1 /* Object file "section" support for the BFD library. 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 4 2012 5 Free Software Foundation, Inc. 6 Written by Cygnus Support. 7 8 This file is part of BFD, the Binary File Descriptor library. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program; if not, write to the Free Software 22 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 23 MA 02110-1301, USA. */ 24 25 /* 26 SECTION 27 Sections 28 29 The raw data contained within a BFD is maintained through the 30 section abstraction. A single BFD may have any number of 31 sections. It keeps hold of them by pointing to the first; 32 each one points to the next in the list. 33 34 Sections are supported in BFD in <<section.c>>. 35 36 @menu 37 @* Section Input:: 38 @* Section Output:: 39 @* typedef asection:: 40 @* section prototypes:: 41 @end menu 42 43 INODE 44 Section Input, Section Output, Sections, Sections 45 SUBSECTION 46 Section input 47 48 When a BFD is opened for reading, the section structures are 49 created and attached to the BFD. 50 51 Each section has a name which describes the section in the 52 outside world---for example, <<a.out>> would contain at least 53 three sections, called <<.text>>, <<.data>> and <<.bss>>. 54 55 Names need not be unique; for example a COFF file may have several 56 sections named <<.data>>. 57 58 Sometimes a BFD will contain more than the ``natural'' number of 59 sections. A back end may attach other sections containing 60 constructor data, or an application may add a section (using 61 <<bfd_make_section>>) to the sections attached to an already open 62 BFD. For example, the linker creates an extra section 63 <<COMMON>> for each input file's BFD to hold information about 64 common storage. 65 66 The raw data is not necessarily read in when 67 the section descriptor is created. Some targets may leave the 68 data in place until a <<bfd_get_section_contents>> call is 69 made. Other back ends may read in all the data at once. For 70 example, an S-record file has to be read once to determine the 71 size of the data. An IEEE-695 file doesn't contain raw data in 72 sections, but data and relocation expressions intermixed, so 73 the data area has to be parsed to get out the data and 74 relocations. 75 76 INODE 77 Section Output, typedef asection, Section Input, Sections 78 79 SUBSECTION 80 Section output 81 82 To write a new object style BFD, the various sections to be 83 written have to be created. They are attached to the BFD in 84 the same way as input sections; data is written to the 85 sections using <<bfd_set_section_contents>>. 86 87 Any program that creates or combines sections (e.g., the assembler 88 and linker) must use the <<asection>> fields <<output_section>> and 89 <<output_offset>> to indicate the file sections to which each 90 section must be written. (If the section is being created from 91 scratch, <<output_section>> should probably point to the section 92 itself and <<output_offset>> should probably be zero.) 93 94 The data to be written comes from input sections attached 95 (via <<output_section>> pointers) to 96 the output sections. The output section structure can be 97 considered a filter for the input section: the output section 98 determines the vma of the output data and the name, but the 99 input section determines the offset into the output section of 100 the data to be written. 101 102 E.g., to create a section "O", starting at 0x100, 0x123 long, 103 containing two subsections, "A" at offset 0x0 (i.e., at vma 104 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>> 105 structures would look like: 106 107 | section name "A" 108 | output_offset 0x00 109 | size 0x20 110 | output_section -----------> section name "O" 111 | | vma 0x100 112 | section name "B" | size 0x123 113 | output_offset 0x20 | 114 | size 0x103 | 115 | output_section --------| 116 117 SUBSECTION 118 Link orders 119 120 The data within a section is stored in a @dfn{link_order}. 121 These are much like the fixups in <<gas>>. The link_order 122 abstraction allows a section to grow and shrink within itself. 123 124 A link_order knows how big it is, and which is the next 125 link_order and where the raw data for it is; it also points to 126 a list of relocations which apply to it. 127 128 The link_order is used by the linker to perform relaxing on 129 final code. The compiler creates code which is as big as 130 necessary to make it work without relaxing, and the user can 131 select whether to relax. Sometimes relaxing takes a lot of 132 time. The linker runs around the relocations to see if any 133 are attached to data which can be shrunk, if so it does it on 134 a link_order by link_order basis. 135 136 */ 137 138 #include "sysdep.h" 139 #include "bfd.h" 140 #include "libbfd.h" 141 #include "bfdlink.h" 142 143 /* 144 DOCDD 145 INODE 146 typedef asection, section prototypes, Section Output, Sections 147 SUBSECTION 148 typedef asection 149 150 Here is the section structure: 151 152 CODE_FRAGMENT 153 . 154 .typedef struct bfd_section 155 .{ 156 . {* The name of the section; the name isn't a copy, the pointer is 157 . the same as that passed to bfd_make_section. *} 158 . const char *name; 159 . 160 . {* A unique sequence number. *} 161 . int id; 162 . 163 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *} 164 . int index; 165 . 166 . {* The next section in the list belonging to the BFD, or NULL. *} 167 . struct bfd_section *next; 168 . 169 . {* The previous section in the list belonging to the BFD, or NULL. *} 170 . struct bfd_section *prev; 171 . 172 . {* The field flags contains attributes of the section. Some 173 . flags are read in from the object file, and some are 174 . synthesized from other information. *} 175 . flagword flags; 176 . 177 .#define SEC_NO_FLAGS 0x000 178 . 179 . {* Tells the OS to allocate space for this section when loading. 180 . This is clear for a section containing debug information only. *} 181 .#define SEC_ALLOC 0x001 182 . 183 . {* Tells the OS to load the section from the file when loading. 184 . This is clear for a .bss section. *} 185 .#define SEC_LOAD 0x002 186 . 187 . {* The section contains data still to be relocated, so there is 188 . some relocation information too. *} 189 .#define SEC_RELOC 0x004 190 . 191 . {* A signal to the OS that the section contains read only data. *} 192 .#define SEC_READONLY 0x008 193 . 194 . {* The section contains code only. *} 195 .#define SEC_CODE 0x010 196 . 197 . {* The section contains data only. *} 198 .#define SEC_DATA 0x020 199 . 200 . {* The section will reside in ROM. *} 201 .#define SEC_ROM 0x040 202 . 203 . {* The section contains constructor information. This section 204 . type is used by the linker to create lists of constructors and 205 . destructors used by <<g++>>. When a back end sees a symbol 206 . which should be used in a constructor list, it creates a new 207 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches 208 . the symbol to it, and builds a relocation. To build the lists 209 . of constructors, all the linker has to do is catenate all the 210 . sections called <<__CTOR_LIST__>> and relocate the data 211 . contained within - exactly the operations it would peform on 212 . standard data. *} 213 .#define SEC_CONSTRUCTOR 0x080 214 . 215 . {* The section has contents - a data section could be 216 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be 217 . <<SEC_HAS_CONTENTS>> *} 218 .#define SEC_HAS_CONTENTS 0x100 219 . 220 . {* An instruction to the linker to not output the section 221 . even if it has information which would normally be written. *} 222 .#define SEC_NEVER_LOAD 0x200 223 . 224 . {* The section contains thread local data. *} 225 .#define SEC_THREAD_LOCAL 0x400 226 . 227 . {* The section has GOT references. This flag is only for the 228 . linker, and is currently only used by the elf32-hppa back end. 229 . It will be set if global offset table references were detected 230 . in this section, which indicate to the linker that the section 231 . contains PIC code, and must be handled specially when doing a 232 . static link. *} 233 .#define SEC_HAS_GOT_REF 0x800 234 . 235 . {* The section contains common symbols (symbols may be defined 236 . multiple times, the value of a symbol is the amount of 237 . space it requires, and the largest symbol value is the one 238 . used). Most targets have exactly one of these (which we 239 . translate to bfd_com_section_ptr), but ECOFF has two. *} 240 .#define SEC_IS_COMMON 0x1000 241 . 242 . {* The section contains only debugging information. For 243 . example, this is set for ELF .debug and .stab sections. 244 . strip tests this flag to see if a section can be 245 . discarded. *} 246 .#define SEC_DEBUGGING 0x2000 247 . 248 . {* The contents of this section are held in memory pointed to 249 . by the contents field. This is checked by bfd_get_section_contents, 250 . and the data is retrieved from memory if appropriate. *} 251 .#define SEC_IN_MEMORY 0x4000 252 . 253 . {* The contents of this section are to be excluded by the 254 . linker for executable and shared objects unless those 255 . objects are to be further relocated. *} 256 .#define SEC_EXCLUDE 0x8000 257 . 258 . {* The contents of this section are to be sorted based on the sum of 259 . the symbol and addend values specified by the associated relocation 260 . entries. Entries without associated relocation entries will be 261 . appended to the end of the section in an unspecified order. *} 262 .#define SEC_SORT_ENTRIES 0x10000 263 . 264 . {* When linking, duplicate sections of the same name should be 265 . discarded, rather than being combined into a single section as 266 . is usually done. This is similar to how common symbols are 267 . handled. See SEC_LINK_DUPLICATES below. *} 268 .#define SEC_LINK_ONCE 0x20000 269 . 270 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker 271 . should handle duplicate sections. *} 272 .#define SEC_LINK_DUPLICATES 0xc0000 273 . 274 . {* This value for SEC_LINK_DUPLICATES means that duplicate 275 . sections with the same name should simply be discarded. *} 276 .#define SEC_LINK_DUPLICATES_DISCARD 0x0 277 . 278 . {* This value for SEC_LINK_DUPLICATES means that the linker 279 . should warn if there are any duplicate sections, although 280 . it should still only link one copy. *} 281 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000 282 . 283 . {* This value for SEC_LINK_DUPLICATES means that the linker 284 . should warn if any duplicate sections are a different size. *} 285 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000 286 . 287 . {* This value for SEC_LINK_DUPLICATES means that the linker 288 . should warn if any duplicate sections contain different 289 . contents. *} 290 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \ 291 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE) 292 . 293 . {* This section was created by the linker as part of dynamic 294 . relocation or other arcane processing. It is skipped when 295 . going through the first-pass output, trusting that someone 296 . else up the line will take care of it later. *} 297 .#define SEC_LINKER_CREATED 0x100000 298 . 299 . {* This section should not be subject to garbage collection. 300 . Also set to inform the linker that this section should not be 301 . listed in the link map as discarded. *} 302 .#define SEC_KEEP 0x200000 303 . 304 . {* This section contains "short" data, and should be placed 305 . "near" the GP. *} 306 .#define SEC_SMALL_DATA 0x400000 307 . 308 . {* Attempt to merge identical entities in the section. 309 . Entity size is given in the entsize field. *} 310 .#define SEC_MERGE 0x800000 311 . 312 . {* If given with SEC_MERGE, entities to merge are zero terminated 313 . strings where entsize specifies character size instead of fixed 314 . size entries. *} 315 .#define SEC_STRINGS 0x1000000 316 . 317 . {* This section contains data about section groups. *} 318 .#define SEC_GROUP 0x2000000 319 . 320 . {* The section is a COFF shared library section. This flag is 321 . only for the linker. If this type of section appears in 322 . the input file, the linker must copy it to the output file 323 . without changing the vma or size. FIXME: Although this 324 . was originally intended to be general, it really is COFF 325 . specific (and the flag was renamed to indicate this). It 326 . might be cleaner to have some more general mechanism to 327 . allow the back end to control what the linker does with 328 . sections. *} 329 .#define SEC_COFF_SHARED_LIBRARY 0x4000000 330 . 331 . {* This input section should be copied to output in reverse order 332 . as an array of pointers. This is for ELF linker internal use 333 . only. *} 334 .#define SEC_ELF_REVERSE_COPY 0x4000000 335 . 336 . {* This section contains data which may be shared with other 337 . executables or shared objects. This is for COFF only. *} 338 .#define SEC_COFF_SHARED 0x8000000 339 . 340 . {* When a section with this flag is being linked, then if the size of 341 . the input section is less than a page, it should not cross a page 342 . boundary. If the size of the input section is one page or more, 343 . it should be aligned on a page boundary. This is for TI 344 . TMS320C54X only. *} 345 .#define SEC_TIC54X_BLOCK 0x10000000 346 . 347 . {* Conditionally link this section; do not link if there are no 348 . references found to any symbol in the section. This is for TI 349 . TMS320C54X only. *} 350 .#define SEC_TIC54X_CLINK 0x20000000 351 . 352 . {* Indicate that section has the no read flag set. This happens 353 . when memory read flag isn't set. *} 354 .#define SEC_COFF_NOREAD 0x40000000 355 . 356 . {* End of section flags. *} 357 . 358 . {* Some internal packed boolean fields. *} 359 . 360 . {* See the vma field. *} 361 . unsigned int user_set_vma : 1; 362 . 363 . {* A mark flag used by some of the linker backends. *} 364 . unsigned int linker_mark : 1; 365 . 366 . {* Another mark flag used by some of the linker backends. Set for 367 . output sections that have an input section. *} 368 . unsigned int linker_has_input : 1; 369 . 370 . {* Mark flag used by some linker backends for garbage collection. *} 371 . unsigned int gc_mark : 1; 372 . 373 . {* Section compression status. *} 374 . unsigned int compress_status : 2; 375 .#define COMPRESS_SECTION_NONE 0 376 .#define COMPRESS_SECTION_DONE 1 377 .#define DECOMPRESS_SECTION_SIZED 2 378 . 379 . {* The following flags are used by the ELF linker. *} 380 . 381 . {* Mark sections which have been allocated to segments. *} 382 . unsigned int segment_mark : 1; 383 . 384 . {* Type of sec_info information. *} 385 . unsigned int sec_info_type:3; 386 .#define SEC_INFO_TYPE_NONE 0 387 .#define SEC_INFO_TYPE_STABS 1 388 .#define SEC_INFO_TYPE_MERGE 2 389 .#define SEC_INFO_TYPE_EH_FRAME 3 390 .#define SEC_INFO_TYPE_JUST_SYMS 4 391 . 392 . {* Nonzero if this section uses RELA relocations, rather than REL. *} 393 . unsigned int use_rela_p:1; 394 . 395 . {* Bits used by various backends. The generic code doesn't touch 396 . these fields. *} 397 . 398 . unsigned int sec_flg0:1; 399 . unsigned int sec_flg1:1; 400 . unsigned int sec_flg2:1; 401 . unsigned int sec_flg3:1; 402 . unsigned int sec_flg4:1; 403 . unsigned int sec_flg5:1; 404 . 405 . {* End of internal packed boolean fields. *} 406 . 407 . {* The virtual memory address of the section - where it will be 408 . at run time. The symbols are relocated against this. The 409 . user_set_vma flag is maintained by bfd; if it's not set, the 410 . backend can assign addresses (for example, in <<a.out>>, where 411 . the default address for <<.data>> is dependent on the specific 412 . target and various flags). *} 413 . bfd_vma vma; 414 . 415 . {* The load address of the section - where it would be in a 416 . rom image; really only used for writing section header 417 . information. *} 418 . bfd_vma lma; 419 . 420 . {* The size of the section in octets, as it will be output. 421 . Contains a value even if the section has no contents (e.g., the 422 . size of <<.bss>>). *} 423 . bfd_size_type size; 424 . 425 . {* For input sections, the original size on disk of the section, in 426 . octets. This field should be set for any section whose size is 427 . changed by linker relaxation. It is required for sections where 428 . the linker relaxation scheme doesn't cache altered section and 429 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing 430 . targets), and thus the original size needs to be kept to read the 431 . section multiple times. For output sections, rawsize holds the 432 . section size calculated on a previous linker relaxation pass. *} 433 . bfd_size_type rawsize; 434 . 435 . {* The compressed size of the section in octets. *} 436 . bfd_size_type compressed_size; 437 . 438 . {* Relaxation table. *} 439 . struct relax_table *relax; 440 . 441 . {* Count of used relaxation table entries. *} 442 . int relax_count; 443 . 444 . 445 . {* If this section is going to be output, then this value is the 446 . offset in *bytes* into the output section of the first byte in the 447 . input section (byte ==> smallest addressable unit on the 448 . target). In most cases, if this was going to start at the 449 . 100th octet (8-bit quantity) in the output section, this value 450 . would be 100. However, if the target byte size is 16 bits 451 . (bfd_octets_per_byte is "2"), this value would be 50. *} 452 . bfd_vma output_offset; 453 . 454 . {* The output section through which to map on output. *} 455 . struct bfd_section *output_section; 456 . 457 . {* The alignment requirement of the section, as an exponent of 2 - 458 . e.g., 3 aligns to 2^3 (or 8). *} 459 . unsigned int alignment_power; 460 . 461 . {* If an input section, a pointer to a vector of relocation 462 . records for the data in this section. *} 463 . struct reloc_cache_entry *relocation; 464 . 465 . {* If an output section, a pointer to a vector of pointers to 466 . relocation records for the data in this section. *} 467 . struct reloc_cache_entry **orelocation; 468 . 469 . {* The number of relocation records in one of the above. *} 470 . unsigned reloc_count; 471 . 472 . {* Information below is back end specific - and not always used 473 . or updated. *} 474 . 475 . {* File position of section data. *} 476 . file_ptr filepos; 477 . 478 . {* File position of relocation info. *} 479 . file_ptr rel_filepos; 480 . 481 . {* File position of line data. *} 482 . file_ptr line_filepos; 483 . 484 . {* Pointer to data for applications. *} 485 . void *userdata; 486 . 487 . {* If the SEC_IN_MEMORY flag is set, this points to the actual 488 . contents. *} 489 . unsigned char *contents; 490 . 491 . {* Attached line number information. *} 492 . alent *lineno; 493 . 494 . {* Number of line number records. *} 495 . unsigned int lineno_count; 496 . 497 . {* Entity size for merging purposes. *} 498 . unsigned int entsize; 499 . 500 . {* Points to the kept section if this section is a link-once section, 501 . and is discarded. *} 502 . struct bfd_section *kept_section; 503 . 504 . {* When a section is being output, this value changes as more 505 . linenumbers are written out. *} 506 . file_ptr moving_line_filepos; 507 . 508 . {* What the section number is in the target world. *} 509 . int target_index; 510 . 511 . void *used_by_bfd; 512 . 513 . {* If this is a constructor section then here is a list of the 514 . relocations created to relocate items within it. *} 515 . struct relent_chain *constructor_chain; 516 . 517 . {* The BFD which owns the section. *} 518 . bfd *owner; 519 . 520 . {* A symbol which points at this section only. *} 521 . struct bfd_symbol *symbol; 522 . struct bfd_symbol **symbol_ptr_ptr; 523 . 524 . {* Early in the link process, map_head and map_tail are used to build 525 . a list of input sections attached to an output section. Later, 526 . output sections use these fields for a list of bfd_link_order 527 . structs. *} 528 . union { 529 . struct bfd_link_order *link_order; 530 . struct bfd_section *s; 531 . } map_head, map_tail; 532 .} asection; 533 . 534 .{* Relax table contains information about instructions which can 535 . be removed by relaxation -- replacing a long address with a 536 . short address. *} 537 .struct relax_table { 538 . {* Address where bytes may be deleted. *} 539 . bfd_vma addr; 540 . 541 . {* Number of bytes to be deleted. *} 542 . int size; 543 .}; 544 . 545 .{* These sections are global, and are managed by BFD. The application 546 . and target back end are not permitted to change the values in 547 . these sections. *} 548 .extern asection std_section[4]; 549 . 550 .#define BFD_ABS_SECTION_NAME "*ABS*" 551 .#define BFD_UND_SECTION_NAME "*UND*" 552 .#define BFD_COM_SECTION_NAME "*COM*" 553 .#define BFD_IND_SECTION_NAME "*IND*" 554 . 555 .{* Pointer to the common section. *} 556 .#define bfd_com_section_ptr (&std_section[0]) 557 .{* Pointer to the undefined section. *} 558 .#define bfd_und_section_ptr (&std_section[1]) 559 .{* Pointer to the absolute section. *} 560 .#define bfd_abs_section_ptr (&std_section[2]) 561 .{* Pointer to the indirect section. *} 562 .#define bfd_ind_section_ptr (&std_section[3]) 563 . 564 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr) 565 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr) 566 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr) 567 . 568 .#define bfd_is_const_section(SEC) \ 569 . ( ((SEC) == bfd_abs_section_ptr) \ 570 . || ((SEC) == bfd_und_section_ptr) \ 571 . || ((SEC) == bfd_com_section_ptr) \ 572 . || ((SEC) == bfd_ind_section_ptr)) 573 . 574 .{* Macros to handle insertion and deletion of a bfd's sections. These 575 . only handle the list pointers, ie. do not adjust section_count, 576 . target_index etc. *} 577 .#define bfd_section_list_remove(ABFD, S) \ 578 . do \ 579 . { \ 580 . asection *_s = S; \ 581 . asection *_next = _s->next; \ 582 . asection *_prev = _s->prev; \ 583 . if (_prev) \ 584 . _prev->next = _next; \ 585 . else \ 586 . (ABFD)->sections = _next; \ 587 . if (_next) \ 588 . _next->prev = _prev; \ 589 . else \ 590 . (ABFD)->section_last = _prev; \ 591 . } \ 592 . while (0) 593 .#define bfd_section_list_append(ABFD, S) \ 594 . do \ 595 . { \ 596 . asection *_s = S; \ 597 . bfd *_abfd = ABFD; \ 598 . _s->next = NULL; \ 599 . if (_abfd->section_last) \ 600 . { \ 601 . _s->prev = _abfd->section_last; \ 602 . _abfd->section_last->next = _s; \ 603 . } \ 604 . else \ 605 . { \ 606 . _s->prev = NULL; \ 607 . _abfd->sections = _s; \ 608 . } \ 609 . _abfd->section_last = _s; \ 610 . } \ 611 . while (0) 612 .#define bfd_section_list_prepend(ABFD, S) \ 613 . do \ 614 . { \ 615 . asection *_s = S; \ 616 . bfd *_abfd = ABFD; \ 617 . _s->prev = NULL; \ 618 . if (_abfd->sections) \ 619 . { \ 620 . _s->next = _abfd->sections; \ 621 . _abfd->sections->prev = _s; \ 622 . } \ 623 . else \ 624 . { \ 625 . _s->next = NULL; \ 626 . _abfd->section_last = _s; \ 627 . } \ 628 . _abfd->sections = _s; \ 629 . } \ 630 . while (0) 631 .#define bfd_section_list_insert_after(ABFD, A, S) \ 632 . do \ 633 . { \ 634 . asection *_a = A; \ 635 . asection *_s = S; \ 636 . asection *_next = _a->next; \ 637 . _s->next = _next; \ 638 . _s->prev = _a; \ 639 . _a->next = _s; \ 640 . if (_next) \ 641 . _next->prev = _s; \ 642 . else \ 643 . (ABFD)->section_last = _s; \ 644 . } \ 645 . while (0) 646 .#define bfd_section_list_insert_before(ABFD, B, S) \ 647 . do \ 648 . { \ 649 . asection *_b = B; \ 650 . asection *_s = S; \ 651 . asection *_prev = _b->prev; \ 652 . _s->prev = _prev; \ 653 . _s->next = _b; \ 654 . _b->prev = _s; \ 655 . if (_prev) \ 656 . _prev->next = _s; \ 657 . else \ 658 . (ABFD)->sections = _s; \ 659 . } \ 660 . while (0) 661 .#define bfd_section_removed_from_list(ABFD, S) \ 662 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S)) 663 . 664 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \ 665 . {* name, id, index, next, prev, flags, user_set_vma, *} \ 666 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \ 667 . \ 668 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \ 669 . 0, 0, 1, 0, \ 670 . \ 671 . {* segment_mark, sec_info_type, use_rela_p, *} \ 672 . 0, 0, 0, \ 673 . \ 674 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \ 675 . 0, 0, 0, 0, 0, 0, \ 676 . \ 677 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \ 678 . 0, 0, 0, 0, 0, 0, 0, \ 679 . \ 680 . {* output_offset, output_section, alignment_power, *} \ 681 . 0, &SEC, 0, \ 682 . \ 683 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \ 684 . NULL, NULL, 0, 0, 0, \ 685 . \ 686 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \ 687 . 0, NULL, NULL, NULL, 0, \ 688 . \ 689 . {* entsize, kept_section, moving_line_filepos, *} \ 690 . 0, NULL, 0, \ 691 . \ 692 . {* target_index, used_by_bfd, constructor_chain, owner, *} \ 693 . 0, NULL, NULL, NULL, \ 694 . \ 695 . {* symbol, symbol_ptr_ptr, *} \ 696 . (struct bfd_symbol *) SYM, &SEC.symbol, \ 697 . \ 698 . {* map_head, map_tail *} \ 699 . { NULL }, { NULL } \ 700 . } 701 . 702 */ 703 704 /* We use a macro to initialize the static asymbol structures because 705 traditional C does not permit us to initialize a union member while 706 gcc warns if we don't initialize it. */ 707 /* the_bfd, name, value, attr, section [, udata] */ 708 #ifdef __STDC__ 709 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 710 { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }} 711 #else 712 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 713 { 0, NAME, 0, BSF_SECTION_SYM, SECTION } 714 #endif 715 716 /* These symbols are global, not specific to any BFD. Therefore, anything 717 that tries to change them is broken, and should be repaired. */ 718 719 static const asymbol global_syms[] = 720 { 721 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr), 722 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr), 723 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr), 724 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr) 725 }; 726 727 #define STD_SECTION(NAME, IDX, FLAGS) \ 728 BFD_FAKE_SECTION(std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX) 729 730 asection std_section[] = { 731 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON), 732 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0), 733 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0), 734 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0) 735 }; 736 #undef STD_SECTION 737 738 /* Initialize an entry in the section hash table. */ 739 740 struct bfd_hash_entry * 741 bfd_section_hash_newfunc (struct bfd_hash_entry *entry, 742 struct bfd_hash_table *table, 743 const char *string) 744 { 745 /* Allocate the structure if it has not already been allocated by a 746 subclass. */ 747 if (entry == NULL) 748 { 749 entry = (struct bfd_hash_entry *) 750 bfd_hash_allocate (table, sizeof (struct section_hash_entry)); 751 if (entry == NULL) 752 return entry; 753 } 754 755 /* Call the allocation method of the superclass. */ 756 entry = bfd_hash_newfunc (entry, table, string); 757 if (entry != NULL) 758 memset (&((struct section_hash_entry *) entry)->section, 0, 759 sizeof (asection)); 760 761 return entry; 762 } 763 764 #define section_hash_lookup(table, string, create, copy) \ 765 ((struct section_hash_entry *) \ 766 bfd_hash_lookup ((table), (string), (create), (copy))) 767 768 /* Create a symbol whose only job is to point to this section. This 769 is useful for things like relocs which are relative to the base 770 of a section. */ 771 772 bfd_boolean 773 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect) 774 { 775 newsect->symbol = bfd_make_empty_symbol (abfd); 776 if (newsect->symbol == NULL) 777 return FALSE; 778 779 newsect->symbol->name = newsect->name; 780 newsect->symbol->value = 0; 781 newsect->symbol->section = newsect; 782 newsect->symbol->flags = BSF_SECTION_SYM; 783 784 newsect->symbol_ptr_ptr = &newsect->symbol; 785 return TRUE; 786 } 787 788 /* Initializes a new section. NEWSECT->NAME is already set. */ 789 790 static asection * 791 bfd_section_init (bfd *abfd, asection *newsect) 792 { 793 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */ 794 795 newsect->id = section_id; 796 newsect->index = abfd->section_count; 797 newsect->owner = abfd; 798 799 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 800 return NULL; 801 802 section_id++; 803 abfd->section_count++; 804 bfd_section_list_append (abfd, newsect); 805 return newsect; 806 } 807 808 /* 809 DOCDD 810 INODE 811 section prototypes, , typedef asection, Sections 812 SUBSECTION 813 Section prototypes 814 815 These are the functions exported by the section handling part of BFD. 816 */ 817 818 /* 819 FUNCTION 820 bfd_section_list_clear 821 822 SYNOPSIS 823 void bfd_section_list_clear (bfd *); 824 825 DESCRIPTION 826 Clears the section list, and also resets the section count and 827 hash table entries. 828 */ 829 830 void 831 bfd_section_list_clear (bfd *abfd) 832 { 833 abfd->sections = NULL; 834 abfd->section_last = NULL; 835 abfd->section_count = 0; 836 memset (abfd->section_htab.table, 0, 837 abfd->section_htab.size * sizeof (struct bfd_hash_entry *)); 838 } 839 840 /* 841 FUNCTION 842 bfd_get_section_by_name 843 844 SYNOPSIS 845 asection *bfd_get_section_by_name (bfd *abfd, const char *name); 846 847 DESCRIPTION 848 Return the most recently created section attached to @var{abfd} 849 named @var{name}. Return NULL if no such section exists. 850 */ 851 852 asection * 853 bfd_get_section_by_name (bfd *abfd, const char *name) 854 { 855 struct section_hash_entry *sh; 856 857 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 858 if (sh != NULL) 859 return &sh->section; 860 861 return NULL; 862 } 863 864 /* 865 FUNCTION 866 bfd_get_next_section_by_name 867 868 SYNOPSIS 869 asection *bfd_get_next_section_by_name (asection *sec); 870 871 DESCRIPTION 872 Given @var{sec} is a section returned by @code{bfd_get_section_by_name}, 873 return the next most recently created section attached to the same 874 BFD with the same name. Return NULL if no such section exists. 875 */ 876 877 asection * 878 bfd_get_next_section_by_name (asection *sec) 879 { 880 struct section_hash_entry *sh; 881 const char *name; 882 unsigned long hash; 883 884 sh = ((struct section_hash_entry *) 885 ((char *) sec - offsetof (struct section_hash_entry, section))); 886 887 hash = sh->root.hash; 888 name = sec->name; 889 for (sh = (struct section_hash_entry *) sh->root.next; 890 sh != NULL; 891 sh = (struct section_hash_entry *) sh->root.next) 892 if (sh->root.hash == hash 893 && strcmp (sh->root.string, name) == 0) 894 return &sh->section; 895 896 return NULL; 897 } 898 899 /* 900 FUNCTION 901 bfd_get_linker_section 902 903 SYNOPSIS 904 asection *bfd_get_linker_section (bfd *abfd, const char *name); 905 906 DESCRIPTION 907 Return the linker created section attached to @var{abfd} 908 named @var{name}. Return NULL if no such section exists. 909 */ 910 911 asection * 912 bfd_get_linker_section (bfd *abfd, const char *name) 913 { 914 asection *sec = bfd_get_section_by_name (abfd, name); 915 916 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0) 917 sec = bfd_get_next_section_by_name (sec); 918 return sec; 919 } 920 921 /* 922 FUNCTION 923 bfd_get_section_by_name_if 924 925 SYNOPSIS 926 asection *bfd_get_section_by_name_if 927 (bfd *abfd, 928 const char *name, 929 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj), 930 void *obj); 931 932 DESCRIPTION 933 Call the provided function @var{func} for each section 934 attached to the BFD @var{abfd} whose name matches @var{name}, 935 passing @var{obj} as an argument. The function will be called 936 as if by 937 938 | func (abfd, the_section, obj); 939 940 It returns the first section for which @var{func} returns true, 941 otherwise <<NULL>>. 942 943 */ 944 945 asection * 946 bfd_get_section_by_name_if (bfd *abfd, const char *name, 947 bfd_boolean (*operation) (bfd *, 948 asection *, 949 void *), 950 void *user_storage) 951 { 952 struct section_hash_entry *sh; 953 unsigned long hash; 954 955 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 956 if (sh == NULL) 957 return NULL; 958 959 hash = sh->root.hash; 960 do 961 { 962 if ((*operation) (abfd, &sh->section, user_storage)) 963 return &sh->section; 964 sh = (struct section_hash_entry *) sh->root.next; 965 } 966 while (sh != NULL && sh->root.hash == hash 967 && strcmp (sh->root.string, name) == 0); 968 969 return NULL; 970 } 971 972 /* 973 FUNCTION 974 bfd_get_unique_section_name 975 976 SYNOPSIS 977 char *bfd_get_unique_section_name 978 (bfd *abfd, const char *templat, int *count); 979 980 DESCRIPTION 981 Invent a section name that is unique in @var{abfd} by tacking 982 a dot and a digit suffix onto the original @var{templat}. If 983 @var{count} is non-NULL, then it specifies the first number 984 tried as a suffix to generate a unique name. The value 985 pointed to by @var{count} will be incremented in this case. 986 */ 987 988 char * 989 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count) 990 { 991 int num; 992 unsigned int len; 993 char *sname; 994 995 len = strlen (templat); 996 sname = (char *) bfd_malloc (len + 8); 997 if (sname == NULL) 998 return NULL; 999 memcpy (sname, templat, len); 1000 num = 1; 1001 if (count != NULL) 1002 num = *count; 1003 1004 do 1005 { 1006 /* If we have a million sections, something is badly wrong. */ 1007 if (num > 999999) 1008 abort (); 1009 sprintf (sname + len, ".%d", num++); 1010 } 1011 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE)); 1012 1013 if (count != NULL) 1014 *count = num; 1015 return sname; 1016 } 1017 1018 /* 1019 FUNCTION 1020 bfd_make_section_old_way 1021 1022 SYNOPSIS 1023 asection *bfd_make_section_old_way (bfd *abfd, const char *name); 1024 1025 DESCRIPTION 1026 Create a new empty section called @var{name} 1027 and attach it to the end of the chain of sections for the 1028 BFD @var{abfd}. An attempt to create a section with a name which 1029 is already in use returns its pointer without changing the 1030 section chain. 1031 1032 It has the funny name since this is the way it used to be 1033 before it was rewritten.... 1034 1035 Possible errors are: 1036 o <<bfd_error_invalid_operation>> - 1037 If output has already started for this BFD. 1038 o <<bfd_error_no_memory>> - 1039 If memory allocation fails. 1040 1041 */ 1042 1043 asection * 1044 bfd_make_section_old_way (bfd *abfd, const char *name) 1045 { 1046 asection *newsect; 1047 1048 if (abfd->output_has_begun) 1049 { 1050 bfd_set_error (bfd_error_invalid_operation); 1051 return NULL; 1052 } 1053 1054 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0) 1055 newsect = bfd_abs_section_ptr; 1056 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0) 1057 newsect = bfd_com_section_ptr; 1058 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0) 1059 newsect = bfd_und_section_ptr; 1060 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0) 1061 newsect = bfd_ind_section_ptr; 1062 else 1063 { 1064 struct section_hash_entry *sh; 1065 1066 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1067 if (sh == NULL) 1068 return NULL; 1069 1070 newsect = &sh->section; 1071 if (newsect->name != NULL) 1072 { 1073 /* Section already exists. */ 1074 return newsect; 1075 } 1076 1077 newsect->name = name; 1078 return bfd_section_init (abfd, newsect); 1079 } 1080 1081 /* Call new_section_hook when "creating" the standard abs, com, und 1082 and ind sections to tack on format specific section data. 1083 Also, create a proper section symbol. */ 1084 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 1085 return NULL; 1086 return newsect; 1087 } 1088 1089 /* 1090 FUNCTION 1091 bfd_make_section_anyway_with_flags 1092 1093 SYNOPSIS 1094 asection *bfd_make_section_anyway_with_flags 1095 (bfd *abfd, const char *name, flagword flags); 1096 1097 DESCRIPTION 1098 Create a new empty section called @var{name} and attach it to the end of 1099 the chain of sections for @var{abfd}. Create a new section even if there 1100 is already a section with that name. Also set the attributes of the 1101 new section to the value @var{flags}. 1102 1103 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1104 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1105 o <<bfd_error_no_memory>> - If memory allocation fails. 1106 */ 1107 1108 sec_ptr 1109 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name, 1110 flagword flags) 1111 { 1112 struct section_hash_entry *sh; 1113 asection *newsect; 1114 1115 if (abfd->output_has_begun) 1116 { 1117 bfd_set_error (bfd_error_invalid_operation); 1118 return NULL; 1119 } 1120 1121 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1122 if (sh == NULL) 1123 return NULL; 1124 1125 newsect = &sh->section; 1126 if (newsect->name != NULL) 1127 { 1128 /* We are making a section of the same name. Put it in the 1129 section hash table. Even though we can't find it directly by a 1130 hash lookup, we'll be able to find the section by traversing 1131 sh->root.next quicker than looking at all the bfd sections. */ 1132 struct section_hash_entry *new_sh; 1133 new_sh = (struct section_hash_entry *) 1134 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name); 1135 if (new_sh == NULL) 1136 return NULL; 1137 1138 new_sh->root = sh->root; 1139 sh->root.next = &new_sh->root; 1140 newsect = &new_sh->section; 1141 } 1142 1143 newsect->flags = flags; 1144 newsect->name = name; 1145 return bfd_section_init (abfd, newsect); 1146 } 1147 1148 /* 1149 FUNCTION 1150 bfd_make_section_anyway 1151 1152 SYNOPSIS 1153 asection *bfd_make_section_anyway (bfd *abfd, const char *name); 1154 1155 DESCRIPTION 1156 Create a new empty section called @var{name} and attach it to the end of 1157 the chain of sections for @var{abfd}. Create a new section even if there 1158 is already a section with that name. 1159 1160 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1161 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1162 o <<bfd_error_no_memory>> - If memory allocation fails. 1163 */ 1164 1165 sec_ptr 1166 bfd_make_section_anyway (bfd *abfd, const char *name) 1167 { 1168 return bfd_make_section_anyway_with_flags (abfd, name, 0); 1169 } 1170 1171 /* 1172 FUNCTION 1173 bfd_make_section_with_flags 1174 1175 SYNOPSIS 1176 asection *bfd_make_section_with_flags 1177 (bfd *, const char *name, flagword flags); 1178 1179 DESCRIPTION 1180 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1181 bfd_set_error ()) without changing the section chain if there is already a 1182 section named @var{name}. Also set the attributes of the new section to 1183 the value @var{flags}. If there is an error, return <<NULL>> and set 1184 <<bfd_error>>. 1185 */ 1186 1187 asection * 1188 bfd_make_section_with_flags (bfd *abfd, const char *name, 1189 flagword flags) 1190 { 1191 struct section_hash_entry *sh; 1192 asection *newsect; 1193 1194 if (abfd->output_has_begun) 1195 { 1196 bfd_set_error (bfd_error_invalid_operation); 1197 return NULL; 1198 } 1199 1200 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0 1201 || strcmp (name, BFD_COM_SECTION_NAME) == 0 1202 || strcmp (name, BFD_UND_SECTION_NAME) == 0 1203 || strcmp (name, BFD_IND_SECTION_NAME) == 0) 1204 return NULL; 1205 1206 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1207 if (sh == NULL) 1208 return NULL; 1209 1210 newsect = &sh->section; 1211 if (newsect->name != NULL) 1212 { 1213 /* Section already exists. */ 1214 return NULL; 1215 } 1216 1217 newsect->name = name; 1218 newsect->flags = flags; 1219 return bfd_section_init (abfd, newsect); 1220 } 1221 1222 /* 1223 FUNCTION 1224 bfd_make_section 1225 1226 SYNOPSIS 1227 asection *bfd_make_section (bfd *, const char *name); 1228 1229 DESCRIPTION 1230 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1231 bfd_set_error ()) without changing the section chain if there is already a 1232 section named @var{name}. If there is an error, return <<NULL>> and set 1233 <<bfd_error>>. 1234 */ 1235 1236 asection * 1237 bfd_make_section (bfd *abfd, const char *name) 1238 { 1239 return bfd_make_section_with_flags (abfd, name, 0); 1240 } 1241 1242 /* 1243 FUNCTION 1244 bfd_set_section_flags 1245 1246 SYNOPSIS 1247 bfd_boolean bfd_set_section_flags 1248 (bfd *abfd, asection *sec, flagword flags); 1249 1250 DESCRIPTION 1251 Set the attributes of the section @var{sec} in the BFD 1252 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success, 1253 <<FALSE>> on error. Possible error returns are: 1254 1255 o <<bfd_error_invalid_operation>> - 1256 The section cannot have one or more of the attributes 1257 requested. For example, a .bss section in <<a.out>> may not 1258 have the <<SEC_HAS_CONTENTS>> field set. 1259 1260 */ 1261 1262 bfd_boolean 1263 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED, 1264 sec_ptr section, 1265 flagword flags) 1266 { 1267 section->flags = flags; 1268 return TRUE; 1269 } 1270 1271 /* 1272 FUNCTION 1273 bfd_rename_section 1274 1275 SYNOPSIS 1276 void bfd_rename_section 1277 (bfd *abfd, asection *sec, const char *newname); 1278 1279 DESCRIPTION 1280 Rename section @var{sec} in @var{abfd} to @var{newname}. 1281 */ 1282 1283 void 1284 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname) 1285 { 1286 struct section_hash_entry *sh; 1287 1288 sh = (struct section_hash_entry *) 1289 ((char *) sec - offsetof (struct section_hash_entry, section)); 1290 sh->section.name = newname; 1291 bfd_hash_rename (&abfd->section_htab, newname, &sh->root); 1292 } 1293 1294 /* 1295 FUNCTION 1296 bfd_map_over_sections 1297 1298 SYNOPSIS 1299 void bfd_map_over_sections 1300 (bfd *abfd, 1301 void (*func) (bfd *abfd, asection *sect, void *obj), 1302 void *obj); 1303 1304 DESCRIPTION 1305 Call the provided function @var{func} for each section 1306 attached to the BFD @var{abfd}, passing @var{obj} as an 1307 argument. The function will be called as if by 1308 1309 | func (abfd, the_section, obj); 1310 1311 This is the preferred method for iterating over sections; an 1312 alternative would be to use a loop: 1313 1314 | asection *p; 1315 | for (p = abfd->sections; p != NULL; p = p->next) 1316 | func (abfd, p, ...) 1317 1318 */ 1319 1320 void 1321 bfd_map_over_sections (bfd *abfd, 1322 void (*operation) (bfd *, asection *, void *), 1323 void *user_storage) 1324 { 1325 asection *sect; 1326 unsigned int i = 0; 1327 1328 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next) 1329 (*operation) (abfd, sect, user_storage); 1330 1331 if (i != abfd->section_count) /* Debugging */ 1332 abort (); 1333 } 1334 1335 /* 1336 FUNCTION 1337 bfd_sections_find_if 1338 1339 SYNOPSIS 1340 asection *bfd_sections_find_if 1341 (bfd *abfd, 1342 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj), 1343 void *obj); 1344 1345 DESCRIPTION 1346 Call the provided function @var{operation} for each section 1347 attached to the BFD @var{abfd}, passing @var{obj} as an 1348 argument. The function will be called as if by 1349 1350 | operation (abfd, the_section, obj); 1351 1352 It returns the first section for which @var{operation} returns true. 1353 1354 */ 1355 1356 asection * 1357 bfd_sections_find_if (bfd *abfd, 1358 bfd_boolean (*operation) (bfd *, asection *, void *), 1359 void *user_storage) 1360 { 1361 asection *sect; 1362 1363 for (sect = abfd->sections; sect != NULL; sect = sect->next) 1364 if ((*operation) (abfd, sect, user_storage)) 1365 break; 1366 1367 return sect; 1368 } 1369 1370 /* 1371 FUNCTION 1372 bfd_set_section_size 1373 1374 SYNOPSIS 1375 bfd_boolean bfd_set_section_size 1376 (bfd *abfd, asection *sec, bfd_size_type val); 1377 1378 DESCRIPTION 1379 Set @var{sec} to the size @var{val}. If the operation is 1380 ok, then <<TRUE>> is returned, else <<FALSE>>. 1381 1382 Possible error returns: 1383 o <<bfd_error_invalid_operation>> - 1384 Writing has started to the BFD, so setting the size is invalid. 1385 1386 */ 1387 1388 bfd_boolean 1389 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val) 1390 { 1391 /* Once you've started writing to any section you cannot create or change 1392 the size of any others. */ 1393 1394 if (abfd->output_has_begun) 1395 { 1396 bfd_set_error (bfd_error_invalid_operation); 1397 return FALSE; 1398 } 1399 1400 ptr->size = val; 1401 return TRUE; 1402 } 1403 1404 /* 1405 FUNCTION 1406 bfd_set_section_contents 1407 1408 SYNOPSIS 1409 bfd_boolean bfd_set_section_contents 1410 (bfd *abfd, asection *section, const void *data, 1411 file_ptr offset, bfd_size_type count); 1412 1413 DESCRIPTION 1414 Sets the contents of the section @var{section} in BFD 1415 @var{abfd} to the data starting in memory at @var{data}. The 1416 data is written to the output section starting at offset 1417 @var{offset} for @var{count} octets. 1418 1419 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error 1420 returns are: 1421 o <<bfd_error_no_contents>> - 1422 The output section does not have the <<SEC_HAS_CONTENTS>> 1423 attribute, so nothing can be written to it. 1424 o and some more too 1425 1426 This routine is front end to the back end function 1427 <<_bfd_set_section_contents>>. 1428 1429 */ 1430 1431 bfd_boolean 1432 bfd_set_section_contents (bfd *abfd, 1433 sec_ptr section, 1434 const void *location, 1435 file_ptr offset, 1436 bfd_size_type count) 1437 { 1438 bfd_size_type sz; 1439 1440 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS)) 1441 { 1442 bfd_set_error (bfd_error_no_contents); 1443 return FALSE; 1444 } 1445 1446 sz = section->size; 1447 if ((bfd_size_type) offset > sz 1448 || count > sz 1449 || offset + count > sz 1450 || count != (size_t) count) 1451 { 1452 bfd_set_error (bfd_error_bad_value); 1453 return FALSE; 1454 } 1455 1456 if (!bfd_write_p (abfd)) 1457 { 1458 bfd_set_error (bfd_error_invalid_operation); 1459 return FALSE; 1460 } 1461 1462 /* Record a copy of the data in memory if desired. */ 1463 if (section->contents 1464 && location != section->contents + offset) 1465 memcpy (section->contents + offset, location, (size_t) count); 1466 1467 if (BFD_SEND (abfd, _bfd_set_section_contents, 1468 (abfd, section, location, offset, count))) 1469 { 1470 abfd->output_has_begun = TRUE; 1471 return TRUE; 1472 } 1473 1474 return FALSE; 1475 } 1476 1477 /* 1478 FUNCTION 1479 bfd_get_section_contents 1480 1481 SYNOPSIS 1482 bfd_boolean bfd_get_section_contents 1483 (bfd *abfd, asection *section, void *location, file_ptr offset, 1484 bfd_size_type count); 1485 1486 DESCRIPTION 1487 Read data from @var{section} in BFD @var{abfd} 1488 into memory starting at @var{location}. The data is read at an 1489 offset of @var{offset} from the start of the input section, 1490 and is read for @var{count} bytes. 1491 1492 If the contents of a constructor with the <<SEC_CONSTRUCTOR>> 1493 flag set are requested or if the section does not have the 1494 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled 1495 with zeroes. If no errors occur, <<TRUE>> is returned, else 1496 <<FALSE>>. 1497 1498 */ 1499 bfd_boolean 1500 bfd_get_section_contents (bfd *abfd, 1501 sec_ptr section, 1502 void *location, 1503 file_ptr offset, 1504 bfd_size_type count) 1505 { 1506 bfd_size_type sz; 1507 1508 if (section->flags & SEC_CONSTRUCTOR) 1509 { 1510 memset (location, 0, (size_t) count); 1511 return TRUE; 1512 } 1513 1514 if (abfd->direction != write_direction && section->rawsize != 0) 1515 sz = section->rawsize; 1516 else 1517 sz = section->size; 1518 if ((bfd_size_type) offset > sz 1519 || count > sz 1520 || offset + count > sz 1521 || count != (size_t) count) 1522 { 1523 bfd_set_error (bfd_error_bad_value); 1524 return FALSE; 1525 } 1526 1527 if (count == 0) 1528 /* Don't bother. */ 1529 return TRUE; 1530 1531 if ((section->flags & SEC_HAS_CONTENTS) == 0) 1532 { 1533 memset (location, 0, (size_t) count); 1534 return TRUE; 1535 } 1536 1537 if ((section->flags & SEC_IN_MEMORY) != 0) 1538 { 1539 if (section->contents == NULL) 1540 { 1541 /* This can happen because of errors earlier on in the linking process. 1542 We do not want to seg-fault here, so clear the flag and return an 1543 error code. */ 1544 section->flags &= ~ SEC_IN_MEMORY; 1545 bfd_set_error (bfd_error_invalid_operation); 1546 return FALSE; 1547 } 1548 1549 memcpy (location, section->contents + offset, (size_t) count); 1550 return TRUE; 1551 } 1552 1553 return BFD_SEND (abfd, _bfd_get_section_contents, 1554 (abfd, section, location, offset, count)); 1555 } 1556 1557 /* 1558 FUNCTION 1559 bfd_malloc_and_get_section 1560 1561 SYNOPSIS 1562 bfd_boolean bfd_malloc_and_get_section 1563 (bfd *abfd, asection *section, bfd_byte **buf); 1564 1565 DESCRIPTION 1566 Read all data from @var{section} in BFD @var{abfd} 1567 into a buffer, *@var{buf}, malloc'd by this function. 1568 */ 1569 1570 bfd_boolean 1571 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf) 1572 { 1573 *buf = NULL; 1574 return bfd_get_full_section_contents (abfd, sec, buf); 1575 } 1576 /* 1577 FUNCTION 1578 bfd_copy_private_section_data 1579 1580 SYNOPSIS 1581 bfd_boolean bfd_copy_private_section_data 1582 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec); 1583 1584 DESCRIPTION 1585 Copy private section information from @var{isec} in the BFD 1586 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}. 1587 Return <<TRUE>> on success, <<FALSE>> on error. Possible error 1588 returns are: 1589 1590 o <<bfd_error_no_memory>> - 1591 Not enough memory exists to create private data for @var{osec}. 1592 1593 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ 1594 . BFD_SEND (obfd, _bfd_copy_private_section_data, \ 1595 . (ibfd, isection, obfd, osection)) 1596 */ 1597 1598 /* 1599 FUNCTION 1600 bfd_generic_is_group_section 1601 1602 SYNOPSIS 1603 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec); 1604 1605 DESCRIPTION 1606 Returns TRUE if @var{sec} is a member of a group. 1607 */ 1608 1609 bfd_boolean 1610 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, 1611 const asection *sec ATTRIBUTE_UNUSED) 1612 { 1613 return FALSE; 1614 } 1615 1616 /* 1617 FUNCTION 1618 bfd_generic_discard_group 1619 1620 SYNOPSIS 1621 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group); 1622 1623 DESCRIPTION 1624 Remove all members of @var{group} from the output. 1625 */ 1626 1627 bfd_boolean 1628 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED, 1629 asection *group ATTRIBUTE_UNUSED) 1630 { 1631 return TRUE; 1632 } 1633