1 /* Object file "section" support for the BFD library. 2 Copyright (C) 1990-2018 Free Software Foundation, Inc. 3 Written by Cygnus Support. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 /* 23 SECTION 24 Sections 25 26 The raw data contained within a BFD is maintained through the 27 section abstraction. A single BFD may have any number of 28 sections. It keeps hold of them by pointing to the first; 29 each one points to the next in the list. 30 31 Sections are supported in BFD in <<section.c>>. 32 33 @menu 34 @* Section Input:: 35 @* Section Output:: 36 @* typedef asection:: 37 @* section prototypes:: 38 @end menu 39 40 INODE 41 Section Input, Section Output, Sections, Sections 42 SUBSECTION 43 Section input 44 45 When a BFD is opened for reading, the section structures are 46 created and attached to the BFD. 47 48 Each section has a name which describes the section in the 49 outside world---for example, <<a.out>> would contain at least 50 three sections, called <<.text>>, <<.data>> and <<.bss>>. 51 52 Names need not be unique; for example a COFF file may have several 53 sections named <<.data>>. 54 55 Sometimes a BFD will contain more than the ``natural'' number of 56 sections. A back end may attach other sections containing 57 constructor data, or an application may add a section (using 58 <<bfd_make_section>>) to the sections attached to an already open 59 BFD. For example, the linker creates an extra section 60 <<COMMON>> for each input file's BFD to hold information about 61 common storage. 62 63 The raw data is not necessarily read in when 64 the section descriptor is created. Some targets may leave the 65 data in place until a <<bfd_get_section_contents>> call is 66 made. Other back ends may read in all the data at once. For 67 example, an S-record file has to be read once to determine the 68 size of the data. 69 70 INODE 71 Section Output, typedef asection, Section Input, Sections 72 73 SUBSECTION 74 Section output 75 76 To write a new object style BFD, the various sections to be 77 written have to be created. They are attached to the BFD in 78 the same way as input sections; data is written to the 79 sections using <<bfd_set_section_contents>>. 80 81 Any program that creates or combines sections (e.g., the assembler 82 and linker) must use the <<asection>> fields <<output_section>> and 83 <<output_offset>> to indicate the file sections to which each 84 section must be written. (If the section is being created from 85 scratch, <<output_section>> should probably point to the section 86 itself and <<output_offset>> should probably be zero.) 87 88 The data to be written comes from input sections attached 89 (via <<output_section>> pointers) to 90 the output sections. The output section structure can be 91 considered a filter for the input section: the output section 92 determines the vma of the output data and the name, but the 93 input section determines the offset into the output section of 94 the data to be written. 95 96 E.g., to create a section "O", starting at 0x100, 0x123 long, 97 containing two subsections, "A" at offset 0x0 (i.e., at vma 98 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>> 99 structures would look like: 100 101 | section name "A" 102 | output_offset 0x00 103 | size 0x20 104 | output_section -----------> section name "O" 105 | | vma 0x100 106 | section name "B" | size 0x123 107 | output_offset 0x20 | 108 | size 0x103 | 109 | output_section --------| 110 111 SUBSECTION 112 Link orders 113 114 The data within a section is stored in a @dfn{link_order}. 115 These are much like the fixups in <<gas>>. The link_order 116 abstraction allows a section to grow and shrink within itself. 117 118 A link_order knows how big it is, and which is the next 119 link_order and where the raw data for it is; it also points to 120 a list of relocations which apply to it. 121 122 The link_order is used by the linker to perform relaxing on 123 final code. The compiler creates code which is as big as 124 necessary to make it work without relaxing, and the user can 125 select whether to relax. Sometimes relaxing takes a lot of 126 time. The linker runs around the relocations to see if any 127 are attached to data which can be shrunk, if so it does it on 128 a link_order by link_order basis. 129 130 */ 131 132 #include "sysdep.h" 133 #include "bfd.h" 134 #include "libbfd.h" 135 #include "bfdlink.h" 136 137 /* 138 DOCDD 139 INODE 140 typedef asection, section prototypes, Section Output, Sections 141 SUBSECTION 142 typedef asection 143 144 Here is the section structure: 145 146 CODE_FRAGMENT 147 . 148 .typedef struct bfd_section 149 .{ 150 . {* The name of the section; the name isn't a copy, the pointer is 151 . the same as that passed to bfd_make_section. *} 152 . const char *name; 153 . 154 . {* A unique sequence number. *} 155 . unsigned int id; 156 . 157 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *} 158 . unsigned int index; 159 . 160 . {* The next section in the list belonging to the BFD, or NULL. *} 161 . struct bfd_section *next; 162 . 163 . {* The previous section in the list belonging to the BFD, or NULL. *} 164 . struct bfd_section *prev; 165 . 166 . {* The field flags contains attributes of the section. Some 167 . flags are read in from the object file, and some are 168 . synthesized from other information. *} 169 . flagword flags; 170 . 171 .#define SEC_NO_FLAGS 0x0 172 . 173 . {* Tells the OS to allocate space for this section when loading. 174 . This is clear for a section containing debug information only. *} 175 .#define SEC_ALLOC 0x1 176 . 177 . {* Tells the OS to load the section from the file when loading. 178 . This is clear for a .bss section. *} 179 .#define SEC_LOAD 0x2 180 . 181 . {* The section contains data still to be relocated, so there is 182 . some relocation information too. *} 183 .#define SEC_RELOC 0x4 184 . 185 . {* A signal to the OS that the section contains read only data. *} 186 .#define SEC_READONLY 0x8 187 . 188 . {* The section contains code only. *} 189 .#define SEC_CODE 0x10 190 . 191 . {* The section contains data only. *} 192 .#define SEC_DATA 0x20 193 . 194 . {* The section will reside in ROM. *} 195 .#define SEC_ROM 0x40 196 . 197 . {* The section contains constructor information. This section 198 . type is used by the linker to create lists of constructors and 199 . destructors used by <<g++>>. When a back end sees a symbol 200 . which should be used in a constructor list, it creates a new 201 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches 202 . the symbol to it, and builds a relocation. To build the lists 203 . of constructors, all the linker has to do is catenate all the 204 . sections called <<__CTOR_LIST__>> and relocate the data 205 . contained within - exactly the operations it would peform on 206 . standard data. *} 207 .#define SEC_CONSTRUCTOR 0x80 208 . 209 . {* The section has contents - a data section could be 210 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be 211 . <<SEC_HAS_CONTENTS>> *} 212 .#define SEC_HAS_CONTENTS 0x100 213 . 214 . {* An instruction to the linker to not output the section 215 . even if it has information which would normally be written. *} 216 .#define SEC_NEVER_LOAD 0x200 217 . 218 . {* The section contains thread local data. *} 219 .#define SEC_THREAD_LOCAL 0x400 220 . 221 . {* The section's size is fixed. Generic linker code will not 222 . recalculate it and it is up to whoever has set this flag to 223 . get the size right. *} 224 .#define SEC_FIXED_SIZE 0x800 225 . 226 . {* The section contains common symbols (symbols may be defined 227 . multiple times, the value of a symbol is the amount of 228 . space it requires, and the largest symbol value is the one 229 . used). Most targets have exactly one of these (which we 230 . translate to bfd_com_section_ptr), but ECOFF has two. *} 231 .#define SEC_IS_COMMON 0x1000 232 . 233 . {* The section contains only debugging information. For 234 . example, this is set for ELF .debug and .stab sections. 235 . strip tests this flag to see if a section can be 236 . discarded. *} 237 .#define SEC_DEBUGGING 0x2000 238 . 239 . {* The contents of this section are held in memory pointed to 240 . by the contents field. This is checked by bfd_get_section_contents, 241 . and the data is retrieved from memory if appropriate. *} 242 .#define SEC_IN_MEMORY 0x4000 243 . 244 . {* The contents of this section are to be excluded by the 245 . linker for executable and shared objects unless those 246 . objects are to be further relocated. *} 247 .#define SEC_EXCLUDE 0x8000 248 . 249 . {* The contents of this section are to be sorted based on the sum of 250 . the symbol and addend values specified by the associated relocation 251 . entries. Entries without associated relocation entries will be 252 . appended to the end of the section in an unspecified order. *} 253 .#define SEC_SORT_ENTRIES 0x10000 254 . 255 . {* When linking, duplicate sections of the same name should be 256 . discarded, rather than being combined into a single section as 257 . is usually done. This is similar to how common symbols are 258 . handled. See SEC_LINK_DUPLICATES below. *} 259 .#define SEC_LINK_ONCE 0x20000 260 . 261 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker 262 . should handle duplicate sections. *} 263 .#define SEC_LINK_DUPLICATES 0xc0000 264 . 265 . {* This value for SEC_LINK_DUPLICATES means that duplicate 266 . sections with the same name should simply be discarded. *} 267 .#define SEC_LINK_DUPLICATES_DISCARD 0x0 268 . 269 . {* This value for SEC_LINK_DUPLICATES means that the linker 270 . should warn if there are any duplicate sections, although 271 . it should still only link one copy. *} 272 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000 273 . 274 . {* This value for SEC_LINK_DUPLICATES means that the linker 275 . should warn if any duplicate sections are a different size. *} 276 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000 277 . 278 . {* This value for SEC_LINK_DUPLICATES means that the linker 279 . should warn if any duplicate sections contain different 280 . contents. *} 281 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \ 282 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE) 283 . 284 . {* This section was created by the linker as part of dynamic 285 . relocation or other arcane processing. It is skipped when 286 . going through the first-pass output, trusting that someone 287 . else up the line will take care of it later. *} 288 .#define SEC_LINKER_CREATED 0x100000 289 . 290 . {* This section should not be subject to garbage collection. 291 . Also set to inform the linker that this section should not be 292 . listed in the link map as discarded. *} 293 .#define SEC_KEEP 0x200000 294 . 295 . {* This section contains "short" data, and should be placed 296 . "near" the GP. *} 297 .#define SEC_SMALL_DATA 0x400000 298 . 299 . {* Attempt to merge identical entities in the section. 300 . Entity size is given in the entsize field. *} 301 .#define SEC_MERGE 0x800000 302 . 303 . {* If given with SEC_MERGE, entities to merge are zero terminated 304 . strings where entsize specifies character size instead of fixed 305 . size entries. *} 306 .#define SEC_STRINGS 0x1000000 307 . 308 . {* This section contains data about section groups. *} 309 .#define SEC_GROUP 0x2000000 310 . 311 . {* The section is a COFF shared library section. This flag is 312 . only for the linker. If this type of section appears in 313 . the input file, the linker must copy it to the output file 314 . without changing the vma or size. FIXME: Although this 315 . was originally intended to be general, it really is COFF 316 . specific (and the flag was renamed to indicate this). It 317 . might be cleaner to have some more general mechanism to 318 . allow the back end to control what the linker does with 319 . sections. *} 320 .#define SEC_COFF_SHARED_LIBRARY 0x4000000 321 . 322 . {* This input section should be copied to output in reverse order 323 . as an array of pointers. This is for ELF linker internal use 324 . only. *} 325 .#define SEC_ELF_REVERSE_COPY 0x4000000 326 . 327 . {* This section contains data which may be shared with other 328 . executables or shared objects. This is for COFF only. *} 329 .#define SEC_COFF_SHARED 0x8000000 330 . 331 . {* This section should be compressed. This is for ELF linker 332 . internal use only. *} 333 .#define SEC_ELF_COMPRESS 0x8000000 334 . 335 . {* When a section with this flag is being linked, then if the size of 336 . the input section is less than a page, it should not cross a page 337 . boundary. If the size of the input section is one page or more, 338 . it should be aligned on a page boundary. This is for TI 339 . TMS320C54X only. *} 340 .#define SEC_TIC54X_BLOCK 0x10000000 341 . 342 . {* This section should be renamed. This is for ELF linker 343 . internal use only. *} 344 .#define SEC_ELF_RENAME 0x10000000 345 . 346 . {* Conditionally link this section; do not link if there are no 347 . references found to any symbol in the section. This is for TI 348 . TMS320C54X only. *} 349 .#define SEC_TIC54X_CLINK 0x20000000 350 . 351 . {* This section contains vliw code. This is for Toshiba MeP only. *} 352 .#define SEC_MEP_VLIW 0x20000000 353 . 354 . {* Indicate that section has the no read flag set. This happens 355 . when memory read flag isn't set. *} 356 .#define SEC_COFF_NOREAD 0x40000000 357 . 358 . {* Indicate that section has the purecode flag set. *} 359 .#define SEC_ELF_PURECODE 0x80000000 360 . 361 . {* End of section flags. *} 362 . 363 . {* Some internal packed boolean fields. *} 364 . 365 . {* See the vma field. *} 366 . unsigned int user_set_vma : 1; 367 . 368 . {* A mark flag used by some of the linker backends. *} 369 . unsigned int linker_mark : 1; 370 . 371 . {* Another mark flag used by some of the linker backends. Set for 372 . output sections that have an input section. *} 373 . unsigned int linker_has_input : 1; 374 . 375 . {* Mark flag used by some linker backends for garbage collection. *} 376 . unsigned int gc_mark : 1; 377 . 378 . {* Section compression status. *} 379 . unsigned int compress_status : 2; 380 .#define COMPRESS_SECTION_NONE 0 381 .#define COMPRESS_SECTION_DONE 1 382 .#define DECOMPRESS_SECTION_SIZED 2 383 . 384 . {* The following flags are used by the ELF linker. *} 385 . 386 . {* Mark sections which have been allocated to segments. *} 387 . unsigned int segment_mark : 1; 388 . 389 . {* Type of sec_info information. *} 390 . unsigned int sec_info_type:3; 391 .#define SEC_INFO_TYPE_NONE 0 392 .#define SEC_INFO_TYPE_STABS 1 393 .#define SEC_INFO_TYPE_MERGE 2 394 .#define SEC_INFO_TYPE_EH_FRAME 3 395 .#define SEC_INFO_TYPE_JUST_SYMS 4 396 .#define SEC_INFO_TYPE_TARGET 5 397 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6 398 . 399 . {* Nonzero if this section uses RELA relocations, rather than REL. *} 400 . unsigned int use_rela_p:1; 401 . 402 . {* Bits used by various backends. The generic code doesn't touch 403 . these fields. *} 404 . 405 . unsigned int sec_flg0:1; 406 . unsigned int sec_flg1:1; 407 . unsigned int sec_flg2:1; 408 . unsigned int sec_flg3:1; 409 . unsigned int sec_flg4:1; 410 . unsigned int sec_flg5:1; 411 . 412 . {* End of internal packed boolean fields. *} 413 . 414 . {* The virtual memory address of the section - where it will be 415 . at run time. The symbols are relocated against this. The 416 . user_set_vma flag is maintained by bfd; if it's not set, the 417 . backend can assign addresses (for example, in <<a.out>>, where 418 . the default address for <<.data>> is dependent on the specific 419 . target and various flags). *} 420 . bfd_vma vma; 421 . 422 . {* The load address of the section - where it would be in a 423 . rom image; really only used for writing section header 424 . information. *} 425 . bfd_vma lma; 426 . 427 . {* The size of the section in *octets*, as it will be output. 428 . Contains a value even if the section has no contents (e.g., the 429 . size of <<.bss>>). *} 430 . bfd_size_type size; 431 . 432 . {* For input sections, the original size on disk of the section, in 433 . octets. This field should be set for any section whose size is 434 . changed by linker relaxation. It is required for sections where 435 . the linker relaxation scheme doesn't cache altered section and 436 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing 437 . targets), and thus the original size needs to be kept to read the 438 . section multiple times. For output sections, rawsize holds the 439 . section size calculated on a previous linker relaxation pass. *} 440 . bfd_size_type rawsize; 441 . 442 . {* The compressed size of the section in octets. *} 443 . bfd_size_type compressed_size; 444 . 445 . {* Relaxation table. *} 446 . struct relax_table *relax; 447 . 448 . {* Count of used relaxation table entries. *} 449 . int relax_count; 450 . 451 . 452 . {* If this section is going to be output, then this value is the 453 . offset in *bytes* into the output section of the first byte in the 454 . input section (byte ==> smallest addressable unit on the 455 . target). In most cases, if this was going to start at the 456 . 100th octet (8-bit quantity) in the output section, this value 457 . would be 100. However, if the target byte size is 16 bits 458 . (bfd_octets_per_byte is "2"), this value would be 50. *} 459 . bfd_vma output_offset; 460 . 461 . {* The output section through which to map on output. *} 462 . struct bfd_section *output_section; 463 . 464 . {* The alignment requirement of the section, as an exponent of 2 - 465 . e.g., 3 aligns to 2^3 (or 8). *} 466 . unsigned int alignment_power; 467 . 468 . {* If an input section, a pointer to a vector of relocation 469 . records for the data in this section. *} 470 . struct reloc_cache_entry *relocation; 471 . 472 . {* If an output section, a pointer to a vector of pointers to 473 . relocation records for the data in this section. *} 474 . struct reloc_cache_entry **orelocation; 475 . 476 . {* The number of relocation records in one of the above. *} 477 . unsigned reloc_count; 478 . 479 . {* Information below is back end specific - and not always used 480 . or updated. *} 481 . 482 . {* File position of section data. *} 483 . file_ptr filepos; 484 . 485 . {* File position of relocation info. *} 486 . file_ptr rel_filepos; 487 . 488 . {* File position of line data. *} 489 . file_ptr line_filepos; 490 . 491 . {* Pointer to data for applications. *} 492 . void *userdata; 493 . 494 . {* If the SEC_IN_MEMORY flag is set, this points to the actual 495 . contents. *} 496 . unsigned char *contents; 497 . 498 . {* Attached line number information. *} 499 . alent *lineno; 500 . 501 . {* Number of line number records. *} 502 . unsigned int lineno_count; 503 . 504 . {* Entity size for merging purposes. *} 505 . unsigned int entsize; 506 . 507 . {* Points to the kept section if this section is a link-once section, 508 . and is discarded. *} 509 . struct bfd_section *kept_section; 510 . 511 . {* When a section is being output, this value changes as more 512 . linenumbers are written out. *} 513 . file_ptr moving_line_filepos; 514 . 515 . {* What the section number is in the target world. *} 516 . int target_index; 517 . 518 . void *used_by_bfd; 519 . 520 . {* If this is a constructor section then here is a list of the 521 . relocations created to relocate items within it. *} 522 . struct relent_chain *constructor_chain; 523 . 524 . {* The BFD which owns the section. *} 525 . bfd *owner; 526 . 527 . {* A symbol which points at this section only. *} 528 . struct bfd_symbol *symbol; 529 . struct bfd_symbol **symbol_ptr_ptr; 530 . 531 . {* Early in the link process, map_head and map_tail are used to build 532 . a list of input sections attached to an output section. Later, 533 . output sections use these fields for a list of bfd_link_order 534 . structs. *} 535 . union { 536 . struct bfd_link_order *link_order; 537 . struct bfd_section *s; 538 . } map_head, map_tail; 539 .} asection; 540 . 541 .{* Relax table contains information about instructions which can 542 . be removed by relaxation -- replacing a long address with a 543 . short address. *} 544 .struct relax_table { 545 . {* Address where bytes may be deleted. *} 546 . bfd_vma addr; 547 . 548 . {* Number of bytes to be deleted. *} 549 . int size; 550 .}; 551 . 552 .{* Note: the following are provided as inline functions rather than macros 553 . because not all callers use the return value. A macro implementation 554 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some 555 . compilers will complain about comma expressions that have no effect. *} 556 .static inline bfd_boolean 557 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, 558 . void * val) 559 .{ 560 . ptr->userdata = val; 561 . return TRUE; 562 .} 563 . 564 .static inline bfd_boolean 565 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val) 566 .{ 567 . ptr->vma = ptr->lma = val; 568 . ptr->user_set_vma = TRUE; 569 . return TRUE; 570 .} 571 . 572 .static inline bfd_boolean 573 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, 574 . unsigned int val) 575 .{ 576 . ptr->alignment_power = val; 577 . return TRUE; 578 .} 579 . 580 .{* These sections are global, and are managed by BFD. The application 581 . and target back end are not permitted to change the values in 582 . these sections. *} 583 .extern asection _bfd_std_section[4]; 584 . 585 .#define BFD_ABS_SECTION_NAME "*ABS*" 586 .#define BFD_UND_SECTION_NAME "*UND*" 587 .#define BFD_COM_SECTION_NAME "*COM*" 588 .#define BFD_IND_SECTION_NAME "*IND*" 589 . 590 .{* Pointer to the common section. *} 591 .#define bfd_com_section_ptr (&_bfd_std_section[0]) 592 .{* Pointer to the undefined section. *} 593 .#define bfd_und_section_ptr (&_bfd_std_section[1]) 594 .{* Pointer to the absolute section. *} 595 .#define bfd_abs_section_ptr (&_bfd_std_section[2]) 596 .{* Pointer to the indirect section. *} 597 .#define bfd_ind_section_ptr (&_bfd_std_section[3]) 598 . 599 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr) 600 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr) 601 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr) 602 . 603 .#define bfd_is_const_section(SEC) \ 604 . ( ((SEC) == bfd_abs_section_ptr) \ 605 . || ((SEC) == bfd_und_section_ptr) \ 606 . || ((SEC) == bfd_com_section_ptr) \ 607 . || ((SEC) == bfd_ind_section_ptr)) 608 . 609 .{* Macros to handle insertion and deletion of a bfd's sections. These 610 . only handle the list pointers, ie. do not adjust section_count, 611 . target_index etc. *} 612 .#define bfd_section_list_remove(ABFD, S) \ 613 . do \ 614 . { \ 615 . asection *_s = S; \ 616 . asection *_next = _s->next; \ 617 . asection *_prev = _s->prev; \ 618 . if (_prev) \ 619 . _prev->next = _next; \ 620 . else \ 621 . (ABFD)->sections = _next; \ 622 . if (_next) \ 623 . _next->prev = _prev; \ 624 . else \ 625 . (ABFD)->section_last = _prev; \ 626 . } \ 627 . while (0) 628 .#define bfd_section_list_append(ABFD, S) \ 629 . do \ 630 . { \ 631 . asection *_s = S; \ 632 . bfd *_abfd = ABFD; \ 633 . _s->next = NULL; \ 634 . if (_abfd->section_last) \ 635 . { \ 636 . _s->prev = _abfd->section_last; \ 637 . _abfd->section_last->next = _s; \ 638 . } \ 639 . else \ 640 . { \ 641 . _s->prev = NULL; \ 642 . _abfd->sections = _s; \ 643 . } \ 644 . _abfd->section_last = _s; \ 645 . } \ 646 . while (0) 647 .#define bfd_section_list_prepend(ABFD, S) \ 648 . do \ 649 . { \ 650 . asection *_s = S; \ 651 . bfd *_abfd = ABFD; \ 652 . _s->prev = NULL; \ 653 . if (_abfd->sections) \ 654 . { \ 655 . _s->next = _abfd->sections; \ 656 . _abfd->sections->prev = _s; \ 657 . } \ 658 . else \ 659 . { \ 660 . _s->next = NULL; \ 661 . _abfd->section_last = _s; \ 662 . } \ 663 . _abfd->sections = _s; \ 664 . } \ 665 . while (0) 666 .#define bfd_section_list_insert_after(ABFD, A, S) \ 667 . do \ 668 . { \ 669 . asection *_a = A; \ 670 . asection *_s = S; \ 671 . asection *_next = _a->next; \ 672 . _s->next = _next; \ 673 . _s->prev = _a; \ 674 . _a->next = _s; \ 675 . if (_next) \ 676 . _next->prev = _s; \ 677 . else \ 678 . (ABFD)->section_last = _s; \ 679 . } \ 680 . while (0) 681 .#define bfd_section_list_insert_before(ABFD, B, S) \ 682 . do \ 683 . { \ 684 . asection *_b = B; \ 685 . asection *_s = S; \ 686 . asection *_prev = _b->prev; \ 687 . _s->prev = _prev; \ 688 . _s->next = _b; \ 689 . _b->prev = _s; \ 690 . if (_prev) \ 691 . _prev->next = _s; \ 692 . else \ 693 . (ABFD)->sections = _s; \ 694 . } \ 695 . while (0) 696 .#define bfd_section_removed_from_list(ABFD, S) \ 697 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S)) 698 . 699 .#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS) \ 700 . {* name, id, index, next, prev, flags, user_set_vma, *} \ 701 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \ 702 . \ 703 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \ 704 . 0, 0, 1, 0, \ 705 . \ 706 . {* segment_mark, sec_info_type, use_rela_p, *} \ 707 . 0, 0, 0, \ 708 . \ 709 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \ 710 . 0, 0, 0, 0, 0, 0, \ 711 . \ 712 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \ 713 . 0, 0, 0, 0, 0, 0, 0, \ 714 . \ 715 . {* output_offset, output_section, alignment_power, *} \ 716 . 0, &SEC, 0, \ 717 . \ 718 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \ 719 . NULL, NULL, 0, 0, 0, \ 720 . \ 721 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \ 722 . 0, NULL, NULL, NULL, 0, \ 723 . \ 724 . {* entsize, kept_section, moving_line_filepos, *} \ 725 . 0, NULL, 0, \ 726 . \ 727 . {* target_index, used_by_bfd, constructor_chain, owner, *} \ 728 . 0, NULL, NULL, NULL, \ 729 . \ 730 . {* symbol, symbol_ptr_ptr, *} \ 731 . (struct bfd_symbol *) SYM, &SEC.symbol, \ 732 . \ 733 . {* map_head, map_tail *} \ 734 . { NULL }, { NULL } \ 735 . } 736 . 737 .{* We use a macro to initialize the static asymbol structures because 738 . traditional C does not permit us to initialize a union member while 739 . gcc warns if we don't initialize it. 740 . the_bfd, name, value, attr, section [, udata] *} 741 .#ifdef __STDC__ 742 .#define GLOBAL_SYM_INIT(NAME, SECTION) \ 743 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }} 744 .#else 745 .#define GLOBAL_SYM_INIT(NAME, SECTION) \ 746 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION } 747 .#endif 748 . 749 */ 750 751 /* These symbols are global, not specific to any BFD. Therefore, anything 752 that tries to change them is broken, and should be repaired. */ 753 754 static const asymbol global_syms[] = 755 { 756 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr), 757 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr), 758 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr), 759 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr) 760 }; 761 762 #define STD_SECTION(NAME, IDX, FLAGS) \ 763 BFD_FAKE_SECTION(_bfd_std_section[IDX], &global_syms[IDX], NAME, IDX, FLAGS) 764 765 asection _bfd_std_section[] = { 766 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON), 767 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0), 768 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0), 769 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0) 770 }; 771 #undef STD_SECTION 772 773 /* Initialize an entry in the section hash table. */ 774 775 struct bfd_hash_entry * 776 bfd_section_hash_newfunc (struct bfd_hash_entry *entry, 777 struct bfd_hash_table *table, 778 const char *string) 779 { 780 /* Allocate the structure if it has not already been allocated by a 781 subclass. */ 782 if (entry == NULL) 783 { 784 entry = (struct bfd_hash_entry *) 785 bfd_hash_allocate (table, sizeof (struct section_hash_entry)); 786 if (entry == NULL) 787 return entry; 788 } 789 790 /* Call the allocation method of the superclass. */ 791 entry = bfd_hash_newfunc (entry, table, string); 792 if (entry != NULL) 793 memset (&((struct section_hash_entry *) entry)->section, 0, 794 sizeof (asection)); 795 796 return entry; 797 } 798 799 #define section_hash_lookup(table, string, create, copy) \ 800 ((struct section_hash_entry *) \ 801 bfd_hash_lookup ((table), (string), (create), (copy))) 802 803 /* Create a symbol whose only job is to point to this section. This 804 is useful for things like relocs which are relative to the base 805 of a section. */ 806 807 bfd_boolean 808 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect) 809 { 810 newsect->symbol = bfd_make_empty_symbol (abfd); 811 if (newsect->symbol == NULL) 812 return FALSE; 813 814 newsect->symbol->name = newsect->name; 815 newsect->symbol->value = 0; 816 newsect->symbol->section = newsect; 817 newsect->symbol->flags = BSF_SECTION_SYM; 818 819 newsect->symbol_ptr_ptr = &newsect->symbol; 820 return TRUE; 821 } 822 823 unsigned int _bfd_section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */ 824 825 /* Initializes a new section. NEWSECT->NAME is already set. */ 826 827 static asection * 828 bfd_section_init (bfd *abfd, asection *newsect) 829 { 830 newsect->id = _bfd_section_id; 831 newsect->index = abfd->section_count; 832 newsect->owner = abfd; 833 834 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 835 return NULL; 836 837 _bfd_section_id++; 838 abfd->section_count++; 839 bfd_section_list_append (abfd, newsect); 840 return newsect; 841 } 842 843 /* 844 DOCDD 845 INODE 846 section prototypes, , typedef asection, Sections 847 SUBSECTION 848 Section prototypes 849 850 These are the functions exported by the section handling part of BFD. 851 */ 852 853 /* 854 FUNCTION 855 bfd_section_list_clear 856 857 SYNOPSIS 858 void bfd_section_list_clear (bfd *); 859 860 DESCRIPTION 861 Clears the section list, and also resets the section count and 862 hash table entries. 863 */ 864 865 void 866 bfd_section_list_clear (bfd *abfd) 867 { 868 abfd->sections = NULL; 869 abfd->section_last = NULL; 870 abfd->section_count = 0; 871 memset (abfd->section_htab.table, 0, 872 abfd->section_htab.size * sizeof (struct bfd_hash_entry *)); 873 abfd->section_htab.count = 0; 874 } 875 876 /* 877 FUNCTION 878 bfd_get_section_by_name 879 880 SYNOPSIS 881 asection *bfd_get_section_by_name (bfd *abfd, const char *name); 882 883 DESCRIPTION 884 Return the most recently created section attached to @var{abfd} 885 named @var{name}. Return NULL if no such section exists. 886 */ 887 888 asection * 889 bfd_get_section_by_name (bfd *abfd, const char *name) 890 { 891 struct section_hash_entry *sh; 892 893 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 894 if (sh != NULL) 895 return &sh->section; 896 897 return NULL; 898 } 899 900 /* 901 FUNCTION 902 bfd_get_next_section_by_name 903 904 SYNOPSIS 905 asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec); 906 907 DESCRIPTION 908 Given @var{sec} is a section returned by @code{bfd_get_section_by_name}, 909 return the next most recently created section attached to the same 910 BFD with the same name, or if no such section exists in the same BFD and 911 IBFD is non-NULL, the next section with the same name in any input 912 BFD following IBFD. Return NULL on finding no section. 913 */ 914 915 asection * 916 bfd_get_next_section_by_name (bfd *ibfd, asection *sec) 917 { 918 struct section_hash_entry *sh; 919 const char *name; 920 unsigned long hash; 921 922 sh = ((struct section_hash_entry *) 923 ((char *) sec - offsetof (struct section_hash_entry, section))); 924 925 hash = sh->root.hash; 926 name = sec->name; 927 for (sh = (struct section_hash_entry *) sh->root.next; 928 sh != NULL; 929 sh = (struct section_hash_entry *) sh->root.next) 930 if (sh->root.hash == hash 931 && strcmp (sh->root.string, name) == 0) 932 return &sh->section; 933 934 if (ibfd != NULL) 935 { 936 while ((ibfd = ibfd->link.next) != NULL) 937 { 938 asection *s = bfd_get_section_by_name (ibfd, name); 939 if (s != NULL) 940 return s; 941 } 942 } 943 944 return NULL; 945 } 946 947 /* 948 FUNCTION 949 bfd_get_linker_section 950 951 SYNOPSIS 952 asection *bfd_get_linker_section (bfd *abfd, const char *name); 953 954 DESCRIPTION 955 Return the linker created section attached to @var{abfd} 956 named @var{name}. Return NULL if no such section exists. 957 */ 958 959 asection * 960 bfd_get_linker_section (bfd *abfd, const char *name) 961 { 962 asection *sec = bfd_get_section_by_name (abfd, name); 963 964 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0) 965 sec = bfd_get_next_section_by_name (NULL, sec); 966 return sec; 967 } 968 969 /* 970 FUNCTION 971 bfd_get_section_by_name_if 972 973 SYNOPSIS 974 asection *bfd_get_section_by_name_if 975 (bfd *abfd, 976 const char *name, 977 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj), 978 void *obj); 979 980 DESCRIPTION 981 Call the provided function @var{func} for each section 982 attached to the BFD @var{abfd} whose name matches @var{name}, 983 passing @var{obj} as an argument. The function will be called 984 as if by 985 986 | func (abfd, the_section, obj); 987 988 It returns the first section for which @var{func} returns true, 989 otherwise <<NULL>>. 990 991 */ 992 993 asection * 994 bfd_get_section_by_name_if (bfd *abfd, const char *name, 995 bfd_boolean (*operation) (bfd *, 996 asection *, 997 void *), 998 void *user_storage) 999 { 1000 struct section_hash_entry *sh; 1001 unsigned long hash; 1002 1003 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 1004 if (sh == NULL) 1005 return NULL; 1006 1007 hash = sh->root.hash; 1008 for (; sh != NULL; sh = (struct section_hash_entry *) sh->root.next) 1009 if (sh->root.hash == hash 1010 && strcmp (sh->root.string, name) == 0 1011 && (*operation) (abfd, &sh->section, user_storage)) 1012 return &sh->section; 1013 1014 return NULL; 1015 } 1016 1017 /* 1018 FUNCTION 1019 bfd_get_unique_section_name 1020 1021 SYNOPSIS 1022 char *bfd_get_unique_section_name 1023 (bfd *abfd, const char *templat, int *count); 1024 1025 DESCRIPTION 1026 Invent a section name that is unique in @var{abfd} by tacking 1027 a dot and a digit suffix onto the original @var{templat}. If 1028 @var{count} is non-NULL, then it specifies the first number 1029 tried as a suffix to generate a unique name. The value 1030 pointed to by @var{count} will be incremented in this case. 1031 */ 1032 1033 char * 1034 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count) 1035 { 1036 int num; 1037 unsigned int len; 1038 char *sname; 1039 1040 len = strlen (templat); 1041 sname = (char *) bfd_malloc (len + 8); 1042 if (sname == NULL) 1043 return NULL; 1044 memcpy (sname, templat, len); 1045 num = 1; 1046 if (count != NULL) 1047 num = *count; 1048 1049 do 1050 { 1051 /* If we have a million sections, something is badly wrong. */ 1052 if (num > 999999) 1053 abort (); 1054 sprintf (sname + len, ".%d", num++); 1055 } 1056 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE)); 1057 1058 if (count != NULL) 1059 *count = num; 1060 return sname; 1061 } 1062 1063 /* 1064 FUNCTION 1065 bfd_make_section_old_way 1066 1067 SYNOPSIS 1068 asection *bfd_make_section_old_way (bfd *abfd, const char *name); 1069 1070 DESCRIPTION 1071 Create a new empty section called @var{name} 1072 and attach it to the end of the chain of sections for the 1073 BFD @var{abfd}. An attempt to create a section with a name which 1074 is already in use returns its pointer without changing the 1075 section chain. 1076 1077 It has the funny name since this is the way it used to be 1078 before it was rewritten.... 1079 1080 Possible errors are: 1081 o <<bfd_error_invalid_operation>> - 1082 If output has already started for this BFD. 1083 o <<bfd_error_no_memory>> - 1084 If memory allocation fails. 1085 1086 */ 1087 1088 asection * 1089 bfd_make_section_old_way (bfd *abfd, const char *name) 1090 { 1091 asection *newsect; 1092 1093 if (abfd->output_has_begun) 1094 { 1095 bfd_set_error (bfd_error_invalid_operation); 1096 return NULL; 1097 } 1098 1099 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0) 1100 newsect = bfd_abs_section_ptr; 1101 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0) 1102 newsect = bfd_com_section_ptr; 1103 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0) 1104 newsect = bfd_und_section_ptr; 1105 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0) 1106 newsect = bfd_ind_section_ptr; 1107 else 1108 { 1109 struct section_hash_entry *sh; 1110 1111 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1112 if (sh == NULL) 1113 return NULL; 1114 1115 newsect = &sh->section; 1116 if (newsect->name != NULL) 1117 { 1118 /* Section already exists. */ 1119 return newsect; 1120 } 1121 1122 newsect->name = name; 1123 return bfd_section_init (abfd, newsect); 1124 } 1125 1126 /* Call new_section_hook when "creating" the standard abs, com, und 1127 and ind sections to tack on format specific section data. 1128 Also, create a proper section symbol. */ 1129 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 1130 return NULL; 1131 return newsect; 1132 } 1133 1134 /* 1135 FUNCTION 1136 bfd_make_section_anyway_with_flags 1137 1138 SYNOPSIS 1139 asection *bfd_make_section_anyway_with_flags 1140 (bfd *abfd, const char *name, flagword flags); 1141 1142 DESCRIPTION 1143 Create a new empty section called @var{name} and attach it to the end of 1144 the chain of sections for @var{abfd}. Create a new section even if there 1145 is already a section with that name. Also set the attributes of the 1146 new section to the value @var{flags}. 1147 1148 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1149 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1150 o <<bfd_error_no_memory>> - If memory allocation fails. 1151 */ 1152 1153 sec_ptr 1154 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name, 1155 flagword flags) 1156 { 1157 struct section_hash_entry *sh; 1158 asection *newsect; 1159 1160 if (abfd->output_has_begun) 1161 { 1162 bfd_set_error (bfd_error_invalid_operation); 1163 return NULL; 1164 } 1165 1166 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1167 if (sh == NULL) 1168 return NULL; 1169 1170 newsect = &sh->section; 1171 if (newsect->name != NULL) 1172 { 1173 /* We are making a section of the same name. Put it in the 1174 section hash table. Even though we can't find it directly by a 1175 hash lookup, we'll be able to find the section by traversing 1176 sh->root.next quicker than looking at all the bfd sections. */ 1177 struct section_hash_entry *new_sh; 1178 new_sh = (struct section_hash_entry *) 1179 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name); 1180 if (new_sh == NULL) 1181 return NULL; 1182 1183 new_sh->root = sh->root; 1184 sh->root.next = &new_sh->root; 1185 newsect = &new_sh->section; 1186 } 1187 1188 newsect->flags = flags; 1189 newsect->name = name; 1190 return bfd_section_init (abfd, newsect); 1191 } 1192 1193 /* 1194 FUNCTION 1195 bfd_make_section_anyway 1196 1197 SYNOPSIS 1198 asection *bfd_make_section_anyway (bfd *abfd, const char *name); 1199 1200 DESCRIPTION 1201 Create a new empty section called @var{name} and attach it to the end of 1202 the chain of sections for @var{abfd}. Create a new section even if there 1203 is already a section with that name. 1204 1205 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1206 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1207 o <<bfd_error_no_memory>> - If memory allocation fails. 1208 */ 1209 1210 sec_ptr 1211 bfd_make_section_anyway (bfd *abfd, const char *name) 1212 { 1213 return bfd_make_section_anyway_with_flags (abfd, name, 0); 1214 } 1215 1216 /* 1217 FUNCTION 1218 bfd_make_section_with_flags 1219 1220 SYNOPSIS 1221 asection *bfd_make_section_with_flags 1222 (bfd *, const char *name, flagword flags); 1223 1224 DESCRIPTION 1225 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1226 bfd_set_error ()) without changing the section chain if there is already a 1227 section named @var{name}. Also set the attributes of the new section to 1228 the value @var{flags}. If there is an error, return <<NULL>> and set 1229 <<bfd_error>>. 1230 */ 1231 1232 asection * 1233 bfd_make_section_with_flags (bfd *abfd, const char *name, 1234 flagword flags) 1235 { 1236 struct section_hash_entry *sh; 1237 asection *newsect; 1238 1239 if (abfd == NULL || name == NULL || abfd->output_has_begun) 1240 { 1241 bfd_set_error (bfd_error_invalid_operation); 1242 return NULL; 1243 } 1244 1245 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0 1246 || strcmp (name, BFD_COM_SECTION_NAME) == 0 1247 || strcmp (name, BFD_UND_SECTION_NAME) == 0 1248 || strcmp (name, BFD_IND_SECTION_NAME) == 0) 1249 return NULL; 1250 1251 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1252 if (sh == NULL) 1253 return NULL; 1254 1255 newsect = &sh->section; 1256 if (newsect->name != NULL) 1257 { 1258 /* Section already exists. */ 1259 return NULL; 1260 } 1261 1262 newsect->name = name; 1263 newsect->flags = flags; 1264 return bfd_section_init (abfd, newsect); 1265 } 1266 1267 /* 1268 FUNCTION 1269 bfd_make_section 1270 1271 SYNOPSIS 1272 asection *bfd_make_section (bfd *, const char *name); 1273 1274 DESCRIPTION 1275 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1276 bfd_set_error ()) without changing the section chain if there is already a 1277 section named @var{name}. If there is an error, return <<NULL>> and set 1278 <<bfd_error>>. 1279 */ 1280 1281 asection * 1282 bfd_make_section (bfd *abfd, const char *name) 1283 { 1284 return bfd_make_section_with_flags (abfd, name, 0); 1285 } 1286 1287 /* 1288 FUNCTION 1289 bfd_set_section_flags 1290 1291 SYNOPSIS 1292 bfd_boolean bfd_set_section_flags 1293 (bfd *abfd, asection *sec, flagword flags); 1294 1295 DESCRIPTION 1296 Set the attributes of the section @var{sec} in the BFD 1297 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success, 1298 <<FALSE>> on error. Possible error returns are: 1299 1300 o <<bfd_error_invalid_operation>> - 1301 The section cannot have one or more of the attributes 1302 requested. For example, a .bss section in <<a.out>> may not 1303 have the <<SEC_HAS_CONTENTS>> field set. 1304 1305 */ 1306 1307 bfd_boolean 1308 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED, 1309 sec_ptr section, 1310 flagword flags) 1311 { 1312 section->flags = flags; 1313 return TRUE; 1314 } 1315 1316 /* 1317 FUNCTION 1318 bfd_rename_section 1319 1320 SYNOPSIS 1321 void bfd_rename_section 1322 (bfd *abfd, asection *sec, const char *newname); 1323 1324 DESCRIPTION 1325 Rename section @var{sec} in @var{abfd} to @var{newname}. 1326 */ 1327 1328 void 1329 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname) 1330 { 1331 struct section_hash_entry *sh; 1332 1333 sh = (struct section_hash_entry *) 1334 ((char *) sec - offsetof (struct section_hash_entry, section)); 1335 sh->section.name = newname; 1336 bfd_hash_rename (&abfd->section_htab, newname, &sh->root); 1337 } 1338 1339 /* 1340 FUNCTION 1341 bfd_map_over_sections 1342 1343 SYNOPSIS 1344 void bfd_map_over_sections 1345 (bfd *abfd, 1346 void (*func) (bfd *abfd, asection *sect, void *obj), 1347 void *obj); 1348 1349 DESCRIPTION 1350 Call the provided function @var{func} for each section 1351 attached to the BFD @var{abfd}, passing @var{obj} as an 1352 argument. The function will be called as if by 1353 1354 | func (abfd, the_section, obj); 1355 1356 This is the preferred method for iterating over sections; an 1357 alternative would be to use a loop: 1358 1359 | asection *p; 1360 | for (p = abfd->sections; p != NULL; p = p->next) 1361 | func (abfd, p, ...) 1362 1363 */ 1364 1365 void 1366 bfd_map_over_sections (bfd *abfd, 1367 void (*operation) (bfd *, asection *, void *), 1368 void *user_storage) 1369 { 1370 asection *sect; 1371 unsigned int i = 0; 1372 1373 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next) 1374 (*operation) (abfd, sect, user_storage); 1375 1376 if (i != abfd->section_count) /* Debugging */ 1377 abort (); 1378 } 1379 1380 /* 1381 FUNCTION 1382 bfd_sections_find_if 1383 1384 SYNOPSIS 1385 asection *bfd_sections_find_if 1386 (bfd *abfd, 1387 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj), 1388 void *obj); 1389 1390 DESCRIPTION 1391 Call the provided function @var{operation} for each section 1392 attached to the BFD @var{abfd}, passing @var{obj} as an 1393 argument. The function will be called as if by 1394 1395 | operation (abfd, the_section, obj); 1396 1397 It returns the first section for which @var{operation} returns true. 1398 1399 */ 1400 1401 asection * 1402 bfd_sections_find_if (bfd *abfd, 1403 bfd_boolean (*operation) (bfd *, asection *, void *), 1404 void *user_storage) 1405 { 1406 asection *sect; 1407 1408 for (sect = abfd->sections; sect != NULL; sect = sect->next) 1409 if ((*operation) (abfd, sect, user_storage)) 1410 break; 1411 1412 return sect; 1413 } 1414 1415 /* 1416 FUNCTION 1417 bfd_set_section_size 1418 1419 SYNOPSIS 1420 bfd_boolean bfd_set_section_size 1421 (bfd *abfd, asection *sec, bfd_size_type val); 1422 1423 DESCRIPTION 1424 Set @var{sec} to the size @var{val}. If the operation is 1425 ok, then <<TRUE>> is returned, else <<FALSE>>. 1426 1427 Possible error returns: 1428 o <<bfd_error_invalid_operation>> - 1429 Writing has started to the BFD, so setting the size is invalid. 1430 1431 */ 1432 1433 bfd_boolean 1434 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val) 1435 { 1436 /* Once you've started writing to any section you cannot create or change 1437 the size of any others. */ 1438 1439 if (abfd->output_has_begun) 1440 { 1441 bfd_set_error (bfd_error_invalid_operation); 1442 return FALSE; 1443 } 1444 1445 ptr->size = val; 1446 return TRUE; 1447 } 1448 1449 /* 1450 FUNCTION 1451 bfd_set_section_contents 1452 1453 SYNOPSIS 1454 bfd_boolean bfd_set_section_contents 1455 (bfd *abfd, asection *section, const void *data, 1456 file_ptr offset, bfd_size_type count); 1457 1458 DESCRIPTION 1459 Sets the contents of the section @var{section} in BFD 1460 @var{abfd} to the data starting in memory at @var{data}. The 1461 data is written to the output section starting at offset 1462 @var{offset} for @var{count} octets. 1463 1464 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error 1465 returns are: 1466 o <<bfd_error_no_contents>> - 1467 The output section does not have the <<SEC_HAS_CONTENTS>> 1468 attribute, so nothing can be written to it. 1469 o and some more too 1470 1471 This routine is front end to the back end function 1472 <<_bfd_set_section_contents>>. 1473 1474 */ 1475 1476 bfd_boolean 1477 bfd_set_section_contents (bfd *abfd, 1478 sec_ptr section, 1479 const void *location, 1480 file_ptr offset, 1481 bfd_size_type count) 1482 { 1483 bfd_size_type sz; 1484 1485 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS)) 1486 { 1487 bfd_set_error (bfd_error_no_contents); 1488 return FALSE; 1489 } 1490 1491 sz = section->size; 1492 if ((bfd_size_type) offset > sz 1493 || count > sz 1494 || offset + count > sz 1495 || count != (size_t) count) 1496 { 1497 bfd_set_error (bfd_error_bad_value); 1498 return FALSE; 1499 } 1500 1501 if (!bfd_write_p (abfd)) 1502 { 1503 bfd_set_error (bfd_error_invalid_operation); 1504 return FALSE; 1505 } 1506 1507 /* Record a copy of the data in memory if desired. */ 1508 if (section->contents 1509 && location != section->contents + offset) 1510 memcpy (section->contents + offset, location, (size_t) count); 1511 1512 if (BFD_SEND (abfd, _bfd_set_section_contents, 1513 (abfd, section, location, offset, count))) 1514 { 1515 abfd->output_has_begun = TRUE; 1516 return TRUE; 1517 } 1518 1519 return FALSE; 1520 } 1521 1522 /* 1523 FUNCTION 1524 bfd_get_section_contents 1525 1526 SYNOPSIS 1527 bfd_boolean bfd_get_section_contents 1528 (bfd *abfd, asection *section, void *location, file_ptr offset, 1529 bfd_size_type count); 1530 1531 DESCRIPTION 1532 Read data from @var{section} in BFD @var{abfd} 1533 into memory starting at @var{location}. The data is read at an 1534 offset of @var{offset} from the start of the input section, 1535 and is read for @var{count} bytes. 1536 1537 If the contents of a constructor with the <<SEC_CONSTRUCTOR>> 1538 flag set are requested or if the section does not have the 1539 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled 1540 with zeroes. If no errors occur, <<TRUE>> is returned, else 1541 <<FALSE>>. 1542 1543 */ 1544 bfd_boolean 1545 bfd_get_section_contents (bfd *abfd, 1546 sec_ptr section, 1547 void *location, 1548 file_ptr offset, 1549 bfd_size_type count) 1550 { 1551 bfd_size_type sz; 1552 1553 if (section->flags & SEC_CONSTRUCTOR) 1554 { 1555 memset (location, 0, (size_t) count); 1556 return TRUE; 1557 } 1558 1559 if (abfd->direction != write_direction && section->rawsize != 0) 1560 sz = section->rawsize; 1561 else 1562 sz = section->size; 1563 if ((bfd_size_type) offset > sz 1564 || count > sz 1565 || offset + count > sz 1566 || count != (size_t) count) 1567 { 1568 bfd_set_error (bfd_error_bad_value); 1569 return FALSE; 1570 } 1571 1572 if (count == 0) 1573 /* Don't bother. */ 1574 return TRUE; 1575 1576 if ((section->flags & SEC_HAS_CONTENTS) == 0) 1577 { 1578 memset (location, 0, (size_t) count); 1579 return TRUE; 1580 } 1581 1582 if ((section->flags & SEC_IN_MEMORY) != 0) 1583 { 1584 if (section->contents == NULL) 1585 { 1586 /* This can happen because of errors earlier on in the linking process. 1587 We do not want to seg-fault here, so clear the flag and return an 1588 error code. */ 1589 section->flags &= ~ SEC_IN_MEMORY; 1590 bfd_set_error (bfd_error_invalid_operation); 1591 return FALSE; 1592 } 1593 1594 memmove (location, section->contents + offset, (size_t) count); 1595 return TRUE; 1596 } 1597 1598 return BFD_SEND (abfd, _bfd_get_section_contents, 1599 (abfd, section, location, offset, count)); 1600 } 1601 1602 /* 1603 FUNCTION 1604 bfd_malloc_and_get_section 1605 1606 SYNOPSIS 1607 bfd_boolean bfd_malloc_and_get_section 1608 (bfd *abfd, asection *section, bfd_byte **buf); 1609 1610 DESCRIPTION 1611 Read all data from @var{section} in BFD @var{abfd} 1612 into a buffer, *@var{buf}, malloc'd by this function. 1613 */ 1614 1615 bfd_boolean 1616 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf) 1617 { 1618 *buf = NULL; 1619 return bfd_get_full_section_contents (abfd, sec, buf); 1620 } 1621 /* 1622 FUNCTION 1623 bfd_copy_private_section_data 1624 1625 SYNOPSIS 1626 bfd_boolean bfd_copy_private_section_data 1627 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec); 1628 1629 DESCRIPTION 1630 Copy private section information from @var{isec} in the BFD 1631 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}. 1632 Return <<TRUE>> on success, <<FALSE>> on error. Possible error 1633 returns are: 1634 1635 o <<bfd_error_no_memory>> - 1636 Not enough memory exists to create private data for @var{osec}. 1637 1638 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ 1639 . BFD_SEND (obfd, _bfd_copy_private_section_data, \ 1640 . (ibfd, isection, obfd, osection)) 1641 */ 1642 1643 /* 1644 FUNCTION 1645 bfd_generic_is_group_section 1646 1647 SYNOPSIS 1648 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec); 1649 1650 DESCRIPTION 1651 Returns TRUE if @var{sec} is a member of a group. 1652 */ 1653 1654 bfd_boolean 1655 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, 1656 const asection *sec ATTRIBUTE_UNUSED) 1657 { 1658 return FALSE; 1659 } 1660 1661 /* 1662 FUNCTION 1663 bfd_generic_discard_group 1664 1665 SYNOPSIS 1666 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group); 1667 1668 DESCRIPTION 1669 Remove all members of @var{group} from the output. 1670 */ 1671 1672 bfd_boolean 1673 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED, 1674 asection *group ATTRIBUTE_UNUSED) 1675 { 1676 return TRUE; 1677 } 1678 1679 bfd_boolean 1680 _bfd_nowrite_set_section_contents (bfd *abfd, 1681 sec_ptr section ATTRIBUTE_UNUSED, 1682 const void *location ATTRIBUTE_UNUSED, 1683 file_ptr offset ATTRIBUTE_UNUSED, 1684 bfd_size_type count ATTRIBUTE_UNUSED) 1685 { 1686 return _bfd_bool_bfd_false_error (abfd); 1687 } 1688