1 /* Object file "section" support for the BFD library. 2 Copyright (C) 1990-2022 Free Software Foundation, Inc. 3 Written by Cygnus Support. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 /* 23 SECTION 24 Sections 25 26 The raw data contained within a BFD is maintained through the 27 section abstraction. A single BFD may have any number of 28 sections. It keeps hold of them by pointing to the first; 29 each one points to the next in the list. 30 31 Sections are supported in BFD in <<section.c>>. 32 33 @menu 34 @* Section Input:: 35 @* Section Output:: 36 @* typedef asection:: 37 @* section prototypes:: 38 @end menu 39 40 INODE 41 Section Input, Section Output, Sections, Sections 42 SUBSECTION 43 Section input 44 45 When a BFD is opened for reading, the section structures are 46 created and attached to the BFD. 47 48 Each section has a name which describes the section in the 49 outside world---for example, <<a.out>> would contain at least 50 three sections, called <<.text>>, <<.data>> and <<.bss>>. 51 52 Names need not be unique; for example a COFF file may have several 53 sections named <<.data>>. 54 55 Sometimes a BFD will contain more than the ``natural'' number of 56 sections. A back end may attach other sections containing 57 constructor data, or an application may add a section (using 58 <<bfd_make_section>>) to the sections attached to an already open 59 BFD. For example, the linker creates an extra section 60 <<COMMON>> for each input file's BFD to hold information about 61 common storage. 62 63 The raw data is not necessarily read in when 64 the section descriptor is created. Some targets may leave the 65 data in place until a <<bfd_get_section_contents>> call is 66 made. Other back ends may read in all the data at once. For 67 example, an S-record file has to be read once to determine the 68 size of the data. 69 70 INODE 71 Section Output, typedef asection, Section Input, Sections 72 73 SUBSECTION 74 Section output 75 76 To write a new object style BFD, the various sections to be 77 written have to be created. They are attached to the BFD in 78 the same way as input sections; data is written to the 79 sections using <<bfd_set_section_contents>>. 80 81 Any program that creates or combines sections (e.g., the assembler 82 and linker) must use the <<asection>> fields <<output_section>> and 83 <<output_offset>> to indicate the file sections to which each 84 section must be written. (If the section is being created from 85 scratch, <<output_section>> should probably point to the section 86 itself and <<output_offset>> should probably be zero.) 87 88 The data to be written comes from input sections attached 89 (via <<output_section>> pointers) to 90 the output sections. The output section structure can be 91 considered a filter for the input section: the output section 92 determines the vma of the output data and the name, but the 93 input section determines the offset into the output section of 94 the data to be written. 95 96 E.g., to create a section "O", starting at 0x100, 0x123 long, 97 containing two subsections, "A" at offset 0x0 (i.e., at vma 98 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>> 99 structures would look like: 100 101 | section name "A" 102 | output_offset 0x00 103 | size 0x20 104 | output_section -----------> section name "O" 105 | | vma 0x100 106 | section name "B" | size 0x123 107 | output_offset 0x20 | 108 | size 0x103 | 109 | output_section --------| 110 111 SUBSECTION 112 Link orders 113 114 The data within a section is stored in a @dfn{link_order}. 115 These are much like the fixups in <<gas>>. The link_order 116 abstraction allows a section to grow and shrink within itself. 117 118 A link_order knows how big it is, and which is the next 119 link_order and where the raw data for it is; it also points to 120 a list of relocations which apply to it. 121 122 The link_order is used by the linker to perform relaxing on 123 final code. The compiler creates code which is as big as 124 necessary to make it work without relaxing, and the user can 125 select whether to relax. Sometimes relaxing takes a lot of 126 time. The linker runs around the relocations to see if any 127 are attached to data which can be shrunk, if so it does it on 128 a link_order by link_order basis. 129 130 */ 131 132 #include "sysdep.h" 133 #include "bfd.h" 134 #include "libbfd.h" 135 #include "bfdlink.h" 136 137 /* 138 DOCDD 139 INODE 140 typedef asection, section prototypes, Section Output, Sections 141 SUBSECTION 142 typedef asection 143 144 Here is the section structure: 145 146 CODE_FRAGMENT 147 . 148 .typedef struct bfd_section 149 .{ 150 . {* The name of the section; the name isn't a copy, the pointer is 151 . the same as that passed to bfd_make_section. *} 152 . const char *name; 153 . 154 . {* The next section in the list belonging to the BFD, or NULL. *} 155 . struct bfd_section *next; 156 . 157 . {* The previous section in the list belonging to the BFD, or NULL. *} 158 . struct bfd_section *prev; 159 . 160 . {* A unique sequence number. *} 161 . unsigned int id; 162 . 163 . {* A unique section number which can be used by assembler to 164 . distinguish different sections with the same section name. *} 165 . unsigned int section_id; 166 . 167 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *} 168 . unsigned int index; 169 . 170 . {* The field flags contains attributes of the section. Some 171 . flags are read in from the object file, and some are 172 . synthesized from other information. *} 173 . flagword flags; 174 . 175 .#define SEC_NO_FLAGS 0x0 176 . 177 . {* Tells the OS to allocate space for this section when loading. 178 . This is clear for a section containing debug information only. *} 179 .#define SEC_ALLOC 0x1 180 . 181 . {* Tells the OS to load the section from the file when loading. 182 . This is clear for a .bss section. *} 183 .#define SEC_LOAD 0x2 184 . 185 . {* The section contains data still to be relocated, so there is 186 . some relocation information too. *} 187 .#define SEC_RELOC 0x4 188 . 189 . {* A signal to the OS that the section contains read only data. *} 190 .#define SEC_READONLY 0x8 191 . 192 . {* The section contains code only. *} 193 .#define SEC_CODE 0x10 194 . 195 . {* The section contains data only. *} 196 .#define SEC_DATA 0x20 197 . 198 . {* The section will reside in ROM. *} 199 .#define SEC_ROM 0x40 200 . 201 . {* The section contains constructor information. This section 202 . type is used by the linker to create lists of constructors and 203 . destructors used by <<g++>>. When a back end sees a symbol 204 . which should be used in a constructor list, it creates a new 205 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches 206 . the symbol to it, and builds a relocation. To build the lists 207 . of constructors, all the linker has to do is catenate all the 208 . sections called <<__CTOR_LIST__>> and relocate the data 209 . contained within - exactly the operations it would peform on 210 . standard data. *} 211 .#define SEC_CONSTRUCTOR 0x80 212 . 213 . {* The section has contents - a data section could be 214 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be 215 . <<SEC_HAS_CONTENTS>> *} 216 .#define SEC_HAS_CONTENTS 0x100 217 . 218 . {* An instruction to the linker to not output the section 219 . even if it has information which would normally be written. *} 220 .#define SEC_NEVER_LOAD 0x200 221 . 222 . {* The section contains thread local data. *} 223 .#define SEC_THREAD_LOCAL 0x400 224 . 225 . {* The section's size is fixed. Generic linker code will not 226 . recalculate it and it is up to whoever has set this flag to 227 . get the size right. *} 228 .#define SEC_FIXED_SIZE 0x800 229 . 230 . {* The section contains common symbols (symbols may be defined 231 . multiple times, the value of a symbol is the amount of 232 . space it requires, and the largest symbol value is the one 233 . used). Most targets have exactly one of these (which we 234 . translate to bfd_com_section_ptr), but ECOFF has two. *} 235 .#define SEC_IS_COMMON 0x1000 236 . 237 . {* The section contains only debugging information. For 238 . example, this is set for ELF .debug and .stab sections. 239 . strip tests this flag to see if a section can be 240 . discarded. *} 241 .#define SEC_DEBUGGING 0x2000 242 . 243 . {* The contents of this section are held in memory pointed to 244 . by the contents field. This is checked by bfd_get_section_contents, 245 . and the data is retrieved from memory if appropriate. *} 246 .#define SEC_IN_MEMORY 0x4000 247 . 248 . {* The contents of this section are to be excluded by the 249 . linker for executable and shared objects unless those 250 . objects are to be further relocated. *} 251 .#define SEC_EXCLUDE 0x8000 252 . 253 . {* The contents of this section are to be sorted based on the sum of 254 . the symbol and addend values specified by the associated relocation 255 . entries. Entries without associated relocation entries will be 256 . appended to the end of the section in an unspecified order. *} 257 .#define SEC_SORT_ENTRIES 0x10000 258 . 259 . {* When linking, duplicate sections of the same name should be 260 . discarded, rather than being combined into a single section as 261 . is usually done. This is similar to how common symbols are 262 . handled. See SEC_LINK_DUPLICATES below. *} 263 .#define SEC_LINK_ONCE 0x20000 264 . 265 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker 266 . should handle duplicate sections. *} 267 .#define SEC_LINK_DUPLICATES 0xc0000 268 . 269 . {* This value for SEC_LINK_DUPLICATES means that duplicate 270 . sections with the same name should simply be discarded. *} 271 .#define SEC_LINK_DUPLICATES_DISCARD 0x0 272 . 273 . {* This value for SEC_LINK_DUPLICATES means that the linker 274 . should warn if there are any duplicate sections, although 275 . it should still only link one copy. *} 276 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000 277 . 278 . {* This value for SEC_LINK_DUPLICATES means that the linker 279 . should warn if any duplicate sections are a different size. *} 280 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000 281 . 282 . {* This value for SEC_LINK_DUPLICATES means that the linker 283 . should warn if any duplicate sections contain different 284 . contents. *} 285 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \ 286 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE) 287 . 288 . {* This section was created by the linker as part of dynamic 289 . relocation or other arcane processing. It is skipped when 290 . going through the first-pass output, trusting that someone 291 . else up the line will take care of it later. *} 292 .#define SEC_LINKER_CREATED 0x100000 293 . 294 . {* This section contains a section ID to distinguish different 295 . sections with the same section name. *} 296 .#define SEC_ASSEMBLER_SECTION_ID 0x100000 297 . 298 . {* This section should not be subject to garbage collection. 299 . Also set to inform the linker that this section should not be 300 . listed in the link map as discarded. *} 301 .#define SEC_KEEP 0x200000 302 . 303 . {* This section contains "short" data, and should be placed 304 . "near" the GP. *} 305 .#define SEC_SMALL_DATA 0x400000 306 . 307 . {* Attempt to merge identical entities in the section. 308 . Entity size is given in the entsize field. *} 309 .#define SEC_MERGE 0x800000 310 . 311 . {* If given with SEC_MERGE, entities to merge are zero terminated 312 . strings where entsize specifies character size instead of fixed 313 . size entries. *} 314 .#define SEC_STRINGS 0x1000000 315 . 316 . {* This section contains data about section groups. *} 317 .#define SEC_GROUP 0x2000000 318 . 319 . {* The section is a COFF shared library section. This flag is 320 . only for the linker. If this type of section appears in 321 . the input file, the linker must copy it to the output file 322 . without changing the vma or size. FIXME: Although this 323 . was originally intended to be general, it really is COFF 324 . specific (and the flag was renamed to indicate this). It 325 . might be cleaner to have some more general mechanism to 326 . allow the back end to control what the linker does with 327 . sections. *} 328 .#define SEC_COFF_SHARED_LIBRARY 0x4000000 329 . 330 . {* This input section should be copied to output in reverse order 331 . as an array of pointers. This is for ELF linker internal use 332 . only. *} 333 .#define SEC_ELF_REVERSE_COPY 0x4000000 334 . 335 . {* This section contains data which may be shared with other 336 . executables or shared objects. This is for COFF only. *} 337 .#define SEC_COFF_SHARED 0x8000000 338 . 339 . {* This section should be compressed. This is for ELF linker 340 . internal use only. *} 341 .#define SEC_ELF_COMPRESS 0x8000000 342 . 343 . {* When a section with this flag is being linked, then if the size of 344 . the input section is less than a page, it should not cross a page 345 . boundary. If the size of the input section is one page or more, 346 . it should be aligned on a page boundary. This is for TI 347 . TMS320C54X only. *} 348 .#define SEC_TIC54X_BLOCK 0x10000000 349 . 350 . {* This section should be renamed. This is for ELF linker 351 . internal use only. *} 352 .#define SEC_ELF_RENAME 0x10000000 353 . 354 . {* Conditionally link this section; do not link if there are no 355 . references found to any symbol in the section. This is for TI 356 . TMS320C54X only. *} 357 .#define SEC_TIC54X_CLINK 0x20000000 358 . 359 . {* This section contains vliw code. This is for Toshiba MeP only. *} 360 .#define SEC_MEP_VLIW 0x20000000 361 . 362 . {* All symbols, sizes and relocations in this section are octets 363 . instead of bytes. Required for DWARF debug sections as DWARF 364 . information is organized in octets, not bytes. *} 365 .#define SEC_ELF_OCTETS 0x40000000 366 . 367 . {* Indicate that section has the no read flag set. This happens 368 . when memory read flag isn't set. *} 369 .#define SEC_COFF_NOREAD 0x40000000 370 . 371 . {* Indicate that section has the purecode flag set. *} 372 .#define SEC_ELF_PURECODE 0x80000000 373 . 374 . {* End of section flags. *} 375 . 376 . {* Some internal packed boolean fields. *} 377 . 378 . {* See the vma field. *} 379 . unsigned int user_set_vma : 1; 380 . 381 . {* A mark flag used by some of the linker backends. *} 382 . unsigned int linker_mark : 1; 383 . 384 . {* Another mark flag used by some of the linker backends. Set for 385 . output sections that have an input section. *} 386 . unsigned int linker_has_input : 1; 387 . 388 . {* Mark flag used by some linker backends for garbage collection. *} 389 . unsigned int gc_mark : 1; 390 . 391 . {* Section compression status. *} 392 . unsigned int compress_status : 2; 393 .#define COMPRESS_SECTION_NONE 0 394 .#define COMPRESS_SECTION_DONE 1 395 .#define DECOMPRESS_SECTION_SIZED 2 396 . 397 . {* The following flags are used by the ELF linker. *} 398 . 399 . {* Mark sections which have been allocated to segments. *} 400 . unsigned int segment_mark : 1; 401 . 402 . {* Type of sec_info information. *} 403 . unsigned int sec_info_type:3; 404 .#define SEC_INFO_TYPE_NONE 0 405 .#define SEC_INFO_TYPE_STABS 1 406 .#define SEC_INFO_TYPE_MERGE 2 407 .#define SEC_INFO_TYPE_EH_FRAME 3 408 .#define SEC_INFO_TYPE_JUST_SYMS 4 409 .#define SEC_INFO_TYPE_TARGET 5 410 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6 411 . 412 . {* Nonzero if this section uses RELA relocations, rather than REL. *} 413 . unsigned int use_rela_p:1; 414 . 415 . {* Bits used by various backends. The generic code doesn't touch 416 . these fields. *} 417 . 418 . unsigned int sec_flg0:1; 419 . unsigned int sec_flg1:1; 420 . unsigned int sec_flg2:1; 421 . unsigned int sec_flg3:1; 422 . unsigned int sec_flg4:1; 423 . unsigned int sec_flg5:1; 424 . 425 . {* End of internal packed boolean fields. *} 426 . 427 . {* The virtual memory address of the section - where it will be 428 . at run time. The symbols are relocated against this. The 429 . user_set_vma flag is maintained by bfd; if it's not set, the 430 . backend can assign addresses (for example, in <<a.out>>, where 431 . the default address for <<.data>> is dependent on the specific 432 . target and various flags). *} 433 . bfd_vma vma; 434 . 435 . {* The load address of the section - where it would be in a 436 . rom image; really only used for writing section header 437 . information. *} 438 . bfd_vma lma; 439 . 440 . {* The size of the section in *octets*, as it will be output. 441 . Contains a value even if the section has no contents (e.g., the 442 . size of <<.bss>>). *} 443 . bfd_size_type size; 444 . 445 . {* For input sections, the original size on disk of the section, in 446 . octets. This field should be set for any section whose size is 447 . changed by linker relaxation. It is required for sections where 448 . the linker relaxation scheme doesn't cache altered section and 449 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing 450 . targets), and thus the original size needs to be kept to read the 451 . section multiple times. For output sections, rawsize holds the 452 . section size calculated on a previous linker relaxation pass. *} 453 . bfd_size_type rawsize; 454 . 455 . {* The compressed size of the section in octets. *} 456 . bfd_size_type compressed_size; 457 . 458 . {* If this section is going to be output, then this value is the 459 . offset in *bytes* into the output section of the first byte in the 460 . input section (byte ==> smallest addressable unit on the 461 . target). In most cases, if this was going to start at the 462 . 100th octet (8-bit quantity) in the output section, this value 463 . would be 100. However, if the target byte size is 16 bits 464 . (bfd_octets_per_byte is "2"), this value would be 50. *} 465 . bfd_vma output_offset; 466 . 467 . {* The output section through which to map on output. *} 468 . struct bfd_section *output_section; 469 . 470 . {* If an input section, a pointer to a vector of relocation 471 . records for the data in this section. *} 472 . struct reloc_cache_entry *relocation; 473 . 474 . {* If an output section, a pointer to a vector of pointers to 475 . relocation records for the data in this section. *} 476 . struct reloc_cache_entry **orelocation; 477 . 478 . {* The number of relocation records in one of the above. *} 479 . unsigned reloc_count; 480 . 481 . {* The alignment requirement of the section, as an exponent of 2 - 482 . e.g., 3 aligns to 2^3 (or 8). *} 483 . unsigned int alignment_power; 484 . 485 . {* Information below is back end specific - and not always used 486 . or updated. *} 487 . 488 . {* File position of section data. *} 489 . file_ptr filepos; 490 . 491 . {* File position of relocation info. *} 492 . file_ptr rel_filepos; 493 . 494 . {* File position of line data. *} 495 . file_ptr line_filepos; 496 . 497 . {* Pointer to data for applications. *} 498 . void *userdata; 499 . 500 . {* If the SEC_IN_MEMORY flag is set, this points to the actual 501 . contents. *} 502 . unsigned char *contents; 503 . 504 . {* Attached line number information. *} 505 . alent *lineno; 506 . 507 . {* Number of line number records. *} 508 . unsigned int lineno_count; 509 . 510 . {* Entity size for merging purposes. *} 511 . unsigned int entsize; 512 . 513 . {* Points to the kept section if this section is a link-once section, 514 . and is discarded. *} 515 . struct bfd_section *kept_section; 516 . 517 . {* When a section is being output, this value changes as more 518 . linenumbers are written out. *} 519 . file_ptr moving_line_filepos; 520 . 521 . {* What the section number is in the target world. *} 522 . int target_index; 523 . 524 . void *used_by_bfd; 525 . 526 . {* If this is a constructor section then here is a list of the 527 . relocations created to relocate items within it. *} 528 . struct relent_chain *constructor_chain; 529 . 530 . {* The BFD which owns the section. *} 531 . bfd *owner; 532 . 533 . {* A symbol which points at this section only. *} 534 . struct bfd_symbol *symbol; 535 . struct bfd_symbol **symbol_ptr_ptr; 536 . 537 . {* Early in the link process, map_head and map_tail are used to build 538 . a list of input sections attached to an output section. Later, 539 . output sections use these fields for a list of bfd_link_order 540 . structs. The linked_to_symbol_name field is for ELF assembler 541 . internal use. *} 542 . union { 543 . struct bfd_link_order *link_order; 544 . struct bfd_section *s; 545 . const char *linked_to_symbol_name; 546 . } map_head, map_tail; 547 . 548 . {* Points to the output section this section is already assigned to, 549 . if any. This is used when support for non-contiguous memory 550 . regions is enabled. *} 551 . struct bfd_section *already_assigned; 552 . 553 . {* Explicitly specified section type, if non-zero. *} 554 . unsigned int type; 555 . 556 .} asection; 557 . 558 .static inline const char * 559 .bfd_section_name (const asection *sec) 560 .{ 561 . return sec->name; 562 .} 563 . 564 .static inline bfd_size_type 565 .bfd_section_size (const asection *sec) 566 .{ 567 . return sec->size; 568 .} 569 . 570 .static inline bfd_vma 571 .bfd_section_vma (const asection *sec) 572 .{ 573 . return sec->vma; 574 .} 575 . 576 .static inline bfd_vma 577 .bfd_section_lma (const asection *sec) 578 .{ 579 . return sec->lma; 580 .} 581 . 582 .static inline unsigned int 583 .bfd_section_alignment (const asection *sec) 584 .{ 585 . return sec->alignment_power; 586 .} 587 . 588 .static inline flagword 589 .bfd_section_flags (const asection *sec) 590 .{ 591 . return sec->flags; 592 .} 593 . 594 .static inline void * 595 .bfd_section_userdata (const asection *sec) 596 .{ 597 . return sec->userdata; 598 .} 599 .static inline bool 600 .bfd_is_com_section (const asection *sec) 601 .{ 602 . return (sec->flags & SEC_IS_COMMON) != 0; 603 .} 604 . 605 .{* Note: the following are provided as inline functions rather than macros 606 . because not all callers use the return value. A macro implementation 607 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some 608 . compilers will complain about comma expressions that have no effect. *} 609 .static inline bool 610 .bfd_set_section_userdata (asection *sec, void *val) 611 .{ 612 . sec->userdata = val; 613 . return true; 614 .} 615 . 616 .static inline bool 617 .bfd_set_section_vma (asection *sec, bfd_vma val) 618 .{ 619 . sec->vma = sec->lma = val; 620 . sec->user_set_vma = true; 621 . return true; 622 .} 623 . 624 .static inline bool 625 .bfd_set_section_lma (asection *sec, bfd_vma val) 626 .{ 627 . sec->lma = val; 628 . return true; 629 .} 630 . 631 .static inline bool 632 .bfd_set_section_alignment (asection *sec, unsigned int val) 633 .{ 634 . sec->alignment_power = val; 635 . return true; 636 .} 637 . 638 .{* These sections are global, and are managed by BFD. The application 639 . and target back end are not permitted to change the values in 640 . these sections. *} 641 .extern asection _bfd_std_section[4]; 642 . 643 .#define BFD_ABS_SECTION_NAME "*ABS*" 644 .#define BFD_UND_SECTION_NAME "*UND*" 645 .#define BFD_COM_SECTION_NAME "*COM*" 646 .#define BFD_IND_SECTION_NAME "*IND*" 647 . 648 .{* Pointer to the common section. *} 649 .#define bfd_com_section_ptr (&_bfd_std_section[0]) 650 .{* Pointer to the undefined section. *} 651 .#define bfd_und_section_ptr (&_bfd_std_section[1]) 652 .{* Pointer to the absolute section. *} 653 .#define bfd_abs_section_ptr (&_bfd_std_section[2]) 654 .{* Pointer to the indirect section. *} 655 .#define bfd_ind_section_ptr (&_bfd_std_section[3]) 656 . 657 .static inline bool 658 .bfd_is_und_section (const asection *sec) 659 .{ 660 . return sec == bfd_und_section_ptr; 661 .} 662 . 663 .static inline bool 664 .bfd_is_abs_section (const asection *sec) 665 .{ 666 . return sec == bfd_abs_section_ptr; 667 .} 668 . 669 .static inline bool 670 .bfd_is_ind_section (const asection *sec) 671 .{ 672 . return sec == bfd_ind_section_ptr; 673 .} 674 . 675 .static inline bool 676 .bfd_is_const_section (const asection *sec) 677 .{ 678 . return (sec >= _bfd_std_section 679 . && sec < _bfd_std_section + (sizeof (_bfd_std_section) 680 . / sizeof (_bfd_std_section[0]))); 681 .} 682 . 683 .{* Return TRUE if input section SEC has been discarded. *} 684 .static inline bool 685 .discarded_section (const asection *sec) 686 .{ 687 . return (!bfd_is_abs_section (sec) 688 . && bfd_is_abs_section (sec->output_section) 689 . && sec->sec_info_type != SEC_INFO_TYPE_MERGE 690 . && sec->sec_info_type != SEC_INFO_TYPE_JUST_SYMS); 691 .} 692 . 693 .#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS) \ 694 . {* name, next, prev, id, section_id, index, flags, user_set_vma, *} \ 695 . { NAME, NULL, NULL, IDX, 0, 0, FLAGS, 0, \ 696 . \ 697 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \ 698 . 0, 0, 1, 0, \ 699 . \ 700 . {* segment_mark, sec_info_type, use_rela_p, *} \ 701 . 0, 0, 0, \ 702 . \ 703 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \ 704 . 0, 0, 0, 0, 0, 0, \ 705 . \ 706 . {* vma, lma, size, rawsize, compressed_size, *} \ 707 . 0, 0, 0, 0, 0, \ 708 . \ 709 . {* output_offset, output_section, relocation, orelocation, *} \ 710 . 0, &SEC, NULL, NULL, \ 711 . \ 712 . {* reloc_count, alignment_power, filepos, rel_filepos, *} \ 713 . 0, 0, 0, 0, \ 714 . \ 715 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \ 716 . 0, NULL, NULL, NULL, 0, \ 717 . \ 718 . {* entsize, kept_section, moving_line_filepos, *} \ 719 . 0, NULL, 0, \ 720 . \ 721 . {* target_index, used_by_bfd, constructor_chain, owner, *} \ 722 . 0, NULL, NULL, NULL, \ 723 . \ 724 . {* symbol, symbol_ptr_ptr, *} \ 725 . (struct bfd_symbol *) SYM, &SEC.symbol, \ 726 . \ 727 . {* map_head, map_tail, already_assigned, type *} \ 728 . { NULL }, { NULL }, NULL, 0 \ 729 . \ 730 . } 731 . 732 .{* We use a macro to initialize the static asymbol structures because 733 . traditional C does not permit us to initialize a union member while 734 . gcc warns if we don't initialize it. 735 . the_bfd, name, value, attr, section [, udata] *} 736 .#ifdef __STDC__ 737 .#define GLOBAL_SYM_INIT(NAME, SECTION) \ 738 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }} 739 .#else 740 .#define GLOBAL_SYM_INIT(NAME, SECTION) \ 741 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION } 742 .#endif 743 . 744 */ 745 746 /* These symbols are global, not specific to any BFD. Therefore, anything 747 that tries to change them is broken, and should be repaired. */ 748 749 static const asymbol global_syms[] = 750 { 751 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr), 752 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr), 753 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr), 754 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr) 755 }; 756 757 #define STD_SECTION(NAME, IDX, FLAGS) \ 758 BFD_FAKE_SECTION(_bfd_std_section[IDX], &global_syms[IDX], NAME, IDX, FLAGS) 759 760 asection _bfd_std_section[] = { 761 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON), 762 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0), 763 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0), 764 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0) 765 }; 766 #undef STD_SECTION 767 768 /* Initialize an entry in the section hash table. */ 769 770 struct bfd_hash_entry * 771 bfd_section_hash_newfunc (struct bfd_hash_entry *entry, 772 struct bfd_hash_table *table, 773 const char *string) 774 { 775 /* Allocate the structure if it has not already been allocated by a 776 subclass. */ 777 if (entry == NULL) 778 { 779 entry = (struct bfd_hash_entry *) 780 bfd_hash_allocate (table, sizeof (struct section_hash_entry)); 781 if (entry == NULL) 782 return entry; 783 } 784 785 /* Call the allocation method of the superclass. */ 786 entry = bfd_hash_newfunc (entry, table, string); 787 if (entry != NULL) 788 memset (&((struct section_hash_entry *) entry)->section, 0, 789 sizeof (asection)); 790 791 return entry; 792 } 793 794 #define section_hash_lookup(table, string, create, copy) \ 795 ((struct section_hash_entry *) \ 796 bfd_hash_lookup ((table), (string), (create), (copy))) 797 798 /* Create a symbol whose only job is to point to this section. This 799 is useful for things like relocs which are relative to the base 800 of a section. */ 801 802 bool 803 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect) 804 { 805 newsect->symbol = bfd_make_empty_symbol (abfd); 806 if (newsect->symbol == NULL) 807 return false; 808 809 newsect->symbol->name = newsect->name; 810 newsect->symbol->value = 0; 811 newsect->symbol->section = newsect; 812 newsect->symbol->flags = BSF_SECTION_SYM; 813 814 newsect->symbol_ptr_ptr = &newsect->symbol; 815 return true; 816 } 817 818 unsigned int _bfd_section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */ 819 820 /* Initializes a new section. NEWSECT->NAME is already set. */ 821 822 static asection * 823 bfd_section_init (bfd *abfd, asection *newsect) 824 { 825 newsect->id = _bfd_section_id; 826 newsect->index = abfd->section_count; 827 newsect->owner = abfd; 828 829 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 830 return NULL; 831 832 _bfd_section_id++; 833 abfd->section_count++; 834 bfd_section_list_append (abfd, newsect); 835 return newsect; 836 } 837 838 /* 839 DOCDD 840 INODE 841 section prototypes, , typedef asection, Sections 842 SUBSECTION 843 Section prototypes 844 845 These are the functions exported by the section handling part of BFD. 846 */ 847 848 /* 849 FUNCTION 850 bfd_section_list_clear 851 852 SYNOPSIS 853 void bfd_section_list_clear (bfd *); 854 855 DESCRIPTION 856 Clears the section list, and also resets the section count and 857 hash table entries. 858 */ 859 860 void 861 bfd_section_list_clear (bfd *abfd) 862 { 863 abfd->sections = NULL; 864 abfd->section_last = NULL; 865 abfd->section_count = 0; 866 memset (abfd->section_htab.table, 0, 867 abfd->section_htab.size * sizeof (struct bfd_hash_entry *)); 868 abfd->section_htab.count = 0; 869 } 870 871 /* 872 FUNCTION 873 bfd_get_section_by_name 874 875 SYNOPSIS 876 asection *bfd_get_section_by_name (bfd *abfd, const char *name); 877 878 DESCRIPTION 879 Return the most recently created section attached to @var{abfd} 880 named @var{name}. Return NULL if no such section exists. 881 */ 882 883 asection * 884 bfd_get_section_by_name (bfd *abfd, const char *name) 885 { 886 struct section_hash_entry *sh; 887 888 if (name == NULL) 889 return NULL; 890 891 sh = section_hash_lookup (&abfd->section_htab, name, false, false); 892 if (sh != NULL) 893 return &sh->section; 894 895 return NULL; 896 } 897 898 /* 899 FUNCTION 900 bfd_get_next_section_by_name 901 902 SYNOPSIS 903 asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec); 904 905 DESCRIPTION 906 Given @var{sec} is a section returned by @code{bfd_get_section_by_name}, 907 return the next most recently created section attached to the same 908 BFD with the same name, or if no such section exists in the same BFD and 909 IBFD is non-NULL, the next section with the same name in any input 910 BFD following IBFD. Return NULL on finding no section. 911 */ 912 913 asection * 914 bfd_get_next_section_by_name (bfd *ibfd, asection *sec) 915 { 916 struct section_hash_entry *sh; 917 const char *name; 918 unsigned long hash; 919 920 sh = ((struct section_hash_entry *) 921 ((char *) sec - offsetof (struct section_hash_entry, section))); 922 923 hash = sh->root.hash; 924 name = sec->name; 925 for (sh = (struct section_hash_entry *) sh->root.next; 926 sh != NULL; 927 sh = (struct section_hash_entry *) sh->root.next) 928 if (sh->root.hash == hash 929 && strcmp (sh->root.string, name) == 0) 930 return &sh->section; 931 932 if (ibfd != NULL) 933 { 934 while ((ibfd = ibfd->link.next) != NULL) 935 { 936 asection *s = bfd_get_section_by_name (ibfd, name); 937 if (s != NULL) 938 return s; 939 } 940 } 941 942 return NULL; 943 } 944 945 /* 946 FUNCTION 947 bfd_get_linker_section 948 949 SYNOPSIS 950 asection *bfd_get_linker_section (bfd *abfd, const char *name); 951 952 DESCRIPTION 953 Return the linker created section attached to @var{abfd} 954 named @var{name}. Return NULL if no such section exists. 955 */ 956 957 asection * 958 bfd_get_linker_section (bfd *abfd, const char *name) 959 { 960 asection *sec = bfd_get_section_by_name (abfd, name); 961 962 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0) 963 sec = bfd_get_next_section_by_name (NULL, sec); 964 return sec; 965 } 966 967 /* 968 FUNCTION 969 bfd_get_section_by_name_if 970 971 SYNOPSIS 972 asection *bfd_get_section_by_name_if 973 (bfd *abfd, 974 const char *name, 975 bool (*func) (bfd *abfd, asection *sect, void *obj), 976 void *obj); 977 978 DESCRIPTION 979 Call the provided function @var{func} for each section 980 attached to the BFD @var{abfd} whose name matches @var{name}, 981 passing @var{obj} as an argument. The function will be called 982 as if by 983 984 | func (abfd, the_section, obj); 985 986 It returns the first section for which @var{func} returns true, 987 otherwise <<NULL>>. 988 989 */ 990 991 asection * 992 bfd_get_section_by_name_if (bfd *abfd, const char *name, 993 bool (*operation) (bfd *, asection *, void *), 994 void *user_storage) 995 { 996 struct section_hash_entry *sh; 997 unsigned long hash; 998 999 if (name == NULL) 1000 return NULL; 1001 1002 sh = section_hash_lookup (&abfd->section_htab, name, false, false); 1003 if (sh == NULL) 1004 return NULL; 1005 1006 hash = sh->root.hash; 1007 for (; sh != NULL; sh = (struct section_hash_entry *) sh->root.next) 1008 if (sh->root.hash == hash 1009 && strcmp (sh->root.string, name) == 0 1010 && (*operation) (abfd, &sh->section, user_storage)) 1011 return &sh->section; 1012 1013 return NULL; 1014 } 1015 1016 /* 1017 FUNCTION 1018 bfd_get_unique_section_name 1019 1020 SYNOPSIS 1021 char *bfd_get_unique_section_name 1022 (bfd *abfd, const char *templat, int *count); 1023 1024 DESCRIPTION 1025 Invent a section name that is unique in @var{abfd} by tacking 1026 a dot and a digit suffix onto the original @var{templat}. If 1027 @var{count} is non-NULL, then it specifies the first number 1028 tried as a suffix to generate a unique name. The value 1029 pointed to by @var{count} will be incremented in this case. 1030 */ 1031 1032 char * 1033 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count) 1034 { 1035 int num; 1036 unsigned int len; 1037 char *sname; 1038 1039 len = strlen (templat); 1040 sname = (char *) bfd_malloc (len + 8); 1041 if (sname == NULL) 1042 return NULL; 1043 memcpy (sname, templat, len); 1044 num = 1; 1045 if (count != NULL) 1046 num = *count; 1047 1048 do 1049 { 1050 /* If we have a million sections, something is badly wrong. */ 1051 if (num > 999999) 1052 abort (); 1053 sprintf (sname + len, ".%d", num++); 1054 } 1055 while (section_hash_lookup (&abfd->section_htab, sname, false, false)); 1056 1057 if (count != NULL) 1058 *count = num; 1059 return sname; 1060 } 1061 1062 /* 1063 FUNCTION 1064 bfd_make_section_old_way 1065 1066 SYNOPSIS 1067 asection *bfd_make_section_old_way (bfd *abfd, const char *name); 1068 1069 DESCRIPTION 1070 Create a new empty section called @var{name} 1071 and attach it to the end of the chain of sections for the 1072 BFD @var{abfd}. An attempt to create a section with a name which 1073 is already in use returns its pointer without changing the 1074 section chain. 1075 1076 It has the funny name since this is the way it used to be 1077 before it was rewritten.... 1078 1079 Possible errors are: 1080 o <<bfd_error_invalid_operation>> - 1081 If output has already started for this BFD. 1082 o <<bfd_error_no_memory>> - 1083 If memory allocation fails. 1084 1085 */ 1086 1087 asection * 1088 bfd_make_section_old_way (bfd *abfd, const char *name) 1089 { 1090 asection *newsect; 1091 1092 if (abfd->output_has_begun) 1093 { 1094 bfd_set_error (bfd_error_invalid_operation); 1095 return NULL; 1096 } 1097 1098 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0) 1099 newsect = bfd_abs_section_ptr; 1100 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0) 1101 newsect = bfd_com_section_ptr; 1102 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0) 1103 newsect = bfd_und_section_ptr; 1104 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0) 1105 newsect = bfd_ind_section_ptr; 1106 else 1107 { 1108 struct section_hash_entry *sh; 1109 1110 sh = section_hash_lookup (&abfd->section_htab, name, true, false); 1111 if (sh == NULL) 1112 return NULL; 1113 1114 newsect = &sh->section; 1115 if (newsect->name != NULL) 1116 { 1117 /* Section already exists. */ 1118 return newsect; 1119 } 1120 1121 newsect->name = name; 1122 return bfd_section_init (abfd, newsect); 1123 } 1124 1125 /* Call new_section_hook when "creating" the standard abs, com, und 1126 and ind sections to tack on format specific section data. 1127 Also, create a proper section symbol. */ 1128 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 1129 return NULL; 1130 return newsect; 1131 } 1132 1133 /* 1134 FUNCTION 1135 bfd_make_section_anyway_with_flags 1136 1137 SYNOPSIS 1138 asection *bfd_make_section_anyway_with_flags 1139 (bfd *abfd, const char *name, flagword flags); 1140 1141 DESCRIPTION 1142 Create a new empty section called @var{name} and attach it to the end of 1143 the chain of sections for @var{abfd}. Create a new section even if there 1144 is already a section with that name. Also set the attributes of the 1145 new section to the value @var{flags}. 1146 1147 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1148 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1149 o <<bfd_error_no_memory>> - If memory allocation fails. 1150 */ 1151 1152 sec_ptr 1153 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name, 1154 flagword flags) 1155 { 1156 struct section_hash_entry *sh; 1157 asection *newsect; 1158 1159 if (abfd->output_has_begun) 1160 { 1161 bfd_set_error (bfd_error_invalid_operation); 1162 return NULL; 1163 } 1164 1165 sh = section_hash_lookup (&abfd->section_htab, name, true, false); 1166 if (sh == NULL) 1167 return NULL; 1168 1169 newsect = &sh->section; 1170 if (newsect->name != NULL) 1171 { 1172 /* We are making a section of the same name. Put it in the 1173 section hash table. Even though we can't find it directly by a 1174 hash lookup, we'll be able to find the section by traversing 1175 sh->root.next quicker than looking at all the bfd sections. */ 1176 struct section_hash_entry *new_sh; 1177 new_sh = (struct section_hash_entry *) 1178 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name); 1179 if (new_sh == NULL) 1180 return NULL; 1181 1182 new_sh->root = sh->root; 1183 sh->root.next = &new_sh->root; 1184 newsect = &new_sh->section; 1185 } 1186 1187 newsect->flags = flags; 1188 newsect->name = name; 1189 return bfd_section_init (abfd, newsect); 1190 } 1191 1192 /* 1193 FUNCTION 1194 bfd_make_section_anyway 1195 1196 SYNOPSIS 1197 asection *bfd_make_section_anyway (bfd *abfd, const char *name); 1198 1199 DESCRIPTION 1200 Create a new empty section called @var{name} and attach it to the end of 1201 the chain of sections for @var{abfd}. Create a new section even if there 1202 is already a section with that name. 1203 1204 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1205 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1206 o <<bfd_error_no_memory>> - If memory allocation fails. 1207 */ 1208 1209 sec_ptr 1210 bfd_make_section_anyway (bfd *abfd, const char *name) 1211 { 1212 return bfd_make_section_anyway_with_flags (abfd, name, 0); 1213 } 1214 1215 /* 1216 FUNCTION 1217 bfd_make_section_with_flags 1218 1219 SYNOPSIS 1220 asection *bfd_make_section_with_flags 1221 (bfd *, const char *name, flagword flags); 1222 1223 DESCRIPTION 1224 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1225 bfd_set_error ()) without changing the section chain if there is already a 1226 section named @var{name}. Also set the attributes of the new section to 1227 the value @var{flags}. If there is an error, return <<NULL>> and set 1228 <<bfd_error>>. 1229 */ 1230 1231 asection * 1232 bfd_make_section_with_flags (bfd *abfd, const char *name, 1233 flagword flags) 1234 { 1235 struct section_hash_entry *sh; 1236 asection *newsect; 1237 1238 if (abfd == NULL || name == NULL || abfd->output_has_begun) 1239 { 1240 bfd_set_error (bfd_error_invalid_operation); 1241 return NULL; 1242 } 1243 1244 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0 1245 || strcmp (name, BFD_COM_SECTION_NAME) == 0 1246 || strcmp (name, BFD_UND_SECTION_NAME) == 0 1247 || strcmp (name, BFD_IND_SECTION_NAME) == 0) 1248 return NULL; 1249 1250 sh = section_hash_lookup (&abfd->section_htab, name, true, false); 1251 if (sh == NULL) 1252 return NULL; 1253 1254 newsect = &sh->section; 1255 if (newsect->name != NULL) 1256 { 1257 /* Section already exists. */ 1258 return NULL; 1259 } 1260 1261 newsect->name = name; 1262 newsect->flags = flags; 1263 return bfd_section_init (abfd, newsect); 1264 } 1265 1266 /* 1267 FUNCTION 1268 bfd_make_section 1269 1270 SYNOPSIS 1271 asection *bfd_make_section (bfd *, const char *name); 1272 1273 DESCRIPTION 1274 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1275 bfd_set_error ()) without changing the section chain if there is already a 1276 section named @var{name}. If there is an error, return <<NULL>> and set 1277 <<bfd_error>>. 1278 */ 1279 1280 asection * 1281 bfd_make_section (bfd *abfd, const char *name) 1282 { 1283 return bfd_make_section_with_flags (abfd, name, 0); 1284 } 1285 1286 /* 1287 FUNCTION 1288 bfd_set_section_flags 1289 1290 SYNOPSIS 1291 bool bfd_set_section_flags (asection *sec, flagword flags); 1292 1293 DESCRIPTION 1294 Set the attributes of the section @var{sec} to the value @var{flags}. 1295 Return <<TRUE>> on success, <<FALSE>> on error. Possible error 1296 returns are: 1297 1298 o <<bfd_error_invalid_operation>> - 1299 The section cannot have one or more of the attributes 1300 requested. For example, a .bss section in <<a.out>> may not 1301 have the <<SEC_HAS_CONTENTS>> field set. 1302 1303 */ 1304 1305 bool 1306 bfd_set_section_flags (asection *section, flagword flags) 1307 { 1308 section->flags = flags; 1309 return true; 1310 } 1311 1312 /* 1313 FUNCTION 1314 bfd_rename_section 1315 1316 SYNOPSIS 1317 void bfd_rename_section 1318 (asection *sec, const char *newname); 1319 1320 DESCRIPTION 1321 Rename section @var{sec} to @var{newname}. 1322 */ 1323 1324 void 1325 bfd_rename_section (asection *sec, const char *newname) 1326 { 1327 struct section_hash_entry *sh; 1328 1329 sh = (struct section_hash_entry *) 1330 ((char *) sec - offsetof (struct section_hash_entry, section)); 1331 sh->section.name = newname; 1332 bfd_hash_rename (&sec->owner->section_htab, newname, &sh->root); 1333 } 1334 1335 /* 1336 FUNCTION 1337 bfd_map_over_sections 1338 1339 SYNOPSIS 1340 void bfd_map_over_sections 1341 (bfd *abfd, 1342 void (*func) (bfd *abfd, asection *sect, void *obj), 1343 void *obj); 1344 1345 DESCRIPTION 1346 Call the provided function @var{func} for each section 1347 attached to the BFD @var{abfd}, passing @var{obj} as an 1348 argument. The function will be called as if by 1349 1350 | func (abfd, the_section, obj); 1351 1352 This is the preferred method for iterating over sections; an 1353 alternative would be to use a loop: 1354 1355 | asection *p; 1356 | for (p = abfd->sections; p != NULL; p = p->next) 1357 | func (abfd, p, ...) 1358 1359 */ 1360 1361 void 1362 bfd_map_over_sections (bfd *abfd, 1363 void (*operation) (bfd *, asection *, void *), 1364 void *user_storage) 1365 { 1366 asection *sect; 1367 unsigned int i = 0; 1368 1369 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next) 1370 (*operation) (abfd, sect, user_storage); 1371 1372 if (i != abfd->section_count) /* Debugging */ 1373 abort (); 1374 } 1375 1376 /* 1377 FUNCTION 1378 bfd_sections_find_if 1379 1380 SYNOPSIS 1381 asection *bfd_sections_find_if 1382 (bfd *abfd, 1383 bool (*operation) (bfd *abfd, asection *sect, void *obj), 1384 void *obj); 1385 1386 DESCRIPTION 1387 Call the provided function @var{operation} for each section 1388 attached to the BFD @var{abfd}, passing @var{obj} as an 1389 argument. The function will be called as if by 1390 1391 | operation (abfd, the_section, obj); 1392 1393 It returns the first section for which @var{operation} returns true. 1394 1395 */ 1396 1397 asection * 1398 bfd_sections_find_if (bfd *abfd, 1399 bool (*operation) (bfd *, asection *, void *), 1400 void *user_storage) 1401 { 1402 asection *sect; 1403 1404 for (sect = abfd->sections; sect != NULL; sect = sect->next) 1405 if ((*operation) (abfd, sect, user_storage)) 1406 break; 1407 1408 return sect; 1409 } 1410 1411 /* 1412 FUNCTION 1413 bfd_set_section_size 1414 1415 SYNOPSIS 1416 bool bfd_set_section_size (asection *sec, bfd_size_type val); 1417 1418 DESCRIPTION 1419 Set @var{sec} to the size @var{val}. If the operation is 1420 ok, then <<TRUE>> is returned, else <<FALSE>>. 1421 1422 Possible error returns: 1423 o <<bfd_error_invalid_operation>> - 1424 Writing has started to the BFD, so setting the size is invalid. 1425 1426 */ 1427 1428 bool 1429 bfd_set_section_size (asection *sec, bfd_size_type val) 1430 { 1431 /* Once you've started writing to any section you cannot create or change 1432 the size of any others. */ 1433 1434 if (sec->owner == NULL || sec->owner->output_has_begun) 1435 { 1436 bfd_set_error (bfd_error_invalid_operation); 1437 return false; 1438 } 1439 1440 sec->size = val; 1441 return true; 1442 } 1443 1444 /* 1445 FUNCTION 1446 bfd_set_section_contents 1447 1448 SYNOPSIS 1449 bool bfd_set_section_contents 1450 (bfd *abfd, asection *section, const void *data, 1451 file_ptr offset, bfd_size_type count); 1452 1453 DESCRIPTION 1454 Sets the contents of the section @var{section} in BFD 1455 @var{abfd} to the data starting in memory at @var{location}. 1456 The data is written to the output section starting at offset 1457 @var{offset} for @var{count} octets. 1458 1459 Normally <<TRUE>> is returned, but <<FALSE>> is returned if 1460 there was an error. Possible error returns are: 1461 o <<bfd_error_no_contents>> - 1462 The output section does not have the <<SEC_HAS_CONTENTS>> 1463 attribute, so nothing can be written to it. 1464 o <<bfd_error_bad_value>> - 1465 The section is unable to contain all of the data. 1466 o <<bfd_error_invalid_operation>> - 1467 The BFD is not writeable. 1468 o and some more too. 1469 1470 This routine is front end to the back end function 1471 <<_bfd_set_section_contents>>. 1472 1473 */ 1474 1475 bool 1476 bfd_set_section_contents (bfd *abfd, 1477 sec_ptr section, 1478 const void *location, 1479 file_ptr offset, 1480 bfd_size_type count) 1481 { 1482 bfd_size_type sz; 1483 1484 if (!(bfd_section_flags (section) & SEC_HAS_CONTENTS)) 1485 { 1486 bfd_set_error (bfd_error_no_contents); 1487 return false; 1488 } 1489 1490 sz = section->size; 1491 if ((bfd_size_type) offset > sz 1492 || count > sz - offset 1493 || count != (size_t) count) 1494 { 1495 bfd_set_error (bfd_error_bad_value); 1496 return false; 1497 } 1498 1499 if (!bfd_write_p (abfd)) 1500 { 1501 bfd_set_error (bfd_error_invalid_operation); 1502 return false; 1503 } 1504 1505 /* Record a copy of the data in memory if desired. */ 1506 if (section->contents 1507 && location != section->contents + offset) 1508 memcpy (section->contents + offset, location, (size_t) count); 1509 1510 if (BFD_SEND (abfd, _bfd_set_section_contents, 1511 (abfd, section, location, offset, count))) 1512 { 1513 abfd->output_has_begun = true; 1514 return true; 1515 } 1516 1517 return false; 1518 } 1519 1520 /* 1521 FUNCTION 1522 bfd_get_section_contents 1523 1524 SYNOPSIS 1525 bool bfd_get_section_contents 1526 (bfd *abfd, asection *section, void *location, file_ptr offset, 1527 bfd_size_type count); 1528 1529 DESCRIPTION 1530 Read data from @var{section} in BFD @var{abfd} 1531 into memory starting at @var{location}. The data is read at an 1532 offset of @var{offset} from the start of the input section, 1533 and is read for @var{count} bytes. 1534 1535 If the contents of a constructor with the <<SEC_CONSTRUCTOR>> 1536 flag set are requested or if the section does not have the 1537 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled 1538 with zeroes. If no errors occur, <<TRUE>> is returned, else 1539 <<FALSE>>. 1540 1541 */ 1542 bool 1543 bfd_get_section_contents (bfd *abfd, 1544 sec_ptr section, 1545 void *location, 1546 file_ptr offset, 1547 bfd_size_type count) 1548 { 1549 bfd_size_type sz; 1550 1551 if (section->flags & SEC_CONSTRUCTOR) 1552 { 1553 memset (location, 0, (size_t) count); 1554 return true; 1555 } 1556 1557 if (abfd->direction != write_direction && section->rawsize != 0) 1558 sz = section->rawsize; 1559 else 1560 sz = section->size; 1561 if ((bfd_size_type) offset > sz 1562 || count > sz - offset 1563 || count != (size_t) count) 1564 { 1565 bfd_set_error (bfd_error_bad_value); 1566 return false; 1567 } 1568 1569 if (count == 0) 1570 /* Don't bother. */ 1571 return true; 1572 1573 if ((section->flags & SEC_HAS_CONTENTS) == 0) 1574 { 1575 memset (location, 0, (size_t) count); 1576 return true; 1577 } 1578 1579 if ((section->flags & SEC_IN_MEMORY) != 0) 1580 { 1581 if (section->contents == NULL) 1582 { 1583 /* This can happen because of errors earlier on in the linking process. 1584 We do not want to seg-fault here, so clear the flag and return an 1585 error code. */ 1586 section->flags &= ~ SEC_IN_MEMORY; 1587 bfd_set_error (bfd_error_invalid_operation); 1588 return false; 1589 } 1590 1591 memmove (location, section->contents + offset, (size_t) count); 1592 return true; 1593 } 1594 1595 return BFD_SEND (abfd, _bfd_get_section_contents, 1596 (abfd, section, location, offset, count)); 1597 } 1598 1599 /* 1600 FUNCTION 1601 bfd_malloc_and_get_section 1602 1603 SYNOPSIS 1604 bool bfd_malloc_and_get_section 1605 (bfd *abfd, asection *section, bfd_byte **buf); 1606 1607 DESCRIPTION 1608 Read all data from @var{section} in BFD @var{abfd} 1609 into a buffer, *@var{buf}, malloc'd by this function. 1610 */ 1611 1612 bool 1613 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf) 1614 { 1615 *buf = NULL; 1616 return bfd_get_full_section_contents (abfd, sec, buf); 1617 } 1618 /* 1619 FUNCTION 1620 bfd_copy_private_section_data 1621 1622 SYNOPSIS 1623 bool bfd_copy_private_section_data 1624 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec); 1625 1626 DESCRIPTION 1627 Copy private section information from @var{isec} in the BFD 1628 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}. 1629 Return <<TRUE>> on success, <<FALSE>> on error. Possible error 1630 returns are: 1631 1632 o <<bfd_error_no_memory>> - 1633 Not enough memory exists to create private data for @var{osec}. 1634 1635 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ 1636 . BFD_SEND (obfd, _bfd_copy_private_section_data, \ 1637 . (ibfd, isection, obfd, osection)) 1638 */ 1639 1640 /* 1641 FUNCTION 1642 bfd_generic_is_group_section 1643 1644 SYNOPSIS 1645 bool bfd_generic_is_group_section (bfd *, const asection *sec); 1646 1647 DESCRIPTION 1648 Returns TRUE if @var{sec} is a member of a group. 1649 */ 1650 1651 bool 1652 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, 1653 const asection *sec ATTRIBUTE_UNUSED) 1654 { 1655 return false; 1656 } 1657 1658 /* 1659 FUNCTION 1660 bfd_generic_group_name 1661 1662 SYNOPSIS 1663 const char *bfd_generic_group_name (bfd *, const asection *sec); 1664 1665 DESCRIPTION 1666 Returns group name if @var{sec} is a member of a group. 1667 */ 1668 1669 const char * 1670 bfd_generic_group_name (bfd *abfd ATTRIBUTE_UNUSED, 1671 const asection *sec ATTRIBUTE_UNUSED) 1672 { 1673 return NULL; 1674 } 1675 1676 /* 1677 FUNCTION 1678 bfd_generic_discard_group 1679 1680 SYNOPSIS 1681 bool bfd_generic_discard_group (bfd *abfd, asection *group); 1682 1683 DESCRIPTION 1684 Remove all members of @var{group} from the output. 1685 */ 1686 1687 bool 1688 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED, 1689 asection *group ATTRIBUTE_UNUSED) 1690 { 1691 return true; 1692 } 1693 1694 bool 1695 _bfd_nowrite_set_section_contents (bfd *abfd, 1696 sec_ptr section ATTRIBUTE_UNUSED, 1697 const void *location ATTRIBUTE_UNUSED, 1698 file_ptr offset ATTRIBUTE_UNUSED, 1699 bfd_size_type count ATTRIBUTE_UNUSED) 1700 { 1701 return _bfd_bool_bfd_false_error (abfd); 1702 } 1703