1 /* linker.c -- BFD linker routines 2 Copyright (C) 1993-2018 Free Software Foundation, Inc. 3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 #include "sysdep.h" 23 #include "bfd.h" 24 #include "libbfd.h" 25 #include "bfdlink.h" 26 #include "genlink.h" 27 28 /* 29 SECTION 30 Linker Functions 31 32 @cindex Linker 33 The linker uses three special entry points in the BFD target 34 vector. It is not necessary to write special routines for 35 these entry points when creating a new BFD back end, since 36 generic versions are provided. However, writing them can 37 speed up linking and make it use significantly less runtime 38 memory. 39 40 The first routine creates a hash table used by the other 41 routines. The second routine adds the symbols from an object 42 file to the hash table. The third routine takes all the 43 object files and links them together to create the output 44 file. These routines are designed so that the linker proper 45 does not need to know anything about the symbols in the object 46 files that it is linking. The linker merely arranges the 47 sections as directed by the linker script and lets BFD handle 48 the details of symbols and relocs. 49 50 The second routine and third routines are passed a pointer to 51 a <<struct bfd_link_info>> structure (defined in 52 <<bfdlink.h>>) which holds information relevant to the link, 53 including the linker hash table (which was created by the 54 first routine) and a set of callback functions to the linker 55 proper. 56 57 The generic linker routines are in <<linker.c>>, and use the 58 header file <<genlink.h>>. As of this writing, the only back 59 ends which have implemented versions of these routines are 60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out 61 routines are used as examples throughout this section. 62 63 @menu 64 @* Creating a Linker Hash Table:: 65 @* Adding Symbols to the Hash Table:: 66 @* Performing the Final Link:: 67 @end menu 68 69 INODE 70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions 71 SUBSECTION 72 Creating a linker hash table 73 74 @cindex _bfd_link_hash_table_create in target vector 75 @cindex target vector (_bfd_link_hash_table_create) 76 The linker routines must create a hash table, which must be 77 derived from <<struct bfd_link_hash_table>> described in 78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to 79 create a derived hash table. This entry point is called using 80 the target vector of the linker output file. 81 82 The <<_bfd_link_hash_table_create>> entry point must allocate 83 and initialize an instance of the desired hash table. If the 84 back end does not require any additional information to be 85 stored with the entries in the hash table, the entry point may 86 simply create a <<struct bfd_link_hash_table>>. Most likely, 87 however, some additional information will be needed. 88 89 For example, with each entry in the hash table the a.out 90 linker keeps the index the symbol has in the final output file 91 (this index number is used so that when doing a relocatable 92 link the symbol index used in the output file can be quickly 93 filled in when copying over a reloc). The a.out linker code 94 defines the required structures and functions for a hash table 95 derived from <<struct bfd_link_hash_table>>. The a.out linker 96 hash table is created by the function 97 <<NAME(aout,link_hash_table_create)>>; it simply allocates 98 space for the hash table, initializes it, and returns a 99 pointer to it. 100 101 When writing the linker routines for a new back end, you will 102 generally not know exactly which fields will be required until 103 you have finished. You should simply create a new hash table 104 which defines no additional fields, and then simply add fields 105 as they become necessary. 106 107 INODE 108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions 109 SUBSECTION 110 Adding symbols to the hash table 111 112 @cindex _bfd_link_add_symbols in target vector 113 @cindex target vector (_bfd_link_add_symbols) 114 The linker proper will call the <<_bfd_link_add_symbols>> 115 entry point for each object file or archive which is to be 116 linked (typically these are the files named on the command 117 line, but some may also come from the linker script). The 118 entry point is responsible for examining the file. For an 119 object file, BFD must add any relevant symbol information to 120 the hash table. For an archive, BFD must determine which 121 elements of the archive should be used and adding them to the 122 link. 123 124 The a.out version of this entry point is 125 <<NAME(aout,link_add_symbols)>>. 126 127 @menu 128 @* Differing file formats:: 129 @* Adding symbols from an object file:: 130 @* Adding symbols from an archive:: 131 @end menu 132 133 INODE 134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table 135 SUBSUBSECTION 136 Differing file formats 137 138 Normally all the files involved in a link will be of the same 139 format, but it is also possible to link together different 140 format object files, and the back end must support that. The 141 <<_bfd_link_add_symbols>> entry point is called via the target 142 vector of the file to be added. This has an important 143 consequence: the function may not assume that the hash table 144 is the type created by the corresponding 145 <<_bfd_link_hash_table_create>> vector. All the 146 <<_bfd_link_add_symbols>> function can assume about the hash 147 table is that it is derived from <<struct 148 bfd_link_hash_table>>. 149 150 Sometimes the <<_bfd_link_add_symbols>> function must store 151 some information in the hash table entry to be used by the 152 <<_bfd_final_link>> function. In such a case the output bfd 153 xvec must be checked to make sure that the hash table was 154 created by an object file of the same format. 155 156 The <<_bfd_final_link>> routine must be prepared to handle a 157 hash entry without any extra information added by the 158 <<_bfd_link_add_symbols>> function. A hash entry without 159 extra information will also occur when the linker script 160 directs the linker to create a symbol. Note that, regardless 161 of how a hash table entry is added, all the fields will be 162 initialized to some sort of null value by the hash table entry 163 initialization function. 164 165 See <<ecoff_link_add_externals>> for an example of how to 166 check the output bfd before saving information (in this 167 case, the ECOFF external symbol debugging information) in a 168 hash table entry. 169 170 INODE 171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table 172 SUBSUBSECTION 173 Adding symbols from an object file 174 175 When the <<_bfd_link_add_symbols>> routine is passed an object 176 file, it must add all externally visible symbols in that 177 object file to the hash table. The actual work of adding the 178 symbol to the hash table is normally handled by the function 179 <<_bfd_generic_link_add_one_symbol>>. The 180 <<_bfd_link_add_symbols>> routine is responsible for reading 181 all the symbols from the object file and passing the correct 182 information to <<_bfd_generic_link_add_one_symbol>>. 183 184 The <<_bfd_link_add_symbols>> routine should not use 185 <<bfd_canonicalize_symtab>> to read the symbols. The point of 186 providing this routine is to avoid the overhead of converting 187 the symbols into generic <<asymbol>> structures. 188 189 @findex _bfd_generic_link_add_one_symbol 190 <<_bfd_generic_link_add_one_symbol>> handles the details of 191 combining common symbols, warning about multiple definitions, 192 and so forth. It takes arguments which describe the symbol to 193 add, notably symbol flags, a section, and an offset. The 194 symbol flags include such things as <<BSF_WEAK>> or 195 <<BSF_INDIRECT>>. The section is a section in the object 196 file, or something like <<bfd_und_section_ptr>> for an undefined 197 symbol or <<bfd_com_section_ptr>> for a common symbol. 198 199 If the <<_bfd_final_link>> routine is also going to need to 200 read the symbol information, the <<_bfd_link_add_symbols>> 201 routine should save it somewhere attached to the object file 202 BFD. However, the information should only be saved if the 203 <<keep_memory>> field of the <<info>> argument is TRUE, so 204 that the <<-no-keep-memory>> linker switch is effective. 205 206 The a.out function which adds symbols from an object file is 207 <<aout_link_add_object_symbols>>, and most of the interesting 208 work is in <<aout_link_add_symbols>>. The latter saves 209 pointers to the hash tables entries created by 210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number, 211 so that the <<_bfd_final_link>> routine does not have to call 212 the hash table lookup routine to locate the entry. 213 214 INODE 215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table 216 SUBSUBSECTION 217 Adding symbols from an archive 218 219 When the <<_bfd_link_add_symbols>> routine is passed an 220 archive, it must look through the symbols defined by the 221 archive and decide which elements of the archive should be 222 included in the link. For each such element it must call the 223 <<add_archive_element>> linker callback, and it must add the 224 symbols from the object file to the linker hash table. (The 225 callback may in fact indicate that a replacement BFD should be 226 used, in which case the symbols from that BFD should be added 227 to the linker hash table instead.) 228 229 @findex _bfd_generic_link_add_archive_symbols 230 In most cases the work of looking through the symbols in the 231 archive should be done by the 232 <<_bfd_generic_link_add_archive_symbols>> function. 233 <<_bfd_generic_link_add_archive_symbols>> is passed a function 234 to call to make the final decision about adding an archive 235 element to the link and to do the actual work of adding the 236 symbols to the linker hash table. If the element is to 237 be included, the <<add_archive_element>> linker callback 238 routine must be called with the element as an argument, and 239 the element's symbols must be added to the linker hash table 240 just as though the element had itself been passed to the 241 <<_bfd_link_add_symbols>> function. 242 243 When the a.out <<_bfd_link_add_symbols>> function receives an 244 archive, it calls <<_bfd_generic_link_add_archive_symbols>> 245 passing <<aout_link_check_archive_element>> as the function 246 argument. <<aout_link_check_archive_element>> calls 247 <<aout_link_check_ar_symbols>>. If the latter decides to add 248 the element (an element is only added if it provides a real, 249 non-common, definition for a previously undefined or common 250 symbol) it calls the <<add_archive_element>> callback and then 251 <<aout_link_check_archive_element>> calls 252 <<aout_link_add_symbols>> to actually add the symbols to the 253 linker hash table - possibly those of a substitute BFD, if the 254 <<add_archive_element>> callback avails itself of that option. 255 256 The ECOFF back end is unusual in that it does not normally 257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF 258 archives already contain a hash table of symbols. The ECOFF 259 back end searches the archive itself to avoid the overhead of 260 creating a new hash table. 261 262 INODE 263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions 264 SUBSECTION 265 Performing the final link 266 267 @cindex _bfd_link_final_link in target vector 268 @cindex target vector (_bfd_final_link) 269 When all the input files have been processed, the linker calls 270 the <<_bfd_final_link>> entry point of the output BFD. This 271 routine is responsible for producing the final output file, 272 which has several aspects. It must relocate the contents of 273 the input sections and copy the data into the output sections. 274 It must build an output symbol table including any local 275 symbols from the input files and the global symbols from the 276 hash table. When producing relocatable output, it must 277 modify the input relocs and write them into the output file. 278 There may also be object format dependent work to be done. 279 280 The linker will also call the <<write_object_contents>> entry 281 point when the BFD is closed. The two entry points must work 282 together in order to produce the correct output file. 283 284 The details of how this works are inevitably dependent upon 285 the specific object file format. The a.out 286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>. 287 288 @menu 289 @* Information provided by the linker:: 290 @* Relocating the section contents:: 291 @* Writing the symbol table:: 292 @end menu 293 294 INODE 295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link 296 SUBSUBSECTION 297 Information provided by the linker 298 299 Before the linker calls the <<_bfd_final_link>> entry point, 300 it sets up some data structures for the function to use. 301 302 The <<input_bfds>> field of the <<bfd_link_info>> structure 303 will point to a list of all the input files included in the 304 link. These files are linked through the <<link.next>> field 305 of the <<bfd>> structure. 306 307 Each section in the output file will have a list of 308 <<link_order>> structures attached to the <<map_head.link_order>> 309 field (the <<link_order>> structure is defined in 310 <<bfdlink.h>>). These structures describe how to create the 311 contents of the output section in terms of the contents of 312 various input sections, fill constants, and, eventually, other 313 types of information. They also describe relocs that must be 314 created by the BFD backend, but do not correspond to any input 315 file; this is used to support -Ur, which builds constructors 316 while generating a relocatable object file. 317 318 INODE 319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link 320 SUBSUBSECTION 321 Relocating the section contents 322 323 The <<_bfd_final_link>> function should look through the 324 <<link_order>> structures attached to each section of the 325 output file. Each <<link_order>> structure should either be 326 handled specially, or it should be passed to the function 327 <<_bfd_default_link_order>> which will do the right thing 328 (<<_bfd_default_link_order>> is defined in <<linker.c>>). 329 330 For efficiency, a <<link_order>> of type 331 <<bfd_indirect_link_order>> whose associated section belongs 332 to a BFD of the same format as the output BFD must be handled 333 specially. This type of <<link_order>> describes part of an 334 output section in terms of a section belonging to one of the 335 input files. The <<_bfd_final_link>> function should read the 336 contents of the section and any associated relocs, apply the 337 relocs to the section contents, and write out the modified 338 section contents. If performing a relocatable link, the 339 relocs themselves must also be modified and written out. 340 341 @findex _bfd_relocate_contents 342 @findex _bfd_final_link_relocate 343 The functions <<_bfd_relocate_contents>> and 344 <<_bfd_final_link_relocate>> provide some general support for 345 performing the actual relocations, notably overflow checking. 346 Their arguments include information about the symbol the 347 relocation is against and a <<reloc_howto_type>> argument 348 which describes the relocation to perform. These functions 349 are defined in <<reloc.c>>. 350 351 The a.out function which handles reading, relocating, and 352 writing section contents is <<aout_link_input_section>>. The 353 actual relocation is done in <<aout_link_input_section_std>> 354 and <<aout_link_input_section_ext>>. 355 356 INODE 357 Writing the symbol table, , Relocating the section contents, Performing the Final Link 358 SUBSUBSECTION 359 Writing the symbol table 360 361 The <<_bfd_final_link>> function must gather all the symbols 362 in the input files and write them out. It must also write out 363 all the symbols in the global hash table. This must be 364 controlled by the <<strip>> and <<discard>> fields of the 365 <<bfd_link_info>> structure. 366 367 The local symbols of the input files will not have been 368 entered into the linker hash table. The <<_bfd_final_link>> 369 routine must consider each input file and include the symbols 370 in the output file. It may be convenient to do this when 371 looking through the <<link_order>> structures, or it may be 372 done by stepping through the <<input_bfds>> list. 373 374 The <<_bfd_final_link>> routine must also traverse the global 375 hash table to gather all the externally visible symbols. It 376 is possible that most of the externally visible symbols may be 377 written out when considering the symbols of each input file, 378 but it is still necessary to traverse the hash table since the 379 linker script may have defined some symbols that are not in 380 any of the input files. 381 382 The <<strip>> field of the <<bfd_link_info>> structure 383 controls which symbols are written out. The possible values 384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>, 385 then the <<keep_hash>> field of the <<bfd_link_info>> 386 structure is a hash table of symbols to keep; each symbol 387 should be looked up in this hash table, and only symbols which 388 are present should be included in the output file. 389 390 If the <<strip>> field of the <<bfd_link_info>> structure 391 permits local symbols to be written out, the <<discard>> field 392 is used to further controls which local symbols are included 393 in the output file. If the value is <<discard_l>>, then all 394 local symbols which begin with a certain prefix are discarded; 395 this is controlled by the <<bfd_is_local_label_name>> entry point. 396 397 The a.out backend handles symbols by calling 398 <<aout_link_write_symbols>> on each input BFD and then 399 traversing the global hash table with the function 400 <<aout_link_write_other_symbol>>. It builds a string table 401 while writing out the symbols, which is written to the output 402 file at the end of <<NAME(aout,final_link)>>. 403 */ 404 405 static bfd_boolean generic_link_add_object_symbols 406 (bfd *, struct bfd_link_info *); 407 static bfd_boolean generic_link_check_archive_element 408 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *, 409 bfd_boolean *); 410 static bfd_boolean generic_link_add_symbol_list 411 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **); 412 static bfd_boolean generic_add_output_symbol 413 (bfd *, size_t *psymalloc, asymbol *); 414 static bfd_boolean default_data_link_order 415 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *); 416 static bfd_boolean default_indirect_link_order 417 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *, 418 bfd_boolean); 419 420 /* The link hash table structure is defined in bfdlink.h. It provides 421 a base hash table which the backend specific hash tables are built 422 upon. */ 423 424 /* Routine to create an entry in the link hash table. */ 425 426 struct bfd_hash_entry * 427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry, 428 struct bfd_hash_table *table, 429 const char *string) 430 { 431 /* Allocate the structure if it has not already been allocated by a 432 subclass. */ 433 if (entry == NULL) 434 { 435 entry = (struct bfd_hash_entry *) 436 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)); 437 if (entry == NULL) 438 return entry; 439 } 440 441 /* Call the allocation method of the superclass. */ 442 entry = bfd_hash_newfunc (entry, table, string); 443 if (entry) 444 { 445 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry; 446 447 /* Initialize the local fields. */ 448 memset ((char *) &h->root + sizeof (h->root), 0, 449 sizeof (*h) - sizeof (h->root)); 450 } 451 452 return entry; 453 } 454 455 /* Initialize a link hash table. The BFD argument is the one 456 responsible for creating this table. */ 457 458 bfd_boolean 459 _bfd_link_hash_table_init 460 (struct bfd_link_hash_table *table, 461 bfd *abfd ATTRIBUTE_UNUSED, 462 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, 463 struct bfd_hash_table *, 464 const char *), 465 unsigned int entsize) 466 { 467 bfd_boolean ret; 468 469 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash); 470 table->undefs = NULL; 471 table->undefs_tail = NULL; 472 table->type = bfd_link_generic_hash_table; 473 474 ret = bfd_hash_table_init (&table->table, newfunc, entsize); 475 if (ret) 476 { 477 /* Arrange for destruction of this hash table on closing ABFD. */ 478 table->hash_table_free = _bfd_generic_link_hash_table_free; 479 abfd->link.hash = table; 480 abfd->is_linker_output = TRUE; 481 } 482 return ret; 483 } 484 485 /* Look up a symbol in a link hash table. If follow is TRUE, we 486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to 487 the real symbol. */ 488 489 struct bfd_link_hash_entry * 490 bfd_link_hash_lookup (struct bfd_link_hash_table *table, 491 const char *string, 492 bfd_boolean create, 493 bfd_boolean copy, 494 bfd_boolean follow) 495 { 496 struct bfd_link_hash_entry *ret; 497 498 if (table == NULL || string == NULL) 499 return NULL; 500 501 ret = ((struct bfd_link_hash_entry *) 502 bfd_hash_lookup (&table->table, string, create, copy)); 503 504 if (follow && ret != NULL) 505 { 506 while (ret->type == bfd_link_hash_indirect 507 || ret->type == bfd_link_hash_warning) 508 ret = ret->u.i.link; 509 } 510 511 return ret; 512 } 513 514 /* Look up a symbol in the main linker hash table if the symbol might 515 be wrapped. This should only be used for references to an 516 undefined symbol, not for definitions of a symbol. */ 517 518 struct bfd_link_hash_entry * 519 bfd_wrapped_link_hash_lookup (bfd *abfd, 520 struct bfd_link_info *info, 521 const char *string, 522 bfd_boolean create, 523 bfd_boolean copy, 524 bfd_boolean follow) 525 { 526 bfd_size_type amt; 527 528 if (info->wrap_hash != NULL) 529 { 530 const char *l; 531 char prefix = '\0'; 532 533 l = string; 534 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char) 535 { 536 prefix = *l; 537 ++l; 538 } 539 540 #undef WRAP 541 #define WRAP "__wrap_" 542 543 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL) 544 { 545 char *n; 546 struct bfd_link_hash_entry *h; 547 548 /* This symbol is being wrapped. We want to replace all 549 references to SYM with references to __wrap_SYM. */ 550 551 amt = strlen (l) + sizeof WRAP + 1; 552 n = (char *) bfd_malloc (amt); 553 if (n == NULL) 554 return NULL; 555 556 n[0] = prefix; 557 n[1] = '\0'; 558 strcat (n, WRAP); 559 strcat (n, l); 560 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow); 561 free (n); 562 return h; 563 } 564 565 #undef REAL 566 #define REAL "__real_" 567 568 if (*l == '_' 569 && CONST_STRNEQ (l, REAL) 570 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1, 571 FALSE, FALSE) != NULL) 572 { 573 char *n; 574 struct bfd_link_hash_entry *h; 575 576 /* This is a reference to __real_SYM, where SYM is being 577 wrapped. We want to replace all references to __real_SYM 578 with references to SYM. */ 579 580 amt = strlen (l + sizeof REAL - 1) + 2; 581 n = (char *) bfd_malloc (amt); 582 if (n == NULL) 583 return NULL; 584 585 n[0] = prefix; 586 n[1] = '\0'; 587 strcat (n, l + sizeof REAL - 1); 588 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow); 589 free (n); 590 return h; 591 } 592 593 #undef REAL 594 } 595 596 return bfd_link_hash_lookup (info->hash, string, create, copy, follow); 597 } 598 599 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_" 600 and the remainder is found in wrap_hash, return the real symbol. */ 601 602 struct bfd_link_hash_entry * 603 unwrap_hash_lookup (struct bfd_link_info *info, 604 bfd *input_bfd, 605 struct bfd_link_hash_entry *h) 606 { 607 const char *l = h->root.string; 608 609 if (*l == bfd_get_symbol_leading_char (input_bfd) 610 || *l == info->wrap_char) 611 ++l; 612 613 if (CONST_STRNEQ (l, WRAP)) 614 { 615 l += sizeof WRAP - 1; 616 617 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL) 618 { 619 char save = 0; 620 if (l - (sizeof WRAP - 1) != h->root.string) 621 { 622 --l; 623 save = *l; 624 *(char *) l = *h->root.string; 625 } 626 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE); 627 if (save) 628 *(char *) l = save; 629 } 630 } 631 return h; 632 } 633 #undef WRAP 634 635 /* Traverse a generic link hash table. Differs from bfd_hash_traverse 636 in the treatment of warning symbols. When warning symbols are 637 created they replace the real symbol, so you don't get to see the 638 real symbol in a bfd_hash_traverse. This traversal calls func with 639 the real symbol. */ 640 641 void 642 bfd_link_hash_traverse 643 (struct bfd_link_hash_table *htab, 644 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *), 645 void *info) 646 { 647 unsigned int i; 648 649 htab->table.frozen = 1; 650 for (i = 0; i < htab->table.size; i++) 651 { 652 struct bfd_link_hash_entry *p; 653 654 p = (struct bfd_link_hash_entry *) htab->table.table[i]; 655 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next) 656 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info)) 657 goto out; 658 } 659 out: 660 htab->table.frozen = 0; 661 } 662 663 /* Add a symbol to the linker hash table undefs list. */ 664 665 void 666 bfd_link_add_undef (struct bfd_link_hash_table *table, 667 struct bfd_link_hash_entry *h) 668 { 669 BFD_ASSERT (h->u.undef.next == NULL); 670 if (table->undefs_tail != NULL) 671 table->undefs_tail->u.undef.next = h; 672 if (table->undefs == NULL) 673 table->undefs = h; 674 table->undefs_tail = h; 675 } 676 677 /* The undefs list was designed so that in normal use we don't need to 678 remove entries. However, if symbols on the list are changed from 679 bfd_link_hash_undefined to either bfd_link_hash_undefweak or 680 bfd_link_hash_new for some reason, then they must be removed from the 681 list. Failure to do so might result in the linker attempting to add 682 the symbol to the list again at a later stage. */ 683 684 void 685 bfd_link_repair_undef_list (struct bfd_link_hash_table *table) 686 { 687 struct bfd_link_hash_entry **pun; 688 689 pun = &table->undefs; 690 while (*pun != NULL) 691 { 692 struct bfd_link_hash_entry *h = *pun; 693 694 if (h->type == bfd_link_hash_new 695 || h->type == bfd_link_hash_undefweak) 696 { 697 *pun = h->u.undef.next; 698 h->u.undef.next = NULL; 699 if (h == table->undefs_tail) 700 { 701 if (pun == &table->undefs) 702 table->undefs_tail = NULL; 703 else 704 /* pun points at an u.undef.next field. Go back to 705 the start of the link_hash_entry. */ 706 table->undefs_tail = (struct bfd_link_hash_entry *) 707 ((char *) pun - ((char *) &h->u.undef.next - (char *) h)); 708 break; 709 } 710 } 711 else 712 pun = &h->u.undef.next; 713 } 714 } 715 716 /* Routine to create an entry in a generic link hash table. */ 717 718 struct bfd_hash_entry * 719 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry, 720 struct bfd_hash_table *table, 721 const char *string) 722 { 723 /* Allocate the structure if it has not already been allocated by a 724 subclass. */ 725 if (entry == NULL) 726 { 727 entry = (struct bfd_hash_entry *) 728 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)); 729 if (entry == NULL) 730 return entry; 731 } 732 733 /* Call the allocation method of the superclass. */ 734 entry = _bfd_link_hash_newfunc (entry, table, string); 735 if (entry) 736 { 737 struct generic_link_hash_entry *ret; 738 739 /* Set local fields. */ 740 ret = (struct generic_link_hash_entry *) entry; 741 ret->written = FALSE; 742 ret->sym = NULL; 743 } 744 745 return entry; 746 } 747 748 /* Create a generic link hash table. */ 749 750 struct bfd_link_hash_table * 751 _bfd_generic_link_hash_table_create (bfd *abfd) 752 { 753 struct generic_link_hash_table *ret; 754 bfd_size_type amt = sizeof (struct generic_link_hash_table); 755 756 ret = (struct generic_link_hash_table *) bfd_malloc (amt); 757 if (ret == NULL) 758 return NULL; 759 if (! _bfd_link_hash_table_init (&ret->root, abfd, 760 _bfd_generic_link_hash_newfunc, 761 sizeof (struct generic_link_hash_entry))) 762 { 763 free (ret); 764 return NULL; 765 } 766 return &ret->root; 767 } 768 769 void 770 _bfd_generic_link_hash_table_free (bfd *obfd) 771 { 772 struct generic_link_hash_table *ret; 773 774 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash); 775 ret = (struct generic_link_hash_table *) obfd->link.hash; 776 bfd_hash_table_free (&ret->root.table); 777 free (ret); 778 obfd->link.hash = NULL; 779 obfd->is_linker_output = FALSE; 780 } 781 782 /* Grab the symbols for an object file when doing a generic link. We 783 store the symbols in the outsymbols field. We need to keep them 784 around for the entire link to ensure that we only read them once. 785 If we read them multiple times, we might wind up with relocs and 786 the hash table pointing to different instances of the symbol 787 structure. */ 788 789 bfd_boolean 790 bfd_generic_link_read_symbols (bfd *abfd) 791 { 792 if (bfd_get_outsymbols (abfd) == NULL) 793 { 794 long symsize; 795 long symcount; 796 797 symsize = bfd_get_symtab_upper_bound (abfd); 798 if (symsize < 0) 799 return FALSE; 800 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd, 801 symsize); 802 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0) 803 return FALSE; 804 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd)); 805 if (symcount < 0) 806 return FALSE; 807 bfd_get_symcount (abfd) = symcount; 808 } 809 810 return TRUE; 811 } 812 813 /* Indicate that we are only retrieving symbol values from this 814 section. We want the symbols to act as though the values in the 815 file are absolute. */ 816 817 void 818 _bfd_generic_link_just_syms (asection *sec, 819 struct bfd_link_info *info ATTRIBUTE_UNUSED) 820 { 821 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS; 822 sec->output_section = bfd_abs_section_ptr; 823 sec->output_offset = sec->vma; 824 } 825 826 /* Copy the symbol type and other attributes for a linker script 827 assignment from HSRC to HDEST. 828 The default implementation does nothing. */ 829 void 830 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED, 831 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED, 832 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED) 833 { 834 } 835 836 /* Generic function to add symbols from an object file to the 837 global hash table. */ 838 839 bfd_boolean 840 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info) 841 { 842 bfd_boolean ret; 843 844 switch (bfd_get_format (abfd)) 845 { 846 case bfd_object: 847 ret = generic_link_add_object_symbols (abfd, info); 848 break; 849 case bfd_archive: 850 ret = (_bfd_generic_link_add_archive_symbols 851 (abfd, info, generic_link_check_archive_element)); 852 break; 853 default: 854 bfd_set_error (bfd_error_wrong_format); 855 ret = FALSE; 856 } 857 858 return ret; 859 } 860 861 /* Add symbols from an object file to the global hash table. */ 862 863 static bfd_boolean 864 generic_link_add_object_symbols (bfd *abfd, 865 struct bfd_link_info *info) 866 { 867 bfd_size_type symcount; 868 struct bfd_symbol **outsyms; 869 870 if (!bfd_generic_link_read_symbols (abfd)) 871 return FALSE; 872 symcount = _bfd_generic_link_get_symcount (abfd); 873 outsyms = _bfd_generic_link_get_symbols (abfd); 874 return generic_link_add_symbol_list (abfd, info, symcount, outsyms); 875 } 876 877 /* Generic function to add symbols from an archive file to the global 878 hash file. This function presumes that the archive symbol table 879 has already been read in (this is normally done by the 880 bfd_check_format entry point). It looks through the archive symbol 881 table for symbols that are undefined or common in the linker global 882 symbol hash table. When one is found, the CHECKFN argument is used 883 to see if an object file should be included. This allows targets 884 to customize common symbol behaviour. CHECKFN should set *PNEEDED 885 to TRUE if the object file should be included, and must also call 886 the bfd_link_info add_archive_element callback function and handle 887 adding the symbols to the global hash table. CHECKFN must notice 888 if the callback indicates a substitute BFD, and arrange to add 889 those symbols instead if it does so. CHECKFN should only return 890 FALSE if some sort of error occurs. */ 891 892 bfd_boolean 893 _bfd_generic_link_add_archive_symbols 894 (bfd *abfd, 895 struct bfd_link_info *info, 896 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, 897 struct bfd_link_hash_entry *, const char *, 898 bfd_boolean *)) 899 { 900 bfd_boolean loop; 901 bfd_size_type amt; 902 unsigned char *included; 903 904 if (! bfd_has_map (abfd)) 905 { 906 /* An empty archive is a special case. */ 907 if (bfd_openr_next_archived_file (abfd, NULL) == NULL) 908 return TRUE; 909 bfd_set_error (bfd_error_no_armap); 910 return FALSE; 911 } 912 913 amt = bfd_ardata (abfd)->symdef_count; 914 if (amt == 0) 915 return TRUE; 916 amt *= sizeof (*included); 917 included = (unsigned char *) bfd_zmalloc (amt); 918 if (included == NULL) 919 return FALSE; 920 921 do 922 { 923 carsym *arsyms; 924 carsym *arsym_end; 925 carsym *arsym; 926 unsigned int indx; 927 file_ptr last_ar_offset = -1; 928 bfd_boolean needed = FALSE; 929 bfd *element = NULL; 930 931 loop = FALSE; 932 arsyms = bfd_ardata (abfd)->symdefs; 933 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count; 934 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++) 935 { 936 struct bfd_link_hash_entry *h; 937 struct bfd_link_hash_entry *undefs_tail; 938 939 if (included[indx]) 940 continue; 941 if (needed && arsym->file_offset == last_ar_offset) 942 { 943 included[indx] = 1; 944 continue; 945 } 946 947 if (arsym->name == NULL) 948 goto error_return; 949 950 h = bfd_link_hash_lookup (info->hash, arsym->name, 951 FALSE, FALSE, TRUE); 952 953 if (h == NULL 954 && info->pei386_auto_import 955 && CONST_STRNEQ (arsym->name, "__imp_")) 956 h = bfd_link_hash_lookup (info->hash, arsym->name + 6, 957 FALSE, FALSE, TRUE); 958 if (h == NULL) 959 continue; 960 961 if (h->type != bfd_link_hash_undefined 962 && h->type != bfd_link_hash_common) 963 { 964 if (h->type != bfd_link_hash_undefweak) 965 /* Symbol must be defined. Don't check it again. */ 966 included[indx] = 1; 967 continue; 968 } 969 970 if (last_ar_offset != arsym->file_offset) 971 { 972 last_ar_offset = arsym->file_offset; 973 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset); 974 if (element == NULL 975 || !bfd_check_format (element, bfd_object)) 976 goto error_return; 977 } 978 979 undefs_tail = info->hash->undefs_tail; 980 981 /* CHECKFN will see if this element should be included, and 982 go ahead and include it if appropriate. */ 983 if (! (*checkfn) (element, info, h, arsym->name, &needed)) 984 goto error_return; 985 986 if (needed) 987 { 988 unsigned int mark; 989 990 /* Look backward to mark all symbols from this object file 991 which we have already seen in this pass. */ 992 mark = indx; 993 do 994 { 995 included[mark] = 1; 996 if (mark == 0) 997 break; 998 --mark; 999 } 1000 while (arsyms[mark].file_offset == last_ar_offset); 1001 1002 if (undefs_tail != info->hash->undefs_tail) 1003 loop = TRUE; 1004 } 1005 } 1006 } while (loop); 1007 1008 free (included); 1009 return TRUE; 1010 1011 error_return: 1012 free (included); 1013 return FALSE; 1014 } 1015 1016 /* See if we should include an archive element. */ 1017 1018 static bfd_boolean 1019 generic_link_check_archive_element (bfd *abfd, 1020 struct bfd_link_info *info, 1021 struct bfd_link_hash_entry *h, 1022 const char *name ATTRIBUTE_UNUSED, 1023 bfd_boolean *pneeded) 1024 { 1025 asymbol **pp, **ppend; 1026 1027 *pneeded = FALSE; 1028 1029 if (!bfd_generic_link_read_symbols (abfd)) 1030 return FALSE; 1031 1032 pp = _bfd_generic_link_get_symbols (abfd); 1033 ppend = pp + _bfd_generic_link_get_symcount (abfd); 1034 for (; pp < ppend; pp++) 1035 { 1036 asymbol *p; 1037 1038 p = *pp; 1039 1040 /* We are only interested in globally visible symbols. */ 1041 if (! bfd_is_com_section (p->section) 1042 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0) 1043 continue; 1044 1045 /* We are only interested if we know something about this 1046 symbol, and it is undefined or common. An undefined weak 1047 symbol (type bfd_link_hash_undefweak) is not considered to be 1048 a reference when pulling files out of an archive. See the 1049 SVR4 ABI, p. 4-27. */ 1050 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE, 1051 FALSE, TRUE); 1052 if (h == NULL 1053 || (h->type != bfd_link_hash_undefined 1054 && h->type != bfd_link_hash_common)) 1055 continue; 1056 1057 /* P is a symbol we are looking for. */ 1058 1059 if (! bfd_is_com_section (p->section) 1060 || (h->type == bfd_link_hash_undefined 1061 && h->u.undef.abfd == NULL)) 1062 { 1063 /* P is not a common symbol, or an undefined reference was 1064 created from outside BFD such as from a linker -u option. 1065 This object file defines the symbol, so pull it in. */ 1066 *pneeded = TRUE; 1067 if (!(*info->callbacks 1068 ->add_archive_element) (info, abfd, bfd_asymbol_name (p), 1069 &abfd)) 1070 return FALSE; 1071 /* Potentially, the add_archive_element hook may have set a 1072 substitute BFD for us. */ 1073 return bfd_link_add_symbols (abfd, info); 1074 } 1075 1076 /* P is a common symbol. */ 1077 1078 if (h->type == bfd_link_hash_undefined) 1079 { 1080 bfd *symbfd; 1081 bfd_vma size; 1082 unsigned int power; 1083 1084 /* Turn the symbol into a common symbol but do not link in 1085 the object file. This is how a.out works. Object 1086 formats that require different semantics must implement 1087 this function differently. This symbol is already on the 1088 undefs list. We add the section to a common section 1089 attached to symbfd to ensure that it is in a BFD which 1090 will be linked in. */ 1091 symbfd = h->u.undef.abfd; 1092 h->type = bfd_link_hash_common; 1093 h->u.c.p = (struct bfd_link_hash_common_entry *) 1094 bfd_hash_allocate (&info->hash->table, 1095 sizeof (struct bfd_link_hash_common_entry)); 1096 if (h->u.c.p == NULL) 1097 return FALSE; 1098 1099 size = bfd_asymbol_value (p); 1100 h->u.c.size = size; 1101 1102 power = bfd_log2 (size); 1103 if (power > 4) 1104 power = 4; 1105 h->u.c.p->alignment_power = power; 1106 1107 if (p->section == bfd_com_section_ptr) 1108 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON"); 1109 else 1110 h->u.c.p->section = bfd_make_section_old_way (symbfd, 1111 p->section->name); 1112 h->u.c.p->section->flags |= SEC_ALLOC; 1113 } 1114 else 1115 { 1116 /* Adjust the size of the common symbol if necessary. This 1117 is how a.out works. Object formats that require 1118 different semantics must implement this function 1119 differently. */ 1120 if (bfd_asymbol_value (p) > h->u.c.size) 1121 h->u.c.size = bfd_asymbol_value (p); 1122 } 1123 } 1124 1125 /* This archive element is not needed. */ 1126 return TRUE; 1127 } 1128 1129 /* Add the symbols from an object file to the global hash table. ABFD 1130 is the object file. INFO is the linker information. SYMBOL_COUNT 1131 is the number of symbols. SYMBOLS is the list of symbols. */ 1132 1133 static bfd_boolean 1134 generic_link_add_symbol_list (bfd *abfd, 1135 struct bfd_link_info *info, 1136 bfd_size_type symbol_count, 1137 asymbol **symbols) 1138 { 1139 asymbol **pp, **ppend; 1140 1141 pp = symbols; 1142 ppend = symbols + symbol_count; 1143 for (; pp < ppend; pp++) 1144 { 1145 asymbol *p; 1146 1147 p = *pp; 1148 1149 if ((p->flags & (BSF_INDIRECT 1150 | BSF_WARNING 1151 | BSF_GLOBAL 1152 | BSF_CONSTRUCTOR 1153 | BSF_WEAK)) != 0 1154 || bfd_is_und_section (bfd_get_section (p)) 1155 || bfd_is_com_section (bfd_get_section (p)) 1156 || bfd_is_ind_section (bfd_get_section (p))) 1157 { 1158 const char *name; 1159 const char *string; 1160 struct generic_link_hash_entry *h; 1161 struct bfd_link_hash_entry *bh; 1162 1163 string = name = bfd_asymbol_name (p); 1164 if (((p->flags & BSF_INDIRECT) != 0 1165 || bfd_is_ind_section (p->section)) 1166 && pp + 1 < ppend) 1167 { 1168 pp++; 1169 string = bfd_asymbol_name (*pp); 1170 } 1171 else if ((p->flags & BSF_WARNING) != 0 1172 && pp + 1 < ppend) 1173 { 1174 /* The name of P is actually the warning string, and the 1175 next symbol is the one to warn about. */ 1176 pp++; 1177 name = bfd_asymbol_name (*pp); 1178 } 1179 1180 bh = NULL; 1181 if (! (_bfd_generic_link_add_one_symbol 1182 (info, abfd, name, p->flags, bfd_get_section (p), 1183 p->value, string, FALSE, FALSE, &bh))) 1184 return FALSE; 1185 h = (struct generic_link_hash_entry *) bh; 1186 1187 /* If this is a constructor symbol, and the linker didn't do 1188 anything with it, then we want to just pass the symbol 1189 through to the output file. This will happen when 1190 linking with -r. */ 1191 if ((p->flags & BSF_CONSTRUCTOR) != 0 1192 && (h == NULL || h->root.type == bfd_link_hash_new)) 1193 { 1194 p->udata.p = NULL; 1195 continue; 1196 } 1197 1198 /* Save the BFD symbol so that we don't lose any backend 1199 specific information that may be attached to it. We only 1200 want this one if it gives more information than the 1201 existing one; we don't want to replace a defined symbol 1202 with an undefined one. This routine may be called with a 1203 hash table other than the generic hash table, so we only 1204 do this if we are certain that the hash table is a 1205 generic one. */ 1206 if (info->output_bfd->xvec == abfd->xvec) 1207 { 1208 if (h->sym == NULL 1209 || (! bfd_is_und_section (bfd_get_section (p)) 1210 && (! bfd_is_com_section (bfd_get_section (p)) 1211 || bfd_is_und_section (bfd_get_section (h->sym))))) 1212 { 1213 h->sym = p; 1214 /* BSF_OLD_COMMON is a hack to support COFF reloc 1215 reading, and it should go away when the COFF 1216 linker is switched to the new version. */ 1217 if (bfd_is_com_section (bfd_get_section (p))) 1218 p->flags |= BSF_OLD_COMMON; 1219 } 1220 } 1221 1222 /* Store a back pointer from the symbol to the hash 1223 table entry for the benefit of relaxation code until 1224 it gets rewritten to not use asymbol structures. 1225 Setting this is also used to check whether these 1226 symbols were set up by the generic linker. */ 1227 p->udata.p = h; 1228 } 1229 } 1230 1231 return TRUE; 1232 } 1233 1234 /* We use a state table to deal with adding symbols from an object 1235 file. The first index into the state table describes the symbol 1236 from the object file. The second index into the state table is the 1237 type of the symbol in the hash table. */ 1238 1239 /* The symbol from the object file is turned into one of these row 1240 values. */ 1241 1242 enum link_row 1243 { 1244 UNDEF_ROW, /* Undefined. */ 1245 UNDEFW_ROW, /* Weak undefined. */ 1246 DEF_ROW, /* Defined. */ 1247 DEFW_ROW, /* Weak defined. */ 1248 COMMON_ROW, /* Common. */ 1249 INDR_ROW, /* Indirect. */ 1250 WARN_ROW, /* Warning. */ 1251 SET_ROW /* Member of set. */ 1252 }; 1253 1254 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */ 1255 #undef FAIL 1256 1257 /* The actions to take in the state table. */ 1258 1259 enum link_action 1260 { 1261 FAIL, /* Abort. */ 1262 UND, /* Mark symbol undefined. */ 1263 WEAK, /* Mark symbol weak undefined. */ 1264 DEF, /* Mark symbol defined. */ 1265 DEFW, /* Mark symbol weak defined. */ 1266 COM, /* Mark symbol common. */ 1267 REF, /* Mark defined symbol referenced. */ 1268 CREF, /* Possibly warn about common reference to defined symbol. */ 1269 CDEF, /* Define existing common symbol. */ 1270 NOACT, /* No action. */ 1271 BIG, /* Mark symbol common using largest size. */ 1272 MDEF, /* Multiple definition error. */ 1273 MIND, /* Multiple indirect symbols. */ 1274 IND, /* Make indirect symbol. */ 1275 CIND, /* Make indirect symbol from existing common symbol. */ 1276 SET, /* Add value to set. */ 1277 MWARN, /* Make warning symbol. */ 1278 WARN, /* Warn if referenced, else MWARN. */ 1279 CYCLE, /* Repeat with symbol pointed to. */ 1280 REFC, /* Mark indirect symbol referenced and then CYCLE. */ 1281 WARNC /* Issue warning and then CYCLE. */ 1282 }; 1283 1284 /* The state table itself. The first index is a link_row and the 1285 second index is a bfd_link_hash_type. */ 1286 1287 static const enum link_action link_action[8][8] = 1288 { 1289 /* current\prev new undef undefw def defw com indr warn */ 1290 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC }, 1291 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC }, 1292 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE }, 1293 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE }, 1294 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC }, 1295 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE }, 1296 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT }, 1297 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE } 1298 }; 1299 1300 /* Most of the entries in the LINK_ACTION table are straightforward, 1301 but a few are somewhat subtle. 1302 1303 A reference to an indirect symbol (UNDEF_ROW/indr or 1304 UNDEFW_ROW/indr) is counted as a reference both to the indirect 1305 symbol and to the symbol the indirect symbol points to. 1306 1307 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn) 1308 causes the warning to be issued. 1309 1310 A common definition of an indirect symbol (COMMON_ROW/indr) is 1311 treated as a multiple definition error. Likewise for an indirect 1312 definition of a common symbol (INDR_ROW/com). 1313 1314 An indirect definition of a warning (INDR_ROW/warn) does not cause 1315 the warning to be issued. 1316 1317 If a warning is created for an indirect symbol (WARN_ROW/indr) no 1318 warning is created for the symbol the indirect symbol points to. 1319 1320 Adding an entry to a set does not count as a reference to a set, 1321 and no warning is issued (SET_ROW/warn). */ 1322 1323 /* Return the BFD in which a hash entry has been defined, if known. */ 1324 1325 static bfd * 1326 hash_entry_bfd (struct bfd_link_hash_entry *h) 1327 { 1328 while (h->type == bfd_link_hash_warning) 1329 h = h->u.i.link; 1330 switch (h->type) 1331 { 1332 default: 1333 return NULL; 1334 case bfd_link_hash_undefined: 1335 case bfd_link_hash_undefweak: 1336 return h->u.undef.abfd; 1337 case bfd_link_hash_defined: 1338 case bfd_link_hash_defweak: 1339 return h->u.def.section->owner; 1340 case bfd_link_hash_common: 1341 return h->u.c.p->section->owner; 1342 } 1343 /*NOTREACHED*/ 1344 } 1345 1346 /* Add a symbol to the global hash table. 1347 ABFD is the BFD the symbol comes from. 1348 NAME is the name of the symbol. 1349 FLAGS is the BSF_* bits associated with the symbol. 1350 SECTION is the section in which the symbol is defined; this may be 1351 bfd_und_section_ptr or bfd_com_section_ptr. 1352 VALUE is the value of the symbol, relative to the section. 1353 STRING is used for either an indirect symbol, in which case it is 1354 the name of the symbol to indirect to, or a warning symbol, in 1355 which case it is the warning string. 1356 COPY is TRUE if NAME or STRING must be copied into locally 1357 allocated memory if they need to be saved. 1358 COLLECT is TRUE if we should automatically collect gcc constructor 1359 or destructor names as collect2 does. 1360 HASHP, if not NULL, is a place to store the created hash table 1361 entry; if *HASHP is not NULL, the caller has already looked up 1362 the hash table entry, and stored it in *HASHP. */ 1363 1364 bfd_boolean 1365 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info, 1366 bfd *abfd, 1367 const char *name, 1368 flagword flags, 1369 asection *section, 1370 bfd_vma value, 1371 const char *string, 1372 bfd_boolean copy, 1373 bfd_boolean collect, 1374 struct bfd_link_hash_entry **hashp) 1375 { 1376 enum link_row row; 1377 struct bfd_link_hash_entry *h; 1378 struct bfd_link_hash_entry *inh = NULL; 1379 bfd_boolean cycle; 1380 1381 BFD_ASSERT (section != NULL); 1382 1383 if (bfd_is_ind_section (section) 1384 || (flags & BSF_INDIRECT) != 0) 1385 { 1386 row = INDR_ROW; 1387 /* Create the indirect symbol here. This is for the benefit of 1388 the plugin "notice" function. 1389 STRING is the name of the symbol we want to indirect to. */ 1390 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE, 1391 copy, FALSE); 1392 if (inh == NULL) 1393 return FALSE; 1394 } 1395 else if ((flags & BSF_WARNING) != 0) 1396 row = WARN_ROW; 1397 else if ((flags & BSF_CONSTRUCTOR) != 0) 1398 row = SET_ROW; 1399 else if (bfd_is_und_section (section)) 1400 { 1401 if ((flags & BSF_WEAK) != 0) 1402 row = UNDEFW_ROW; 1403 else 1404 row = UNDEF_ROW; 1405 } 1406 else if ((flags & BSF_WEAK) != 0) 1407 row = DEFW_ROW; 1408 else if (bfd_is_com_section (section)) 1409 { 1410 row = COMMON_ROW; 1411 if (!bfd_link_relocatable (info) 1412 && name[0] == '_' 1413 && name[1] == '_' 1414 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0) 1415 _bfd_error_handler 1416 (_("%pB: plugin needed to handle lto object"), abfd); 1417 } 1418 else 1419 row = DEF_ROW; 1420 1421 if (hashp != NULL && *hashp != NULL) 1422 h = *hashp; 1423 else 1424 { 1425 if (row == UNDEF_ROW || row == UNDEFW_ROW) 1426 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE); 1427 else 1428 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE); 1429 if (h == NULL) 1430 { 1431 if (hashp != NULL) 1432 *hashp = NULL; 1433 return FALSE; 1434 } 1435 } 1436 1437 if (info->notice_all 1438 || (info->notice_hash != NULL 1439 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL)) 1440 { 1441 if (! (*info->callbacks->notice) (info, h, inh, 1442 abfd, section, value, flags)) 1443 return FALSE; 1444 } 1445 1446 if (hashp != NULL) 1447 *hashp = h; 1448 1449 do 1450 { 1451 enum link_action action; 1452 int prev; 1453 1454 prev = h->type; 1455 /* Treat symbols defined by early linker script pass as undefined. */ 1456 if (h->ldscript_def) 1457 prev = bfd_link_hash_undefined; 1458 cycle = FALSE; 1459 action = link_action[(int) row][prev]; 1460 switch (action) 1461 { 1462 case FAIL: 1463 abort (); 1464 1465 case NOACT: 1466 /* Do nothing. */ 1467 break; 1468 1469 case UND: 1470 /* Make a new undefined symbol. */ 1471 h->type = bfd_link_hash_undefined; 1472 h->u.undef.abfd = abfd; 1473 bfd_link_add_undef (info->hash, h); 1474 break; 1475 1476 case WEAK: 1477 /* Make a new weak undefined symbol. */ 1478 h->type = bfd_link_hash_undefweak; 1479 h->u.undef.abfd = abfd; 1480 break; 1481 1482 case CDEF: 1483 /* We have found a definition for a symbol which was 1484 previously common. */ 1485 BFD_ASSERT (h->type == bfd_link_hash_common); 1486 (*info->callbacks->multiple_common) (info, h, abfd, 1487 bfd_link_hash_defined, 0); 1488 /* Fall through. */ 1489 case DEF: 1490 case DEFW: 1491 { 1492 enum bfd_link_hash_type oldtype; 1493 1494 /* Define a symbol. */ 1495 oldtype = h->type; 1496 if (action == DEFW) 1497 h->type = bfd_link_hash_defweak; 1498 else 1499 h->type = bfd_link_hash_defined; 1500 h->u.def.section = section; 1501 h->u.def.value = value; 1502 h->linker_def = 0; 1503 h->ldscript_def = 0; 1504 1505 /* If we have been asked to, we act like collect2 and 1506 identify all functions that might be global 1507 constructors and destructors and pass them up in a 1508 callback. We only do this for certain object file 1509 types, since many object file types can handle this 1510 automatically. */ 1511 if (collect && name[0] == '_') 1512 { 1513 const char *s; 1514 1515 /* A constructor or destructor name starts like this: 1516 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and 1517 the second are the same character (we accept any 1518 character there, in case a new object file format 1519 comes along with even worse naming restrictions). */ 1520 1521 #define CONS_PREFIX "GLOBAL_" 1522 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1) 1523 1524 s = name + 1; 1525 while (*s == '_') 1526 ++s; 1527 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX)) 1528 { 1529 char c; 1530 1531 c = s[CONS_PREFIX_LEN + 1]; 1532 if ((c == 'I' || c == 'D') 1533 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2]) 1534 { 1535 /* If this is a definition of a symbol which 1536 was previously weakly defined, we are in 1537 trouble. We have already added a 1538 constructor entry for the weak defined 1539 symbol, and now we are trying to add one 1540 for the new symbol. Fortunately, this case 1541 should never arise in practice. */ 1542 if (oldtype == bfd_link_hash_defweak) 1543 abort (); 1544 1545 (*info->callbacks->constructor) (info, c == 'I', 1546 h->root.string, abfd, 1547 section, value); 1548 } 1549 } 1550 } 1551 } 1552 1553 break; 1554 1555 case COM: 1556 /* We have found a common definition for a symbol. */ 1557 if (h->type == bfd_link_hash_new) 1558 bfd_link_add_undef (info->hash, h); 1559 h->type = bfd_link_hash_common; 1560 h->u.c.p = (struct bfd_link_hash_common_entry *) 1561 bfd_hash_allocate (&info->hash->table, 1562 sizeof (struct bfd_link_hash_common_entry)); 1563 if (h->u.c.p == NULL) 1564 return FALSE; 1565 1566 h->u.c.size = value; 1567 1568 /* Select a default alignment based on the size. This may 1569 be overridden by the caller. */ 1570 { 1571 unsigned int power; 1572 1573 power = bfd_log2 (value); 1574 if (power > 4) 1575 power = 4; 1576 h->u.c.p->alignment_power = power; 1577 } 1578 1579 /* The section of a common symbol is only used if the common 1580 symbol is actually allocated. It basically provides a 1581 hook for the linker script to decide which output section 1582 the common symbols should be put in. In most cases, the 1583 section of a common symbol will be bfd_com_section_ptr, 1584 the code here will choose a common symbol section named 1585 "COMMON", and the linker script will contain *(COMMON) in 1586 the appropriate place. A few targets use separate common 1587 sections for small symbols, and they require special 1588 handling. */ 1589 if (section == bfd_com_section_ptr) 1590 { 1591 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON"); 1592 h->u.c.p->section->flags |= SEC_ALLOC; 1593 } 1594 else if (section->owner != abfd) 1595 { 1596 h->u.c.p->section = bfd_make_section_old_way (abfd, 1597 section->name); 1598 h->u.c.p->section->flags |= SEC_ALLOC; 1599 } 1600 else 1601 h->u.c.p->section = section; 1602 h->linker_def = 0; 1603 h->ldscript_def = 0; 1604 break; 1605 1606 case REF: 1607 /* A reference to a defined symbol. */ 1608 if (h->u.undef.next == NULL && info->hash->undefs_tail != h) 1609 h->u.undef.next = h; 1610 break; 1611 1612 case BIG: 1613 /* We have found a common definition for a symbol which 1614 already had a common definition. Use the maximum of the 1615 two sizes, and use the section required by the larger symbol. */ 1616 BFD_ASSERT (h->type == bfd_link_hash_common); 1617 (*info->callbacks->multiple_common) (info, h, abfd, 1618 bfd_link_hash_common, value); 1619 if (value > h->u.c.size) 1620 { 1621 unsigned int power; 1622 1623 h->u.c.size = value; 1624 1625 /* Select a default alignment based on the size. This may 1626 be overridden by the caller. */ 1627 power = bfd_log2 (value); 1628 if (power > 4) 1629 power = 4; 1630 h->u.c.p->alignment_power = power; 1631 1632 /* Some systems have special treatment for small commons, 1633 hence we want to select the section used by the larger 1634 symbol. This makes sure the symbol does not go in a 1635 small common section if it is now too large. */ 1636 if (section == bfd_com_section_ptr) 1637 { 1638 h->u.c.p->section 1639 = bfd_make_section_old_way (abfd, "COMMON"); 1640 h->u.c.p->section->flags |= SEC_ALLOC; 1641 } 1642 else if (section->owner != abfd) 1643 { 1644 h->u.c.p->section 1645 = bfd_make_section_old_way (abfd, section->name); 1646 h->u.c.p->section->flags |= SEC_ALLOC; 1647 } 1648 else 1649 h->u.c.p->section = section; 1650 } 1651 break; 1652 1653 case CREF: 1654 /* We have found a common definition for a symbol which 1655 was already defined. */ 1656 (*info->callbacks->multiple_common) (info, h, abfd, 1657 bfd_link_hash_common, value); 1658 break; 1659 1660 case MIND: 1661 /* Multiple indirect symbols. This is OK if they both point 1662 to the same symbol. */ 1663 if (strcmp (h->u.i.link->root.string, string) == 0) 1664 break; 1665 /* Fall through. */ 1666 case MDEF: 1667 /* Handle a multiple definition. */ 1668 (*info->callbacks->multiple_definition) (info, h, 1669 abfd, section, value); 1670 break; 1671 1672 case CIND: 1673 /* Create an indirect symbol from an existing common symbol. */ 1674 BFD_ASSERT (h->type == bfd_link_hash_common); 1675 (*info->callbacks->multiple_common) (info, h, abfd, 1676 bfd_link_hash_indirect, 0); 1677 /* Fall through. */ 1678 case IND: 1679 if (inh->type == bfd_link_hash_indirect 1680 && inh->u.i.link == h) 1681 { 1682 _bfd_error_handler 1683 /* xgettext:c-format */ 1684 (_("%pB: indirect symbol `%s' to `%s' is a loop"), 1685 abfd, name, string); 1686 bfd_set_error (bfd_error_invalid_operation); 1687 return FALSE; 1688 } 1689 if (inh->type == bfd_link_hash_new) 1690 { 1691 inh->type = bfd_link_hash_undefined; 1692 inh->u.undef.abfd = abfd; 1693 bfd_link_add_undef (info->hash, inh); 1694 } 1695 1696 /* If the indirect symbol has been referenced, we need to 1697 push the reference down to the symbol we are referencing. */ 1698 if (h->type != bfd_link_hash_new) 1699 { 1700 /* ??? If inh->type == bfd_link_hash_undefweak this 1701 converts inh to bfd_link_hash_undefined. */ 1702 row = UNDEF_ROW; 1703 cycle = TRUE; 1704 } 1705 1706 h->type = bfd_link_hash_indirect; 1707 h->u.i.link = inh; 1708 /* Not setting h = h->u.i.link here means that when cycle is 1709 set above we'll always go to REFC, and then cycle again 1710 to the indirected symbol. This means that any successful 1711 change of an existing symbol to indirect counts as a 1712 reference. ??? That may not be correct when the existing 1713 symbol was defweak. */ 1714 break; 1715 1716 case SET: 1717 /* Add an entry to a set. */ 1718 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR, 1719 abfd, section, value); 1720 break; 1721 1722 case WARNC: 1723 /* Issue a warning and cycle, except when the reference is 1724 in LTO IR. */ 1725 if (h->u.i.warning != NULL 1726 && (abfd->flags & BFD_PLUGIN) == 0) 1727 { 1728 (*info->callbacks->warning) (info, h->u.i.warning, 1729 h->root.string, abfd, NULL, 0); 1730 /* Only issue a warning once. */ 1731 h->u.i.warning = NULL; 1732 } 1733 /* Fall through. */ 1734 case CYCLE: 1735 /* Try again with the referenced symbol. */ 1736 h = h->u.i.link; 1737 cycle = TRUE; 1738 break; 1739 1740 case REFC: 1741 /* A reference to an indirect symbol. */ 1742 if (h->u.undef.next == NULL && info->hash->undefs_tail != h) 1743 h->u.undef.next = h; 1744 h = h->u.i.link; 1745 cycle = TRUE; 1746 break; 1747 1748 case WARN: 1749 /* Warn if this symbol has been referenced already from non-IR, 1750 otherwise add a warning. */ 1751 if ((!info->lto_plugin_active 1752 && (h->u.undef.next != NULL || info->hash->undefs_tail == h)) 1753 || h->non_ir_ref_regular 1754 || h->non_ir_ref_dynamic) 1755 { 1756 (*info->callbacks->warning) (info, string, h->root.string, 1757 hash_entry_bfd (h), NULL, 0); 1758 break; 1759 } 1760 /* Fall through. */ 1761 case MWARN: 1762 /* Make a warning symbol. */ 1763 { 1764 struct bfd_link_hash_entry *sub; 1765 1766 /* STRING is the warning to give. */ 1767 sub = ((struct bfd_link_hash_entry *) 1768 ((*info->hash->table.newfunc) 1769 (NULL, &info->hash->table, h->root.string))); 1770 if (sub == NULL) 1771 return FALSE; 1772 *sub = *h; 1773 sub->type = bfd_link_hash_warning; 1774 sub->u.i.link = h; 1775 if (! copy) 1776 sub->u.i.warning = string; 1777 else 1778 { 1779 char *w; 1780 size_t len = strlen (string) + 1; 1781 1782 w = (char *) bfd_hash_allocate (&info->hash->table, len); 1783 if (w == NULL) 1784 return FALSE; 1785 memcpy (w, string, len); 1786 sub->u.i.warning = w; 1787 } 1788 1789 bfd_hash_replace (&info->hash->table, 1790 (struct bfd_hash_entry *) h, 1791 (struct bfd_hash_entry *) sub); 1792 if (hashp != NULL) 1793 *hashp = sub; 1794 } 1795 break; 1796 } 1797 } 1798 while (cycle); 1799 1800 return TRUE; 1801 } 1802 1803 /* Generic final link routine. */ 1804 1805 bfd_boolean 1806 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info) 1807 { 1808 bfd *sub; 1809 asection *o; 1810 struct bfd_link_order *p; 1811 size_t outsymalloc; 1812 struct generic_write_global_symbol_info wginfo; 1813 1814 bfd_get_outsymbols (abfd) = NULL; 1815 bfd_get_symcount (abfd) = 0; 1816 outsymalloc = 0; 1817 1818 /* Mark all sections which will be included in the output file. */ 1819 for (o = abfd->sections; o != NULL; o = o->next) 1820 for (p = o->map_head.link_order; p != NULL; p = p->next) 1821 if (p->type == bfd_indirect_link_order) 1822 p->u.indirect.section->linker_mark = TRUE; 1823 1824 /* Build the output symbol table. */ 1825 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 1826 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc)) 1827 return FALSE; 1828 1829 /* Accumulate the global symbols. */ 1830 wginfo.info = info; 1831 wginfo.output_bfd = abfd; 1832 wginfo.psymalloc = &outsymalloc; 1833 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info), 1834 _bfd_generic_link_write_global_symbol, 1835 &wginfo); 1836 1837 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We 1838 shouldn't really need one, since we have SYMCOUNT, but some old 1839 code still expects one. */ 1840 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL)) 1841 return FALSE; 1842 1843 if (bfd_link_relocatable (info)) 1844 { 1845 /* Allocate space for the output relocs for each section. */ 1846 for (o = abfd->sections; o != NULL; o = o->next) 1847 { 1848 o->reloc_count = 0; 1849 for (p = o->map_head.link_order; p != NULL; p = p->next) 1850 { 1851 if (p->type == bfd_section_reloc_link_order 1852 || p->type == bfd_symbol_reloc_link_order) 1853 ++o->reloc_count; 1854 else if (p->type == bfd_indirect_link_order) 1855 { 1856 asection *input_section; 1857 bfd *input_bfd; 1858 long relsize; 1859 arelent **relocs; 1860 asymbol **symbols; 1861 long reloc_count; 1862 1863 input_section = p->u.indirect.section; 1864 input_bfd = input_section->owner; 1865 relsize = bfd_get_reloc_upper_bound (input_bfd, 1866 input_section); 1867 if (relsize < 0) 1868 return FALSE; 1869 relocs = (arelent **) bfd_malloc (relsize); 1870 if (!relocs && relsize != 0) 1871 return FALSE; 1872 symbols = _bfd_generic_link_get_symbols (input_bfd); 1873 reloc_count = bfd_canonicalize_reloc (input_bfd, 1874 input_section, 1875 relocs, 1876 symbols); 1877 free (relocs); 1878 if (reloc_count < 0) 1879 return FALSE; 1880 BFD_ASSERT ((unsigned long) reloc_count 1881 == input_section->reloc_count); 1882 o->reloc_count += reloc_count; 1883 } 1884 } 1885 if (o->reloc_count > 0) 1886 { 1887 bfd_size_type amt; 1888 1889 amt = o->reloc_count; 1890 amt *= sizeof (arelent *); 1891 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt); 1892 if (!o->orelocation) 1893 return FALSE; 1894 o->flags |= SEC_RELOC; 1895 /* Reset the count so that it can be used as an index 1896 when putting in the output relocs. */ 1897 o->reloc_count = 0; 1898 } 1899 } 1900 } 1901 1902 /* Handle all the link order information for the sections. */ 1903 for (o = abfd->sections; o != NULL; o = o->next) 1904 { 1905 for (p = o->map_head.link_order; p != NULL; p = p->next) 1906 { 1907 switch (p->type) 1908 { 1909 case bfd_section_reloc_link_order: 1910 case bfd_symbol_reloc_link_order: 1911 if (! _bfd_generic_reloc_link_order (abfd, info, o, p)) 1912 return FALSE; 1913 break; 1914 case bfd_indirect_link_order: 1915 if (! default_indirect_link_order (abfd, info, o, p, TRUE)) 1916 return FALSE; 1917 break; 1918 default: 1919 if (! _bfd_default_link_order (abfd, info, o, p)) 1920 return FALSE; 1921 break; 1922 } 1923 } 1924 } 1925 1926 return TRUE; 1927 } 1928 1929 /* Add an output symbol to the output BFD. */ 1930 1931 static bfd_boolean 1932 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym) 1933 { 1934 if (bfd_get_symcount (output_bfd) >= *psymalloc) 1935 { 1936 asymbol **newsyms; 1937 bfd_size_type amt; 1938 1939 if (*psymalloc == 0) 1940 *psymalloc = 124; 1941 else 1942 *psymalloc *= 2; 1943 amt = *psymalloc; 1944 amt *= sizeof (asymbol *); 1945 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt); 1946 if (newsyms == NULL) 1947 return FALSE; 1948 bfd_get_outsymbols (output_bfd) = newsyms; 1949 } 1950 1951 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym; 1952 if (sym != NULL) 1953 ++ bfd_get_symcount (output_bfd); 1954 1955 return TRUE; 1956 } 1957 1958 /* Handle the symbols for an input BFD. */ 1959 1960 bfd_boolean 1961 _bfd_generic_link_output_symbols (bfd *output_bfd, 1962 bfd *input_bfd, 1963 struct bfd_link_info *info, 1964 size_t *psymalloc) 1965 { 1966 asymbol **sym_ptr; 1967 asymbol **sym_end; 1968 1969 if (!bfd_generic_link_read_symbols (input_bfd)) 1970 return FALSE; 1971 1972 /* Create a filename symbol if we are supposed to. */ 1973 if (info->create_object_symbols_section != NULL) 1974 { 1975 asection *sec; 1976 1977 for (sec = input_bfd->sections; sec != NULL; sec = sec->next) 1978 { 1979 if (sec->output_section == info->create_object_symbols_section) 1980 { 1981 asymbol *newsym; 1982 1983 newsym = bfd_make_empty_symbol (input_bfd); 1984 if (!newsym) 1985 return FALSE; 1986 newsym->name = input_bfd->filename; 1987 newsym->value = 0; 1988 newsym->flags = BSF_LOCAL | BSF_FILE; 1989 newsym->section = sec; 1990 1991 if (! generic_add_output_symbol (output_bfd, psymalloc, 1992 newsym)) 1993 return FALSE; 1994 1995 break; 1996 } 1997 } 1998 } 1999 2000 /* Adjust the values of the globally visible symbols, and write out 2001 local symbols. */ 2002 sym_ptr = _bfd_generic_link_get_symbols (input_bfd); 2003 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd); 2004 for (; sym_ptr < sym_end; sym_ptr++) 2005 { 2006 asymbol *sym; 2007 struct generic_link_hash_entry *h; 2008 bfd_boolean output; 2009 2010 h = NULL; 2011 sym = *sym_ptr; 2012 if ((sym->flags & (BSF_INDIRECT 2013 | BSF_WARNING 2014 | BSF_GLOBAL 2015 | BSF_CONSTRUCTOR 2016 | BSF_WEAK)) != 0 2017 || bfd_is_und_section (bfd_get_section (sym)) 2018 || bfd_is_com_section (bfd_get_section (sym)) 2019 || bfd_is_ind_section (bfd_get_section (sym))) 2020 { 2021 if (sym->udata.p != NULL) 2022 h = (struct generic_link_hash_entry *) sym->udata.p; 2023 else if ((sym->flags & BSF_CONSTRUCTOR) != 0) 2024 { 2025 /* This case normally means that the main linker code 2026 deliberately ignored this constructor symbol. We 2027 should just pass it through. This will screw up if 2028 the constructor symbol is from a different, 2029 non-generic, object file format, but the case will 2030 only arise when linking with -r, which will probably 2031 fail anyhow, since there will be no way to represent 2032 the relocs in the output format being used. */ 2033 h = NULL; 2034 } 2035 else if (bfd_is_und_section (bfd_get_section (sym))) 2036 h = ((struct generic_link_hash_entry *) 2037 bfd_wrapped_link_hash_lookup (output_bfd, info, 2038 bfd_asymbol_name (sym), 2039 FALSE, FALSE, TRUE)); 2040 else 2041 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info), 2042 bfd_asymbol_name (sym), 2043 FALSE, FALSE, TRUE); 2044 2045 if (h != NULL) 2046 { 2047 /* Force all references to this symbol to point to 2048 the same area in memory. It is possible that 2049 this routine will be called with a hash table 2050 other than a generic hash table, so we double 2051 check that. */ 2052 if (info->output_bfd->xvec == input_bfd->xvec) 2053 { 2054 if (h->sym != NULL) 2055 *sym_ptr = sym = h->sym; 2056 } 2057 2058 switch (h->root.type) 2059 { 2060 default: 2061 case bfd_link_hash_new: 2062 abort (); 2063 case bfd_link_hash_undefined: 2064 break; 2065 case bfd_link_hash_undefweak: 2066 sym->flags |= BSF_WEAK; 2067 break; 2068 case bfd_link_hash_indirect: 2069 h = (struct generic_link_hash_entry *) h->root.u.i.link; 2070 /* fall through */ 2071 case bfd_link_hash_defined: 2072 sym->flags |= BSF_GLOBAL; 2073 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR); 2074 sym->value = h->root.u.def.value; 2075 sym->section = h->root.u.def.section; 2076 break; 2077 case bfd_link_hash_defweak: 2078 sym->flags |= BSF_WEAK; 2079 sym->flags &=~ BSF_CONSTRUCTOR; 2080 sym->value = h->root.u.def.value; 2081 sym->section = h->root.u.def.section; 2082 break; 2083 case bfd_link_hash_common: 2084 sym->value = h->root.u.c.size; 2085 sym->flags |= BSF_GLOBAL; 2086 if (! bfd_is_com_section (sym->section)) 2087 { 2088 BFD_ASSERT (bfd_is_und_section (sym->section)); 2089 sym->section = bfd_com_section_ptr; 2090 } 2091 /* We do not set the section of the symbol to 2092 h->root.u.c.p->section. That value was saved so 2093 that we would know where to allocate the symbol 2094 if it was defined. In this case the type is 2095 still bfd_link_hash_common, so we did not define 2096 it, so we do not want to use that section. */ 2097 break; 2098 } 2099 } 2100 } 2101 2102 /* This switch is straight from the old code in 2103 write_file_locals in ldsym.c. */ 2104 if (info->strip == strip_all 2105 || (info->strip == strip_some 2106 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym), 2107 FALSE, FALSE) == NULL)) 2108 output = FALSE; 2109 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0) 2110 { 2111 /* If this symbol is marked as occurring now, rather 2112 than at the end, output it now. This is used for 2113 COFF C_EXT FCN symbols. FIXME: There must be a 2114 better way. */ 2115 if (bfd_asymbol_bfd (sym) == input_bfd 2116 && (sym->flags & BSF_NOT_AT_END) != 0) 2117 output = TRUE; 2118 else 2119 output = FALSE; 2120 } 2121 else if (bfd_is_ind_section (sym->section)) 2122 output = FALSE; 2123 else if ((sym->flags & BSF_DEBUGGING) != 0) 2124 { 2125 if (info->strip == strip_none) 2126 output = TRUE; 2127 else 2128 output = FALSE; 2129 } 2130 else if (bfd_is_und_section (sym->section) 2131 || bfd_is_com_section (sym->section)) 2132 output = FALSE; 2133 else if ((sym->flags & BSF_LOCAL) != 0) 2134 { 2135 if ((sym->flags & BSF_WARNING) != 0) 2136 output = FALSE; 2137 else 2138 { 2139 switch (info->discard) 2140 { 2141 default: 2142 case discard_all: 2143 output = FALSE; 2144 break; 2145 case discard_sec_merge: 2146 output = TRUE; 2147 if (bfd_link_relocatable (info) 2148 || ! (sym->section->flags & SEC_MERGE)) 2149 break; 2150 /* FALLTHROUGH */ 2151 case discard_l: 2152 if (bfd_is_local_label (input_bfd, sym)) 2153 output = FALSE; 2154 else 2155 output = TRUE; 2156 break; 2157 case discard_none: 2158 output = TRUE; 2159 break; 2160 } 2161 } 2162 } 2163 else if ((sym->flags & BSF_CONSTRUCTOR)) 2164 { 2165 if (info->strip != strip_all) 2166 output = TRUE; 2167 else 2168 output = FALSE; 2169 } 2170 else if (sym->flags == 0 2171 && (sym->section->owner->flags & BFD_PLUGIN) != 0) 2172 /* LTO doesn't set symbol information. We get here with the 2173 generic linker for a symbol that was "common" but no longer 2174 needs to be global. */ 2175 output = FALSE; 2176 else 2177 abort (); 2178 2179 /* If this symbol is in a section which is not being included 2180 in the output file, then we don't want to output the 2181 symbol. */ 2182 if (!bfd_is_abs_section (sym->section) 2183 && bfd_section_removed_from_list (output_bfd, 2184 sym->section->output_section)) 2185 output = FALSE; 2186 2187 if (output) 2188 { 2189 if (! generic_add_output_symbol (output_bfd, psymalloc, sym)) 2190 return FALSE; 2191 if (h != NULL) 2192 h->written = TRUE; 2193 } 2194 } 2195 2196 return TRUE; 2197 } 2198 2199 /* Set the section and value of a generic BFD symbol based on a linker 2200 hash table entry. */ 2201 2202 static void 2203 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h) 2204 { 2205 switch (h->type) 2206 { 2207 default: 2208 abort (); 2209 break; 2210 case bfd_link_hash_new: 2211 /* This can happen when a constructor symbol is seen but we are 2212 not building constructors. */ 2213 if (sym->section != NULL) 2214 { 2215 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0); 2216 } 2217 else 2218 { 2219 sym->flags |= BSF_CONSTRUCTOR; 2220 sym->section = bfd_abs_section_ptr; 2221 sym->value = 0; 2222 } 2223 break; 2224 case bfd_link_hash_undefined: 2225 sym->section = bfd_und_section_ptr; 2226 sym->value = 0; 2227 break; 2228 case bfd_link_hash_undefweak: 2229 sym->section = bfd_und_section_ptr; 2230 sym->value = 0; 2231 sym->flags |= BSF_WEAK; 2232 break; 2233 case bfd_link_hash_defined: 2234 sym->section = h->u.def.section; 2235 sym->value = h->u.def.value; 2236 break; 2237 case bfd_link_hash_defweak: 2238 sym->flags |= BSF_WEAK; 2239 sym->section = h->u.def.section; 2240 sym->value = h->u.def.value; 2241 break; 2242 case bfd_link_hash_common: 2243 sym->value = h->u.c.size; 2244 if (sym->section == NULL) 2245 sym->section = bfd_com_section_ptr; 2246 else if (! bfd_is_com_section (sym->section)) 2247 { 2248 BFD_ASSERT (bfd_is_und_section (sym->section)); 2249 sym->section = bfd_com_section_ptr; 2250 } 2251 /* Do not set the section; see _bfd_generic_link_output_symbols. */ 2252 break; 2253 case bfd_link_hash_indirect: 2254 case bfd_link_hash_warning: 2255 /* FIXME: What should we do here? */ 2256 break; 2257 } 2258 } 2259 2260 /* Write out a global symbol, if it hasn't already been written out. 2261 This is called for each symbol in the hash table. */ 2262 2263 bfd_boolean 2264 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h, 2265 void *data) 2266 { 2267 struct generic_write_global_symbol_info *wginfo = 2268 (struct generic_write_global_symbol_info *) data; 2269 asymbol *sym; 2270 2271 if (h->written) 2272 return TRUE; 2273 2274 h->written = TRUE; 2275 2276 if (wginfo->info->strip == strip_all 2277 || (wginfo->info->strip == strip_some 2278 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string, 2279 FALSE, FALSE) == NULL)) 2280 return TRUE; 2281 2282 if (h->sym != NULL) 2283 sym = h->sym; 2284 else 2285 { 2286 sym = bfd_make_empty_symbol (wginfo->output_bfd); 2287 if (!sym) 2288 return FALSE; 2289 sym->name = h->root.root.string; 2290 sym->flags = 0; 2291 } 2292 2293 set_symbol_from_hash (sym, &h->root); 2294 2295 sym->flags |= BSF_GLOBAL; 2296 2297 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc, 2298 sym)) 2299 { 2300 /* FIXME: No way to return failure. */ 2301 abort (); 2302 } 2303 2304 return TRUE; 2305 } 2306 2307 /* Create a relocation. */ 2308 2309 bfd_boolean 2310 _bfd_generic_reloc_link_order (bfd *abfd, 2311 struct bfd_link_info *info, 2312 asection *sec, 2313 struct bfd_link_order *link_order) 2314 { 2315 arelent *r; 2316 2317 if (! bfd_link_relocatable (info)) 2318 abort (); 2319 if (sec->orelocation == NULL) 2320 abort (); 2321 2322 r = (arelent *) bfd_alloc (abfd, sizeof (arelent)); 2323 if (r == NULL) 2324 return FALSE; 2325 2326 r->address = link_order->offset; 2327 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc); 2328 if (r->howto == 0) 2329 { 2330 bfd_set_error (bfd_error_bad_value); 2331 return FALSE; 2332 } 2333 2334 /* Get the symbol to use for the relocation. */ 2335 if (link_order->type == bfd_section_reloc_link_order) 2336 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr; 2337 else 2338 { 2339 struct generic_link_hash_entry *h; 2340 2341 h = ((struct generic_link_hash_entry *) 2342 bfd_wrapped_link_hash_lookup (abfd, info, 2343 link_order->u.reloc.p->u.name, 2344 FALSE, FALSE, TRUE)); 2345 if (h == NULL 2346 || ! h->written) 2347 { 2348 (*info->callbacks->unattached_reloc) 2349 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0); 2350 bfd_set_error (bfd_error_bad_value); 2351 return FALSE; 2352 } 2353 r->sym_ptr_ptr = &h->sym; 2354 } 2355 2356 /* If this is an inplace reloc, write the addend to the object file. 2357 Otherwise, store it in the reloc addend. */ 2358 if (! r->howto->partial_inplace) 2359 r->addend = link_order->u.reloc.p->addend; 2360 else 2361 { 2362 bfd_size_type size; 2363 bfd_reloc_status_type rstat; 2364 bfd_byte *buf; 2365 bfd_boolean ok; 2366 file_ptr loc; 2367 2368 size = bfd_get_reloc_size (r->howto); 2369 buf = (bfd_byte *) bfd_zmalloc (size); 2370 if (buf == NULL && size != 0) 2371 return FALSE; 2372 rstat = _bfd_relocate_contents (r->howto, abfd, 2373 (bfd_vma) link_order->u.reloc.p->addend, 2374 buf); 2375 switch (rstat) 2376 { 2377 case bfd_reloc_ok: 2378 break; 2379 default: 2380 case bfd_reloc_outofrange: 2381 abort (); 2382 case bfd_reloc_overflow: 2383 (*info->callbacks->reloc_overflow) 2384 (info, NULL, 2385 (link_order->type == bfd_section_reloc_link_order 2386 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section) 2387 : link_order->u.reloc.p->u.name), 2388 r->howto->name, link_order->u.reloc.p->addend, 2389 NULL, NULL, 0); 2390 break; 2391 } 2392 loc = link_order->offset * bfd_octets_per_byte (abfd); 2393 ok = bfd_set_section_contents (abfd, sec, buf, loc, size); 2394 free (buf); 2395 if (! ok) 2396 return FALSE; 2397 2398 r->addend = 0; 2399 } 2400 2401 sec->orelocation[sec->reloc_count] = r; 2402 ++sec->reloc_count; 2403 2404 return TRUE; 2405 } 2406 2407 /* Allocate a new link_order for a section. */ 2408 2409 struct bfd_link_order * 2410 bfd_new_link_order (bfd *abfd, asection *section) 2411 { 2412 bfd_size_type amt = sizeof (struct bfd_link_order); 2413 struct bfd_link_order *new_lo; 2414 2415 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt); 2416 if (!new_lo) 2417 return NULL; 2418 2419 new_lo->type = bfd_undefined_link_order; 2420 2421 if (section->map_tail.link_order != NULL) 2422 section->map_tail.link_order->next = new_lo; 2423 else 2424 section->map_head.link_order = new_lo; 2425 section->map_tail.link_order = new_lo; 2426 2427 return new_lo; 2428 } 2429 2430 /* Default link order processing routine. Note that we can not handle 2431 the reloc_link_order types here, since they depend upon the details 2432 of how the particular backends generates relocs. */ 2433 2434 bfd_boolean 2435 _bfd_default_link_order (bfd *abfd, 2436 struct bfd_link_info *info, 2437 asection *sec, 2438 struct bfd_link_order *link_order) 2439 { 2440 switch (link_order->type) 2441 { 2442 case bfd_undefined_link_order: 2443 case bfd_section_reloc_link_order: 2444 case bfd_symbol_reloc_link_order: 2445 default: 2446 abort (); 2447 case bfd_indirect_link_order: 2448 return default_indirect_link_order (abfd, info, sec, link_order, 2449 FALSE); 2450 case bfd_data_link_order: 2451 return default_data_link_order (abfd, info, sec, link_order); 2452 } 2453 } 2454 2455 /* Default routine to handle a bfd_data_link_order. */ 2456 2457 static bfd_boolean 2458 default_data_link_order (bfd *abfd, 2459 struct bfd_link_info *info ATTRIBUTE_UNUSED, 2460 asection *sec, 2461 struct bfd_link_order *link_order) 2462 { 2463 bfd_size_type size; 2464 size_t fill_size; 2465 bfd_byte *fill; 2466 file_ptr loc; 2467 bfd_boolean result; 2468 2469 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0); 2470 2471 size = link_order->size; 2472 if (size == 0) 2473 return TRUE; 2474 2475 fill = link_order->u.data.contents; 2476 fill_size = link_order->u.data.size; 2477 if (fill_size == 0) 2478 { 2479 fill = abfd->arch_info->fill (size, bfd_big_endian (abfd), 2480 (sec->flags & SEC_CODE) != 0); 2481 if (fill == NULL) 2482 return FALSE; 2483 } 2484 else if (fill_size < size) 2485 { 2486 bfd_byte *p; 2487 fill = (bfd_byte *) bfd_malloc (size); 2488 if (fill == NULL) 2489 return FALSE; 2490 p = fill; 2491 if (fill_size == 1) 2492 memset (p, (int) link_order->u.data.contents[0], (size_t) size); 2493 else 2494 { 2495 do 2496 { 2497 memcpy (p, link_order->u.data.contents, fill_size); 2498 p += fill_size; 2499 size -= fill_size; 2500 } 2501 while (size >= fill_size); 2502 if (size != 0) 2503 memcpy (p, link_order->u.data.contents, (size_t) size); 2504 size = link_order->size; 2505 } 2506 } 2507 2508 loc = link_order->offset * bfd_octets_per_byte (abfd); 2509 result = bfd_set_section_contents (abfd, sec, fill, loc, size); 2510 2511 if (fill != link_order->u.data.contents) 2512 free (fill); 2513 return result; 2514 } 2515 2516 /* Default routine to handle a bfd_indirect_link_order. */ 2517 2518 static bfd_boolean 2519 default_indirect_link_order (bfd *output_bfd, 2520 struct bfd_link_info *info, 2521 asection *output_section, 2522 struct bfd_link_order *link_order, 2523 bfd_boolean generic_linker) 2524 { 2525 asection *input_section; 2526 bfd *input_bfd; 2527 bfd_byte *contents = NULL; 2528 bfd_byte *new_contents; 2529 bfd_size_type sec_size; 2530 file_ptr loc; 2531 2532 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0); 2533 2534 input_section = link_order->u.indirect.section; 2535 input_bfd = input_section->owner; 2536 if (input_section->size == 0) 2537 return TRUE; 2538 2539 BFD_ASSERT (input_section->output_section == output_section); 2540 BFD_ASSERT (input_section->output_offset == link_order->offset); 2541 BFD_ASSERT (input_section->size == link_order->size); 2542 2543 if (bfd_link_relocatable (info) 2544 && input_section->reloc_count > 0 2545 && output_section->orelocation == NULL) 2546 { 2547 /* Space has not been allocated for the output relocations. 2548 This can happen when we are called by a specific backend 2549 because somebody is attempting to link together different 2550 types of object files. Handling this case correctly is 2551 difficult, and sometimes impossible. */ 2552 _bfd_error_handler 2553 /* xgettext:c-format */ 2554 (_("attempt to do relocatable link with %s input and %s output"), 2555 bfd_get_target (input_bfd), bfd_get_target (output_bfd)); 2556 bfd_set_error (bfd_error_wrong_format); 2557 return FALSE; 2558 } 2559 2560 if (! generic_linker) 2561 { 2562 asymbol **sympp; 2563 asymbol **symppend; 2564 2565 /* Get the canonical symbols. The generic linker will always 2566 have retrieved them by this point, but we are being called by 2567 a specific linker, presumably because we are linking 2568 different types of object files together. */ 2569 if (!bfd_generic_link_read_symbols (input_bfd)) 2570 return FALSE; 2571 2572 /* Since we have been called by a specific linker, rather than 2573 the generic linker, the values of the symbols will not be 2574 right. They will be the values as seen in the input file, 2575 not the values of the final link. We need to fix them up 2576 before we can relocate the section. */ 2577 sympp = _bfd_generic_link_get_symbols (input_bfd); 2578 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd); 2579 for (; sympp < symppend; sympp++) 2580 { 2581 asymbol *sym; 2582 struct bfd_link_hash_entry *h; 2583 2584 sym = *sympp; 2585 2586 if ((sym->flags & (BSF_INDIRECT 2587 | BSF_WARNING 2588 | BSF_GLOBAL 2589 | BSF_CONSTRUCTOR 2590 | BSF_WEAK)) != 0 2591 || bfd_is_und_section (bfd_get_section (sym)) 2592 || bfd_is_com_section (bfd_get_section (sym)) 2593 || bfd_is_ind_section (bfd_get_section (sym))) 2594 { 2595 /* sym->udata may have been set by 2596 generic_link_add_symbol_list. */ 2597 if (sym->udata.p != NULL) 2598 h = (struct bfd_link_hash_entry *) sym->udata.p; 2599 else if (bfd_is_und_section (bfd_get_section (sym))) 2600 h = bfd_wrapped_link_hash_lookup (output_bfd, info, 2601 bfd_asymbol_name (sym), 2602 FALSE, FALSE, TRUE); 2603 else 2604 h = bfd_link_hash_lookup (info->hash, 2605 bfd_asymbol_name (sym), 2606 FALSE, FALSE, TRUE); 2607 if (h != NULL) 2608 set_symbol_from_hash (sym, h); 2609 } 2610 } 2611 } 2612 2613 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP 2614 && input_section->size != 0) 2615 { 2616 /* Group section contents are set by bfd_elf_set_group_contents. */ 2617 if (!output_bfd->output_has_begun) 2618 { 2619 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */ 2620 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1)) 2621 goto error_return; 2622 } 2623 new_contents = output_section->contents; 2624 BFD_ASSERT (new_contents != NULL); 2625 BFD_ASSERT (input_section->output_offset == 0); 2626 } 2627 else 2628 { 2629 /* Get and relocate the section contents. */ 2630 sec_size = (input_section->rawsize > input_section->size 2631 ? input_section->rawsize 2632 : input_section->size); 2633 contents = (bfd_byte *) bfd_malloc (sec_size); 2634 if (contents == NULL && sec_size != 0) 2635 goto error_return; 2636 new_contents = (bfd_get_relocated_section_contents 2637 (output_bfd, info, link_order, contents, 2638 bfd_link_relocatable (info), 2639 _bfd_generic_link_get_symbols (input_bfd))); 2640 if (!new_contents) 2641 goto error_return; 2642 } 2643 2644 /* Output the section contents. */ 2645 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd); 2646 if (! bfd_set_section_contents (output_bfd, output_section, 2647 new_contents, loc, input_section->size)) 2648 goto error_return; 2649 2650 if (contents != NULL) 2651 free (contents); 2652 return TRUE; 2653 2654 error_return: 2655 if (contents != NULL) 2656 free (contents); 2657 return FALSE; 2658 } 2659 2660 /* A little routine to count the number of relocs in a link_order 2661 list. */ 2662 2663 unsigned int 2664 _bfd_count_link_order_relocs (struct bfd_link_order *link_order) 2665 { 2666 register unsigned int c; 2667 register struct bfd_link_order *l; 2668 2669 c = 0; 2670 for (l = link_order; l != NULL; l = l->next) 2671 { 2672 if (l->type == bfd_section_reloc_link_order 2673 || l->type == bfd_symbol_reloc_link_order) 2674 ++c; 2675 } 2676 2677 return c; 2678 } 2679 2680 /* 2681 FUNCTION 2682 bfd_link_split_section 2683 2684 SYNOPSIS 2685 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec); 2686 2687 DESCRIPTION 2688 Return nonzero if @var{sec} should be split during a 2689 reloceatable or final link. 2690 2691 .#define bfd_link_split_section(abfd, sec) \ 2692 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec)) 2693 . 2694 2695 */ 2696 2697 bfd_boolean 2698 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED, 2699 asection *sec ATTRIBUTE_UNUSED) 2700 { 2701 return FALSE; 2702 } 2703 2704 /* 2705 FUNCTION 2706 bfd_section_already_linked 2707 2708 SYNOPSIS 2709 bfd_boolean bfd_section_already_linked (bfd *abfd, 2710 asection *sec, 2711 struct bfd_link_info *info); 2712 2713 DESCRIPTION 2714 Check if @var{data} has been already linked during a reloceatable 2715 or final link. Return TRUE if it has. 2716 2717 .#define bfd_section_already_linked(abfd, sec, info) \ 2718 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info)) 2719 . 2720 2721 */ 2722 2723 /* Sections marked with the SEC_LINK_ONCE flag should only be linked 2724 once into the output. This routine checks each section, and 2725 arrange to discard it if a section of the same name has already 2726 been linked. This code assumes that all relevant sections have the 2727 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the 2728 section name. bfd_section_already_linked is called via 2729 bfd_map_over_sections. */ 2730 2731 /* The hash table. */ 2732 2733 static struct bfd_hash_table _bfd_section_already_linked_table; 2734 2735 /* Support routines for the hash table used by section_already_linked, 2736 initialize the table, traverse, lookup, fill in an entry and remove 2737 the table. */ 2738 2739 void 2740 bfd_section_already_linked_table_traverse 2741 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *, 2742 void *), void *info) 2743 { 2744 bfd_hash_traverse (&_bfd_section_already_linked_table, 2745 (bfd_boolean (*) (struct bfd_hash_entry *, 2746 void *)) func, 2747 info); 2748 } 2749 2750 struct bfd_section_already_linked_hash_entry * 2751 bfd_section_already_linked_table_lookup (const char *name) 2752 { 2753 return ((struct bfd_section_already_linked_hash_entry *) 2754 bfd_hash_lookup (&_bfd_section_already_linked_table, name, 2755 TRUE, FALSE)); 2756 } 2757 2758 bfd_boolean 2759 bfd_section_already_linked_table_insert 2760 (struct bfd_section_already_linked_hash_entry *already_linked_list, 2761 asection *sec) 2762 { 2763 struct bfd_section_already_linked *l; 2764 2765 /* Allocate the memory from the same obstack as the hash table is 2766 kept in. */ 2767 l = (struct bfd_section_already_linked *) 2768 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l); 2769 if (l == NULL) 2770 return FALSE; 2771 l->sec = sec; 2772 l->next = already_linked_list->entry; 2773 already_linked_list->entry = l; 2774 return TRUE; 2775 } 2776 2777 static struct bfd_hash_entry * 2778 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED, 2779 struct bfd_hash_table *table, 2780 const char *string ATTRIBUTE_UNUSED) 2781 { 2782 struct bfd_section_already_linked_hash_entry *ret = 2783 (struct bfd_section_already_linked_hash_entry *) 2784 bfd_hash_allocate (table, sizeof *ret); 2785 2786 if (ret == NULL) 2787 return NULL; 2788 2789 ret->entry = NULL; 2790 2791 return &ret->root; 2792 } 2793 2794 bfd_boolean 2795 bfd_section_already_linked_table_init (void) 2796 { 2797 return bfd_hash_table_init_n (&_bfd_section_already_linked_table, 2798 already_linked_newfunc, 2799 sizeof (struct bfd_section_already_linked_hash_entry), 2800 42); 2801 } 2802 2803 void 2804 bfd_section_already_linked_table_free (void) 2805 { 2806 bfd_hash_table_free (&_bfd_section_already_linked_table); 2807 } 2808 2809 /* Report warnings as appropriate for duplicate section SEC. 2810 Return FALSE if we decide to keep SEC after all. */ 2811 2812 bfd_boolean 2813 _bfd_handle_already_linked (asection *sec, 2814 struct bfd_section_already_linked *l, 2815 struct bfd_link_info *info) 2816 { 2817 switch (sec->flags & SEC_LINK_DUPLICATES) 2818 { 2819 default: 2820 abort (); 2821 2822 case SEC_LINK_DUPLICATES_DISCARD: 2823 /* If we found an LTO IR match for this comdat group on 2824 the first pass, replace it with the LTO output on the 2825 second pass. We can't simply choose real object 2826 files over IR because the first pass may contain a 2827 mix of LTO and normal objects and we must keep the 2828 first match, be it IR or real. */ 2829 if (sec->owner->lto_output 2830 && (l->sec->owner->flags & BFD_PLUGIN) != 0) 2831 { 2832 l->sec = sec; 2833 return FALSE; 2834 } 2835 break; 2836 2837 case SEC_LINK_DUPLICATES_ONE_ONLY: 2838 info->callbacks->einfo 2839 /* xgettext:c-format */ 2840 (_("%pB: ignoring duplicate section `%pA'\n"), 2841 sec->owner, sec); 2842 break; 2843 2844 case SEC_LINK_DUPLICATES_SAME_SIZE: 2845 if ((l->sec->owner->flags & BFD_PLUGIN) != 0) 2846 ; 2847 else if (sec->size != l->sec->size) 2848 info->callbacks->einfo 2849 /* xgettext:c-format */ 2850 (_("%pB: duplicate section `%pA' has different size\n"), 2851 sec->owner, sec); 2852 break; 2853 2854 case SEC_LINK_DUPLICATES_SAME_CONTENTS: 2855 if ((l->sec->owner->flags & BFD_PLUGIN) != 0) 2856 ; 2857 else if (sec->size != l->sec->size) 2858 info->callbacks->einfo 2859 /* xgettext:c-format */ 2860 (_("%pB: duplicate section `%pA' has different size\n"), 2861 sec->owner, sec); 2862 else if (sec->size != 0) 2863 { 2864 bfd_byte *sec_contents, *l_sec_contents = NULL; 2865 2866 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents)) 2867 info->callbacks->einfo 2868 /* xgettext:c-format */ 2869 (_("%pB: could not read contents of section `%pA'\n"), 2870 sec->owner, sec); 2871 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec, 2872 &l_sec_contents)) 2873 info->callbacks->einfo 2874 /* xgettext:c-format */ 2875 (_("%pB: could not read contents of section `%pA'\n"), 2876 l->sec->owner, l->sec); 2877 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0) 2878 info->callbacks->einfo 2879 /* xgettext:c-format */ 2880 (_("%pB: duplicate section `%pA' has different contents\n"), 2881 sec->owner, sec); 2882 2883 if (sec_contents) 2884 free (sec_contents); 2885 if (l_sec_contents) 2886 free (l_sec_contents); 2887 } 2888 break; 2889 } 2890 2891 /* Set the output_section field so that lang_add_section 2892 does not create a lang_input_section structure for this 2893 section. Since there might be a symbol in the section 2894 being discarded, we must retain a pointer to the section 2895 which we are really going to use. */ 2896 sec->output_section = bfd_abs_section_ptr; 2897 sec->kept_section = l->sec; 2898 return TRUE; 2899 } 2900 2901 /* This is used on non-ELF inputs. */ 2902 2903 bfd_boolean 2904 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED, 2905 asection *sec, 2906 struct bfd_link_info *info) 2907 { 2908 const char *name; 2909 struct bfd_section_already_linked *l; 2910 struct bfd_section_already_linked_hash_entry *already_linked_list; 2911 2912 if ((sec->flags & SEC_LINK_ONCE) == 0) 2913 return FALSE; 2914 2915 /* The generic linker doesn't handle section groups. */ 2916 if ((sec->flags & SEC_GROUP) != 0) 2917 return FALSE; 2918 2919 /* FIXME: When doing a relocatable link, we may have trouble 2920 copying relocations in other sections that refer to local symbols 2921 in the section being discarded. Those relocations will have to 2922 be converted somehow; as of this writing I'm not sure that any of 2923 the backends handle that correctly. 2924 2925 It is tempting to instead not discard link once sections when 2926 doing a relocatable link (technically, they should be discarded 2927 whenever we are building constructors). However, that fails, 2928 because the linker winds up combining all the link once sections 2929 into a single large link once section, which defeats the purpose 2930 of having link once sections in the first place. */ 2931 2932 name = bfd_get_section_name (abfd, sec); 2933 2934 already_linked_list = bfd_section_already_linked_table_lookup (name); 2935 2936 l = already_linked_list->entry; 2937 if (l != NULL) 2938 { 2939 /* The section has already been linked. See if we should 2940 issue a warning. */ 2941 return _bfd_handle_already_linked (sec, l, info); 2942 } 2943 2944 /* This is the first section with this name. Record it. */ 2945 if (!bfd_section_already_linked_table_insert (already_linked_list, sec)) 2946 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n")); 2947 return FALSE; 2948 } 2949 2950 /* Choose a neighbouring section to S in OBFD that will be output, or 2951 the absolute section if ADDR is out of bounds of the neighbours. */ 2952 2953 asection * 2954 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr) 2955 { 2956 asection *next, *prev, *best; 2957 2958 /* Find preceding kept section. */ 2959 for (prev = s->prev; prev != NULL; prev = prev->prev) 2960 if ((prev->flags & SEC_EXCLUDE) == 0 2961 && !bfd_section_removed_from_list (obfd, prev)) 2962 break; 2963 2964 /* Find following kept section. Start at prev->next because 2965 other sections may have been added after S was removed. */ 2966 if (s->prev != NULL) 2967 next = s->prev->next; 2968 else 2969 next = s->owner->sections; 2970 for (; next != NULL; next = next->next) 2971 if ((next->flags & SEC_EXCLUDE) == 0 2972 && !bfd_section_removed_from_list (obfd, next)) 2973 break; 2974 2975 /* Choose better of two sections, based on flags. The idea 2976 is to choose a section that will be in the same segment 2977 as S would have been if it was kept. */ 2978 best = next; 2979 if (prev == NULL) 2980 { 2981 if (next == NULL) 2982 best = bfd_abs_section_ptr; 2983 } 2984 else if (next == NULL) 2985 best = prev; 2986 else if (((prev->flags ^ next->flags) 2987 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0) 2988 { 2989 if (((next->flags ^ s->flags) 2990 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0 2991 /* We prefer to choose a loaded section. Section S 2992 doesn't have SEC_LOAD set (it being excluded, that 2993 part of the flag processing didn't happen) so we 2994 can't compare that flag to those of NEXT and PREV. */ 2995 || ((prev->flags & SEC_LOAD) != 0 2996 && (next->flags & SEC_LOAD) == 0)) 2997 best = prev; 2998 } 2999 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0) 3000 { 3001 if (((next->flags ^ s->flags) & SEC_READONLY) != 0) 3002 best = prev; 3003 } 3004 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0) 3005 { 3006 if (((next->flags ^ s->flags) & SEC_CODE) != 0) 3007 best = prev; 3008 } 3009 else 3010 { 3011 /* Flags we care about are the same. Prefer the following 3012 section if that will result in a positive valued sym. */ 3013 if (addr < next->vma) 3014 best = prev; 3015 } 3016 3017 return best; 3018 } 3019 3020 /* Convert symbols in excluded output sections to use a kept section. */ 3021 3022 static bfd_boolean 3023 fix_syms (struct bfd_link_hash_entry *h, void *data) 3024 { 3025 bfd *obfd = (bfd *) data; 3026 3027 if (h->type == bfd_link_hash_defined 3028 || h->type == bfd_link_hash_defweak) 3029 { 3030 asection *s = h->u.def.section; 3031 if (s != NULL 3032 && s->output_section != NULL 3033 && (s->output_section->flags & SEC_EXCLUDE) != 0 3034 && bfd_section_removed_from_list (obfd, s->output_section)) 3035 { 3036 asection *op; 3037 3038 h->u.def.value += s->output_offset + s->output_section->vma; 3039 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value); 3040 h->u.def.value -= op->vma; 3041 h->u.def.section = op; 3042 } 3043 } 3044 3045 return TRUE; 3046 } 3047 3048 void 3049 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info) 3050 { 3051 bfd_link_hash_traverse (info->hash, fix_syms, obfd); 3052 } 3053 3054 /* 3055 FUNCTION 3056 bfd_generic_define_common_symbol 3057 3058 SYNOPSIS 3059 bfd_boolean bfd_generic_define_common_symbol 3060 (bfd *output_bfd, struct bfd_link_info *info, 3061 struct bfd_link_hash_entry *h); 3062 3063 DESCRIPTION 3064 Convert common symbol @var{h} into a defined symbol. 3065 Return TRUE on success and FALSE on failure. 3066 3067 .#define bfd_define_common_symbol(output_bfd, info, h) \ 3068 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h)) 3069 . 3070 */ 3071 3072 bfd_boolean 3073 bfd_generic_define_common_symbol (bfd *output_bfd, 3074 struct bfd_link_info *info ATTRIBUTE_UNUSED, 3075 struct bfd_link_hash_entry *h) 3076 { 3077 unsigned int power_of_two; 3078 bfd_vma alignment, size; 3079 asection *section; 3080 3081 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common); 3082 3083 size = h->u.c.size; 3084 power_of_two = h->u.c.p->alignment_power; 3085 section = h->u.c.p->section; 3086 3087 /* Increase the size of the section to align the common symbol. 3088 The alignment must be a power of two. */ 3089 alignment = bfd_octets_per_byte (output_bfd) << power_of_two; 3090 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment); 3091 section->size += alignment - 1; 3092 section->size &= -alignment; 3093 3094 /* Adjust the section's overall alignment if necessary. */ 3095 if (power_of_two > section->alignment_power) 3096 section->alignment_power = power_of_two; 3097 3098 /* Change the symbol from common to defined. */ 3099 h->type = bfd_link_hash_defined; 3100 h->u.def.section = section; 3101 h->u.def.value = section->size; 3102 3103 /* Increase the size of the section. */ 3104 section->size += size; 3105 3106 /* Make sure the section is allocated in memory, and make sure that 3107 it is no longer a common section. */ 3108 section->flags |= SEC_ALLOC; 3109 section->flags &= ~SEC_IS_COMMON; 3110 return TRUE; 3111 } 3112 3113 /* 3114 FUNCTION 3115 _bfd_generic_link_hide_symbol 3116 3117 SYNOPSIS 3118 void _bfd_generic_link_hide_symbol 3119 (bfd *output_bfd, struct bfd_link_info *info, 3120 struct bfd_link_hash_entry *h); 3121 3122 DESCRIPTION 3123 Hide symbol @var{h}. 3124 This is an internal function. It should not be called from 3125 outside the BFD library. 3126 3127 .#define bfd_link_hide_symbol(output_bfd, info, h) \ 3128 . BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h)) 3129 . 3130 */ 3131 3132 void 3133 _bfd_generic_link_hide_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, 3134 struct bfd_link_info *info ATTRIBUTE_UNUSED, 3135 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED) 3136 { 3137 } 3138 3139 /* 3140 FUNCTION 3141 bfd_generic_define_start_stop 3142 3143 SYNOPSIS 3144 struct bfd_link_hash_entry *bfd_generic_define_start_stop 3145 (struct bfd_link_info *info, 3146 const char *symbol, asection *sec); 3147 3148 DESCRIPTION 3149 Define a __start, __stop, .startof. or .sizeof. symbol. 3150 Return the symbol or NULL if no such undefined symbol exists. 3151 3152 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \ 3153 . BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec)) 3154 . 3155 */ 3156 3157 struct bfd_link_hash_entry * 3158 bfd_generic_define_start_stop (struct bfd_link_info *info, 3159 const char *symbol, asection *sec) 3160 { 3161 struct bfd_link_hash_entry *h; 3162 3163 h = bfd_link_hash_lookup (info->hash, symbol, FALSE, FALSE, TRUE); 3164 if (h != NULL 3165 && (h->type == bfd_link_hash_undefined 3166 || h->type == bfd_link_hash_undefweak)) 3167 { 3168 h->type = bfd_link_hash_defined; 3169 h->u.def.section = sec; 3170 h->u.def.value = 0; 3171 return h; 3172 } 3173 return NULL; 3174 } 3175 3176 /* 3177 FUNCTION 3178 bfd_find_version_for_sym 3179 3180 SYNOPSIS 3181 struct bfd_elf_version_tree * bfd_find_version_for_sym 3182 (struct bfd_elf_version_tree *verdefs, 3183 const char *sym_name, bfd_boolean *hide); 3184 3185 DESCRIPTION 3186 Search an elf version script tree for symbol versioning 3187 info and export / don't-export status for a given symbol. 3188 Return non-NULL on success and NULL on failure; also sets 3189 the output @samp{hide} boolean parameter. 3190 3191 */ 3192 3193 struct bfd_elf_version_tree * 3194 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs, 3195 const char *sym_name, 3196 bfd_boolean *hide) 3197 { 3198 struct bfd_elf_version_tree *t; 3199 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver; 3200 struct bfd_elf_version_tree *star_local_ver, *star_global_ver; 3201 3202 local_ver = NULL; 3203 global_ver = NULL; 3204 star_local_ver = NULL; 3205 star_global_ver = NULL; 3206 exist_ver = NULL; 3207 for (t = verdefs; t != NULL; t = t->next) 3208 { 3209 if (t->globals.list != NULL) 3210 { 3211 struct bfd_elf_version_expr *d = NULL; 3212 3213 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL) 3214 { 3215 if (d->literal || strcmp (d->pattern, "*") != 0) 3216 global_ver = t; 3217 else 3218 star_global_ver = t; 3219 if (d->symver) 3220 exist_ver = t; 3221 d->script = 1; 3222 /* If the match is a wildcard pattern, keep looking for 3223 a more explicit, perhaps even local, match. */ 3224 if (d->literal) 3225 break; 3226 } 3227 3228 if (d != NULL) 3229 break; 3230 } 3231 3232 if (t->locals.list != NULL) 3233 { 3234 struct bfd_elf_version_expr *d = NULL; 3235 3236 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL) 3237 { 3238 if (d->literal || strcmp (d->pattern, "*") != 0) 3239 local_ver = t; 3240 else 3241 star_local_ver = t; 3242 /* If the match is a wildcard pattern, keep looking for 3243 a more explicit, perhaps even global, match. */ 3244 if (d->literal) 3245 { 3246 /* An exact match overrides a global wildcard. */ 3247 global_ver = NULL; 3248 star_global_ver = NULL; 3249 break; 3250 } 3251 } 3252 3253 if (d != NULL) 3254 break; 3255 } 3256 } 3257 3258 if (global_ver == NULL && local_ver == NULL) 3259 global_ver = star_global_ver; 3260 3261 if (global_ver != NULL) 3262 { 3263 /* If we already have a versioned symbol that matches the 3264 node for this symbol, then we don't want to create a 3265 duplicate from the unversioned symbol. Instead hide the 3266 unversioned symbol. */ 3267 *hide = exist_ver == global_ver; 3268 return global_ver; 3269 } 3270 3271 if (local_ver == NULL) 3272 local_ver = star_local_ver; 3273 3274 if (local_ver != NULL) 3275 { 3276 *hide = TRUE; 3277 return local_ver; 3278 } 3279 3280 return NULL; 3281 } 3282 3283 /* 3284 FUNCTION 3285 bfd_hide_sym_by_version 3286 3287 SYNOPSIS 3288 bfd_boolean bfd_hide_sym_by_version 3289 (struct bfd_elf_version_tree *verdefs, const char *sym_name); 3290 3291 DESCRIPTION 3292 Search an elf version script tree for symbol versioning 3293 info for a given symbol. Return TRUE if the symbol is hidden. 3294 3295 */ 3296 3297 bfd_boolean 3298 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs, 3299 const char *sym_name) 3300 { 3301 bfd_boolean hidden = FALSE; 3302 bfd_find_version_for_sym (verdefs, sym_name, &hidden); 3303 return hidden; 3304 } 3305 3306 /* 3307 FUNCTION 3308 bfd_link_check_relocs 3309 3310 SYNOPSIS 3311 bfd_boolean bfd_link_check_relocs 3312 (bfd *abfd, struct bfd_link_info *info); 3313 3314 DESCRIPTION 3315 Checks the relocs in ABFD for validity. 3316 Does not execute the relocs. 3317 Return TRUE if everything is OK, FALSE otherwise. 3318 This is the external entry point to this code. 3319 */ 3320 3321 bfd_boolean 3322 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info) 3323 { 3324 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info)); 3325 } 3326 3327 /* 3328 FUNCTION 3329 _bfd_generic_link_check_relocs 3330 3331 SYNOPSIS 3332 bfd_boolean _bfd_generic_link_check_relocs 3333 (bfd *abfd, struct bfd_link_info *info); 3334 3335 DESCRIPTION 3336 Stub function for targets that do not implement reloc checking. 3337 Return TRUE. 3338 This is an internal function. It should not be called from 3339 outside the BFD library. 3340 */ 3341 3342 bfd_boolean 3343 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED, 3344 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3345 { 3346 return TRUE; 3347 } 3348 3349 /* 3350 FUNCTION 3351 bfd_merge_private_bfd_data 3352 3353 SYNOPSIS 3354 bfd_boolean bfd_merge_private_bfd_data 3355 (bfd *ibfd, struct bfd_link_info *info); 3356 3357 DESCRIPTION 3358 Merge private BFD information from the BFD @var{ibfd} to the 3359 the output file BFD when linking. Return <<TRUE>> on success, 3360 <<FALSE>> on error. Possible error returns are: 3361 3362 o <<bfd_error_no_memory>> - 3363 Not enough memory exists to create private data for @var{obfd}. 3364 3365 .#define bfd_merge_private_bfd_data(ibfd, info) \ 3366 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \ 3367 . (ibfd, info)) 3368 */ 3369 3370 /* 3371 INTERNAL_FUNCTION 3372 _bfd_generic_verify_endian_match 3373 3374 SYNOPSIS 3375 bfd_boolean _bfd_generic_verify_endian_match 3376 (bfd *ibfd, struct bfd_link_info *info); 3377 3378 DESCRIPTION 3379 Can be used from / for bfd_merge_private_bfd_data to check that 3380 endianness matches between input and output file. Returns 3381 TRUE for a match, otherwise returns FALSE and emits an error. 3382 */ 3383 3384 bfd_boolean 3385 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info) 3386 { 3387 bfd *obfd = info->output_bfd; 3388 3389 if (ibfd->xvec->byteorder != obfd->xvec->byteorder 3390 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN 3391 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN) 3392 { 3393 if (bfd_big_endian (ibfd)) 3394 _bfd_error_handler (_("%pB: compiled for a big endian system " 3395 "and target is little endian"), ibfd); 3396 else 3397 _bfd_error_handler (_("%pB: compiled for a little endian system " 3398 "and target is big endian"), ibfd); 3399 bfd_set_error (bfd_error_wrong_format); 3400 return FALSE; 3401 } 3402 3403 return TRUE; 3404 } 3405 3406 int 3407 _bfd_nolink_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED, 3408 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3409 { 3410 return 0; 3411 } 3412 3413 bfd_boolean 3414 _bfd_nolink_bfd_relax_section (bfd *abfd, 3415 asection *section ATTRIBUTE_UNUSED, 3416 struct bfd_link_info *link_info ATTRIBUTE_UNUSED, 3417 bfd_boolean *again ATTRIBUTE_UNUSED) 3418 { 3419 return _bfd_bool_bfd_false_error (abfd); 3420 } 3421 3422 bfd_byte * 3423 _bfd_nolink_bfd_get_relocated_section_contents 3424 (bfd *abfd, 3425 struct bfd_link_info *link_info ATTRIBUTE_UNUSED, 3426 struct bfd_link_order *link_order ATTRIBUTE_UNUSED, 3427 bfd_byte *data ATTRIBUTE_UNUSED, 3428 bfd_boolean relocatable ATTRIBUTE_UNUSED, 3429 asymbol **symbols ATTRIBUTE_UNUSED) 3430 { 3431 return (bfd_byte *) _bfd_ptr_bfd_null_error (abfd); 3432 } 3433 3434 bfd_boolean 3435 _bfd_nolink_bfd_lookup_section_flags 3436 (struct bfd_link_info *info ATTRIBUTE_UNUSED, 3437 struct flag_info *flaginfo ATTRIBUTE_UNUSED, 3438 asection *section) 3439 { 3440 return _bfd_bool_bfd_false_error (section->owner); 3441 } 3442 3443 bfd_boolean 3444 _bfd_nolink_bfd_is_group_section (bfd *abfd, 3445 const asection *sec ATTRIBUTE_UNUSED) 3446 { 3447 return _bfd_bool_bfd_false_error (abfd); 3448 } 3449 3450 bfd_boolean 3451 _bfd_nolink_bfd_discard_group (bfd *abfd, asection *sec ATTRIBUTE_UNUSED) 3452 { 3453 return _bfd_bool_bfd_false_error (abfd); 3454 } 3455 3456 struct bfd_link_hash_table * 3457 _bfd_nolink_bfd_link_hash_table_create (bfd *abfd) 3458 { 3459 return (struct bfd_link_hash_table *) _bfd_ptr_bfd_null_error (abfd); 3460 } 3461 3462 void 3463 _bfd_nolink_bfd_link_just_syms (asection *sec ATTRIBUTE_UNUSED, 3464 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3465 { 3466 } 3467 3468 void 3469 _bfd_nolink_bfd_copy_link_hash_symbol_type 3470 (bfd *abfd ATTRIBUTE_UNUSED, 3471 struct bfd_link_hash_entry *from ATTRIBUTE_UNUSED, 3472 struct bfd_link_hash_entry *to ATTRIBUTE_UNUSED) 3473 { 3474 } 3475 3476 bfd_boolean 3477 _bfd_nolink_bfd_link_split_section (bfd *abfd, asection *sec ATTRIBUTE_UNUSED) 3478 { 3479 return _bfd_bool_bfd_false_error (abfd); 3480 } 3481 3482 bfd_boolean 3483 _bfd_nolink_section_already_linked (bfd *abfd, 3484 asection *sec ATTRIBUTE_UNUSED, 3485 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3486 { 3487 return _bfd_bool_bfd_false_error (abfd); 3488 } 3489 3490 bfd_boolean 3491 _bfd_nolink_bfd_define_common_symbol 3492 (bfd *abfd, 3493 struct bfd_link_info *info ATTRIBUTE_UNUSED, 3494 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED) 3495 { 3496 return _bfd_bool_bfd_false_error (abfd); 3497 } 3498 3499 struct bfd_link_hash_entry * 3500 _bfd_nolink_bfd_define_start_stop (struct bfd_link_info *info ATTRIBUTE_UNUSED, 3501 const char *name ATTRIBUTE_UNUSED, 3502 asection *sec) 3503 { 3504 return (struct bfd_link_hash_entry *) _bfd_ptr_bfd_null_error (sec->owner); 3505 } 3506