xref: /netbsd-src/external/gpl3/binutils.old/dist/bfd/linker.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /* linker.c -- BFD linker routines
2    Copyright (C) 1993-2018 Free Software Foundation, Inc.
3    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27 
28 /*
29 SECTION
30 	Linker Functions
31 
32 @cindex Linker
33 	The linker uses three special entry points in the BFD target
34 	vector.  It is not necessary to write special routines for
35 	these entry points when creating a new BFD back end, since
36 	generic versions are provided.  However, writing them can
37 	speed up linking and make it use significantly less runtime
38 	memory.
39 
40 	The first routine creates a hash table used by the other
41 	routines.  The second routine adds the symbols from an object
42 	file to the hash table.  The third routine takes all the
43 	object files and links them together to create the output
44 	file.  These routines are designed so that the linker proper
45 	does not need to know anything about the symbols in the object
46 	files that it is linking.  The linker merely arranges the
47 	sections as directed by the linker script and lets BFD handle
48 	the details of symbols and relocs.
49 
50 	The second routine and third routines are passed a pointer to
51 	a <<struct bfd_link_info>> structure (defined in
52 	<<bfdlink.h>>) which holds information relevant to the link,
53 	including the linker hash table (which was created by the
54 	first routine) and a set of callback functions to the linker
55 	proper.
56 
57 	The generic linker routines are in <<linker.c>>, and use the
58 	header file <<genlink.h>>.  As of this writing, the only back
59 	ends which have implemented versions of these routines are
60 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
61 	routines are used as examples throughout this section.
62 
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68 
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 	Creating a linker hash table
73 
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 	The linker routines must create a hash table, which must be
77 	derived from <<struct bfd_link_hash_table>> described in
78 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
79 	create a derived hash table.  This entry point is called using
80 	the target vector of the linker output file.
81 
82 	The <<_bfd_link_hash_table_create>> entry point must allocate
83 	and initialize an instance of the desired hash table.  If the
84 	back end does not require any additional information to be
85 	stored with the entries in the hash table, the entry point may
86 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
87 	however, some additional information will be needed.
88 
89 	For example, with each entry in the hash table the a.out
90 	linker keeps the index the symbol has in the final output file
91 	(this index number is used so that when doing a relocatable
92 	link the symbol index used in the output file can be quickly
93 	filled in when copying over a reloc).  The a.out linker code
94 	defines the required structures and functions for a hash table
95 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
96 	hash table is created by the function
97 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
98 	space for the hash table, initializes it, and returns a
99 	pointer to it.
100 
101 	When writing the linker routines for a new back end, you will
102 	generally not know exactly which fields will be required until
103 	you have finished.  You should simply create a new hash table
104 	which defines no additional fields, and then simply add fields
105 	as they become necessary.
106 
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 	Adding symbols to the hash table
111 
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 	The linker proper will call the <<_bfd_link_add_symbols>>
115 	entry point for each object file or archive which is to be
116 	linked (typically these are the files named on the command
117 	line, but some may also come from the linker script).  The
118 	entry point is responsible for examining the file.  For an
119 	object file, BFD must add any relevant symbol information to
120 	the hash table.  For an archive, BFD must determine which
121 	elements of the archive should be used and adding them to the
122 	link.
123 
124 	The a.out version of this entry point is
125 	<<NAME(aout,link_add_symbols)>>.
126 
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132 
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 	Differing file formats
137 
138 	Normally all the files involved in a link will be of the same
139 	format, but it is also possible to link together different
140 	format object files, and the back end must support that.  The
141 	<<_bfd_link_add_symbols>> entry point is called via the target
142 	vector of the file to be added.  This has an important
143 	consequence: the function may not assume that the hash table
144 	is the type created by the corresponding
145 	<<_bfd_link_hash_table_create>> vector.  All the
146 	<<_bfd_link_add_symbols>> function can assume about the hash
147 	table is that it is derived from <<struct
148 	bfd_link_hash_table>>.
149 
150 	Sometimes the <<_bfd_link_add_symbols>> function must store
151 	some information in the hash table entry to be used by the
152 	<<_bfd_final_link>> function.  In such a case the output bfd
153 	xvec must be checked to make sure that the hash table was
154 	created by an object file of the same format.
155 
156 	The <<_bfd_final_link>> routine must be prepared to handle a
157 	hash entry without any extra information added by the
158 	<<_bfd_link_add_symbols>> function.  A hash entry without
159 	extra information will also occur when the linker script
160 	directs the linker to create a symbol.  Note that, regardless
161 	of how a hash table entry is added, all the fields will be
162 	initialized to some sort of null value by the hash table entry
163 	initialization function.
164 
165 	See <<ecoff_link_add_externals>> for an example of how to
166 	check the output bfd before saving information (in this
167 	case, the ECOFF external symbol debugging information) in a
168 	hash table entry.
169 
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 	Adding symbols from an object file
174 
175 	When the <<_bfd_link_add_symbols>> routine is passed an object
176 	file, it must add all externally visible symbols in that
177 	object file to the hash table.  The actual work of adding the
178 	symbol to the hash table is normally handled by the function
179 	<<_bfd_generic_link_add_one_symbol>>.  The
180 	<<_bfd_link_add_symbols>> routine is responsible for reading
181 	all the symbols from the object file and passing the correct
182 	information to <<_bfd_generic_link_add_one_symbol>>.
183 
184 	The <<_bfd_link_add_symbols>> routine should not use
185 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
186 	providing this routine is to avoid the overhead of converting
187 	the symbols into generic <<asymbol>> structures.
188 
189 @findex _bfd_generic_link_add_one_symbol
190 	<<_bfd_generic_link_add_one_symbol>> handles the details of
191 	combining common symbols, warning about multiple definitions,
192 	and so forth.  It takes arguments which describe the symbol to
193 	add, notably symbol flags, a section, and an offset.  The
194 	symbol flags include such things as <<BSF_WEAK>> or
195 	<<BSF_INDIRECT>>.  The section is a section in the object
196 	file, or something like <<bfd_und_section_ptr>> for an undefined
197 	symbol or <<bfd_com_section_ptr>> for a common symbol.
198 
199 	If the <<_bfd_final_link>> routine is also going to need to
200 	read the symbol information, the <<_bfd_link_add_symbols>>
201 	routine should save it somewhere attached to the object file
202 	BFD.  However, the information should only be saved if the
203 	<<keep_memory>> field of the <<info>> argument is TRUE, so
204 	that the <<-no-keep-memory>> linker switch is effective.
205 
206 	The a.out function which adds symbols from an object file is
207 	<<aout_link_add_object_symbols>>, and most of the interesting
208 	work is in <<aout_link_add_symbols>>.  The latter saves
209 	pointers to the hash tables entries created by
210 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 	so that the <<_bfd_final_link>> routine does not have to call
212 	the hash table lookup routine to locate the entry.
213 
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 	Adding symbols from an archive
218 
219 	When the <<_bfd_link_add_symbols>> routine is passed an
220 	archive, it must look through the symbols defined by the
221 	archive and decide which elements of the archive should be
222 	included in the link.  For each such element it must call the
223 	<<add_archive_element>> linker callback, and it must add the
224 	symbols from the object file to the linker hash table.  (The
225 	callback may in fact indicate that a replacement BFD should be
226 	used, in which case the symbols from that BFD should be added
227 	to the linker hash table instead.)
228 
229 @findex _bfd_generic_link_add_archive_symbols
230 	In most cases the work of looking through the symbols in the
231 	archive should be done by the
232 	<<_bfd_generic_link_add_archive_symbols>> function.
233 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
234 	to call to make the final decision about adding an archive
235 	element to the link and to do the actual work of adding the
236 	symbols to the linker hash table.  If the element is to
237 	be included, the <<add_archive_element>> linker callback
238 	routine must be called with the element as an argument, and
239 	the element's symbols must be added to the linker hash table
240 	just as though the element had itself been passed to the
241 	<<_bfd_link_add_symbols>> function.
242 
243 	When the a.out <<_bfd_link_add_symbols>> function receives an
244 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 	passing <<aout_link_check_archive_element>> as the function
246 	argument. <<aout_link_check_archive_element>> calls
247 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
248 	the element (an element is only added if it provides a real,
249 	non-common, definition for a previously undefined or common
250 	symbol) it calls the <<add_archive_element>> callback and then
251 	<<aout_link_check_archive_element>> calls
252 	<<aout_link_add_symbols>> to actually add the symbols to the
253 	linker hash table - possibly those of a substitute BFD, if the
254 	<<add_archive_element>> callback avails itself of that option.
255 
256 	The ECOFF back end is unusual in that it does not normally
257 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 	archives already contain a hash table of symbols.  The ECOFF
259 	back end searches the archive itself to avoid the overhead of
260 	creating a new hash table.
261 
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 	Performing the final link
266 
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 	When all the input files have been processed, the linker calls
270 	the <<_bfd_final_link>> entry point of the output BFD.  This
271 	routine is responsible for producing the final output file,
272 	which has several aspects.  It must relocate the contents of
273 	the input sections and copy the data into the output sections.
274 	It must build an output symbol table including any local
275 	symbols from the input files and the global symbols from the
276 	hash table.  When producing relocatable output, it must
277 	modify the input relocs and write them into the output file.
278 	There may also be object format dependent work to be done.
279 
280 	The linker will also call the <<write_object_contents>> entry
281 	point when the BFD is closed.  The two entry points must work
282 	together in order to produce the correct output file.
283 
284 	The details of how this works are inevitably dependent upon
285 	the specific object file format.  The a.out
286 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287 
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293 
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 	Information provided by the linker
298 
299 	Before the linker calls the <<_bfd_final_link>> entry point,
300 	it sets up some data structures for the function to use.
301 
302 	The <<input_bfds>> field of the <<bfd_link_info>> structure
303 	will point to a list of all the input files included in the
304 	link.  These files are linked through the <<link.next>> field
305 	of the <<bfd>> structure.
306 
307 	Each section in the output file will have a list of
308 	<<link_order>> structures attached to the <<map_head.link_order>>
309 	field (the <<link_order>> structure is defined in
310 	<<bfdlink.h>>).  These structures describe how to create the
311 	contents of the output section in terms of the contents of
312 	various input sections, fill constants, and, eventually, other
313 	types of information.  They also describe relocs that must be
314 	created by the BFD backend, but do not correspond to any input
315 	file; this is used to support -Ur, which builds constructors
316 	while generating a relocatable object file.
317 
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 	Relocating the section contents
322 
323 	The <<_bfd_final_link>> function should look through the
324 	<<link_order>> structures attached to each section of the
325 	output file.  Each <<link_order>> structure should either be
326 	handled specially, or it should be passed to the function
327 	<<_bfd_default_link_order>> which will do the right thing
328 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
329 
330 	For efficiency, a <<link_order>> of type
331 	<<bfd_indirect_link_order>> whose associated section belongs
332 	to a BFD of the same format as the output BFD must be handled
333 	specially.  This type of <<link_order>> describes part of an
334 	output section in terms of a section belonging to one of the
335 	input files.  The <<_bfd_final_link>> function should read the
336 	contents of the section and any associated relocs, apply the
337 	relocs to the section contents, and write out the modified
338 	section contents.  If performing a relocatable link, the
339 	relocs themselves must also be modified and written out.
340 
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 	The functions <<_bfd_relocate_contents>> and
344 	<<_bfd_final_link_relocate>> provide some general support for
345 	performing the actual relocations, notably overflow checking.
346 	Their arguments include information about the symbol the
347 	relocation is against and a <<reloc_howto_type>> argument
348 	which describes the relocation to perform.  These functions
349 	are defined in <<reloc.c>>.
350 
351 	The a.out function which handles reading, relocating, and
352 	writing section contents is <<aout_link_input_section>>.  The
353 	actual relocation is done in <<aout_link_input_section_std>>
354 	and <<aout_link_input_section_ext>>.
355 
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 	Writing the symbol table
360 
361 	The <<_bfd_final_link>> function must gather all the symbols
362 	in the input files and write them out.  It must also write out
363 	all the symbols in the global hash table.  This must be
364 	controlled by the <<strip>> and <<discard>> fields of the
365 	<<bfd_link_info>> structure.
366 
367 	The local symbols of the input files will not have been
368 	entered into the linker hash table.  The <<_bfd_final_link>>
369 	routine must consider each input file and include the symbols
370 	in the output file.  It may be convenient to do this when
371 	looking through the <<link_order>> structures, or it may be
372 	done by stepping through the <<input_bfds>> list.
373 
374 	The <<_bfd_final_link>> routine must also traverse the global
375 	hash table to gather all the externally visible symbols.  It
376 	is possible that most of the externally visible symbols may be
377 	written out when considering the symbols of each input file,
378 	but it is still necessary to traverse the hash table since the
379 	linker script may have defined some symbols that are not in
380 	any of the input files.
381 
382 	The <<strip>> field of the <<bfd_link_info>> structure
383 	controls which symbols are written out.  The possible values
384 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
385 	then the <<keep_hash>> field of the <<bfd_link_info>>
386 	structure is a hash table of symbols to keep; each symbol
387 	should be looked up in this hash table, and only symbols which
388 	are present should be included in the output file.
389 
390 	If the <<strip>> field of the <<bfd_link_info>> structure
391 	permits local symbols to be written out, the <<discard>> field
392 	is used to further controls which local symbols are included
393 	in the output file.  If the value is <<discard_l>>, then all
394 	local symbols which begin with a certain prefix are discarded;
395 	this is controlled by the <<bfd_is_local_label_name>> entry point.
396 
397 	The a.out backend handles symbols by calling
398 	<<aout_link_write_symbols>> on each input BFD and then
399 	traversing the global hash table with the function
400 	<<aout_link_write_other_symbol>>.  It builds a string table
401 	while writing out the symbols, which is written to the output
402 	file at the end of <<NAME(aout,final_link)>>.
403 */
404 
405 static bfd_boolean generic_link_add_object_symbols
406   (bfd *, struct bfd_link_info *);
407 static bfd_boolean generic_link_check_archive_element
408   (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
409    bfd_boolean *);
410 static bfd_boolean generic_link_add_symbol_list
411   (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **);
412 static bfd_boolean generic_add_output_symbol
413   (bfd *, size_t *psymalloc, asymbol *);
414 static bfd_boolean default_data_link_order
415   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
416 static bfd_boolean default_indirect_link_order
417   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
418    bfd_boolean);
419 
420 /* The link hash table structure is defined in bfdlink.h.  It provides
421    a base hash table which the backend specific hash tables are built
422    upon.  */
423 
424 /* Routine to create an entry in the link hash table.  */
425 
426 struct bfd_hash_entry *
427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
428 			struct bfd_hash_table *table,
429 			const char *string)
430 {
431   /* Allocate the structure if it has not already been allocated by a
432      subclass.  */
433   if (entry == NULL)
434     {
435       entry = (struct bfd_hash_entry *)
436 	  bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
437       if (entry == NULL)
438 	return entry;
439     }
440 
441   /* Call the allocation method of the superclass.  */
442   entry = bfd_hash_newfunc (entry, table, string);
443   if (entry)
444     {
445       struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
446 
447       /* Initialize the local fields.  */
448       memset ((char *) &h->root + sizeof (h->root), 0,
449 	      sizeof (*h) - sizeof (h->root));
450     }
451 
452   return entry;
453 }
454 
455 /* Initialize a link hash table.  The BFD argument is the one
456    responsible for creating this table.  */
457 
458 bfd_boolean
459 _bfd_link_hash_table_init
460   (struct bfd_link_hash_table *table,
461    bfd *abfd ATTRIBUTE_UNUSED,
462    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
463 				      struct bfd_hash_table *,
464 				      const char *),
465    unsigned int entsize)
466 {
467   bfd_boolean ret;
468 
469   BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
470   table->undefs = NULL;
471   table->undefs_tail = NULL;
472   table->type = bfd_link_generic_hash_table;
473 
474   ret = bfd_hash_table_init (&table->table, newfunc, entsize);
475   if (ret)
476     {
477       /* Arrange for destruction of this hash table on closing ABFD.  */
478       table->hash_table_free = _bfd_generic_link_hash_table_free;
479       abfd->link.hash = table;
480       abfd->is_linker_output = TRUE;
481     }
482   return ret;
483 }
484 
485 /* Look up a symbol in a link hash table.  If follow is TRUE, we
486    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
487    the real symbol.  */
488 
489 struct bfd_link_hash_entry *
490 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
491 		      const char *string,
492 		      bfd_boolean create,
493 		      bfd_boolean copy,
494 		      bfd_boolean follow)
495 {
496   struct bfd_link_hash_entry *ret;
497 
498   if (table == NULL || string == NULL)
499     return NULL;
500 
501   ret = ((struct bfd_link_hash_entry *)
502 	 bfd_hash_lookup (&table->table, string, create, copy));
503 
504   if (follow && ret != NULL)
505     {
506       while (ret->type == bfd_link_hash_indirect
507 	     || ret->type == bfd_link_hash_warning)
508 	ret = ret->u.i.link;
509     }
510 
511   return ret;
512 }
513 
514 /* Look up a symbol in the main linker hash table if the symbol might
515    be wrapped.  This should only be used for references to an
516    undefined symbol, not for definitions of a symbol.  */
517 
518 struct bfd_link_hash_entry *
519 bfd_wrapped_link_hash_lookup (bfd *abfd,
520 			      struct bfd_link_info *info,
521 			      const char *string,
522 			      bfd_boolean create,
523 			      bfd_boolean copy,
524 			      bfd_boolean follow)
525 {
526   bfd_size_type amt;
527 
528   if (info->wrap_hash != NULL)
529     {
530       const char *l;
531       char prefix = '\0';
532 
533       l = string;
534       if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
535 	{
536 	  prefix = *l;
537 	  ++l;
538 	}
539 
540 #undef WRAP
541 #define WRAP "__wrap_"
542 
543       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
544 	{
545 	  char *n;
546 	  struct bfd_link_hash_entry *h;
547 
548 	  /* This symbol is being wrapped.  We want to replace all
549 	     references to SYM with references to __wrap_SYM.  */
550 
551 	  amt = strlen (l) + sizeof WRAP + 1;
552 	  n = (char *) bfd_malloc (amt);
553 	  if (n == NULL)
554 	    return NULL;
555 
556 	  n[0] = prefix;
557 	  n[1] = '\0';
558 	  strcat (n, WRAP);
559 	  strcat (n, l);
560 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
561 	  free (n);
562 	  return h;
563 	}
564 
565 #undef  REAL
566 #define REAL "__real_"
567 
568       if (*l == '_'
569 	  && CONST_STRNEQ (l, REAL)
570 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
571 			      FALSE, FALSE) != NULL)
572 	{
573 	  char *n;
574 	  struct bfd_link_hash_entry *h;
575 
576 	  /* This is a reference to __real_SYM, where SYM is being
577 	     wrapped.  We want to replace all references to __real_SYM
578 	     with references to SYM.  */
579 
580 	  amt = strlen (l + sizeof REAL - 1) + 2;
581 	  n = (char *) bfd_malloc (amt);
582 	  if (n == NULL)
583 	    return NULL;
584 
585 	  n[0] = prefix;
586 	  n[1] = '\0';
587 	  strcat (n, l + sizeof REAL - 1);
588 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
589 	  free (n);
590 	  return h;
591 	}
592 
593 #undef REAL
594     }
595 
596   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
597 }
598 
599 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
600    and the remainder is found in wrap_hash, return the real symbol.  */
601 
602 struct bfd_link_hash_entry *
603 unwrap_hash_lookup (struct bfd_link_info *info,
604 		    bfd *input_bfd,
605 		    struct bfd_link_hash_entry *h)
606 {
607   const char *l = h->root.string;
608 
609   if (*l == bfd_get_symbol_leading_char (input_bfd)
610       || *l == info->wrap_char)
611     ++l;
612 
613   if (CONST_STRNEQ (l, WRAP))
614     {
615       l += sizeof WRAP - 1;
616 
617       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
618 	{
619 	  char save = 0;
620 	  if (l - (sizeof WRAP - 1) != h->root.string)
621 	    {
622 	      --l;
623 	      save = *l;
624 	      *(char *) l = *h->root.string;
625 	    }
626 	  h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
627 	  if (save)
628 	    *(char *) l = save;
629 	}
630     }
631   return h;
632 }
633 #undef WRAP
634 
635 /* Traverse a generic link hash table.  Differs from bfd_hash_traverse
636    in the treatment of warning symbols.  When warning symbols are
637    created they replace the real symbol, so you don't get to see the
638    real symbol in a bfd_hash_traverse.  This traversal calls func with
639    the real symbol.  */
640 
641 void
642 bfd_link_hash_traverse
643   (struct bfd_link_hash_table *htab,
644    bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
645    void *info)
646 {
647   unsigned int i;
648 
649   htab->table.frozen = 1;
650   for (i = 0; i < htab->table.size; i++)
651     {
652       struct bfd_link_hash_entry *p;
653 
654       p = (struct bfd_link_hash_entry *) htab->table.table[i];
655       for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
656 	if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
657 	  goto out;
658     }
659  out:
660   htab->table.frozen = 0;
661 }
662 
663 /* Add a symbol to the linker hash table undefs list.  */
664 
665 void
666 bfd_link_add_undef (struct bfd_link_hash_table *table,
667 		    struct bfd_link_hash_entry *h)
668 {
669   BFD_ASSERT (h->u.undef.next == NULL);
670   if (table->undefs_tail != NULL)
671     table->undefs_tail->u.undef.next = h;
672   if (table->undefs == NULL)
673     table->undefs = h;
674   table->undefs_tail = h;
675 }
676 
677 /* The undefs list was designed so that in normal use we don't need to
678    remove entries.  However, if symbols on the list are changed from
679    bfd_link_hash_undefined to either bfd_link_hash_undefweak or
680    bfd_link_hash_new for some reason, then they must be removed from the
681    list.  Failure to do so might result in the linker attempting to add
682    the symbol to the list again at a later stage.  */
683 
684 void
685 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
686 {
687   struct bfd_link_hash_entry **pun;
688 
689   pun = &table->undefs;
690   while (*pun != NULL)
691     {
692       struct bfd_link_hash_entry *h = *pun;
693 
694       if (h->type == bfd_link_hash_new
695 	  || h->type == bfd_link_hash_undefweak)
696 	{
697 	  *pun = h->u.undef.next;
698 	  h->u.undef.next = NULL;
699 	  if (h == table->undefs_tail)
700 	    {
701 	      if (pun == &table->undefs)
702 		table->undefs_tail = NULL;
703 	      else
704 		/* pun points at an u.undef.next field.  Go back to
705 		   the start of the link_hash_entry.  */
706 		table->undefs_tail = (struct bfd_link_hash_entry *)
707 		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
708 	      break;
709 	    }
710 	}
711       else
712 	pun = &h->u.undef.next;
713     }
714 }
715 
716 /* Routine to create an entry in a generic link hash table.  */
717 
718 struct bfd_hash_entry *
719 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
720 				struct bfd_hash_table *table,
721 				const char *string)
722 {
723   /* Allocate the structure if it has not already been allocated by a
724      subclass.  */
725   if (entry == NULL)
726     {
727       entry = (struct bfd_hash_entry *)
728 	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
729       if (entry == NULL)
730 	return entry;
731     }
732 
733   /* Call the allocation method of the superclass.  */
734   entry = _bfd_link_hash_newfunc (entry, table, string);
735   if (entry)
736     {
737       struct generic_link_hash_entry *ret;
738 
739       /* Set local fields.  */
740       ret = (struct generic_link_hash_entry *) entry;
741       ret->written = FALSE;
742       ret->sym = NULL;
743     }
744 
745   return entry;
746 }
747 
748 /* Create a generic link hash table.  */
749 
750 struct bfd_link_hash_table *
751 _bfd_generic_link_hash_table_create (bfd *abfd)
752 {
753   struct generic_link_hash_table *ret;
754   bfd_size_type amt = sizeof (struct generic_link_hash_table);
755 
756   ret = (struct generic_link_hash_table *) bfd_malloc (amt);
757   if (ret == NULL)
758     return NULL;
759   if (! _bfd_link_hash_table_init (&ret->root, abfd,
760 				   _bfd_generic_link_hash_newfunc,
761 				   sizeof (struct generic_link_hash_entry)))
762     {
763       free (ret);
764       return NULL;
765     }
766   return &ret->root;
767 }
768 
769 void
770 _bfd_generic_link_hash_table_free (bfd *obfd)
771 {
772   struct generic_link_hash_table *ret;
773 
774   BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
775   ret = (struct generic_link_hash_table *) obfd->link.hash;
776   bfd_hash_table_free (&ret->root.table);
777   free (ret);
778   obfd->link.hash = NULL;
779   obfd->is_linker_output = FALSE;
780 }
781 
782 /* Grab the symbols for an object file when doing a generic link.  We
783    store the symbols in the outsymbols field.  We need to keep them
784    around for the entire link to ensure that we only read them once.
785    If we read them multiple times, we might wind up with relocs and
786    the hash table pointing to different instances of the symbol
787    structure.  */
788 
789 bfd_boolean
790 bfd_generic_link_read_symbols (bfd *abfd)
791 {
792   if (bfd_get_outsymbols (abfd) == NULL)
793     {
794       long symsize;
795       long symcount;
796 
797       symsize = bfd_get_symtab_upper_bound (abfd);
798       if (symsize < 0)
799 	return FALSE;
800       bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
801 								    symsize);
802       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
803 	return FALSE;
804       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
805       if (symcount < 0)
806 	return FALSE;
807       bfd_get_symcount (abfd) = symcount;
808     }
809 
810   return TRUE;
811 }
812 
813 /* Indicate that we are only retrieving symbol values from this
814    section.  We want the symbols to act as though the values in the
815    file are absolute.  */
816 
817 void
818 _bfd_generic_link_just_syms (asection *sec,
819 			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
820 {
821   sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
822   sec->output_section = bfd_abs_section_ptr;
823   sec->output_offset = sec->vma;
824 }
825 
826 /* Copy the symbol type and other attributes for a linker script
827    assignment from HSRC to HDEST.
828    The default implementation does nothing.  */
829 void
830 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
831     struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
832     struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
833 {
834 }
835 
836 /* Generic function to add symbols from an object file to the
837    global hash table.  */
838 
839 bfd_boolean
840 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
841 {
842   bfd_boolean ret;
843 
844   switch (bfd_get_format (abfd))
845     {
846     case bfd_object:
847       ret = generic_link_add_object_symbols (abfd, info);
848       break;
849     case bfd_archive:
850       ret = (_bfd_generic_link_add_archive_symbols
851 	     (abfd, info, generic_link_check_archive_element));
852       break;
853     default:
854       bfd_set_error (bfd_error_wrong_format);
855       ret = FALSE;
856     }
857 
858   return ret;
859 }
860 
861 /* Add symbols from an object file to the global hash table.  */
862 
863 static bfd_boolean
864 generic_link_add_object_symbols (bfd *abfd,
865 				 struct bfd_link_info *info)
866 {
867   bfd_size_type symcount;
868   struct bfd_symbol **outsyms;
869 
870   if (!bfd_generic_link_read_symbols (abfd))
871     return FALSE;
872   symcount = _bfd_generic_link_get_symcount (abfd);
873   outsyms = _bfd_generic_link_get_symbols (abfd);
874   return generic_link_add_symbol_list (abfd, info, symcount, outsyms);
875 }
876 
877 /* Generic function to add symbols from an archive file to the global
878    hash file.  This function presumes that the archive symbol table
879    has already been read in (this is normally done by the
880    bfd_check_format entry point).  It looks through the archive symbol
881    table for symbols that are undefined or common in the linker global
882    symbol hash table.  When one is found, the CHECKFN argument is used
883    to see if an object file should be included.  This allows targets
884    to customize common symbol behaviour.  CHECKFN should set *PNEEDED
885    to TRUE if the object file should be included, and must also call
886    the bfd_link_info add_archive_element callback function and handle
887    adding the symbols to the global hash table.  CHECKFN must notice
888    if the callback indicates a substitute BFD, and arrange to add
889    those symbols instead if it does so.  CHECKFN should only return
890    FALSE if some sort of error occurs.  */
891 
892 bfd_boolean
893 _bfd_generic_link_add_archive_symbols
894   (bfd *abfd,
895    struct bfd_link_info *info,
896    bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
897 			   struct bfd_link_hash_entry *, const char *,
898 			   bfd_boolean *))
899 {
900   bfd_boolean loop;
901   bfd_size_type amt;
902   unsigned char *included;
903 
904   if (! bfd_has_map (abfd))
905     {
906       /* An empty archive is a special case.  */
907       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
908 	return TRUE;
909       bfd_set_error (bfd_error_no_armap);
910       return FALSE;
911     }
912 
913   amt = bfd_ardata (abfd)->symdef_count;
914   if (amt == 0)
915     return TRUE;
916   amt *= sizeof (*included);
917   included = (unsigned char *) bfd_zmalloc (amt);
918   if (included == NULL)
919     return FALSE;
920 
921   do
922     {
923       carsym *arsyms;
924       carsym *arsym_end;
925       carsym *arsym;
926       unsigned int indx;
927       file_ptr last_ar_offset = -1;
928       bfd_boolean needed = FALSE;
929       bfd *element = NULL;
930 
931       loop = FALSE;
932       arsyms = bfd_ardata (abfd)->symdefs;
933       arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
934       for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
935 	{
936 	  struct bfd_link_hash_entry *h;
937 	  struct bfd_link_hash_entry *undefs_tail;
938 
939 	  if (included[indx])
940 	    continue;
941 	  if (needed && arsym->file_offset == last_ar_offset)
942 	    {
943 	      included[indx] = 1;
944 	      continue;
945 	    }
946 
947 	  if (arsym->name == NULL)
948 	    goto error_return;
949 
950 	  h = bfd_link_hash_lookup (info->hash, arsym->name,
951 				    FALSE, FALSE, TRUE);
952 
953 	  if (h == NULL
954 	      && info->pei386_auto_import
955 	      && CONST_STRNEQ (arsym->name, "__imp_"))
956 	    h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
957 				      FALSE, FALSE, TRUE);
958 	  if (h == NULL)
959 	    continue;
960 
961 	  if (h->type != bfd_link_hash_undefined
962 	      && h->type != bfd_link_hash_common)
963 	    {
964 	      if (h->type != bfd_link_hash_undefweak)
965 		/* Symbol must be defined.  Don't check it again.  */
966 		included[indx] = 1;
967 	      continue;
968 	    }
969 
970 	  if (last_ar_offset != arsym->file_offset)
971 	    {
972 	      last_ar_offset = arsym->file_offset;
973 	      element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
974 	      if (element == NULL
975 		  || !bfd_check_format (element, bfd_object))
976 		goto error_return;
977 	    }
978 
979 	  undefs_tail = info->hash->undefs_tail;
980 
981 	  /* CHECKFN will see if this element should be included, and
982 	     go ahead and include it if appropriate.  */
983 	  if (! (*checkfn) (element, info, h, arsym->name, &needed))
984 	    goto error_return;
985 
986 	  if (needed)
987 	    {
988 	      unsigned int mark;
989 
990 	      /* Look backward to mark all symbols from this object file
991 		 which we have already seen in this pass.  */
992 	      mark = indx;
993 	      do
994 		{
995 		  included[mark] = 1;
996 		  if (mark == 0)
997 		    break;
998 		  --mark;
999 		}
1000 	      while (arsyms[mark].file_offset == last_ar_offset);
1001 
1002 	      if (undefs_tail != info->hash->undefs_tail)
1003 		loop = TRUE;
1004 	    }
1005 	}
1006     } while (loop);
1007 
1008   free (included);
1009   return TRUE;
1010 
1011  error_return:
1012   free (included);
1013   return FALSE;
1014 }
1015 
1016 /* See if we should include an archive element.  */
1017 
1018 static bfd_boolean
1019 generic_link_check_archive_element (bfd *abfd,
1020 				    struct bfd_link_info *info,
1021 				    struct bfd_link_hash_entry *h,
1022 				    const char *name ATTRIBUTE_UNUSED,
1023 				    bfd_boolean *pneeded)
1024 {
1025   asymbol **pp, **ppend;
1026 
1027   *pneeded = FALSE;
1028 
1029   if (!bfd_generic_link_read_symbols (abfd))
1030     return FALSE;
1031 
1032   pp = _bfd_generic_link_get_symbols (abfd);
1033   ppend = pp + _bfd_generic_link_get_symcount (abfd);
1034   for (; pp < ppend; pp++)
1035     {
1036       asymbol *p;
1037 
1038       p = *pp;
1039 
1040       /* We are only interested in globally visible symbols.  */
1041       if (! bfd_is_com_section (p->section)
1042 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1043 	continue;
1044 
1045       /* We are only interested if we know something about this
1046 	 symbol, and it is undefined or common.  An undefined weak
1047 	 symbol (type bfd_link_hash_undefweak) is not considered to be
1048 	 a reference when pulling files out of an archive.  See the
1049 	 SVR4 ABI, p. 4-27.  */
1050       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1051 				FALSE, TRUE);
1052       if (h == NULL
1053 	  || (h->type != bfd_link_hash_undefined
1054 	      && h->type != bfd_link_hash_common))
1055 	continue;
1056 
1057       /* P is a symbol we are looking for.  */
1058 
1059       if (! bfd_is_com_section (p->section)
1060 	  || (h->type == bfd_link_hash_undefined
1061 	      && h->u.undef.abfd == NULL))
1062 	{
1063 	  /* P is not a common symbol, or an undefined reference was
1064 	     created from outside BFD such as from a linker -u option.
1065 	     This object file defines the symbol, so pull it in.  */
1066 	  *pneeded = TRUE;
1067 	  if (!(*info->callbacks
1068 		->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1069 					&abfd))
1070 	    return FALSE;
1071 	  /* Potentially, the add_archive_element hook may have set a
1072 	     substitute BFD for us.  */
1073 	  return bfd_link_add_symbols (abfd, info);
1074 	}
1075 
1076       /* P is a common symbol.  */
1077 
1078       if (h->type == bfd_link_hash_undefined)
1079 	{
1080 	  bfd *symbfd;
1081 	  bfd_vma size;
1082 	  unsigned int power;
1083 
1084 	  /* Turn the symbol into a common symbol but do not link in
1085 	     the object file.  This is how a.out works.  Object
1086 	     formats that require different semantics must implement
1087 	     this function differently.  This symbol is already on the
1088 	     undefs list.  We add the section to a common section
1089 	     attached to symbfd to ensure that it is in a BFD which
1090 	     will be linked in.  */
1091 	  symbfd = h->u.undef.abfd;
1092 	  h->type = bfd_link_hash_common;
1093 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1094 	    bfd_hash_allocate (&info->hash->table,
1095 			       sizeof (struct bfd_link_hash_common_entry));
1096 	  if (h->u.c.p == NULL)
1097 	    return FALSE;
1098 
1099 	  size = bfd_asymbol_value (p);
1100 	  h->u.c.size = size;
1101 
1102 	  power = bfd_log2 (size);
1103 	  if (power > 4)
1104 	    power = 4;
1105 	  h->u.c.p->alignment_power = power;
1106 
1107 	  if (p->section == bfd_com_section_ptr)
1108 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1109 	  else
1110 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1111 							  p->section->name);
1112 	  h->u.c.p->section->flags |= SEC_ALLOC;
1113 	}
1114       else
1115 	{
1116 	  /* Adjust the size of the common symbol if necessary.  This
1117 	     is how a.out works.  Object formats that require
1118 	     different semantics must implement this function
1119 	     differently.  */
1120 	  if (bfd_asymbol_value (p) > h->u.c.size)
1121 	    h->u.c.size = bfd_asymbol_value (p);
1122 	}
1123     }
1124 
1125   /* This archive element is not needed.  */
1126   return TRUE;
1127 }
1128 
1129 /* Add the symbols from an object file to the global hash table.  ABFD
1130    is the object file.  INFO is the linker information.  SYMBOL_COUNT
1131    is the number of symbols.  SYMBOLS is the list of symbols.  */
1132 
1133 static bfd_boolean
1134 generic_link_add_symbol_list (bfd *abfd,
1135 			      struct bfd_link_info *info,
1136 			      bfd_size_type symbol_count,
1137 			      asymbol **symbols)
1138 {
1139   asymbol **pp, **ppend;
1140 
1141   pp = symbols;
1142   ppend = symbols + symbol_count;
1143   for (; pp < ppend; pp++)
1144     {
1145       asymbol *p;
1146 
1147       p = *pp;
1148 
1149       if ((p->flags & (BSF_INDIRECT
1150 		       | BSF_WARNING
1151 		       | BSF_GLOBAL
1152 		       | BSF_CONSTRUCTOR
1153 		       | BSF_WEAK)) != 0
1154 	  || bfd_is_und_section (bfd_get_section (p))
1155 	  || bfd_is_com_section (bfd_get_section (p))
1156 	  || bfd_is_ind_section (bfd_get_section (p)))
1157 	{
1158 	  const char *name;
1159 	  const char *string;
1160 	  struct generic_link_hash_entry *h;
1161 	  struct bfd_link_hash_entry *bh;
1162 
1163 	  string = name = bfd_asymbol_name (p);
1164 	  if (((p->flags & BSF_INDIRECT) != 0
1165 	       || bfd_is_ind_section (p->section))
1166 	      && pp + 1 < ppend)
1167 	    {
1168 	      pp++;
1169 	      string = bfd_asymbol_name (*pp);
1170 	    }
1171 	  else if ((p->flags & BSF_WARNING) != 0
1172 		   && pp + 1 < ppend)
1173 	    {
1174 	      /* The name of P is actually the warning string, and the
1175 		 next symbol is the one to warn about.  */
1176 	      pp++;
1177 	      name = bfd_asymbol_name (*pp);
1178 	    }
1179 
1180 	  bh = NULL;
1181 	  if (! (_bfd_generic_link_add_one_symbol
1182 		 (info, abfd, name, p->flags, bfd_get_section (p),
1183 		  p->value, string, FALSE, FALSE, &bh)))
1184 	    return FALSE;
1185 	  h = (struct generic_link_hash_entry *) bh;
1186 
1187 	  /* If this is a constructor symbol, and the linker didn't do
1188 	     anything with it, then we want to just pass the symbol
1189 	     through to the output file.  This will happen when
1190 	     linking with -r.  */
1191 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1192 	      && (h == NULL || h->root.type == bfd_link_hash_new))
1193 	    {
1194 	      p->udata.p = NULL;
1195 	      continue;
1196 	    }
1197 
1198 	  /* Save the BFD symbol so that we don't lose any backend
1199 	     specific information that may be attached to it.  We only
1200 	     want this one if it gives more information than the
1201 	     existing one; we don't want to replace a defined symbol
1202 	     with an undefined one.  This routine may be called with a
1203 	     hash table other than the generic hash table, so we only
1204 	     do this if we are certain that the hash table is a
1205 	     generic one.  */
1206 	  if (info->output_bfd->xvec == abfd->xvec)
1207 	    {
1208 	      if (h->sym == NULL
1209 		  || (! bfd_is_und_section (bfd_get_section (p))
1210 		      && (! bfd_is_com_section (bfd_get_section (p))
1211 			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1212 		{
1213 		  h->sym = p;
1214 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1215 		     reading, and it should go away when the COFF
1216 		     linker is switched to the new version.  */
1217 		  if (bfd_is_com_section (bfd_get_section (p)))
1218 		    p->flags |= BSF_OLD_COMMON;
1219 		}
1220 	    }
1221 
1222 	  /* Store a back pointer from the symbol to the hash
1223 	     table entry for the benefit of relaxation code until
1224 	     it gets rewritten to not use asymbol structures.
1225 	     Setting this is also used to check whether these
1226 	     symbols were set up by the generic linker.  */
1227 	  p->udata.p = h;
1228 	}
1229     }
1230 
1231   return TRUE;
1232 }
1233 
1234 /* We use a state table to deal with adding symbols from an object
1235    file.  The first index into the state table describes the symbol
1236    from the object file.  The second index into the state table is the
1237    type of the symbol in the hash table.  */
1238 
1239 /* The symbol from the object file is turned into one of these row
1240    values.  */
1241 
1242 enum link_row
1243 {
1244   UNDEF_ROW,		/* Undefined.  */
1245   UNDEFW_ROW,		/* Weak undefined.  */
1246   DEF_ROW,		/* Defined.  */
1247   DEFW_ROW,		/* Weak defined.  */
1248   COMMON_ROW,		/* Common.  */
1249   INDR_ROW,		/* Indirect.  */
1250   WARN_ROW,		/* Warning.  */
1251   SET_ROW		/* Member of set.  */
1252 };
1253 
1254 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1255 #undef FAIL
1256 
1257 /* The actions to take in the state table.  */
1258 
1259 enum link_action
1260 {
1261   FAIL,		/* Abort.  */
1262   UND,		/* Mark symbol undefined.  */
1263   WEAK,		/* Mark symbol weak undefined.  */
1264   DEF,		/* Mark symbol defined.  */
1265   DEFW,		/* Mark symbol weak defined.  */
1266   COM,		/* Mark symbol common.  */
1267   REF,		/* Mark defined symbol referenced.  */
1268   CREF,		/* Possibly warn about common reference to defined symbol.  */
1269   CDEF,		/* Define existing common symbol.  */
1270   NOACT,	/* No action.  */
1271   BIG,		/* Mark symbol common using largest size.  */
1272   MDEF,		/* Multiple definition error.  */
1273   MIND,		/* Multiple indirect symbols.  */
1274   IND,		/* Make indirect symbol.  */
1275   CIND,		/* Make indirect symbol from existing common symbol.  */
1276   SET,		/* Add value to set.  */
1277   MWARN,	/* Make warning symbol.  */
1278   WARN,		/* Warn if referenced, else MWARN.  */
1279   CYCLE,	/* Repeat with symbol pointed to.  */
1280   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1281   WARNC		/* Issue warning and then CYCLE.  */
1282 };
1283 
1284 /* The state table itself.  The first index is a link_row and the
1285    second index is a bfd_link_hash_type.  */
1286 
1287 static const enum link_action link_action[8][8] =
1288 {
1289   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1290   /* UNDEF_ROW	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1291   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1292   /* DEF_ROW	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1293   /* DEFW_ROW	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1294   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1295   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1296   /* WARN_ROW   */  {MWARN, WARN,  WARN,  WARN,  WARN,  WARN,  WARN,  NOACT },
1297   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1298 };
1299 
1300 /* Most of the entries in the LINK_ACTION table are straightforward,
1301    but a few are somewhat subtle.
1302 
1303    A reference to an indirect symbol (UNDEF_ROW/indr or
1304    UNDEFW_ROW/indr) is counted as a reference both to the indirect
1305    symbol and to the symbol the indirect symbol points to.
1306 
1307    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1308    causes the warning to be issued.
1309 
1310    A common definition of an indirect symbol (COMMON_ROW/indr) is
1311    treated as a multiple definition error.  Likewise for an indirect
1312    definition of a common symbol (INDR_ROW/com).
1313 
1314    An indirect definition of a warning (INDR_ROW/warn) does not cause
1315    the warning to be issued.
1316 
1317    If a warning is created for an indirect symbol (WARN_ROW/indr) no
1318    warning is created for the symbol the indirect symbol points to.
1319 
1320    Adding an entry to a set does not count as a reference to a set,
1321    and no warning is issued (SET_ROW/warn).  */
1322 
1323 /* Return the BFD in which a hash entry has been defined, if known.  */
1324 
1325 static bfd *
1326 hash_entry_bfd (struct bfd_link_hash_entry *h)
1327 {
1328   while (h->type == bfd_link_hash_warning)
1329     h = h->u.i.link;
1330   switch (h->type)
1331     {
1332     default:
1333       return NULL;
1334     case bfd_link_hash_undefined:
1335     case bfd_link_hash_undefweak:
1336       return h->u.undef.abfd;
1337     case bfd_link_hash_defined:
1338     case bfd_link_hash_defweak:
1339       return h->u.def.section->owner;
1340     case bfd_link_hash_common:
1341       return h->u.c.p->section->owner;
1342     }
1343   /*NOTREACHED*/
1344 }
1345 
1346 /* Add a symbol to the global hash table.
1347    ABFD is the BFD the symbol comes from.
1348    NAME is the name of the symbol.
1349    FLAGS is the BSF_* bits associated with the symbol.
1350    SECTION is the section in which the symbol is defined; this may be
1351      bfd_und_section_ptr or bfd_com_section_ptr.
1352    VALUE is the value of the symbol, relative to the section.
1353    STRING is used for either an indirect symbol, in which case it is
1354      the name of the symbol to indirect to, or a warning symbol, in
1355      which case it is the warning string.
1356    COPY is TRUE if NAME or STRING must be copied into locally
1357      allocated memory if they need to be saved.
1358    COLLECT is TRUE if we should automatically collect gcc constructor
1359      or destructor names as collect2 does.
1360    HASHP, if not NULL, is a place to store the created hash table
1361      entry; if *HASHP is not NULL, the caller has already looked up
1362      the hash table entry, and stored it in *HASHP.  */
1363 
1364 bfd_boolean
1365 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1366 				  bfd *abfd,
1367 				  const char *name,
1368 				  flagword flags,
1369 				  asection *section,
1370 				  bfd_vma value,
1371 				  const char *string,
1372 				  bfd_boolean copy,
1373 				  bfd_boolean collect,
1374 				  struct bfd_link_hash_entry **hashp)
1375 {
1376   enum link_row row;
1377   struct bfd_link_hash_entry *h;
1378   struct bfd_link_hash_entry *inh = NULL;
1379   bfd_boolean cycle;
1380 
1381   BFD_ASSERT (section != NULL);
1382 
1383   if (bfd_is_ind_section (section)
1384       || (flags & BSF_INDIRECT) != 0)
1385     {
1386       row = INDR_ROW;
1387       /* Create the indirect symbol here.  This is for the benefit of
1388 	 the plugin "notice" function.
1389 	 STRING is the name of the symbol we want to indirect to.  */
1390       inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1391 					  copy, FALSE);
1392       if (inh == NULL)
1393 	return FALSE;
1394     }
1395   else if ((flags & BSF_WARNING) != 0)
1396     row = WARN_ROW;
1397   else if ((flags & BSF_CONSTRUCTOR) != 0)
1398     row = SET_ROW;
1399   else if (bfd_is_und_section (section))
1400     {
1401       if ((flags & BSF_WEAK) != 0)
1402 	row = UNDEFW_ROW;
1403       else
1404 	row = UNDEF_ROW;
1405     }
1406   else if ((flags & BSF_WEAK) != 0)
1407     row = DEFW_ROW;
1408   else if (bfd_is_com_section (section))
1409     {
1410       row = COMMON_ROW;
1411       if (!bfd_link_relocatable (info)
1412 	  && name[0] == '_'
1413 	  && name[1] == '_'
1414 	  && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1415 	_bfd_error_handler
1416 	  (_("%pB: plugin needed to handle lto object"), abfd);
1417     }
1418   else
1419     row = DEF_ROW;
1420 
1421   if (hashp != NULL && *hashp != NULL)
1422     h = *hashp;
1423   else
1424     {
1425       if (row == UNDEF_ROW || row == UNDEFW_ROW)
1426 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1427       else
1428 	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1429       if (h == NULL)
1430 	{
1431 	  if (hashp != NULL)
1432 	    *hashp = NULL;
1433 	  return FALSE;
1434 	}
1435     }
1436 
1437   if (info->notice_all
1438       || (info->notice_hash != NULL
1439 	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1440     {
1441       if (! (*info->callbacks->notice) (info, h, inh,
1442 					abfd, section, value, flags))
1443 	return FALSE;
1444     }
1445 
1446   if (hashp != NULL)
1447     *hashp = h;
1448 
1449   do
1450     {
1451       enum link_action action;
1452       int prev;
1453 
1454       prev = h->type;
1455       /* Treat symbols defined by early linker script pass as undefined.  */
1456       if (h->ldscript_def)
1457 	prev = bfd_link_hash_undefined;
1458       cycle = FALSE;
1459       action = link_action[(int) row][prev];
1460       switch (action)
1461 	{
1462 	case FAIL:
1463 	  abort ();
1464 
1465 	case NOACT:
1466 	  /* Do nothing.  */
1467 	  break;
1468 
1469 	case UND:
1470 	  /* Make a new undefined symbol.  */
1471 	  h->type = bfd_link_hash_undefined;
1472 	  h->u.undef.abfd = abfd;
1473 	  bfd_link_add_undef (info->hash, h);
1474 	  break;
1475 
1476 	case WEAK:
1477 	  /* Make a new weak undefined symbol.  */
1478 	  h->type = bfd_link_hash_undefweak;
1479 	  h->u.undef.abfd = abfd;
1480 	  break;
1481 
1482 	case CDEF:
1483 	  /* We have found a definition for a symbol which was
1484 	     previously common.  */
1485 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1486 	  (*info->callbacks->multiple_common) (info, h, abfd,
1487 					       bfd_link_hash_defined, 0);
1488 	  /* Fall through.  */
1489 	case DEF:
1490 	case DEFW:
1491 	  {
1492 	    enum bfd_link_hash_type oldtype;
1493 
1494 	    /* Define a symbol.  */
1495 	    oldtype = h->type;
1496 	    if (action == DEFW)
1497 	      h->type = bfd_link_hash_defweak;
1498 	    else
1499 	      h->type = bfd_link_hash_defined;
1500 	    h->u.def.section = section;
1501 	    h->u.def.value = value;
1502 	    h->linker_def = 0;
1503 	    h->ldscript_def = 0;
1504 
1505 	    /* If we have been asked to, we act like collect2 and
1506 	       identify all functions that might be global
1507 	       constructors and destructors and pass them up in a
1508 	       callback.  We only do this for certain object file
1509 	       types, since many object file types can handle this
1510 	       automatically.  */
1511 	    if (collect && name[0] == '_')
1512 	      {
1513 		const char *s;
1514 
1515 		/* A constructor or destructor name starts like this:
1516 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1517 		   the second are the same character (we accept any
1518 		   character there, in case a new object file format
1519 		   comes along with even worse naming restrictions).  */
1520 
1521 #define CONS_PREFIX "GLOBAL_"
1522 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1523 
1524 		s = name + 1;
1525 		while (*s == '_')
1526 		  ++s;
1527 		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1528 		  {
1529 		    char c;
1530 
1531 		    c = s[CONS_PREFIX_LEN + 1];
1532 		    if ((c == 'I' || c == 'D')
1533 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1534 		      {
1535 			/* If this is a definition of a symbol which
1536 			   was previously weakly defined, we are in
1537 			   trouble.  We have already added a
1538 			   constructor entry for the weak defined
1539 			   symbol, and now we are trying to add one
1540 			   for the new symbol.  Fortunately, this case
1541 			   should never arise in practice.  */
1542 			if (oldtype == bfd_link_hash_defweak)
1543 			  abort ();
1544 
1545 			(*info->callbacks->constructor) (info, c == 'I',
1546 							 h->root.string, abfd,
1547 							 section, value);
1548 		      }
1549 		  }
1550 	      }
1551 	  }
1552 
1553 	  break;
1554 
1555 	case COM:
1556 	  /* We have found a common definition for a symbol.  */
1557 	  if (h->type == bfd_link_hash_new)
1558 	    bfd_link_add_undef (info->hash, h);
1559 	  h->type = bfd_link_hash_common;
1560 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1561 	    bfd_hash_allocate (&info->hash->table,
1562 			       sizeof (struct bfd_link_hash_common_entry));
1563 	  if (h->u.c.p == NULL)
1564 	    return FALSE;
1565 
1566 	  h->u.c.size = value;
1567 
1568 	  /* Select a default alignment based on the size.  This may
1569 	     be overridden by the caller.  */
1570 	  {
1571 	    unsigned int power;
1572 
1573 	    power = bfd_log2 (value);
1574 	    if (power > 4)
1575 	      power = 4;
1576 	    h->u.c.p->alignment_power = power;
1577 	  }
1578 
1579 	  /* The section of a common symbol is only used if the common
1580 	     symbol is actually allocated.  It basically provides a
1581 	     hook for the linker script to decide which output section
1582 	     the common symbols should be put in.  In most cases, the
1583 	     section of a common symbol will be bfd_com_section_ptr,
1584 	     the code here will choose a common symbol section named
1585 	     "COMMON", and the linker script will contain *(COMMON) in
1586 	     the appropriate place.  A few targets use separate common
1587 	     sections for small symbols, and they require special
1588 	     handling.  */
1589 	  if (section == bfd_com_section_ptr)
1590 	    {
1591 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1592 	      h->u.c.p->section->flags |= SEC_ALLOC;
1593 	    }
1594 	  else if (section->owner != abfd)
1595 	    {
1596 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1597 							    section->name);
1598 	      h->u.c.p->section->flags |= SEC_ALLOC;
1599 	    }
1600 	  else
1601 	    h->u.c.p->section = section;
1602 	  h->linker_def = 0;
1603 	  h->ldscript_def = 0;
1604 	  break;
1605 
1606 	case REF:
1607 	  /* A reference to a defined symbol.  */
1608 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1609 	    h->u.undef.next = h;
1610 	  break;
1611 
1612 	case BIG:
1613 	  /* We have found a common definition for a symbol which
1614 	     already had a common definition.  Use the maximum of the
1615 	     two sizes, and use the section required by the larger symbol.  */
1616 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1617 	  (*info->callbacks->multiple_common) (info, h, abfd,
1618 					       bfd_link_hash_common, value);
1619 	  if (value > h->u.c.size)
1620 	    {
1621 	      unsigned int power;
1622 
1623 	      h->u.c.size = value;
1624 
1625 	      /* Select a default alignment based on the size.  This may
1626 		 be overridden by the caller.  */
1627 	      power = bfd_log2 (value);
1628 	      if (power > 4)
1629 		power = 4;
1630 	      h->u.c.p->alignment_power = power;
1631 
1632 	      /* Some systems have special treatment for small commons,
1633 		 hence we want to select the section used by the larger
1634 		 symbol.  This makes sure the symbol does not go in a
1635 		 small common section if it is now too large.  */
1636 	      if (section == bfd_com_section_ptr)
1637 		{
1638 		  h->u.c.p->section
1639 		    = bfd_make_section_old_way (abfd, "COMMON");
1640 		  h->u.c.p->section->flags |= SEC_ALLOC;
1641 		}
1642 	      else if (section->owner != abfd)
1643 		{
1644 		  h->u.c.p->section
1645 		    = bfd_make_section_old_way (abfd, section->name);
1646 		  h->u.c.p->section->flags |= SEC_ALLOC;
1647 		}
1648 	      else
1649 		h->u.c.p->section = section;
1650 	    }
1651 	  break;
1652 
1653 	case CREF:
1654 	  /* We have found a common definition for a symbol which
1655 	     was already defined.  */
1656 	  (*info->callbacks->multiple_common) (info, h, abfd,
1657 					       bfd_link_hash_common, value);
1658 	  break;
1659 
1660 	case MIND:
1661 	  /* Multiple indirect symbols.  This is OK if they both point
1662 	     to the same symbol.  */
1663 	  if (strcmp (h->u.i.link->root.string, string) == 0)
1664 	    break;
1665 	  /* Fall through.  */
1666 	case MDEF:
1667 	  /* Handle a multiple definition.  */
1668 	  (*info->callbacks->multiple_definition) (info, h,
1669 						   abfd, section, value);
1670 	  break;
1671 
1672 	case CIND:
1673 	  /* Create an indirect symbol from an existing common symbol.  */
1674 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1675 	  (*info->callbacks->multiple_common) (info, h, abfd,
1676 					       bfd_link_hash_indirect, 0);
1677 	  /* Fall through.  */
1678 	case IND:
1679 	  if (inh->type == bfd_link_hash_indirect
1680 	      && inh->u.i.link == h)
1681 	    {
1682 	      _bfd_error_handler
1683 		/* xgettext:c-format */
1684 		(_("%pB: indirect symbol `%s' to `%s' is a loop"),
1685 		 abfd, name, string);
1686 	      bfd_set_error (bfd_error_invalid_operation);
1687 	      return FALSE;
1688 	    }
1689 	  if (inh->type == bfd_link_hash_new)
1690 	    {
1691 	      inh->type = bfd_link_hash_undefined;
1692 	      inh->u.undef.abfd = abfd;
1693 	      bfd_link_add_undef (info->hash, inh);
1694 	    }
1695 
1696 	  /* If the indirect symbol has been referenced, we need to
1697 	     push the reference down to the symbol we are referencing.  */
1698 	  if (h->type != bfd_link_hash_new)
1699 	    {
1700 	      /* ??? If inh->type == bfd_link_hash_undefweak this
1701 		 converts inh to bfd_link_hash_undefined.  */
1702 	      row = UNDEF_ROW;
1703 	      cycle = TRUE;
1704 	    }
1705 
1706 	  h->type = bfd_link_hash_indirect;
1707 	  h->u.i.link = inh;
1708 	  /* Not setting h = h->u.i.link here means that when cycle is
1709 	     set above we'll always go to REFC, and then cycle again
1710 	     to the indirected symbol.  This means that any successful
1711 	     change of an existing symbol to indirect counts as a
1712 	     reference.  ??? That may not be correct when the existing
1713 	     symbol was defweak.  */
1714 	  break;
1715 
1716 	case SET:
1717 	  /* Add an entry to a set.  */
1718 	  (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1719 					  abfd, section, value);
1720 	  break;
1721 
1722 	case WARNC:
1723 	  /* Issue a warning and cycle, except when the reference is
1724 	     in LTO IR.  */
1725 	  if (h->u.i.warning != NULL
1726 	      && (abfd->flags & BFD_PLUGIN) == 0)
1727 	    {
1728 	      (*info->callbacks->warning) (info, h->u.i.warning,
1729 					   h->root.string, abfd, NULL, 0);
1730 	      /* Only issue a warning once.  */
1731 	      h->u.i.warning = NULL;
1732 	    }
1733 	  /* Fall through.  */
1734 	case CYCLE:
1735 	  /* Try again with the referenced symbol.  */
1736 	  h = h->u.i.link;
1737 	  cycle = TRUE;
1738 	  break;
1739 
1740 	case REFC:
1741 	  /* A reference to an indirect symbol.  */
1742 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1743 	    h->u.undef.next = h;
1744 	  h = h->u.i.link;
1745 	  cycle = TRUE;
1746 	  break;
1747 
1748 	case WARN:
1749 	  /* Warn if this symbol has been referenced already from non-IR,
1750 	     otherwise add a warning.  */
1751 	  if ((!info->lto_plugin_active
1752 	       && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1753 	      || h->non_ir_ref_regular
1754 	      || h->non_ir_ref_dynamic)
1755 	    {
1756 	      (*info->callbacks->warning) (info, string, h->root.string,
1757 					   hash_entry_bfd (h), NULL, 0);
1758 	      break;
1759 	    }
1760 	  /* Fall through.  */
1761 	case MWARN:
1762 	  /* Make a warning symbol.  */
1763 	  {
1764 	    struct bfd_link_hash_entry *sub;
1765 
1766 	    /* STRING is the warning to give.  */
1767 	    sub = ((struct bfd_link_hash_entry *)
1768 		   ((*info->hash->table.newfunc)
1769 		    (NULL, &info->hash->table, h->root.string)));
1770 	    if (sub == NULL)
1771 	      return FALSE;
1772 	    *sub = *h;
1773 	    sub->type = bfd_link_hash_warning;
1774 	    sub->u.i.link = h;
1775 	    if (! copy)
1776 	      sub->u.i.warning = string;
1777 	    else
1778 	      {
1779 		char *w;
1780 		size_t len = strlen (string) + 1;
1781 
1782 		w = (char *) bfd_hash_allocate (&info->hash->table, len);
1783 		if (w == NULL)
1784 		  return FALSE;
1785 		memcpy (w, string, len);
1786 		sub->u.i.warning = w;
1787 	      }
1788 
1789 	    bfd_hash_replace (&info->hash->table,
1790 			      (struct bfd_hash_entry *) h,
1791 			      (struct bfd_hash_entry *) sub);
1792 	    if (hashp != NULL)
1793 	      *hashp = sub;
1794 	  }
1795 	  break;
1796 	}
1797     }
1798   while (cycle);
1799 
1800   return TRUE;
1801 }
1802 
1803 /* Generic final link routine.  */
1804 
1805 bfd_boolean
1806 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1807 {
1808   bfd *sub;
1809   asection *o;
1810   struct bfd_link_order *p;
1811   size_t outsymalloc;
1812   struct generic_write_global_symbol_info wginfo;
1813 
1814   bfd_get_outsymbols (abfd) = NULL;
1815   bfd_get_symcount (abfd) = 0;
1816   outsymalloc = 0;
1817 
1818   /* Mark all sections which will be included in the output file.  */
1819   for (o = abfd->sections; o != NULL; o = o->next)
1820     for (p = o->map_head.link_order; p != NULL; p = p->next)
1821       if (p->type == bfd_indirect_link_order)
1822 	p->u.indirect.section->linker_mark = TRUE;
1823 
1824   /* Build the output symbol table.  */
1825   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1826     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1827       return FALSE;
1828 
1829   /* Accumulate the global symbols.  */
1830   wginfo.info = info;
1831   wginfo.output_bfd = abfd;
1832   wginfo.psymalloc = &outsymalloc;
1833   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1834 				   _bfd_generic_link_write_global_symbol,
1835 				   &wginfo);
1836 
1837   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
1838      shouldn't really need one, since we have SYMCOUNT, but some old
1839      code still expects one.  */
1840   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1841     return FALSE;
1842 
1843   if (bfd_link_relocatable (info))
1844     {
1845       /* Allocate space for the output relocs for each section.  */
1846       for (o = abfd->sections; o != NULL; o = o->next)
1847 	{
1848 	  o->reloc_count = 0;
1849 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
1850 	    {
1851 	      if (p->type == bfd_section_reloc_link_order
1852 		  || p->type == bfd_symbol_reloc_link_order)
1853 		++o->reloc_count;
1854 	      else if (p->type == bfd_indirect_link_order)
1855 		{
1856 		  asection *input_section;
1857 		  bfd *input_bfd;
1858 		  long relsize;
1859 		  arelent **relocs;
1860 		  asymbol **symbols;
1861 		  long reloc_count;
1862 
1863 		  input_section = p->u.indirect.section;
1864 		  input_bfd = input_section->owner;
1865 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
1866 						       input_section);
1867 		  if (relsize < 0)
1868 		    return FALSE;
1869 		  relocs = (arelent **) bfd_malloc (relsize);
1870 		  if (!relocs && relsize != 0)
1871 		    return FALSE;
1872 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
1873 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
1874 							input_section,
1875 							relocs,
1876 							symbols);
1877 		  free (relocs);
1878 		  if (reloc_count < 0)
1879 		    return FALSE;
1880 		  BFD_ASSERT ((unsigned long) reloc_count
1881 			      == input_section->reloc_count);
1882 		  o->reloc_count += reloc_count;
1883 		}
1884 	    }
1885 	  if (o->reloc_count > 0)
1886 	    {
1887 	      bfd_size_type amt;
1888 
1889 	      amt = o->reloc_count;
1890 	      amt *= sizeof (arelent *);
1891 	      o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1892 	      if (!o->orelocation)
1893 		return FALSE;
1894 	      o->flags |= SEC_RELOC;
1895 	      /* Reset the count so that it can be used as an index
1896 		 when putting in the output relocs.  */
1897 	      o->reloc_count = 0;
1898 	    }
1899 	}
1900     }
1901 
1902   /* Handle all the link order information for the sections.  */
1903   for (o = abfd->sections; o != NULL; o = o->next)
1904     {
1905       for (p = o->map_head.link_order; p != NULL; p = p->next)
1906 	{
1907 	  switch (p->type)
1908 	    {
1909 	    case bfd_section_reloc_link_order:
1910 	    case bfd_symbol_reloc_link_order:
1911 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1912 		return FALSE;
1913 	      break;
1914 	    case bfd_indirect_link_order:
1915 	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1916 		return FALSE;
1917 	      break;
1918 	    default:
1919 	      if (! _bfd_default_link_order (abfd, info, o, p))
1920 		return FALSE;
1921 	      break;
1922 	    }
1923 	}
1924     }
1925 
1926   return TRUE;
1927 }
1928 
1929 /* Add an output symbol to the output BFD.  */
1930 
1931 static bfd_boolean
1932 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1933 {
1934   if (bfd_get_symcount (output_bfd) >= *psymalloc)
1935     {
1936       asymbol **newsyms;
1937       bfd_size_type amt;
1938 
1939       if (*psymalloc == 0)
1940 	*psymalloc = 124;
1941       else
1942 	*psymalloc *= 2;
1943       amt = *psymalloc;
1944       amt *= sizeof (asymbol *);
1945       newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
1946       if (newsyms == NULL)
1947 	return FALSE;
1948       bfd_get_outsymbols (output_bfd) = newsyms;
1949     }
1950 
1951   bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
1952   if (sym != NULL)
1953     ++ bfd_get_symcount (output_bfd);
1954 
1955   return TRUE;
1956 }
1957 
1958 /* Handle the symbols for an input BFD.  */
1959 
1960 bfd_boolean
1961 _bfd_generic_link_output_symbols (bfd *output_bfd,
1962 				  bfd *input_bfd,
1963 				  struct bfd_link_info *info,
1964 				  size_t *psymalloc)
1965 {
1966   asymbol **sym_ptr;
1967   asymbol **sym_end;
1968 
1969   if (!bfd_generic_link_read_symbols (input_bfd))
1970     return FALSE;
1971 
1972   /* Create a filename symbol if we are supposed to.  */
1973   if (info->create_object_symbols_section != NULL)
1974     {
1975       asection *sec;
1976 
1977       for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
1978 	{
1979 	  if (sec->output_section == info->create_object_symbols_section)
1980 	    {
1981 	      asymbol *newsym;
1982 
1983 	      newsym = bfd_make_empty_symbol (input_bfd);
1984 	      if (!newsym)
1985 		return FALSE;
1986 	      newsym->name = input_bfd->filename;
1987 	      newsym->value = 0;
1988 	      newsym->flags = BSF_LOCAL | BSF_FILE;
1989 	      newsym->section = sec;
1990 
1991 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
1992 					       newsym))
1993 		return FALSE;
1994 
1995 	      break;
1996 	    }
1997 	}
1998     }
1999 
2000   /* Adjust the values of the globally visible symbols, and write out
2001      local symbols.  */
2002   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2003   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2004   for (; sym_ptr < sym_end; sym_ptr++)
2005     {
2006       asymbol *sym;
2007       struct generic_link_hash_entry *h;
2008       bfd_boolean output;
2009 
2010       h = NULL;
2011       sym = *sym_ptr;
2012       if ((sym->flags & (BSF_INDIRECT
2013 			 | BSF_WARNING
2014 			 | BSF_GLOBAL
2015 			 | BSF_CONSTRUCTOR
2016 			 | BSF_WEAK)) != 0
2017 	  || bfd_is_und_section (bfd_get_section (sym))
2018 	  || bfd_is_com_section (bfd_get_section (sym))
2019 	  || bfd_is_ind_section (bfd_get_section (sym)))
2020 	{
2021 	  if (sym->udata.p != NULL)
2022 	    h = (struct generic_link_hash_entry *) sym->udata.p;
2023 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2024 	    {
2025 	      /* This case normally means that the main linker code
2026 		 deliberately ignored this constructor symbol.  We
2027 		 should just pass it through.  This will screw up if
2028 		 the constructor symbol is from a different,
2029 		 non-generic, object file format, but the case will
2030 		 only arise when linking with -r, which will probably
2031 		 fail anyhow, since there will be no way to represent
2032 		 the relocs in the output format being used.  */
2033 	      h = NULL;
2034 	    }
2035 	  else if (bfd_is_und_section (bfd_get_section (sym)))
2036 	    h = ((struct generic_link_hash_entry *)
2037 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2038 					       bfd_asymbol_name (sym),
2039 					       FALSE, FALSE, TRUE));
2040 	  else
2041 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2042 					       bfd_asymbol_name (sym),
2043 					       FALSE, FALSE, TRUE);
2044 
2045 	  if (h != NULL)
2046 	    {
2047 	      /* Force all references to this symbol to point to
2048 		 the same area in memory.  It is possible that
2049 		 this routine will be called with a hash table
2050 		 other than a generic hash table, so we double
2051 		 check that.  */
2052 	      if (info->output_bfd->xvec == input_bfd->xvec)
2053 		{
2054 		  if (h->sym != NULL)
2055 		    *sym_ptr = sym = h->sym;
2056 		}
2057 
2058 	      switch (h->root.type)
2059 		{
2060 		default:
2061 		case bfd_link_hash_new:
2062 		  abort ();
2063 		case bfd_link_hash_undefined:
2064 		  break;
2065 		case bfd_link_hash_undefweak:
2066 		  sym->flags |= BSF_WEAK;
2067 		  break;
2068 		case bfd_link_hash_indirect:
2069 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2070 		  /* fall through */
2071 		case bfd_link_hash_defined:
2072 		  sym->flags |= BSF_GLOBAL;
2073 		  sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2074 		  sym->value = h->root.u.def.value;
2075 		  sym->section = h->root.u.def.section;
2076 		  break;
2077 		case bfd_link_hash_defweak:
2078 		  sym->flags |= BSF_WEAK;
2079 		  sym->flags &=~ BSF_CONSTRUCTOR;
2080 		  sym->value = h->root.u.def.value;
2081 		  sym->section = h->root.u.def.section;
2082 		  break;
2083 		case bfd_link_hash_common:
2084 		  sym->value = h->root.u.c.size;
2085 		  sym->flags |= BSF_GLOBAL;
2086 		  if (! bfd_is_com_section (sym->section))
2087 		    {
2088 		      BFD_ASSERT (bfd_is_und_section (sym->section));
2089 		      sym->section = bfd_com_section_ptr;
2090 		    }
2091 		  /* We do not set the section of the symbol to
2092 		     h->root.u.c.p->section.  That value was saved so
2093 		     that we would know where to allocate the symbol
2094 		     if it was defined.  In this case the type is
2095 		     still bfd_link_hash_common, so we did not define
2096 		     it, so we do not want to use that section.  */
2097 		  break;
2098 		}
2099 	    }
2100 	}
2101 
2102       /* This switch is straight from the old code in
2103 	 write_file_locals in ldsym.c.  */
2104       if (info->strip == strip_all
2105 	  || (info->strip == strip_some
2106 	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2107 				  FALSE, FALSE) == NULL))
2108 	output = FALSE;
2109       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0)
2110 	{
2111 	  /* If this symbol is marked as occurring now, rather
2112 	     than at the end, output it now.  This is used for
2113 	     COFF C_EXT FCN symbols.  FIXME: There must be a
2114 	     better way.  */
2115 	  if (bfd_asymbol_bfd (sym) == input_bfd
2116 	      && (sym->flags & BSF_NOT_AT_END) != 0)
2117 	    output = TRUE;
2118 	  else
2119 	    output = FALSE;
2120 	}
2121       else if (bfd_is_ind_section (sym->section))
2122 	output = FALSE;
2123       else if ((sym->flags & BSF_DEBUGGING) != 0)
2124 	{
2125 	  if (info->strip == strip_none)
2126 	    output = TRUE;
2127 	  else
2128 	    output = FALSE;
2129 	}
2130       else if (bfd_is_und_section (sym->section)
2131 	       || bfd_is_com_section (sym->section))
2132 	output = FALSE;
2133       else if ((sym->flags & BSF_LOCAL) != 0)
2134 	{
2135 	  if ((sym->flags & BSF_WARNING) != 0)
2136 	    output = FALSE;
2137 	  else
2138 	    {
2139 	      switch (info->discard)
2140 		{
2141 		default:
2142 		case discard_all:
2143 		  output = FALSE;
2144 		  break;
2145 		case discard_sec_merge:
2146 		  output = TRUE;
2147 		  if (bfd_link_relocatable (info)
2148 		      || ! (sym->section->flags & SEC_MERGE))
2149 		    break;
2150 		  /* FALLTHROUGH */
2151 		case discard_l:
2152 		  if (bfd_is_local_label (input_bfd, sym))
2153 		    output = FALSE;
2154 		  else
2155 		    output = TRUE;
2156 		  break;
2157 		case discard_none:
2158 		  output = TRUE;
2159 		  break;
2160 		}
2161 	    }
2162 	}
2163       else if ((sym->flags & BSF_CONSTRUCTOR))
2164 	{
2165 	  if (info->strip != strip_all)
2166 	    output = TRUE;
2167 	  else
2168 	    output = FALSE;
2169 	}
2170       else if (sym->flags == 0
2171 	       && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2172 	/* LTO doesn't set symbol information.  We get here with the
2173 	   generic linker for a symbol that was "common" but no longer
2174 	   needs to be global.  */
2175 	output = FALSE;
2176       else
2177 	abort ();
2178 
2179       /* If this symbol is in a section which is not being included
2180 	 in the output file, then we don't want to output the
2181 	 symbol.  */
2182       if (!bfd_is_abs_section (sym->section)
2183 	  && bfd_section_removed_from_list (output_bfd,
2184 					    sym->section->output_section))
2185 	output = FALSE;
2186 
2187       if (output)
2188 	{
2189 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2190 	    return FALSE;
2191 	  if (h != NULL)
2192 	    h->written = TRUE;
2193 	}
2194     }
2195 
2196   return TRUE;
2197 }
2198 
2199 /* Set the section and value of a generic BFD symbol based on a linker
2200    hash table entry.  */
2201 
2202 static void
2203 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2204 {
2205   switch (h->type)
2206     {
2207     default:
2208       abort ();
2209       break;
2210     case bfd_link_hash_new:
2211       /* This can happen when a constructor symbol is seen but we are
2212 	 not building constructors.  */
2213       if (sym->section != NULL)
2214 	{
2215 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2216 	}
2217       else
2218 	{
2219 	  sym->flags |= BSF_CONSTRUCTOR;
2220 	  sym->section = bfd_abs_section_ptr;
2221 	  sym->value = 0;
2222 	}
2223       break;
2224     case bfd_link_hash_undefined:
2225       sym->section = bfd_und_section_ptr;
2226       sym->value = 0;
2227       break;
2228     case bfd_link_hash_undefweak:
2229       sym->section = bfd_und_section_ptr;
2230       sym->value = 0;
2231       sym->flags |= BSF_WEAK;
2232       break;
2233     case bfd_link_hash_defined:
2234       sym->section = h->u.def.section;
2235       sym->value = h->u.def.value;
2236       break;
2237     case bfd_link_hash_defweak:
2238       sym->flags |= BSF_WEAK;
2239       sym->section = h->u.def.section;
2240       sym->value = h->u.def.value;
2241       break;
2242     case bfd_link_hash_common:
2243       sym->value = h->u.c.size;
2244       if (sym->section == NULL)
2245 	sym->section = bfd_com_section_ptr;
2246       else if (! bfd_is_com_section (sym->section))
2247 	{
2248 	  BFD_ASSERT (bfd_is_und_section (sym->section));
2249 	  sym->section = bfd_com_section_ptr;
2250 	}
2251       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2252       break;
2253     case bfd_link_hash_indirect:
2254     case bfd_link_hash_warning:
2255       /* FIXME: What should we do here?  */
2256       break;
2257     }
2258 }
2259 
2260 /* Write out a global symbol, if it hasn't already been written out.
2261    This is called for each symbol in the hash table.  */
2262 
2263 bfd_boolean
2264 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2265 				       void *data)
2266 {
2267   struct generic_write_global_symbol_info *wginfo =
2268       (struct generic_write_global_symbol_info *) data;
2269   asymbol *sym;
2270 
2271   if (h->written)
2272     return TRUE;
2273 
2274   h->written = TRUE;
2275 
2276   if (wginfo->info->strip == strip_all
2277       || (wginfo->info->strip == strip_some
2278 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2279 			      FALSE, FALSE) == NULL))
2280     return TRUE;
2281 
2282   if (h->sym != NULL)
2283     sym = h->sym;
2284   else
2285     {
2286       sym = bfd_make_empty_symbol (wginfo->output_bfd);
2287       if (!sym)
2288 	return FALSE;
2289       sym->name = h->root.root.string;
2290       sym->flags = 0;
2291     }
2292 
2293   set_symbol_from_hash (sym, &h->root);
2294 
2295   sym->flags |= BSF_GLOBAL;
2296 
2297   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2298 				   sym))
2299     {
2300       /* FIXME: No way to return failure.  */
2301       abort ();
2302     }
2303 
2304   return TRUE;
2305 }
2306 
2307 /* Create a relocation.  */
2308 
2309 bfd_boolean
2310 _bfd_generic_reloc_link_order (bfd *abfd,
2311 			       struct bfd_link_info *info,
2312 			       asection *sec,
2313 			       struct bfd_link_order *link_order)
2314 {
2315   arelent *r;
2316 
2317   if (! bfd_link_relocatable (info))
2318     abort ();
2319   if (sec->orelocation == NULL)
2320     abort ();
2321 
2322   r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2323   if (r == NULL)
2324     return FALSE;
2325 
2326   r->address = link_order->offset;
2327   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2328   if (r->howto == 0)
2329     {
2330       bfd_set_error (bfd_error_bad_value);
2331       return FALSE;
2332     }
2333 
2334   /* Get the symbol to use for the relocation.  */
2335   if (link_order->type == bfd_section_reloc_link_order)
2336     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2337   else
2338     {
2339       struct generic_link_hash_entry *h;
2340 
2341       h = ((struct generic_link_hash_entry *)
2342 	   bfd_wrapped_link_hash_lookup (abfd, info,
2343 					 link_order->u.reloc.p->u.name,
2344 					 FALSE, FALSE, TRUE));
2345       if (h == NULL
2346 	  || ! h->written)
2347 	{
2348 	  (*info->callbacks->unattached_reloc)
2349 	    (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2350 	  bfd_set_error (bfd_error_bad_value);
2351 	  return FALSE;
2352 	}
2353       r->sym_ptr_ptr = &h->sym;
2354     }
2355 
2356   /* If this is an inplace reloc, write the addend to the object file.
2357      Otherwise, store it in the reloc addend.  */
2358   if (! r->howto->partial_inplace)
2359     r->addend = link_order->u.reloc.p->addend;
2360   else
2361     {
2362       bfd_size_type size;
2363       bfd_reloc_status_type rstat;
2364       bfd_byte *buf;
2365       bfd_boolean ok;
2366       file_ptr loc;
2367 
2368       size = bfd_get_reloc_size (r->howto);
2369       buf = (bfd_byte *) bfd_zmalloc (size);
2370       if (buf == NULL && size != 0)
2371 	return FALSE;
2372       rstat = _bfd_relocate_contents (r->howto, abfd,
2373 				      (bfd_vma) link_order->u.reloc.p->addend,
2374 				      buf);
2375       switch (rstat)
2376 	{
2377 	case bfd_reloc_ok:
2378 	  break;
2379 	default:
2380 	case bfd_reloc_outofrange:
2381 	  abort ();
2382 	case bfd_reloc_overflow:
2383 	  (*info->callbacks->reloc_overflow)
2384 	    (info, NULL,
2385 	     (link_order->type == bfd_section_reloc_link_order
2386 	      ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2387 	      : link_order->u.reloc.p->u.name),
2388 	     r->howto->name, link_order->u.reloc.p->addend,
2389 	     NULL, NULL, 0);
2390 	  break;
2391 	}
2392       loc = link_order->offset * bfd_octets_per_byte (abfd);
2393       ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2394       free (buf);
2395       if (! ok)
2396 	return FALSE;
2397 
2398       r->addend = 0;
2399     }
2400 
2401   sec->orelocation[sec->reloc_count] = r;
2402   ++sec->reloc_count;
2403 
2404   return TRUE;
2405 }
2406 
2407 /* Allocate a new link_order for a section.  */
2408 
2409 struct bfd_link_order *
2410 bfd_new_link_order (bfd *abfd, asection *section)
2411 {
2412   bfd_size_type amt = sizeof (struct bfd_link_order);
2413   struct bfd_link_order *new_lo;
2414 
2415   new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2416   if (!new_lo)
2417     return NULL;
2418 
2419   new_lo->type = bfd_undefined_link_order;
2420 
2421   if (section->map_tail.link_order != NULL)
2422     section->map_tail.link_order->next = new_lo;
2423   else
2424     section->map_head.link_order = new_lo;
2425   section->map_tail.link_order = new_lo;
2426 
2427   return new_lo;
2428 }
2429 
2430 /* Default link order processing routine.  Note that we can not handle
2431    the reloc_link_order types here, since they depend upon the details
2432    of how the particular backends generates relocs.  */
2433 
2434 bfd_boolean
2435 _bfd_default_link_order (bfd *abfd,
2436 			 struct bfd_link_info *info,
2437 			 asection *sec,
2438 			 struct bfd_link_order *link_order)
2439 {
2440   switch (link_order->type)
2441     {
2442     case bfd_undefined_link_order:
2443     case bfd_section_reloc_link_order:
2444     case bfd_symbol_reloc_link_order:
2445     default:
2446       abort ();
2447     case bfd_indirect_link_order:
2448       return default_indirect_link_order (abfd, info, sec, link_order,
2449 					  FALSE);
2450     case bfd_data_link_order:
2451       return default_data_link_order (abfd, info, sec, link_order);
2452     }
2453 }
2454 
2455 /* Default routine to handle a bfd_data_link_order.  */
2456 
2457 static bfd_boolean
2458 default_data_link_order (bfd *abfd,
2459 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2460 			 asection *sec,
2461 			 struct bfd_link_order *link_order)
2462 {
2463   bfd_size_type size;
2464   size_t fill_size;
2465   bfd_byte *fill;
2466   file_ptr loc;
2467   bfd_boolean result;
2468 
2469   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2470 
2471   size = link_order->size;
2472   if (size == 0)
2473     return TRUE;
2474 
2475   fill = link_order->u.data.contents;
2476   fill_size = link_order->u.data.size;
2477   if (fill_size == 0)
2478     {
2479       fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2480 				    (sec->flags & SEC_CODE) != 0);
2481       if (fill == NULL)
2482 	return FALSE;
2483     }
2484   else if (fill_size < size)
2485     {
2486       bfd_byte *p;
2487       fill = (bfd_byte *) bfd_malloc (size);
2488       if (fill == NULL)
2489 	return FALSE;
2490       p = fill;
2491       if (fill_size == 1)
2492 	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2493       else
2494 	{
2495 	  do
2496 	    {
2497 	      memcpy (p, link_order->u.data.contents, fill_size);
2498 	      p += fill_size;
2499 	      size -= fill_size;
2500 	    }
2501 	  while (size >= fill_size);
2502 	  if (size != 0)
2503 	    memcpy (p, link_order->u.data.contents, (size_t) size);
2504 	  size = link_order->size;
2505 	}
2506     }
2507 
2508   loc = link_order->offset * bfd_octets_per_byte (abfd);
2509   result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2510 
2511   if (fill != link_order->u.data.contents)
2512     free (fill);
2513   return result;
2514 }
2515 
2516 /* Default routine to handle a bfd_indirect_link_order.  */
2517 
2518 static bfd_boolean
2519 default_indirect_link_order (bfd *output_bfd,
2520 			     struct bfd_link_info *info,
2521 			     asection *output_section,
2522 			     struct bfd_link_order *link_order,
2523 			     bfd_boolean generic_linker)
2524 {
2525   asection *input_section;
2526   bfd *input_bfd;
2527   bfd_byte *contents = NULL;
2528   bfd_byte *new_contents;
2529   bfd_size_type sec_size;
2530   file_ptr loc;
2531 
2532   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2533 
2534   input_section = link_order->u.indirect.section;
2535   input_bfd = input_section->owner;
2536   if (input_section->size == 0)
2537     return TRUE;
2538 
2539   BFD_ASSERT (input_section->output_section == output_section);
2540   BFD_ASSERT (input_section->output_offset == link_order->offset);
2541   BFD_ASSERT (input_section->size == link_order->size);
2542 
2543   if (bfd_link_relocatable (info)
2544       && input_section->reloc_count > 0
2545       && output_section->orelocation == NULL)
2546     {
2547       /* Space has not been allocated for the output relocations.
2548 	 This can happen when we are called by a specific backend
2549 	 because somebody is attempting to link together different
2550 	 types of object files.  Handling this case correctly is
2551 	 difficult, and sometimes impossible.  */
2552       _bfd_error_handler
2553 	/* xgettext:c-format */
2554 	(_("attempt to do relocatable link with %s input and %s output"),
2555 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2556       bfd_set_error (bfd_error_wrong_format);
2557       return FALSE;
2558     }
2559 
2560   if (! generic_linker)
2561     {
2562       asymbol **sympp;
2563       asymbol **symppend;
2564 
2565       /* Get the canonical symbols.  The generic linker will always
2566 	 have retrieved them by this point, but we are being called by
2567 	 a specific linker, presumably because we are linking
2568 	 different types of object files together.  */
2569       if (!bfd_generic_link_read_symbols (input_bfd))
2570 	return FALSE;
2571 
2572       /* Since we have been called by a specific linker, rather than
2573 	 the generic linker, the values of the symbols will not be
2574 	 right.  They will be the values as seen in the input file,
2575 	 not the values of the final link.  We need to fix them up
2576 	 before we can relocate the section.  */
2577       sympp = _bfd_generic_link_get_symbols (input_bfd);
2578       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2579       for (; sympp < symppend; sympp++)
2580 	{
2581 	  asymbol *sym;
2582 	  struct bfd_link_hash_entry *h;
2583 
2584 	  sym = *sympp;
2585 
2586 	  if ((sym->flags & (BSF_INDIRECT
2587 			     | BSF_WARNING
2588 			     | BSF_GLOBAL
2589 			     | BSF_CONSTRUCTOR
2590 			     | BSF_WEAK)) != 0
2591 	      || bfd_is_und_section (bfd_get_section (sym))
2592 	      || bfd_is_com_section (bfd_get_section (sym))
2593 	      || bfd_is_ind_section (bfd_get_section (sym)))
2594 	    {
2595 	      /* sym->udata may have been set by
2596 		 generic_link_add_symbol_list.  */
2597 	      if (sym->udata.p != NULL)
2598 		h = (struct bfd_link_hash_entry *) sym->udata.p;
2599 	      else if (bfd_is_und_section (bfd_get_section (sym)))
2600 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2601 						  bfd_asymbol_name (sym),
2602 						  FALSE, FALSE, TRUE);
2603 	      else
2604 		h = bfd_link_hash_lookup (info->hash,
2605 					  bfd_asymbol_name (sym),
2606 					  FALSE, FALSE, TRUE);
2607 	      if (h != NULL)
2608 		set_symbol_from_hash (sym, h);
2609 	    }
2610 	}
2611     }
2612 
2613   if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2614       && input_section->size != 0)
2615     {
2616       /* Group section contents are set by bfd_elf_set_group_contents.  */
2617       if (!output_bfd->output_has_begun)
2618 	{
2619 	  /* FIXME: This hack ensures bfd_elf_set_group_contents is called.  */
2620 	  if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2621 	    goto error_return;
2622 	}
2623       new_contents = output_section->contents;
2624       BFD_ASSERT (new_contents != NULL);
2625       BFD_ASSERT (input_section->output_offset == 0);
2626     }
2627   else
2628     {
2629       /* Get and relocate the section contents.  */
2630       sec_size = (input_section->rawsize > input_section->size
2631 		  ? input_section->rawsize
2632 		  : input_section->size);
2633       contents = (bfd_byte *) bfd_malloc (sec_size);
2634       if (contents == NULL && sec_size != 0)
2635 	goto error_return;
2636       new_contents = (bfd_get_relocated_section_contents
2637 		      (output_bfd, info, link_order, contents,
2638 		       bfd_link_relocatable (info),
2639 		       _bfd_generic_link_get_symbols (input_bfd)));
2640       if (!new_contents)
2641 	goto error_return;
2642     }
2643 
2644   /* Output the section contents.  */
2645   loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2646   if (! bfd_set_section_contents (output_bfd, output_section,
2647 				  new_contents, loc, input_section->size))
2648     goto error_return;
2649 
2650   if (contents != NULL)
2651     free (contents);
2652   return TRUE;
2653 
2654  error_return:
2655   if (contents != NULL)
2656     free (contents);
2657   return FALSE;
2658 }
2659 
2660 /* A little routine to count the number of relocs in a link_order
2661    list.  */
2662 
2663 unsigned int
2664 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2665 {
2666   register unsigned int c;
2667   register struct bfd_link_order *l;
2668 
2669   c = 0;
2670   for (l = link_order; l != NULL; l = l->next)
2671     {
2672       if (l->type == bfd_section_reloc_link_order
2673 	  || l->type == bfd_symbol_reloc_link_order)
2674 	++c;
2675     }
2676 
2677   return c;
2678 }
2679 
2680 /*
2681 FUNCTION
2682 	bfd_link_split_section
2683 
2684 SYNOPSIS
2685 	bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2686 
2687 DESCRIPTION
2688 	Return nonzero if @var{sec} should be split during a
2689 	reloceatable or final link.
2690 
2691 .#define bfd_link_split_section(abfd, sec) \
2692 .	BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2693 .
2694 
2695 */
2696 
2697 bfd_boolean
2698 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2699 				 asection *sec ATTRIBUTE_UNUSED)
2700 {
2701   return FALSE;
2702 }
2703 
2704 /*
2705 FUNCTION
2706 	bfd_section_already_linked
2707 
2708 SYNOPSIS
2709 	bfd_boolean bfd_section_already_linked (bfd *abfd,
2710 						asection *sec,
2711 						struct bfd_link_info *info);
2712 
2713 DESCRIPTION
2714 	Check if @var{data} has been already linked during a reloceatable
2715 	or final link.  Return TRUE if it has.
2716 
2717 .#define bfd_section_already_linked(abfd, sec, info) \
2718 .	BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2719 .
2720 
2721 */
2722 
2723 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2724    once into the output.  This routine checks each section, and
2725    arrange to discard it if a section of the same name has already
2726    been linked.  This code assumes that all relevant sections have the
2727    SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2728    section name.  bfd_section_already_linked is called via
2729    bfd_map_over_sections.  */
2730 
2731 /* The hash table.  */
2732 
2733 static struct bfd_hash_table _bfd_section_already_linked_table;
2734 
2735 /* Support routines for the hash table used by section_already_linked,
2736    initialize the table, traverse, lookup, fill in an entry and remove
2737    the table.  */
2738 
2739 void
2740 bfd_section_already_linked_table_traverse
2741   (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2742 			void *), void *info)
2743 {
2744   bfd_hash_traverse (&_bfd_section_already_linked_table,
2745 		     (bfd_boolean (*) (struct bfd_hash_entry *,
2746 				       void *)) func,
2747 		     info);
2748 }
2749 
2750 struct bfd_section_already_linked_hash_entry *
2751 bfd_section_already_linked_table_lookup (const char *name)
2752 {
2753   return ((struct bfd_section_already_linked_hash_entry *)
2754 	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2755 			   TRUE, FALSE));
2756 }
2757 
2758 bfd_boolean
2759 bfd_section_already_linked_table_insert
2760   (struct bfd_section_already_linked_hash_entry *already_linked_list,
2761    asection *sec)
2762 {
2763   struct bfd_section_already_linked *l;
2764 
2765   /* Allocate the memory from the same obstack as the hash table is
2766      kept in.  */
2767   l = (struct bfd_section_already_linked *)
2768       bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2769   if (l == NULL)
2770     return FALSE;
2771   l->sec = sec;
2772   l->next = already_linked_list->entry;
2773   already_linked_list->entry = l;
2774   return TRUE;
2775 }
2776 
2777 static struct bfd_hash_entry *
2778 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2779 			struct bfd_hash_table *table,
2780 			const char *string ATTRIBUTE_UNUSED)
2781 {
2782   struct bfd_section_already_linked_hash_entry *ret =
2783     (struct bfd_section_already_linked_hash_entry *)
2784       bfd_hash_allocate (table, sizeof *ret);
2785 
2786   if (ret == NULL)
2787     return NULL;
2788 
2789   ret->entry = NULL;
2790 
2791   return &ret->root;
2792 }
2793 
2794 bfd_boolean
2795 bfd_section_already_linked_table_init (void)
2796 {
2797   return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2798 				already_linked_newfunc,
2799 				sizeof (struct bfd_section_already_linked_hash_entry),
2800 				42);
2801 }
2802 
2803 void
2804 bfd_section_already_linked_table_free (void)
2805 {
2806   bfd_hash_table_free (&_bfd_section_already_linked_table);
2807 }
2808 
2809 /* Report warnings as appropriate for duplicate section SEC.
2810    Return FALSE if we decide to keep SEC after all.  */
2811 
2812 bfd_boolean
2813 _bfd_handle_already_linked (asection *sec,
2814 			    struct bfd_section_already_linked *l,
2815 			    struct bfd_link_info *info)
2816 {
2817   switch (sec->flags & SEC_LINK_DUPLICATES)
2818     {
2819     default:
2820       abort ();
2821 
2822     case SEC_LINK_DUPLICATES_DISCARD:
2823       /* If we found an LTO IR match for this comdat group on
2824 	 the first pass, replace it with the LTO output on the
2825 	 second pass.  We can't simply choose real object
2826 	 files over IR because the first pass may contain a
2827 	 mix of LTO and normal objects and we must keep the
2828 	 first match, be it IR or real.  */
2829       if (sec->owner->lto_output
2830 	  && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2831 	{
2832 	  l->sec = sec;
2833 	  return FALSE;
2834 	}
2835       break;
2836 
2837     case SEC_LINK_DUPLICATES_ONE_ONLY:
2838       info->callbacks->einfo
2839 	/* xgettext:c-format */
2840 	(_("%pB: ignoring duplicate section `%pA'\n"),
2841 	 sec->owner, sec);
2842       break;
2843 
2844     case SEC_LINK_DUPLICATES_SAME_SIZE:
2845       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2846 	;
2847       else if (sec->size != l->sec->size)
2848 	info->callbacks->einfo
2849 	  /* xgettext:c-format */
2850 	  (_("%pB: duplicate section `%pA' has different size\n"),
2851 	   sec->owner, sec);
2852       break;
2853 
2854     case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2855       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2856 	;
2857       else if (sec->size != l->sec->size)
2858 	info->callbacks->einfo
2859 	  /* xgettext:c-format */
2860 	  (_("%pB: duplicate section `%pA' has different size\n"),
2861 	   sec->owner, sec);
2862       else if (sec->size != 0)
2863 	{
2864 	  bfd_byte *sec_contents, *l_sec_contents = NULL;
2865 
2866 	  if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2867 	    info->callbacks->einfo
2868 	      /* xgettext:c-format */
2869 	      (_("%pB: could not read contents of section `%pA'\n"),
2870 	       sec->owner, sec);
2871 	  else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2872 						&l_sec_contents))
2873 	    info->callbacks->einfo
2874 	      /* xgettext:c-format */
2875 	      (_("%pB: could not read contents of section `%pA'\n"),
2876 	       l->sec->owner, l->sec);
2877 	  else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2878 	    info->callbacks->einfo
2879 	      /* xgettext:c-format */
2880 	      (_("%pB: duplicate section `%pA' has different contents\n"),
2881 	       sec->owner, sec);
2882 
2883 	  if (sec_contents)
2884 	    free (sec_contents);
2885 	  if (l_sec_contents)
2886 	    free (l_sec_contents);
2887 	}
2888       break;
2889     }
2890 
2891   /* Set the output_section field so that lang_add_section
2892      does not create a lang_input_section structure for this
2893      section.  Since there might be a symbol in the section
2894      being discarded, we must retain a pointer to the section
2895      which we are really going to use.  */
2896   sec->output_section = bfd_abs_section_ptr;
2897   sec->kept_section = l->sec;
2898   return TRUE;
2899 }
2900 
2901 /* This is used on non-ELF inputs.  */
2902 
2903 bfd_boolean
2904 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2905 				     asection *sec,
2906 				     struct bfd_link_info *info)
2907 {
2908   const char *name;
2909   struct bfd_section_already_linked *l;
2910   struct bfd_section_already_linked_hash_entry *already_linked_list;
2911 
2912   if ((sec->flags & SEC_LINK_ONCE) == 0)
2913     return FALSE;
2914 
2915   /* The generic linker doesn't handle section groups.  */
2916   if ((sec->flags & SEC_GROUP) != 0)
2917     return FALSE;
2918 
2919   /* FIXME: When doing a relocatable link, we may have trouble
2920      copying relocations in other sections that refer to local symbols
2921      in the section being discarded.  Those relocations will have to
2922      be converted somehow; as of this writing I'm not sure that any of
2923      the backends handle that correctly.
2924 
2925      It is tempting to instead not discard link once sections when
2926      doing a relocatable link (technically, they should be discarded
2927      whenever we are building constructors).  However, that fails,
2928      because the linker winds up combining all the link once sections
2929      into a single large link once section, which defeats the purpose
2930      of having link once sections in the first place.  */
2931 
2932   name = bfd_get_section_name (abfd, sec);
2933 
2934   already_linked_list = bfd_section_already_linked_table_lookup (name);
2935 
2936   l = already_linked_list->entry;
2937   if (l != NULL)
2938     {
2939       /* The section has already been linked.  See if we should
2940 	 issue a warning.  */
2941       return _bfd_handle_already_linked (sec, l, info);
2942     }
2943 
2944   /* This is the first section with this name.  Record it.  */
2945   if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2946     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2947   return FALSE;
2948 }
2949 
2950 /* Choose a neighbouring section to S in OBFD that will be output, or
2951    the absolute section if ADDR is out of bounds of the neighbours.  */
2952 
2953 asection *
2954 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
2955 {
2956   asection *next, *prev, *best;
2957 
2958   /* Find preceding kept section.  */
2959   for (prev = s->prev; prev != NULL; prev = prev->prev)
2960     if ((prev->flags & SEC_EXCLUDE) == 0
2961 	&& !bfd_section_removed_from_list (obfd, prev))
2962       break;
2963 
2964   /* Find following kept section.  Start at prev->next because
2965      other sections may have been added after S was removed.  */
2966   if (s->prev != NULL)
2967     next = s->prev->next;
2968   else
2969     next = s->owner->sections;
2970   for (; next != NULL; next = next->next)
2971     if ((next->flags & SEC_EXCLUDE) == 0
2972 	&& !bfd_section_removed_from_list (obfd, next))
2973       break;
2974 
2975   /* Choose better of two sections, based on flags.  The idea
2976      is to choose a section that will be in the same segment
2977      as S would have been if it was kept.  */
2978   best = next;
2979   if (prev == NULL)
2980     {
2981       if (next == NULL)
2982 	best = bfd_abs_section_ptr;
2983     }
2984   else if (next == NULL)
2985     best = prev;
2986   else if (((prev->flags ^ next->flags)
2987 	    & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
2988     {
2989       if (((next->flags ^ s->flags)
2990 	   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
2991 	  /* We prefer to choose a loaded section.  Section S
2992 	     doesn't have SEC_LOAD set (it being excluded, that
2993 	     part of the flag processing didn't happen) so we
2994 	     can't compare that flag to those of NEXT and PREV.  */
2995 	  || ((prev->flags & SEC_LOAD) != 0
2996 	      && (next->flags & SEC_LOAD) == 0))
2997 	best = prev;
2998     }
2999   else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3000     {
3001       if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3002 	best = prev;
3003     }
3004   else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3005     {
3006       if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3007 	best = prev;
3008     }
3009   else
3010     {
3011       /* Flags we care about are the same.  Prefer the following
3012 	 section if that will result in a positive valued sym.  */
3013       if (addr < next->vma)
3014 	best = prev;
3015     }
3016 
3017   return best;
3018 }
3019 
3020 /* Convert symbols in excluded output sections to use a kept section.  */
3021 
3022 static bfd_boolean
3023 fix_syms (struct bfd_link_hash_entry *h, void *data)
3024 {
3025   bfd *obfd = (bfd *) data;
3026 
3027   if (h->type == bfd_link_hash_defined
3028       || h->type == bfd_link_hash_defweak)
3029     {
3030       asection *s = h->u.def.section;
3031       if (s != NULL
3032 	  && s->output_section != NULL
3033 	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3034 	  && bfd_section_removed_from_list (obfd, s->output_section))
3035 	{
3036 	  asection *op;
3037 
3038 	  h->u.def.value += s->output_offset + s->output_section->vma;
3039 	  op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3040 	  h->u.def.value -= op->vma;
3041 	  h->u.def.section = op;
3042 	}
3043     }
3044 
3045   return TRUE;
3046 }
3047 
3048 void
3049 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3050 {
3051   bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3052 }
3053 
3054 /*
3055 FUNCTION
3056 	bfd_generic_define_common_symbol
3057 
3058 SYNOPSIS
3059 	bfd_boolean bfd_generic_define_common_symbol
3060 	  (bfd *output_bfd, struct bfd_link_info *info,
3061 	   struct bfd_link_hash_entry *h);
3062 
3063 DESCRIPTION
3064 	Convert common symbol @var{h} into a defined symbol.
3065 	Return TRUE on success and FALSE on failure.
3066 
3067 .#define bfd_define_common_symbol(output_bfd, info, h) \
3068 .	BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3069 .
3070 */
3071 
3072 bfd_boolean
3073 bfd_generic_define_common_symbol (bfd *output_bfd,
3074 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3075 				  struct bfd_link_hash_entry *h)
3076 {
3077   unsigned int power_of_two;
3078   bfd_vma alignment, size;
3079   asection *section;
3080 
3081   BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3082 
3083   size = h->u.c.size;
3084   power_of_two = h->u.c.p->alignment_power;
3085   section = h->u.c.p->section;
3086 
3087   /* Increase the size of the section to align the common symbol.
3088      The alignment must be a power of two.  */
3089   alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3090   BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3091   section->size += alignment - 1;
3092   section->size &= -alignment;
3093 
3094   /* Adjust the section's overall alignment if necessary.  */
3095   if (power_of_two > section->alignment_power)
3096     section->alignment_power = power_of_two;
3097 
3098   /* Change the symbol from common to defined.  */
3099   h->type = bfd_link_hash_defined;
3100   h->u.def.section = section;
3101   h->u.def.value = section->size;
3102 
3103   /* Increase the size of the section.  */
3104   section->size += size;
3105 
3106   /* Make sure the section is allocated in memory, and make sure that
3107      it is no longer a common section.  */
3108   section->flags |= SEC_ALLOC;
3109   section->flags &= ~SEC_IS_COMMON;
3110   return TRUE;
3111 }
3112 
3113 /*
3114 FUNCTION
3115 	_bfd_generic_link_hide_symbol
3116 
3117 SYNOPSIS
3118 	void _bfd_generic_link_hide_symbol
3119 	  (bfd *output_bfd, struct bfd_link_info *info,
3120 	   struct bfd_link_hash_entry *h);
3121 
3122 DESCRIPTION
3123 	Hide symbol @var{h}.
3124 	This is an internal function.  It should not be called from
3125 	outside the BFD library.
3126 
3127 .#define bfd_link_hide_symbol(output_bfd, info, h) \
3128 .	BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h))
3129 .
3130 */
3131 
3132 void
3133 _bfd_generic_link_hide_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3134 			       struct bfd_link_info *info ATTRIBUTE_UNUSED,
3135 			       struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3136 {
3137 }
3138 
3139 /*
3140 FUNCTION
3141 	bfd_generic_define_start_stop
3142 
3143 SYNOPSIS
3144 	struct bfd_link_hash_entry *bfd_generic_define_start_stop
3145 	  (struct bfd_link_info *info,
3146 	   const char *symbol, asection *sec);
3147 
3148 DESCRIPTION
3149 	Define a __start, __stop, .startof. or .sizeof. symbol.
3150 	Return the symbol or NULL if no such undefined symbol exists.
3151 
3152 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \
3153 .	BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec))
3154 .
3155 */
3156 
3157 struct bfd_link_hash_entry *
3158 bfd_generic_define_start_stop (struct bfd_link_info *info,
3159 			       const char *symbol, asection *sec)
3160 {
3161   struct bfd_link_hash_entry *h;
3162 
3163   h = bfd_link_hash_lookup (info->hash, symbol, FALSE, FALSE, TRUE);
3164   if (h != NULL
3165       && (h->type == bfd_link_hash_undefined
3166 	  || h->type == bfd_link_hash_undefweak))
3167     {
3168       h->type = bfd_link_hash_defined;
3169       h->u.def.section = sec;
3170       h->u.def.value = 0;
3171       return h;
3172     }
3173   return NULL;
3174 }
3175 
3176 /*
3177 FUNCTION
3178 	bfd_find_version_for_sym
3179 
3180 SYNOPSIS
3181 	struct bfd_elf_version_tree * bfd_find_version_for_sym
3182 	  (struct bfd_elf_version_tree *verdefs,
3183 	   const char *sym_name, bfd_boolean *hide);
3184 
3185 DESCRIPTION
3186 	Search an elf version script tree for symbol versioning
3187 	info and export / don't-export status for a given symbol.
3188 	Return non-NULL on success and NULL on failure; also sets
3189 	the output @samp{hide} boolean parameter.
3190 
3191 */
3192 
3193 struct bfd_elf_version_tree *
3194 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3195 			  const char *sym_name,
3196 			  bfd_boolean *hide)
3197 {
3198   struct bfd_elf_version_tree *t;
3199   struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3200   struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3201 
3202   local_ver = NULL;
3203   global_ver = NULL;
3204   star_local_ver = NULL;
3205   star_global_ver = NULL;
3206   exist_ver = NULL;
3207   for (t = verdefs; t != NULL; t = t->next)
3208     {
3209       if (t->globals.list != NULL)
3210 	{
3211 	  struct bfd_elf_version_expr *d = NULL;
3212 
3213 	  while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3214 	    {
3215 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3216 		global_ver = t;
3217 	      else
3218 		star_global_ver = t;
3219 	      if (d->symver)
3220 		exist_ver = t;
3221 	      d->script = 1;
3222 	      /* If the match is a wildcard pattern, keep looking for
3223 		 a more explicit, perhaps even local, match.  */
3224 	      if (d->literal)
3225 		break;
3226 	    }
3227 
3228 	  if (d != NULL)
3229 	    break;
3230 	}
3231 
3232       if (t->locals.list != NULL)
3233 	{
3234 	  struct bfd_elf_version_expr *d = NULL;
3235 
3236 	  while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3237 	    {
3238 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3239 		local_ver = t;
3240 	      else
3241 		star_local_ver = t;
3242 	      /* If the match is a wildcard pattern, keep looking for
3243 		 a more explicit, perhaps even global, match.  */
3244 	      if (d->literal)
3245 		{
3246 		  /* An exact match overrides a global wildcard.  */
3247 		  global_ver = NULL;
3248 		  star_global_ver = NULL;
3249 		  break;
3250 		}
3251 	    }
3252 
3253 	  if (d != NULL)
3254 	    break;
3255 	}
3256     }
3257 
3258   if (global_ver == NULL && local_ver == NULL)
3259     global_ver = star_global_ver;
3260 
3261   if (global_ver != NULL)
3262     {
3263       /* If we already have a versioned symbol that matches the
3264 	 node for this symbol, then we don't want to create a
3265 	 duplicate from the unversioned symbol.  Instead hide the
3266 	 unversioned symbol.  */
3267       *hide = exist_ver == global_ver;
3268       return global_ver;
3269     }
3270 
3271   if (local_ver == NULL)
3272     local_ver = star_local_ver;
3273 
3274   if (local_ver != NULL)
3275     {
3276       *hide = TRUE;
3277       return local_ver;
3278     }
3279 
3280   return NULL;
3281 }
3282 
3283 /*
3284 FUNCTION
3285 	bfd_hide_sym_by_version
3286 
3287 SYNOPSIS
3288 	bfd_boolean bfd_hide_sym_by_version
3289 	  (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3290 
3291 DESCRIPTION
3292 	Search an elf version script tree for symbol versioning
3293 	info for a given symbol.  Return TRUE if the symbol is hidden.
3294 
3295 */
3296 
3297 bfd_boolean
3298 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3299 			 const char *sym_name)
3300 {
3301   bfd_boolean hidden = FALSE;
3302   bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3303   return hidden;
3304 }
3305 
3306 /*
3307 FUNCTION
3308 	bfd_link_check_relocs
3309 
3310 SYNOPSIS
3311 	bfd_boolean bfd_link_check_relocs
3312 	  (bfd *abfd, struct bfd_link_info *info);
3313 
3314 DESCRIPTION
3315 	Checks the relocs in ABFD for validity.
3316 	Does not execute the relocs.
3317 	Return TRUE if everything is OK, FALSE otherwise.
3318 	This is the external entry point to this code.
3319 */
3320 
3321 bfd_boolean
3322 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3323 {
3324   return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3325 }
3326 
3327 /*
3328 FUNCTION
3329 	_bfd_generic_link_check_relocs
3330 
3331 SYNOPSIS
3332 	bfd_boolean _bfd_generic_link_check_relocs
3333 	  (bfd *abfd, struct bfd_link_info *info);
3334 
3335 DESCRIPTION
3336 	Stub function for targets that do not implement reloc checking.
3337 	Return TRUE.
3338 	This is an internal function.  It should not be called from
3339 	outside the BFD library.
3340 */
3341 
3342 bfd_boolean
3343 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3344 				struct bfd_link_info *info ATTRIBUTE_UNUSED)
3345 {
3346   return TRUE;
3347 }
3348 
3349 /*
3350 FUNCTION
3351 	bfd_merge_private_bfd_data
3352 
3353 SYNOPSIS
3354 	bfd_boolean bfd_merge_private_bfd_data
3355 	  (bfd *ibfd, struct bfd_link_info *info);
3356 
3357 DESCRIPTION
3358 	Merge private BFD information from the BFD @var{ibfd} to the
3359 	the output file BFD when linking.  Return <<TRUE>> on success,
3360 	<<FALSE>> on error.  Possible error returns are:
3361 
3362 	o <<bfd_error_no_memory>> -
3363 	Not enough memory exists to create private data for @var{obfd}.
3364 
3365 .#define bfd_merge_private_bfd_data(ibfd, info) \
3366 .	BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3367 .		  (ibfd, info))
3368 */
3369 
3370 /*
3371 INTERNAL_FUNCTION
3372 	_bfd_generic_verify_endian_match
3373 
3374 SYNOPSIS
3375 	bfd_boolean _bfd_generic_verify_endian_match
3376 	  (bfd *ibfd, struct bfd_link_info *info);
3377 
3378 DESCRIPTION
3379 	Can be used from / for bfd_merge_private_bfd_data to check that
3380 	endianness matches between input and output file.  Returns
3381 	TRUE for a match, otherwise returns FALSE and emits an error.
3382 */
3383 
3384 bfd_boolean
3385 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
3386 {
3387   bfd *obfd = info->output_bfd;
3388 
3389   if (ibfd->xvec->byteorder != obfd->xvec->byteorder
3390       && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
3391       && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
3392     {
3393       if (bfd_big_endian (ibfd))
3394 	_bfd_error_handler (_("%pB: compiled for a big endian system "
3395 			      "and target is little endian"), ibfd);
3396       else
3397 	_bfd_error_handler (_("%pB: compiled for a little endian system "
3398 			      "and target is big endian"), ibfd);
3399       bfd_set_error (bfd_error_wrong_format);
3400       return FALSE;
3401     }
3402 
3403   return TRUE;
3404 }
3405 
3406 int
3407 _bfd_nolink_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
3408 			    struct bfd_link_info *info ATTRIBUTE_UNUSED)
3409 {
3410   return 0;
3411 }
3412 
3413 bfd_boolean
3414 _bfd_nolink_bfd_relax_section (bfd *abfd,
3415 			       asection *section ATTRIBUTE_UNUSED,
3416 			       struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3417 			       bfd_boolean *again ATTRIBUTE_UNUSED)
3418 {
3419   return _bfd_bool_bfd_false_error (abfd);
3420 }
3421 
3422 bfd_byte *
3423 _bfd_nolink_bfd_get_relocated_section_contents
3424     (bfd *abfd,
3425      struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3426      struct bfd_link_order *link_order ATTRIBUTE_UNUSED,
3427      bfd_byte *data ATTRIBUTE_UNUSED,
3428      bfd_boolean relocatable ATTRIBUTE_UNUSED,
3429      asymbol **symbols ATTRIBUTE_UNUSED)
3430 {
3431   return (bfd_byte *) _bfd_ptr_bfd_null_error (abfd);
3432 }
3433 
3434 bfd_boolean
3435 _bfd_nolink_bfd_lookup_section_flags
3436     (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3437      struct flag_info *flaginfo ATTRIBUTE_UNUSED,
3438      asection *section)
3439 {
3440   return _bfd_bool_bfd_false_error (section->owner);
3441 }
3442 
3443 bfd_boolean
3444 _bfd_nolink_bfd_is_group_section (bfd *abfd,
3445 				  const asection *sec ATTRIBUTE_UNUSED)
3446 {
3447   return _bfd_bool_bfd_false_error (abfd);
3448 }
3449 
3450 bfd_boolean
3451 _bfd_nolink_bfd_discard_group (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3452 {
3453   return _bfd_bool_bfd_false_error (abfd);
3454 }
3455 
3456 struct bfd_link_hash_table *
3457 _bfd_nolink_bfd_link_hash_table_create (bfd *abfd)
3458 {
3459   return (struct bfd_link_hash_table *) _bfd_ptr_bfd_null_error (abfd);
3460 }
3461 
3462 void
3463 _bfd_nolink_bfd_link_just_syms (asection *sec ATTRIBUTE_UNUSED,
3464 				struct bfd_link_info *info ATTRIBUTE_UNUSED)
3465 {
3466 }
3467 
3468 void
3469 _bfd_nolink_bfd_copy_link_hash_symbol_type
3470     (bfd *abfd ATTRIBUTE_UNUSED,
3471      struct bfd_link_hash_entry *from ATTRIBUTE_UNUSED,
3472      struct bfd_link_hash_entry *to ATTRIBUTE_UNUSED)
3473 {
3474 }
3475 
3476 bfd_boolean
3477 _bfd_nolink_bfd_link_split_section (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3478 {
3479   return _bfd_bool_bfd_false_error (abfd);
3480 }
3481 
3482 bfd_boolean
3483 _bfd_nolink_section_already_linked (bfd *abfd,
3484 				    asection *sec ATTRIBUTE_UNUSED,
3485 				    struct bfd_link_info *info ATTRIBUTE_UNUSED)
3486 {
3487   return _bfd_bool_bfd_false_error (abfd);
3488 }
3489 
3490 bfd_boolean
3491 _bfd_nolink_bfd_define_common_symbol
3492     (bfd *abfd,
3493      struct bfd_link_info *info ATTRIBUTE_UNUSED,
3494      struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3495 {
3496   return _bfd_bool_bfd_false_error (abfd);
3497 }
3498 
3499 struct bfd_link_hash_entry *
3500 _bfd_nolink_bfd_define_start_stop (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3501 				   const char *name ATTRIBUTE_UNUSED,
3502 				   asection *sec)
3503 {
3504   return (struct bfd_link_hash_entry *) _bfd_ptr_bfd_null_error (sec->owner);
3505 }
3506