xref: /netbsd-src/external/gpl3/binutils.old/dist/bfd/elfnn-aarch64.c (revision 924795e69c8bb3f17afd8fcbb799710cc1719dc4)
1 /* AArch64-specific support for NN-bit ELF.
2    Copyright (C) 2009-2020 Free Software Foundation, Inc.
3    Contributed by ARM Ltd.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; see the file COPYING3. If not,
19    see <http://www.gnu.org/licenses/>.  */
20 
21 /* Notes on implementation:
22 
23   Thread Local Store (TLS)
24 
25   Overview:
26 
27   The implementation currently supports both traditional TLS and TLS
28   descriptors, but only general dynamic (GD).
29 
30   For traditional TLS the assembler will present us with code
31   fragments of the form:
32 
33   adrp x0, :tlsgd:foo
34 			   R_AARCH64_TLSGD_ADR_PAGE21(foo)
35   add  x0, :tlsgd_lo12:foo
36 			   R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37   bl   __tls_get_addr
38   nop
39 
40   For TLS descriptors the assembler will present us with code
41   fragments of the form:
42 
43   adrp	x0, :tlsdesc:foo		      R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44   ldr	x1, [x0, #:tlsdesc_lo12:foo]	      R_AARCH64_TLSDESC_LD64_LO12(foo)
45   add	x0, x0, #:tlsdesc_lo12:foo	      R_AARCH64_TLSDESC_ADD_LO12(foo)
46   .tlsdesccall foo
47   blr	x1				      R_AARCH64_TLSDESC_CALL(foo)
48 
49   The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50   indicate that foo is thread local and should be accessed via the
51   traditional TLS mechanims.
52 
53   The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54   against foo indicate that 'foo' is thread local and should be accessed
55   via a TLS descriptor mechanism.
56 
57   The precise instruction sequence is only relevant from the
58   perspective of linker relaxation which is currently not implemented.
59 
60   The static linker must detect that 'foo' is a TLS object and
61   allocate a double GOT entry. The GOT entry must be created for both
62   global and local TLS symbols. Note that this is different to none
63   TLS local objects which do not need a GOT entry.
64 
65   In the traditional TLS mechanism, the double GOT entry is used to
66   provide the tls_index structure, containing module and offset
67   entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68   on the module entry. The loader will subsequently fixup this
69   relocation with the module identity.
70 
71   For global traditional TLS symbols the static linker places an
72   R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73   will subsequently fixup the offset. For local TLS symbols the static
74   linker fixes up offset.
75 
76   In the TLS descriptor mechanism the double GOT entry is used to
77   provide the descriptor. The static linker places the relocation
78   R_AARCH64_TLSDESC on the first GOT slot. The loader will
79   subsequently fix this up.
80 
81   Implementation:
82 
83   The handling of TLS symbols is implemented across a number of
84   different backend functions. The following is a top level view of
85   what processing is performed where.
86 
87   The TLS implementation maintains state information for each TLS
88   symbol. The state information for local and global symbols is kept
89   in different places. Global symbols use generic BFD structures while
90   local symbols use backend specific structures that are allocated and
91   maintained entirely by the backend.
92 
93   The flow:
94 
95   elfNN_aarch64_check_relocs()
96 
97   This function is invoked for each relocation.
98 
99   The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100   R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101   spotted. One time creation of local symbol data structures are
102   created when the first local symbol is seen.
103 
104   The reference count for a symbol is incremented.  The GOT type for
105   each symbol is marked as general dynamic.
106 
107   elfNN_aarch64_allocate_dynrelocs ()
108 
109   For each global with positive reference count we allocate a double
110   GOT slot. For a traditional TLS symbol we allocate space for two
111   relocation entries on the GOT, for a TLS descriptor symbol we
112   allocate space for one relocation on the slot. Record the GOT offset
113   for this symbol.
114 
115   elfNN_aarch64_size_dynamic_sections ()
116 
117   Iterate all input BFDS, look for in the local symbol data structure
118   constructed earlier for local TLS symbols and allocate them double
119   GOT slots along with space for a single GOT relocation. Update the
120   local symbol structure to record the GOT offset allocated.
121 
122   elfNN_aarch64_relocate_section ()
123 
124   Calls elfNN_aarch64_final_link_relocate ()
125 
126   Emit the relevant TLS relocations against the GOT for each TLS
127   symbol. For local TLS symbols emit the GOT offset directly. The GOT
128   relocations are emitted once the first time a TLS symbol is
129   encountered. The implementation uses the LSB of the GOT offset to
130   flag that the relevant GOT relocations for a symbol have been
131   emitted. All of the TLS code that uses the GOT offset needs to take
132   care to mask out this flag bit before using the offset.
133 
134   elfNN_aarch64_final_link_relocate ()
135 
136   Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations.  */
137 
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147 #include "cpu-aarch64.h"
148 
149 #define ARCH_SIZE	NN
150 
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME)		R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME)	"R_AARCH64_" #NAME
154 #define HOWTO64(...)		HOWTO (__VA_ARGS__)
155 #define HOWTO32(...)		EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN	3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159 
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME)		R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME)	"R_AARCH64_P32_" #NAME
163 #define HOWTO64(...)		EMPTY_HOWTO (0)
164 #define HOWTO32(...)		HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN	2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12	BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12		R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169 
170 #define IS_AARCH64_TLS_RELOC(R_TYPE)				\
171   ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC		\
172    || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21		\
173    || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21		\
174    || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC		\
175    || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1		\
176    || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21	\
177    || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC	\
178    || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC	\
179    || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19	\
180    || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC	\
181    || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1	\
182    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12	\
183    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12	\
184    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC	\
185    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC		\
186    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21		\
187    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21		\
188    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12	\
189    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC	\
190    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12	\
191    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC	\
192    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12	\
193    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC	\
194    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12	\
195    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC	\
196    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0	\
197    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC	\
198    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1	\
199    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC	\
200    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2	\
201    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12	\
202    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12	\
203    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC	\
204    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12	\
205    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC	\
206    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12	\
207    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC	\
208    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12	\
209    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC	\
210    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12	\
211    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC	\
212    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0		\
213    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC	\
214    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1		\
215    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC	\
216    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2		\
217    || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD			\
218    || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL			\
219    || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL			\
220    || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
221 
222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE)			\
223   ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD			\
224    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12		\
225    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21		\
226    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21		\
227    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL		\
228    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19		\
229    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC	\
230    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR			\
231    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC		\
232    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1		\
233    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR			\
234    || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21		\
235    || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21		\
236    || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC		\
237    || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC		\
238    || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1		\
239    || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21	\
240    || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19	\
241    || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC	\
242    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC		\
243    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21		\
244    || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
245 
246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE)			\
247   ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC			\
248    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD			\
249    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12		\
250    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21		\
251    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21		\
252    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL		\
253    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC	\
254    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12		\
255    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR			\
256    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19		\
257    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC		\
258    || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
259 
260 #define ELIMINATE_COPY_RELOCS 1
261 
262 /* Return size of a relocation entry.  HTAB is the bfd's
263    elf_aarch64_link_hash_entry.  */
264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
265 
266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32.  */
267 #define GOT_ENTRY_SIZE			(ARCH_SIZE / 8)
268 #define PLT_ENTRY_SIZE			(32)
269 #define PLT_SMALL_ENTRY_SIZE		(16)
270 #define PLT_TLSDESC_ENTRY_SIZE		(32)
271 /* PLT sizes with BTI insn.  */
272 #define PLT_BTI_SMALL_ENTRY_SIZE	(24)
273 /* PLT sizes with PAC insn.  */
274 #define PLT_PAC_SMALL_ENTRY_SIZE	(24)
275 /* PLT sizes with BTI and PAC insn.  */
276 #define PLT_BTI_PAC_SMALL_ENTRY_SIZE	(24)
277 
278 /* Encoding of the nop instruction.  */
279 #define INSN_NOP 0xd503201f
280 
281 #define aarch64_compute_jump_table_size(htab)		\
282   (((htab)->root.srelplt == NULL) ? 0			\
283    : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
284 
285 /* The first entry in a procedure linkage table looks like this
286    if the distance between the PLTGOT and the PLT is < 4GB use
287    these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
288    in x16 and needs to work out PLTGOT[1] by using an address of
289    [x16,#-GOT_ENTRY_SIZE].  */
290 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
291 {
292   0xf0, 0x7b, 0xbf, 0xa9,	/* stp x16, x30, [sp, #-16]!  */
293   0x10, 0x00, 0x00, 0x90,	/* adrp x16, (GOT+16)  */
294 #if ARCH_SIZE == 64
295   0x11, 0x0A, 0x40, 0xf9,	/* ldr x17, [x16, #PLT_GOT+0x10]  */
296   0x10, 0x42, 0x00, 0x91,	/* add x16, x16,#PLT_GOT+0x10   */
297 #else
298   0x11, 0x0A, 0x40, 0xb9,	/* ldr w17, [x16, #PLT_GOT+0x8]  */
299   0x10, 0x22, 0x00, 0x11,	/* add w16, w16,#PLT_GOT+0x8   */
300 #endif
301   0x20, 0x02, 0x1f, 0xd6,	/* br x17  */
302   0x1f, 0x20, 0x03, 0xd5,	/* nop */
303   0x1f, 0x20, 0x03, 0xd5,	/* nop */
304   0x1f, 0x20, 0x03, 0xd5,	/* nop */
305 };
306 
307 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry[PLT_ENTRY_SIZE] =
308 {
309   0x5f, 0x24, 0x03, 0xd5,	/* bti c.  */
310   0xf0, 0x7b, 0xbf, 0xa9,	/* stp x16, x30, [sp, #-16]!  */
311   0x10, 0x00, 0x00, 0x90,	/* adrp x16, (GOT+16)  */
312 #if ARCH_SIZE == 64
313   0x11, 0x0A, 0x40, 0xf9,	/* ldr x17, [x16, #PLT_GOT+0x10]  */
314   0x10, 0x42, 0x00, 0x91,	/* add x16, x16,#PLT_GOT+0x10   */
315 #else
316   0x11, 0x0A, 0x40, 0xb9,	/* ldr w17, [x16, #PLT_GOT+0x8]  */
317   0x10, 0x22, 0x00, 0x11,	/* add w16, w16,#PLT_GOT+0x8   */
318 #endif
319   0x20, 0x02, 0x1f, 0xd6,	/* br x17  */
320   0x1f, 0x20, 0x03, 0xd5,	/* nop */
321   0x1f, 0x20, 0x03, 0xd5,	/* nop */
322 };
323 
324 /* Per function entry in a procedure linkage table looks like this
325    if the distance between the PLTGOT and the PLT is < 4GB use
326    these PLT entries.  Use BTI versions of the PLTs when enabled.  */
327 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
328 {
329   0x10, 0x00, 0x00, 0x90,	/* adrp x16, PLTGOT + n * 8  */
330 #if ARCH_SIZE == 64
331   0x11, 0x02, 0x40, 0xf9,	/* ldr x17, [x16, PLTGOT + n * 8] */
332   0x10, 0x02, 0x00, 0x91,	/* add x16, x16, :lo12:PLTGOT + n * 8  */
333 #else
334   0x11, 0x02, 0x40, 0xb9,	/* ldr w17, [x16, PLTGOT + n * 4] */
335   0x10, 0x02, 0x00, 0x11,	/* add w16, w16, :lo12:PLTGOT + n * 4  */
336 #endif
337   0x20, 0x02, 0x1f, 0xd6,	/* br x17.  */
338 };
339 
340 static const bfd_byte
341 elfNN_aarch64_small_plt_bti_entry[PLT_BTI_SMALL_ENTRY_SIZE] =
342 {
343   0x5f, 0x24, 0x03, 0xd5,	/* bti c.  */
344   0x10, 0x00, 0x00, 0x90,	/* adrp x16, PLTGOT + n * 8  */
345 #if ARCH_SIZE == 64
346   0x11, 0x02, 0x40, 0xf9,	/* ldr x17, [x16, PLTGOT + n * 8] */
347   0x10, 0x02, 0x00, 0x91,	/* add x16, x16, :lo12:PLTGOT + n * 8  */
348 #else
349   0x11, 0x02, 0x40, 0xb9,	/* ldr w17, [x16, PLTGOT + n * 4] */
350   0x10, 0x02, 0x00, 0x11,	/* add w16, w16, :lo12:PLTGOT + n * 4  */
351 #endif
352   0x20, 0x02, 0x1f, 0xd6,	/* br x17.  */
353   0x1f, 0x20, 0x03, 0xd5,	/* nop */
354 };
355 
356 static const bfd_byte
357 elfNN_aarch64_small_plt_pac_entry[PLT_PAC_SMALL_ENTRY_SIZE] =
358 {
359   0x10, 0x00, 0x00, 0x90,	/* adrp x16, PLTGOT + n * 8  */
360 #if ARCH_SIZE == 64
361   0x11, 0x02, 0x40, 0xf9,	/* ldr x17, [x16, PLTGOT + n * 8] */
362   0x10, 0x02, 0x00, 0x91,	/* add x16, x16, :lo12:PLTGOT + n * 8  */
363 #else
364   0x11, 0x02, 0x40, 0xb9,	/* ldr w17, [x16, PLTGOT + n * 4] */
365   0x10, 0x02, 0x00, 0x11,	/* add w16, w16, :lo12:PLTGOT + n * 4  */
366 #endif
367   0x9f, 0x21, 0x03, 0xd5,	/* autia1716 */
368   0x20, 0x02, 0x1f, 0xd6,	/* br x17.  */
369   0x1f, 0x20, 0x03, 0xd5,	/* nop */
370 };
371 
372 static const bfd_byte
373 elfNN_aarch64_small_plt_bti_pac_entry[PLT_BTI_PAC_SMALL_ENTRY_SIZE] =
374 {
375   0x5f, 0x24, 0x03, 0xd5,	/* bti c.  */
376   0x10, 0x00, 0x00, 0x90,	/* adrp x16, PLTGOT + n * 8  */
377 #if ARCH_SIZE == 64
378   0x11, 0x02, 0x40, 0xf9,	/* ldr x17, [x16, PLTGOT + n * 8] */
379   0x10, 0x02, 0x00, 0x91,	/* add x16, x16, :lo12:PLTGOT + n * 8  */
380 #else
381   0x11, 0x02, 0x40, 0xb9,	/* ldr w17, [x16, PLTGOT + n * 4] */
382   0x10, 0x02, 0x00, 0x11,	/* add w16, w16, :lo12:PLTGOT + n * 4  */
383 #endif
384   0x9f, 0x21, 0x03, 0xd5,	/* autia1716 */
385   0x20, 0x02, 0x1f, 0xd6,	/* br x17.  */
386 };
387 
388 static const bfd_byte
389 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
390 {
391   0xe2, 0x0f, 0xbf, 0xa9,	/* stp x2, x3, [sp, #-16]! */
392   0x02, 0x00, 0x00, 0x90,	/* adrp x2, 0 */
393   0x03, 0x00, 0x00, 0x90,	/* adrp x3, 0 */
394 #if ARCH_SIZE == 64
395   0x42, 0x00, 0x40, 0xf9,	/* ldr x2, [x2, #0] */
396   0x63, 0x00, 0x00, 0x91,	/* add x3, x3, 0 */
397 #else
398   0x42, 0x00, 0x40, 0xb9,	/* ldr w2, [x2, #0] */
399   0x63, 0x00, 0x00, 0x11,	/* add w3, w3, 0 */
400 #endif
401   0x40, 0x00, 0x1f, 0xd6,	/* br x2 */
402   0x1f, 0x20, 0x03, 0xd5,	/* nop */
403   0x1f, 0x20, 0x03, 0xd5,	/* nop */
404 };
405 
406 static const bfd_byte
407 elfNN_aarch64_tlsdesc_small_plt_bti_entry[PLT_TLSDESC_ENTRY_SIZE] =
408 {
409   0x5f, 0x24, 0x03, 0xd5,	/* bti c.  */
410   0xe2, 0x0f, 0xbf, 0xa9,	/* stp x2, x3, [sp, #-16]! */
411   0x02, 0x00, 0x00, 0x90,	/* adrp x2, 0 */
412   0x03, 0x00, 0x00, 0x90,	/* adrp x3, 0 */
413 #if ARCH_SIZE == 64
414   0x42, 0x00, 0x40, 0xf9,	/* ldr x2, [x2, #0] */
415   0x63, 0x00, 0x00, 0x91,	/* add x3, x3, 0 */
416 #else
417   0x42, 0x00, 0x40, 0xb9,	/* ldr w2, [x2, #0] */
418   0x63, 0x00, 0x00, 0x11,	/* add w3, w3, 0 */
419 #endif
420   0x40, 0x00, 0x1f, 0xd6,	/* br x2 */
421   0x1f, 0x20, 0x03, 0xd5,	/* nop */
422 };
423 
424 #define elf_info_to_howto		elfNN_aarch64_info_to_howto
425 #define elf_info_to_howto_rel		elfNN_aarch64_info_to_howto
426 
427 #define AARCH64_ELF_ABI_VERSION		0
428 
429 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
430 #define ALL_ONES (~ (bfd_vma) 0)
431 
432 /* Indexed by the bfd interal reloc enumerators.
433    Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
434    in reloc.c.   */
435 
436 static reloc_howto_type elfNN_aarch64_howto_table[] =
437 {
438   EMPTY_HOWTO (0),
439 
440   /* Basic data relocations.  */
441 
442   /* Deprecated, but retained for backwards compatibility.  */
443   HOWTO64 (R_AARCH64_NULL,	/* type */
444 	 0,			/* rightshift */
445 	 3,			/* size (0 = byte, 1 = short, 2 = long) */
446 	 0,			/* bitsize */
447 	 FALSE,			/* pc_relative */
448 	 0,			/* bitpos */
449 	 complain_overflow_dont,	/* complain_on_overflow */
450 	 bfd_elf_generic_reloc,	/* special_function */
451 	 "R_AARCH64_NULL",	/* name */
452 	 FALSE,			/* partial_inplace */
453 	 0,			/* src_mask */
454 	 0,			/* dst_mask */
455 	 FALSE),		/* pcrel_offset */
456   HOWTO (R_AARCH64_NONE,	/* type */
457 	 0,			/* rightshift */
458 	 3,			/* size (0 = byte, 1 = short, 2 = long) */
459 	 0,			/* bitsize */
460 	 FALSE,			/* pc_relative */
461 	 0,			/* bitpos */
462 	 complain_overflow_dont,	/* complain_on_overflow */
463 	 bfd_elf_generic_reloc,	/* special_function */
464 	 "R_AARCH64_NONE",	/* name */
465 	 FALSE,			/* partial_inplace */
466 	 0,			/* src_mask */
467 	 0,			/* dst_mask */
468 	 FALSE),		/* pcrel_offset */
469 
470   /* .xword: (S+A) */
471   HOWTO64 (AARCH64_R (ABS64),	/* type */
472 	 0,			/* rightshift */
473 	 4,			/* size (4 = long long) */
474 	 64,			/* bitsize */
475 	 FALSE,			/* pc_relative */
476 	 0,			/* bitpos */
477 	 complain_overflow_unsigned,	/* complain_on_overflow */
478 	 bfd_elf_generic_reloc,	/* special_function */
479 	 AARCH64_R_STR (ABS64),	/* name */
480 	 FALSE,			/* partial_inplace */
481 	 ALL_ONES,		/* src_mask */
482 	 ALL_ONES,		/* dst_mask */
483 	 FALSE),		/* pcrel_offset */
484 
485   /* .word: (S+A) */
486   HOWTO (AARCH64_R (ABS32),	/* type */
487 	 0,			/* rightshift */
488 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
489 	 32,			/* bitsize */
490 	 FALSE,			/* pc_relative */
491 	 0,			/* bitpos */
492 	 complain_overflow_unsigned,	/* complain_on_overflow */
493 	 bfd_elf_generic_reloc,	/* special_function */
494 	 AARCH64_R_STR (ABS32),	/* name */
495 	 FALSE,			/* partial_inplace */
496 	 0xffffffff,		/* src_mask */
497 	 0xffffffff,		/* dst_mask */
498 	 FALSE),		/* pcrel_offset */
499 
500   /* .half:  (S+A) */
501   HOWTO (AARCH64_R (ABS16),	/* type */
502 	 0,			/* rightshift */
503 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
504 	 16,			/* bitsize */
505 	 FALSE,			/* pc_relative */
506 	 0,			/* bitpos */
507 	 complain_overflow_unsigned,	/* complain_on_overflow */
508 	 bfd_elf_generic_reloc,	/* special_function */
509 	 AARCH64_R_STR (ABS16),	/* name */
510 	 FALSE,			/* partial_inplace */
511 	 0xffff,		/* src_mask */
512 	 0xffff,		/* dst_mask */
513 	 FALSE),		/* pcrel_offset */
514 
515   /* .xword: (S+A-P) */
516   HOWTO64 (AARCH64_R (PREL64),	/* type */
517 	 0,			/* rightshift */
518 	 4,			/* size (4 = long long) */
519 	 64,			/* bitsize */
520 	 TRUE,			/* pc_relative */
521 	 0,			/* bitpos */
522 	 complain_overflow_signed,	/* complain_on_overflow */
523 	 bfd_elf_generic_reloc,	/* special_function */
524 	 AARCH64_R_STR (PREL64),	/* name */
525 	 FALSE,			/* partial_inplace */
526 	 ALL_ONES,		/* src_mask */
527 	 ALL_ONES,		/* dst_mask */
528 	 TRUE),			/* pcrel_offset */
529 
530   /* .word: (S+A-P) */
531   HOWTO (AARCH64_R (PREL32),	/* type */
532 	 0,			/* rightshift */
533 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
534 	 32,			/* bitsize */
535 	 TRUE,			/* pc_relative */
536 	 0,			/* bitpos */
537 	 complain_overflow_signed,	/* complain_on_overflow */
538 	 bfd_elf_generic_reloc,	/* special_function */
539 	 AARCH64_R_STR (PREL32),	/* name */
540 	 FALSE,			/* partial_inplace */
541 	 0xffffffff,		/* src_mask */
542 	 0xffffffff,		/* dst_mask */
543 	 TRUE),			/* pcrel_offset */
544 
545   /* .half: (S+A-P) */
546   HOWTO (AARCH64_R (PREL16),	/* type */
547 	 0,			/* rightshift */
548 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
549 	 16,			/* bitsize */
550 	 TRUE,			/* pc_relative */
551 	 0,			/* bitpos */
552 	 complain_overflow_signed,	/* complain_on_overflow */
553 	 bfd_elf_generic_reloc,	/* special_function */
554 	 AARCH64_R_STR (PREL16),	/* name */
555 	 FALSE,			/* partial_inplace */
556 	 0xffff,		/* src_mask */
557 	 0xffff,		/* dst_mask */
558 	 TRUE),			/* pcrel_offset */
559 
560   /* Group relocations to create a 16, 32, 48 or 64 bit
561      unsigned data or abs address inline.  */
562 
563   /* MOVZ:   ((S+A) >>  0) & 0xffff */
564   HOWTO (AARCH64_R (MOVW_UABS_G0),	/* type */
565 	 0,			/* rightshift */
566 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
567 	 16,			/* bitsize */
568 	 FALSE,			/* pc_relative */
569 	 0,			/* bitpos */
570 	 complain_overflow_unsigned,	/* complain_on_overflow */
571 	 bfd_elf_generic_reloc,	/* special_function */
572 	 AARCH64_R_STR (MOVW_UABS_G0),	/* name */
573 	 FALSE,			/* partial_inplace */
574 	 0xffff,		/* src_mask */
575 	 0xffff,		/* dst_mask */
576 	 FALSE),		/* pcrel_offset */
577 
578   /* MOVK:   ((S+A) >>  0) & 0xffff [no overflow check] */
579   HOWTO (AARCH64_R (MOVW_UABS_G0_NC),	/* type */
580 	 0,			/* rightshift */
581 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
582 	 16,			/* bitsize */
583 	 FALSE,			/* pc_relative */
584 	 0,			/* bitpos */
585 	 complain_overflow_dont,	/* complain_on_overflow */
586 	 bfd_elf_generic_reloc,	/* special_function */
587 	 AARCH64_R_STR (MOVW_UABS_G0_NC),	/* name */
588 	 FALSE,			/* partial_inplace */
589 	 0xffff,		/* src_mask */
590 	 0xffff,		/* dst_mask */
591 	 FALSE),		/* pcrel_offset */
592 
593   /* MOVZ:   ((S+A) >> 16) & 0xffff */
594   HOWTO (AARCH64_R (MOVW_UABS_G1),	/* type */
595 	 16,			/* rightshift */
596 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
597 	 16,			/* bitsize */
598 	 FALSE,			/* pc_relative */
599 	 0,			/* bitpos */
600 	 complain_overflow_unsigned,	/* complain_on_overflow */
601 	 bfd_elf_generic_reloc,	/* special_function */
602 	 AARCH64_R_STR (MOVW_UABS_G1),	/* name */
603 	 FALSE,			/* partial_inplace */
604 	 0xffff,		/* src_mask */
605 	 0xffff,		/* dst_mask */
606 	 FALSE),		/* pcrel_offset */
607 
608   /* MOVK:   ((S+A) >> 16) & 0xffff [no overflow check] */
609   HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC),	/* type */
610 	 16,			/* rightshift */
611 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
612 	 16,			/* bitsize */
613 	 FALSE,			/* pc_relative */
614 	 0,			/* bitpos */
615 	 complain_overflow_dont,	/* complain_on_overflow */
616 	 bfd_elf_generic_reloc,	/* special_function */
617 	 AARCH64_R_STR (MOVW_UABS_G1_NC),	/* name */
618 	 FALSE,			/* partial_inplace */
619 	 0xffff,		/* src_mask */
620 	 0xffff,		/* dst_mask */
621 	 FALSE),		/* pcrel_offset */
622 
623   /* MOVZ:   ((S+A) >> 32) & 0xffff */
624   HOWTO64 (AARCH64_R (MOVW_UABS_G2),	/* type */
625 	 32,			/* rightshift */
626 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
627 	 16,			/* bitsize */
628 	 FALSE,			/* pc_relative */
629 	 0,			/* bitpos */
630 	 complain_overflow_unsigned,	/* complain_on_overflow */
631 	 bfd_elf_generic_reloc,	/* special_function */
632 	 AARCH64_R_STR (MOVW_UABS_G2),	/* name */
633 	 FALSE,			/* partial_inplace */
634 	 0xffff,		/* src_mask */
635 	 0xffff,		/* dst_mask */
636 	 FALSE),		/* pcrel_offset */
637 
638   /* MOVK:   ((S+A) >> 32) & 0xffff [no overflow check] */
639   HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC),	/* type */
640 	 32,			/* rightshift */
641 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
642 	 16,			/* bitsize */
643 	 FALSE,			/* pc_relative */
644 	 0,			/* bitpos */
645 	 complain_overflow_dont,	/* complain_on_overflow */
646 	 bfd_elf_generic_reloc,	/* special_function */
647 	 AARCH64_R_STR (MOVW_UABS_G2_NC),	/* name */
648 	 FALSE,			/* partial_inplace */
649 	 0xffff,		/* src_mask */
650 	 0xffff,		/* dst_mask */
651 	 FALSE),		/* pcrel_offset */
652 
653   /* MOVZ:   ((S+A) >> 48) & 0xffff */
654   HOWTO64 (AARCH64_R (MOVW_UABS_G3),	/* type */
655 	 48,			/* rightshift */
656 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
657 	 16,			/* bitsize */
658 	 FALSE,			/* pc_relative */
659 	 0,			/* bitpos */
660 	 complain_overflow_unsigned,	/* complain_on_overflow */
661 	 bfd_elf_generic_reloc,	/* special_function */
662 	 AARCH64_R_STR (MOVW_UABS_G3),	/* name */
663 	 FALSE,			/* partial_inplace */
664 	 0xffff,		/* src_mask */
665 	 0xffff,		/* dst_mask */
666 	 FALSE),		/* pcrel_offset */
667 
668   /* Group relocations to create high part of a 16, 32, 48 or 64 bit
669      signed data or abs address inline. Will change instruction
670      to MOVN or MOVZ depending on sign of calculated value.  */
671 
672   /* MOV[ZN]:   ((S+A) >>  0) & 0xffff */
673   HOWTO (AARCH64_R (MOVW_SABS_G0),	/* type */
674 	 0,			/* rightshift */
675 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
676 	 17,			/* bitsize */
677 	 FALSE,			/* pc_relative */
678 	 0,			/* bitpos */
679 	 complain_overflow_signed,	/* complain_on_overflow */
680 	 bfd_elf_generic_reloc,	/* special_function */
681 	 AARCH64_R_STR (MOVW_SABS_G0),	/* name */
682 	 FALSE,			/* partial_inplace */
683 	 0xffff,		/* src_mask */
684 	 0xffff,		/* dst_mask */
685 	 FALSE),		/* pcrel_offset */
686 
687   /* MOV[ZN]:   ((S+A) >> 16) & 0xffff */
688   HOWTO64 (AARCH64_R (MOVW_SABS_G1),	/* type */
689 	 16,			/* rightshift */
690 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
691 	 17,			/* bitsize */
692 	 FALSE,			/* pc_relative */
693 	 0,			/* bitpos */
694 	 complain_overflow_signed,	/* complain_on_overflow */
695 	 bfd_elf_generic_reloc,	/* special_function */
696 	 AARCH64_R_STR (MOVW_SABS_G1),	/* name */
697 	 FALSE,			/* partial_inplace */
698 	 0xffff,		/* src_mask */
699 	 0xffff,		/* dst_mask */
700 	 FALSE),		/* pcrel_offset */
701 
702   /* MOV[ZN]:   ((S+A) >> 32) & 0xffff */
703   HOWTO64 (AARCH64_R (MOVW_SABS_G2),	/* type */
704 	 32,			/* rightshift */
705 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
706 	 17,			/* bitsize */
707 	 FALSE,			/* pc_relative */
708 	 0,			/* bitpos */
709 	 complain_overflow_signed,	/* complain_on_overflow */
710 	 bfd_elf_generic_reloc,	/* special_function */
711 	 AARCH64_R_STR (MOVW_SABS_G2),	/* name */
712 	 FALSE,			/* partial_inplace */
713 	 0xffff,		/* src_mask */
714 	 0xffff,		/* dst_mask */
715 	 FALSE),		/* pcrel_offset */
716 
717   /* Group relocations to create a 16, 32, 48 or 64 bit
718      PC relative address inline.  */
719 
720   /* MOV[NZ]:   ((S+A-P) >>  0) & 0xffff */
721   HOWTO (AARCH64_R (MOVW_PREL_G0),	/* type */
722 	 0,			/* rightshift */
723 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
724 	 17,			/* bitsize */
725 	 TRUE,			/* pc_relative */
726 	 0,			/* bitpos */
727 	 complain_overflow_signed,	/* complain_on_overflow */
728 	 bfd_elf_generic_reloc,	/* special_function */
729 	 AARCH64_R_STR (MOVW_PREL_G0),	/* name */
730 	 FALSE,			/* partial_inplace */
731 	 0xffff,		/* src_mask */
732 	 0xffff,		/* dst_mask */
733 	 TRUE),		/* pcrel_offset */
734 
735   /* MOVK:   ((S+A-P) >>  0) & 0xffff [no overflow check] */
736   HOWTO (AARCH64_R (MOVW_PREL_G0_NC),	/* type */
737 	 0,			/* rightshift */
738 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
739 	 16,			/* bitsize */
740 	 TRUE,			/* pc_relative */
741 	 0,			/* bitpos */
742 	 complain_overflow_dont,	/* complain_on_overflow */
743 	 bfd_elf_generic_reloc,	/* special_function */
744 	 AARCH64_R_STR (MOVW_PREL_G0_NC),	/* name */
745 	 FALSE,			/* partial_inplace */
746 	 0xffff,		/* src_mask */
747 	 0xffff,		/* dst_mask */
748 	 TRUE),		/* pcrel_offset */
749 
750   /* MOV[NZ]:   ((S+A-P) >> 16) & 0xffff */
751   HOWTO (AARCH64_R (MOVW_PREL_G1),	/* type */
752 	 16,			/* rightshift */
753 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
754 	 17,			/* bitsize */
755 	 TRUE,			/* pc_relative */
756 	 0,			/* bitpos */
757 	 complain_overflow_signed,	/* complain_on_overflow */
758 	 bfd_elf_generic_reloc,	/* special_function */
759 	 AARCH64_R_STR (MOVW_PREL_G1),	/* name */
760 	 FALSE,			/* partial_inplace */
761 	 0xffff,		/* src_mask */
762 	 0xffff,		/* dst_mask */
763 	 TRUE),		/* pcrel_offset */
764 
765   /* MOVK:   ((S+A-P) >> 16) & 0xffff [no overflow check] */
766   HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC),	/* type */
767 	 16,			/* rightshift */
768 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
769 	 16,			/* bitsize */
770 	 TRUE,			/* pc_relative */
771 	 0,			/* bitpos */
772 	 complain_overflow_dont,	/* complain_on_overflow */
773 	 bfd_elf_generic_reloc,	/* special_function */
774 	 AARCH64_R_STR (MOVW_PREL_G1_NC),	/* name */
775 	 FALSE,			/* partial_inplace */
776 	 0xffff,		/* src_mask */
777 	 0xffff,		/* dst_mask */
778 	 TRUE),		/* pcrel_offset */
779 
780   /* MOV[NZ]:   ((S+A-P) >> 32) & 0xffff */
781   HOWTO64 (AARCH64_R (MOVW_PREL_G2),	/* type */
782 	 32,			/* rightshift */
783 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
784 	 17,			/* bitsize */
785 	 TRUE,			/* pc_relative */
786 	 0,			/* bitpos */
787 	 complain_overflow_signed,	/* complain_on_overflow */
788 	 bfd_elf_generic_reloc,	/* special_function */
789 	 AARCH64_R_STR (MOVW_PREL_G2),	/* name */
790 	 FALSE,			/* partial_inplace */
791 	 0xffff,		/* src_mask */
792 	 0xffff,		/* dst_mask */
793 	 TRUE),		/* pcrel_offset */
794 
795   /* MOVK:   ((S+A-P) >> 32) & 0xffff [no overflow check] */
796   HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC),	/* type */
797 	 32,			/* rightshift */
798 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
799 	 16,			/* bitsize */
800 	 TRUE,			/* pc_relative */
801 	 0,			/* bitpos */
802 	 complain_overflow_dont,	/* complain_on_overflow */
803 	 bfd_elf_generic_reloc,	/* special_function */
804 	 AARCH64_R_STR (MOVW_PREL_G2_NC),	/* name */
805 	 FALSE,			/* partial_inplace */
806 	 0xffff,		/* src_mask */
807 	 0xffff,		/* dst_mask */
808 	 TRUE),		/* pcrel_offset */
809 
810   /* MOV[NZ]:   ((S+A-P) >> 48) & 0xffff */
811   HOWTO64 (AARCH64_R (MOVW_PREL_G3),	/* type */
812 	 48,			/* rightshift */
813 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
814 	 16,			/* bitsize */
815 	 TRUE,			/* pc_relative */
816 	 0,			/* bitpos */
817 	 complain_overflow_dont,	/* complain_on_overflow */
818 	 bfd_elf_generic_reloc,	/* special_function */
819 	 AARCH64_R_STR (MOVW_PREL_G3),	/* name */
820 	 FALSE,			/* partial_inplace */
821 	 0xffff,		/* src_mask */
822 	 0xffff,		/* dst_mask */
823 	 TRUE),		/* pcrel_offset */
824 
825 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
826    addresses: PG(x) is (x & ~0xfff).  */
827 
828   /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
829   HOWTO (AARCH64_R (LD_PREL_LO19),	/* type */
830 	 2,			/* rightshift */
831 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
832 	 19,			/* bitsize */
833 	 TRUE,			/* pc_relative */
834 	 0,			/* bitpos */
835 	 complain_overflow_signed,	/* complain_on_overflow */
836 	 bfd_elf_generic_reloc,	/* special_function */
837 	 AARCH64_R_STR (LD_PREL_LO19),	/* name */
838 	 FALSE,			/* partial_inplace */
839 	 0x7ffff,		/* src_mask */
840 	 0x7ffff,		/* dst_mask */
841 	 TRUE),			/* pcrel_offset */
842 
843   /* ADR:    (S+A-P) & 0x1fffff */
844   HOWTO (AARCH64_R (ADR_PREL_LO21),	/* type */
845 	 0,			/* rightshift */
846 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
847 	 21,			/* bitsize */
848 	 TRUE,			/* pc_relative */
849 	 0,			/* bitpos */
850 	 complain_overflow_signed,	/* complain_on_overflow */
851 	 bfd_elf_generic_reloc,	/* special_function */
852 	 AARCH64_R_STR (ADR_PREL_LO21),	/* name */
853 	 FALSE,			/* partial_inplace */
854 	 0x1fffff,		/* src_mask */
855 	 0x1fffff,		/* dst_mask */
856 	 TRUE),			/* pcrel_offset */
857 
858   /* ADRP:   ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
859   HOWTO (AARCH64_R (ADR_PREL_PG_HI21),	/* type */
860 	 12,			/* rightshift */
861 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
862 	 21,			/* bitsize */
863 	 TRUE,			/* pc_relative */
864 	 0,			/* bitpos */
865 	 complain_overflow_signed,	/* complain_on_overflow */
866 	 bfd_elf_generic_reloc,	/* special_function */
867 	 AARCH64_R_STR (ADR_PREL_PG_HI21),	/* name */
868 	 FALSE,			/* partial_inplace */
869 	 0x1fffff,		/* src_mask */
870 	 0x1fffff,		/* dst_mask */
871 	 TRUE),			/* pcrel_offset */
872 
873   /* ADRP:   ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
874   HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC),	/* type */
875 	 12,			/* rightshift */
876 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
877 	 21,			/* bitsize */
878 	 TRUE,			/* pc_relative */
879 	 0,			/* bitpos */
880 	 complain_overflow_dont,	/* complain_on_overflow */
881 	 bfd_elf_generic_reloc,	/* special_function */
882 	 AARCH64_R_STR (ADR_PREL_PG_HI21_NC),	/* name */
883 	 FALSE,			/* partial_inplace */
884 	 0x1fffff,		/* src_mask */
885 	 0x1fffff,		/* dst_mask */
886 	 TRUE),			/* pcrel_offset */
887 
888   /* ADD:    (S+A) & 0xfff [no overflow check] */
889   HOWTO (AARCH64_R (ADD_ABS_LO12_NC),	/* type */
890 	 0,			/* rightshift */
891 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
892 	 12,			/* bitsize */
893 	 FALSE,			/* pc_relative */
894 	 10,			/* bitpos */
895 	 complain_overflow_dont,	/* complain_on_overflow */
896 	 bfd_elf_generic_reloc,	/* special_function */
897 	 AARCH64_R_STR (ADD_ABS_LO12_NC),	/* name */
898 	 FALSE,			/* partial_inplace */
899 	 0x3ffc00,		/* src_mask */
900 	 0x3ffc00,		/* dst_mask */
901 	 FALSE),		/* pcrel_offset */
902 
903   /* LD/ST8:  (S+A) & 0xfff */
904   HOWTO (AARCH64_R (LDST8_ABS_LO12_NC),	/* type */
905 	 0,			/* rightshift */
906 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
907 	 12,			/* bitsize */
908 	 FALSE,			/* pc_relative */
909 	 0,			/* bitpos */
910 	 complain_overflow_dont,	/* complain_on_overflow */
911 	 bfd_elf_generic_reloc,	/* special_function */
912 	 AARCH64_R_STR (LDST8_ABS_LO12_NC),	/* name */
913 	 FALSE,			/* partial_inplace */
914 	 0xfff,			/* src_mask */
915 	 0xfff,			/* dst_mask */
916 	 FALSE),		/* pcrel_offset */
917 
918   /* Relocations for control-flow instructions.  */
919 
920   /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
921   HOWTO (AARCH64_R (TSTBR14),	/* type */
922 	 2,			/* rightshift */
923 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
924 	 14,			/* bitsize */
925 	 TRUE,			/* pc_relative */
926 	 0,			/* bitpos */
927 	 complain_overflow_signed,	/* complain_on_overflow */
928 	 bfd_elf_generic_reloc,	/* special_function */
929 	 AARCH64_R_STR (TSTBR14),	/* name */
930 	 FALSE,			/* partial_inplace */
931 	 0x3fff,		/* src_mask */
932 	 0x3fff,		/* dst_mask */
933 	 TRUE),			/* pcrel_offset */
934 
935   /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
936   HOWTO (AARCH64_R (CONDBR19),	/* type */
937 	 2,			/* rightshift */
938 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
939 	 19,			/* bitsize */
940 	 TRUE,			/* pc_relative */
941 	 0,			/* bitpos */
942 	 complain_overflow_signed,	/* complain_on_overflow */
943 	 bfd_elf_generic_reloc,	/* special_function */
944 	 AARCH64_R_STR (CONDBR19),	/* name */
945 	 FALSE,			/* partial_inplace */
946 	 0x7ffff,		/* src_mask */
947 	 0x7ffff,		/* dst_mask */
948 	 TRUE),			/* pcrel_offset */
949 
950   /* B:      ((S+A-P) >> 2) & 0x3ffffff */
951   HOWTO (AARCH64_R (JUMP26),	/* type */
952 	 2,			/* rightshift */
953 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
954 	 26,			/* bitsize */
955 	 TRUE,			/* pc_relative */
956 	 0,			/* bitpos */
957 	 complain_overflow_signed,	/* complain_on_overflow */
958 	 bfd_elf_generic_reloc,	/* special_function */
959 	 AARCH64_R_STR (JUMP26),	/* name */
960 	 FALSE,			/* partial_inplace */
961 	 0x3ffffff,		/* src_mask */
962 	 0x3ffffff,		/* dst_mask */
963 	 TRUE),			/* pcrel_offset */
964 
965   /* BL:     ((S+A-P) >> 2) & 0x3ffffff */
966   HOWTO (AARCH64_R (CALL26),	/* type */
967 	 2,			/* rightshift */
968 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
969 	 26,			/* bitsize */
970 	 TRUE,			/* pc_relative */
971 	 0,			/* bitpos */
972 	 complain_overflow_signed,	/* complain_on_overflow */
973 	 bfd_elf_generic_reloc,	/* special_function */
974 	 AARCH64_R_STR (CALL26),	/* name */
975 	 FALSE,			/* partial_inplace */
976 	 0x3ffffff,		/* src_mask */
977 	 0x3ffffff,		/* dst_mask */
978 	 TRUE),			/* pcrel_offset */
979 
980   /* LD/ST16:  (S+A) & 0xffe */
981   HOWTO (AARCH64_R (LDST16_ABS_LO12_NC),	/* type */
982 	 1,			/* rightshift */
983 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
984 	 12,			/* bitsize */
985 	 FALSE,			/* pc_relative */
986 	 0,			/* bitpos */
987 	 complain_overflow_dont,	/* complain_on_overflow */
988 	 bfd_elf_generic_reloc,	/* special_function */
989 	 AARCH64_R_STR (LDST16_ABS_LO12_NC),	/* name */
990 	 FALSE,			/* partial_inplace */
991 	 0xffe,			/* src_mask */
992 	 0xffe,			/* dst_mask */
993 	 FALSE),		/* pcrel_offset */
994 
995   /* LD/ST32:  (S+A) & 0xffc */
996   HOWTO (AARCH64_R (LDST32_ABS_LO12_NC),	/* type */
997 	 2,			/* rightshift */
998 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
999 	 12,			/* bitsize */
1000 	 FALSE,			/* pc_relative */
1001 	 0,			/* bitpos */
1002 	 complain_overflow_dont,	/* complain_on_overflow */
1003 	 bfd_elf_generic_reloc,	/* special_function */
1004 	 AARCH64_R_STR (LDST32_ABS_LO12_NC),	/* name */
1005 	 FALSE,			/* partial_inplace */
1006 	 0xffc,			/* src_mask */
1007 	 0xffc,			/* dst_mask */
1008 	 FALSE),		/* pcrel_offset */
1009 
1010   /* LD/ST64:  (S+A) & 0xff8 */
1011   HOWTO (AARCH64_R (LDST64_ABS_LO12_NC),	/* type */
1012 	 3,			/* rightshift */
1013 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1014 	 12,			/* bitsize */
1015 	 FALSE,			/* pc_relative */
1016 	 0,			/* bitpos */
1017 	 complain_overflow_dont,	/* complain_on_overflow */
1018 	 bfd_elf_generic_reloc,	/* special_function */
1019 	 AARCH64_R_STR (LDST64_ABS_LO12_NC),	/* name */
1020 	 FALSE,			/* partial_inplace */
1021 	 0xff8,			/* src_mask */
1022 	 0xff8,			/* dst_mask */
1023 	 FALSE),		/* pcrel_offset */
1024 
1025   /* LD/ST128:  (S+A) & 0xff0 */
1026   HOWTO (AARCH64_R (LDST128_ABS_LO12_NC),	/* type */
1027 	 4,			/* rightshift */
1028 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1029 	 12,			/* bitsize */
1030 	 FALSE,			/* pc_relative */
1031 	 0,			/* bitpos */
1032 	 complain_overflow_dont,	/* complain_on_overflow */
1033 	 bfd_elf_generic_reloc,	/* special_function */
1034 	 AARCH64_R_STR (LDST128_ABS_LO12_NC),	/* name */
1035 	 FALSE,			/* partial_inplace */
1036 	 0xff0,			/* src_mask */
1037 	 0xff0,			/* dst_mask */
1038 	 FALSE),		/* pcrel_offset */
1039 
1040   /* Set a load-literal immediate field to bits
1041      0x1FFFFC of G(S)-P */
1042   HOWTO (AARCH64_R (GOT_LD_PREL19),	/* type */
1043 	 2,				/* rightshift */
1044 	 2,				/* size (0 = byte,1 = short,2 = long) */
1045 	 19,				/* bitsize */
1046 	 TRUE,				/* pc_relative */
1047 	 0,				/* bitpos */
1048 	 complain_overflow_signed,	/* complain_on_overflow */
1049 	 bfd_elf_generic_reloc,		/* special_function */
1050 	 AARCH64_R_STR (GOT_LD_PREL19),	/* name */
1051 	 FALSE,				/* partial_inplace */
1052 	 0xffffe0,			/* src_mask */
1053 	 0xffffe0,			/* dst_mask */
1054 	 TRUE),				/* pcrel_offset */
1055 
1056   /* Get to the page for the GOT entry for the symbol
1057      (G(S) - P) using an ADRP instruction.  */
1058   HOWTO (AARCH64_R (ADR_GOT_PAGE),	/* type */
1059 	 12,			/* rightshift */
1060 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1061 	 21,			/* bitsize */
1062 	 TRUE,			/* pc_relative */
1063 	 0,			/* bitpos */
1064 	 complain_overflow_dont,	/* complain_on_overflow */
1065 	 bfd_elf_generic_reloc,	/* special_function */
1066 	 AARCH64_R_STR (ADR_GOT_PAGE),	/* name */
1067 	 FALSE,			/* partial_inplace */
1068 	 0x1fffff,		/* src_mask */
1069 	 0x1fffff,		/* dst_mask */
1070 	 TRUE),			/* pcrel_offset */
1071 
1072   /* LD64: GOT offset G(S) & 0xff8  */
1073   HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC),	/* type */
1074 	 3,			/* rightshift */
1075 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1076 	 12,			/* bitsize */
1077 	 FALSE,			/* pc_relative */
1078 	 0,			/* bitpos */
1079 	 complain_overflow_dont,	/* complain_on_overflow */
1080 	 bfd_elf_generic_reloc,	/* special_function */
1081 	 AARCH64_R_STR (LD64_GOT_LO12_NC),	/* name */
1082 	 FALSE,			/* partial_inplace */
1083 	 0xff8,			/* src_mask */
1084 	 0xff8,			/* dst_mask */
1085 	 FALSE),		/* pcrel_offset */
1086 
1087   /* LD32: GOT offset G(S) & 0xffc  */
1088   HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC),	/* type */
1089 	 2,			/* rightshift */
1090 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1091 	 12,			/* bitsize */
1092 	 FALSE,			/* pc_relative */
1093 	 0,			/* bitpos */
1094 	 complain_overflow_dont,	/* complain_on_overflow */
1095 	 bfd_elf_generic_reloc,	/* special_function */
1096 	 AARCH64_R_STR (LD32_GOT_LO12_NC),	/* name */
1097 	 FALSE,			/* partial_inplace */
1098 	 0xffc,			/* src_mask */
1099 	 0xffc,			/* dst_mask */
1100 	 FALSE),		/* pcrel_offset */
1101 
1102   /* Lower 16 bits of GOT offset for the symbol.  */
1103   HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC),	/* type */
1104 	 0,			/* rightshift */
1105 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1106 	 16,			/* bitsize */
1107 	 FALSE,			/* pc_relative */
1108 	 0,			/* bitpos */
1109 	 complain_overflow_dont,	/* complain_on_overflow */
1110 	 bfd_elf_generic_reloc,	/* special_function */
1111 	 AARCH64_R_STR (MOVW_GOTOFF_G0_NC),	/* name */
1112 	 FALSE,			/* partial_inplace */
1113 	 0xffff,		/* src_mask */
1114 	 0xffff,		/* dst_mask */
1115 	 FALSE),		/* pcrel_offset */
1116 
1117   /* Higher 16 bits of GOT offset for the symbol.  */
1118   HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1),	/* type */
1119 	 16,			/* rightshift */
1120 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1121 	 16,			/* bitsize */
1122 	 FALSE,			/* pc_relative */
1123 	 0,			/* bitpos */
1124 	 complain_overflow_unsigned,	/* complain_on_overflow */
1125 	 bfd_elf_generic_reloc,	/* special_function */
1126 	 AARCH64_R_STR (MOVW_GOTOFF_G1),	/* name */
1127 	 FALSE,			/* partial_inplace */
1128 	 0xffff,		/* src_mask */
1129 	 0xffff,		/* dst_mask */
1130 	 FALSE),		/* pcrel_offset */
1131 
1132   /* LD64: GOT offset for the symbol.  */
1133   HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15),	/* type */
1134 	 3,			/* rightshift */
1135 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1136 	 12,			/* bitsize */
1137 	 FALSE,			/* pc_relative */
1138 	 0,			/* bitpos */
1139 	 complain_overflow_unsigned,	/* complain_on_overflow */
1140 	 bfd_elf_generic_reloc,	/* special_function */
1141 	 AARCH64_R_STR (LD64_GOTOFF_LO15),	/* name */
1142 	 FALSE,			/* partial_inplace */
1143 	 0x7ff8,			/* src_mask */
1144 	 0x7ff8,			/* dst_mask */
1145 	 FALSE),		/* pcrel_offset */
1146 
1147   /* LD32: GOT offset to the page address of GOT table.
1148      (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc.  */
1149   HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14),	/* type */
1150 	 2,			/* rightshift */
1151 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1152 	 12,			/* bitsize */
1153 	 FALSE,			/* pc_relative */
1154 	 0,			/* bitpos */
1155 	 complain_overflow_unsigned,	/* complain_on_overflow */
1156 	 bfd_elf_generic_reloc,	/* special_function */
1157 	 AARCH64_R_STR (LD32_GOTPAGE_LO14),	/* name */
1158 	 FALSE,			/* partial_inplace */
1159 	 0x5ffc,		/* src_mask */
1160 	 0x5ffc,		/* dst_mask */
1161 	 FALSE),		/* pcrel_offset */
1162 
1163   /* LD64: GOT offset to the page address of GOT table.
1164      (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8.  */
1165   HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15),	/* type */
1166 	 3,			/* rightshift */
1167 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1168 	 12,			/* bitsize */
1169 	 FALSE,			/* pc_relative */
1170 	 0,			/* bitpos */
1171 	 complain_overflow_unsigned,	/* complain_on_overflow */
1172 	 bfd_elf_generic_reloc,	/* special_function */
1173 	 AARCH64_R_STR (LD64_GOTPAGE_LO15),	/* name */
1174 	 FALSE,			/* partial_inplace */
1175 	 0x7ff8,		/* src_mask */
1176 	 0x7ff8,		/* dst_mask */
1177 	 FALSE),		/* pcrel_offset */
1178 
1179   /* Get to the page for the GOT entry for the symbol
1180      (G(S) - P) using an ADRP instruction.  */
1181   HOWTO (AARCH64_R (TLSGD_ADR_PAGE21),	/* type */
1182 	 12,			/* rightshift */
1183 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1184 	 21,			/* bitsize */
1185 	 TRUE,			/* pc_relative */
1186 	 0,			/* bitpos */
1187 	 complain_overflow_dont,	/* complain_on_overflow */
1188 	 bfd_elf_generic_reloc,	/* special_function */
1189 	 AARCH64_R_STR (TLSGD_ADR_PAGE21),	/* name */
1190 	 FALSE,			/* partial_inplace */
1191 	 0x1fffff,		/* src_mask */
1192 	 0x1fffff,		/* dst_mask */
1193 	 TRUE),			/* pcrel_offset */
1194 
1195   HOWTO (AARCH64_R (TLSGD_ADR_PREL21),	/* type */
1196 	 0,			/* rightshift */
1197 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1198 	 21,			/* bitsize */
1199 	 TRUE,			/* pc_relative */
1200 	 0,			/* bitpos */
1201 	 complain_overflow_dont,	/* complain_on_overflow */
1202 	 bfd_elf_generic_reloc,	/* special_function */
1203 	 AARCH64_R_STR (TLSGD_ADR_PREL21),	/* name */
1204 	 FALSE,			/* partial_inplace */
1205 	 0x1fffff,		/* src_mask */
1206 	 0x1fffff,		/* dst_mask */
1207 	 TRUE),			/* pcrel_offset */
1208 
1209   /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1210   HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC),	/* type */
1211 	 0,			/* rightshift */
1212 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1213 	 12,			/* bitsize */
1214 	 FALSE,			/* pc_relative */
1215 	 0,			/* bitpos */
1216 	 complain_overflow_dont,	/* complain_on_overflow */
1217 	 bfd_elf_generic_reloc,	/* special_function */
1218 	 AARCH64_R_STR (TLSGD_ADD_LO12_NC),	/* name */
1219 	 FALSE,			/* partial_inplace */
1220 	 0xfff,			/* src_mask */
1221 	 0xfff,			/* dst_mask */
1222 	 FALSE),		/* pcrel_offset */
1223 
1224   /* Lower 16 bits of GOT offset to tls_index.  */
1225   HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC),	/* type */
1226 	 0,			/* rightshift */
1227 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1228 	 16,			/* bitsize */
1229 	 FALSE,			/* pc_relative */
1230 	 0,			/* bitpos */
1231 	 complain_overflow_dont,	/* complain_on_overflow */
1232 	 bfd_elf_generic_reloc,	/* special_function */
1233 	 AARCH64_R_STR (TLSGD_MOVW_G0_NC),	/* name */
1234 	 FALSE,			/* partial_inplace */
1235 	 0xffff,		/* src_mask */
1236 	 0xffff,		/* dst_mask */
1237 	 FALSE),		/* pcrel_offset */
1238 
1239   /* Higher 16 bits of GOT offset to tls_index.  */
1240   HOWTO64 (AARCH64_R (TLSGD_MOVW_G1),	/* type */
1241 	 16,			/* rightshift */
1242 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1243 	 16,			/* bitsize */
1244 	 FALSE,			/* pc_relative */
1245 	 0,			/* bitpos */
1246 	 complain_overflow_unsigned,	/* complain_on_overflow */
1247 	 bfd_elf_generic_reloc,	/* special_function */
1248 	 AARCH64_R_STR (TLSGD_MOVW_G1),	/* name */
1249 	 FALSE,			/* partial_inplace */
1250 	 0xffff,		/* src_mask */
1251 	 0xffff,		/* dst_mask */
1252 	 FALSE),		/* pcrel_offset */
1253 
1254   HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21),	/* type */
1255 	 12,			/* rightshift */
1256 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1257 	 21,			/* bitsize */
1258 	 FALSE,			/* pc_relative */
1259 	 0,			/* bitpos */
1260 	 complain_overflow_dont,	/* complain_on_overflow */
1261 	 bfd_elf_generic_reloc,	/* special_function */
1262 	 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21),	/* name */
1263 	 FALSE,			/* partial_inplace */
1264 	 0x1fffff,		/* src_mask */
1265 	 0x1fffff,		/* dst_mask */
1266 	 FALSE),		/* pcrel_offset */
1267 
1268   HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC),	/* type */
1269 	 3,			/* rightshift */
1270 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1271 	 12,			/* bitsize */
1272 	 FALSE,			/* pc_relative */
1273 	 0,			/* bitpos */
1274 	 complain_overflow_dont,	/* complain_on_overflow */
1275 	 bfd_elf_generic_reloc,	/* special_function */
1276 	 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC),	/* name */
1277 	 FALSE,			/* partial_inplace */
1278 	 0xff8,			/* src_mask */
1279 	 0xff8,			/* dst_mask */
1280 	 FALSE),		/* pcrel_offset */
1281 
1282   HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC),	/* type */
1283 	 2,			/* rightshift */
1284 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1285 	 12,			/* bitsize */
1286 	 FALSE,			/* pc_relative */
1287 	 0,			/* bitpos */
1288 	 complain_overflow_dont,	/* complain_on_overflow */
1289 	 bfd_elf_generic_reloc,	/* special_function */
1290 	 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC),	/* name */
1291 	 FALSE,			/* partial_inplace */
1292 	 0xffc,			/* src_mask */
1293 	 0xffc,			/* dst_mask */
1294 	 FALSE),		/* pcrel_offset */
1295 
1296   HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19),	/* type */
1297 	 2,			/* rightshift */
1298 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1299 	 19,			/* bitsize */
1300 	 FALSE,			/* pc_relative */
1301 	 0,			/* bitpos */
1302 	 complain_overflow_dont,	/* complain_on_overflow */
1303 	 bfd_elf_generic_reloc,	/* special_function */
1304 	 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19),	/* name */
1305 	 FALSE,			/* partial_inplace */
1306 	 0x1ffffc,		/* src_mask */
1307 	 0x1ffffc,		/* dst_mask */
1308 	 FALSE),		/* pcrel_offset */
1309 
1310   HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC),	/* type */
1311 	 0,			/* rightshift */
1312 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1313 	 16,			/* bitsize */
1314 	 FALSE,			/* pc_relative */
1315 	 0,			/* bitpos */
1316 	 complain_overflow_dont,	/* complain_on_overflow */
1317 	 bfd_elf_generic_reloc,	/* special_function */
1318 	 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC),	/* name */
1319 	 FALSE,			/* partial_inplace */
1320 	 0xffff,		/* src_mask */
1321 	 0xffff,		/* dst_mask */
1322 	 FALSE),		/* pcrel_offset */
1323 
1324   HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1),	/* type */
1325 	 16,			/* rightshift */
1326 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1327 	 16,			/* bitsize */
1328 	 FALSE,			/* pc_relative */
1329 	 0,			/* bitpos */
1330 	 complain_overflow_unsigned,	/* complain_on_overflow */
1331 	 bfd_elf_generic_reloc,	/* special_function */
1332 	 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1),	/* name */
1333 	 FALSE,			/* partial_inplace */
1334 	 0xffff,		/* src_mask */
1335 	 0xffff,		/* dst_mask */
1336 	 FALSE),		/* pcrel_offset */
1337 
1338   /* ADD: bit[23:12] of byte offset to module TLS base address.  */
1339   HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12),	/* type */
1340 	 12,			/* rightshift */
1341 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1342 	 12,			/* bitsize */
1343 	 FALSE,			/* pc_relative */
1344 	 0,			/* bitpos */
1345 	 complain_overflow_unsigned,	/* complain_on_overflow */
1346 	 bfd_elf_generic_reloc,	/* special_function */
1347 	 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12),	/* name */
1348 	 FALSE,			/* partial_inplace */
1349 	 0xfff,			/* src_mask */
1350 	 0xfff,			/* dst_mask */
1351 	 FALSE),		/* pcrel_offset */
1352 
1353   /* Unsigned 12 bit byte offset to module TLS base address.  */
1354   HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12),	/* type */
1355 	 0,			/* rightshift */
1356 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1357 	 12,			/* bitsize */
1358 	 FALSE,			/* pc_relative */
1359 	 0,			/* bitpos */
1360 	 complain_overflow_unsigned,	/* complain_on_overflow */
1361 	 bfd_elf_generic_reloc,	/* special_function */
1362 	 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12),	/* name */
1363 	 FALSE,			/* partial_inplace */
1364 	 0xfff,			/* src_mask */
1365 	 0xfff,			/* dst_mask */
1366 	 FALSE),		/* pcrel_offset */
1367 
1368   /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12.  */
1369   HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC),	/* type */
1370 	 0,			/* rightshift */
1371 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1372 	 12,			/* bitsize */
1373 	 FALSE,			/* pc_relative */
1374 	 0,			/* bitpos */
1375 	 complain_overflow_dont,	/* complain_on_overflow */
1376 	 bfd_elf_generic_reloc,	/* special_function */
1377 	 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC),	/* name */
1378 	 FALSE,			/* partial_inplace */
1379 	 0xfff,			/* src_mask */
1380 	 0xfff,			/* dst_mask */
1381 	 FALSE),		/* pcrel_offset */
1382 
1383   /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1384   HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC),	/* type */
1385 	 0,			/* rightshift */
1386 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1387 	 12,			/* bitsize */
1388 	 FALSE,			/* pc_relative */
1389 	 0,			/* bitpos */
1390 	 complain_overflow_dont,	/* complain_on_overflow */
1391 	 bfd_elf_generic_reloc,	/* special_function */
1392 	 AARCH64_R_STR (TLSLD_ADD_LO12_NC),	/* name */
1393 	 FALSE,			/* partial_inplace */
1394 	 0xfff,			/* src_mask */
1395 	 0xfff,			/* dst_mask */
1396 	 FALSE),		/* pcrel_offset */
1397 
1398   /* Get to the page for the GOT entry for the symbol
1399      (G(S) - P) using an ADRP instruction.  */
1400   HOWTO (AARCH64_R (TLSLD_ADR_PAGE21),	/* type */
1401 	 12,			/* rightshift */
1402 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1403 	 21,			/* bitsize */
1404 	 TRUE,			/* pc_relative */
1405 	 0,			/* bitpos */
1406 	 complain_overflow_signed,	/* complain_on_overflow */
1407 	 bfd_elf_generic_reloc,	/* special_function */
1408 	 AARCH64_R_STR (TLSLD_ADR_PAGE21),	/* name */
1409 	 FALSE,			/* partial_inplace */
1410 	 0x1fffff,		/* src_mask */
1411 	 0x1fffff,		/* dst_mask */
1412 	 TRUE),			/* pcrel_offset */
1413 
1414   HOWTO (AARCH64_R (TLSLD_ADR_PREL21),	/* type */
1415 	 0,			/* rightshift */
1416 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1417 	 21,			/* bitsize */
1418 	 TRUE,			/* pc_relative */
1419 	 0,			/* bitpos */
1420 	 complain_overflow_signed,	/* complain_on_overflow */
1421 	 bfd_elf_generic_reloc,	/* special_function */
1422 	 AARCH64_R_STR (TLSLD_ADR_PREL21),	/* name */
1423 	 FALSE,			/* partial_inplace */
1424 	 0x1fffff,		/* src_mask */
1425 	 0x1fffff,		/* dst_mask */
1426 	 TRUE),			/* pcrel_offset */
1427 
1428   /* LD/ST16: bit[11:1] of byte offset to module TLS base address.  */
1429   HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12),	/* type */
1430 	 1,			/* rightshift */
1431 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1432 	 11,			/* bitsize */
1433 	 FALSE,			/* pc_relative */
1434 	 10,			/* bitpos */
1435 	 complain_overflow_unsigned,	/* complain_on_overflow */
1436 	 bfd_elf_generic_reloc,	/* special_function */
1437 	 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12),	/* name */
1438 	 FALSE,			/* partial_inplace */
1439 	 0x1ffc00,		/* src_mask */
1440 	 0x1ffc00,		/* dst_mask */
1441 	 FALSE),		/* pcrel_offset */
1442 
1443   /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check.  */
1444   HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC),	/* type */
1445 	 1,			/* rightshift */
1446 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1447 	 11,			/* bitsize */
1448 	 FALSE,			/* pc_relative */
1449 	 10,			/* bitpos */
1450 	 complain_overflow_dont,	/* complain_on_overflow */
1451 	 bfd_elf_generic_reloc,	/* special_function */
1452 	 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC),	/* name */
1453 	 FALSE,			/* partial_inplace */
1454 	 0x1ffc00,		/* src_mask */
1455 	 0x1ffc00,		/* dst_mask */
1456 	 FALSE),		/* pcrel_offset */
1457 
1458   /* LD/ST32: bit[11:2] of byte offset to module TLS base address.  */
1459   HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12),	/* type */
1460 	 2,			/* rightshift */
1461 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1462 	 10,			/* bitsize */
1463 	 FALSE,			/* pc_relative */
1464 	 10,			/* bitpos */
1465 	 complain_overflow_unsigned,	/* complain_on_overflow */
1466 	 bfd_elf_generic_reloc,	/* special_function */
1467 	 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12),	/* name */
1468 	 FALSE,			/* partial_inplace */
1469 	 0x3ffc00,		/* src_mask */
1470 	 0x3ffc00,		/* dst_mask */
1471 	 FALSE),		/* pcrel_offset */
1472 
1473   /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check.  */
1474   HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC),	/* type */
1475 	 2,			/* rightshift */
1476 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1477 	 10,			/* bitsize */
1478 	 FALSE,			/* pc_relative */
1479 	 10,			/* bitpos */
1480 	 complain_overflow_dont,	/* complain_on_overflow */
1481 	 bfd_elf_generic_reloc,	/* special_function */
1482 	 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC),	/* name */
1483 	 FALSE,			/* partial_inplace */
1484 	 0xffc00,		/* src_mask */
1485 	 0xffc00,		/* dst_mask */
1486 	 FALSE),		/* pcrel_offset */
1487 
1488   /* LD/ST64: bit[11:3] of byte offset to module TLS base address.  */
1489   HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12),	/* type */
1490 	 3,			/* rightshift */
1491 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1492 	 9,			/* bitsize */
1493 	 FALSE,			/* pc_relative */
1494 	 10,			/* bitpos */
1495 	 complain_overflow_unsigned,	/* complain_on_overflow */
1496 	 bfd_elf_generic_reloc,	/* special_function */
1497 	 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12),	/* name */
1498 	 FALSE,			/* partial_inplace */
1499 	 0x3ffc00,		/* src_mask */
1500 	 0x3ffc00,		/* dst_mask */
1501 	 FALSE),		/* pcrel_offset */
1502 
1503   /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check.  */
1504   HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC),	/* type */
1505 	 3,			/* rightshift */
1506 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1507 	 9,			/* bitsize */
1508 	 FALSE,			/* pc_relative */
1509 	 10,			/* bitpos */
1510 	 complain_overflow_dont,	/* complain_on_overflow */
1511 	 bfd_elf_generic_reloc,	/* special_function */
1512 	 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC),	/* name */
1513 	 FALSE,			/* partial_inplace */
1514 	 0x7fc00,		/* src_mask */
1515 	 0x7fc00,		/* dst_mask */
1516 	 FALSE),		/* pcrel_offset */
1517 
1518   /* LD/ST8: bit[11:0] of byte offset to module TLS base address.  */
1519   HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12),	/* type */
1520 	 0,			/* rightshift */
1521 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1522 	 12,			/* bitsize */
1523 	 FALSE,			/* pc_relative */
1524 	 10,			/* bitpos */
1525 	 complain_overflow_unsigned,	/* complain_on_overflow */
1526 	 bfd_elf_generic_reloc,	/* special_function */
1527 	 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12),	/* name */
1528 	 FALSE,			/* partial_inplace */
1529 	 0x3ffc00,		/* src_mask */
1530 	 0x3ffc00,		/* dst_mask */
1531 	 FALSE),		/* pcrel_offset */
1532 
1533   /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check.  */
1534   HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC),	/* type */
1535 	 0,			/* rightshift */
1536 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1537 	 12,			/* bitsize */
1538 	 FALSE,			/* pc_relative */
1539 	 10,			/* bitpos */
1540 	 complain_overflow_dont,	/* complain_on_overflow */
1541 	 bfd_elf_generic_reloc,	/* special_function */
1542 	 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC),	/* name */
1543 	 FALSE,			/* partial_inplace */
1544 	 0x3ffc00,		/* src_mask */
1545 	 0x3ffc00,		/* dst_mask */
1546 	 FALSE),		/* pcrel_offset */
1547 
1548   /* MOVZ: bit[15:0] of byte offset to module TLS base address.  */
1549   HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0),	/* type */
1550 	 0,			/* rightshift */
1551 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1552 	 16,			/* bitsize */
1553 	 FALSE,			/* pc_relative */
1554 	 0,			/* bitpos */
1555 	 complain_overflow_unsigned,	/* complain_on_overflow */
1556 	 bfd_elf_generic_reloc,	/* special_function */
1557 	 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0),	/* name */
1558 	 FALSE,			/* partial_inplace */
1559 	 0xffff,		/* src_mask */
1560 	 0xffff,		/* dst_mask */
1561 	 FALSE),		/* pcrel_offset */
1562 
1563   /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0.  */
1564   HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC),	/* type */
1565 	 0,			/* rightshift */
1566 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1567 	 16,			/* bitsize */
1568 	 FALSE,			/* pc_relative */
1569 	 0,			/* bitpos */
1570 	 complain_overflow_dont,	/* complain_on_overflow */
1571 	 bfd_elf_generic_reloc,	/* special_function */
1572 	 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC),	/* name */
1573 	 FALSE,			/* partial_inplace */
1574 	 0xffff,		/* src_mask */
1575 	 0xffff,		/* dst_mask */
1576 	 FALSE),		/* pcrel_offset */
1577 
1578   /* MOVZ: bit[31:16] of byte offset to module TLS base address.  */
1579   HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1),	/* type */
1580 	 16,			/* rightshift */
1581 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1582 	 16,			/* bitsize */
1583 	 FALSE,			/* pc_relative */
1584 	 0,			/* bitpos */
1585 	 complain_overflow_unsigned,	/* complain_on_overflow */
1586 	 bfd_elf_generic_reloc,	/* special_function */
1587 	 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1),	/* name */
1588 	 FALSE,			/* partial_inplace */
1589 	 0xffff,		/* src_mask */
1590 	 0xffff,		/* dst_mask */
1591 	 FALSE),		/* pcrel_offset */
1592 
1593   /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1.  */
1594   HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC),	/* type */
1595 	 16,			/* rightshift */
1596 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1597 	 16,			/* bitsize */
1598 	 FALSE,			/* pc_relative */
1599 	 0,			/* bitpos */
1600 	 complain_overflow_dont,	/* complain_on_overflow */
1601 	 bfd_elf_generic_reloc,	/* special_function */
1602 	 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC),	/* name */
1603 	 FALSE,			/* partial_inplace */
1604 	 0xffff,		/* src_mask */
1605 	 0xffff,		/* dst_mask */
1606 	 FALSE),		/* pcrel_offset */
1607 
1608   /* MOVZ: bit[47:32] of byte offset to module TLS base address.  */
1609   HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2),	/* type */
1610 	 32,			/* rightshift */
1611 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1612 	 16,			/* bitsize */
1613 	 FALSE,			/* pc_relative */
1614 	 0,			/* bitpos */
1615 	 complain_overflow_unsigned,	/* complain_on_overflow */
1616 	 bfd_elf_generic_reloc,	/* special_function */
1617 	 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2),	/* name */
1618 	 FALSE,			/* partial_inplace */
1619 	 0xffff,		/* src_mask */
1620 	 0xffff,		/* dst_mask */
1621 	 FALSE),		/* pcrel_offset */
1622 
1623   HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2),	/* type */
1624 	 32,			/* rightshift */
1625 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1626 	 16,			/* bitsize */
1627 	 FALSE,			/* pc_relative */
1628 	 0,			/* bitpos */
1629 	 complain_overflow_unsigned,	/* complain_on_overflow */
1630 	 bfd_elf_generic_reloc,	/* special_function */
1631 	 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2),	/* name */
1632 	 FALSE,			/* partial_inplace */
1633 	 0xffff,		/* src_mask */
1634 	 0xffff,		/* dst_mask */
1635 	 FALSE),		/* pcrel_offset */
1636 
1637   HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1),	/* type */
1638 	 16,			/* rightshift */
1639 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1640 	 16,			/* bitsize */
1641 	 FALSE,			/* pc_relative */
1642 	 0,			/* bitpos */
1643 	 complain_overflow_dont,	/* complain_on_overflow */
1644 	 bfd_elf_generic_reloc,	/* special_function */
1645 	 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1),	/* name */
1646 	 FALSE,			/* partial_inplace */
1647 	 0xffff,		/* src_mask */
1648 	 0xffff,		/* dst_mask */
1649 	 FALSE),		/* pcrel_offset */
1650 
1651   HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC),	/* type */
1652 	 16,			/* rightshift */
1653 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1654 	 16,			/* bitsize */
1655 	 FALSE,			/* pc_relative */
1656 	 0,			/* bitpos */
1657 	 complain_overflow_dont,	/* complain_on_overflow */
1658 	 bfd_elf_generic_reloc,	/* special_function */
1659 	 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC),	/* name */
1660 	 FALSE,			/* partial_inplace */
1661 	 0xffff,		/* src_mask */
1662 	 0xffff,		/* dst_mask */
1663 	 FALSE),		/* pcrel_offset */
1664 
1665   HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0),	/* type */
1666 	 0,			/* rightshift */
1667 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1668 	 16,			/* bitsize */
1669 	 FALSE,			/* pc_relative */
1670 	 0,			/* bitpos */
1671 	 complain_overflow_dont,	/* complain_on_overflow */
1672 	 bfd_elf_generic_reloc,	/* special_function */
1673 	 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0),	/* name */
1674 	 FALSE,			/* partial_inplace */
1675 	 0xffff,		/* src_mask */
1676 	 0xffff,		/* dst_mask */
1677 	 FALSE),		/* pcrel_offset */
1678 
1679   HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC),	/* type */
1680 	 0,			/* rightshift */
1681 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1682 	 16,			/* bitsize */
1683 	 FALSE,			/* pc_relative */
1684 	 0,			/* bitpos */
1685 	 complain_overflow_dont,	/* complain_on_overflow */
1686 	 bfd_elf_generic_reloc,	/* special_function */
1687 	 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC),	/* name */
1688 	 FALSE,			/* partial_inplace */
1689 	 0xffff,		/* src_mask */
1690 	 0xffff,		/* dst_mask */
1691 	 FALSE),		/* pcrel_offset */
1692 
1693   HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12),	/* type */
1694 	 12,			/* rightshift */
1695 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1696 	 12,			/* bitsize */
1697 	 FALSE,			/* pc_relative */
1698 	 0,			/* bitpos */
1699 	 complain_overflow_unsigned,	/* complain_on_overflow */
1700 	 bfd_elf_generic_reloc,	/* special_function */
1701 	 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12),	/* name */
1702 	 FALSE,			/* partial_inplace */
1703 	 0xfff,			/* src_mask */
1704 	 0xfff,			/* dst_mask */
1705 	 FALSE),		/* pcrel_offset */
1706 
1707   HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12),	/* type */
1708 	 0,			/* rightshift */
1709 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1710 	 12,			/* bitsize */
1711 	 FALSE,			/* pc_relative */
1712 	 0,			/* bitpos */
1713 	 complain_overflow_unsigned,	/* complain_on_overflow */
1714 	 bfd_elf_generic_reloc,	/* special_function */
1715 	 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12),	/* name */
1716 	 FALSE,			/* partial_inplace */
1717 	 0xfff,			/* src_mask */
1718 	 0xfff,			/* dst_mask */
1719 	 FALSE),		/* pcrel_offset */
1720 
1721   HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC),	/* type */
1722 	 0,			/* rightshift */
1723 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1724 	 12,			/* bitsize */
1725 	 FALSE,			/* pc_relative */
1726 	 0,			/* bitpos */
1727 	 complain_overflow_dont,	/* complain_on_overflow */
1728 	 bfd_elf_generic_reloc,	/* special_function */
1729 	 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC),	/* name */
1730 	 FALSE,			/* partial_inplace */
1731 	 0xfff,			/* src_mask */
1732 	 0xfff,			/* dst_mask */
1733 	 FALSE),		/* pcrel_offset */
1734 
1735   /* LD/ST16: bit[11:1] of byte offset to module TLS base address.  */
1736   HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12),	/* type */
1737 	 1,			/* rightshift */
1738 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1739 	 11,			/* bitsize */
1740 	 FALSE,			/* pc_relative */
1741 	 10,			/* bitpos */
1742 	 complain_overflow_unsigned,	/* complain_on_overflow */
1743 	 bfd_elf_generic_reloc,	/* special_function */
1744 	 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12),	/* name */
1745 	 FALSE,			/* partial_inplace */
1746 	 0x1ffc00,		/* src_mask */
1747 	 0x1ffc00,		/* dst_mask */
1748 	 FALSE),		/* pcrel_offset */
1749 
1750   /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check.  */
1751   HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC),	/* type */
1752 	 1,			/* rightshift */
1753 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1754 	 11,			/* bitsize */
1755 	 FALSE,			/* pc_relative */
1756 	 10,			/* bitpos */
1757 	 complain_overflow_dont,	/* complain_on_overflow */
1758 	 bfd_elf_generic_reloc,	/* special_function */
1759 	 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC),	/* name */
1760 	 FALSE,			/* partial_inplace */
1761 	 0x1ffc00,		/* src_mask */
1762 	 0x1ffc00,		/* dst_mask */
1763 	 FALSE),		/* pcrel_offset */
1764 
1765   /* LD/ST32: bit[11:2] of byte offset to module TLS base address.  */
1766   HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12),	/* type */
1767 	 2,			/* rightshift */
1768 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1769 	 10,			/* bitsize */
1770 	 FALSE,			/* pc_relative */
1771 	 10,			/* bitpos */
1772 	 complain_overflow_unsigned,	/* complain_on_overflow */
1773 	 bfd_elf_generic_reloc,	/* special_function */
1774 	 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12),	/* name */
1775 	 FALSE,			/* partial_inplace */
1776 	 0xffc00,		/* src_mask */
1777 	 0xffc00,		/* dst_mask */
1778 	 FALSE),		/* pcrel_offset */
1779 
1780   /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check.  */
1781   HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC),	/* type */
1782 	 2,			/* rightshift */
1783 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1784 	 10,			/* bitsize */
1785 	 FALSE,			/* pc_relative */
1786 	 10,			/* bitpos */
1787 	 complain_overflow_dont,	/* complain_on_overflow */
1788 	 bfd_elf_generic_reloc,	/* special_function */
1789 	 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC),	/* name */
1790 	 FALSE,			/* partial_inplace */
1791 	 0xffc00,		/* src_mask */
1792 	 0xffc00,		/* dst_mask */
1793 	 FALSE),		/* pcrel_offset */
1794 
1795   /* LD/ST64: bit[11:3] of byte offset to module TLS base address.  */
1796   HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12),	/* type */
1797 	 3,			/* rightshift */
1798 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1799 	 9,			/* bitsize */
1800 	 FALSE,			/* pc_relative */
1801 	 10,			/* bitpos */
1802 	 complain_overflow_unsigned,	/* complain_on_overflow */
1803 	 bfd_elf_generic_reloc,	/* special_function */
1804 	 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12),	/* name */
1805 	 FALSE,			/* partial_inplace */
1806 	 0x7fc00,		/* src_mask */
1807 	 0x7fc00,		/* dst_mask */
1808 	 FALSE),		/* pcrel_offset */
1809 
1810   /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check.  */
1811   HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC),	/* type */
1812 	 3,			/* rightshift */
1813 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1814 	 9,			/* bitsize */
1815 	 FALSE,			/* pc_relative */
1816 	 10,			/* bitpos */
1817 	 complain_overflow_dont,	/* complain_on_overflow */
1818 	 bfd_elf_generic_reloc,	/* special_function */
1819 	 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC),	/* name */
1820 	 FALSE,			/* partial_inplace */
1821 	 0x7fc00,		/* src_mask */
1822 	 0x7fc00,		/* dst_mask */
1823 	 FALSE),		/* pcrel_offset */
1824 
1825   /* LD/ST8: bit[11:0] of byte offset to module TLS base address.  */
1826   HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12),	/* type */
1827 	 0,			/* rightshift */
1828 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1829 	 12,			/* bitsize */
1830 	 FALSE,			/* pc_relative */
1831 	 10,			/* bitpos */
1832 	 complain_overflow_unsigned,	/* complain_on_overflow */
1833 	 bfd_elf_generic_reloc,	/* special_function */
1834 	 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12),	/* name */
1835 	 FALSE,			/* partial_inplace */
1836 	 0x3ffc00,		/* src_mask */
1837 	 0x3ffc00,		/* dst_mask */
1838 	 FALSE),		/* pcrel_offset */
1839 
1840   /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check.  */
1841   HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC),	/* type */
1842 	 0,			/* rightshift */
1843 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1844 	 12,			/* bitsize */
1845 	 FALSE,			/* pc_relative */
1846 	 10,			/* bitpos */
1847 	 complain_overflow_dont,	/* complain_on_overflow */
1848 	 bfd_elf_generic_reloc,	/* special_function */
1849 	 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC),	/* name */
1850 	 FALSE,			/* partial_inplace */
1851 	 0x3ffc00,		/* src_mask */
1852 	 0x3ffc00,		/* dst_mask */
1853 	 FALSE),		/* pcrel_offset */
1854 
1855   HOWTO (AARCH64_R (TLSDESC_LD_PREL19),	/* type */
1856 	 2,			/* rightshift */
1857 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1858 	 19,			/* bitsize */
1859 	 TRUE,			/* pc_relative */
1860 	 0,			/* bitpos */
1861 	 complain_overflow_dont,	/* complain_on_overflow */
1862 	 bfd_elf_generic_reloc,	/* special_function */
1863 	 AARCH64_R_STR (TLSDESC_LD_PREL19),	/* name */
1864 	 FALSE,			/* partial_inplace */
1865 	 0x0ffffe0,		/* src_mask */
1866 	 0x0ffffe0,		/* dst_mask */
1867 	 TRUE),			/* pcrel_offset */
1868 
1869   HOWTO (AARCH64_R (TLSDESC_ADR_PREL21),	/* type */
1870 	 0,			/* rightshift */
1871 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1872 	 21,			/* bitsize */
1873 	 TRUE,			/* pc_relative */
1874 	 0,			/* bitpos */
1875 	 complain_overflow_dont,	/* complain_on_overflow */
1876 	 bfd_elf_generic_reloc,	/* special_function */
1877 	 AARCH64_R_STR (TLSDESC_ADR_PREL21),	/* name */
1878 	 FALSE,			/* partial_inplace */
1879 	 0x1fffff,		/* src_mask */
1880 	 0x1fffff,		/* dst_mask */
1881 	 TRUE),			/* pcrel_offset */
1882 
1883   /* Get to the page for the GOT entry for the symbol
1884      (G(S) - P) using an ADRP instruction.  */
1885   HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21),	/* type */
1886 	 12,			/* rightshift */
1887 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1888 	 21,			/* bitsize */
1889 	 TRUE,			/* pc_relative */
1890 	 0,			/* bitpos */
1891 	 complain_overflow_dont,	/* complain_on_overflow */
1892 	 bfd_elf_generic_reloc,	/* special_function */
1893 	 AARCH64_R_STR (TLSDESC_ADR_PAGE21),	/* name */
1894 	 FALSE,			/* partial_inplace */
1895 	 0x1fffff,		/* src_mask */
1896 	 0x1fffff,		/* dst_mask */
1897 	 TRUE),			/* pcrel_offset */
1898 
1899   /* LD64: GOT offset G(S) & 0xff8.  */
1900   HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12),	/* type */
1901 	 3,			/* rightshift */
1902 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1903 	 12,			/* bitsize */
1904 	 FALSE,			/* pc_relative */
1905 	 0,			/* bitpos */
1906 	 complain_overflow_dont,	/* complain_on_overflow */
1907 	 bfd_elf_generic_reloc,	/* special_function */
1908 	 AARCH64_R_STR (TLSDESC_LD64_LO12),	/* name */
1909 	 FALSE,			/* partial_inplace */
1910 	 0xff8,			/* src_mask */
1911 	 0xff8,			/* dst_mask */
1912 	 FALSE),		/* pcrel_offset */
1913 
1914   /* LD32: GOT offset G(S) & 0xffc.  */
1915   HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC),	/* type */
1916 	 2,			/* rightshift */
1917 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1918 	 12,			/* bitsize */
1919 	 FALSE,			/* pc_relative */
1920 	 0,			/* bitpos */
1921 	 complain_overflow_dont,	/* complain_on_overflow */
1922 	 bfd_elf_generic_reloc,	/* special_function */
1923 	 AARCH64_R_STR (TLSDESC_LD32_LO12_NC),	/* name */
1924 	 FALSE,			/* partial_inplace */
1925 	 0xffc,			/* src_mask */
1926 	 0xffc,			/* dst_mask */
1927 	 FALSE),		/* pcrel_offset */
1928 
1929   /* ADD: GOT offset G(S) & 0xfff.  */
1930   HOWTO (AARCH64_R (TLSDESC_ADD_LO12),	/* type */
1931 	 0,			/* rightshift */
1932 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1933 	 12,			/* bitsize */
1934 	 FALSE,			/* pc_relative */
1935 	 0,			/* bitpos */
1936 	 complain_overflow_dont,/* complain_on_overflow */
1937 	 bfd_elf_generic_reloc,	/* special_function */
1938 	 AARCH64_R_STR (TLSDESC_ADD_LO12),	/* name */
1939 	 FALSE,			/* partial_inplace */
1940 	 0xfff,			/* src_mask */
1941 	 0xfff,			/* dst_mask */
1942 	 FALSE),		/* pcrel_offset */
1943 
1944   HOWTO64 (AARCH64_R (TLSDESC_OFF_G1),	/* type */
1945 	 16,			/* rightshift */
1946 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1947 	 12,			/* bitsize */
1948 	 FALSE,			/* pc_relative */
1949 	 0,			/* bitpos */
1950 	 complain_overflow_unsigned,	/* complain_on_overflow */
1951 	 bfd_elf_generic_reloc,	/* special_function */
1952 	 AARCH64_R_STR (TLSDESC_OFF_G1),	/* name */
1953 	 FALSE,			/* partial_inplace */
1954 	 0xffff,		/* src_mask */
1955 	 0xffff,		/* dst_mask */
1956 	 FALSE),		/* pcrel_offset */
1957 
1958   HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC),	/* type */
1959 	 0,			/* rightshift */
1960 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1961 	 12,			/* bitsize */
1962 	 FALSE,			/* pc_relative */
1963 	 0,			/* bitpos */
1964 	 complain_overflow_dont,	/* complain_on_overflow */
1965 	 bfd_elf_generic_reloc,	/* special_function */
1966 	 AARCH64_R_STR (TLSDESC_OFF_G0_NC),	/* name */
1967 	 FALSE,			/* partial_inplace */
1968 	 0xffff,		/* src_mask */
1969 	 0xffff,		/* dst_mask */
1970 	 FALSE),		/* pcrel_offset */
1971 
1972   HOWTO64 (AARCH64_R (TLSDESC_LDR),	/* type */
1973 	 0,			/* rightshift */
1974 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1975 	 12,			/* bitsize */
1976 	 FALSE,			/* pc_relative */
1977 	 0,			/* bitpos */
1978 	 complain_overflow_dont,	/* complain_on_overflow */
1979 	 bfd_elf_generic_reloc,	/* special_function */
1980 	 AARCH64_R_STR (TLSDESC_LDR),	/* name */
1981 	 FALSE,			/* partial_inplace */
1982 	 0x0,			/* src_mask */
1983 	 0x0,			/* dst_mask */
1984 	 FALSE),		/* pcrel_offset */
1985 
1986   HOWTO64 (AARCH64_R (TLSDESC_ADD),	/* type */
1987 	 0,			/* rightshift */
1988 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1989 	 12,			/* bitsize */
1990 	 FALSE,			/* pc_relative */
1991 	 0,			/* bitpos */
1992 	 complain_overflow_dont,	/* complain_on_overflow */
1993 	 bfd_elf_generic_reloc,	/* special_function */
1994 	 AARCH64_R_STR (TLSDESC_ADD),	/* name */
1995 	 FALSE,			/* partial_inplace */
1996 	 0x0,			/* src_mask */
1997 	 0x0,			/* dst_mask */
1998 	 FALSE),		/* pcrel_offset */
1999 
2000   HOWTO (AARCH64_R (TLSDESC_CALL),	/* type */
2001 	 0,			/* rightshift */
2002 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
2003 	 0,			/* bitsize */
2004 	 FALSE,			/* pc_relative */
2005 	 0,			/* bitpos */
2006 	 complain_overflow_dont,	/* complain_on_overflow */
2007 	 bfd_elf_generic_reloc,	/* special_function */
2008 	 AARCH64_R_STR (TLSDESC_CALL),	/* name */
2009 	 FALSE,			/* partial_inplace */
2010 	 0x0,			/* src_mask */
2011 	 0x0,			/* dst_mask */
2012 	 FALSE),		/* pcrel_offset */
2013 
2014   HOWTO (AARCH64_R (COPY),	/* type */
2015 	 0,			/* rightshift */
2016 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
2017 	 64,			/* bitsize */
2018 	 FALSE,			/* pc_relative */
2019 	 0,			/* bitpos */
2020 	 complain_overflow_bitfield,	/* complain_on_overflow */
2021 	 bfd_elf_generic_reloc,	/* special_function */
2022 	 AARCH64_R_STR (COPY),	/* name */
2023 	 TRUE,			/* partial_inplace */
2024 	 0xffffffff,		/* src_mask */
2025 	 0xffffffff,		/* dst_mask */
2026 	 FALSE),		/* pcrel_offset */
2027 
2028   HOWTO (AARCH64_R (GLOB_DAT),	/* type */
2029 	 0,			/* rightshift */
2030 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
2031 	 64,			/* bitsize */
2032 	 FALSE,			/* pc_relative */
2033 	 0,			/* bitpos */
2034 	 complain_overflow_bitfield,	/* complain_on_overflow */
2035 	 bfd_elf_generic_reloc,	/* special_function */
2036 	 AARCH64_R_STR (GLOB_DAT),	/* name */
2037 	 TRUE,			/* partial_inplace */
2038 	 0xffffffff,		/* src_mask */
2039 	 0xffffffff,		/* dst_mask */
2040 	 FALSE),		/* pcrel_offset */
2041 
2042   HOWTO (AARCH64_R (JUMP_SLOT),	/* type */
2043 	 0,			/* rightshift */
2044 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
2045 	 64,			/* bitsize */
2046 	 FALSE,			/* pc_relative */
2047 	 0,			/* bitpos */
2048 	 complain_overflow_bitfield,	/* complain_on_overflow */
2049 	 bfd_elf_generic_reloc,	/* special_function */
2050 	 AARCH64_R_STR (JUMP_SLOT),	/* name */
2051 	 TRUE,			/* partial_inplace */
2052 	 0xffffffff,		/* src_mask */
2053 	 0xffffffff,		/* dst_mask */
2054 	 FALSE),		/* pcrel_offset */
2055 
2056   HOWTO (AARCH64_R (RELATIVE),	/* type */
2057 	 0,			/* rightshift */
2058 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
2059 	 64,			/* bitsize */
2060 	 FALSE,			/* pc_relative */
2061 	 0,			/* bitpos */
2062 	 complain_overflow_bitfield,	/* complain_on_overflow */
2063 	 bfd_elf_generic_reloc,	/* special_function */
2064 	 AARCH64_R_STR (RELATIVE),	/* name */
2065 	 TRUE,			/* partial_inplace */
2066 	 ALL_ONES,		/* src_mask */
2067 	 ALL_ONES,		/* dst_mask */
2068 	 FALSE),		/* pcrel_offset */
2069 
2070   HOWTO (AARCH64_R (TLS_DTPMOD),	/* type */
2071 	 0,			/* rightshift */
2072 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
2073 	 64,			/* bitsize */
2074 	 FALSE,			/* pc_relative */
2075 	 0,			/* bitpos */
2076 	 complain_overflow_dont,	/* complain_on_overflow */
2077 	 bfd_elf_generic_reloc,	/* special_function */
2078 #if ARCH_SIZE == 64
2079 	 AARCH64_R_STR (TLS_DTPMOD64),	/* name */
2080 #else
2081 	 AARCH64_R_STR (TLS_DTPMOD),	/* name */
2082 #endif
2083 	 FALSE,			/* partial_inplace */
2084 	 0,			/* src_mask */
2085 	 ALL_ONES,		/* dst_mask */
2086 	 FALSE),		/* pc_reloffset */
2087 
2088   HOWTO (AARCH64_R (TLS_DTPREL),	/* type */
2089 	 0,			/* rightshift */
2090 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
2091 	 64,			/* bitsize */
2092 	 FALSE,			/* pc_relative */
2093 	 0,			/* bitpos */
2094 	 complain_overflow_dont,	/* complain_on_overflow */
2095 	 bfd_elf_generic_reloc,	/* special_function */
2096 #if ARCH_SIZE == 64
2097 	 AARCH64_R_STR (TLS_DTPREL64),	/* name */
2098 #else
2099 	 AARCH64_R_STR (TLS_DTPREL),	/* name */
2100 #endif
2101 	 FALSE,			/* partial_inplace */
2102 	 0,			/* src_mask */
2103 	 ALL_ONES,		/* dst_mask */
2104 	 FALSE),		/* pcrel_offset */
2105 
2106   HOWTO (AARCH64_R (TLS_TPREL),	/* type */
2107 	 0,			/* rightshift */
2108 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
2109 	 64,			/* bitsize */
2110 	 FALSE,			/* pc_relative */
2111 	 0,			/* bitpos */
2112 	 complain_overflow_dont,	/* complain_on_overflow */
2113 	 bfd_elf_generic_reloc,	/* special_function */
2114 #if ARCH_SIZE == 64
2115 	 AARCH64_R_STR (TLS_TPREL64),	/* name */
2116 #else
2117 	 AARCH64_R_STR (TLS_TPREL),	/* name */
2118 #endif
2119 	 FALSE,			/* partial_inplace */
2120 	 0,			/* src_mask */
2121 	 ALL_ONES,		/* dst_mask */
2122 	 FALSE),		/* pcrel_offset */
2123 
2124   HOWTO (AARCH64_R (TLSDESC),	/* type */
2125 	 0,			/* rightshift */
2126 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
2127 	 64,			/* bitsize */
2128 	 FALSE,			/* pc_relative */
2129 	 0,			/* bitpos */
2130 	 complain_overflow_dont,	/* complain_on_overflow */
2131 	 bfd_elf_generic_reloc,	/* special_function */
2132 	 AARCH64_R_STR (TLSDESC),	/* name */
2133 	 FALSE,			/* partial_inplace */
2134 	 0,			/* src_mask */
2135 	 ALL_ONES,		/* dst_mask */
2136 	 FALSE),		/* pcrel_offset */
2137 
2138   HOWTO (AARCH64_R (IRELATIVE),	/* type */
2139 	 0,			/* rightshift */
2140 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
2141 	 64,			/* bitsize */
2142 	 FALSE,			/* pc_relative */
2143 	 0,			/* bitpos */
2144 	 complain_overflow_bitfield,	/* complain_on_overflow */
2145 	 bfd_elf_generic_reloc,	/* special_function */
2146 	 AARCH64_R_STR (IRELATIVE),	/* name */
2147 	 FALSE,			/* partial_inplace */
2148 	 0,			/* src_mask */
2149 	 ALL_ONES,		/* dst_mask */
2150 	 FALSE),		/* pcrel_offset */
2151 
2152   EMPTY_HOWTO (0),
2153 };
2154 
2155 static reloc_howto_type elfNN_aarch64_howto_none =
2156   HOWTO (R_AARCH64_NONE,	/* type */
2157 	 0,			/* rightshift */
2158 	 3,			/* size (0 = byte, 1 = short, 2 = long) */
2159 	 0,			/* bitsize */
2160 	 FALSE,			/* pc_relative */
2161 	 0,			/* bitpos */
2162 	 complain_overflow_dont,/* complain_on_overflow */
2163 	 bfd_elf_generic_reloc,	/* special_function */
2164 	 "R_AARCH64_NONE",	/* name */
2165 	 FALSE,			/* partial_inplace */
2166 	 0,			/* src_mask */
2167 	 0,			/* dst_mask */
2168 	 FALSE);		/* pcrel_offset */
2169 
2170 /* Given HOWTO, return the bfd internal relocation enumerator.  */
2171 
2172 static bfd_reloc_code_real_type
2173 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2174 {
2175   const int size
2176     = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2177   const ptrdiff_t offset
2178     = howto - elfNN_aarch64_howto_table;
2179 
2180   if (offset > 0 && offset < size - 1)
2181     return BFD_RELOC_AARCH64_RELOC_START + offset;
2182 
2183   if (howto == &elfNN_aarch64_howto_none)
2184     return BFD_RELOC_AARCH64_NONE;
2185 
2186   return BFD_RELOC_AARCH64_RELOC_START;
2187 }
2188 
2189 /* Given R_TYPE, return the bfd internal relocation enumerator.  */
2190 
2191 static bfd_reloc_code_real_type
2192 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2193 {
2194   static bfd_boolean initialized_p = FALSE;
2195   /* Indexed by R_TYPE, values are offsets in the howto_table.  */
2196   static unsigned int offsets[R_AARCH64_end];
2197 
2198   if (!initialized_p)
2199     {
2200       unsigned int i;
2201 
2202       for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2203 	if (elfNN_aarch64_howto_table[i].type != 0)
2204 	  offsets[elfNN_aarch64_howto_table[i].type] = i;
2205 
2206       initialized_p = TRUE;
2207     }
2208 
2209   if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2210     return BFD_RELOC_AARCH64_NONE;
2211 
2212   /* PR 17512: file: b371e70a.  */
2213   if (r_type >= R_AARCH64_end)
2214     {
2215       _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2216 			  abfd, r_type);
2217       bfd_set_error (bfd_error_bad_value);
2218       return BFD_RELOC_AARCH64_NONE;
2219     }
2220 
2221   return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2222 }
2223 
2224 struct elf_aarch64_reloc_map
2225 {
2226   bfd_reloc_code_real_type from;
2227   bfd_reloc_code_real_type to;
2228 };
2229 
2230 /* Map bfd generic reloc to AArch64-specific reloc.  */
2231 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2232 {
2233   {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2234 
2235   /* Basic data relocations.  */
2236   {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2237   {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2238   {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2239   {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2240   {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2241   {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2242   {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2243 };
2244 
2245 /* Given the bfd internal relocation enumerator in CODE, return the
2246    corresponding howto entry.  */
2247 
2248 static reloc_howto_type *
2249 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2250 {
2251   unsigned int i;
2252 
2253   /* Convert bfd generic reloc to AArch64-specific reloc.  */
2254   if (code < BFD_RELOC_AARCH64_RELOC_START
2255       || code > BFD_RELOC_AARCH64_RELOC_END)
2256     for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2257       if (elf_aarch64_reloc_map[i].from == code)
2258 	{
2259 	  code = elf_aarch64_reloc_map[i].to;
2260 	  break;
2261 	}
2262 
2263   if (code > BFD_RELOC_AARCH64_RELOC_START
2264       && code < BFD_RELOC_AARCH64_RELOC_END)
2265     if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2266       return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2267 
2268   if (code == BFD_RELOC_AARCH64_NONE)
2269     return &elfNN_aarch64_howto_none;
2270 
2271   return NULL;
2272 }
2273 
2274 static reloc_howto_type *
2275 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2276 {
2277   bfd_reloc_code_real_type val;
2278   reloc_howto_type *howto;
2279 
2280 #if ARCH_SIZE == 32
2281   if (r_type > 256)
2282     {
2283       bfd_set_error (bfd_error_bad_value);
2284       return NULL;
2285     }
2286 #endif
2287 
2288   if (r_type == R_AARCH64_NONE)
2289     return &elfNN_aarch64_howto_none;
2290 
2291   val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2292   howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2293 
2294   if (howto != NULL)
2295     return howto;
2296 
2297   bfd_set_error (bfd_error_bad_value);
2298   return NULL;
2299 }
2300 
2301 static bfd_boolean
2302 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2303 			     Elf_Internal_Rela *elf_reloc)
2304 {
2305   unsigned int r_type;
2306 
2307   r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2308   bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2309 
2310   if (bfd_reloc->howto == NULL)
2311     {
2312       /* xgettext:c-format */
2313       _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2314       return FALSE;
2315     }
2316   return TRUE;
2317 }
2318 
2319 static reloc_howto_type *
2320 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2321 				 bfd_reloc_code_real_type code)
2322 {
2323   reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2324 
2325   if (howto != NULL)
2326     return howto;
2327 
2328   bfd_set_error (bfd_error_bad_value);
2329   return NULL;
2330 }
2331 
2332 static reloc_howto_type *
2333 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2334 				 const char *r_name)
2335 {
2336   unsigned int i;
2337 
2338   for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2339     if (elfNN_aarch64_howto_table[i].name != NULL
2340 	&& strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2341       return &elfNN_aarch64_howto_table[i];
2342 
2343   return NULL;
2344 }
2345 
2346 #define TARGET_LITTLE_SYM		aarch64_elfNN_le_vec
2347 #define TARGET_LITTLE_NAME		"elfNN-littleaarch64"
2348 #define TARGET_BIG_SYM			aarch64_elfNN_be_vec
2349 #define TARGET_BIG_NAME			"elfNN-bigaarch64"
2350 
2351 /* The linker script knows the section names for placement.
2352    The entry_names are used to do simple name mangling on the stubs.
2353    Given a function name, and its type, the stub can be found. The
2354    name can be changed. The only requirement is the %s be present.  */
2355 #define STUB_ENTRY_NAME   "__%s_veneer"
2356 
2357 /* The name of the dynamic interpreter.  This is put in the .interp
2358    section.  */
2359 #define ELF_DYNAMIC_INTERPRETER     "/lib/ld.so.1"
2360 
2361 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2362   (((1 << 25) - 1) << 2)
2363 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2364   (-((1 << 25) << 2))
2365 
2366 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2367 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2368 
2369 static int
2370 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2371 {
2372   bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2373   return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2374 }
2375 
2376 static int
2377 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2378 {
2379   bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2380   return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2381 	  && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2382 }
2383 
2384 static const uint32_t aarch64_adrp_branch_stub [] =
2385 {
2386   0x90000010,			/*	adrp	ip0, X */
2387 				/*		R_AARCH64_ADR_HI21_PCREL(X) */
2388   0x91000210,			/*	add	ip0, ip0, :lo12:X */
2389 				/*		R_AARCH64_ADD_ABS_LO12_NC(X) */
2390   0xd61f0200,			/*	br	ip0 */
2391 };
2392 
2393 static const uint32_t aarch64_long_branch_stub[] =
2394 {
2395 #if ARCH_SIZE == 64
2396   0x58000090,			/*	ldr   ip0, 1f */
2397 #else
2398   0x18000090,			/*	ldr   wip0, 1f */
2399 #endif
2400   0x10000011,			/*	adr   ip1, #0 */
2401   0x8b110210,			/*	add   ip0, ip0, ip1 */
2402   0xd61f0200,			/*	br	ip0 */
2403   0x00000000,			/* 1:	.xword or .word
2404 				   R_AARCH64_PRELNN(X) + 12
2405 				 */
2406   0x00000000,
2407 };
2408 
2409 static const uint32_t aarch64_erratum_835769_stub[] =
2410 {
2411   0x00000000,    /* Placeholder for multiply accumulate.  */
2412   0x14000000,    /* b <label> */
2413 };
2414 
2415 static const uint32_t aarch64_erratum_843419_stub[] =
2416 {
2417   0x00000000,    /* Placeholder for LDR instruction.  */
2418   0x14000000,    /* b <label> */
2419 };
2420 
2421 /* Section name for stubs is the associated section name plus this
2422    string.  */
2423 #define STUB_SUFFIX ".stub"
2424 
2425 enum elf_aarch64_stub_type
2426 {
2427   aarch64_stub_none,
2428   aarch64_stub_adrp_branch,
2429   aarch64_stub_long_branch,
2430   aarch64_stub_erratum_835769_veneer,
2431   aarch64_stub_erratum_843419_veneer,
2432 };
2433 
2434 struct elf_aarch64_stub_hash_entry
2435 {
2436   /* Base hash table entry structure.  */
2437   struct bfd_hash_entry root;
2438 
2439   /* The stub section.  */
2440   asection *stub_sec;
2441 
2442   /* Offset within stub_sec of the beginning of this stub.  */
2443   bfd_vma stub_offset;
2444 
2445   /* Given the symbol's value and its section we can determine its final
2446      value when building the stubs (so the stub knows where to jump).  */
2447   bfd_vma target_value;
2448   asection *target_section;
2449 
2450   enum elf_aarch64_stub_type stub_type;
2451 
2452   /* The symbol table entry, if any, that this was derived from.  */
2453   struct elf_aarch64_link_hash_entry *h;
2454 
2455   /* Destination symbol type */
2456   unsigned char st_type;
2457 
2458   /* Where this stub is being called from, or, in the case of combined
2459      stub sections, the first input section in the group.  */
2460   asection *id_sec;
2461 
2462   /* The name for the local symbol at the start of this stub.  The
2463      stub name in the hash table has to be unique; this does not, so
2464      it can be friendlier.  */
2465   char *output_name;
2466 
2467   /* The instruction which caused this stub to be generated (only valid for
2468      erratum 835769 workaround stubs at present).  */
2469   uint32_t veneered_insn;
2470 
2471   /* In an erratum 843419 workaround stub, the ADRP instruction offset.  */
2472   bfd_vma adrp_offset;
2473 };
2474 
2475 /* Used to build a map of a section.  This is required for mixed-endian
2476    code/data.  */
2477 
2478 typedef struct elf_elf_section_map
2479 {
2480   bfd_vma vma;
2481   char type;
2482 }
2483 elf_aarch64_section_map;
2484 
2485 
2486 typedef struct _aarch64_elf_section_data
2487 {
2488   struct bfd_elf_section_data elf;
2489   unsigned int mapcount;
2490   unsigned int mapsize;
2491   elf_aarch64_section_map *map;
2492 }
2493 _aarch64_elf_section_data;
2494 
2495 #define elf_aarch64_section_data(sec) \
2496   ((_aarch64_elf_section_data *) elf_section_data (sec))
2497 
2498 /* The size of the thread control block which is defined to be two pointers.  */
2499 #define TCB_SIZE	(ARCH_SIZE/8)*2
2500 
2501 struct elf_aarch64_local_symbol
2502 {
2503   unsigned int got_type;
2504   bfd_signed_vma got_refcount;
2505   bfd_vma got_offset;
2506 
2507   /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2508      offset is from the end of the jump table and reserved entries
2509      within the PLTGOT.
2510 
2511      The magic value (bfd_vma) -1 indicates that an offset has not be
2512      allocated.  */
2513   bfd_vma tlsdesc_got_jump_table_offset;
2514 };
2515 
2516 struct elf_aarch64_obj_tdata
2517 {
2518   struct elf_obj_tdata root;
2519 
2520   /* local symbol descriptors */
2521   struct elf_aarch64_local_symbol *locals;
2522 
2523   /* Zero to warn when linking objects with incompatible enum sizes.  */
2524   int no_enum_size_warning;
2525 
2526   /* Zero to warn when linking objects with incompatible wchar_t sizes.  */
2527   int no_wchar_size_warning;
2528 
2529   /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties.  */
2530   uint32_t gnu_and_prop;
2531 
2532   /* Zero to warn when linking objects with incompatible
2533      GNU_PROPERTY_AARCH64_FEATURE_1_BTI.  */
2534   int no_bti_warn;
2535 
2536   /* PLT type based on security.  */
2537   aarch64_plt_type plt_type;
2538 };
2539 
2540 #define elf_aarch64_tdata(bfd)				\
2541   ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2542 
2543 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2544 
2545 #define is_aarch64_elf(bfd)				\
2546   (bfd_get_flavour (bfd) == bfd_target_elf_flavour	\
2547    && elf_tdata (bfd) != NULL				\
2548    && elf_object_id (bfd) == AARCH64_ELF_DATA)
2549 
2550 static bfd_boolean
2551 elfNN_aarch64_mkobject (bfd *abfd)
2552 {
2553   return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2554 				  AARCH64_ELF_DATA);
2555 }
2556 
2557 #define elf_aarch64_hash_entry(ent) \
2558   ((struct elf_aarch64_link_hash_entry *)(ent))
2559 
2560 #define GOT_UNKNOWN    0
2561 #define GOT_NORMAL     1
2562 #define GOT_TLS_GD     2
2563 #define GOT_TLS_IE     4
2564 #define GOT_TLSDESC_GD 8
2565 
2566 #define GOT_TLS_GD_ANY_P(type)	((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2567 
2568 /* AArch64 ELF linker hash entry.  */
2569 struct elf_aarch64_link_hash_entry
2570 {
2571   struct elf_link_hash_entry root;
2572 
2573   /* Track dynamic relocs copied for this symbol.  */
2574   struct elf_dyn_relocs *dyn_relocs;
2575 
2576   /* Since PLT entries have variable size, we need to record the
2577      index into .got.plt instead of recomputing it from the PLT
2578      offset.  */
2579   bfd_signed_vma plt_got_offset;
2580 
2581   /* Bit mask representing the type of GOT entry(s) if any required by
2582      this symbol.  */
2583   unsigned int got_type;
2584 
2585   /* A pointer to the most recently used stub hash entry against this
2586      symbol.  */
2587   struct elf_aarch64_stub_hash_entry *stub_cache;
2588 
2589   /* Offset of the GOTPLT entry reserved for the TLS descriptor.  The offset
2590      is from the end of the jump table and reserved entries within the PLTGOT.
2591 
2592      The magic value (bfd_vma) -1 indicates that an offset has not
2593      be allocated.  */
2594   bfd_vma tlsdesc_got_jump_table_offset;
2595 };
2596 
2597 static unsigned int
2598 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2599 			       bfd *abfd,
2600 			       unsigned long r_symndx)
2601 {
2602   if (h)
2603     return elf_aarch64_hash_entry (h)->got_type;
2604 
2605   if (! elf_aarch64_locals (abfd))
2606     return GOT_UNKNOWN;
2607 
2608   return elf_aarch64_locals (abfd)[r_symndx].got_type;
2609 }
2610 
2611 /* Get the AArch64 elf linker hash table from a link_info structure.  */
2612 #define elf_aarch64_hash_table(info)					\
2613   ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2614 
2615 #define aarch64_stub_hash_lookup(table, string, create, copy)		\
2616   ((struct elf_aarch64_stub_hash_entry *)				\
2617    bfd_hash_lookup ((table), (string), (create), (copy)))
2618 
2619 /* AArch64 ELF linker hash table.  */
2620 struct elf_aarch64_link_hash_table
2621 {
2622   /* The main hash table.  */
2623   struct elf_link_hash_table root;
2624 
2625   /* Nonzero to force PIC branch veneers.  */
2626   int pic_veneer;
2627 
2628   /* Fix erratum 835769.  */
2629   int fix_erratum_835769;
2630 
2631   /* Fix erratum 843419.  */
2632   erratum_84319_opts fix_erratum_843419;
2633 
2634   /* Don't apply link-time values for dynamic relocations.  */
2635   int no_apply_dynamic_relocs;
2636 
2637   /* The number of bytes in the initial entry in the PLT.  */
2638   bfd_size_type plt_header_size;
2639 
2640   /* The bytes of the initial PLT entry.  */
2641   const bfd_byte *plt0_entry;
2642 
2643   /* The number of bytes in the subsequent PLT entries.  */
2644   bfd_size_type plt_entry_size;
2645 
2646   /* The bytes of the subsequent PLT entry.  */
2647   const bfd_byte *plt_entry;
2648 
2649   /* Small local sym cache.  */
2650   struct sym_cache sym_cache;
2651 
2652   /* For convenience in allocate_dynrelocs.  */
2653   bfd *obfd;
2654 
2655   /* The amount of space used by the reserved portion of the sgotplt
2656      section, plus whatever space is used by the jump slots.  */
2657   bfd_vma sgotplt_jump_table_size;
2658 
2659   /* The stub hash table.  */
2660   struct bfd_hash_table stub_hash_table;
2661 
2662   /* Linker stub bfd.  */
2663   bfd *stub_bfd;
2664 
2665   /* Linker call-backs.  */
2666   asection *(*add_stub_section) (const char *, asection *);
2667   void (*layout_sections_again) (void);
2668 
2669   /* Array to keep track of which stub sections have been created, and
2670      information on stub grouping.  */
2671   struct map_stub
2672   {
2673     /* This is the section to which stubs in the group will be
2674        attached.  */
2675     asection *link_sec;
2676     /* The stub section.  */
2677     asection *stub_sec;
2678   } *stub_group;
2679 
2680   /* Assorted information used by elfNN_aarch64_size_stubs.  */
2681   unsigned int bfd_count;
2682   unsigned int top_index;
2683   asection **input_list;
2684 
2685   /* JUMP_SLOT relocs for variant PCS symbols may be present.  */
2686   int variant_pcs;
2687 
2688   /* The offset into splt of the PLT entry for the TLS descriptor
2689      resolver.  Special values are 0, if not necessary (or not found
2690      to be necessary yet), and -1 if needed but not determined
2691      yet.  */
2692   bfd_vma tlsdesc_plt;
2693 
2694   /* The number of bytes in the PLT enty for the TLS descriptor.  */
2695   bfd_size_type tlsdesc_plt_entry_size;
2696 
2697   /* The GOT offset for the lazy trampoline.  Communicated to the
2698      loader via DT_TLSDESC_GOT.  The magic value (bfd_vma) -1
2699      indicates an offset is not allocated.  */
2700   bfd_vma dt_tlsdesc_got;
2701 
2702   /* Used by local STT_GNU_IFUNC symbols.  */
2703   htab_t loc_hash_table;
2704   void * loc_hash_memory;
2705 };
2706 
2707 /* Create an entry in an AArch64 ELF linker hash table.  */
2708 
2709 static struct bfd_hash_entry *
2710 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2711 				 struct bfd_hash_table *table,
2712 				 const char *string)
2713 {
2714   struct elf_aarch64_link_hash_entry *ret =
2715     (struct elf_aarch64_link_hash_entry *) entry;
2716 
2717   /* Allocate the structure if it has not already been allocated by a
2718      subclass.  */
2719   if (ret == NULL)
2720     ret = bfd_hash_allocate (table,
2721 			     sizeof (struct elf_aarch64_link_hash_entry));
2722   if (ret == NULL)
2723     return (struct bfd_hash_entry *) ret;
2724 
2725   /* Call the allocation method of the superclass.  */
2726   ret = ((struct elf_aarch64_link_hash_entry *)
2727 	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2728 				     table, string));
2729   if (ret != NULL)
2730     {
2731       ret->dyn_relocs = NULL;
2732       ret->got_type = GOT_UNKNOWN;
2733       ret->plt_got_offset = (bfd_vma) - 1;
2734       ret->stub_cache = NULL;
2735       ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2736     }
2737 
2738   return (struct bfd_hash_entry *) ret;
2739 }
2740 
2741 /* Initialize an entry in the stub hash table.  */
2742 
2743 static struct bfd_hash_entry *
2744 stub_hash_newfunc (struct bfd_hash_entry *entry,
2745 		   struct bfd_hash_table *table, const char *string)
2746 {
2747   /* Allocate the structure if it has not already been allocated by a
2748      subclass.  */
2749   if (entry == NULL)
2750     {
2751       entry = bfd_hash_allocate (table,
2752 				 sizeof (struct
2753 					 elf_aarch64_stub_hash_entry));
2754       if (entry == NULL)
2755 	return entry;
2756     }
2757 
2758   /* Call the allocation method of the superclass.  */
2759   entry = bfd_hash_newfunc (entry, table, string);
2760   if (entry != NULL)
2761     {
2762       struct elf_aarch64_stub_hash_entry *eh;
2763 
2764       /* Initialize the local fields.  */
2765       eh = (struct elf_aarch64_stub_hash_entry *) entry;
2766       eh->adrp_offset = 0;
2767       eh->stub_sec = NULL;
2768       eh->stub_offset = 0;
2769       eh->target_value = 0;
2770       eh->target_section = NULL;
2771       eh->stub_type = aarch64_stub_none;
2772       eh->h = NULL;
2773       eh->id_sec = NULL;
2774     }
2775 
2776   return entry;
2777 }
2778 
2779 /* Compute a hash of a local hash entry.  We use elf_link_hash_entry
2780   for local symbol so that we can handle local STT_GNU_IFUNC symbols
2781   as global symbol.  We reuse indx and dynstr_index for local symbol
2782   hash since they aren't used by global symbols in this backend.  */
2783 
2784 static hashval_t
2785 elfNN_aarch64_local_htab_hash (const void *ptr)
2786 {
2787   struct elf_link_hash_entry *h
2788     = (struct elf_link_hash_entry *) ptr;
2789   return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2790 }
2791 
2792 /* Compare local hash entries.  */
2793 
2794 static int
2795 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2796 {
2797   struct elf_link_hash_entry *h1
2798      = (struct elf_link_hash_entry *) ptr1;
2799   struct elf_link_hash_entry *h2
2800     = (struct elf_link_hash_entry *) ptr2;
2801 
2802   return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2803 }
2804 
2805 /* Find and/or create a hash entry for local symbol.  */
2806 
2807 static struct elf_link_hash_entry *
2808 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2809 				  bfd *abfd, const Elf_Internal_Rela *rel,
2810 				  bfd_boolean create)
2811 {
2812   struct elf_aarch64_link_hash_entry e, *ret;
2813   asection *sec = abfd->sections;
2814   hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2815 				       ELFNN_R_SYM (rel->r_info));
2816   void **slot;
2817 
2818   e.root.indx = sec->id;
2819   e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2820   slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2821 				   create ? INSERT : NO_INSERT);
2822 
2823   if (!slot)
2824     return NULL;
2825 
2826   if (*slot)
2827     {
2828       ret = (struct elf_aarch64_link_hash_entry *) *slot;
2829       return &ret->root;
2830     }
2831 
2832   ret = (struct elf_aarch64_link_hash_entry *)
2833 	objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2834 			sizeof (struct elf_aarch64_link_hash_entry));
2835   if (ret)
2836     {
2837       memset (ret, 0, sizeof (*ret));
2838       ret->root.indx = sec->id;
2839       ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2840       ret->root.dynindx = -1;
2841       *slot = ret;
2842     }
2843   return &ret->root;
2844 }
2845 
2846 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
2847 
2848 static void
2849 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2850 				    struct elf_link_hash_entry *dir,
2851 				    struct elf_link_hash_entry *ind)
2852 {
2853   struct elf_aarch64_link_hash_entry *edir, *eind;
2854 
2855   edir = (struct elf_aarch64_link_hash_entry *) dir;
2856   eind = (struct elf_aarch64_link_hash_entry *) ind;
2857 
2858   if (eind->dyn_relocs != NULL)
2859     {
2860       if (edir->dyn_relocs != NULL)
2861 	{
2862 	  struct elf_dyn_relocs **pp;
2863 	  struct elf_dyn_relocs *p;
2864 
2865 	  /* Add reloc counts against the indirect sym to the direct sym
2866 	     list.  Merge any entries against the same section.  */
2867 	  for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2868 	    {
2869 	      struct elf_dyn_relocs *q;
2870 
2871 	      for (q = edir->dyn_relocs; q != NULL; q = q->next)
2872 		if (q->sec == p->sec)
2873 		  {
2874 		    q->pc_count += p->pc_count;
2875 		    q->count += p->count;
2876 		    *pp = p->next;
2877 		    break;
2878 		  }
2879 	      if (q == NULL)
2880 		pp = &p->next;
2881 	    }
2882 	  *pp = edir->dyn_relocs;
2883 	}
2884 
2885       edir->dyn_relocs = eind->dyn_relocs;
2886       eind->dyn_relocs = NULL;
2887     }
2888 
2889   if (ind->root.type == bfd_link_hash_indirect)
2890     {
2891       /* Copy over PLT info.  */
2892       if (dir->got.refcount <= 0)
2893 	{
2894 	  edir->got_type = eind->got_type;
2895 	  eind->got_type = GOT_UNKNOWN;
2896 	}
2897     }
2898 
2899   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2900 }
2901 
2902 /* Merge non-visibility st_other attributes.  */
2903 
2904 static void
2905 elfNN_aarch64_merge_symbol_attribute (struct elf_link_hash_entry *h,
2906 				      const Elf_Internal_Sym *isym,
2907 				      bfd_boolean definition ATTRIBUTE_UNUSED,
2908 				      bfd_boolean dynamic ATTRIBUTE_UNUSED)
2909 {
2910   unsigned int isym_sto = isym->st_other & ~ELF_ST_VISIBILITY (-1);
2911   unsigned int h_sto = h->other & ~ELF_ST_VISIBILITY (-1);
2912 
2913   if (isym_sto == h_sto)
2914     return;
2915 
2916   if (isym_sto & ~STO_AARCH64_VARIANT_PCS)
2917     /* Not fatal, this callback cannot fail.  */
2918     _bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"),
2919 			h->root.root.string, isym_sto);
2920 
2921   /* Note: Ideally we would warn about any attribute mismatch, but
2922      this api does not allow that without substantial changes.  */
2923   if (isym_sto & STO_AARCH64_VARIANT_PCS)
2924     h->other |= STO_AARCH64_VARIANT_PCS;
2925 }
2926 
2927 /* Destroy an AArch64 elf linker hash table.  */
2928 
2929 static void
2930 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2931 {
2932   struct elf_aarch64_link_hash_table *ret
2933     = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2934 
2935   if (ret->loc_hash_table)
2936     htab_delete (ret->loc_hash_table);
2937   if (ret->loc_hash_memory)
2938     objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2939 
2940   bfd_hash_table_free (&ret->stub_hash_table);
2941   _bfd_elf_link_hash_table_free (obfd);
2942 }
2943 
2944 /* Create an AArch64 elf linker hash table.  */
2945 
2946 static struct bfd_link_hash_table *
2947 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2948 {
2949   struct elf_aarch64_link_hash_table *ret;
2950   bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2951 
2952   ret = bfd_zmalloc (amt);
2953   if (ret == NULL)
2954     return NULL;
2955 
2956   if (!_bfd_elf_link_hash_table_init
2957       (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2958        sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2959     {
2960       free (ret);
2961       return NULL;
2962     }
2963 
2964   ret->plt_header_size = PLT_ENTRY_SIZE;
2965   ret->plt0_entry = elfNN_aarch64_small_plt0_entry;
2966   ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2967   ret->plt_entry = elfNN_aarch64_small_plt_entry;
2968   ret->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
2969   ret->obfd = abfd;
2970   ret->dt_tlsdesc_got = (bfd_vma) - 1;
2971 
2972   if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2973 			    sizeof (struct elf_aarch64_stub_hash_entry)))
2974     {
2975       _bfd_elf_link_hash_table_free (abfd);
2976       return NULL;
2977     }
2978 
2979   ret->loc_hash_table = htab_try_create (1024,
2980 					 elfNN_aarch64_local_htab_hash,
2981 					 elfNN_aarch64_local_htab_eq,
2982 					 NULL);
2983   ret->loc_hash_memory = objalloc_create ();
2984   if (!ret->loc_hash_table || !ret->loc_hash_memory)
2985     {
2986       elfNN_aarch64_link_hash_table_free (abfd);
2987       return NULL;
2988     }
2989   ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2990 
2991   return &ret->root.root;
2992 }
2993 
2994 /* Perform relocation R_TYPE.  Returns TRUE upon success, FALSE otherwise.  */
2995 
2996 static bfd_boolean
2997 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2998 		  bfd_vma offset, bfd_vma value)
2999 {
3000   reloc_howto_type *howto;
3001   bfd_vma place;
3002 
3003   howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
3004   place = (input_section->output_section->vma + input_section->output_offset
3005 	   + offset);
3006 
3007   r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
3008   value = _bfd_aarch64_elf_resolve_relocation (input_bfd, r_type, place,
3009 					       value, 0, FALSE);
3010   return _bfd_aarch64_elf_put_addend (input_bfd,
3011 				      input_section->contents + offset, r_type,
3012 				      howto, value) == bfd_reloc_ok;
3013 }
3014 
3015 static enum elf_aarch64_stub_type
3016 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
3017 {
3018   if (aarch64_valid_for_adrp_p (value, place))
3019     return aarch64_stub_adrp_branch;
3020   return aarch64_stub_long_branch;
3021 }
3022 
3023 /* Determine the type of stub needed, if any, for a call.  */
3024 
3025 static enum elf_aarch64_stub_type
3026 aarch64_type_of_stub (asection *input_sec,
3027 		      const Elf_Internal_Rela *rel,
3028 		      asection *sym_sec,
3029 		      unsigned char st_type,
3030 		      bfd_vma destination)
3031 {
3032   bfd_vma location;
3033   bfd_signed_vma branch_offset;
3034   unsigned int r_type;
3035   enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
3036 
3037   if (st_type != STT_FUNC
3038       && (sym_sec == input_sec))
3039     return stub_type;
3040 
3041   /* Determine where the call point is.  */
3042   location = (input_sec->output_offset
3043 	      + input_sec->output_section->vma + rel->r_offset);
3044 
3045   branch_offset = (bfd_signed_vma) (destination - location);
3046 
3047   r_type = ELFNN_R_TYPE (rel->r_info);
3048 
3049   /* We don't want to redirect any old unconditional jump in this way,
3050      only one which is being used for a sibcall, where it is
3051      acceptable for the IP0 and IP1 registers to be clobbered.  */
3052   if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
3053       && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
3054 	  || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
3055     {
3056       stub_type = aarch64_stub_long_branch;
3057     }
3058 
3059   return stub_type;
3060 }
3061 
3062 /* Build a name for an entry in the stub hash table.  */
3063 
3064 static char *
3065 elfNN_aarch64_stub_name (const asection *input_section,
3066 			 const asection *sym_sec,
3067 			 const struct elf_aarch64_link_hash_entry *hash,
3068 			 const Elf_Internal_Rela *rel)
3069 {
3070   char *stub_name;
3071   bfd_size_type len;
3072 
3073   if (hash)
3074     {
3075       len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
3076       stub_name = bfd_malloc (len);
3077       if (stub_name != NULL)
3078 	snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
3079 		  (unsigned int) input_section->id,
3080 		  hash->root.root.root.string,
3081 		  rel->r_addend);
3082     }
3083   else
3084     {
3085       len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3086       stub_name = bfd_malloc (len);
3087       if (stub_name != NULL)
3088 	snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
3089 		  (unsigned int) input_section->id,
3090 		  (unsigned int) sym_sec->id,
3091 		  (unsigned int) ELFNN_R_SYM (rel->r_info),
3092 		  rel->r_addend);
3093     }
3094 
3095   return stub_name;
3096 }
3097 
3098 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section.  For
3099    executable PLT slots where the executable never takes the address of those
3100    functions, the function symbols are not added to the hash table.  */
3101 
3102 static bfd_boolean
3103 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
3104 {
3105   if (h->plt.offset != (bfd_vma) -1
3106       && !h->def_regular
3107       && !h->pointer_equality_needed)
3108     return FALSE;
3109 
3110   return _bfd_elf_hash_symbol (h);
3111 }
3112 
3113 
3114 /* Look up an entry in the stub hash.  Stub entries are cached because
3115    creating the stub name takes a bit of time.  */
3116 
3117 static struct elf_aarch64_stub_hash_entry *
3118 elfNN_aarch64_get_stub_entry (const asection *input_section,
3119 			      const asection *sym_sec,
3120 			      struct elf_link_hash_entry *hash,
3121 			      const Elf_Internal_Rela *rel,
3122 			      struct elf_aarch64_link_hash_table *htab)
3123 {
3124   struct elf_aarch64_stub_hash_entry *stub_entry;
3125   struct elf_aarch64_link_hash_entry *h =
3126     (struct elf_aarch64_link_hash_entry *) hash;
3127   const asection *id_sec;
3128 
3129   if ((input_section->flags & SEC_CODE) == 0)
3130     return NULL;
3131 
3132   /* If this input section is part of a group of sections sharing one
3133      stub section, then use the id of the first section in the group.
3134      Stub names need to include a section id, as there may well be
3135      more than one stub used to reach say, printf, and we need to
3136      distinguish between them.  */
3137   id_sec = htab->stub_group[input_section->id].link_sec;
3138 
3139   if (h != NULL && h->stub_cache != NULL
3140       && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3141     {
3142       stub_entry = h->stub_cache;
3143     }
3144   else
3145     {
3146       char *stub_name;
3147 
3148       stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3149       if (stub_name == NULL)
3150 	return NULL;
3151 
3152       stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3153 					     stub_name, FALSE, FALSE);
3154       if (h != NULL)
3155 	h->stub_cache = stub_entry;
3156 
3157       free (stub_name);
3158     }
3159 
3160   return stub_entry;
3161 }
3162 
3163 
3164 /* Create a stub section.  */
3165 
3166 static asection *
3167 _bfd_aarch64_create_stub_section (asection *section,
3168 				  struct elf_aarch64_link_hash_table *htab)
3169 {
3170   size_t namelen;
3171   bfd_size_type len;
3172   char *s_name;
3173 
3174   namelen = strlen (section->name);
3175   len = namelen + sizeof (STUB_SUFFIX);
3176   s_name = bfd_alloc (htab->stub_bfd, len);
3177   if (s_name == NULL)
3178     return NULL;
3179 
3180   memcpy (s_name, section->name, namelen);
3181   memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3182   return (*htab->add_stub_section) (s_name, section);
3183 }
3184 
3185 
3186 /* Find or create a stub section for a link section.
3187 
3188    Fix or create the stub section used to collect stubs attached to
3189    the specified link section.  */
3190 
3191 static asection *
3192 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3193 					struct elf_aarch64_link_hash_table *htab)
3194 {
3195   if (htab->stub_group[link_section->id].stub_sec == NULL)
3196     htab->stub_group[link_section->id].stub_sec
3197       = _bfd_aarch64_create_stub_section (link_section, htab);
3198   return htab->stub_group[link_section->id].stub_sec;
3199 }
3200 
3201 
3202 /* Find or create a stub section in the stub group for an input
3203    section.  */
3204 
3205 static asection *
3206 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3207 				      struct elf_aarch64_link_hash_table *htab)
3208 {
3209   asection *link_sec = htab->stub_group[section->id].link_sec;
3210   return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3211 }
3212 
3213 
3214 /* Add a new stub entry in the stub group associated with an input
3215    section to the stub hash.  Not all fields of the new stub entry are
3216    initialised.  */
3217 
3218 static struct elf_aarch64_stub_hash_entry *
3219 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3220 				      asection *section,
3221 				      struct elf_aarch64_link_hash_table *htab)
3222 {
3223   asection *link_sec;
3224   asection *stub_sec;
3225   struct elf_aarch64_stub_hash_entry *stub_entry;
3226 
3227   link_sec = htab->stub_group[section->id].link_sec;
3228   stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3229 
3230   /* Enter this entry into the linker stub hash table.  */
3231   stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3232 					 TRUE, FALSE);
3233   if (stub_entry == NULL)
3234     {
3235       /* xgettext:c-format */
3236       _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3237 			  section->owner, stub_name);
3238       return NULL;
3239     }
3240 
3241   stub_entry->stub_sec = stub_sec;
3242   stub_entry->stub_offset = 0;
3243   stub_entry->id_sec = link_sec;
3244 
3245   return stub_entry;
3246 }
3247 
3248 /* Add a new stub entry in the final stub section to the stub hash.
3249    Not all fields of the new stub entry are initialised.  */
3250 
3251 static struct elf_aarch64_stub_hash_entry *
3252 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3253 				   asection *link_section,
3254 				   struct elf_aarch64_link_hash_table *htab)
3255 {
3256   asection *stub_sec;
3257   struct elf_aarch64_stub_hash_entry *stub_entry;
3258 
3259   stub_sec = NULL;
3260   /* Only create the actual stub if we will end up needing it.  */
3261   if (htab->fix_erratum_843419 & ERRAT_ADRP)
3262     stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3263   stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3264 					 TRUE, FALSE);
3265   if (stub_entry == NULL)
3266     {
3267       _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3268       return NULL;
3269     }
3270 
3271   stub_entry->stub_sec = stub_sec;
3272   stub_entry->stub_offset = 0;
3273   stub_entry->id_sec = link_section;
3274 
3275   return stub_entry;
3276 }
3277 
3278 
3279 static bfd_boolean
3280 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3281 			void *in_arg ATTRIBUTE_UNUSED)
3282 {
3283   struct elf_aarch64_stub_hash_entry *stub_entry;
3284   asection *stub_sec;
3285   bfd *stub_bfd;
3286   bfd_byte *loc;
3287   bfd_vma sym_value;
3288   bfd_vma veneered_insn_loc;
3289   bfd_vma veneer_entry_loc;
3290   bfd_signed_vma branch_offset = 0;
3291   unsigned int template_size;
3292   const uint32_t *template;
3293   unsigned int i;
3294 
3295   /* Massage our args to the form they really have.  */
3296   stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3297 
3298   stub_sec = stub_entry->stub_sec;
3299 
3300   /* Make a note of the offset within the stubs for this entry.  */
3301   stub_entry->stub_offset = stub_sec->size;
3302   loc = stub_sec->contents + stub_entry->stub_offset;
3303 
3304   stub_bfd = stub_sec->owner;
3305 
3306   /* This is the address of the stub destination.  */
3307   sym_value = (stub_entry->target_value
3308 	       + stub_entry->target_section->output_offset
3309 	       + stub_entry->target_section->output_section->vma);
3310 
3311   if (stub_entry->stub_type == aarch64_stub_long_branch)
3312     {
3313       bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3314 		       + stub_sec->output_offset);
3315 
3316       /* See if we can relax the stub.  */
3317       if (aarch64_valid_for_adrp_p (sym_value, place))
3318 	stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3319     }
3320 
3321   switch (stub_entry->stub_type)
3322     {
3323     case aarch64_stub_adrp_branch:
3324       template = aarch64_adrp_branch_stub;
3325       template_size = sizeof (aarch64_adrp_branch_stub);
3326       break;
3327     case aarch64_stub_long_branch:
3328       template = aarch64_long_branch_stub;
3329       template_size = sizeof (aarch64_long_branch_stub);
3330       break;
3331     case aarch64_stub_erratum_835769_veneer:
3332       template = aarch64_erratum_835769_stub;
3333       template_size = sizeof (aarch64_erratum_835769_stub);
3334       break;
3335     case aarch64_stub_erratum_843419_veneer:
3336       template = aarch64_erratum_843419_stub;
3337       template_size = sizeof (aarch64_erratum_843419_stub);
3338       break;
3339     default:
3340       abort ();
3341     }
3342 
3343   for (i = 0; i < (template_size / sizeof template[0]); i++)
3344     {
3345       bfd_putl32 (template[i], loc);
3346       loc += 4;
3347     }
3348 
3349   template_size = (template_size + 7) & ~7;
3350   stub_sec->size += template_size;
3351 
3352   switch (stub_entry->stub_type)
3353     {
3354     case aarch64_stub_adrp_branch:
3355       if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3356 			     stub_entry->stub_offset, sym_value))
3357 	/* The stub would not have been relaxed if the offset was out
3358 	   of range.  */
3359 	BFD_FAIL ();
3360 
3361       if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3362 			     stub_entry->stub_offset + 4, sym_value))
3363 	BFD_FAIL ();
3364       break;
3365 
3366     case aarch64_stub_long_branch:
3367       /* We want the value relative to the address 12 bytes back from the
3368 	 value itself.  */
3369       if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3370 			     stub_entry->stub_offset + 16, sym_value + 12))
3371 	BFD_FAIL ();
3372       break;
3373 
3374     case aarch64_stub_erratum_835769_veneer:
3375       veneered_insn_loc = stub_entry->target_section->output_section->vma
3376 			  + stub_entry->target_section->output_offset
3377 			  + stub_entry->target_value;
3378       veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3379 			  + stub_entry->stub_sec->output_offset
3380 			  + stub_entry->stub_offset;
3381       branch_offset = veneered_insn_loc - veneer_entry_loc;
3382       branch_offset >>= 2;
3383       branch_offset &= 0x3ffffff;
3384       bfd_putl32 (stub_entry->veneered_insn,
3385 		  stub_sec->contents + stub_entry->stub_offset);
3386       bfd_putl32 (template[1] | branch_offset,
3387 		  stub_sec->contents + stub_entry->stub_offset + 4);
3388       break;
3389 
3390     case aarch64_stub_erratum_843419_veneer:
3391       if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3392 			     stub_entry->stub_offset + 4, sym_value + 4))
3393 	BFD_FAIL ();
3394       break;
3395 
3396     default:
3397       abort ();
3398     }
3399 
3400   return TRUE;
3401 }
3402 
3403 /* As above, but don't actually build the stub.  Just bump offset so
3404    we know stub section sizes.  */
3405 
3406 static bfd_boolean
3407 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
3408 {
3409   struct elf_aarch64_stub_hash_entry *stub_entry;
3410   struct elf_aarch64_link_hash_table *htab;
3411   int size;
3412 
3413   /* Massage our args to the form they really have.  */
3414   stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3415   htab = (struct elf_aarch64_link_hash_table *) in_arg;
3416 
3417   switch (stub_entry->stub_type)
3418     {
3419     case aarch64_stub_adrp_branch:
3420       size = sizeof (aarch64_adrp_branch_stub);
3421       break;
3422     case aarch64_stub_long_branch:
3423       size = sizeof (aarch64_long_branch_stub);
3424       break;
3425     case aarch64_stub_erratum_835769_veneer:
3426       size = sizeof (aarch64_erratum_835769_stub);
3427       break;
3428     case aarch64_stub_erratum_843419_veneer:
3429       {
3430 	if (htab->fix_erratum_843419 == ERRAT_ADR)
3431 	  return TRUE;
3432 	size = sizeof (aarch64_erratum_843419_stub);
3433       }
3434       break;
3435     default:
3436       abort ();
3437     }
3438 
3439   size = (size + 7) & ~7;
3440   stub_entry->stub_sec->size += size;
3441   return TRUE;
3442 }
3443 
3444 /* External entry points for sizing and building linker stubs.  */
3445 
3446 /* Set up various things so that we can make a list of input sections
3447    for each output section included in the link.  Returns -1 on error,
3448    0 when no stubs will be needed, and 1 on success.  */
3449 
3450 int
3451 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3452 				   struct bfd_link_info *info)
3453 {
3454   bfd *input_bfd;
3455   unsigned int bfd_count;
3456   unsigned int top_id, top_index;
3457   asection *section;
3458   asection **input_list, **list;
3459   bfd_size_type amt;
3460   struct elf_aarch64_link_hash_table *htab =
3461     elf_aarch64_hash_table (info);
3462 
3463   if (!is_elf_hash_table (htab))
3464     return 0;
3465 
3466   /* Count the number of input BFDs and find the top input section id.  */
3467   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3468        input_bfd != NULL; input_bfd = input_bfd->link.next)
3469     {
3470       bfd_count += 1;
3471       for (section = input_bfd->sections;
3472 	   section != NULL; section = section->next)
3473 	{
3474 	  if (top_id < section->id)
3475 	    top_id = section->id;
3476 	}
3477     }
3478   htab->bfd_count = bfd_count;
3479 
3480   amt = sizeof (struct map_stub) * (top_id + 1);
3481   htab->stub_group = bfd_zmalloc (amt);
3482   if (htab->stub_group == NULL)
3483     return -1;
3484 
3485   /* We can't use output_bfd->section_count here to find the top output
3486      section index as some sections may have been removed, and
3487      _bfd_strip_section_from_output doesn't renumber the indices.  */
3488   for (section = output_bfd->sections, top_index = 0;
3489        section != NULL; section = section->next)
3490     {
3491       if (top_index < section->index)
3492 	top_index = section->index;
3493     }
3494 
3495   htab->top_index = top_index;
3496   amt = sizeof (asection *) * (top_index + 1);
3497   input_list = bfd_malloc (amt);
3498   htab->input_list = input_list;
3499   if (input_list == NULL)
3500     return -1;
3501 
3502   /* For sections we aren't interested in, mark their entries with a
3503      value we can check later.  */
3504   list = input_list + top_index;
3505   do
3506     *list = bfd_abs_section_ptr;
3507   while (list-- != input_list);
3508 
3509   for (section = output_bfd->sections;
3510        section != NULL; section = section->next)
3511     {
3512       if ((section->flags & SEC_CODE) != 0)
3513 	input_list[section->index] = NULL;
3514     }
3515 
3516   return 1;
3517 }
3518 
3519 /* Used by elfNN_aarch64_next_input_section and group_sections.  */
3520 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3521 
3522 /* The linker repeatedly calls this function for each input section,
3523    in the order that input sections are linked into output sections.
3524    Build lists of input sections to determine groupings between which
3525    we may insert linker stubs.  */
3526 
3527 void
3528 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3529 {
3530   struct elf_aarch64_link_hash_table *htab =
3531     elf_aarch64_hash_table (info);
3532 
3533   if (isec->output_section->index <= htab->top_index)
3534     {
3535       asection **list = htab->input_list + isec->output_section->index;
3536 
3537       if (*list != bfd_abs_section_ptr)
3538 	{
3539 	  /* Steal the link_sec pointer for our list.  */
3540 	  /* This happens to make the list in reverse order,
3541 	     which is what we want.  */
3542 	  PREV_SEC (isec) = *list;
3543 	  *list = isec;
3544 	}
3545     }
3546 }
3547 
3548 /* See whether we can group stub sections together.  Grouping stub
3549    sections may result in fewer stubs.  More importantly, we need to
3550    put all .init* and .fini* stubs at the beginning of the .init or
3551    .fini output sections respectively, because glibc splits the
3552    _init and _fini functions into multiple parts.  Putting a stub in
3553    the middle of a function is not a good idea.  */
3554 
3555 static void
3556 group_sections (struct elf_aarch64_link_hash_table *htab,
3557 		bfd_size_type stub_group_size,
3558 		bfd_boolean stubs_always_before_branch)
3559 {
3560   asection **list = htab->input_list + htab->top_index;
3561 
3562   do
3563     {
3564       asection *tail = *list;
3565 
3566       if (tail == bfd_abs_section_ptr)
3567 	continue;
3568 
3569       while (tail != NULL)
3570 	{
3571 	  asection *curr;
3572 	  asection *prev;
3573 	  bfd_size_type total;
3574 
3575 	  curr = tail;
3576 	  total = tail->size;
3577 	  while ((prev = PREV_SEC (curr)) != NULL
3578 		 && ((total += curr->output_offset - prev->output_offset)
3579 		     < stub_group_size))
3580 	    curr = prev;
3581 
3582 	  /* OK, the size from the start of CURR to the end is less
3583 	     than stub_group_size and thus can be handled by one stub
3584 	     section.  (Or the tail section is itself larger than
3585 	     stub_group_size, in which case we may be toast.)
3586 	     We should really be keeping track of the total size of
3587 	     stubs added here, as stubs contribute to the final output
3588 	     section size.  */
3589 	  do
3590 	    {
3591 	      prev = PREV_SEC (tail);
3592 	      /* Set up this stub group.  */
3593 	      htab->stub_group[tail->id].link_sec = curr;
3594 	    }
3595 	  while (tail != curr && (tail = prev) != NULL);
3596 
3597 	  /* But wait, there's more!  Input sections up to stub_group_size
3598 	     bytes before the stub section can be handled by it too.  */
3599 	  if (!stubs_always_before_branch)
3600 	    {
3601 	      total = 0;
3602 	      while (prev != NULL
3603 		     && ((total += tail->output_offset - prev->output_offset)
3604 			 < stub_group_size))
3605 		{
3606 		  tail = prev;
3607 		  prev = PREV_SEC (tail);
3608 		  htab->stub_group[tail->id].link_sec = curr;
3609 		}
3610 	    }
3611 	  tail = prev;
3612 	}
3613     }
3614   while (list-- != htab->input_list);
3615 
3616   free (htab->input_list);
3617 }
3618 
3619 #undef PREV_SEC
3620 
3621 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3622 
3623 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3624 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3625 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3626 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3627 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3628 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3629 
3630 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3631 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3632 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3633 #define AARCH64_ZR 0x1f
3634 
3635 /* All ld/st ops.  See C4-182 of the ARM ARM.  The encoding space for
3636    LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.  */
3637 
3638 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3639 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3640 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3641 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3642 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3643 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3644 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3645 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3646 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3647 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3648 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3649 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3650 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3651 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3652 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3653 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3654 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3655 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3656 
3657 /* Classify an INSN if it is indeed a load/store.
3658 
3659    Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3660 
3661    For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3662    is set equal to RT.
3663 
3664    For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned.  */
3665 
3666 static bfd_boolean
3667 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3668 		  bfd_boolean *pair, bfd_boolean *load)
3669 {
3670   uint32_t opcode;
3671   unsigned int r;
3672   uint32_t opc = 0;
3673   uint32_t v = 0;
3674   uint32_t opc_v = 0;
3675 
3676   /* Bail out quickly if INSN doesn't fall into the load-store
3677      encoding space.  */
3678   if (!AARCH64_LDST (insn))
3679     return FALSE;
3680 
3681   *pair = FALSE;
3682   *load = FALSE;
3683   if (AARCH64_LDST_EX (insn))
3684     {
3685       *rt = AARCH64_RT (insn);
3686       *rt2 = *rt;
3687       if (AARCH64_BIT (insn, 21) == 1)
3688 	{
3689 	  *pair = TRUE;
3690 	  *rt2 = AARCH64_RT2 (insn);
3691 	}
3692       *load = AARCH64_LD (insn);
3693       return TRUE;
3694     }
3695   else if (AARCH64_LDST_NAP (insn)
3696 	   || AARCH64_LDSTP_PI (insn)
3697 	   || AARCH64_LDSTP_O (insn)
3698 	   || AARCH64_LDSTP_PRE (insn))
3699     {
3700       *pair = TRUE;
3701       *rt = AARCH64_RT (insn);
3702       *rt2 = AARCH64_RT2 (insn);
3703       *load = AARCH64_LD (insn);
3704       return TRUE;
3705     }
3706   else if (AARCH64_LDST_PCREL (insn)
3707 	   || AARCH64_LDST_UI (insn)
3708 	   || AARCH64_LDST_PIIMM (insn)
3709 	   || AARCH64_LDST_U (insn)
3710 	   || AARCH64_LDST_PREIMM (insn)
3711 	   || AARCH64_LDST_RO (insn)
3712 	   || AARCH64_LDST_UIMM (insn))
3713    {
3714       *rt = AARCH64_RT (insn);
3715       *rt2 = *rt;
3716       if (AARCH64_LDST_PCREL (insn))
3717 	*load = TRUE;
3718       opc = AARCH64_BITS (insn, 22, 2);
3719       v = AARCH64_BIT (insn, 26);
3720       opc_v = opc | (v << 2);
3721       *load =  (opc_v == 1 || opc_v == 2 || opc_v == 3
3722 		|| opc_v == 5 || opc_v == 7);
3723       return TRUE;
3724    }
3725   else if (AARCH64_LDST_SIMD_M (insn)
3726 	   || AARCH64_LDST_SIMD_M_PI (insn))
3727     {
3728       *rt = AARCH64_RT (insn);
3729       *load = AARCH64_BIT (insn, 22);
3730       opcode = (insn >> 12) & 0xf;
3731       switch (opcode)
3732 	{
3733 	case 0:
3734 	case 2:
3735 	  *rt2 = *rt + 3;
3736 	  break;
3737 
3738 	case 4:
3739 	case 6:
3740 	  *rt2 = *rt + 2;
3741 	  break;
3742 
3743 	case 7:
3744 	  *rt2 = *rt;
3745 	  break;
3746 
3747 	case 8:
3748 	case 10:
3749 	  *rt2 = *rt + 1;
3750 	  break;
3751 
3752 	default:
3753 	  return FALSE;
3754 	}
3755       return TRUE;
3756     }
3757   else if (AARCH64_LDST_SIMD_S (insn)
3758 	   || AARCH64_LDST_SIMD_S_PI (insn))
3759     {
3760       *rt = AARCH64_RT (insn);
3761       r = (insn >> 21) & 1;
3762       *load = AARCH64_BIT (insn, 22);
3763       opcode = (insn >> 13) & 0x7;
3764       switch (opcode)
3765 	{
3766 	case 0:
3767 	case 2:
3768 	case 4:
3769 	  *rt2 = *rt + r;
3770 	  break;
3771 
3772 	case 1:
3773 	case 3:
3774 	case 5:
3775 	  *rt2 = *rt + (r == 0 ? 2 : 3);
3776 	  break;
3777 
3778 	case 6:
3779 	  *rt2 = *rt + r;
3780 	  break;
3781 
3782 	case 7:
3783 	  *rt2 = *rt + (r == 0 ? 2 : 3);
3784 	  break;
3785 
3786 	default:
3787 	  return FALSE;
3788 	}
3789       return TRUE;
3790     }
3791 
3792   return FALSE;
3793 }
3794 
3795 /* Return TRUE if INSN is multiply-accumulate.  */
3796 
3797 static bfd_boolean
3798 aarch64_mlxl_p (uint32_t insn)
3799 {
3800   uint32_t op31 = AARCH64_OP31 (insn);
3801 
3802   if (AARCH64_MAC (insn)
3803       && (op31 == 0 || op31 == 1 || op31 == 5)
3804       /* Exclude MUL instructions which are encoded as a multiple accumulate
3805 	 with RA = XZR.  */
3806       && AARCH64_RA (insn) != AARCH64_ZR)
3807     return TRUE;
3808 
3809   return FALSE;
3810 }
3811 
3812 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3813    it is possible for a 64-bit multiply-accumulate instruction to generate an
3814    incorrect result.  The details are quite complex and hard to
3815    determine statically, since branches in the code may exist in some
3816    circumstances, but all cases end with a memory (load, store, or
3817    prefetch) instruction followed immediately by the multiply-accumulate
3818    operation.  We employ a linker patching technique, by moving the potentially
3819    affected multiply-accumulate instruction into a patch region and replacing
3820    the original instruction with a branch to the patch.  This function checks
3821    if INSN_1 is the memory operation followed by a multiply-accumulate
3822    operation (INSN_2).  Return TRUE if an erratum sequence is found, FALSE
3823    if INSN_1 and INSN_2 are safe.  */
3824 
3825 static bfd_boolean
3826 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3827 {
3828   uint32_t rt;
3829   uint32_t rt2;
3830   uint32_t rn;
3831   uint32_t rm;
3832   uint32_t ra;
3833   bfd_boolean pair;
3834   bfd_boolean load;
3835 
3836   if (aarch64_mlxl_p (insn_2)
3837       && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3838     {
3839       /* Any SIMD memory op is independent of the subsequent MLA
3840 	 by definition of the erratum.  */
3841       if (AARCH64_BIT (insn_1, 26))
3842 	return TRUE;
3843 
3844       /* If not SIMD, check for integer memory ops and MLA relationship.  */
3845       rn = AARCH64_RN (insn_2);
3846       ra = AARCH64_RA (insn_2);
3847       rm = AARCH64_RM (insn_2);
3848 
3849       /* If this is a load and there's a true(RAW) dependency, we are safe
3850 	 and this is not an erratum sequence.  */
3851       if (load &&
3852 	  (rt == rn || rt == rm || rt == ra
3853 	   || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3854 	return FALSE;
3855 
3856       /* We conservatively put out stubs for all other cases (including
3857 	 writebacks).  */
3858       return TRUE;
3859     }
3860 
3861   return FALSE;
3862 }
3863 
3864 /* Used to order a list of mapping symbols by address.  */
3865 
3866 static int
3867 elf_aarch64_compare_mapping (const void *a, const void *b)
3868 {
3869   const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3870   const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3871 
3872   if (amap->vma > bmap->vma)
3873     return 1;
3874   else if (amap->vma < bmap->vma)
3875     return -1;
3876   else if (amap->type > bmap->type)
3877     /* Ensure results do not depend on the host qsort for objects with
3878        multiple mapping symbols at the same address by sorting on type
3879        after vma.  */
3880     return 1;
3881   else if (amap->type < bmap->type)
3882     return -1;
3883   else
3884     return 0;
3885 }
3886 
3887 
3888 static char *
3889 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3890 {
3891   char *stub_name = (char *) bfd_malloc
3892     (strlen ("__erratum_835769_veneer_") + 16);
3893   if (stub_name != NULL)
3894     sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3895   return stub_name;
3896 }
3897 
3898 /* Scan for Cortex-A53 erratum 835769 sequence.
3899 
3900    Return TRUE else FALSE on abnormal termination.  */
3901 
3902 static bfd_boolean
3903 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3904 				  struct bfd_link_info *info,
3905 				  unsigned int *num_fixes_p)
3906 {
3907   asection *section;
3908   struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3909   unsigned int num_fixes = *num_fixes_p;
3910 
3911   if (htab == NULL)
3912     return TRUE;
3913 
3914   for (section = input_bfd->sections;
3915        section != NULL;
3916        section = section->next)
3917     {
3918       bfd_byte *contents = NULL;
3919       struct _aarch64_elf_section_data *sec_data;
3920       unsigned int span;
3921 
3922       if (elf_section_type (section) != SHT_PROGBITS
3923 	  || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3924 	  || (section->flags & SEC_EXCLUDE) != 0
3925 	  || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3926 	  || (section->output_section == bfd_abs_section_ptr))
3927 	continue;
3928 
3929       if (elf_section_data (section)->this_hdr.contents != NULL)
3930 	contents = elf_section_data (section)->this_hdr.contents;
3931       else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3932 	return FALSE;
3933 
3934       sec_data = elf_aarch64_section_data (section);
3935 
3936       qsort (sec_data->map, sec_data->mapcount,
3937 	     sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3938 
3939       for (span = 0; span < sec_data->mapcount; span++)
3940 	{
3941 	  unsigned int span_start = sec_data->map[span].vma;
3942 	  unsigned int span_end = ((span == sec_data->mapcount - 1)
3943 				   ? sec_data->map[0].vma + section->size
3944 				   : sec_data->map[span + 1].vma);
3945 	  unsigned int i;
3946 	  char span_type = sec_data->map[span].type;
3947 
3948 	  if (span_type == 'd')
3949 	    continue;
3950 
3951 	  for (i = span_start; i + 4 < span_end; i += 4)
3952 	    {
3953 	      uint32_t insn_1 = bfd_getl32 (contents + i);
3954 	      uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3955 
3956 	      if (aarch64_erratum_sequence (insn_1, insn_2))
3957 		{
3958 		  struct elf_aarch64_stub_hash_entry *stub_entry;
3959 		  char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3960 		  if (! stub_name)
3961 		    return FALSE;
3962 
3963 		  stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3964 								     section,
3965 								     htab);
3966 		  if (! stub_entry)
3967 		    return FALSE;
3968 
3969 		  stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3970 		  stub_entry->target_section = section;
3971 		  stub_entry->target_value = i + 4;
3972 		  stub_entry->veneered_insn = insn_2;
3973 		  stub_entry->output_name = stub_name;
3974 		  num_fixes++;
3975 		}
3976 	    }
3977 	}
3978       if (elf_section_data (section)->this_hdr.contents == NULL)
3979 	free (contents);
3980     }
3981 
3982   *num_fixes_p = num_fixes;
3983 
3984   return TRUE;
3985 }
3986 
3987 
3988 /* Test if instruction INSN is ADRP.  */
3989 
3990 static bfd_boolean
3991 _bfd_aarch64_adrp_p (uint32_t insn)
3992 {
3993   return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
3994 }
3995 
3996 
3997 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1.  */
3998 
3999 static bfd_boolean
4000 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
4001 					uint32_t insn_3)
4002 {
4003   uint32_t rt;
4004   uint32_t rt2;
4005   bfd_boolean pair;
4006   bfd_boolean load;
4007 
4008   return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
4009 	  && (!pair
4010 	      || (pair && !load))
4011 	  && AARCH64_LDST_UIMM (insn_3)
4012 	  && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
4013 }
4014 
4015 
4016 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
4017 
4018    Return TRUE if section CONTENTS at offset I contains one of the
4019    erratum 843419 sequences, otherwise return FALSE.  If a sequence is
4020    seen set P_VENEER_I to the offset of the final LOAD/STORE
4021    instruction in the sequence.
4022  */
4023 
4024 static bfd_boolean
4025 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
4026 			       bfd_vma i, bfd_vma span_end,
4027 			       bfd_vma *p_veneer_i)
4028 {
4029   uint32_t insn_1 = bfd_getl32 (contents + i);
4030 
4031   if (!_bfd_aarch64_adrp_p (insn_1))
4032     return FALSE;
4033 
4034   if (span_end < i + 12)
4035     return FALSE;
4036 
4037   uint32_t insn_2 = bfd_getl32 (contents + i + 4);
4038   uint32_t insn_3 = bfd_getl32 (contents + i + 8);
4039 
4040   if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
4041     return FALSE;
4042 
4043   if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
4044     {
4045       *p_veneer_i = i + 8;
4046       return TRUE;
4047     }
4048 
4049   if (span_end < i + 16)
4050     return FALSE;
4051 
4052   uint32_t insn_4 = bfd_getl32 (contents + i + 12);
4053 
4054   if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
4055     {
4056       *p_veneer_i = i + 12;
4057       return TRUE;
4058     }
4059 
4060   return FALSE;
4061 }
4062 
4063 
4064 /* Resize all stub sections.  */
4065 
4066 static void
4067 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
4068 {
4069   asection *section;
4070 
4071   /* OK, we've added some stubs.  Find out the new size of the
4072      stub sections.  */
4073   for (section = htab->stub_bfd->sections;
4074        section != NULL; section = section->next)
4075     {
4076       /* Ignore non-stub sections.  */
4077       if (!strstr (section->name, STUB_SUFFIX))
4078 	continue;
4079       section->size = 0;
4080     }
4081 
4082   bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
4083 
4084   for (section = htab->stub_bfd->sections;
4085        section != NULL; section = section->next)
4086     {
4087       if (!strstr (section->name, STUB_SUFFIX))
4088 	continue;
4089 
4090       /* Add space for a branch.  Add 8 bytes to keep section 8 byte aligned,
4091 	 as long branch stubs contain a 64-bit address.  */
4092       if (section->size)
4093 	section->size += 8;
4094 
4095       /* Ensure all stub sections have a size which is a multiple of
4096 	 4096.  This is important in order to ensure that the insertion
4097 	 of stub sections does not in itself move existing code around
4098 	 in such a way that new errata sequences are created.  We only do this
4099 	 when the ADRP workaround is enabled.  If only the ADR workaround is
4100 	 enabled then the stubs workaround won't ever be used.  */
4101       if (htab->fix_erratum_843419 & ERRAT_ADRP)
4102 	if (section->size)
4103 	  section->size = BFD_ALIGN (section->size, 0x1000);
4104     }
4105 }
4106 
4107 /* Construct an erratum 843419 workaround stub name.  */
4108 
4109 static char *
4110 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
4111 				       bfd_vma offset)
4112 {
4113   const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
4114   char *stub_name = bfd_malloc (len);
4115 
4116   if (stub_name != NULL)
4117     snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
4118 	      input_section->owner->id,
4119 	      input_section->id,
4120 	      offset);
4121   return stub_name;
4122 }
4123 
4124 /*  Build a stub_entry structure describing an 843419 fixup.
4125 
4126     The stub_entry constructed is populated with the bit pattern INSN
4127     of the instruction located at OFFSET within input SECTION.
4128 
4129     Returns TRUE on success.  */
4130 
4131 static bfd_boolean
4132 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
4133 				   bfd_vma adrp_offset,
4134 				   bfd_vma ldst_offset,
4135 				   asection *section,
4136 				   struct bfd_link_info *info)
4137 {
4138   struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4139   char *stub_name;
4140   struct elf_aarch64_stub_hash_entry *stub_entry;
4141 
4142   stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
4143   if (stub_name == NULL)
4144     return FALSE;
4145   stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4146 					 FALSE, FALSE);
4147   if (stub_entry)
4148     {
4149       free (stub_name);
4150       return TRUE;
4151     }
4152 
4153   /* We always place an 843419 workaround veneer in the stub section
4154      attached to the input section in which an erratum sequence has
4155      been found.  This ensures that later in the link process (in
4156      elfNN_aarch64_write_section) when we copy the veneered
4157      instruction from the input section into the stub section the
4158      copied instruction will have had any relocations applied to it.
4159      If we placed workaround veneers in any other stub section then we
4160      could not assume that all relocations have been processed on the
4161      corresponding input section at the point we output the stub
4162      section.  */
4163 
4164   stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4165   if (stub_entry == NULL)
4166     {
4167       free (stub_name);
4168       return FALSE;
4169     }
4170 
4171   stub_entry->adrp_offset = adrp_offset;
4172   stub_entry->target_value = ldst_offset;
4173   stub_entry->target_section = section;
4174   stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4175   stub_entry->veneered_insn = insn;
4176   stub_entry->output_name = stub_name;
4177 
4178   return TRUE;
4179 }
4180 
4181 
4182 /* Scan an input section looking for the signature of erratum 843419.
4183 
4184    Scans input SECTION in INPUT_BFD looking for erratum 843419
4185    signatures, for each signature found a stub_entry is created
4186    describing the location of the erratum for subsequent fixup.
4187 
4188    Return TRUE on successful scan, FALSE on failure to scan.
4189  */
4190 
4191 static bfd_boolean
4192 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4193 				  struct bfd_link_info *info)
4194 {
4195   struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4196 
4197   if (htab == NULL)
4198     return TRUE;
4199 
4200   if (elf_section_type (section) != SHT_PROGBITS
4201       || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4202       || (section->flags & SEC_EXCLUDE) != 0
4203       || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4204       || (section->output_section == bfd_abs_section_ptr))
4205     return TRUE;
4206 
4207   do
4208     {
4209       bfd_byte *contents = NULL;
4210       struct _aarch64_elf_section_data *sec_data;
4211       unsigned int span;
4212 
4213       if (elf_section_data (section)->this_hdr.contents != NULL)
4214 	contents = elf_section_data (section)->this_hdr.contents;
4215       else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4216 	return FALSE;
4217 
4218       sec_data = elf_aarch64_section_data (section);
4219 
4220       qsort (sec_data->map, sec_data->mapcount,
4221 	     sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4222 
4223       for (span = 0; span < sec_data->mapcount; span++)
4224 	{
4225 	  unsigned int span_start = sec_data->map[span].vma;
4226 	  unsigned int span_end = ((span == sec_data->mapcount - 1)
4227 				   ? sec_data->map[0].vma + section->size
4228 				   : sec_data->map[span + 1].vma);
4229 	  unsigned int i;
4230 	  char span_type = sec_data->map[span].type;
4231 
4232 	  if (span_type == 'd')
4233 	    continue;
4234 
4235 	  for (i = span_start; i + 8 < span_end; i += 4)
4236 	    {
4237 	      bfd_vma vma = (section->output_section->vma
4238 			     + section->output_offset
4239 			     + i);
4240 	      bfd_vma veneer_i;
4241 
4242 	      if (_bfd_aarch64_erratum_843419_p
4243 		  (contents, vma, i, span_end, &veneer_i))
4244 		{
4245 		  uint32_t insn = bfd_getl32 (contents + veneer_i);
4246 
4247 		  if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4248 							  section, info))
4249 		    return FALSE;
4250 		}
4251 	    }
4252 	}
4253 
4254       if (elf_section_data (section)->this_hdr.contents == NULL)
4255 	free (contents);
4256     }
4257   while (0);
4258 
4259   return TRUE;
4260 }
4261 
4262 
4263 /* Determine and set the size of the stub section for a final link.
4264 
4265    The basic idea here is to examine all the relocations looking for
4266    PC-relative calls to a target that is unreachable with a "bl"
4267    instruction.  */
4268 
4269 bfd_boolean
4270 elfNN_aarch64_size_stubs (bfd *output_bfd,
4271 			  bfd *stub_bfd,
4272 			  struct bfd_link_info *info,
4273 			  bfd_signed_vma group_size,
4274 			  asection * (*add_stub_section) (const char *,
4275 							  asection *),
4276 			  void (*layout_sections_again) (void))
4277 {
4278   bfd_size_type stub_group_size;
4279   bfd_boolean stubs_always_before_branch;
4280   bfd_boolean stub_changed = FALSE;
4281   struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4282   unsigned int num_erratum_835769_fixes = 0;
4283 
4284   /* Propagate mach to stub bfd, because it may not have been
4285      finalized when we created stub_bfd.  */
4286   bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4287 		     bfd_get_mach (output_bfd));
4288 
4289   /* Stash our params away.  */
4290   htab->stub_bfd = stub_bfd;
4291   htab->add_stub_section = add_stub_section;
4292   htab->layout_sections_again = layout_sections_again;
4293   stubs_always_before_branch = group_size < 0;
4294   if (group_size < 0)
4295     stub_group_size = -group_size;
4296   else
4297     stub_group_size = group_size;
4298 
4299   if (stub_group_size == 1)
4300     {
4301       /* Default values.  */
4302       /* AArch64 branch range is +-128MB. The value used is 1MB less.  */
4303       stub_group_size = 127 * 1024 * 1024;
4304     }
4305 
4306   group_sections (htab, stub_group_size, stubs_always_before_branch);
4307 
4308   (*htab->layout_sections_again) ();
4309 
4310   if (htab->fix_erratum_835769)
4311     {
4312       bfd *input_bfd;
4313 
4314       for (input_bfd = info->input_bfds;
4315 	   input_bfd != NULL; input_bfd = input_bfd->link.next)
4316 	if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4317 					       &num_erratum_835769_fixes))
4318 	  return FALSE;
4319 
4320       _bfd_aarch64_resize_stubs (htab);
4321       (*htab->layout_sections_again) ();
4322     }
4323 
4324   if (htab->fix_erratum_843419 != ERRAT_NONE)
4325     {
4326       bfd *input_bfd;
4327 
4328       for (input_bfd = info->input_bfds;
4329 	   input_bfd != NULL;
4330 	   input_bfd = input_bfd->link.next)
4331 	{
4332 	  asection *section;
4333 
4334 	  for (section = input_bfd->sections;
4335 	       section != NULL;
4336 	       section = section->next)
4337 	    if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4338 	      return FALSE;
4339 	}
4340 
4341       _bfd_aarch64_resize_stubs (htab);
4342       (*htab->layout_sections_again) ();
4343     }
4344 
4345   while (1)
4346     {
4347       bfd *input_bfd;
4348 
4349       for (input_bfd = info->input_bfds;
4350 	   input_bfd != NULL; input_bfd = input_bfd->link.next)
4351 	{
4352 	  Elf_Internal_Shdr *symtab_hdr;
4353 	  asection *section;
4354 	  Elf_Internal_Sym *local_syms = NULL;
4355 
4356 	  /* We'll need the symbol table in a second.  */
4357 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4358 	  if (symtab_hdr->sh_info == 0)
4359 	    continue;
4360 
4361 	  /* Walk over each section attached to the input bfd.  */
4362 	  for (section = input_bfd->sections;
4363 	       section != NULL; section = section->next)
4364 	    {
4365 	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4366 
4367 	      /* If there aren't any relocs, then there's nothing more
4368 		 to do.  */
4369 	      if ((section->flags & SEC_RELOC) == 0
4370 		  || section->reloc_count == 0
4371 		  || (section->flags & SEC_CODE) == 0)
4372 		continue;
4373 
4374 	      /* If this section is a link-once section that will be
4375 		 discarded, then don't create any stubs.  */
4376 	      if (section->output_section == NULL
4377 		  || section->output_section->owner != output_bfd)
4378 		continue;
4379 
4380 	      /* Get the relocs.  */
4381 	      internal_relocs
4382 		= _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4383 					     NULL, info->keep_memory);
4384 	      if (internal_relocs == NULL)
4385 		goto error_ret_free_local;
4386 
4387 	      /* Now examine each relocation.  */
4388 	      irela = internal_relocs;
4389 	      irelaend = irela + section->reloc_count;
4390 	      for (; irela < irelaend; irela++)
4391 		{
4392 		  unsigned int r_type, r_indx;
4393 		  enum elf_aarch64_stub_type stub_type;
4394 		  struct elf_aarch64_stub_hash_entry *stub_entry;
4395 		  asection *sym_sec;
4396 		  bfd_vma sym_value;
4397 		  bfd_vma destination;
4398 		  struct elf_aarch64_link_hash_entry *hash;
4399 		  const char *sym_name;
4400 		  char *stub_name;
4401 		  const asection *id_sec;
4402 		  unsigned char st_type;
4403 		  bfd_size_type len;
4404 
4405 		  r_type = ELFNN_R_TYPE (irela->r_info);
4406 		  r_indx = ELFNN_R_SYM (irela->r_info);
4407 
4408 		  if (r_type >= (unsigned int) R_AARCH64_end)
4409 		    {
4410 		      bfd_set_error (bfd_error_bad_value);
4411 		    error_ret_free_internal:
4412 		      if (elf_section_data (section)->relocs == NULL)
4413 			free (internal_relocs);
4414 		      goto error_ret_free_local;
4415 		    }
4416 
4417 		  /* Only look for stubs on unconditional branch and
4418 		     branch and link instructions.  */
4419 		  if (r_type != (unsigned int) AARCH64_R (CALL26)
4420 		      && r_type != (unsigned int) AARCH64_R (JUMP26))
4421 		    continue;
4422 
4423 		  /* Now determine the call target, its name, value,
4424 		     section.  */
4425 		  sym_sec = NULL;
4426 		  sym_value = 0;
4427 		  destination = 0;
4428 		  hash = NULL;
4429 		  sym_name = NULL;
4430 		  if (r_indx < symtab_hdr->sh_info)
4431 		    {
4432 		      /* It's a local symbol.  */
4433 		      Elf_Internal_Sym *sym;
4434 		      Elf_Internal_Shdr *hdr;
4435 
4436 		      if (local_syms == NULL)
4437 			{
4438 			  local_syms
4439 			    = (Elf_Internal_Sym *) symtab_hdr->contents;
4440 			  if (local_syms == NULL)
4441 			    local_syms
4442 			      = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4443 						      symtab_hdr->sh_info, 0,
4444 						      NULL, NULL, NULL);
4445 			  if (local_syms == NULL)
4446 			    goto error_ret_free_internal;
4447 			}
4448 
4449 		      sym = local_syms + r_indx;
4450 		      hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4451 		      sym_sec = hdr->bfd_section;
4452 		      if (!sym_sec)
4453 			/* This is an undefined symbol.  It can never
4454 			   be resolved.  */
4455 			continue;
4456 
4457 		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4458 			sym_value = sym->st_value;
4459 		      destination = (sym_value + irela->r_addend
4460 				     + sym_sec->output_offset
4461 				     + sym_sec->output_section->vma);
4462 		      st_type = ELF_ST_TYPE (sym->st_info);
4463 		      sym_name
4464 			= bfd_elf_string_from_elf_section (input_bfd,
4465 							   symtab_hdr->sh_link,
4466 							   sym->st_name);
4467 		    }
4468 		  else
4469 		    {
4470 		      int e_indx;
4471 
4472 		      e_indx = r_indx - symtab_hdr->sh_info;
4473 		      hash = ((struct elf_aarch64_link_hash_entry *)
4474 			      elf_sym_hashes (input_bfd)[e_indx]);
4475 
4476 		      while (hash->root.root.type == bfd_link_hash_indirect
4477 			     || hash->root.root.type == bfd_link_hash_warning)
4478 			hash = ((struct elf_aarch64_link_hash_entry *)
4479 				hash->root.root.u.i.link);
4480 
4481 		      if (hash->root.root.type == bfd_link_hash_defined
4482 			  || hash->root.root.type == bfd_link_hash_defweak)
4483 			{
4484 			  struct elf_aarch64_link_hash_table *globals =
4485 			    elf_aarch64_hash_table (info);
4486 			  sym_sec = hash->root.root.u.def.section;
4487 			  sym_value = hash->root.root.u.def.value;
4488 			  /* For a destination in a shared library,
4489 			     use the PLT stub as target address to
4490 			     decide whether a branch stub is
4491 			     needed.  */
4492 			  if (globals->root.splt != NULL && hash != NULL
4493 			      && hash->root.plt.offset != (bfd_vma) - 1)
4494 			    {
4495 			      sym_sec = globals->root.splt;
4496 			      sym_value = hash->root.plt.offset;
4497 			      if (sym_sec->output_section != NULL)
4498 				destination = (sym_value
4499 					       + sym_sec->output_offset
4500 					       +
4501 					       sym_sec->output_section->vma);
4502 			    }
4503 			  else if (sym_sec->output_section != NULL)
4504 			    destination = (sym_value + irela->r_addend
4505 					   + sym_sec->output_offset
4506 					   + sym_sec->output_section->vma);
4507 			}
4508 		      else if (hash->root.root.type == bfd_link_hash_undefined
4509 			       || (hash->root.root.type
4510 				   == bfd_link_hash_undefweak))
4511 			{
4512 			  /* For a shared library, use the PLT stub as
4513 			     target address to decide whether a long
4514 			     branch stub is needed.
4515 			     For absolute code, they cannot be handled.  */
4516 			  struct elf_aarch64_link_hash_table *globals =
4517 			    elf_aarch64_hash_table (info);
4518 
4519 			  if (globals->root.splt != NULL && hash != NULL
4520 			      && hash->root.plt.offset != (bfd_vma) - 1)
4521 			    {
4522 			      sym_sec = globals->root.splt;
4523 			      sym_value = hash->root.plt.offset;
4524 			      if (sym_sec->output_section != NULL)
4525 				destination = (sym_value
4526 					       + sym_sec->output_offset
4527 					       +
4528 					       sym_sec->output_section->vma);
4529 			    }
4530 			  else
4531 			    continue;
4532 			}
4533 		      else
4534 			{
4535 			  bfd_set_error (bfd_error_bad_value);
4536 			  goto error_ret_free_internal;
4537 			}
4538 		      st_type = ELF_ST_TYPE (hash->root.type);
4539 		      sym_name = hash->root.root.root.string;
4540 		    }
4541 
4542 		  /* Determine what (if any) linker stub is needed.  */
4543 		  stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4544 						    st_type, destination);
4545 		  if (stub_type == aarch64_stub_none)
4546 		    continue;
4547 
4548 		  /* Support for grouping stub sections.  */
4549 		  id_sec = htab->stub_group[section->id].link_sec;
4550 
4551 		  /* Get the name of this stub.  */
4552 		  stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4553 						       irela);
4554 		  if (!stub_name)
4555 		    goto error_ret_free_internal;
4556 
4557 		  stub_entry =
4558 		    aarch64_stub_hash_lookup (&htab->stub_hash_table,
4559 					      stub_name, FALSE, FALSE);
4560 		  if (stub_entry != NULL)
4561 		    {
4562 		      /* The proper stub has already been created.  */
4563 		      free (stub_name);
4564 		      /* Always update this stub's target since it may have
4565 			 changed after layout.  */
4566 		      stub_entry->target_value = sym_value + irela->r_addend;
4567 		      continue;
4568 		    }
4569 
4570 		  stub_entry = _bfd_aarch64_add_stub_entry_in_group
4571 		    (stub_name, section, htab);
4572 		  if (stub_entry == NULL)
4573 		    {
4574 		      free (stub_name);
4575 		      goto error_ret_free_internal;
4576 		    }
4577 
4578 		  stub_entry->target_value = sym_value + irela->r_addend;
4579 		  stub_entry->target_section = sym_sec;
4580 		  stub_entry->stub_type = stub_type;
4581 		  stub_entry->h = hash;
4582 		  stub_entry->st_type = st_type;
4583 
4584 		  if (sym_name == NULL)
4585 		    sym_name = "unnamed";
4586 		  len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4587 		  stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4588 		  if (stub_entry->output_name == NULL)
4589 		    {
4590 		      free (stub_name);
4591 		      goto error_ret_free_internal;
4592 		    }
4593 
4594 		  snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4595 			    sym_name);
4596 
4597 		  stub_changed = TRUE;
4598 		}
4599 
4600 	      /* We're done with the internal relocs, free them.  */
4601 	      if (elf_section_data (section)->relocs == NULL)
4602 		free (internal_relocs);
4603 	    }
4604 	}
4605 
4606       if (!stub_changed)
4607 	break;
4608 
4609       _bfd_aarch64_resize_stubs (htab);
4610 
4611       /* Ask the linker to do its stuff.  */
4612       (*htab->layout_sections_again) ();
4613       stub_changed = FALSE;
4614     }
4615 
4616   return TRUE;
4617 
4618 error_ret_free_local:
4619   return FALSE;
4620 }
4621 
4622 /* Build all the stubs associated with the current output file.  The
4623    stubs are kept in a hash table attached to the main linker hash
4624    table.  We also set up the .plt entries for statically linked PIC
4625    functions here.  This function is called via aarch64_elf_finish in the
4626    linker.  */
4627 
4628 bfd_boolean
4629 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4630 {
4631   asection *stub_sec;
4632   struct bfd_hash_table *table;
4633   struct elf_aarch64_link_hash_table *htab;
4634 
4635   htab = elf_aarch64_hash_table (info);
4636 
4637   for (stub_sec = htab->stub_bfd->sections;
4638        stub_sec != NULL; stub_sec = stub_sec->next)
4639     {
4640       bfd_size_type size;
4641 
4642       /* Ignore non-stub sections.  */
4643       if (!strstr (stub_sec->name, STUB_SUFFIX))
4644 	continue;
4645 
4646       /* Allocate memory to hold the linker stubs.  */
4647       size = stub_sec->size;
4648       stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4649       if (stub_sec->contents == NULL && size != 0)
4650 	return FALSE;
4651       stub_sec->size = 0;
4652 
4653       /* Add a branch around the stub section, and a nop, to keep it 8 byte
4654 	 aligned, as long branch stubs contain a 64-bit address.  */
4655       bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4656       bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4657       stub_sec->size += 8;
4658     }
4659 
4660   /* Build the stubs as directed by the stub hash table.  */
4661   table = &htab->stub_hash_table;
4662   bfd_hash_traverse (table, aarch64_build_one_stub, info);
4663 
4664   return TRUE;
4665 }
4666 
4667 
4668 /* Add an entry to the code/data map for section SEC.  */
4669 
4670 static void
4671 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4672 {
4673   struct _aarch64_elf_section_data *sec_data =
4674     elf_aarch64_section_data (sec);
4675   unsigned int newidx;
4676 
4677   if (sec_data->map == NULL)
4678     {
4679       sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4680       sec_data->mapcount = 0;
4681       sec_data->mapsize = 1;
4682     }
4683 
4684   newidx = sec_data->mapcount++;
4685 
4686   if (sec_data->mapcount > sec_data->mapsize)
4687     {
4688       sec_data->mapsize *= 2;
4689       sec_data->map = bfd_realloc_or_free
4690 	(sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4691     }
4692 
4693   if (sec_data->map)
4694     {
4695       sec_data->map[newidx].vma = vma;
4696       sec_data->map[newidx].type = type;
4697     }
4698 }
4699 
4700 
4701 /* Initialise maps of insn/data for input BFDs.  */
4702 void
4703 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4704 {
4705   Elf_Internal_Sym *isymbuf;
4706   Elf_Internal_Shdr *hdr;
4707   unsigned int i, localsyms;
4708 
4709   /* Make sure that we are dealing with an AArch64 elf binary.  */
4710   if (!is_aarch64_elf (abfd))
4711     return;
4712 
4713   if ((abfd->flags & DYNAMIC) != 0)
4714    return;
4715 
4716   hdr = &elf_symtab_hdr (abfd);
4717   localsyms = hdr->sh_info;
4718 
4719   /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4720      should contain the number of local symbols, which should come before any
4721      global symbols.  Mapping symbols are always local.  */
4722   isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4723 
4724   /* No internal symbols read?  Skip this BFD.  */
4725   if (isymbuf == NULL)
4726     return;
4727 
4728   for (i = 0; i < localsyms; i++)
4729     {
4730       Elf_Internal_Sym *isym = &isymbuf[i];
4731       asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4732       const char *name;
4733 
4734       if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4735 	{
4736 	  name = bfd_elf_string_from_elf_section (abfd,
4737 						  hdr->sh_link,
4738 						  isym->st_name);
4739 
4740 	  if (bfd_is_aarch64_special_symbol_name
4741 	      (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4742 	    elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4743 	}
4744     }
4745 }
4746 
4747 static void
4748 setup_plt_values (struct bfd_link_info *link_info,
4749 		  aarch64_plt_type plt_type)
4750 {
4751   struct elf_aarch64_link_hash_table *globals;
4752   globals = elf_aarch64_hash_table (link_info);
4753 
4754   if (plt_type == PLT_BTI_PAC)
4755     {
4756       globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4757 
4758       /* Only in ET_EXEC we need PLTn with BTI.  */
4759       if (bfd_link_pde (link_info))
4760 	{
4761 	  globals->plt_entry_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
4762 	  globals->plt_entry = elfNN_aarch64_small_plt_bti_pac_entry;
4763 	}
4764       else
4765 	{
4766 	  globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4767 	  globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4768 	}
4769     }
4770   else if (plt_type == PLT_BTI)
4771     {
4772       globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4773 
4774       /* Only in ET_EXEC we need PLTn with BTI.  */
4775       if (bfd_link_pde (link_info))
4776 	{
4777 	  globals->plt_entry_size = PLT_BTI_SMALL_ENTRY_SIZE;
4778 	  globals->plt_entry = elfNN_aarch64_small_plt_bti_entry;
4779 	}
4780     }
4781   else if (plt_type == PLT_PAC)
4782     {
4783       globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4784       globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4785     }
4786 }
4787 
4788 /* Set option values needed during linking.  */
4789 void
4790 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4791 			       struct bfd_link_info *link_info,
4792 			       int no_enum_warn,
4793 			       int no_wchar_warn, int pic_veneer,
4794 			       int fix_erratum_835769,
4795 			       erratum_84319_opts fix_erratum_843419,
4796 			       int no_apply_dynamic_relocs,
4797 			       aarch64_bti_pac_info bp_info)
4798 {
4799   struct elf_aarch64_link_hash_table *globals;
4800 
4801   globals = elf_aarch64_hash_table (link_info);
4802   globals->pic_veneer = pic_veneer;
4803   globals->fix_erratum_835769 = fix_erratum_835769;
4804   /* If the default options are used, then ERRAT_ADR will be set by default
4805      which will enable the ADRP->ADR workaround for the erratum 843419
4806      workaround.  */
4807   globals->fix_erratum_843419 = fix_erratum_843419;
4808   globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4809 
4810   BFD_ASSERT (is_aarch64_elf (output_bfd));
4811   elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4812   elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4813 
4814   switch (bp_info.bti_type)
4815     {
4816     case BTI_WARN:
4817       elf_aarch64_tdata (output_bfd)->no_bti_warn = 0;
4818       elf_aarch64_tdata (output_bfd)->gnu_and_prop
4819 	|= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
4820       break;
4821 
4822     default:
4823       break;
4824     }
4825   elf_aarch64_tdata (output_bfd)->plt_type = bp_info.plt_type;
4826   setup_plt_values (link_info, bp_info.plt_type);
4827 }
4828 
4829 static bfd_vma
4830 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4831 				 struct elf_aarch64_link_hash_table
4832 				 *globals, struct bfd_link_info *info,
4833 				 bfd_vma value, bfd *output_bfd,
4834 				 bfd_boolean *unresolved_reloc_p)
4835 {
4836   bfd_vma off = (bfd_vma) - 1;
4837   asection *basegot = globals->root.sgot;
4838   bfd_boolean dyn = globals->root.dynamic_sections_created;
4839 
4840   if (h != NULL)
4841     {
4842       BFD_ASSERT (basegot != NULL);
4843       off = h->got.offset;
4844       BFD_ASSERT (off != (bfd_vma) - 1);
4845       if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4846 	  || (bfd_link_pic (info)
4847 	      && SYMBOL_REFERENCES_LOCAL (info, h))
4848 	  || (ELF_ST_VISIBILITY (h->other)
4849 	      && h->root.type == bfd_link_hash_undefweak))
4850 	{
4851 	  /* This is actually a static link, or it is a -Bsymbolic link
4852 	     and the symbol is defined locally.  We must initialize this
4853 	     entry in the global offset table.  Since the offset must
4854 	     always be a multiple of 8 (4 in the case of ILP32), we use
4855 	     the least significant bit to record whether we have
4856 	     initialized it already.
4857 	     When doing a dynamic link, we create a .rel(a).got relocation
4858 	     entry to initialize the value.  This is done in the
4859 	     finish_dynamic_symbol routine.  */
4860 	  if ((off & 1) != 0)
4861 	    off &= ~1;
4862 	  else
4863 	    {
4864 	      bfd_put_NN (output_bfd, value, basegot->contents + off);
4865 	      h->got.offset |= 1;
4866 	    }
4867 	}
4868       else
4869 	*unresolved_reloc_p = FALSE;
4870 
4871       off = off + basegot->output_section->vma + basegot->output_offset;
4872     }
4873 
4874   return off;
4875 }
4876 
4877 /* Change R_TYPE to a more efficient access model where possible,
4878    return the new reloc type.  */
4879 
4880 static bfd_reloc_code_real_type
4881 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4882 				      struct elf_link_hash_entry *h)
4883 {
4884   bfd_boolean is_local = h == NULL;
4885 
4886   switch (r_type)
4887     {
4888     case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4889     case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4890       return (is_local
4891 	      ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4892 	      : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4893 
4894     case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4895       return (is_local
4896 	      ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4897 	      : r_type);
4898 
4899     case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4900       return (is_local
4901 	      ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4902 	      : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4903 
4904     case BFD_RELOC_AARCH64_TLSDESC_LDR:
4905       return (is_local
4906 	      ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4907 	      : BFD_RELOC_AARCH64_NONE);
4908 
4909     case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4910       return (is_local
4911 	      ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4912 	      : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4913 
4914     case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4915       return (is_local
4916 	      ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4917 	      : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4918 
4919     case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4920     case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4921       return (is_local
4922 	      ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4923 	      : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4924 
4925     case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4926       return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4927 
4928     case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4929       return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4930 
4931     case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4932       return r_type;
4933 
4934     case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4935       return (is_local
4936 	      ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4937 	      : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4938 
4939     case BFD_RELOC_AARCH64_TLSDESC_ADD:
4940     case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4941     case BFD_RELOC_AARCH64_TLSDESC_CALL:
4942       /* Instructions with these relocations will become NOPs.  */
4943       return BFD_RELOC_AARCH64_NONE;
4944 
4945     case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4946     case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4947     case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4948       return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4949 
4950 #if ARCH_SIZE == 64
4951     case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4952       return is_local
4953 	? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4954 	: BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4955 
4956     case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4957       return is_local
4958 	? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4959 	: BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4960 #endif
4961 
4962     default:
4963       break;
4964     }
4965 
4966   return r_type;
4967 }
4968 
4969 static unsigned int
4970 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4971 {
4972   switch (r_type)
4973     {
4974     case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4975     case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4976     case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4977     case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4978     case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4979     case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4980     case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4981     case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4982     case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4983       return GOT_NORMAL;
4984 
4985     case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4986     case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4987     case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4988     case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4989     case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4990     case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4991     case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4992     case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4993       return GOT_TLS_GD;
4994 
4995     case BFD_RELOC_AARCH64_TLSDESC_ADD:
4996     case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4997     case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4998     case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4999     case BFD_RELOC_AARCH64_TLSDESC_CALL:
5000     case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5001     case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5002     case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5003     case BFD_RELOC_AARCH64_TLSDESC_LDR:
5004     case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5005     case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5006       return GOT_TLSDESC_GD;
5007 
5008     case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5009     case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5010     case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5011     case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5012     case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5013     case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5014       return GOT_TLS_IE;
5015 
5016     default:
5017       break;
5018     }
5019   return GOT_UNKNOWN;
5020 }
5021 
5022 static bfd_boolean
5023 aarch64_can_relax_tls (bfd *input_bfd,
5024 		       struct bfd_link_info *info,
5025 		       bfd_reloc_code_real_type r_type,
5026 		       struct elf_link_hash_entry *h,
5027 		       unsigned long r_symndx)
5028 {
5029   unsigned int symbol_got_type;
5030   unsigned int reloc_got_type;
5031 
5032   if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
5033     return FALSE;
5034 
5035   symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
5036   reloc_got_type = aarch64_reloc_got_type (r_type);
5037 
5038   if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
5039     return TRUE;
5040 
5041   if (!bfd_link_executable (info))
5042     return FALSE;
5043 
5044   if  (h && h->root.type == bfd_link_hash_undefweak)
5045     return FALSE;
5046 
5047   return TRUE;
5048 }
5049 
5050 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
5051    enumerator.  */
5052 
5053 static bfd_reloc_code_real_type
5054 aarch64_tls_transition (bfd *input_bfd,
5055 			struct bfd_link_info *info,
5056 			unsigned int r_type,
5057 			struct elf_link_hash_entry *h,
5058 			unsigned long r_symndx)
5059 {
5060   bfd_reloc_code_real_type bfd_r_type
5061     = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
5062 
5063   if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
5064     return bfd_r_type;
5065 
5066   return aarch64_tls_transition_without_check (bfd_r_type, h);
5067 }
5068 
5069 /* Return the base VMA address which should be subtracted from real addresses
5070    when resolving R_AARCH64_TLS_DTPREL relocation.  */
5071 
5072 static bfd_vma
5073 dtpoff_base (struct bfd_link_info *info)
5074 {
5075   /* If tls_sec is NULL, we should have signalled an error already.  */
5076   BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
5077   return elf_hash_table (info)->tls_sec->vma;
5078 }
5079 
5080 /* Return the base VMA address which should be subtracted from real addresses
5081    when resolving R_AARCH64_TLS_GOTTPREL64 relocations.  */
5082 
5083 static bfd_vma
5084 tpoff_base (struct bfd_link_info *info)
5085 {
5086   struct elf_link_hash_table *htab = elf_hash_table (info);
5087 
5088   /* If tls_sec is NULL, we should have signalled an error already.  */
5089   BFD_ASSERT (htab->tls_sec != NULL);
5090 
5091   bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
5092 			      htab->tls_sec->alignment_power);
5093   return htab->tls_sec->vma - base;
5094 }
5095 
5096 static bfd_vma *
5097 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5098 		       unsigned long r_symndx)
5099 {
5100   /* Calculate the address of the GOT entry for symbol
5101      referred to in h.  */
5102   if (h != NULL)
5103     return &h->got.offset;
5104   else
5105     {
5106       /* local symbol */
5107       struct elf_aarch64_local_symbol *l;
5108 
5109       l = elf_aarch64_locals (input_bfd);
5110       return &l[r_symndx].got_offset;
5111     }
5112 }
5113 
5114 static void
5115 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5116 			unsigned long r_symndx)
5117 {
5118   bfd_vma *p;
5119   p = symbol_got_offset_ref (input_bfd, h, r_symndx);
5120   *p |= 1;
5121 }
5122 
5123 static int
5124 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
5125 			  unsigned long r_symndx)
5126 {
5127   bfd_vma value;
5128   value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5129   return value & 1;
5130 }
5131 
5132 static bfd_vma
5133 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5134 		   unsigned long r_symndx)
5135 {
5136   bfd_vma value;
5137   value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5138   value &= ~1;
5139   return value;
5140 }
5141 
5142 static bfd_vma *
5143 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5144 			       unsigned long r_symndx)
5145 {
5146   /* Calculate the address of the GOT entry for symbol
5147      referred to in h.  */
5148   if (h != NULL)
5149     {
5150       struct elf_aarch64_link_hash_entry *eh;
5151       eh = (struct elf_aarch64_link_hash_entry *) h;
5152       return &eh->tlsdesc_got_jump_table_offset;
5153     }
5154   else
5155     {
5156       /* local symbol */
5157       struct elf_aarch64_local_symbol *l;
5158 
5159       l = elf_aarch64_locals (input_bfd);
5160       return &l[r_symndx].tlsdesc_got_jump_table_offset;
5161     }
5162 }
5163 
5164 static void
5165 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5166 				unsigned long r_symndx)
5167 {
5168   bfd_vma *p;
5169   p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5170   *p |= 1;
5171 }
5172 
5173 static int
5174 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
5175 				  struct elf_link_hash_entry *h,
5176 				  unsigned long r_symndx)
5177 {
5178   bfd_vma value;
5179   value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5180   return value & 1;
5181 }
5182 
5183 static bfd_vma
5184 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5185 			  unsigned long r_symndx)
5186 {
5187   bfd_vma value;
5188   value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5189   value &= ~1;
5190   return value;
5191 }
5192 
5193 /* Data for make_branch_to_erratum_835769_stub().  */
5194 
5195 struct erratum_835769_branch_to_stub_data
5196 {
5197   struct bfd_link_info *info;
5198   asection *output_section;
5199   bfd_byte *contents;
5200 };
5201 
5202 /* Helper to insert branches to erratum 835769 stubs in the right
5203    places for a particular section.  */
5204 
5205 static bfd_boolean
5206 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5207 				    void *in_arg)
5208 {
5209   struct elf_aarch64_stub_hash_entry *stub_entry;
5210   struct erratum_835769_branch_to_stub_data *data;
5211   bfd_byte *contents;
5212   unsigned long branch_insn = 0;
5213   bfd_vma veneered_insn_loc, veneer_entry_loc;
5214   bfd_signed_vma branch_offset;
5215   unsigned int target;
5216   bfd *abfd;
5217 
5218   stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5219   data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5220 
5221   if (stub_entry->target_section != data->output_section
5222       || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5223     return TRUE;
5224 
5225   contents = data->contents;
5226   veneered_insn_loc = stub_entry->target_section->output_section->vma
5227 		      + stub_entry->target_section->output_offset
5228 		      + stub_entry->target_value;
5229   veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5230 		     + stub_entry->stub_sec->output_offset
5231 		     + stub_entry->stub_offset;
5232   branch_offset = veneer_entry_loc - veneered_insn_loc;
5233 
5234   abfd = stub_entry->target_section->owner;
5235   if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5236     _bfd_error_handler
5237       (_("%pB: error: erratum 835769 stub out "
5238 	 "of range (input file too large)"), abfd);
5239 
5240   target = stub_entry->target_value;
5241   branch_insn = 0x14000000;
5242   branch_offset >>= 2;
5243   branch_offset &= 0x3ffffff;
5244   branch_insn |= branch_offset;
5245   bfd_putl32 (branch_insn, &contents[target]);
5246 
5247   return TRUE;
5248 }
5249 
5250 
5251 static bfd_boolean
5252 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5253 					    void *in_arg)
5254 {
5255   struct elf_aarch64_stub_hash_entry *stub_entry
5256     = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5257   struct erratum_835769_branch_to_stub_data *data
5258     = (struct erratum_835769_branch_to_stub_data *) in_arg;
5259   struct bfd_link_info *info;
5260   struct elf_aarch64_link_hash_table *htab;
5261   bfd_byte *contents;
5262   asection *section;
5263   bfd *abfd;
5264   bfd_vma place;
5265   uint32_t insn;
5266 
5267   info = data->info;
5268   contents = data->contents;
5269   section = data->output_section;
5270 
5271   htab = elf_aarch64_hash_table (info);
5272 
5273   if (stub_entry->target_section != section
5274       || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5275     return TRUE;
5276 
5277   BFD_ASSERT (((htab->fix_erratum_843419 & ERRAT_ADRP) && stub_entry->stub_sec)
5278 	      || (htab->fix_erratum_843419 & ERRAT_ADR));
5279 
5280   /* Only update the stub section if we have one.  We should always have one if
5281      we're allowed to use the ADRP errata workaround, otherwise it is not
5282      required.  */
5283   if (stub_entry->stub_sec)
5284     {
5285       insn = bfd_getl32 (contents + stub_entry->target_value);
5286       bfd_putl32 (insn,
5287 		  stub_entry->stub_sec->contents + stub_entry->stub_offset);
5288     }
5289 
5290   place = (section->output_section->vma + section->output_offset
5291 	   + stub_entry->adrp_offset);
5292   insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5293 
5294   if (!_bfd_aarch64_adrp_p (insn))
5295     abort ();
5296 
5297   bfd_signed_vma imm =
5298     (_bfd_aarch64_sign_extend
5299      ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5300      - (place & 0xfff));
5301 
5302   if ((htab->fix_erratum_843419 & ERRAT_ADR)
5303       && (imm >= AARCH64_MIN_ADRP_IMM  && imm <= AARCH64_MAX_ADRP_IMM))
5304     {
5305       insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5306 	      | AARCH64_RT (insn));
5307       bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5308       /* Stub is not needed, don't map it out.  */
5309       stub_entry->stub_type = aarch64_stub_none;
5310     }
5311   else if (htab->fix_erratum_843419 & ERRAT_ADRP)
5312     {
5313       bfd_vma veneered_insn_loc;
5314       bfd_vma veneer_entry_loc;
5315       bfd_signed_vma branch_offset;
5316       uint32_t branch_insn;
5317 
5318       veneered_insn_loc = stub_entry->target_section->output_section->vma
5319 	+ stub_entry->target_section->output_offset
5320 	+ stub_entry->target_value;
5321       veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5322 	+ stub_entry->stub_sec->output_offset
5323 	+ stub_entry->stub_offset;
5324       branch_offset = veneer_entry_loc - veneered_insn_loc;
5325 
5326       abfd = stub_entry->target_section->owner;
5327       if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5328 	_bfd_error_handler
5329 	  (_("%pB: error: erratum 843419 stub out "
5330 	     "of range (input file too large)"), abfd);
5331 
5332       branch_insn = 0x14000000;
5333       branch_offset >>= 2;
5334       branch_offset &= 0x3ffffff;
5335       branch_insn |= branch_offset;
5336       bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5337     }
5338   else
5339     {
5340       abfd = stub_entry->target_section->owner;
5341       _bfd_error_handler
5342 	(_("%pB: error: erratum 843419 immediate 0x%" BFD_VMA_FMT "x "
5343 	   "out of range for ADR (input file too large) and "
5344 	   "--fix-cortex-a53-843419=adr used.  Run the linker with "
5345 	   "--fix-cortex-a53-843419=full instead"), abfd, imm);
5346       bfd_set_error (bfd_error_bad_value);
5347       /* This function is called inside a hashtable traversal and the error
5348 	 handlers called above turn into non-fatal errors.  Which means this
5349 	 case ld returns an exit code 0 and also produces a broken object file.
5350 	 To prevent this, issue a hard abort.  */
5351       BFD_FAIL ();
5352     }
5353   return TRUE;
5354 }
5355 
5356 
5357 static bfd_boolean
5358 elfNN_aarch64_write_section (bfd *output_bfd  ATTRIBUTE_UNUSED,
5359 			     struct bfd_link_info *link_info,
5360 			     asection *sec,
5361 			     bfd_byte *contents)
5362 
5363 {
5364   struct elf_aarch64_link_hash_table *globals =
5365     elf_aarch64_hash_table (link_info);
5366 
5367   if (globals == NULL)
5368     return FALSE;
5369 
5370   /* Fix code to point to erratum 835769 stubs.  */
5371   if (globals->fix_erratum_835769)
5372     {
5373       struct erratum_835769_branch_to_stub_data data;
5374 
5375       data.info = link_info;
5376       data.output_section = sec;
5377       data.contents = contents;
5378       bfd_hash_traverse (&globals->stub_hash_table,
5379 			 make_branch_to_erratum_835769_stub, &data);
5380     }
5381 
5382   if (globals->fix_erratum_843419)
5383     {
5384       struct erratum_835769_branch_to_stub_data data;
5385 
5386       data.info = link_info;
5387       data.output_section = sec;
5388       data.contents = contents;
5389       bfd_hash_traverse (&globals->stub_hash_table,
5390 			 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5391     }
5392 
5393   return FALSE;
5394 }
5395 
5396 /* Return TRUE if RELOC is a relocation against the base of GOT table.  */
5397 
5398 static bfd_boolean
5399 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5400 {
5401   return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5402 	  || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5403 	  || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5404 	  || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5405 	  || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5406 }
5407 
5408 /* Perform a relocation as part of a final link.  The input relocation type
5409    should be TLS relaxed.  */
5410 
5411 static bfd_reloc_status_type
5412 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5413 				   bfd *input_bfd,
5414 				   bfd *output_bfd,
5415 				   asection *input_section,
5416 				   bfd_byte *contents,
5417 				   Elf_Internal_Rela *rel,
5418 				   bfd_vma value,
5419 				   struct bfd_link_info *info,
5420 				   asection *sym_sec,
5421 				   struct elf_link_hash_entry *h,
5422 				   bfd_boolean *unresolved_reloc_p,
5423 				   bfd_boolean save_addend,
5424 				   bfd_vma *saved_addend,
5425 				   Elf_Internal_Sym *sym)
5426 {
5427   Elf_Internal_Shdr *symtab_hdr;
5428   unsigned int r_type = howto->type;
5429   bfd_reloc_code_real_type bfd_r_type
5430     = elfNN_aarch64_bfd_reloc_from_howto (howto);
5431   unsigned long r_symndx;
5432   bfd_byte *hit_data = contents + rel->r_offset;
5433   bfd_vma place, off, got_entry_addr = 0;
5434   bfd_signed_vma signed_addend;
5435   struct elf_aarch64_link_hash_table *globals;
5436   bfd_boolean weak_undef_p;
5437   bfd_boolean relative_reloc;
5438   asection *base_got;
5439   bfd_vma orig_value = value;
5440   bfd_boolean resolved_to_zero;
5441   bfd_boolean abs_symbol_p;
5442 
5443   globals = elf_aarch64_hash_table (info);
5444 
5445   symtab_hdr = &elf_symtab_hdr (input_bfd);
5446 
5447   BFD_ASSERT (is_aarch64_elf (input_bfd));
5448 
5449   r_symndx = ELFNN_R_SYM (rel->r_info);
5450 
5451   place = input_section->output_section->vma
5452     + input_section->output_offset + rel->r_offset;
5453 
5454   /* Get addend, accumulating the addend for consecutive relocs
5455      which refer to the same offset.  */
5456   signed_addend = saved_addend ? *saved_addend : 0;
5457   signed_addend += rel->r_addend;
5458 
5459   weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5460 		  : bfd_is_und_section (sym_sec));
5461   abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5462 
5463 
5464   /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5465      it here if it is defined in a non-shared object.  */
5466   if (h != NULL
5467       && h->type == STT_GNU_IFUNC
5468       && h->def_regular)
5469     {
5470       asection *plt;
5471       const char *name;
5472       bfd_vma addend = 0;
5473 
5474       if ((input_section->flags & SEC_ALLOC) == 0)
5475 	{
5476 	  /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5477 	     STT_GNU_IFUNC symbol as STT_FUNC.  */
5478 	  if (elf_section_type (input_section) == SHT_NOTE)
5479 	    goto skip_ifunc;
5480 
5481 	  /* Dynamic relocs are not propagated for SEC_DEBUGGING
5482 	     sections because such sections are not SEC_ALLOC and
5483 	     thus ld.so will not process them.  */
5484 	  if ((input_section->flags & SEC_DEBUGGING) != 0)
5485 	    return bfd_reloc_ok;
5486 
5487 	  if (h->root.root.string)
5488 	    name = h->root.root.string;
5489 	  else
5490 	    name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5491 	  _bfd_error_handler
5492 	    /* xgettext:c-format */
5493 	    (_("%pB(%pA+%#" PRIx64 "): "
5494 	       "unresolvable %s relocation against symbol `%s'"),
5495 	     input_bfd, input_section, (uint64_t) rel->r_offset,
5496 	     howto->name, name);
5497 	  bfd_set_error (bfd_error_bad_value);
5498 	  return bfd_reloc_notsupported;
5499 	}
5500       else if (h->plt.offset == (bfd_vma) -1)
5501 	goto bad_ifunc_reloc;
5502 
5503       /* STT_GNU_IFUNC symbol must go through PLT.  */
5504       plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5505       value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5506 
5507       switch (bfd_r_type)
5508 	{
5509 	default:
5510 bad_ifunc_reloc:
5511 	  if (h->root.root.string)
5512 	    name = h->root.root.string;
5513 	  else
5514 	    name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5515 				     NULL);
5516 	  _bfd_error_handler
5517 	    /* xgettext:c-format */
5518 	    (_("%pB: relocation %s against STT_GNU_IFUNC "
5519 	       "symbol `%s' isn't handled by %s"), input_bfd,
5520 	     howto->name, name, __FUNCTION__);
5521 	  bfd_set_error (bfd_error_bad_value);
5522 	  return bfd_reloc_notsupported;
5523 
5524 	case BFD_RELOC_AARCH64_NN:
5525 	  if (rel->r_addend != 0)
5526 	    {
5527 	      if (h->root.root.string)
5528 		name = h->root.root.string;
5529 	      else
5530 		name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5531 					 sym, NULL);
5532 	      _bfd_error_handler
5533 		/* xgettext:c-format */
5534 		(_("%pB: relocation %s against STT_GNU_IFUNC "
5535 		   "symbol `%s' has non-zero addend: %" PRId64),
5536 		 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5537 	      bfd_set_error (bfd_error_bad_value);
5538 	      return bfd_reloc_notsupported;
5539 	    }
5540 
5541 	  /* Generate dynamic relocation only when there is a
5542 	     non-GOT reference in a shared object.  */
5543 	  if (bfd_link_pic (info) && h->non_got_ref)
5544 	    {
5545 	      Elf_Internal_Rela outrel;
5546 	      asection *sreloc;
5547 
5548 	      /* Need a dynamic relocation to get the real function
5549 		 address.  */
5550 	      outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5551 							 info,
5552 							 input_section,
5553 							 rel->r_offset);
5554 	      if (outrel.r_offset == (bfd_vma) -1
5555 		  || outrel.r_offset == (bfd_vma) -2)
5556 		abort ();
5557 
5558 	      outrel.r_offset += (input_section->output_section->vma
5559 				  + input_section->output_offset);
5560 
5561 	      if (h->dynindx == -1
5562 		  || h->forced_local
5563 		  || bfd_link_executable (info))
5564 		{
5565 		  /* This symbol is resolved locally.  */
5566 		  outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5567 		  outrel.r_addend = (h->root.u.def.value
5568 				     + h->root.u.def.section->output_section->vma
5569 				     + h->root.u.def.section->output_offset);
5570 		}
5571 	      else
5572 		{
5573 		  outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5574 		  outrel.r_addend = 0;
5575 		}
5576 
5577 	      sreloc = globals->root.irelifunc;
5578 	      elf_append_rela (output_bfd, sreloc, &outrel);
5579 
5580 	      /* If this reloc is against an external symbol, we
5581 		 do not want to fiddle with the addend.  Otherwise,
5582 		 we need to include the symbol value so that it
5583 		 becomes an addend for the dynamic reloc.  For an
5584 		 internal symbol, we have updated addend.  */
5585 	      return bfd_reloc_ok;
5586 	    }
5587 	  /* FALLTHROUGH */
5588 	case BFD_RELOC_AARCH64_CALL26:
5589 	case BFD_RELOC_AARCH64_JUMP26:
5590 	  value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5591 						       place, value,
5592 						       signed_addend,
5593 						       weak_undef_p);
5594 	  return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5595 					      howto, value);
5596 	case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5597 	case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5598 	case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5599 	case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5600 	case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5601 	case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5602 	case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5603 	case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5604 	case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5605 	  base_got = globals->root.sgot;
5606 	  off = h->got.offset;
5607 
5608 	  if (base_got == NULL)
5609 	    abort ();
5610 
5611 	  if (off == (bfd_vma) -1)
5612 	    {
5613 	      bfd_vma plt_index;
5614 
5615 	      /* We can't use h->got.offset here to save state, or
5616 		 even just remember the offset, as finish_dynamic_symbol
5617 		 would use that as offset into .got.  */
5618 
5619 	      if (globals->root.splt != NULL)
5620 		{
5621 		  plt_index = ((h->plt.offset - globals->plt_header_size) /
5622 			       globals->plt_entry_size);
5623 		  off = (plt_index + 3) * GOT_ENTRY_SIZE;
5624 		  base_got = globals->root.sgotplt;
5625 		}
5626 	      else
5627 		{
5628 		  plt_index = h->plt.offset / globals->plt_entry_size;
5629 		  off = plt_index * GOT_ENTRY_SIZE;
5630 		  base_got = globals->root.igotplt;
5631 		}
5632 
5633 	      if (h->dynindx == -1
5634 		  || h->forced_local
5635 		  || info->symbolic)
5636 		{
5637 		  /* This references the local definition.  We must
5638 		     initialize this entry in the global offset table.
5639 		     Since the offset must always be a multiple of 8,
5640 		     we use the least significant bit to record
5641 		     whether we have initialized it already.
5642 
5643 		     When doing a dynamic link, we create a .rela.got
5644 		     relocation entry to initialize the value.  This
5645 		     is done in the finish_dynamic_symbol routine.	 */
5646 		  if ((off & 1) != 0)
5647 		    off &= ~1;
5648 		  else
5649 		    {
5650 		      bfd_put_NN (output_bfd, value,
5651 				  base_got->contents + off);
5652 		      /* Note that this is harmless as -1 | 1 still is -1.  */
5653 		      h->got.offset |= 1;
5654 		    }
5655 		}
5656 	      value = (base_got->output_section->vma
5657 		       + base_got->output_offset + off);
5658 	    }
5659 	  else
5660 	    value = aarch64_calculate_got_entry_vma (h, globals, info,
5661 						     value, output_bfd,
5662 						     unresolved_reloc_p);
5663 
5664 	  if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5665 	    addend = (globals->root.sgot->output_section->vma
5666 		      + globals->root.sgot->output_offset);
5667 
5668 	  value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5669 						       place, value,
5670 						       addend, weak_undef_p);
5671 	  return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5672 	case BFD_RELOC_AARCH64_ADD_LO12:
5673 	case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5674 	  break;
5675 	}
5676     }
5677 
5678  skip_ifunc:
5679   resolved_to_zero = (h != NULL
5680 		      && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5681 
5682   switch (bfd_r_type)
5683     {
5684     case BFD_RELOC_AARCH64_NONE:
5685     case BFD_RELOC_AARCH64_TLSDESC_ADD:
5686     case BFD_RELOC_AARCH64_TLSDESC_CALL:
5687     case BFD_RELOC_AARCH64_TLSDESC_LDR:
5688       *unresolved_reloc_p = FALSE;
5689       return bfd_reloc_ok;
5690 
5691     case BFD_RELOC_AARCH64_NN:
5692 
5693       /* When generating a shared object or relocatable executable, these
5694 	 relocations are copied into the output file to be resolved at
5695 	 run time.  */
5696       if (((bfd_link_pic (info)
5697 	    || globals->root.is_relocatable_executable)
5698 	   && (input_section->flags & SEC_ALLOC)
5699 	   && (h == NULL
5700 	       || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5701 		   && !resolved_to_zero)
5702 	       || h->root.type != bfd_link_hash_undefweak))
5703 	  /* Or we are creating an executable, we may need to keep relocations
5704 	     for symbols satisfied by a dynamic library if we manage to avoid
5705 	     copy relocs for the symbol.  */
5706 	  || (ELIMINATE_COPY_RELOCS
5707 	      && !bfd_link_pic (info)
5708 	      && h != NULL
5709 	      && (input_section->flags & SEC_ALLOC)
5710 	      && h->dynindx != -1
5711 	      && !h->non_got_ref
5712 	      && ((h->def_dynamic
5713 		   && !h->def_regular)
5714 		  || h->root.type == bfd_link_hash_undefweak
5715 		  || h->root.type == bfd_link_hash_undefined)))
5716 	{
5717 	  Elf_Internal_Rela outrel;
5718 	  bfd_byte *loc;
5719 	  bfd_boolean skip, relocate;
5720 	  asection *sreloc;
5721 
5722 	  *unresolved_reloc_p = FALSE;
5723 
5724 	  skip = FALSE;
5725 	  relocate = FALSE;
5726 
5727 	  outrel.r_addend = signed_addend;
5728 	  outrel.r_offset =
5729 	    _bfd_elf_section_offset (output_bfd, info, input_section,
5730 				     rel->r_offset);
5731 	  if (outrel.r_offset == (bfd_vma) - 1)
5732 	    skip = TRUE;
5733 	  else if (outrel.r_offset == (bfd_vma) - 2)
5734 	    {
5735 	      skip = TRUE;
5736 	      relocate = TRUE;
5737 	    }
5738 	  else if (abs_symbol_p)
5739 	    {
5740 	      /* Local absolute symbol.  */
5741 	      skip = (h->forced_local || (h->dynindx == -1));
5742 	      relocate = skip;
5743 	    }
5744 
5745 	  outrel.r_offset += (input_section->output_section->vma
5746 			      + input_section->output_offset);
5747 
5748 	  if (skip)
5749 	    memset (&outrel, 0, sizeof outrel);
5750 	  else if (h != NULL
5751 		   && h->dynindx != -1
5752 		   && (!bfd_link_pic (info)
5753 		       || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5754 		       || !h->def_regular))
5755 	    outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5756 	  else
5757 	    {
5758 	      int symbol;
5759 
5760 	      /* On SVR4-ish systems, the dynamic loader cannot
5761 		 relocate the text and data segments independently,
5762 		 so the symbol does not matter.  */
5763 	      symbol = 0;
5764 	      relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5765 	      outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5766 	      outrel.r_addend += value;
5767 	    }
5768 
5769 	  sreloc = elf_section_data (input_section)->sreloc;
5770 	  if (sreloc == NULL || sreloc->contents == NULL)
5771 	    return bfd_reloc_notsupported;
5772 
5773 	  loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5774 	  bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5775 
5776 	  if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5777 	    {
5778 	      /* Sanity to check that we have previously allocated
5779 		 sufficient space in the relocation section for the
5780 		 number of relocations we actually want to emit.  */
5781 	      abort ();
5782 	    }
5783 
5784 	  /* If this reloc is against an external symbol, we do not want to
5785 	     fiddle with the addend.  Otherwise, we need to include the symbol
5786 	     value so that it becomes an addend for the dynamic reloc.  */
5787 	  if (!relocate)
5788 	    return bfd_reloc_ok;
5789 
5790 	  return _bfd_final_link_relocate (howto, input_bfd, input_section,
5791 					   contents, rel->r_offset, value,
5792 					   signed_addend);
5793 	}
5794       else
5795 	value += signed_addend;
5796       break;
5797 
5798     case BFD_RELOC_AARCH64_CALL26:
5799     case BFD_RELOC_AARCH64_JUMP26:
5800       {
5801 	asection *splt = globals->root.splt;
5802 	bfd_boolean via_plt_p =
5803 	  splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5804 
5805 	/* A call to an undefined weak symbol is converted to a jump to
5806 	   the next instruction unless a PLT entry will be created.
5807 	   The jump to the next instruction is optimized as a NOP.
5808 	   Do the same for local undefined symbols.  */
5809 	if (weak_undef_p && ! via_plt_p)
5810 	  {
5811 	    bfd_putl32 (INSN_NOP, hit_data);
5812 	    return bfd_reloc_ok;
5813 	  }
5814 
5815 	/* If the call goes through a PLT entry, make sure to
5816 	   check distance to the right destination address.  */
5817 	if (via_plt_p)
5818 	  value = (splt->output_section->vma
5819 		   + splt->output_offset + h->plt.offset);
5820 
5821 	/* Check if a stub has to be inserted because the destination
5822 	   is too far away.  */
5823 	struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5824 
5825 	/* If the branch destination is directed to plt stub, "value" will be
5826 	   the final destination, otherwise we should plus signed_addend, it may
5827 	   contain non-zero value, for example call to local function symbol
5828 	   which are turned into "sec_sym + sec_off", and sec_off is kept in
5829 	   signed_addend.  */
5830 	if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5831 				      place))
5832 	  /* The target is out of reach, so redirect the branch to
5833 	     the local stub for this function.  */
5834 	stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5835 						   rel, globals);
5836 	if (stub_entry != NULL)
5837 	  {
5838 	    value = (stub_entry->stub_offset
5839 		     + stub_entry->stub_sec->output_offset
5840 		     + stub_entry->stub_sec->output_section->vma);
5841 
5842 	    /* We have redirected the destination to stub entry address,
5843 	       so ignore any addend record in the original rela entry.  */
5844 	    signed_addend = 0;
5845 	  }
5846       }
5847       value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5848 						   place, value,
5849 						   signed_addend, weak_undef_p);
5850       *unresolved_reloc_p = FALSE;
5851       break;
5852 
5853     case BFD_RELOC_AARCH64_16_PCREL:
5854     case BFD_RELOC_AARCH64_32_PCREL:
5855     case BFD_RELOC_AARCH64_64_PCREL:
5856     case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5857     case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5858     case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5859     case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5860     case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5861     case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5862     case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5863     case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5864     case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5865     case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5866     case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5867       if (bfd_link_pic (info)
5868 	  && (input_section->flags & SEC_ALLOC) != 0
5869 	  && (input_section->flags & SEC_READONLY) != 0
5870 	  && !SYMBOL_REFERENCES_LOCAL (info, h))
5871 	{
5872 	  int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5873 
5874 	  _bfd_error_handler
5875 	    /* xgettext:c-format */
5876 	    (_("%pB: relocation %s against symbol `%s' which may bind "
5877 	       "externally can not be used when making a shared object; "
5878 	       "recompile with -fPIC"),
5879 	     input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5880 	     h->root.root.string);
5881 	  bfd_set_error (bfd_error_bad_value);
5882 	  return bfd_reloc_notsupported;
5883 	}
5884       /* Fall through.  */
5885 
5886     case BFD_RELOC_AARCH64_16:
5887 #if ARCH_SIZE == 64
5888     case BFD_RELOC_AARCH64_32:
5889 #endif
5890     case BFD_RELOC_AARCH64_ADD_LO12:
5891     case BFD_RELOC_AARCH64_BRANCH19:
5892     case BFD_RELOC_AARCH64_LDST128_LO12:
5893     case BFD_RELOC_AARCH64_LDST16_LO12:
5894     case BFD_RELOC_AARCH64_LDST32_LO12:
5895     case BFD_RELOC_AARCH64_LDST64_LO12:
5896     case BFD_RELOC_AARCH64_LDST8_LO12:
5897     case BFD_RELOC_AARCH64_MOVW_G0:
5898     case BFD_RELOC_AARCH64_MOVW_G0_NC:
5899     case BFD_RELOC_AARCH64_MOVW_G0_S:
5900     case BFD_RELOC_AARCH64_MOVW_G1:
5901     case BFD_RELOC_AARCH64_MOVW_G1_NC:
5902     case BFD_RELOC_AARCH64_MOVW_G1_S:
5903     case BFD_RELOC_AARCH64_MOVW_G2:
5904     case BFD_RELOC_AARCH64_MOVW_G2_NC:
5905     case BFD_RELOC_AARCH64_MOVW_G2_S:
5906     case BFD_RELOC_AARCH64_MOVW_G3:
5907     case BFD_RELOC_AARCH64_TSTBR14:
5908       value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5909 						   place, value,
5910 						   signed_addend, weak_undef_p);
5911       break;
5912 
5913     case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5914     case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5915     case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5916     case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5917     case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5918     case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5919     case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5920     case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5921     case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5922       if (globals->root.sgot == NULL)
5923 	BFD_ASSERT (h != NULL);
5924 
5925       relative_reloc = FALSE;
5926       if (h != NULL)
5927 	{
5928 	  bfd_vma addend = 0;
5929 
5930 	  /* If a symbol is not dynamic and is not undefined weak, bind it
5931 	     locally and generate a RELATIVE relocation under PIC mode.
5932 
5933 	     NOTE: one symbol may be referenced by several relocations, we
5934 	     should only generate one RELATIVE relocation for that symbol.
5935 	     Therefore, check GOT offset mark first.  */
5936 	  if (h->dynindx == -1
5937 	      && !h->forced_local
5938 	      && h->root.type != bfd_link_hash_undefweak
5939 	      && bfd_link_pic (info)
5940 	      && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5941 	    relative_reloc = TRUE;
5942 
5943 	  value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5944 						   output_bfd,
5945 						   unresolved_reloc_p);
5946 	  /* Record the GOT entry address which will be used when generating
5947 	     RELATIVE relocation.  */
5948 	  if (relative_reloc)
5949 	    got_entry_addr = value;
5950 
5951 	  if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5952 	    addend = (globals->root.sgot->output_section->vma
5953 		      + globals->root.sgot->output_offset);
5954 	  value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5955 						       place, value,
5956 						       addend, weak_undef_p);
5957 	}
5958       else
5959       {
5960 	bfd_vma addend = 0;
5961 	struct elf_aarch64_local_symbol *locals
5962 	  = elf_aarch64_locals (input_bfd);
5963 
5964 	if (locals == NULL)
5965 	  {
5966 	    int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5967 	    _bfd_error_handler
5968 	      /* xgettext:c-format */
5969 	      (_("%pB: local symbol descriptor table be NULL when applying "
5970 		 "relocation %s against local symbol"),
5971 	       input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5972 	    abort ();
5973 	  }
5974 
5975 	off = symbol_got_offset (input_bfd, h, r_symndx);
5976 	base_got = globals->root.sgot;
5977 	got_entry_addr = (base_got->output_section->vma
5978 			  + base_got->output_offset + off);
5979 
5980 	if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5981 	  {
5982 	    bfd_put_64 (output_bfd, value, base_got->contents + off);
5983 
5984 	    /* For local symbol, we have done absolute relocation in static
5985 	       linking stage.  While for shared library, we need to update the
5986 	       content of GOT entry according to the shared object's runtime
5987 	       base address.  So, we need to generate a R_AARCH64_RELATIVE reloc
5988 	       for dynamic linker.  */
5989 	    if (bfd_link_pic (info))
5990 	      relative_reloc = TRUE;
5991 
5992 	    symbol_got_offset_mark (input_bfd, h, r_symndx);
5993 	  }
5994 
5995 	/* Update the relocation value to GOT entry addr as we have transformed
5996 	   the direct data access into indirect data access through GOT.  */
5997 	value = got_entry_addr;
5998 
5999 	if (aarch64_relocation_aginst_gp_p (bfd_r_type))
6000 	  addend = base_got->output_section->vma + base_got->output_offset;
6001 
6002 	value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6003 						     place, value,
6004 						     addend, weak_undef_p);
6005       }
6006 
6007       if (relative_reloc)
6008 	{
6009 	  asection *s;
6010 	  Elf_Internal_Rela outrel;
6011 
6012 	  s = globals->root.srelgot;
6013 	  if (s == NULL)
6014 	    abort ();
6015 
6016 	  outrel.r_offset = got_entry_addr;
6017 	  outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6018 	  outrel.r_addend = orig_value;
6019 	  elf_append_rela (output_bfd, s, &outrel);
6020 	}
6021       break;
6022 
6023     case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6024     case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6025     case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6026     case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6027     case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6028     case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6029     case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6030     case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6031     case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6032     case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6033       if (globals->root.sgot == NULL)
6034 	return bfd_reloc_notsupported;
6035 
6036       value = (symbol_got_offset (input_bfd, h, r_symndx)
6037 	       + globals->root.sgot->output_section->vma
6038 	       + globals->root.sgot->output_offset);
6039 
6040       value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6041 						   place, value,
6042 						   0, weak_undef_p);
6043       *unresolved_reloc_p = FALSE;
6044       break;
6045 
6046     case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6047     case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6048     case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6049     case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6050       if (globals->root.sgot == NULL)
6051 	return bfd_reloc_notsupported;
6052 
6053       value = symbol_got_offset (input_bfd, h, r_symndx);
6054       value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6055 						   place, value,
6056 						   0, weak_undef_p);
6057       *unresolved_reloc_p = FALSE;
6058       break;
6059 
6060     case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
6061     case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
6062     case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6063     case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
6064     case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
6065     case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
6066     case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
6067     case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
6068     case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
6069     case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
6070     case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6071     case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6072     case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6073     case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6074     case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6075     case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
6076       {
6077 	if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6078 	  {
6079 	    int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6080 	    _bfd_error_handler
6081 	      /* xgettext:c-format */
6082 	      (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6083 		 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6084 		 h->root.root.string);
6085 	    bfd_set_error (bfd_error_bad_value);
6086 	    return bfd_reloc_notsupported;
6087 	  }
6088 
6089 	bfd_vma def_value
6090 	  = weak_undef_p ? 0 : signed_addend - dtpoff_base (info);
6091 	value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6092 						     place, value,
6093 						     def_value, weak_undef_p);
6094 	break;
6095       }
6096 
6097     case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6098     case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6099     case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6100     case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
6101     case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6102     case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
6103     case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6104     case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
6105     case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6106     case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
6107     case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6108     case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6109     case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6110     case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6111     case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6112     case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6113       {
6114 	if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6115 	  {
6116 	    int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6117 	    _bfd_error_handler
6118 	      /* xgettext:c-format */
6119 	      (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6120 		 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6121 		 h->root.root.string);
6122 	    bfd_set_error (bfd_error_bad_value);
6123 	    return bfd_reloc_notsupported;
6124 	  }
6125 
6126 	bfd_vma def_value
6127 	  = weak_undef_p ? 0 : signed_addend - tpoff_base (info);
6128 	value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6129 						     place, value,
6130 						     def_value, weak_undef_p);
6131         *unresolved_reloc_p = FALSE;
6132 	break;
6133       }
6134 
6135     case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6136     case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6137     case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6138     case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6139     case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6140     case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6141       if (globals->root.sgot == NULL)
6142 	return bfd_reloc_notsupported;
6143       value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6144 	       + globals->root.sgotplt->output_section->vma
6145 	       + globals->root.sgotplt->output_offset
6146 	       + globals->sgotplt_jump_table_size);
6147 
6148       value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6149 						   place, value,
6150 						   0, weak_undef_p);
6151       *unresolved_reloc_p = FALSE;
6152       break;
6153 
6154     case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6155     case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6156       if (globals->root.sgot == NULL)
6157 	return bfd_reloc_notsupported;
6158 
6159       value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6160 	       + globals->root.sgotplt->output_section->vma
6161 	       + globals->root.sgotplt->output_offset
6162 	       + globals->sgotplt_jump_table_size);
6163 
6164       value -= (globals->root.sgot->output_section->vma
6165 		+ globals->root.sgot->output_offset);
6166 
6167       value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6168 						   place, value,
6169 						   0, weak_undef_p);
6170       *unresolved_reloc_p = FALSE;
6171       break;
6172 
6173     default:
6174       return bfd_reloc_notsupported;
6175     }
6176 
6177   if (saved_addend)
6178     *saved_addend = value;
6179 
6180   /* Only apply the final relocation in a sequence.  */
6181   if (save_addend)
6182     return bfd_reloc_continue;
6183 
6184   return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
6185 				      howto, value);
6186 }
6187 
6188 /* LP64 and ILP32 operates on x- and w-registers respectively.
6189    Next definitions take into account the difference between
6190    corresponding machine codes. R means x-register if the target
6191    arch is LP64, and w-register if the target is ILP32.  */
6192 
6193 #if ARCH_SIZE == 64
6194 # define add_R0_R0	(0x91000000)
6195 # define add_R0_R0_R1	(0x8b000020)
6196 # define add_R0_R1	(0x91400020)
6197 # define ldr_R0		(0x58000000)
6198 # define ldr_R0_mask(i)	(i & 0xffffffe0)
6199 # define ldr_R0_x0	(0xf9400000)
6200 # define ldr_hw_R0	(0xf2a00000)
6201 # define movk_R0	(0xf2800000)
6202 # define movz_R0	(0xd2a00000)
6203 # define movz_hw_R0	(0xd2c00000)
6204 #else /*ARCH_SIZE == 32 */
6205 # define add_R0_R0	(0x11000000)
6206 # define add_R0_R0_R1	(0x0b000020)
6207 # define add_R0_R1	(0x11400020)
6208 # define ldr_R0		(0x18000000)
6209 # define ldr_R0_mask(i)	(i & 0xbfffffe0)
6210 # define ldr_R0_x0	(0xb9400000)
6211 # define ldr_hw_R0	(0x72a00000)
6212 # define movk_R0	(0x72800000)
6213 # define movz_R0	(0x52a00000)
6214 # define movz_hw_R0	(0x52c00000)
6215 #endif
6216 
6217 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6218    it is used to identify the stub information to reset.  */
6219 
6220 struct erratum_843419_branch_to_stub_clear_data
6221 {
6222   bfd_vma adrp_offset;
6223   asection *output_section;
6224 };
6225 
6226 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6227    section inside IN_ARG matches.  The clearing is done by setting the
6228    stub_type to none.  */
6229 
6230 static bfd_boolean
6231 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
6232 					void *in_arg)
6233 {
6234   struct elf_aarch64_stub_hash_entry *stub_entry
6235     = (struct elf_aarch64_stub_hash_entry *) gen_entry;
6236   struct erratum_843419_branch_to_stub_clear_data *data
6237     = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
6238 
6239   if (stub_entry->target_section != data->output_section
6240       || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
6241       || stub_entry->adrp_offset != data->adrp_offset)
6242     return TRUE;
6243 
6244   /* Change the stub type instead of removing the entry, removing from the hash
6245      table would be slower and we have already reserved the memory for the entry
6246      so there wouldn't be much gain.  Changing the stub also keeps around a
6247      record of what was there before.  */
6248   stub_entry->stub_type = aarch64_stub_none;
6249 
6250   /* We're done and there could have been only one matching stub at that
6251      particular offset, so abort further traversal.  */
6252   return FALSE;
6253 }
6254 
6255 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6256    sequence.  In this case the erratum no longer applies and we need to remove
6257    the entry from the pending stub generation.  This clears matching adrp insn
6258    at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS.  */
6259 
6260 static void
6261 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
6262 			    bfd_vma adrp_offset, asection *input_section)
6263 {
6264   if (globals->fix_erratum_843419 & ERRAT_ADRP)
6265     {
6266       struct erratum_843419_branch_to_stub_clear_data data;
6267       data.adrp_offset = adrp_offset;
6268       data.output_section = input_section;
6269 
6270       bfd_hash_traverse (&globals->stub_hash_table,
6271 			 _bfd_aarch64_erratum_843419_clear_stub, &data);
6272     }
6273 }
6274 
6275 /* Handle TLS relaxations.  Relaxing is possible for symbols that use
6276    R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6277    link.
6278 
6279    Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6280    is to then call final_link_relocate.  Return other values in the
6281    case of error.  */
6282 
6283 static bfd_reloc_status_type
6284 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6285 			 bfd *input_bfd, asection *input_section,
6286 			 bfd_byte *contents, Elf_Internal_Rela *rel,
6287 			 struct elf_link_hash_entry *h)
6288 {
6289   bfd_boolean is_local = h == NULL;
6290   unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6291   unsigned long insn;
6292 
6293   BFD_ASSERT (globals && input_bfd && contents && rel);
6294 
6295   switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6296     {
6297     case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6298     case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6299       if (is_local)
6300 	{
6301 	  /* GD->LE relaxation:
6302 	     adrp x0, :tlsgd:var     =>   movz R0, :tprel_g1:var
6303 	     or
6304 	     adrp x0, :tlsdesc:var   =>   movz R0, :tprel_g1:var
6305 
6306 	     Where R is x for LP64, and w for ILP32.  */
6307 	  bfd_putl32 (movz_R0, contents + rel->r_offset);
6308 	  /* We have relaxed the adrp into a mov, we may have to clear any
6309 	     pending erratum fixes.  */
6310 	  clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6311 	  return bfd_reloc_continue;
6312 	}
6313       else
6314 	{
6315 	  /* GD->IE relaxation:
6316 	     adrp x0, :tlsgd:var     =>   adrp x0, :gottprel:var
6317 	     or
6318 	     adrp x0, :tlsdesc:var   =>   adrp x0, :gottprel:var
6319 	   */
6320 	  return bfd_reloc_continue;
6321 	}
6322 
6323     case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6324       BFD_ASSERT (0);
6325       break;
6326 
6327     case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6328       if (is_local)
6329 	{
6330 	  /* Tiny TLSDESC->LE relaxation:
6331 	     ldr   x1, :tlsdesc:var	 =>  movz  R0, #:tprel_g1:var
6332 	     adr   x0, :tlsdesc:var	 =>  movk  R0, #:tprel_g0_nc:var
6333 	     .tlsdesccall var
6334 	     blr   x1			 =>  nop
6335 
6336 	     Where R is x for LP64, and w for ILP32.  */
6337 	  BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6338 	  BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6339 
6340 	  rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6341 					AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6342 	  rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6343 
6344 	  bfd_putl32 (movz_R0, contents + rel->r_offset);
6345 	  bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6346 	  bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6347 	  return bfd_reloc_continue;
6348 	}
6349       else
6350 	{
6351 	  /* Tiny TLSDESC->IE relaxation:
6352 	     ldr   x1, :tlsdesc:var	 =>  ldr   x0, :gottprel:var
6353 	     adr   x0, :tlsdesc:var	 =>  nop
6354 	     .tlsdesccall var
6355 	     blr   x1			 =>  nop
6356 	   */
6357 	  BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6358 	  BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6359 
6360 	  rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6361 	  rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6362 
6363 	  bfd_putl32 (ldr_R0, contents + rel->r_offset);
6364 	  bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6365 	  bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6366 	  return bfd_reloc_continue;
6367 	}
6368 
6369     case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6370       if (is_local)
6371 	{
6372 	  /* Tiny GD->LE relaxation:
6373 	     adr x0, :tlsgd:var	     =>	  mrs  x1, tpidr_el0
6374 	     bl	  __tls_get_addr     =>	  add  R0, R1, #:tprel_hi12:x, lsl #12
6375 	     nop		     =>	  add  R0, R0, #:tprel_lo12_nc:x
6376 
6377 	     Where R is x for LP64, and x for Ilp32.  */
6378 
6379 	  /* First kill the tls_get_addr reloc on the bl instruction.  */
6380 	  BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6381 
6382 	  bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6383 	  bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6384 	  bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6385 
6386 	  rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6387 					AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6388 	  rel[1].r_offset = rel->r_offset + 8;
6389 
6390 	  /* Move the current relocation to the second instruction in
6391 	     the sequence.  */
6392 	  rel->r_offset += 4;
6393 	  rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6394 				      AARCH64_R (TLSLE_ADD_TPREL_HI12));
6395 	  return bfd_reloc_continue;
6396 	}
6397       else
6398 	{
6399 	  /* Tiny GD->IE relaxation:
6400 	     adr x0, :tlsgd:var	     =>	  ldr  R0, :gottprel:var
6401 	     bl	  __tls_get_addr     =>	  mrs  x1, tpidr_el0
6402 	     nop		     =>	  add  R0, R0, R1
6403 
6404 	     Where R is x for LP64, and w for Ilp32.  */
6405 
6406 	  /* First kill the tls_get_addr reloc on the bl instruction.  */
6407 	  BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6408 	  rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6409 
6410 	  bfd_putl32 (ldr_R0, contents + rel->r_offset);
6411 	  bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6412 	  bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6413 	  return bfd_reloc_continue;
6414 	}
6415 
6416 #if ARCH_SIZE == 64
6417     case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6418       BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6419       BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6420       BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6421 
6422       if (is_local)
6423 	{
6424 	  /* Large GD->LE relaxation:
6425 	     movz x0, #:tlsgd_g1:var	=> movz x0, #:tprel_g2:var, lsl #32
6426 	     movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6427 	     add x0, gp, x0		=> movk x0, #:tprel_g0_nc:var
6428 	     bl __tls_get_addr		=> mrs x1, tpidr_el0
6429 	     nop			=> add x0, x0, x1
6430 	   */
6431 	  rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6432 					AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6433 	  rel[2].r_offset = rel->r_offset + 8;
6434 
6435 	  bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6436 	  bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6437 	  bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6438 	  bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6439 	  bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6440 	}
6441       else
6442 	{
6443 	  /* Large GD->IE relaxation:
6444 	     movz x0, #:tlsgd_g1:var	=> movz x0, #:gottprel_g1:var, lsl #16
6445 	     movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6446 	     add x0, gp, x0		=> ldr x0, [gp, x0]
6447 	     bl __tls_get_addr		=> mrs x1, tpidr_el0
6448 	     nop			=> add x0, x0, x1
6449 	   */
6450 	  rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6451 	  bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6452 	  bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6453 	  bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6454 	  bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6455 	}
6456       return bfd_reloc_continue;
6457 
6458     case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6459       return bfd_reloc_continue;
6460 #endif
6461 
6462     case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6463       return bfd_reloc_continue;
6464 
6465     case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6466       if (is_local)
6467 	{
6468 	  /* GD->LE relaxation:
6469 	     ldr xd, [x0, #:tlsdesc_lo12:var]   =>   movk x0, :tprel_g0_nc:var
6470 
6471 	     Where R is x for lp64 mode, and w for ILP32 mode.  */
6472 	  bfd_putl32 (movk_R0, contents + rel->r_offset);
6473 	  return bfd_reloc_continue;
6474 	}
6475       else
6476 	{
6477 	  /* GD->IE relaxation:
6478 	     ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6479 
6480 	     Where R is x for lp64 mode, and w for ILP32 mode.  */
6481 	  insn = bfd_getl32 (contents + rel->r_offset);
6482 	  bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6483 	  return bfd_reloc_continue;
6484 	}
6485 
6486     case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6487       if (is_local)
6488 	{
6489 	  /* GD->LE relaxation
6490 	     add  x0, #:tlsgd_lo12:var	=> movk R0, :tprel_g0_nc:var
6491 	     bl	  __tls_get_addr	=> mrs	x1, tpidr_el0
6492 	     nop			=> add	R0, R1, R0
6493 
6494 	     Where R is x for lp64 mode, and w for ILP32 mode.  */
6495 
6496 	  /* First kill the tls_get_addr reloc on the bl instruction.  */
6497 	  BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6498 	  rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6499 
6500 	  bfd_putl32 (movk_R0, contents + rel->r_offset);
6501 	  bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6502 	  bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6503 	  return bfd_reloc_continue;
6504 	}
6505       else
6506 	{
6507 	  /* GD->IE relaxation
6508 	     ADD  x0, #:tlsgd_lo12:var	=> ldr	R0, [x0, #:gottprel_lo12:var]
6509 	     BL	  __tls_get_addr	=> mrs	x1, tpidr_el0
6510 	       R_AARCH64_CALL26
6511 	     NOP			=> add	R0, R1, R0
6512 
6513 	     Where R is x for lp64 mode, and w for ilp32 mode.  */
6514 
6515 	  BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6516 
6517 	  /* Remove the relocation on the BL instruction.  */
6518 	  rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6519 
6520 	  /* We choose to fixup the BL and NOP instructions using the
6521 	     offset from the second relocation to allow flexibility in
6522 	     scheduling instructions between the ADD and BL.  */
6523 	  bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6524 	  bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6525 	  bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6526 	  return bfd_reloc_continue;
6527 	}
6528 
6529     case BFD_RELOC_AARCH64_TLSDESC_ADD:
6530     case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6531     case BFD_RELOC_AARCH64_TLSDESC_CALL:
6532       /* GD->IE/LE relaxation:
6533 	 add x0, x0, #:tlsdesc_lo12:var	  =>   nop
6534 	 blr xd				  =>   nop
6535        */
6536       bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6537       return bfd_reloc_ok;
6538 
6539     case BFD_RELOC_AARCH64_TLSDESC_LDR:
6540       if (is_local)
6541 	{
6542 	  /* GD->LE relaxation:
6543 	     ldr xd, [gp, xn]   =>   movk R0, #:tprel_g0_nc:var
6544 
6545 	     Where R is x for lp64 mode, and w for ILP32 mode.  */
6546 	  bfd_putl32 (movk_R0, contents + rel->r_offset);
6547 	  return bfd_reloc_continue;
6548 	}
6549       else
6550 	{
6551 	  /* GD->IE relaxation:
6552 	     ldr xd, [gp, xn]   =>   ldr R0, [gp, xn]
6553 
6554 	     Where R is x for lp64 mode, and w for ILP32 mode.  */
6555 	  insn = bfd_getl32 (contents + rel->r_offset);
6556 	  bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6557 	  return bfd_reloc_ok;
6558 	}
6559 
6560     case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6561       /* GD->LE relaxation:
6562 	 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6563 	 GD->IE relaxation:
6564 	 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6565 
6566 	 Where R is x for lp64 mode, and w for ILP32 mode.  */
6567       if (is_local)
6568 	bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6569       return bfd_reloc_continue;
6570 
6571     case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6572       if (is_local)
6573 	{
6574 	  /* GD->LE relaxation:
6575 	     movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6576 
6577 	     Where R is x for lp64 mode, and w for ILP32 mode.  */
6578 	  bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6579 	  return bfd_reloc_continue;
6580 	}
6581       else
6582 	{
6583 	  /*  GD->IE relaxation:
6584 	      movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6585 
6586 	     Where R is x for lp64 mode, and w for ILP32 mode.  */
6587 	  insn = bfd_getl32 (contents + rel->r_offset);
6588 	  bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6589 	  return bfd_reloc_continue;
6590 	}
6591 
6592     case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6593       /* IE->LE relaxation:
6594 	 adrp xd, :gottprel:var   =>   movz Rd, :tprel_g1:var
6595 
6596 	 Where R is x for lp64 mode, and w for ILP32 mode.  */
6597       if (is_local)
6598 	{
6599 	  insn = bfd_getl32 (contents + rel->r_offset);
6600 	  bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6601 	  /* We have relaxed the adrp into a mov, we may have to clear any
6602 	     pending erratum fixes.  */
6603 	  clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6604 	}
6605       return bfd_reloc_continue;
6606 
6607     case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6608       /* IE->LE relaxation:
6609 	 ldr  xd, [xm, #:gottprel_lo12:var]   =>   movk Rd, :tprel_g0_nc:var
6610 
6611 	 Where R is x for lp64 mode, and w for ILP32 mode.  */
6612       if (is_local)
6613 	{
6614 	  insn = bfd_getl32 (contents + rel->r_offset);
6615 	  bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6616 	}
6617       return bfd_reloc_continue;
6618 
6619     case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6620       /* LD->LE relaxation (tiny):
6621 	 adr  x0, :tlsldm:x  => mrs x0, tpidr_el0
6622 	 bl   __tls_get_addr => add R0, R0, TCB_SIZE
6623 
6624 	 Where R is x for lp64 mode, and w for ilp32 mode.  */
6625       if (is_local)
6626 	{
6627 	  BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6628 	  BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6629 	  /* No need of CALL26 relocation for tls_get_addr.  */
6630 	  rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6631 	  bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6632 	  bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6633 		      contents + rel->r_offset + 4);
6634 	  return bfd_reloc_ok;
6635 	}
6636       return bfd_reloc_continue;
6637 
6638     case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6639       /* LD->LE relaxation (small):
6640 	 adrp  x0, :tlsldm:x       => mrs x0, tpidr_el0
6641        */
6642       if (is_local)
6643 	{
6644 	  bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6645 	  return bfd_reloc_ok;
6646 	}
6647       return bfd_reloc_continue;
6648 
6649     case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6650       /* LD->LE relaxation (small):
6651 	 add   x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6652 	 bl   __tls_get_addr       => nop
6653 
6654 	 Where R is x for lp64 mode, and w for ilp32 mode.  */
6655       if (is_local)
6656 	{
6657 	  BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6658 	  BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6659 	  /* No need of CALL26 relocation for tls_get_addr.  */
6660 	  rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6661 	  bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6662 		      contents + rel->r_offset + 0);
6663 	  bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6664 	  return bfd_reloc_ok;
6665 	}
6666       return bfd_reloc_continue;
6667 
6668     default:
6669       return bfd_reloc_continue;
6670     }
6671 
6672   return bfd_reloc_ok;
6673 }
6674 
6675 /* Relocate an AArch64 ELF section.  */
6676 
6677 static bfd_boolean
6678 elfNN_aarch64_relocate_section (bfd *output_bfd,
6679 				struct bfd_link_info *info,
6680 				bfd *input_bfd,
6681 				asection *input_section,
6682 				bfd_byte *contents,
6683 				Elf_Internal_Rela *relocs,
6684 				Elf_Internal_Sym *local_syms,
6685 				asection **local_sections)
6686 {
6687   Elf_Internal_Shdr *symtab_hdr;
6688   struct elf_link_hash_entry **sym_hashes;
6689   Elf_Internal_Rela *rel;
6690   Elf_Internal_Rela *relend;
6691   const char *name;
6692   struct elf_aarch64_link_hash_table *globals;
6693   bfd_boolean save_addend = FALSE;
6694   bfd_vma addend = 0;
6695 
6696   globals = elf_aarch64_hash_table (info);
6697 
6698   symtab_hdr = &elf_symtab_hdr (input_bfd);
6699   sym_hashes = elf_sym_hashes (input_bfd);
6700 
6701   rel = relocs;
6702   relend = relocs + input_section->reloc_count;
6703   for (; rel < relend; rel++)
6704     {
6705       unsigned int r_type;
6706       bfd_reloc_code_real_type bfd_r_type;
6707       bfd_reloc_code_real_type relaxed_bfd_r_type;
6708       reloc_howto_type *howto;
6709       unsigned long r_symndx;
6710       Elf_Internal_Sym *sym;
6711       asection *sec;
6712       struct elf_link_hash_entry *h;
6713       bfd_vma relocation;
6714       bfd_reloc_status_type r;
6715       arelent bfd_reloc;
6716       char sym_type;
6717       bfd_boolean unresolved_reloc = FALSE;
6718       char *error_message = NULL;
6719 
6720       r_symndx = ELFNN_R_SYM (rel->r_info);
6721       r_type = ELFNN_R_TYPE (rel->r_info);
6722 
6723       bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6724       howto = bfd_reloc.howto;
6725 
6726       if (howto == NULL)
6727 	return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6728 
6729       bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6730 
6731       h = NULL;
6732       sym = NULL;
6733       sec = NULL;
6734 
6735       if (r_symndx < symtab_hdr->sh_info)
6736 	{
6737 	  sym = local_syms + r_symndx;
6738 	  sym_type = ELFNN_ST_TYPE (sym->st_info);
6739 	  sec = local_sections[r_symndx];
6740 
6741 	  /* An object file might have a reference to a local
6742 	     undefined symbol.  This is a daft object file, but we
6743 	     should at least do something about it.  */
6744 	  if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6745 	      && bfd_is_und_section (sec)
6746 	      && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6747 	    (*info->callbacks->undefined_symbol)
6748 	      (info, bfd_elf_string_from_elf_section
6749 	       (input_bfd, symtab_hdr->sh_link, sym->st_name),
6750 	       input_bfd, input_section, rel->r_offset, TRUE);
6751 
6752 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6753 
6754 	  /* Relocate against local STT_GNU_IFUNC symbol.  */
6755 	  if (!bfd_link_relocatable (info)
6756 	      && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6757 	    {
6758 	      h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6759 						    rel, FALSE);
6760 	      if (h == NULL)
6761 		abort ();
6762 
6763 	      /* Set STT_GNU_IFUNC symbol value.  */
6764 	      h->root.u.def.value = sym->st_value;
6765 	      h->root.u.def.section = sec;
6766 	    }
6767 	}
6768       else
6769 	{
6770 	  bfd_boolean warned, ignored;
6771 
6772 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6773 				   r_symndx, symtab_hdr, sym_hashes,
6774 				   h, sec, relocation,
6775 				   unresolved_reloc, warned, ignored);
6776 
6777 	  sym_type = h->type;
6778 	}
6779 
6780       if (sec != NULL && discarded_section (sec))
6781 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6782 					 rel, 1, relend, howto, 0, contents);
6783 
6784       if (bfd_link_relocatable (info))
6785 	continue;
6786 
6787       if (h != NULL)
6788 	name = h->root.root.string;
6789       else
6790 	{
6791 	  name = (bfd_elf_string_from_elf_section
6792 		  (input_bfd, symtab_hdr->sh_link, sym->st_name));
6793 	  if (name == NULL || *name == '\0')
6794 	    name = bfd_section_name (sec);
6795 	}
6796 
6797       if (r_symndx != 0
6798 	  && r_type != R_AARCH64_NONE
6799 	  && r_type != R_AARCH64_NULL
6800 	  && (h == NULL
6801 	      || h->root.type == bfd_link_hash_defined
6802 	      || h->root.type == bfd_link_hash_defweak)
6803 	  && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6804 	{
6805 	  _bfd_error_handler
6806 	    ((sym_type == STT_TLS
6807 	      /* xgettext:c-format */
6808 	      ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6809 	      /* xgettext:c-format */
6810 	      : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6811 	     input_bfd,
6812 	     input_section, (uint64_t) rel->r_offset, howto->name, name);
6813 	}
6814 
6815       /* We relax only if we can see that there can be a valid transition
6816 	 from a reloc type to another.
6817 	 We call elfNN_aarch64_final_link_relocate unless we're completely
6818 	 done, i.e., the relaxation produced the final output we want.  */
6819 
6820       relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6821 						   h, r_symndx);
6822       if (relaxed_bfd_r_type != bfd_r_type)
6823 	{
6824 	  bfd_r_type = relaxed_bfd_r_type;
6825 	  howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6826 	  BFD_ASSERT (howto != NULL);
6827 	  r_type = howto->type;
6828 	  r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6829 				       contents, rel, h);
6830 	  unresolved_reloc = 0;
6831 	}
6832       else
6833 	r = bfd_reloc_continue;
6834 
6835       /* There may be multiple consecutive relocations for the
6836 	 same offset.  In that case we are supposed to treat the
6837 	 output of each relocation as the addend for the next.  */
6838       if (rel + 1 < relend
6839 	  && rel->r_offset == rel[1].r_offset
6840 	  && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6841 	  && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6842 	save_addend = TRUE;
6843       else
6844 	save_addend = FALSE;
6845 
6846       if (r == bfd_reloc_continue)
6847 	r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6848 					       input_section, contents, rel,
6849 					       relocation, info, sec,
6850 					       h, &unresolved_reloc,
6851 					       save_addend, &addend, sym);
6852 
6853       switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6854 	{
6855 	case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6856 	case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6857 	case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6858 	case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6859 	case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6860 	case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6861 	case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6862 	case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6863 	  if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6864 	    {
6865 	      bfd_boolean need_relocs = FALSE;
6866 	      bfd_byte *loc;
6867 	      int indx;
6868 	      bfd_vma off;
6869 
6870 	      off = symbol_got_offset (input_bfd, h, r_symndx);
6871 	      indx = h && h->dynindx != -1 ? h->dynindx : 0;
6872 
6873 	      need_relocs =
6874 		(!bfd_link_executable (info) || indx != 0) &&
6875 		(h == NULL
6876 		 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6877 		 || h->root.type != bfd_link_hash_undefweak);
6878 
6879 	      BFD_ASSERT (globals->root.srelgot != NULL);
6880 
6881 	      if (need_relocs)
6882 		{
6883 		  Elf_Internal_Rela rela;
6884 		  rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6885 		  rela.r_addend = 0;
6886 		  rela.r_offset = globals->root.sgot->output_section->vma +
6887 		    globals->root.sgot->output_offset + off;
6888 
6889 
6890 		  loc = globals->root.srelgot->contents;
6891 		  loc += globals->root.srelgot->reloc_count++
6892 		    * RELOC_SIZE (htab);
6893 		  bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6894 
6895 		  bfd_reloc_code_real_type real_type =
6896 		    elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6897 
6898 		  if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6899 		      || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6900 		      || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6901 		    {
6902 		      /* For local dynamic, don't generate DTPREL in any case.
6903 			 Initialize the DTPREL slot into zero, so we get module
6904 			 base address when invoke runtime TLS resolver.  */
6905 		      bfd_put_NN (output_bfd, 0,
6906 				  globals->root.sgot->contents + off
6907 				  + GOT_ENTRY_SIZE);
6908 		    }
6909 		  else if (indx == 0)
6910 		    {
6911 		      bfd_put_NN (output_bfd,
6912 				  relocation - dtpoff_base (info),
6913 				  globals->root.sgot->contents + off
6914 				  + GOT_ENTRY_SIZE);
6915 		    }
6916 		  else
6917 		    {
6918 		      /* This TLS symbol is global. We emit a
6919 			 relocation to fixup the tls offset at load
6920 			 time.  */
6921 		      rela.r_info =
6922 			ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6923 		      rela.r_addend = 0;
6924 		      rela.r_offset =
6925 			(globals->root.sgot->output_section->vma
6926 			 + globals->root.sgot->output_offset + off
6927 			 + GOT_ENTRY_SIZE);
6928 
6929 		      loc = globals->root.srelgot->contents;
6930 		      loc += globals->root.srelgot->reloc_count++
6931 			* RELOC_SIZE (globals);
6932 		      bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6933 		      bfd_put_NN (output_bfd, (bfd_vma) 0,
6934 				  globals->root.sgot->contents + off
6935 				  + GOT_ENTRY_SIZE);
6936 		    }
6937 		}
6938 	      else
6939 		{
6940 		  bfd_put_NN (output_bfd, (bfd_vma) 1,
6941 			      globals->root.sgot->contents + off);
6942 		  bfd_put_NN (output_bfd,
6943 			      relocation - dtpoff_base (info),
6944 			      globals->root.sgot->contents + off
6945 			      + GOT_ENTRY_SIZE);
6946 		}
6947 
6948 	      symbol_got_offset_mark (input_bfd, h, r_symndx);
6949 	    }
6950 	  break;
6951 
6952 	case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6953 	case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6954 	case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6955 	case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6956 	case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6957 	  if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6958 	    {
6959 	      bfd_boolean need_relocs = FALSE;
6960 	      bfd_byte *loc;
6961 	      int indx;
6962 	      bfd_vma off;
6963 
6964 	      off = symbol_got_offset (input_bfd, h, r_symndx);
6965 
6966 	      indx = h && h->dynindx != -1 ? h->dynindx : 0;
6967 
6968 	      need_relocs =
6969 		(!bfd_link_executable (info) || indx != 0) &&
6970 		(h == NULL
6971 		 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6972 		 || h->root.type != bfd_link_hash_undefweak);
6973 
6974 	      BFD_ASSERT (globals->root.srelgot != NULL);
6975 
6976 	      if (need_relocs)
6977 		{
6978 		  Elf_Internal_Rela rela;
6979 
6980 		  if (indx == 0)
6981 		    rela.r_addend = relocation - dtpoff_base (info);
6982 		  else
6983 		    rela.r_addend = 0;
6984 
6985 		  rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6986 		  rela.r_offset = globals->root.sgot->output_section->vma +
6987 		    globals->root.sgot->output_offset + off;
6988 
6989 		  loc = globals->root.srelgot->contents;
6990 		  loc += globals->root.srelgot->reloc_count++
6991 		    * RELOC_SIZE (htab);
6992 
6993 		  bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6994 
6995 		  bfd_put_NN (output_bfd, rela.r_addend,
6996 			      globals->root.sgot->contents + off);
6997 		}
6998 	      else
6999 		bfd_put_NN (output_bfd, relocation - tpoff_base (info),
7000 			    globals->root.sgot->contents + off);
7001 
7002 	      symbol_got_offset_mark (input_bfd, h, r_symndx);
7003 	    }
7004 	  break;
7005 
7006 	case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7007 	case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7008 	case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7009 	case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
7010 	case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7011 	case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7012 	case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7013 	  if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
7014 	    {
7015 	      bfd_boolean need_relocs = FALSE;
7016 	      int indx = h && h->dynindx != -1 ? h->dynindx : 0;
7017 	      bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
7018 
7019 	      need_relocs = (h == NULL
7020 			     || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7021 			     || h->root.type != bfd_link_hash_undefweak);
7022 
7023 	      BFD_ASSERT (globals->root.srelgot != NULL);
7024 	      BFD_ASSERT (globals->root.sgot != NULL);
7025 
7026 	      if (need_relocs)
7027 		{
7028 		  bfd_byte *loc;
7029 		  Elf_Internal_Rela rela;
7030 		  rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
7031 
7032 		  rela.r_addend = 0;
7033 		  rela.r_offset = (globals->root.sgotplt->output_section->vma
7034 				   + globals->root.sgotplt->output_offset
7035 				   + off + globals->sgotplt_jump_table_size);
7036 
7037 		  if (indx == 0)
7038 		    rela.r_addend = relocation - dtpoff_base (info);
7039 
7040 		  /* Allocate the next available slot in the PLT reloc
7041 		     section to hold our R_AARCH64_TLSDESC, the next
7042 		     available slot is determined from reloc_count,
7043 		     which we step. But note, reloc_count was
7044 		     artifically moved down while allocating slots for
7045 		     real PLT relocs such that all of the PLT relocs
7046 		     will fit above the initial reloc_count and the
7047 		     extra stuff will fit below.  */
7048 		  loc = globals->root.srelplt->contents;
7049 		  loc += globals->root.srelplt->reloc_count++
7050 		    * RELOC_SIZE (globals);
7051 
7052 		  bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7053 
7054 		  bfd_put_NN (output_bfd, (bfd_vma) 0,
7055 			      globals->root.sgotplt->contents + off +
7056 			      globals->sgotplt_jump_table_size);
7057 		  bfd_put_NN (output_bfd, (bfd_vma) 0,
7058 			      globals->root.sgotplt->contents + off +
7059 			      globals->sgotplt_jump_table_size +
7060 			      GOT_ENTRY_SIZE);
7061 		}
7062 
7063 	      symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
7064 	    }
7065 	  break;
7066 	default:
7067 	  break;
7068 	}
7069 
7070       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7071 	 because such sections are not SEC_ALLOC and thus ld.so will
7072 	 not process them.  */
7073       if (unresolved_reloc
7074 	  && !((input_section->flags & SEC_DEBUGGING) != 0
7075 	       && h->def_dynamic)
7076 	  && _bfd_elf_section_offset (output_bfd, info, input_section,
7077 				      +rel->r_offset) != (bfd_vma) - 1)
7078 	{
7079 	  _bfd_error_handler
7080 	    /* xgettext:c-format */
7081 	    (_("%pB(%pA+%#" PRIx64 "): "
7082 	       "unresolvable %s relocation against symbol `%s'"),
7083 	     input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
7084 	     h->root.root.string);
7085 	  return FALSE;
7086 	}
7087 
7088       if (r != bfd_reloc_ok && r != bfd_reloc_continue)
7089 	{
7090 	  bfd_reloc_code_real_type real_r_type
7091 	    = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
7092 
7093 	  switch (r)
7094 	    {
7095 	    case bfd_reloc_overflow:
7096 	      (*info->callbacks->reloc_overflow)
7097 		(info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
7098 		 input_bfd, input_section, rel->r_offset);
7099 	      if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
7100 		  || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
7101 		{
7102 		  (*info->callbacks->warning)
7103 		    (info,
7104 		     _("too many GOT entries for -fpic, "
7105 		       "please recompile with -fPIC"),
7106 		     name, input_bfd, input_section, rel->r_offset);
7107 		  return FALSE;
7108 		}
7109 	      /* Overflow can occur when a variable is referenced with a type
7110 		 that has a larger alignment than the type with which it was
7111 		 declared. eg:
7112 		   file1.c: extern int foo; int a (void) { return foo; }
7113 		   file2.c: char bar, foo, baz;
7114 		 If the variable is placed into a data section at an offset
7115 		 that is incompatible with the larger alignment requirement
7116 		 overflow will occur.  (Strictly speaking this is not overflow
7117 		 but rather an alignment problem, but the bfd_reloc_ error
7118 		 enum does not have a value to cover that situation).
7119 
7120 		 Try to catch this situation here and provide a more helpful
7121 		 error message to the user.  */
7122 	      if (addend & ((1 << howto->rightshift) - 1)
7123 		  /* FIXME: Are we testing all of the appropriate reloc
7124 		     types here ?  */
7125 		  && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
7126 		      || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
7127 		      || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
7128 		      || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
7129 		      || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
7130 		{
7131 		  info->callbacks->warning
7132 		    (info, _("one possible cause of this error is that the \
7133 symbol is being referenced in the indicated code as if it had a larger \
7134 alignment than was declared where it was defined"),
7135 		     name, input_bfd, input_section, rel->r_offset);
7136 		}
7137 	      break;
7138 
7139 	    case bfd_reloc_undefined:
7140 	      (*info->callbacks->undefined_symbol)
7141 		(info, name, input_bfd, input_section, rel->r_offset, TRUE);
7142 	      break;
7143 
7144 	    case bfd_reloc_outofrange:
7145 	      error_message = _("out of range");
7146 	      goto common_error;
7147 
7148 	    case bfd_reloc_notsupported:
7149 	      error_message = _("unsupported relocation");
7150 	      goto common_error;
7151 
7152 	    case bfd_reloc_dangerous:
7153 	      /* error_message should already be set.  */
7154 	      goto common_error;
7155 
7156 	    default:
7157 	      error_message = _("unknown error");
7158 	      /* Fall through.  */
7159 
7160 	    common_error:
7161 	      BFD_ASSERT (error_message != NULL);
7162 	      (*info->callbacks->reloc_dangerous)
7163 		(info, error_message, input_bfd, input_section, rel->r_offset);
7164 	      break;
7165 	    }
7166 	}
7167 
7168       if (!save_addend)
7169 	addend = 0;
7170     }
7171 
7172   return TRUE;
7173 }
7174 
7175 /* Set the right machine number.  */
7176 
7177 static bfd_boolean
7178 elfNN_aarch64_object_p (bfd *abfd)
7179 {
7180 #if ARCH_SIZE == 32
7181   bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
7182 #else
7183   bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
7184 #endif
7185   return TRUE;
7186 }
7187 
7188 /* Function to keep AArch64 specific flags in the ELF header.  */
7189 
7190 static bfd_boolean
7191 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
7192 {
7193   if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
7194     {
7195     }
7196   else
7197     {
7198       elf_elfheader (abfd)->e_flags = flags;
7199       elf_flags_init (abfd) = TRUE;
7200     }
7201 
7202   return TRUE;
7203 }
7204 
7205 /* Merge backend specific data from an object file to the output
7206    object file when linking.  */
7207 
7208 static bfd_boolean
7209 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
7210 {
7211   bfd *obfd = info->output_bfd;
7212   flagword out_flags;
7213   flagword in_flags;
7214   bfd_boolean flags_compatible = TRUE;
7215   asection *sec;
7216 
7217   /* Check if we have the same endianess.  */
7218   if (!_bfd_generic_verify_endian_match (ibfd, info))
7219     return FALSE;
7220 
7221   if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
7222     return TRUE;
7223 
7224   /* The input BFD must have had its flags initialised.  */
7225   /* The following seems bogus to me -- The flags are initialized in
7226      the assembler but I don't think an elf_flags_init field is
7227      written into the object.  */
7228   /* BFD_ASSERT (elf_flags_init (ibfd)); */
7229 
7230   in_flags = elf_elfheader (ibfd)->e_flags;
7231   out_flags = elf_elfheader (obfd)->e_flags;
7232 
7233   if (!elf_flags_init (obfd))
7234     {
7235       /* If the input is the default architecture and had the default
7236 	 flags then do not bother setting the flags for the output
7237 	 architecture, instead allow future merges to do this.  If no
7238 	 future merges ever set these flags then they will retain their
7239 	 uninitialised values, which surprise surprise, correspond
7240 	 to the default values.  */
7241       if (bfd_get_arch_info (ibfd)->the_default
7242 	  && elf_elfheader (ibfd)->e_flags == 0)
7243 	return TRUE;
7244 
7245       elf_flags_init (obfd) = TRUE;
7246       elf_elfheader (obfd)->e_flags = in_flags;
7247 
7248       if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7249 	  && bfd_get_arch_info (obfd)->the_default)
7250 	return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7251 				  bfd_get_mach (ibfd));
7252 
7253       return TRUE;
7254     }
7255 
7256   /* Identical flags must be compatible.  */
7257   if (in_flags == out_flags)
7258     return TRUE;
7259 
7260   /* Check to see if the input BFD actually contains any sections.  If
7261      not, its flags may not have been initialised either, but it
7262      cannot actually cause any incompatiblity.  Do not short-circuit
7263      dynamic objects; their section list may be emptied by
7264      elf_link_add_object_symbols.
7265 
7266      Also check to see if there are no code sections in the input.
7267      In this case there is no need to check for code specific flags.
7268      XXX - do we need to worry about floating-point format compatability
7269      in data sections ?  */
7270   if (!(ibfd->flags & DYNAMIC))
7271     {
7272       bfd_boolean null_input_bfd = TRUE;
7273       bfd_boolean only_data_sections = TRUE;
7274 
7275       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7276 	{
7277 	  if ((bfd_section_flags (sec)
7278 	       & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7279 	      == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7280 	    only_data_sections = FALSE;
7281 
7282 	  null_input_bfd = FALSE;
7283 	  break;
7284 	}
7285 
7286       if (null_input_bfd || only_data_sections)
7287 	return TRUE;
7288     }
7289 
7290   return flags_compatible;
7291 }
7292 
7293 /* Display the flags field.  */
7294 
7295 static bfd_boolean
7296 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7297 {
7298   FILE *file = (FILE *) ptr;
7299   unsigned long flags;
7300 
7301   BFD_ASSERT (abfd != NULL && ptr != NULL);
7302 
7303   /* Print normal ELF private data.  */
7304   _bfd_elf_print_private_bfd_data (abfd, ptr);
7305 
7306   flags = elf_elfheader (abfd)->e_flags;
7307   /* Ignore init flag - it may not be set, despite the flags field
7308      containing valid data.  */
7309 
7310   /* xgettext:c-format */
7311   fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7312 
7313   if (flags)
7314     fprintf (file, _("<Unrecognised flag bits set>"));
7315 
7316   fputc ('\n', file);
7317 
7318   return TRUE;
7319 }
7320 
7321 /* Find dynamic relocs for H that apply to read-only sections.  */
7322 
7323 static asection *
7324 readonly_dynrelocs (struct elf_link_hash_entry *h)
7325 {
7326   struct elf_dyn_relocs *p;
7327 
7328   for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
7329     {
7330       asection *s = p->sec->output_section;
7331 
7332       if (s != NULL && (s->flags & SEC_READONLY) != 0)
7333 	return p->sec;
7334     }
7335   return NULL;
7336 }
7337 
7338 /* Return true if we need copy relocation against EH.  */
7339 
7340 static bfd_boolean
7341 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7342 {
7343   struct elf_dyn_relocs *p;
7344   asection *s;
7345 
7346   for (p = eh->dyn_relocs; p != NULL; p = p->next)
7347     {
7348       /* If there is any pc-relative reference, we need to keep copy relocation
7349 	 to avoid propagating the relocation into runtime that current glibc
7350 	 does not support.  */
7351       if (p->pc_count)
7352 	return TRUE;
7353 
7354       s = p->sec->output_section;
7355       /* Need copy relocation if it's against read-only section.  */
7356       if (s != NULL && (s->flags & SEC_READONLY) != 0)
7357 	return TRUE;
7358     }
7359 
7360   return FALSE;
7361 }
7362 
7363 /* Adjust a symbol defined by a dynamic object and referenced by a
7364    regular object.  The current definition is in some section of the
7365    dynamic object, but we're not including those sections.  We have to
7366    change the definition to something the rest of the link can
7367    understand.	*/
7368 
7369 static bfd_boolean
7370 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7371 				     struct elf_link_hash_entry *h)
7372 {
7373   struct elf_aarch64_link_hash_table *htab;
7374   asection *s, *srel;
7375 
7376   /* If this is a function, put it in the procedure linkage table.  We
7377      will fill in the contents of the procedure linkage table later,
7378      when we know the address of the .got section.  */
7379   if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7380     {
7381       if (h->plt.refcount <= 0
7382 	  || (h->type != STT_GNU_IFUNC
7383 	      && (SYMBOL_CALLS_LOCAL (info, h)
7384 		  || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7385 		      && h->root.type == bfd_link_hash_undefweak))))
7386 	{
7387 	  /* This case can occur if we saw a CALL26 reloc in
7388 	     an input file, but the symbol wasn't referred to
7389 	     by a dynamic object or all references were
7390 	     garbage collected. In which case we can end up
7391 	     resolving.  */
7392 	  h->plt.offset = (bfd_vma) - 1;
7393 	  h->needs_plt = 0;
7394 	}
7395 
7396       return TRUE;
7397     }
7398   else
7399     /* Otherwise, reset to -1.  */
7400     h->plt.offset = (bfd_vma) - 1;
7401 
7402 
7403   /* If this is a weak symbol, and there is a real definition, the
7404      processor independent code will have arranged for us to see the
7405      real definition first, and we can just use the same value.  */
7406   if (h->is_weakalias)
7407     {
7408       struct elf_link_hash_entry *def = weakdef (h);
7409       BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7410       h->root.u.def.section = def->root.u.def.section;
7411       h->root.u.def.value = def->root.u.def.value;
7412       if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7413 	h->non_got_ref = def->non_got_ref;
7414       return TRUE;
7415     }
7416 
7417   /* If we are creating a shared library, we must presume that the
7418      only references to the symbol are via the global offset table.
7419      For such cases we need not do anything here; the relocations will
7420      be handled correctly by relocate_section.  */
7421   if (bfd_link_pic (info))
7422     return TRUE;
7423 
7424   /* If there are no references to this symbol that do not use the
7425      GOT, we don't need to generate a copy reloc.  */
7426   if (!h->non_got_ref)
7427     return TRUE;
7428 
7429   /* If -z nocopyreloc was given, we won't generate them either.  */
7430   if (info->nocopyreloc)
7431     {
7432       h->non_got_ref = 0;
7433       return TRUE;
7434     }
7435 
7436   if (ELIMINATE_COPY_RELOCS)
7437     {
7438       struct elf_aarch64_link_hash_entry *eh;
7439       /* If we don't find any dynamic relocs in read-only sections, then
7440 	 we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
7441       eh = (struct elf_aarch64_link_hash_entry *) h;
7442       if (!need_copy_relocation_p (eh))
7443 	{
7444 	  h->non_got_ref = 0;
7445 	  return TRUE;
7446 	}
7447     }
7448 
7449   /* We must allocate the symbol in our .dynbss section, which will
7450      become part of the .bss section of the executable.  There will be
7451      an entry for this symbol in the .dynsym section.  The dynamic
7452      object will contain position independent code, so all references
7453      from the dynamic object to this symbol will go through the global
7454      offset table.  The dynamic linker will use the .dynsym entry to
7455      determine the address it must put in the global offset table, so
7456      both the dynamic object and the regular object will refer to the
7457      same memory location for the variable.  */
7458 
7459   htab = elf_aarch64_hash_table (info);
7460 
7461   /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7462      to copy the initial value out of the dynamic object and into the
7463      runtime process image.  */
7464   if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7465     {
7466       s = htab->root.sdynrelro;
7467       srel = htab->root.sreldynrelro;
7468     }
7469   else
7470     {
7471       s = htab->root.sdynbss;
7472       srel = htab->root.srelbss;
7473     }
7474   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7475     {
7476       srel->size += RELOC_SIZE (htab);
7477       h->needs_copy = 1;
7478     }
7479 
7480   return _bfd_elf_adjust_dynamic_copy (info, h, s);
7481 
7482 }
7483 
7484 static bfd_boolean
7485 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7486 {
7487   struct elf_aarch64_local_symbol *locals;
7488   locals = elf_aarch64_locals (abfd);
7489   if (locals == NULL)
7490     {
7491       locals = (struct elf_aarch64_local_symbol *)
7492 	bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7493       if (locals == NULL)
7494 	return FALSE;
7495       elf_aarch64_locals (abfd) = locals;
7496     }
7497   return TRUE;
7498 }
7499 
7500 /* Create the .got section to hold the global offset table.  */
7501 
7502 static bfd_boolean
7503 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7504 {
7505   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7506   flagword flags;
7507   asection *s;
7508   struct elf_link_hash_entry *h;
7509   struct elf_link_hash_table *htab = elf_hash_table (info);
7510 
7511   /* This function may be called more than once.  */
7512   if (htab->sgot != NULL)
7513     return TRUE;
7514 
7515   flags = bed->dynamic_sec_flags;
7516 
7517   s = bfd_make_section_anyway_with_flags (abfd,
7518 					  (bed->rela_plts_and_copies_p
7519 					   ? ".rela.got" : ".rel.got"),
7520 					  (bed->dynamic_sec_flags
7521 					   | SEC_READONLY));
7522   if (s == NULL
7523       || !bfd_set_section_alignment (s, bed->s->log_file_align))
7524     return FALSE;
7525   htab->srelgot = s;
7526 
7527   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7528   if (s == NULL
7529       || !bfd_set_section_alignment (s, bed->s->log_file_align))
7530     return FALSE;
7531   htab->sgot = s;
7532   htab->sgot->size += GOT_ENTRY_SIZE;
7533 
7534   if (bed->want_got_sym)
7535     {
7536       /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7537 	 (or .got.plt) section.  We don't do this in the linker script
7538 	 because we don't want to define the symbol if we are not creating
7539 	 a global offset table.  */
7540       h = _bfd_elf_define_linkage_sym (abfd, info, s,
7541 				       "_GLOBAL_OFFSET_TABLE_");
7542       elf_hash_table (info)->hgot = h;
7543       if (h == NULL)
7544 	return FALSE;
7545     }
7546 
7547   if (bed->want_got_plt)
7548     {
7549       s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7550       if (s == NULL
7551 	  || !bfd_set_section_alignment (s, bed->s->log_file_align))
7552 	return FALSE;
7553       htab->sgotplt = s;
7554     }
7555 
7556   /* The first bit of the global offset table is the header.  */
7557   s->size += bed->got_header_size;
7558 
7559   return TRUE;
7560 }
7561 
7562 /* Look through the relocs for a section during the first phase.  */
7563 
7564 static bfd_boolean
7565 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7566 			    asection *sec, const Elf_Internal_Rela *relocs)
7567 {
7568   Elf_Internal_Shdr *symtab_hdr;
7569   struct elf_link_hash_entry **sym_hashes;
7570   const Elf_Internal_Rela *rel;
7571   const Elf_Internal_Rela *rel_end;
7572   asection *sreloc;
7573 
7574   struct elf_aarch64_link_hash_table *htab;
7575 
7576   if (bfd_link_relocatable (info))
7577     return TRUE;
7578 
7579   BFD_ASSERT (is_aarch64_elf (abfd));
7580 
7581   htab = elf_aarch64_hash_table (info);
7582   sreloc = NULL;
7583 
7584   symtab_hdr = &elf_symtab_hdr (abfd);
7585   sym_hashes = elf_sym_hashes (abfd);
7586 
7587   rel_end = relocs + sec->reloc_count;
7588   for (rel = relocs; rel < rel_end; rel++)
7589     {
7590       struct elf_link_hash_entry *h;
7591       unsigned int r_symndx;
7592       unsigned int r_type;
7593       bfd_reloc_code_real_type bfd_r_type;
7594       Elf_Internal_Sym *isym;
7595 
7596       r_symndx = ELFNN_R_SYM (rel->r_info);
7597       r_type = ELFNN_R_TYPE (rel->r_info);
7598 
7599       if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7600 	{
7601 	  /* xgettext:c-format */
7602 	  _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7603 	  return FALSE;
7604 	}
7605 
7606       if (r_symndx < symtab_hdr->sh_info)
7607 	{
7608 	  /* A local symbol.  */
7609 	  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7610 					abfd, r_symndx);
7611 	  if (isym == NULL)
7612 	    return FALSE;
7613 
7614 	  /* Check relocation against local STT_GNU_IFUNC symbol.  */
7615 	  if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7616 	    {
7617 	      h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7618 						    TRUE);
7619 	      if (h == NULL)
7620 		return FALSE;
7621 
7622 	      /* Fake a STT_GNU_IFUNC symbol.  */
7623 	      h->type = STT_GNU_IFUNC;
7624 	      h->def_regular = 1;
7625 	      h->ref_regular = 1;
7626 	      h->forced_local = 1;
7627 	      h->root.type = bfd_link_hash_defined;
7628 	    }
7629 	  else
7630 	    h = NULL;
7631 	}
7632       else
7633 	{
7634 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7635 	  while (h->root.type == bfd_link_hash_indirect
7636 		 || h->root.type == bfd_link_hash_warning)
7637 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
7638 	}
7639 
7640       /* Could be done earlier, if h were already available.  */
7641       bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7642 
7643       if (h != NULL)
7644 	{
7645 	  /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7646 	     This shows up in particular in an R_AARCH64_PREL64 in large model
7647 	     when calculating the pc-relative address to .got section which is
7648 	     used to initialize the gp register.  */
7649 	  if (h->root.root.string
7650 	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7651 	    {
7652 	      if (htab->root.dynobj == NULL)
7653 		htab->root.dynobj = abfd;
7654 
7655 	      if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7656 		return FALSE;
7657 
7658 	      BFD_ASSERT (h == htab->root.hgot);
7659 	    }
7660 
7661 	  /* Create the ifunc sections for static executables.  If we
7662 	     never see an indirect function symbol nor we are building
7663 	     a static executable, those sections will be empty and
7664 	     won't appear in output.  */
7665 	  switch (bfd_r_type)
7666 	    {
7667 	    default:
7668 	      break;
7669 
7670 	    case BFD_RELOC_AARCH64_ADD_LO12:
7671 	    case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7672 	    case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7673 	    case BFD_RELOC_AARCH64_CALL26:
7674 	    case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7675 	    case BFD_RELOC_AARCH64_JUMP26:
7676 	    case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7677 	    case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7678 	    case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7679 	    case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7680 	    case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7681 	    case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7682 	    case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7683 	    case BFD_RELOC_AARCH64_NN:
7684 	      if (htab->root.dynobj == NULL)
7685 		htab->root.dynobj = abfd;
7686 	      if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7687 		return FALSE;
7688 	      break;
7689 	    }
7690 
7691 	  /* It is referenced by a non-shared object.  */
7692 	  h->ref_regular = 1;
7693 	}
7694 
7695       switch (bfd_r_type)
7696 	{
7697 	case BFD_RELOC_AARCH64_16:
7698 #if ARCH_SIZE == 64
7699 	case BFD_RELOC_AARCH64_32:
7700 #endif
7701 	  if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7702 	    {
7703 	      if (h != NULL
7704 		  /* This is an absolute symbol.  It represents a value instead
7705 		     of an address.  */
7706 		  && (bfd_is_abs_symbol (&h->root)
7707 		      /* This is an undefined symbol.  */
7708 		      || h->root.type == bfd_link_hash_undefined))
7709 		break;
7710 
7711 	      /* For local symbols, defined global symbols in a non-ABS section,
7712 		 it is assumed that the value is an address.  */
7713 	      int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7714 	      _bfd_error_handler
7715 		/* xgettext:c-format */
7716 		(_("%pB: relocation %s against `%s' can not be used when making "
7717 		   "a shared object"),
7718 		 abfd, elfNN_aarch64_howto_table[howto_index].name,
7719 		 (h) ? h->root.root.string : "a local symbol");
7720 	      bfd_set_error (bfd_error_bad_value);
7721 	      return FALSE;
7722 	    }
7723 	  else
7724 	    break;
7725 
7726 	case BFD_RELOC_AARCH64_MOVW_G0_NC:
7727 	case BFD_RELOC_AARCH64_MOVW_G1_NC:
7728 	case BFD_RELOC_AARCH64_MOVW_G2_NC:
7729 	case BFD_RELOC_AARCH64_MOVW_G3:
7730 	  if (bfd_link_pic (info))
7731 	    {
7732 	      int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7733 	      _bfd_error_handler
7734 		/* xgettext:c-format */
7735 		(_("%pB: relocation %s against `%s' can not be used when making "
7736 		   "a shared object; recompile with -fPIC"),
7737 		 abfd, elfNN_aarch64_howto_table[howto_index].name,
7738 		 (h) ? h->root.root.string : "a local symbol");
7739 	      bfd_set_error (bfd_error_bad_value);
7740 	      return FALSE;
7741 	    }
7742 	  /* Fall through.  */
7743 
7744 	case BFD_RELOC_AARCH64_16_PCREL:
7745 	case BFD_RELOC_AARCH64_32_PCREL:
7746 	case BFD_RELOC_AARCH64_64_PCREL:
7747 	case BFD_RELOC_AARCH64_ADD_LO12:
7748 	case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7749 	case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7750 	case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7751 	case BFD_RELOC_AARCH64_LDST128_LO12:
7752 	case BFD_RELOC_AARCH64_LDST16_LO12:
7753 	case BFD_RELOC_AARCH64_LDST32_LO12:
7754 	case BFD_RELOC_AARCH64_LDST64_LO12:
7755 	case BFD_RELOC_AARCH64_LDST8_LO12:
7756 	case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7757 	  if (h == NULL || bfd_link_pic (info))
7758 	    break;
7759 	  /* Fall through.  */
7760 
7761 	case BFD_RELOC_AARCH64_NN:
7762 
7763 	  /* We don't need to handle relocs into sections not going into
7764 	     the "real" output.  */
7765 	  if ((sec->flags & SEC_ALLOC) == 0)
7766 	    break;
7767 
7768 	  if (h != NULL)
7769 	    {
7770 	      if (!bfd_link_pic (info))
7771 		h->non_got_ref = 1;
7772 
7773 	      h->plt.refcount += 1;
7774 	      h->pointer_equality_needed = 1;
7775 	    }
7776 
7777 	  /* No need to do anything if we're not creating a shared
7778 	     object.  */
7779 	  if (!(bfd_link_pic (info)
7780 		/* If on the other hand, we are creating an executable, we
7781 		   may need to keep relocations for symbols satisfied by a
7782 		   dynamic library if we manage to avoid copy relocs for the
7783 		   symbol.
7784 
7785 		   NOTE: Currently, there is no support of copy relocs
7786 		   elimination on pc-relative relocation types, because there is
7787 		   no dynamic relocation support for them in glibc.  We still
7788 		   record the dynamic symbol reference for them.  This is
7789 		   because one symbol may be referenced by both absolute
7790 		   relocation (for example, BFD_RELOC_AARCH64_NN) and
7791 		   pc-relative relocation.  We need full symbol reference
7792 		   information to make correct decision later in
7793 		   elfNN_aarch64_adjust_dynamic_symbol.  */
7794 		|| (ELIMINATE_COPY_RELOCS
7795 		    && !bfd_link_pic (info)
7796 		    && h != NULL
7797 		    && (h->root.type == bfd_link_hash_defweak
7798 			|| !h->def_regular))))
7799 	    break;
7800 
7801 	  {
7802 	    struct elf_dyn_relocs *p;
7803 	    struct elf_dyn_relocs **head;
7804 	    int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7805 
7806 	    /* We must copy these reloc types into the output file.
7807 	       Create a reloc section in dynobj and make room for
7808 	       this reloc.  */
7809 	    if (sreloc == NULL)
7810 	      {
7811 		if (htab->root.dynobj == NULL)
7812 		  htab->root.dynobj = abfd;
7813 
7814 		sreloc = _bfd_elf_make_dynamic_reloc_section
7815 		  (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7816 
7817 		if (sreloc == NULL)
7818 		  return FALSE;
7819 	      }
7820 
7821 	    /* If this is a global symbol, we count the number of
7822 	       relocations we need for this symbol.  */
7823 	    if (h != NULL)
7824 	      {
7825 		struct elf_aarch64_link_hash_entry *eh;
7826 		eh = (struct elf_aarch64_link_hash_entry *) h;
7827 		head = &eh->dyn_relocs;
7828 	      }
7829 	    else
7830 	      {
7831 		/* Track dynamic relocs needed for local syms too.
7832 		   We really need local syms available to do this
7833 		   easily.  Oh well.  */
7834 
7835 		asection *s;
7836 		void **vpp;
7837 
7838 		isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7839 					      abfd, r_symndx);
7840 		if (isym == NULL)
7841 		  return FALSE;
7842 
7843 		s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7844 		if (s == NULL)
7845 		  s = sec;
7846 
7847 		/* Beware of type punned pointers vs strict aliasing
7848 		   rules.  */
7849 		vpp = &(elf_section_data (s)->local_dynrel);
7850 		head = (struct elf_dyn_relocs **) vpp;
7851 	      }
7852 
7853 	    p = *head;
7854 	    if (p == NULL || p->sec != sec)
7855 	      {
7856 		bfd_size_type amt = sizeof *p;
7857 		p = ((struct elf_dyn_relocs *)
7858 		     bfd_zalloc (htab->root.dynobj, amt));
7859 		if (p == NULL)
7860 		  return FALSE;
7861 		p->next = *head;
7862 		*head = p;
7863 		p->sec = sec;
7864 	      }
7865 
7866 	    p->count += 1;
7867 
7868 	    if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7869 	      p->pc_count += 1;
7870 	  }
7871 	  break;
7872 
7873 	  /* RR: We probably want to keep a consistency check that
7874 	     there are no dangling GOT_PAGE relocs.  */
7875 	case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7876 	case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7877 	case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7878 	case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7879 	case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7880 	case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7881 	case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7882 	case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7883 	case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7884 	case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7885 	case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7886 	case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7887 	case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7888 	case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7889 	case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7890 	case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7891 	case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7892 	case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7893 	case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7894 	case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7895 	case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7896 	case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7897 	case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7898 	case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7899 	case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7900 	case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7901 	case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7902 	case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7903 	case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7904 	case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7905 	case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7906 	  {
7907 	    unsigned got_type;
7908 	    unsigned old_got_type;
7909 
7910 	    got_type = aarch64_reloc_got_type (bfd_r_type);
7911 
7912 	    if (h)
7913 	      {
7914 		h->got.refcount += 1;
7915 		old_got_type = elf_aarch64_hash_entry (h)->got_type;
7916 	      }
7917 	    else
7918 	      {
7919 		struct elf_aarch64_local_symbol *locals;
7920 
7921 		if (!elfNN_aarch64_allocate_local_symbols
7922 		    (abfd, symtab_hdr->sh_info))
7923 		  return FALSE;
7924 
7925 		locals = elf_aarch64_locals (abfd);
7926 		BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7927 		locals[r_symndx].got_refcount += 1;
7928 		old_got_type = locals[r_symndx].got_type;
7929 	      }
7930 
7931 	    /* If a variable is accessed with both general dynamic TLS
7932 	       methods, two slots may be created.  */
7933 	    if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7934 	      got_type |= old_got_type;
7935 
7936 	    /* We will already have issued an error message if there
7937 	       is a TLS/non-TLS mismatch, based on the symbol type.
7938 	       So just combine any TLS types needed.  */
7939 	    if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7940 		&& got_type != GOT_NORMAL)
7941 	      got_type |= old_got_type;
7942 
7943 	    /* If the symbol is accessed by both IE and GD methods, we
7944 	       are able to relax.  Turn off the GD flag, without
7945 	       messing up with any other kind of TLS types that may be
7946 	       involved.  */
7947 	    if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7948 	      got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7949 
7950 	    if (old_got_type != got_type)
7951 	      {
7952 		if (h != NULL)
7953 		  elf_aarch64_hash_entry (h)->got_type = got_type;
7954 		else
7955 		  {
7956 		    struct elf_aarch64_local_symbol *locals;
7957 		    locals = elf_aarch64_locals (abfd);
7958 		    BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7959 		    locals[r_symndx].got_type = got_type;
7960 		  }
7961 	      }
7962 
7963 	    if (htab->root.dynobj == NULL)
7964 	      htab->root.dynobj = abfd;
7965 	    if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7966 	      return FALSE;
7967 	    break;
7968 	  }
7969 
7970 	case BFD_RELOC_AARCH64_CALL26:
7971 	case BFD_RELOC_AARCH64_JUMP26:
7972 	  /* If this is a local symbol then we resolve it
7973 	     directly without creating a PLT entry.  */
7974 	  if (h == NULL)
7975 	    continue;
7976 
7977 	  h->needs_plt = 1;
7978 	  if (h->plt.refcount <= 0)
7979 	    h->plt.refcount = 1;
7980 	  else
7981 	    h->plt.refcount += 1;
7982 	  break;
7983 
7984 	default:
7985 	  break;
7986 	}
7987     }
7988 
7989   return TRUE;
7990 }
7991 
7992 /* Treat mapping symbols as special target symbols.  */
7993 
7994 static bfd_boolean
7995 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7996 					asymbol *sym)
7997 {
7998   return bfd_is_aarch64_special_symbol_name (sym->name,
7999 					     BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
8000 }
8001 
8002 /* If the ELF symbol SYM might be a function in SEC, return the
8003    function size and set *CODE_OFF to the function's entry point,
8004    otherwise return zero.  */
8005 
8006 static bfd_size_type
8007 elfNN_aarch64_maybe_function_sym (const asymbol *sym, asection *sec,
8008 				  bfd_vma *code_off)
8009 {
8010   bfd_size_type size;
8011 
8012   if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
8013 		     | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
8014       || sym->section != sec)
8015     return 0;
8016 
8017   if (!(sym->flags & BSF_SYNTHETIC))
8018     switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info))
8019       {
8020 	case STT_FUNC:
8021 	case STT_NOTYPE:
8022 	  break;
8023 	default:
8024 	  return 0;
8025       }
8026 
8027   if ((sym->flags & BSF_LOCAL)
8028       && bfd_is_aarch64_special_symbol_name (sym->name,
8029 					     BFD_AARCH64_SPECIAL_SYM_TYPE_ANY))
8030     return 0;
8031 
8032   *code_off = sym->value;
8033   size = 0;
8034   if (!(sym->flags & BSF_SYNTHETIC))
8035     size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
8036   if (size == 0)
8037     size = 1;
8038   return size;
8039 }
8040 
8041 static bfd_boolean
8042 elfNN_aarch64_find_inliner_info (bfd *abfd,
8043 				 const char **filename_ptr,
8044 				 const char **functionname_ptr,
8045 				 unsigned int *line_ptr)
8046 {
8047   bfd_boolean found;
8048   found = _bfd_dwarf2_find_inliner_info
8049     (abfd, filename_ptr,
8050      functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
8051   return found;
8052 }
8053 
8054 
8055 static bfd_boolean
8056 elfNN_aarch64_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
8057 {
8058   Elf_Internal_Ehdr *i_ehdrp;	/* ELF file header, internal form.  */
8059 
8060   if (!_bfd_elf_init_file_header (abfd, link_info))
8061     return FALSE;
8062 
8063   i_ehdrp = elf_elfheader (abfd);
8064   i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
8065   return TRUE;
8066 }
8067 
8068 static enum elf_reloc_type_class
8069 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
8070 				const asection *rel_sec ATTRIBUTE_UNUSED,
8071 				const Elf_Internal_Rela *rela)
8072 {
8073   struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
8074 
8075   if (htab->root.dynsym != NULL
8076       && htab->root.dynsym->contents != NULL)
8077     {
8078       /* Check relocation against STT_GNU_IFUNC symbol if there are
8079 	 dynamic symbols.  */
8080       bfd *abfd = info->output_bfd;
8081       const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8082       unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
8083       if (r_symndx != STN_UNDEF)
8084 	{
8085 	  Elf_Internal_Sym sym;
8086 	  if (!bed->s->swap_symbol_in (abfd,
8087 				       (htab->root.dynsym->contents
8088 					+ r_symndx * bed->s->sizeof_sym),
8089 				       0, &sym))
8090 	    {
8091 	      /* xgettext:c-format */
8092 	      _bfd_error_handler (_("%pB symbol number %lu references"
8093 				    " nonexistent SHT_SYMTAB_SHNDX section"),
8094 				    abfd, r_symndx);
8095 	      /* Ideally an error class should be returned here.  */
8096 	    }
8097 	  else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
8098 	    return reloc_class_ifunc;
8099 	}
8100     }
8101 
8102   switch ((int) ELFNN_R_TYPE (rela->r_info))
8103     {
8104     case AARCH64_R (IRELATIVE):
8105       return reloc_class_ifunc;
8106     case AARCH64_R (RELATIVE):
8107       return reloc_class_relative;
8108     case AARCH64_R (JUMP_SLOT):
8109       return reloc_class_plt;
8110     case AARCH64_R (COPY):
8111       return reloc_class_copy;
8112     default:
8113       return reloc_class_normal;
8114     }
8115 }
8116 
8117 /* Handle an AArch64 specific section when reading an object file.  This is
8118    called when bfd_section_from_shdr finds a section with an unknown
8119    type.  */
8120 
8121 static bfd_boolean
8122 elfNN_aarch64_section_from_shdr (bfd *abfd,
8123 				 Elf_Internal_Shdr *hdr,
8124 				 const char *name, int shindex)
8125 {
8126   /* There ought to be a place to keep ELF backend specific flags, but
8127      at the moment there isn't one.  We just keep track of the
8128      sections by their name, instead.  Fortunately, the ABI gives
8129      names for all the AArch64 specific sections, so we will probably get
8130      away with this.  */
8131   switch (hdr->sh_type)
8132     {
8133     case SHT_AARCH64_ATTRIBUTES:
8134       break;
8135 
8136     default:
8137       return FALSE;
8138     }
8139 
8140   if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
8141     return FALSE;
8142 
8143   return TRUE;
8144 }
8145 
8146 /* A structure used to record a list of sections, independently
8147    of the next and prev fields in the asection structure.  */
8148 typedef struct section_list
8149 {
8150   asection *sec;
8151   struct section_list *next;
8152   struct section_list *prev;
8153 }
8154 section_list;
8155 
8156 /* Unfortunately we need to keep a list of sections for which
8157    an _aarch64_elf_section_data structure has been allocated.  This
8158    is because it is possible for functions like elfNN_aarch64_write_section
8159    to be called on a section which has had an elf_data_structure
8160    allocated for it (and so the used_by_bfd field is valid) but
8161    for which the AArch64 extended version of this structure - the
8162    _aarch64_elf_section_data structure - has not been allocated.  */
8163 static section_list *sections_with_aarch64_elf_section_data = NULL;
8164 
8165 static void
8166 record_section_with_aarch64_elf_section_data (asection *sec)
8167 {
8168   struct section_list *entry;
8169 
8170   entry = bfd_malloc (sizeof (*entry));
8171   if (entry == NULL)
8172     return;
8173   entry->sec = sec;
8174   entry->next = sections_with_aarch64_elf_section_data;
8175   entry->prev = NULL;
8176   if (entry->next != NULL)
8177     entry->next->prev = entry;
8178   sections_with_aarch64_elf_section_data = entry;
8179 }
8180 
8181 static struct section_list *
8182 find_aarch64_elf_section_entry (asection *sec)
8183 {
8184   struct section_list *entry;
8185   static struct section_list *last_entry = NULL;
8186 
8187   /* This is a short cut for the typical case where the sections are added
8188      to the sections_with_aarch64_elf_section_data list in forward order and
8189      then looked up here in backwards order.  This makes a real difference
8190      to the ld-srec/sec64k.exp linker test.  */
8191   entry = sections_with_aarch64_elf_section_data;
8192   if (last_entry != NULL)
8193     {
8194       if (last_entry->sec == sec)
8195 	entry = last_entry;
8196       else if (last_entry->next != NULL && last_entry->next->sec == sec)
8197 	entry = last_entry->next;
8198     }
8199 
8200   for (; entry; entry = entry->next)
8201     if (entry->sec == sec)
8202       break;
8203 
8204   if (entry)
8205     /* Record the entry prior to this one - it is the entry we are
8206        most likely to want to locate next time.  Also this way if we
8207        have been called from
8208        unrecord_section_with_aarch64_elf_section_data () we will not
8209        be caching a pointer that is about to be freed.  */
8210     last_entry = entry->prev;
8211 
8212   return entry;
8213 }
8214 
8215 static void
8216 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8217 {
8218   struct section_list *entry;
8219 
8220   entry = find_aarch64_elf_section_entry (sec);
8221 
8222   if (entry)
8223     {
8224       if (entry->prev != NULL)
8225 	entry->prev->next = entry->next;
8226       if (entry->next != NULL)
8227 	entry->next->prev = entry->prev;
8228       if (entry == sections_with_aarch64_elf_section_data)
8229 	sections_with_aarch64_elf_section_data = entry->next;
8230       free (entry);
8231     }
8232 }
8233 
8234 
8235 typedef struct
8236 {
8237   void *finfo;
8238   struct bfd_link_info *info;
8239   asection *sec;
8240   int sec_shndx;
8241   int (*func) (void *, const char *, Elf_Internal_Sym *,
8242 	       asection *, struct elf_link_hash_entry *);
8243 } output_arch_syminfo;
8244 
8245 enum map_symbol_type
8246 {
8247   AARCH64_MAP_INSN,
8248   AARCH64_MAP_DATA
8249 };
8250 
8251 
8252 /* Output a single mapping symbol.  */
8253 
8254 static bfd_boolean
8255 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8256 			      enum map_symbol_type type, bfd_vma offset)
8257 {
8258   static const char *names[2] = { "$x", "$d" };
8259   Elf_Internal_Sym sym;
8260 
8261   sym.st_value = (osi->sec->output_section->vma
8262 		  + osi->sec->output_offset + offset);
8263   sym.st_size = 0;
8264   sym.st_other = 0;
8265   sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8266   sym.st_shndx = osi->sec_shndx;
8267   return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8268 }
8269 
8270 /* Output a single local symbol for a generated stub.  */
8271 
8272 static bfd_boolean
8273 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8274 			       bfd_vma offset, bfd_vma size)
8275 {
8276   Elf_Internal_Sym sym;
8277 
8278   sym.st_value = (osi->sec->output_section->vma
8279 		  + osi->sec->output_offset + offset);
8280   sym.st_size = size;
8281   sym.st_other = 0;
8282   sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8283   sym.st_shndx = osi->sec_shndx;
8284   return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8285 }
8286 
8287 static bfd_boolean
8288 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8289 {
8290   struct elf_aarch64_stub_hash_entry *stub_entry;
8291   asection *stub_sec;
8292   bfd_vma addr;
8293   char *stub_name;
8294   output_arch_syminfo *osi;
8295 
8296   /* Massage our args to the form they really have.  */
8297   stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8298   osi = (output_arch_syminfo *) in_arg;
8299 
8300   stub_sec = stub_entry->stub_sec;
8301 
8302   /* Ensure this stub is attached to the current section being
8303      processed.  */
8304   if (stub_sec != osi->sec)
8305     return TRUE;
8306 
8307   addr = (bfd_vma) stub_entry->stub_offset;
8308 
8309   stub_name = stub_entry->output_name;
8310 
8311   switch (stub_entry->stub_type)
8312     {
8313     case aarch64_stub_adrp_branch:
8314       if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8315 					  sizeof (aarch64_adrp_branch_stub)))
8316 	return FALSE;
8317       if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8318 	return FALSE;
8319       break;
8320     case aarch64_stub_long_branch:
8321       if (!elfNN_aarch64_output_stub_sym
8322 	  (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8323 	return FALSE;
8324       if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8325 	return FALSE;
8326       if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8327 	return FALSE;
8328       break;
8329     case aarch64_stub_erratum_835769_veneer:
8330       if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8331 					  sizeof (aarch64_erratum_835769_stub)))
8332 	return FALSE;
8333       if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8334 	return FALSE;
8335       break;
8336     case aarch64_stub_erratum_843419_veneer:
8337       if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8338 					  sizeof (aarch64_erratum_843419_stub)))
8339 	return FALSE;
8340       if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8341 	return FALSE;
8342       break;
8343     case aarch64_stub_none:
8344       break;
8345 
8346     default:
8347       abort ();
8348     }
8349 
8350   return TRUE;
8351 }
8352 
8353 /* Output mapping symbols for linker generated sections.  */
8354 
8355 static bfd_boolean
8356 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8357 				      struct bfd_link_info *info,
8358 				      void *finfo,
8359 				      int (*func) (void *, const char *,
8360 						   Elf_Internal_Sym *,
8361 						   asection *,
8362 						   struct elf_link_hash_entry
8363 						   *))
8364 {
8365   output_arch_syminfo osi;
8366   struct elf_aarch64_link_hash_table *htab;
8367 
8368   htab = elf_aarch64_hash_table (info);
8369 
8370   osi.finfo = finfo;
8371   osi.info = info;
8372   osi.func = func;
8373 
8374   /* Long calls stubs.  */
8375   if (htab->stub_bfd && htab->stub_bfd->sections)
8376     {
8377       asection *stub_sec;
8378 
8379       for (stub_sec = htab->stub_bfd->sections;
8380 	   stub_sec != NULL; stub_sec = stub_sec->next)
8381 	{
8382 	  /* Ignore non-stub sections.  */
8383 	  if (!strstr (stub_sec->name, STUB_SUFFIX))
8384 	    continue;
8385 
8386 	  osi.sec = stub_sec;
8387 
8388 	  osi.sec_shndx = _bfd_elf_section_from_bfd_section
8389 	    (output_bfd, osi.sec->output_section);
8390 
8391 	  /* The first instruction in a stub is always a branch.  */
8392 	  if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8393 	    return FALSE;
8394 
8395 	  bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8396 			     &osi);
8397 	}
8398     }
8399 
8400   /* Finally, output mapping symbols for the PLT.  */
8401   if (!htab->root.splt || htab->root.splt->size == 0)
8402     return TRUE;
8403 
8404   osi.sec_shndx = _bfd_elf_section_from_bfd_section
8405     (output_bfd, htab->root.splt->output_section);
8406   osi.sec = htab->root.splt;
8407 
8408   elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8409 
8410   return TRUE;
8411 
8412 }
8413 
8414 /* Allocate target specific section data.  */
8415 
8416 static bfd_boolean
8417 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8418 {
8419   if (!sec->used_by_bfd)
8420     {
8421       _aarch64_elf_section_data *sdata;
8422       bfd_size_type amt = sizeof (*sdata);
8423 
8424       sdata = bfd_zalloc (abfd, amt);
8425       if (sdata == NULL)
8426 	return FALSE;
8427       sec->used_by_bfd = sdata;
8428     }
8429 
8430   record_section_with_aarch64_elf_section_data (sec);
8431 
8432   return _bfd_elf_new_section_hook (abfd, sec);
8433 }
8434 
8435 
8436 static void
8437 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8438 					asection *sec,
8439 					void *ignore ATTRIBUTE_UNUSED)
8440 {
8441   unrecord_section_with_aarch64_elf_section_data (sec);
8442 }
8443 
8444 static bfd_boolean
8445 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8446 {
8447   if (abfd->sections)
8448     bfd_map_over_sections (abfd,
8449 			   unrecord_section_via_map_over_sections, NULL);
8450 
8451   return _bfd_elf_close_and_cleanup (abfd);
8452 }
8453 
8454 static bfd_boolean
8455 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8456 {
8457   if (abfd->sections)
8458     bfd_map_over_sections (abfd,
8459 			   unrecord_section_via_map_over_sections, NULL);
8460 
8461   return _bfd_free_cached_info (abfd);
8462 }
8463 
8464 /* Create dynamic sections. This is different from the ARM backend in that
8465    the got, plt, gotplt and their relocation sections are all created in the
8466    standard part of the bfd elf backend.  */
8467 
8468 static bfd_boolean
8469 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8470 				       struct bfd_link_info *info)
8471 {
8472   /* We need to create .got section.  */
8473   if (!aarch64_elf_create_got_section (dynobj, info))
8474     return FALSE;
8475 
8476   return _bfd_elf_create_dynamic_sections (dynobj, info);
8477 }
8478 
8479 
8480 /* Allocate space in .plt, .got and associated reloc sections for
8481    dynamic relocs.  */
8482 
8483 static bfd_boolean
8484 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8485 {
8486   struct bfd_link_info *info;
8487   struct elf_aarch64_link_hash_table *htab;
8488   struct elf_aarch64_link_hash_entry *eh;
8489   struct elf_dyn_relocs *p;
8490 
8491   /* An example of a bfd_link_hash_indirect symbol is versioned
8492      symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8493      -> __gxx_personality_v0(bfd_link_hash_defined)
8494 
8495      There is no need to process bfd_link_hash_indirect symbols here
8496      because we will also be presented with the concrete instance of
8497      the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8498      called to copy all relevant data from the generic to the concrete
8499      symbol instance.  */
8500   if (h->root.type == bfd_link_hash_indirect)
8501     return TRUE;
8502 
8503   if (h->root.type == bfd_link_hash_warning)
8504     h = (struct elf_link_hash_entry *) h->root.u.i.link;
8505 
8506   info = (struct bfd_link_info *) inf;
8507   htab = elf_aarch64_hash_table (info);
8508 
8509   /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8510      here if it is defined and referenced in a non-shared object.  */
8511   if (h->type == STT_GNU_IFUNC
8512       && h->def_regular)
8513     return TRUE;
8514   else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8515     {
8516       /* Make sure this symbol is output as a dynamic symbol.
8517 	 Undefined weak syms won't yet be marked as dynamic.  */
8518       if (h->dynindx == -1 && !h->forced_local
8519 	  && h->root.type == bfd_link_hash_undefweak)
8520 	{
8521 	  if (!bfd_elf_link_record_dynamic_symbol (info, h))
8522 	    return FALSE;
8523 	}
8524 
8525       if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8526 	{
8527 	  asection *s = htab->root.splt;
8528 
8529 	  /* If this is the first .plt entry, make room for the special
8530 	     first entry.  */
8531 	  if (s->size == 0)
8532 	    s->size += htab->plt_header_size;
8533 
8534 	  h->plt.offset = s->size;
8535 
8536 	  /* If this symbol is not defined in a regular file, and we are
8537 	     not generating a shared library, then set the symbol to this
8538 	     location in the .plt.  This is required to make function
8539 	     pointers compare as equal between the normal executable and
8540 	     the shared library.  */
8541 	  if (!bfd_link_pic (info) && !h->def_regular)
8542 	    {
8543 	      h->root.u.def.section = s;
8544 	      h->root.u.def.value = h->plt.offset;
8545 	    }
8546 
8547 	  /* Make room for this entry. For now we only create the
8548 	     small model PLT entries. We later need to find a way
8549 	     of relaxing into these from the large model PLT entries.  */
8550 	  s->size += htab->plt_entry_size;
8551 
8552 	  /* We also need to make an entry in the .got.plt section, which
8553 	     will be placed in the .got section by the linker script.  */
8554 	  htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8555 
8556 	  /* We also need to make an entry in the .rela.plt section.  */
8557 	  htab->root.srelplt->size += RELOC_SIZE (htab);
8558 
8559 	  /* We need to ensure that all GOT entries that serve the PLT
8560 	     are consecutive with the special GOT slots [0] [1] and
8561 	     [2]. Any addtional relocations, such as
8562 	     R_AARCH64_TLSDESC, must be placed after the PLT related
8563 	     entries.  We abuse the reloc_count such that during
8564 	     sizing we adjust reloc_count to indicate the number of
8565 	     PLT related reserved entries.  In subsequent phases when
8566 	     filling in the contents of the reloc entries, PLT related
8567 	     entries are placed by computing their PLT index (0
8568 	     .. reloc_count). While other none PLT relocs are placed
8569 	     at the slot indicated by reloc_count and reloc_count is
8570 	     updated.  */
8571 
8572 	  htab->root.srelplt->reloc_count++;
8573 
8574 	  /* Mark the DSO in case R_<CLS>_JUMP_SLOT relocs against
8575 	     variant PCS symbols are present.  */
8576 	  if (h->other & STO_AARCH64_VARIANT_PCS)
8577 	    htab->variant_pcs = 1;
8578 
8579 	}
8580       else
8581 	{
8582 	  h->plt.offset = (bfd_vma) - 1;
8583 	  h->needs_plt = 0;
8584 	}
8585     }
8586   else
8587     {
8588       h->plt.offset = (bfd_vma) - 1;
8589       h->needs_plt = 0;
8590     }
8591 
8592   eh = (struct elf_aarch64_link_hash_entry *) h;
8593   eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8594 
8595   if (h->got.refcount > 0)
8596     {
8597       bfd_boolean dyn;
8598       unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8599 
8600       h->got.offset = (bfd_vma) - 1;
8601 
8602       dyn = htab->root.dynamic_sections_created;
8603 
8604       /* Make sure this symbol is output as a dynamic symbol.
8605 	 Undefined weak syms won't yet be marked as dynamic.  */
8606       if (dyn && h->dynindx == -1 && !h->forced_local
8607 	  && h->root.type == bfd_link_hash_undefweak)
8608 	{
8609 	  if (!bfd_elf_link_record_dynamic_symbol (info, h))
8610 	    return FALSE;
8611 	}
8612 
8613       if (got_type == GOT_UNKNOWN)
8614 	{
8615 	}
8616       else if (got_type == GOT_NORMAL)
8617 	{
8618 	  h->got.offset = htab->root.sgot->size;
8619 	  htab->root.sgot->size += GOT_ENTRY_SIZE;
8620 	  if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8621 	       || h->root.type != bfd_link_hash_undefweak)
8622 	      && (bfd_link_pic (info)
8623 		  || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8624 	      /* Undefined weak symbol in static PIE resolves to 0 without
8625 		 any dynamic relocations.  */
8626 	      && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8627 	    {
8628 	      htab->root.srelgot->size += RELOC_SIZE (htab);
8629 	    }
8630 	}
8631       else
8632 	{
8633 	  int indx;
8634 	  if (got_type & GOT_TLSDESC_GD)
8635 	    {
8636 	      eh->tlsdesc_got_jump_table_offset =
8637 		(htab->root.sgotplt->size
8638 		 - aarch64_compute_jump_table_size (htab));
8639 	      htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8640 	      h->got.offset = (bfd_vma) - 2;
8641 	    }
8642 
8643 	  if (got_type & GOT_TLS_GD)
8644 	    {
8645 	      h->got.offset = htab->root.sgot->size;
8646 	      htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8647 	    }
8648 
8649 	  if (got_type & GOT_TLS_IE)
8650 	    {
8651 	      h->got.offset = htab->root.sgot->size;
8652 	      htab->root.sgot->size += GOT_ENTRY_SIZE;
8653 	    }
8654 
8655 	  indx = h && h->dynindx != -1 ? h->dynindx : 0;
8656 	  if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8657 	       || h->root.type != bfd_link_hash_undefweak)
8658 	      && (!bfd_link_executable (info)
8659 		  || indx != 0
8660 		  || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8661 	    {
8662 	      if (got_type & GOT_TLSDESC_GD)
8663 		{
8664 		  htab->root.srelplt->size += RELOC_SIZE (htab);
8665 		  /* Note reloc_count not incremented here!  We have
8666 		     already adjusted reloc_count for this relocation
8667 		     type.  */
8668 
8669 		  /* TLSDESC PLT is now needed, but not yet determined.  */
8670 		  htab->tlsdesc_plt = (bfd_vma) - 1;
8671 		}
8672 
8673 	      if (got_type & GOT_TLS_GD)
8674 		htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8675 
8676 	      if (got_type & GOT_TLS_IE)
8677 		htab->root.srelgot->size += RELOC_SIZE (htab);
8678 	    }
8679 	}
8680     }
8681   else
8682     {
8683       h->got.offset = (bfd_vma) - 1;
8684     }
8685 
8686   if (eh->dyn_relocs == NULL)
8687     return TRUE;
8688 
8689   /* In the shared -Bsymbolic case, discard space allocated for
8690      dynamic pc-relative relocs against symbols which turn out to be
8691      defined in regular objects.  For the normal shared case, discard
8692      space for pc-relative relocs that have become local due to symbol
8693      visibility changes.  */
8694 
8695   if (bfd_link_pic (info))
8696     {
8697       /* Relocs that use pc_count are those that appear on a call
8698 	 insn, or certain REL relocs that can generated via assembly.
8699 	 We want calls to protected symbols to resolve directly to the
8700 	 function rather than going via the plt.  If people want
8701 	 function pointer comparisons to work as expected then they
8702 	 should avoid writing weird assembly.  */
8703       if (SYMBOL_CALLS_LOCAL (info, h))
8704 	{
8705 	  struct elf_dyn_relocs **pp;
8706 
8707 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8708 	    {
8709 	      p->count -= p->pc_count;
8710 	      p->pc_count = 0;
8711 	      if (p->count == 0)
8712 		*pp = p->next;
8713 	      else
8714 		pp = &p->next;
8715 	    }
8716 	}
8717 
8718       /* Also discard relocs on undefined weak syms with non-default
8719 	 visibility.  */
8720       if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8721 	{
8722 	  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8723 	      || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8724 	    eh->dyn_relocs = NULL;
8725 
8726 	  /* Make sure undefined weak symbols are output as a dynamic
8727 	     symbol in PIEs.  */
8728 	  else if (h->dynindx == -1
8729 		   && !h->forced_local
8730 		   && h->root.type == bfd_link_hash_undefweak
8731 		   && !bfd_elf_link_record_dynamic_symbol (info, h))
8732 	    return FALSE;
8733 	}
8734 
8735     }
8736   else if (ELIMINATE_COPY_RELOCS)
8737     {
8738       /* For the non-shared case, discard space for relocs against
8739 	 symbols which turn out to need copy relocs or are not
8740 	 dynamic.  */
8741 
8742       if (!h->non_got_ref
8743 	  && ((h->def_dynamic
8744 	       && !h->def_regular)
8745 	      || (htab->root.dynamic_sections_created
8746 		  && (h->root.type == bfd_link_hash_undefweak
8747 		      || h->root.type == bfd_link_hash_undefined))))
8748 	{
8749 	  /* Make sure this symbol is output as a dynamic symbol.
8750 	     Undefined weak syms won't yet be marked as dynamic.  */
8751 	  if (h->dynindx == -1
8752 	      && !h->forced_local
8753 	      && h->root.type == bfd_link_hash_undefweak
8754 	      && !bfd_elf_link_record_dynamic_symbol (info, h))
8755 	    return FALSE;
8756 
8757 	  /* If that succeeded, we know we'll be keeping all the
8758 	     relocs.  */
8759 	  if (h->dynindx != -1)
8760 	    goto keep;
8761 	}
8762 
8763       eh->dyn_relocs = NULL;
8764 
8765     keep:;
8766     }
8767 
8768   /* Finally, allocate space.  */
8769   for (p = eh->dyn_relocs; p != NULL; p = p->next)
8770     {
8771       asection *sreloc;
8772 
8773       sreloc = elf_section_data (p->sec)->sreloc;
8774 
8775       BFD_ASSERT (sreloc != NULL);
8776 
8777       sreloc->size += p->count * RELOC_SIZE (htab);
8778     }
8779 
8780   return TRUE;
8781 }
8782 
8783 /* Allocate space in .plt, .got and associated reloc sections for
8784    ifunc dynamic relocs.  */
8785 
8786 static bfd_boolean
8787 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8788 					void *inf)
8789 {
8790   struct bfd_link_info *info;
8791   struct elf_aarch64_link_hash_table *htab;
8792   struct elf_aarch64_link_hash_entry *eh;
8793 
8794   /* An example of a bfd_link_hash_indirect symbol is versioned
8795      symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8796      -> __gxx_personality_v0(bfd_link_hash_defined)
8797 
8798      There is no need to process bfd_link_hash_indirect symbols here
8799      because we will also be presented with the concrete instance of
8800      the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8801      called to copy all relevant data from the generic to the concrete
8802      symbol instance.  */
8803   if (h->root.type == bfd_link_hash_indirect)
8804     return TRUE;
8805 
8806   if (h->root.type == bfd_link_hash_warning)
8807     h = (struct elf_link_hash_entry *) h->root.u.i.link;
8808 
8809   info = (struct bfd_link_info *) inf;
8810   htab = elf_aarch64_hash_table (info);
8811 
8812   eh = (struct elf_aarch64_link_hash_entry *) h;
8813 
8814   /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8815      here if it is defined and referenced in a non-shared object.  */
8816   if (h->type == STT_GNU_IFUNC
8817       && h->def_regular)
8818     return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8819 					       &eh->dyn_relocs,
8820 					       NULL,
8821 					       htab->plt_entry_size,
8822 					       htab->plt_header_size,
8823 					       GOT_ENTRY_SIZE,
8824 					       FALSE);
8825   return TRUE;
8826 }
8827 
8828 /* Allocate space in .plt, .got and associated reloc sections for
8829    local ifunc dynamic relocs.  */
8830 
8831 static bfd_boolean
8832 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8833 {
8834   struct elf_link_hash_entry *h
8835     = (struct elf_link_hash_entry *) *slot;
8836 
8837   if (h->type != STT_GNU_IFUNC
8838       || !h->def_regular
8839       || !h->ref_regular
8840       || !h->forced_local
8841       || h->root.type != bfd_link_hash_defined)
8842     abort ();
8843 
8844   return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8845 }
8846 
8847 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8848    read-only sections.  */
8849 
8850 static bfd_boolean
8851 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8852 {
8853   asection *sec;
8854 
8855   if (h->root.type == bfd_link_hash_indirect)
8856     return TRUE;
8857 
8858   sec = readonly_dynrelocs (h);
8859   if (sec != NULL)
8860     {
8861       struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8862 
8863       info->flags |= DF_TEXTREL;
8864       info->callbacks->minfo
8865 	(_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8866 	 sec->owner, h->root.root.string, sec);
8867 
8868       /* Not an error, just cut short the traversal.  */
8869       return FALSE;
8870     }
8871   return TRUE;
8872 }
8873 
8874 /* This is the most important function of all . Innocuosly named
8875    though !  */
8876 
8877 static bfd_boolean
8878 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8879 				     struct bfd_link_info *info)
8880 {
8881   struct elf_aarch64_link_hash_table *htab;
8882   bfd *dynobj;
8883   asection *s;
8884   bfd_boolean relocs;
8885   bfd *ibfd;
8886 
8887   htab = elf_aarch64_hash_table ((info));
8888   dynobj = htab->root.dynobj;
8889 
8890   BFD_ASSERT (dynobj != NULL);
8891 
8892   if (htab->root.dynamic_sections_created)
8893     {
8894       if (bfd_link_executable (info) && !info->nointerp)
8895 	{
8896 	  s = bfd_get_linker_section (dynobj, ".interp");
8897 	  if (s == NULL)
8898 	    abort ();
8899 	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8900 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8901 	}
8902     }
8903 
8904   /* Set up .got offsets for local syms, and space for local dynamic
8905      relocs.  */
8906   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8907     {
8908       struct elf_aarch64_local_symbol *locals = NULL;
8909       Elf_Internal_Shdr *symtab_hdr;
8910       asection *srel;
8911       unsigned int i;
8912 
8913       if (!is_aarch64_elf (ibfd))
8914 	continue;
8915 
8916       for (s = ibfd->sections; s != NULL; s = s->next)
8917 	{
8918 	  struct elf_dyn_relocs *p;
8919 
8920 	  for (p = (struct elf_dyn_relocs *)
8921 	       (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8922 	    {
8923 	      if (!bfd_is_abs_section (p->sec)
8924 		  && bfd_is_abs_section (p->sec->output_section))
8925 		{
8926 		  /* Input section has been discarded, either because
8927 		     it is a copy of a linkonce section or due to
8928 		     linker script /DISCARD/, so we'll be discarding
8929 		     the relocs too.  */
8930 		}
8931 	      else if (p->count != 0)
8932 		{
8933 		  srel = elf_section_data (p->sec)->sreloc;
8934 		  srel->size += p->count * RELOC_SIZE (htab);
8935 		  if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8936 		    info->flags |= DF_TEXTREL;
8937 		}
8938 	    }
8939 	}
8940 
8941       locals = elf_aarch64_locals (ibfd);
8942       if (!locals)
8943 	continue;
8944 
8945       symtab_hdr = &elf_symtab_hdr (ibfd);
8946       srel = htab->root.srelgot;
8947       for (i = 0; i < symtab_hdr->sh_info; i++)
8948 	{
8949 	  locals[i].got_offset = (bfd_vma) - 1;
8950 	  locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8951 	  if (locals[i].got_refcount > 0)
8952 	    {
8953 	      unsigned got_type = locals[i].got_type;
8954 	      if (got_type & GOT_TLSDESC_GD)
8955 		{
8956 		  locals[i].tlsdesc_got_jump_table_offset =
8957 		    (htab->root.sgotplt->size
8958 		     - aarch64_compute_jump_table_size (htab));
8959 		  htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8960 		  locals[i].got_offset = (bfd_vma) - 2;
8961 		}
8962 
8963 	      if (got_type & GOT_TLS_GD)
8964 		{
8965 		  locals[i].got_offset = htab->root.sgot->size;
8966 		  htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8967 		}
8968 
8969 	      if (got_type & GOT_TLS_IE
8970 		  || got_type & GOT_NORMAL)
8971 		{
8972 		  locals[i].got_offset = htab->root.sgot->size;
8973 		  htab->root.sgot->size += GOT_ENTRY_SIZE;
8974 		}
8975 
8976 	      if (got_type == GOT_UNKNOWN)
8977 		{
8978 		}
8979 
8980 	      if (bfd_link_pic (info))
8981 		{
8982 		  if (got_type & GOT_TLSDESC_GD)
8983 		    {
8984 		      htab->root.srelplt->size += RELOC_SIZE (htab);
8985 		      /* Note RELOC_COUNT not incremented here! */
8986 		      htab->tlsdesc_plt = (bfd_vma) - 1;
8987 		    }
8988 
8989 		  if (got_type & GOT_TLS_GD)
8990 		    htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8991 
8992 		  if (got_type & GOT_TLS_IE
8993 		      || got_type & GOT_NORMAL)
8994 		    htab->root.srelgot->size += RELOC_SIZE (htab);
8995 		}
8996 	    }
8997 	  else
8998 	    {
8999 	      locals[i].got_refcount = (bfd_vma) - 1;
9000 	    }
9001 	}
9002     }
9003 
9004 
9005   /* Allocate global sym .plt and .got entries, and space for global
9006      sym dynamic relocs.  */
9007   elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
9008 			  info);
9009 
9010   /* Allocate global ifunc sym .plt and .got entries, and space for global
9011      ifunc sym dynamic relocs.  */
9012   elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
9013 			  info);
9014 
9015   /* Allocate .plt and .got entries, and space for local ifunc symbols.  */
9016   htab_traverse (htab->loc_hash_table,
9017 		 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
9018 		 info);
9019 
9020   /* For every jump slot reserved in the sgotplt, reloc_count is
9021      incremented.  However, when we reserve space for TLS descriptors,
9022      it's not incremented, so in order to compute the space reserved
9023      for them, it suffices to multiply the reloc count by the jump
9024      slot size.  */
9025 
9026   if (htab->root.srelplt)
9027     htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
9028 
9029   if (htab->tlsdesc_plt)
9030     {
9031       if (htab->root.splt->size == 0)
9032 	htab->root.splt->size += htab->plt_header_size;
9033 
9034       /* If we're not using lazy TLS relocations, don't generate the
9035 	 GOT and PLT entry required.  */
9036       if (!(info->flags & DF_BIND_NOW))
9037 	{
9038 	  htab->tlsdesc_plt = htab->root.splt->size;
9039 	  htab->root.splt->size += htab->tlsdesc_plt_entry_size;
9040 
9041 	  htab->dt_tlsdesc_got = htab->root.sgot->size;
9042 	  htab->root.sgot->size += GOT_ENTRY_SIZE;
9043 	}
9044     }
9045 
9046   /* Init mapping symbols information to use later to distingush between
9047      code and data while scanning for errata.  */
9048   if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
9049     for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9050       {
9051 	if (!is_aarch64_elf (ibfd))
9052 	  continue;
9053 	bfd_elfNN_aarch64_init_maps (ibfd);
9054       }
9055 
9056   /* We now have determined the sizes of the various dynamic sections.
9057      Allocate memory for them.  */
9058   relocs = FALSE;
9059   for (s = dynobj->sections; s != NULL; s = s->next)
9060     {
9061       if ((s->flags & SEC_LINKER_CREATED) == 0)
9062 	continue;
9063 
9064       if (s == htab->root.splt
9065 	  || s == htab->root.sgot
9066 	  || s == htab->root.sgotplt
9067 	  || s == htab->root.iplt
9068 	  || s == htab->root.igotplt
9069 	  || s == htab->root.sdynbss
9070 	  || s == htab->root.sdynrelro)
9071 	{
9072 	  /* Strip this section if we don't need it; see the
9073 	     comment below.  */
9074 	}
9075       else if (CONST_STRNEQ (bfd_section_name (s), ".rela"))
9076 	{
9077 	  if (s->size != 0 && s != htab->root.srelplt)
9078 	    relocs = TRUE;
9079 
9080 	  /* We use the reloc_count field as a counter if we need
9081 	     to copy relocs into the output file.  */
9082 	  if (s != htab->root.srelplt)
9083 	    s->reloc_count = 0;
9084 	}
9085       else
9086 	{
9087 	  /* It's not one of our sections, so don't allocate space.  */
9088 	  continue;
9089 	}
9090 
9091       if (s->size == 0)
9092 	{
9093 	  /* If we don't need this section, strip it from the
9094 	     output file.  This is mostly to handle .rela.bss and
9095 	     .rela.plt.  We must create both sections in
9096 	     create_dynamic_sections, because they must be created
9097 	     before the linker maps input sections to output
9098 	     sections.  The linker does that before
9099 	     adjust_dynamic_symbol is called, and it is that
9100 	     function which decides whether anything needs to go
9101 	     into these sections.  */
9102 	  s->flags |= SEC_EXCLUDE;
9103 	  continue;
9104 	}
9105 
9106       if ((s->flags & SEC_HAS_CONTENTS) == 0)
9107 	continue;
9108 
9109       /* Allocate memory for the section contents.  We use bfd_zalloc
9110 	 here in case unused entries are not reclaimed before the
9111 	 section's contents are written out.  This should not happen,
9112 	 but this way if it does, we get a R_AARCH64_NONE reloc instead
9113 	 of garbage.  */
9114       s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9115       if (s->contents == NULL)
9116 	return FALSE;
9117     }
9118 
9119   if (htab->root.dynamic_sections_created)
9120     {
9121       /* Add some entries to the .dynamic section.  We fill in the
9122 	 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9123 	 must add the entries now so that we get the correct size for
9124 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
9125 	 dynamic linker and used by the debugger.  */
9126 #define add_dynamic_entry(TAG, VAL)			\
9127       _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9128 
9129       if (bfd_link_executable (info))
9130 	{
9131 	  if (!add_dynamic_entry (DT_DEBUG, 0))
9132 	    return FALSE;
9133 	}
9134 
9135       if (htab->root.splt->size != 0)
9136 	{
9137 	  if (!add_dynamic_entry (DT_PLTGOT, 0)
9138 	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
9139 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9140 	      || !add_dynamic_entry (DT_JMPREL, 0))
9141 	    return FALSE;
9142 
9143 	  if (htab->variant_pcs
9144 	      && !add_dynamic_entry (DT_AARCH64_VARIANT_PCS, 0))
9145 	    return FALSE;
9146 
9147 	  if (htab->tlsdesc_plt
9148 	      && !(info->flags & DF_BIND_NOW)
9149 	      && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
9150 		  || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
9151 	    return FALSE;
9152 
9153 	  if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI_PAC)
9154 	      && (!add_dynamic_entry (DT_AARCH64_BTI_PLT, 0)
9155 		  || !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0)))
9156 	    return FALSE;
9157 
9158 	  else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI)
9159 		   && !add_dynamic_entry (DT_AARCH64_BTI_PLT, 0))
9160 	    return FALSE;
9161 
9162 	  else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_PAC)
9163 		   && !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0))
9164 	    return FALSE;
9165 	}
9166 
9167       if (relocs)
9168 	{
9169 	  if (!add_dynamic_entry (DT_RELA, 0)
9170 	      || !add_dynamic_entry (DT_RELASZ, 0)
9171 	      || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9172 	    return FALSE;
9173 
9174 	  /* If any dynamic relocs apply to a read-only section,
9175 	     then we need a DT_TEXTREL entry.  */
9176 	  if ((info->flags & DF_TEXTREL) == 0)
9177 	    elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
9178 
9179 	  if ((info->flags & DF_TEXTREL) != 0)
9180 	    {
9181 	      if (!add_dynamic_entry (DT_TEXTREL, 0))
9182 		return FALSE;
9183 	    }
9184 	}
9185     }
9186 #undef add_dynamic_entry
9187 
9188   return TRUE;
9189 }
9190 
9191 static inline void
9192 elf_aarch64_update_plt_entry (bfd *output_bfd,
9193 			      bfd_reloc_code_real_type r_type,
9194 			      bfd_byte *plt_entry, bfd_vma value)
9195 {
9196   reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
9197 
9198   /* FIXME: We should check the return value from this function call.  */
9199   (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9200 }
9201 
9202 static void
9203 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9204 				       struct elf_aarch64_link_hash_table
9205 				       *htab, bfd *output_bfd,
9206 				       struct bfd_link_info *info)
9207 {
9208   bfd_byte *plt_entry;
9209   bfd_vma plt_index;
9210   bfd_vma got_offset;
9211   bfd_vma gotplt_entry_address;
9212   bfd_vma plt_entry_address;
9213   Elf_Internal_Rela rela;
9214   bfd_byte *loc;
9215   asection *plt, *gotplt, *relplt;
9216 
9217   /* When building a static executable, use .iplt, .igot.plt and
9218      .rela.iplt sections for STT_GNU_IFUNC symbols.  */
9219   if (htab->root.splt != NULL)
9220     {
9221       plt = htab->root.splt;
9222       gotplt = htab->root.sgotplt;
9223       relplt = htab->root.srelplt;
9224     }
9225   else
9226     {
9227       plt = htab->root.iplt;
9228       gotplt = htab->root.igotplt;
9229       relplt = htab->root.irelplt;
9230     }
9231 
9232   /* Get the index in the procedure linkage table which
9233      corresponds to this symbol.  This is the index of this symbol
9234      in all the symbols for which we are making plt entries.  The
9235      first entry in the procedure linkage table is reserved.
9236 
9237      Get the offset into the .got table of the entry that
9238      corresponds to this function.	Each .got entry is GOT_ENTRY_SIZE
9239      bytes. The first three are reserved for the dynamic linker.
9240 
9241      For static executables, we don't reserve anything.  */
9242 
9243   if (plt == htab->root.splt)
9244     {
9245       plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9246       got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9247     }
9248   else
9249     {
9250       plt_index = h->plt.offset / htab->plt_entry_size;
9251       got_offset = plt_index * GOT_ENTRY_SIZE;
9252     }
9253 
9254   plt_entry = plt->contents + h->plt.offset;
9255   plt_entry_address = plt->output_section->vma
9256     + plt->output_offset + h->plt.offset;
9257   gotplt_entry_address = gotplt->output_section->vma +
9258     gotplt->output_offset + got_offset;
9259 
9260   /* Copy in the boiler-plate for the PLTn entry.  */
9261   memcpy (plt_entry, htab->plt_entry, htab->plt_entry_size);
9262 
9263   /* First instruction in BTI enabled PLT stub is a BTI
9264      instruction so skip it.  */
9265   if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI
9266       && elf_elfheader (output_bfd)->e_type == ET_EXEC)
9267     plt_entry = plt_entry + 4;
9268 
9269   /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9270      ADRP:   ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9271   elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9272 				plt_entry,
9273 				PG (gotplt_entry_address) -
9274 				PG (plt_entry_address));
9275 
9276   /* Fill in the lo12 bits for the load from the pltgot.  */
9277   elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9278 				plt_entry + 4,
9279 				PG_OFFSET (gotplt_entry_address));
9280 
9281   /* Fill in the lo12 bits for the add from the pltgot entry.  */
9282   elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9283 				plt_entry + 8,
9284 				PG_OFFSET (gotplt_entry_address));
9285 
9286   /* All the GOTPLT Entries are essentially initialized to PLT0.  */
9287   bfd_put_NN (output_bfd,
9288 	      plt->output_section->vma + plt->output_offset,
9289 	      gotplt->contents + got_offset);
9290 
9291   rela.r_offset = gotplt_entry_address;
9292 
9293   if (h->dynindx == -1
9294       || ((bfd_link_executable (info)
9295 	   || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9296 	  && h->def_regular
9297 	  && h->type == STT_GNU_IFUNC))
9298     {
9299       /* If an STT_GNU_IFUNC symbol is locally defined, generate
9300 	 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT.  */
9301       rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9302       rela.r_addend = (h->root.u.def.value
9303 		       + h->root.u.def.section->output_section->vma
9304 		       + h->root.u.def.section->output_offset);
9305     }
9306   else
9307     {
9308       /* Fill in the entry in the .rela.plt section.  */
9309       rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9310       rela.r_addend = 0;
9311     }
9312 
9313   /* Compute the relocation entry to used based on PLT index and do
9314      not adjust reloc_count. The reloc_count has already been adjusted
9315      to account for this entry.  */
9316   loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9317   bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9318 }
9319 
9320 /* Size sections even though they're not dynamic.  We use it to setup
9321    _TLS_MODULE_BASE_, if needed.  */
9322 
9323 static bfd_boolean
9324 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9325 				    struct bfd_link_info *info)
9326 {
9327   asection *tls_sec;
9328 
9329   if (bfd_link_relocatable (info))
9330     return TRUE;
9331 
9332   tls_sec = elf_hash_table (info)->tls_sec;
9333 
9334   if (tls_sec)
9335     {
9336       struct elf_link_hash_entry *tlsbase;
9337 
9338       tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9339 				      "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9340 
9341       if (tlsbase)
9342 	{
9343 	  struct bfd_link_hash_entry *h = NULL;
9344 	  const struct elf_backend_data *bed =
9345 	    get_elf_backend_data (output_bfd);
9346 
9347 	  if (!(_bfd_generic_link_add_one_symbol
9348 		(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9349 		 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9350 	    return FALSE;
9351 
9352 	  tlsbase->type = STT_TLS;
9353 	  tlsbase = (struct elf_link_hash_entry *) h;
9354 	  tlsbase->def_regular = 1;
9355 	  tlsbase->other = STV_HIDDEN;
9356 	  (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9357 	}
9358     }
9359 
9360   return TRUE;
9361 }
9362 
9363 /* Finish up dynamic symbol handling.  We set the contents of various
9364    dynamic sections here.  */
9365 
9366 static bfd_boolean
9367 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9368 				     struct bfd_link_info *info,
9369 				     struct elf_link_hash_entry *h,
9370 				     Elf_Internal_Sym *sym)
9371 {
9372   struct elf_aarch64_link_hash_table *htab;
9373   htab = elf_aarch64_hash_table (info);
9374 
9375   if (h->plt.offset != (bfd_vma) - 1)
9376     {
9377       asection *plt, *gotplt, *relplt;
9378 
9379       /* This symbol has an entry in the procedure linkage table.  Set
9380 	 it up.  */
9381 
9382       /* When building a static executable, use .iplt, .igot.plt and
9383 	 .rela.iplt sections for STT_GNU_IFUNC symbols.  */
9384       if (htab->root.splt != NULL)
9385 	{
9386 	  plt = htab->root.splt;
9387 	  gotplt = htab->root.sgotplt;
9388 	  relplt = htab->root.srelplt;
9389 	}
9390       else
9391 	{
9392 	  plt = htab->root.iplt;
9393 	  gotplt = htab->root.igotplt;
9394 	  relplt = htab->root.irelplt;
9395 	}
9396 
9397       /* This symbol has an entry in the procedure linkage table.  Set
9398 	 it up.	 */
9399       if ((h->dynindx == -1
9400 	   && !((h->forced_local || bfd_link_executable (info))
9401 		&& h->def_regular
9402 		&& h->type == STT_GNU_IFUNC))
9403 	  || plt == NULL
9404 	  || gotplt == NULL
9405 	  || relplt == NULL)
9406 	return FALSE;
9407 
9408       elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9409       if (!h->def_regular)
9410 	{
9411 	  /* Mark the symbol as undefined, rather than as defined in
9412 	     the .plt section.  */
9413 	  sym->st_shndx = SHN_UNDEF;
9414 	  /* If the symbol is weak we need to clear the value.
9415 	     Otherwise, the PLT entry would provide a definition for
9416 	     the symbol even if the symbol wasn't defined anywhere,
9417 	     and so the symbol would never be NULL.  Leave the value if
9418 	     there were any relocations where pointer equality matters
9419 	     (this is a clue for the dynamic linker, to make function
9420 	     pointer comparisons work between an application and shared
9421 	     library).  */
9422 	  if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9423 	    sym->st_value = 0;
9424 	}
9425     }
9426 
9427   if (h->got.offset != (bfd_vma) - 1
9428       && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9429       /* Undefined weak symbol in static PIE resolves to 0 without
9430 	 any dynamic relocations.  */
9431       && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9432     {
9433       Elf_Internal_Rela rela;
9434       bfd_byte *loc;
9435 
9436       /* This symbol has an entry in the global offset table.  Set it
9437 	 up.  */
9438       if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9439 	abort ();
9440 
9441       rela.r_offset = (htab->root.sgot->output_section->vma
9442 		       + htab->root.sgot->output_offset
9443 		       + (h->got.offset & ~(bfd_vma) 1));
9444 
9445       if (h->def_regular
9446 	  && h->type == STT_GNU_IFUNC)
9447 	{
9448 	  if (bfd_link_pic (info))
9449 	    {
9450 	      /* Generate R_AARCH64_GLOB_DAT.  */
9451 	      goto do_glob_dat;
9452 	    }
9453 	  else
9454 	    {
9455 	      asection *plt;
9456 
9457 	      if (!h->pointer_equality_needed)
9458 		abort ();
9459 
9460 	      /* For non-shared object, we can't use .got.plt, which
9461 		 contains the real function address if we need pointer
9462 		 equality.  We load the GOT entry with the PLT entry.  */
9463 	      plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9464 	      bfd_put_NN (output_bfd, (plt->output_section->vma
9465 				       + plt->output_offset
9466 				       + h->plt.offset),
9467 			  htab->root.sgot->contents
9468 			  + (h->got.offset & ~(bfd_vma) 1));
9469 	      return TRUE;
9470 	    }
9471 	}
9472       else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9473 	{
9474 	  if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9475 	    return FALSE;
9476 
9477 	  BFD_ASSERT ((h->got.offset & 1) != 0);
9478 	  rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9479 	  rela.r_addend = (h->root.u.def.value
9480 			   + h->root.u.def.section->output_section->vma
9481 			   + h->root.u.def.section->output_offset);
9482 	}
9483       else
9484 	{
9485 do_glob_dat:
9486 	  BFD_ASSERT ((h->got.offset & 1) == 0);
9487 	  bfd_put_NN (output_bfd, (bfd_vma) 0,
9488 		      htab->root.sgot->contents + h->got.offset);
9489 	  rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9490 	  rela.r_addend = 0;
9491 	}
9492 
9493       loc = htab->root.srelgot->contents;
9494       loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9495       bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9496     }
9497 
9498   if (h->needs_copy)
9499     {
9500       Elf_Internal_Rela rela;
9501       asection *s;
9502       bfd_byte *loc;
9503 
9504       /* This symbol needs a copy reloc.  Set it up.  */
9505       if (h->dynindx == -1
9506 	  || (h->root.type != bfd_link_hash_defined
9507 	      && h->root.type != bfd_link_hash_defweak)
9508 	  || htab->root.srelbss == NULL)
9509 	abort ();
9510 
9511       rela.r_offset = (h->root.u.def.value
9512 		       + h->root.u.def.section->output_section->vma
9513 		       + h->root.u.def.section->output_offset);
9514       rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9515       rela.r_addend = 0;
9516       if (h->root.u.def.section == htab->root.sdynrelro)
9517 	s = htab->root.sreldynrelro;
9518       else
9519 	s = htab->root.srelbss;
9520       loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9521       bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9522     }
9523 
9524   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  SYM may
9525      be NULL for local symbols.  */
9526   if (sym != NULL
9527       && (h == elf_hash_table (info)->hdynamic
9528 	  || h == elf_hash_table (info)->hgot))
9529     sym->st_shndx = SHN_ABS;
9530 
9531   return TRUE;
9532 }
9533 
9534 /* Finish up local dynamic symbol handling.  We set the contents of
9535    various dynamic sections here.  */
9536 
9537 static bfd_boolean
9538 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9539 {
9540   struct elf_link_hash_entry *h
9541     = (struct elf_link_hash_entry *) *slot;
9542   struct bfd_link_info *info
9543     = (struct bfd_link_info *) inf;
9544 
9545   return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9546 					      info, h, NULL);
9547 }
9548 
9549 static void
9550 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9551 				     struct elf_aarch64_link_hash_table
9552 				     *htab)
9553 {
9554   /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9555      small and large plts and at the minute just generates
9556      the small PLT.  */
9557 
9558   /* PLT0 of the small PLT looks like this in ELF64 -
9559      stp x16, x30, [sp, #-16]!		// Save the reloc and lr on stack.
9560      adrp x16, PLT_GOT + 16		// Get the page base of the GOTPLT
9561      ldr  x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9562 					// symbol resolver
9563      add  x16, x16, #:lo12:PLT_GOT+16   // Load the lo12 bits of the
9564 					// GOTPLT entry for this.
9565      br   x17
9566      PLT0 will be slightly different in ELF32 due to different got entry
9567      size.  */
9568   bfd_vma plt_got_2nd_ent;	/* Address of GOT[2].  */
9569   bfd_vma plt_base;
9570 
9571 
9572   memcpy (htab->root.splt->contents, htab->plt0_entry,
9573 	  htab->plt_header_size);
9574   elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9575     htab->plt_header_size;
9576 
9577   plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9578 		  + htab->root.sgotplt->output_offset
9579 		  + GOT_ENTRY_SIZE * 2);
9580 
9581   plt_base = htab->root.splt->output_section->vma +
9582     htab->root.splt->output_offset;
9583 
9584   /* First instruction in BTI enabled PLT stub is a BTI
9585      instruction so skip it.  */
9586   bfd_byte *plt0_entry = htab->root.splt->contents;
9587   if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI)
9588     plt0_entry = plt0_entry + 4;
9589 
9590   /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9591      ADRP:   ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9592   elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9593 				plt0_entry + 4,
9594 				PG (plt_got_2nd_ent) - PG (plt_base + 4));
9595 
9596   elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9597 				plt0_entry + 8,
9598 				PG_OFFSET (plt_got_2nd_ent));
9599 
9600   elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9601 				plt0_entry + 12,
9602 				PG_OFFSET (plt_got_2nd_ent));
9603 }
9604 
9605 static bfd_boolean
9606 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9607 				       struct bfd_link_info *info)
9608 {
9609   struct elf_aarch64_link_hash_table *htab;
9610   bfd *dynobj;
9611   asection *sdyn;
9612 
9613   htab = elf_aarch64_hash_table (info);
9614   dynobj = htab->root.dynobj;
9615   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9616 
9617   if (htab->root.dynamic_sections_created)
9618     {
9619       ElfNN_External_Dyn *dyncon, *dynconend;
9620 
9621       if (sdyn == NULL || htab->root.sgot == NULL)
9622 	abort ();
9623 
9624       dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9625       dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9626       for (; dyncon < dynconend; dyncon++)
9627 	{
9628 	  Elf_Internal_Dyn dyn;
9629 	  asection *s;
9630 
9631 	  bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9632 
9633 	  switch (dyn.d_tag)
9634 	    {
9635 	    default:
9636 	      continue;
9637 
9638 	    case DT_PLTGOT:
9639 	      s = htab->root.sgotplt;
9640 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9641 	      break;
9642 
9643 	    case DT_JMPREL:
9644 	      s = htab->root.srelplt;
9645 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9646 	      break;
9647 
9648 	    case DT_PLTRELSZ:
9649 	      s = htab->root.srelplt;
9650 	      dyn.d_un.d_val = s->size;
9651 	      break;
9652 
9653 	    case DT_TLSDESC_PLT:
9654 	      s = htab->root.splt;
9655 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9656 		+ htab->tlsdesc_plt;
9657 	      break;
9658 
9659 	    case DT_TLSDESC_GOT:
9660 	      s = htab->root.sgot;
9661 	      BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9662 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9663 		+ htab->dt_tlsdesc_got;
9664 	      break;
9665 	    }
9666 
9667 	  bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9668 	}
9669 
9670     }
9671 
9672   /* Fill in the special first entry in the procedure linkage table.  */
9673   if (htab->root.splt && htab->root.splt->size > 0)
9674     {
9675       elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9676 
9677       elf_section_data (htab->root.splt->output_section)->
9678 	this_hdr.sh_entsize = htab->plt_entry_size;
9679 
9680 
9681       if (htab->tlsdesc_plt && !(info->flags & DF_BIND_NOW))
9682 	{
9683 	  BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9684 	  bfd_put_NN (output_bfd, (bfd_vma) 0,
9685 		      htab->root.sgot->contents + htab->dt_tlsdesc_got);
9686 
9687 	  const bfd_byte *entry = elfNN_aarch64_tlsdesc_small_plt_entry;
9688 	  htab->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
9689 
9690 	  aarch64_plt_type type = elf_aarch64_tdata (output_bfd)->plt_type;
9691 	  if (type == PLT_BTI || type == PLT_BTI_PAC)
9692 	    {
9693 	      entry = elfNN_aarch64_tlsdesc_small_plt_bti_entry;
9694 	    }
9695 
9696 	  memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9697 		  entry, htab->tlsdesc_plt_entry_size);
9698 
9699 	  {
9700 	    bfd_vma adrp1_addr =
9701 	      htab->root.splt->output_section->vma
9702 	      + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9703 
9704 	    bfd_vma adrp2_addr = adrp1_addr + 4;
9705 
9706 	    bfd_vma got_addr =
9707 	      htab->root.sgot->output_section->vma
9708 	      + htab->root.sgot->output_offset;
9709 
9710 	    bfd_vma pltgot_addr =
9711 	      htab->root.sgotplt->output_section->vma
9712 	      + htab->root.sgotplt->output_offset;
9713 
9714 	    bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9715 
9716 	    bfd_byte *plt_entry =
9717 	      htab->root.splt->contents + htab->tlsdesc_plt;
9718 
9719 	   /* First instruction in BTI enabled PLT stub is a BTI
9720 	      instruction so skip it.  */
9721 	    if (type & PLT_BTI)
9722 	      {
9723 		plt_entry = plt_entry + 4;
9724 		adrp1_addr = adrp1_addr + 4;
9725 		adrp2_addr = adrp2_addr + 4;
9726 	      }
9727 
9728 	    /* adrp x2, DT_TLSDESC_GOT */
9729 	    elf_aarch64_update_plt_entry (output_bfd,
9730 					  BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9731 					  plt_entry + 4,
9732 					  (PG (dt_tlsdesc_got)
9733 					   - PG (adrp1_addr)));
9734 
9735 	    /* adrp x3, 0 */
9736 	    elf_aarch64_update_plt_entry (output_bfd,
9737 					  BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9738 					  plt_entry + 8,
9739 					  (PG (pltgot_addr)
9740 					   - PG (adrp2_addr)));
9741 
9742 	    /* ldr x2, [x2, #0] */
9743 	    elf_aarch64_update_plt_entry (output_bfd,
9744 					  BFD_RELOC_AARCH64_LDSTNN_LO12,
9745 					  plt_entry + 12,
9746 					  PG_OFFSET (dt_tlsdesc_got));
9747 
9748 	    /* add x3, x3, 0 */
9749 	    elf_aarch64_update_plt_entry (output_bfd,
9750 					  BFD_RELOC_AARCH64_ADD_LO12,
9751 					  plt_entry + 16,
9752 					  PG_OFFSET (pltgot_addr));
9753 	  }
9754 	}
9755     }
9756 
9757   if (htab->root.sgotplt)
9758     {
9759       if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9760 	{
9761 	  _bfd_error_handler
9762 	    (_("discarded output section: `%pA'"), htab->root.sgotplt);
9763 	  return FALSE;
9764 	}
9765 
9766       /* Fill in the first three entries in the global offset table.  */
9767       if (htab->root.sgotplt->size > 0)
9768 	{
9769 	  bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9770 
9771 	  /* Write GOT[1] and GOT[2], needed for the dynamic linker.  */
9772 	  bfd_put_NN (output_bfd,
9773 		      (bfd_vma) 0,
9774 		      htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9775 	  bfd_put_NN (output_bfd,
9776 		      (bfd_vma) 0,
9777 		      htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9778 	}
9779 
9780       if (htab->root.sgot)
9781 	{
9782 	  if (htab->root.sgot->size > 0)
9783 	    {
9784 	      bfd_vma addr =
9785 		sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9786 	      bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9787 	    }
9788 	}
9789 
9790       elf_section_data (htab->root.sgotplt->output_section)->
9791 	this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9792     }
9793 
9794   if (htab->root.sgot && htab->root.sgot->size > 0)
9795     elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9796       = GOT_ENTRY_SIZE;
9797 
9798   /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols.  */
9799   htab_traverse (htab->loc_hash_table,
9800 		 elfNN_aarch64_finish_local_dynamic_symbol,
9801 		 info);
9802 
9803   return TRUE;
9804 }
9805 
9806 /* Check if BTI enabled PLTs are needed.  Returns the type needed.  */
9807 static aarch64_plt_type
9808 get_plt_type (bfd *abfd)
9809 {
9810   aarch64_plt_type ret = PLT_NORMAL;
9811   bfd_byte *contents, *extdyn, *extdynend;
9812   asection *sec = bfd_get_section_by_name (abfd, ".dynamic");
9813   if (!sec || !bfd_malloc_and_get_section (abfd, sec, &contents))
9814     return ret;
9815   extdyn = contents;
9816   extdynend = contents + sec->size;
9817   for (; extdyn < extdynend; extdyn += sizeof (ElfNN_External_Dyn))
9818     {
9819       Elf_Internal_Dyn dyn;
9820       bfd_elfNN_swap_dyn_in (abfd, extdyn, &dyn);
9821 
9822       /* Let's check the processor specific dynamic array tags.  */
9823       bfd_vma tag = dyn.d_tag;
9824       if (tag < DT_LOPROC || tag > DT_HIPROC)
9825 	continue;
9826 
9827       switch (tag)
9828 	{
9829 	case DT_AARCH64_BTI_PLT:
9830 	  ret |= PLT_BTI;
9831 	  break;
9832 
9833 	case DT_AARCH64_PAC_PLT:
9834 	  ret |= PLT_PAC;
9835 	  break;
9836 
9837 	default: break;
9838 	}
9839     }
9840   free (contents);
9841   return ret;
9842 }
9843 
9844 static long
9845 elfNN_aarch64_get_synthetic_symtab (bfd *abfd,
9846 				    long symcount,
9847 				    asymbol **syms,
9848 				    long dynsymcount,
9849 				    asymbol **dynsyms,
9850 				    asymbol **ret)
9851 {
9852   elf_aarch64_tdata (abfd)->plt_type = get_plt_type (abfd);
9853   return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
9854 					dynsymcount, dynsyms, ret);
9855 }
9856 
9857 /* Return address for Ith PLT stub in section PLT, for relocation REL
9858    or (bfd_vma) -1 if it should not be included.  */
9859 
9860 static bfd_vma
9861 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9862 			   const arelent *rel ATTRIBUTE_UNUSED)
9863 {
9864   size_t plt0_size = PLT_ENTRY_SIZE;
9865   size_t pltn_size = PLT_SMALL_ENTRY_SIZE;
9866 
9867   if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI_PAC)
9868     {
9869       if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9870 	pltn_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
9871       else
9872 	pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9873     }
9874   else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI)
9875     {
9876       if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9877 	pltn_size = PLT_BTI_SMALL_ENTRY_SIZE;
9878     }
9879   else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_PAC)
9880     {
9881       pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9882     }
9883 
9884   return plt->vma + plt0_size + i * pltn_size;
9885 }
9886 
9887 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9888    The ARM ELF standard defines $x (for A64 code) and $d (for data).
9889    It also allows a period initiated suffix to be added to the symbol, ie:
9890    "$[adtx]\.[:sym_char]+".  */
9891 
9892 static bfd_boolean
9893 is_aarch64_mapping_symbol (const char * name)
9894 {
9895   return name != NULL /* Paranoia.  */
9896     && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9897 			 the mapping symbols could have acquired a prefix.
9898 			 We do not support this here, since such symbols no
9899 			 longer conform to the ARM ELF ABI.  */
9900     && (name[1] == 'd' || name[1] == 'x')
9901     && (name[2] == 0 || name[2] == '.');
9902   /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9903      any characters that follow the period are legal characters for the body
9904      of a symbol's name.  For now we just assume that this is the case.  */
9905 }
9906 
9907 /* Make sure that mapping symbols in object files are not removed via the
9908    "strip --strip-unneeded" tool.  These symbols might needed in order to
9909    correctly generate linked files.  Once an object file has been linked,
9910    it should be safe to remove them.  */
9911 
9912 static void
9913 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9914 {
9915   if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9916       && sym->section != bfd_abs_section_ptr
9917       && is_aarch64_mapping_symbol (sym->name))
9918     sym->flags |= BSF_KEEP;
9919 }
9920 
9921 /* Implement elf_backend_setup_gnu_properties for AArch64.  It serves as a
9922    wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
9923    for the effect of GNU properties of the output_bfd.  */
9924 static bfd *
9925 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info *info)
9926 {
9927   uint32_t prop = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9928   bfd *pbfd = _bfd_aarch64_elf_link_setup_gnu_properties (info, &prop);
9929   elf_aarch64_tdata (info->output_bfd)->gnu_and_prop = prop;
9930   elf_aarch64_tdata (info->output_bfd)->plt_type
9931     |= (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ? PLT_BTI : 0;
9932   setup_plt_values (info, elf_aarch64_tdata (info->output_bfd)->plt_type);
9933   return pbfd;
9934 }
9935 
9936 /* Implement elf_backend_merge_gnu_properties for AArch64.  It serves as a
9937    wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
9938    for the effect of GNU properties of the output_bfd.  */
9939 static bfd_boolean
9940 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info *info,
9941 				       bfd *abfd, bfd *bbfd,
9942 				       elf_property *aprop,
9943 				       elf_property *bprop)
9944 {
9945   uint32_t prop
9946     = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9947 
9948   /* If output has been marked with BTI using command line argument, give out
9949      warning if necessary.  */
9950   /* Properties are merged per type, hence only check for warnings when merging
9951      GNU_PROPERTY_AARCH64_FEATURE_1_AND.  */
9952   if (((aprop && aprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
9953 	|| (bprop && bprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND))
9954       && (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
9955       && (!elf_aarch64_tdata (info->output_bfd)->no_bti_warn))
9956     {
9957       if ((aprop && !(aprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9958 	   || !aprop)
9959 	{
9960 	  _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9961 				"all inputs do not have BTI in NOTE section."),
9962 			      abfd);
9963 	}
9964       if ((bprop && !(bprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9965 	   || !bprop)
9966 	{
9967 	  _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9968 				"all inputs do not have BTI in NOTE section."),
9969 			      bbfd);
9970 	}
9971     }
9972 
9973   return  _bfd_aarch64_elf_merge_gnu_properties (info, abfd, aprop,
9974 						 bprop, prop);
9975 }
9976 
9977 /* We use this so we can override certain functions
9978    (though currently we don't).  */
9979 
9980 const struct elf_size_info elfNN_aarch64_size_info =
9981 {
9982   sizeof (ElfNN_External_Ehdr),
9983   sizeof (ElfNN_External_Phdr),
9984   sizeof (ElfNN_External_Shdr),
9985   sizeof (ElfNN_External_Rel),
9986   sizeof (ElfNN_External_Rela),
9987   sizeof (ElfNN_External_Sym),
9988   sizeof (ElfNN_External_Dyn),
9989   sizeof (Elf_External_Note),
9990   4,				/* Hash table entry size.  */
9991   1,				/* Internal relocs per external relocs.  */
9992   ARCH_SIZE,			/* Arch size.  */
9993   LOG_FILE_ALIGN,		/* Log_file_align.  */
9994   ELFCLASSNN, EV_CURRENT,
9995   bfd_elfNN_write_out_phdrs,
9996   bfd_elfNN_write_shdrs_and_ehdr,
9997   bfd_elfNN_checksum_contents,
9998   bfd_elfNN_write_relocs,
9999   bfd_elfNN_swap_symbol_in,
10000   bfd_elfNN_swap_symbol_out,
10001   bfd_elfNN_slurp_reloc_table,
10002   bfd_elfNN_slurp_symbol_table,
10003   bfd_elfNN_swap_dyn_in,
10004   bfd_elfNN_swap_dyn_out,
10005   bfd_elfNN_swap_reloc_in,
10006   bfd_elfNN_swap_reloc_out,
10007   bfd_elfNN_swap_reloca_in,
10008   bfd_elfNN_swap_reloca_out
10009 };
10010 
10011 #define ELF_ARCH			bfd_arch_aarch64
10012 #define ELF_MACHINE_CODE		EM_AARCH64
10013 #define ELF_MAXPAGESIZE			0x10000
10014 #define ELF_MINPAGESIZE			0x1000
10015 #define ELF_COMMONPAGESIZE		0x1000
10016 
10017 #define bfd_elfNN_close_and_cleanup		\
10018   elfNN_aarch64_close_and_cleanup
10019 
10020 #define bfd_elfNN_bfd_free_cached_info		\
10021   elfNN_aarch64_bfd_free_cached_info
10022 
10023 #define bfd_elfNN_bfd_is_target_special_symbol	\
10024   elfNN_aarch64_is_target_special_symbol
10025 
10026 #define bfd_elfNN_bfd_link_hash_table_create	\
10027   elfNN_aarch64_link_hash_table_create
10028 
10029 #define bfd_elfNN_bfd_merge_private_bfd_data	\
10030   elfNN_aarch64_merge_private_bfd_data
10031 
10032 #define bfd_elfNN_bfd_print_private_bfd_data	\
10033   elfNN_aarch64_print_private_bfd_data
10034 
10035 #define bfd_elfNN_bfd_reloc_type_lookup		\
10036   elfNN_aarch64_reloc_type_lookup
10037 
10038 #define bfd_elfNN_bfd_reloc_name_lookup		\
10039   elfNN_aarch64_reloc_name_lookup
10040 
10041 #define bfd_elfNN_bfd_set_private_flags		\
10042   elfNN_aarch64_set_private_flags
10043 
10044 #define bfd_elfNN_find_inliner_info		\
10045   elfNN_aarch64_find_inliner_info
10046 
10047 #define bfd_elfNN_get_synthetic_symtab		\
10048   elfNN_aarch64_get_synthetic_symtab
10049 
10050 #define bfd_elfNN_mkobject			\
10051   elfNN_aarch64_mkobject
10052 
10053 #define bfd_elfNN_new_section_hook		\
10054   elfNN_aarch64_new_section_hook
10055 
10056 #define elf_backend_adjust_dynamic_symbol	\
10057   elfNN_aarch64_adjust_dynamic_symbol
10058 
10059 #define elf_backend_always_size_sections	\
10060   elfNN_aarch64_always_size_sections
10061 
10062 #define elf_backend_check_relocs		\
10063   elfNN_aarch64_check_relocs
10064 
10065 #define elf_backend_copy_indirect_symbol	\
10066   elfNN_aarch64_copy_indirect_symbol
10067 
10068 #define elf_backend_merge_symbol_attribute	\
10069   elfNN_aarch64_merge_symbol_attribute
10070 
10071 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
10072    to them in our hash.  */
10073 #define elf_backend_create_dynamic_sections	\
10074   elfNN_aarch64_create_dynamic_sections
10075 
10076 #define elf_backend_init_index_section		\
10077   _bfd_elf_init_2_index_sections
10078 
10079 #define elf_backend_finish_dynamic_sections	\
10080   elfNN_aarch64_finish_dynamic_sections
10081 
10082 #define elf_backend_finish_dynamic_symbol	\
10083   elfNN_aarch64_finish_dynamic_symbol
10084 
10085 #define elf_backend_object_p			\
10086   elfNN_aarch64_object_p
10087 
10088 #define elf_backend_output_arch_local_syms	\
10089   elfNN_aarch64_output_arch_local_syms
10090 
10091 #define elf_backend_maybe_function_sym		\
10092   elfNN_aarch64_maybe_function_sym
10093 
10094 #define elf_backend_plt_sym_val			\
10095   elfNN_aarch64_plt_sym_val
10096 
10097 #define elf_backend_init_file_header		\
10098   elfNN_aarch64_init_file_header
10099 
10100 #define elf_backend_relocate_section		\
10101   elfNN_aarch64_relocate_section
10102 
10103 #define elf_backend_reloc_type_class		\
10104   elfNN_aarch64_reloc_type_class
10105 
10106 #define elf_backend_section_from_shdr		\
10107   elfNN_aarch64_section_from_shdr
10108 
10109 #define elf_backend_size_dynamic_sections	\
10110   elfNN_aarch64_size_dynamic_sections
10111 
10112 #define elf_backend_size_info			\
10113   elfNN_aarch64_size_info
10114 
10115 #define elf_backend_write_section		\
10116   elfNN_aarch64_write_section
10117 
10118 #define elf_backend_symbol_processing		\
10119   elfNN_aarch64_backend_symbol_processing
10120 
10121 #define elf_backend_setup_gnu_properties	\
10122   elfNN_aarch64_link_setup_gnu_properties
10123 
10124 #define elf_backend_merge_gnu_properties	\
10125   elfNN_aarch64_merge_gnu_properties
10126 
10127 #define elf_backend_can_refcount       1
10128 #define elf_backend_can_gc_sections    1
10129 #define elf_backend_plt_readonly       1
10130 #define elf_backend_want_got_plt       1
10131 #define elf_backend_want_plt_sym       0
10132 #define elf_backend_want_dynrelro      1
10133 #define elf_backend_may_use_rel_p      0
10134 #define elf_backend_may_use_rela_p     1
10135 #define elf_backend_default_use_rela_p 1
10136 #define elf_backend_rela_normal	       1
10137 #define elf_backend_dtrel_excludes_plt 1
10138 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10139 #define elf_backend_default_execstack  0
10140 #define elf_backend_extern_protected_data 1
10141 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10142 
10143 #undef	elf_backend_obj_attrs_section
10144 #define elf_backend_obj_attrs_section		".ARM.attributes"
10145 
10146 #include "elfNN-target.h"
10147 
10148 /* CloudABI support.  */
10149 
10150 #undef	TARGET_LITTLE_SYM
10151 #define	TARGET_LITTLE_SYM	aarch64_elfNN_le_cloudabi_vec
10152 #undef	TARGET_LITTLE_NAME
10153 #define	TARGET_LITTLE_NAME	"elfNN-littleaarch64-cloudabi"
10154 #undef	TARGET_BIG_SYM
10155 #define	TARGET_BIG_SYM		aarch64_elfNN_be_cloudabi_vec
10156 #undef	TARGET_BIG_NAME
10157 #define	TARGET_BIG_NAME		"elfNN-bigaarch64-cloudabi"
10158 
10159 #undef	ELF_OSABI
10160 #define	ELF_OSABI		ELFOSABI_CLOUDABI
10161 
10162 #undef	elfNN_bed
10163 #define	elfNN_bed		elfNN_aarch64_cloudabi_bed
10164 
10165 #include "elfNN-target.h"
10166