 361 = CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_DELAY_SLOT); 362 (void) last_insn_had_delay_slot; 363 insn_size = CGEN_INSN_BITSIZE(insn.insn); 364 365 rl_type = rl_for (insn); 366 367 /* We have to mark all the jumps, because we need to adjust them 368 when we delete bytes, but we only need to mark the displacements 369 if they're symbolic - if they're not, we've already picked the 370 shortest opcode by now. The linker, however, will still have to 371 check any operands to see if they're the displacement type, since 372 we don't know (nor record) *which* operands are relaxable. */ 373 if (m32c_relax 374 && rl_type != RL_TYPE_NONE 375 && (rl_type == RL_TYPE_JUMP || results.num_fixups) 376 && !relaxable (insn)) 377 { 378 int reloc = 0; 379 int addend = results.num_fixups + 16 * insn_size/8; 380 381 switch (rl_for (insn)) 382 { 383 case RL_TYPE_JUMP: reloc = BFD_RELOC_M32C_RL_JUMP; break; 384 case RL_TYPE_1ADDR: reloc = BFD_RELOC_M32C_RL_1ADDR; break; 385 case RL_TYPE_2ADDR: reloc = BFD_RELOC_M32C_RL_2ADDR; break; 386 } 387 if (insn.insn->base->num == M32C_INSN_JMP16_S 388 || insn.insn->base->num == M32C_INSN_JMP32_S) 389 addend = 0x10; 390 391 fix_new (results.frag, 392 results.addr - results.frag->fr_literal, 393 0, abs_section_sym, addend, 0, 394 reloc); 395 } 396 } 397 398 /* The syntax in the manual says constants begin with '#'. 399 We just ignore it. */ 400 401 void 402 md_operand (expressionS * exp) 403 { 404 /* In case of a syntax error, escape back to try next syntax combo. */ 405 if (exp->X_op == O_absent) 406 gas_cgen_md_operand (exp); 407 } 408 409 valueT 410 md_section_align (segT segment, valueT size) 411 { 412 int align = bfd_get_section_alignment (stdoutput, segment); 413 return ((size + (1 << align) - 1) & -(1 << align)); 414 } 415 416 symbolS * 417 md_undefined_symbol (char * name ATTRIBUTE_UNUSED) 418 { 419 return 0; 420 } 421 422 const relax_typeS md_relax_table[] = 423 { 424 /* The fields are: 425 1) most positive reach of this state, 426 2) most negative reach of this state, 427 3) how many bytes this mode will have in the variable part of the frag 428 4) which index into the table to try if we can't fit into this one. */ 429 430 /* 0 */ { 0, 0, 0, 0 }, /* unused */ 431 /* 1 */ { 0, 0, 0, 0 }, /* marker for "don't know yet" */ 432 433 /* 2 */ { 127, -128, 2, 3 }, /* jcnd16_5.b */ 434 /* 3 */ { 32767, -32768, 5, 4 }, /* jcnd16_5.w */ 435 /* 4 */ { 0, 0, 6, 0 }, /* jcnd16_5.a */ 436 437 /* 5 */ { 127, -128, 2, 6 }, /* jcnd16.b */ 438 /* 6 */ { 32767, -32768, 5, 7 }, /* jcnd16.w */ 439 /* 7 */ { 0, 0, 6, 0 }, /* jcnd16.a */ 440 441 /* 8 */ { 8, 1, 1, 9 }, /* jmp16.s */ 442 /* 9 */ { 127, -128, 2, 10 }, /* jmp16.b */ 443 /* 10 */ { 32767, -32768, 3, 11 }, /* jmp16.w */ 444 /* 11 */ { 0, 0, 4, 0 }, /* jmp16.a */ 445 446 /* 12 */ { 127, -128, 2, 13 }, /* jcnd32.b */ 447 /* 13 */ { 32767, -32768, 5, 14 }, /* jcnd32.w */ 448 /* 14 */ { 0, 0, 6, 0 }, /* jcnd32.a */ 449 450 /* 15 */ { 8, 1, 1, 16 }, /* jmp32.s */ 451 /* 16 */ { 127, -128, 2, 17 }, /* jmp32.b */ 452 /* 17 */ { 32767, -32768, 3, 18 }, /* jmp32.w */ 453 /* 18 */ { 0, 0, 4, 0 }, /* jmp32.a */ 454 455 /* 19 */ { 32767, -32768, 3, 20 }, /* jsr16.w */ 456 /* 20 */ { 0, 0, 4, 0 }, /* jsr16.a */ 457 /* 21 */ { 32767, -32768, 3, 11 }, /* jsr32.w */ 458 /* 22 */ { 0, 0, 4, 0 }, /* jsr32.a */ 459 460 /* 23 */ { 0, 0, 3, 0 }, /* adjnz pc8 */ 461 /* 24 */ { 0, 0, 4, 0 }, /* adjnz disp8 pc8 */ 462 /* 25 */ { 0, 0, 5, 0 }, /* adjnz disp16 pc8 */ 463 /* 26 */ { 0, 0, 6, 0 } /* adjnz disp24 pc8 */ 464 }; 465 466 enum { 467 M32C_MACRO_JCND16_5_W, 468 M32C_MACRO_JCND16_5_A, 469 M32C_MACRO_JCND16_W, 470 M32C_MACRO_JCND16_A, 471 M32C_MACRO_JCND32_W, 472 M32C_MACRO_JCND32_A, 473 /* the digit is the array index of the pcrel byte */ 474 M32C_MACRO_ADJNZ_2, 475 M32C_MACRO_ADJNZ_3, 476 M32C_MACRO_ADJNZ_4, 477 M32C_MACRO_ADJNZ_5, 478 }; 479 480 static struct { 481 int insn; 482 int bytes; 483 int insn_for_extern; 484 int pcrel_aim_offset; 485 } subtype_mappings[] = { 486 /* 0 */ { 0, 0, 0, 0 }, 487 /* 1 */ { 0, 0, 0, 0 }, 488 489 /* 2 */ { M32C_INSN_JCND16_5, 2, -M32C_MACRO_JCND16_5_A, 1 }, 490 /* 3 */ { -M32C_MACRO_JCND16_5_W, 5, -M32C_MACRO_JCND16_5_A, 4 }, 491 /* 4 */ { -M32C_MACRO_JCND16_5_A, 6, -M32C_MACRO_JCND16_5_A, 0 }, 492 493 /* 5 */ { M32C_INSN_JCND16, 3, -M32C_MACRO_JCND16_A, 1 }, 494 /* 6 */ { -M32C_MACRO_JCND16_W, 6, -M32C_MACRO_JCND16_A, 4 }, 495 /* 7 */ { -M32C_MACRO_JCND16_A, 7, -M32C_MACRO_JCND16_A, 0 }, 496 497 /* 8 */ { M32C_INSN_JMP16_S, 1, M32C_INSN_JMP16_A, 0 }, 498 /* 9 */ { M32C_INSN_JMP16_B, 2, M32C_INSN_JMP16_A, 1 }, 499 /* 10 */ { M32C_INSN_JMP16_W, 3, M32C_INSN_JMP16_A, 2 }, 500 /* 11 */ { M32C_INSN_JMP16_A, 4, M32C_INSN_JMP16_A, 0 }, 501 502 /* 12 */ { M32C_INSN_JCND32, 2, -M32C_MACRO_JCND32_A, 1 }, 503 /* 13 */ { -M32C_MACRO_JCND32_W, 5, -M32C_MACRO_JCND32_A, 4 }, 504 /* 14 */ { -M32C_MACRO_JCND32_A, 6, -M32C_MACRO_JCND32_A, 0 }, 505 506 /* 15 */ { M32C_INSN_JMP32_S, 1, M32C_INSN_JMP32_A, 0 }, 507 /* 16 */ { M32C_INSN_JMP32_B, 2, M32C_INSN_JMP32_A, 1 }, 508 /* 17 */ { M32C_INSN_JMP32_W, 3, M32C_INSN_JMP32_A, 2 }, 509 /* 18 */ { M32C_INSN_JMP32_A, 4, M32C_INSN_JMP32_A, 0 }, 510 511 /* 19 */ { M32C_INSN_JSR16_W, 3, M32C_INSN_JSR16_A, 2 }, 512 /* 20 */ { M32C_INSN_JSR16_A, 4, M32C_INSN_JSR16_A, 0 }, 513 /* 21 */ { M32C_INSN_JSR32_W, 3, M32C_INSN_JSR32_A, 2 }, 514 /* 22 */ { M32C_INSN_JSR32_A, 4, M32C_INSN_JSR32_A, 0 }, 515 516 /* 23 */ { -M32C_MACRO_ADJNZ_2, 3, -M32C_MACRO_ADJNZ_2, 0 }, 517 /* 24 */ { -M32C_MACRO_ADJNZ_3, 4, -M32C_MACRO_ADJNZ_3, 0 }, 518 /* 25 */ { -M32C_MACRO_ADJNZ_4, 5, -M32C_MACRO_ADJNZ_4, 0 }, 519 /* 26 */ { -M32C_MACRO_ADJNZ_5, 6, -M32C_MACRO_ADJNZ_5, 0 } 520 }; 521 #define NUM_MAPPINGS (sizeof (subtype_mappings) / sizeof (subtype_mappings[0])) 522 523 void 524 m32c_prepare_relax_scan (fragS *fragP, offsetT *aim, relax_substateT this_state) 525 { 526 symbolS *symbolP = fragP->fr_symbol; 527 if (symbolP && !S_IS_DEFINED (symbolP)) 528 *aim = 0; 529 /* Adjust for m32c pcrel not being relative to the next opcode. */ 530 *aim += subtype_mappings[this_state].pcrel_aim_offset; 531 } 532 533 static int 534 insn_to_subtype (int inum, const CGEN_INSN *insn) 535 { 536 unsigned int i; 537 538 if (insn 539 && (strncmp (insn->base->mnemonic, "adjnz", 5) == 0 540 || strncmp (insn->base->mnemonic, "sbjnz", 5) == 0)) 541 { 542 i = 23 + insn->base->bitsize/8 - 3; 543 /*printf("mapping %d used for %s\n", i, insn->base->mnemonic);*/ 544 return i; 545 } 546 547 for (i=0; i<NUM_MAPPINGS; i++) 548 if (inum == subtype_mappings[i].insn) 549 { 550 /*printf("mapping %d used\n", i);*/ 551 return i; 552 } 553 abort (); 554 } 555 556 /* Return an initial guess of the length by which a fragment must grow to 557 hold a branch to reach its destination. 558 Also updates fr_type/fr_subtype as necessary. 559 560 Called just before doing relaxation. 561 Any symbol that is now undefined will not become defined. 562 The guess for fr_var is ACTUALLY the growth beyond fr_fix. 563 Whatever we do to grow fr_fix or fr_var contributes to our returned value. 564 Although it may not be explicit in the frag, pretend fr_var starts with a 565 0 value. */ 566 567 int 568 md_estimate_size_before_relax (fragS * fragP, segT segment ATTRIBUTE_UNUSED) 569 { 570 int where = fragP->fr_opcode - fragP->fr_literal; 571 572 if (fragP->fr_subtype == 1) 573 fragP->fr_subtype = insn_to_subtype (fragP->fr_cgen.insn->base->num, fragP->fr_cgen.insn); 574 575 if (S_GET_SEGMENT (fragP->fr_symbol) != segment) 576 { 577 int new_insn; 578 579 new_insn = subtype_mappings[fragP->fr_subtype].insn_for_extern; 580 fragP->fr_subtype = insn_to_subtype (new_insn, 0); 581 } 582 583 if (fragP->fr_cgen.insn->base 584 && fragP->fr_cgen.insn->base->num 585 != subtype_mappings[fragP->fr_subtype].insn 586 && subtype_mappings[fragP->fr_subtype].insn > 0) 587 { 588 int new_insn= subtype_mappings[fragP->fr_subtype].insn; 589 if (new_insn >= 0) 590 { 591 fragP->fr_cgen.insn = (fragP->fr_cgen.insn 592 - fragP->fr_cgen.insn->base->num 593 + new_insn); 594 } 595 } 596 597 return subtype_mappings[fragP->fr_subtype].bytes - (fragP->fr_fix - where); 598 } 599 600 /* *fragP has been relaxed to its final size, and now needs to have 601 the bytes inside it modified to conform to the new size. 602 603 Called after relaxation is finished. 604 fragP->fr_type == rs_machine_dependent. 605 fragP->fr_subtype is the subtype of what the address relaxed to. */ 606 607 static int 608 target_address_for (fragS *frag) 609 { 610 int rv = frag->fr_offset; 611 symbolS *sym = frag->fr_symbol; 612 613 if (sym) 614 rv += S_GET_VALUE (sym); 615 616 /*printf("target_address_for returns %d\n", rv);*/ 617 return rv; 618 } 619 620 void 621 md_convert_frag (bfd * abfd ATTRIBUTE_UNUSED, 622 segT sec ATTRIBUTE_UNUSED, 623 fragS * fragP ATTRIBUTE_UNUSED) 624 { 625 int addend; 626 int operand; 627 int where = fragP->fr_opcode - fragP->fr_literal; 628 int rl_where = fragP->fr_opcode - fragP->fr_literal; 629 unsigned char *op = (unsigned char *)fragP->fr_opcode; 630 int rl_addend = 0; 631 632 addend = target_address_for (fragP) - (fragP->fr_address + where); 633 634 fragP->fr_fix = where + subtype_mappings[fragP->fr_subtype].bytes; 635 636 switch (subtype_mappings[fragP->fr_subtype].insn) 637 { 638 case M32C_INSN_JCND16_5: 639 op[1] = addend - 1; 640 operand = M32C_OPERAND_LAB_8_8; 641 rl_addend = 0x21; 642 break; 643 644 case -M32C_MACRO_JCND16_5_W: 645 op[0] ^= 0x04; 646 op[1] = 4; 647 op[2] = 0xf4; 648 op[3] = addend - 3; 649 op[4] = (addend - 3) >> 8; 650 operand = M32C_OPERAND_LAB_8_16; 651 where += 2; 652 rl_addend = 0x51; 653 break; 654 655 case -M32C_MACRO_JCND16_5_A: 656 op[0] ^= 0x04; 657 op[1] = 5; 658 op[2] = 0xfc; 659 operand = M32C_OPERAND_LAB_8_24; 660 where += 2; 661 rl_addend = 0x61; 662 break; 663 664 665 case M32C_INSN_JCND16: 666 op[2] = addend - 2; 667 operand = M32C_OPERAND_LAB_16_8; 668 rl_addend = 0x31; 669 break; 670 671 case -M32C_MACRO_JCND16_W: 672 op[1] ^= 0x04; 673 op[2] = 4; 674 op[3] = 0xf4; 675 op[4] = addend - 4; 676 op[5] = (addend - 4) >> 8; 677 operand = M32C_OPERAND_LAB_8_16; 678 where += 3; 679 rl_addend = 0x61; 680 break; 681 682 case -M32C_MACRO_JCND16_A: 683 op[1] ^= 0x04; 684 op[2] = 5; 685 op[3] = 0xfc; 686 operand = M32C_OPERAND_LAB_8_24; 687 where += 3; 688 rl_addend = 0x71; 689 break; 690 691 case M32C_INSN_JMP16_S: 692 op[0] = 0x60 | ((addend-2) & 0x07); 693 operand = M32C_OPERAND_LAB_5_3; 694 rl_addend = 0x10; 695 break; 696 697 case M32C_INSN_JMP16_B: 698 op[0] = 0xfe; 699 op[1] = addend - 1; 700 operand = M32C_OPERAND_LAB_8_8; 701 rl_addend = 0x21; 702 break; 703 704 case M32C_INSN_JMP16_W: 705 op[0] = 0xf4; 706 op[1] = addend - 1; 707 op[2] = (addend - 1) >> 8; 708 operand = M32C_OPERAND_LAB_8_16; 709 rl_addend = 0x31; 710 break; 711 712 case M32C_INSN_JMP16_A: 713 op[0] = 0xfc; 714 op[1] = 0; 715 op[2] = 0; 716 op[3] = 0; 717 operand = M32C_OPERAND_LAB_8_24; 718 rl_addend = 0x41; 719 break; 720 721 case M32C_INSN_JCND32: 722 op[1] = addend - 1; 723 operand = M32C_OPERAND_LAB_8_8; 724 rl_addend = 0x21; 725 break; 726 727 case -M32C_MACRO_JCND32_W: 728 op[0] ^= 0x40; 729 op[1] = 4; 730 op[2] = 0xce; 731 op[3] = addend - 3; 732 op[4] = (addend - 3) >> 8; 733 operand = M32C_OPERAND_LAB_8_16; 734 where += 2; 735 rl_addend = 0x51; 736 break; 737 738 case -M32C_MACRO_JCND32_A: 739 op[0] ^= 0x40; 740 op[1] = 5; 741 op[2] = 0xcc; 742 operand = M32C_OPERAND_LAB_8_24; 743 where += 2; 744 rl_addend = 0x61; 745 break; 746 747 case M32C_INSN_JMP32_S: 748 addend = ((addend-2) & 0x07); 749 op[0] = 0x4a | (addend & 0x01) | ((addend << 3) & 0x30); 750 operand = M32C_OPERAND_LAB32_JMP_S; 751 rl_addend = 0x10; 752 break; 753 754 case M32C_INSN_JMP32_B: 755 op[0] = 0xbb; 756 op[1] = addend - 1; 757 operand = M32C_OPERAND_LAB_8_8; 758 rl_addend = 0x21; 759 break; 760 761 case M32C_INSN_JMP32_W: 762 op[0] = 0xce; 763 op[1] = addend - 1; 764 op[2] = (addend - 1) >> 8; 765 operand = M32C_OPERAND_LAB_8_16; 766 rl_addend = 0x31; 767 break; 768 769 case M32C_INSN_JMP32_A: 770 op[0] = 0xcc; 771 op[1] = 0; 772 op[2] = 0; 773 op[3] = 0; 774 operand = M32C_OPERAND_LAB_8_24; 775 rl_addend = 0x41; 776 break; 777 778 779 case M32C_INSN_JSR16_W: 780 op[0] = 0xf5; 781 op[1] = addend - 1; 782 op[2] = (addend - 1) >> 8; 783 operand = M32C_OPERAND_LAB_8_16; 784 rl_addend = 0x31; 785 break; 786 787 case M32C_INSN_JSR16_A: 788 op[0] = 0xfd; 789 op[1] = 0; 790 op[2] = 0; 791 op[3] = 0; 792 operand = M32C_OPERAND_LAB_8_24; 793 rl_addend = 0x41; 794 break; 795 796 case M32C_INSN_JSR32_W: 797 op[0] = 0xcf; 798 op[1] = addend - 1; 799 op[2] = (addend - 1) >> 8; 800 operand = M32C_OPERAND_LAB_8_16; 801 rl_addend = 0x31; 802 break; 803 804 case M32C_INSN_JSR32_A: 805 op[0] = 0xcd; 806 op[1] = 0; 807 op[2] = 0; 808 op[3] = 0; 809 operand = M32C_OPERAND_LAB_8_24; 810 rl_addend = 0x41; 811 break; 812 813 case -M32C_MACRO_ADJNZ_2: 814 rl_addend = 0x31; 815 op[2] = addend - 2; 816 operand = M32C_OPERAND_LAB_16_8; 817 break; 818 case -M32C_MACRO_ADJNZ_3: 819 rl_addend = 0x41; 820 op[3] = addend - 2; 821 operand = M32C_OPERAND_LAB_24_8; 822 break; 823 case -M32C_MACRO_ADJNZ_4: 824 rl_addend = 0x51; 825 op[4] = addend - 2; 826 operand = M32C_OPERAND_LAB_32_8; 827 break; 828 case -M32C_MACRO_ADJNZ_5: 829 rl_addend = 0x61; 830 op[5] = addend - 2; 831 operand = M32C_OPERAND_LAB_40_8; 832 break; 833 834 default: 835 printf("\nHey! Need more opcode converters! missing: %d %s\n\n", 836 fragP->fr_subtype, 837 fragP->fr_cgen.insn->base->name); 838 abort(); 839 } 840 841 if (m32c_relax) 842 { 843 if (operand != M32C_OPERAND_LAB_8_24) 844 fragP->fr_offset = (fragP->fr_address + where); 845 846 fix_new (fragP, 847 rl_where, 848 0, abs_section_sym, rl_addend, 0, 849 BFD_RELOC_M32C_RL_JUMP); 850 } 851 852 if (S_GET_SEGMENT (fragP->fr_symbol) != sec 853 || operand == M32C_OPERAND_LAB_8_24 854 || (m32c_relax && (operand != M32C_OPERAND_LAB_5_3 855 && operand != M32C_OPERAND_LAB32_JMP_S))) 856 { 857 gas_assert (fragP->fr_cgen.insn != 0); 858 gas_cgen_record_fixup (fragP, 859 where, 860 fragP->fr_cgen.insn, 861 (fragP->fr_fix - where) * 8, 862 cgen_operand_lookup_by_num (gas_cgen_cpu_desc, 863 operand), 864 fragP->fr_cgen.opinfo, 865 fragP->fr_symbol, 866 fragP->fr_offset); 867 } 868 } 869 870 /* Functions concerning relocs. */ 871 872 /* The location from which a PC relative jump should be calculated, 873 given a PC relative reloc. */ 874 875 long 876 md_pcrel_from_section (fixS * fixP, segT sec) 877 { 878 if (fixP->fx_addsy != (symbolS *) NULL 879 && (! S_IS_DEFINED (fixP->fx_addsy) 880 || S_GET_SEGMENT (fixP->fx_addsy) != sec)) 881 /* The symbol is undefined (or is defined but not in this section). 882 Let the linker figure it out. */ 883 return 0; 884 885 return (fixP->fx_frag->fr_address + fixP->fx_where); 886 } 887 888 /* Return the bfd reloc type for OPERAND of INSN at fixup FIXP. 889 Returns BFD_RELOC_NONE if no reloc type can be found. 890 *FIXP may be modified if desired. */ 891 892 bfd_reloc_code_real_type 893 md_cgen_lookup_reloc (const CGEN_INSN * insn ATTRIBUTE_UNUSED, 894 const CGEN_OPERAND * operand, 895 fixS * fixP ATTRIBUTE_UNUSED) 896 { 897 static const struct op_reloc { 898 /* A CGEN operand type that can be a relocatable expression. */ 899 CGEN_OPERAND_TYPE operand; 900 901 /* The appropriate BFD reloc type to use for that. */ 902 bfd_reloc_code_real_type reloc; 903 904 /* The offset from the start of the instruction to the field to be 905 relocated, in bytes. */ 906 int offset; 907 } op_reloc_table[] = { 908 909 /* PC-REL relocs for 8-bit fields. */ 910 { M32C_OPERAND_LAB_8_8, BFD_RELOC_8_PCREL, 1 }, 911 { M32C_OPERAND_LAB_16_8, BFD_RELOC_8_PCREL, 2 }, 912 { M32C_OPERAND_LAB_24_8, BFD_RELOC_8_PCREL, 3 }, 913 { M32C_OPERAND_LAB_32_8, BFD_RELOC_8_PCREL, 4 }, 914 { M32C_OPERAND_LAB_40_8, BFD_RELOC_8_PCREL, 5 }, 915 916 /* PC-REL relocs for 16-bit fields. */ 917 { M32C_OPERAND_LAB_8_16, BFD_RELOC_16_PCREL, 1 }, 918 919 /* Absolute relocs for 8-bit fields. */ 920 { M32C_OPERAND_IMM_8_QI, BFD_RELOC_8, 1 }, 921 { M32C_OPERAND_IMM_16_QI, BFD_RELOC_8, 2 }, 922 { M32C_OPERAND_IMM_24_QI, BFD_RELOC_8, 3 }, 923 { M32C_OPERAND_IMM_32_QI, BFD_RELOC_8, 4 }, 924 { M32C_OPERAND_IMM_40_QI, BFD_RELOC_8, 5 }, 925 { M32C_OPERAND_IMM_48_QI, BFD_RELOC_8, 6 }, 926 { M32C_OPERAND_IMM_56_QI, BFD_RELOC_8, 7 }, 927 { M32C_OPERAND_DSP_8_S8, BFD_RELOC_8, 1 }, 928 { M32C_OPERAND_DSP_16_S8, BFD_RELOC_8, 2 }, 929 { M32C_OPERAND_DSP_24_S8, BFD_RELOC_8, 3 }, 930 { M32C_OPERAND_DSP_32_S8, BFD_RELOC_8, 4 }, 931 { M32C_OPERAND_DSP_40_S8, BFD_RELOC_8, 5 }, 932 { M32C_OPERAND_DSP_48_S8, BFD_RELOC_8, 6 }, 933 { M32C_OPERAND_DSP_8_U8, BFD_RELOC_8, 1 }, 934 { M32C_OPERAND_DSP_16_U8, BFD_RELOC_8, 2 }, 935 { M32C_OPERAND_DSP_24_U8, BFD_RELOC_8, 3 }, 936 { M32C_OPERAND_DSP_32_U8, BFD_RELOC_8, 4 }, 937 { M32C_OPERAND_DSP_40_U8, BFD_RELOC_8, 5 }, 938 { M32C_OPERAND_DSP_48_U8, BFD_RELOC_8, 6 }, 939 { M32C_OPERAND_BITBASE32_16_S11_UNPREFIXED, BFD_RELOC_8, 2 }, 940 { M32C_OPERAND_BITBASE32_16_U11_UNPREFIXED, BFD_RELOC_8, 2 }, 941 { M32C_OPERAND_BITBASE32_24_S11_PREFIXED, BFD_RELOC_8, 3 }, 942 { M32C_OPERAND_BITBASE32_24_U11_PREFIXED, BFD_RELOC_8, 3 }, 943 944 /* Absolute relocs for 16-bit fields. */ 945 { M32C_OPERAND_IMM_8_HI, BFD_RELOC_16, 1 }, 946 { M32C_OPERAND_IMM_16_HI, BFD_RELOC_16, 2 }, 947 { M32C_OPERAND_IMM_24_HI, BFD_RELOC_16, 3 }, 948 { M32C_OPERAND_IMM_32_HI, BFD_RELOC_16, 4 }, 949 { M32C_OPERAND_IMM_40_HI, BFD_RELOC_16, 5 }, 950 { M32C_OPERAND_IMM_48_HI, BFD_RELOC_16, 6 }, 951 { M32C_OPERAND_IMM_56_HI, BFD_RELOC_16, 7 }, 952 { M32C_OPERAND_IMM_64_HI, BFD_RELOC_16, 8 }, 953 { M32C_OPERAND_DSP_16_S16, BFD_RELOC_16, 2 }, 954 { M32C_OPERAND_DSP_24_S16, BFD_RELOC_16, 3 }, 955 { M32C_OPERAND_DSP_32_S16, BFD_RELOC_16, 4 }, 956 { M32C_OPERAND_DSP_40_S16, BFD_RELOC_16, 5 }, 957 { M32C_OPERAND_DSP_8_U16, BFD_RELOC_16, 1 }, 958 { M32C_OPERAND_DSP_16_U16, BFD_RELOC_16, 2 }, 959 { M32C_OPERAND_DSP_24_U16, BFD_RELOC_16, 3 }, 960 { M32C_OPERAND_DSP_32_U16, BFD_RELOC_16, 4 }, 961 { M32C_OPERAND_DSP_40_U16, BFD_RELOC_16, 5 }, 962 { M32C_OPERAND_DSP_48_U16, BFD_RELOC_16, 6 }, 963 { M32C_OPERAND_BITBASE32_16_S19_UNPREFIXED, BFD_RELOC_16, 2 }, 964 { M32C_OPERAND_BITBASE32_16_U19_UNPREFIXED, BFD_RELOC_16, 2 }, 965 { M32C_OPERAND_BITBASE32_24_S19_PREFIXED, BFD_RELOC_16, 3 }, 966 { M32C_OPERAND_BITBASE32_24_U19_PREFIXED, BFD_RELOC_16, 3 }, 967 968 /* Absolute relocs for 24-bit fields. */ 969 { M32C_OPERAND_LAB_8_24, BFD_RELOC_24, 1 }, 970 { M32C_OPERAND_DSP_8_S24, BFD_RELOC_24, 1 }, 971 { M32C_OPERAND_DSP_8_U24, BFD_RELOC_24, 1 }, 972 { M32C_OPERAND_DSP_16_U24, BFD_RELOC_24, 2 }, 973 { M32C_OPERAND_DSP_24_U24, BFD_RELOC_24, 3 }, 974 { M32C_OPERAND_DSP_32_U24, BFD_RELOC_24, 4 }, 975 { M32C_OPERAND_DSP_40_U24, BFD_RELOC_24, 5 }, 976 { M32C_OPERAND_DSP_48_U24, BFD_RELOC_24, 6 }, 977 { M32C_OPERAND_DSP_16_U20, BFD_RELOC_24, 2 }, 978 { M32C_OPERAND_DSP_24_U20, BFD_RELOC_24, 3 }, 979 { M32C_OPERAND_DSP_32_U20, BFD_RELOC_24, 4 }, 980 { M32C_OPERAND_BITBASE32_16_U27_UNPREFIXED, BFD_RELOC_24, 2 }, 981 { M32C_OPERAND_BITBASE32_24_U27_PREFIXED, BFD_RELOC_24, 3 }, 982 983 /* Absolute relocs for 32-bit fields. */ 984 { M32C_OPERAND_IMM_16_SI, BFD_RELOC_32, 2 }, 985 { M32C_OPERAND_IMM_24_SI, BFD_RELOC_32, 3 }, 986 { M32C_OPERAND_IMM_32_SI, BFD_RELOC_32, 4 }, 987 { M32C_OPERAND_IMM_40_SI, BFD_RELOC_32, 5 }, 988 989 }; 990 991 int i; 992 993 for (i = ARRAY_SIZE (op_reloc_table); --i >= 0; ) 994 { 995 const struct op_reloc *or = &op_reloc_table[i]; 996 997 if (or->operand == operand->type) 998 { 999 fixP->fx_where += or->offset; 1000 fixP->fx_size -= or->offset; 1001 1002 if (fixP->fx_cgen.opinfo 1003 && fixP->fx_cgen.opinfo != BFD_RELOC_NONE) 1004 return fixP->fx_cgen.opinfo; 1005 1006 return or->reloc; 1007 } 1008 } 1009 1010 fprintf 1011 (stderr, 1012 "Error: tc-m32c.c:md_cgen_lookup_reloc Unimplemented relocation for operand %s\n", 1013 operand->name); 1014 1015 return BFD_RELOC_NONE; 1016 } 1017 1018 void 1019 m32c_cons_fix_new (fragS * frag, 1020 int where, 1021 int size, 1022 expressionS *exp, 1023 bfd_reloc_code_real_type type) 1024 { 1025 switch (size) 1026 { 1027 case 1: 1028 type = BFD_RELOC_8; 1029 break; 1030 case 2: 1031 type = BFD_RELOC_16; 1032 break; 1033 case 3: 1034 type = BFD_RELOC_24; 1035 break; 1036 case 4: 1037 default: 1038 type = BFD_RELOC_32; 1039 break; 1040 case 8: 1041 type = BFD_RELOC_64; 1042 break; 1043 } 1044 1045 fix_new_exp (frag, where, (int) size, exp, 0, type); 1046 } 1047 1048 void 1049 m32c_apply_fix (struct fix *f, valueT *t, segT s) 1050 { 1051 if (f->fx_r_type == BFD_RELOC_M32C_RL_JUMP 1052 || f->fx_r_type == BFD_RELOC_M32C_RL_1ADDR 1053 || f->fx_r_type == BFD_RELOC_M32C_RL_2ADDR) 1054 return; 1055 gas_cgen_md_apply_fix (f, t, s); 1056 } 1057 1058 arelent * 1059 tc_gen_reloc (asection *sec, fixS *fx) 1060 { 1061 if (fx->fx_r_type == BFD_RELOC_M32C_RL_JUMP 1062 || fx->fx_r_type == BFD_RELOC_M32C_RL_1ADDR 1063 || fx->fx_r_type == BFD_RELOC_M32C_RL_2ADDR) 1064 { 1065 arelent * reloc; 1066 1067 reloc = XNEW (arelent); 1068 1069 reloc->sym_ptr_ptr = XNEW (asymbol *); 1070 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fx->fx_addsy); 1071 reloc->address = fx->fx_frag->fr_address + fx->fx_where; 1072 reloc->howto = bfd_reloc_type_lookup (stdoutput, fx->fx_r_type); 1073 reloc->addend = fx->fx_offset; 1074 return reloc; 1075 1076 } 1077 return gas_cgen_tc_gen_reloc (sec, fx); 1078 } 1079 1080 /* See whether we need to force a relocation into the output file. 1081 This is used to force out switch and PC relative relocations when 1082 relaxing. */ 1083 1084 int 1085 m32c_force_relocation (fixS * fixp) 1086 { 1087 int reloc = fixp->fx_r_type; 1088 1089 if (reloc > (int)BFD_RELOC_UNUSED) 1090 { 1091 reloc -= (int)BFD_RELOC_UNUSED; 1092 switch (reloc) 1093 { 1094 case M32C_OPERAND_DSP_32_S16: 1095 case M32C_OPERAND_DSP_32_U16: 1096 case M32C_OPERAND_IMM_32_HI: 1097 case M32C_OPERAND_DSP_16_S16: 1098 case M32C_OPERAND_DSP_16_U16: 1099 case M32C_OPERAND_IMM_16_HI: 1100 case M32C_OPERAND_DSP_24_S16: 1101 case M32C_OPERAND_DSP_24_U16: 1102 case M32C_OPERAND_IMM_24_HI: 1103 return 1; 1104 1105 /* If we're doing linker relaxing, we need to keep all the 1106 pc-relative jumps in case we need to fix them due to 1107 deleted bytes between the jump and its destination. */ 1108 case M32C_OPERAND_LAB_8_8: 1109 case M32C_OPERAND_LAB_8_16: 1110 case M32C_OPERAND_LAB_8_24: 1111 case M32C_OPERAND_LAB_16_8: 1112 case M32C_OPERAND_LAB_24_8: 1113 case M32C_OPERAND_LAB_32_8: 1114 case M32C_OPERAND_LAB_40_8: 1115 if (m32c_relax) 1116 return 1; 1117 default: 1118 break; 1119 } 1120 } 1121 else 1122 { 1123 switch (fixp->fx_r_type) 1124 { 1125 case BFD_RELOC_16: 1126 return 1; 1127 1128 case BFD_RELOC_M32C_RL_JUMP: 1129 case BFD_RELOC_M32C_RL_1ADDR: 1130 case BFD_RELOC_M32C_RL_2ADDR: 1131 case BFD_RELOC_8_PCREL: 1132 case BFD_RELOC_16_PCREL: 1133 if (m32c_relax) 1134 return 1; 1135 default: 1136 break; 1137 } 1138 } 1139 1140 return generic_force_reloc (fixp); 1141 } 1142 1143 /* Write a value out to the object file, using the appropriate endianness. */ 1144 1145 void 1146 md_number_to_chars (char * buf, valueT val, int n) 1147 { 1148 number_to_chars_littleendian (buf, val, n); 1149 } 1150 1151 /* Turn a string in input_line_pointer into a floating point constant of type 1152 type, and store the appropriate bytes in *litP. The number of LITTLENUMS 1153 emitted is stored in *sizeP . An error message is returned, or NULL on OK. */ 1154 1155 /* Equal to MAX_PRECISION in atof-ieee.c. */ 1156 #define MAX_LITTLENUMS 6 1157 1158 const char * 1159 md_atof (int type, char * litP, int * sizeP) 1160 { 1161 return ieee_md_atof (type, litP, sizeP, TRUE); 1162 } 1163 1164 bfd_boolean 1165 m32c_fix_adjustable (fixS * fixP) 1166 { 1167 int reloc; 1168 if (fixP->fx_addsy == NULL) 1169 return 1; 1170 1171 /* We need the symbol name for the VTABLE entries. */ 1172 reloc = fixP->fx_r_type; 1173 if (reloc > (int)BFD_RELOC_UNUSED) 1174 { 1175 reloc -= (int)BFD_RELOC_UNUSED; 1176 switch (reloc) 1177 { 1178 case M32C_OPERAND_DSP_32_S16: 1179 case M32C_OPERAND_DSP_32_U16: 1180 case M32C_OPERAND_IMM_32_HI: 1181 case M32C_OPERAND_DSP_16_S16: 1182 case M32C_OPERAND_DSP_16_U16: 1183 case M32C_OPERAND_IMM_16_HI: 1184 case M32C_OPERAND_DSP_24_S16: 1185 case M32C_OPERAND_DSP_24_U16: 1186 case M32C_OPERAND_IMM_24_HI: 1187 return 0; 1188 } 1189 } 1190 else 1191 { 1192 if (fixP->fx_r_type == BFD_RELOC_16) 1193 return 0; 1194 } 1195 1196 /* Do not adjust relocations involving symbols in merged sections. 1197 1198 A reloc patching in the value of some symbol S plus some addend A 1199 can be produced in different ways: 1200 1201 1) It might simply be a reference to the data at S + A. Clearly, 1202 if linker merging shift that data around, the value patched in 1203 by the reloc needs to be adjusted accordingly. 1204 1205 2) Or, it might be a reference to S, with A added in as a constant 1206 bias. For example, given code like this: 1207 1208 static int S[100]; 1209 1210 ... S[i - 8] ... 1211 1212 it would be reasonable for the compiler to rearrange the array 1213 reference to something like: 1214 1215 ... (S-8)[i] ... 1216 1217 and emit assembly code that refers to S - (8 * sizeof (int)), 1218 so the subtraction is done entirely at compile-time. In this 1219 case, the reloc's addend A would be -(8 * sizeof (int)), and 1220 shifting around code or data at S + A should not affect the 1221 reloc: the reloc isn't referring to that code or data at all. 1222 1223 The linker has no way of knowing which case it has in hand. So, 1224 to disambiguate, we have the linker always treat reloc addends as 1225 in case 2): they're constants that should be simply added to the 1226 symbol value, just like the reloc says. And we express case 1) 1227 in different way: we have the compiler place a label at the real 1228 target, and reference that label with an addend of zero. (The 1229 compiler is unlikely to reference code using a label plus an 1230 offset anyway, since it doesn't know the sizes of the 1231 instructions.) 1232 1233 The simplification being done by gas/write.c:adjust_reloc_syms, 1234 however, turns the explicit-label usage into the label-plus- 1235 offset usage, re-introducing the ambiguity the compiler avoided. 1236 So we need to disable that simplification for symbols referring 1237 to merged data. 1238 1239 This only affects object size a little bit. */ 1240 if (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) 1241 return 0; 1242 1243 if (m32c_relax) 1244 return 0; 1245 1246 return 1; 1247 } 1248 1249 /* Worker function for m32c_is_colon_insn(). */ 1250 static int 1251 restore_colon (char *next_i_l_p, char *nul_char) 1252 { 1253 /* Restore the colon, and advance input_line_pointer to 1254 the end of the new symbol. */ 1255 *input_line_pointer = *nul_char; 1256 input_line_pointer = next_i_l_p; 1257 *nul_char = *next_i_l_p; 1258 *next_i_l_p = 0; 1259 return 1; 1260 } 1261 1262 /* Determines if the symbol starting at START and ending in 1263 a colon that was at the location pointed to by INPUT_LINE_POINTER 1264 (but which has now been replaced bu a NUL) is in fact an 1265 :Z, :S, :Q, or :G suffix. 1266 If it is, then it restores the colon, advances INPUT_LINE_POINTER 1267 to the real end of the instruction/symbol, saves the char there to 1268 NUL_CHAR and pokes a NUL, and returns 1. Otherwise it returns 0. */ 1269 int 1270 m32c_is_colon_insn (char *start ATTRIBUTE_UNUSED, char *nul_char) 1271 { 1272 char * i_l_p = input_line_pointer; 1273 1274 if (*nul_char == '"') 1275 ++i_l_p; 1276 1277 /* Check to see if the text following the colon is 'G' */ 1278 if (TOLOWER (i_l_p[1]) == 'g' && (i_l_p[2] == ' ' || i_l_p[2] == '\t')) 1279 return restore_colon (i_l_p + 2, nul_char); 1280 1281 /* Check to see if the text following the colon is 'Q' */ 1282 if (TOLOWER (i_l_p[1]) == 'q' && (i_l_p[2] == ' ' || i_l_p[2] == '\t')) 1283 return restore_colon (i_l_p + 2, nul_char); 1284 1285 /* Check to see if the text following the colon is 'S' */ 1286 if (TOLOWER (i_l_p[1]) == 's' && (i_l_p[2] == ' ' || i_l_p[2] == '\t')) 1287 return restore_colon (i_l_p + 2, nul_char); 1288 1289 /* Check to see if the text following the colon is 'Z' */ 1290 if (TOLOWER (i_l_p[1]) == 'z' && (i_l_p[2] == ' ' || i_l_p[2] == '\t')) 1291 return restore_colon (i_l_p + 2, nul_char); 1292 1293 return 0; 1294 } 1295