1 /* AArch64-specific support for NN-bit ELF. 2 Copyright (C) 2009-2018 Free Software Foundation, Inc. 3 Contributed by ARM Ltd. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; see the file COPYING3. If not, 19 see <http://www.gnu.org/licenses/>. */ 20 21 /* Notes on implementation: 22 23 Thread Local Store (TLS) 24 25 Overview: 26 27 The implementation currently supports both traditional TLS and TLS 28 descriptors, but only general dynamic (GD). 29 30 For traditional TLS the assembler will present us with code 31 fragments of the form: 32 33 adrp x0, :tlsgd:foo 34 R_AARCH64_TLSGD_ADR_PAGE21(foo) 35 add x0, :tlsgd_lo12:foo 36 R_AARCH64_TLSGD_ADD_LO12_NC(foo) 37 bl __tls_get_addr 38 nop 39 40 For TLS descriptors the assembler will present us with code 41 fragments of the form: 42 43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo) 44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo) 45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo) 46 .tlsdesccall foo 47 blr x1 R_AARCH64_TLSDESC_CALL(foo) 48 49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo 50 indicate that foo is thread local and should be accessed via the 51 traditional TLS mechanims. 52 53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} 54 against foo indicate that 'foo' is thread local and should be accessed 55 via a TLS descriptor mechanism. 56 57 The precise instruction sequence is only relevant from the 58 perspective of linker relaxation which is currently not implemented. 59 60 The static linker must detect that 'foo' is a TLS object and 61 allocate a double GOT entry. The GOT entry must be created for both 62 global and local TLS symbols. Note that this is different to none 63 TLS local objects which do not need a GOT entry. 64 65 In the traditional TLS mechanism, the double GOT entry is used to 66 provide the tls_index structure, containing module and offset 67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD 68 on the module entry. The loader will subsequently fixup this 69 relocation with the module identity. 70 71 For global traditional TLS symbols the static linker places an 72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader 73 will subsequently fixup the offset. For local TLS symbols the static 74 linker fixes up offset. 75 76 In the TLS descriptor mechanism the double GOT entry is used to 77 provide the descriptor. The static linker places the relocation 78 R_AARCH64_TLSDESC on the first GOT slot. The loader will 79 subsequently fix this up. 80 81 Implementation: 82 83 The handling of TLS symbols is implemented across a number of 84 different backend functions. The following is a top level view of 85 what processing is performed where. 86 87 The TLS implementation maintains state information for each TLS 88 symbol. The state information for local and global symbols is kept 89 in different places. Global symbols use generic BFD structures while 90 local symbols use backend specific structures that are allocated and 91 maintained entirely by the backend. 92 93 The flow: 94 95 elfNN_aarch64_check_relocs() 96 97 This function is invoked for each relocation. 98 99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and 100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are 101 spotted. One time creation of local symbol data structures are 102 created when the first local symbol is seen. 103 104 The reference count for a symbol is incremented. The GOT type for 105 each symbol is marked as general dynamic. 106 107 elfNN_aarch64_allocate_dynrelocs () 108 109 For each global with positive reference count we allocate a double 110 GOT slot. For a traditional TLS symbol we allocate space for two 111 relocation entries on the GOT, for a TLS descriptor symbol we 112 allocate space for one relocation on the slot. Record the GOT offset 113 for this symbol. 114 115 elfNN_aarch64_size_dynamic_sections () 116 117 Iterate all input BFDS, look for in the local symbol data structure 118 constructed earlier for local TLS symbols and allocate them double 119 GOT slots along with space for a single GOT relocation. Update the 120 local symbol structure to record the GOT offset allocated. 121 122 elfNN_aarch64_relocate_section () 123 124 Calls elfNN_aarch64_final_link_relocate () 125 126 Emit the relevant TLS relocations against the GOT for each TLS 127 symbol. For local TLS symbols emit the GOT offset directly. The GOT 128 relocations are emitted once the first time a TLS symbol is 129 encountered. The implementation uses the LSB of the GOT offset to 130 flag that the relevant GOT relocations for a symbol have been 131 emitted. All of the TLS code that uses the GOT offset needs to take 132 care to mask out this flag bit before using the offset. 133 134 elfNN_aarch64_final_link_relocate () 135 136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */ 137 138 #include "sysdep.h" 139 #include "bfd.h" 140 #include "libiberty.h" 141 #include "libbfd.h" 142 #include "bfd_stdint.h" 143 #include "elf-bfd.h" 144 #include "bfdlink.h" 145 #include "objalloc.h" 146 #include "elf/aarch64.h" 147 #include "elfxx-aarch64.h" 148 149 #define ARCH_SIZE NN 150 151 #if ARCH_SIZE == 64 152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME 153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME 154 #define HOWTO64(...) HOWTO (__VA_ARGS__) 155 #define HOWTO32(...) EMPTY_HOWTO (0) 156 #define LOG_FILE_ALIGN 3 157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 158 #endif 159 160 #if ARCH_SIZE == 32 161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME 162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME 163 #define HOWTO64(...) EMPTY_HOWTO (0) 164 #define HOWTO32(...) HOWTO (__VA_ARGS__) 165 #define LOG_FILE_ALIGN 2 166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC 167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC 168 #endif 169 170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \ 171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \ 172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \ 173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \ 174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \ 175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \ 176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \ 177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \ 178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \ 179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \ 180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \ 181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \ 182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \ 183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \ 184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \ 185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \ 186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \ 187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \ 188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \ 189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \ 190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \ 191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \ 192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \ 193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \ 194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \ 195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \ 196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \ 197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \ 198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \ 199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \ 200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \ 201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \ 202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \ 203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \ 204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \ 205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \ 206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \ 207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \ 208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \ 209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \ 210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \ 211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \ 212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \ 213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \ 214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \ 215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \ 216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \ 217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \ 218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \ 219 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \ 220 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE))) 221 222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \ 223 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \ 224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \ 225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \ 226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \ 227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \ 228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \ 229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \ 230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \ 231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \ 232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \ 233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \ 234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \ 235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \ 236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \ 237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \ 238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \ 239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \ 240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \ 241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \ 242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \ 243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \ 244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21) 245 246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \ 247 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \ 248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \ 249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \ 250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \ 251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \ 252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \ 253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \ 254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \ 255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \ 256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \ 257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \ 258 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1) 259 260 #define ELIMINATE_COPY_RELOCS 1 261 262 /* Return size of a relocation entry. HTAB is the bfd's 263 elf_aarch64_link_hash_entry. */ 264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela)) 265 266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */ 267 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8) 268 #define PLT_ENTRY_SIZE (32) 269 #define PLT_SMALL_ENTRY_SIZE (16) 270 #define PLT_TLSDESC_ENTRY_SIZE (32) 271 272 /* Encoding of the nop instruction. */ 273 #define INSN_NOP 0xd503201f 274 275 #define aarch64_compute_jump_table_size(htab) \ 276 (((htab)->root.srelplt == NULL) ? 0 \ 277 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE) 278 279 /* The first entry in a procedure linkage table looks like this 280 if the distance between the PLTGOT and the PLT is < 4GB use 281 these PLT entries. Note that the dynamic linker gets &PLTGOT[2] 282 in x16 and needs to work out PLTGOT[1] by using an address of 283 [x16,#-GOT_ENTRY_SIZE]. */ 284 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] = 285 { 286 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */ 287 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */ 288 #if ARCH_SIZE == 64 289 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */ 290 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */ 291 #else 292 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */ 293 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */ 294 #endif 295 0x20, 0x02, 0x1f, 0xd6, /* br x17 */ 296 0x1f, 0x20, 0x03, 0xd5, /* nop */ 297 0x1f, 0x20, 0x03, 0xd5, /* nop */ 298 0x1f, 0x20, 0x03, 0xd5, /* nop */ 299 }; 300 301 /* Per function entry in a procedure linkage table looks like this 302 if the distance between the PLTGOT and the PLT is < 4GB use 303 these PLT entries. */ 304 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] = 305 { 306 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */ 307 #if ARCH_SIZE == 64 308 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */ 309 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */ 310 #else 311 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */ 312 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */ 313 #endif 314 0x20, 0x02, 0x1f, 0xd6, /* br x17. */ 315 }; 316 317 static const bfd_byte 318 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] = 319 { 320 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */ 321 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */ 322 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */ 323 #if ARCH_SIZE == 64 324 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */ 325 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */ 326 #else 327 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */ 328 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */ 329 #endif 330 0x40, 0x00, 0x1f, 0xd6, /* br x2 */ 331 0x1f, 0x20, 0x03, 0xd5, /* nop */ 332 0x1f, 0x20, 0x03, 0xd5, /* nop */ 333 }; 334 335 #define elf_info_to_howto elfNN_aarch64_info_to_howto 336 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto 337 338 #define AARCH64_ELF_ABI_VERSION 0 339 340 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */ 341 #define ALL_ONES (~ (bfd_vma) 0) 342 343 /* Indexed by the bfd interal reloc enumerators. 344 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_* 345 in reloc.c. */ 346 347 static reloc_howto_type elfNN_aarch64_howto_table[] = 348 { 349 EMPTY_HOWTO (0), 350 351 /* Basic data relocations. */ 352 353 /* Deprecated, but retained for backwards compatibility. */ 354 HOWTO64 (R_AARCH64_NULL, /* type */ 355 0, /* rightshift */ 356 3, /* size (0 = byte, 1 = short, 2 = long) */ 357 0, /* bitsize */ 358 FALSE, /* pc_relative */ 359 0, /* bitpos */ 360 complain_overflow_dont, /* complain_on_overflow */ 361 bfd_elf_generic_reloc, /* special_function */ 362 "R_AARCH64_NULL", /* name */ 363 FALSE, /* partial_inplace */ 364 0, /* src_mask */ 365 0, /* dst_mask */ 366 FALSE), /* pcrel_offset */ 367 HOWTO (R_AARCH64_NONE, /* type */ 368 0, /* rightshift */ 369 3, /* size (0 = byte, 1 = short, 2 = long) */ 370 0, /* bitsize */ 371 FALSE, /* pc_relative */ 372 0, /* bitpos */ 373 complain_overflow_dont, /* complain_on_overflow */ 374 bfd_elf_generic_reloc, /* special_function */ 375 "R_AARCH64_NONE", /* name */ 376 FALSE, /* partial_inplace */ 377 0, /* src_mask */ 378 0, /* dst_mask */ 379 FALSE), /* pcrel_offset */ 380 381 /* .xword: (S+A) */ 382 HOWTO64 (AARCH64_R (ABS64), /* type */ 383 0, /* rightshift */ 384 4, /* size (4 = long long) */ 385 64, /* bitsize */ 386 FALSE, /* pc_relative */ 387 0, /* bitpos */ 388 complain_overflow_unsigned, /* complain_on_overflow */ 389 bfd_elf_generic_reloc, /* special_function */ 390 AARCH64_R_STR (ABS64), /* name */ 391 FALSE, /* partial_inplace */ 392 ALL_ONES, /* src_mask */ 393 ALL_ONES, /* dst_mask */ 394 FALSE), /* pcrel_offset */ 395 396 /* .word: (S+A) */ 397 HOWTO (AARCH64_R (ABS32), /* type */ 398 0, /* rightshift */ 399 2, /* size (0 = byte, 1 = short, 2 = long) */ 400 32, /* bitsize */ 401 FALSE, /* pc_relative */ 402 0, /* bitpos */ 403 complain_overflow_unsigned, /* complain_on_overflow */ 404 bfd_elf_generic_reloc, /* special_function */ 405 AARCH64_R_STR (ABS32), /* name */ 406 FALSE, /* partial_inplace */ 407 0xffffffff, /* src_mask */ 408 0xffffffff, /* dst_mask */ 409 FALSE), /* pcrel_offset */ 410 411 /* .half: (S+A) */ 412 HOWTO (AARCH64_R (ABS16), /* type */ 413 0, /* rightshift */ 414 1, /* size (0 = byte, 1 = short, 2 = long) */ 415 16, /* bitsize */ 416 FALSE, /* pc_relative */ 417 0, /* bitpos */ 418 complain_overflow_unsigned, /* complain_on_overflow */ 419 bfd_elf_generic_reloc, /* special_function */ 420 AARCH64_R_STR (ABS16), /* name */ 421 FALSE, /* partial_inplace */ 422 0xffff, /* src_mask */ 423 0xffff, /* dst_mask */ 424 FALSE), /* pcrel_offset */ 425 426 /* .xword: (S+A-P) */ 427 HOWTO64 (AARCH64_R (PREL64), /* type */ 428 0, /* rightshift */ 429 4, /* size (4 = long long) */ 430 64, /* bitsize */ 431 TRUE, /* pc_relative */ 432 0, /* bitpos */ 433 complain_overflow_signed, /* complain_on_overflow */ 434 bfd_elf_generic_reloc, /* special_function */ 435 AARCH64_R_STR (PREL64), /* name */ 436 FALSE, /* partial_inplace */ 437 ALL_ONES, /* src_mask */ 438 ALL_ONES, /* dst_mask */ 439 TRUE), /* pcrel_offset */ 440 441 /* .word: (S+A-P) */ 442 HOWTO (AARCH64_R (PREL32), /* type */ 443 0, /* rightshift */ 444 2, /* size (0 = byte, 1 = short, 2 = long) */ 445 32, /* bitsize */ 446 TRUE, /* pc_relative */ 447 0, /* bitpos */ 448 complain_overflow_signed, /* complain_on_overflow */ 449 bfd_elf_generic_reloc, /* special_function */ 450 AARCH64_R_STR (PREL32), /* name */ 451 FALSE, /* partial_inplace */ 452 0xffffffff, /* src_mask */ 453 0xffffffff, /* dst_mask */ 454 TRUE), /* pcrel_offset */ 455 456 /* .half: (S+A-P) */ 457 HOWTO (AARCH64_R (PREL16), /* type */ 458 0, /* rightshift */ 459 1, /* size (0 = byte, 1 = short, 2 = long) */ 460 16, /* bitsize */ 461 TRUE, /* pc_relative */ 462 0, /* bitpos */ 463 complain_overflow_signed, /* complain_on_overflow */ 464 bfd_elf_generic_reloc, /* special_function */ 465 AARCH64_R_STR (PREL16), /* name */ 466 FALSE, /* partial_inplace */ 467 0xffff, /* src_mask */ 468 0xffff, /* dst_mask */ 469 TRUE), /* pcrel_offset */ 470 471 /* Group relocations to create a 16, 32, 48 or 64 bit 472 unsigned data or abs address inline. */ 473 474 /* MOVZ: ((S+A) >> 0) & 0xffff */ 475 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */ 476 0, /* rightshift */ 477 2, /* size (0 = byte, 1 = short, 2 = long) */ 478 16, /* bitsize */ 479 FALSE, /* pc_relative */ 480 0, /* bitpos */ 481 complain_overflow_unsigned, /* complain_on_overflow */ 482 bfd_elf_generic_reloc, /* special_function */ 483 AARCH64_R_STR (MOVW_UABS_G0), /* name */ 484 FALSE, /* partial_inplace */ 485 0xffff, /* src_mask */ 486 0xffff, /* dst_mask */ 487 FALSE), /* pcrel_offset */ 488 489 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */ 490 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */ 491 0, /* rightshift */ 492 2, /* size (0 = byte, 1 = short, 2 = long) */ 493 16, /* bitsize */ 494 FALSE, /* pc_relative */ 495 0, /* bitpos */ 496 complain_overflow_dont, /* complain_on_overflow */ 497 bfd_elf_generic_reloc, /* special_function */ 498 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */ 499 FALSE, /* partial_inplace */ 500 0xffff, /* src_mask */ 501 0xffff, /* dst_mask */ 502 FALSE), /* pcrel_offset */ 503 504 /* MOVZ: ((S+A) >> 16) & 0xffff */ 505 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */ 506 16, /* rightshift */ 507 2, /* size (0 = byte, 1 = short, 2 = long) */ 508 16, /* bitsize */ 509 FALSE, /* pc_relative */ 510 0, /* bitpos */ 511 complain_overflow_unsigned, /* complain_on_overflow */ 512 bfd_elf_generic_reloc, /* special_function */ 513 AARCH64_R_STR (MOVW_UABS_G1), /* name */ 514 FALSE, /* partial_inplace */ 515 0xffff, /* src_mask */ 516 0xffff, /* dst_mask */ 517 FALSE), /* pcrel_offset */ 518 519 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */ 520 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */ 521 16, /* rightshift */ 522 2, /* size (0 = byte, 1 = short, 2 = long) */ 523 16, /* bitsize */ 524 FALSE, /* pc_relative */ 525 0, /* bitpos */ 526 complain_overflow_dont, /* complain_on_overflow */ 527 bfd_elf_generic_reloc, /* special_function */ 528 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */ 529 FALSE, /* partial_inplace */ 530 0xffff, /* src_mask */ 531 0xffff, /* dst_mask */ 532 FALSE), /* pcrel_offset */ 533 534 /* MOVZ: ((S+A) >> 32) & 0xffff */ 535 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */ 536 32, /* rightshift */ 537 2, /* size (0 = byte, 1 = short, 2 = long) */ 538 16, /* bitsize */ 539 FALSE, /* pc_relative */ 540 0, /* bitpos */ 541 complain_overflow_unsigned, /* complain_on_overflow */ 542 bfd_elf_generic_reloc, /* special_function */ 543 AARCH64_R_STR (MOVW_UABS_G2), /* name */ 544 FALSE, /* partial_inplace */ 545 0xffff, /* src_mask */ 546 0xffff, /* dst_mask */ 547 FALSE), /* pcrel_offset */ 548 549 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */ 550 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */ 551 32, /* rightshift */ 552 2, /* size (0 = byte, 1 = short, 2 = long) */ 553 16, /* bitsize */ 554 FALSE, /* pc_relative */ 555 0, /* bitpos */ 556 complain_overflow_dont, /* complain_on_overflow */ 557 bfd_elf_generic_reloc, /* special_function */ 558 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */ 559 FALSE, /* partial_inplace */ 560 0xffff, /* src_mask */ 561 0xffff, /* dst_mask */ 562 FALSE), /* pcrel_offset */ 563 564 /* MOVZ: ((S+A) >> 48) & 0xffff */ 565 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */ 566 48, /* rightshift */ 567 2, /* size (0 = byte, 1 = short, 2 = long) */ 568 16, /* bitsize */ 569 FALSE, /* pc_relative */ 570 0, /* bitpos */ 571 complain_overflow_unsigned, /* complain_on_overflow */ 572 bfd_elf_generic_reloc, /* special_function */ 573 AARCH64_R_STR (MOVW_UABS_G3), /* name */ 574 FALSE, /* partial_inplace */ 575 0xffff, /* src_mask */ 576 0xffff, /* dst_mask */ 577 FALSE), /* pcrel_offset */ 578 579 /* Group relocations to create high part of a 16, 32, 48 or 64 bit 580 signed data or abs address inline. Will change instruction 581 to MOVN or MOVZ depending on sign of calculated value. */ 582 583 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */ 584 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */ 585 0, /* rightshift */ 586 2, /* size (0 = byte, 1 = short, 2 = long) */ 587 17, /* bitsize */ 588 FALSE, /* pc_relative */ 589 0, /* bitpos */ 590 complain_overflow_signed, /* complain_on_overflow */ 591 bfd_elf_generic_reloc, /* special_function */ 592 AARCH64_R_STR (MOVW_SABS_G0), /* name */ 593 FALSE, /* partial_inplace */ 594 0xffff, /* src_mask */ 595 0xffff, /* dst_mask */ 596 FALSE), /* pcrel_offset */ 597 598 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */ 599 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */ 600 16, /* rightshift */ 601 2, /* size (0 = byte, 1 = short, 2 = long) */ 602 17, /* bitsize */ 603 FALSE, /* pc_relative */ 604 0, /* bitpos */ 605 complain_overflow_signed, /* complain_on_overflow */ 606 bfd_elf_generic_reloc, /* special_function */ 607 AARCH64_R_STR (MOVW_SABS_G1), /* name */ 608 FALSE, /* partial_inplace */ 609 0xffff, /* src_mask */ 610 0xffff, /* dst_mask */ 611 FALSE), /* pcrel_offset */ 612 613 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */ 614 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */ 615 32, /* rightshift */ 616 2, /* size (0 = byte, 1 = short, 2 = long) */ 617 17, /* bitsize */ 618 FALSE, /* pc_relative */ 619 0, /* bitpos */ 620 complain_overflow_signed, /* complain_on_overflow */ 621 bfd_elf_generic_reloc, /* special_function */ 622 AARCH64_R_STR (MOVW_SABS_G2), /* name */ 623 FALSE, /* partial_inplace */ 624 0xffff, /* src_mask */ 625 0xffff, /* dst_mask */ 626 FALSE), /* pcrel_offset */ 627 628 /* Group relocations to create a 16, 32, 48 or 64 bit 629 PC relative address inline. */ 630 631 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */ 632 HOWTO64 (AARCH64_R (MOVW_PREL_G0), /* type */ 633 0, /* rightshift */ 634 2, /* size (0 = byte, 1 = short, 2 = long) */ 635 17, /* bitsize */ 636 TRUE, /* pc_relative */ 637 0, /* bitpos */ 638 complain_overflow_signed, /* complain_on_overflow */ 639 bfd_elf_generic_reloc, /* special_function */ 640 AARCH64_R_STR (MOVW_PREL_G0), /* name */ 641 FALSE, /* partial_inplace */ 642 0xffff, /* src_mask */ 643 0xffff, /* dst_mask */ 644 TRUE), /* pcrel_offset */ 645 646 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */ 647 HOWTO64 (AARCH64_R (MOVW_PREL_G0_NC), /* type */ 648 0, /* rightshift */ 649 2, /* size (0 = byte, 1 = short, 2 = long) */ 650 16, /* bitsize */ 651 TRUE, /* pc_relative */ 652 0, /* bitpos */ 653 complain_overflow_dont, /* complain_on_overflow */ 654 bfd_elf_generic_reloc, /* special_function */ 655 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */ 656 FALSE, /* partial_inplace */ 657 0xffff, /* src_mask */ 658 0xffff, /* dst_mask */ 659 TRUE), /* pcrel_offset */ 660 661 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */ 662 HOWTO64 (AARCH64_R (MOVW_PREL_G1), /* type */ 663 16, /* rightshift */ 664 2, /* size (0 = byte, 1 = short, 2 = long) */ 665 17, /* bitsize */ 666 TRUE, /* pc_relative */ 667 0, /* bitpos */ 668 complain_overflow_signed, /* complain_on_overflow */ 669 bfd_elf_generic_reloc, /* special_function */ 670 AARCH64_R_STR (MOVW_PREL_G1), /* name */ 671 FALSE, /* partial_inplace */ 672 0xffff, /* src_mask */ 673 0xffff, /* dst_mask */ 674 TRUE), /* pcrel_offset */ 675 676 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */ 677 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */ 678 16, /* rightshift */ 679 2, /* size (0 = byte, 1 = short, 2 = long) */ 680 16, /* bitsize */ 681 TRUE, /* pc_relative */ 682 0, /* bitpos */ 683 complain_overflow_dont, /* complain_on_overflow */ 684 bfd_elf_generic_reloc, /* special_function */ 685 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */ 686 FALSE, /* partial_inplace */ 687 0xffff, /* src_mask */ 688 0xffff, /* dst_mask */ 689 TRUE), /* pcrel_offset */ 690 691 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */ 692 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */ 693 32, /* rightshift */ 694 2, /* size (0 = byte, 1 = short, 2 = long) */ 695 17, /* bitsize */ 696 TRUE, /* pc_relative */ 697 0, /* bitpos */ 698 complain_overflow_signed, /* complain_on_overflow */ 699 bfd_elf_generic_reloc, /* special_function */ 700 AARCH64_R_STR (MOVW_PREL_G2), /* name */ 701 FALSE, /* partial_inplace */ 702 0xffff, /* src_mask */ 703 0xffff, /* dst_mask */ 704 TRUE), /* pcrel_offset */ 705 706 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */ 707 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */ 708 32, /* rightshift */ 709 2, /* size (0 = byte, 1 = short, 2 = long) */ 710 16, /* bitsize */ 711 TRUE, /* pc_relative */ 712 0, /* bitpos */ 713 complain_overflow_dont, /* complain_on_overflow */ 714 bfd_elf_generic_reloc, /* special_function */ 715 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */ 716 FALSE, /* partial_inplace */ 717 0xffff, /* src_mask */ 718 0xffff, /* dst_mask */ 719 TRUE), /* pcrel_offset */ 720 721 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */ 722 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */ 723 48, /* rightshift */ 724 2, /* size (0 = byte, 1 = short, 2 = long) */ 725 16, /* bitsize */ 726 TRUE, /* pc_relative */ 727 0, /* bitpos */ 728 complain_overflow_dont, /* complain_on_overflow */ 729 bfd_elf_generic_reloc, /* special_function */ 730 AARCH64_R_STR (MOVW_PREL_G3), /* name */ 731 FALSE, /* partial_inplace */ 732 0xffff, /* src_mask */ 733 0xffff, /* dst_mask */ 734 TRUE), /* pcrel_offset */ 735 736 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store 737 addresses: PG(x) is (x & ~0xfff). */ 738 739 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */ 740 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */ 741 2, /* rightshift */ 742 2, /* size (0 = byte, 1 = short, 2 = long) */ 743 19, /* bitsize */ 744 TRUE, /* pc_relative */ 745 0, /* bitpos */ 746 complain_overflow_signed, /* complain_on_overflow */ 747 bfd_elf_generic_reloc, /* special_function */ 748 AARCH64_R_STR (LD_PREL_LO19), /* name */ 749 FALSE, /* partial_inplace */ 750 0x7ffff, /* src_mask */ 751 0x7ffff, /* dst_mask */ 752 TRUE), /* pcrel_offset */ 753 754 /* ADR: (S+A-P) & 0x1fffff */ 755 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */ 756 0, /* rightshift */ 757 2, /* size (0 = byte, 1 = short, 2 = long) */ 758 21, /* bitsize */ 759 TRUE, /* pc_relative */ 760 0, /* bitpos */ 761 complain_overflow_signed, /* complain_on_overflow */ 762 bfd_elf_generic_reloc, /* special_function */ 763 AARCH64_R_STR (ADR_PREL_LO21), /* name */ 764 FALSE, /* partial_inplace */ 765 0x1fffff, /* src_mask */ 766 0x1fffff, /* dst_mask */ 767 TRUE), /* pcrel_offset */ 768 769 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */ 770 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */ 771 12, /* rightshift */ 772 2, /* size (0 = byte, 1 = short, 2 = long) */ 773 21, /* bitsize */ 774 TRUE, /* pc_relative */ 775 0, /* bitpos */ 776 complain_overflow_signed, /* complain_on_overflow */ 777 bfd_elf_generic_reloc, /* special_function */ 778 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */ 779 FALSE, /* partial_inplace */ 780 0x1fffff, /* src_mask */ 781 0x1fffff, /* dst_mask */ 782 TRUE), /* pcrel_offset */ 783 784 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */ 785 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */ 786 12, /* rightshift */ 787 2, /* size (0 = byte, 1 = short, 2 = long) */ 788 21, /* bitsize */ 789 TRUE, /* pc_relative */ 790 0, /* bitpos */ 791 complain_overflow_dont, /* complain_on_overflow */ 792 bfd_elf_generic_reloc, /* special_function */ 793 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */ 794 FALSE, /* partial_inplace */ 795 0x1fffff, /* src_mask */ 796 0x1fffff, /* dst_mask */ 797 TRUE), /* pcrel_offset */ 798 799 /* ADD: (S+A) & 0xfff [no overflow check] */ 800 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */ 801 0, /* rightshift */ 802 2, /* size (0 = byte, 1 = short, 2 = long) */ 803 12, /* bitsize */ 804 FALSE, /* pc_relative */ 805 10, /* bitpos */ 806 complain_overflow_dont, /* complain_on_overflow */ 807 bfd_elf_generic_reloc, /* special_function */ 808 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */ 809 FALSE, /* partial_inplace */ 810 0x3ffc00, /* src_mask */ 811 0x3ffc00, /* dst_mask */ 812 FALSE), /* pcrel_offset */ 813 814 /* LD/ST8: (S+A) & 0xfff */ 815 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */ 816 0, /* rightshift */ 817 2, /* size (0 = byte, 1 = short, 2 = long) */ 818 12, /* bitsize */ 819 FALSE, /* pc_relative */ 820 0, /* bitpos */ 821 complain_overflow_dont, /* complain_on_overflow */ 822 bfd_elf_generic_reloc, /* special_function */ 823 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */ 824 FALSE, /* partial_inplace */ 825 0xfff, /* src_mask */ 826 0xfff, /* dst_mask */ 827 FALSE), /* pcrel_offset */ 828 829 /* Relocations for control-flow instructions. */ 830 831 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */ 832 HOWTO (AARCH64_R (TSTBR14), /* type */ 833 2, /* rightshift */ 834 2, /* size (0 = byte, 1 = short, 2 = long) */ 835 14, /* bitsize */ 836 TRUE, /* pc_relative */ 837 0, /* bitpos */ 838 complain_overflow_signed, /* complain_on_overflow */ 839 bfd_elf_generic_reloc, /* special_function */ 840 AARCH64_R_STR (TSTBR14), /* name */ 841 FALSE, /* partial_inplace */ 842 0x3fff, /* src_mask */ 843 0x3fff, /* dst_mask */ 844 TRUE), /* pcrel_offset */ 845 846 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */ 847 HOWTO (AARCH64_R (CONDBR19), /* type */ 848 2, /* rightshift */ 849 2, /* size (0 = byte, 1 = short, 2 = long) */ 850 19, /* bitsize */ 851 TRUE, /* pc_relative */ 852 0, /* bitpos */ 853 complain_overflow_signed, /* complain_on_overflow */ 854 bfd_elf_generic_reloc, /* special_function */ 855 AARCH64_R_STR (CONDBR19), /* name */ 856 FALSE, /* partial_inplace */ 857 0x7ffff, /* src_mask */ 858 0x7ffff, /* dst_mask */ 859 TRUE), /* pcrel_offset */ 860 861 /* B: ((S+A-P) >> 2) & 0x3ffffff */ 862 HOWTO (AARCH64_R (JUMP26), /* type */ 863 2, /* rightshift */ 864 2, /* size (0 = byte, 1 = short, 2 = long) */ 865 26, /* bitsize */ 866 TRUE, /* pc_relative */ 867 0, /* bitpos */ 868 complain_overflow_signed, /* complain_on_overflow */ 869 bfd_elf_generic_reloc, /* special_function */ 870 AARCH64_R_STR (JUMP26), /* name */ 871 FALSE, /* partial_inplace */ 872 0x3ffffff, /* src_mask */ 873 0x3ffffff, /* dst_mask */ 874 TRUE), /* pcrel_offset */ 875 876 /* BL: ((S+A-P) >> 2) & 0x3ffffff */ 877 HOWTO (AARCH64_R (CALL26), /* type */ 878 2, /* rightshift */ 879 2, /* size (0 = byte, 1 = short, 2 = long) */ 880 26, /* bitsize */ 881 TRUE, /* pc_relative */ 882 0, /* bitpos */ 883 complain_overflow_signed, /* complain_on_overflow */ 884 bfd_elf_generic_reloc, /* special_function */ 885 AARCH64_R_STR (CALL26), /* name */ 886 FALSE, /* partial_inplace */ 887 0x3ffffff, /* src_mask */ 888 0x3ffffff, /* dst_mask */ 889 TRUE), /* pcrel_offset */ 890 891 /* LD/ST16: (S+A) & 0xffe */ 892 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */ 893 1, /* rightshift */ 894 2, /* size (0 = byte, 1 = short, 2 = long) */ 895 12, /* bitsize */ 896 FALSE, /* pc_relative */ 897 0, /* bitpos */ 898 complain_overflow_dont, /* complain_on_overflow */ 899 bfd_elf_generic_reloc, /* special_function */ 900 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */ 901 FALSE, /* partial_inplace */ 902 0xffe, /* src_mask */ 903 0xffe, /* dst_mask */ 904 FALSE), /* pcrel_offset */ 905 906 /* LD/ST32: (S+A) & 0xffc */ 907 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */ 908 2, /* rightshift */ 909 2, /* size (0 = byte, 1 = short, 2 = long) */ 910 12, /* bitsize */ 911 FALSE, /* pc_relative */ 912 0, /* bitpos */ 913 complain_overflow_dont, /* complain_on_overflow */ 914 bfd_elf_generic_reloc, /* special_function */ 915 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */ 916 FALSE, /* partial_inplace */ 917 0xffc, /* src_mask */ 918 0xffc, /* dst_mask */ 919 FALSE), /* pcrel_offset */ 920 921 /* LD/ST64: (S+A) & 0xff8 */ 922 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */ 923 3, /* rightshift */ 924 2, /* size (0 = byte, 1 = short, 2 = long) */ 925 12, /* bitsize */ 926 FALSE, /* pc_relative */ 927 0, /* bitpos */ 928 complain_overflow_dont, /* complain_on_overflow */ 929 bfd_elf_generic_reloc, /* special_function */ 930 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */ 931 FALSE, /* partial_inplace */ 932 0xff8, /* src_mask */ 933 0xff8, /* dst_mask */ 934 FALSE), /* pcrel_offset */ 935 936 /* LD/ST128: (S+A) & 0xff0 */ 937 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */ 938 4, /* rightshift */ 939 2, /* size (0 = byte, 1 = short, 2 = long) */ 940 12, /* bitsize */ 941 FALSE, /* pc_relative */ 942 0, /* bitpos */ 943 complain_overflow_dont, /* complain_on_overflow */ 944 bfd_elf_generic_reloc, /* special_function */ 945 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */ 946 FALSE, /* partial_inplace */ 947 0xff0, /* src_mask */ 948 0xff0, /* dst_mask */ 949 FALSE), /* pcrel_offset */ 950 951 /* Set a load-literal immediate field to bits 952 0x1FFFFC of G(S)-P */ 953 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */ 954 2, /* rightshift */ 955 2, /* size (0 = byte,1 = short,2 = long) */ 956 19, /* bitsize */ 957 TRUE, /* pc_relative */ 958 0, /* bitpos */ 959 complain_overflow_signed, /* complain_on_overflow */ 960 bfd_elf_generic_reloc, /* special_function */ 961 AARCH64_R_STR (GOT_LD_PREL19), /* name */ 962 FALSE, /* partial_inplace */ 963 0xffffe0, /* src_mask */ 964 0xffffe0, /* dst_mask */ 965 TRUE), /* pcrel_offset */ 966 967 /* Get to the page for the GOT entry for the symbol 968 (G(S) - P) using an ADRP instruction. */ 969 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */ 970 12, /* rightshift */ 971 2, /* size (0 = byte, 1 = short, 2 = long) */ 972 21, /* bitsize */ 973 TRUE, /* pc_relative */ 974 0, /* bitpos */ 975 complain_overflow_dont, /* complain_on_overflow */ 976 bfd_elf_generic_reloc, /* special_function */ 977 AARCH64_R_STR (ADR_GOT_PAGE), /* name */ 978 FALSE, /* partial_inplace */ 979 0x1fffff, /* src_mask */ 980 0x1fffff, /* dst_mask */ 981 TRUE), /* pcrel_offset */ 982 983 /* LD64: GOT offset G(S) & 0xff8 */ 984 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */ 985 3, /* rightshift */ 986 2, /* size (0 = byte, 1 = short, 2 = long) */ 987 12, /* bitsize */ 988 FALSE, /* pc_relative */ 989 0, /* bitpos */ 990 complain_overflow_dont, /* complain_on_overflow */ 991 bfd_elf_generic_reloc, /* special_function */ 992 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */ 993 FALSE, /* partial_inplace */ 994 0xff8, /* src_mask */ 995 0xff8, /* dst_mask */ 996 FALSE), /* pcrel_offset */ 997 998 /* LD32: GOT offset G(S) & 0xffc */ 999 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */ 1000 2, /* rightshift */ 1001 2, /* size (0 = byte, 1 = short, 2 = long) */ 1002 12, /* bitsize */ 1003 FALSE, /* pc_relative */ 1004 0, /* bitpos */ 1005 complain_overflow_dont, /* complain_on_overflow */ 1006 bfd_elf_generic_reloc, /* special_function */ 1007 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */ 1008 FALSE, /* partial_inplace */ 1009 0xffc, /* src_mask */ 1010 0xffc, /* dst_mask */ 1011 FALSE), /* pcrel_offset */ 1012 1013 /* Lower 16 bits of GOT offset for the symbol. */ 1014 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */ 1015 0, /* rightshift */ 1016 2, /* size (0 = byte, 1 = short, 2 = long) */ 1017 16, /* bitsize */ 1018 FALSE, /* pc_relative */ 1019 0, /* bitpos */ 1020 complain_overflow_dont, /* complain_on_overflow */ 1021 bfd_elf_generic_reloc, /* special_function */ 1022 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */ 1023 FALSE, /* partial_inplace */ 1024 0xffff, /* src_mask */ 1025 0xffff, /* dst_mask */ 1026 FALSE), /* pcrel_offset */ 1027 1028 /* Higher 16 bits of GOT offset for the symbol. */ 1029 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */ 1030 16, /* rightshift */ 1031 2, /* size (0 = byte, 1 = short, 2 = long) */ 1032 16, /* bitsize */ 1033 FALSE, /* pc_relative */ 1034 0, /* bitpos */ 1035 complain_overflow_unsigned, /* complain_on_overflow */ 1036 bfd_elf_generic_reloc, /* special_function */ 1037 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */ 1038 FALSE, /* partial_inplace */ 1039 0xffff, /* src_mask */ 1040 0xffff, /* dst_mask */ 1041 FALSE), /* pcrel_offset */ 1042 1043 /* LD64: GOT offset for the symbol. */ 1044 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */ 1045 3, /* rightshift */ 1046 2, /* size (0 = byte, 1 = short, 2 = long) */ 1047 12, /* bitsize */ 1048 FALSE, /* pc_relative */ 1049 0, /* bitpos */ 1050 complain_overflow_unsigned, /* complain_on_overflow */ 1051 bfd_elf_generic_reloc, /* special_function */ 1052 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */ 1053 FALSE, /* partial_inplace */ 1054 0x7ff8, /* src_mask */ 1055 0x7ff8, /* dst_mask */ 1056 FALSE), /* pcrel_offset */ 1057 1058 /* LD32: GOT offset to the page address of GOT table. 1059 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */ 1060 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */ 1061 2, /* rightshift */ 1062 2, /* size (0 = byte, 1 = short, 2 = long) */ 1063 12, /* bitsize */ 1064 FALSE, /* pc_relative */ 1065 0, /* bitpos */ 1066 complain_overflow_unsigned, /* complain_on_overflow */ 1067 bfd_elf_generic_reloc, /* special_function */ 1068 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */ 1069 FALSE, /* partial_inplace */ 1070 0x5ffc, /* src_mask */ 1071 0x5ffc, /* dst_mask */ 1072 FALSE), /* pcrel_offset */ 1073 1074 /* LD64: GOT offset to the page address of GOT table. 1075 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */ 1076 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */ 1077 3, /* rightshift */ 1078 2, /* size (0 = byte, 1 = short, 2 = long) */ 1079 12, /* bitsize */ 1080 FALSE, /* pc_relative */ 1081 0, /* bitpos */ 1082 complain_overflow_unsigned, /* complain_on_overflow */ 1083 bfd_elf_generic_reloc, /* special_function */ 1084 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */ 1085 FALSE, /* partial_inplace */ 1086 0x7ff8, /* src_mask */ 1087 0x7ff8, /* dst_mask */ 1088 FALSE), /* pcrel_offset */ 1089 1090 /* Get to the page for the GOT entry for the symbol 1091 (G(S) - P) using an ADRP instruction. */ 1092 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */ 1093 12, /* rightshift */ 1094 2, /* size (0 = byte, 1 = short, 2 = long) */ 1095 21, /* bitsize */ 1096 TRUE, /* pc_relative */ 1097 0, /* bitpos */ 1098 complain_overflow_dont, /* complain_on_overflow */ 1099 bfd_elf_generic_reloc, /* special_function */ 1100 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */ 1101 FALSE, /* partial_inplace */ 1102 0x1fffff, /* src_mask */ 1103 0x1fffff, /* dst_mask */ 1104 TRUE), /* pcrel_offset */ 1105 1106 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */ 1107 0, /* rightshift */ 1108 2, /* size (0 = byte, 1 = short, 2 = long) */ 1109 21, /* bitsize */ 1110 TRUE, /* pc_relative */ 1111 0, /* bitpos */ 1112 complain_overflow_dont, /* complain_on_overflow */ 1113 bfd_elf_generic_reloc, /* special_function */ 1114 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */ 1115 FALSE, /* partial_inplace */ 1116 0x1fffff, /* src_mask */ 1117 0x1fffff, /* dst_mask */ 1118 TRUE), /* pcrel_offset */ 1119 1120 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */ 1121 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */ 1122 0, /* rightshift */ 1123 2, /* size (0 = byte, 1 = short, 2 = long) */ 1124 12, /* bitsize */ 1125 FALSE, /* pc_relative */ 1126 0, /* bitpos */ 1127 complain_overflow_dont, /* complain_on_overflow */ 1128 bfd_elf_generic_reloc, /* special_function */ 1129 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */ 1130 FALSE, /* partial_inplace */ 1131 0xfff, /* src_mask */ 1132 0xfff, /* dst_mask */ 1133 FALSE), /* pcrel_offset */ 1134 1135 /* Lower 16 bits of GOT offset to tls_index. */ 1136 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */ 1137 0, /* rightshift */ 1138 2, /* size (0 = byte, 1 = short, 2 = long) */ 1139 16, /* bitsize */ 1140 FALSE, /* pc_relative */ 1141 0, /* bitpos */ 1142 complain_overflow_dont, /* complain_on_overflow */ 1143 bfd_elf_generic_reloc, /* special_function */ 1144 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */ 1145 FALSE, /* partial_inplace */ 1146 0xffff, /* src_mask */ 1147 0xffff, /* dst_mask */ 1148 FALSE), /* pcrel_offset */ 1149 1150 /* Higher 16 bits of GOT offset to tls_index. */ 1151 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */ 1152 16, /* rightshift */ 1153 2, /* size (0 = byte, 1 = short, 2 = long) */ 1154 16, /* bitsize */ 1155 FALSE, /* pc_relative */ 1156 0, /* bitpos */ 1157 complain_overflow_unsigned, /* complain_on_overflow */ 1158 bfd_elf_generic_reloc, /* special_function */ 1159 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */ 1160 FALSE, /* partial_inplace */ 1161 0xffff, /* src_mask */ 1162 0xffff, /* dst_mask */ 1163 FALSE), /* pcrel_offset */ 1164 1165 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */ 1166 12, /* rightshift */ 1167 2, /* size (0 = byte, 1 = short, 2 = long) */ 1168 21, /* bitsize */ 1169 FALSE, /* pc_relative */ 1170 0, /* bitpos */ 1171 complain_overflow_dont, /* complain_on_overflow */ 1172 bfd_elf_generic_reloc, /* special_function */ 1173 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */ 1174 FALSE, /* partial_inplace */ 1175 0x1fffff, /* src_mask */ 1176 0x1fffff, /* dst_mask */ 1177 FALSE), /* pcrel_offset */ 1178 1179 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */ 1180 3, /* rightshift */ 1181 2, /* size (0 = byte, 1 = short, 2 = long) */ 1182 12, /* bitsize */ 1183 FALSE, /* pc_relative */ 1184 0, /* bitpos */ 1185 complain_overflow_dont, /* complain_on_overflow */ 1186 bfd_elf_generic_reloc, /* special_function */ 1187 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */ 1188 FALSE, /* partial_inplace */ 1189 0xff8, /* src_mask */ 1190 0xff8, /* dst_mask */ 1191 FALSE), /* pcrel_offset */ 1192 1193 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */ 1194 2, /* rightshift */ 1195 2, /* size (0 = byte, 1 = short, 2 = long) */ 1196 12, /* bitsize */ 1197 FALSE, /* pc_relative */ 1198 0, /* bitpos */ 1199 complain_overflow_dont, /* complain_on_overflow */ 1200 bfd_elf_generic_reloc, /* special_function */ 1201 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */ 1202 FALSE, /* partial_inplace */ 1203 0xffc, /* src_mask */ 1204 0xffc, /* dst_mask */ 1205 FALSE), /* pcrel_offset */ 1206 1207 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */ 1208 2, /* rightshift */ 1209 2, /* size (0 = byte, 1 = short, 2 = long) */ 1210 19, /* bitsize */ 1211 FALSE, /* pc_relative */ 1212 0, /* bitpos */ 1213 complain_overflow_dont, /* complain_on_overflow */ 1214 bfd_elf_generic_reloc, /* special_function */ 1215 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */ 1216 FALSE, /* partial_inplace */ 1217 0x1ffffc, /* src_mask */ 1218 0x1ffffc, /* dst_mask */ 1219 FALSE), /* pcrel_offset */ 1220 1221 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */ 1222 0, /* rightshift */ 1223 2, /* size (0 = byte, 1 = short, 2 = long) */ 1224 16, /* bitsize */ 1225 FALSE, /* pc_relative */ 1226 0, /* bitpos */ 1227 complain_overflow_dont, /* complain_on_overflow */ 1228 bfd_elf_generic_reloc, /* special_function */ 1229 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */ 1230 FALSE, /* partial_inplace */ 1231 0xffff, /* src_mask */ 1232 0xffff, /* dst_mask */ 1233 FALSE), /* pcrel_offset */ 1234 1235 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */ 1236 16, /* rightshift */ 1237 2, /* size (0 = byte, 1 = short, 2 = long) */ 1238 16, /* bitsize */ 1239 FALSE, /* pc_relative */ 1240 0, /* bitpos */ 1241 complain_overflow_unsigned, /* complain_on_overflow */ 1242 bfd_elf_generic_reloc, /* special_function */ 1243 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */ 1244 FALSE, /* partial_inplace */ 1245 0xffff, /* src_mask */ 1246 0xffff, /* dst_mask */ 1247 FALSE), /* pcrel_offset */ 1248 1249 /* ADD: bit[23:12] of byte offset to module TLS base address. */ 1250 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */ 1251 12, /* rightshift */ 1252 2, /* size (0 = byte, 1 = short, 2 = long) */ 1253 12, /* bitsize */ 1254 FALSE, /* pc_relative */ 1255 0, /* bitpos */ 1256 complain_overflow_unsigned, /* complain_on_overflow */ 1257 bfd_elf_generic_reloc, /* special_function */ 1258 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */ 1259 FALSE, /* partial_inplace */ 1260 0xfff, /* src_mask */ 1261 0xfff, /* dst_mask */ 1262 FALSE), /* pcrel_offset */ 1263 1264 /* Unsigned 12 bit byte offset to module TLS base address. */ 1265 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */ 1266 0, /* rightshift */ 1267 2, /* size (0 = byte, 1 = short, 2 = long) */ 1268 12, /* bitsize */ 1269 FALSE, /* pc_relative */ 1270 0, /* bitpos */ 1271 complain_overflow_unsigned, /* complain_on_overflow */ 1272 bfd_elf_generic_reloc, /* special_function */ 1273 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */ 1274 FALSE, /* partial_inplace */ 1275 0xfff, /* src_mask */ 1276 0xfff, /* dst_mask */ 1277 FALSE), /* pcrel_offset */ 1278 1279 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */ 1280 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */ 1281 0, /* rightshift */ 1282 2, /* size (0 = byte, 1 = short, 2 = long) */ 1283 12, /* bitsize */ 1284 FALSE, /* pc_relative */ 1285 0, /* bitpos */ 1286 complain_overflow_dont, /* complain_on_overflow */ 1287 bfd_elf_generic_reloc, /* special_function */ 1288 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */ 1289 FALSE, /* partial_inplace */ 1290 0xfff, /* src_mask */ 1291 0xfff, /* dst_mask */ 1292 FALSE), /* pcrel_offset */ 1293 1294 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */ 1295 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */ 1296 0, /* rightshift */ 1297 2, /* size (0 = byte, 1 = short, 2 = long) */ 1298 12, /* bitsize */ 1299 FALSE, /* pc_relative */ 1300 0, /* bitpos */ 1301 complain_overflow_dont, /* complain_on_overflow */ 1302 bfd_elf_generic_reloc, /* special_function */ 1303 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */ 1304 FALSE, /* partial_inplace */ 1305 0xfff, /* src_mask */ 1306 0xfff, /* dst_mask */ 1307 FALSE), /* pcrel_offset */ 1308 1309 /* Get to the page for the GOT entry for the symbol 1310 (G(S) - P) using an ADRP instruction. */ 1311 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */ 1312 12, /* rightshift */ 1313 2, /* size (0 = byte, 1 = short, 2 = long) */ 1314 21, /* bitsize */ 1315 TRUE, /* pc_relative */ 1316 0, /* bitpos */ 1317 complain_overflow_signed, /* complain_on_overflow */ 1318 bfd_elf_generic_reloc, /* special_function */ 1319 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */ 1320 FALSE, /* partial_inplace */ 1321 0x1fffff, /* src_mask */ 1322 0x1fffff, /* dst_mask */ 1323 TRUE), /* pcrel_offset */ 1324 1325 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */ 1326 0, /* rightshift */ 1327 2, /* size (0 = byte, 1 = short, 2 = long) */ 1328 21, /* bitsize */ 1329 TRUE, /* pc_relative */ 1330 0, /* bitpos */ 1331 complain_overflow_signed, /* complain_on_overflow */ 1332 bfd_elf_generic_reloc, /* special_function */ 1333 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */ 1334 FALSE, /* partial_inplace */ 1335 0x1fffff, /* src_mask */ 1336 0x1fffff, /* dst_mask */ 1337 TRUE), /* pcrel_offset */ 1338 1339 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */ 1340 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */ 1341 1, /* rightshift */ 1342 2, /* size (0 = byte, 1 = short, 2 = long) */ 1343 11, /* bitsize */ 1344 FALSE, /* pc_relative */ 1345 10, /* bitpos */ 1346 complain_overflow_unsigned, /* complain_on_overflow */ 1347 bfd_elf_generic_reloc, /* special_function */ 1348 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */ 1349 FALSE, /* partial_inplace */ 1350 0x1ffc00, /* src_mask */ 1351 0x1ffc00, /* dst_mask */ 1352 FALSE), /* pcrel_offset */ 1353 1354 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */ 1355 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */ 1356 1, /* rightshift */ 1357 2, /* size (0 = byte, 1 = short, 2 = long) */ 1358 11, /* bitsize */ 1359 FALSE, /* pc_relative */ 1360 10, /* bitpos */ 1361 complain_overflow_dont, /* complain_on_overflow */ 1362 bfd_elf_generic_reloc, /* special_function */ 1363 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */ 1364 FALSE, /* partial_inplace */ 1365 0x1ffc00, /* src_mask */ 1366 0x1ffc00, /* dst_mask */ 1367 FALSE), /* pcrel_offset */ 1368 1369 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */ 1370 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */ 1371 2, /* rightshift */ 1372 2, /* size (0 = byte, 1 = short, 2 = long) */ 1373 10, /* bitsize */ 1374 FALSE, /* pc_relative */ 1375 10, /* bitpos */ 1376 complain_overflow_unsigned, /* complain_on_overflow */ 1377 bfd_elf_generic_reloc, /* special_function */ 1378 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */ 1379 FALSE, /* partial_inplace */ 1380 0x3ffc00, /* src_mask */ 1381 0x3ffc00, /* dst_mask */ 1382 FALSE), /* pcrel_offset */ 1383 1384 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */ 1385 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */ 1386 2, /* rightshift */ 1387 2, /* size (0 = byte, 1 = short, 2 = long) */ 1388 10, /* bitsize */ 1389 FALSE, /* pc_relative */ 1390 10, /* bitpos */ 1391 complain_overflow_dont, /* complain_on_overflow */ 1392 bfd_elf_generic_reloc, /* special_function */ 1393 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */ 1394 FALSE, /* partial_inplace */ 1395 0xffc00, /* src_mask */ 1396 0xffc00, /* dst_mask */ 1397 FALSE), /* pcrel_offset */ 1398 1399 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */ 1400 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */ 1401 3, /* rightshift */ 1402 2, /* size (0 = byte, 1 = short, 2 = long) */ 1403 9, /* bitsize */ 1404 FALSE, /* pc_relative */ 1405 10, /* bitpos */ 1406 complain_overflow_unsigned, /* complain_on_overflow */ 1407 bfd_elf_generic_reloc, /* special_function */ 1408 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */ 1409 FALSE, /* partial_inplace */ 1410 0x3ffc00, /* src_mask */ 1411 0x3ffc00, /* dst_mask */ 1412 FALSE), /* pcrel_offset */ 1413 1414 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */ 1415 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */ 1416 3, /* rightshift */ 1417 2, /* size (0 = byte, 1 = short, 2 = long) */ 1418 9, /* bitsize */ 1419 FALSE, /* pc_relative */ 1420 10, /* bitpos */ 1421 complain_overflow_dont, /* complain_on_overflow */ 1422 bfd_elf_generic_reloc, /* special_function */ 1423 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */ 1424 FALSE, /* partial_inplace */ 1425 0x7fc00, /* src_mask */ 1426 0x7fc00, /* dst_mask */ 1427 FALSE), /* pcrel_offset */ 1428 1429 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */ 1430 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */ 1431 0, /* rightshift */ 1432 2, /* size (0 = byte, 1 = short, 2 = long) */ 1433 12, /* bitsize */ 1434 FALSE, /* pc_relative */ 1435 10, /* bitpos */ 1436 complain_overflow_unsigned, /* complain_on_overflow */ 1437 bfd_elf_generic_reloc, /* special_function */ 1438 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */ 1439 FALSE, /* partial_inplace */ 1440 0x3ffc00, /* src_mask */ 1441 0x3ffc00, /* dst_mask */ 1442 FALSE), /* pcrel_offset */ 1443 1444 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */ 1445 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */ 1446 0, /* rightshift */ 1447 2, /* size (0 = byte, 1 = short, 2 = long) */ 1448 12, /* bitsize */ 1449 FALSE, /* pc_relative */ 1450 10, /* bitpos */ 1451 complain_overflow_dont, /* complain_on_overflow */ 1452 bfd_elf_generic_reloc, /* special_function */ 1453 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */ 1454 FALSE, /* partial_inplace */ 1455 0x3ffc00, /* src_mask */ 1456 0x3ffc00, /* dst_mask */ 1457 FALSE), /* pcrel_offset */ 1458 1459 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */ 1460 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */ 1461 0, /* rightshift */ 1462 2, /* size (0 = byte, 1 = short, 2 = long) */ 1463 16, /* bitsize */ 1464 FALSE, /* pc_relative */ 1465 0, /* bitpos */ 1466 complain_overflow_unsigned, /* complain_on_overflow */ 1467 bfd_elf_generic_reloc, /* special_function */ 1468 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */ 1469 FALSE, /* partial_inplace */ 1470 0xffff, /* src_mask */ 1471 0xffff, /* dst_mask */ 1472 FALSE), /* pcrel_offset */ 1473 1474 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */ 1475 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */ 1476 0, /* rightshift */ 1477 2, /* size (0 = byte, 1 = short, 2 = long) */ 1478 16, /* bitsize */ 1479 FALSE, /* pc_relative */ 1480 0, /* bitpos */ 1481 complain_overflow_dont, /* complain_on_overflow */ 1482 bfd_elf_generic_reloc, /* special_function */ 1483 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */ 1484 FALSE, /* partial_inplace */ 1485 0xffff, /* src_mask */ 1486 0xffff, /* dst_mask */ 1487 FALSE), /* pcrel_offset */ 1488 1489 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */ 1490 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */ 1491 16, /* rightshift */ 1492 2, /* size (0 = byte, 1 = short, 2 = long) */ 1493 16, /* bitsize */ 1494 FALSE, /* pc_relative */ 1495 0, /* bitpos */ 1496 complain_overflow_unsigned, /* complain_on_overflow */ 1497 bfd_elf_generic_reloc, /* special_function */ 1498 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */ 1499 FALSE, /* partial_inplace */ 1500 0xffff, /* src_mask */ 1501 0xffff, /* dst_mask */ 1502 FALSE), /* pcrel_offset */ 1503 1504 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */ 1505 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */ 1506 16, /* rightshift */ 1507 2, /* size (0 = byte, 1 = short, 2 = long) */ 1508 16, /* bitsize */ 1509 FALSE, /* pc_relative */ 1510 0, /* bitpos */ 1511 complain_overflow_dont, /* complain_on_overflow */ 1512 bfd_elf_generic_reloc, /* special_function */ 1513 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */ 1514 FALSE, /* partial_inplace */ 1515 0xffff, /* src_mask */ 1516 0xffff, /* dst_mask */ 1517 FALSE), /* pcrel_offset */ 1518 1519 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */ 1520 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */ 1521 32, /* rightshift */ 1522 2, /* size (0 = byte, 1 = short, 2 = long) */ 1523 16, /* bitsize */ 1524 FALSE, /* pc_relative */ 1525 0, /* bitpos */ 1526 complain_overflow_unsigned, /* complain_on_overflow */ 1527 bfd_elf_generic_reloc, /* special_function */ 1528 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */ 1529 FALSE, /* partial_inplace */ 1530 0xffff, /* src_mask */ 1531 0xffff, /* dst_mask */ 1532 FALSE), /* pcrel_offset */ 1533 1534 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */ 1535 32, /* rightshift */ 1536 2, /* size (0 = byte, 1 = short, 2 = long) */ 1537 16, /* bitsize */ 1538 FALSE, /* pc_relative */ 1539 0, /* bitpos */ 1540 complain_overflow_unsigned, /* complain_on_overflow */ 1541 bfd_elf_generic_reloc, /* special_function */ 1542 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */ 1543 FALSE, /* partial_inplace */ 1544 0xffff, /* src_mask */ 1545 0xffff, /* dst_mask */ 1546 FALSE), /* pcrel_offset */ 1547 1548 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */ 1549 16, /* rightshift */ 1550 2, /* size (0 = byte, 1 = short, 2 = long) */ 1551 16, /* bitsize */ 1552 FALSE, /* pc_relative */ 1553 0, /* bitpos */ 1554 complain_overflow_dont, /* complain_on_overflow */ 1555 bfd_elf_generic_reloc, /* special_function */ 1556 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */ 1557 FALSE, /* partial_inplace */ 1558 0xffff, /* src_mask */ 1559 0xffff, /* dst_mask */ 1560 FALSE), /* pcrel_offset */ 1561 1562 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */ 1563 16, /* rightshift */ 1564 2, /* size (0 = byte, 1 = short, 2 = long) */ 1565 16, /* bitsize */ 1566 FALSE, /* pc_relative */ 1567 0, /* bitpos */ 1568 complain_overflow_dont, /* complain_on_overflow */ 1569 bfd_elf_generic_reloc, /* special_function */ 1570 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */ 1571 FALSE, /* partial_inplace */ 1572 0xffff, /* src_mask */ 1573 0xffff, /* dst_mask */ 1574 FALSE), /* pcrel_offset */ 1575 1576 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */ 1577 0, /* rightshift */ 1578 2, /* size (0 = byte, 1 = short, 2 = long) */ 1579 16, /* bitsize */ 1580 FALSE, /* pc_relative */ 1581 0, /* bitpos */ 1582 complain_overflow_dont, /* complain_on_overflow */ 1583 bfd_elf_generic_reloc, /* special_function */ 1584 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */ 1585 FALSE, /* partial_inplace */ 1586 0xffff, /* src_mask */ 1587 0xffff, /* dst_mask */ 1588 FALSE), /* pcrel_offset */ 1589 1590 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */ 1591 0, /* rightshift */ 1592 2, /* size (0 = byte, 1 = short, 2 = long) */ 1593 16, /* bitsize */ 1594 FALSE, /* pc_relative */ 1595 0, /* bitpos */ 1596 complain_overflow_dont, /* complain_on_overflow */ 1597 bfd_elf_generic_reloc, /* special_function */ 1598 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */ 1599 FALSE, /* partial_inplace */ 1600 0xffff, /* src_mask */ 1601 0xffff, /* dst_mask */ 1602 FALSE), /* pcrel_offset */ 1603 1604 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */ 1605 12, /* rightshift */ 1606 2, /* size (0 = byte, 1 = short, 2 = long) */ 1607 12, /* bitsize */ 1608 FALSE, /* pc_relative */ 1609 0, /* bitpos */ 1610 complain_overflow_unsigned, /* complain_on_overflow */ 1611 bfd_elf_generic_reloc, /* special_function */ 1612 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */ 1613 FALSE, /* partial_inplace */ 1614 0xfff, /* src_mask */ 1615 0xfff, /* dst_mask */ 1616 FALSE), /* pcrel_offset */ 1617 1618 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */ 1619 0, /* rightshift */ 1620 2, /* size (0 = byte, 1 = short, 2 = long) */ 1621 12, /* bitsize */ 1622 FALSE, /* pc_relative */ 1623 0, /* bitpos */ 1624 complain_overflow_unsigned, /* complain_on_overflow */ 1625 bfd_elf_generic_reloc, /* special_function */ 1626 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */ 1627 FALSE, /* partial_inplace */ 1628 0xfff, /* src_mask */ 1629 0xfff, /* dst_mask */ 1630 FALSE), /* pcrel_offset */ 1631 1632 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */ 1633 0, /* rightshift */ 1634 2, /* size (0 = byte, 1 = short, 2 = long) */ 1635 12, /* bitsize */ 1636 FALSE, /* pc_relative */ 1637 0, /* bitpos */ 1638 complain_overflow_dont, /* complain_on_overflow */ 1639 bfd_elf_generic_reloc, /* special_function */ 1640 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */ 1641 FALSE, /* partial_inplace */ 1642 0xfff, /* src_mask */ 1643 0xfff, /* dst_mask */ 1644 FALSE), /* pcrel_offset */ 1645 1646 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */ 1647 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */ 1648 1, /* rightshift */ 1649 2, /* size (0 = byte, 1 = short, 2 = long) */ 1650 11, /* bitsize */ 1651 FALSE, /* pc_relative */ 1652 10, /* bitpos */ 1653 complain_overflow_unsigned, /* complain_on_overflow */ 1654 bfd_elf_generic_reloc, /* special_function */ 1655 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */ 1656 FALSE, /* partial_inplace */ 1657 0x1ffc00, /* src_mask */ 1658 0x1ffc00, /* dst_mask */ 1659 FALSE), /* pcrel_offset */ 1660 1661 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */ 1662 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */ 1663 1, /* rightshift */ 1664 2, /* size (0 = byte, 1 = short, 2 = long) */ 1665 11, /* bitsize */ 1666 FALSE, /* pc_relative */ 1667 10, /* bitpos */ 1668 complain_overflow_dont, /* complain_on_overflow */ 1669 bfd_elf_generic_reloc, /* special_function */ 1670 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */ 1671 FALSE, /* partial_inplace */ 1672 0x1ffc00, /* src_mask */ 1673 0x1ffc00, /* dst_mask */ 1674 FALSE), /* pcrel_offset */ 1675 1676 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */ 1677 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */ 1678 2, /* rightshift */ 1679 2, /* size (0 = byte, 1 = short, 2 = long) */ 1680 10, /* bitsize */ 1681 FALSE, /* pc_relative */ 1682 10, /* bitpos */ 1683 complain_overflow_unsigned, /* complain_on_overflow */ 1684 bfd_elf_generic_reloc, /* special_function */ 1685 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */ 1686 FALSE, /* partial_inplace */ 1687 0xffc00, /* src_mask */ 1688 0xffc00, /* dst_mask */ 1689 FALSE), /* pcrel_offset */ 1690 1691 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */ 1692 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */ 1693 2, /* rightshift */ 1694 2, /* size (0 = byte, 1 = short, 2 = long) */ 1695 10, /* bitsize */ 1696 FALSE, /* pc_relative */ 1697 10, /* bitpos */ 1698 complain_overflow_dont, /* complain_on_overflow */ 1699 bfd_elf_generic_reloc, /* special_function */ 1700 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */ 1701 FALSE, /* partial_inplace */ 1702 0xffc00, /* src_mask */ 1703 0xffc00, /* dst_mask */ 1704 FALSE), /* pcrel_offset */ 1705 1706 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */ 1707 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */ 1708 3, /* rightshift */ 1709 2, /* size (0 = byte, 1 = short, 2 = long) */ 1710 9, /* bitsize */ 1711 FALSE, /* pc_relative */ 1712 10, /* bitpos */ 1713 complain_overflow_unsigned, /* complain_on_overflow */ 1714 bfd_elf_generic_reloc, /* special_function */ 1715 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */ 1716 FALSE, /* partial_inplace */ 1717 0x7fc00, /* src_mask */ 1718 0x7fc00, /* dst_mask */ 1719 FALSE), /* pcrel_offset */ 1720 1721 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */ 1722 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */ 1723 3, /* rightshift */ 1724 2, /* size (0 = byte, 1 = short, 2 = long) */ 1725 9, /* bitsize */ 1726 FALSE, /* pc_relative */ 1727 10, /* bitpos */ 1728 complain_overflow_dont, /* complain_on_overflow */ 1729 bfd_elf_generic_reloc, /* special_function */ 1730 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */ 1731 FALSE, /* partial_inplace */ 1732 0x7fc00, /* src_mask */ 1733 0x7fc00, /* dst_mask */ 1734 FALSE), /* pcrel_offset */ 1735 1736 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */ 1737 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */ 1738 0, /* rightshift */ 1739 2, /* size (0 = byte, 1 = short, 2 = long) */ 1740 12, /* bitsize */ 1741 FALSE, /* pc_relative */ 1742 10, /* bitpos */ 1743 complain_overflow_unsigned, /* complain_on_overflow */ 1744 bfd_elf_generic_reloc, /* special_function */ 1745 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */ 1746 FALSE, /* partial_inplace */ 1747 0x3ffc00, /* src_mask */ 1748 0x3ffc00, /* dst_mask */ 1749 FALSE), /* pcrel_offset */ 1750 1751 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */ 1752 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */ 1753 0, /* rightshift */ 1754 2, /* size (0 = byte, 1 = short, 2 = long) */ 1755 12, /* bitsize */ 1756 FALSE, /* pc_relative */ 1757 10, /* bitpos */ 1758 complain_overflow_dont, /* complain_on_overflow */ 1759 bfd_elf_generic_reloc, /* special_function */ 1760 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */ 1761 FALSE, /* partial_inplace */ 1762 0x3ffc00, /* src_mask */ 1763 0x3ffc00, /* dst_mask */ 1764 FALSE), /* pcrel_offset */ 1765 1766 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */ 1767 2, /* rightshift */ 1768 2, /* size (0 = byte, 1 = short, 2 = long) */ 1769 19, /* bitsize */ 1770 TRUE, /* pc_relative */ 1771 0, /* bitpos */ 1772 complain_overflow_dont, /* complain_on_overflow */ 1773 bfd_elf_generic_reloc, /* special_function */ 1774 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */ 1775 FALSE, /* partial_inplace */ 1776 0x0ffffe0, /* src_mask */ 1777 0x0ffffe0, /* dst_mask */ 1778 TRUE), /* pcrel_offset */ 1779 1780 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */ 1781 0, /* rightshift */ 1782 2, /* size (0 = byte, 1 = short, 2 = long) */ 1783 21, /* bitsize */ 1784 TRUE, /* pc_relative */ 1785 0, /* bitpos */ 1786 complain_overflow_dont, /* complain_on_overflow */ 1787 bfd_elf_generic_reloc, /* special_function */ 1788 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */ 1789 FALSE, /* partial_inplace */ 1790 0x1fffff, /* src_mask */ 1791 0x1fffff, /* dst_mask */ 1792 TRUE), /* pcrel_offset */ 1793 1794 /* Get to the page for the GOT entry for the symbol 1795 (G(S) - P) using an ADRP instruction. */ 1796 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */ 1797 12, /* rightshift */ 1798 2, /* size (0 = byte, 1 = short, 2 = long) */ 1799 21, /* bitsize */ 1800 TRUE, /* pc_relative */ 1801 0, /* bitpos */ 1802 complain_overflow_dont, /* complain_on_overflow */ 1803 bfd_elf_generic_reloc, /* special_function */ 1804 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */ 1805 FALSE, /* partial_inplace */ 1806 0x1fffff, /* src_mask */ 1807 0x1fffff, /* dst_mask */ 1808 TRUE), /* pcrel_offset */ 1809 1810 /* LD64: GOT offset G(S) & 0xff8. */ 1811 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */ 1812 3, /* rightshift */ 1813 2, /* size (0 = byte, 1 = short, 2 = long) */ 1814 12, /* bitsize */ 1815 FALSE, /* pc_relative */ 1816 0, /* bitpos */ 1817 complain_overflow_dont, /* complain_on_overflow */ 1818 bfd_elf_generic_reloc, /* special_function */ 1819 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */ 1820 FALSE, /* partial_inplace */ 1821 0xff8, /* src_mask */ 1822 0xff8, /* dst_mask */ 1823 FALSE), /* pcrel_offset */ 1824 1825 /* LD32: GOT offset G(S) & 0xffc. */ 1826 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */ 1827 2, /* rightshift */ 1828 2, /* size (0 = byte, 1 = short, 2 = long) */ 1829 12, /* bitsize */ 1830 FALSE, /* pc_relative */ 1831 0, /* bitpos */ 1832 complain_overflow_dont, /* complain_on_overflow */ 1833 bfd_elf_generic_reloc, /* special_function */ 1834 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */ 1835 FALSE, /* partial_inplace */ 1836 0xffc, /* src_mask */ 1837 0xffc, /* dst_mask */ 1838 FALSE), /* pcrel_offset */ 1839 1840 /* ADD: GOT offset G(S) & 0xfff. */ 1841 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */ 1842 0, /* rightshift */ 1843 2, /* size (0 = byte, 1 = short, 2 = long) */ 1844 12, /* bitsize */ 1845 FALSE, /* pc_relative */ 1846 0, /* bitpos */ 1847 complain_overflow_dont,/* complain_on_overflow */ 1848 bfd_elf_generic_reloc, /* special_function */ 1849 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */ 1850 FALSE, /* partial_inplace */ 1851 0xfff, /* src_mask */ 1852 0xfff, /* dst_mask */ 1853 FALSE), /* pcrel_offset */ 1854 1855 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */ 1856 16, /* rightshift */ 1857 2, /* size (0 = byte, 1 = short, 2 = long) */ 1858 12, /* bitsize */ 1859 FALSE, /* pc_relative */ 1860 0, /* bitpos */ 1861 complain_overflow_unsigned, /* complain_on_overflow */ 1862 bfd_elf_generic_reloc, /* special_function */ 1863 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */ 1864 FALSE, /* partial_inplace */ 1865 0xffff, /* src_mask */ 1866 0xffff, /* dst_mask */ 1867 FALSE), /* pcrel_offset */ 1868 1869 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */ 1870 0, /* rightshift */ 1871 2, /* size (0 = byte, 1 = short, 2 = long) */ 1872 12, /* bitsize */ 1873 FALSE, /* pc_relative */ 1874 0, /* bitpos */ 1875 complain_overflow_dont, /* complain_on_overflow */ 1876 bfd_elf_generic_reloc, /* special_function */ 1877 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */ 1878 FALSE, /* partial_inplace */ 1879 0xffff, /* src_mask */ 1880 0xffff, /* dst_mask */ 1881 FALSE), /* pcrel_offset */ 1882 1883 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */ 1884 0, /* rightshift */ 1885 2, /* size (0 = byte, 1 = short, 2 = long) */ 1886 12, /* bitsize */ 1887 FALSE, /* pc_relative */ 1888 0, /* bitpos */ 1889 complain_overflow_dont, /* complain_on_overflow */ 1890 bfd_elf_generic_reloc, /* special_function */ 1891 AARCH64_R_STR (TLSDESC_LDR), /* name */ 1892 FALSE, /* partial_inplace */ 1893 0x0, /* src_mask */ 1894 0x0, /* dst_mask */ 1895 FALSE), /* pcrel_offset */ 1896 1897 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */ 1898 0, /* rightshift */ 1899 2, /* size (0 = byte, 1 = short, 2 = long) */ 1900 12, /* bitsize */ 1901 FALSE, /* pc_relative */ 1902 0, /* bitpos */ 1903 complain_overflow_dont, /* complain_on_overflow */ 1904 bfd_elf_generic_reloc, /* special_function */ 1905 AARCH64_R_STR (TLSDESC_ADD), /* name */ 1906 FALSE, /* partial_inplace */ 1907 0x0, /* src_mask */ 1908 0x0, /* dst_mask */ 1909 FALSE), /* pcrel_offset */ 1910 1911 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */ 1912 0, /* rightshift */ 1913 2, /* size (0 = byte, 1 = short, 2 = long) */ 1914 0, /* bitsize */ 1915 FALSE, /* pc_relative */ 1916 0, /* bitpos */ 1917 complain_overflow_dont, /* complain_on_overflow */ 1918 bfd_elf_generic_reloc, /* special_function */ 1919 AARCH64_R_STR (TLSDESC_CALL), /* name */ 1920 FALSE, /* partial_inplace */ 1921 0x0, /* src_mask */ 1922 0x0, /* dst_mask */ 1923 FALSE), /* pcrel_offset */ 1924 1925 HOWTO (AARCH64_R (COPY), /* type */ 1926 0, /* rightshift */ 1927 2, /* size (0 = byte, 1 = short, 2 = long) */ 1928 64, /* bitsize */ 1929 FALSE, /* pc_relative */ 1930 0, /* bitpos */ 1931 complain_overflow_bitfield, /* complain_on_overflow */ 1932 bfd_elf_generic_reloc, /* special_function */ 1933 AARCH64_R_STR (COPY), /* name */ 1934 TRUE, /* partial_inplace */ 1935 0xffffffff, /* src_mask */ 1936 0xffffffff, /* dst_mask */ 1937 FALSE), /* pcrel_offset */ 1938 1939 HOWTO (AARCH64_R (GLOB_DAT), /* type */ 1940 0, /* rightshift */ 1941 2, /* size (0 = byte, 1 = short, 2 = long) */ 1942 64, /* bitsize */ 1943 FALSE, /* pc_relative */ 1944 0, /* bitpos */ 1945 complain_overflow_bitfield, /* complain_on_overflow */ 1946 bfd_elf_generic_reloc, /* special_function */ 1947 AARCH64_R_STR (GLOB_DAT), /* name */ 1948 TRUE, /* partial_inplace */ 1949 0xffffffff, /* src_mask */ 1950 0xffffffff, /* dst_mask */ 1951 FALSE), /* pcrel_offset */ 1952 1953 HOWTO (AARCH64_R (JUMP_SLOT), /* type */ 1954 0, /* rightshift */ 1955 2, /* size (0 = byte, 1 = short, 2 = long) */ 1956 64, /* bitsize */ 1957 FALSE, /* pc_relative */ 1958 0, /* bitpos */ 1959 complain_overflow_bitfield, /* complain_on_overflow */ 1960 bfd_elf_generic_reloc, /* special_function */ 1961 AARCH64_R_STR (JUMP_SLOT), /* name */ 1962 TRUE, /* partial_inplace */ 1963 0xffffffff, /* src_mask */ 1964 0xffffffff, /* dst_mask */ 1965 FALSE), /* pcrel_offset */ 1966 1967 HOWTO (AARCH64_R (RELATIVE), /* type */ 1968 0, /* rightshift */ 1969 2, /* size (0 = byte, 1 = short, 2 = long) */ 1970 64, /* bitsize */ 1971 FALSE, /* pc_relative */ 1972 0, /* bitpos */ 1973 complain_overflow_bitfield, /* complain_on_overflow */ 1974 bfd_elf_generic_reloc, /* special_function */ 1975 AARCH64_R_STR (RELATIVE), /* name */ 1976 TRUE, /* partial_inplace */ 1977 ALL_ONES, /* src_mask */ 1978 ALL_ONES, /* dst_mask */ 1979 FALSE), /* pcrel_offset */ 1980 1981 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */ 1982 0, /* rightshift */ 1983 2, /* size (0 = byte, 1 = short, 2 = long) */ 1984 64, /* bitsize */ 1985 FALSE, /* pc_relative */ 1986 0, /* bitpos */ 1987 complain_overflow_dont, /* complain_on_overflow */ 1988 bfd_elf_generic_reloc, /* special_function */ 1989 #if ARCH_SIZE == 64 1990 AARCH64_R_STR (TLS_DTPMOD64), /* name */ 1991 #else 1992 AARCH64_R_STR (TLS_DTPMOD), /* name */ 1993 #endif 1994 FALSE, /* partial_inplace */ 1995 0, /* src_mask */ 1996 ALL_ONES, /* dst_mask */ 1997 FALSE), /* pc_reloffset */ 1998 1999 HOWTO (AARCH64_R (TLS_DTPREL), /* type */ 2000 0, /* rightshift */ 2001 2, /* size (0 = byte, 1 = short, 2 = long) */ 2002 64, /* bitsize */ 2003 FALSE, /* pc_relative */ 2004 0, /* bitpos */ 2005 complain_overflow_dont, /* complain_on_overflow */ 2006 bfd_elf_generic_reloc, /* special_function */ 2007 #if ARCH_SIZE == 64 2008 AARCH64_R_STR (TLS_DTPREL64), /* name */ 2009 #else 2010 AARCH64_R_STR (TLS_DTPREL), /* name */ 2011 #endif 2012 FALSE, /* partial_inplace */ 2013 0, /* src_mask */ 2014 ALL_ONES, /* dst_mask */ 2015 FALSE), /* pcrel_offset */ 2016 2017 HOWTO (AARCH64_R (TLS_TPREL), /* type */ 2018 0, /* rightshift */ 2019 2, /* size (0 = byte, 1 = short, 2 = long) */ 2020 64, /* bitsize */ 2021 FALSE, /* pc_relative */ 2022 0, /* bitpos */ 2023 complain_overflow_dont, /* complain_on_overflow */ 2024 bfd_elf_generic_reloc, /* special_function */ 2025 #if ARCH_SIZE == 64 2026 AARCH64_R_STR (TLS_TPREL64), /* name */ 2027 #else 2028 AARCH64_R_STR (TLS_TPREL), /* name */ 2029 #endif 2030 FALSE, /* partial_inplace */ 2031 0, /* src_mask */ 2032 ALL_ONES, /* dst_mask */ 2033 FALSE), /* pcrel_offset */ 2034 2035 HOWTO (AARCH64_R (TLSDESC), /* type */ 2036 0, /* rightshift */ 2037 2, /* size (0 = byte, 1 = short, 2 = long) */ 2038 64, /* bitsize */ 2039 FALSE, /* pc_relative */ 2040 0, /* bitpos */ 2041 complain_overflow_dont, /* complain_on_overflow */ 2042 bfd_elf_generic_reloc, /* special_function */ 2043 AARCH64_R_STR (TLSDESC), /* name */ 2044 FALSE, /* partial_inplace */ 2045 0, /* src_mask */ 2046 ALL_ONES, /* dst_mask */ 2047 FALSE), /* pcrel_offset */ 2048 2049 HOWTO (AARCH64_R (IRELATIVE), /* type */ 2050 0, /* rightshift */ 2051 2, /* size (0 = byte, 1 = short, 2 = long) */ 2052 64, /* bitsize */ 2053 FALSE, /* pc_relative */ 2054 0, /* bitpos */ 2055 complain_overflow_bitfield, /* complain_on_overflow */ 2056 bfd_elf_generic_reloc, /* special_function */ 2057 AARCH64_R_STR (IRELATIVE), /* name */ 2058 FALSE, /* partial_inplace */ 2059 0, /* src_mask */ 2060 ALL_ONES, /* dst_mask */ 2061 FALSE), /* pcrel_offset */ 2062 2063 EMPTY_HOWTO (0), 2064 }; 2065 2066 static reloc_howto_type elfNN_aarch64_howto_none = 2067 HOWTO (R_AARCH64_NONE, /* type */ 2068 0, /* rightshift */ 2069 3, /* size (0 = byte, 1 = short, 2 = long) */ 2070 0, /* bitsize */ 2071 FALSE, /* pc_relative */ 2072 0, /* bitpos */ 2073 complain_overflow_dont,/* complain_on_overflow */ 2074 bfd_elf_generic_reloc, /* special_function */ 2075 "R_AARCH64_NONE", /* name */ 2076 FALSE, /* partial_inplace */ 2077 0, /* src_mask */ 2078 0, /* dst_mask */ 2079 FALSE); /* pcrel_offset */ 2080 2081 /* Given HOWTO, return the bfd internal relocation enumerator. */ 2082 2083 static bfd_reloc_code_real_type 2084 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto) 2085 { 2086 const int size 2087 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table); 2088 const ptrdiff_t offset 2089 = howto - elfNN_aarch64_howto_table; 2090 2091 if (offset > 0 && offset < size - 1) 2092 return BFD_RELOC_AARCH64_RELOC_START + offset; 2093 2094 if (howto == &elfNN_aarch64_howto_none) 2095 return BFD_RELOC_AARCH64_NONE; 2096 2097 return BFD_RELOC_AARCH64_RELOC_START; 2098 } 2099 2100 /* Given R_TYPE, return the bfd internal relocation enumerator. */ 2101 2102 static bfd_reloc_code_real_type 2103 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type) 2104 { 2105 static bfd_boolean initialized_p = FALSE; 2106 /* Indexed by R_TYPE, values are offsets in the howto_table. */ 2107 static unsigned int offsets[R_AARCH64_end]; 2108 2109 if (!initialized_p) 2110 { 2111 unsigned int i; 2112 2113 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i) 2114 if (elfNN_aarch64_howto_table[i].type != 0) 2115 offsets[elfNN_aarch64_howto_table[i].type] = i; 2116 2117 initialized_p = TRUE; 2118 } 2119 2120 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL) 2121 return BFD_RELOC_AARCH64_NONE; 2122 2123 /* PR 17512: file: b371e70a. */ 2124 if (r_type >= R_AARCH64_end) 2125 { 2126 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), 2127 abfd, r_type); 2128 bfd_set_error (bfd_error_bad_value); 2129 return BFD_RELOC_AARCH64_NONE; 2130 } 2131 2132 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type]; 2133 } 2134 2135 struct elf_aarch64_reloc_map 2136 { 2137 bfd_reloc_code_real_type from; 2138 bfd_reloc_code_real_type to; 2139 }; 2140 2141 /* Map bfd generic reloc to AArch64-specific reloc. */ 2142 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] = 2143 { 2144 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE}, 2145 2146 /* Basic data relocations. */ 2147 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN}, 2148 {BFD_RELOC_64, BFD_RELOC_AARCH64_64}, 2149 {BFD_RELOC_32, BFD_RELOC_AARCH64_32}, 2150 {BFD_RELOC_16, BFD_RELOC_AARCH64_16}, 2151 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL}, 2152 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL}, 2153 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL}, 2154 }; 2155 2156 /* Given the bfd internal relocation enumerator in CODE, return the 2157 corresponding howto entry. */ 2158 2159 static reloc_howto_type * 2160 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code) 2161 { 2162 unsigned int i; 2163 2164 /* Convert bfd generic reloc to AArch64-specific reloc. */ 2165 if (code < BFD_RELOC_AARCH64_RELOC_START 2166 || code > BFD_RELOC_AARCH64_RELOC_END) 2167 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++) 2168 if (elf_aarch64_reloc_map[i].from == code) 2169 { 2170 code = elf_aarch64_reloc_map[i].to; 2171 break; 2172 } 2173 2174 if (code > BFD_RELOC_AARCH64_RELOC_START 2175 && code < BFD_RELOC_AARCH64_RELOC_END) 2176 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type) 2177 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START]; 2178 2179 if (code == BFD_RELOC_AARCH64_NONE) 2180 return &elfNN_aarch64_howto_none; 2181 2182 return NULL; 2183 } 2184 2185 static reloc_howto_type * 2186 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type) 2187 { 2188 bfd_reloc_code_real_type val; 2189 reloc_howto_type *howto; 2190 2191 #if ARCH_SIZE == 32 2192 if (r_type > 256) 2193 { 2194 bfd_set_error (bfd_error_bad_value); 2195 return NULL; 2196 } 2197 #endif 2198 2199 if (r_type == R_AARCH64_NONE) 2200 return &elfNN_aarch64_howto_none; 2201 2202 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type); 2203 howto = elfNN_aarch64_howto_from_bfd_reloc (val); 2204 2205 if (howto != NULL) 2206 return howto; 2207 2208 bfd_set_error (bfd_error_bad_value); 2209 return NULL; 2210 } 2211 2212 static bfd_boolean 2213 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc, 2214 Elf_Internal_Rela *elf_reloc) 2215 { 2216 unsigned int r_type; 2217 2218 r_type = ELFNN_R_TYPE (elf_reloc->r_info); 2219 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type); 2220 2221 if (bfd_reloc->howto == NULL) 2222 { 2223 /* xgettext:c-format */ 2224 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type); 2225 return FALSE; 2226 } 2227 return TRUE; 2228 } 2229 2230 static reloc_howto_type * 2231 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 2232 bfd_reloc_code_real_type code) 2233 { 2234 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code); 2235 2236 if (howto != NULL) 2237 return howto; 2238 2239 bfd_set_error (bfd_error_bad_value); 2240 return NULL; 2241 } 2242 2243 static reloc_howto_type * 2244 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 2245 const char *r_name) 2246 { 2247 unsigned int i; 2248 2249 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i) 2250 if (elfNN_aarch64_howto_table[i].name != NULL 2251 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0) 2252 return &elfNN_aarch64_howto_table[i]; 2253 2254 return NULL; 2255 } 2256 2257 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec 2258 #define TARGET_LITTLE_NAME "elfNN-littleaarch64" 2259 #define TARGET_BIG_SYM aarch64_elfNN_be_vec 2260 #define TARGET_BIG_NAME "elfNN-bigaarch64" 2261 2262 /* The linker script knows the section names for placement. 2263 The entry_names are used to do simple name mangling on the stubs. 2264 Given a function name, and its type, the stub can be found. The 2265 name can be changed. The only requirement is the %s be present. */ 2266 #define STUB_ENTRY_NAME "__%s_veneer" 2267 2268 /* The name of the dynamic interpreter. This is put in the .interp 2269 section. */ 2270 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" 2271 2272 #define AARCH64_MAX_FWD_BRANCH_OFFSET \ 2273 (((1 << 25) - 1) << 2) 2274 #define AARCH64_MAX_BWD_BRANCH_OFFSET \ 2275 (-((1 << 25) << 2)) 2276 2277 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1) 2278 #define AARCH64_MIN_ADRP_IMM (-(1 << 20)) 2279 2280 static int 2281 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place) 2282 { 2283 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12; 2284 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM; 2285 } 2286 2287 static int 2288 aarch64_valid_branch_p (bfd_vma value, bfd_vma place) 2289 { 2290 bfd_signed_vma offset = (bfd_signed_vma) (value - place); 2291 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET 2292 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET); 2293 } 2294 2295 static const uint32_t aarch64_adrp_branch_stub [] = 2296 { 2297 0x90000010, /* adrp ip0, X */ 2298 /* R_AARCH64_ADR_HI21_PCREL(X) */ 2299 0x91000210, /* add ip0, ip0, :lo12:X */ 2300 /* R_AARCH64_ADD_ABS_LO12_NC(X) */ 2301 0xd61f0200, /* br ip0 */ 2302 }; 2303 2304 static const uint32_t aarch64_long_branch_stub[] = 2305 { 2306 #if ARCH_SIZE == 64 2307 0x58000090, /* ldr ip0, 1f */ 2308 #else 2309 0x18000090, /* ldr wip0, 1f */ 2310 #endif 2311 0x10000011, /* adr ip1, #0 */ 2312 0x8b110210, /* add ip0, ip0, ip1 */ 2313 0xd61f0200, /* br ip0 */ 2314 0x00000000, /* 1: .xword or .word 2315 R_AARCH64_PRELNN(X) + 12 2316 */ 2317 0x00000000, 2318 }; 2319 2320 static const uint32_t aarch64_erratum_835769_stub[] = 2321 { 2322 0x00000000, /* Placeholder for multiply accumulate. */ 2323 0x14000000, /* b <label> */ 2324 }; 2325 2326 static const uint32_t aarch64_erratum_843419_stub[] = 2327 { 2328 0x00000000, /* Placeholder for LDR instruction. */ 2329 0x14000000, /* b <label> */ 2330 }; 2331 2332 /* Section name for stubs is the associated section name plus this 2333 string. */ 2334 #define STUB_SUFFIX ".stub" 2335 2336 enum elf_aarch64_stub_type 2337 { 2338 aarch64_stub_none, 2339 aarch64_stub_adrp_branch, 2340 aarch64_stub_long_branch, 2341 aarch64_stub_erratum_835769_veneer, 2342 aarch64_stub_erratum_843419_veneer, 2343 }; 2344 2345 struct elf_aarch64_stub_hash_entry 2346 { 2347 /* Base hash table entry structure. */ 2348 struct bfd_hash_entry root; 2349 2350 /* The stub section. */ 2351 asection *stub_sec; 2352 2353 /* Offset within stub_sec of the beginning of this stub. */ 2354 bfd_vma stub_offset; 2355 2356 /* Given the symbol's value and its section we can determine its final 2357 value when building the stubs (so the stub knows where to jump). */ 2358 bfd_vma target_value; 2359 asection *target_section; 2360 2361 enum elf_aarch64_stub_type stub_type; 2362 2363 /* The symbol table entry, if any, that this was derived from. */ 2364 struct elf_aarch64_link_hash_entry *h; 2365 2366 /* Destination symbol type */ 2367 unsigned char st_type; 2368 2369 /* Where this stub is being called from, or, in the case of combined 2370 stub sections, the first input section in the group. */ 2371 asection *id_sec; 2372 2373 /* The name for the local symbol at the start of this stub. The 2374 stub name in the hash table has to be unique; this does not, so 2375 it can be friendlier. */ 2376 char *output_name; 2377 2378 /* The instruction which caused this stub to be generated (only valid for 2379 erratum 835769 workaround stubs at present). */ 2380 uint32_t veneered_insn; 2381 2382 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */ 2383 bfd_vma adrp_offset; 2384 }; 2385 2386 /* Used to build a map of a section. This is required for mixed-endian 2387 code/data. */ 2388 2389 typedef struct elf_elf_section_map 2390 { 2391 bfd_vma vma; 2392 char type; 2393 } 2394 elf_aarch64_section_map; 2395 2396 2397 typedef struct _aarch64_elf_section_data 2398 { 2399 struct bfd_elf_section_data elf; 2400 unsigned int mapcount; 2401 unsigned int mapsize; 2402 elf_aarch64_section_map *map; 2403 } 2404 _aarch64_elf_section_data; 2405 2406 #define elf_aarch64_section_data(sec) \ 2407 ((_aarch64_elf_section_data *) elf_section_data (sec)) 2408 2409 /* The size of the thread control block which is defined to be two pointers. */ 2410 #define TCB_SIZE (ARCH_SIZE/8)*2 2411 2412 struct elf_aarch64_local_symbol 2413 { 2414 unsigned int got_type; 2415 bfd_signed_vma got_refcount; 2416 bfd_vma got_offset; 2417 2418 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The 2419 offset is from the end of the jump table and reserved entries 2420 within the PLTGOT. 2421 2422 The magic value (bfd_vma) -1 indicates that an offset has not be 2423 allocated. */ 2424 bfd_vma tlsdesc_got_jump_table_offset; 2425 }; 2426 2427 struct elf_aarch64_obj_tdata 2428 { 2429 struct elf_obj_tdata root; 2430 2431 /* local symbol descriptors */ 2432 struct elf_aarch64_local_symbol *locals; 2433 2434 /* Zero to warn when linking objects with incompatible enum sizes. */ 2435 int no_enum_size_warning; 2436 2437 /* Zero to warn when linking objects with incompatible wchar_t sizes. */ 2438 int no_wchar_size_warning; 2439 }; 2440 2441 #define elf_aarch64_tdata(bfd) \ 2442 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any) 2443 2444 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals) 2445 2446 #define is_aarch64_elf(bfd) \ 2447 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 2448 && elf_tdata (bfd) != NULL \ 2449 && elf_object_id (bfd) == AARCH64_ELF_DATA) 2450 2451 static bfd_boolean 2452 elfNN_aarch64_mkobject (bfd *abfd) 2453 { 2454 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata), 2455 AARCH64_ELF_DATA); 2456 } 2457 2458 #define elf_aarch64_hash_entry(ent) \ 2459 ((struct elf_aarch64_link_hash_entry *)(ent)) 2460 2461 #define GOT_UNKNOWN 0 2462 #define GOT_NORMAL 1 2463 #define GOT_TLS_GD 2 2464 #define GOT_TLS_IE 4 2465 #define GOT_TLSDESC_GD 8 2466 2467 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD)) 2468 2469 /* AArch64 ELF linker hash entry. */ 2470 struct elf_aarch64_link_hash_entry 2471 { 2472 struct elf_link_hash_entry root; 2473 2474 /* Track dynamic relocs copied for this symbol. */ 2475 struct elf_dyn_relocs *dyn_relocs; 2476 2477 /* Since PLT entries have variable size, we need to record the 2478 index into .got.plt instead of recomputing it from the PLT 2479 offset. */ 2480 bfd_signed_vma plt_got_offset; 2481 2482 /* Bit mask representing the type of GOT entry(s) if any required by 2483 this symbol. */ 2484 unsigned int got_type; 2485 2486 /* A pointer to the most recently used stub hash entry against this 2487 symbol. */ 2488 struct elf_aarch64_stub_hash_entry *stub_cache; 2489 2490 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset 2491 is from the end of the jump table and reserved entries within the PLTGOT. 2492 2493 The magic value (bfd_vma) -1 indicates that an offset has not 2494 be allocated. */ 2495 bfd_vma tlsdesc_got_jump_table_offset; 2496 }; 2497 2498 static unsigned int 2499 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h, 2500 bfd *abfd, 2501 unsigned long r_symndx) 2502 { 2503 if (h) 2504 return elf_aarch64_hash_entry (h)->got_type; 2505 2506 if (! elf_aarch64_locals (abfd)) 2507 return GOT_UNKNOWN; 2508 2509 return elf_aarch64_locals (abfd)[r_symndx].got_type; 2510 } 2511 2512 /* Get the AArch64 elf linker hash table from a link_info structure. */ 2513 #define elf_aarch64_hash_table(info) \ 2514 ((struct elf_aarch64_link_hash_table *) ((info)->hash)) 2515 2516 #define aarch64_stub_hash_lookup(table, string, create, copy) \ 2517 ((struct elf_aarch64_stub_hash_entry *) \ 2518 bfd_hash_lookup ((table), (string), (create), (copy))) 2519 2520 /* AArch64 ELF linker hash table. */ 2521 struct elf_aarch64_link_hash_table 2522 { 2523 /* The main hash table. */ 2524 struct elf_link_hash_table root; 2525 2526 /* Nonzero to force PIC branch veneers. */ 2527 int pic_veneer; 2528 2529 /* Fix erratum 835769. */ 2530 int fix_erratum_835769; 2531 2532 /* Fix erratum 843419. */ 2533 int fix_erratum_843419; 2534 2535 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */ 2536 int fix_erratum_843419_adr; 2537 2538 /* Don't apply link-time values for dynamic relocations. */ 2539 int no_apply_dynamic_relocs; 2540 2541 /* The number of bytes in the initial entry in the PLT. */ 2542 bfd_size_type plt_header_size; 2543 2544 /* The number of bytes in the subsequent PLT etries. */ 2545 bfd_size_type plt_entry_size; 2546 2547 /* Small local sym cache. */ 2548 struct sym_cache sym_cache; 2549 2550 /* For convenience in allocate_dynrelocs. */ 2551 bfd *obfd; 2552 2553 /* The amount of space used by the reserved portion of the sgotplt 2554 section, plus whatever space is used by the jump slots. */ 2555 bfd_vma sgotplt_jump_table_size; 2556 2557 /* The stub hash table. */ 2558 struct bfd_hash_table stub_hash_table; 2559 2560 /* Linker stub bfd. */ 2561 bfd *stub_bfd; 2562 2563 /* Linker call-backs. */ 2564 asection *(*add_stub_section) (const char *, asection *); 2565 void (*layout_sections_again) (void); 2566 2567 /* Array to keep track of which stub sections have been created, and 2568 information on stub grouping. */ 2569 struct map_stub 2570 { 2571 /* This is the section to which stubs in the group will be 2572 attached. */ 2573 asection *link_sec; 2574 /* The stub section. */ 2575 asection *stub_sec; 2576 } *stub_group; 2577 2578 /* Assorted information used by elfNN_aarch64_size_stubs. */ 2579 unsigned int bfd_count; 2580 unsigned int top_index; 2581 asection **input_list; 2582 2583 /* The offset into splt of the PLT entry for the TLS descriptor 2584 resolver. Special values are 0, if not necessary (or not found 2585 to be necessary yet), and -1 if needed but not determined 2586 yet. */ 2587 bfd_vma tlsdesc_plt; 2588 2589 /* The GOT offset for the lazy trampoline. Communicated to the 2590 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1 2591 indicates an offset is not allocated. */ 2592 bfd_vma dt_tlsdesc_got; 2593 2594 /* Used by local STT_GNU_IFUNC symbols. */ 2595 htab_t loc_hash_table; 2596 void * loc_hash_memory; 2597 }; 2598 2599 /* Create an entry in an AArch64 ELF linker hash table. */ 2600 2601 static struct bfd_hash_entry * 2602 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry, 2603 struct bfd_hash_table *table, 2604 const char *string) 2605 { 2606 struct elf_aarch64_link_hash_entry *ret = 2607 (struct elf_aarch64_link_hash_entry *) entry; 2608 2609 /* Allocate the structure if it has not already been allocated by a 2610 subclass. */ 2611 if (ret == NULL) 2612 ret = bfd_hash_allocate (table, 2613 sizeof (struct elf_aarch64_link_hash_entry)); 2614 if (ret == NULL) 2615 return (struct bfd_hash_entry *) ret; 2616 2617 /* Call the allocation method of the superclass. */ 2618 ret = ((struct elf_aarch64_link_hash_entry *) 2619 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, 2620 table, string)); 2621 if (ret != NULL) 2622 { 2623 ret->dyn_relocs = NULL; 2624 ret->got_type = GOT_UNKNOWN; 2625 ret->plt_got_offset = (bfd_vma) - 1; 2626 ret->stub_cache = NULL; 2627 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1; 2628 } 2629 2630 return (struct bfd_hash_entry *) ret; 2631 } 2632 2633 /* Initialize an entry in the stub hash table. */ 2634 2635 static struct bfd_hash_entry * 2636 stub_hash_newfunc (struct bfd_hash_entry *entry, 2637 struct bfd_hash_table *table, const char *string) 2638 { 2639 /* Allocate the structure if it has not already been allocated by a 2640 subclass. */ 2641 if (entry == NULL) 2642 { 2643 entry = bfd_hash_allocate (table, 2644 sizeof (struct 2645 elf_aarch64_stub_hash_entry)); 2646 if (entry == NULL) 2647 return entry; 2648 } 2649 2650 /* Call the allocation method of the superclass. */ 2651 entry = bfd_hash_newfunc (entry, table, string); 2652 if (entry != NULL) 2653 { 2654 struct elf_aarch64_stub_hash_entry *eh; 2655 2656 /* Initialize the local fields. */ 2657 eh = (struct elf_aarch64_stub_hash_entry *) entry; 2658 eh->adrp_offset = 0; 2659 eh->stub_sec = NULL; 2660 eh->stub_offset = 0; 2661 eh->target_value = 0; 2662 eh->target_section = NULL; 2663 eh->stub_type = aarch64_stub_none; 2664 eh->h = NULL; 2665 eh->id_sec = NULL; 2666 } 2667 2668 return entry; 2669 } 2670 2671 /* Compute a hash of a local hash entry. We use elf_link_hash_entry 2672 for local symbol so that we can handle local STT_GNU_IFUNC symbols 2673 as global symbol. We reuse indx and dynstr_index for local symbol 2674 hash since they aren't used by global symbols in this backend. */ 2675 2676 static hashval_t 2677 elfNN_aarch64_local_htab_hash (const void *ptr) 2678 { 2679 struct elf_link_hash_entry *h 2680 = (struct elf_link_hash_entry *) ptr; 2681 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index); 2682 } 2683 2684 /* Compare local hash entries. */ 2685 2686 static int 2687 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2) 2688 { 2689 struct elf_link_hash_entry *h1 2690 = (struct elf_link_hash_entry *) ptr1; 2691 struct elf_link_hash_entry *h2 2692 = (struct elf_link_hash_entry *) ptr2; 2693 2694 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index; 2695 } 2696 2697 /* Find and/or create a hash entry for local symbol. */ 2698 2699 static struct elf_link_hash_entry * 2700 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab, 2701 bfd *abfd, const Elf_Internal_Rela *rel, 2702 bfd_boolean create) 2703 { 2704 struct elf_aarch64_link_hash_entry e, *ret; 2705 asection *sec = abfd->sections; 2706 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, 2707 ELFNN_R_SYM (rel->r_info)); 2708 void **slot; 2709 2710 e.root.indx = sec->id; 2711 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info); 2712 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h, 2713 create ? INSERT : NO_INSERT); 2714 2715 if (!slot) 2716 return NULL; 2717 2718 if (*slot) 2719 { 2720 ret = (struct elf_aarch64_link_hash_entry *) *slot; 2721 return &ret->root; 2722 } 2723 2724 ret = (struct elf_aarch64_link_hash_entry *) 2725 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory, 2726 sizeof (struct elf_aarch64_link_hash_entry)); 2727 if (ret) 2728 { 2729 memset (ret, 0, sizeof (*ret)); 2730 ret->root.indx = sec->id; 2731 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info); 2732 ret->root.dynindx = -1; 2733 *slot = ret; 2734 } 2735 return &ret->root; 2736 } 2737 2738 /* Copy the extra info we tack onto an elf_link_hash_entry. */ 2739 2740 static void 2741 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info, 2742 struct elf_link_hash_entry *dir, 2743 struct elf_link_hash_entry *ind) 2744 { 2745 struct elf_aarch64_link_hash_entry *edir, *eind; 2746 2747 edir = (struct elf_aarch64_link_hash_entry *) dir; 2748 eind = (struct elf_aarch64_link_hash_entry *) ind; 2749 2750 if (eind->dyn_relocs != NULL) 2751 { 2752 if (edir->dyn_relocs != NULL) 2753 { 2754 struct elf_dyn_relocs **pp; 2755 struct elf_dyn_relocs *p; 2756 2757 /* Add reloc counts against the indirect sym to the direct sym 2758 list. Merge any entries against the same section. */ 2759 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;) 2760 { 2761 struct elf_dyn_relocs *q; 2762 2763 for (q = edir->dyn_relocs; q != NULL; q = q->next) 2764 if (q->sec == p->sec) 2765 { 2766 q->pc_count += p->pc_count; 2767 q->count += p->count; 2768 *pp = p->next; 2769 break; 2770 } 2771 if (q == NULL) 2772 pp = &p->next; 2773 } 2774 *pp = edir->dyn_relocs; 2775 } 2776 2777 edir->dyn_relocs = eind->dyn_relocs; 2778 eind->dyn_relocs = NULL; 2779 } 2780 2781 if (ind->root.type == bfd_link_hash_indirect) 2782 { 2783 /* Copy over PLT info. */ 2784 if (dir->got.refcount <= 0) 2785 { 2786 edir->got_type = eind->got_type; 2787 eind->got_type = GOT_UNKNOWN; 2788 } 2789 } 2790 2791 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 2792 } 2793 2794 /* Destroy an AArch64 elf linker hash table. */ 2795 2796 static void 2797 elfNN_aarch64_link_hash_table_free (bfd *obfd) 2798 { 2799 struct elf_aarch64_link_hash_table *ret 2800 = (struct elf_aarch64_link_hash_table *) obfd->link.hash; 2801 2802 if (ret->loc_hash_table) 2803 htab_delete (ret->loc_hash_table); 2804 if (ret->loc_hash_memory) 2805 objalloc_free ((struct objalloc *) ret->loc_hash_memory); 2806 2807 bfd_hash_table_free (&ret->stub_hash_table); 2808 _bfd_elf_link_hash_table_free (obfd); 2809 } 2810 2811 /* Create an AArch64 elf linker hash table. */ 2812 2813 static struct bfd_link_hash_table * 2814 elfNN_aarch64_link_hash_table_create (bfd *abfd) 2815 { 2816 struct elf_aarch64_link_hash_table *ret; 2817 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table); 2818 2819 ret = bfd_zmalloc (amt); 2820 if (ret == NULL) 2821 return NULL; 2822 2823 if (!_bfd_elf_link_hash_table_init 2824 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc, 2825 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA)) 2826 { 2827 free (ret); 2828 return NULL; 2829 } 2830 2831 ret->plt_header_size = PLT_ENTRY_SIZE; 2832 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE; 2833 ret->obfd = abfd; 2834 ret->dt_tlsdesc_got = (bfd_vma) - 1; 2835 2836 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc, 2837 sizeof (struct elf_aarch64_stub_hash_entry))) 2838 { 2839 _bfd_elf_link_hash_table_free (abfd); 2840 return NULL; 2841 } 2842 2843 ret->loc_hash_table = htab_try_create (1024, 2844 elfNN_aarch64_local_htab_hash, 2845 elfNN_aarch64_local_htab_eq, 2846 NULL); 2847 ret->loc_hash_memory = objalloc_create (); 2848 if (!ret->loc_hash_table || !ret->loc_hash_memory) 2849 { 2850 elfNN_aarch64_link_hash_table_free (abfd); 2851 return NULL; 2852 } 2853 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free; 2854 2855 return &ret->root.root; 2856 } 2857 2858 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */ 2859 2860 static bfd_boolean 2861 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section, 2862 bfd_vma offset, bfd_vma value) 2863 { 2864 reloc_howto_type *howto; 2865 bfd_vma place; 2866 2867 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type); 2868 place = (input_section->output_section->vma + input_section->output_offset 2869 + offset); 2870 2871 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type); 2872 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE); 2873 return _bfd_aarch64_elf_put_addend (input_bfd, 2874 input_section->contents + offset, r_type, 2875 howto, value) == bfd_reloc_ok; 2876 } 2877 2878 static enum elf_aarch64_stub_type 2879 aarch64_select_branch_stub (bfd_vma value, bfd_vma place) 2880 { 2881 if (aarch64_valid_for_adrp_p (value, place)) 2882 return aarch64_stub_adrp_branch; 2883 return aarch64_stub_long_branch; 2884 } 2885 2886 /* Determine the type of stub needed, if any, for a call. */ 2887 2888 static enum elf_aarch64_stub_type 2889 aarch64_type_of_stub (asection *input_sec, 2890 const Elf_Internal_Rela *rel, 2891 asection *sym_sec, 2892 unsigned char st_type, 2893 bfd_vma destination) 2894 { 2895 bfd_vma location; 2896 bfd_signed_vma branch_offset; 2897 unsigned int r_type; 2898 enum elf_aarch64_stub_type stub_type = aarch64_stub_none; 2899 2900 if (st_type != STT_FUNC 2901 && (sym_sec == input_sec)) 2902 return stub_type; 2903 2904 /* Determine where the call point is. */ 2905 location = (input_sec->output_offset 2906 + input_sec->output_section->vma + rel->r_offset); 2907 2908 branch_offset = (bfd_signed_vma) (destination - location); 2909 2910 r_type = ELFNN_R_TYPE (rel->r_info); 2911 2912 /* We don't want to redirect any old unconditional jump in this way, 2913 only one which is being used for a sibcall, where it is 2914 acceptable for the IP0 and IP1 registers to be clobbered. */ 2915 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26)) 2916 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET 2917 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET)) 2918 { 2919 stub_type = aarch64_stub_long_branch; 2920 } 2921 2922 return stub_type; 2923 } 2924 2925 /* Build a name for an entry in the stub hash table. */ 2926 2927 static char * 2928 elfNN_aarch64_stub_name (const asection *input_section, 2929 const asection *sym_sec, 2930 const struct elf_aarch64_link_hash_entry *hash, 2931 const Elf_Internal_Rela *rel) 2932 { 2933 char *stub_name; 2934 bfd_size_type len; 2935 2936 if (hash) 2937 { 2938 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1; 2939 stub_name = bfd_malloc (len); 2940 if (stub_name != NULL) 2941 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x", 2942 (unsigned int) input_section->id, 2943 hash->root.root.root.string, 2944 rel->r_addend); 2945 } 2946 else 2947 { 2948 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1; 2949 stub_name = bfd_malloc (len); 2950 if (stub_name != NULL) 2951 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x", 2952 (unsigned int) input_section->id, 2953 (unsigned int) sym_sec->id, 2954 (unsigned int) ELFNN_R_SYM (rel->r_info), 2955 rel->r_addend); 2956 } 2957 2958 return stub_name; 2959 } 2960 2961 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For 2962 executable PLT slots where the executable never takes the address of those 2963 functions, the function symbols are not added to the hash table. */ 2964 2965 static bfd_boolean 2966 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h) 2967 { 2968 if (h->plt.offset != (bfd_vma) -1 2969 && !h->def_regular 2970 && !h->pointer_equality_needed) 2971 return FALSE; 2972 2973 return _bfd_elf_hash_symbol (h); 2974 } 2975 2976 2977 /* Look up an entry in the stub hash. Stub entries are cached because 2978 creating the stub name takes a bit of time. */ 2979 2980 static struct elf_aarch64_stub_hash_entry * 2981 elfNN_aarch64_get_stub_entry (const asection *input_section, 2982 const asection *sym_sec, 2983 struct elf_link_hash_entry *hash, 2984 const Elf_Internal_Rela *rel, 2985 struct elf_aarch64_link_hash_table *htab) 2986 { 2987 struct elf_aarch64_stub_hash_entry *stub_entry; 2988 struct elf_aarch64_link_hash_entry *h = 2989 (struct elf_aarch64_link_hash_entry *) hash; 2990 const asection *id_sec; 2991 2992 if ((input_section->flags & SEC_CODE) == 0) 2993 return NULL; 2994 2995 /* If this input section is part of a group of sections sharing one 2996 stub section, then use the id of the first section in the group. 2997 Stub names need to include a section id, as there may well be 2998 more than one stub used to reach say, printf, and we need to 2999 distinguish between them. */ 3000 id_sec = htab->stub_group[input_section->id].link_sec; 3001 3002 if (h != NULL && h->stub_cache != NULL 3003 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec) 3004 { 3005 stub_entry = h->stub_cache; 3006 } 3007 else 3008 { 3009 char *stub_name; 3010 3011 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel); 3012 if (stub_name == NULL) 3013 return NULL; 3014 3015 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, 3016 stub_name, FALSE, FALSE); 3017 if (h != NULL) 3018 h->stub_cache = stub_entry; 3019 3020 free (stub_name); 3021 } 3022 3023 return stub_entry; 3024 } 3025 3026 3027 /* Create a stub section. */ 3028 3029 static asection * 3030 _bfd_aarch64_create_stub_section (asection *section, 3031 struct elf_aarch64_link_hash_table *htab) 3032 { 3033 size_t namelen; 3034 bfd_size_type len; 3035 char *s_name; 3036 3037 namelen = strlen (section->name); 3038 len = namelen + sizeof (STUB_SUFFIX); 3039 s_name = bfd_alloc (htab->stub_bfd, len); 3040 if (s_name == NULL) 3041 return NULL; 3042 3043 memcpy (s_name, section->name, namelen); 3044 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); 3045 return (*htab->add_stub_section) (s_name, section); 3046 } 3047 3048 3049 /* Find or create a stub section for a link section. 3050 3051 Fix or create the stub section used to collect stubs attached to 3052 the specified link section. */ 3053 3054 static asection * 3055 _bfd_aarch64_get_stub_for_link_section (asection *link_section, 3056 struct elf_aarch64_link_hash_table *htab) 3057 { 3058 if (htab->stub_group[link_section->id].stub_sec == NULL) 3059 htab->stub_group[link_section->id].stub_sec 3060 = _bfd_aarch64_create_stub_section (link_section, htab); 3061 return htab->stub_group[link_section->id].stub_sec; 3062 } 3063 3064 3065 /* Find or create a stub section in the stub group for an input 3066 section. */ 3067 3068 static asection * 3069 _bfd_aarch64_create_or_find_stub_sec (asection *section, 3070 struct elf_aarch64_link_hash_table *htab) 3071 { 3072 asection *link_sec = htab->stub_group[section->id].link_sec; 3073 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab); 3074 } 3075 3076 3077 /* Add a new stub entry in the stub group associated with an input 3078 section to the stub hash. Not all fields of the new stub entry are 3079 initialised. */ 3080 3081 static struct elf_aarch64_stub_hash_entry * 3082 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name, 3083 asection *section, 3084 struct elf_aarch64_link_hash_table *htab) 3085 { 3086 asection *link_sec; 3087 asection *stub_sec; 3088 struct elf_aarch64_stub_hash_entry *stub_entry; 3089 3090 link_sec = htab->stub_group[section->id].link_sec; 3091 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab); 3092 3093 /* Enter this entry into the linker stub hash table. */ 3094 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name, 3095 TRUE, FALSE); 3096 if (stub_entry == NULL) 3097 { 3098 /* xgettext:c-format */ 3099 _bfd_error_handler (_("%pB: cannot create stub entry %s"), 3100 section->owner, stub_name); 3101 return NULL; 3102 } 3103 3104 stub_entry->stub_sec = stub_sec; 3105 stub_entry->stub_offset = 0; 3106 stub_entry->id_sec = link_sec; 3107 3108 return stub_entry; 3109 } 3110 3111 /* Add a new stub entry in the final stub section to the stub hash. 3112 Not all fields of the new stub entry are initialised. */ 3113 3114 static struct elf_aarch64_stub_hash_entry * 3115 _bfd_aarch64_add_stub_entry_after (const char *stub_name, 3116 asection *link_section, 3117 struct elf_aarch64_link_hash_table *htab) 3118 { 3119 asection *stub_sec; 3120 struct elf_aarch64_stub_hash_entry *stub_entry; 3121 3122 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab); 3123 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name, 3124 TRUE, FALSE); 3125 if (stub_entry == NULL) 3126 { 3127 _bfd_error_handler (_("cannot create stub entry %s"), stub_name); 3128 return NULL; 3129 } 3130 3131 stub_entry->stub_sec = stub_sec; 3132 stub_entry->stub_offset = 0; 3133 stub_entry->id_sec = link_section; 3134 3135 return stub_entry; 3136 } 3137 3138 3139 static bfd_boolean 3140 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry, 3141 void *in_arg ATTRIBUTE_UNUSED) 3142 { 3143 struct elf_aarch64_stub_hash_entry *stub_entry; 3144 asection *stub_sec; 3145 bfd *stub_bfd; 3146 bfd_byte *loc; 3147 bfd_vma sym_value; 3148 bfd_vma veneered_insn_loc; 3149 bfd_vma veneer_entry_loc; 3150 bfd_signed_vma branch_offset = 0; 3151 unsigned int template_size; 3152 const uint32_t *template; 3153 unsigned int i; 3154 3155 /* Massage our args to the form they really have. */ 3156 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry; 3157 3158 stub_sec = stub_entry->stub_sec; 3159 3160 /* Make a note of the offset within the stubs for this entry. */ 3161 stub_entry->stub_offset = stub_sec->size; 3162 loc = stub_sec->contents + stub_entry->stub_offset; 3163 3164 stub_bfd = stub_sec->owner; 3165 3166 /* This is the address of the stub destination. */ 3167 sym_value = (stub_entry->target_value 3168 + stub_entry->target_section->output_offset 3169 + stub_entry->target_section->output_section->vma); 3170 3171 if (stub_entry->stub_type == aarch64_stub_long_branch) 3172 { 3173 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma 3174 + stub_sec->output_offset); 3175 3176 /* See if we can relax the stub. */ 3177 if (aarch64_valid_for_adrp_p (sym_value, place)) 3178 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place); 3179 } 3180 3181 switch (stub_entry->stub_type) 3182 { 3183 case aarch64_stub_adrp_branch: 3184 template = aarch64_adrp_branch_stub; 3185 template_size = sizeof (aarch64_adrp_branch_stub); 3186 break; 3187 case aarch64_stub_long_branch: 3188 template = aarch64_long_branch_stub; 3189 template_size = sizeof (aarch64_long_branch_stub); 3190 break; 3191 case aarch64_stub_erratum_835769_veneer: 3192 template = aarch64_erratum_835769_stub; 3193 template_size = sizeof (aarch64_erratum_835769_stub); 3194 break; 3195 case aarch64_stub_erratum_843419_veneer: 3196 template = aarch64_erratum_843419_stub; 3197 template_size = sizeof (aarch64_erratum_843419_stub); 3198 break; 3199 default: 3200 abort (); 3201 } 3202 3203 for (i = 0; i < (template_size / sizeof template[0]); i++) 3204 { 3205 bfd_putl32 (template[i], loc); 3206 loc += 4; 3207 } 3208 3209 template_size = (template_size + 7) & ~7; 3210 stub_sec->size += template_size; 3211 3212 switch (stub_entry->stub_type) 3213 { 3214 case aarch64_stub_adrp_branch: 3215 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec, 3216 stub_entry->stub_offset, sym_value)) 3217 /* The stub would not have been relaxed if the offset was out 3218 of range. */ 3219 BFD_FAIL (); 3220 3221 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec, 3222 stub_entry->stub_offset + 4, sym_value)) 3223 BFD_FAIL (); 3224 break; 3225 3226 case aarch64_stub_long_branch: 3227 /* We want the value relative to the address 12 bytes back from the 3228 value itself. */ 3229 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec, 3230 stub_entry->stub_offset + 16, sym_value + 12)) 3231 BFD_FAIL (); 3232 break; 3233 3234 case aarch64_stub_erratum_835769_veneer: 3235 veneered_insn_loc = stub_entry->target_section->output_section->vma 3236 + stub_entry->target_section->output_offset 3237 + stub_entry->target_value; 3238 veneer_entry_loc = stub_entry->stub_sec->output_section->vma 3239 + stub_entry->stub_sec->output_offset 3240 + stub_entry->stub_offset; 3241 branch_offset = veneered_insn_loc - veneer_entry_loc; 3242 branch_offset >>= 2; 3243 branch_offset &= 0x3ffffff; 3244 bfd_putl32 (stub_entry->veneered_insn, 3245 stub_sec->contents + stub_entry->stub_offset); 3246 bfd_putl32 (template[1] | branch_offset, 3247 stub_sec->contents + stub_entry->stub_offset + 4); 3248 break; 3249 3250 case aarch64_stub_erratum_843419_veneer: 3251 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec, 3252 stub_entry->stub_offset + 4, sym_value + 4)) 3253 BFD_FAIL (); 3254 break; 3255 3256 default: 3257 abort (); 3258 } 3259 3260 return TRUE; 3261 } 3262 3263 /* As above, but don't actually build the stub. Just bump offset so 3264 we know stub section sizes. */ 3265 3266 static bfd_boolean 3267 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, 3268 void *in_arg ATTRIBUTE_UNUSED) 3269 { 3270 struct elf_aarch64_stub_hash_entry *stub_entry; 3271 int size; 3272 3273 /* Massage our args to the form they really have. */ 3274 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry; 3275 3276 switch (stub_entry->stub_type) 3277 { 3278 case aarch64_stub_adrp_branch: 3279 size = sizeof (aarch64_adrp_branch_stub); 3280 break; 3281 case aarch64_stub_long_branch: 3282 size = sizeof (aarch64_long_branch_stub); 3283 break; 3284 case aarch64_stub_erratum_835769_veneer: 3285 size = sizeof (aarch64_erratum_835769_stub); 3286 break; 3287 case aarch64_stub_erratum_843419_veneer: 3288 size = sizeof (aarch64_erratum_843419_stub); 3289 break; 3290 default: 3291 abort (); 3292 } 3293 3294 size = (size + 7) & ~7; 3295 stub_entry->stub_sec->size += size; 3296 return TRUE; 3297 } 3298 3299 /* External entry points for sizing and building linker stubs. */ 3300 3301 /* Set up various things so that we can make a list of input sections 3302 for each output section included in the link. Returns -1 on error, 3303 0 when no stubs will be needed, and 1 on success. */ 3304 3305 int 3306 elfNN_aarch64_setup_section_lists (bfd *output_bfd, 3307 struct bfd_link_info *info) 3308 { 3309 bfd *input_bfd; 3310 unsigned int bfd_count; 3311 unsigned int top_id, top_index; 3312 asection *section; 3313 asection **input_list, **list; 3314 bfd_size_type amt; 3315 struct elf_aarch64_link_hash_table *htab = 3316 elf_aarch64_hash_table (info); 3317 3318 if (!is_elf_hash_table (htab)) 3319 return 0; 3320 3321 /* Count the number of input BFDs and find the top input section id. */ 3322 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; 3323 input_bfd != NULL; input_bfd = input_bfd->link.next) 3324 { 3325 bfd_count += 1; 3326 for (section = input_bfd->sections; 3327 section != NULL; section = section->next) 3328 { 3329 if (top_id < section->id) 3330 top_id = section->id; 3331 } 3332 } 3333 htab->bfd_count = bfd_count; 3334 3335 amt = sizeof (struct map_stub) * (top_id + 1); 3336 htab->stub_group = bfd_zmalloc (amt); 3337 if (htab->stub_group == NULL) 3338 return -1; 3339 3340 /* We can't use output_bfd->section_count here to find the top output 3341 section index as some sections may have been removed, and 3342 _bfd_strip_section_from_output doesn't renumber the indices. */ 3343 for (section = output_bfd->sections, top_index = 0; 3344 section != NULL; section = section->next) 3345 { 3346 if (top_index < section->index) 3347 top_index = section->index; 3348 } 3349 3350 htab->top_index = top_index; 3351 amt = sizeof (asection *) * (top_index + 1); 3352 input_list = bfd_malloc (amt); 3353 htab->input_list = input_list; 3354 if (input_list == NULL) 3355 return -1; 3356 3357 /* For sections we aren't interested in, mark their entries with a 3358 value we can check later. */ 3359 list = input_list + top_index; 3360 do 3361 *list = bfd_abs_section_ptr; 3362 while (list-- != input_list); 3363 3364 for (section = output_bfd->sections; 3365 section != NULL; section = section->next) 3366 { 3367 if ((section->flags & SEC_CODE) != 0) 3368 input_list[section->index] = NULL; 3369 } 3370 3371 return 1; 3372 } 3373 3374 /* Used by elfNN_aarch64_next_input_section and group_sections. */ 3375 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) 3376 3377 /* The linker repeatedly calls this function for each input section, 3378 in the order that input sections are linked into output sections. 3379 Build lists of input sections to determine groupings between which 3380 we may insert linker stubs. */ 3381 3382 void 3383 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec) 3384 { 3385 struct elf_aarch64_link_hash_table *htab = 3386 elf_aarch64_hash_table (info); 3387 3388 if (isec->output_section->index <= htab->top_index) 3389 { 3390 asection **list = htab->input_list + isec->output_section->index; 3391 3392 if (*list != bfd_abs_section_ptr) 3393 { 3394 /* Steal the link_sec pointer for our list. */ 3395 /* This happens to make the list in reverse order, 3396 which is what we want. */ 3397 PREV_SEC (isec) = *list; 3398 *list = isec; 3399 } 3400 } 3401 } 3402 3403 /* See whether we can group stub sections together. Grouping stub 3404 sections may result in fewer stubs. More importantly, we need to 3405 put all .init* and .fini* stubs at the beginning of the .init or 3406 .fini output sections respectively, because glibc splits the 3407 _init and _fini functions into multiple parts. Putting a stub in 3408 the middle of a function is not a good idea. */ 3409 3410 static void 3411 group_sections (struct elf_aarch64_link_hash_table *htab, 3412 bfd_size_type stub_group_size, 3413 bfd_boolean stubs_always_before_branch) 3414 { 3415 asection **list = htab->input_list + htab->top_index; 3416 3417 do 3418 { 3419 asection *tail = *list; 3420 3421 if (tail == bfd_abs_section_ptr) 3422 continue; 3423 3424 while (tail != NULL) 3425 { 3426 asection *curr; 3427 asection *prev; 3428 bfd_size_type total; 3429 3430 curr = tail; 3431 total = tail->size; 3432 while ((prev = PREV_SEC (curr)) != NULL 3433 && ((total += curr->output_offset - prev->output_offset) 3434 < stub_group_size)) 3435 curr = prev; 3436 3437 /* OK, the size from the start of CURR to the end is less 3438 than stub_group_size and thus can be handled by one stub 3439 section. (Or the tail section is itself larger than 3440 stub_group_size, in which case we may be toast.) 3441 We should really be keeping track of the total size of 3442 stubs added here, as stubs contribute to the final output 3443 section size. */ 3444 do 3445 { 3446 prev = PREV_SEC (tail); 3447 /* Set up this stub group. */ 3448 htab->stub_group[tail->id].link_sec = curr; 3449 } 3450 while (tail != curr && (tail = prev) != NULL); 3451 3452 /* But wait, there's more! Input sections up to stub_group_size 3453 bytes before the stub section can be handled by it too. */ 3454 if (!stubs_always_before_branch) 3455 { 3456 total = 0; 3457 while (prev != NULL 3458 && ((total += tail->output_offset - prev->output_offset) 3459 < stub_group_size)) 3460 { 3461 tail = prev; 3462 prev = PREV_SEC (tail); 3463 htab->stub_group[tail->id].link_sec = curr; 3464 } 3465 } 3466 tail = prev; 3467 } 3468 } 3469 while (list-- != htab->input_list); 3470 3471 free (htab->input_list); 3472 } 3473 3474 #undef PREV_SEC 3475 3476 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1)) 3477 3478 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5) 3479 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5) 3480 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5) 3481 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5) 3482 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5) 3483 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5) 3484 3485 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000) 3486 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1) 3487 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3) 3488 #define AARCH64_ZR 0x1f 3489 3490 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for 3491 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */ 3492 3493 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1) 3494 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000) 3495 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000) 3496 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000) 3497 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000) 3498 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000) 3499 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000) 3500 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000) 3501 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000) 3502 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400) 3503 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800) 3504 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00) 3505 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800) 3506 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000) 3507 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000) 3508 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000) 3509 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000) 3510 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000) 3511 3512 /* Classify an INSN if it is indeed a load/store. 3513 3514 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE. 3515 3516 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2 3517 is set equal to RT. 3518 3519 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */ 3520 3521 static bfd_boolean 3522 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2, 3523 bfd_boolean *pair, bfd_boolean *load) 3524 { 3525 uint32_t opcode; 3526 unsigned int r; 3527 uint32_t opc = 0; 3528 uint32_t v = 0; 3529 uint32_t opc_v = 0; 3530 3531 /* Bail out quickly if INSN doesn't fall into the load-store 3532 encoding space. */ 3533 if (!AARCH64_LDST (insn)) 3534 return FALSE; 3535 3536 *pair = FALSE; 3537 *load = FALSE; 3538 if (AARCH64_LDST_EX (insn)) 3539 { 3540 *rt = AARCH64_RT (insn); 3541 *rt2 = *rt; 3542 if (AARCH64_BIT (insn, 21) == 1) 3543 { 3544 *pair = TRUE; 3545 *rt2 = AARCH64_RT2 (insn); 3546 } 3547 *load = AARCH64_LD (insn); 3548 return TRUE; 3549 } 3550 else if (AARCH64_LDST_NAP (insn) 3551 || AARCH64_LDSTP_PI (insn) 3552 || AARCH64_LDSTP_O (insn) 3553 || AARCH64_LDSTP_PRE (insn)) 3554 { 3555 *pair = TRUE; 3556 *rt = AARCH64_RT (insn); 3557 *rt2 = AARCH64_RT2 (insn); 3558 *load = AARCH64_LD (insn); 3559 return TRUE; 3560 } 3561 else if (AARCH64_LDST_PCREL (insn) 3562 || AARCH64_LDST_UI (insn) 3563 || AARCH64_LDST_PIIMM (insn) 3564 || AARCH64_LDST_U (insn) 3565 || AARCH64_LDST_PREIMM (insn) 3566 || AARCH64_LDST_RO (insn) 3567 || AARCH64_LDST_UIMM (insn)) 3568 { 3569 *rt = AARCH64_RT (insn); 3570 *rt2 = *rt; 3571 if (AARCH64_LDST_PCREL (insn)) 3572 *load = TRUE; 3573 opc = AARCH64_BITS (insn, 22, 2); 3574 v = AARCH64_BIT (insn, 26); 3575 opc_v = opc | (v << 2); 3576 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3 3577 || opc_v == 5 || opc_v == 7); 3578 return TRUE; 3579 } 3580 else if (AARCH64_LDST_SIMD_M (insn) 3581 || AARCH64_LDST_SIMD_M_PI (insn)) 3582 { 3583 *rt = AARCH64_RT (insn); 3584 *load = AARCH64_BIT (insn, 22); 3585 opcode = (insn >> 12) & 0xf; 3586 switch (opcode) 3587 { 3588 case 0: 3589 case 2: 3590 *rt2 = *rt + 3; 3591 break; 3592 3593 case 4: 3594 case 6: 3595 *rt2 = *rt + 2; 3596 break; 3597 3598 case 7: 3599 *rt2 = *rt; 3600 break; 3601 3602 case 8: 3603 case 10: 3604 *rt2 = *rt + 1; 3605 break; 3606 3607 default: 3608 return FALSE; 3609 } 3610 return TRUE; 3611 } 3612 else if (AARCH64_LDST_SIMD_S (insn) 3613 || AARCH64_LDST_SIMD_S_PI (insn)) 3614 { 3615 *rt = AARCH64_RT (insn); 3616 r = (insn >> 21) & 1; 3617 *load = AARCH64_BIT (insn, 22); 3618 opcode = (insn >> 13) & 0x7; 3619 switch (opcode) 3620 { 3621 case 0: 3622 case 2: 3623 case 4: 3624 *rt2 = *rt + r; 3625 break; 3626 3627 case 1: 3628 case 3: 3629 case 5: 3630 *rt2 = *rt + (r == 0 ? 2 : 3); 3631 break; 3632 3633 case 6: 3634 *rt2 = *rt + r; 3635 break; 3636 3637 case 7: 3638 *rt2 = *rt + (r == 0 ? 2 : 3); 3639 break; 3640 3641 default: 3642 return FALSE; 3643 } 3644 return TRUE; 3645 } 3646 3647 return FALSE; 3648 } 3649 3650 /* Return TRUE if INSN is multiply-accumulate. */ 3651 3652 static bfd_boolean 3653 aarch64_mlxl_p (uint32_t insn) 3654 { 3655 uint32_t op31 = AARCH64_OP31 (insn); 3656 3657 if (AARCH64_MAC (insn) 3658 && (op31 == 0 || op31 == 1 || op31 == 5) 3659 /* Exclude MUL instructions which are encoded as a multiple accumulate 3660 with RA = XZR. */ 3661 && AARCH64_RA (insn) != AARCH64_ZR) 3662 return TRUE; 3663 3664 return FALSE; 3665 } 3666 3667 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby 3668 it is possible for a 64-bit multiply-accumulate instruction to generate an 3669 incorrect result. The details are quite complex and hard to 3670 determine statically, since branches in the code may exist in some 3671 circumstances, but all cases end with a memory (load, store, or 3672 prefetch) instruction followed immediately by the multiply-accumulate 3673 operation. We employ a linker patching technique, by moving the potentially 3674 affected multiply-accumulate instruction into a patch region and replacing 3675 the original instruction with a branch to the patch. This function checks 3676 if INSN_1 is the memory operation followed by a multiply-accumulate 3677 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE 3678 if INSN_1 and INSN_2 are safe. */ 3679 3680 static bfd_boolean 3681 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2) 3682 { 3683 uint32_t rt; 3684 uint32_t rt2; 3685 uint32_t rn; 3686 uint32_t rm; 3687 uint32_t ra; 3688 bfd_boolean pair; 3689 bfd_boolean load; 3690 3691 if (aarch64_mlxl_p (insn_2) 3692 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load)) 3693 { 3694 /* Any SIMD memory op is independent of the subsequent MLA 3695 by definition of the erratum. */ 3696 if (AARCH64_BIT (insn_1, 26)) 3697 return TRUE; 3698 3699 /* If not SIMD, check for integer memory ops and MLA relationship. */ 3700 rn = AARCH64_RN (insn_2); 3701 ra = AARCH64_RA (insn_2); 3702 rm = AARCH64_RM (insn_2); 3703 3704 /* If this is a load and there's a true(RAW) dependency, we are safe 3705 and this is not an erratum sequence. */ 3706 if (load && 3707 (rt == rn || rt == rm || rt == ra 3708 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra)))) 3709 return FALSE; 3710 3711 /* We conservatively put out stubs for all other cases (including 3712 writebacks). */ 3713 return TRUE; 3714 } 3715 3716 return FALSE; 3717 } 3718 3719 /* Used to order a list of mapping symbols by address. */ 3720 3721 static int 3722 elf_aarch64_compare_mapping (const void *a, const void *b) 3723 { 3724 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a; 3725 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b; 3726 3727 if (amap->vma > bmap->vma) 3728 return 1; 3729 else if (amap->vma < bmap->vma) 3730 return -1; 3731 else if (amap->type > bmap->type) 3732 /* Ensure results do not depend on the host qsort for objects with 3733 multiple mapping symbols at the same address by sorting on type 3734 after vma. */ 3735 return 1; 3736 else if (amap->type < bmap->type) 3737 return -1; 3738 else 3739 return 0; 3740 } 3741 3742 3743 static char * 3744 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes) 3745 { 3746 char *stub_name = (char *) bfd_malloc 3747 (strlen ("__erratum_835769_veneer_") + 16); 3748 if (stub_name != NULL) 3749 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes); 3750 return stub_name; 3751 } 3752 3753 /* Scan for Cortex-A53 erratum 835769 sequence. 3754 3755 Return TRUE else FALSE on abnormal termination. */ 3756 3757 static bfd_boolean 3758 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd, 3759 struct bfd_link_info *info, 3760 unsigned int *num_fixes_p) 3761 { 3762 asection *section; 3763 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info); 3764 unsigned int num_fixes = *num_fixes_p; 3765 3766 if (htab == NULL) 3767 return TRUE; 3768 3769 for (section = input_bfd->sections; 3770 section != NULL; 3771 section = section->next) 3772 { 3773 bfd_byte *contents = NULL; 3774 struct _aarch64_elf_section_data *sec_data; 3775 unsigned int span; 3776 3777 if (elf_section_type (section) != SHT_PROGBITS 3778 || (elf_section_flags (section) & SHF_EXECINSTR) == 0 3779 || (section->flags & SEC_EXCLUDE) != 0 3780 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 3781 || (section->output_section == bfd_abs_section_ptr)) 3782 continue; 3783 3784 if (elf_section_data (section)->this_hdr.contents != NULL) 3785 contents = elf_section_data (section)->this_hdr.contents; 3786 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents)) 3787 return FALSE; 3788 3789 sec_data = elf_aarch64_section_data (section); 3790 3791 qsort (sec_data->map, sec_data->mapcount, 3792 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping); 3793 3794 for (span = 0; span < sec_data->mapcount; span++) 3795 { 3796 unsigned int span_start = sec_data->map[span].vma; 3797 unsigned int span_end = ((span == sec_data->mapcount - 1) 3798 ? sec_data->map[0].vma + section->size 3799 : sec_data->map[span + 1].vma); 3800 unsigned int i; 3801 char span_type = sec_data->map[span].type; 3802 3803 if (span_type == 'd') 3804 continue; 3805 3806 for (i = span_start; i + 4 < span_end; i += 4) 3807 { 3808 uint32_t insn_1 = bfd_getl32 (contents + i); 3809 uint32_t insn_2 = bfd_getl32 (contents + i + 4); 3810 3811 if (aarch64_erratum_sequence (insn_1, insn_2)) 3812 { 3813 struct elf_aarch64_stub_hash_entry *stub_entry; 3814 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes); 3815 if (! stub_name) 3816 return FALSE; 3817 3818 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name, 3819 section, 3820 htab); 3821 if (! stub_entry) 3822 return FALSE; 3823 3824 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer; 3825 stub_entry->target_section = section; 3826 stub_entry->target_value = i + 4; 3827 stub_entry->veneered_insn = insn_2; 3828 stub_entry->output_name = stub_name; 3829 num_fixes++; 3830 } 3831 } 3832 } 3833 if (elf_section_data (section)->this_hdr.contents == NULL) 3834 free (contents); 3835 } 3836 3837 *num_fixes_p = num_fixes; 3838 3839 return TRUE; 3840 } 3841 3842 3843 /* Test if instruction INSN is ADRP. */ 3844 3845 static bfd_boolean 3846 _bfd_aarch64_adrp_p (uint32_t insn) 3847 { 3848 return ((insn & 0x9f000000) == 0x90000000); 3849 } 3850 3851 3852 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */ 3853 3854 static bfd_boolean 3855 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2, 3856 uint32_t insn_3) 3857 { 3858 uint32_t rt; 3859 uint32_t rt2; 3860 bfd_boolean pair; 3861 bfd_boolean load; 3862 3863 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load) 3864 && (!pair 3865 || (pair && !load)) 3866 && AARCH64_LDST_UIMM (insn_3) 3867 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1)); 3868 } 3869 3870 3871 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence. 3872 3873 Return TRUE if section CONTENTS at offset I contains one of the 3874 erratum 843419 sequences, otherwise return FALSE. If a sequence is 3875 seen set P_VENEER_I to the offset of the final LOAD/STORE 3876 instruction in the sequence. 3877 */ 3878 3879 static bfd_boolean 3880 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma, 3881 bfd_vma i, bfd_vma span_end, 3882 bfd_vma *p_veneer_i) 3883 { 3884 uint32_t insn_1 = bfd_getl32 (contents + i); 3885 3886 if (!_bfd_aarch64_adrp_p (insn_1)) 3887 return FALSE; 3888 3889 if (span_end < i + 12) 3890 return FALSE; 3891 3892 uint32_t insn_2 = bfd_getl32 (contents + i + 4); 3893 uint32_t insn_3 = bfd_getl32 (contents + i + 8); 3894 3895 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc) 3896 return FALSE; 3897 3898 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3)) 3899 { 3900 *p_veneer_i = i + 8; 3901 return TRUE; 3902 } 3903 3904 if (span_end < i + 16) 3905 return FALSE; 3906 3907 uint32_t insn_4 = bfd_getl32 (contents + i + 12); 3908 3909 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4)) 3910 { 3911 *p_veneer_i = i + 12; 3912 return TRUE; 3913 } 3914 3915 return FALSE; 3916 } 3917 3918 3919 /* Resize all stub sections. */ 3920 3921 static void 3922 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab) 3923 { 3924 asection *section; 3925 3926 /* OK, we've added some stubs. Find out the new size of the 3927 stub sections. */ 3928 for (section = htab->stub_bfd->sections; 3929 section != NULL; section = section->next) 3930 { 3931 /* Ignore non-stub sections. */ 3932 if (!strstr (section->name, STUB_SUFFIX)) 3933 continue; 3934 section->size = 0; 3935 } 3936 3937 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab); 3938 3939 for (section = htab->stub_bfd->sections; 3940 section != NULL; section = section->next) 3941 { 3942 if (!strstr (section->name, STUB_SUFFIX)) 3943 continue; 3944 3945 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned, 3946 as long branch stubs contain a 64-bit address. */ 3947 if (section->size) 3948 section->size += 8; 3949 3950 /* Ensure all stub sections have a size which is a multiple of 3951 4096. This is important in order to ensure that the insertion 3952 of stub sections does not in itself move existing code around 3953 in such a way that new errata sequences are created. */ 3954 if (htab->fix_erratum_843419) 3955 if (section->size) 3956 section->size = BFD_ALIGN (section->size, 0x1000); 3957 } 3958 } 3959 3960 /* Construct an erratum 843419 workaround stub name. */ 3961 3962 static char * 3963 _bfd_aarch64_erratum_843419_stub_name (asection *input_section, 3964 bfd_vma offset) 3965 { 3966 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1; 3967 char *stub_name = bfd_malloc (len); 3968 3969 if (stub_name != NULL) 3970 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x", 3971 input_section->owner->id, 3972 input_section->id, 3973 offset); 3974 return stub_name; 3975 } 3976 3977 /* Build a stub_entry structure describing an 843419 fixup. 3978 3979 The stub_entry constructed is populated with the bit pattern INSN 3980 of the instruction located at OFFSET within input SECTION. 3981 3982 Returns TRUE on success. */ 3983 3984 static bfd_boolean 3985 _bfd_aarch64_erratum_843419_fixup (uint32_t insn, 3986 bfd_vma adrp_offset, 3987 bfd_vma ldst_offset, 3988 asection *section, 3989 struct bfd_link_info *info) 3990 { 3991 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info); 3992 char *stub_name; 3993 struct elf_aarch64_stub_hash_entry *stub_entry; 3994 3995 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset); 3996 if (stub_name == NULL) 3997 return FALSE; 3998 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name, 3999 FALSE, FALSE); 4000 if (stub_entry) 4001 { 4002 free (stub_name); 4003 return TRUE; 4004 } 4005 4006 /* We always place an 843419 workaround veneer in the stub section 4007 attached to the input section in which an erratum sequence has 4008 been found. This ensures that later in the link process (in 4009 elfNN_aarch64_write_section) when we copy the veneered 4010 instruction from the input section into the stub section the 4011 copied instruction will have had any relocations applied to it. 4012 If we placed workaround veneers in any other stub section then we 4013 could not assume that all relocations have been processed on the 4014 corresponding input section at the point we output the stub 4015 section. */ 4016 4017 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab); 4018 if (stub_entry == NULL) 4019 { 4020 free (stub_name); 4021 return FALSE; 4022 } 4023 4024 stub_entry->adrp_offset = adrp_offset; 4025 stub_entry->target_value = ldst_offset; 4026 stub_entry->target_section = section; 4027 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer; 4028 stub_entry->veneered_insn = insn; 4029 stub_entry->output_name = stub_name; 4030 4031 return TRUE; 4032 } 4033 4034 4035 /* Scan an input section looking for the signature of erratum 843419. 4036 4037 Scans input SECTION in INPUT_BFD looking for erratum 843419 4038 signatures, for each signature found a stub_entry is created 4039 describing the location of the erratum for subsequent fixup. 4040 4041 Return TRUE on successful scan, FALSE on failure to scan. 4042 */ 4043 4044 static bfd_boolean 4045 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section, 4046 struct bfd_link_info *info) 4047 { 4048 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info); 4049 4050 if (htab == NULL) 4051 return TRUE; 4052 4053 if (elf_section_type (section) != SHT_PROGBITS 4054 || (elf_section_flags (section) & SHF_EXECINSTR) == 0 4055 || (section->flags & SEC_EXCLUDE) != 0 4056 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 4057 || (section->output_section == bfd_abs_section_ptr)) 4058 return TRUE; 4059 4060 do 4061 { 4062 bfd_byte *contents = NULL; 4063 struct _aarch64_elf_section_data *sec_data; 4064 unsigned int span; 4065 4066 if (elf_section_data (section)->this_hdr.contents != NULL) 4067 contents = elf_section_data (section)->this_hdr.contents; 4068 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents)) 4069 return FALSE; 4070 4071 sec_data = elf_aarch64_section_data (section); 4072 4073 qsort (sec_data->map, sec_data->mapcount, 4074 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping); 4075 4076 for (span = 0; span < sec_data->mapcount; span++) 4077 { 4078 unsigned int span_start = sec_data->map[span].vma; 4079 unsigned int span_end = ((span == sec_data->mapcount - 1) 4080 ? sec_data->map[0].vma + section->size 4081 : sec_data->map[span + 1].vma); 4082 unsigned int i; 4083 char span_type = sec_data->map[span].type; 4084 4085 if (span_type == 'd') 4086 continue; 4087 4088 for (i = span_start; i + 8 < span_end; i += 4) 4089 { 4090 bfd_vma vma = (section->output_section->vma 4091 + section->output_offset 4092 + i); 4093 bfd_vma veneer_i; 4094 4095 if (_bfd_aarch64_erratum_843419_p 4096 (contents, vma, i, span_end, &veneer_i)) 4097 { 4098 uint32_t insn = bfd_getl32 (contents + veneer_i); 4099 4100 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i, 4101 section, info)) 4102 return FALSE; 4103 } 4104 } 4105 } 4106 4107 if (elf_section_data (section)->this_hdr.contents == NULL) 4108 free (contents); 4109 } 4110 while (0); 4111 4112 return TRUE; 4113 } 4114 4115 4116 /* Determine and set the size of the stub section for a final link. 4117 4118 The basic idea here is to examine all the relocations looking for 4119 PC-relative calls to a target that is unreachable with a "bl" 4120 instruction. */ 4121 4122 bfd_boolean 4123 elfNN_aarch64_size_stubs (bfd *output_bfd, 4124 bfd *stub_bfd, 4125 struct bfd_link_info *info, 4126 bfd_signed_vma group_size, 4127 asection * (*add_stub_section) (const char *, 4128 asection *), 4129 void (*layout_sections_again) (void)) 4130 { 4131 bfd_size_type stub_group_size; 4132 bfd_boolean stubs_always_before_branch; 4133 bfd_boolean stub_changed = FALSE; 4134 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info); 4135 unsigned int num_erratum_835769_fixes = 0; 4136 4137 /* Propagate mach to stub bfd, because it may not have been 4138 finalized when we created stub_bfd. */ 4139 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd), 4140 bfd_get_mach (output_bfd)); 4141 4142 /* Stash our params away. */ 4143 htab->stub_bfd = stub_bfd; 4144 htab->add_stub_section = add_stub_section; 4145 htab->layout_sections_again = layout_sections_again; 4146 stubs_always_before_branch = group_size < 0; 4147 if (group_size < 0) 4148 stub_group_size = -group_size; 4149 else 4150 stub_group_size = group_size; 4151 4152 if (stub_group_size == 1) 4153 { 4154 /* Default values. */ 4155 /* AArch64 branch range is +-128MB. The value used is 1MB less. */ 4156 stub_group_size = 127 * 1024 * 1024; 4157 } 4158 4159 group_sections (htab, stub_group_size, stubs_always_before_branch); 4160 4161 (*htab->layout_sections_again) (); 4162 4163 if (htab->fix_erratum_835769) 4164 { 4165 bfd *input_bfd; 4166 4167 for (input_bfd = info->input_bfds; 4168 input_bfd != NULL; input_bfd = input_bfd->link.next) 4169 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info, 4170 &num_erratum_835769_fixes)) 4171 return FALSE; 4172 4173 _bfd_aarch64_resize_stubs (htab); 4174 (*htab->layout_sections_again) (); 4175 } 4176 4177 if (htab->fix_erratum_843419) 4178 { 4179 bfd *input_bfd; 4180 4181 for (input_bfd = info->input_bfds; 4182 input_bfd != NULL; 4183 input_bfd = input_bfd->link.next) 4184 { 4185 asection *section; 4186 4187 for (section = input_bfd->sections; 4188 section != NULL; 4189 section = section->next) 4190 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info)) 4191 return FALSE; 4192 } 4193 4194 _bfd_aarch64_resize_stubs (htab); 4195 (*htab->layout_sections_again) (); 4196 } 4197 4198 while (1) 4199 { 4200 bfd *input_bfd; 4201 4202 for (input_bfd = info->input_bfds; 4203 input_bfd != NULL; input_bfd = input_bfd->link.next) 4204 { 4205 Elf_Internal_Shdr *symtab_hdr; 4206 asection *section; 4207 Elf_Internal_Sym *local_syms = NULL; 4208 4209 /* We'll need the symbol table in a second. */ 4210 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 4211 if (symtab_hdr->sh_info == 0) 4212 continue; 4213 4214 /* Walk over each section attached to the input bfd. */ 4215 for (section = input_bfd->sections; 4216 section != NULL; section = section->next) 4217 { 4218 Elf_Internal_Rela *internal_relocs, *irelaend, *irela; 4219 4220 /* If there aren't any relocs, then there's nothing more 4221 to do. */ 4222 if ((section->flags & SEC_RELOC) == 0 4223 || section->reloc_count == 0 4224 || (section->flags & SEC_CODE) == 0) 4225 continue; 4226 4227 /* If this section is a link-once section that will be 4228 discarded, then don't create any stubs. */ 4229 if (section->output_section == NULL 4230 || section->output_section->owner != output_bfd) 4231 continue; 4232 4233 /* Get the relocs. */ 4234 internal_relocs 4235 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, 4236 NULL, info->keep_memory); 4237 if (internal_relocs == NULL) 4238 goto error_ret_free_local; 4239 4240 /* Now examine each relocation. */ 4241 irela = internal_relocs; 4242 irelaend = irela + section->reloc_count; 4243 for (; irela < irelaend; irela++) 4244 { 4245 unsigned int r_type, r_indx; 4246 enum elf_aarch64_stub_type stub_type; 4247 struct elf_aarch64_stub_hash_entry *stub_entry; 4248 asection *sym_sec; 4249 bfd_vma sym_value; 4250 bfd_vma destination; 4251 struct elf_aarch64_link_hash_entry *hash; 4252 const char *sym_name; 4253 char *stub_name; 4254 const asection *id_sec; 4255 unsigned char st_type; 4256 bfd_size_type len; 4257 4258 r_type = ELFNN_R_TYPE (irela->r_info); 4259 r_indx = ELFNN_R_SYM (irela->r_info); 4260 4261 if (r_type >= (unsigned int) R_AARCH64_end) 4262 { 4263 bfd_set_error (bfd_error_bad_value); 4264 error_ret_free_internal: 4265 if (elf_section_data (section)->relocs == NULL) 4266 free (internal_relocs); 4267 goto error_ret_free_local; 4268 } 4269 4270 /* Only look for stubs on unconditional branch and 4271 branch and link instructions. */ 4272 if (r_type != (unsigned int) AARCH64_R (CALL26) 4273 && r_type != (unsigned int) AARCH64_R (JUMP26)) 4274 continue; 4275 4276 /* Now determine the call target, its name, value, 4277 section. */ 4278 sym_sec = NULL; 4279 sym_value = 0; 4280 destination = 0; 4281 hash = NULL; 4282 sym_name = NULL; 4283 if (r_indx < symtab_hdr->sh_info) 4284 { 4285 /* It's a local symbol. */ 4286 Elf_Internal_Sym *sym; 4287 Elf_Internal_Shdr *hdr; 4288 4289 if (local_syms == NULL) 4290 { 4291 local_syms 4292 = (Elf_Internal_Sym *) symtab_hdr->contents; 4293 if (local_syms == NULL) 4294 local_syms 4295 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 4296 symtab_hdr->sh_info, 0, 4297 NULL, NULL, NULL); 4298 if (local_syms == NULL) 4299 goto error_ret_free_internal; 4300 } 4301 4302 sym = local_syms + r_indx; 4303 hdr = elf_elfsections (input_bfd)[sym->st_shndx]; 4304 sym_sec = hdr->bfd_section; 4305 if (!sym_sec) 4306 /* This is an undefined symbol. It can never 4307 be resolved. */ 4308 continue; 4309 4310 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) 4311 sym_value = sym->st_value; 4312 destination = (sym_value + irela->r_addend 4313 + sym_sec->output_offset 4314 + sym_sec->output_section->vma); 4315 st_type = ELF_ST_TYPE (sym->st_info); 4316 sym_name 4317 = bfd_elf_string_from_elf_section (input_bfd, 4318 symtab_hdr->sh_link, 4319 sym->st_name); 4320 } 4321 else 4322 { 4323 int e_indx; 4324 4325 e_indx = r_indx - symtab_hdr->sh_info; 4326 hash = ((struct elf_aarch64_link_hash_entry *) 4327 elf_sym_hashes (input_bfd)[e_indx]); 4328 4329 while (hash->root.root.type == bfd_link_hash_indirect 4330 || hash->root.root.type == bfd_link_hash_warning) 4331 hash = ((struct elf_aarch64_link_hash_entry *) 4332 hash->root.root.u.i.link); 4333 4334 if (hash->root.root.type == bfd_link_hash_defined 4335 || hash->root.root.type == bfd_link_hash_defweak) 4336 { 4337 struct elf_aarch64_link_hash_table *globals = 4338 elf_aarch64_hash_table (info); 4339 sym_sec = hash->root.root.u.def.section; 4340 sym_value = hash->root.root.u.def.value; 4341 /* For a destination in a shared library, 4342 use the PLT stub as target address to 4343 decide whether a branch stub is 4344 needed. */ 4345 if (globals->root.splt != NULL && hash != NULL 4346 && hash->root.plt.offset != (bfd_vma) - 1) 4347 { 4348 sym_sec = globals->root.splt; 4349 sym_value = hash->root.plt.offset; 4350 if (sym_sec->output_section != NULL) 4351 destination = (sym_value 4352 + sym_sec->output_offset 4353 + 4354 sym_sec->output_section->vma); 4355 } 4356 else if (sym_sec->output_section != NULL) 4357 destination = (sym_value + irela->r_addend 4358 + sym_sec->output_offset 4359 + sym_sec->output_section->vma); 4360 } 4361 else if (hash->root.root.type == bfd_link_hash_undefined 4362 || (hash->root.root.type 4363 == bfd_link_hash_undefweak)) 4364 { 4365 /* For a shared library, use the PLT stub as 4366 target address to decide whether a long 4367 branch stub is needed. 4368 For absolute code, they cannot be handled. */ 4369 struct elf_aarch64_link_hash_table *globals = 4370 elf_aarch64_hash_table (info); 4371 4372 if (globals->root.splt != NULL && hash != NULL 4373 && hash->root.plt.offset != (bfd_vma) - 1) 4374 { 4375 sym_sec = globals->root.splt; 4376 sym_value = hash->root.plt.offset; 4377 if (sym_sec->output_section != NULL) 4378 destination = (sym_value 4379 + sym_sec->output_offset 4380 + 4381 sym_sec->output_section->vma); 4382 } 4383 else 4384 continue; 4385 } 4386 else 4387 { 4388 bfd_set_error (bfd_error_bad_value); 4389 goto error_ret_free_internal; 4390 } 4391 st_type = ELF_ST_TYPE (hash->root.type); 4392 sym_name = hash->root.root.root.string; 4393 } 4394 4395 /* Determine what (if any) linker stub is needed. */ 4396 stub_type = aarch64_type_of_stub (section, irela, sym_sec, 4397 st_type, destination); 4398 if (stub_type == aarch64_stub_none) 4399 continue; 4400 4401 /* Support for grouping stub sections. */ 4402 id_sec = htab->stub_group[section->id].link_sec; 4403 4404 /* Get the name of this stub. */ 4405 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash, 4406 irela); 4407 if (!stub_name) 4408 goto error_ret_free_internal; 4409 4410 stub_entry = 4411 aarch64_stub_hash_lookup (&htab->stub_hash_table, 4412 stub_name, FALSE, FALSE); 4413 if (stub_entry != NULL) 4414 { 4415 /* The proper stub has already been created. */ 4416 free (stub_name); 4417 continue; 4418 } 4419 4420 stub_entry = _bfd_aarch64_add_stub_entry_in_group 4421 (stub_name, section, htab); 4422 if (stub_entry == NULL) 4423 { 4424 free (stub_name); 4425 goto error_ret_free_internal; 4426 } 4427 4428 stub_entry->target_value = sym_value + irela->r_addend; 4429 stub_entry->target_section = sym_sec; 4430 stub_entry->stub_type = stub_type; 4431 stub_entry->h = hash; 4432 stub_entry->st_type = st_type; 4433 4434 if (sym_name == NULL) 4435 sym_name = "unnamed"; 4436 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name); 4437 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len); 4438 if (stub_entry->output_name == NULL) 4439 { 4440 free (stub_name); 4441 goto error_ret_free_internal; 4442 } 4443 4444 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME, 4445 sym_name); 4446 4447 stub_changed = TRUE; 4448 } 4449 4450 /* We're done with the internal relocs, free them. */ 4451 if (elf_section_data (section)->relocs == NULL) 4452 free (internal_relocs); 4453 } 4454 } 4455 4456 if (!stub_changed) 4457 break; 4458 4459 _bfd_aarch64_resize_stubs (htab); 4460 4461 /* Ask the linker to do its stuff. */ 4462 (*htab->layout_sections_again) (); 4463 stub_changed = FALSE; 4464 } 4465 4466 return TRUE; 4467 4468 error_ret_free_local: 4469 return FALSE; 4470 } 4471 4472 /* Build all the stubs associated with the current output file. The 4473 stubs are kept in a hash table attached to the main linker hash 4474 table. We also set up the .plt entries for statically linked PIC 4475 functions here. This function is called via aarch64_elf_finish in the 4476 linker. */ 4477 4478 bfd_boolean 4479 elfNN_aarch64_build_stubs (struct bfd_link_info *info) 4480 { 4481 asection *stub_sec; 4482 struct bfd_hash_table *table; 4483 struct elf_aarch64_link_hash_table *htab; 4484 4485 htab = elf_aarch64_hash_table (info); 4486 4487 for (stub_sec = htab->stub_bfd->sections; 4488 stub_sec != NULL; stub_sec = stub_sec->next) 4489 { 4490 bfd_size_type size; 4491 4492 /* Ignore non-stub sections. */ 4493 if (!strstr (stub_sec->name, STUB_SUFFIX)) 4494 continue; 4495 4496 /* Allocate memory to hold the linker stubs. */ 4497 size = stub_sec->size; 4498 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size); 4499 if (stub_sec->contents == NULL && size != 0) 4500 return FALSE; 4501 stub_sec->size = 0; 4502 4503 /* Add a branch around the stub section, and a nop, to keep it 8 byte 4504 aligned, as long branch stubs contain a 64-bit address. */ 4505 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents); 4506 bfd_putl32 (INSN_NOP, stub_sec->contents + 4); 4507 stub_sec->size += 8; 4508 } 4509 4510 /* Build the stubs as directed by the stub hash table. */ 4511 table = &htab->stub_hash_table; 4512 bfd_hash_traverse (table, aarch64_build_one_stub, info); 4513 4514 return TRUE; 4515 } 4516 4517 4518 /* Add an entry to the code/data map for section SEC. */ 4519 4520 static void 4521 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma) 4522 { 4523 struct _aarch64_elf_section_data *sec_data = 4524 elf_aarch64_section_data (sec); 4525 unsigned int newidx; 4526 4527 if (sec_data->map == NULL) 4528 { 4529 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map)); 4530 sec_data->mapcount = 0; 4531 sec_data->mapsize = 1; 4532 } 4533 4534 newidx = sec_data->mapcount++; 4535 4536 if (sec_data->mapcount > sec_data->mapsize) 4537 { 4538 sec_data->mapsize *= 2; 4539 sec_data->map = bfd_realloc_or_free 4540 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map)); 4541 } 4542 4543 if (sec_data->map) 4544 { 4545 sec_data->map[newidx].vma = vma; 4546 sec_data->map[newidx].type = type; 4547 } 4548 } 4549 4550 4551 /* Initialise maps of insn/data for input BFDs. */ 4552 void 4553 bfd_elfNN_aarch64_init_maps (bfd *abfd) 4554 { 4555 Elf_Internal_Sym *isymbuf; 4556 Elf_Internal_Shdr *hdr; 4557 unsigned int i, localsyms; 4558 4559 /* Make sure that we are dealing with an AArch64 elf binary. */ 4560 if (!is_aarch64_elf (abfd)) 4561 return; 4562 4563 if ((abfd->flags & DYNAMIC) != 0) 4564 return; 4565 4566 hdr = &elf_symtab_hdr (abfd); 4567 localsyms = hdr->sh_info; 4568 4569 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field 4570 should contain the number of local symbols, which should come before any 4571 global symbols. Mapping symbols are always local. */ 4572 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL); 4573 4574 /* No internal symbols read? Skip this BFD. */ 4575 if (isymbuf == NULL) 4576 return; 4577 4578 for (i = 0; i < localsyms; i++) 4579 { 4580 Elf_Internal_Sym *isym = &isymbuf[i]; 4581 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 4582 const char *name; 4583 4584 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL) 4585 { 4586 name = bfd_elf_string_from_elf_section (abfd, 4587 hdr->sh_link, 4588 isym->st_name); 4589 4590 if (bfd_is_aarch64_special_symbol_name 4591 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP)) 4592 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value); 4593 } 4594 } 4595 } 4596 4597 /* Set option values needed during linking. */ 4598 void 4599 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd, 4600 struct bfd_link_info *link_info, 4601 int no_enum_warn, 4602 int no_wchar_warn, int pic_veneer, 4603 int fix_erratum_835769, 4604 int fix_erratum_843419, 4605 int no_apply_dynamic_relocs) 4606 { 4607 struct elf_aarch64_link_hash_table *globals; 4608 4609 globals = elf_aarch64_hash_table (link_info); 4610 globals->pic_veneer = pic_veneer; 4611 globals->fix_erratum_835769 = fix_erratum_835769; 4612 globals->fix_erratum_843419 = fix_erratum_843419; 4613 globals->fix_erratum_843419_adr = TRUE; 4614 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs; 4615 4616 BFD_ASSERT (is_aarch64_elf (output_bfd)); 4617 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn; 4618 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn; 4619 } 4620 4621 static bfd_vma 4622 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h, 4623 struct elf_aarch64_link_hash_table 4624 *globals, struct bfd_link_info *info, 4625 bfd_vma value, bfd *output_bfd, 4626 bfd_boolean *unresolved_reloc_p) 4627 { 4628 bfd_vma off = (bfd_vma) - 1; 4629 asection *basegot = globals->root.sgot; 4630 bfd_boolean dyn = globals->root.dynamic_sections_created; 4631 4632 if (h != NULL) 4633 { 4634 BFD_ASSERT (basegot != NULL); 4635 off = h->got.offset; 4636 BFD_ASSERT (off != (bfd_vma) - 1); 4637 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) 4638 || (bfd_link_pic (info) 4639 && SYMBOL_REFERENCES_LOCAL (info, h)) 4640 || (ELF_ST_VISIBILITY (h->other) 4641 && h->root.type == bfd_link_hash_undefweak)) 4642 { 4643 /* This is actually a static link, or it is a -Bsymbolic link 4644 and the symbol is defined locally. We must initialize this 4645 entry in the global offset table. Since the offset must 4646 always be a multiple of 8 (4 in the case of ILP32), we use 4647 the least significant bit to record whether we have 4648 initialized it already. 4649 When doing a dynamic link, we create a .rel(a).got relocation 4650 entry to initialize the value. This is done in the 4651 finish_dynamic_symbol routine. */ 4652 if ((off & 1) != 0) 4653 off &= ~1; 4654 else 4655 { 4656 bfd_put_NN (output_bfd, value, basegot->contents + off); 4657 h->got.offset |= 1; 4658 } 4659 } 4660 else 4661 *unresolved_reloc_p = FALSE; 4662 4663 off = off + basegot->output_section->vma + basegot->output_offset; 4664 } 4665 4666 return off; 4667 } 4668 4669 /* Change R_TYPE to a more efficient access model where possible, 4670 return the new reloc type. */ 4671 4672 static bfd_reloc_code_real_type 4673 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type, 4674 struct elf_link_hash_entry *h) 4675 { 4676 bfd_boolean is_local = h == NULL; 4677 4678 switch (r_type) 4679 { 4680 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21: 4681 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21: 4682 return (is_local 4683 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 4684 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21); 4685 4686 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21: 4687 return (is_local 4688 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC 4689 : r_type); 4690 4691 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19: 4692 return (is_local 4693 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 4694 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19); 4695 4696 case BFD_RELOC_AARCH64_TLSDESC_LDR: 4697 return (is_local 4698 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC 4699 : BFD_RELOC_AARCH64_NONE); 4700 4701 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC: 4702 return (is_local 4703 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC 4704 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC); 4705 4706 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1: 4707 return (is_local 4708 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 4709 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1); 4710 4711 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC: 4712 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC: 4713 return (is_local 4714 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC 4715 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC); 4716 4717 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 4718 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type; 4719 4720 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC: 4721 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type; 4722 4723 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19: 4724 return r_type; 4725 4726 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21: 4727 return (is_local 4728 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 4729 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19); 4730 4731 case BFD_RELOC_AARCH64_TLSDESC_ADD: 4732 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12: 4733 case BFD_RELOC_AARCH64_TLSDESC_CALL: 4734 /* Instructions with these relocations will become NOPs. */ 4735 return BFD_RELOC_AARCH64_NONE; 4736 4737 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC: 4738 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21: 4739 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21: 4740 return is_local ? BFD_RELOC_AARCH64_NONE : r_type; 4741 4742 #if ARCH_SIZE == 64 4743 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC: 4744 return is_local 4745 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC 4746 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC; 4747 4748 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1: 4749 return is_local 4750 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 4751 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1; 4752 #endif 4753 4754 default: 4755 break; 4756 } 4757 4758 return r_type; 4759 } 4760 4761 static unsigned int 4762 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type) 4763 { 4764 switch (r_type) 4765 { 4766 case BFD_RELOC_AARCH64_ADR_GOT_PAGE: 4767 case BFD_RELOC_AARCH64_GOT_LD_PREL19: 4768 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14: 4769 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC: 4770 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15: 4771 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15: 4772 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC: 4773 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC: 4774 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1: 4775 return GOT_NORMAL; 4776 4777 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC: 4778 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21: 4779 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21: 4780 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC: 4781 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1: 4782 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC: 4783 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21: 4784 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21: 4785 return GOT_TLS_GD; 4786 4787 case BFD_RELOC_AARCH64_TLSDESC_ADD: 4788 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12: 4789 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21: 4790 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21: 4791 case BFD_RELOC_AARCH64_TLSDESC_CALL: 4792 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC: 4793 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12: 4794 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19: 4795 case BFD_RELOC_AARCH64_TLSDESC_LDR: 4796 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC: 4797 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1: 4798 return GOT_TLSDESC_GD; 4799 4800 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 4801 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC: 4802 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 4803 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19: 4804 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC: 4805 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1: 4806 return GOT_TLS_IE; 4807 4808 default: 4809 break; 4810 } 4811 return GOT_UNKNOWN; 4812 } 4813 4814 static bfd_boolean 4815 aarch64_can_relax_tls (bfd *input_bfd, 4816 struct bfd_link_info *info, 4817 bfd_reloc_code_real_type r_type, 4818 struct elf_link_hash_entry *h, 4819 unsigned long r_symndx) 4820 { 4821 unsigned int symbol_got_type; 4822 unsigned int reloc_got_type; 4823 4824 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type)) 4825 return FALSE; 4826 4827 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx); 4828 reloc_got_type = aarch64_reloc_got_type (r_type); 4829 4830 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type)) 4831 return TRUE; 4832 4833 if (!bfd_link_executable (info)) 4834 return FALSE; 4835 4836 if (h && h->root.type == bfd_link_hash_undefweak) 4837 return FALSE; 4838 4839 return TRUE; 4840 } 4841 4842 /* Given the relocation code R_TYPE, return the relaxed bfd reloc 4843 enumerator. */ 4844 4845 static bfd_reloc_code_real_type 4846 aarch64_tls_transition (bfd *input_bfd, 4847 struct bfd_link_info *info, 4848 unsigned int r_type, 4849 struct elf_link_hash_entry *h, 4850 unsigned long r_symndx) 4851 { 4852 bfd_reloc_code_real_type bfd_r_type 4853 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type); 4854 4855 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx)) 4856 return bfd_r_type; 4857 4858 return aarch64_tls_transition_without_check (bfd_r_type, h); 4859 } 4860 4861 /* Return the base VMA address which should be subtracted from real addresses 4862 when resolving R_AARCH64_TLS_DTPREL relocation. */ 4863 4864 static bfd_vma 4865 dtpoff_base (struct bfd_link_info *info) 4866 { 4867 /* If tls_sec is NULL, we should have signalled an error already. */ 4868 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL); 4869 return elf_hash_table (info)->tls_sec->vma; 4870 } 4871 4872 /* Return the base VMA address which should be subtracted from real addresses 4873 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */ 4874 4875 static bfd_vma 4876 tpoff_base (struct bfd_link_info *info) 4877 { 4878 struct elf_link_hash_table *htab = elf_hash_table (info); 4879 4880 /* If tls_sec is NULL, we should have signalled an error already. */ 4881 BFD_ASSERT (htab->tls_sec != NULL); 4882 4883 bfd_vma base = align_power ((bfd_vma) TCB_SIZE, 4884 htab->tls_sec->alignment_power); 4885 return htab->tls_sec->vma - base; 4886 } 4887 4888 static bfd_vma * 4889 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h, 4890 unsigned long r_symndx) 4891 { 4892 /* Calculate the address of the GOT entry for symbol 4893 referred to in h. */ 4894 if (h != NULL) 4895 return &h->got.offset; 4896 else 4897 { 4898 /* local symbol */ 4899 struct elf_aarch64_local_symbol *l; 4900 4901 l = elf_aarch64_locals (input_bfd); 4902 return &l[r_symndx].got_offset; 4903 } 4904 } 4905 4906 static void 4907 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h, 4908 unsigned long r_symndx) 4909 { 4910 bfd_vma *p; 4911 p = symbol_got_offset_ref (input_bfd, h, r_symndx); 4912 *p |= 1; 4913 } 4914 4915 static int 4916 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h, 4917 unsigned long r_symndx) 4918 { 4919 bfd_vma value; 4920 value = * symbol_got_offset_ref (input_bfd, h, r_symndx); 4921 return value & 1; 4922 } 4923 4924 static bfd_vma 4925 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h, 4926 unsigned long r_symndx) 4927 { 4928 bfd_vma value; 4929 value = * symbol_got_offset_ref (input_bfd, h, r_symndx); 4930 value &= ~1; 4931 return value; 4932 } 4933 4934 static bfd_vma * 4935 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h, 4936 unsigned long r_symndx) 4937 { 4938 /* Calculate the address of the GOT entry for symbol 4939 referred to in h. */ 4940 if (h != NULL) 4941 { 4942 struct elf_aarch64_link_hash_entry *eh; 4943 eh = (struct elf_aarch64_link_hash_entry *) h; 4944 return &eh->tlsdesc_got_jump_table_offset; 4945 } 4946 else 4947 { 4948 /* local symbol */ 4949 struct elf_aarch64_local_symbol *l; 4950 4951 l = elf_aarch64_locals (input_bfd); 4952 return &l[r_symndx].tlsdesc_got_jump_table_offset; 4953 } 4954 } 4955 4956 static void 4957 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h, 4958 unsigned long r_symndx) 4959 { 4960 bfd_vma *p; 4961 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx); 4962 *p |= 1; 4963 } 4964 4965 static int 4966 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd, 4967 struct elf_link_hash_entry *h, 4968 unsigned long r_symndx) 4969 { 4970 bfd_vma value; 4971 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx); 4972 return value & 1; 4973 } 4974 4975 static bfd_vma 4976 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h, 4977 unsigned long r_symndx) 4978 { 4979 bfd_vma value; 4980 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx); 4981 value &= ~1; 4982 return value; 4983 } 4984 4985 /* Data for make_branch_to_erratum_835769_stub(). */ 4986 4987 struct erratum_835769_branch_to_stub_data 4988 { 4989 struct bfd_link_info *info; 4990 asection *output_section; 4991 bfd_byte *contents; 4992 }; 4993 4994 /* Helper to insert branches to erratum 835769 stubs in the right 4995 places for a particular section. */ 4996 4997 static bfd_boolean 4998 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry, 4999 void *in_arg) 5000 { 5001 struct elf_aarch64_stub_hash_entry *stub_entry; 5002 struct erratum_835769_branch_to_stub_data *data; 5003 bfd_byte *contents; 5004 unsigned long branch_insn = 0; 5005 bfd_vma veneered_insn_loc, veneer_entry_loc; 5006 bfd_signed_vma branch_offset; 5007 unsigned int target; 5008 bfd *abfd; 5009 5010 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry; 5011 data = (struct erratum_835769_branch_to_stub_data *) in_arg; 5012 5013 if (stub_entry->target_section != data->output_section 5014 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer) 5015 return TRUE; 5016 5017 contents = data->contents; 5018 veneered_insn_loc = stub_entry->target_section->output_section->vma 5019 + stub_entry->target_section->output_offset 5020 + stub_entry->target_value; 5021 veneer_entry_loc = stub_entry->stub_sec->output_section->vma 5022 + stub_entry->stub_sec->output_offset 5023 + stub_entry->stub_offset; 5024 branch_offset = veneer_entry_loc - veneered_insn_loc; 5025 5026 abfd = stub_entry->target_section->owner; 5027 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc)) 5028 _bfd_error_handler 5029 (_("%pB: error: erratum 835769 stub out " 5030 "of range (input file too large)"), abfd); 5031 5032 target = stub_entry->target_value; 5033 branch_insn = 0x14000000; 5034 branch_offset >>= 2; 5035 branch_offset &= 0x3ffffff; 5036 branch_insn |= branch_offset; 5037 bfd_putl32 (branch_insn, &contents[target]); 5038 5039 return TRUE; 5040 } 5041 5042 5043 static bfd_boolean 5044 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry, 5045 void *in_arg) 5046 { 5047 struct elf_aarch64_stub_hash_entry *stub_entry 5048 = (struct elf_aarch64_stub_hash_entry *) gen_entry; 5049 struct erratum_835769_branch_to_stub_data *data 5050 = (struct erratum_835769_branch_to_stub_data *) in_arg; 5051 struct bfd_link_info *info; 5052 struct elf_aarch64_link_hash_table *htab; 5053 bfd_byte *contents; 5054 asection *section; 5055 bfd *abfd; 5056 bfd_vma place; 5057 uint32_t insn; 5058 5059 info = data->info; 5060 contents = data->contents; 5061 section = data->output_section; 5062 5063 htab = elf_aarch64_hash_table (info); 5064 5065 if (stub_entry->target_section != section 5066 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer) 5067 return TRUE; 5068 5069 insn = bfd_getl32 (contents + stub_entry->target_value); 5070 bfd_putl32 (insn, 5071 stub_entry->stub_sec->contents + stub_entry->stub_offset); 5072 5073 place = (section->output_section->vma + section->output_offset 5074 + stub_entry->adrp_offset); 5075 insn = bfd_getl32 (contents + stub_entry->adrp_offset); 5076 5077 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP) 5078 abort (); 5079 5080 bfd_signed_vma imm = 5081 (_bfd_aarch64_sign_extend 5082 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33) 5083 - (place & 0xfff)); 5084 5085 if (htab->fix_erratum_843419_adr 5086 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM)) 5087 { 5088 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm) 5089 | AARCH64_RT (insn)); 5090 bfd_putl32 (insn, contents + stub_entry->adrp_offset); 5091 } 5092 else 5093 { 5094 bfd_vma veneered_insn_loc; 5095 bfd_vma veneer_entry_loc; 5096 bfd_signed_vma branch_offset; 5097 uint32_t branch_insn; 5098 5099 veneered_insn_loc = stub_entry->target_section->output_section->vma 5100 + stub_entry->target_section->output_offset 5101 + stub_entry->target_value; 5102 veneer_entry_loc = stub_entry->stub_sec->output_section->vma 5103 + stub_entry->stub_sec->output_offset 5104 + stub_entry->stub_offset; 5105 branch_offset = veneer_entry_loc - veneered_insn_loc; 5106 5107 abfd = stub_entry->target_section->owner; 5108 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc)) 5109 _bfd_error_handler 5110 (_("%pB: error: erratum 843419 stub out " 5111 "of range (input file too large)"), abfd); 5112 5113 branch_insn = 0x14000000; 5114 branch_offset >>= 2; 5115 branch_offset &= 0x3ffffff; 5116 branch_insn |= branch_offset; 5117 bfd_putl32 (branch_insn, contents + stub_entry->target_value); 5118 } 5119 return TRUE; 5120 } 5121 5122 5123 static bfd_boolean 5124 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED, 5125 struct bfd_link_info *link_info, 5126 asection *sec, 5127 bfd_byte *contents) 5128 5129 { 5130 struct elf_aarch64_link_hash_table *globals = 5131 elf_aarch64_hash_table (link_info); 5132 5133 if (globals == NULL) 5134 return FALSE; 5135 5136 /* Fix code to point to erratum 835769 stubs. */ 5137 if (globals->fix_erratum_835769) 5138 { 5139 struct erratum_835769_branch_to_stub_data data; 5140 5141 data.info = link_info; 5142 data.output_section = sec; 5143 data.contents = contents; 5144 bfd_hash_traverse (&globals->stub_hash_table, 5145 make_branch_to_erratum_835769_stub, &data); 5146 } 5147 5148 if (globals->fix_erratum_843419) 5149 { 5150 struct erratum_835769_branch_to_stub_data data; 5151 5152 data.info = link_info; 5153 data.output_section = sec; 5154 data.contents = contents; 5155 bfd_hash_traverse (&globals->stub_hash_table, 5156 _bfd_aarch64_erratum_843419_branch_to_stub, &data); 5157 } 5158 5159 return FALSE; 5160 } 5161 5162 /* Return TRUE if RELOC is a relocation against the base of GOT table. */ 5163 5164 static bfd_boolean 5165 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc) 5166 { 5167 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14 5168 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15 5169 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15 5170 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC 5171 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1); 5172 } 5173 5174 /* Perform a relocation as part of a final link. The input relocation type 5175 should be TLS relaxed. */ 5176 5177 static bfd_reloc_status_type 5178 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto, 5179 bfd *input_bfd, 5180 bfd *output_bfd, 5181 asection *input_section, 5182 bfd_byte *contents, 5183 Elf_Internal_Rela *rel, 5184 bfd_vma value, 5185 struct bfd_link_info *info, 5186 asection *sym_sec, 5187 struct elf_link_hash_entry *h, 5188 bfd_boolean *unresolved_reloc_p, 5189 bfd_boolean save_addend, 5190 bfd_vma *saved_addend, 5191 Elf_Internal_Sym *sym) 5192 { 5193 Elf_Internal_Shdr *symtab_hdr; 5194 unsigned int r_type = howto->type; 5195 bfd_reloc_code_real_type bfd_r_type 5196 = elfNN_aarch64_bfd_reloc_from_howto (howto); 5197 unsigned long r_symndx; 5198 bfd_byte *hit_data = contents + rel->r_offset; 5199 bfd_vma place, off, got_entry_addr = 0; 5200 bfd_signed_vma signed_addend; 5201 struct elf_aarch64_link_hash_table *globals; 5202 bfd_boolean weak_undef_p; 5203 bfd_boolean relative_reloc; 5204 asection *base_got; 5205 bfd_vma orig_value = value; 5206 bfd_boolean resolved_to_zero; 5207 bfd_boolean abs_symbol_p; 5208 5209 globals = elf_aarch64_hash_table (info); 5210 5211 symtab_hdr = &elf_symtab_hdr (input_bfd); 5212 5213 BFD_ASSERT (is_aarch64_elf (input_bfd)); 5214 5215 r_symndx = ELFNN_R_SYM (rel->r_info); 5216 5217 place = input_section->output_section->vma 5218 + input_section->output_offset + rel->r_offset; 5219 5220 /* Get addend, accumulating the addend for consecutive relocs 5221 which refer to the same offset. */ 5222 signed_addend = saved_addend ? *saved_addend : 0; 5223 signed_addend += rel->r_addend; 5224 5225 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak 5226 : bfd_is_und_section (sym_sec)); 5227 abs_symbol_p = (h !=NULL && h->root.type == bfd_link_hash_defined 5228 && bfd_is_abs_section (h->root.u.def.section)); 5229 5230 5231 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle 5232 it here if it is defined in a non-shared object. */ 5233 if (h != NULL 5234 && h->type == STT_GNU_IFUNC 5235 && h->def_regular) 5236 { 5237 asection *plt; 5238 const char *name; 5239 bfd_vma addend = 0; 5240 5241 if ((input_section->flags & SEC_ALLOC) == 0) 5242 { 5243 /* If this is a SHT_NOTE section without SHF_ALLOC, treat 5244 STT_GNU_IFUNC symbol as STT_FUNC. */ 5245 if (elf_section_type (input_section) == SHT_NOTE) 5246 goto skip_ifunc; 5247 5248 /* Dynamic relocs are not propagated for SEC_DEBUGGING 5249 sections because such sections are not SEC_ALLOC and 5250 thus ld.so will not process them. */ 5251 if ((input_section->flags & SEC_DEBUGGING) != 0) 5252 return bfd_reloc_ok; 5253 5254 if (h->root.root.string) 5255 name = h->root.root.string; 5256 else 5257 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL); 5258 _bfd_error_handler 5259 /* xgettext:c-format */ 5260 (_("%pB(%pA+%#" PRIx64 "): " 5261 "unresolvable %s relocation against symbol `%s'"), 5262 input_bfd, input_section, (uint64_t) rel->r_offset, 5263 howto->name, name); 5264 bfd_set_error (bfd_error_bad_value); 5265 return bfd_reloc_notsupported; 5266 } 5267 else if (h->plt.offset == (bfd_vma) -1) 5268 goto bad_ifunc_reloc; 5269 5270 /* STT_GNU_IFUNC symbol must go through PLT. */ 5271 plt = globals->root.splt ? globals->root.splt : globals->root.iplt; 5272 value = (plt->output_section->vma + plt->output_offset + h->plt.offset); 5273 5274 switch (bfd_r_type) 5275 { 5276 default: 5277 bad_ifunc_reloc: 5278 if (h->root.root.string) 5279 name = h->root.root.string; 5280 else 5281 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, 5282 NULL); 5283 _bfd_error_handler 5284 /* xgettext:c-format */ 5285 (_("%pB: relocation %s against STT_GNU_IFUNC " 5286 "symbol `%s' isn't handled by %s"), input_bfd, 5287 howto->name, name, __FUNCTION__); 5288 bfd_set_error (bfd_error_bad_value); 5289 return bfd_reloc_notsupported; 5290 5291 case BFD_RELOC_AARCH64_NN: 5292 if (rel->r_addend != 0) 5293 { 5294 if (h->root.root.string) 5295 name = h->root.root.string; 5296 else 5297 name = bfd_elf_sym_name (input_bfd, symtab_hdr, 5298 sym, NULL); 5299 _bfd_error_handler 5300 /* xgettext:c-format */ 5301 (_("%pB: relocation %s against STT_GNU_IFUNC " 5302 "symbol `%s' has non-zero addend: %" PRId64), 5303 input_bfd, howto->name, name, (int64_t) rel->r_addend); 5304 bfd_set_error (bfd_error_bad_value); 5305 return bfd_reloc_notsupported; 5306 } 5307 5308 /* Generate dynamic relocation only when there is a 5309 non-GOT reference in a shared object. */ 5310 if (bfd_link_pic (info) && h->non_got_ref) 5311 { 5312 Elf_Internal_Rela outrel; 5313 asection *sreloc; 5314 5315 /* Need a dynamic relocation to get the real function 5316 address. */ 5317 outrel.r_offset = _bfd_elf_section_offset (output_bfd, 5318 info, 5319 input_section, 5320 rel->r_offset); 5321 if (outrel.r_offset == (bfd_vma) -1 5322 || outrel.r_offset == (bfd_vma) -2) 5323 abort (); 5324 5325 outrel.r_offset += (input_section->output_section->vma 5326 + input_section->output_offset); 5327 5328 if (h->dynindx == -1 5329 || h->forced_local 5330 || bfd_link_executable (info)) 5331 { 5332 /* This symbol is resolved locally. */ 5333 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE)); 5334 outrel.r_addend = (h->root.u.def.value 5335 + h->root.u.def.section->output_section->vma 5336 + h->root.u.def.section->output_offset); 5337 } 5338 else 5339 { 5340 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); 5341 outrel.r_addend = 0; 5342 } 5343 5344 sreloc = globals->root.irelifunc; 5345 elf_append_rela (output_bfd, sreloc, &outrel); 5346 5347 /* If this reloc is against an external symbol, we 5348 do not want to fiddle with the addend. Otherwise, 5349 we need to include the symbol value so that it 5350 becomes an addend for the dynamic reloc. For an 5351 internal symbol, we have updated addend. */ 5352 return bfd_reloc_ok; 5353 } 5354 /* FALLTHROUGH */ 5355 case BFD_RELOC_AARCH64_CALL26: 5356 case BFD_RELOC_AARCH64_JUMP26: 5357 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 5358 signed_addend, 5359 weak_undef_p); 5360 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, 5361 howto, value); 5362 case BFD_RELOC_AARCH64_ADR_GOT_PAGE: 5363 case BFD_RELOC_AARCH64_GOT_LD_PREL19: 5364 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14: 5365 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC: 5366 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15: 5367 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC: 5368 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1: 5369 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15: 5370 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC: 5371 base_got = globals->root.sgot; 5372 off = h->got.offset; 5373 5374 if (base_got == NULL) 5375 abort (); 5376 5377 if (off == (bfd_vma) -1) 5378 { 5379 bfd_vma plt_index; 5380 5381 /* We can't use h->got.offset here to save state, or 5382 even just remember the offset, as finish_dynamic_symbol 5383 would use that as offset into .got. */ 5384 5385 if (globals->root.splt != NULL) 5386 { 5387 plt_index = ((h->plt.offset - globals->plt_header_size) / 5388 globals->plt_entry_size); 5389 off = (plt_index + 3) * GOT_ENTRY_SIZE; 5390 base_got = globals->root.sgotplt; 5391 } 5392 else 5393 { 5394 plt_index = h->plt.offset / globals->plt_entry_size; 5395 off = plt_index * GOT_ENTRY_SIZE; 5396 base_got = globals->root.igotplt; 5397 } 5398 5399 if (h->dynindx == -1 5400 || h->forced_local 5401 || info->symbolic) 5402 { 5403 /* This references the local definition. We must 5404 initialize this entry in the global offset table. 5405 Since the offset must always be a multiple of 8, 5406 we use the least significant bit to record 5407 whether we have initialized it already. 5408 5409 When doing a dynamic link, we create a .rela.got 5410 relocation entry to initialize the value. This 5411 is done in the finish_dynamic_symbol routine. */ 5412 if ((off & 1) != 0) 5413 off &= ~1; 5414 else 5415 { 5416 bfd_put_NN (output_bfd, value, 5417 base_got->contents + off); 5418 /* Note that this is harmless as -1 | 1 still is -1. */ 5419 h->got.offset |= 1; 5420 } 5421 } 5422 value = (base_got->output_section->vma 5423 + base_got->output_offset + off); 5424 } 5425 else 5426 value = aarch64_calculate_got_entry_vma (h, globals, info, 5427 value, output_bfd, 5428 unresolved_reloc_p); 5429 5430 if (aarch64_relocation_aginst_gp_p (bfd_r_type)) 5431 addend = (globals->root.sgot->output_section->vma 5432 + globals->root.sgot->output_offset); 5433 5434 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 5435 addend, weak_undef_p); 5436 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value); 5437 case BFD_RELOC_AARCH64_ADD_LO12: 5438 case BFD_RELOC_AARCH64_ADR_HI21_PCREL: 5439 break; 5440 } 5441 } 5442 5443 skip_ifunc: 5444 resolved_to_zero = (h != NULL 5445 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)); 5446 5447 switch (bfd_r_type) 5448 { 5449 case BFD_RELOC_AARCH64_NONE: 5450 case BFD_RELOC_AARCH64_TLSDESC_ADD: 5451 case BFD_RELOC_AARCH64_TLSDESC_CALL: 5452 case BFD_RELOC_AARCH64_TLSDESC_LDR: 5453 *unresolved_reloc_p = FALSE; 5454 return bfd_reloc_ok; 5455 5456 case BFD_RELOC_AARCH64_NN: 5457 5458 /* When generating a shared object or relocatable executable, these 5459 relocations are copied into the output file to be resolved at 5460 run time. */ 5461 if (((bfd_link_pic (info) 5462 || globals->root.is_relocatable_executable) 5463 && (input_section->flags & SEC_ALLOC) 5464 && (h == NULL 5465 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 5466 && !resolved_to_zero) 5467 || h->root.type != bfd_link_hash_undefweak)) 5468 /* Or we are creating an executable, we may need to keep relocations 5469 for symbols satisfied by a dynamic library if we manage to avoid 5470 copy relocs for the symbol. */ 5471 || (ELIMINATE_COPY_RELOCS 5472 && !bfd_link_pic (info) 5473 && h != NULL 5474 && (input_section->flags & SEC_ALLOC) 5475 && h->dynindx != -1 5476 && !h->non_got_ref 5477 && ((h->def_dynamic 5478 && !h->def_regular) 5479 || h->root.type == bfd_link_hash_undefweak 5480 || h->root.type == bfd_link_hash_undefined))) 5481 { 5482 Elf_Internal_Rela outrel; 5483 bfd_byte *loc; 5484 bfd_boolean skip, relocate; 5485 asection *sreloc; 5486 5487 *unresolved_reloc_p = FALSE; 5488 5489 skip = FALSE; 5490 relocate = FALSE; 5491 5492 outrel.r_addend = signed_addend; 5493 outrel.r_offset = 5494 _bfd_elf_section_offset (output_bfd, info, input_section, 5495 rel->r_offset); 5496 if (outrel.r_offset == (bfd_vma) - 1) 5497 skip = TRUE; 5498 else if (outrel.r_offset == (bfd_vma) - 2) 5499 { 5500 skip = TRUE; 5501 relocate = TRUE; 5502 } 5503 else if (abs_symbol_p) 5504 { 5505 /* Local absolute symbol. */ 5506 skip = (h->forced_local || (h->dynindx == -1)); 5507 relocate = skip; 5508 } 5509 5510 outrel.r_offset += (input_section->output_section->vma 5511 + input_section->output_offset); 5512 5513 if (skip) 5514 memset (&outrel, 0, sizeof outrel); 5515 else if (h != NULL 5516 && h->dynindx != -1 5517 && (!bfd_link_pic (info) 5518 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h)) 5519 || !h->def_regular)) 5520 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); 5521 else 5522 { 5523 int symbol; 5524 5525 /* On SVR4-ish systems, the dynamic loader cannot 5526 relocate the text and data segments independently, 5527 so the symbol does not matter. */ 5528 symbol = 0; 5529 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE; 5530 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE)); 5531 outrel.r_addend += value; 5532 } 5533 5534 sreloc = elf_section_data (input_section)->sreloc; 5535 if (sreloc == NULL || sreloc->contents == NULL) 5536 return bfd_reloc_notsupported; 5537 5538 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals); 5539 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc); 5540 5541 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size) 5542 { 5543 /* Sanity to check that we have previously allocated 5544 sufficient space in the relocation section for the 5545 number of relocations we actually want to emit. */ 5546 abort (); 5547 } 5548 5549 /* If this reloc is against an external symbol, we do not want to 5550 fiddle with the addend. Otherwise, we need to include the symbol 5551 value so that it becomes an addend for the dynamic reloc. */ 5552 if (!relocate) 5553 return bfd_reloc_ok; 5554 5555 return _bfd_final_link_relocate (howto, input_bfd, input_section, 5556 contents, rel->r_offset, value, 5557 signed_addend); 5558 } 5559 else 5560 value += signed_addend; 5561 break; 5562 5563 case BFD_RELOC_AARCH64_CALL26: 5564 case BFD_RELOC_AARCH64_JUMP26: 5565 { 5566 asection *splt = globals->root.splt; 5567 bfd_boolean via_plt_p = 5568 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1; 5569 5570 /* A call to an undefined weak symbol is converted to a jump to 5571 the next instruction unless a PLT entry will be created. 5572 The jump to the next instruction is optimized as a NOP. 5573 Do the same for local undefined symbols. */ 5574 if (weak_undef_p && ! via_plt_p) 5575 { 5576 bfd_putl32 (INSN_NOP, hit_data); 5577 return bfd_reloc_ok; 5578 } 5579 5580 /* If the call goes through a PLT entry, make sure to 5581 check distance to the right destination address. */ 5582 if (via_plt_p) 5583 value = (splt->output_section->vma 5584 + splt->output_offset + h->plt.offset); 5585 5586 /* Check if a stub has to be inserted because the destination 5587 is too far away. */ 5588 struct elf_aarch64_stub_hash_entry *stub_entry = NULL; 5589 5590 /* If the branch destination is directed to plt stub, "value" will be 5591 the final destination, otherwise we should plus signed_addend, it may 5592 contain non-zero value, for example call to local function symbol 5593 which are turned into "sec_sym + sec_off", and sec_off is kept in 5594 signed_addend. */ 5595 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend, 5596 place)) 5597 /* The target is out of reach, so redirect the branch to 5598 the local stub for this function. */ 5599 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h, 5600 rel, globals); 5601 if (stub_entry != NULL) 5602 { 5603 value = (stub_entry->stub_offset 5604 + stub_entry->stub_sec->output_offset 5605 + stub_entry->stub_sec->output_section->vma); 5606 5607 /* We have redirected the destination to stub entry address, 5608 so ignore any addend record in the original rela entry. */ 5609 signed_addend = 0; 5610 } 5611 } 5612 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 5613 signed_addend, weak_undef_p); 5614 *unresolved_reloc_p = FALSE; 5615 break; 5616 5617 case BFD_RELOC_AARCH64_16_PCREL: 5618 case BFD_RELOC_AARCH64_32_PCREL: 5619 case BFD_RELOC_AARCH64_64_PCREL: 5620 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL: 5621 case BFD_RELOC_AARCH64_ADR_HI21_PCREL: 5622 case BFD_RELOC_AARCH64_ADR_LO21_PCREL: 5623 case BFD_RELOC_AARCH64_LD_LO19_PCREL: 5624 case BFD_RELOC_AARCH64_MOVW_PREL_G0: 5625 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC: 5626 case BFD_RELOC_AARCH64_MOVW_PREL_G1: 5627 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC: 5628 case BFD_RELOC_AARCH64_MOVW_PREL_G2: 5629 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC: 5630 case BFD_RELOC_AARCH64_MOVW_PREL_G3: 5631 if (bfd_link_pic (info) 5632 && (input_section->flags & SEC_ALLOC) != 0 5633 && (input_section->flags & SEC_READONLY) != 0 5634 && !SYMBOL_REFERENCES_LOCAL (info, h)) 5635 { 5636 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START; 5637 5638 _bfd_error_handler 5639 /* xgettext:c-format */ 5640 (_("%pB: relocation %s against symbol `%s' which may bind " 5641 "externally can not be used when making a shared object; " 5642 "recompile with -fPIC"), 5643 input_bfd, elfNN_aarch64_howto_table[howto_index].name, 5644 h->root.root.string); 5645 bfd_set_error (bfd_error_bad_value); 5646 return bfd_reloc_notsupported; 5647 } 5648 /* Fall through. */ 5649 5650 case BFD_RELOC_AARCH64_16: 5651 #if ARCH_SIZE == 64 5652 case BFD_RELOC_AARCH64_32: 5653 #endif 5654 case BFD_RELOC_AARCH64_ADD_LO12: 5655 case BFD_RELOC_AARCH64_BRANCH19: 5656 case BFD_RELOC_AARCH64_LDST128_LO12: 5657 case BFD_RELOC_AARCH64_LDST16_LO12: 5658 case BFD_RELOC_AARCH64_LDST32_LO12: 5659 case BFD_RELOC_AARCH64_LDST64_LO12: 5660 case BFD_RELOC_AARCH64_LDST8_LO12: 5661 case BFD_RELOC_AARCH64_MOVW_G0: 5662 case BFD_RELOC_AARCH64_MOVW_G0_NC: 5663 case BFD_RELOC_AARCH64_MOVW_G0_S: 5664 case BFD_RELOC_AARCH64_MOVW_G1: 5665 case BFD_RELOC_AARCH64_MOVW_G1_NC: 5666 case BFD_RELOC_AARCH64_MOVW_G1_S: 5667 case BFD_RELOC_AARCH64_MOVW_G2: 5668 case BFD_RELOC_AARCH64_MOVW_G2_NC: 5669 case BFD_RELOC_AARCH64_MOVW_G2_S: 5670 case BFD_RELOC_AARCH64_MOVW_G3: 5671 case BFD_RELOC_AARCH64_TSTBR14: 5672 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 5673 signed_addend, weak_undef_p); 5674 break; 5675 5676 case BFD_RELOC_AARCH64_ADR_GOT_PAGE: 5677 case BFD_RELOC_AARCH64_GOT_LD_PREL19: 5678 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14: 5679 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC: 5680 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15: 5681 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC: 5682 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15: 5683 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC: 5684 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1: 5685 if (globals->root.sgot == NULL) 5686 BFD_ASSERT (h != NULL); 5687 5688 relative_reloc = FALSE; 5689 if (h != NULL) 5690 { 5691 bfd_vma addend = 0; 5692 5693 /* If a symbol is not dynamic and is not undefined weak, bind it 5694 locally and generate a RELATIVE relocation under PIC mode. 5695 5696 NOTE: one symbol may be referenced by several relocations, we 5697 should only generate one RELATIVE relocation for that symbol. 5698 Therefore, check GOT offset mark first. */ 5699 if (h->dynindx == -1 5700 && !h->forced_local 5701 && h->root.type != bfd_link_hash_undefweak 5702 && bfd_link_pic (info) 5703 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx)) 5704 relative_reloc = TRUE; 5705 5706 value = aarch64_calculate_got_entry_vma (h, globals, info, value, 5707 output_bfd, 5708 unresolved_reloc_p); 5709 /* Record the GOT entry address which will be used when generating 5710 RELATIVE relocation. */ 5711 if (relative_reloc) 5712 got_entry_addr = value; 5713 5714 if (aarch64_relocation_aginst_gp_p (bfd_r_type)) 5715 addend = (globals->root.sgot->output_section->vma 5716 + globals->root.sgot->output_offset); 5717 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 5718 addend, weak_undef_p); 5719 } 5720 else 5721 { 5722 bfd_vma addend = 0; 5723 struct elf_aarch64_local_symbol *locals 5724 = elf_aarch64_locals (input_bfd); 5725 5726 if (locals == NULL) 5727 { 5728 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START; 5729 _bfd_error_handler 5730 /* xgettext:c-format */ 5731 (_("%pB: local symbol descriptor table be NULL when applying " 5732 "relocation %s against local symbol"), 5733 input_bfd, elfNN_aarch64_howto_table[howto_index].name); 5734 abort (); 5735 } 5736 5737 off = symbol_got_offset (input_bfd, h, r_symndx); 5738 base_got = globals->root.sgot; 5739 got_entry_addr = (base_got->output_section->vma 5740 + base_got->output_offset + off); 5741 5742 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx)) 5743 { 5744 bfd_put_64 (output_bfd, value, base_got->contents + off); 5745 5746 /* For local symbol, we have done absolute relocation in static 5747 linking stage. While for shared library, we need to update the 5748 content of GOT entry according to the shared object's runtime 5749 base address. So, we need to generate a R_AARCH64_RELATIVE reloc 5750 for dynamic linker. */ 5751 if (bfd_link_pic (info)) 5752 relative_reloc = TRUE; 5753 5754 symbol_got_offset_mark (input_bfd, h, r_symndx); 5755 } 5756 5757 /* Update the relocation value to GOT entry addr as we have transformed 5758 the direct data access into indirect data access through GOT. */ 5759 value = got_entry_addr; 5760 5761 if (aarch64_relocation_aginst_gp_p (bfd_r_type)) 5762 addend = base_got->output_section->vma + base_got->output_offset; 5763 5764 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 5765 addend, weak_undef_p); 5766 } 5767 5768 if (relative_reloc) 5769 { 5770 asection *s; 5771 Elf_Internal_Rela outrel; 5772 5773 s = globals->root.srelgot; 5774 if (s == NULL) 5775 abort (); 5776 5777 outrel.r_offset = got_entry_addr; 5778 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE)); 5779 outrel.r_addend = orig_value; 5780 elf_append_rela (output_bfd, s, &outrel); 5781 } 5782 break; 5783 5784 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC: 5785 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21: 5786 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21: 5787 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 5788 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC: 5789 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 5790 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19: 5791 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC: 5792 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21: 5793 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21: 5794 if (globals->root.sgot == NULL) 5795 return bfd_reloc_notsupported; 5796 5797 value = (symbol_got_offset (input_bfd, h, r_symndx) 5798 + globals->root.sgot->output_section->vma 5799 + globals->root.sgot->output_offset); 5800 5801 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 5802 0, weak_undef_p); 5803 *unresolved_reloc_p = FALSE; 5804 break; 5805 5806 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC: 5807 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1: 5808 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC: 5809 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1: 5810 if (globals->root.sgot == NULL) 5811 return bfd_reloc_notsupported; 5812 5813 value = symbol_got_offset (input_bfd, h, r_symndx); 5814 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 5815 0, weak_undef_p); 5816 *unresolved_reloc_p = FALSE; 5817 break; 5818 5819 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12: 5820 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12: 5821 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: 5822 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12: 5823 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC: 5824 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12: 5825 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC: 5826 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12: 5827 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC: 5828 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12: 5829 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC: 5830 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0: 5831 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC: 5832 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1: 5833 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC: 5834 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2: 5835 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 5836 signed_addend - dtpoff_base (info), 5837 weak_undef_p); 5838 break; 5839 5840 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12: 5841 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12: 5842 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC: 5843 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12: 5844 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC: 5845 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12: 5846 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC: 5847 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12: 5848 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC: 5849 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12: 5850 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC: 5851 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0: 5852 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC: 5853 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1: 5854 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC: 5855 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2: 5856 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 5857 signed_addend - tpoff_base (info), 5858 weak_undef_p); 5859 *unresolved_reloc_p = FALSE; 5860 break; 5861 5862 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12: 5863 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21: 5864 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21: 5865 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC: 5866 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12: 5867 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19: 5868 if (globals->root.sgot == NULL) 5869 return bfd_reloc_notsupported; 5870 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx) 5871 + globals->root.sgotplt->output_section->vma 5872 + globals->root.sgotplt->output_offset 5873 + globals->sgotplt_jump_table_size); 5874 5875 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 5876 0, weak_undef_p); 5877 *unresolved_reloc_p = FALSE; 5878 break; 5879 5880 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC: 5881 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1: 5882 if (globals->root.sgot == NULL) 5883 return bfd_reloc_notsupported; 5884 5885 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx) 5886 + globals->root.sgotplt->output_section->vma 5887 + globals->root.sgotplt->output_offset 5888 + globals->sgotplt_jump_table_size); 5889 5890 value -= (globals->root.sgot->output_section->vma 5891 + globals->root.sgot->output_offset); 5892 5893 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 5894 0, weak_undef_p); 5895 *unresolved_reloc_p = FALSE; 5896 break; 5897 5898 default: 5899 return bfd_reloc_notsupported; 5900 } 5901 5902 if (saved_addend) 5903 *saved_addend = value; 5904 5905 /* Only apply the final relocation in a sequence. */ 5906 if (save_addend) 5907 return bfd_reloc_continue; 5908 5909 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, 5910 howto, value); 5911 } 5912 5913 /* LP64 and ILP32 operates on x- and w-registers respectively. 5914 Next definitions take into account the difference between 5915 corresponding machine codes. R means x-register if the target 5916 arch is LP64, and w-register if the target is ILP32. */ 5917 5918 #if ARCH_SIZE == 64 5919 # define add_R0_R0 (0x91000000) 5920 # define add_R0_R0_R1 (0x8b000020) 5921 # define add_R0_R1 (0x91400020) 5922 # define ldr_R0 (0x58000000) 5923 # define ldr_R0_mask(i) (i & 0xffffffe0) 5924 # define ldr_R0_x0 (0xf9400000) 5925 # define ldr_hw_R0 (0xf2a00000) 5926 # define movk_R0 (0xf2800000) 5927 # define movz_R0 (0xd2a00000) 5928 # define movz_hw_R0 (0xd2c00000) 5929 #else /*ARCH_SIZE == 32 */ 5930 # define add_R0_R0 (0x11000000) 5931 # define add_R0_R0_R1 (0x0b000020) 5932 # define add_R0_R1 (0x11400020) 5933 # define ldr_R0 (0x18000000) 5934 # define ldr_R0_mask(i) (i & 0xbfffffe0) 5935 # define ldr_R0_x0 (0xb9400000) 5936 # define ldr_hw_R0 (0x72a00000) 5937 # define movk_R0 (0x72800000) 5938 # define movz_R0 (0x52a00000) 5939 # define movz_hw_R0 (0x52c00000) 5940 #endif 5941 5942 /* Handle TLS relaxations. Relaxing is possible for symbols that use 5943 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static 5944 link. 5945 5946 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller 5947 is to then call final_link_relocate. Return other values in the 5948 case of error. */ 5949 5950 static bfd_reloc_status_type 5951 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals, 5952 bfd *input_bfd, bfd_byte *contents, 5953 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h) 5954 { 5955 bfd_boolean is_local = h == NULL; 5956 unsigned int r_type = ELFNN_R_TYPE (rel->r_info); 5957 unsigned long insn; 5958 5959 BFD_ASSERT (globals && input_bfd && contents && rel); 5960 5961 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type)) 5962 { 5963 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21: 5964 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21: 5965 if (is_local) 5966 { 5967 /* GD->LE relaxation: 5968 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var 5969 or 5970 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var 5971 5972 Where R is x for LP64, and w for ILP32. */ 5973 bfd_putl32 (movz_R0, contents + rel->r_offset); 5974 return bfd_reloc_continue; 5975 } 5976 else 5977 { 5978 /* GD->IE relaxation: 5979 adrp x0, :tlsgd:var => adrp x0, :gottprel:var 5980 or 5981 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var 5982 */ 5983 return bfd_reloc_continue; 5984 } 5985 5986 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21: 5987 BFD_ASSERT (0); 5988 break; 5989 5990 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19: 5991 if (is_local) 5992 { 5993 /* Tiny TLSDESC->LE relaxation: 5994 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var 5995 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var 5996 .tlsdesccall var 5997 blr x1 => nop 5998 5999 Where R is x for LP64, and w for ILP32. */ 6000 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21)); 6001 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL)); 6002 6003 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), 6004 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC)); 6005 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE); 6006 6007 bfd_putl32 (movz_R0, contents + rel->r_offset); 6008 bfd_putl32 (movk_R0, contents + rel->r_offset + 4); 6009 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8); 6010 return bfd_reloc_continue; 6011 } 6012 else 6013 { 6014 /* Tiny TLSDESC->IE relaxation: 6015 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var 6016 adr x0, :tlsdesc:var => nop 6017 .tlsdesccall var 6018 blr x1 => nop 6019 */ 6020 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21)); 6021 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL)); 6022 6023 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE); 6024 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE); 6025 6026 bfd_putl32 (ldr_R0, contents + rel->r_offset); 6027 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4); 6028 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8); 6029 return bfd_reloc_continue; 6030 } 6031 6032 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21: 6033 if (is_local) 6034 { 6035 /* Tiny GD->LE relaxation: 6036 adr x0, :tlsgd:var => mrs x1, tpidr_el0 6037 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12 6038 nop => add R0, R0, #:tprel_lo12_nc:x 6039 6040 Where R is x for LP64, and x for Ilp32. */ 6041 6042 /* First kill the tls_get_addr reloc on the bl instruction. */ 6043 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset); 6044 6045 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0); 6046 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4); 6047 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8); 6048 6049 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), 6050 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC)); 6051 rel[1].r_offset = rel->r_offset + 8; 6052 6053 /* Move the current relocation to the second instruction in 6054 the sequence. */ 6055 rel->r_offset += 4; 6056 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), 6057 AARCH64_R (TLSLE_ADD_TPREL_HI12)); 6058 return bfd_reloc_continue; 6059 } 6060 else 6061 { 6062 /* Tiny GD->IE relaxation: 6063 adr x0, :tlsgd:var => ldr R0, :gottprel:var 6064 bl __tls_get_addr => mrs x1, tpidr_el0 6065 nop => add R0, R0, R1 6066 6067 Where R is x for LP64, and w for Ilp32. */ 6068 6069 /* First kill the tls_get_addr reloc on the bl instruction. */ 6070 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset); 6071 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE); 6072 6073 bfd_putl32 (ldr_R0, contents + rel->r_offset); 6074 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4); 6075 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8); 6076 return bfd_reloc_continue; 6077 } 6078 6079 #if ARCH_SIZE == 64 6080 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1: 6081 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC)); 6082 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset); 6083 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26)); 6084 6085 if (is_local) 6086 { 6087 /* Large GD->LE relaxation: 6088 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32 6089 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16 6090 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var 6091 bl __tls_get_addr => mrs x1, tpidr_el0 6092 nop => add x0, x0, x1 6093 */ 6094 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), 6095 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC)); 6096 rel[2].r_offset = rel->r_offset + 8; 6097 6098 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0); 6099 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4); 6100 bfd_putl32 (movk_R0, contents + rel->r_offset + 8); 6101 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12); 6102 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16); 6103 } 6104 else 6105 { 6106 /* Large GD->IE relaxation: 6107 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16 6108 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var 6109 add x0, gp, x0 => ldr x0, [gp, x0] 6110 bl __tls_get_addr => mrs x1, tpidr_el0 6111 nop => add x0, x0, x1 6112 */ 6113 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE); 6114 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0); 6115 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8); 6116 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12); 6117 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16); 6118 } 6119 return bfd_reloc_continue; 6120 6121 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC: 6122 return bfd_reloc_continue; 6123 #endif 6124 6125 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19: 6126 return bfd_reloc_continue; 6127 6128 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC: 6129 if (is_local) 6130 { 6131 /* GD->LE relaxation: 6132 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var 6133 6134 Where R is x for lp64 mode, and w for ILP32 mode. */ 6135 bfd_putl32 (movk_R0, contents + rel->r_offset); 6136 return bfd_reloc_continue; 6137 } 6138 else 6139 { 6140 /* GD->IE relaxation: 6141 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var] 6142 6143 Where R is x for lp64 mode, and w for ILP32 mode. */ 6144 insn = bfd_getl32 (contents + rel->r_offset); 6145 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset); 6146 return bfd_reloc_continue; 6147 } 6148 6149 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC: 6150 if (is_local) 6151 { 6152 /* GD->LE relaxation 6153 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var 6154 bl __tls_get_addr => mrs x1, tpidr_el0 6155 nop => add R0, R1, R0 6156 6157 Where R is x for lp64 mode, and w for ILP32 mode. */ 6158 6159 /* First kill the tls_get_addr reloc on the bl instruction. */ 6160 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset); 6161 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE); 6162 6163 bfd_putl32 (movk_R0, contents + rel->r_offset); 6164 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4); 6165 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8); 6166 return bfd_reloc_continue; 6167 } 6168 else 6169 { 6170 /* GD->IE relaxation 6171 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var] 6172 BL __tls_get_addr => mrs x1, tpidr_el0 6173 R_AARCH64_CALL26 6174 NOP => add R0, R1, R0 6175 6176 Where R is x for lp64 mode, and w for ilp32 mode. */ 6177 6178 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26)); 6179 6180 /* Remove the relocation on the BL instruction. */ 6181 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE); 6182 6183 /* We choose to fixup the BL and NOP instructions using the 6184 offset from the second relocation to allow flexibility in 6185 scheduling instructions between the ADD and BL. */ 6186 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset); 6187 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset); 6188 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4); 6189 return bfd_reloc_continue; 6190 } 6191 6192 case BFD_RELOC_AARCH64_TLSDESC_ADD: 6193 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12: 6194 case BFD_RELOC_AARCH64_TLSDESC_CALL: 6195 /* GD->IE/LE relaxation: 6196 add x0, x0, #:tlsdesc_lo12:var => nop 6197 blr xd => nop 6198 */ 6199 bfd_putl32 (INSN_NOP, contents + rel->r_offset); 6200 return bfd_reloc_ok; 6201 6202 case BFD_RELOC_AARCH64_TLSDESC_LDR: 6203 if (is_local) 6204 { 6205 /* GD->LE relaxation: 6206 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var 6207 6208 Where R is x for lp64 mode, and w for ILP32 mode. */ 6209 bfd_putl32 (movk_R0, contents + rel->r_offset); 6210 return bfd_reloc_continue; 6211 } 6212 else 6213 { 6214 /* GD->IE relaxation: 6215 ldr xd, [gp, xn] => ldr R0, [gp, xn] 6216 6217 Where R is x for lp64 mode, and w for ILP32 mode. */ 6218 insn = bfd_getl32 (contents + rel->r_offset); 6219 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset); 6220 return bfd_reloc_ok; 6221 } 6222 6223 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC: 6224 /* GD->LE relaxation: 6225 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16 6226 GD->IE relaxation: 6227 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var 6228 6229 Where R is x for lp64 mode, and w for ILP32 mode. */ 6230 if (is_local) 6231 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset); 6232 return bfd_reloc_continue; 6233 6234 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1: 6235 if (is_local) 6236 { 6237 /* GD->LE relaxation: 6238 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32 6239 6240 Where R is x for lp64 mode, and w for ILP32 mode. */ 6241 bfd_putl32 (movz_hw_R0, contents + rel->r_offset); 6242 return bfd_reloc_continue; 6243 } 6244 else 6245 { 6246 /* GD->IE relaxation: 6247 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16 6248 6249 Where R is x for lp64 mode, and w for ILP32 mode. */ 6250 insn = bfd_getl32 (contents + rel->r_offset); 6251 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset); 6252 return bfd_reloc_continue; 6253 } 6254 6255 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 6256 /* IE->LE relaxation: 6257 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var 6258 6259 Where R is x for lp64 mode, and w for ILP32 mode. */ 6260 if (is_local) 6261 { 6262 insn = bfd_getl32 (contents + rel->r_offset); 6263 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset); 6264 } 6265 return bfd_reloc_continue; 6266 6267 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC: 6268 /* IE->LE relaxation: 6269 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var 6270 6271 Where R is x for lp64 mode, and w for ILP32 mode. */ 6272 if (is_local) 6273 { 6274 insn = bfd_getl32 (contents + rel->r_offset); 6275 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset); 6276 } 6277 return bfd_reloc_continue; 6278 6279 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21: 6280 /* LD->LE relaxation (tiny): 6281 adr x0, :tlsldm:x => mrs x0, tpidr_el0 6282 bl __tls_get_addr => add R0, R0, TCB_SIZE 6283 6284 Where R is x for lp64 mode, and w for ilp32 mode. */ 6285 if (is_local) 6286 { 6287 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset); 6288 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26)); 6289 /* No need of CALL26 relocation for tls_get_addr. */ 6290 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE); 6291 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0); 6292 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10), 6293 contents + rel->r_offset + 4); 6294 return bfd_reloc_ok; 6295 } 6296 return bfd_reloc_continue; 6297 6298 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21: 6299 /* LD->LE relaxation (small): 6300 adrp x0, :tlsldm:x => mrs x0, tpidr_el0 6301 */ 6302 if (is_local) 6303 { 6304 bfd_putl32 (0xd53bd040, contents + rel->r_offset); 6305 return bfd_reloc_ok; 6306 } 6307 return bfd_reloc_continue; 6308 6309 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC: 6310 /* LD->LE relaxation (small): 6311 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE 6312 bl __tls_get_addr => nop 6313 6314 Where R is x for lp64 mode, and w for ilp32 mode. */ 6315 if (is_local) 6316 { 6317 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset); 6318 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26)); 6319 /* No need of CALL26 relocation for tls_get_addr. */ 6320 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE); 6321 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10), 6322 contents + rel->r_offset + 0); 6323 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4); 6324 return bfd_reloc_ok; 6325 } 6326 return bfd_reloc_continue; 6327 6328 default: 6329 return bfd_reloc_continue; 6330 } 6331 6332 return bfd_reloc_ok; 6333 } 6334 6335 /* Relocate an AArch64 ELF section. */ 6336 6337 static bfd_boolean 6338 elfNN_aarch64_relocate_section (bfd *output_bfd, 6339 struct bfd_link_info *info, 6340 bfd *input_bfd, 6341 asection *input_section, 6342 bfd_byte *contents, 6343 Elf_Internal_Rela *relocs, 6344 Elf_Internal_Sym *local_syms, 6345 asection **local_sections) 6346 { 6347 Elf_Internal_Shdr *symtab_hdr; 6348 struct elf_link_hash_entry **sym_hashes; 6349 Elf_Internal_Rela *rel; 6350 Elf_Internal_Rela *relend; 6351 const char *name; 6352 struct elf_aarch64_link_hash_table *globals; 6353 bfd_boolean save_addend = FALSE; 6354 bfd_vma addend = 0; 6355 6356 globals = elf_aarch64_hash_table (info); 6357 6358 symtab_hdr = &elf_symtab_hdr (input_bfd); 6359 sym_hashes = elf_sym_hashes (input_bfd); 6360 6361 rel = relocs; 6362 relend = relocs + input_section->reloc_count; 6363 for (; rel < relend; rel++) 6364 { 6365 unsigned int r_type; 6366 bfd_reloc_code_real_type bfd_r_type; 6367 bfd_reloc_code_real_type relaxed_bfd_r_type; 6368 reloc_howto_type *howto; 6369 unsigned long r_symndx; 6370 Elf_Internal_Sym *sym; 6371 asection *sec; 6372 struct elf_link_hash_entry *h; 6373 bfd_vma relocation; 6374 bfd_reloc_status_type r; 6375 arelent bfd_reloc; 6376 char sym_type; 6377 bfd_boolean unresolved_reloc = FALSE; 6378 char *error_message = NULL; 6379 6380 r_symndx = ELFNN_R_SYM (rel->r_info); 6381 r_type = ELFNN_R_TYPE (rel->r_info); 6382 6383 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type); 6384 howto = bfd_reloc.howto; 6385 6386 if (howto == NULL) 6387 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type); 6388 6389 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto); 6390 6391 h = NULL; 6392 sym = NULL; 6393 sec = NULL; 6394 6395 if (r_symndx < symtab_hdr->sh_info) 6396 { 6397 sym = local_syms + r_symndx; 6398 sym_type = ELFNN_ST_TYPE (sym->st_info); 6399 sec = local_sections[r_symndx]; 6400 6401 /* An object file might have a reference to a local 6402 undefined symbol. This is a daft object file, but we 6403 should at least do something about it. */ 6404 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL 6405 && bfd_is_und_section (sec) 6406 && ELF_ST_BIND (sym->st_info) != STB_WEAK) 6407 (*info->callbacks->undefined_symbol) 6408 (info, bfd_elf_string_from_elf_section 6409 (input_bfd, symtab_hdr->sh_link, sym->st_name), 6410 input_bfd, input_section, rel->r_offset, TRUE); 6411 6412 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 6413 6414 /* Relocate against local STT_GNU_IFUNC symbol. */ 6415 if (!bfd_link_relocatable (info) 6416 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC) 6417 { 6418 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd, 6419 rel, FALSE); 6420 if (h == NULL) 6421 abort (); 6422 6423 /* Set STT_GNU_IFUNC symbol value. */ 6424 h->root.u.def.value = sym->st_value; 6425 h->root.u.def.section = sec; 6426 } 6427 } 6428 else 6429 { 6430 bfd_boolean warned, ignored; 6431 6432 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 6433 r_symndx, symtab_hdr, sym_hashes, 6434 h, sec, relocation, 6435 unresolved_reloc, warned, ignored); 6436 6437 sym_type = h->type; 6438 } 6439 6440 if (sec != NULL && discarded_section (sec)) 6441 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 6442 rel, 1, relend, howto, 0, contents); 6443 6444 if (bfd_link_relocatable (info)) 6445 continue; 6446 6447 if (h != NULL) 6448 name = h->root.root.string; 6449 else 6450 { 6451 name = (bfd_elf_string_from_elf_section 6452 (input_bfd, symtab_hdr->sh_link, sym->st_name)); 6453 if (name == NULL || *name == '\0') 6454 name = bfd_section_name (input_bfd, sec); 6455 } 6456 6457 if (r_symndx != 0 6458 && r_type != R_AARCH64_NONE 6459 && r_type != R_AARCH64_NULL 6460 && (h == NULL 6461 || h->root.type == bfd_link_hash_defined 6462 || h->root.type == bfd_link_hash_defweak) 6463 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS)) 6464 { 6465 _bfd_error_handler 6466 ((sym_type == STT_TLS 6467 /* xgettext:c-format */ 6468 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s") 6469 /* xgettext:c-format */ 6470 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")), 6471 input_bfd, 6472 input_section, (uint64_t) rel->r_offset, howto->name, name); 6473 } 6474 6475 /* We relax only if we can see that there can be a valid transition 6476 from a reloc type to another. 6477 We call elfNN_aarch64_final_link_relocate unless we're completely 6478 done, i.e., the relaxation produced the final output we want. */ 6479 6480 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, 6481 h, r_symndx); 6482 if (relaxed_bfd_r_type != bfd_r_type) 6483 { 6484 bfd_r_type = relaxed_bfd_r_type; 6485 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type); 6486 BFD_ASSERT (howto != NULL); 6487 r_type = howto->type; 6488 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h); 6489 unresolved_reloc = 0; 6490 } 6491 else 6492 r = bfd_reloc_continue; 6493 6494 /* There may be multiple consecutive relocations for the 6495 same offset. In that case we are supposed to treat the 6496 output of each relocation as the addend for the next. */ 6497 if (rel + 1 < relend 6498 && rel->r_offset == rel[1].r_offset 6499 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE 6500 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL) 6501 save_addend = TRUE; 6502 else 6503 save_addend = FALSE; 6504 6505 if (r == bfd_reloc_continue) 6506 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd, 6507 input_section, contents, rel, 6508 relocation, info, sec, 6509 h, &unresolved_reloc, 6510 save_addend, &addend, sym); 6511 6512 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type)) 6513 { 6514 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC: 6515 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21: 6516 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21: 6517 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC: 6518 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1: 6519 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC: 6520 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21: 6521 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21: 6522 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx)) 6523 { 6524 bfd_boolean need_relocs = FALSE; 6525 bfd_byte *loc; 6526 int indx; 6527 bfd_vma off; 6528 6529 off = symbol_got_offset (input_bfd, h, r_symndx); 6530 indx = h && h->dynindx != -1 ? h->dynindx : 0; 6531 6532 need_relocs = 6533 (!bfd_link_executable (info) || indx != 0) && 6534 (h == NULL 6535 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 6536 || h->root.type != bfd_link_hash_undefweak); 6537 6538 BFD_ASSERT (globals->root.srelgot != NULL); 6539 6540 if (need_relocs) 6541 { 6542 Elf_Internal_Rela rela; 6543 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD)); 6544 rela.r_addend = 0; 6545 rela.r_offset = globals->root.sgot->output_section->vma + 6546 globals->root.sgot->output_offset + off; 6547 6548 6549 loc = globals->root.srelgot->contents; 6550 loc += globals->root.srelgot->reloc_count++ 6551 * RELOC_SIZE (htab); 6552 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); 6553 6554 bfd_reloc_code_real_type real_type = 6555 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type); 6556 6557 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 6558 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 6559 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC) 6560 { 6561 /* For local dynamic, don't generate DTPREL in any case. 6562 Initialize the DTPREL slot into zero, so we get module 6563 base address when invoke runtime TLS resolver. */ 6564 bfd_put_NN (output_bfd, 0, 6565 globals->root.sgot->contents + off 6566 + GOT_ENTRY_SIZE); 6567 } 6568 else if (indx == 0) 6569 { 6570 bfd_put_NN (output_bfd, 6571 relocation - dtpoff_base (info), 6572 globals->root.sgot->contents + off 6573 + GOT_ENTRY_SIZE); 6574 } 6575 else 6576 { 6577 /* This TLS symbol is global. We emit a 6578 relocation to fixup the tls offset at load 6579 time. */ 6580 rela.r_info = 6581 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL)); 6582 rela.r_addend = 0; 6583 rela.r_offset = 6584 (globals->root.sgot->output_section->vma 6585 + globals->root.sgot->output_offset + off 6586 + GOT_ENTRY_SIZE); 6587 6588 loc = globals->root.srelgot->contents; 6589 loc += globals->root.srelgot->reloc_count++ 6590 * RELOC_SIZE (globals); 6591 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); 6592 bfd_put_NN (output_bfd, (bfd_vma) 0, 6593 globals->root.sgot->contents + off 6594 + GOT_ENTRY_SIZE); 6595 } 6596 } 6597 else 6598 { 6599 bfd_put_NN (output_bfd, (bfd_vma) 1, 6600 globals->root.sgot->contents + off); 6601 bfd_put_NN (output_bfd, 6602 relocation - dtpoff_base (info), 6603 globals->root.sgot->contents + off 6604 + GOT_ENTRY_SIZE); 6605 } 6606 6607 symbol_got_offset_mark (input_bfd, h, r_symndx); 6608 } 6609 break; 6610 6611 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 6612 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC: 6613 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19: 6614 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC: 6615 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1: 6616 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx)) 6617 { 6618 bfd_boolean need_relocs = FALSE; 6619 bfd_byte *loc; 6620 int indx; 6621 bfd_vma off; 6622 6623 off = symbol_got_offset (input_bfd, h, r_symndx); 6624 6625 indx = h && h->dynindx != -1 ? h->dynindx : 0; 6626 6627 need_relocs = 6628 (!bfd_link_executable (info) || indx != 0) && 6629 (h == NULL 6630 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 6631 || h->root.type != bfd_link_hash_undefweak); 6632 6633 BFD_ASSERT (globals->root.srelgot != NULL); 6634 6635 if (need_relocs) 6636 { 6637 Elf_Internal_Rela rela; 6638 6639 if (indx == 0) 6640 rela.r_addend = relocation - dtpoff_base (info); 6641 else 6642 rela.r_addend = 0; 6643 6644 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL)); 6645 rela.r_offset = globals->root.sgot->output_section->vma + 6646 globals->root.sgot->output_offset + off; 6647 6648 loc = globals->root.srelgot->contents; 6649 loc += globals->root.srelgot->reloc_count++ 6650 * RELOC_SIZE (htab); 6651 6652 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); 6653 6654 bfd_put_NN (output_bfd, rela.r_addend, 6655 globals->root.sgot->contents + off); 6656 } 6657 else 6658 bfd_put_NN (output_bfd, relocation - tpoff_base (info), 6659 globals->root.sgot->contents + off); 6660 6661 symbol_got_offset_mark (input_bfd, h, r_symndx); 6662 } 6663 break; 6664 6665 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12: 6666 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21: 6667 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21: 6668 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC: 6669 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19: 6670 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC: 6671 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1: 6672 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx)) 6673 { 6674 bfd_boolean need_relocs = FALSE; 6675 int indx = h && h->dynindx != -1 ? h->dynindx : 0; 6676 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx); 6677 6678 need_relocs = (h == NULL 6679 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 6680 || h->root.type != bfd_link_hash_undefweak); 6681 6682 BFD_ASSERT (globals->root.srelgot != NULL); 6683 BFD_ASSERT (globals->root.sgot != NULL); 6684 6685 if (need_relocs) 6686 { 6687 bfd_byte *loc; 6688 Elf_Internal_Rela rela; 6689 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC)); 6690 6691 rela.r_addend = 0; 6692 rela.r_offset = (globals->root.sgotplt->output_section->vma 6693 + globals->root.sgotplt->output_offset 6694 + off + globals->sgotplt_jump_table_size); 6695 6696 if (indx == 0) 6697 rela.r_addend = relocation - dtpoff_base (info); 6698 6699 /* Allocate the next available slot in the PLT reloc 6700 section to hold our R_AARCH64_TLSDESC, the next 6701 available slot is determined from reloc_count, 6702 which we step. But note, reloc_count was 6703 artifically moved down while allocating slots for 6704 real PLT relocs such that all of the PLT relocs 6705 will fit above the initial reloc_count and the 6706 extra stuff will fit below. */ 6707 loc = globals->root.srelplt->contents; 6708 loc += globals->root.srelplt->reloc_count++ 6709 * RELOC_SIZE (globals); 6710 6711 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); 6712 6713 bfd_put_NN (output_bfd, (bfd_vma) 0, 6714 globals->root.sgotplt->contents + off + 6715 globals->sgotplt_jump_table_size); 6716 bfd_put_NN (output_bfd, (bfd_vma) 0, 6717 globals->root.sgotplt->contents + off + 6718 globals->sgotplt_jump_table_size + 6719 GOT_ENTRY_SIZE); 6720 } 6721 6722 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx); 6723 } 6724 break; 6725 default: 6726 break; 6727 } 6728 6729 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 6730 because such sections are not SEC_ALLOC and thus ld.so will 6731 not process them. */ 6732 if (unresolved_reloc 6733 && !((input_section->flags & SEC_DEBUGGING) != 0 6734 && h->def_dynamic) 6735 && _bfd_elf_section_offset (output_bfd, info, input_section, 6736 +rel->r_offset) != (bfd_vma) - 1) 6737 { 6738 _bfd_error_handler 6739 /* xgettext:c-format */ 6740 (_("%pB(%pA+%#" PRIx64 "): " 6741 "unresolvable %s relocation against symbol `%s'"), 6742 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name, 6743 h->root.root.string); 6744 return FALSE; 6745 } 6746 6747 if (r != bfd_reloc_ok && r != bfd_reloc_continue) 6748 { 6749 bfd_reloc_code_real_type real_r_type 6750 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type); 6751 6752 switch (r) 6753 { 6754 case bfd_reloc_overflow: 6755 (*info->callbacks->reloc_overflow) 6756 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, 6757 input_bfd, input_section, rel->r_offset); 6758 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15 6759 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14) 6760 { 6761 (*info->callbacks->warning) 6762 (info, 6763 _("too many GOT entries for -fpic, " 6764 "please recompile with -fPIC"), 6765 name, input_bfd, input_section, rel->r_offset); 6766 return FALSE; 6767 } 6768 /* Overflow can occur when a variable is referenced with a type 6769 that has a larger alignment than the type with which it was 6770 declared. eg: 6771 file1.c: extern int foo; int a (void) { return foo; } 6772 file2.c: char bar, foo, baz; 6773 If the variable is placed into a data section at an offset 6774 that is incompatible with the larger alignment requirement 6775 overflow will occur. (Strictly speaking this is not overflow 6776 but rather an alignment problem, but the bfd_reloc_ error 6777 enum does not have a value to cover that situation). 6778 6779 Try to catch this situation here and provide a more helpful 6780 error message to the user. */ 6781 if (addend & ((1 << howto->rightshift) - 1) 6782 /* FIXME: Are we testing all of the appropriate reloc 6783 types here ? */ 6784 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL 6785 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12 6786 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12 6787 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12 6788 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12)) 6789 { 6790 info->callbacks->warning 6791 (info, _("one possible cause of this error is that the \ 6792 symbol is being referenced in the indicated code as if it had a larger \ 6793 alignment than was declared where it was defined"), 6794 name, input_bfd, input_section, rel->r_offset); 6795 } 6796 break; 6797 6798 case bfd_reloc_undefined: 6799 (*info->callbacks->undefined_symbol) 6800 (info, name, input_bfd, input_section, rel->r_offset, TRUE); 6801 break; 6802 6803 case bfd_reloc_outofrange: 6804 error_message = _("out of range"); 6805 goto common_error; 6806 6807 case bfd_reloc_notsupported: 6808 error_message = _("unsupported relocation"); 6809 goto common_error; 6810 6811 case bfd_reloc_dangerous: 6812 /* error_message should already be set. */ 6813 goto common_error; 6814 6815 default: 6816 error_message = _("unknown error"); 6817 /* Fall through. */ 6818 6819 common_error: 6820 BFD_ASSERT (error_message != NULL); 6821 (*info->callbacks->reloc_dangerous) 6822 (info, error_message, input_bfd, input_section, rel->r_offset); 6823 break; 6824 } 6825 } 6826 6827 if (!save_addend) 6828 addend = 0; 6829 } 6830 6831 return TRUE; 6832 } 6833 6834 /* Set the right machine number. */ 6835 6836 static bfd_boolean 6837 elfNN_aarch64_object_p (bfd *abfd) 6838 { 6839 #if ARCH_SIZE == 32 6840 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32); 6841 #else 6842 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64); 6843 #endif 6844 return TRUE; 6845 } 6846 6847 /* Function to keep AArch64 specific flags in the ELF header. */ 6848 6849 static bfd_boolean 6850 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags) 6851 { 6852 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags) 6853 { 6854 } 6855 else 6856 { 6857 elf_elfheader (abfd)->e_flags = flags; 6858 elf_flags_init (abfd) = TRUE; 6859 } 6860 6861 return TRUE; 6862 } 6863 6864 /* Merge backend specific data from an object file to the output 6865 object file when linking. */ 6866 6867 static bfd_boolean 6868 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) 6869 { 6870 bfd *obfd = info->output_bfd; 6871 flagword out_flags; 6872 flagword in_flags; 6873 bfd_boolean flags_compatible = TRUE; 6874 asection *sec; 6875 6876 /* Check if we have the same endianess. */ 6877 if (!_bfd_generic_verify_endian_match (ibfd, info)) 6878 return FALSE; 6879 6880 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd)) 6881 return TRUE; 6882 6883 /* The input BFD must have had its flags initialised. */ 6884 /* The following seems bogus to me -- The flags are initialized in 6885 the assembler but I don't think an elf_flags_init field is 6886 written into the object. */ 6887 /* BFD_ASSERT (elf_flags_init (ibfd)); */ 6888 6889 in_flags = elf_elfheader (ibfd)->e_flags; 6890 out_flags = elf_elfheader (obfd)->e_flags; 6891 6892 if (!elf_flags_init (obfd)) 6893 { 6894 /* If the input is the default architecture and had the default 6895 flags then do not bother setting the flags for the output 6896 architecture, instead allow future merges to do this. If no 6897 future merges ever set these flags then they will retain their 6898 uninitialised values, which surprise surprise, correspond 6899 to the default values. */ 6900 if (bfd_get_arch_info (ibfd)->the_default 6901 && elf_elfheader (ibfd)->e_flags == 0) 6902 return TRUE; 6903 6904 elf_flags_init (obfd) = TRUE; 6905 elf_elfheader (obfd)->e_flags = in_flags; 6906 6907 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 6908 && bfd_get_arch_info (obfd)->the_default) 6909 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), 6910 bfd_get_mach (ibfd)); 6911 6912 return TRUE; 6913 } 6914 6915 /* Identical flags must be compatible. */ 6916 if (in_flags == out_flags) 6917 return TRUE; 6918 6919 /* Check to see if the input BFD actually contains any sections. If 6920 not, its flags may not have been initialised either, but it 6921 cannot actually cause any incompatiblity. Do not short-circuit 6922 dynamic objects; their section list may be emptied by 6923 elf_link_add_object_symbols. 6924 6925 Also check to see if there are no code sections in the input. 6926 In this case there is no need to check for code specific flags. 6927 XXX - do we need to worry about floating-point format compatability 6928 in data sections ? */ 6929 if (!(ibfd->flags & DYNAMIC)) 6930 { 6931 bfd_boolean null_input_bfd = TRUE; 6932 bfd_boolean only_data_sections = TRUE; 6933 6934 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 6935 { 6936 if ((bfd_get_section_flags (ibfd, sec) 6937 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) 6938 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) 6939 only_data_sections = FALSE; 6940 6941 null_input_bfd = FALSE; 6942 break; 6943 } 6944 6945 if (null_input_bfd || only_data_sections) 6946 return TRUE; 6947 } 6948 6949 return flags_compatible; 6950 } 6951 6952 /* Display the flags field. */ 6953 6954 static bfd_boolean 6955 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr) 6956 { 6957 FILE *file = (FILE *) ptr; 6958 unsigned long flags; 6959 6960 BFD_ASSERT (abfd != NULL && ptr != NULL); 6961 6962 /* Print normal ELF private data. */ 6963 _bfd_elf_print_private_bfd_data (abfd, ptr); 6964 6965 flags = elf_elfheader (abfd)->e_flags; 6966 /* Ignore init flag - it may not be set, despite the flags field 6967 containing valid data. */ 6968 6969 /* xgettext:c-format */ 6970 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 6971 6972 if (flags) 6973 fprintf (file, _("<Unrecognised flag bits set>")); 6974 6975 fputc ('\n', file); 6976 6977 return TRUE; 6978 } 6979 6980 /* Find dynamic relocs for H that apply to read-only sections. */ 6981 6982 static asection * 6983 readonly_dynrelocs (struct elf_link_hash_entry *h) 6984 { 6985 struct elf_dyn_relocs *p; 6986 6987 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next) 6988 { 6989 asection *s = p->sec->output_section; 6990 6991 if (s != NULL && (s->flags & SEC_READONLY) != 0) 6992 return p->sec; 6993 } 6994 return NULL; 6995 } 6996 6997 /* Return true if we need copy relocation against EH. */ 6998 6999 static bfd_boolean 7000 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh) 7001 { 7002 struct elf_dyn_relocs *p; 7003 asection *s; 7004 7005 for (p = eh->dyn_relocs; p != NULL; p = p->next) 7006 { 7007 /* If there is any pc-relative reference, we need to keep copy relocation 7008 to avoid propagating the relocation into runtime that current glibc 7009 does not support. */ 7010 if (p->pc_count) 7011 return TRUE; 7012 7013 s = p->sec->output_section; 7014 /* Need copy relocation if it's against read-only section. */ 7015 if (s != NULL && (s->flags & SEC_READONLY) != 0) 7016 return TRUE; 7017 } 7018 7019 return FALSE; 7020 } 7021 7022 /* Adjust a symbol defined by a dynamic object and referenced by a 7023 regular object. The current definition is in some section of the 7024 dynamic object, but we're not including those sections. We have to 7025 change the definition to something the rest of the link can 7026 understand. */ 7027 7028 static bfd_boolean 7029 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info, 7030 struct elf_link_hash_entry *h) 7031 { 7032 struct elf_aarch64_link_hash_table *htab; 7033 asection *s, *srel; 7034 7035 /* If this is a function, put it in the procedure linkage table. We 7036 will fill in the contents of the procedure linkage table later, 7037 when we know the address of the .got section. */ 7038 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt) 7039 { 7040 if (h->plt.refcount <= 0 7041 || (h->type != STT_GNU_IFUNC 7042 && (SYMBOL_CALLS_LOCAL (info, h) 7043 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 7044 && h->root.type == bfd_link_hash_undefweak)))) 7045 { 7046 /* This case can occur if we saw a CALL26 reloc in 7047 an input file, but the symbol wasn't referred to 7048 by a dynamic object or all references were 7049 garbage collected. In which case we can end up 7050 resolving. */ 7051 h->plt.offset = (bfd_vma) - 1; 7052 h->needs_plt = 0; 7053 } 7054 7055 return TRUE; 7056 } 7057 else 7058 /* Otherwise, reset to -1. */ 7059 h->plt.offset = (bfd_vma) - 1; 7060 7061 7062 /* If this is a weak symbol, and there is a real definition, the 7063 processor independent code will have arranged for us to see the 7064 real definition first, and we can just use the same value. */ 7065 if (h->is_weakalias) 7066 { 7067 struct elf_link_hash_entry *def = weakdef (h); 7068 BFD_ASSERT (def->root.type == bfd_link_hash_defined); 7069 h->root.u.def.section = def->root.u.def.section; 7070 h->root.u.def.value = def->root.u.def.value; 7071 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc) 7072 h->non_got_ref = def->non_got_ref; 7073 return TRUE; 7074 } 7075 7076 /* If we are creating a shared library, we must presume that the 7077 only references to the symbol are via the global offset table. 7078 For such cases we need not do anything here; the relocations will 7079 be handled correctly by relocate_section. */ 7080 if (bfd_link_pic (info)) 7081 return TRUE; 7082 7083 /* If there are no references to this symbol that do not use the 7084 GOT, we don't need to generate a copy reloc. */ 7085 if (!h->non_got_ref) 7086 return TRUE; 7087 7088 /* If -z nocopyreloc was given, we won't generate them either. */ 7089 if (info->nocopyreloc) 7090 { 7091 h->non_got_ref = 0; 7092 return TRUE; 7093 } 7094 7095 if (ELIMINATE_COPY_RELOCS) 7096 { 7097 struct elf_aarch64_link_hash_entry *eh; 7098 /* If we don't find any dynamic relocs in read-only sections, then 7099 we'll be keeping the dynamic relocs and avoiding the copy reloc. */ 7100 eh = (struct elf_aarch64_link_hash_entry *) h; 7101 if (!need_copy_relocation_p (eh)) 7102 { 7103 h->non_got_ref = 0; 7104 return TRUE; 7105 } 7106 } 7107 7108 /* We must allocate the symbol in our .dynbss section, which will 7109 become part of the .bss section of the executable. There will be 7110 an entry for this symbol in the .dynsym section. The dynamic 7111 object will contain position independent code, so all references 7112 from the dynamic object to this symbol will go through the global 7113 offset table. The dynamic linker will use the .dynsym entry to 7114 determine the address it must put in the global offset table, so 7115 both the dynamic object and the regular object will refer to the 7116 same memory location for the variable. */ 7117 7118 htab = elf_aarch64_hash_table (info); 7119 7120 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker 7121 to copy the initial value out of the dynamic object and into the 7122 runtime process image. */ 7123 if ((h->root.u.def.section->flags & SEC_READONLY) != 0) 7124 { 7125 s = htab->root.sdynrelro; 7126 srel = htab->root.sreldynrelro; 7127 } 7128 else 7129 { 7130 s = htab->root.sdynbss; 7131 srel = htab->root.srelbss; 7132 } 7133 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) 7134 { 7135 srel->size += RELOC_SIZE (htab); 7136 h->needs_copy = 1; 7137 } 7138 7139 return _bfd_elf_adjust_dynamic_copy (info, h, s); 7140 7141 } 7142 7143 static bfd_boolean 7144 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number) 7145 { 7146 struct elf_aarch64_local_symbol *locals; 7147 locals = elf_aarch64_locals (abfd); 7148 if (locals == NULL) 7149 { 7150 locals = (struct elf_aarch64_local_symbol *) 7151 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol)); 7152 if (locals == NULL) 7153 return FALSE; 7154 elf_aarch64_locals (abfd) = locals; 7155 } 7156 return TRUE; 7157 } 7158 7159 /* Create the .got section to hold the global offset table. */ 7160 7161 static bfd_boolean 7162 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) 7163 { 7164 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7165 flagword flags; 7166 asection *s; 7167 struct elf_link_hash_entry *h; 7168 struct elf_link_hash_table *htab = elf_hash_table (info); 7169 7170 /* This function may be called more than once. */ 7171 if (htab->sgot != NULL) 7172 return TRUE; 7173 7174 flags = bed->dynamic_sec_flags; 7175 7176 s = bfd_make_section_anyway_with_flags (abfd, 7177 (bed->rela_plts_and_copies_p 7178 ? ".rela.got" : ".rel.got"), 7179 (bed->dynamic_sec_flags 7180 | SEC_READONLY)); 7181 if (s == NULL 7182 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 7183 return FALSE; 7184 htab->srelgot = s; 7185 7186 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); 7187 if (s == NULL 7188 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 7189 return FALSE; 7190 htab->sgot = s; 7191 htab->sgot->size += GOT_ENTRY_SIZE; 7192 7193 if (bed->want_got_sym) 7194 { 7195 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got 7196 (or .got.plt) section. We don't do this in the linker script 7197 because we don't want to define the symbol if we are not creating 7198 a global offset table. */ 7199 h = _bfd_elf_define_linkage_sym (abfd, info, s, 7200 "_GLOBAL_OFFSET_TABLE_"); 7201 elf_hash_table (info)->hgot = h; 7202 if (h == NULL) 7203 return FALSE; 7204 } 7205 7206 if (bed->want_got_plt) 7207 { 7208 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); 7209 if (s == NULL 7210 || !bfd_set_section_alignment (abfd, s, 7211 bed->s->log_file_align)) 7212 return FALSE; 7213 htab->sgotplt = s; 7214 } 7215 7216 /* The first bit of the global offset table is the header. */ 7217 s->size += bed->got_header_size; 7218 7219 return TRUE; 7220 } 7221 7222 /* Look through the relocs for a section during the first phase. */ 7223 7224 static bfd_boolean 7225 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info, 7226 asection *sec, const Elf_Internal_Rela *relocs) 7227 { 7228 Elf_Internal_Shdr *symtab_hdr; 7229 struct elf_link_hash_entry **sym_hashes; 7230 const Elf_Internal_Rela *rel; 7231 const Elf_Internal_Rela *rel_end; 7232 asection *sreloc; 7233 7234 struct elf_aarch64_link_hash_table *htab; 7235 7236 if (bfd_link_relocatable (info)) 7237 return TRUE; 7238 7239 BFD_ASSERT (is_aarch64_elf (abfd)); 7240 7241 htab = elf_aarch64_hash_table (info); 7242 sreloc = NULL; 7243 7244 symtab_hdr = &elf_symtab_hdr (abfd); 7245 sym_hashes = elf_sym_hashes (abfd); 7246 7247 rel_end = relocs + sec->reloc_count; 7248 for (rel = relocs; rel < rel_end; rel++) 7249 { 7250 struct elf_link_hash_entry *h; 7251 unsigned int r_symndx; 7252 unsigned int r_type; 7253 bfd_reloc_code_real_type bfd_r_type; 7254 Elf_Internal_Sym *isym; 7255 7256 r_symndx = ELFNN_R_SYM (rel->r_info); 7257 r_type = ELFNN_R_TYPE (rel->r_info); 7258 7259 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) 7260 { 7261 /* xgettext:c-format */ 7262 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx); 7263 return FALSE; 7264 } 7265 7266 if (r_symndx < symtab_hdr->sh_info) 7267 { 7268 /* A local symbol. */ 7269 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 7270 abfd, r_symndx); 7271 if (isym == NULL) 7272 return FALSE; 7273 7274 /* Check relocation against local STT_GNU_IFUNC symbol. */ 7275 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) 7276 { 7277 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, 7278 TRUE); 7279 if (h == NULL) 7280 return FALSE; 7281 7282 /* Fake a STT_GNU_IFUNC symbol. */ 7283 h->type = STT_GNU_IFUNC; 7284 h->def_regular = 1; 7285 h->ref_regular = 1; 7286 h->forced_local = 1; 7287 h->root.type = bfd_link_hash_defined; 7288 } 7289 else 7290 h = NULL; 7291 } 7292 else 7293 { 7294 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 7295 while (h->root.type == bfd_link_hash_indirect 7296 || h->root.type == bfd_link_hash_warning) 7297 h = (struct elf_link_hash_entry *) h->root.u.i.link; 7298 } 7299 7300 /* Could be done earlier, if h were already available. */ 7301 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx); 7302 7303 if (h != NULL) 7304 { 7305 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got. 7306 This shows up in particular in an R_AARCH64_PREL64 in large model 7307 when calculating the pc-relative address to .got section which is 7308 used to initialize the gp register. */ 7309 if (h->root.root.string 7310 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) 7311 { 7312 if (htab->root.dynobj == NULL) 7313 htab->root.dynobj = abfd; 7314 7315 if (! aarch64_elf_create_got_section (htab->root.dynobj, info)) 7316 return FALSE; 7317 7318 BFD_ASSERT (h == htab->root.hgot); 7319 } 7320 7321 /* Create the ifunc sections for static executables. If we 7322 never see an indirect function symbol nor we are building 7323 a static executable, those sections will be empty and 7324 won't appear in output. */ 7325 switch (bfd_r_type) 7326 { 7327 default: 7328 break; 7329 7330 case BFD_RELOC_AARCH64_ADD_LO12: 7331 case BFD_RELOC_AARCH64_ADR_GOT_PAGE: 7332 case BFD_RELOC_AARCH64_ADR_HI21_PCREL: 7333 case BFD_RELOC_AARCH64_CALL26: 7334 case BFD_RELOC_AARCH64_GOT_LD_PREL19: 7335 case BFD_RELOC_AARCH64_JUMP26: 7336 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14: 7337 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC: 7338 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15: 7339 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15: 7340 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC: 7341 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC: 7342 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1: 7343 case BFD_RELOC_AARCH64_NN: 7344 if (htab->root.dynobj == NULL) 7345 htab->root.dynobj = abfd; 7346 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info)) 7347 return FALSE; 7348 break; 7349 } 7350 7351 /* It is referenced by a non-shared object. */ 7352 h->ref_regular = 1; 7353 } 7354 7355 switch (bfd_r_type) 7356 { 7357 case BFD_RELOC_AARCH64_16: 7358 #if ARCH_SIZE == 64 7359 case BFD_RELOC_AARCH64_32: 7360 #endif 7361 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0) 7362 { 7363 if (h != NULL 7364 /* This is an absolute symbol. It represents a value instead 7365 of an address. */ 7366 && ((h->root.type == bfd_link_hash_defined 7367 && bfd_is_abs_section (h->root.u.def.section)) 7368 /* This is an undefined symbol. */ 7369 || h->root.type == bfd_link_hash_undefined)) 7370 break; 7371 7372 /* For local symbols, defined global symbols in a non-ABS section, 7373 it is assumed that the value is an address. */ 7374 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START; 7375 _bfd_error_handler 7376 /* xgettext:c-format */ 7377 (_("%pB: relocation %s against `%s' can not be used when making " 7378 "a shared object"), 7379 abfd, elfNN_aarch64_howto_table[howto_index].name, 7380 (h) ? h->root.root.string : "a local symbol"); 7381 bfd_set_error (bfd_error_bad_value); 7382 return FALSE; 7383 } 7384 else 7385 break; 7386 7387 case BFD_RELOC_AARCH64_MOVW_G0_NC: 7388 case BFD_RELOC_AARCH64_MOVW_G1_NC: 7389 case BFD_RELOC_AARCH64_MOVW_G2_NC: 7390 case BFD_RELOC_AARCH64_MOVW_G3: 7391 if (bfd_link_pic (info)) 7392 { 7393 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START; 7394 _bfd_error_handler 7395 /* xgettext:c-format */ 7396 (_("%pB: relocation %s against `%s' can not be used when making " 7397 "a shared object; recompile with -fPIC"), 7398 abfd, elfNN_aarch64_howto_table[howto_index].name, 7399 (h) ? h->root.root.string : "a local symbol"); 7400 bfd_set_error (bfd_error_bad_value); 7401 return FALSE; 7402 } 7403 /* Fall through. */ 7404 7405 case BFD_RELOC_AARCH64_16_PCREL: 7406 case BFD_RELOC_AARCH64_32_PCREL: 7407 case BFD_RELOC_AARCH64_64_PCREL: 7408 case BFD_RELOC_AARCH64_ADD_LO12: 7409 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL: 7410 case BFD_RELOC_AARCH64_ADR_HI21_PCREL: 7411 case BFD_RELOC_AARCH64_ADR_LO21_PCREL: 7412 case BFD_RELOC_AARCH64_LDST128_LO12: 7413 case BFD_RELOC_AARCH64_LDST16_LO12: 7414 case BFD_RELOC_AARCH64_LDST32_LO12: 7415 case BFD_RELOC_AARCH64_LDST64_LO12: 7416 case BFD_RELOC_AARCH64_LDST8_LO12: 7417 case BFD_RELOC_AARCH64_LD_LO19_PCREL: 7418 if (h == NULL || bfd_link_pic (info)) 7419 break; 7420 /* Fall through. */ 7421 7422 case BFD_RELOC_AARCH64_NN: 7423 7424 /* We don't need to handle relocs into sections not going into 7425 the "real" output. */ 7426 if ((sec->flags & SEC_ALLOC) == 0) 7427 break; 7428 7429 if (h != NULL) 7430 { 7431 if (!bfd_link_pic (info)) 7432 h->non_got_ref = 1; 7433 7434 h->plt.refcount += 1; 7435 h->pointer_equality_needed = 1; 7436 } 7437 7438 /* No need to do anything if we're not creating a shared 7439 object. */ 7440 if (!(bfd_link_pic (info) 7441 /* If on the other hand, we are creating an executable, we 7442 may need to keep relocations for symbols satisfied by a 7443 dynamic library if we manage to avoid copy relocs for the 7444 symbol. 7445 7446 NOTE: Currently, there is no support of copy relocs 7447 elimination on pc-relative relocation types, because there is 7448 no dynamic relocation support for them in glibc. We still 7449 record the dynamic symbol reference for them. This is 7450 because one symbol may be referenced by both absolute 7451 relocation (for example, BFD_RELOC_AARCH64_NN) and 7452 pc-relative relocation. We need full symbol reference 7453 information to make correct decision later in 7454 elfNN_aarch64_adjust_dynamic_symbol. */ 7455 || (ELIMINATE_COPY_RELOCS 7456 && !bfd_link_pic (info) 7457 && h != NULL 7458 && (h->root.type == bfd_link_hash_defweak 7459 || !h->def_regular)))) 7460 break; 7461 7462 { 7463 struct elf_dyn_relocs *p; 7464 struct elf_dyn_relocs **head; 7465 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START; 7466 7467 /* We must copy these reloc types into the output file. 7468 Create a reloc section in dynobj and make room for 7469 this reloc. */ 7470 if (sreloc == NULL) 7471 { 7472 if (htab->root.dynobj == NULL) 7473 htab->root.dynobj = abfd; 7474 7475 sreloc = _bfd_elf_make_dynamic_reloc_section 7476 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE); 7477 7478 if (sreloc == NULL) 7479 return FALSE; 7480 } 7481 7482 /* If this is a global symbol, we count the number of 7483 relocations we need for this symbol. */ 7484 if (h != NULL) 7485 { 7486 struct elf_aarch64_link_hash_entry *eh; 7487 eh = (struct elf_aarch64_link_hash_entry *) h; 7488 head = &eh->dyn_relocs; 7489 } 7490 else 7491 { 7492 /* Track dynamic relocs needed for local syms too. 7493 We really need local syms available to do this 7494 easily. Oh well. */ 7495 7496 asection *s; 7497 void **vpp; 7498 7499 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 7500 abfd, r_symndx); 7501 if (isym == NULL) 7502 return FALSE; 7503 7504 s = bfd_section_from_elf_index (abfd, isym->st_shndx); 7505 if (s == NULL) 7506 s = sec; 7507 7508 /* Beware of type punned pointers vs strict aliasing 7509 rules. */ 7510 vpp = &(elf_section_data (s)->local_dynrel); 7511 head = (struct elf_dyn_relocs **) vpp; 7512 } 7513 7514 p = *head; 7515 if (p == NULL || p->sec != sec) 7516 { 7517 bfd_size_type amt = sizeof *p; 7518 p = ((struct elf_dyn_relocs *) 7519 bfd_zalloc (htab->root.dynobj, amt)); 7520 if (p == NULL) 7521 return FALSE; 7522 p->next = *head; 7523 *head = p; 7524 p->sec = sec; 7525 } 7526 7527 p->count += 1; 7528 7529 if (elfNN_aarch64_howto_table[howto_index].pc_relative) 7530 p->pc_count += 1; 7531 } 7532 break; 7533 7534 /* RR: We probably want to keep a consistency check that 7535 there are no dangling GOT_PAGE relocs. */ 7536 case BFD_RELOC_AARCH64_ADR_GOT_PAGE: 7537 case BFD_RELOC_AARCH64_GOT_LD_PREL19: 7538 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14: 7539 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC: 7540 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15: 7541 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15: 7542 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC: 7543 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC: 7544 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1: 7545 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12: 7546 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21: 7547 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21: 7548 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC: 7549 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12: 7550 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19: 7551 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC: 7552 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1: 7553 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC: 7554 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21: 7555 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21: 7556 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC: 7557 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1: 7558 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 7559 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC: 7560 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 7561 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19: 7562 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC: 7563 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1: 7564 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC: 7565 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21: 7566 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21: 7567 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1: 7568 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC: 7569 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2: 7570 { 7571 unsigned got_type; 7572 unsigned old_got_type; 7573 7574 got_type = aarch64_reloc_got_type (bfd_r_type); 7575 7576 if (h) 7577 { 7578 h->got.refcount += 1; 7579 old_got_type = elf_aarch64_hash_entry (h)->got_type; 7580 } 7581 else 7582 { 7583 struct elf_aarch64_local_symbol *locals; 7584 7585 if (!elfNN_aarch64_allocate_local_symbols 7586 (abfd, symtab_hdr->sh_info)) 7587 return FALSE; 7588 7589 locals = elf_aarch64_locals (abfd); 7590 BFD_ASSERT (r_symndx < symtab_hdr->sh_info); 7591 locals[r_symndx].got_refcount += 1; 7592 old_got_type = locals[r_symndx].got_type; 7593 } 7594 7595 /* If a variable is accessed with both general dynamic TLS 7596 methods, two slots may be created. */ 7597 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type)) 7598 got_type |= old_got_type; 7599 7600 /* We will already have issued an error message if there 7601 is a TLS/non-TLS mismatch, based on the symbol type. 7602 So just combine any TLS types needed. */ 7603 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL 7604 && got_type != GOT_NORMAL) 7605 got_type |= old_got_type; 7606 7607 /* If the symbol is accessed by both IE and GD methods, we 7608 are able to relax. Turn off the GD flag, without 7609 messing up with any other kind of TLS types that may be 7610 involved. */ 7611 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type)) 7612 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD); 7613 7614 if (old_got_type != got_type) 7615 { 7616 if (h != NULL) 7617 elf_aarch64_hash_entry (h)->got_type = got_type; 7618 else 7619 { 7620 struct elf_aarch64_local_symbol *locals; 7621 locals = elf_aarch64_locals (abfd); 7622 BFD_ASSERT (r_symndx < symtab_hdr->sh_info); 7623 locals[r_symndx].got_type = got_type; 7624 } 7625 } 7626 7627 if (htab->root.dynobj == NULL) 7628 htab->root.dynobj = abfd; 7629 if (! aarch64_elf_create_got_section (htab->root.dynobj, info)) 7630 return FALSE; 7631 break; 7632 } 7633 7634 case BFD_RELOC_AARCH64_CALL26: 7635 case BFD_RELOC_AARCH64_JUMP26: 7636 /* If this is a local symbol then we resolve it 7637 directly without creating a PLT entry. */ 7638 if (h == NULL) 7639 continue; 7640 7641 h->needs_plt = 1; 7642 if (h->plt.refcount <= 0) 7643 h->plt.refcount = 1; 7644 else 7645 h->plt.refcount += 1; 7646 break; 7647 7648 default: 7649 break; 7650 } 7651 } 7652 7653 return TRUE; 7654 } 7655 7656 /* Treat mapping symbols as special target symbols. */ 7657 7658 static bfd_boolean 7659 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED, 7660 asymbol *sym) 7661 { 7662 return bfd_is_aarch64_special_symbol_name (sym->name, 7663 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY); 7664 } 7665 7666 /* This is a copy of elf_find_function () from elf.c except that 7667 AArch64 mapping symbols are ignored when looking for function names. */ 7668 7669 static bfd_boolean 7670 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED, 7671 asymbol **symbols, 7672 asection *section, 7673 bfd_vma offset, 7674 const char **filename_ptr, 7675 const char **functionname_ptr) 7676 { 7677 const char *filename = NULL; 7678 asymbol *func = NULL; 7679 bfd_vma low_func = 0; 7680 asymbol **p; 7681 7682 for (p = symbols; *p != NULL; p++) 7683 { 7684 elf_symbol_type *q; 7685 7686 q = (elf_symbol_type *) * p; 7687 7688 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info)) 7689 { 7690 default: 7691 break; 7692 case STT_FILE: 7693 filename = bfd_asymbol_name (&q->symbol); 7694 break; 7695 case STT_FUNC: 7696 case STT_NOTYPE: 7697 /* Skip mapping symbols. */ 7698 if ((q->symbol.flags & BSF_LOCAL) 7699 && (bfd_is_aarch64_special_symbol_name 7700 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY))) 7701 continue; 7702 /* Fall through. */ 7703 if (bfd_get_section (&q->symbol) == section 7704 && q->symbol.value >= low_func && q->symbol.value <= offset) 7705 { 7706 func = (asymbol *) q; 7707 low_func = q->symbol.value; 7708 } 7709 break; 7710 } 7711 } 7712 7713 if (func == NULL) 7714 return FALSE; 7715 7716 if (filename_ptr) 7717 *filename_ptr = filename; 7718 if (functionname_ptr) 7719 *functionname_ptr = bfd_asymbol_name (func); 7720 7721 return TRUE; 7722 } 7723 7724 7725 /* Find the nearest line to a particular section and offset, for error 7726 reporting. This code is a duplicate of the code in elf.c, except 7727 that it uses aarch64_elf_find_function. */ 7728 7729 static bfd_boolean 7730 elfNN_aarch64_find_nearest_line (bfd *abfd, 7731 asymbol **symbols, 7732 asection *section, 7733 bfd_vma offset, 7734 const char **filename_ptr, 7735 const char **functionname_ptr, 7736 unsigned int *line_ptr, 7737 unsigned int *discriminator_ptr) 7738 { 7739 bfd_boolean found = FALSE; 7740 7741 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, 7742 filename_ptr, functionname_ptr, 7743 line_ptr, discriminator_ptr, 7744 dwarf_debug_sections, 0, 7745 &elf_tdata (abfd)->dwarf2_find_line_info)) 7746 { 7747 if (!*functionname_ptr) 7748 aarch64_elf_find_function (abfd, symbols, section, offset, 7749 *filename_ptr ? NULL : filename_ptr, 7750 functionname_ptr); 7751 7752 return TRUE; 7753 } 7754 7755 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64 7756 toolchain uses DWARF1. */ 7757 7758 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, 7759 &found, filename_ptr, 7760 functionname_ptr, line_ptr, 7761 &elf_tdata (abfd)->line_info)) 7762 return FALSE; 7763 7764 if (found && (*functionname_ptr || *line_ptr)) 7765 return TRUE; 7766 7767 if (symbols == NULL) 7768 return FALSE; 7769 7770 if (!aarch64_elf_find_function (abfd, symbols, section, offset, 7771 filename_ptr, functionname_ptr)) 7772 return FALSE; 7773 7774 *line_ptr = 0; 7775 return TRUE; 7776 } 7777 7778 static bfd_boolean 7779 elfNN_aarch64_find_inliner_info (bfd *abfd, 7780 const char **filename_ptr, 7781 const char **functionname_ptr, 7782 unsigned int *line_ptr) 7783 { 7784 bfd_boolean found; 7785 found = _bfd_dwarf2_find_inliner_info 7786 (abfd, filename_ptr, 7787 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info); 7788 return found; 7789 } 7790 7791 7792 static void 7793 elfNN_aarch64_post_process_headers (bfd *abfd, 7794 struct bfd_link_info *link_info) 7795 { 7796 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */ 7797 7798 i_ehdrp = elf_elfheader (abfd); 7799 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION; 7800 7801 _bfd_elf_post_process_headers (abfd, link_info); 7802 } 7803 7804 static enum elf_reloc_type_class 7805 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 7806 const asection *rel_sec ATTRIBUTE_UNUSED, 7807 const Elf_Internal_Rela *rela) 7808 { 7809 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info); 7810 7811 if (htab->root.dynsym != NULL 7812 && htab->root.dynsym->contents != NULL) 7813 { 7814 /* Check relocation against STT_GNU_IFUNC symbol if there are 7815 dynamic symbols. */ 7816 bfd *abfd = info->output_bfd; 7817 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7818 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info); 7819 if (r_symndx != STN_UNDEF) 7820 { 7821 Elf_Internal_Sym sym; 7822 if (!bed->s->swap_symbol_in (abfd, 7823 (htab->root.dynsym->contents 7824 + r_symndx * bed->s->sizeof_sym), 7825 0, &sym)) 7826 { 7827 /* xgettext:c-format */ 7828 _bfd_error_handler (_("%pB symbol number %lu references" 7829 " nonexistent SHT_SYMTAB_SHNDX section"), 7830 abfd, r_symndx); 7831 /* Ideally an error class should be returned here. */ 7832 } 7833 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC) 7834 return reloc_class_ifunc; 7835 } 7836 } 7837 7838 switch ((int) ELFNN_R_TYPE (rela->r_info)) 7839 { 7840 case AARCH64_R (IRELATIVE): 7841 return reloc_class_ifunc; 7842 case AARCH64_R (RELATIVE): 7843 return reloc_class_relative; 7844 case AARCH64_R (JUMP_SLOT): 7845 return reloc_class_plt; 7846 case AARCH64_R (COPY): 7847 return reloc_class_copy; 7848 default: 7849 return reloc_class_normal; 7850 } 7851 } 7852 7853 /* Handle an AArch64 specific section when reading an object file. This is 7854 called when bfd_section_from_shdr finds a section with an unknown 7855 type. */ 7856 7857 static bfd_boolean 7858 elfNN_aarch64_section_from_shdr (bfd *abfd, 7859 Elf_Internal_Shdr *hdr, 7860 const char *name, int shindex) 7861 { 7862 /* There ought to be a place to keep ELF backend specific flags, but 7863 at the moment there isn't one. We just keep track of the 7864 sections by their name, instead. Fortunately, the ABI gives 7865 names for all the AArch64 specific sections, so we will probably get 7866 away with this. */ 7867 switch (hdr->sh_type) 7868 { 7869 case SHT_AARCH64_ATTRIBUTES: 7870 break; 7871 7872 default: 7873 return FALSE; 7874 } 7875 7876 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 7877 return FALSE; 7878 7879 return TRUE; 7880 } 7881 7882 /* A structure used to record a list of sections, independently 7883 of the next and prev fields in the asection structure. */ 7884 typedef struct section_list 7885 { 7886 asection *sec; 7887 struct section_list *next; 7888 struct section_list *prev; 7889 } 7890 section_list; 7891 7892 /* Unfortunately we need to keep a list of sections for which 7893 an _aarch64_elf_section_data structure has been allocated. This 7894 is because it is possible for functions like elfNN_aarch64_write_section 7895 to be called on a section which has had an elf_data_structure 7896 allocated for it (and so the used_by_bfd field is valid) but 7897 for which the AArch64 extended version of this structure - the 7898 _aarch64_elf_section_data structure - has not been allocated. */ 7899 static section_list *sections_with_aarch64_elf_section_data = NULL; 7900 7901 static void 7902 record_section_with_aarch64_elf_section_data (asection *sec) 7903 { 7904 struct section_list *entry; 7905 7906 entry = bfd_malloc (sizeof (*entry)); 7907 if (entry == NULL) 7908 return; 7909 entry->sec = sec; 7910 entry->next = sections_with_aarch64_elf_section_data; 7911 entry->prev = NULL; 7912 if (entry->next != NULL) 7913 entry->next->prev = entry; 7914 sections_with_aarch64_elf_section_data = entry; 7915 } 7916 7917 static struct section_list * 7918 find_aarch64_elf_section_entry (asection *sec) 7919 { 7920 struct section_list *entry; 7921 static struct section_list *last_entry = NULL; 7922 7923 /* This is a short cut for the typical case where the sections are added 7924 to the sections_with_aarch64_elf_section_data list in forward order and 7925 then looked up here in backwards order. This makes a real difference 7926 to the ld-srec/sec64k.exp linker test. */ 7927 entry = sections_with_aarch64_elf_section_data; 7928 if (last_entry != NULL) 7929 { 7930 if (last_entry->sec == sec) 7931 entry = last_entry; 7932 else if (last_entry->next != NULL && last_entry->next->sec == sec) 7933 entry = last_entry->next; 7934 } 7935 7936 for (; entry; entry = entry->next) 7937 if (entry->sec == sec) 7938 break; 7939 7940 if (entry) 7941 /* Record the entry prior to this one - it is the entry we are 7942 most likely to want to locate next time. Also this way if we 7943 have been called from 7944 unrecord_section_with_aarch64_elf_section_data () we will not 7945 be caching a pointer that is about to be freed. */ 7946 last_entry = entry->prev; 7947 7948 return entry; 7949 } 7950 7951 static void 7952 unrecord_section_with_aarch64_elf_section_data (asection *sec) 7953 { 7954 struct section_list *entry; 7955 7956 entry = find_aarch64_elf_section_entry (sec); 7957 7958 if (entry) 7959 { 7960 if (entry->prev != NULL) 7961 entry->prev->next = entry->next; 7962 if (entry->next != NULL) 7963 entry->next->prev = entry->prev; 7964 if (entry == sections_with_aarch64_elf_section_data) 7965 sections_with_aarch64_elf_section_data = entry->next; 7966 free (entry); 7967 } 7968 } 7969 7970 7971 typedef struct 7972 { 7973 void *finfo; 7974 struct bfd_link_info *info; 7975 asection *sec; 7976 int sec_shndx; 7977 int (*func) (void *, const char *, Elf_Internal_Sym *, 7978 asection *, struct elf_link_hash_entry *); 7979 } output_arch_syminfo; 7980 7981 enum map_symbol_type 7982 { 7983 AARCH64_MAP_INSN, 7984 AARCH64_MAP_DATA 7985 }; 7986 7987 7988 /* Output a single mapping symbol. */ 7989 7990 static bfd_boolean 7991 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi, 7992 enum map_symbol_type type, bfd_vma offset) 7993 { 7994 static const char *names[2] = { "$x", "$d" }; 7995 Elf_Internal_Sym sym; 7996 7997 sym.st_value = (osi->sec->output_section->vma 7998 + osi->sec->output_offset + offset); 7999 sym.st_size = 0; 8000 sym.st_other = 0; 8001 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); 8002 sym.st_shndx = osi->sec_shndx; 8003 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1; 8004 } 8005 8006 /* Output a single local symbol for a generated stub. */ 8007 8008 static bfd_boolean 8009 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name, 8010 bfd_vma offset, bfd_vma size) 8011 { 8012 Elf_Internal_Sym sym; 8013 8014 sym.st_value = (osi->sec->output_section->vma 8015 + osi->sec->output_offset + offset); 8016 sym.st_size = size; 8017 sym.st_other = 0; 8018 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 8019 sym.st_shndx = osi->sec_shndx; 8020 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1; 8021 } 8022 8023 static bfd_boolean 8024 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg) 8025 { 8026 struct elf_aarch64_stub_hash_entry *stub_entry; 8027 asection *stub_sec; 8028 bfd_vma addr; 8029 char *stub_name; 8030 output_arch_syminfo *osi; 8031 8032 /* Massage our args to the form they really have. */ 8033 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry; 8034 osi = (output_arch_syminfo *) in_arg; 8035 8036 stub_sec = stub_entry->stub_sec; 8037 8038 /* Ensure this stub is attached to the current section being 8039 processed. */ 8040 if (stub_sec != osi->sec) 8041 return TRUE; 8042 8043 addr = (bfd_vma) stub_entry->stub_offset; 8044 8045 stub_name = stub_entry->output_name; 8046 8047 switch (stub_entry->stub_type) 8048 { 8049 case aarch64_stub_adrp_branch: 8050 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr, 8051 sizeof (aarch64_adrp_branch_stub))) 8052 return FALSE; 8053 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr)) 8054 return FALSE; 8055 break; 8056 case aarch64_stub_long_branch: 8057 if (!elfNN_aarch64_output_stub_sym 8058 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub))) 8059 return FALSE; 8060 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr)) 8061 return FALSE; 8062 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16)) 8063 return FALSE; 8064 break; 8065 case aarch64_stub_erratum_835769_veneer: 8066 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr, 8067 sizeof (aarch64_erratum_835769_stub))) 8068 return FALSE; 8069 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr)) 8070 return FALSE; 8071 break; 8072 case aarch64_stub_erratum_843419_veneer: 8073 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr, 8074 sizeof (aarch64_erratum_843419_stub))) 8075 return FALSE; 8076 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr)) 8077 return FALSE; 8078 break; 8079 8080 default: 8081 abort (); 8082 } 8083 8084 return TRUE; 8085 } 8086 8087 /* Output mapping symbols for linker generated sections. */ 8088 8089 static bfd_boolean 8090 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd, 8091 struct bfd_link_info *info, 8092 void *finfo, 8093 int (*func) (void *, const char *, 8094 Elf_Internal_Sym *, 8095 asection *, 8096 struct elf_link_hash_entry 8097 *)) 8098 { 8099 output_arch_syminfo osi; 8100 struct elf_aarch64_link_hash_table *htab; 8101 8102 htab = elf_aarch64_hash_table (info); 8103 8104 osi.finfo = finfo; 8105 osi.info = info; 8106 osi.func = func; 8107 8108 /* Long calls stubs. */ 8109 if (htab->stub_bfd && htab->stub_bfd->sections) 8110 { 8111 asection *stub_sec; 8112 8113 for (stub_sec = htab->stub_bfd->sections; 8114 stub_sec != NULL; stub_sec = stub_sec->next) 8115 { 8116 /* Ignore non-stub sections. */ 8117 if (!strstr (stub_sec->name, STUB_SUFFIX)) 8118 continue; 8119 8120 osi.sec = stub_sec; 8121 8122 osi.sec_shndx = _bfd_elf_section_from_bfd_section 8123 (output_bfd, osi.sec->output_section); 8124 8125 /* The first instruction in a stub is always a branch. */ 8126 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0)) 8127 return FALSE; 8128 8129 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub, 8130 &osi); 8131 } 8132 } 8133 8134 /* Finally, output mapping symbols for the PLT. */ 8135 if (!htab->root.splt || htab->root.splt->size == 0) 8136 return TRUE; 8137 8138 osi.sec_shndx = _bfd_elf_section_from_bfd_section 8139 (output_bfd, htab->root.splt->output_section); 8140 osi.sec = htab->root.splt; 8141 8142 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0); 8143 8144 return TRUE; 8145 8146 } 8147 8148 /* Allocate target specific section data. */ 8149 8150 static bfd_boolean 8151 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec) 8152 { 8153 if (!sec->used_by_bfd) 8154 { 8155 _aarch64_elf_section_data *sdata; 8156 bfd_size_type amt = sizeof (*sdata); 8157 8158 sdata = bfd_zalloc (abfd, amt); 8159 if (sdata == NULL) 8160 return FALSE; 8161 sec->used_by_bfd = sdata; 8162 } 8163 8164 record_section_with_aarch64_elf_section_data (sec); 8165 8166 return _bfd_elf_new_section_hook (abfd, sec); 8167 } 8168 8169 8170 static void 8171 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED, 8172 asection *sec, 8173 void *ignore ATTRIBUTE_UNUSED) 8174 { 8175 unrecord_section_with_aarch64_elf_section_data (sec); 8176 } 8177 8178 static bfd_boolean 8179 elfNN_aarch64_close_and_cleanup (bfd *abfd) 8180 { 8181 if (abfd->sections) 8182 bfd_map_over_sections (abfd, 8183 unrecord_section_via_map_over_sections, NULL); 8184 8185 return _bfd_elf_close_and_cleanup (abfd); 8186 } 8187 8188 static bfd_boolean 8189 elfNN_aarch64_bfd_free_cached_info (bfd *abfd) 8190 { 8191 if (abfd->sections) 8192 bfd_map_over_sections (abfd, 8193 unrecord_section_via_map_over_sections, NULL); 8194 8195 return _bfd_free_cached_info (abfd); 8196 } 8197 8198 /* Create dynamic sections. This is different from the ARM backend in that 8199 the got, plt, gotplt and their relocation sections are all created in the 8200 standard part of the bfd elf backend. */ 8201 8202 static bfd_boolean 8203 elfNN_aarch64_create_dynamic_sections (bfd *dynobj, 8204 struct bfd_link_info *info) 8205 { 8206 /* We need to create .got section. */ 8207 if (!aarch64_elf_create_got_section (dynobj, info)) 8208 return FALSE; 8209 8210 return _bfd_elf_create_dynamic_sections (dynobj, info); 8211 } 8212 8213 8214 /* Allocate space in .plt, .got and associated reloc sections for 8215 dynamic relocs. */ 8216 8217 static bfd_boolean 8218 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) 8219 { 8220 struct bfd_link_info *info; 8221 struct elf_aarch64_link_hash_table *htab; 8222 struct elf_aarch64_link_hash_entry *eh; 8223 struct elf_dyn_relocs *p; 8224 8225 /* An example of a bfd_link_hash_indirect symbol is versioned 8226 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect) 8227 -> __gxx_personality_v0(bfd_link_hash_defined) 8228 8229 There is no need to process bfd_link_hash_indirect symbols here 8230 because we will also be presented with the concrete instance of 8231 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been 8232 called to copy all relevant data from the generic to the concrete 8233 symbol instance. */ 8234 if (h->root.type == bfd_link_hash_indirect) 8235 return TRUE; 8236 8237 if (h->root.type == bfd_link_hash_warning) 8238 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8239 8240 info = (struct bfd_link_info *) inf; 8241 htab = elf_aarch64_hash_table (info); 8242 8243 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it 8244 here if it is defined and referenced in a non-shared object. */ 8245 if (h->type == STT_GNU_IFUNC 8246 && h->def_regular) 8247 return TRUE; 8248 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0) 8249 { 8250 /* Make sure this symbol is output as a dynamic symbol. 8251 Undefined weak syms won't yet be marked as dynamic. */ 8252 if (h->dynindx == -1 && !h->forced_local 8253 && h->root.type == bfd_link_hash_undefweak) 8254 { 8255 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 8256 return FALSE; 8257 } 8258 8259 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) 8260 { 8261 asection *s = htab->root.splt; 8262 8263 /* If this is the first .plt entry, make room for the special 8264 first entry. */ 8265 if (s->size == 0) 8266 s->size += htab->plt_header_size; 8267 8268 h->plt.offset = s->size; 8269 8270 /* If this symbol is not defined in a regular file, and we are 8271 not generating a shared library, then set the symbol to this 8272 location in the .plt. This is required to make function 8273 pointers compare as equal between the normal executable and 8274 the shared library. */ 8275 if (!bfd_link_pic (info) && !h->def_regular) 8276 { 8277 h->root.u.def.section = s; 8278 h->root.u.def.value = h->plt.offset; 8279 } 8280 8281 /* Make room for this entry. For now we only create the 8282 small model PLT entries. We later need to find a way 8283 of relaxing into these from the large model PLT entries. */ 8284 s->size += PLT_SMALL_ENTRY_SIZE; 8285 8286 /* We also need to make an entry in the .got.plt section, which 8287 will be placed in the .got section by the linker script. */ 8288 htab->root.sgotplt->size += GOT_ENTRY_SIZE; 8289 8290 /* We also need to make an entry in the .rela.plt section. */ 8291 htab->root.srelplt->size += RELOC_SIZE (htab); 8292 8293 /* We need to ensure that all GOT entries that serve the PLT 8294 are consecutive with the special GOT slots [0] [1] and 8295 [2]. Any addtional relocations, such as 8296 R_AARCH64_TLSDESC, must be placed after the PLT related 8297 entries. We abuse the reloc_count such that during 8298 sizing we adjust reloc_count to indicate the number of 8299 PLT related reserved entries. In subsequent phases when 8300 filling in the contents of the reloc entries, PLT related 8301 entries are placed by computing their PLT index (0 8302 .. reloc_count). While other none PLT relocs are placed 8303 at the slot indicated by reloc_count and reloc_count is 8304 updated. */ 8305 8306 htab->root.srelplt->reloc_count++; 8307 } 8308 else 8309 { 8310 h->plt.offset = (bfd_vma) - 1; 8311 h->needs_plt = 0; 8312 } 8313 } 8314 else 8315 { 8316 h->plt.offset = (bfd_vma) - 1; 8317 h->needs_plt = 0; 8318 } 8319 8320 eh = (struct elf_aarch64_link_hash_entry *) h; 8321 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1; 8322 8323 if (h->got.refcount > 0) 8324 { 8325 bfd_boolean dyn; 8326 unsigned got_type = elf_aarch64_hash_entry (h)->got_type; 8327 8328 h->got.offset = (bfd_vma) - 1; 8329 8330 dyn = htab->root.dynamic_sections_created; 8331 8332 /* Make sure this symbol is output as a dynamic symbol. 8333 Undefined weak syms won't yet be marked as dynamic. */ 8334 if (dyn && h->dynindx == -1 && !h->forced_local 8335 && h->root.type == bfd_link_hash_undefweak) 8336 { 8337 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 8338 return FALSE; 8339 } 8340 8341 if (got_type == GOT_UNKNOWN) 8342 { 8343 } 8344 else if (got_type == GOT_NORMAL) 8345 { 8346 h->got.offset = htab->root.sgot->size; 8347 htab->root.sgot->size += GOT_ENTRY_SIZE; 8348 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 8349 || h->root.type != bfd_link_hash_undefweak) 8350 && (bfd_link_pic (info) 8351 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)) 8352 /* Undefined weak symbol in static PIE resolves to 0 without 8353 any dynamic relocations. */ 8354 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) 8355 { 8356 htab->root.srelgot->size += RELOC_SIZE (htab); 8357 } 8358 } 8359 else 8360 { 8361 int indx; 8362 if (got_type & GOT_TLSDESC_GD) 8363 { 8364 eh->tlsdesc_got_jump_table_offset = 8365 (htab->root.sgotplt->size 8366 - aarch64_compute_jump_table_size (htab)); 8367 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2; 8368 h->got.offset = (bfd_vma) - 2; 8369 } 8370 8371 if (got_type & GOT_TLS_GD) 8372 { 8373 h->got.offset = htab->root.sgot->size; 8374 htab->root.sgot->size += GOT_ENTRY_SIZE * 2; 8375 } 8376 8377 if (got_type & GOT_TLS_IE) 8378 { 8379 h->got.offset = htab->root.sgot->size; 8380 htab->root.sgot->size += GOT_ENTRY_SIZE; 8381 } 8382 8383 indx = h && h->dynindx != -1 ? h->dynindx : 0; 8384 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 8385 || h->root.type != bfd_link_hash_undefweak) 8386 && (!bfd_link_executable (info) 8387 || indx != 0 8388 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) 8389 { 8390 if (got_type & GOT_TLSDESC_GD) 8391 { 8392 htab->root.srelplt->size += RELOC_SIZE (htab); 8393 /* Note reloc_count not incremented here! We have 8394 already adjusted reloc_count for this relocation 8395 type. */ 8396 8397 /* TLSDESC PLT is now needed, but not yet determined. */ 8398 htab->tlsdesc_plt = (bfd_vma) - 1; 8399 } 8400 8401 if (got_type & GOT_TLS_GD) 8402 htab->root.srelgot->size += RELOC_SIZE (htab) * 2; 8403 8404 if (got_type & GOT_TLS_IE) 8405 htab->root.srelgot->size += RELOC_SIZE (htab); 8406 } 8407 } 8408 } 8409 else 8410 { 8411 h->got.offset = (bfd_vma) - 1; 8412 } 8413 8414 if (eh->dyn_relocs == NULL) 8415 return TRUE; 8416 8417 /* In the shared -Bsymbolic case, discard space allocated for 8418 dynamic pc-relative relocs against symbols which turn out to be 8419 defined in regular objects. For the normal shared case, discard 8420 space for pc-relative relocs that have become local due to symbol 8421 visibility changes. */ 8422 8423 if (bfd_link_pic (info)) 8424 { 8425 /* Relocs that use pc_count are those that appear on a call 8426 insn, or certain REL relocs that can generated via assembly. 8427 We want calls to protected symbols to resolve directly to the 8428 function rather than going via the plt. If people want 8429 function pointer comparisons to work as expected then they 8430 should avoid writing weird assembly. */ 8431 if (SYMBOL_CALLS_LOCAL (info, h)) 8432 { 8433 struct elf_dyn_relocs **pp; 8434 8435 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;) 8436 { 8437 p->count -= p->pc_count; 8438 p->pc_count = 0; 8439 if (p->count == 0) 8440 *pp = p->next; 8441 else 8442 pp = &p->next; 8443 } 8444 } 8445 8446 /* Also discard relocs on undefined weak syms with non-default 8447 visibility. */ 8448 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak) 8449 { 8450 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 8451 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) 8452 eh->dyn_relocs = NULL; 8453 8454 /* Make sure undefined weak symbols are output as a dynamic 8455 symbol in PIEs. */ 8456 else if (h->dynindx == -1 8457 && !h->forced_local 8458 && h->root.type == bfd_link_hash_undefweak 8459 && !bfd_elf_link_record_dynamic_symbol (info, h)) 8460 return FALSE; 8461 } 8462 8463 } 8464 else if (ELIMINATE_COPY_RELOCS) 8465 { 8466 /* For the non-shared case, discard space for relocs against 8467 symbols which turn out to need copy relocs or are not 8468 dynamic. */ 8469 8470 if (!h->non_got_ref 8471 && ((h->def_dynamic 8472 && !h->def_regular) 8473 || (htab->root.dynamic_sections_created 8474 && (h->root.type == bfd_link_hash_undefweak 8475 || h->root.type == bfd_link_hash_undefined)))) 8476 { 8477 /* Make sure this symbol is output as a dynamic symbol. 8478 Undefined weak syms won't yet be marked as dynamic. */ 8479 if (h->dynindx == -1 8480 && !h->forced_local 8481 && h->root.type == bfd_link_hash_undefweak 8482 && !bfd_elf_link_record_dynamic_symbol (info, h)) 8483 return FALSE; 8484 8485 /* If that succeeded, we know we'll be keeping all the 8486 relocs. */ 8487 if (h->dynindx != -1) 8488 goto keep; 8489 } 8490 8491 eh->dyn_relocs = NULL; 8492 8493 keep:; 8494 } 8495 8496 /* Finally, allocate space. */ 8497 for (p = eh->dyn_relocs; p != NULL; p = p->next) 8498 { 8499 asection *sreloc; 8500 8501 sreloc = elf_section_data (p->sec)->sreloc; 8502 8503 BFD_ASSERT (sreloc != NULL); 8504 8505 sreloc->size += p->count * RELOC_SIZE (htab); 8506 } 8507 8508 return TRUE; 8509 } 8510 8511 /* Allocate space in .plt, .got and associated reloc sections for 8512 ifunc dynamic relocs. */ 8513 8514 static bfd_boolean 8515 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h, 8516 void *inf) 8517 { 8518 struct bfd_link_info *info; 8519 struct elf_aarch64_link_hash_table *htab; 8520 struct elf_aarch64_link_hash_entry *eh; 8521 8522 /* An example of a bfd_link_hash_indirect symbol is versioned 8523 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect) 8524 -> __gxx_personality_v0(bfd_link_hash_defined) 8525 8526 There is no need to process bfd_link_hash_indirect symbols here 8527 because we will also be presented with the concrete instance of 8528 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been 8529 called to copy all relevant data from the generic to the concrete 8530 symbol instance. */ 8531 if (h->root.type == bfd_link_hash_indirect) 8532 return TRUE; 8533 8534 if (h->root.type == bfd_link_hash_warning) 8535 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8536 8537 info = (struct bfd_link_info *) inf; 8538 htab = elf_aarch64_hash_table (info); 8539 8540 eh = (struct elf_aarch64_link_hash_entry *) h; 8541 8542 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it 8543 here if it is defined and referenced in a non-shared object. */ 8544 if (h->type == STT_GNU_IFUNC 8545 && h->def_regular) 8546 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h, 8547 &eh->dyn_relocs, 8548 NULL, 8549 htab->plt_entry_size, 8550 htab->plt_header_size, 8551 GOT_ENTRY_SIZE, 8552 FALSE); 8553 return TRUE; 8554 } 8555 8556 /* Allocate space in .plt, .got and associated reloc sections for 8557 local dynamic relocs. */ 8558 8559 static bfd_boolean 8560 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf) 8561 { 8562 struct elf_link_hash_entry *h 8563 = (struct elf_link_hash_entry *) *slot; 8564 8565 if (h->type != STT_GNU_IFUNC 8566 || !h->def_regular 8567 || !h->ref_regular 8568 || !h->forced_local 8569 || h->root.type != bfd_link_hash_defined) 8570 abort (); 8571 8572 return elfNN_aarch64_allocate_dynrelocs (h, inf); 8573 } 8574 8575 /* Allocate space in .plt, .got and associated reloc sections for 8576 local ifunc dynamic relocs. */ 8577 8578 static bfd_boolean 8579 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf) 8580 { 8581 struct elf_link_hash_entry *h 8582 = (struct elf_link_hash_entry *) *slot; 8583 8584 if (h->type != STT_GNU_IFUNC 8585 || !h->def_regular 8586 || !h->ref_regular 8587 || !h->forced_local 8588 || h->root.type != bfd_link_hash_defined) 8589 abort (); 8590 8591 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf); 8592 } 8593 8594 /* Set DF_TEXTREL if we find any dynamic relocs that apply to 8595 read-only sections. */ 8596 8597 static bfd_boolean 8598 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p) 8599 { 8600 asection *sec; 8601 8602 if (h->root.type == bfd_link_hash_indirect) 8603 return TRUE; 8604 8605 sec = readonly_dynrelocs (h); 8606 if (sec != NULL) 8607 { 8608 struct bfd_link_info *info = (struct bfd_link_info *) info_p; 8609 8610 info->flags |= DF_TEXTREL; 8611 info->callbacks->minfo 8612 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"), 8613 sec->owner, h->root.root.string, sec); 8614 8615 /* Not an error, just cut short the traversal. */ 8616 return FALSE; 8617 } 8618 return TRUE; 8619 } 8620 8621 /* This is the most important function of all . Innocuosly named 8622 though ! */ 8623 8624 static bfd_boolean 8625 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, 8626 struct bfd_link_info *info) 8627 { 8628 struct elf_aarch64_link_hash_table *htab; 8629 bfd *dynobj; 8630 asection *s; 8631 bfd_boolean relocs; 8632 bfd *ibfd; 8633 8634 htab = elf_aarch64_hash_table ((info)); 8635 dynobj = htab->root.dynobj; 8636 8637 BFD_ASSERT (dynobj != NULL); 8638 8639 if (htab->root.dynamic_sections_created) 8640 { 8641 if (bfd_link_executable (info) && !info->nointerp) 8642 { 8643 s = bfd_get_linker_section (dynobj, ".interp"); 8644 if (s == NULL) 8645 abort (); 8646 s->size = sizeof ELF_DYNAMIC_INTERPRETER; 8647 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 8648 } 8649 } 8650 8651 /* Set up .got offsets for local syms, and space for local dynamic 8652 relocs. */ 8653 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 8654 { 8655 struct elf_aarch64_local_symbol *locals = NULL; 8656 Elf_Internal_Shdr *symtab_hdr; 8657 asection *srel; 8658 unsigned int i; 8659 8660 if (!is_aarch64_elf (ibfd)) 8661 continue; 8662 8663 for (s = ibfd->sections; s != NULL; s = s->next) 8664 { 8665 struct elf_dyn_relocs *p; 8666 8667 for (p = (struct elf_dyn_relocs *) 8668 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next) 8669 { 8670 if (!bfd_is_abs_section (p->sec) 8671 && bfd_is_abs_section (p->sec->output_section)) 8672 { 8673 /* Input section has been discarded, either because 8674 it is a copy of a linkonce section or due to 8675 linker script /DISCARD/, so we'll be discarding 8676 the relocs too. */ 8677 } 8678 else if (p->count != 0) 8679 { 8680 srel = elf_section_data (p->sec)->sreloc; 8681 srel->size += p->count * RELOC_SIZE (htab); 8682 if ((p->sec->output_section->flags & SEC_READONLY) != 0) 8683 info->flags |= DF_TEXTREL; 8684 } 8685 } 8686 } 8687 8688 locals = elf_aarch64_locals (ibfd); 8689 if (!locals) 8690 continue; 8691 8692 symtab_hdr = &elf_symtab_hdr (ibfd); 8693 srel = htab->root.srelgot; 8694 for (i = 0; i < symtab_hdr->sh_info; i++) 8695 { 8696 locals[i].got_offset = (bfd_vma) - 1; 8697 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1; 8698 if (locals[i].got_refcount > 0) 8699 { 8700 unsigned got_type = locals[i].got_type; 8701 if (got_type & GOT_TLSDESC_GD) 8702 { 8703 locals[i].tlsdesc_got_jump_table_offset = 8704 (htab->root.sgotplt->size 8705 - aarch64_compute_jump_table_size (htab)); 8706 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2; 8707 locals[i].got_offset = (bfd_vma) - 2; 8708 } 8709 8710 if (got_type & GOT_TLS_GD) 8711 { 8712 locals[i].got_offset = htab->root.sgot->size; 8713 htab->root.sgot->size += GOT_ENTRY_SIZE * 2; 8714 } 8715 8716 if (got_type & GOT_TLS_IE 8717 || got_type & GOT_NORMAL) 8718 { 8719 locals[i].got_offset = htab->root.sgot->size; 8720 htab->root.sgot->size += GOT_ENTRY_SIZE; 8721 } 8722 8723 if (got_type == GOT_UNKNOWN) 8724 { 8725 } 8726 8727 if (bfd_link_pic (info)) 8728 { 8729 if (got_type & GOT_TLSDESC_GD) 8730 { 8731 htab->root.srelplt->size += RELOC_SIZE (htab); 8732 /* Note RELOC_COUNT not incremented here! */ 8733 htab->tlsdesc_plt = (bfd_vma) - 1; 8734 } 8735 8736 if (got_type & GOT_TLS_GD) 8737 htab->root.srelgot->size += RELOC_SIZE (htab) * 2; 8738 8739 if (got_type & GOT_TLS_IE 8740 || got_type & GOT_NORMAL) 8741 htab->root.srelgot->size += RELOC_SIZE (htab); 8742 } 8743 } 8744 else 8745 { 8746 locals[i].got_refcount = (bfd_vma) - 1; 8747 } 8748 } 8749 } 8750 8751 8752 /* Allocate global sym .plt and .got entries, and space for global 8753 sym dynamic relocs. */ 8754 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs, 8755 info); 8756 8757 /* Allocate global ifunc sym .plt and .got entries, and space for global 8758 ifunc sym dynamic relocs. */ 8759 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs, 8760 info); 8761 8762 /* Allocate .plt and .got entries, and space for local symbols. */ 8763 htab_traverse (htab->loc_hash_table, 8764 elfNN_aarch64_allocate_local_dynrelocs, 8765 info); 8766 8767 /* Allocate .plt and .got entries, and space for local ifunc symbols. */ 8768 htab_traverse (htab->loc_hash_table, 8769 elfNN_aarch64_allocate_local_ifunc_dynrelocs, 8770 info); 8771 8772 /* For every jump slot reserved in the sgotplt, reloc_count is 8773 incremented. However, when we reserve space for TLS descriptors, 8774 it's not incremented, so in order to compute the space reserved 8775 for them, it suffices to multiply the reloc count by the jump 8776 slot size. */ 8777 8778 if (htab->root.srelplt) 8779 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab); 8780 8781 if (htab->tlsdesc_plt) 8782 { 8783 if (htab->root.splt->size == 0) 8784 htab->root.splt->size += PLT_ENTRY_SIZE; 8785 8786 htab->tlsdesc_plt = htab->root.splt->size; 8787 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE; 8788 8789 /* If we're not using lazy TLS relocations, don't generate the 8790 GOT entry required. */ 8791 if (!(info->flags & DF_BIND_NOW)) 8792 { 8793 htab->dt_tlsdesc_got = htab->root.sgot->size; 8794 htab->root.sgot->size += GOT_ENTRY_SIZE; 8795 } 8796 } 8797 8798 /* Init mapping symbols information to use later to distingush between 8799 code and data while scanning for errata. */ 8800 if (htab->fix_erratum_835769 || htab->fix_erratum_843419) 8801 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 8802 { 8803 if (!is_aarch64_elf (ibfd)) 8804 continue; 8805 bfd_elfNN_aarch64_init_maps (ibfd); 8806 } 8807 8808 /* We now have determined the sizes of the various dynamic sections. 8809 Allocate memory for them. */ 8810 relocs = FALSE; 8811 for (s = dynobj->sections; s != NULL; s = s->next) 8812 { 8813 if ((s->flags & SEC_LINKER_CREATED) == 0) 8814 continue; 8815 8816 if (s == htab->root.splt 8817 || s == htab->root.sgot 8818 || s == htab->root.sgotplt 8819 || s == htab->root.iplt 8820 || s == htab->root.igotplt 8821 || s == htab->root.sdynbss 8822 || s == htab->root.sdynrelro) 8823 { 8824 /* Strip this section if we don't need it; see the 8825 comment below. */ 8826 } 8827 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela")) 8828 { 8829 if (s->size != 0 && s != htab->root.srelplt) 8830 relocs = TRUE; 8831 8832 /* We use the reloc_count field as a counter if we need 8833 to copy relocs into the output file. */ 8834 if (s != htab->root.srelplt) 8835 s->reloc_count = 0; 8836 } 8837 else 8838 { 8839 /* It's not one of our sections, so don't allocate space. */ 8840 continue; 8841 } 8842 8843 if (s->size == 0) 8844 { 8845 /* If we don't need this section, strip it from the 8846 output file. This is mostly to handle .rela.bss and 8847 .rela.plt. We must create both sections in 8848 create_dynamic_sections, because they must be created 8849 before the linker maps input sections to output 8850 sections. The linker does that before 8851 adjust_dynamic_symbol is called, and it is that 8852 function which decides whether anything needs to go 8853 into these sections. */ 8854 s->flags |= SEC_EXCLUDE; 8855 continue; 8856 } 8857 8858 if ((s->flags & SEC_HAS_CONTENTS) == 0) 8859 continue; 8860 8861 /* Allocate memory for the section contents. We use bfd_zalloc 8862 here in case unused entries are not reclaimed before the 8863 section's contents are written out. This should not happen, 8864 but this way if it does, we get a R_AARCH64_NONE reloc instead 8865 of garbage. */ 8866 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); 8867 if (s->contents == NULL) 8868 return FALSE; 8869 } 8870 8871 if (htab->root.dynamic_sections_created) 8872 { 8873 /* Add some entries to the .dynamic section. We fill in the 8874 values later, in elfNN_aarch64_finish_dynamic_sections, but we 8875 must add the entries now so that we get the correct size for 8876 the .dynamic section. The DT_DEBUG entry is filled in by the 8877 dynamic linker and used by the debugger. */ 8878 #define add_dynamic_entry(TAG, VAL) \ 8879 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 8880 8881 if (bfd_link_executable (info)) 8882 { 8883 if (!add_dynamic_entry (DT_DEBUG, 0)) 8884 return FALSE; 8885 } 8886 8887 if (htab->root.splt->size != 0) 8888 { 8889 if (!add_dynamic_entry (DT_PLTGOT, 0) 8890 || !add_dynamic_entry (DT_PLTRELSZ, 0) 8891 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 8892 || !add_dynamic_entry (DT_JMPREL, 0)) 8893 return FALSE; 8894 8895 if (htab->tlsdesc_plt 8896 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0) 8897 || !add_dynamic_entry (DT_TLSDESC_GOT, 0))) 8898 return FALSE; 8899 } 8900 8901 if (relocs) 8902 { 8903 if (!add_dynamic_entry (DT_RELA, 0) 8904 || !add_dynamic_entry (DT_RELASZ, 0) 8905 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab))) 8906 return FALSE; 8907 8908 /* If any dynamic relocs apply to a read-only section, 8909 then we need a DT_TEXTREL entry. */ 8910 if ((info->flags & DF_TEXTREL) == 0) 8911 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info); 8912 8913 if ((info->flags & DF_TEXTREL) != 0) 8914 { 8915 if (!add_dynamic_entry (DT_TEXTREL, 0)) 8916 return FALSE; 8917 } 8918 } 8919 } 8920 #undef add_dynamic_entry 8921 8922 return TRUE; 8923 } 8924 8925 static inline void 8926 elf_aarch64_update_plt_entry (bfd *output_bfd, 8927 bfd_reloc_code_real_type r_type, 8928 bfd_byte *plt_entry, bfd_vma value) 8929 { 8930 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type); 8931 8932 /* FIXME: We should check the return value from this function call. */ 8933 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value); 8934 } 8935 8936 static void 8937 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h, 8938 struct elf_aarch64_link_hash_table 8939 *htab, bfd *output_bfd, 8940 struct bfd_link_info *info) 8941 { 8942 bfd_byte *plt_entry; 8943 bfd_vma plt_index; 8944 bfd_vma got_offset; 8945 bfd_vma gotplt_entry_address; 8946 bfd_vma plt_entry_address; 8947 Elf_Internal_Rela rela; 8948 bfd_byte *loc; 8949 asection *plt, *gotplt, *relplt; 8950 8951 /* When building a static executable, use .iplt, .igot.plt and 8952 .rela.iplt sections for STT_GNU_IFUNC symbols. */ 8953 if (htab->root.splt != NULL) 8954 { 8955 plt = htab->root.splt; 8956 gotplt = htab->root.sgotplt; 8957 relplt = htab->root.srelplt; 8958 } 8959 else 8960 { 8961 plt = htab->root.iplt; 8962 gotplt = htab->root.igotplt; 8963 relplt = htab->root.irelplt; 8964 } 8965 8966 /* Get the index in the procedure linkage table which 8967 corresponds to this symbol. This is the index of this symbol 8968 in all the symbols for which we are making plt entries. The 8969 first entry in the procedure linkage table is reserved. 8970 8971 Get the offset into the .got table of the entry that 8972 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE 8973 bytes. The first three are reserved for the dynamic linker. 8974 8975 For static executables, we don't reserve anything. */ 8976 8977 if (plt == htab->root.splt) 8978 { 8979 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size; 8980 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE; 8981 } 8982 else 8983 { 8984 plt_index = h->plt.offset / htab->plt_entry_size; 8985 got_offset = plt_index * GOT_ENTRY_SIZE; 8986 } 8987 8988 plt_entry = plt->contents + h->plt.offset; 8989 plt_entry_address = plt->output_section->vma 8990 + plt->output_offset + h->plt.offset; 8991 gotplt_entry_address = gotplt->output_section->vma + 8992 gotplt->output_offset + got_offset; 8993 8994 /* Copy in the boiler-plate for the PLTn entry. */ 8995 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE); 8996 8997 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8. 8998 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */ 8999 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL, 9000 plt_entry, 9001 PG (gotplt_entry_address) - 9002 PG (plt_entry_address)); 9003 9004 /* Fill in the lo12 bits for the load from the pltgot. */ 9005 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12, 9006 plt_entry + 4, 9007 PG_OFFSET (gotplt_entry_address)); 9008 9009 /* Fill in the lo12 bits for the add from the pltgot entry. */ 9010 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12, 9011 plt_entry + 8, 9012 PG_OFFSET (gotplt_entry_address)); 9013 9014 /* All the GOTPLT Entries are essentially initialized to PLT0. */ 9015 bfd_put_NN (output_bfd, 9016 plt->output_section->vma + plt->output_offset, 9017 gotplt->contents + got_offset); 9018 9019 rela.r_offset = gotplt_entry_address; 9020 9021 if (h->dynindx == -1 9022 || ((bfd_link_executable (info) 9023 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 9024 && h->def_regular 9025 && h->type == STT_GNU_IFUNC)) 9026 { 9027 /* If an STT_GNU_IFUNC symbol is locally defined, generate 9028 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */ 9029 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE)); 9030 rela.r_addend = (h->root.u.def.value 9031 + h->root.u.def.section->output_section->vma 9032 + h->root.u.def.section->output_offset); 9033 } 9034 else 9035 { 9036 /* Fill in the entry in the .rela.plt section. */ 9037 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT)); 9038 rela.r_addend = 0; 9039 } 9040 9041 /* Compute the relocation entry to used based on PLT index and do 9042 not adjust reloc_count. The reloc_count has already been adjusted 9043 to account for this entry. */ 9044 loc = relplt->contents + plt_index * RELOC_SIZE (htab); 9045 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); 9046 } 9047 9048 /* Size sections even though they're not dynamic. We use it to setup 9049 _TLS_MODULE_BASE_, if needed. */ 9050 9051 static bfd_boolean 9052 elfNN_aarch64_always_size_sections (bfd *output_bfd, 9053 struct bfd_link_info *info) 9054 { 9055 asection *tls_sec; 9056 9057 if (bfd_link_relocatable (info)) 9058 return TRUE; 9059 9060 tls_sec = elf_hash_table (info)->tls_sec; 9061 9062 if (tls_sec) 9063 { 9064 struct elf_link_hash_entry *tlsbase; 9065 9066 tlsbase = elf_link_hash_lookup (elf_hash_table (info), 9067 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE); 9068 9069 if (tlsbase) 9070 { 9071 struct bfd_link_hash_entry *h = NULL; 9072 const struct elf_backend_data *bed = 9073 get_elf_backend_data (output_bfd); 9074 9075 if (!(_bfd_generic_link_add_one_symbol 9076 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, 9077 tls_sec, 0, NULL, FALSE, bed->collect, &h))) 9078 return FALSE; 9079 9080 tlsbase->type = STT_TLS; 9081 tlsbase = (struct elf_link_hash_entry *) h; 9082 tlsbase->def_regular = 1; 9083 tlsbase->other = STV_HIDDEN; 9084 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); 9085 } 9086 } 9087 9088 return TRUE; 9089 } 9090 9091 /* Finish up dynamic symbol handling. We set the contents of various 9092 dynamic sections here. */ 9093 9094 static bfd_boolean 9095 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd, 9096 struct bfd_link_info *info, 9097 struct elf_link_hash_entry *h, 9098 Elf_Internal_Sym *sym) 9099 { 9100 struct elf_aarch64_link_hash_table *htab; 9101 htab = elf_aarch64_hash_table (info); 9102 9103 if (h->plt.offset != (bfd_vma) - 1) 9104 { 9105 asection *plt, *gotplt, *relplt; 9106 9107 /* This symbol has an entry in the procedure linkage table. Set 9108 it up. */ 9109 9110 /* When building a static executable, use .iplt, .igot.plt and 9111 .rela.iplt sections for STT_GNU_IFUNC symbols. */ 9112 if (htab->root.splt != NULL) 9113 { 9114 plt = htab->root.splt; 9115 gotplt = htab->root.sgotplt; 9116 relplt = htab->root.srelplt; 9117 } 9118 else 9119 { 9120 plt = htab->root.iplt; 9121 gotplt = htab->root.igotplt; 9122 relplt = htab->root.irelplt; 9123 } 9124 9125 /* This symbol has an entry in the procedure linkage table. Set 9126 it up. */ 9127 if ((h->dynindx == -1 9128 && !((h->forced_local || bfd_link_executable (info)) 9129 && h->def_regular 9130 && h->type == STT_GNU_IFUNC)) 9131 || plt == NULL 9132 || gotplt == NULL 9133 || relplt == NULL) 9134 return FALSE; 9135 9136 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info); 9137 if (!h->def_regular) 9138 { 9139 /* Mark the symbol as undefined, rather than as defined in 9140 the .plt section. */ 9141 sym->st_shndx = SHN_UNDEF; 9142 /* If the symbol is weak we need to clear the value. 9143 Otherwise, the PLT entry would provide a definition for 9144 the symbol even if the symbol wasn't defined anywhere, 9145 and so the symbol would never be NULL. Leave the value if 9146 there were any relocations where pointer equality matters 9147 (this is a clue for the dynamic linker, to make function 9148 pointer comparisons work between an application and shared 9149 library). */ 9150 if (!h->ref_regular_nonweak || !h->pointer_equality_needed) 9151 sym->st_value = 0; 9152 } 9153 } 9154 9155 if (h->got.offset != (bfd_vma) - 1 9156 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL 9157 /* Undefined weak symbol in static PIE resolves to 0 without 9158 any dynamic relocations. */ 9159 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) 9160 { 9161 Elf_Internal_Rela rela; 9162 bfd_byte *loc; 9163 9164 /* This symbol has an entry in the global offset table. Set it 9165 up. */ 9166 if (htab->root.sgot == NULL || htab->root.srelgot == NULL) 9167 abort (); 9168 9169 rela.r_offset = (htab->root.sgot->output_section->vma 9170 + htab->root.sgot->output_offset 9171 + (h->got.offset & ~(bfd_vma) 1)); 9172 9173 if (h->def_regular 9174 && h->type == STT_GNU_IFUNC) 9175 { 9176 if (bfd_link_pic (info)) 9177 { 9178 /* Generate R_AARCH64_GLOB_DAT. */ 9179 goto do_glob_dat; 9180 } 9181 else 9182 { 9183 asection *plt; 9184 9185 if (!h->pointer_equality_needed) 9186 abort (); 9187 9188 /* For non-shared object, we can't use .got.plt, which 9189 contains the real function address if we need pointer 9190 equality. We load the GOT entry with the PLT entry. */ 9191 plt = htab->root.splt ? htab->root.splt : htab->root.iplt; 9192 bfd_put_NN (output_bfd, (plt->output_section->vma 9193 + plt->output_offset 9194 + h->plt.offset), 9195 htab->root.sgot->contents 9196 + (h->got.offset & ~(bfd_vma) 1)); 9197 return TRUE; 9198 } 9199 } 9200 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h)) 9201 { 9202 if (!(h->def_regular || ELF_COMMON_DEF_P (h))) 9203 return FALSE; 9204 9205 BFD_ASSERT ((h->got.offset & 1) != 0); 9206 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE)); 9207 rela.r_addend = (h->root.u.def.value 9208 + h->root.u.def.section->output_section->vma 9209 + h->root.u.def.section->output_offset); 9210 } 9211 else 9212 { 9213 do_glob_dat: 9214 BFD_ASSERT ((h->got.offset & 1) == 0); 9215 bfd_put_NN (output_bfd, (bfd_vma) 0, 9216 htab->root.sgot->contents + h->got.offset); 9217 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT)); 9218 rela.r_addend = 0; 9219 } 9220 9221 loc = htab->root.srelgot->contents; 9222 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab); 9223 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); 9224 } 9225 9226 if (h->needs_copy) 9227 { 9228 Elf_Internal_Rela rela; 9229 asection *s; 9230 bfd_byte *loc; 9231 9232 /* This symbol needs a copy reloc. Set it up. */ 9233 if (h->dynindx == -1 9234 || (h->root.type != bfd_link_hash_defined 9235 && h->root.type != bfd_link_hash_defweak) 9236 || htab->root.srelbss == NULL) 9237 abort (); 9238 9239 rela.r_offset = (h->root.u.def.value 9240 + h->root.u.def.section->output_section->vma 9241 + h->root.u.def.section->output_offset); 9242 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY)); 9243 rela.r_addend = 0; 9244 if (h->root.u.def.section == htab->root.sdynrelro) 9245 s = htab->root.sreldynrelro; 9246 else 9247 s = htab->root.srelbss; 9248 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab); 9249 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); 9250 } 9251 9252 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may 9253 be NULL for local symbols. */ 9254 if (sym != NULL 9255 && (h == elf_hash_table (info)->hdynamic 9256 || h == elf_hash_table (info)->hgot)) 9257 sym->st_shndx = SHN_ABS; 9258 9259 return TRUE; 9260 } 9261 9262 /* Finish up local dynamic symbol handling. We set the contents of 9263 various dynamic sections here. */ 9264 9265 static bfd_boolean 9266 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf) 9267 { 9268 struct elf_link_hash_entry *h 9269 = (struct elf_link_hash_entry *) *slot; 9270 struct bfd_link_info *info 9271 = (struct bfd_link_info *) inf; 9272 9273 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd, 9274 info, h, NULL); 9275 } 9276 9277 static void 9278 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED, 9279 struct elf_aarch64_link_hash_table 9280 *htab) 9281 { 9282 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between 9283 small and large plts and at the minute just generates 9284 the small PLT. */ 9285 9286 /* PLT0 of the small PLT looks like this in ELF64 - 9287 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack. 9288 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT 9289 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the 9290 // symbol resolver 9291 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the 9292 // GOTPLT entry for this. 9293 br x17 9294 PLT0 will be slightly different in ELF32 due to different got entry 9295 size. */ 9296 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */ 9297 bfd_vma plt_base; 9298 9299 9300 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry, 9301 PLT_ENTRY_SIZE); 9302 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize = 9303 PLT_ENTRY_SIZE; 9304 9305 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma 9306 + htab->root.sgotplt->output_offset 9307 + GOT_ENTRY_SIZE * 2); 9308 9309 plt_base = htab->root.splt->output_section->vma + 9310 htab->root.splt->output_offset; 9311 9312 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8. 9313 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */ 9314 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL, 9315 htab->root.splt->contents + 4, 9316 PG (plt_got_2nd_ent) - PG (plt_base + 4)); 9317 9318 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12, 9319 htab->root.splt->contents + 8, 9320 PG_OFFSET (plt_got_2nd_ent)); 9321 9322 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12, 9323 htab->root.splt->contents + 12, 9324 PG_OFFSET (plt_got_2nd_ent)); 9325 } 9326 9327 static bfd_boolean 9328 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd, 9329 struct bfd_link_info *info) 9330 { 9331 struct elf_aarch64_link_hash_table *htab; 9332 bfd *dynobj; 9333 asection *sdyn; 9334 9335 htab = elf_aarch64_hash_table (info); 9336 dynobj = htab->root.dynobj; 9337 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 9338 9339 if (htab->root.dynamic_sections_created) 9340 { 9341 ElfNN_External_Dyn *dyncon, *dynconend; 9342 9343 if (sdyn == NULL || htab->root.sgot == NULL) 9344 abort (); 9345 9346 dyncon = (ElfNN_External_Dyn *) sdyn->contents; 9347 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size); 9348 for (; dyncon < dynconend; dyncon++) 9349 { 9350 Elf_Internal_Dyn dyn; 9351 asection *s; 9352 9353 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn); 9354 9355 switch (dyn.d_tag) 9356 { 9357 default: 9358 continue; 9359 9360 case DT_PLTGOT: 9361 s = htab->root.sgotplt; 9362 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 9363 break; 9364 9365 case DT_JMPREL: 9366 s = htab->root.srelplt; 9367 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 9368 break; 9369 9370 case DT_PLTRELSZ: 9371 s = htab->root.srelplt; 9372 dyn.d_un.d_val = s->size; 9373 break; 9374 9375 case DT_TLSDESC_PLT: 9376 s = htab->root.splt; 9377 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset 9378 + htab->tlsdesc_plt; 9379 break; 9380 9381 case DT_TLSDESC_GOT: 9382 s = htab->root.sgot; 9383 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset 9384 + htab->dt_tlsdesc_got; 9385 break; 9386 } 9387 9388 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon); 9389 } 9390 9391 } 9392 9393 /* Fill in the special first entry in the procedure linkage table. */ 9394 if (htab->root.splt && htab->root.splt->size > 0) 9395 { 9396 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab); 9397 9398 elf_section_data (htab->root.splt->output_section)-> 9399 this_hdr.sh_entsize = htab->plt_entry_size; 9400 9401 9402 if (htab->tlsdesc_plt) 9403 { 9404 bfd_put_NN (output_bfd, (bfd_vma) 0, 9405 htab->root.sgot->contents + htab->dt_tlsdesc_got); 9406 9407 memcpy (htab->root.splt->contents + htab->tlsdesc_plt, 9408 elfNN_aarch64_tlsdesc_small_plt_entry, 9409 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry)); 9410 9411 { 9412 bfd_vma adrp1_addr = 9413 htab->root.splt->output_section->vma 9414 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4; 9415 9416 bfd_vma adrp2_addr = adrp1_addr + 4; 9417 9418 bfd_vma got_addr = 9419 htab->root.sgot->output_section->vma 9420 + htab->root.sgot->output_offset; 9421 9422 bfd_vma pltgot_addr = 9423 htab->root.sgotplt->output_section->vma 9424 + htab->root.sgotplt->output_offset; 9425 9426 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got; 9427 9428 bfd_byte *plt_entry = 9429 htab->root.splt->contents + htab->tlsdesc_plt; 9430 9431 /* adrp x2, DT_TLSDESC_GOT */ 9432 elf_aarch64_update_plt_entry (output_bfd, 9433 BFD_RELOC_AARCH64_ADR_HI21_PCREL, 9434 plt_entry + 4, 9435 (PG (dt_tlsdesc_got) 9436 - PG (adrp1_addr))); 9437 9438 /* adrp x3, 0 */ 9439 elf_aarch64_update_plt_entry (output_bfd, 9440 BFD_RELOC_AARCH64_ADR_HI21_PCREL, 9441 plt_entry + 8, 9442 (PG (pltgot_addr) 9443 - PG (adrp2_addr))); 9444 9445 /* ldr x2, [x2, #0] */ 9446 elf_aarch64_update_plt_entry (output_bfd, 9447 BFD_RELOC_AARCH64_LDSTNN_LO12, 9448 plt_entry + 12, 9449 PG_OFFSET (dt_tlsdesc_got)); 9450 9451 /* add x3, x3, 0 */ 9452 elf_aarch64_update_plt_entry (output_bfd, 9453 BFD_RELOC_AARCH64_ADD_LO12, 9454 plt_entry + 16, 9455 PG_OFFSET (pltgot_addr)); 9456 } 9457 } 9458 } 9459 9460 if (htab->root.sgotplt) 9461 { 9462 if (bfd_is_abs_section (htab->root.sgotplt->output_section)) 9463 { 9464 _bfd_error_handler 9465 (_("discarded output section: `%pA'"), htab->root.sgotplt); 9466 return FALSE; 9467 } 9468 9469 /* Fill in the first three entries in the global offset table. */ 9470 if (htab->root.sgotplt->size > 0) 9471 { 9472 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents); 9473 9474 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */ 9475 bfd_put_NN (output_bfd, 9476 (bfd_vma) 0, 9477 htab->root.sgotplt->contents + GOT_ENTRY_SIZE); 9478 bfd_put_NN (output_bfd, 9479 (bfd_vma) 0, 9480 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2); 9481 } 9482 9483 if (htab->root.sgot) 9484 { 9485 if (htab->root.sgot->size > 0) 9486 { 9487 bfd_vma addr = 9488 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0; 9489 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents); 9490 } 9491 } 9492 9493 elf_section_data (htab->root.sgotplt->output_section)-> 9494 this_hdr.sh_entsize = GOT_ENTRY_SIZE; 9495 } 9496 9497 if (htab->root.sgot && htab->root.sgot->size > 0) 9498 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize 9499 = GOT_ENTRY_SIZE; 9500 9501 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */ 9502 htab_traverse (htab->loc_hash_table, 9503 elfNN_aarch64_finish_local_dynamic_symbol, 9504 info); 9505 9506 return TRUE; 9507 } 9508 9509 /* Return address for Ith PLT stub in section PLT, for relocation REL 9510 or (bfd_vma) -1 if it should not be included. */ 9511 9512 static bfd_vma 9513 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt, 9514 const arelent *rel ATTRIBUTE_UNUSED) 9515 { 9516 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE; 9517 } 9518 9519 /* Returns TRUE if NAME is an AArch64 mapping symbol. 9520 The ARM ELF standard defines $x (for A64 code) and $d (for data). 9521 It also allows a period initiated suffix to be added to the symbol, ie: 9522 "$[adtx]\.[:sym_char]+". */ 9523 9524 static bfd_boolean 9525 is_aarch64_mapping_symbol (const char * name) 9526 { 9527 return name != NULL /* Paranoia. */ 9528 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then 9529 the mapping symbols could have acquired a prefix. 9530 We do not support this here, since such symbols no 9531 longer conform to the ARM ELF ABI. */ 9532 && (name[1] == 'd' || name[1] == 'x') 9533 && (name[2] == 0 || name[2] == '.'); 9534 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if 9535 any characters that follow the period are legal characters for the body 9536 of a symbol's name. For now we just assume that this is the case. */ 9537 } 9538 9539 /* Make sure that mapping symbols in object files are not removed via the 9540 "strip --strip-unneeded" tool. These symbols might needed in order to 9541 correctly generate linked files. Once an object file has been linked, 9542 it should be safe to remove them. */ 9543 9544 static void 9545 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym) 9546 { 9547 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0) 9548 && sym->section != bfd_abs_section_ptr 9549 && is_aarch64_mapping_symbol (sym->name)) 9550 sym->flags |= BSF_KEEP; 9551 } 9552 9553 9554 /* We use this so we can override certain functions 9555 (though currently we don't). */ 9556 9557 const struct elf_size_info elfNN_aarch64_size_info = 9558 { 9559 sizeof (ElfNN_External_Ehdr), 9560 sizeof (ElfNN_External_Phdr), 9561 sizeof (ElfNN_External_Shdr), 9562 sizeof (ElfNN_External_Rel), 9563 sizeof (ElfNN_External_Rela), 9564 sizeof (ElfNN_External_Sym), 9565 sizeof (ElfNN_External_Dyn), 9566 sizeof (Elf_External_Note), 9567 4, /* Hash table entry size. */ 9568 1, /* Internal relocs per external relocs. */ 9569 ARCH_SIZE, /* Arch size. */ 9570 LOG_FILE_ALIGN, /* Log_file_align. */ 9571 ELFCLASSNN, EV_CURRENT, 9572 bfd_elfNN_write_out_phdrs, 9573 bfd_elfNN_write_shdrs_and_ehdr, 9574 bfd_elfNN_checksum_contents, 9575 bfd_elfNN_write_relocs, 9576 bfd_elfNN_swap_symbol_in, 9577 bfd_elfNN_swap_symbol_out, 9578 bfd_elfNN_slurp_reloc_table, 9579 bfd_elfNN_slurp_symbol_table, 9580 bfd_elfNN_swap_dyn_in, 9581 bfd_elfNN_swap_dyn_out, 9582 bfd_elfNN_swap_reloc_in, 9583 bfd_elfNN_swap_reloc_out, 9584 bfd_elfNN_swap_reloca_in, 9585 bfd_elfNN_swap_reloca_out 9586 }; 9587 9588 #define ELF_ARCH bfd_arch_aarch64 9589 #define ELF_MACHINE_CODE EM_AARCH64 9590 #define ELF_MAXPAGESIZE 0x10000 9591 #define ELF_MINPAGESIZE 0x1000 9592 #define ELF_COMMONPAGESIZE 0x1000 9593 9594 #define bfd_elfNN_close_and_cleanup \ 9595 elfNN_aarch64_close_and_cleanup 9596 9597 #define bfd_elfNN_bfd_free_cached_info \ 9598 elfNN_aarch64_bfd_free_cached_info 9599 9600 #define bfd_elfNN_bfd_is_target_special_symbol \ 9601 elfNN_aarch64_is_target_special_symbol 9602 9603 #define bfd_elfNN_bfd_link_hash_table_create \ 9604 elfNN_aarch64_link_hash_table_create 9605 9606 #define bfd_elfNN_bfd_merge_private_bfd_data \ 9607 elfNN_aarch64_merge_private_bfd_data 9608 9609 #define bfd_elfNN_bfd_print_private_bfd_data \ 9610 elfNN_aarch64_print_private_bfd_data 9611 9612 #define bfd_elfNN_bfd_reloc_type_lookup \ 9613 elfNN_aarch64_reloc_type_lookup 9614 9615 #define bfd_elfNN_bfd_reloc_name_lookup \ 9616 elfNN_aarch64_reloc_name_lookup 9617 9618 #define bfd_elfNN_bfd_set_private_flags \ 9619 elfNN_aarch64_set_private_flags 9620 9621 #define bfd_elfNN_find_inliner_info \ 9622 elfNN_aarch64_find_inliner_info 9623 9624 #define bfd_elfNN_find_nearest_line \ 9625 elfNN_aarch64_find_nearest_line 9626 9627 #define bfd_elfNN_mkobject \ 9628 elfNN_aarch64_mkobject 9629 9630 #define bfd_elfNN_new_section_hook \ 9631 elfNN_aarch64_new_section_hook 9632 9633 #define elf_backend_adjust_dynamic_symbol \ 9634 elfNN_aarch64_adjust_dynamic_symbol 9635 9636 #define elf_backend_always_size_sections \ 9637 elfNN_aarch64_always_size_sections 9638 9639 #define elf_backend_check_relocs \ 9640 elfNN_aarch64_check_relocs 9641 9642 #define elf_backend_copy_indirect_symbol \ 9643 elfNN_aarch64_copy_indirect_symbol 9644 9645 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts 9646 to them in our hash. */ 9647 #define elf_backend_create_dynamic_sections \ 9648 elfNN_aarch64_create_dynamic_sections 9649 9650 #define elf_backend_init_index_section \ 9651 _bfd_elf_init_2_index_sections 9652 9653 #define elf_backend_finish_dynamic_sections \ 9654 elfNN_aarch64_finish_dynamic_sections 9655 9656 #define elf_backend_finish_dynamic_symbol \ 9657 elfNN_aarch64_finish_dynamic_symbol 9658 9659 #define elf_backend_object_p \ 9660 elfNN_aarch64_object_p 9661 9662 #define elf_backend_output_arch_local_syms \ 9663 elfNN_aarch64_output_arch_local_syms 9664 9665 #define elf_backend_plt_sym_val \ 9666 elfNN_aarch64_plt_sym_val 9667 9668 #define elf_backend_post_process_headers \ 9669 elfNN_aarch64_post_process_headers 9670 9671 #define elf_backend_relocate_section \ 9672 elfNN_aarch64_relocate_section 9673 9674 #define elf_backend_reloc_type_class \ 9675 elfNN_aarch64_reloc_type_class 9676 9677 #define elf_backend_section_from_shdr \ 9678 elfNN_aarch64_section_from_shdr 9679 9680 #define elf_backend_size_dynamic_sections \ 9681 elfNN_aarch64_size_dynamic_sections 9682 9683 #define elf_backend_size_info \ 9684 elfNN_aarch64_size_info 9685 9686 #define elf_backend_write_section \ 9687 elfNN_aarch64_write_section 9688 9689 #define elf_backend_symbol_processing \ 9690 elfNN_aarch64_backend_symbol_processing 9691 9692 #define elf_backend_can_refcount 1 9693 #define elf_backend_can_gc_sections 1 9694 #define elf_backend_plt_readonly 1 9695 #define elf_backend_want_got_plt 1 9696 #define elf_backend_want_plt_sym 0 9697 #define elf_backend_want_dynrelro 1 9698 #define elf_backend_may_use_rel_p 0 9699 #define elf_backend_may_use_rela_p 1 9700 #define elf_backend_default_use_rela_p 1 9701 #define elf_backend_rela_normal 1 9702 #define elf_backend_dtrel_excludes_plt 1 9703 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3) 9704 #define elf_backend_default_execstack 0 9705 #define elf_backend_extern_protected_data 1 9706 #define elf_backend_hash_symbol elf_aarch64_hash_symbol 9707 9708 #undef elf_backend_obj_attrs_section 9709 #define elf_backend_obj_attrs_section ".ARM.attributes" 9710 9711 #include "elfNN-target.h" 9712 9713 /* CloudABI support. */ 9714 9715 #undef TARGET_LITTLE_SYM 9716 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec 9717 #undef TARGET_LITTLE_NAME 9718 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi" 9719 #undef TARGET_BIG_SYM 9720 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec 9721 #undef TARGET_BIG_NAME 9722 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi" 9723 9724 #undef ELF_OSABI 9725 #define ELF_OSABI ELFOSABI_CLOUDABI 9726 9727 #undef elfNN_bed 9728 #define elfNN_bed elfNN_aarch64_cloudabi_bed 9729 9730 #include "elfNN-target.h" 9731