xref: /netbsd-src/external/gpl3/binutils.old/dist/bfd/section.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /* Object file "section" support for the BFD library.
2    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4    2012
5    Free Software Foundation, Inc.
6    Written by Cygnus Support.
7 
8    This file is part of BFD, the Binary File Descriptor library.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program; if not, write to the Free Software
22    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23    MA 02110-1301, USA.  */
24 
25 /*
26 SECTION
27 	Sections
28 
29 	The raw data contained within a BFD is maintained through the
30 	section abstraction.  A single BFD may have any number of
31 	sections.  It keeps hold of them by pointing to the first;
32 	each one points to the next in the list.
33 
34 	Sections are supported in BFD in <<section.c>>.
35 
36 @menu
37 @* Section Input::
38 @* Section Output::
39 @* typedef asection::
40 @* section prototypes::
41 @end menu
42 
43 INODE
44 Section Input, Section Output, Sections, Sections
45 SUBSECTION
46 	Section input
47 
48 	When a BFD is opened for reading, the section structures are
49 	created and attached to the BFD.
50 
51 	Each section has a name which describes the section in the
52 	outside world---for example, <<a.out>> would contain at least
53 	three sections, called <<.text>>, <<.data>> and <<.bss>>.
54 
55 	Names need not be unique; for example a COFF file may have several
56 	sections named <<.data>>.
57 
58 	Sometimes a BFD will contain more than the ``natural'' number of
59 	sections. A back end may attach other sections containing
60 	constructor data, or an application may add a section (using
61 	<<bfd_make_section>>) to the sections attached to an already open
62 	BFD. For example, the linker creates an extra section
63 	<<COMMON>> for each input file's BFD to hold information about
64 	common storage.
65 
66 	The raw data is not necessarily read in when
67 	the section descriptor is created. Some targets may leave the
68 	data in place until a <<bfd_get_section_contents>> call is
69 	made. Other back ends may read in all the data at once.  For
70 	example, an S-record file has to be read once to determine the
71 	size of the data. An IEEE-695 file doesn't contain raw data in
72 	sections, but data and relocation expressions intermixed, so
73 	the data area has to be parsed to get out the data and
74 	relocations.
75 
76 INODE
77 Section Output, typedef asection, Section Input, Sections
78 
79 SUBSECTION
80 	Section output
81 
82 	To write a new object style BFD, the various sections to be
83 	written have to be created. They are attached to the BFD in
84 	the same way as input sections; data is written to the
85 	sections using <<bfd_set_section_contents>>.
86 
87 	Any program that creates or combines sections (e.g., the assembler
88 	and linker) must use the <<asection>> fields <<output_section>> and
89 	<<output_offset>> to indicate the file sections to which each
90 	section must be written.  (If the section is being created from
91 	scratch, <<output_section>> should probably point to the section
92 	itself and <<output_offset>> should probably be zero.)
93 
94 	The data to be written comes from input sections attached
95 	(via <<output_section>> pointers) to
96 	the output sections.  The output section structure can be
97 	considered a filter for the input section: the output section
98 	determines the vma of the output data and the name, but the
99 	input section determines the offset into the output section of
100 	the data to be written.
101 
102 	E.g., to create a section "O", starting at 0x100, 0x123 long,
103 	containing two subsections, "A" at offset 0x0 (i.e., at vma
104 	0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
105 	structures would look like:
106 
107 |   section name          "A"
108 |     output_offset   0x00
109 |     size            0x20
110 |     output_section ----------->  section name    "O"
111 |                             |    vma             0x100
112 |   section name          "B" |    size            0x123
113 |     output_offset   0x20    |
114 |     size            0x103   |
115 |     output_section  --------|
116 
117 SUBSECTION
118 	Link orders
119 
120 	The data within a section is stored in a @dfn{link_order}.
121 	These are much like the fixups in <<gas>>.  The link_order
122 	abstraction allows a section to grow and shrink within itself.
123 
124 	A link_order knows how big it is, and which is the next
125 	link_order and where the raw data for it is; it also points to
126 	a list of relocations which apply to it.
127 
128 	The link_order is used by the linker to perform relaxing on
129 	final code.  The compiler creates code which is as big as
130 	necessary to make it work without relaxing, and the user can
131 	select whether to relax.  Sometimes relaxing takes a lot of
132 	time.  The linker runs around the relocations to see if any
133 	are attached to data which can be shrunk, if so it does it on
134 	a link_order by link_order basis.
135 
136 */
137 
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libbfd.h"
141 #include "bfdlink.h"
142 
143 /*
144 DOCDD
145 INODE
146 typedef asection, section prototypes, Section Output, Sections
147 SUBSECTION
148 	typedef asection
149 
150 	Here is the section structure:
151 
152 CODE_FRAGMENT
153 .
154 .typedef struct bfd_section
155 .{
156 .  {* The name of the section; the name isn't a copy, the pointer is
157 .     the same as that passed to bfd_make_section.  *}
158 .  const char *name;
159 .
160 .  {* A unique sequence number.  *}
161 .  int id;
162 .
163 .  {* Which section in the bfd; 0..n-1 as sections are created in a bfd.  *}
164 .  int index;
165 .
166 .  {* The next section in the list belonging to the BFD, or NULL.  *}
167 .  struct bfd_section *next;
168 .
169 .  {* The previous section in the list belonging to the BFD, or NULL.  *}
170 .  struct bfd_section *prev;
171 .
172 .  {* The field flags contains attributes of the section. Some
173 .     flags are read in from the object file, and some are
174 .     synthesized from other information.  *}
175 .  flagword flags;
176 .
177 .#define SEC_NO_FLAGS   0x000
178 .
179 .  {* Tells the OS to allocate space for this section when loading.
180 .     This is clear for a section containing debug information only.  *}
181 .#define SEC_ALLOC      0x001
182 .
183 .  {* Tells the OS to load the section from the file when loading.
184 .     This is clear for a .bss section.  *}
185 .#define SEC_LOAD       0x002
186 .
187 .  {* The section contains data still to be relocated, so there is
188 .     some relocation information too.  *}
189 .#define SEC_RELOC      0x004
190 .
191 .  {* A signal to the OS that the section contains read only data.  *}
192 .#define SEC_READONLY   0x008
193 .
194 .  {* The section contains code only.  *}
195 .#define SEC_CODE       0x010
196 .
197 .  {* The section contains data only.  *}
198 .#define SEC_DATA       0x020
199 .
200 .  {* The section will reside in ROM.  *}
201 .#define SEC_ROM        0x040
202 .
203 .  {* The section contains constructor information. This section
204 .     type is used by the linker to create lists of constructors and
205 .     destructors used by <<g++>>. When a back end sees a symbol
206 .     which should be used in a constructor list, it creates a new
207 .     section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
208 .     the symbol to it, and builds a relocation. To build the lists
209 .     of constructors, all the linker has to do is catenate all the
210 .     sections called <<__CTOR_LIST__>> and relocate the data
211 .     contained within - exactly the operations it would peform on
212 .     standard data.  *}
213 .#define SEC_CONSTRUCTOR 0x080
214 .
215 .  {* The section has contents - a data section could be
216 .     <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
217 .     <<SEC_HAS_CONTENTS>>  *}
218 .#define SEC_HAS_CONTENTS 0x100
219 .
220 .  {* An instruction to the linker to not output the section
221 .     even if it has information which would normally be written.  *}
222 .#define SEC_NEVER_LOAD 0x200
223 .
224 .  {* The section contains thread local data.  *}
225 .#define SEC_THREAD_LOCAL 0x400
226 .
227 .  {* The section has GOT references.  This flag is only for the
228 .     linker, and is currently only used by the elf32-hppa back end.
229 .     It will be set if global offset table references were detected
230 .     in this section, which indicate to the linker that the section
231 .     contains PIC code, and must be handled specially when doing a
232 .     static link.  *}
233 .#define SEC_HAS_GOT_REF 0x800
234 .
235 .  {* The section contains common symbols (symbols may be defined
236 .     multiple times, the value of a symbol is the amount of
237 .     space it requires, and the largest symbol value is the one
238 .     used).  Most targets have exactly one of these (which we
239 .     translate to bfd_com_section_ptr), but ECOFF has two.  *}
240 .#define SEC_IS_COMMON 0x1000
241 .
242 .  {* The section contains only debugging information.  For
243 .     example, this is set for ELF .debug and .stab sections.
244 .     strip tests this flag to see if a section can be
245 .     discarded.  *}
246 .#define SEC_DEBUGGING 0x2000
247 .
248 .  {* The contents of this section are held in memory pointed to
249 .     by the contents field.  This is checked by bfd_get_section_contents,
250 .     and the data is retrieved from memory if appropriate.  *}
251 .#define SEC_IN_MEMORY 0x4000
252 .
253 .  {* The contents of this section are to be excluded by the
254 .     linker for executable and shared objects unless those
255 .     objects are to be further relocated.  *}
256 .#define SEC_EXCLUDE 0x8000
257 .
258 .  {* The contents of this section are to be sorted based on the sum of
259 .     the symbol and addend values specified by the associated relocation
260 .     entries.  Entries without associated relocation entries will be
261 .     appended to the end of the section in an unspecified order.  *}
262 .#define SEC_SORT_ENTRIES 0x10000
263 .
264 .  {* When linking, duplicate sections of the same name should be
265 .     discarded, rather than being combined into a single section as
266 .     is usually done.  This is similar to how common symbols are
267 .     handled.  See SEC_LINK_DUPLICATES below.  *}
268 .#define SEC_LINK_ONCE 0x20000
269 .
270 .  {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
271 .     should handle duplicate sections.  *}
272 .#define SEC_LINK_DUPLICATES 0xc0000
273 .
274 .  {* This value for SEC_LINK_DUPLICATES means that duplicate
275 .     sections with the same name should simply be discarded.  *}
276 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
277 .
278 .  {* This value for SEC_LINK_DUPLICATES means that the linker
279 .     should warn if there are any duplicate sections, although
280 .     it should still only link one copy.  *}
281 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
282 .
283 .  {* This value for SEC_LINK_DUPLICATES means that the linker
284 .     should warn if any duplicate sections are a different size.  *}
285 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
286 .
287 .  {* This value for SEC_LINK_DUPLICATES means that the linker
288 .     should warn if any duplicate sections contain different
289 .     contents.  *}
290 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
291 .  (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
292 .
293 .  {* This section was created by the linker as part of dynamic
294 .     relocation or other arcane processing.  It is skipped when
295 .     going through the first-pass output, trusting that someone
296 .     else up the line will take care of it later.  *}
297 .#define SEC_LINKER_CREATED 0x100000
298 .
299 .  {* This section should not be subject to garbage collection.
300 .     Also set to inform the linker that this section should not be
301 .     listed in the link map as discarded.  *}
302 .#define SEC_KEEP 0x200000
303 .
304 .  {* This section contains "short" data, and should be placed
305 .     "near" the GP.  *}
306 .#define SEC_SMALL_DATA 0x400000
307 .
308 .  {* Attempt to merge identical entities in the section.
309 .     Entity size is given in the entsize field.  *}
310 .#define SEC_MERGE 0x800000
311 .
312 .  {* If given with SEC_MERGE, entities to merge are zero terminated
313 .     strings where entsize specifies character size instead of fixed
314 .     size entries.  *}
315 .#define SEC_STRINGS 0x1000000
316 .
317 .  {* This section contains data about section groups.  *}
318 .#define SEC_GROUP 0x2000000
319 .
320 .  {* The section is a COFF shared library section.  This flag is
321 .     only for the linker.  If this type of section appears in
322 .     the input file, the linker must copy it to the output file
323 .     without changing the vma or size.  FIXME: Although this
324 .     was originally intended to be general, it really is COFF
325 .     specific (and the flag was renamed to indicate this).  It
326 .     might be cleaner to have some more general mechanism to
327 .     allow the back end to control what the linker does with
328 .     sections.  *}
329 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
330 .
331 .  {* This input section should be copied to output in reverse order
332 .     as an array of pointers.  This is for ELF linker internal use
333 .     only.  *}
334 .#define SEC_ELF_REVERSE_COPY 0x4000000
335 .
336 .  {* This section contains data which may be shared with other
337 .     executables or shared objects. This is for COFF only.  *}
338 .#define SEC_COFF_SHARED 0x8000000
339 .
340 .  {* When a section with this flag is being linked, then if the size of
341 .     the input section is less than a page, it should not cross a page
342 .     boundary.  If the size of the input section is one page or more,
343 .     it should be aligned on a page boundary.  This is for TI
344 .     TMS320C54X only.  *}
345 .#define SEC_TIC54X_BLOCK 0x10000000
346 .
347 .  {* Conditionally link this section; do not link if there are no
348 .     references found to any symbol in the section.  This is for TI
349 .     TMS320C54X only.  *}
350 .#define SEC_TIC54X_CLINK 0x20000000
351 .
352 .  {* Indicate that section has the no read flag set. This happens
353 .     when memory read flag isn't set. *}
354 .#define SEC_COFF_NOREAD 0x40000000
355 .
356 .  {*  End of section flags.  *}
357 .
358 .  {* Some internal packed boolean fields.  *}
359 .
360 .  {* See the vma field.  *}
361 .  unsigned int user_set_vma : 1;
362 .
363 .  {* A mark flag used by some of the linker backends.  *}
364 .  unsigned int linker_mark : 1;
365 .
366 .  {* Another mark flag used by some of the linker backends.  Set for
367 .     output sections that have an input section.  *}
368 .  unsigned int linker_has_input : 1;
369 .
370 .  {* Mark flag used by some linker backends for garbage collection.  *}
371 .  unsigned int gc_mark : 1;
372 .
373 .  {* Section compression status.  *}
374 .  unsigned int compress_status : 2;
375 .#define COMPRESS_SECTION_NONE    0
376 .#define COMPRESS_SECTION_DONE    1
377 .#define DECOMPRESS_SECTION_SIZED 2
378 .
379 .  {* The following flags are used by the ELF linker. *}
380 .
381 .  {* Mark sections which have been allocated to segments.  *}
382 .  unsigned int segment_mark : 1;
383 .
384 .  {* Type of sec_info information.  *}
385 .  unsigned int sec_info_type:3;
386 .#define SEC_INFO_TYPE_NONE      0
387 .#define SEC_INFO_TYPE_STABS     1
388 .#define SEC_INFO_TYPE_MERGE     2
389 .#define SEC_INFO_TYPE_EH_FRAME  3
390 .#define SEC_INFO_TYPE_JUST_SYMS 4
391 .
392 .  {* Nonzero if this section uses RELA relocations, rather than REL.  *}
393 .  unsigned int use_rela_p:1;
394 .
395 .  {* Bits used by various backends.  The generic code doesn't touch
396 .     these fields.  *}
397 .
398 .  unsigned int sec_flg0:1;
399 .  unsigned int sec_flg1:1;
400 .  unsigned int sec_flg2:1;
401 .  unsigned int sec_flg3:1;
402 .  unsigned int sec_flg4:1;
403 .  unsigned int sec_flg5:1;
404 .
405 .  {* End of internal packed boolean fields.  *}
406 .
407 .  {*  The virtual memory address of the section - where it will be
408 .      at run time.  The symbols are relocated against this.  The
409 .      user_set_vma flag is maintained by bfd; if it's not set, the
410 .      backend can assign addresses (for example, in <<a.out>>, where
411 .      the default address for <<.data>> is dependent on the specific
412 .      target and various flags).  *}
413 .  bfd_vma vma;
414 .
415 .  {*  The load address of the section - where it would be in a
416 .      rom image; really only used for writing section header
417 .      information.  *}
418 .  bfd_vma lma;
419 .
420 .  {* The size of the section in octets, as it will be output.
421 .     Contains a value even if the section has no contents (e.g., the
422 .     size of <<.bss>>).  *}
423 .  bfd_size_type size;
424 .
425 .  {* For input sections, the original size on disk of the section, in
426 .     octets.  This field should be set for any section whose size is
427 .     changed by linker relaxation.  It is required for sections where
428 .     the linker relaxation scheme doesn't cache altered section and
429 .     reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
430 .     targets), and thus the original size needs to be kept to read the
431 .     section multiple times.  For output sections, rawsize holds the
432 .     section size calculated on a previous linker relaxation pass.  *}
433 .  bfd_size_type rawsize;
434 .
435 .  {* The compressed size of the section in octets.  *}
436 .  bfd_size_type compressed_size;
437 .
438 .  {* Relaxation table. *}
439 .  struct relax_table *relax;
440 .
441 .  {* Count of used relaxation table entries. *}
442 .  int relax_count;
443 .
444 .
445 .  {* If this section is going to be output, then this value is the
446 .     offset in *bytes* into the output section of the first byte in the
447 .     input section (byte ==> smallest addressable unit on the
448 .     target).  In most cases, if this was going to start at the
449 .     100th octet (8-bit quantity) in the output section, this value
450 .     would be 100.  However, if the target byte size is 16 bits
451 .     (bfd_octets_per_byte is "2"), this value would be 50.  *}
452 .  bfd_vma output_offset;
453 .
454 .  {* The output section through which to map on output.  *}
455 .  struct bfd_section *output_section;
456 .
457 .  {* The alignment requirement of the section, as an exponent of 2 -
458 .     e.g., 3 aligns to 2^3 (or 8).  *}
459 .  unsigned int alignment_power;
460 .
461 .  {* If an input section, a pointer to a vector of relocation
462 .     records for the data in this section.  *}
463 .  struct reloc_cache_entry *relocation;
464 .
465 .  {* If an output section, a pointer to a vector of pointers to
466 .     relocation records for the data in this section.  *}
467 .  struct reloc_cache_entry **orelocation;
468 .
469 .  {* The number of relocation records in one of the above.  *}
470 .  unsigned reloc_count;
471 .
472 .  {* Information below is back end specific - and not always used
473 .     or updated.  *}
474 .
475 .  {* File position of section data.  *}
476 .  file_ptr filepos;
477 .
478 .  {* File position of relocation info.  *}
479 .  file_ptr rel_filepos;
480 .
481 .  {* File position of line data.  *}
482 .  file_ptr line_filepos;
483 .
484 .  {* Pointer to data for applications.  *}
485 .  void *userdata;
486 .
487 .  {* If the SEC_IN_MEMORY flag is set, this points to the actual
488 .     contents.  *}
489 .  unsigned char *contents;
490 .
491 .  {* Attached line number information.  *}
492 .  alent *lineno;
493 .
494 .  {* Number of line number records.  *}
495 .  unsigned int lineno_count;
496 .
497 .  {* Entity size for merging purposes.  *}
498 .  unsigned int entsize;
499 .
500 .  {* Points to the kept section if this section is a link-once section,
501 .     and is discarded.  *}
502 .  struct bfd_section *kept_section;
503 .
504 .  {* When a section is being output, this value changes as more
505 .     linenumbers are written out.  *}
506 .  file_ptr moving_line_filepos;
507 .
508 .  {* What the section number is in the target world.  *}
509 .  int target_index;
510 .
511 .  void *used_by_bfd;
512 .
513 .  {* If this is a constructor section then here is a list of the
514 .     relocations created to relocate items within it.  *}
515 .  struct relent_chain *constructor_chain;
516 .
517 .  {* The BFD which owns the section.  *}
518 .  bfd *owner;
519 .
520 .  {* A symbol which points at this section only.  *}
521 .  struct bfd_symbol *symbol;
522 .  struct bfd_symbol **symbol_ptr_ptr;
523 .
524 .  {* Early in the link process, map_head and map_tail are used to build
525 .     a list of input sections attached to an output section.  Later,
526 .     output sections use these fields for a list of bfd_link_order
527 .     structs.  *}
528 .  union {
529 .    struct bfd_link_order *link_order;
530 .    struct bfd_section *s;
531 .  } map_head, map_tail;
532 .} asection;
533 .
534 .{* Relax table contains information about instructions which can
535 .   be removed by relaxation -- replacing a long address with a
536 .   short address.  *}
537 .struct relax_table {
538 .  {* Address where bytes may be deleted. *}
539 .  bfd_vma addr;
540 .
541 .  {* Number of bytes to be deleted.  *}
542 .  int size;
543 .};
544 .
545 .{* These sections are global, and are managed by BFD.  The application
546 .   and target back end are not permitted to change the values in
547 .   these sections.  *}
548 .extern asection std_section[4];
549 .
550 .#define BFD_ABS_SECTION_NAME "*ABS*"
551 .#define BFD_UND_SECTION_NAME "*UND*"
552 .#define BFD_COM_SECTION_NAME "*COM*"
553 .#define BFD_IND_SECTION_NAME "*IND*"
554 .
555 .{* Pointer to the common section.  *}
556 .#define bfd_com_section_ptr (&std_section[0])
557 .{* Pointer to the undefined section.  *}
558 .#define bfd_und_section_ptr (&std_section[1])
559 .{* Pointer to the absolute section.  *}
560 .#define bfd_abs_section_ptr (&std_section[2])
561 .{* Pointer to the indirect section.  *}
562 .#define bfd_ind_section_ptr (&std_section[3])
563 .
564 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
565 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
566 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
567 .
568 .#define bfd_is_const_section(SEC)		\
569 . (   ((SEC) == bfd_abs_section_ptr)		\
570 .  || ((SEC) == bfd_und_section_ptr)		\
571 .  || ((SEC) == bfd_com_section_ptr)		\
572 .  || ((SEC) == bfd_ind_section_ptr))
573 .
574 .{* Macros to handle insertion and deletion of a bfd's sections.  These
575 .   only handle the list pointers, ie. do not adjust section_count,
576 .   target_index etc.  *}
577 .#define bfd_section_list_remove(ABFD, S) \
578 .  do							\
579 .    {							\
580 .      asection *_s = S;				\
581 .      asection *_next = _s->next;			\
582 .      asection *_prev = _s->prev;			\
583 .      if (_prev)					\
584 .        _prev->next = _next;				\
585 .      else						\
586 .        (ABFD)->sections = _next;			\
587 .      if (_next)					\
588 .        _next->prev = _prev;				\
589 .      else						\
590 .        (ABFD)->section_last = _prev;			\
591 .    }							\
592 .  while (0)
593 .#define bfd_section_list_append(ABFD, S) \
594 .  do							\
595 .    {							\
596 .      asection *_s = S;				\
597 .      bfd *_abfd = ABFD;				\
598 .      _s->next = NULL;					\
599 .      if (_abfd->section_last)				\
600 .        {						\
601 .          _s->prev = _abfd->section_last;		\
602 .          _abfd->section_last->next = _s;		\
603 .        }						\
604 .      else						\
605 .        {						\
606 .          _s->prev = NULL;				\
607 .          _abfd->sections = _s;			\
608 .        }						\
609 .      _abfd->section_last = _s;			\
610 .    }							\
611 .  while (0)
612 .#define bfd_section_list_prepend(ABFD, S) \
613 .  do							\
614 .    {							\
615 .      asection *_s = S;				\
616 .      bfd *_abfd = ABFD;				\
617 .      _s->prev = NULL;					\
618 .      if (_abfd->sections)				\
619 .        {						\
620 .          _s->next = _abfd->sections;			\
621 .          _abfd->sections->prev = _s;			\
622 .        }						\
623 .      else						\
624 .        {						\
625 .          _s->next = NULL;				\
626 .          _abfd->section_last = _s;			\
627 .        }						\
628 .      _abfd->sections = _s;				\
629 .    }							\
630 .  while (0)
631 .#define bfd_section_list_insert_after(ABFD, A, S) \
632 .  do							\
633 .    {							\
634 .      asection *_a = A;				\
635 .      asection *_s = S;				\
636 .      asection *_next = _a->next;			\
637 .      _s->next = _next;				\
638 .      _s->prev = _a;					\
639 .      _a->next = _s;					\
640 .      if (_next)					\
641 .        _next->prev = _s;				\
642 .      else						\
643 .        (ABFD)->section_last = _s;			\
644 .    }							\
645 .  while (0)
646 .#define bfd_section_list_insert_before(ABFD, B, S) \
647 .  do							\
648 .    {							\
649 .      asection *_b = B;				\
650 .      asection *_s = S;				\
651 .      asection *_prev = _b->prev;			\
652 .      _s->prev = _prev;				\
653 .      _s->next = _b;					\
654 .      _b->prev = _s;					\
655 .      if (_prev)					\
656 .        _prev->next = _s;				\
657 .      else						\
658 .        (ABFD)->sections = _s;				\
659 .    }							\
660 .  while (0)
661 .#define bfd_section_removed_from_list(ABFD, S) \
662 .  ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
663 .
664 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX)			\
665 .  {* name, id,  index, next, prev, flags, user_set_vma,            *}	\
666 .  { NAME,  IDX, 0,     NULL, NULL, FLAGS, 0,				\
667 .									\
668 .  {* linker_mark, linker_has_input, gc_mark, decompress_status,    *}	\
669 .     0,           0,                1,       0,			\
670 .									\
671 .  {* segment_mark, sec_info_type, use_rela_p,                      *}	\
672 .     0,            0,             0,					\
673 .									\
674 .  {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5,   *}	\
675 .     0,        0,        0,        0,        0,        0,		\
676 .									\
677 .  {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *}	\
678 .     0,   0,   0,    0,       0,               0,     0,		\
679 .									\
680 .  {* output_offset, output_section, alignment_power,               *}	\
681 .     0,             &SEC,           0,					\
682 .									\
683 .  {* relocation, orelocation, reloc_count, filepos, rel_filepos,   *}	\
684 .     NULL,       NULL,        0,           0,       0,			\
685 .									\
686 .  {* line_filepos, userdata, contents, lineno, lineno_count,       *}	\
687 .     0,            NULL,     NULL,     NULL,   0,			\
688 .									\
689 .  {* entsize, kept_section, moving_line_filepos,		     *}	\
690 .     0,       NULL,	      0,					\
691 .									\
692 .  {* target_index, used_by_bfd, constructor_chain, owner,          *}	\
693 .     0,            NULL,        NULL,              NULL,		\
694 .									\
695 .  {* symbol,                    symbol_ptr_ptr,                    *}	\
696 .     (struct bfd_symbol *) SYM, &SEC.symbol,				\
697 .									\
698 .  {* map_head, map_tail                                            *}	\
699 .     { NULL }, { NULL }						\
700 .    }
701 .
702 */
703 
704 /* We use a macro to initialize the static asymbol structures because
705    traditional C does not permit us to initialize a union member while
706    gcc warns if we don't initialize it.  */
707  /* the_bfd, name, value, attr, section [, udata] */
708 #ifdef __STDC__
709 #define GLOBAL_SYM_INIT(NAME, SECTION) \
710   { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
711 #else
712 #define GLOBAL_SYM_INIT(NAME, SECTION) \
713   { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
714 #endif
715 
716 /* These symbols are global, not specific to any BFD.  Therefore, anything
717    that tries to change them is broken, and should be repaired.  */
718 
719 static const asymbol global_syms[] =
720 {
721   GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
722   GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
723   GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
724   GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
725 };
726 
727 #define STD_SECTION(NAME, IDX, FLAGS) \
728   BFD_FAKE_SECTION(std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX)
729 
730 asection std_section[] = {
731   STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
732   STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
733   STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
734   STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
735 };
736 #undef STD_SECTION
737 
738 /* Initialize an entry in the section hash table.  */
739 
740 struct bfd_hash_entry *
741 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
742 			  struct bfd_hash_table *table,
743 			  const char *string)
744 {
745   /* Allocate the structure if it has not already been allocated by a
746      subclass.  */
747   if (entry == NULL)
748     {
749       entry = (struct bfd_hash_entry *)
750 	bfd_hash_allocate (table, sizeof (struct section_hash_entry));
751       if (entry == NULL)
752 	return entry;
753     }
754 
755   /* Call the allocation method of the superclass.  */
756   entry = bfd_hash_newfunc (entry, table, string);
757   if (entry != NULL)
758     memset (&((struct section_hash_entry *) entry)->section, 0,
759 	    sizeof (asection));
760 
761   return entry;
762 }
763 
764 #define section_hash_lookup(table, string, create, copy) \
765   ((struct section_hash_entry *) \
766    bfd_hash_lookup ((table), (string), (create), (copy)))
767 
768 /* Create a symbol whose only job is to point to this section.  This
769    is useful for things like relocs which are relative to the base
770    of a section.  */
771 
772 bfd_boolean
773 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
774 {
775   newsect->symbol = bfd_make_empty_symbol (abfd);
776   if (newsect->symbol == NULL)
777     return FALSE;
778 
779   newsect->symbol->name = newsect->name;
780   newsect->symbol->value = 0;
781   newsect->symbol->section = newsect;
782   newsect->symbol->flags = BSF_SECTION_SYM;
783 
784   newsect->symbol_ptr_ptr = &newsect->symbol;
785   return TRUE;
786 }
787 
788 /* Initializes a new section.  NEWSECT->NAME is already set.  */
789 
790 static asection *
791 bfd_section_init (bfd *abfd, asection *newsect)
792 {
793   static int section_id = 0x10;  /* id 0 to 3 used by STD_SECTION.  */
794 
795   newsect->id = section_id;
796   newsect->index = abfd->section_count;
797   newsect->owner = abfd;
798 
799   if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
800     return NULL;
801 
802   section_id++;
803   abfd->section_count++;
804   bfd_section_list_append (abfd, newsect);
805   return newsect;
806 }
807 
808 /*
809 DOCDD
810 INODE
811 section prototypes,  , typedef asection, Sections
812 SUBSECTION
813 	Section prototypes
814 
815 These are the functions exported by the section handling part of BFD.
816 */
817 
818 /*
819 FUNCTION
820 	bfd_section_list_clear
821 
822 SYNOPSIS
823 	void bfd_section_list_clear (bfd *);
824 
825 DESCRIPTION
826 	Clears the section list, and also resets the section count and
827 	hash table entries.
828 */
829 
830 void
831 bfd_section_list_clear (bfd *abfd)
832 {
833   abfd->sections = NULL;
834   abfd->section_last = NULL;
835   abfd->section_count = 0;
836   memset (abfd->section_htab.table, 0,
837 	  abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
838 }
839 
840 /*
841 FUNCTION
842 	bfd_get_section_by_name
843 
844 SYNOPSIS
845 	asection *bfd_get_section_by_name (bfd *abfd, const char *name);
846 
847 DESCRIPTION
848 	Return the most recently created section attached to @var{abfd}
849 	named @var{name}.  Return NULL if no such section exists.
850 */
851 
852 asection *
853 bfd_get_section_by_name (bfd *abfd, const char *name)
854 {
855   struct section_hash_entry *sh;
856 
857   sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
858   if (sh != NULL)
859     return &sh->section;
860 
861   return NULL;
862 }
863 
864 /*
865 FUNCTION
866        bfd_get_next_section_by_name
867 
868 SYNOPSIS
869        asection *bfd_get_next_section_by_name (asection *sec);
870 
871 DESCRIPTION
872        Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
873        return the next most recently created section attached to the same
874        BFD with the same name.  Return NULL if no such section exists.
875 */
876 
877 asection *
878 bfd_get_next_section_by_name (asection *sec)
879 {
880   struct section_hash_entry *sh;
881   const char *name;
882   unsigned long hash;
883 
884   sh = ((struct section_hash_entry *)
885 	((char *) sec - offsetof (struct section_hash_entry, section)));
886 
887   hash = sh->root.hash;
888   name = sec->name;
889   for (sh = (struct section_hash_entry *) sh->root.next;
890        sh != NULL;
891        sh = (struct section_hash_entry *) sh->root.next)
892     if (sh->root.hash == hash
893        && strcmp (sh->root.string, name) == 0)
894       return &sh->section;
895 
896   return NULL;
897 }
898 
899 /*
900 FUNCTION
901 	bfd_get_linker_section
902 
903 SYNOPSIS
904 	asection *bfd_get_linker_section (bfd *abfd, const char *name);
905 
906 DESCRIPTION
907 	Return the linker created section attached to @var{abfd}
908 	named @var{name}.  Return NULL if no such section exists.
909 */
910 
911 asection *
912 bfd_get_linker_section (bfd *abfd, const char *name)
913 {
914   asection *sec = bfd_get_section_by_name (abfd, name);
915 
916   while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
917     sec = bfd_get_next_section_by_name (sec);
918   return sec;
919 }
920 
921 /*
922 FUNCTION
923 	bfd_get_section_by_name_if
924 
925 SYNOPSIS
926 	asection *bfd_get_section_by_name_if
927 	  (bfd *abfd,
928 	   const char *name,
929 	   bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
930 	   void *obj);
931 
932 DESCRIPTION
933 	Call the provided function @var{func} for each section
934 	attached to the BFD @var{abfd} whose name matches @var{name},
935 	passing @var{obj} as an argument. The function will be called
936 	as if by
937 
938 |	func (abfd, the_section, obj);
939 
940 	It returns the first section for which @var{func} returns true,
941 	otherwise <<NULL>>.
942 
943 */
944 
945 asection *
946 bfd_get_section_by_name_if (bfd *abfd, const char *name,
947 			    bfd_boolean (*operation) (bfd *,
948 						      asection *,
949 						      void *),
950 			    void *user_storage)
951 {
952   struct section_hash_entry *sh;
953   unsigned long hash;
954 
955   sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
956   if (sh == NULL)
957     return NULL;
958 
959   hash = sh->root.hash;
960   do
961     {
962       if ((*operation) (abfd, &sh->section, user_storage))
963 	return &sh->section;
964       sh = (struct section_hash_entry *) sh->root.next;
965     }
966   while (sh != NULL && sh->root.hash == hash
967 	 && strcmp (sh->root.string, name) == 0);
968 
969   return NULL;
970 }
971 
972 /*
973 FUNCTION
974 	bfd_get_unique_section_name
975 
976 SYNOPSIS
977 	char *bfd_get_unique_section_name
978 	  (bfd *abfd, const char *templat, int *count);
979 
980 DESCRIPTION
981 	Invent a section name that is unique in @var{abfd} by tacking
982 	a dot and a digit suffix onto the original @var{templat}.  If
983 	@var{count} is non-NULL, then it specifies the first number
984 	tried as a suffix to generate a unique name.  The value
985 	pointed to by @var{count} will be incremented in this case.
986 */
987 
988 char *
989 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
990 {
991   int num;
992   unsigned int len;
993   char *sname;
994 
995   len = strlen (templat);
996   sname = (char *) bfd_malloc (len + 8);
997   if (sname == NULL)
998     return NULL;
999   memcpy (sname, templat, len);
1000   num = 1;
1001   if (count != NULL)
1002     num = *count;
1003 
1004   do
1005     {
1006       /* If we have a million sections, something is badly wrong.  */
1007       if (num > 999999)
1008 	abort ();
1009       sprintf (sname + len, ".%d", num++);
1010     }
1011   while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1012 
1013   if (count != NULL)
1014     *count = num;
1015   return sname;
1016 }
1017 
1018 /*
1019 FUNCTION
1020 	bfd_make_section_old_way
1021 
1022 SYNOPSIS
1023 	asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1024 
1025 DESCRIPTION
1026 	Create a new empty section called @var{name}
1027 	and attach it to the end of the chain of sections for the
1028 	BFD @var{abfd}. An attempt to create a section with a name which
1029 	is already in use returns its pointer without changing the
1030 	section chain.
1031 
1032 	It has the funny name since this is the way it used to be
1033 	before it was rewritten....
1034 
1035 	Possible errors are:
1036 	o <<bfd_error_invalid_operation>> -
1037 	If output has already started for this BFD.
1038 	o <<bfd_error_no_memory>> -
1039 	If memory allocation fails.
1040 
1041 */
1042 
1043 asection *
1044 bfd_make_section_old_way (bfd *abfd, const char *name)
1045 {
1046   asection *newsect;
1047 
1048   if (abfd->output_has_begun)
1049     {
1050       bfd_set_error (bfd_error_invalid_operation);
1051       return NULL;
1052     }
1053 
1054   if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1055     newsect = bfd_abs_section_ptr;
1056   else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1057     newsect = bfd_com_section_ptr;
1058   else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1059     newsect = bfd_und_section_ptr;
1060   else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1061     newsect = bfd_ind_section_ptr;
1062   else
1063     {
1064       struct section_hash_entry *sh;
1065 
1066       sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1067       if (sh == NULL)
1068 	return NULL;
1069 
1070       newsect = &sh->section;
1071       if (newsect->name != NULL)
1072 	{
1073 	  /* Section already exists.  */
1074 	  return newsect;
1075 	}
1076 
1077       newsect->name = name;
1078       return bfd_section_init (abfd, newsect);
1079     }
1080 
1081   /* Call new_section_hook when "creating" the standard abs, com, und
1082      and ind sections to tack on format specific section data.
1083      Also, create a proper section symbol.  */
1084   if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1085     return NULL;
1086   return newsect;
1087 }
1088 
1089 /*
1090 FUNCTION
1091 	bfd_make_section_anyway_with_flags
1092 
1093 SYNOPSIS
1094 	asection *bfd_make_section_anyway_with_flags
1095 	  (bfd *abfd, const char *name, flagword flags);
1096 
1097 DESCRIPTION
1098    Create a new empty section called @var{name} and attach it to the end of
1099    the chain of sections for @var{abfd}.  Create a new section even if there
1100    is already a section with that name.  Also set the attributes of the
1101    new section to the value @var{flags}.
1102 
1103    Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1104    o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1105    o <<bfd_error_no_memory>> - If memory allocation fails.
1106 */
1107 
1108 sec_ptr
1109 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1110 				    flagword flags)
1111 {
1112   struct section_hash_entry *sh;
1113   asection *newsect;
1114 
1115   if (abfd->output_has_begun)
1116     {
1117       bfd_set_error (bfd_error_invalid_operation);
1118       return NULL;
1119     }
1120 
1121   sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1122   if (sh == NULL)
1123     return NULL;
1124 
1125   newsect = &sh->section;
1126   if (newsect->name != NULL)
1127     {
1128       /* We are making a section of the same name.  Put it in the
1129 	 section hash table.  Even though we can't find it directly by a
1130 	 hash lookup, we'll be able to find the section by traversing
1131 	 sh->root.next quicker than looking at all the bfd sections.  */
1132       struct section_hash_entry *new_sh;
1133       new_sh = (struct section_hash_entry *)
1134 	bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1135       if (new_sh == NULL)
1136 	return NULL;
1137 
1138       new_sh->root = sh->root;
1139       sh->root.next = &new_sh->root;
1140       newsect = &new_sh->section;
1141     }
1142 
1143   newsect->flags = flags;
1144   newsect->name = name;
1145   return bfd_section_init (abfd, newsect);
1146 }
1147 
1148 /*
1149 FUNCTION
1150 	bfd_make_section_anyway
1151 
1152 SYNOPSIS
1153 	asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1154 
1155 DESCRIPTION
1156    Create a new empty section called @var{name} and attach it to the end of
1157    the chain of sections for @var{abfd}.  Create a new section even if there
1158    is already a section with that name.
1159 
1160    Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1161    o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1162    o <<bfd_error_no_memory>> - If memory allocation fails.
1163 */
1164 
1165 sec_ptr
1166 bfd_make_section_anyway (bfd *abfd, const char *name)
1167 {
1168   return bfd_make_section_anyway_with_flags (abfd, name, 0);
1169 }
1170 
1171 /*
1172 FUNCTION
1173 	bfd_make_section_with_flags
1174 
1175 SYNOPSIS
1176 	asection *bfd_make_section_with_flags
1177 	  (bfd *, const char *name, flagword flags);
1178 
1179 DESCRIPTION
1180    Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1181    bfd_set_error ()) without changing the section chain if there is already a
1182    section named @var{name}.  Also set the attributes of the new section to
1183    the value @var{flags}.  If there is an error, return <<NULL>> and set
1184    <<bfd_error>>.
1185 */
1186 
1187 asection *
1188 bfd_make_section_with_flags (bfd *abfd, const char *name,
1189 			     flagword flags)
1190 {
1191   struct section_hash_entry *sh;
1192   asection *newsect;
1193 
1194   if (abfd->output_has_begun)
1195     {
1196       bfd_set_error (bfd_error_invalid_operation);
1197       return NULL;
1198     }
1199 
1200   if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1201       || strcmp (name, BFD_COM_SECTION_NAME) == 0
1202       || strcmp (name, BFD_UND_SECTION_NAME) == 0
1203       || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1204     return NULL;
1205 
1206   sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1207   if (sh == NULL)
1208     return NULL;
1209 
1210   newsect = &sh->section;
1211   if (newsect->name != NULL)
1212     {
1213       /* Section already exists.  */
1214       return NULL;
1215     }
1216 
1217   newsect->name = name;
1218   newsect->flags = flags;
1219   return bfd_section_init (abfd, newsect);
1220 }
1221 
1222 /*
1223 FUNCTION
1224 	bfd_make_section
1225 
1226 SYNOPSIS
1227 	asection *bfd_make_section (bfd *, const char *name);
1228 
1229 DESCRIPTION
1230    Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1231    bfd_set_error ()) without changing the section chain if there is already a
1232    section named @var{name}.  If there is an error, return <<NULL>> and set
1233    <<bfd_error>>.
1234 */
1235 
1236 asection *
1237 bfd_make_section (bfd *abfd, const char *name)
1238 {
1239   return bfd_make_section_with_flags (abfd, name, 0);
1240 }
1241 
1242 /*
1243 FUNCTION
1244 	bfd_set_section_flags
1245 
1246 SYNOPSIS
1247 	bfd_boolean bfd_set_section_flags
1248 	  (bfd *abfd, asection *sec, flagword flags);
1249 
1250 DESCRIPTION
1251 	Set the attributes of the section @var{sec} in the BFD
1252 	@var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1253 	<<FALSE>> on error. Possible error returns are:
1254 
1255 	o <<bfd_error_invalid_operation>> -
1256 	The section cannot have one or more of the attributes
1257 	requested. For example, a .bss section in <<a.out>> may not
1258 	have the <<SEC_HAS_CONTENTS>> field set.
1259 
1260 */
1261 
1262 bfd_boolean
1263 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1264 		       sec_ptr section,
1265 		       flagword flags)
1266 {
1267   section->flags = flags;
1268   return TRUE;
1269 }
1270 
1271 /*
1272 FUNCTION
1273 	bfd_rename_section
1274 
1275 SYNOPSIS
1276 	void bfd_rename_section
1277 	  (bfd *abfd, asection *sec, const char *newname);
1278 
1279 DESCRIPTION
1280 	Rename section @var{sec} in @var{abfd} to @var{newname}.
1281 */
1282 
1283 void
1284 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1285 {
1286   struct section_hash_entry *sh;
1287 
1288   sh = (struct section_hash_entry *)
1289     ((char *) sec - offsetof (struct section_hash_entry, section));
1290   sh->section.name = newname;
1291   bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1292 }
1293 
1294 /*
1295 FUNCTION
1296 	bfd_map_over_sections
1297 
1298 SYNOPSIS
1299 	void bfd_map_over_sections
1300 	  (bfd *abfd,
1301 	   void (*func) (bfd *abfd, asection *sect, void *obj),
1302 	   void *obj);
1303 
1304 DESCRIPTION
1305 	Call the provided function @var{func} for each section
1306 	attached to the BFD @var{abfd}, passing @var{obj} as an
1307 	argument. The function will be called as if by
1308 
1309 |	func (abfd, the_section, obj);
1310 
1311 	This is the preferred method for iterating over sections; an
1312 	alternative would be to use a loop:
1313 
1314 |	   asection *p;
1315 |	   for (p = abfd->sections; p != NULL; p = p->next)
1316 |	      func (abfd, p, ...)
1317 
1318 */
1319 
1320 void
1321 bfd_map_over_sections (bfd *abfd,
1322 		       void (*operation) (bfd *, asection *, void *),
1323 		       void *user_storage)
1324 {
1325   asection *sect;
1326   unsigned int i = 0;
1327 
1328   for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1329     (*operation) (abfd, sect, user_storage);
1330 
1331   if (i != abfd->section_count)	/* Debugging */
1332     abort ();
1333 }
1334 
1335 /*
1336 FUNCTION
1337 	bfd_sections_find_if
1338 
1339 SYNOPSIS
1340 	asection *bfd_sections_find_if
1341 	  (bfd *abfd,
1342 	   bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1343 	   void *obj);
1344 
1345 DESCRIPTION
1346 	Call the provided function @var{operation} for each section
1347 	attached to the BFD @var{abfd}, passing @var{obj} as an
1348 	argument. The function will be called as if by
1349 
1350 |	operation (abfd, the_section, obj);
1351 
1352 	It returns the first section for which @var{operation} returns true.
1353 
1354 */
1355 
1356 asection *
1357 bfd_sections_find_if (bfd *abfd,
1358 		      bfd_boolean (*operation) (bfd *, asection *, void *),
1359 		      void *user_storage)
1360 {
1361   asection *sect;
1362 
1363   for (sect = abfd->sections; sect != NULL; sect = sect->next)
1364     if ((*operation) (abfd, sect, user_storage))
1365       break;
1366 
1367   return sect;
1368 }
1369 
1370 /*
1371 FUNCTION
1372 	bfd_set_section_size
1373 
1374 SYNOPSIS
1375 	bfd_boolean bfd_set_section_size
1376 	  (bfd *abfd, asection *sec, bfd_size_type val);
1377 
1378 DESCRIPTION
1379 	Set @var{sec} to the size @var{val}. If the operation is
1380 	ok, then <<TRUE>> is returned, else <<FALSE>>.
1381 
1382 	Possible error returns:
1383 	o <<bfd_error_invalid_operation>> -
1384 	Writing has started to the BFD, so setting the size is invalid.
1385 
1386 */
1387 
1388 bfd_boolean
1389 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1390 {
1391   /* Once you've started writing to any section you cannot create or change
1392      the size of any others.  */
1393 
1394   if (abfd->output_has_begun)
1395     {
1396       bfd_set_error (bfd_error_invalid_operation);
1397       return FALSE;
1398     }
1399 
1400   ptr->size = val;
1401   return TRUE;
1402 }
1403 
1404 /*
1405 FUNCTION
1406 	bfd_set_section_contents
1407 
1408 SYNOPSIS
1409 	bfd_boolean bfd_set_section_contents
1410 	  (bfd *abfd, asection *section, const void *data,
1411 	   file_ptr offset, bfd_size_type count);
1412 
1413 DESCRIPTION
1414 	Sets the contents of the section @var{section} in BFD
1415 	@var{abfd} to the data starting in memory at @var{data}. The
1416 	data is written to the output section starting at offset
1417 	@var{offset} for @var{count} octets.
1418 
1419 	Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1420 	returns are:
1421 	o <<bfd_error_no_contents>> -
1422 	The output section does not have the <<SEC_HAS_CONTENTS>>
1423 	attribute, so nothing can be written to it.
1424 	o and some more too
1425 
1426 	This routine is front end to the back end function
1427 	<<_bfd_set_section_contents>>.
1428 
1429 */
1430 
1431 bfd_boolean
1432 bfd_set_section_contents (bfd *abfd,
1433 			  sec_ptr section,
1434 			  const void *location,
1435 			  file_ptr offset,
1436 			  bfd_size_type count)
1437 {
1438   bfd_size_type sz;
1439 
1440   if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1441     {
1442       bfd_set_error (bfd_error_no_contents);
1443       return FALSE;
1444     }
1445 
1446   sz = section->size;
1447   if ((bfd_size_type) offset > sz
1448       || count > sz
1449       || offset + count > sz
1450       || count != (size_t) count)
1451     {
1452       bfd_set_error (bfd_error_bad_value);
1453       return FALSE;
1454     }
1455 
1456   if (!bfd_write_p (abfd))
1457     {
1458       bfd_set_error (bfd_error_invalid_operation);
1459       return FALSE;
1460     }
1461 
1462   /* Record a copy of the data in memory if desired.  */
1463   if (section->contents
1464       && location != section->contents + offset)
1465     memcpy (section->contents + offset, location, (size_t) count);
1466 
1467   if (BFD_SEND (abfd, _bfd_set_section_contents,
1468 		(abfd, section, location, offset, count)))
1469     {
1470       abfd->output_has_begun = TRUE;
1471       return TRUE;
1472     }
1473 
1474   return FALSE;
1475 }
1476 
1477 /*
1478 FUNCTION
1479 	bfd_get_section_contents
1480 
1481 SYNOPSIS
1482 	bfd_boolean bfd_get_section_contents
1483 	  (bfd *abfd, asection *section, void *location, file_ptr offset,
1484 	   bfd_size_type count);
1485 
1486 DESCRIPTION
1487 	Read data from @var{section} in BFD @var{abfd}
1488 	into memory starting at @var{location}. The data is read at an
1489 	offset of @var{offset} from the start of the input section,
1490 	and is read for @var{count} bytes.
1491 
1492 	If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1493 	flag set are requested or if the section does not have the
1494 	<<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1495 	with zeroes. If no errors occur, <<TRUE>> is returned, else
1496 	<<FALSE>>.
1497 
1498 */
1499 bfd_boolean
1500 bfd_get_section_contents (bfd *abfd,
1501 			  sec_ptr section,
1502 			  void *location,
1503 			  file_ptr offset,
1504 			  bfd_size_type count)
1505 {
1506   bfd_size_type sz;
1507 
1508   if (section->flags & SEC_CONSTRUCTOR)
1509     {
1510       memset (location, 0, (size_t) count);
1511       return TRUE;
1512     }
1513 
1514   if (abfd->direction != write_direction && section->rawsize != 0)
1515     sz = section->rawsize;
1516   else
1517     sz = section->size;
1518   if ((bfd_size_type) offset > sz
1519       || count > sz
1520       || offset + count > sz
1521       || count != (size_t) count)
1522     {
1523       bfd_set_error (bfd_error_bad_value);
1524       return FALSE;
1525     }
1526 
1527   if (count == 0)
1528     /* Don't bother.  */
1529     return TRUE;
1530 
1531   if ((section->flags & SEC_HAS_CONTENTS) == 0)
1532     {
1533       memset (location, 0, (size_t) count);
1534       return TRUE;
1535     }
1536 
1537   if ((section->flags & SEC_IN_MEMORY) != 0)
1538     {
1539       if (section->contents == NULL)
1540 	{
1541 	  /* This can happen because of errors earlier on in the linking process.
1542 	     We do not want to seg-fault here, so clear the flag and return an
1543 	     error code.  */
1544 	  section->flags &= ~ SEC_IN_MEMORY;
1545 	  bfd_set_error (bfd_error_invalid_operation);
1546 	  return FALSE;
1547 	}
1548 
1549       memcpy (location, section->contents + offset, (size_t) count);
1550       return TRUE;
1551     }
1552 
1553   return BFD_SEND (abfd, _bfd_get_section_contents,
1554 		   (abfd, section, location, offset, count));
1555 }
1556 
1557 /*
1558 FUNCTION
1559 	bfd_malloc_and_get_section
1560 
1561 SYNOPSIS
1562 	bfd_boolean bfd_malloc_and_get_section
1563 	  (bfd *abfd, asection *section, bfd_byte **buf);
1564 
1565 DESCRIPTION
1566 	Read all data from @var{section} in BFD @var{abfd}
1567 	into a buffer, *@var{buf}, malloc'd by this function.
1568 */
1569 
1570 bfd_boolean
1571 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1572 {
1573   *buf = NULL;
1574   return bfd_get_full_section_contents (abfd, sec, buf);
1575 }
1576 /*
1577 FUNCTION
1578 	bfd_copy_private_section_data
1579 
1580 SYNOPSIS
1581 	bfd_boolean bfd_copy_private_section_data
1582 	  (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1583 
1584 DESCRIPTION
1585 	Copy private section information from @var{isec} in the BFD
1586 	@var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1587 	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
1588 	returns are:
1589 
1590 	o <<bfd_error_no_memory>> -
1591 	Not enough memory exists to create private data for @var{osec}.
1592 
1593 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1594 .     BFD_SEND (obfd, _bfd_copy_private_section_data, \
1595 .		(ibfd, isection, obfd, osection))
1596 */
1597 
1598 /*
1599 FUNCTION
1600 	bfd_generic_is_group_section
1601 
1602 SYNOPSIS
1603 	bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1604 
1605 DESCRIPTION
1606 	Returns TRUE if @var{sec} is a member of a group.
1607 */
1608 
1609 bfd_boolean
1610 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1611 			      const asection *sec ATTRIBUTE_UNUSED)
1612 {
1613   return FALSE;
1614 }
1615 
1616 /*
1617 FUNCTION
1618 	bfd_generic_discard_group
1619 
1620 SYNOPSIS
1621 	bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1622 
1623 DESCRIPTION
1624 	Remove all members of @var{group} from the output.
1625 */
1626 
1627 bfd_boolean
1628 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1629 			   asection *group ATTRIBUTE_UNUSED)
1630 {
1631   return TRUE;
1632 }
1633