1 /* ELF linking support for BFD. 2 Copyright (C) 1995-2020 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 MA 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include "bfd.h" 23 #include "bfdlink.h" 24 #include "libbfd.h" 25 #define ARCH_SIZE 0 26 #include "elf-bfd.h" 27 #include "safe-ctype.h" 28 #include "libiberty.h" 29 #include "objalloc.h" 30 #if BFD_SUPPORTS_PLUGINS 31 #include "plugin-api.h" 32 #include "plugin.h" 33 #endif 34 35 /* This struct is used to pass information to routines called via 36 elf_link_hash_traverse which must return failure. */ 37 38 struct elf_info_failed 39 { 40 struct bfd_link_info *info; 41 bfd_boolean failed; 42 }; 43 44 /* This structure is used to pass information to 45 _bfd_elf_link_find_version_dependencies. */ 46 47 struct elf_find_verdep_info 48 { 49 /* General link information. */ 50 struct bfd_link_info *info; 51 /* The number of dependencies. */ 52 unsigned int vers; 53 /* Whether we had a failure. */ 54 bfd_boolean failed; 55 }; 56 57 static bfd_boolean _bfd_elf_fix_symbol_flags 58 (struct elf_link_hash_entry *, struct elf_info_failed *); 59 60 asection * 61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie, 62 unsigned long r_symndx, 63 bfd_boolean discard) 64 { 65 if (r_symndx >= cookie->locsymcount 66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) 67 { 68 struct elf_link_hash_entry *h; 69 70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff]; 71 72 while (h->root.type == bfd_link_hash_indirect 73 || h->root.type == bfd_link_hash_warning) 74 h = (struct elf_link_hash_entry *) h->root.u.i.link; 75 76 if ((h->root.type == bfd_link_hash_defined 77 || h->root.type == bfd_link_hash_defweak) 78 && discarded_section (h->root.u.def.section)) 79 return h->root.u.def.section; 80 else 81 return NULL; 82 } 83 else 84 { 85 /* It's not a relocation against a global symbol, 86 but it could be a relocation against a local 87 symbol for a discarded section. */ 88 asection *isec; 89 Elf_Internal_Sym *isym; 90 91 /* Need to: get the symbol; get the section. */ 92 isym = &cookie->locsyms[r_symndx]; 93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx); 94 if (isec != NULL 95 && discard ? discarded_section (isec) : 1) 96 return isec; 97 } 98 return NULL; 99 } 100 101 /* Define a symbol in a dynamic linkage section. */ 102 103 struct elf_link_hash_entry * 104 _bfd_elf_define_linkage_sym (bfd *abfd, 105 struct bfd_link_info *info, 106 asection *sec, 107 const char *name) 108 { 109 struct elf_link_hash_entry *h; 110 struct bfd_link_hash_entry *bh; 111 const struct elf_backend_data *bed; 112 113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE); 114 if (h != NULL) 115 { 116 /* Zap symbol defined in an as-needed lib that wasn't linked. 117 This is a symptom of a larger problem: Absolute symbols 118 defined in shared libraries can't be overridden, because we 119 lose the link to the bfd which is via the symbol section. */ 120 h->root.type = bfd_link_hash_new; 121 bh = &h->root; 122 } 123 else 124 bh = NULL; 125 126 bed = get_elf_backend_data (abfd); 127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL, 128 sec, 0, NULL, FALSE, bed->collect, 129 &bh)) 130 return NULL; 131 h = (struct elf_link_hash_entry *) bh; 132 BFD_ASSERT (h != NULL); 133 h->def_regular = 1; 134 h->non_elf = 0; 135 h->root.linker_def = 1; 136 h->type = STT_OBJECT; 137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) 138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; 139 140 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 141 return h; 142 } 143 144 bfd_boolean 145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) 146 { 147 flagword flags; 148 asection *s; 149 struct elf_link_hash_entry *h; 150 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 151 struct elf_link_hash_table *htab = elf_hash_table (info); 152 153 /* This function may be called more than once. */ 154 if (htab->sgot != NULL) 155 return TRUE; 156 157 flags = bed->dynamic_sec_flags; 158 159 s = bfd_make_section_anyway_with_flags (abfd, 160 (bed->rela_plts_and_copies_p 161 ? ".rela.got" : ".rel.got"), 162 (bed->dynamic_sec_flags 163 | SEC_READONLY)); 164 if (s == NULL 165 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 166 return FALSE; 167 htab->srelgot = s; 168 169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); 170 if (s == NULL 171 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 172 return FALSE; 173 htab->sgot = s; 174 175 if (bed->want_got_plt) 176 { 177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); 178 if (s == NULL 179 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 180 return FALSE; 181 htab->sgotplt = s; 182 } 183 184 /* The first bit of the global offset table is the header. */ 185 s->size += bed->got_header_size; 186 187 if (bed->want_got_sym) 188 { 189 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got 190 (or .got.plt) section. We don't do this in the linker script 191 because we don't want to define the symbol if we are not creating 192 a global offset table. */ 193 h = _bfd_elf_define_linkage_sym (abfd, info, s, 194 "_GLOBAL_OFFSET_TABLE_"); 195 elf_hash_table (info)->hgot = h; 196 if (h == NULL) 197 return FALSE; 198 } 199 200 return TRUE; 201 } 202 203 /* Create a strtab to hold the dynamic symbol names. */ 204 static bfd_boolean 205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info) 206 { 207 struct elf_link_hash_table *hash_table; 208 209 hash_table = elf_hash_table (info); 210 if (hash_table->dynobj == NULL) 211 { 212 /* We may not set dynobj, an input file holding linker created 213 dynamic sections to abfd, which may be a dynamic object with 214 its own dynamic sections. We need to find a normal input file 215 to hold linker created sections if possible. */ 216 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0) 217 { 218 bfd *ibfd; 219 asection *s; 220 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 221 if ((ibfd->flags 222 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0 223 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour 224 && elf_object_id (ibfd) == elf_hash_table_id (hash_table) 225 && !((s = ibfd->sections) != NULL 226 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)) 227 { 228 abfd = ibfd; 229 break; 230 } 231 } 232 hash_table->dynobj = abfd; 233 } 234 235 if (hash_table->dynstr == NULL) 236 { 237 hash_table->dynstr = _bfd_elf_strtab_init (); 238 if (hash_table->dynstr == NULL) 239 return FALSE; 240 } 241 return TRUE; 242 } 243 244 /* Create some sections which will be filled in with dynamic linking 245 information. ABFD is an input file which requires dynamic sections 246 to be created. The dynamic sections take up virtual memory space 247 when the final executable is run, so we need to create them before 248 addresses are assigned to the output sections. We work out the 249 actual contents and size of these sections later. */ 250 251 bfd_boolean 252 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 253 { 254 flagword flags; 255 asection *s; 256 const struct elf_backend_data *bed; 257 struct elf_link_hash_entry *h; 258 259 if (! is_elf_hash_table (info->hash)) 260 return FALSE; 261 262 if (elf_hash_table (info)->dynamic_sections_created) 263 return TRUE; 264 265 if (!_bfd_elf_link_create_dynstrtab (abfd, info)) 266 return FALSE; 267 268 abfd = elf_hash_table (info)->dynobj; 269 bed = get_elf_backend_data (abfd); 270 271 flags = bed->dynamic_sec_flags; 272 273 /* A dynamically linked executable has a .interp section, but a 274 shared library does not. */ 275 if (bfd_link_executable (info) && !info->nointerp) 276 { 277 s = bfd_make_section_anyway_with_flags (abfd, ".interp", 278 flags | SEC_READONLY); 279 if (s == NULL) 280 return FALSE; 281 } 282 283 /* Create sections to hold version informations. These are removed 284 if they are not needed. */ 285 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d", 286 flags | SEC_READONLY); 287 if (s == NULL 288 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 289 return FALSE; 290 291 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version", 292 flags | SEC_READONLY); 293 if (s == NULL 294 || !bfd_set_section_alignment (s, 1)) 295 return FALSE; 296 297 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r", 298 flags | SEC_READONLY); 299 if (s == NULL 300 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 301 return FALSE; 302 303 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym", 304 flags | SEC_READONLY); 305 if (s == NULL 306 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 307 return FALSE; 308 elf_hash_table (info)->dynsym = s; 309 310 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr", 311 flags | SEC_READONLY); 312 if (s == NULL) 313 return FALSE; 314 315 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags); 316 if (s == NULL 317 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 318 return FALSE; 319 320 /* The special symbol _DYNAMIC is always set to the start of the 321 .dynamic section. We could set _DYNAMIC in a linker script, but we 322 only want to define it if we are, in fact, creating a .dynamic 323 section. We don't want to define it if there is no .dynamic 324 section, since on some ELF platforms the start up code examines it 325 to decide how to initialize the process. */ 326 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"); 327 elf_hash_table (info)->hdynamic = h; 328 if (h == NULL) 329 return FALSE; 330 331 if (info->emit_hash) 332 { 333 s = bfd_make_section_anyway_with_flags (abfd, ".hash", 334 flags | SEC_READONLY); 335 if (s == NULL 336 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 337 return FALSE; 338 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; 339 } 340 341 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL) 342 { 343 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash", 344 flags | SEC_READONLY); 345 if (s == NULL 346 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 347 return FALSE; 348 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section: 349 4 32-bit words followed by variable count of 64-bit words, then 350 variable count of 32-bit words. */ 351 if (bed->s->arch_size == 64) 352 elf_section_data (s)->this_hdr.sh_entsize = 0; 353 else 354 elf_section_data (s)->this_hdr.sh_entsize = 4; 355 } 356 357 /* Let the backend create the rest of the sections. This lets the 358 backend set the right flags. The backend will normally create 359 the .got and .plt sections. */ 360 if (bed->elf_backend_create_dynamic_sections == NULL 361 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) 362 return FALSE; 363 364 elf_hash_table (info)->dynamic_sections_created = TRUE; 365 366 return TRUE; 367 } 368 369 /* Create dynamic sections when linking against a dynamic object. */ 370 371 bfd_boolean 372 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 373 { 374 flagword flags, pltflags; 375 struct elf_link_hash_entry *h; 376 asection *s; 377 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 378 struct elf_link_hash_table *htab = elf_hash_table (info); 379 380 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and 381 .rel[a].bss sections. */ 382 flags = bed->dynamic_sec_flags; 383 384 pltflags = flags; 385 if (bed->plt_not_loaded) 386 /* We do not clear SEC_ALLOC here because we still want the OS to 387 allocate space for the section; it's just that there's nothing 388 to read in from the object file. */ 389 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS); 390 else 391 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD; 392 if (bed->plt_readonly) 393 pltflags |= SEC_READONLY; 394 395 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags); 396 if (s == NULL 397 || !bfd_set_section_alignment (s, bed->plt_alignment)) 398 return FALSE; 399 htab->splt = s; 400 401 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the 402 .plt section. */ 403 if (bed->want_plt_sym) 404 { 405 h = _bfd_elf_define_linkage_sym (abfd, info, s, 406 "_PROCEDURE_LINKAGE_TABLE_"); 407 elf_hash_table (info)->hplt = h; 408 if (h == NULL) 409 return FALSE; 410 } 411 412 s = bfd_make_section_anyway_with_flags (abfd, 413 (bed->rela_plts_and_copies_p 414 ? ".rela.plt" : ".rel.plt"), 415 flags | SEC_READONLY); 416 if (s == NULL 417 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 418 return FALSE; 419 htab->srelplt = s; 420 421 if (! _bfd_elf_create_got_section (abfd, info)) 422 return FALSE; 423 424 if (bed->want_dynbss) 425 { 426 /* The .dynbss section is a place to put symbols which are defined 427 by dynamic objects, are referenced by regular objects, and are 428 not functions. We must allocate space for them in the process 429 image and use a R_*_COPY reloc to tell the dynamic linker to 430 initialize them at run time. The linker script puts the .dynbss 431 section into the .bss section of the final image. */ 432 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss", 433 SEC_ALLOC | SEC_LINKER_CREATED); 434 if (s == NULL) 435 return FALSE; 436 htab->sdynbss = s; 437 438 if (bed->want_dynrelro) 439 { 440 /* Similarly, but for symbols that were originally in read-only 441 sections. This section doesn't really need to have contents, 442 but make it like other .data.rel.ro sections. */ 443 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro", 444 flags); 445 if (s == NULL) 446 return FALSE; 447 htab->sdynrelro = s; 448 } 449 450 /* The .rel[a].bss section holds copy relocs. This section is not 451 normally needed. We need to create it here, though, so that the 452 linker will map it to an output section. We can't just create it 453 only if we need it, because we will not know whether we need it 454 until we have seen all the input files, and the first time the 455 main linker code calls BFD after examining all the input files 456 (size_dynamic_sections) the input sections have already been 457 mapped to the output sections. If the section turns out not to 458 be needed, we can discard it later. We will never need this 459 section when generating a shared object, since they do not use 460 copy relocs. */ 461 if (bfd_link_executable (info)) 462 { 463 s = bfd_make_section_anyway_with_flags (abfd, 464 (bed->rela_plts_and_copies_p 465 ? ".rela.bss" : ".rel.bss"), 466 flags | SEC_READONLY); 467 if (s == NULL 468 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 469 return FALSE; 470 htab->srelbss = s; 471 472 if (bed->want_dynrelro) 473 { 474 s = (bfd_make_section_anyway_with_flags 475 (abfd, (bed->rela_plts_and_copies_p 476 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"), 477 flags | SEC_READONLY)); 478 if (s == NULL 479 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 480 return FALSE; 481 htab->sreldynrelro = s; 482 } 483 } 484 } 485 486 return TRUE; 487 } 488 489 /* Record a new dynamic symbol. We record the dynamic symbols as we 490 read the input files, since we need to have a list of all of them 491 before we can determine the final sizes of the output sections. 492 Note that we may actually call this function even though we are not 493 going to output any dynamic symbols; in some cases we know that a 494 symbol should be in the dynamic symbol table, but only if there is 495 one. */ 496 497 bfd_boolean 498 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info, 499 struct elf_link_hash_entry *h) 500 { 501 if (h->dynindx == -1) 502 { 503 struct elf_strtab_hash *dynstr; 504 char *p; 505 const char *name; 506 size_t indx; 507 508 /* XXX: The ABI draft says the linker must turn hidden and 509 internal symbols into STB_LOCAL symbols when producing the 510 DSO. However, if ld.so honors st_other in the dynamic table, 511 this would not be necessary. */ 512 switch (ELF_ST_VISIBILITY (h->other)) 513 { 514 case STV_INTERNAL: 515 case STV_HIDDEN: 516 if (h->root.type != bfd_link_hash_undefined 517 && h->root.type != bfd_link_hash_undefweak) 518 { 519 h->forced_local = 1; 520 if (!elf_hash_table (info)->is_relocatable_executable) 521 return TRUE; 522 } 523 524 default: 525 break; 526 } 527 528 h->dynindx = elf_hash_table (info)->dynsymcount; 529 ++elf_hash_table (info)->dynsymcount; 530 531 dynstr = elf_hash_table (info)->dynstr; 532 if (dynstr == NULL) 533 { 534 /* Create a strtab to hold the dynamic symbol names. */ 535 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); 536 if (dynstr == NULL) 537 return FALSE; 538 } 539 540 /* We don't put any version information in the dynamic string 541 table. */ 542 name = h->root.root.string; 543 p = strchr (name, ELF_VER_CHR); 544 if (p != NULL) 545 /* We know that the p points into writable memory. In fact, 546 there are only a few symbols that have read-only names, being 547 those like _GLOBAL_OFFSET_TABLE_ that are created specially 548 by the backends. Most symbols will have names pointing into 549 an ELF string table read from a file, or to objalloc memory. */ 550 *p = 0; 551 552 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL); 553 554 if (p != NULL) 555 *p = ELF_VER_CHR; 556 557 if (indx == (size_t) -1) 558 return FALSE; 559 h->dynstr_index = indx; 560 } 561 562 return TRUE; 563 } 564 565 /* Mark a symbol dynamic. */ 566 567 static void 568 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info, 569 struct elf_link_hash_entry *h, 570 Elf_Internal_Sym *sym) 571 { 572 struct bfd_elf_dynamic_list *d = info->dynamic_list; 573 574 /* It may be called more than once on the same H. */ 575 if(h->dynamic || bfd_link_relocatable (info)) 576 return; 577 578 if ((info->dynamic_data 579 && (h->type == STT_OBJECT 580 || h->type == STT_COMMON 581 || (sym != NULL 582 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT 583 || ELF_ST_TYPE (sym->st_info) == STT_COMMON)))) 584 || (d != NULL 585 && h->non_elf 586 && (*d->match) (&d->head, NULL, h->root.root.string))) 587 { 588 h->dynamic = 1; 589 /* NB: If a symbol is made dynamic by --dynamic-list, it has 590 non-IR reference. */ 591 h->root.non_ir_ref_dynamic = 1; 592 } 593 } 594 595 /* Record an assignment to a symbol made by a linker script. We need 596 this in case some dynamic object refers to this symbol. */ 597 598 bfd_boolean 599 bfd_elf_record_link_assignment (bfd *output_bfd, 600 struct bfd_link_info *info, 601 const char *name, 602 bfd_boolean provide, 603 bfd_boolean hidden) 604 { 605 struct elf_link_hash_entry *h, *hv; 606 struct elf_link_hash_table *htab; 607 const struct elf_backend_data *bed; 608 609 if (!is_elf_hash_table (info->hash)) 610 return TRUE; 611 612 htab = elf_hash_table (info); 613 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE); 614 if (h == NULL) 615 return provide; 616 617 if (h->root.type == bfd_link_hash_warning) 618 h = (struct elf_link_hash_entry *) h->root.u.i.link; 619 620 if (h->versioned == unknown) 621 { 622 /* Set versioned if symbol version is unknown. */ 623 char *version = strrchr (name, ELF_VER_CHR); 624 if (version) 625 { 626 if (version > name && version[-1] != ELF_VER_CHR) 627 h->versioned = versioned_hidden; 628 else 629 h->versioned = versioned; 630 } 631 } 632 633 /* Symbols defined in a linker script but not referenced anywhere 634 else will have non_elf set. */ 635 if (h->non_elf) 636 { 637 bfd_elf_link_mark_dynamic_symbol (info, h, NULL); 638 h->non_elf = 0; 639 } 640 641 switch (h->root.type) 642 { 643 case bfd_link_hash_defined: 644 case bfd_link_hash_defweak: 645 case bfd_link_hash_common: 646 break; 647 case bfd_link_hash_undefweak: 648 case bfd_link_hash_undefined: 649 /* Since we're defining the symbol, don't let it seem to have not 650 been defined. record_dynamic_symbol and size_dynamic_sections 651 may depend on this. */ 652 h->root.type = bfd_link_hash_new; 653 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root) 654 bfd_link_repair_undef_list (&htab->root); 655 break; 656 case bfd_link_hash_new: 657 break; 658 case bfd_link_hash_indirect: 659 /* We had a versioned symbol in a dynamic library. We make the 660 the versioned symbol point to this one. */ 661 bed = get_elf_backend_data (output_bfd); 662 hv = h; 663 while (hv->root.type == bfd_link_hash_indirect 664 || hv->root.type == bfd_link_hash_warning) 665 hv = (struct elf_link_hash_entry *) hv->root.u.i.link; 666 /* We don't need to update h->root.u since linker will set them 667 later. */ 668 h->root.type = bfd_link_hash_undefined; 669 hv->root.type = bfd_link_hash_indirect; 670 hv->root.u.i.link = (struct bfd_link_hash_entry *) h; 671 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv); 672 break; 673 default: 674 BFD_FAIL (); 675 return FALSE; 676 } 677 678 /* If this symbol is being provided by the linker script, and it is 679 currently defined by a dynamic object, but not by a regular 680 object, then mark it as undefined so that the generic linker will 681 force the correct value. */ 682 if (provide 683 && h->def_dynamic 684 && !h->def_regular) 685 h->root.type = bfd_link_hash_undefined; 686 687 /* If this symbol is currently defined by a dynamic object, but not 688 by a regular object, then clear out any version information because 689 the symbol will not be associated with the dynamic object any 690 more. */ 691 if (h->def_dynamic && !h->def_regular) 692 h->verinfo.verdef = NULL; 693 694 /* Make sure this symbol is not garbage collected. */ 695 h->mark = 1; 696 697 h->def_regular = 1; 698 699 if (hidden) 700 { 701 bed = get_elf_backend_data (output_bfd); 702 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) 703 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; 704 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 705 } 706 707 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects 708 and executables. */ 709 if (!bfd_link_relocatable (info) 710 && h->dynindx != -1 711 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN 712 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)) 713 h->forced_local = 1; 714 715 if ((h->def_dynamic 716 || h->ref_dynamic 717 || bfd_link_dll (info) 718 || elf_hash_table (info)->is_relocatable_executable) 719 && !h->forced_local 720 && h->dynindx == -1) 721 { 722 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 723 return FALSE; 724 725 /* If this is a weak defined symbol, and we know a corresponding 726 real symbol from the same dynamic object, make sure the real 727 symbol is also made into a dynamic symbol. */ 728 if (h->is_weakalias) 729 { 730 struct elf_link_hash_entry *def = weakdef (h); 731 732 if (def->dynindx == -1 733 && !bfd_elf_link_record_dynamic_symbol (info, def)) 734 return FALSE; 735 } 736 } 737 738 return TRUE; 739 } 740 741 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on 742 success, and 2 on a failure caused by attempting to record a symbol 743 in a discarded section, eg. a discarded link-once section symbol. */ 744 745 int 746 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info, 747 bfd *input_bfd, 748 long input_indx) 749 { 750 bfd_size_type amt; 751 struct elf_link_local_dynamic_entry *entry; 752 struct elf_link_hash_table *eht; 753 struct elf_strtab_hash *dynstr; 754 size_t dynstr_index; 755 char *name; 756 Elf_External_Sym_Shndx eshndx; 757 char esym[sizeof (Elf64_External_Sym)]; 758 759 if (! is_elf_hash_table (info->hash)) 760 return 0; 761 762 /* See if the entry exists already. */ 763 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) 764 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) 765 return 1; 766 767 amt = sizeof (*entry); 768 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt); 769 if (entry == NULL) 770 return 0; 771 772 /* Go find the symbol, so that we can find it's name. */ 773 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr, 774 1, input_indx, &entry->isym, esym, &eshndx)) 775 { 776 bfd_release (input_bfd, entry); 777 return 0; 778 } 779 780 if (entry->isym.st_shndx != SHN_UNDEF 781 && entry->isym.st_shndx < SHN_LORESERVE) 782 { 783 asection *s; 784 785 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx); 786 if (s == NULL || bfd_is_abs_section (s->output_section)) 787 { 788 /* We can still bfd_release here as nothing has done another 789 bfd_alloc. We can't do this later in this function. */ 790 bfd_release (input_bfd, entry); 791 return 2; 792 } 793 } 794 795 name = (bfd_elf_string_from_elf_section 796 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, 797 entry->isym.st_name)); 798 799 dynstr = elf_hash_table (info)->dynstr; 800 if (dynstr == NULL) 801 { 802 /* Create a strtab to hold the dynamic symbol names. */ 803 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); 804 if (dynstr == NULL) 805 return 0; 806 } 807 808 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE); 809 if (dynstr_index == (size_t) -1) 810 return 0; 811 entry->isym.st_name = dynstr_index; 812 813 eht = elf_hash_table (info); 814 815 entry->next = eht->dynlocal; 816 eht->dynlocal = entry; 817 entry->input_bfd = input_bfd; 818 entry->input_indx = input_indx; 819 eht->dynsymcount++; 820 821 /* Whatever binding the symbol had before, it's now local. */ 822 entry->isym.st_info 823 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); 824 825 /* The dynindx will be set at the end of size_dynamic_sections. */ 826 827 return 1; 828 } 829 830 /* Return the dynindex of a local dynamic symbol. */ 831 832 long 833 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info, 834 bfd *input_bfd, 835 long input_indx) 836 { 837 struct elf_link_local_dynamic_entry *e; 838 839 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) 840 if (e->input_bfd == input_bfd && e->input_indx == input_indx) 841 return e->dynindx; 842 return -1; 843 } 844 845 /* This function is used to renumber the dynamic symbols, if some of 846 them are removed because they are marked as local. This is called 847 via elf_link_hash_traverse. */ 848 849 static bfd_boolean 850 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h, 851 void *data) 852 { 853 size_t *count = (size_t *) data; 854 855 if (h->forced_local) 856 return TRUE; 857 858 if (h->dynindx != -1) 859 h->dynindx = ++(*count); 860 861 return TRUE; 862 } 863 864 865 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with 866 STB_LOCAL binding. */ 867 868 static bfd_boolean 869 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h, 870 void *data) 871 { 872 size_t *count = (size_t *) data; 873 874 if (!h->forced_local) 875 return TRUE; 876 877 if (h->dynindx != -1) 878 h->dynindx = ++(*count); 879 880 return TRUE; 881 } 882 883 /* Return true if the dynamic symbol for a given section should be 884 omitted when creating a shared library. */ 885 bfd_boolean 886 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED, 887 struct bfd_link_info *info, 888 asection *p) 889 { 890 struct elf_link_hash_table *htab; 891 asection *ip; 892 893 switch (elf_section_data (p)->this_hdr.sh_type) 894 { 895 case SHT_PROGBITS: 896 case SHT_NOBITS: 897 /* If sh_type is yet undecided, assume it could be 898 SHT_PROGBITS/SHT_NOBITS. */ 899 case SHT_NULL: 900 htab = elf_hash_table (info); 901 if (htab->text_index_section != NULL) 902 return p != htab->text_index_section && p != htab->data_index_section; 903 904 return (htab->dynobj != NULL 905 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL 906 && ip->output_section == p); 907 908 /* There shouldn't be section relative relocations 909 against any other section. */ 910 default: 911 return TRUE; 912 } 913 } 914 915 bfd_boolean 916 _bfd_elf_omit_section_dynsym_all 917 (bfd *output_bfd ATTRIBUTE_UNUSED, 918 struct bfd_link_info *info ATTRIBUTE_UNUSED, 919 asection *p ATTRIBUTE_UNUSED) 920 { 921 return TRUE; 922 } 923 924 /* Assign dynsym indices. In a shared library we generate a section 925 symbol for each output section, which come first. Next come symbols 926 which have been forced to local binding. Then all of the back-end 927 allocated local dynamic syms, followed by the rest of the global 928 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set. 929 (This prevents the early call before elf_backend_init_index_section 930 and strip_excluded_output_sections setting dynindx for sections 931 that are stripped.) */ 932 933 static unsigned long 934 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, 935 struct bfd_link_info *info, 936 unsigned long *section_sym_count) 937 { 938 unsigned long dynsymcount = 0; 939 bfd_boolean do_sec = section_sym_count != NULL; 940 941 if (bfd_link_pic (info) 942 || elf_hash_table (info)->is_relocatable_executable) 943 { 944 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 945 asection *p; 946 for (p = output_bfd->sections; p ; p = p->next) 947 if ((p->flags & SEC_EXCLUDE) == 0 948 && (p->flags & SEC_ALLOC) != 0 949 && elf_hash_table (info)->dynamic_relocs 950 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) 951 { 952 ++dynsymcount; 953 if (do_sec) 954 elf_section_data (p)->dynindx = dynsymcount; 955 } 956 else if (do_sec) 957 elf_section_data (p)->dynindx = 0; 958 } 959 if (do_sec) 960 *section_sym_count = dynsymcount; 961 962 elf_link_hash_traverse (elf_hash_table (info), 963 elf_link_renumber_local_hash_table_dynsyms, 964 &dynsymcount); 965 966 if (elf_hash_table (info)->dynlocal) 967 { 968 struct elf_link_local_dynamic_entry *p; 969 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next) 970 p->dynindx = ++dynsymcount; 971 } 972 elf_hash_table (info)->local_dynsymcount = dynsymcount; 973 974 elf_link_hash_traverse (elf_hash_table (info), 975 elf_link_renumber_hash_table_dynsyms, 976 &dynsymcount); 977 978 /* There is an unused NULL entry at the head of the table which we 979 must account for in our count even if the table is empty since it 980 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in 981 .dynamic section. */ 982 dynsymcount++; 983 984 elf_hash_table (info)->dynsymcount = dynsymcount; 985 return dynsymcount; 986 } 987 988 /* Merge st_other field. */ 989 990 static void 991 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h, 992 const Elf_Internal_Sym *isym, asection *sec, 993 bfd_boolean definition, bfd_boolean dynamic) 994 { 995 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 996 997 /* If st_other has a processor-specific meaning, specific 998 code might be needed here. */ 999 if (bed->elf_backend_merge_symbol_attribute) 1000 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition, 1001 dynamic); 1002 1003 if (!dynamic) 1004 { 1005 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other); 1006 unsigned hvis = ELF_ST_VISIBILITY (h->other); 1007 1008 /* Keep the most constraining visibility. Leave the remainder 1009 of the st_other field to elf_backend_merge_symbol_attribute. */ 1010 if (symvis - 1 < hvis - 1) 1011 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1)); 1012 } 1013 else if (definition 1014 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT 1015 && (sec->flags & SEC_READONLY) == 0) 1016 h->protected_def = 1; 1017 } 1018 1019 /* This function is called when we want to merge a new symbol with an 1020 existing symbol. It handles the various cases which arise when we 1021 find a definition in a dynamic object, or when there is already a 1022 definition in a dynamic object. The new symbol is described by 1023 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table 1024 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK 1025 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment 1026 of an old common symbol. We set OVERRIDE if the old symbol is 1027 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for 1028 the type to change. We set SIZE_CHANGE_OK if it is OK for the size 1029 to change. By OK to change, we mean that we shouldn't warn if the 1030 type or size does change. */ 1031 1032 static bfd_boolean 1033 _bfd_elf_merge_symbol (bfd *abfd, 1034 struct bfd_link_info *info, 1035 const char *name, 1036 Elf_Internal_Sym *sym, 1037 asection **psec, 1038 bfd_vma *pvalue, 1039 struct elf_link_hash_entry **sym_hash, 1040 bfd **poldbfd, 1041 bfd_boolean *pold_weak, 1042 unsigned int *pold_alignment, 1043 bfd_boolean *skip, 1044 bfd_boolean *override, 1045 bfd_boolean *type_change_ok, 1046 bfd_boolean *size_change_ok, 1047 bfd_boolean *matched) 1048 { 1049 asection *sec, *oldsec; 1050 struct elf_link_hash_entry *h; 1051 struct elf_link_hash_entry *hi; 1052 struct elf_link_hash_entry *flip; 1053 int bind; 1054 bfd *oldbfd; 1055 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; 1056 bfd_boolean newweak, oldweak, newfunc, oldfunc; 1057 const struct elf_backend_data *bed; 1058 char *new_version; 1059 bfd_boolean default_sym = *matched; 1060 1061 *skip = FALSE; 1062 *override = FALSE; 1063 1064 sec = *psec; 1065 bind = ELF_ST_BIND (sym->st_info); 1066 1067 if (! bfd_is_und_section (sec)) 1068 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE); 1069 else 1070 h = ((struct elf_link_hash_entry *) 1071 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE)); 1072 if (h == NULL) 1073 return FALSE; 1074 *sym_hash = h; 1075 1076 bed = get_elf_backend_data (abfd); 1077 1078 /* NEW_VERSION is the symbol version of the new symbol. */ 1079 if (h->versioned != unversioned) 1080 { 1081 /* Symbol version is unknown or versioned. */ 1082 new_version = strrchr (name, ELF_VER_CHR); 1083 if (new_version) 1084 { 1085 if (h->versioned == unknown) 1086 { 1087 if (new_version > name && new_version[-1] != ELF_VER_CHR) 1088 h->versioned = versioned_hidden; 1089 else 1090 h->versioned = versioned; 1091 } 1092 new_version += 1; 1093 if (new_version[0] == '\0') 1094 new_version = NULL; 1095 } 1096 else 1097 h->versioned = unversioned; 1098 } 1099 else 1100 new_version = NULL; 1101 1102 /* For merging, we only care about real symbols. But we need to make 1103 sure that indirect symbol dynamic flags are updated. */ 1104 hi = h; 1105 while (h->root.type == bfd_link_hash_indirect 1106 || h->root.type == bfd_link_hash_warning) 1107 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1108 1109 if (!*matched) 1110 { 1111 if (hi == h || h->root.type == bfd_link_hash_new) 1112 *matched = TRUE; 1113 else 1114 { 1115 /* OLD_HIDDEN is true if the existing symbol is only visible 1116 to the symbol with the same symbol version. NEW_HIDDEN is 1117 true if the new symbol is only visible to the symbol with 1118 the same symbol version. */ 1119 bfd_boolean old_hidden = h->versioned == versioned_hidden; 1120 bfd_boolean new_hidden = hi->versioned == versioned_hidden; 1121 if (!old_hidden && !new_hidden) 1122 /* The new symbol matches the existing symbol if both 1123 aren't hidden. */ 1124 *matched = TRUE; 1125 else 1126 { 1127 /* OLD_VERSION is the symbol version of the existing 1128 symbol. */ 1129 char *old_version; 1130 1131 if (h->versioned >= versioned) 1132 old_version = strrchr (h->root.root.string, 1133 ELF_VER_CHR) + 1; 1134 else 1135 old_version = NULL; 1136 1137 /* The new symbol matches the existing symbol if they 1138 have the same symbol version. */ 1139 *matched = (old_version == new_version 1140 || (old_version != NULL 1141 && new_version != NULL 1142 && strcmp (old_version, new_version) == 0)); 1143 } 1144 } 1145 } 1146 1147 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the 1148 existing symbol. */ 1149 1150 oldbfd = NULL; 1151 oldsec = NULL; 1152 switch (h->root.type) 1153 { 1154 default: 1155 break; 1156 1157 case bfd_link_hash_undefined: 1158 case bfd_link_hash_undefweak: 1159 oldbfd = h->root.u.undef.abfd; 1160 break; 1161 1162 case bfd_link_hash_defined: 1163 case bfd_link_hash_defweak: 1164 oldbfd = h->root.u.def.section->owner; 1165 oldsec = h->root.u.def.section; 1166 break; 1167 1168 case bfd_link_hash_common: 1169 oldbfd = h->root.u.c.p->section->owner; 1170 oldsec = h->root.u.c.p->section; 1171 if (pold_alignment) 1172 *pold_alignment = h->root.u.c.p->alignment_power; 1173 break; 1174 } 1175 if (poldbfd && *poldbfd == NULL) 1176 *poldbfd = oldbfd; 1177 1178 /* Differentiate strong and weak symbols. */ 1179 newweak = bind == STB_WEAK; 1180 oldweak = (h->root.type == bfd_link_hash_defweak 1181 || h->root.type == bfd_link_hash_undefweak); 1182 if (pold_weak) 1183 *pold_weak = oldweak; 1184 1185 /* We have to check it for every instance since the first few may be 1186 references and not all compilers emit symbol type for undefined 1187 symbols. */ 1188 bfd_elf_link_mark_dynamic_symbol (info, h, sym); 1189 1190 /* NEWDYN and OLDDYN indicate whether the new or old symbol, 1191 respectively, is from a dynamic object. */ 1192 1193 newdyn = (abfd->flags & DYNAMIC) != 0; 1194 1195 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined 1196 syms and defined syms in dynamic libraries respectively. 1197 ref_dynamic on the other hand can be set for a symbol defined in 1198 a dynamic library, and def_dynamic may not be set; When the 1199 definition in a dynamic lib is overridden by a definition in the 1200 executable use of the symbol in the dynamic lib becomes a 1201 reference to the executable symbol. */ 1202 if (newdyn) 1203 { 1204 if (bfd_is_und_section (sec)) 1205 { 1206 if (bind != STB_WEAK) 1207 { 1208 h->ref_dynamic_nonweak = 1; 1209 hi->ref_dynamic_nonweak = 1; 1210 } 1211 } 1212 else 1213 { 1214 /* Update the existing symbol only if they match. */ 1215 if (*matched) 1216 h->dynamic_def = 1; 1217 hi->dynamic_def = 1; 1218 } 1219 } 1220 1221 /* If we just created the symbol, mark it as being an ELF symbol. 1222 Other than that, there is nothing to do--there is no merge issue 1223 with a newly defined symbol--so we just return. */ 1224 1225 if (h->root.type == bfd_link_hash_new) 1226 { 1227 h->non_elf = 0; 1228 return TRUE; 1229 } 1230 1231 /* In cases involving weak versioned symbols, we may wind up trying 1232 to merge a symbol with itself. Catch that here, to avoid the 1233 confusion that results if we try to override a symbol with 1234 itself. The additional tests catch cases like 1235 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a 1236 dynamic object, which we do want to handle here. */ 1237 if (abfd == oldbfd 1238 && (newweak || oldweak) 1239 && ((abfd->flags & DYNAMIC) == 0 1240 || !h->def_regular)) 1241 return TRUE; 1242 1243 olddyn = FALSE; 1244 if (oldbfd != NULL) 1245 olddyn = (oldbfd->flags & DYNAMIC) != 0; 1246 else if (oldsec != NULL) 1247 { 1248 /* This handles the special SHN_MIPS_{TEXT,DATA} section 1249 indices used by MIPS ELF. */ 1250 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0; 1251 } 1252 1253 /* Handle a case where plugin_notice won't be called and thus won't 1254 set the non_ir_ref flags on the first pass over symbols. */ 1255 if (oldbfd != NULL 1256 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN) 1257 && newdyn != olddyn) 1258 { 1259 h->root.non_ir_ref_dynamic = TRUE; 1260 hi->root.non_ir_ref_dynamic = TRUE; 1261 } 1262 1263 /* NEWDEF and OLDDEF indicate whether the new or old symbol, 1264 respectively, appear to be a definition rather than reference. */ 1265 1266 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec); 1267 1268 olddef = (h->root.type != bfd_link_hash_undefined 1269 && h->root.type != bfd_link_hash_undefweak 1270 && h->root.type != bfd_link_hash_common); 1271 1272 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol, 1273 respectively, appear to be a function. */ 1274 1275 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE 1276 && bed->is_function_type (ELF_ST_TYPE (sym->st_info))); 1277 1278 oldfunc = (h->type != STT_NOTYPE 1279 && bed->is_function_type (h->type)); 1280 1281 if (!(newfunc && oldfunc) 1282 && ELF_ST_TYPE (sym->st_info) != h->type 1283 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE 1284 && h->type != STT_NOTYPE 1285 && (newdef || bfd_is_com_section (sec)) 1286 && (olddef || h->root.type == bfd_link_hash_common)) 1287 { 1288 /* If creating a default indirect symbol ("foo" or "foo@") from 1289 a dynamic versioned definition ("foo@@") skip doing so if 1290 there is an existing regular definition with a different 1291 type. We don't want, for example, a "time" variable in the 1292 executable overriding a "time" function in a shared library. */ 1293 if (newdyn 1294 && !olddyn) 1295 { 1296 *skip = TRUE; 1297 return TRUE; 1298 } 1299 1300 /* When adding a symbol from a regular object file after we have 1301 created indirect symbols, undo the indirection and any 1302 dynamic state. */ 1303 if (hi != h 1304 && !newdyn 1305 && olddyn) 1306 { 1307 h = hi; 1308 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 1309 h->forced_local = 0; 1310 h->ref_dynamic = 0; 1311 h->def_dynamic = 0; 1312 h->dynamic_def = 0; 1313 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) 1314 { 1315 h->root.type = bfd_link_hash_undefined; 1316 h->root.u.undef.abfd = abfd; 1317 } 1318 else 1319 { 1320 h->root.type = bfd_link_hash_new; 1321 h->root.u.undef.abfd = NULL; 1322 } 1323 return TRUE; 1324 } 1325 } 1326 1327 /* Check TLS symbols. We don't check undefined symbols introduced 1328 by "ld -u" which have no type (and oldbfd NULL), and we don't 1329 check symbols from plugins because they also have no type. */ 1330 if (oldbfd != NULL 1331 && (oldbfd->flags & BFD_PLUGIN) == 0 1332 && (abfd->flags & BFD_PLUGIN) == 0 1333 && ELF_ST_TYPE (sym->st_info) != h->type 1334 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)) 1335 { 1336 bfd *ntbfd, *tbfd; 1337 bfd_boolean ntdef, tdef; 1338 asection *ntsec, *tsec; 1339 1340 if (h->type == STT_TLS) 1341 { 1342 ntbfd = abfd; 1343 ntsec = sec; 1344 ntdef = newdef; 1345 tbfd = oldbfd; 1346 tsec = oldsec; 1347 tdef = olddef; 1348 } 1349 else 1350 { 1351 ntbfd = oldbfd; 1352 ntsec = oldsec; 1353 ntdef = olddef; 1354 tbfd = abfd; 1355 tsec = sec; 1356 tdef = newdef; 1357 } 1358 1359 if (tdef && ntdef) 1360 _bfd_error_handler 1361 /* xgettext:c-format */ 1362 (_("%s: TLS definition in %pB section %pA " 1363 "mismatches non-TLS definition in %pB section %pA"), 1364 h->root.root.string, tbfd, tsec, ntbfd, ntsec); 1365 else if (!tdef && !ntdef) 1366 _bfd_error_handler 1367 /* xgettext:c-format */ 1368 (_("%s: TLS reference in %pB " 1369 "mismatches non-TLS reference in %pB"), 1370 h->root.root.string, tbfd, ntbfd); 1371 else if (tdef) 1372 _bfd_error_handler 1373 /* xgettext:c-format */ 1374 (_("%s: TLS definition in %pB section %pA " 1375 "mismatches non-TLS reference in %pB"), 1376 h->root.root.string, tbfd, tsec, ntbfd); 1377 else 1378 _bfd_error_handler 1379 /* xgettext:c-format */ 1380 (_("%s: TLS reference in %pB " 1381 "mismatches non-TLS definition in %pB section %pA"), 1382 h->root.root.string, tbfd, ntbfd, ntsec); 1383 1384 bfd_set_error (bfd_error_bad_value); 1385 return FALSE; 1386 } 1387 1388 /* If the old symbol has non-default visibility, we ignore the new 1389 definition from a dynamic object. */ 1390 if (newdyn 1391 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 1392 && !bfd_is_und_section (sec)) 1393 { 1394 *skip = TRUE; 1395 /* Make sure this symbol is dynamic. */ 1396 h->ref_dynamic = 1; 1397 hi->ref_dynamic = 1; 1398 /* A protected symbol has external availability. Make sure it is 1399 recorded as dynamic. 1400 1401 FIXME: Should we check type and size for protected symbol? */ 1402 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) 1403 return bfd_elf_link_record_dynamic_symbol (info, h); 1404 else 1405 return TRUE; 1406 } 1407 else if (!newdyn 1408 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT 1409 && h->def_dynamic) 1410 { 1411 /* If the new symbol with non-default visibility comes from a 1412 relocatable file and the old definition comes from a dynamic 1413 object, we remove the old definition. */ 1414 if (hi->root.type == bfd_link_hash_indirect) 1415 { 1416 /* Handle the case where the old dynamic definition is 1417 default versioned. We need to copy the symbol info from 1418 the symbol with default version to the normal one if it 1419 was referenced before. */ 1420 if (h->ref_regular) 1421 { 1422 hi->root.type = h->root.type; 1423 h->root.type = bfd_link_hash_indirect; 1424 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h); 1425 1426 h->root.u.i.link = (struct bfd_link_hash_entry *) hi; 1427 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) 1428 { 1429 /* If the new symbol is hidden or internal, completely undo 1430 any dynamic link state. */ 1431 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 1432 h->forced_local = 0; 1433 h->ref_dynamic = 0; 1434 } 1435 else 1436 h->ref_dynamic = 1; 1437 1438 h->def_dynamic = 0; 1439 /* FIXME: Should we check type and size for protected symbol? */ 1440 h->size = 0; 1441 h->type = 0; 1442 1443 h = hi; 1444 } 1445 else 1446 h = hi; 1447 } 1448 1449 /* If the old symbol was undefined before, then it will still be 1450 on the undefs list. If the new symbol is undefined or 1451 common, we can't make it bfd_link_hash_new here, because new 1452 undefined or common symbols will be added to the undefs list 1453 by _bfd_generic_link_add_one_symbol. Symbols may not be 1454 added twice to the undefs list. Also, if the new symbol is 1455 undefweak then we don't want to lose the strong undef. */ 1456 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) 1457 { 1458 h->root.type = bfd_link_hash_undefined; 1459 h->root.u.undef.abfd = abfd; 1460 } 1461 else 1462 { 1463 h->root.type = bfd_link_hash_new; 1464 h->root.u.undef.abfd = NULL; 1465 } 1466 1467 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) 1468 { 1469 /* If the new symbol is hidden or internal, completely undo 1470 any dynamic link state. */ 1471 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 1472 h->forced_local = 0; 1473 h->ref_dynamic = 0; 1474 } 1475 else 1476 h->ref_dynamic = 1; 1477 h->def_dynamic = 0; 1478 /* FIXME: Should we check type and size for protected symbol? */ 1479 h->size = 0; 1480 h->type = 0; 1481 return TRUE; 1482 } 1483 1484 /* If a new weak symbol definition comes from a regular file and the 1485 old symbol comes from a dynamic library, we treat the new one as 1486 strong. Similarly, an old weak symbol definition from a regular 1487 file is treated as strong when the new symbol comes from a dynamic 1488 library. Further, an old weak symbol from a dynamic library is 1489 treated as strong if the new symbol is from a dynamic library. 1490 This reflects the way glibc's ld.so works. 1491 1492 Also allow a weak symbol to override a linker script symbol 1493 defined by an early pass over the script. This is done so the 1494 linker knows the symbol is defined in an object file, for the 1495 DEFINED script function. 1496 1497 Do this before setting *type_change_ok or *size_change_ok so that 1498 we warn properly when dynamic library symbols are overridden. */ 1499 1500 if (newdef && !newdyn && (olddyn || h->root.ldscript_def)) 1501 newweak = FALSE; 1502 if (olddef && newdyn) 1503 oldweak = FALSE; 1504 1505 /* Allow changes between different types of function symbol. */ 1506 if (newfunc && oldfunc) 1507 *type_change_ok = TRUE; 1508 1509 /* It's OK to change the type if either the existing symbol or the 1510 new symbol is weak. A type change is also OK if the old symbol 1511 is undefined and the new symbol is defined. */ 1512 1513 if (oldweak 1514 || newweak 1515 || (newdef 1516 && h->root.type == bfd_link_hash_undefined)) 1517 *type_change_ok = TRUE; 1518 1519 /* It's OK to change the size if either the existing symbol or the 1520 new symbol is weak, or if the old symbol is undefined. */ 1521 1522 if (*type_change_ok 1523 || h->root.type == bfd_link_hash_undefined) 1524 *size_change_ok = TRUE; 1525 1526 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old 1527 symbol, respectively, appears to be a common symbol in a dynamic 1528 object. If a symbol appears in an uninitialized section, and is 1529 not weak, and is not a function, then it may be a common symbol 1530 which was resolved when the dynamic object was created. We want 1531 to treat such symbols specially, because they raise special 1532 considerations when setting the symbol size: if the symbol 1533 appears as a common symbol in a regular object, and the size in 1534 the regular object is larger, we must make sure that we use the 1535 larger size. This problematic case can always be avoided in C, 1536 but it must be handled correctly when using Fortran shared 1537 libraries. 1538 1539 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and 1540 likewise for OLDDYNCOMMON and OLDDEF. 1541 1542 Note that this test is just a heuristic, and that it is quite 1543 possible to have an uninitialized symbol in a shared object which 1544 is really a definition, rather than a common symbol. This could 1545 lead to some minor confusion when the symbol really is a common 1546 symbol in some regular object. However, I think it will be 1547 harmless. */ 1548 1549 if (newdyn 1550 && newdef 1551 && !newweak 1552 && (sec->flags & SEC_ALLOC) != 0 1553 && (sec->flags & SEC_LOAD) == 0 1554 && sym->st_size > 0 1555 && !newfunc) 1556 newdyncommon = TRUE; 1557 else 1558 newdyncommon = FALSE; 1559 1560 if (olddyn 1561 && olddef 1562 && h->root.type == bfd_link_hash_defined 1563 && h->def_dynamic 1564 && (h->root.u.def.section->flags & SEC_ALLOC) != 0 1565 && (h->root.u.def.section->flags & SEC_LOAD) == 0 1566 && h->size > 0 1567 && !oldfunc) 1568 olddyncommon = TRUE; 1569 else 1570 olddyncommon = FALSE; 1571 1572 /* We now know everything about the old and new symbols. We ask the 1573 backend to check if we can merge them. */ 1574 if (bed->merge_symbol != NULL) 1575 { 1576 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec)) 1577 return FALSE; 1578 sec = *psec; 1579 } 1580 1581 /* There are multiple definitions of a normal symbol. Skip the 1582 default symbol as well as definition from an IR object. */ 1583 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak 1584 && !default_sym && h->def_regular 1585 && !(oldbfd != NULL 1586 && (oldbfd->flags & BFD_PLUGIN) != 0 1587 && (abfd->flags & BFD_PLUGIN) == 0)) 1588 { 1589 /* Handle a multiple definition. */ 1590 (*info->callbacks->multiple_definition) (info, &h->root, 1591 abfd, sec, *pvalue); 1592 *skip = TRUE; 1593 return TRUE; 1594 } 1595 1596 /* If both the old and the new symbols look like common symbols in a 1597 dynamic object, set the size of the symbol to the larger of the 1598 two. */ 1599 1600 if (olddyncommon 1601 && newdyncommon 1602 && sym->st_size != h->size) 1603 { 1604 /* Since we think we have two common symbols, issue a multiple 1605 common warning if desired. Note that we only warn if the 1606 size is different. If the size is the same, we simply let 1607 the old symbol override the new one as normally happens with 1608 symbols defined in dynamic objects. */ 1609 1610 (*info->callbacks->multiple_common) (info, &h->root, abfd, 1611 bfd_link_hash_common, sym->st_size); 1612 if (sym->st_size > h->size) 1613 h->size = sym->st_size; 1614 1615 *size_change_ok = TRUE; 1616 } 1617 1618 /* If we are looking at a dynamic object, and we have found a 1619 definition, we need to see if the symbol was already defined by 1620 some other object. If so, we want to use the existing 1621 definition, and we do not want to report a multiple symbol 1622 definition error; we do this by clobbering *PSEC to be 1623 bfd_und_section_ptr. 1624 1625 We treat a common symbol as a definition if the symbol in the 1626 shared library is a function, since common symbols always 1627 represent variables; this can cause confusion in principle, but 1628 any such confusion would seem to indicate an erroneous program or 1629 shared library. We also permit a common symbol in a regular 1630 object to override a weak symbol in a shared object. */ 1631 1632 if (newdyn 1633 && newdef 1634 && (olddef 1635 || (h->root.type == bfd_link_hash_common 1636 && (newweak || newfunc)))) 1637 { 1638 *override = TRUE; 1639 newdef = FALSE; 1640 newdyncommon = FALSE; 1641 1642 *psec = sec = bfd_und_section_ptr; 1643 *size_change_ok = TRUE; 1644 1645 /* If we get here when the old symbol is a common symbol, then 1646 we are explicitly letting it override a weak symbol or 1647 function in a dynamic object, and we don't want to warn about 1648 a type change. If the old symbol is a defined symbol, a type 1649 change warning may still be appropriate. */ 1650 1651 if (h->root.type == bfd_link_hash_common) 1652 *type_change_ok = TRUE; 1653 } 1654 1655 /* Handle the special case of an old common symbol merging with a 1656 new symbol which looks like a common symbol in a shared object. 1657 We change *PSEC and *PVALUE to make the new symbol look like a 1658 common symbol, and let _bfd_generic_link_add_one_symbol do the 1659 right thing. */ 1660 1661 if (newdyncommon 1662 && h->root.type == bfd_link_hash_common) 1663 { 1664 *override = TRUE; 1665 newdef = FALSE; 1666 newdyncommon = FALSE; 1667 *pvalue = sym->st_size; 1668 *psec = sec = bed->common_section (oldsec); 1669 *size_change_ok = TRUE; 1670 } 1671 1672 /* Skip weak definitions of symbols that are already defined. */ 1673 if (newdef && olddef && newweak) 1674 { 1675 /* Don't skip new non-IR weak syms. */ 1676 if (!(oldbfd != NULL 1677 && (oldbfd->flags & BFD_PLUGIN) != 0 1678 && (abfd->flags & BFD_PLUGIN) == 0)) 1679 { 1680 newdef = FALSE; 1681 *skip = TRUE; 1682 } 1683 1684 /* Merge st_other. If the symbol already has a dynamic index, 1685 but visibility says it should not be visible, turn it into a 1686 local symbol. */ 1687 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn); 1688 if (h->dynindx != -1) 1689 switch (ELF_ST_VISIBILITY (h->other)) 1690 { 1691 case STV_INTERNAL: 1692 case STV_HIDDEN: 1693 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 1694 break; 1695 } 1696 } 1697 1698 /* If the old symbol is from a dynamic object, and the new symbol is 1699 a definition which is not from a dynamic object, then the new 1700 symbol overrides the old symbol. Symbols from regular files 1701 always take precedence over symbols from dynamic objects, even if 1702 they are defined after the dynamic object in the link. 1703 1704 As above, we again permit a common symbol in a regular object to 1705 override a definition in a shared object if the shared object 1706 symbol is a function or is weak. */ 1707 1708 flip = NULL; 1709 if (!newdyn 1710 && (newdef 1711 || (bfd_is_com_section (sec) 1712 && (oldweak || oldfunc))) 1713 && olddyn 1714 && olddef 1715 && h->def_dynamic) 1716 { 1717 /* Change the hash table entry to undefined, and let 1718 _bfd_generic_link_add_one_symbol do the right thing with the 1719 new definition. */ 1720 1721 h->root.type = bfd_link_hash_undefined; 1722 h->root.u.undef.abfd = h->root.u.def.section->owner; 1723 *size_change_ok = TRUE; 1724 1725 olddef = FALSE; 1726 olddyncommon = FALSE; 1727 1728 /* We again permit a type change when a common symbol may be 1729 overriding a function. */ 1730 1731 if (bfd_is_com_section (sec)) 1732 { 1733 if (oldfunc) 1734 { 1735 /* If a common symbol overrides a function, make sure 1736 that it isn't defined dynamically nor has type 1737 function. */ 1738 h->def_dynamic = 0; 1739 h->type = STT_NOTYPE; 1740 } 1741 *type_change_ok = TRUE; 1742 } 1743 1744 if (hi->root.type == bfd_link_hash_indirect) 1745 flip = hi; 1746 else 1747 /* This union may have been set to be non-NULL when this symbol 1748 was seen in a dynamic object. We must force the union to be 1749 NULL, so that it is correct for a regular symbol. */ 1750 h->verinfo.vertree = NULL; 1751 } 1752 1753 /* Handle the special case of a new common symbol merging with an 1754 old symbol that looks like it might be a common symbol defined in 1755 a shared object. Note that we have already handled the case in 1756 which a new common symbol should simply override the definition 1757 in the shared library. */ 1758 1759 if (! newdyn 1760 && bfd_is_com_section (sec) 1761 && olddyncommon) 1762 { 1763 /* It would be best if we could set the hash table entry to a 1764 common symbol, but we don't know what to use for the section 1765 or the alignment. */ 1766 (*info->callbacks->multiple_common) (info, &h->root, abfd, 1767 bfd_link_hash_common, sym->st_size); 1768 1769 /* If the presumed common symbol in the dynamic object is 1770 larger, pretend that the new symbol has its size. */ 1771 1772 if (h->size > *pvalue) 1773 *pvalue = h->size; 1774 1775 /* We need to remember the alignment required by the symbol 1776 in the dynamic object. */ 1777 BFD_ASSERT (pold_alignment); 1778 *pold_alignment = h->root.u.def.section->alignment_power; 1779 1780 olddef = FALSE; 1781 olddyncommon = FALSE; 1782 1783 h->root.type = bfd_link_hash_undefined; 1784 h->root.u.undef.abfd = h->root.u.def.section->owner; 1785 1786 *size_change_ok = TRUE; 1787 *type_change_ok = TRUE; 1788 1789 if (hi->root.type == bfd_link_hash_indirect) 1790 flip = hi; 1791 else 1792 h->verinfo.vertree = NULL; 1793 } 1794 1795 if (flip != NULL) 1796 { 1797 /* Handle the case where we had a versioned symbol in a dynamic 1798 library and now find a definition in a normal object. In this 1799 case, we make the versioned symbol point to the normal one. */ 1800 flip->root.type = h->root.type; 1801 flip->root.u.undef.abfd = h->root.u.undef.abfd; 1802 h->root.type = bfd_link_hash_indirect; 1803 h->root.u.i.link = (struct bfd_link_hash_entry *) flip; 1804 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h); 1805 if (h->def_dynamic) 1806 { 1807 h->def_dynamic = 0; 1808 flip->ref_dynamic = 1; 1809 } 1810 } 1811 1812 return TRUE; 1813 } 1814 1815 /* This function is called to create an indirect symbol from the 1816 default for the symbol with the default version if needed. The 1817 symbol is described by H, NAME, SYM, SEC, and VALUE. We 1818 set DYNSYM if the new indirect symbol is dynamic. */ 1819 1820 static bfd_boolean 1821 _bfd_elf_add_default_symbol (bfd *abfd, 1822 struct bfd_link_info *info, 1823 struct elf_link_hash_entry *h, 1824 const char *name, 1825 Elf_Internal_Sym *sym, 1826 asection *sec, 1827 bfd_vma value, 1828 bfd **poldbfd, 1829 bfd_boolean *dynsym) 1830 { 1831 bfd_boolean type_change_ok; 1832 bfd_boolean size_change_ok; 1833 bfd_boolean skip; 1834 char *shortname; 1835 struct elf_link_hash_entry *hi; 1836 struct bfd_link_hash_entry *bh; 1837 const struct elf_backend_data *bed; 1838 bfd_boolean collect; 1839 bfd_boolean dynamic; 1840 bfd_boolean override; 1841 char *p; 1842 size_t len, shortlen; 1843 asection *tmp_sec; 1844 bfd_boolean matched; 1845 1846 if (h->versioned == unversioned || h->versioned == versioned_hidden) 1847 return TRUE; 1848 1849 /* If this symbol has a version, and it is the default version, we 1850 create an indirect symbol from the default name to the fully 1851 decorated name. This will cause external references which do not 1852 specify a version to be bound to this version of the symbol. */ 1853 p = strchr (name, ELF_VER_CHR); 1854 if (h->versioned == unknown) 1855 { 1856 if (p == NULL) 1857 { 1858 h->versioned = unversioned; 1859 return TRUE; 1860 } 1861 else 1862 { 1863 if (p[1] != ELF_VER_CHR) 1864 { 1865 h->versioned = versioned_hidden; 1866 return TRUE; 1867 } 1868 else 1869 h->versioned = versioned; 1870 } 1871 } 1872 else 1873 { 1874 /* PR ld/19073: We may see an unversioned definition after the 1875 default version. */ 1876 if (p == NULL) 1877 return TRUE; 1878 } 1879 1880 bed = get_elf_backend_data (abfd); 1881 collect = bed->collect; 1882 dynamic = (abfd->flags & DYNAMIC) != 0; 1883 1884 shortlen = p - name; 1885 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1); 1886 if (shortname == NULL) 1887 return FALSE; 1888 memcpy (shortname, name, shortlen); 1889 shortname[shortlen] = '\0'; 1890 1891 /* We are going to create a new symbol. Merge it with any existing 1892 symbol with this name. For the purposes of the merge, act as 1893 though we were defining the symbol we just defined, although we 1894 actually going to define an indirect symbol. */ 1895 type_change_ok = FALSE; 1896 size_change_ok = FALSE; 1897 matched = TRUE; 1898 tmp_sec = sec; 1899 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, 1900 &hi, poldbfd, NULL, NULL, &skip, &override, 1901 &type_change_ok, &size_change_ok, &matched)) 1902 return FALSE; 1903 1904 if (skip) 1905 goto nondefault; 1906 1907 if (hi->def_regular || ELF_COMMON_DEF_P (hi)) 1908 { 1909 /* If the undecorated symbol will have a version added by a 1910 script different to H, then don't indirect to/from the 1911 undecorated symbol. This isn't ideal because we may not yet 1912 have seen symbol versions, if given by a script on the 1913 command line rather than via --version-script. */ 1914 if (hi->verinfo.vertree == NULL && info->version_info != NULL) 1915 { 1916 bfd_boolean hide; 1917 1918 hi->verinfo.vertree 1919 = bfd_find_version_for_sym (info->version_info, 1920 hi->root.root.string, &hide); 1921 if (hi->verinfo.vertree != NULL && hide) 1922 { 1923 (*bed->elf_backend_hide_symbol) (info, hi, TRUE); 1924 goto nondefault; 1925 } 1926 } 1927 if (hi->verinfo.vertree != NULL 1928 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0) 1929 goto nondefault; 1930 } 1931 1932 if (! override) 1933 { 1934 /* Add the default symbol if not performing a relocatable link. */ 1935 if (! bfd_link_relocatable (info)) 1936 { 1937 bh = &hi->root; 1938 if (bh->type == bfd_link_hash_defined 1939 && bh->u.def.section->owner != NULL 1940 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0) 1941 { 1942 /* Mark the previous definition from IR object as 1943 undefined so that the generic linker will override 1944 it. */ 1945 bh->type = bfd_link_hash_undefined; 1946 bh->u.undef.abfd = bh->u.def.section->owner; 1947 } 1948 if (! (_bfd_generic_link_add_one_symbol 1949 (info, abfd, shortname, BSF_INDIRECT, 1950 bfd_ind_section_ptr, 1951 0, name, FALSE, collect, &bh))) 1952 return FALSE; 1953 hi = (struct elf_link_hash_entry *) bh; 1954 } 1955 } 1956 else 1957 { 1958 /* In this case the symbol named SHORTNAME is overriding the 1959 indirect symbol we want to add. We were planning on making 1960 SHORTNAME an indirect symbol referring to NAME. SHORTNAME 1961 is the name without a version. NAME is the fully versioned 1962 name, and it is the default version. 1963 1964 Overriding means that we already saw a definition for the 1965 symbol SHORTNAME in a regular object, and it is overriding 1966 the symbol defined in the dynamic object. 1967 1968 When this happens, we actually want to change NAME, the 1969 symbol we just added, to refer to SHORTNAME. This will cause 1970 references to NAME in the shared object to become references 1971 to SHORTNAME in the regular object. This is what we expect 1972 when we override a function in a shared object: that the 1973 references in the shared object will be mapped to the 1974 definition in the regular object. */ 1975 1976 while (hi->root.type == bfd_link_hash_indirect 1977 || hi->root.type == bfd_link_hash_warning) 1978 hi = (struct elf_link_hash_entry *) hi->root.u.i.link; 1979 1980 h->root.type = bfd_link_hash_indirect; 1981 h->root.u.i.link = (struct bfd_link_hash_entry *) hi; 1982 if (h->def_dynamic) 1983 { 1984 h->def_dynamic = 0; 1985 hi->ref_dynamic = 1; 1986 if (hi->ref_regular 1987 || hi->def_regular) 1988 { 1989 if (! bfd_elf_link_record_dynamic_symbol (info, hi)) 1990 return FALSE; 1991 } 1992 } 1993 1994 /* Now set HI to H, so that the following code will set the 1995 other fields correctly. */ 1996 hi = h; 1997 } 1998 1999 /* Check if HI is a warning symbol. */ 2000 if (hi->root.type == bfd_link_hash_warning) 2001 hi = (struct elf_link_hash_entry *) hi->root.u.i.link; 2002 2003 /* If there is a duplicate definition somewhere, then HI may not 2004 point to an indirect symbol. We will have reported an error to 2005 the user in that case. */ 2006 2007 if (hi->root.type == bfd_link_hash_indirect) 2008 { 2009 struct elf_link_hash_entry *ht; 2010 2011 ht = (struct elf_link_hash_entry *) hi->root.u.i.link; 2012 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi); 2013 2014 /* A reference to the SHORTNAME symbol from a dynamic library 2015 will be satisfied by the versioned symbol at runtime. In 2016 effect, we have a reference to the versioned symbol. */ 2017 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; 2018 hi->dynamic_def |= ht->dynamic_def; 2019 2020 /* See if the new flags lead us to realize that the symbol must 2021 be dynamic. */ 2022 if (! *dynsym) 2023 { 2024 if (! dynamic) 2025 { 2026 if (! bfd_link_executable (info) 2027 || hi->def_dynamic 2028 || hi->ref_dynamic) 2029 *dynsym = TRUE; 2030 } 2031 else 2032 { 2033 if (hi->ref_regular) 2034 *dynsym = TRUE; 2035 } 2036 } 2037 } 2038 2039 /* We also need to define an indirection from the nondefault version 2040 of the symbol. */ 2041 2042 nondefault: 2043 len = strlen (name); 2044 shortname = (char *) bfd_hash_allocate (&info->hash->table, len); 2045 if (shortname == NULL) 2046 return FALSE; 2047 memcpy (shortname, name, shortlen); 2048 memcpy (shortname + shortlen, p + 1, len - shortlen); 2049 2050 /* Once again, merge with any existing symbol. */ 2051 type_change_ok = FALSE; 2052 size_change_ok = FALSE; 2053 tmp_sec = sec; 2054 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, 2055 &hi, poldbfd, NULL, NULL, &skip, &override, 2056 &type_change_ok, &size_change_ok, &matched)) 2057 return FALSE; 2058 2059 if (skip) 2060 return TRUE; 2061 2062 if (override) 2063 { 2064 /* Here SHORTNAME is a versioned name, so we don't expect to see 2065 the type of override we do in the case above unless it is 2066 overridden by a versioned definition. */ 2067 if (hi->root.type != bfd_link_hash_defined 2068 && hi->root.type != bfd_link_hash_defweak) 2069 _bfd_error_handler 2070 /* xgettext:c-format */ 2071 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"), 2072 abfd, shortname); 2073 } 2074 else 2075 { 2076 bh = &hi->root; 2077 if (! (_bfd_generic_link_add_one_symbol 2078 (info, abfd, shortname, BSF_INDIRECT, 2079 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh))) 2080 return FALSE; 2081 hi = (struct elf_link_hash_entry *) bh; 2082 2083 /* If there is a duplicate definition somewhere, then HI may not 2084 point to an indirect symbol. We will have reported an error 2085 to the user in that case. */ 2086 2087 if (hi->root.type == bfd_link_hash_indirect) 2088 { 2089 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); 2090 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; 2091 hi->dynamic_def |= h->dynamic_def; 2092 2093 /* See if the new flags lead us to realize that the symbol 2094 must be dynamic. */ 2095 if (! *dynsym) 2096 { 2097 if (! dynamic) 2098 { 2099 if (! bfd_link_executable (info) 2100 || hi->ref_dynamic) 2101 *dynsym = TRUE; 2102 } 2103 else 2104 { 2105 if (hi->ref_regular) 2106 *dynsym = TRUE; 2107 } 2108 } 2109 } 2110 } 2111 2112 return TRUE; 2113 } 2114 2115 /* This routine is used to export all defined symbols into the dynamic 2116 symbol table. It is called via elf_link_hash_traverse. */ 2117 2118 static bfd_boolean 2119 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data) 2120 { 2121 struct elf_info_failed *eif = (struct elf_info_failed *) data; 2122 2123 /* Ignore indirect symbols. These are added by the versioning code. */ 2124 if (h->root.type == bfd_link_hash_indirect) 2125 return TRUE; 2126 2127 /* Ignore this if we won't export it. */ 2128 if (!eif->info->export_dynamic && !h->dynamic) 2129 return TRUE; 2130 2131 if (h->dynindx == -1 2132 && (h->def_regular || h->ref_regular) 2133 && ! bfd_hide_sym_by_version (eif->info->version_info, 2134 h->root.root.string)) 2135 { 2136 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) 2137 { 2138 eif->failed = TRUE; 2139 return FALSE; 2140 } 2141 } 2142 2143 return TRUE; 2144 } 2145 2146 /* Look through the symbols which are defined in other shared 2147 libraries and referenced here. Update the list of version 2148 dependencies. This will be put into the .gnu.version_r section. 2149 This function is called via elf_link_hash_traverse. */ 2150 2151 static bfd_boolean 2152 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h, 2153 void *data) 2154 { 2155 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; 2156 Elf_Internal_Verneed *t; 2157 Elf_Internal_Vernaux *a; 2158 bfd_size_type amt; 2159 2160 /* We only care about symbols defined in shared objects with version 2161 information. */ 2162 if (!h->def_dynamic 2163 || h->def_regular 2164 || h->dynindx == -1 2165 || h->verinfo.verdef == NULL 2166 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) 2167 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) 2168 return TRUE; 2169 2170 /* See if we already know about this version. */ 2171 for (t = elf_tdata (rinfo->info->output_bfd)->verref; 2172 t != NULL; 2173 t = t->vn_nextref) 2174 { 2175 if (t->vn_bfd != h->verinfo.verdef->vd_bfd) 2176 continue; 2177 2178 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 2179 if (a->vna_nodename == h->verinfo.verdef->vd_nodename) 2180 return TRUE; 2181 2182 break; 2183 } 2184 2185 /* This is a new version. Add it to tree we are building. */ 2186 2187 if (t == NULL) 2188 { 2189 amt = sizeof *t; 2190 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt); 2191 if (t == NULL) 2192 { 2193 rinfo->failed = TRUE; 2194 return FALSE; 2195 } 2196 2197 t->vn_bfd = h->verinfo.verdef->vd_bfd; 2198 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref; 2199 elf_tdata (rinfo->info->output_bfd)->verref = t; 2200 } 2201 2202 amt = sizeof *a; 2203 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt); 2204 if (a == NULL) 2205 { 2206 rinfo->failed = TRUE; 2207 return FALSE; 2208 } 2209 2210 /* Note that we are copying a string pointer here, and testing it 2211 above. If bfd_elf_string_from_elf_section is ever changed to 2212 discard the string data when low in memory, this will have to be 2213 fixed. */ 2214 a->vna_nodename = h->verinfo.verdef->vd_nodename; 2215 2216 a->vna_flags = h->verinfo.verdef->vd_flags; 2217 a->vna_nextptr = t->vn_auxptr; 2218 2219 h->verinfo.verdef->vd_exp_refno = rinfo->vers; 2220 ++rinfo->vers; 2221 2222 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; 2223 2224 t->vn_auxptr = a; 2225 2226 return TRUE; 2227 } 2228 2229 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is 2230 hidden. Set *T_P to NULL if there is no match. */ 2231 2232 static bfd_boolean 2233 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info, 2234 struct elf_link_hash_entry *h, 2235 const char *version_p, 2236 struct bfd_elf_version_tree **t_p, 2237 bfd_boolean *hide) 2238 { 2239 struct bfd_elf_version_tree *t; 2240 2241 /* Look for the version. If we find it, it is no longer weak. */ 2242 for (t = info->version_info; t != NULL; t = t->next) 2243 { 2244 if (strcmp (t->name, version_p) == 0) 2245 { 2246 size_t len; 2247 char *alc; 2248 struct bfd_elf_version_expr *d; 2249 2250 len = version_p - h->root.root.string; 2251 alc = (char *) bfd_malloc (len); 2252 if (alc == NULL) 2253 return FALSE; 2254 memcpy (alc, h->root.root.string, len - 1); 2255 alc[len - 1] = '\0'; 2256 if (alc[len - 2] == ELF_VER_CHR) 2257 alc[len - 2] = '\0'; 2258 2259 h->verinfo.vertree = t; 2260 t->used = TRUE; 2261 d = NULL; 2262 2263 if (t->globals.list != NULL) 2264 d = (*t->match) (&t->globals, NULL, alc); 2265 2266 /* See if there is anything to force this symbol to 2267 local scope. */ 2268 if (d == NULL && t->locals.list != NULL) 2269 { 2270 d = (*t->match) (&t->locals, NULL, alc); 2271 if (d != NULL 2272 && h->dynindx != -1 2273 && ! info->export_dynamic) 2274 *hide = TRUE; 2275 } 2276 2277 free (alc); 2278 break; 2279 } 2280 } 2281 2282 *t_p = t; 2283 2284 return TRUE; 2285 } 2286 2287 /* Return TRUE if the symbol H is hidden by version script. */ 2288 2289 bfd_boolean 2290 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info, 2291 struct elf_link_hash_entry *h) 2292 { 2293 const char *p; 2294 bfd_boolean hide = FALSE; 2295 const struct elf_backend_data *bed 2296 = get_elf_backend_data (info->output_bfd); 2297 2298 /* Version script only hides symbols defined in regular objects. */ 2299 if (!h->def_regular && !ELF_COMMON_DEF_P (h)) 2300 return TRUE; 2301 2302 p = strchr (h->root.root.string, ELF_VER_CHR); 2303 if (p != NULL && h->verinfo.vertree == NULL) 2304 { 2305 struct bfd_elf_version_tree *t; 2306 2307 ++p; 2308 if (*p == ELF_VER_CHR) 2309 ++p; 2310 2311 if (*p != '\0' 2312 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide) 2313 && hide) 2314 { 2315 if (hide) 2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 2317 return TRUE; 2318 } 2319 } 2320 2321 /* If we don't have a version for this symbol, see if we can find 2322 something. */ 2323 if (h->verinfo.vertree == NULL && info->version_info != NULL) 2324 { 2325 h->verinfo.vertree 2326 = bfd_find_version_for_sym (info->version_info, 2327 h->root.root.string, &hide); 2328 if (h->verinfo.vertree != NULL && hide) 2329 { 2330 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 2331 return TRUE; 2332 } 2333 } 2334 2335 return FALSE; 2336 } 2337 2338 /* Figure out appropriate versions for all the symbols. We may not 2339 have the version number script until we have read all of the input 2340 files, so until that point we don't know which symbols should be 2341 local. This function is called via elf_link_hash_traverse. */ 2342 2343 static bfd_boolean 2344 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data) 2345 { 2346 struct elf_info_failed *sinfo; 2347 struct bfd_link_info *info; 2348 const struct elf_backend_data *bed; 2349 struct elf_info_failed eif; 2350 char *p; 2351 bfd_boolean hide; 2352 2353 sinfo = (struct elf_info_failed *) data; 2354 info = sinfo->info; 2355 2356 /* Fix the symbol flags. */ 2357 eif.failed = FALSE; 2358 eif.info = info; 2359 if (! _bfd_elf_fix_symbol_flags (h, &eif)) 2360 { 2361 if (eif.failed) 2362 sinfo->failed = TRUE; 2363 return FALSE; 2364 } 2365 2366 bed = get_elf_backend_data (info->output_bfd); 2367 2368 /* We only need version numbers for symbols defined in regular 2369 objects. */ 2370 if (!h->def_regular && !ELF_COMMON_DEF_P (h)) 2371 { 2372 /* Hide symbols defined in discarded input sections. */ 2373 if ((h->root.type == bfd_link_hash_defined 2374 || h->root.type == bfd_link_hash_defweak) 2375 && discarded_section (h->root.u.def.section)) 2376 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 2377 return TRUE; 2378 } 2379 2380 hide = FALSE; 2381 p = strchr (h->root.root.string, ELF_VER_CHR); 2382 if (p != NULL && h->verinfo.vertree == NULL) 2383 { 2384 struct bfd_elf_version_tree *t; 2385 2386 ++p; 2387 if (*p == ELF_VER_CHR) 2388 ++p; 2389 2390 /* If there is no version string, we can just return out. */ 2391 if (*p == '\0') 2392 return TRUE; 2393 2394 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)) 2395 { 2396 sinfo->failed = TRUE; 2397 return FALSE; 2398 } 2399 2400 if (hide) 2401 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 2402 2403 /* If we are building an application, we need to create a 2404 version node for this version. */ 2405 if (t == NULL && bfd_link_executable (info)) 2406 { 2407 struct bfd_elf_version_tree **pp; 2408 int version_index; 2409 2410 /* If we aren't going to export this symbol, we don't need 2411 to worry about it. */ 2412 if (h->dynindx == -1) 2413 return TRUE; 2414 2415 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, 2416 sizeof *t); 2417 if (t == NULL) 2418 { 2419 sinfo->failed = TRUE; 2420 return FALSE; 2421 } 2422 2423 t->name = p; 2424 t->name_indx = (unsigned int) -1; 2425 t->used = TRUE; 2426 2427 version_index = 1; 2428 /* Don't count anonymous version tag. */ 2429 if (sinfo->info->version_info != NULL 2430 && sinfo->info->version_info->vernum == 0) 2431 version_index = 0; 2432 for (pp = &sinfo->info->version_info; 2433 *pp != NULL; 2434 pp = &(*pp)->next) 2435 ++version_index; 2436 t->vernum = version_index; 2437 2438 *pp = t; 2439 2440 h->verinfo.vertree = t; 2441 } 2442 else if (t == NULL) 2443 { 2444 /* We could not find the version for a symbol when 2445 generating a shared archive. Return an error. */ 2446 _bfd_error_handler 2447 /* xgettext:c-format */ 2448 (_("%pB: version node not found for symbol %s"), 2449 info->output_bfd, h->root.root.string); 2450 bfd_set_error (bfd_error_bad_value); 2451 sinfo->failed = TRUE; 2452 return FALSE; 2453 } 2454 } 2455 2456 /* If we don't have a version for this symbol, see if we can find 2457 something. */ 2458 if (!hide 2459 && h->verinfo.vertree == NULL 2460 && sinfo->info->version_info != NULL) 2461 { 2462 h->verinfo.vertree 2463 = bfd_find_version_for_sym (sinfo->info->version_info, 2464 h->root.root.string, &hide); 2465 if (h->verinfo.vertree != NULL && hide) 2466 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 2467 } 2468 2469 return TRUE; 2470 } 2471 2472 /* Read and swap the relocs from the section indicated by SHDR. This 2473 may be either a REL or a RELA section. The relocations are 2474 translated into RELA relocations and stored in INTERNAL_RELOCS, 2475 which should have already been allocated to contain enough space. 2476 The EXTERNAL_RELOCS are a buffer where the external form of the 2477 relocations should be stored. 2478 2479 Returns FALSE if something goes wrong. */ 2480 2481 static bfd_boolean 2482 elf_link_read_relocs_from_section (bfd *abfd, 2483 asection *sec, 2484 Elf_Internal_Shdr *shdr, 2485 void *external_relocs, 2486 Elf_Internal_Rela *internal_relocs) 2487 { 2488 const struct elf_backend_data *bed; 2489 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 2490 const bfd_byte *erela; 2491 const bfd_byte *erelaend; 2492 Elf_Internal_Rela *irela; 2493 Elf_Internal_Shdr *symtab_hdr; 2494 size_t nsyms; 2495 2496 /* Position ourselves at the start of the section. */ 2497 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) 2498 return FALSE; 2499 2500 /* Read the relocations. */ 2501 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size) 2502 return FALSE; 2503 2504 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2505 nsyms = NUM_SHDR_ENTRIES (symtab_hdr); 2506 2507 bed = get_elf_backend_data (abfd); 2508 2509 /* Convert the external relocations to the internal format. */ 2510 if (shdr->sh_entsize == bed->s->sizeof_rel) 2511 swap_in = bed->s->swap_reloc_in; 2512 else if (shdr->sh_entsize == bed->s->sizeof_rela) 2513 swap_in = bed->s->swap_reloca_in; 2514 else 2515 { 2516 bfd_set_error (bfd_error_wrong_format); 2517 return FALSE; 2518 } 2519 2520 erela = (const bfd_byte *) external_relocs; 2521 /* Setting erelaend like this and comparing with <= handles case of 2522 a fuzzed object with sh_size not a multiple of sh_entsize. */ 2523 erelaend = erela + shdr->sh_size - shdr->sh_entsize; 2524 irela = internal_relocs; 2525 while (erela <= erelaend) 2526 { 2527 bfd_vma r_symndx; 2528 2529 (*swap_in) (abfd, erela, irela); 2530 r_symndx = ELF32_R_SYM (irela->r_info); 2531 if (bed->s->arch_size == 64) 2532 r_symndx >>= 24; 2533 if (nsyms > 0) 2534 { 2535 if ((size_t) r_symndx >= nsyms) 2536 { 2537 _bfd_error_handler 2538 /* xgettext:c-format */ 2539 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)" 2540 " for offset %#" PRIx64 " in section `%pA'"), 2541 abfd, (uint64_t) r_symndx, (unsigned long) nsyms, 2542 (uint64_t) irela->r_offset, sec); 2543 bfd_set_error (bfd_error_bad_value); 2544 return FALSE; 2545 } 2546 } 2547 else if (r_symndx != STN_UNDEF) 2548 { 2549 _bfd_error_handler 2550 /* xgettext:c-format */ 2551 (_("%pB: non-zero symbol index (%#" PRIx64 ")" 2552 " for offset %#" PRIx64 " in section `%pA'" 2553 " when the object file has no symbol table"), 2554 abfd, (uint64_t) r_symndx, 2555 (uint64_t) irela->r_offset, sec); 2556 bfd_set_error (bfd_error_bad_value); 2557 return FALSE; 2558 } 2559 irela += bed->s->int_rels_per_ext_rel; 2560 erela += shdr->sh_entsize; 2561 } 2562 2563 return TRUE; 2564 } 2565 2566 /* Read and swap the relocs for a section O. They may have been 2567 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are 2568 not NULL, they are used as buffers to read into. They are known to 2569 be large enough. If the INTERNAL_RELOCS relocs argument is NULL, 2570 the return value is allocated using either malloc or bfd_alloc, 2571 according to the KEEP_MEMORY argument. If O has two relocation 2572 sections (both REL and RELA relocations), then the REL_HDR 2573 relocations will appear first in INTERNAL_RELOCS, followed by the 2574 RELA_HDR relocations. */ 2575 2576 Elf_Internal_Rela * 2577 _bfd_elf_link_read_relocs (bfd *abfd, 2578 asection *o, 2579 void *external_relocs, 2580 Elf_Internal_Rela *internal_relocs, 2581 bfd_boolean keep_memory) 2582 { 2583 void *alloc1 = NULL; 2584 Elf_Internal_Rela *alloc2 = NULL; 2585 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 2586 struct bfd_elf_section_data *esdo = elf_section_data (o); 2587 Elf_Internal_Rela *internal_rela_relocs; 2588 2589 if (esdo->relocs != NULL) 2590 return esdo->relocs; 2591 2592 if (o->reloc_count == 0) 2593 return NULL; 2594 2595 if (internal_relocs == NULL) 2596 { 2597 bfd_size_type size; 2598 2599 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela); 2600 if (keep_memory) 2601 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size); 2602 else 2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); 2604 if (internal_relocs == NULL) 2605 goto error_return; 2606 } 2607 2608 if (external_relocs == NULL) 2609 { 2610 bfd_size_type size = 0; 2611 2612 if (esdo->rel.hdr) 2613 size += esdo->rel.hdr->sh_size; 2614 if (esdo->rela.hdr) 2615 size += esdo->rela.hdr->sh_size; 2616 2617 alloc1 = bfd_malloc (size); 2618 if (alloc1 == NULL) 2619 goto error_return; 2620 external_relocs = alloc1; 2621 } 2622 2623 internal_rela_relocs = internal_relocs; 2624 if (esdo->rel.hdr) 2625 { 2626 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr, 2627 external_relocs, 2628 internal_relocs)) 2629 goto error_return; 2630 external_relocs = (((bfd_byte *) external_relocs) 2631 + esdo->rel.hdr->sh_size); 2632 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr) 2633 * bed->s->int_rels_per_ext_rel); 2634 } 2635 2636 if (esdo->rela.hdr 2637 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr, 2638 external_relocs, 2639 internal_rela_relocs))) 2640 goto error_return; 2641 2642 /* Cache the results for next time, if we can. */ 2643 if (keep_memory) 2644 esdo->relocs = internal_relocs; 2645 2646 if (alloc1 != NULL) 2647 free (alloc1); 2648 2649 /* Don't free alloc2, since if it was allocated we are passing it 2650 back (under the name of internal_relocs). */ 2651 2652 return internal_relocs; 2653 2654 error_return: 2655 if (alloc1 != NULL) 2656 free (alloc1); 2657 if (alloc2 != NULL) 2658 { 2659 if (keep_memory) 2660 bfd_release (abfd, alloc2); 2661 else 2662 free (alloc2); 2663 } 2664 return NULL; 2665 } 2666 2667 /* Compute the size of, and allocate space for, REL_HDR which is the 2668 section header for a section containing relocations for O. */ 2669 2670 static bfd_boolean 2671 _bfd_elf_link_size_reloc_section (bfd *abfd, 2672 struct bfd_elf_section_reloc_data *reldata) 2673 { 2674 Elf_Internal_Shdr *rel_hdr = reldata->hdr; 2675 2676 /* That allows us to calculate the size of the section. */ 2677 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count; 2678 2679 /* The contents field must last into write_object_contents, so we 2680 allocate it with bfd_alloc rather than malloc. Also since we 2681 cannot be sure that the contents will actually be filled in, 2682 we zero the allocated space. */ 2683 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size); 2684 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) 2685 return FALSE; 2686 2687 if (reldata->hashes == NULL && reldata->count) 2688 { 2689 struct elf_link_hash_entry **p; 2690 2691 p = ((struct elf_link_hash_entry **) 2692 bfd_zmalloc (reldata->count * sizeof (*p))); 2693 if (p == NULL) 2694 return FALSE; 2695 2696 reldata->hashes = p; 2697 } 2698 2699 return TRUE; 2700 } 2701 2702 /* Copy the relocations indicated by the INTERNAL_RELOCS (which 2703 originated from the section given by INPUT_REL_HDR) to the 2704 OUTPUT_BFD. */ 2705 2706 bfd_boolean 2707 _bfd_elf_link_output_relocs (bfd *output_bfd, 2708 asection *input_section, 2709 Elf_Internal_Shdr *input_rel_hdr, 2710 Elf_Internal_Rela *internal_relocs, 2711 struct elf_link_hash_entry **rel_hash 2712 ATTRIBUTE_UNUSED) 2713 { 2714 Elf_Internal_Rela *irela; 2715 Elf_Internal_Rela *irelaend; 2716 bfd_byte *erel; 2717 struct bfd_elf_section_reloc_data *output_reldata; 2718 asection *output_section; 2719 const struct elf_backend_data *bed; 2720 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 2721 struct bfd_elf_section_data *esdo; 2722 2723 output_section = input_section->output_section; 2724 2725 bed = get_elf_backend_data (output_bfd); 2726 esdo = elf_section_data (output_section); 2727 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize) 2728 { 2729 output_reldata = &esdo->rel; 2730 swap_out = bed->s->swap_reloc_out; 2731 } 2732 else if (esdo->rela.hdr 2733 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize) 2734 { 2735 output_reldata = &esdo->rela; 2736 swap_out = bed->s->swap_reloca_out; 2737 } 2738 else 2739 { 2740 _bfd_error_handler 2741 /* xgettext:c-format */ 2742 (_("%pB: relocation size mismatch in %pB section %pA"), 2743 output_bfd, input_section->owner, input_section); 2744 bfd_set_error (bfd_error_wrong_format); 2745 return FALSE; 2746 } 2747 2748 erel = output_reldata->hdr->contents; 2749 erel += output_reldata->count * input_rel_hdr->sh_entsize; 2750 irela = internal_relocs; 2751 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr) 2752 * bed->s->int_rels_per_ext_rel); 2753 while (irela < irelaend) 2754 { 2755 (*swap_out) (output_bfd, irela, erel); 2756 irela += bed->s->int_rels_per_ext_rel; 2757 erel += input_rel_hdr->sh_entsize; 2758 } 2759 2760 /* Bump the counter, so that we know where to add the next set of 2761 relocations. */ 2762 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr); 2763 2764 return TRUE; 2765 } 2766 2767 /* Make weak undefined symbols in PIE dynamic. */ 2768 2769 bfd_boolean 2770 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info, 2771 struct elf_link_hash_entry *h) 2772 { 2773 if (bfd_link_pie (info) 2774 && h->dynindx == -1 2775 && h->root.type == bfd_link_hash_undefweak) 2776 return bfd_elf_link_record_dynamic_symbol (info, h); 2777 2778 return TRUE; 2779 } 2780 2781 /* Fix up the flags for a symbol. This handles various cases which 2782 can only be fixed after all the input files are seen. This is 2783 currently called by both adjust_dynamic_symbol and 2784 assign_sym_version, which is unnecessary but perhaps more robust in 2785 the face of future changes. */ 2786 2787 static bfd_boolean 2788 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h, 2789 struct elf_info_failed *eif) 2790 { 2791 const struct elf_backend_data *bed; 2792 2793 /* If this symbol was mentioned in a non-ELF file, try to set 2794 DEF_REGULAR and REF_REGULAR correctly. This is the only way to 2795 permit a non-ELF file to correctly refer to a symbol defined in 2796 an ELF dynamic object. */ 2797 if (h->non_elf) 2798 { 2799 while (h->root.type == bfd_link_hash_indirect) 2800 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2801 2802 if (h->root.type != bfd_link_hash_defined 2803 && h->root.type != bfd_link_hash_defweak) 2804 { 2805 h->ref_regular = 1; 2806 h->ref_regular_nonweak = 1; 2807 } 2808 else 2809 { 2810 if (h->root.u.def.section->owner != NULL 2811 && (bfd_get_flavour (h->root.u.def.section->owner) 2812 == bfd_target_elf_flavour)) 2813 { 2814 h->ref_regular = 1; 2815 h->ref_regular_nonweak = 1; 2816 } 2817 else 2818 h->def_regular = 1; 2819 } 2820 2821 if (h->dynindx == -1 2822 && (h->def_dynamic 2823 || h->ref_dynamic)) 2824 { 2825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) 2826 { 2827 eif->failed = TRUE; 2828 return FALSE; 2829 } 2830 } 2831 } 2832 else 2833 { 2834 /* Unfortunately, NON_ELF is only correct if the symbol 2835 was first seen in a non-ELF file. Fortunately, if the symbol 2836 was first seen in an ELF file, we're probably OK unless the 2837 symbol was defined in a non-ELF file. Catch that case here. 2838 FIXME: We're still in trouble if the symbol was first seen in 2839 a dynamic object, and then later in a non-ELF regular object. */ 2840 if ((h->root.type == bfd_link_hash_defined 2841 || h->root.type == bfd_link_hash_defweak) 2842 && !h->def_regular 2843 && (h->root.u.def.section->owner != NULL 2844 ? (bfd_get_flavour (h->root.u.def.section->owner) 2845 != bfd_target_elf_flavour) 2846 : (bfd_is_abs_section (h->root.u.def.section) 2847 && !h->def_dynamic))) 2848 h->def_regular = 1; 2849 } 2850 2851 /* Backend specific symbol fixup. */ 2852 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); 2853 if (bed->elf_backend_fixup_symbol 2854 && !(*bed->elf_backend_fixup_symbol) (eif->info, h)) 2855 return FALSE; 2856 2857 /* If this is a final link, and the symbol was defined as a common 2858 symbol in a regular object file, and there was no definition in 2859 any dynamic object, then the linker will have allocated space for 2860 the symbol in a common section but the DEF_REGULAR 2861 flag will not have been set. */ 2862 if (h->root.type == bfd_link_hash_defined 2863 && !h->def_regular 2864 && h->ref_regular 2865 && !h->def_dynamic 2866 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0) 2867 h->def_regular = 1; 2868 2869 /* Symbols defined in discarded sections shouldn't be dynamic. */ 2870 if (h->root.type == bfd_link_hash_undefined && h->indx == -3) 2871 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); 2872 2873 /* If a weak undefined symbol has non-default visibility, we also 2874 hide it from the dynamic linker. */ 2875 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 2876 && h->root.type == bfd_link_hash_undefweak) 2877 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); 2878 2879 /* A hidden versioned symbol in executable should be forced local if 2880 it is is locally defined, not referenced by shared library and not 2881 exported. */ 2882 else if (bfd_link_executable (eif->info) 2883 && h->versioned == versioned_hidden 2884 && !eif->info->export_dynamic 2885 && !h->dynamic 2886 && !h->ref_dynamic 2887 && h->def_regular) 2888 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); 2889 2890 /* If -Bsymbolic was used (which means to bind references to global 2891 symbols to the definition within the shared object), and this 2892 symbol was defined in a regular object, then it actually doesn't 2893 need a PLT entry. Likewise, if the symbol has non-default 2894 visibility. If the symbol has hidden or internal visibility, we 2895 will force it local. */ 2896 else if (h->needs_plt 2897 && bfd_link_pic (eif->info) 2898 && is_elf_hash_table (eif->info->hash) 2899 && (SYMBOLIC_BIND (eif->info, h) 2900 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 2901 && h->def_regular) 2902 { 2903 bfd_boolean force_local; 2904 2905 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL 2906 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN); 2907 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local); 2908 } 2909 2910 /* If this is a weak defined symbol in a dynamic object, and we know 2911 the real definition in the dynamic object, copy interesting flags 2912 over to the real definition. */ 2913 if (h->is_weakalias) 2914 { 2915 struct elf_link_hash_entry *def = weakdef (h); 2916 while (def->root.type == bfd_link_hash_indirect) 2917 def = (struct elf_link_hash_entry *) def->root.u.i.link; 2918 2919 /* If the real definition is defined by a regular object file, 2920 don't do anything special. See the longer description in 2921 _bfd_elf_adjust_dynamic_symbol, below. If the def is not 2922 bfd_link_hash_defined as it was when put on the alias list 2923 then it must have originally been a versioned symbol (for 2924 which a non-versioned indirect symbol is created) and later 2925 a definition for the non-versioned symbol is found. In that 2926 case the indirection is flipped with the versioned symbol 2927 becoming an indirect pointing at the non-versioned symbol. 2928 Thus, not an alias any more. */ 2929 if (def->def_regular 2930 || def->root.type != bfd_link_hash_defined) 2931 { 2932 h = def; 2933 while ((h = h->u.alias) != def) 2934 h->is_weakalias = 0; 2935 } 2936 else 2937 { 2938 while (h->root.type == bfd_link_hash_indirect) 2939 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2940 BFD_ASSERT (h->root.type == bfd_link_hash_defined 2941 || h->root.type == bfd_link_hash_defweak); 2942 BFD_ASSERT (def->def_dynamic); 2943 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h); 2944 } 2945 } 2946 2947 return TRUE; 2948 } 2949 2950 /* Make the backend pick a good value for a dynamic symbol. This is 2951 called via elf_link_hash_traverse, and also calls itself 2952 recursively. */ 2953 2954 static bfd_boolean 2955 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data) 2956 { 2957 struct elf_info_failed *eif = (struct elf_info_failed *) data; 2958 struct elf_link_hash_table *htab; 2959 const struct elf_backend_data *bed; 2960 2961 if (! is_elf_hash_table (eif->info->hash)) 2962 return FALSE; 2963 2964 /* Ignore indirect symbols. These are added by the versioning code. */ 2965 if (h->root.type == bfd_link_hash_indirect) 2966 return TRUE; 2967 2968 /* Fix the symbol flags. */ 2969 if (! _bfd_elf_fix_symbol_flags (h, eif)) 2970 return FALSE; 2971 2972 htab = elf_hash_table (eif->info); 2973 bed = get_elf_backend_data (htab->dynobj); 2974 2975 if (h->root.type == bfd_link_hash_undefweak) 2976 { 2977 if (eif->info->dynamic_undefined_weak == 0) 2978 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); 2979 else if (eif->info->dynamic_undefined_weak > 0 2980 && h->ref_regular 2981 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 2982 && !bfd_hide_sym_by_version (eif->info->version_info, 2983 h->root.root.string)) 2984 { 2985 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h)) 2986 { 2987 eif->failed = TRUE; 2988 return FALSE; 2989 } 2990 } 2991 } 2992 2993 /* If this symbol does not require a PLT entry, and it is not 2994 defined by a dynamic object, or is not referenced by a regular 2995 object, ignore it. We do have to handle a weak defined symbol, 2996 even if no regular object refers to it, if we decided to add it 2997 to the dynamic symbol table. FIXME: Do we normally need to worry 2998 about symbols which are defined by one dynamic object and 2999 referenced by another one? */ 3000 if (!h->needs_plt 3001 && h->type != STT_GNU_IFUNC 3002 && (h->def_regular 3003 || !h->def_dynamic 3004 || (!h->ref_regular 3005 && (!h->is_weakalias || weakdef (h)->dynindx == -1)))) 3006 { 3007 h->plt = elf_hash_table (eif->info)->init_plt_offset; 3008 return TRUE; 3009 } 3010 3011 /* If we've already adjusted this symbol, don't do it again. This 3012 can happen via a recursive call. */ 3013 if (h->dynamic_adjusted) 3014 return TRUE; 3015 3016 /* Don't look at this symbol again. Note that we must set this 3017 after checking the above conditions, because we may look at a 3018 symbol once, decide not to do anything, and then get called 3019 recursively later after REF_REGULAR is set below. */ 3020 h->dynamic_adjusted = 1; 3021 3022 /* If this is a weak definition, and we know a real definition, and 3023 the real symbol is not itself defined by a regular object file, 3024 then get a good value for the real definition. We handle the 3025 real symbol first, for the convenience of the backend routine. 3026 3027 Note that there is a confusing case here. If the real definition 3028 is defined by a regular object file, we don't get the real symbol 3029 from the dynamic object, but we do get the weak symbol. If the 3030 processor backend uses a COPY reloc, then if some routine in the 3031 dynamic object changes the real symbol, we will not see that 3032 change in the corresponding weak symbol. This is the way other 3033 ELF linkers work as well, and seems to be a result of the shared 3034 library model. 3035 3036 I will clarify this issue. Most SVR4 shared libraries define the 3037 variable _timezone and define timezone as a weak synonym. The 3038 tzset call changes _timezone. If you write 3039 extern int timezone; 3040 int _timezone = 5; 3041 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } 3042 you might expect that, since timezone is a synonym for _timezone, 3043 the same number will print both times. However, if the processor 3044 backend uses a COPY reloc, then actually timezone will be copied 3045 into your process image, and, since you define _timezone 3046 yourself, _timezone will not. Thus timezone and _timezone will 3047 wind up at different memory locations. The tzset call will set 3048 _timezone, leaving timezone unchanged. */ 3049 3050 if (h->is_weakalias) 3051 { 3052 struct elf_link_hash_entry *def = weakdef (h); 3053 3054 /* If we get to this point, there is an implicit reference to 3055 the alias by a regular object file via the weak symbol H. */ 3056 def->ref_regular = 1; 3057 3058 /* Ensure that the backend adjust_dynamic_symbol function sees 3059 the strong alias before H by recursively calling ourselves. */ 3060 if (!_bfd_elf_adjust_dynamic_symbol (def, eif)) 3061 return FALSE; 3062 } 3063 3064 /* If a symbol has no type and no size and does not require a PLT 3065 entry, then we are probably about to do the wrong thing here: we 3066 are probably going to create a COPY reloc for an empty object. 3067 This case can arise when a shared object is built with assembly 3068 code, and the assembly code fails to set the symbol type. */ 3069 if (h->size == 0 3070 && h->type == STT_NOTYPE 3071 && !h->needs_plt) 3072 _bfd_error_handler 3073 (_("warning: type and size of dynamic symbol `%s' are not defined"), 3074 h->root.root.string); 3075 3076 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) 3077 { 3078 eif->failed = TRUE; 3079 return FALSE; 3080 } 3081 3082 return TRUE; 3083 } 3084 3085 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section, 3086 DYNBSS. */ 3087 3088 bfd_boolean 3089 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info, 3090 struct elf_link_hash_entry *h, 3091 asection *dynbss) 3092 { 3093 unsigned int power_of_two; 3094 bfd_vma mask; 3095 asection *sec = h->root.u.def.section; 3096 3097 /* The section alignment of the definition is the maximum alignment 3098 requirement of symbols defined in the section. Since we don't 3099 know the symbol alignment requirement, we start with the 3100 maximum alignment and check low bits of the symbol address 3101 for the minimum alignment. */ 3102 power_of_two = bfd_section_alignment (sec); 3103 mask = ((bfd_vma) 1 << power_of_two) - 1; 3104 while ((h->root.u.def.value & mask) != 0) 3105 { 3106 mask >>= 1; 3107 --power_of_two; 3108 } 3109 3110 if (power_of_two > bfd_section_alignment (dynbss)) 3111 { 3112 /* Adjust the section alignment if needed. */ 3113 if (!bfd_set_section_alignment (dynbss, power_of_two)) 3114 return FALSE; 3115 } 3116 3117 /* We make sure that the symbol will be aligned properly. */ 3118 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1); 3119 3120 /* Define the symbol as being at this point in DYNBSS. */ 3121 h->root.u.def.section = dynbss; 3122 h->root.u.def.value = dynbss->size; 3123 3124 /* Increment the size of DYNBSS to make room for the symbol. */ 3125 dynbss->size += h->size; 3126 3127 /* No error if extern_protected_data is true. */ 3128 if (h->protected_def 3129 && (!info->extern_protected_data 3130 || (info->extern_protected_data < 0 3131 && !get_elf_backend_data (dynbss->owner)->extern_protected_data))) 3132 info->callbacks->einfo 3133 (_("%P: copy reloc against protected `%pT' is dangerous\n"), 3134 h->root.root.string); 3135 3136 return TRUE; 3137 } 3138 3139 /* Adjust all external symbols pointing into SEC_MERGE sections 3140 to reflect the object merging within the sections. */ 3141 3142 static bfd_boolean 3143 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data) 3144 { 3145 asection *sec; 3146 3147 if ((h->root.type == bfd_link_hash_defined 3148 || h->root.type == bfd_link_hash_defweak) 3149 && ((sec = h->root.u.def.section)->flags & SEC_MERGE) 3150 && sec->sec_info_type == SEC_INFO_TYPE_MERGE) 3151 { 3152 bfd *output_bfd = (bfd *) data; 3153 3154 h->root.u.def.value = 3155 _bfd_merged_section_offset (output_bfd, 3156 &h->root.u.def.section, 3157 elf_section_data (sec)->sec_info, 3158 h->root.u.def.value); 3159 } 3160 3161 return TRUE; 3162 } 3163 3164 /* Returns false if the symbol referred to by H should be considered 3165 to resolve local to the current module, and true if it should be 3166 considered to bind dynamically. */ 3167 3168 bfd_boolean 3169 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, 3170 struct bfd_link_info *info, 3171 bfd_boolean not_local_protected) 3172 { 3173 bfd_boolean binding_stays_local_p; 3174 const struct elf_backend_data *bed; 3175 struct elf_link_hash_table *hash_table; 3176 3177 if (h == NULL) 3178 return FALSE; 3179 3180 while (h->root.type == bfd_link_hash_indirect 3181 || h->root.type == bfd_link_hash_warning) 3182 h = (struct elf_link_hash_entry *) h->root.u.i.link; 3183 3184 /* If it was forced local, then clearly it's not dynamic. */ 3185 if (h->dynindx == -1) 3186 return FALSE; 3187 if (h->forced_local) 3188 return FALSE; 3189 3190 /* Identify the cases where name binding rules say that a 3191 visible symbol resolves locally. */ 3192 binding_stays_local_p = (bfd_link_executable (info) 3193 || SYMBOLIC_BIND (info, h)); 3194 3195 switch (ELF_ST_VISIBILITY (h->other)) 3196 { 3197 case STV_INTERNAL: 3198 case STV_HIDDEN: 3199 return FALSE; 3200 3201 case STV_PROTECTED: 3202 hash_table = elf_hash_table (info); 3203 if (!is_elf_hash_table (hash_table)) 3204 return FALSE; 3205 3206 bed = get_elf_backend_data (hash_table->dynobj); 3207 3208 /* Proper resolution for function pointer equality may require 3209 that these symbols perhaps be resolved dynamically, even though 3210 we should be resolving them to the current module. */ 3211 if (!not_local_protected || !bed->is_function_type (h->type)) 3212 binding_stays_local_p = TRUE; 3213 break; 3214 3215 default: 3216 break; 3217 } 3218 3219 /* If it isn't defined locally, then clearly it's dynamic. */ 3220 if (!h->def_regular && !ELF_COMMON_DEF_P (h)) 3221 return TRUE; 3222 3223 /* Otherwise, the symbol is dynamic if binding rules don't tell 3224 us that it remains local. */ 3225 return !binding_stays_local_p; 3226 } 3227 3228 /* Return true if the symbol referred to by H should be considered 3229 to resolve local to the current module, and false otherwise. Differs 3230 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of 3231 undefined symbols. The two functions are virtually identical except 3232 for the place where dynindx == -1 is tested. If that test is true, 3233 _bfd_elf_dynamic_symbol_p will say the symbol is local, while 3234 _bfd_elf_symbol_refs_local_p will say the symbol is local only for 3235 defined symbols. 3236 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as 3237 !_bfd_elf_symbol_refs_local_p, except that targets differ in their 3238 treatment of undefined weak symbols. For those that do not make 3239 undefined weak symbols dynamic, both functions may return false. */ 3240 3241 bfd_boolean 3242 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h, 3243 struct bfd_link_info *info, 3244 bfd_boolean local_protected) 3245 { 3246 const struct elf_backend_data *bed; 3247 struct elf_link_hash_table *hash_table; 3248 3249 /* If it's a local sym, of course we resolve locally. */ 3250 if (h == NULL) 3251 return TRUE; 3252 3253 /* STV_HIDDEN or STV_INTERNAL ones must be local. */ 3254 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN 3255 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) 3256 return TRUE; 3257 3258 /* Forced local symbols resolve locally. */ 3259 if (h->forced_local) 3260 return TRUE; 3261 3262 /* Common symbols that become definitions don't get the DEF_REGULAR 3263 flag set, so test it first, and don't bail out. */ 3264 if (ELF_COMMON_DEF_P (h)) 3265 /* Do nothing. */; 3266 /* If we don't have a definition in a regular file, then we can't 3267 resolve locally. The sym is either undefined or dynamic. */ 3268 else if (!h->def_regular) 3269 return FALSE; 3270 3271 /* Non-dynamic symbols resolve locally. */ 3272 if (h->dynindx == -1) 3273 return TRUE; 3274 3275 /* At this point, we know the symbol is defined and dynamic. In an 3276 executable it must resolve locally, likewise when building symbolic 3277 shared libraries. */ 3278 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h)) 3279 return TRUE; 3280 3281 /* Now deal with defined dynamic symbols in shared libraries. Ones 3282 with default visibility might not resolve locally. */ 3283 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) 3284 return FALSE; 3285 3286 hash_table = elf_hash_table (info); 3287 if (!is_elf_hash_table (hash_table)) 3288 return TRUE; 3289 3290 bed = get_elf_backend_data (hash_table->dynobj); 3291 3292 /* If extern_protected_data is false, STV_PROTECTED non-function 3293 symbols are local. */ 3294 if ((!info->extern_protected_data 3295 || (info->extern_protected_data < 0 3296 && !bed->extern_protected_data)) 3297 && !bed->is_function_type (h->type)) 3298 return TRUE; 3299 3300 /* Function pointer equality tests may require that STV_PROTECTED 3301 symbols be treated as dynamic symbols. If the address of a 3302 function not defined in an executable is set to that function's 3303 plt entry in the executable, then the address of the function in 3304 a shared library must also be the plt entry in the executable. */ 3305 return local_protected; 3306 } 3307 3308 /* Caches some TLS segment info, and ensures that the TLS segment vma is 3309 aligned. Returns the first TLS output section. */ 3310 3311 struct bfd_section * 3312 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info) 3313 { 3314 struct bfd_section *sec, *tls; 3315 unsigned int align = 0; 3316 3317 for (sec = obfd->sections; sec != NULL; sec = sec->next) 3318 if ((sec->flags & SEC_THREAD_LOCAL) != 0) 3319 break; 3320 tls = sec; 3321 3322 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next) 3323 if (sec->alignment_power > align) 3324 align = sec->alignment_power; 3325 3326 elf_hash_table (info)->tls_sec = tls; 3327 3328 /* Ensure the alignment of the first section is the largest alignment, 3329 so that the tls segment starts aligned. */ 3330 if (tls != NULL) 3331 tls->alignment_power = align; 3332 3333 return tls; 3334 } 3335 3336 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */ 3337 static bfd_boolean 3338 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED, 3339 Elf_Internal_Sym *sym) 3340 { 3341 const struct elf_backend_data *bed; 3342 3343 /* Local symbols do not count, but target specific ones might. */ 3344 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL 3345 && ELF_ST_BIND (sym->st_info) < STB_LOOS) 3346 return FALSE; 3347 3348 bed = get_elf_backend_data (abfd); 3349 /* Function symbols do not count. */ 3350 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))) 3351 return FALSE; 3352 3353 /* If the section is undefined, then so is the symbol. */ 3354 if (sym->st_shndx == SHN_UNDEF) 3355 return FALSE; 3356 3357 /* If the symbol is defined in the common section, then 3358 it is a common definition and so does not count. */ 3359 if (bed->common_definition (sym)) 3360 return FALSE; 3361 3362 /* If the symbol is in a target specific section then we 3363 must rely upon the backend to tell us what it is. */ 3364 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) 3365 /* FIXME - this function is not coded yet: 3366 3367 return _bfd_is_global_symbol_definition (abfd, sym); 3368 3369 Instead for now assume that the definition is not global, 3370 Even if this is wrong, at least the linker will behave 3371 in the same way that it used to do. */ 3372 return FALSE; 3373 3374 return TRUE; 3375 } 3376 3377 /* Search the symbol table of the archive element of the archive ABFD 3378 whose archive map contains a mention of SYMDEF, and determine if 3379 the symbol is defined in this element. */ 3380 static bfd_boolean 3381 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef) 3382 { 3383 Elf_Internal_Shdr * hdr; 3384 size_t symcount; 3385 size_t extsymcount; 3386 size_t extsymoff; 3387 Elf_Internal_Sym *isymbuf; 3388 Elf_Internal_Sym *isym; 3389 Elf_Internal_Sym *isymend; 3390 bfd_boolean result; 3391 3392 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); 3393 if (abfd == NULL) 3394 return FALSE; 3395 3396 if (! bfd_check_format (abfd, bfd_object)) 3397 return FALSE; 3398 3399 /* Select the appropriate symbol table. If we don't know if the 3400 object file is an IR object, give linker LTO plugin a chance to 3401 get the correct symbol table. */ 3402 if (abfd->plugin_format == bfd_plugin_yes 3403 #if BFD_SUPPORTS_PLUGINS 3404 || (abfd->plugin_format == bfd_plugin_unknown 3405 && bfd_link_plugin_object_p (abfd)) 3406 #endif 3407 ) 3408 { 3409 /* Use the IR symbol table if the object has been claimed by 3410 plugin. */ 3411 abfd = abfd->plugin_dummy_bfd; 3412 hdr = &elf_tdata (abfd)->symtab_hdr; 3413 } 3414 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) 3415 hdr = &elf_tdata (abfd)->symtab_hdr; 3416 else 3417 hdr = &elf_tdata (abfd)->dynsymtab_hdr; 3418 3419 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; 3420 3421 /* The sh_info field of the symtab header tells us where the 3422 external symbols start. We don't care about the local symbols. */ 3423 if (elf_bad_symtab (abfd)) 3424 { 3425 extsymcount = symcount; 3426 extsymoff = 0; 3427 } 3428 else 3429 { 3430 extsymcount = symcount - hdr->sh_info; 3431 extsymoff = hdr->sh_info; 3432 } 3433 3434 if (extsymcount == 0) 3435 return FALSE; 3436 3437 /* Read in the symbol table. */ 3438 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, 3439 NULL, NULL, NULL); 3440 if (isymbuf == NULL) 3441 return FALSE; 3442 3443 /* Scan the symbol table looking for SYMDEF. */ 3444 result = FALSE; 3445 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++) 3446 { 3447 const char *name; 3448 3449 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 3450 isym->st_name); 3451 if (name == NULL) 3452 break; 3453 3454 if (strcmp (name, symdef->name) == 0) 3455 { 3456 result = is_global_data_symbol_definition (abfd, isym); 3457 break; 3458 } 3459 } 3460 3461 free (isymbuf); 3462 3463 return result; 3464 } 3465 3466 /* Add an entry to the .dynamic table. */ 3467 3468 bfd_boolean 3469 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info, 3470 bfd_vma tag, 3471 bfd_vma val) 3472 { 3473 struct elf_link_hash_table *hash_table; 3474 const struct elf_backend_data *bed; 3475 asection *s; 3476 bfd_size_type newsize; 3477 bfd_byte *newcontents; 3478 Elf_Internal_Dyn dyn; 3479 3480 hash_table = elf_hash_table (info); 3481 if (! is_elf_hash_table (hash_table)) 3482 return FALSE; 3483 3484 if (tag == DT_RELA || tag == DT_REL) 3485 hash_table->dynamic_relocs = TRUE; 3486 3487 bed = get_elf_backend_data (hash_table->dynobj); 3488 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic"); 3489 BFD_ASSERT (s != NULL); 3490 3491 newsize = s->size + bed->s->sizeof_dyn; 3492 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); 3493 if (newcontents == NULL) 3494 return FALSE; 3495 3496 dyn.d_tag = tag; 3497 dyn.d_un.d_val = val; 3498 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size); 3499 3500 s->size = newsize; 3501 s->contents = newcontents; 3502 3503 return TRUE; 3504 } 3505 3506 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true, 3507 otherwise just check whether one already exists. Returns -1 on error, 3508 1 if a DT_NEEDED tag already exists, and 0 on success. */ 3509 3510 static int 3511 elf_add_dt_needed_tag (bfd *abfd, 3512 struct bfd_link_info *info, 3513 const char *soname, 3514 bfd_boolean do_it) 3515 { 3516 struct elf_link_hash_table *hash_table; 3517 size_t strindex; 3518 3519 if (!_bfd_elf_link_create_dynstrtab (abfd, info)) 3520 return -1; 3521 3522 hash_table = elf_hash_table (info); 3523 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE); 3524 if (strindex == (size_t) -1) 3525 return -1; 3526 3527 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1) 3528 { 3529 asection *sdyn; 3530 const struct elf_backend_data *bed; 3531 bfd_byte *extdyn; 3532 3533 bed = get_elf_backend_data (hash_table->dynobj); 3534 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic"); 3535 if (sdyn != NULL) 3536 for (extdyn = sdyn->contents; 3537 extdyn < sdyn->contents + sdyn->size; 3538 extdyn += bed->s->sizeof_dyn) 3539 { 3540 Elf_Internal_Dyn dyn; 3541 3542 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn); 3543 if (dyn.d_tag == DT_NEEDED 3544 && dyn.d_un.d_val == strindex) 3545 { 3546 _bfd_elf_strtab_delref (hash_table->dynstr, strindex); 3547 return 1; 3548 } 3549 } 3550 } 3551 3552 if (do_it) 3553 { 3554 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info)) 3555 return -1; 3556 3557 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex)) 3558 return -1; 3559 } 3560 else 3561 /* We were just checking for existence of the tag. */ 3562 _bfd_elf_strtab_delref (hash_table->dynstr, strindex); 3563 3564 return 0; 3565 } 3566 3567 /* Return true if SONAME is on the needed list between NEEDED and STOP 3568 (or the end of list if STOP is NULL), and needed by a library that 3569 will be loaded. */ 3570 3571 static bfd_boolean 3572 on_needed_list (const char *soname, 3573 struct bfd_link_needed_list *needed, 3574 struct bfd_link_needed_list *stop) 3575 { 3576 struct bfd_link_needed_list *look; 3577 for (look = needed; look != stop; look = look->next) 3578 if (strcmp (soname, look->name) == 0 3579 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0 3580 /* If needed by a library that itself is not directly 3581 needed, recursively check whether that library is 3582 indirectly needed. Since we add DT_NEEDED entries to 3583 the end of the list, library dependencies appear after 3584 the library. Therefore search prior to the current 3585 LOOK, preventing possible infinite recursion. */ 3586 || on_needed_list (elf_dt_name (look->by), needed, look))) 3587 return TRUE; 3588 3589 return FALSE; 3590 } 3591 3592 /* Sort symbol by value, section, size, and type. */ 3593 static int 3594 elf_sort_symbol (const void *arg1, const void *arg2) 3595 { 3596 const struct elf_link_hash_entry *h1; 3597 const struct elf_link_hash_entry *h2; 3598 bfd_signed_vma vdiff; 3599 int sdiff; 3600 const char *n1; 3601 const char *n2; 3602 3603 h1 = *(const struct elf_link_hash_entry **) arg1; 3604 h2 = *(const struct elf_link_hash_entry **) arg2; 3605 vdiff = h1->root.u.def.value - h2->root.u.def.value; 3606 if (vdiff != 0) 3607 return vdiff > 0 ? 1 : -1; 3608 3609 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id; 3610 if (sdiff != 0) 3611 return sdiff; 3612 3613 /* Sort so that sized symbols are selected over zero size symbols. */ 3614 vdiff = h1->size - h2->size; 3615 if (vdiff != 0) 3616 return vdiff > 0 ? 1 : -1; 3617 3618 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */ 3619 if (h1->type != h2->type) 3620 return h1->type - h2->type; 3621 3622 /* If symbols are properly sized and typed, and multiple strong 3623 aliases are not defined in a shared library by the user we 3624 shouldn't get here. Unfortunately linker script symbols like 3625 __bss_start sometimes match a user symbol defined at the start of 3626 .bss without proper size and type. We'd like to preference the 3627 user symbol over reserved system symbols. Sort on leading 3628 underscores. */ 3629 n1 = h1->root.root.string; 3630 n2 = h2->root.root.string; 3631 while (*n1 == *n2) 3632 { 3633 if (*n1 == 0) 3634 break; 3635 ++n1; 3636 ++n2; 3637 } 3638 if (*n1 == '_') 3639 return -1; 3640 if (*n2 == '_') 3641 return 1; 3642 3643 /* Final sort on name selects user symbols like '_u' over reserved 3644 system symbols like '_Z' and also will avoid qsort instability. */ 3645 return *n1 - *n2; 3646 } 3647 3648 /* This function is used to adjust offsets into .dynstr for 3649 dynamic symbols. This is called via elf_link_hash_traverse. */ 3650 3651 static bfd_boolean 3652 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data) 3653 { 3654 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data; 3655 3656 if (h->dynindx != -1) 3657 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index); 3658 return TRUE; 3659 } 3660 3661 /* Assign string offsets in .dynstr, update all structures referencing 3662 them. */ 3663 3664 static bfd_boolean 3665 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info) 3666 { 3667 struct elf_link_hash_table *hash_table = elf_hash_table (info); 3668 struct elf_link_local_dynamic_entry *entry; 3669 struct elf_strtab_hash *dynstr = hash_table->dynstr; 3670 bfd *dynobj = hash_table->dynobj; 3671 asection *sdyn; 3672 bfd_size_type size; 3673 const struct elf_backend_data *bed; 3674 bfd_byte *extdyn; 3675 3676 _bfd_elf_strtab_finalize (dynstr); 3677 size = _bfd_elf_strtab_size (dynstr); 3678 3679 bed = get_elf_backend_data (dynobj); 3680 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 3681 BFD_ASSERT (sdyn != NULL); 3682 3683 /* Update all .dynamic entries referencing .dynstr strings. */ 3684 for (extdyn = sdyn->contents; 3685 extdyn < sdyn->contents + sdyn->size; 3686 extdyn += bed->s->sizeof_dyn) 3687 { 3688 Elf_Internal_Dyn dyn; 3689 3690 bed->s->swap_dyn_in (dynobj, extdyn, &dyn); 3691 switch (dyn.d_tag) 3692 { 3693 case DT_STRSZ: 3694 dyn.d_un.d_val = size; 3695 break; 3696 case DT_NEEDED: 3697 case DT_SONAME: 3698 case DT_RPATH: 3699 case DT_RUNPATH: 3700 case DT_FILTER: 3701 case DT_AUXILIARY: 3702 case DT_AUDIT: 3703 case DT_DEPAUDIT: 3704 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val); 3705 break; 3706 default: 3707 continue; 3708 } 3709 bed->s->swap_dyn_out (dynobj, &dyn, extdyn); 3710 } 3711 3712 /* Now update local dynamic symbols. */ 3713 for (entry = hash_table->dynlocal; entry ; entry = entry->next) 3714 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr, 3715 entry->isym.st_name); 3716 3717 /* And the rest of dynamic symbols. */ 3718 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr); 3719 3720 /* Adjust version definitions. */ 3721 if (elf_tdata (output_bfd)->cverdefs) 3722 { 3723 asection *s; 3724 bfd_byte *p; 3725 size_t i; 3726 Elf_Internal_Verdef def; 3727 Elf_Internal_Verdaux defaux; 3728 3729 s = bfd_get_linker_section (dynobj, ".gnu.version_d"); 3730 p = s->contents; 3731 do 3732 { 3733 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p, 3734 &def); 3735 p += sizeof (Elf_External_Verdef); 3736 if (def.vd_aux != sizeof (Elf_External_Verdef)) 3737 continue; 3738 for (i = 0; i < def.vd_cnt; ++i) 3739 { 3740 _bfd_elf_swap_verdaux_in (output_bfd, 3741 (Elf_External_Verdaux *) p, &defaux); 3742 defaux.vda_name = _bfd_elf_strtab_offset (dynstr, 3743 defaux.vda_name); 3744 _bfd_elf_swap_verdaux_out (output_bfd, 3745 &defaux, (Elf_External_Verdaux *) p); 3746 p += sizeof (Elf_External_Verdaux); 3747 } 3748 } 3749 while (def.vd_next); 3750 } 3751 3752 /* Adjust version references. */ 3753 if (elf_tdata (output_bfd)->verref) 3754 { 3755 asection *s; 3756 bfd_byte *p; 3757 size_t i; 3758 Elf_Internal_Verneed need; 3759 Elf_Internal_Vernaux needaux; 3760 3761 s = bfd_get_linker_section (dynobj, ".gnu.version_r"); 3762 p = s->contents; 3763 do 3764 { 3765 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p, 3766 &need); 3767 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file); 3768 _bfd_elf_swap_verneed_out (output_bfd, &need, 3769 (Elf_External_Verneed *) p); 3770 p += sizeof (Elf_External_Verneed); 3771 for (i = 0; i < need.vn_cnt; ++i) 3772 { 3773 _bfd_elf_swap_vernaux_in (output_bfd, 3774 (Elf_External_Vernaux *) p, &needaux); 3775 needaux.vna_name = _bfd_elf_strtab_offset (dynstr, 3776 needaux.vna_name); 3777 _bfd_elf_swap_vernaux_out (output_bfd, 3778 &needaux, 3779 (Elf_External_Vernaux *) p); 3780 p += sizeof (Elf_External_Vernaux); 3781 } 3782 } 3783 while (need.vn_next); 3784 } 3785 3786 return TRUE; 3787 } 3788 3789 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. 3790 The default is to only match when the INPUT and OUTPUT are exactly 3791 the same target. */ 3792 3793 bfd_boolean 3794 _bfd_elf_default_relocs_compatible (const bfd_target *input, 3795 const bfd_target *output) 3796 { 3797 return input == output; 3798 } 3799 3800 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. 3801 This version is used when different targets for the same architecture 3802 are virtually identical. */ 3803 3804 bfd_boolean 3805 _bfd_elf_relocs_compatible (const bfd_target *input, 3806 const bfd_target *output) 3807 { 3808 const struct elf_backend_data *obed, *ibed; 3809 3810 if (input == output) 3811 return TRUE; 3812 3813 ibed = xvec_get_elf_backend_data (input); 3814 obed = xvec_get_elf_backend_data (output); 3815 3816 if (ibed->arch != obed->arch) 3817 return FALSE; 3818 3819 /* If both backends are using this function, deem them compatible. */ 3820 return ibed->relocs_compatible == obed->relocs_compatible; 3821 } 3822 3823 /* Make a special call to the linker "notice" function to tell it that 3824 we are about to handle an as-needed lib, or have finished 3825 processing the lib. */ 3826 3827 bfd_boolean 3828 _bfd_elf_notice_as_needed (bfd *ibfd, 3829 struct bfd_link_info *info, 3830 enum notice_asneeded_action act) 3831 { 3832 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0); 3833 } 3834 3835 /* Check relocations an ELF object file. */ 3836 3837 bfd_boolean 3838 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info) 3839 { 3840 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 3841 struct elf_link_hash_table *htab = elf_hash_table (info); 3842 3843 /* If this object is the same format as the output object, and it is 3844 not a shared library, then let the backend look through the 3845 relocs. 3846 3847 This is required to build global offset table entries and to 3848 arrange for dynamic relocs. It is not required for the 3849 particular common case of linking non PIC code, even when linking 3850 against shared libraries, but unfortunately there is no way of 3851 knowing whether an object file has been compiled PIC or not. 3852 Looking through the relocs is not particularly time consuming. 3853 The problem is that we must either (1) keep the relocs in memory, 3854 which causes the linker to require additional runtime memory or 3855 (2) read the relocs twice from the input file, which wastes time. 3856 This would be a good case for using mmap. 3857 3858 I have no idea how to handle linking PIC code into a file of a 3859 different format. It probably can't be done. */ 3860 if ((abfd->flags & DYNAMIC) == 0 3861 && is_elf_hash_table (htab) 3862 && bed->check_relocs != NULL 3863 && elf_object_id (abfd) == elf_hash_table_id (htab) 3864 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec)) 3865 { 3866 asection *o; 3867 3868 for (o = abfd->sections; o != NULL; o = o->next) 3869 { 3870 Elf_Internal_Rela *internal_relocs; 3871 bfd_boolean ok; 3872 3873 /* Don't check relocations in excluded sections. */ 3874 if ((o->flags & SEC_RELOC) == 0 3875 || (o->flags & SEC_EXCLUDE) != 0 3876 || o->reloc_count == 0 3877 || ((info->strip == strip_all || info->strip == strip_debugger) 3878 && (o->flags & SEC_DEBUGGING) != 0) 3879 || bfd_is_abs_section (o->output_section)) 3880 continue; 3881 3882 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 3883 info->keep_memory); 3884 if (internal_relocs == NULL) 3885 return FALSE; 3886 3887 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs); 3888 3889 if (elf_section_data (o)->relocs != internal_relocs) 3890 free (internal_relocs); 3891 3892 if (! ok) 3893 return FALSE; 3894 } 3895 } 3896 3897 return TRUE; 3898 } 3899 3900 /* Add symbols from an ELF object file to the linker hash table. */ 3901 3902 static bfd_boolean 3903 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info) 3904 { 3905 Elf_Internal_Ehdr *ehdr; 3906 Elf_Internal_Shdr *hdr; 3907 size_t symcount; 3908 size_t extsymcount; 3909 size_t extsymoff; 3910 struct elf_link_hash_entry **sym_hash; 3911 bfd_boolean dynamic; 3912 Elf_External_Versym *extversym = NULL; 3913 Elf_External_Versym *extversym_end = NULL; 3914 Elf_External_Versym *ever; 3915 struct elf_link_hash_entry *weaks; 3916 struct elf_link_hash_entry **nondeflt_vers = NULL; 3917 size_t nondeflt_vers_cnt = 0; 3918 Elf_Internal_Sym *isymbuf = NULL; 3919 Elf_Internal_Sym *isym; 3920 Elf_Internal_Sym *isymend; 3921 const struct elf_backend_data *bed; 3922 bfd_boolean add_needed; 3923 struct elf_link_hash_table *htab; 3924 bfd_size_type amt; 3925 void *alloc_mark = NULL; 3926 struct bfd_hash_entry **old_table = NULL; 3927 unsigned int old_size = 0; 3928 unsigned int old_count = 0; 3929 void *old_tab = NULL; 3930 void *old_ent; 3931 struct bfd_link_hash_entry *old_undefs = NULL; 3932 struct bfd_link_hash_entry *old_undefs_tail = NULL; 3933 void *old_strtab = NULL; 3934 size_t tabsize = 0; 3935 asection *s; 3936 bfd_boolean just_syms; 3937 3938 htab = elf_hash_table (info); 3939 bed = get_elf_backend_data (abfd); 3940 3941 if ((abfd->flags & DYNAMIC) == 0) 3942 dynamic = FALSE; 3943 else 3944 { 3945 dynamic = TRUE; 3946 3947 /* You can't use -r against a dynamic object. Also, there's no 3948 hope of using a dynamic object which does not exactly match 3949 the format of the output file. */ 3950 if (bfd_link_relocatable (info) 3951 || !is_elf_hash_table (htab) 3952 || info->output_bfd->xvec != abfd->xvec) 3953 { 3954 if (bfd_link_relocatable (info)) 3955 bfd_set_error (bfd_error_invalid_operation); 3956 else 3957 bfd_set_error (bfd_error_wrong_format); 3958 goto error_return; 3959 } 3960 } 3961 3962 ehdr = elf_elfheader (abfd); 3963 if (info->warn_alternate_em 3964 && bed->elf_machine_code != ehdr->e_machine 3965 && ((bed->elf_machine_alt1 != 0 3966 && ehdr->e_machine == bed->elf_machine_alt1) 3967 || (bed->elf_machine_alt2 != 0 3968 && ehdr->e_machine == bed->elf_machine_alt2))) 3969 _bfd_error_handler 3970 /* xgettext:c-format */ 3971 (_("alternate ELF machine code found (%d) in %pB, expecting %d"), 3972 ehdr->e_machine, abfd, bed->elf_machine_code); 3973 3974 /* As a GNU extension, any input sections which are named 3975 .gnu.warning.SYMBOL are treated as warning symbols for the given 3976 symbol. This differs from .gnu.warning sections, which generate 3977 warnings when they are included in an output file. */ 3978 /* PR 12761: Also generate this warning when building shared libraries. */ 3979 for (s = abfd->sections; s != NULL; s = s->next) 3980 { 3981 const char *name; 3982 3983 name = bfd_section_name (s); 3984 if (CONST_STRNEQ (name, ".gnu.warning.")) 3985 { 3986 char *msg; 3987 bfd_size_type sz; 3988 3989 name += sizeof ".gnu.warning." - 1; 3990 3991 /* If this is a shared object, then look up the symbol 3992 in the hash table. If it is there, and it is already 3993 been defined, then we will not be using the entry 3994 from this shared object, so we don't need to warn. 3995 FIXME: If we see the definition in a regular object 3996 later on, we will warn, but we shouldn't. The only 3997 fix is to keep track of what warnings we are supposed 3998 to emit, and then handle them all at the end of the 3999 link. */ 4000 if (dynamic) 4001 { 4002 struct elf_link_hash_entry *h; 4003 4004 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE); 4005 4006 /* FIXME: What about bfd_link_hash_common? */ 4007 if (h != NULL 4008 && (h->root.type == bfd_link_hash_defined 4009 || h->root.type == bfd_link_hash_defweak)) 4010 continue; 4011 } 4012 4013 sz = s->size; 4014 msg = (char *) bfd_alloc (abfd, sz + 1); 4015 if (msg == NULL) 4016 goto error_return; 4017 4018 if (! bfd_get_section_contents (abfd, s, msg, 0, sz)) 4019 goto error_return; 4020 4021 msg[sz] = '\0'; 4022 4023 if (! (_bfd_generic_link_add_one_symbol 4024 (info, abfd, name, BSF_WARNING, s, 0, msg, 4025 FALSE, bed->collect, NULL))) 4026 goto error_return; 4027 4028 if (bfd_link_executable (info)) 4029 { 4030 /* Clobber the section size so that the warning does 4031 not get copied into the output file. */ 4032 s->size = 0; 4033 4034 /* Also set SEC_EXCLUDE, so that symbols defined in 4035 the warning section don't get copied to the output. */ 4036 s->flags |= SEC_EXCLUDE; 4037 } 4038 } 4039 } 4040 4041 just_syms = ((s = abfd->sections) != NULL 4042 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS); 4043 4044 add_needed = TRUE; 4045 if (! dynamic) 4046 { 4047 /* If we are creating a shared library, create all the dynamic 4048 sections immediately. We need to attach them to something, 4049 so we attach them to this BFD, provided it is the right 4050 format and is not from ld --just-symbols. Always create the 4051 dynamic sections for -E/--dynamic-list. FIXME: If there 4052 are no input BFD's of the same format as the output, we can't 4053 make a shared library. */ 4054 if (!just_syms 4055 && (bfd_link_pic (info) 4056 || (!bfd_link_relocatable (info) 4057 && info->nointerp 4058 && (info->export_dynamic || info->dynamic))) 4059 && is_elf_hash_table (htab) 4060 && info->output_bfd->xvec == abfd->xvec 4061 && !htab->dynamic_sections_created) 4062 { 4063 if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) 4064 goto error_return; 4065 } 4066 } 4067 else if (!is_elf_hash_table (htab)) 4068 goto error_return; 4069 else 4070 { 4071 const char *soname = NULL; 4072 char *audit = NULL; 4073 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL; 4074 const Elf_Internal_Phdr *phdr; 4075 int ret; 4076 4077 /* ld --just-symbols and dynamic objects don't mix very well. 4078 ld shouldn't allow it. */ 4079 if (just_syms) 4080 abort (); 4081 4082 /* If this dynamic lib was specified on the command line with 4083 --as-needed in effect, then we don't want to add a DT_NEEDED 4084 tag unless the lib is actually used. Similary for libs brought 4085 in by another lib's DT_NEEDED. When --no-add-needed is used 4086 on a dynamic lib, we don't want to add a DT_NEEDED entry for 4087 any dynamic library in DT_NEEDED tags in the dynamic lib at 4088 all. */ 4089 add_needed = (elf_dyn_lib_class (abfd) 4090 & (DYN_AS_NEEDED | DYN_DT_NEEDED 4091 | DYN_NO_NEEDED)) == 0; 4092 4093 s = bfd_get_section_by_name (abfd, ".dynamic"); 4094 if (s != NULL) 4095 { 4096 bfd_byte *dynbuf; 4097 bfd_byte *extdyn; 4098 unsigned int elfsec; 4099 unsigned long shlink; 4100 4101 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) 4102 { 4103 error_free_dyn: 4104 free (dynbuf); 4105 goto error_return; 4106 } 4107 4108 elfsec = _bfd_elf_section_from_bfd_section (abfd, s); 4109 if (elfsec == SHN_BAD) 4110 goto error_free_dyn; 4111 shlink = elf_elfsections (abfd)[elfsec]->sh_link; 4112 4113 for (extdyn = dynbuf; 4114 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn; 4115 extdyn += bed->s->sizeof_dyn) 4116 { 4117 Elf_Internal_Dyn dyn; 4118 4119 bed->s->swap_dyn_in (abfd, extdyn, &dyn); 4120 if (dyn.d_tag == DT_SONAME) 4121 { 4122 unsigned int tagv = dyn.d_un.d_val; 4123 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 4124 if (soname == NULL) 4125 goto error_free_dyn; 4126 } 4127 if (dyn.d_tag == DT_NEEDED) 4128 { 4129 struct bfd_link_needed_list *n, **pn; 4130 char *fnm, *anm; 4131 unsigned int tagv = dyn.d_un.d_val; 4132 4133 amt = sizeof (struct bfd_link_needed_list); 4134 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 4135 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 4136 if (n == NULL || fnm == NULL) 4137 goto error_free_dyn; 4138 amt = strlen (fnm) + 1; 4139 anm = (char *) bfd_alloc (abfd, amt); 4140 if (anm == NULL) 4141 goto error_free_dyn; 4142 memcpy (anm, fnm, amt); 4143 n->name = anm; 4144 n->by = abfd; 4145 n->next = NULL; 4146 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next) 4147 ; 4148 *pn = n; 4149 } 4150 if (dyn.d_tag == DT_RUNPATH) 4151 { 4152 struct bfd_link_needed_list *n, **pn; 4153 char *fnm, *anm; 4154 unsigned int tagv = dyn.d_un.d_val; 4155 4156 amt = sizeof (struct bfd_link_needed_list); 4157 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 4158 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 4159 if (n == NULL || fnm == NULL) 4160 goto error_free_dyn; 4161 amt = strlen (fnm) + 1; 4162 anm = (char *) bfd_alloc (abfd, amt); 4163 if (anm == NULL) 4164 goto error_free_dyn; 4165 memcpy (anm, fnm, amt); 4166 n->name = anm; 4167 n->by = abfd; 4168 n->next = NULL; 4169 for (pn = & runpath; 4170 *pn != NULL; 4171 pn = &(*pn)->next) 4172 ; 4173 *pn = n; 4174 } 4175 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */ 4176 if (!runpath && dyn.d_tag == DT_RPATH) 4177 { 4178 struct bfd_link_needed_list *n, **pn; 4179 char *fnm, *anm; 4180 unsigned int tagv = dyn.d_un.d_val; 4181 4182 amt = sizeof (struct bfd_link_needed_list); 4183 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 4184 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 4185 if (n == NULL || fnm == NULL) 4186 goto error_free_dyn; 4187 amt = strlen (fnm) + 1; 4188 anm = (char *) bfd_alloc (abfd, amt); 4189 if (anm == NULL) 4190 goto error_free_dyn; 4191 memcpy (anm, fnm, amt); 4192 n->name = anm; 4193 n->by = abfd; 4194 n->next = NULL; 4195 for (pn = & rpath; 4196 *pn != NULL; 4197 pn = &(*pn)->next) 4198 ; 4199 *pn = n; 4200 } 4201 if (dyn.d_tag == DT_AUDIT) 4202 { 4203 unsigned int tagv = dyn.d_un.d_val; 4204 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 4205 } 4206 } 4207 4208 free (dynbuf); 4209 } 4210 4211 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that 4212 frees all more recently bfd_alloc'd blocks as well. */ 4213 if (runpath) 4214 rpath = runpath; 4215 4216 if (rpath) 4217 { 4218 struct bfd_link_needed_list **pn; 4219 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next) 4220 ; 4221 *pn = rpath; 4222 } 4223 4224 /* If we have a PT_GNU_RELRO program header, mark as read-only 4225 all sections contained fully therein. This makes relro 4226 shared library sections appear as they will at run-time. */ 4227 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum; 4228 while (phdr-- > elf_tdata (abfd)->phdr) 4229 if (phdr->p_type == PT_GNU_RELRO) 4230 { 4231 for (s = abfd->sections; s != NULL; s = s->next) 4232 if ((s->flags & SEC_ALLOC) != 0 4233 && s->vma >= phdr->p_vaddr 4234 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz) 4235 s->flags |= SEC_READONLY; 4236 break; 4237 } 4238 4239 /* We do not want to include any of the sections in a dynamic 4240 object in the output file. We hack by simply clobbering the 4241 list of sections in the BFD. This could be handled more 4242 cleanly by, say, a new section flag; the existing 4243 SEC_NEVER_LOAD flag is not the one we want, because that one 4244 still implies that the section takes up space in the output 4245 file. */ 4246 bfd_section_list_clear (abfd); 4247 4248 /* Find the name to use in a DT_NEEDED entry that refers to this 4249 object. If the object has a DT_SONAME entry, we use it. 4250 Otherwise, if the generic linker stuck something in 4251 elf_dt_name, we use that. Otherwise, we just use the file 4252 name. */ 4253 if (soname == NULL || *soname == '\0') 4254 { 4255 soname = elf_dt_name (abfd); 4256 if (soname == NULL || *soname == '\0') 4257 soname = bfd_get_filename (abfd); 4258 } 4259 4260 /* Save the SONAME because sometimes the linker emulation code 4261 will need to know it. */ 4262 elf_dt_name (abfd) = soname; 4263 4264 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed); 4265 if (ret < 0) 4266 goto error_return; 4267 4268 /* If we have already included this dynamic object in the 4269 link, just ignore it. There is no reason to include a 4270 particular dynamic object more than once. */ 4271 if (ret > 0) 4272 return TRUE; 4273 4274 /* Save the DT_AUDIT entry for the linker emulation code. */ 4275 elf_dt_audit (abfd) = audit; 4276 } 4277 4278 /* If this is a dynamic object, we always link against the .dynsym 4279 symbol table, not the .symtab symbol table. The dynamic linker 4280 will only see the .dynsym symbol table, so there is no reason to 4281 look at .symtab for a dynamic object. */ 4282 4283 if (! dynamic || elf_dynsymtab (abfd) == 0) 4284 hdr = &elf_tdata (abfd)->symtab_hdr; 4285 else 4286 hdr = &elf_tdata (abfd)->dynsymtab_hdr; 4287 4288 symcount = hdr->sh_size / bed->s->sizeof_sym; 4289 4290 /* The sh_info field of the symtab header tells us where the 4291 external symbols start. We don't care about the local symbols at 4292 this point. */ 4293 if (elf_bad_symtab (abfd)) 4294 { 4295 extsymcount = symcount; 4296 extsymoff = 0; 4297 } 4298 else 4299 { 4300 extsymcount = symcount - hdr->sh_info; 4301 extsymoff = hdr->sh_info; 4302 } 4303 4304 sym_hash = elf_sym_hashes (abfd); 4305 if (extsymcount != 0) 4306 { 4307 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, 4308 NULL, NULL, NULL); 4309 if (isymbuf == NULL) 4310 goto error_return; 4311 4312 if (sym_hash == NULL) 4313 { 4314 /* We store a pointer to the hash table entry for each 4315 external symbol. */ 4316 amt = extsymcount; 4317 amt *= sizeof (struct elf_link_hash_entry *); 4318 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt); 4319 if (sym_hash == NULL) 4320 goto error_free_sym; 4321 elf_sym_hashes (abfd) = sym_hash; 4322 } 4323 } 4324 4325 if (dynamic) 4326 { 4327 /* Read in any version definitions. */ 4328 if (!_bfd_elf_slurp_version_tables (abfd, 4329 info->default_imported_symver)) 4330 goto error_free_sym; 4331 4332 /* Read in the symbol versions, but don't bother to convert them 4333 to internal format. */ 4334 if (elf_dynversym (abfd) != 0) 4335 { 4336 Elf_Internal_Shdr *versymhdr; 4337 4338 versymhdr = &elf_tdata (abfd)->dynversym_hdr; 4339 amt = versymhdr->sh_size; 4340 extversym = (Elf_External_Versym *) bfd_malloc (amt); 4341 if (extversym == NULL) 4342 goto error_free_sym; 4343 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0 4344 || bfd_bread (extversym, amt, abfd) != amt) 4345 goto error_free_vers; 4346 extversym_end = extversym + (amt / sizeof (* extversym)); 4347 } 4348 } 4349 4350 /* If we are loading an as-needed shared lib, save the symbol table 4351 state before we start adding symbols. If the lib turns out 4352 to be unneeded, restore the state. */ 4353 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) 4354 { 4355 unsigned int i; 4356 size_t entsize; 4357 4358 for (entsize = 0, i = 0; i < htab->root.table.size; i++) 4359 { 4360 struct bfd_hash_entry *p; 4361 struct elf_link_hash_entry *h; 4362 4363 for (p = htab->root.table.table[i]; p != NULL; p = p->next) 4364 { 4365 h = (struct elf_link_hash_entry *) p; 4366 entsize += htab->root.table.entsize; 4367 if (h->root.type == bfd_link_hash_warning) 4368 entsize += htab->root.table.entsize; 4369 } 4370 } 4371 4372 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *); 4373 old_tab = bfd_malloc (tabsize + entsize); 4374 if (old_tab == NULL) 4375 goto error_free_vers; 4376 4377 /* Remember the current objalloc pointer, so that all mem for 4378 symbols added can later be reclaimed. */ 4379 alloc_mark = bfd_hash_allocate (&htab->root.table, 1); 4380 if (alloc_mark == NULL) 4381 goto error_free_vers; 4382 4383 /* Make a special call to the linker "notice" function to 4384 tell it that we are about to handle an as-needed lib. */ 4385 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed)) 4386 goto error_free_vers; 4387 4388 /* Clone the symbol table. Remember some pointers into the 4389 symbol table, and dynamic symbol count. */ 4390 old_ent = (char *) old_tab + tabsize; 4391 memcpy (old_tab, htab->root.table.table, tabsize); 4392 old_undefs = htab->root.undefs; 4393 old_undefs_tail = htab->root.undefs_tail; 4394 old_table = htab->root.table.table; 4395 old_size = htab->root.table.size; 4396 old_count = htab->root.table.count; 4397 old_strtab = _bfd_elf_strtab_save (htab->dynstr); 4398 if (old_strtab == NULL) 4399 goto error_free_vers; 4400 4401 for (i = 0; i < htab->root.table.size; i++) 4402 { 4403 struct bfd_hash_entry *p; 4404 struct elf_link_hash_entry *h; 4405 4406 for (p = htab->root.table.table[i]; p != NULL; p = p->next) 4407 { 4408 memcpy (old_ent, p, htab->root.table.entsize); 4409 old_ent = (char *) old_ent + htab->root.table.entsize; 4410 h = (struct elf_link_hash_entry *) p; 4411 if (h->root.type == bfd_link_hash_warning) 4412 { 4413 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize); 4414 old_ent = (char *) old_ent + htab->root.table.entsize; 4415 } 4416 } 4417 } 4418 } 4419 4420 weaks = NULL; 4421 if (extversym == NULL) 4422 ever = NULL; 4423 else if (extversym + extsymoff < extversym_end) 4424 ever = extversym + extsymoff; 4425 else 4426 { 4427 /* xgettext:c-format */ 4428 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"), 4429 abfd, (long) extsymoff, 4430 (long) (extversym_end - extversym) / sizeof (* extversym)); 4431 bfd_set_error (bfd_error_bad_value); 4432 goto error_free_vers; 4433 } 4434 4435 if (!bfd_link_relocatable (info) 4436 && abfd->lto_slim_object) 4437 { 4438 _bfd_error_handler 4439 (_("%pB: plugin needed to handle lto object"), abfd); 4440 } 4441 4442 for (isym = isymbuf, isymend = isymbuf + extsymcount; 4443 isym < isymend; 4444 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) 4445 { 4446 int bind; 4447 bfd_vma value; 4448 asection *sec, *new_sec; 4449 flagword flags; 4450 const char *name; 4451 struct elf_link_hash_entry *h; 4452 struct elf_link_hash_entry *hi; 4453 bfd_boolean definition; 4454 bfd_boolean size_change_ok; 4455 bfd_boolean type_change_ok; 4456 bfd_boolean new_weak; 4457 bfd_boolean old_weak; 4458 bfd_boolean override; 4459 bfd_boolean common; 4460 bfd_boolean discarded; 4461 unsigned int old_alignment; 4462 unsigned int shindex; 4463 bfd *old_bfd; 4464 bfd_boolean matched; 4465 4466 override = FALSE; 4467 4468 flags = BSF_NO_FLAGS; 4469 sec = NULL; 4470 value = isym->st_value; 4471 common = bed->common_definition (isym); 4472 if (common && info->inhibit_common_definition) 4473 { 4474 /* Treat common symbol as undefined for --no-define-common. */ 4475 isym->st_shndx = SHN_UNDEF; 4476 common = FALSE; 4477 } 4478 discarded = FALSE; 4479 4480 bind = ELF_ST_BIND (isym->st_info); 4481 switch (bind) 4482 { 4483 case STB_LOCAL: 4484 /* This should be impossible, since ELF requires that all 4485 global symbols follow all local symbols, and that sh_info 4486 point to the first global symbol. Unfortunately, Irix 5 4487 screws this up. */ 4488 if (elf_bad_symtab (abfd)) 4489 continue; 4490 4491 /* If we aren't prepared to handle locals within the globals 4492 then we'll likely segfault on a NULL symbol hash if the 4493 symbol is ever referenced in relocations. */ 4494 shindex = elf_elfheader (abfd)->e_shstrndx; 4495 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name); 4496 _bfd_error_handler (_("%pB: %s local symbol at index %lu" 4497 " (>= sh_info of %lu)"), 4498 abfd, name, (long) (isym - isymbuf + extsymoff), 4499 (long) extsymoff); 4500 4501 /* Dynamic object relocations are not processed by ld, so 4502 ld won't run into the problem mentioned above. */ 4503 if (dynamic) 4504 continue; 4505 bfd_set_error (bfd_error_bad_value); 4506 goto error_free_vers; 4507 4508 case STB_GLOBAL: 4509 if (isym->st_shndx != SHN_UNDEF && !common) 4510 flags = BSF_GLOBAL; 4511 break; 4512 4513 case STB_WEAK: 4514 flags = BSF_WEAK; 4515 break; 4516 4517 case STB_GNU_UNIQUE: 4518 flags = BSF_GNU_UNIQUE; 4519 break; 4520 4521 default: 4522 /* Leave it up to the processor backend. */ 4523 break; 4524 } 4525 4526 if (isym->st_shndx == SHN_UNDEF) 4527 sec = bfd_und_section_ptr; 4528 else if (isym->st_shndx == SHN_ABS) 4529 sec = bfd_abs_section_ptr; 4530 else if (isym->st_shndx == SHN_COMMON) 4531 { 4532 sec = bfd_com_section_ptr; 4533 /* What ELF calls the size we call the value. What ELF 4534 calls the value we call the alignment. */ 4535 value = isym->st_size; 4536 } 4537 else 4538 { 4539 sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 4540 if (sec == NULL) 4541 sec = bfd_abs_section_ptr; 4542 else if (discarded_section (sec)) 4543 { 4544 /* Symbols from discarded section are undefined. We keep 4545 its visibility. */ 4546 sec = bfd_und_section_ptr; 4547 discarded = TRUE; 4548 isym->st_shndx = SHN_UNDEF; 4549 } 4550 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) 4551 value -= sec->vma; 4552 } 4553 4554 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 4555 isym->st_name); 4556 if (name == NULL) 4557 goto error_free_vers; 4558 4559 if (isym->st_shndx == SHN_COMMON 4560 && (abfd->flags & BFD_PLUGIN) != 0) 4561 { 4562 asection *xc = bfd_get_section_by_name (abfd, "COMMON"); 4563 4564 if (xc == NULL) 4565 { 4566 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP 4567 | SEC_EXCLUDE); 4568 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags); 4569 if (xc == NULL) 4570 goto error_free_vers; 4571 } 4572 sec = xc; 4573 } 4574 else if (isym->st_shndx == SHN_COMMON 4575 && ELF_ST_TYPE (isym->st_info) == STT_TLS 4576 && !bfd_link_relocatable (info)) 4577 { 4578 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon"); 4579 4580 if (tcomm == NULL) 4581 { 4582 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON 4583 | SEC_LINKER_CREATED); 4584 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags); 4585 if (tcomm == NULL) 4586 goto error_free_vers; 4587 } 4588 sec = tcomm; 4589 } 4590 else if (bed->elf_add_symbol_hook) 4591 { 4592 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags, 4593 &sec, &value)) 4594 goto error_free_vers; 4595 4596 /* The hook function sets the name to NULL if this symbol 4597 should be skipped for some reason. */ 4598 if (name == NULL) 4599 continue; 4600 } 4601 4602 /* Sanity check that all possibilities were handled. */ 4603 if (sec == NULL) 4604 abort (); 4605 4606 /* Silently discard TLS symbols from --just-syms. There's 4607 no way to combine a static TLS block with a new TLS block 4608 for this executable. */ 4609 if (ELF_ST_TYPE (isym->st_info) == STT_TLS 4610 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 4611 continue; 4612 4613 if (bfd_is_und_section (sec) 4614 || bfd_is_com_section (sec)) 4615 definition = FALSE; 4616 else 4617 definition = TRUE; 4618 4619 size_change_ok = FALSE; 4620 type_change_ok = bed->type_change_ok; 4621 old_weak = FALSE; 4622 matched = FALSE; 4623 old_alignment = 0; 4624 old_bfd = NULL; 4625 new_sec = sec; 4626 4627 if (is_elf_hash_table (htab)) 4628 { 4629 Elf_Internal_Versym iver; 4630 unsigned int vernum = 0; 4631 bfd_boolean skip; 4632 4633 if (ever == NULL) 4634 { 4635 if (info->default_imported_symver) 4636 /* Use the default symbol version created earlier. */ 4637 iver.vs_vers = elf_tdata (abfd)->cverdefs; 4638 else 4639 iver.vs_vers = 0; 4640 } 4641 else if (ever >= extversym_end) 4642 { 4643 /* xgettext:c-format */ 4644 _bfd_error_handler (_("%pB: not enough version information"), 4645 abfd); 4646 bfd_set_error (bfd_error_bad_value); 4647 goto error_free_vers; 4648 } 4649 else 4650 _bfd_elf_swap_versym_in (abfd, ever, &iver); 4651 4652 vernum = iver.vs_vers & VERSYM_VERSION; 4653 4654 /* If this is a hidden symbol, or if it is not version 4655 1, we append the version name to the symbol name. 4656 However, we do not modify a non-hidden absolute symbol 4657 if it is not a function, because it might be the version 4658 symbol itself. FIXME: What if it isn't? */ 4659 if ((iver.vs_vers & VERSYM_HIDDEN) != 0 4660 || (vernum > 1 4661 && (!bfd_is_abs_section (sec) 4662 || bed->is_function_type (ELF_ST_TYPE (isym->st_info))))) 4663 { 4664 const char *verstr; 4665 size_t namelen, verlen, newlen; 4666 char *newname, *p; 4667 4668 if (isym->st_shndx != SHN_UNDEF) 4669 { 4670 if (vernum > elf_tdata (abfd)->cverdefs) 4671 verstr = NULL; 4672 else if (vernum > 1) 4673 verstr = 4674 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; 4675 else 4676 verstr = ""; 4677 4678 if (verstr == NULL) 4679 { 4680 _bfd_error_handler 4681 /* xgettext:c-format */ 4682 (_("%pB: %s: invalid version %u (max %d)"), 4683 abfd, name, vernum, 4684 elf_tdata (abfd)->cverdefs); 4685 bfd_set_error (bfd_error_bad_value); 4686 goto error_free_vers; 4687 } 4688 } 4689 else 4690 { 4691 /* We cannot simply test for the number of 4692 entries in the VERNEED section since the 4693 numbers for the needed versions do not start 4694 at 0. */ 4695 Elf_Internal_Verneed *t; 4696 4697 verstr = NULL; 4698 for (t = elf_tdata (abfd)->verref; 4699 t != NULL; 4700 t = t->vn_nextref) 4701 { 4702 Elf_Internal_Vernaux *a; 4703 4704 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 4705 { 4706 if (a->vna_other == vernum) 4707 { 4708 verstr = a->vna_nodename; 4709 break; 4710 } 4711 } 4712 if (a != NULL) 4713 break; 4714 } 4715 if (verstr == NULL) 4716 { 4717 _bfd_error_handler 4718 /* xgettext:c-format */ 4719 (_("%pB: %s: invalid needed version %d"), 4720 abfd, name, vernum); 4721 bfd_set_error (bfd_error_bad_value); 4722 goto error_free_vers; 4723 } 4724 } 4725 4726 namelen = strlen (name); 4727 verlen = strlen (verstr); 4728 newlen = namelen + verlen + 2; 4729 if ((iver.vs_vers & VERSYM_HIDDEN) == 0 4730 && isym->st_shndx != SHN_UNDEF) 4731 ++newlen; 4732 4733 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen); 4734 if (newname == NULL) 4735 goto error_free_vers; 4736 memcpy (newname, name, namelen); 4737 p = newname + namelen; 4738 *p++ = ELF_VER_CHR; 4739 /* If this is a defined non-hidden version symbol, 4740 we add another @ to the name. This indicates the 4741 default version of the symbol. */ 4742 if ((iver.vs_vers & VERSYM_HIDDEN) == 0 4743 && isym->st_shndx != SHN_UNDEF) 4744 *p++ = ELF_VER_CHR; 4745 memcpy (p, verstr, verlen + 1); 4746 4747 name = newname; 4748 } 4749 4750 /* If this symbol has default visibility and the user has 4751 requested we not re-export it, then mark it as hidden. */ 4752 if (!bfd_is_und_section (sec) 4753 && !dynamic 4754 && abfd->no_export 4755 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL) 4756 isym->st_other = (STV_HIDDEN 4757 | (isym->st_other & ~ELF_ST_VISIBILITY (-1))); 4758 4759 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value, 4760 sym_hash, &old_bfd, &old_weak, 4761 &old_alignment, &skip, &override, 4762 &type_change_ok, &size_change_ok, 4763 &matched)) 4764 goto error_free_vers; 4765 4766 if (skip) 4767 continue; 4768 4769 /* Override a definition only if the new symbol matches the 4770 existing one. */ 4771 if (override && matched) 4772 definition = FALSE; 4773 4774 h = *sym_hash; 4775 while (h->root.type == bfd_link_hash_indirect 4776 || h->root.type == bfd_link_hash_warning) 4777 h = (struct elf_link_hash_entry *) h->root.u.i.link; 4778 4779 if (elf_tdata (abfd)->verdef != NULL 4780 && vernum > 1 4781 && definition) 4782 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; 4783 } 4784 4785 if (! (_bfd_generic_link_add_one_symbol 4786 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect, 4787 (struct bfd_link_hash_entry **) sym_hash))) 4788 goto error_free_vers; 4789 4790 h = *sym_hash; 4791 /* We need to make sure that indirect symbol dynamic flags are 4792 updated. */ 4793 hi = h; 4794 while (h->root.type == bfd_link_hash_indirect 4795 || h->root.type == bfd_link_hash_warning) 4796 h = (struct elf_link_hash_entry *) h->root.u.i.link; 4797 4798 /* Setting the index to -3 tells elf_link_output_extsym that 4799 this symbol is defined in a discarded section. */ 4800 if (discarded) 4801 h->indx = -3; 4802 4803 *sym_hash = h; 4804 4805 new_weak = (flags & BSF_WEAK) != 0; 4806 if (dynamic 4807 && definition 4808 && new_weak 4809 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info)) 4810 && is_elf_hash_table (htab) 4811 && h->u.alias == NULL) 4812 { 4813 /* Keep a list of all weak defined non function symbols from 4814 a dynamic object, using the alias field. Later in this 4815 function we will set the alias field to the correct 4816 value. We only put non-function symbols from dynamic 4817 objects on this list, because that happens to be the only 4818 time we need to know the normal symbol corresponding to a 4819 weak symbol, and the information is time consuming to 4820 figure out. If the alias field is not already NULL, 4821 then this symbol was already defined by some previous 4822 dynamic object, and we will be using that previous 4823 definition anyhow. */ 4824 4825 h->u.alias = weaks; 4826 weaks = h; 4827 } 4828 4829 /* Set the alignment of a common symbol. */ 4830 if ((common || bfd_is_com_section (sec)) 4831 && h->root.type == bfd_link_hash_common) 4832 { 4833 unsigned int align; 4834 4835 if (common) 4836 align = bfd_log2 (isym->st_value); 4837 else 4838 { 4839 /* The new symbol is a common symbol in a shared object. 4840 We need to get the alignment from the section. */ 4841 align = new_sec->alignment_power; 4842 } 4843 if (align > old_alignment) 4844 h->root.u.c.p->alignment_power = align; 4845 else 4846 h->root.u.c.p->alignment_power = old_alignment; 4847 } 4848 4849 if (is_elf_hash_table (htab)) 4850 { 4851 /* Set a flag in the hash table entry indicating the type of 4852 reference or definition we just found. A dynamic symbol 4853 is one which is referenced or defined by both a regular 4854 object and a shared object. */ 4855 bfd_boolean dynsym = FALSE; 4856 4857 /* Plugin symbols aren't normal. Don't set def_regular or 4858 ref_regular for them, or make them dynamic. */ 4859 if ((abfd->flags & BFD_PLUGIN) != 0) 4860 ; 4861 else if (! dynamic) 4862 { 4863 if (! definition) 4864 { 4865 h->ref_regular = 1; 4866 if (bind != STB_WEAK) 4867 h->ref_regular_nonweak = 1; 4868 } 4869 else 4870 { 4871 h->def_regular = 1; 4872 if (h->def_dynamic) 4873 { 4874 h->def_dynamic = 0; 4875 h->ref_dynamic = 1; 4876 } 4877 } 4878 4879 /* If the indirect symbol has been forced local, don't 4880 make the real symbol dynamic. */ 4881 if ((h == hi || !hi->forced_local) 4882 && (bfd_link_dll (info) 4883 || h->def_dynamic 4884 || h->ref_dynamic)) 4885 dynsym = TRUE; 4886 } 4887 else 4888 { 4889 if (! definition) 4890 { 4891 h->ref_dynamic = 1; 4892 hi->ref_dynamic = 1; 4893 } 4894 else 4895 { 4896 h->def_dynamic = 1; 4897 hi->def_dynamic = 1; 4898 } 4899 4900 /* If the indirect symbol has been forced local, don't 4901 make the real symbol dynamic. */ 4902 if ((h == hi || !hi->forced_local) 4903 && (h->def_regular 4904 || h->ref_regular 4905 || (h->is_weakalias 4906 && weakdef (h)->dynindx != -1))) 4907 dynsym = TRUE; 4908 } 4909 4910 /* Check to see if we need to add an indirect symbol for 4911 the default name. */ 4912 if (definition 4913 || (!override && h->root.type == bfd_link_hash_common)) 4914 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym, 4915 sec, value, &old_bfd, &dynsym)) 4916 goto error_free_vers; 4917 4918 /* Check the alignment when a common symbol is involved. This 4919 can change when a common symbol is overridden by a normal 4920 definition or a common symbol is ignored due to the old 4921 normal definition. We need to make sure the maximum 4922 alignment is maintained. */ 4923 if ((old_alignment || common) 4924 && h->root.type != bfd_link_hash_common) 4925 { 4926 unsigned int common_align; 4927 unsigned int normal_align; 4928 unsigned int symbol_align; 4929 bfd *normal_bfd; 4930 bfd *common_bfd; 4931 4932 BFD_ASSERT (h->root.type == bfd_link_hash_defined 4933 || h->root.type == bfd_link_hash_defweak); 4934 4935 symbol_align = ffs (h->root.u.def.value) - 1; 4936 if (h->root.u.def.section->owner != NULL 4937 && (h->root.u.def.section->owner->flags 4938 & (DYNAMIC | BFD_PLUGIN)) == 0) 4939 { 4940 normal_align = h->root.u.def.section->alignment_power; 4941 if (normal_align > symbol_align) 4942 normal_align = symbol_align; 4943 } 4944 else 4945 normal_align = symbol_align; 4946 4947 if (old_alignment) 4948 { 4949 common_align = old_alignment; 4950 common_bfd = old_bfd; 4951 normal_bfd = abfd; 4952 } 4953 else 4954 { 4955 common_align = bfd_log2 (isym->st_value); 4956 common_bfd = abfd; 4957 normal_bfd = old_bfd; 4958 } 4959 4960 if (normal_align < common_align) 4961 { 4962 /* PR binutils/2735 */ 4963 if (normal_bfd == NULL) 4964 _bfd_error_handler 4965 /* xgettext:c-format */ 4966 (_("warning: alignment %u of common symbol `%s' in %pB is" 4967 " greater than the alignment (%u) of its section %pA"), 4968 1 << common_align, name, common_bfd, 4969 1 << normal_align, h->root.u.def.section); 4970 else 4971 _bfd_error_handler 4972 /* xgettext:c-format */ 4973 (_("warning: alignment %u of symbol `%s' in %pB" 4974 " is smaller than %u in %pB"), 4975 1 << normal_align, name, normal_bfd, 4976 1 << common_align, common_bfd); 4977 } 4978 } 4979 4980 /* Remember the symbol size if it isn't undefined. */ 4981 if (isym->st_size != 0 4982 && isym->st_shndx != SHN_UNDEF 4983 && (definition || h->size == 0)) 4984 { 4985 if (h->size != 0 4986 && h->size != isym->st_size 4987 && ! size_change_ok) 4988 _bfd_error_handler 4989 /* xgettext:c-format */ 4990 (_("warning: size of symbol `%s' changed" 4991 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"), 4992 name, (uint64_t) h->size, old_bfd, 4993 (uint64_t) isym->st_size, abfd); 4994 4995 h->size = isym->st_size; 4996 } 4997 4998 /* If this is a common symbol, then we always want H->SIZE 4999 to be the size of the common symbol. The code just above 5000 won't fix the size if a common symbol becomes larger. We 5001 don't warn about a size change here, because that is 5002 covered by --warn-common. Allow changes between different 5003 function types. */ 5004 if (h->root.type == bfd_link_hash_common) 5005 h->size = h->root.u.c.size; 5006 5007 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE 5008 && ((definition && !new_weak) 5009 || (old_weak && h->root.type == bfd_link_hash_common) 5010 || h->type == STT_NOTYPE)) 5011 { 5012 unsigned int type = ELF_ST_TYPE (isym->st_info); 5013 5014 /* Turn an IFUNC symbol from a DSO into a normal FUNC 5015 symbol. */ 5016 if (type == STT_GNU_IFUNC 5017 && (abfd->flags & DYNAMIC) != 0) 5018 type = STT_FUNC; 5019 5020 if (h->type != type) 5021 { 5022 if (h->type != STT_NOTYPE && ! type_change_ok) 5023 /* xgettext:c-format */ 5024 _bfd_error_handler 5025 (_("warning: type of symbol `%s' changed" 5026 " from %d to %d in %pB"), 5027 name, h->type, type, abfd); 5028 5029 h->type = type; 5030 } 5031 } 5032 5033 /* Merge st_other field. */ 5034 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic); 5035 5036 /* We don't want to make debug symbol dynamic. */ 5037 if (definition 5038 && (sec->flags & SEC_DEBUGGING) 5039 && !bfd_link_relocatable (info)) 5040 dynsym = FALSE; 5041 5042 /* Nor should we make plugin symbols dynamic. */ 5043 if ((abfd->flags & BFD_PLUGIN) != 0) 5044 dynsym = FALSE; 5045 5046 if (definition) 5047 { 5048 h->target_internal = isym->st_target_internal; 5049 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0; 5050 } 5051 5052 if (definition && !dynamic) 5053 { 5054 char *p = strchr (name, ELF_VER_CHR); 5055 if (p != NULL && p[1] != ELF_VER_CHR) 5056 { 5057 /* Queue non-default versions so that .symver x, x@FOO 5058 aliases can be checked. */ 5059 if (!nondeflt_vers) 5060 { 5061 amt = ((isymend - isym + 1) 5062 * sizeof (struct elf_link_hash_entry *)); 5063 nondeflt_vers 5064 = (struct elf_link_hash_entry **) bfd_malloc (amt); 5065 if (!nondeflt_vers) 5066 goto error_free_vers; 5067 } 5068 nondeflt_vers[nondeflt_vers_cnt++] = h; 5069 } 5070 } 5071 5072 if (dynsym && h->dynindx == -1) 5073 { 5074 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 5075 goto error_free_vers; 5076 if (h->is_weakalias 5077 && weakdef (h)->dynindx == -1) 5078 { 5079 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h))) 5080 goto error_free_vers; 5081 } 5082 } 5083 else if (h->dynindx != -1) 5084 /* If the symbol already has a dynamic index, but 5085 visibility says it should not be visible, turn it into 5086 a local symbol. */ 5087 switch (ELF_ST_VISIBILITY (h->other)) 5088 { 5089 case STV_INTERNAL: 5090 case STV_HIDDEN: 5091 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 5092 dynsym = FALSE; 5093 break; 5094 } 5095 5096 /* Don't add DT_NEEDED for references from the dummy bfd nor 5097 for unmatched symbol. */ 5098 if (!add_needed 5099 && matched 5100 && definition 5101 && ((dynsym 5102 && h->ref_regular_nonweak 5103 && (old_bfd == NULL 5104 || (old_bfd->flags & BFD_PLUGIN) == 0)) 5105 || (h->ref_dynamic_nonweak 5106 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0 5107 && !on_needed_list (elf_dt_name (abfd), 5108 htab->needed, NULL)))) 5109 { 5110 int ret; 5111 const char *soname = elf_dt_name (abfd); 5112 5113 info->callbacks->minfo ("%!", soname, old_bfd, 5114 h->root.root.string); 5115 5116 /* A symbol from a library loaded via DT_NEEDED of some 5117 other library is referenced by a regular object. 5118 Add a DT_NEEDED entry for it. Issue an error if 5119 --no-add-needed is used and the reference was not 5120 a weak one. */ 5121 if (old_bfd != NULL 5122 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0) 5123 { 5124 _bfd_error_handler 5125 /* xgettext:c-format */ 5126 (_("%pB: undefined reference to symbol '%s'"), 5127 old_bfd, name); 5128 bfd_set_error (bfd_error_missing_dso); 5129 goto error_free_vers; 5130 } 5131 5132 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class) 5133 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED); 5134 5135 add_needed = TRUE; 5136 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed); 5137 if (ret < 0) 5138 goto error_free_vers; 5139 5140 BFD_ASSERT (ret == 0); 5141 } 5142 } 5143 } 5144 5145 if (info->lto_plugin_active 5146 && !bfd_link_relocatable (info) 5147 && (abfd->flags & BFD_PLUGIN) == 0 5148 && !just_syms 5149 && extsymcount) 5150 { 5151 int r_sym_shift; 5152 5153 if (bed->s->arch_size == 32) 5154 r_sym_shift = 8; 5155 else 5156 r_sym_shift = 32; 5157 5158 /* If linker plugin is enabled, set non_ir_ref_regular on symbols 5159 referenced in regular objects so that linker plugin will get 5160 the correct symbol resolution. */ 5161 5162 sym_hash = elf_sym_hashes (abfd); 5163 for (s = abfd->sections; s != NULL; s = s->next) 5164 { 5165 Elf_Internal_Rela *internal_relocs; 5166 Elf_Internal_Rela *rel, *relend; 5167 5168 /* Don't check relocations in excluded sections. */ 5169 if ((s->flags & SEC_RELOC) == 0 5170 || s->reloc_count == 0 5171 || (s->flags & SEC_EXCLUDE) != 0 5172 || ((info->strip == strip_all 5173 || info->strip == strip_debugger) 5174 && (s->flags & SEC_DEBUGGING) != 0)) 5175 continue; 5176 5177 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL, 5178 NULL, 5179 info->keep_memory); 5180 if (internal_relocs == NULL) 5181 goto error_free_vers; 5182 5183 rel = internal_relocs; 5184 relend = rel + s->reloc_count; 5185 for ( ; rel < relend; rel++) 5186 { 5187 unsigned long r_symndx = rel->r_info >> r_sym_shift; 5188 struct elf_link_hash_entry *h; 5189 5190 /* Skip local symbols. */ 5191 if (r_symndx < extsymoff) 5192 continue; 5193 5194 h = sym_hash[r_symndx - extsymoff]; 5195 if (h != NULL) 5196 h->root.non_ir_ref_regular = 1; 5197 } 5198 5199 if (elf_section_data (s)->relocs != internal_relocs) 5200 free (internal_relocs); 5201 } 5202 } 5203 5204 if (extversym != NULL) 5205 { 5206 free (extversym); 5207 extversym = NULL; 5208 } 5209 5210 if (isymbuf != NULL) 5211 { 5212 free (isymbuf); 5213 isymbuf = NULL; 5214 } 5215 5216 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) 5217 { 5218 unsigned int i; 5219 5220 /* Restore the symbol table. */ 5221 old_ent = (char *) old_tab + tabsize; 5222 memset (elf_sym_hashes (abfd), 0, 5223 extsymcount * sizeof (struct elf_link_hash_entry *)); 5224 htab->root.table.table = old_table; 5225 htab->root.table.size = old_size; 5226 htab->root.table.count = old_count; 5227 memcpy (htab->root.table.table, old_tab, tabsize); 5228 htab->root.undefs = old_undefs; 5229 htab->root.undefs_tail = old_undefs_tail; 5230 _bfd_elf_strtab_restore (htab->dynstr, old_strtab); 5231 free (old_strtab); 5232 old_strtab = NULL; 5233 for (i = 0; i < htab->root.table.size; i++) 5234 { 5235 struct bfd_hash_entry *p; 5236 struct elf_link_hash_entry *h; 5237 bfd_size_type size; 5238 unsigned int alignment_power; 5239 unsigned int non_ir_ref_dynamic; 5240 5241 for (p = htab->root.table.table[i]; p != NULL; p = p->next) 5242 { 5243 h = (struct elf_link_hash_entry *) p; 5244 if (h->root.type == bfd_link_hash_warning) 5245 h = (struct elf_link_hash_entry *) h->root.u.i.link; 5246 5247 /* Preserve the maximum alignment and size for common 5248 symbols even if this dynamic lib isn't on DT_NEEDED 5249 since it can still be loaded at run time by another 5250 dynamic lib. */ 5251 if (h->root.type == bfd_link_hash_common) 5252 { 5253 size = h->root.u.c.size; 5254 alignment_power = h->root.u.c.p->alignment_power; 5255 } 5256 else 5257 { 5258 size = 0; 5259 alignment_power = 0; 5260 } 5261 /* Preserve non_ir_ref_dynamic so that this symbol 5262 will be exported when the dynamic lib becomes needed 5263 in the second pass. */ 5264 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic; 5265 memcpy (p, old_ent, htab->root.table.entsize); 5266 old_ent = (char *) old_ent + htab->root.table.entsize; 5267 h = (struct elf_link_hash_entry *) p; 5268 if (h->root.type == bfd_link_hash_warning) 5269 { 5270 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize); 5271 old_ent = (char *) old_ent + htab->root.table.entsize; 5272 h = (struct elf_link_hash_entry *) h->root.u.i.link; 5273 } 5274 if (h->root.type == bfd_link_hash_common) 5275 { 5276 if (size > h->root.u.c.size) 5277 h->root.u.c.size = size; 5278 if (alignment_power > h->root.u.c.p->alignment_power) 5279 h->root.u.c.p->alignment_power = alignment_power; 5280 } 5281 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic; 5282 } 5283 } 5284 5285 /* Make a special call to the linker "notice" function to 5286 tell it that symbols added for crefs may need to be removed. */ 5287 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed)) 5288 goto error_free_vers; 5289 5290 free (old_tab); 5291 objalloc_free_block ((struct objalloc *) htab->root.table.memory, 5292 alloc_mark); 5293 if (nondeflt_vers != NULL) 5294 free (nondeflt_vers); 5295 return TRUE; 5296 } 5297 5298 if (old_tab != NULL) 5299 { 5300 if (!(*bed->notice_as_needed) (abfd, info, notice_needed)) 5301 goto error_free_vers; 5302 free (old_tab); 5303 old_tab = NULL; 5304 } 5305 5306 /* Now that all the symbols from this input file are created, if 5307 not performing a relocatable link, handle .symver foo, foo@BAR 5308 such that any relocs against foo become foo@BAR. */ 5309 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL) 5310 { 5311 size_t cnt, symidx; 5312 5313 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt) 5314 { 5315 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi; 5316 char *shortname, *p; 5317 5318 p = strchr (h->root.root.string, ELF_VER_CHR); 5319 if (p == NULL 5320 || (h->root.type != bfd_link_hash_defined 5321 && h->root.type != bfd_link_hash_defweak)) 5322 continue; 5323 5324 amt = p - h->root.root.string; 5325 shortname = (char *) bfd_malloc (amt + 1); 5326 if (!shortname) 5327 goto error_free_vers; 5328 memcpy (shortname, h->root.root.string, amt); 5329 shortname[amt] = '\0'; 5330 5331 hi = (struct elf_link_hash_entry *) 5332 bfd_link_hash_lookup (&htab->root, shortname, 5333 FALSE, FALSE, FALSE); 5334 if (hi != NULL 5335 && hi->root.type == h->root.type 5336 && hi->root.u.def.value == h->root.u.def.value 5337 && hi->root.u.def.section == h->root.u.def.section) 5338 { 5339 (*bed->elf_backend_hide_symbol) (info, hi, TRUE); 5340 hi->root.type = bfd_link_hash_indirect; 5341 hi->root.u.i.link = (struct bfd_link_hash_entry *) h; 5342 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); 5343 sym_hash = elf_sym_hashes (abfd); 5344 if (sym_hash) 5345 for (symidx = 0; symidx < extsymcount; ++symidx) 5346 if (sym_hash[symidx] == hi) 5347 { 5348 sym_hash[symidx] = h; 5349 break; 5350 } 5351 } 5352 free (shortname); 5353 } 5354 free (nondeflt_vers); 5355 nondeflt_vers = NULL; 5356 } 5357 5358 /* Now set the alias field correctly for all the weak defined 5359 symbols we found. The only way to do this is to search all the 5360 symbols. Since we only need the information for non functions in 5361 dynamic objects, that's the only time we actually put anything on 5362 the list WEAKS. We need this information so that if a regular 5363 object refers to a symbol defined weakly in a dynamic object, the 5364 real symbol in the dynamic object is also put in the dynamic 5365 symbols; we also must arrange for both symbols to point to the 5366 same memory location. We could handle the general case of symbol 5367 aliasing, but a general symbol alias can only be generated in 5368 assembler code, handling it correctly would be very time 5369 consuming, and other ELF linkers don't handle general aliasing 5370 either. */ 5371 if (weaks != NULL) 5372 { 5373 struct elf_link_hash_entry **hpp; 5374 struct elf_link_hash_entry **hppend; 5375 struct elf_link_hash_entry **sorted_sym_hash; 5376 struct elf_link_hash_entry *h; 5377 size_t sym_count; 5378 5379 /* Since we have to search the whole symbol list for each weak 5380 defined symbol, search time for N weak defined symbols will be 5381 O(N^2). Binary search will cut it down to O(NlogN). */ 5382 amt = extsymcount; 5383 amt *= sizeof (*sorted_sym_hash); 5384 sorted_sym_hash = bfd_malloc (amt); 5385 if (sorted_sym_hash == NULL) 5386 goto error_return; 5387 sym_hash = sorted_sym_hash; 5388 hpp = elf_sym_hashes (abfd); 5389 hppend = hpp + extsymcount; 5390 sym_count = 0; 5391 for (; hpp < hppend; hpp++) 5392 { 5393 h = *hpp; 5394 if (h != NULL 5395 && h->root.type == bfd_link_hash_defined 5396 && !bed->is_function_type (h->type)) 5397 { 5398 *sym_hash = h; 5399 sym_hash++; 5400 sym_count++; 5401 } 5402 } 5403 5404 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash), 5405 elf_sort_symbol); 5406 5407 while (weaks != NULL) 5408 { 5409 struct elf_link_hash_entry *hlook; 5410 asection *slook; 5411 bfd_vma vlook; 5412 size_t i, j, idx = 0; 5413 5414 hlook = weaks; 5415 weaks = hlook->u.alias; 5416 hlook->u.alias = NULL; 5417 5418 if (hlook->root.type != bfd_link_hash_defined 5419 && hlook->root.type != bfd_link_hash_defweak) 5420 continue; 5421 5422 slook = hlook->root.u.def.section; 5423 vlook = hlook->root.u.def.value; 5424 5425 i = 0; 5426 j = sym_count; 5427 while (i != j) 5428 { 5429 bfd_signed_vma vdiff; 5430 idx = (i + j) / 2; 5431 h = sorted_sym_hash[idx]; 5432 vdiff = vlook - h->root.u.def.value; 5433 if (vdiff < 0) 5434 j = idx; 5435 else if (vdiff > 0) 5436 i = idx + 1; 5437 else 5438 { 5439 int sdiff = slook->id - h->root.u.def.section->id; 5440 if (sdiff < 0) 5441 j = idx; 5442 else if (sdiff > 0) 5443 i = idx + 1; 5444 else 5445 break; 5446 } 5447 } 5448 5449 /* We didn't find a value/section match. */ 5450 if (i == j) 5451 continue; 5452 5453 /* With multiple aliases, or when the weak symbol is already 5454 strongly defined, we have multiple matching symbols and 5455 the binary search above may land on any of them. Step 5456 one past the matching symbol(s). */ 5457 while (++idx != j) 5458 { 5459 h = sorted_sym_hash[idx]; 5460 if (h->root.u.def.section != slook 5461 || h->root.u.def.value != vlook) 5462 break; 5463 } 5464 5465 /* Now look back over the aliases. Since we sorted by size 5466 as well as value and section, we'll choose the one with 5467 the largest size. */ 5468 while (idx-- != i) 5469 { 5470 h = sorted_sym_hash[idx]; 5471 5472 /* Stop if value or section doesn't match. */ 5473 if (h->root.u.def.section != slook 5474 || h->root.u.def.value != vlook) 5475 break; 5476 else if (h != hlook) 5477 { 5478 struct elf_link_hash_entry *t; 5479 5480 hlook->u.alias = h; 5481 hlook->is_weakalias = 1; 5482 t = h; 5483 if (t->u.alias != NULL) 5484 while (t->u.alias != h) 5485 t = t->u.alias; 5486 t->u.alias = hlook; 5487 5488 /* If the weak definition is in the list of dynamic 5489 symbols, make sure the real definition is put 5490 there as well. */ 5491 if (hlook->dynindx != -1 && h->dynindx == -1) 5492 { 5493 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 5494 { 5495 err_free_sym_hash: 5496 free (sorted_sym_hash); 5497 goto error_return; 5498 } 5499 } 5500 5501 /* If the real definition is in the list of dynamic 5502 symbols, make sure the weak definition is put 5503 there as well. If we don't do this, then the 5504 dynamic loader might not merge the entries for the 5505 real definition and the weak definition. */ 5506 if (h->dynindx != -1 && hlook->dynindx == -1) 5507 { 5508 if (! bfd_elf_link_record_dynamic_symbol (info, hlook)) 5509 goto err_free_sym_hash; 5510 } 5511 break; 5512 } 5513 } 5514 } 5515 5516 free (sorted_sym_hash); 5517 } 5518 5519 if (bed->check_directives 5520 && !(*bed->check_directives) (abfd, info)) 5521 return FALSE; 5522 5523 /* If this is a non-traditional link, try to optimize the handling 5524 of the .stab/.stabstr sections. */ 5525 if (! dynamic 5526 && ! info->traditional_format 5527 && is_elf_hash_table (htab) 5528 && (info->strip != strip_all && info->strip != strip_debugger)) 5529 { 5530 asection *stabstr; 5531 5532 stabstr = bfd_get_section_by_name (abfd, ".stabstr"); 5533 if (stabstr != NULL) 5534 { 5535 bfd_size_type string_offset = 0; 5536 asection *stab; 5537 5538 for (stab = abfd->sections; stab; stab = stab->next) 5539 if (CONST_STRNEQ (stab->name, ".stab") 5540 && (!stab->name[5] || 5541 (stab->name[5] == '.' && ISDIGIT (stab->name[6]))) 5542 && (stab->flags & SEC_MERGE) == 0 5543 && !bfd_is_abs_section (stab->output_section)) 5544 { 5545 struct bfd_elf_section_data *secdata; 5546 5547 secdata = elf_section_data (stab); 5548 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab, 5549 stabstr, &secdata->sec_info, 5550 &string_offset)) 5551 goto error_return; 5552 if (secdata->sec_info) 5553 stab->sec_info_type = SEC_INFO_TYPE_STABS; 5554 } 5555 } 5556 } 5557 5558 if (is_elf_hash_table (htab) && add_needed) 5559 { 5560 /* Add this bfd to the loaded list. */ 5561 struct elf_link_loaded_list *n; 5562 5563 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n)); 5564 if (n == NULL) 5565 goto error_return; 5566 n->abfd = abfd; 5567 n->next = htab->loaded; 5568 htab->loaded = n; 5569 } 5570 5571 return TRUE; 5572 5573 error_free_vers: 5574 if (old_tab != NULL) 5575 free (old_tab); 5576 if (old_strtab != NULL) 5577 free (old_strtab); 5578 if (nondeflt_vers != NULL) 5579 free (nondeflt_vers); 5580 if (extversym != NULL) 5581 free (extversym); 5582 error_free_sym: 5583 if (isymbuf != NULL) 5584 free (isymbuf); 5585 error_return: 5586 return FALSE; 5587 } 5588 5589 /* Return the linker hash table entry of a symbol that might be 5590 satisfied by an archive symbol. Return -1 on error. */ 5591 5592 struct elf_link_hash_entry * 5593 _bfd_elf_archive_symbol_lookup (bfd *abfd, 5594 struct bfd_link_info *info, 5595 const char *name) 5596 { 5597 struct elf_link_hash_entry *h; 5598 char *p, *copy; 5599 size_t len, first; 5600 5601 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE); 5602 if (h != NULL) 5603 return h; 5604 5605 /* If this is a default version (the name contains @@), look up the 5606 symbol again with only one `@' as well as without the version. 5607 The effect is that references to the symbol with and without the 5608 version will be matched by the default symbol in the archive. */ 5609 5610 p = strchr (name, ELF_VER_CHR); 5611 if (p == NULL || p[1] != ELF_VER_CHR) 5612 return h; 5613 5614 /* First check with only one `@'. */ 5615 len = strlen (name); 5616 copy = (char *) bfd_alloc (abfd, len); 5617 if (copy == NULL) 5618 return (struct elf_link_hash_entry *) -1; 5619 5620 first = p - name + 1; 5621 memcpy (copy, name, first); 5622 memcpy (copy + first, name + first + 1, len - first); 5623 5624 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE); 5625 if (h == NULL) 5626 { 5627 /* We also need to check references to the symbol without the 5628 version. */ 5629 copy[first - 1] = '\0'; 5630 h = elf_link_hash_lookup (elf_hash_table (info), copy, 5631 FALSE, FALSE, TRUE); 5632 } 5633 5634 bfd_release (abfd, copy); 5635 return h; 5636 } 5637 5638 /* Add symbols from an ELF archive file to the linker hash table. We 5639 don't use _bfd_generic_link_add_archive_symbols because we need to 5640 handle versioned symbols. 5641 5642 Fortunately, ELF archive handling is simpler than that done by 5643 _bfd_generic_link_add_archive_symbols, which has to allow for a.out 5644 oddities. In ELF, if we find a symbol in the archive map, and the 5645 symbol is currently undefined, we know that we must pull in that 5646 object file. 5647 5648 Unfortunately, we do have to make multiple passes over the symbol 5649 table until nothing further is resolved. */ 5650 5651 static bfd_boolean 5652 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info) 5653 { 5654 symindex c; 5655 unsigned char *included = NULL; 5656 carsym *symdefs; 5657 bfd_boolean loop; 5658 bfd_size_type amt; 5659 const struct elf_backend_data *bed; 5660 struct elf_link_hash_entry * (*archive_symbol_lookup) 5661 (bfd *, struct bfd_link_info *, const char *); 5662 5663 if (! bfd_has_map (abfd)) 5664 { 5665 /* An empty archive is a special case. */ 5666 if (bfd_openr_next_archived_file (abfd, NULL) == NULL) 5667 return TRUE; 5668 bfd_set_error (bfd_error_no_armap); 5669 return FALSE; 5670 } 5671 5672 /* Keep track of all symbols we know to be already defined, and all 5673 files we know to be already included. This is to speed up the 5674 second and subsequent passes. */ 5675 c = bfd_ardata (abfd)->symdef_count; 5676 if (c == 0) 5677 return TRUE; 5678 amt = c; 5679 amt *= sizeof (*included); 5680 included = (unsigned char *) bfd_zmalloc (amt); 5681 if (included == NULL) 5682 return FALSE; 5683 5684 symdefs = bfd_ardata (abfd)->symdefs; 5685 bed = get_elf_backend_data (abfd); 5686 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup; 5687 5688 do 5689 { 5690 file_ptr last; 5691 symindex i; 5692 carsym *symdef; 5693 carsym *symdefend; 5694 5695 loop = FALSE; 5696 last = -1; 5697 5698 symdef = symdefs; 5699 symdefend = symdef + c; 5700 for (i = 0; symdef < symdefend; symdef++, i++) 5701 { 5702 struct elf_link_hash_entry *h; 5703 bfd *element; 5704 struct bfd_link_hash_entry *undefs_tail; 5705 symindex mark; 5706 5707 if (included[i]) 5708 continue; 5709 if (symdef->file_offset == last) 5710 { 5711 included[i] = TRUE; 5712 continue; 5713 } 5714 5715 h = archive_symbol_lookup (abfd, info, symdef->name); 5716 if (h == (struct elf_link_hash_entry *) -1) 5717 goto error_return; 5718 5719 if (h == NULL) 5720 continue; 5721 5722 if (h->root.type == bfd_link_hash_common) 5723 { 5724 /* We currently have a common symbol. The archive map contains 5725 a reference to this symbol, so we may want to include it. We 5726 only want to include it however, if this archive element 5727 contains a definition of the symbol, not just another common 5728 declaration of it. 5729 5730 Unfortunately some archivers (including GNU ar) will put 5731 declarations of common symbols into their archive maps, as 5732 well as real definitions, so we cannot just go by the archive 5733 map alone. Instead we must read in the element's symbol 5734 table and check that to see what kind of symbol definition 5735 this is. */ 5736 if (! elf_link_is_defined_archive_symbol (abfd, symdef)) 5737 continue; 5738 } 5739 else if (h->root.type != bfd_link_hash_undefined) 5740 { 5741 if (h->root.type != bfd_link_hash_undefweak) 5742 /* Symbol must be defined. Don't check it again. */ 5743 included[i] = TRUE; 5744 continue; 5745 } 5746 5747 /* We need to include this archive member. */ 5748 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); 5749 if (element == NULL) 5750 goto error_return; 5751 5752 if (! bfd_check_format (element, bfd_object)) 5753 goto error_return; 5754 5755 undefs_tail = info->hash->undefs_tail; 5756 5757 if (!(*info->callbacks 5758 ->add_archive_element) (info, element, symdef->name, &element)) 5759 continue; 5760 if (!bfd_link_add_symbols (element, info)) 5761 goto error_return; 5762 5763 /* If there are any new undefined symbols, we need to make 5764 another pass through the archive in order to see whether 5765 they can be defined. FIXME: This isn't perfect, because 5766 common symbols wind up on undefs_tail and because an 5767 undefined symbol which is defined later on in this pass 5768 does not require another pass. This isn't a bug, but it 5769 does make the code less efficient than it could be. */ 5770 if (undefs_tail != info->hash->undefs_tail) 5771 loop = TRUE; 5772 5773 /* Look backward to mark all symbols from this object file 5774 which we have already seen in this pass. */ 5775 mark = i; 5776 do 5777 { 5778 included[mark] = TRUE; 5779 if (mark == 0) 5780 break; 5781 --mark; 5782 } 5783 while (symdefs[mark].file_offset == symdef->file_offset); 5784 5785 /* We mark subsequent symbols from this object file as we go 5786 on through the loop. */ 5787 last = symdef->file_offset; 5788 } 5789 } 5790 while (loop); 5791 5792 free (included); 5793 5794 return TRUE; 5795 5796 error_return: 5797 if (included != NULL) 5798 free (included); 5799 return FALSE; 5800 } 5801 5802 /* Given an ELF BFD, add symbols to the global hash table as 5803 appropriate. */ 5804 5805 bfd_boolean 5806 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info) 5807 { 5808 switch (bfd_get_format (abfd)) 5809 { 5810 case bfd_object: 5811 return elf_link_add_object_symbols (abfd, info); 5812 case bfd_archive: 5813 return elf_link_add_archive_symbols (abfd, info); 5814 default: 5815 bfd_set_error (bfd_error_wrong_format); 5816 return FALSE; 5817 } 5818 } 5819 5820 struct hash_codes_info 5821 { 5822 unsigned long *hashcodes; 5823 bfd_boolean error; 5824 }; 5825 5826 /* This function will be called though elf_link_hash_traverse to store 5827 all hash value of the exported symbols in an array. */ 5828 5829 static bfd_boolean 5830 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data) 5831 { 5832 struct hash_codes_info *inf = (struct hash_codes_info *) data; 5833 const char *name; 5834 unsigned long ha; 5835 char *alc = NULL; 5836 5837 /* Ignore indirect symbols. These are added by the versioning code. */ 5838 if (h->dynindx == -1) 5839 return TRUE; 5840 5841 name = h->root.root.string; 5842 if (h->versioned >= versioned) 5843 { 5844 char *p = strchr (name, ELF_VER_CHR); 5845 if (p != NULL) 5846 { 5847 alc = (char *) bfd_malloc (p - name + 1); 5848 if (alc == NULL) 5849 { 5850 inf->error = TRUE; 5851 return FALSE; 5852 } 5853 memcpy (alc, name, p - name); 5854 alc[p - name] = '\0'; 5855 name = alc; 5856 } 5857 } 5858 5859 /* Compute the hash value. */ 5860 ha = bfd_elf_hash (name); 5861 5862 /* Store the found hash value in the array given as the argument. */ 5863 *(inf->hashcodes)++ = ha; 5864 5865 /* And store it in the struct so that we can put it in the hash table 5866 later. */ 5867 h->u.elf_hash_value = ha; 5868 5869 if (alc != NULL) 5870 free (alc); 5871 5872 return TRUE; 5873 } 5874 5875 struct collect_gnu_hash_codes 5876 { 5877 bfd *output_bfd; 5878 const struct elf_backend_data *bed; 5879 unsigned long int nsyms; 5880 unsigned long int maskbits; 5881 unsigned long int *hashcodes; 5882 unsigned long int *hashval; 5883 unsigned long int *indx; 5884 unsigned long int *counts; 5885 bfd_vma *bitmask; 5886 bfd_byte *contents; 5887 bfd_size_type xlat; 5888 long int min_dynindx; 5889 unsigned long int bucketcount; 5890 unsigned long int symindx; 5891 long int local_indx; 5892 long int shift1, shift2; 5893 unsigned long int mask; 5894 bfd_boolean error; 5895 }; 5896 5897 /* This function will be called though elf_link_hash_traverse to store 5898 all hash value of the exported symbols in an array. */ 5899 5900 static bfd_boolean 5901 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data) 5902 { 5903 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; 5904 const char *name; 5905 unsigned long ha; 5906 char *alc = NULL; 5907 5908 /* Ignore indirect symbols. These are added by the versioning code. */ 5909 if (h->dynindx == -1) 5910 return TRUE; 5911 5912 /* Ignore also local symbols and undefined symbols. */ 5913 if (! (*s->bed->elf_hash_symbol) (h)) 5914 return TRUE; 5915 5916 name = h->root.root.string; 5917 if (h->versioned >= versioned) 5918 { 5919 char *p = strchr (name, ELF_VER_CHR); 5920 if (p != NULL) 5921 { 5922 alc = (char *) bfd_malloc (p - name + 1); 5923 if (alc == NULL) 5924 { 5925 s->error = TRUE; 5926 return FALSE; 5927 } 5928 memcpy (alc, name, p - name); 5929 alc[p - name] = '\0'; 5930 name = alc; 5931 } 5932 } 5933 5934 /* Compute the hash value. */ 5935 ha = bfd_elf_gnu_hash (name); 5936 5937 /* Store the found hash value in the array for compute_bucket_count, 5938 and also for .dynsym reordering purposes. */ 5939 s->hashcodes[s->nsyms] = ha; 5940 s->hashval[h->dynindx] = ha; 5941 ++s->nsyms; 5942 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx) 5943 s->min_dynindx = h->dynindx; 5944 5945 if (alc != NULL) 5946 free (alc); 5947 5948 return TRUE; 5949 } 5950 5951 /* This function will be called though elf_link_hash_traverse to do 5952 final dynamic symbol renumbering in case of .gnu.hash. 5953 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index 5954 to the translation table. */ 5955 5956 static bfd_boolean 5957 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data) 5958 { 5959 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; 5960 unsigned long int bucket; 5961 unsigned long int val; 5962 5963 /* Ignore indirect symbols. */ 5964 if (h->dynindx == -1) 5965 return TRUE; 5966 5967 /* Ignore also local symbols and undefined symbols. */ 5968 if (! (*s->bed->elf_hash_symbol) (h)) 5969 { 5970 if (h->dynindx >= s->min_dynindx) 5971 { 5972 if (s->bed->record_xhash_symbol != NULL) 5973 { 5974 (*s->bed->record_xhash_symbol) (h, 0); 5975 s->local_indx++; 5976 } 5977 else 5978 h->dynindx = s->local_indx++; 5979 } 5980 return TRUE; 5981 } 5982 5983 bucket = s->hashval[h->dynindx] % s->bucketcount; 5984 val = (s->hashval[h->dynindx] >> s->shift1) 5985 & ((s->maskbits >> s->shift1) - 1); 5986 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask); 5987 s->bitmask[val] 5988 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask); 5989 val = s->hashval[h->dynindx] & ~(unsigned long int) 1; 5990 if (s->counts[bucket] == 1) 5991 /* Last element terminates the chain. */ 5992 val |= 1; 5993 bfd_put_32 (s->output_bfd, val, 5994 s->contents + (s->indx[bucket] - s->symindx) * 4); 5995 --s->counts[bucket]; 5996 if (s->bed->record_xhash_symbol != NULL) 5997 { 5998 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4; 5999 6000 (*s->bed->record_xhash_symbol) (h, xlat_loc); 6001 } 6002 else 6003 h->dynindx = s->indx[bucket]++; 6004 return TRUE; 6005 } 6006 6007 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ 6008 6009 bfd_boolean 6010 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h) 6011 { 6012 return !(h->forced_local 6013 || h->root.type == bfd_link_hash_undefined 6014 || h->root.type == bfd_link_hash_undefweak 6015 || ((h->root.type == bfd_link_hash_defined 6016 || h->root.type == bfd_link_hash_defweak) 6017 && h->root.u.def.section->output_section == NULL)); 6018 } 6019 6020 /* Array used to determine the number of hash table buckets to use 6021 based on the number of symbols there are. If there are fewer than 6022 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, 6023 fewer than 37 we use 17 buckets, and so forth. We never use more 6024 than 32771 buckets. */ 6025 6026 static const size_t elf_buckets[] = 6027 { 6028 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, 6029 16411, 32771, 0 6030 }; 6031 6032 /* Compute bucket count for hashing table. We do not use a static set 6033 of possible tables sizes anymore. Instead we determine for all 6034 possible reasonable sizes of the table the outcome (i.e., the 6035 number of collisions etc) and choose the best solution. The 6036 weighting functions are not too simple to allow the table to grow 6037 without bounds. Instead one of the weighting factors is the size. 6038 Therefore the result is always a good payoff between few collisions 6039 (= short chain lengths) and table size. */ 6040 static size_t 6041 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED, 6042 unsigned long int *hashcodes ATTRIBUTE_UNUSED, 6043 unsigned long int nsyms, 6044 int gnu_hash) 6045 { 6046 size_t best_size = 0; 6047 unsigned long int i; 6048 6049 /* We have a problem here. The following code to optimize the table 6050 size requires an integer type with more the 32 bits. If 6051 BFD_HOST_U_64_BIT is set we know about such a type. */ 6052 #ifdef BFD_HOST_U_64_BIT 6053 if (info->optimize) 6054 { 6055 size_t minsize; 6056 size_t maxsize; 6057 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0); 6058 bfd *dynobj = elf_hash_table (info)->dynobj; 6059 size_t dynsymcount = elf_hash_table (info)->dynsymcount; 6060 const struct elf_backend_data *bed = get_elf_backend_data (dynobj); 6061 unsigned long int *counts; 6062 bfd_size_type amt; 6063 unsigned int no_improvement_count = 0; 6064 6065 /* Possible optimization parameters: if we have NSYMS symbols we say 6066 that the hashing table must at least have NSYMS/4 and at most 6067 2*NSYMS buckets. */ 6068 minsize = nsyms / 4; 6069 if (minsize == 0) 6070 minsize = 1; 6071 best_size = maxsize = nsyms * 2; 6072 if (gnu_hash) 6073 { 6074 if (minsize < 2) 6075 minsize = 2; 6076 if ((best_size & 31) == 0) 6077 ++best_size; 6078 } 6079 6080 /* Create array where we count the collisions in. We must use bfd_malloc 6081 since the size could be large. */ 6082 amt = maxsize; 6083 amt *= sizeof (unsigned long int); 6084 counts = (unsigned long int *) bfd_malloc (amt); 6085 if (counts == NULL) 6086 return 0; 6087 6088 /* Compute the "optimal" size for the hash table. The criteria is a 6089 minimal chain length. The minor criteria is (of course) the size 6090 of the table. */ 6091 for (i = minsize; i < maxsize; ++i) 6092 { 6093 /* Walk through the array of hashcodes and count the collisions. */ 6094 BFD_HOST_U_64_BIT max; 6095 unsigned long int j; 6096 unsigned long int fact; 6097 6098 if (gnu_hash && (i & 31) == 0) 6099 continue; 6100 6101 memset (counts, '\0', i * sizeof (unsigned long int)); 6102 6103 /* Determine how often each hash bucket is used. */ 6104 for (j = 0; j < nsyms; ++j) 6105 ++counts[hashcodes[j] % i]; 6106 6107 /* For the weight function we need some information about the 6108 pagesize on the target. This is information need not be 100% 6109 accurate. Since this information is not available (so far) we 6110 define it here to a reasonable default value. If it is crucial 6111 to have a better value some day simply define this value. */ 6112 # ifndef BFD_TARGET_PAGESIZE 6113 # define BFD_TARGET_PAGESIZE (4096) 6114 # endif 6115 6116 /* We in any case need 2 + DYNSYMCOUNT entries for the size values 6117 and the chains. */ 6118 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry; 6119 6120 # if 1 6121 /* Variant 1: optimize for short chains. We add the squares 6122 of all the chain lengths (which favors many small chain 6123 over a few long chains). */ 6124 for (j = 0; j < i; ++j) 6125 max += counts[j] * counts[j]; 6126 6127 /* This adds penalties for the overall size of the table. */ 6128 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; 6129 max *= fact * fact; 6130 # else 6131 /* Variant 2: Optimize a lot more for small table. Here we 6132 also add squares of the size but we also add penalties for 6133 empty slots (the +1 term). */ 6134 for (j = 0; j < i; ++j) 6135 max += (1 + counts[j]) * (1 + counts[j]); 6136 6137 /* The overall size of the table is considered, but not as 6138 strong as in variant 1, where it is squared. */ 6139 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; 6140 max *= fact; 6141 # endif 6142 6143 /* Compare with current best results. */ 6144 if (max < best_chlen) 6145 { 6146 best_chlen = max; 6147 best_size = i; 6148 no_improvement_count = 0; 6149 } 6150 /* PR 11843: Avoid futile long searches for the best bucket size 6151 when there are a large number of symbols. */ 6152 else if (++no_improvement_count == 100) 6153 break; 6154 } 6155 6156 free (counts); 6157 } 6158 else 6159 #endif /* defined (BFD_HOST_U_64_BIT) */ 6160 { 6161 /* This is the fallback solution if no 64bit type is available or if we 6162 are not supposed to spend much time on optimizations. We select the 6163 bucket count using a fixed set of numbers. */ 6164 for (i = 0; elf_buckets[i] != 0; i++) 6165 { 6166 best_size = elf_buckets[i]; 6167 if (nsyms < elf_buckets[i + 1]) 6168 break; 6169 } 6170 if (gnu_hash && best_size < 2) 6171 best_size = 2; 6172 } 6173 6174 return best_size; 6175 } 6176 6177 /* Size any SHT_GROUP section for ld -r. */ 6178 6179 bfd_boolean 6180 _bfd_elf_size_group_sections (struct bfd_link_info *info) 6181 { 6182 bfd *ibfd; 6183 asection *s; 6184 6185 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 6186 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour 6187 && (s = ibfd->sections) != NULL 6188 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS 6189 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr)) 6190 return FALSE; 6191 return TRUE; 6192 } 6193 6194 /* Set a default stack segment size. The value in INFO wins. If it 6195 is unset, LEGACY_SYMBOL's value is used, and if that symbol is 6196 undefined it is initialized. */ 6197 6198 bfd_boolean 6199 bfd_elf_stack_segment_size (bfd *output_bfd, 6200 struct bfd_link_info *info, 6201 const char *legacy_symbol, 6202 bfd_vma default_size) 6203 { 6204 struct elf_link_hash_entry *h = NULL; 6205 6206 /* Look for legacy symbol. */ 6207 if (legacy_symbol) 6208 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol, 6209 FALSE, FALSE, FALSE); 6210 if (h && (h->root.type == bfd_link_hash_defined 6211 || h->root.type == bfd_link_hash_defweak) 6212 && h->def_regular 6213 && (h->type == STT_NOTYPE || h->type == STT_OBJECT)) 6214 { 6215 /* The symbol has no type if specified on the command line. */ 6216 h->type = STT_OBJECT; 6217 if (info->stacksize) 6218 /* xgettext:c-format */ 6219 _bfd_error_handler (_("%pB: stack size specified and %s set"), 6220 output_bfd, legacy_symbol); 6221 else if (h->root.u.def.section != bfd_abs_section_ptr) 6222 /* xgettext:c-format */ 6223 _bfd_error_handler (_("%pB: %s not absolute"), 6224 output_bfd, legacy_symbol); 6225 else 6226 info->stacksize = h->root.u.def.value; 6227 } 6228 6229 if (!info->stacksize) 6230 /* If the user didn't set a size, or explicitly inhibit the 6231 size, set it now. */ 6232 info->stacksize = default_size; 6233 6234 /* Provide the legacy symbol, if it is referenced. */ 6235 if (h && (h->root.type == bfd_link_hash_undefined 6236 || h->root.type == bfd_link_hash_undefweak)) 6237 { 6238 struct bfd_link_hash_entry *bh = NULL; 6239 6240 if (!(_bfd_generic_link_add_one_symbol 6241 (info, output_bfd, legacy_symbol, 6242 BSF_GLOBAL, bfd_abs_section_ptr, 6243 info->stacksize >= 0 ? info->stacksize : 0, 6244 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh))) 6245 return FALSE; 6246 6247 h = (struct elf_link_hash_entry *) bh; 6248 h->def_regular = 1; 6249 h->type = STT_OBJECT; 6250 } 6251 6252 return TRUE; 6253 } 6254 6255 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ 6256 6257 struct elf_gc_sweep_symbol_info 6258 { 6259 struct bfd_link_info *info; 6260 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *, 6261 bfd_boolean); 6262 }; 6263 6264 static bfd_boolean 6265 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data) 6266 { 6267 if (!h->mark 6268 && (((h->root.type == bfd_link_hash_defined 6269 || h->root.type == bfd_link_hash_defweak) 6270 && !((h->def_regular || ELF_COMMON_DEF_P (h)) 6271 && h->root.u.def.section->gc_mark)) 6272 || h->root.type == bfd_link_hash_undefined 6273 || h->root.type == bfd_link_hash_undefweak)) 6274 { 6275 struct elf_gc_sweep_symbol_info *inf; 6276 6277 inf = (struct elf_gc_sweep_symbol_info *) data; 6278 (*inf->hide_symbol) (inf->info, h, TRUE); 6279 h->def_regular = 0; 6280 h->ref_regular = 0; 6281 h->ref_regular_nonweak = 0; 6282 } 6283 6284 return TRUE; 6285 } 6286 6287 /* Set up the sizes and contents of the ELF dynamic sections. This is 6288 called by the ELF linker emulation before_allocation routine. We 6289 must set the sizes of the sections before the linker sets the 6290 addresses of the various sections. */ 6291 6292 bfd_boolean 6293 bfd_elf_size_dynamic_sections (bfd *output_bfd, 6294 const char *soname, 6295 const char *rpath, 6296 const char *filter_shlib, 6297 const char *audit, 6298 const char *depaudit, 6299 const char * const *auxiliary_filters, 6300 struct bfd_link_info *info, 6301 asection **sinterpptr) 6302 { 6303 bfd *dynobj; 6304 const struct elf_backend_data *bed; 6305 6306 *sinterpptr = NULL; 6307 6308 if (!is_elf_hash_table (info->hash)) 6309 return TRUE; 6310 6311 dynobj = elf_hash_table (info)->dynobj; 6312 6313 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) 6314 { 6315 struct bfd_elf_version_tree *verdefs; 6316 struct elf_info_failed asvinfo; 6317 struct bfd_elf_version_tree *t; 6318 struct bfd_elf_version_expr *d; 6319 asection *s; 6320 size_t soname_indx; 6321 6322 /* If we are supposed to export all symbols into the dynamic symbol 6323 table (this is not the normal case), then do so. */ 6324 if (info->export_dynamic 6325 || (bfd_link_executable (info) && info->dynamic)) 6326 { 6327 struct elf_info_failed eif; 6328 6329 eif.info = info; 6330 eif.failed = FALSE; 6331 elf_link_hash_traverse (elf_hash_table (info), 6332 _bfd_elf_export_symbol, 6333 &eif); 6334 if (eif.failed) 6335 return FALSE; 6336 } 6337 6338 if (soname != NULL) 6339 { 6340 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6341 soname, TRUE); 6342 if (soname_indx == (size_t) -1 6343 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) 6344 return FALSE; 6345 } 6346 else 6347 soname_indx = (size_t) -1; 6348 6349 /* Make all global versions with definition. */ 6350 for (t = info->version_info; t != NULL; t = t->next) 6351 for (d = t->globals.list; d != NULL; d = d->next) 6352 if (!d->symver && d->literal) 6353 { 6354 const char *verstr, *name; 6355 size_t namelen, verlen, newlen; 6356 char *newname, *p, leading_char; 6357 struct elf_link_hash_entry *newh; 6358 6359 leading_char = bfd_get_symbol_leading_char (output_bfd); 6360 name = d->pattern; 6361 namelen = strlen (name) + (leading_char != '\0'); 6362 verstr = t->name; 6363 verlen = strlen (verstr); 6364 newlen = namelen + verlen + 3; 6365 6366 newname = (char *) bfd_malloc (newlen); 6367 if (newname == NULL) 6368 return FALSE; 6369 newname[0] = leading_char; 6370 memcpy (newname + (leading_char != '\0'), name, namelen); 6371 6372 /* Check the hidden versioned definition. */ 6373 p = newname + namelen; 6374 *p++ = ELF_VER_CHR; 6375 memcpy (p, verstr, verlen + 1); 6376 newh = elf_link_hash_lookup (elf_hash_table (info), 6377 newname, FALSE, FALSE, 6378 FALSE); 6379 if (newh == NULL 6380 || (newh->root.type != bfd_link_hash_defined 6381 && newh->root.type != bfd_link_hash_defweak)) 6382 { 6383 /* Check the default versioned definition. */ 6384 *p++ = ELF_VER_CHR; 6385 memcpy (p, verstr, verlen + 1); 6386 newh = elf_link_hash_lookup (elf_hash_table (info), 6387 newname, FALSE, FALSE, 6388 FALSE); 6389 } 6390 free (newname); 6391 6392 /* Mark this version if there is a definition and it is 6393 not defined in a shared object. */ 6394 if (newh != NULL 6395 && !newh->def_dynamic 6396 && (newh->root.type == bfd_link_hash_defined 6397 || newh->root.type == bfd_link_hash_defweak)) 6398 d->symver = 1; 6399 } 6400 6401 /* Attach all the symbols to their version information. */ 6402 asvinfo.info = info; 6403 asvinfo.failed = FALSE; 6404 6405 elf_link_hash_traverse (elf_hash_table (info), 6406 _bfd_elf_link_assign_sym_version, 6407 &asvinfo); 6408 if (asvinfo.failed) 6409 return FALSE; 6410 6411 if (!info->allow_undefined_version) 6412 { 6413 /* Check if all global versions have a definition. */ 6414 bfd_boolean all_defined = TRUE; 6415 for (t = info->version_info; t != NULL; t = t->next) 6416 for (d = t->globals.list; d != NULL; d = d->next) 6417 if (d->literal && !d->symver && !d->script) 6418 { 6419 _bfd_error_handler 6420 (_("%s: undefined version: %s"), 6421 d->pattern, t->name); 6422 all_defined = FALSE; 6423 } 6424 6425 if (!all_defined) 6426 { 6427 bfd_set_error (bfd_error_bad_value); 6428 return FALSE; 6429 } 6430 } 6431 6432 /* Set up the version definition section. */ 6433 s = bfd_get_linker_section (dynobj, ".gnu.version_d"); 6434 BFD_ASSERT (s != NULL); 6435 6436 /* We may have created additional version definitions if we are 6437 just linking a regular application. */ 6438 verdefs = info->version_info; 6439 6440 /* Skip anonymous version tag. */ 6441 if (verdefs != NULL && verdefs->vernum == 0) 6442 verdefs = verdefs->next; 6443 6444 if (verdefs == NULL && !info->create_default_symver) 6445 s->flags |= SEC_EXCLUDE; 6446 else 6447 { 6448 unsigned int cdefs; 6449 bfd_size_type size; 6450 bfd_byte *p; 6451 Elf_Internal_Verdef def; 6452 Elf_Internal_Verdaux defaux; 6453 struct bfd_link_hash_entry *bh; 6454 struct elf_link_hash_entry *h; 6455 const char *name; 6456 6457 cdefs = 0; 6458 size = 0; 6459 6460 /* Make space for the base version. */ 6461 size += sizeof (Elf_External_Verdef); 6462 size += sizeof (Elf_External_Verdaux); 6463 ++cdefs; 6464 6465 /* Make space for the default version. */ 6466 if (info->create_default_symver) 6467 { 6468 size += sizeof (Elf_External_Verdef); 6469 ++cdefs; 6470 } 6471 6472 for (t = verdefs; t != NULL; t = t->next) 6473 { 6474 struct bfd_elf_version_deps *n; 6475 6476 /* Don't emit base version twice. */ 6477 if (t->vernum == 0) 6478 continue; 6479 6480 size += sizeof (Elf_External_Verdef); 6481 size += sizeof (Elf_External_Verdaux); 6482 ++cdefs; 6483 6484 for (n = t->deps; n != NULL; n = n->next) 6485 size += sizeof (Elf_External_Verdaux); 6486 } 6487 6488 s->size = size; 6489 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); 6490 if (s->contents == NULL && s->size != 0) 6491 return FALSE; 6492 6493 /* Fill in the version definition section. */ 6494 6495 p = s->contents; 6496 6497 def.vd_version = VER_DEF_CURRENT; 6498 def.vd_flags = VER_FLG_BASE; 6499 def.vd_ndx = 1; 6500 def.vd_cnt = 1; 6501 if (info->create_default_symver) 6502 { 6503 def.vd_aux = 2 * sizeof (Elf_External_Verdef); 6504 def.vd_next = sizeof (Elf_External_Verdef); 6505 } 6506 else 6507 { 6508 def.vd_aux = sizeof (Elf_External_Verdef); 6509 def.vd_next = (sizeof (Elf_External_Verdef) 6510 + sizeof (Elf_External_Verdaux)); 6511 } 6512 6513 if (soname_indx != (size_t) -1) 6514 { 6515 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, 6516 soname_indx); 6517 def.vd_hash = bfd_elf_hash (soname); 6518 defaux.vda_name = soname_indx; 6519 name = soname; 6520 } 6521 else 6522 { 6523 size_t indx; 6524 6525 name = lbasename (output_bfd->filename); 6526 def.vd_hash = bfd_elf_hash (name); 6527 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6528 name, FALSE); 6529 if (indx == (size_t) -1) 6530 return FALSE; 6531 defaux.vda_name = indx; 6532 } 6533 defaux.vda_next = 0; 6534 6535 _bfd_elf_swap_verdef_out (output_bfd, &def, 6536 (Elf_External_Verdef *) p); 6537 p += sizeof (Elf_External_Verdef); 6538 if (info->create_default_symver) 6539 { 6540 /* Add a symbol representing this version. */ 6541 bh = NULL; 6542 if (! (_bfd_generic_link_add_one_symbol 6543 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr, 6544 0, NULL, FALSE, 6545 get_elf_backend_data (dynobj)->collect, &bh))) 6546 return FALSE; 6547 h = (struct elf_link_hash_entry *) bh; 6548 h->non_elf = 0; 6549 h->def_regular = 1; 6550 h->type = STT_OBJECT; 6551 h->verinfo.vertree = NULL; 6552 6553 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 6554 return FALSE; 6555 6556 /* Create a duplicate of the base version with the same 6557 aux block, but different flags. */ 6558 def.vd_flags = 0; 6559 def.vd_ndx = 2; 6560 def.vd_aux = sizeof (Elf_External_Verdef); 6561 if (verdefs) 6562 def.vd_next = (sizeof (Elf_External_Verdef) 6563 + sizeof (Elf_External_Verdaux)); 6564 else 6565 def.vd_next = 0; 6566 _bfd_elf_swap_verdef_out (output_bfd, &def, 6567 (Elf_External_Verdef *) p); 6568 p += sizeof (Elf_External_Verdef); 6569 } 6570 _bfd_elf_swap_verdaux_out (output_bfd, &defaux, 6571 (Elf_External_Verdaux *) p); 6572 p += sizeof (Elf_External_Verdaux); 6573 6574 for (t = verdefs; t != NULL; t = t->next) 6575 { 6576 unsigned int cdeps; 6577 struct bfd_elf_version_deps *n; 6578 6579 /* Don't emit the base version twice. */ 6580 if (t->vernum == 0) 6581 continue; 6582 6583 cdeps = 0; 6584 for (n = t->deps; n != NULL; n = n->next) 6585 ++cdeps; 6586 6587 /* Add a symbol representing this version. */ 6588 bh = NULL; 6589 if (! (_bfd_generic_link_add_one_symbol 6590 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, 6591 0, NULL, FALSE, 6592 get_elf_backend_data (dynobj)->collect, &bh))) 6593 return FALSE; 6594 h = (struct elf_link_hash_entry *) bh; 6595 h->non_elf = 0; 6596 h->def_regular = 1; 6597 h->type = STT_OBJECT; 6598 h->verinfo.vertree = t; 6599 6600 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 6601 return FALSE; 6602 6603 def.vd_version = VER_DEF_CURRENT; 6604 def.vd_flags = 0; 6605 if (t->globals.list == NULL 6606 && t->locals.list == NULL 6607 && ! t->used) 6608 def.vd_flags |= VER_FLG_WEAK; 6609 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1); 6610 def.vd_cnt = cdeps + 1; 6611 def.vd_hash = bfd_elf_hash (t->name); 6612 def.vd_aux = sizeof (Elf_External_Verdef); 6613 def.vd_next = 0; 6614 6615 /* If a basever node is next, it *must* be the last node in 6616 the chain, otherwise Verdef construction breaks. */ 6617 if (t->next != NULL && t->next->vernum == 0) 6618 BFD_ASSERT (t->next->next == NULL); 6619 6620 if (t->next != NULL && t->next->vernum != 0) 6621 def.vd_next = (sizeof (Elf_External_Verdef) 6622 + (cdeps + 1) * sizeof (Elf_External_Verdaux)); 6623 6624 _bfd_elf_swap_verdef_out (output_bfd, &def, 6625 (Elf_External_Verdef *) p); 6626 p += sizeof (Elf_External_Verdef); 6627 6628 defaux.vda_name = h->dynstr_index; 6629 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, 6630 h->dynstr_index); 6631 defaux.vda_next = 0; 6632 if (t->deps != NULL) 6633 defaux.vda_next = sizeof (Elf_External_Verdaux); 6634 t->name_indx = defaux.vda_name; 6635 6636 _bfd_elf_swap_verdaux_out (output_bfd, &defaux, 6637 (Elf_External_Verdaux *) p); 6638 p += sizeof (Elf_External_Verdaux); 6639 6640 for (n = t->deps; n != NULL; n = n->next) 6641 { 6642 if (n->version_needed == NULL) 6643 { 6644 /* This can happen if there was an error in the 6645 version script. */ 6646 defaux.vda_name = 0; 6647 } 6648 else 6649 { 6650 defaux.vda_name = n->version_needed->name_indx; 6651 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, 6652 defaux.vda_name); 6653 } 6654 if (n->next == NULL) 6655 defaux.vda_next = 0; 6656 else 6657 defaux.vda_next = sizeof (Elf_External_Verdaux); 6658 6659 _bfd_elf_swap_verdaux_out (output_bfd, &defaux, 6660 (Elf_External_Verdaux *) p); 6661 p += sizeof (Elf_External_Verdaux); 6662 } 6663 } 6664 6665 elf_tdata (output_bfd)->cverdefs = cdefs; 6666 } 6667 } 6668 6669 bed = get_elf_backend_data (output_bfd); 6670 6671 if (info->gc_sections && bed->can_gc_sections) 6672 { 6673 struct elf_gc_sweep_symbol_info sweep_info; 6674 6675 /* Remove the symbols that were in the swept sections from the 6676 dynamic symbol table. */ 6677 sweep_info.info = info; 6678 sweep_info.hide_symbol = bed->elf_backend_hide_symbol; 6679 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, 6680 &sweep_info); 6681 } 6682 6683 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) 6684 { 6685 asection *s; 6686 struct elf_find_verdep_info sinfo; 6687 6688 /* Work out the size of the version reference section. */ 6689 6690 s = bfd_get_linker_section (dynobj, ".gnu.version_r"); 6691 BFD_ASSERT (s != NULL); 6692 6693 sinfo.info = info; 6694 sinfo.vers = elf_tdata (output_bfd)->cverdefs; 6695 if (sinfo.vers == 0) 6696 sinfo.vers = 1; 6697 sinfo.failed = FALSE; 6698 6699 elf_link_hash_traverse (elf_hash_table (info), 6700 _bfd_elf_link_find_version_dependencies, 6701 &sinfo); 6702 if (sinfo.failed) 6703 return FALSE; 6704 6705 if (elf_tdata (output_bfd)->verref == NULL) 6706 s->flags |= SEC_EXCLUDE; 6707 else 6708 { 6709 Elf_Internal_Verneed *vn; 6710 unsigned int size; 6711 unsigned int crefs; 6712 bfd_byte *p; 6713 6714 /* Build the version dependency section. */ 6715 size = 0; 6716 crefs = 0; 6717 for (vn = elf_tdata (output_bfd)->verref; 6718 vn != NULL; 6719 vn = vn->vn_nextref) 6720 { 6721 Elf_Internal_Vernaux *a; 6722 6723 size += sizeof (Elf_External_Verneed); 6724 ++crefs; 6725 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) 6726 size += sizeof (Elf_External_Vernaux); 6727 } 6728 6729 s->size = size; 6730 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); 6731 if (s->contents == NULL) 6732 return FALSE; 6733 6734 p = s->contents; 6735 for (vn = elf_tdata (output_bfd)->verref; 6736 vn != NULL; 6737 vn = vn->vn_nextref) 6738 { 6739 unsigned int caux; 6740 Elf_Internal_Vernaux *a; 6741 size_t indx; 6742 6743 caux = 0; 6744 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) 6745 ++caux; 6746 6747 vn->vn_version = VER_NEED_CURRENT; 6748 vn->vn_cnt = caux; 6749 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6750 elf_dt_name (vn->vn_bfd) != NULL 6751 ? elf_dt_name (vn->vn_bfd) 6752 : lbasename (vn->vn_bfd->filename), 6753 FALSE); 6754 if (indx == (size_t) -1) 6755 return FALSE; 6756 vn->vn_file = indx; 6757 vn->vn_aux = sizeof (Elf_External_Verneed); 6758 if (vn->vn_nextref == NULL) 6759 vn->vn_next = 0; 6760 else 6761 vn->vn_next = (sizeof (Elf_External_Verneed) 6762 + caux * sizeof (Elf_External_Vernaux)); 6763 6764 _bfd_elf_swap_verneed_out (output_bfd, vn, 6765 (Elf_External_Verneed *) p); 6766 p += sizeof (Elf_External_Verneed); 6767 6768 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) 6769 { 6770 a->vna_hash = bfd_elf_hash (a->vna_nodename); 6771 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6772 a->vna_nodename, FALSE); 6773 if (indx == (size_t) -1) 6774 return FALSE; 6775 a->vna_name = indx; 6776 if (a->vna_nextptr == NULL) 6777 a->vna_next = 0; 6778 else 6779 a->vna_next = sizeof (Elf_External_Vernaux); 6780 6781 _bfd_elf_swap_vernaux_out (output_bfd, a, 6782 (Elf_External_Vernaux *) p); 6783 p += sizeof (Elf_External_Vernaux); 6784 } 6785 } 6786 6787 elf_tdata (output_bfd)->cverrefs = crefs; 6788 } 6789 } 6790 6791 /* Any syms created from now on start with -1 in 6792 got.refcount/offset and plt.refcount/offset. */ 6793 elf_hash_table (info)->init_got_refcount 6794 = elf_hash_table (info)->init_got_offset; 6795 elf_hash_table (info)->init_plt_refcount 6796 = elf_hash_table (info)->init_plt_offset; 6797 6798 if (bfd_link_relocatable (info) 6799 && !_bfd_elf_size_group_sections (info)) 6800 return FALSE; 6801 6802 /* The backend may have to create some sections regardless of whether 6803 we're dynamic or not. */ 6804 if (bed->elf_backend_always_size_sections 6805 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) 6806 return FALSE; 6807 6808 /* Determine any GNU_STACK segment requirements, after the backend 6809 has had a chance to set a default segment size. */ 6810 if (info->execstack) 6811 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X; 6812 else if (info->noexecstack) 6813 elf_stack_flags (output_bfd) = PF_R | PF_W; 6814 else 6815 { 6816 bfd *inputobj; 6817 asection *notesec = NULL; 6818 int exec = 0; 6819 6820 for (inputobj = info->input_bfds; 6821 inputobj; 6822 inputobj = inputobj->link.next) 6823 { 6824 asection *s; 6825 6826 if (inputobj->flags 6827 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED)) 6828 continue; 6829 s = inputobj->sections; 6830 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 6831 continue; 6832 6833 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack"); 6834 if (s) 6835 { 6836 if (s->flags & SEC_CODE) 6837 exec = PF_X; 6838 notesec = s; 6839 } 6840 else if (bed->default_execstack) 6841 exec = PF_X; 6842 } 6843 if (notesec || info->stacksize > 0) 6844 elf_stack_flags (output_bfd) = PF_R | PF_W | exec; 6845 if (notesec && exec && bfd_link_relocatable (info) 6846 && notesec->output_section != bfd_abs_section_ptr) 6847 notesec->output_section->flags |= SEC_CODE; 6848 } 6849 6850 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) 6851 { 6852 struct elf_info_failed eif; 6853 struct elf_link_hash_entry *h; 6854 asection *dynstr; 6855 asection *s; 6856 6857 *sinterpptr = bfd_get_linker_section (dynobj, ".interp"); 6858 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp); 6859 6860 if (info->symbolic) 6861 { 6862 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) 6863 return FALSE; 6864 info->flags |= DF_SYMBOLIC; 6865 } 6866 6867 if (rpath != NULL) 6868 { 6869 size_t indx; 6870 bfd_vma tag; 6871 6872 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath, 6873 TRUE); 6874 if (indx == (size_t) -1) 6875 return FALSE; 6876 6877 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH; 6878 if (!_bfd_elf_add_dynamic_entry (info, tag, indx)) 6879 return FALSE; 6880 } 6881 6882 if (filter_shlib != NULL) 6883 { 6884 size_t indx; 6885 6886 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6887 filter_shlib, TRUE); 6888 if (indx == (size_t) -1 6889 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx)) 6890 return FALSE; 6891 } 6892 6893 if (auxiliary_filters != NULL) 6894 { 6895 const char * const *p; 6896 6897 for (p = auxiliary_filters; *p != NULL; p++) 6898 { 6899 size_t indx; 6900 6901 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6902 *p, TRUE); 6903 if (indx == (size_t) -1 6904 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) 6905 return FALSE; 6906 } 6907 } 6908 6909 if (audit != NULL) 6910 { 6911 size_t indx; 6912 6913 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit, 6914 TRUE); 6915 if (indx == (size_t) -1 6916 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx)) 6917 return FALSE; 6918 } 6919 6920 if (depaudit != NULL) 6921 { 6922 size_t indx; 6923 6924 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit, 6925 TRUE); 6926 if (indx == (size_t) -1 6927 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx)) 6928 return FALSE; 6929 } 6930 6931 eif.info = info; 6932 eif.failed = FALSE; 6933 6934 /* Find all symbols which were defined in a dynamic object and make 6935 the backend pick a reasonable value for them. */ 6936 elf_link_hash_traverse (elf_hash_table (info), 6937 _bfd_elf_adjust_dynamic_symbol, 6938 &eif); 6939 if (eif.failed) 6940 return FALSE; 6941 6942 /* Add some entries to the .dynamic section. We fill in some of the 6943 values later, in bfd_elf_final_link, but we must add the entries 6944 now so that we know the final size of the .dynamic section. */ 6945 6946 /* If there are initialization and/or finalization functions to 6947 call then add the corresponding DT_INIT/DT_FINI entries. */ 6948 h = (info->init_function 6949 ? elf_link_hash_lookup (elf_hash_table (info), 6950 info->init_function, FALSE, 6951 FALSE, FALSE) 6952 : NULL); 6953 if (h != NULL 6954 && (h->ref_regular 6955 || h->def_regular)) 6956 { 6957 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0)) 6958 return FALSE; 6959 } 6960 h = (info->fini_function 6961 ? elf_link_hash_lookup (elf_hash_table (info), 6962 info->fini_function, FALSE, 6963 FALSE, FALSE) 6964 : NULL); 6965 if (h != NULL 6966 && (h->ref_regular 6967 || h->def_regular)) 6968 { 6969 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0)) 6970 return FALSE; 6971 } 6972 6973 s = bfd_get_section_by_name (output_bfd, ".preinit_array"); 6974 if (s != NULL && s->linker_has_input) 6975 { 6976 /* DT_PREINIT_ARRAY is not allowed in shared library. */ 6977 if (! bfd_link_executable (info)) 6978 { 6979 bfd *sub; 6980 asection *o; 6981 6982 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 6983 if (bfd_get_flavour (sub) == bfd_target_elf_flavour 6984 && (o = sub->sections) != NULL 6985 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS) 6986 for (o = sub->sections; o != NULL; o = o->next) 6987 if (elf_section_data (o)->this_hdr.sh_type 6988 == SHT_PREINIT_ARRAY) 6989 { 6990 _bfd_error_handler 6991 (_("%pB: .preinit_array section is not allowed in DSO"), 6992 sub); 6993 break; 6994 } 6995 6996 bfd_set_error (bfd_error_nonrepresentable_section); 6997 return FALSE; 6998 } 6999 7000 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0) 7001 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0)) 7002 return FALSE; 7003 } 7004 s = bfd_get_section_by_name (output_bfd, ".init_array"); 7005 if (s != NULL && s->linker_has_input) 7006 { 7007 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0) 7008 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0)) 7009 return FALSE; 7010 } 7011 s = bfd_get_section_by_name (output_bfd, ".fini_array"); 7012 if (s != NULL && s->linker_has_input) 7013 { 7014 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0) 7015 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0)) 7016 return FALSE; 7017 } 7018 7019 dynstr = bfd_get_linker_section (dynobj, ".dynstr"); 7020 /* If .dynstr is excluded from the link, we don't want any of 7021 these tags. Strictly, we should be checking each section 7022 individually; This quick check covers for the case where 7023 someone does a /DISCARD/ : { *(*) }. */ 7024 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr) 7025 { 7026 bfd_size_type strsize; 7027 7028 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 7029 if ((info->emit_hash 7030 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)) 7031 || (info->emit_gnu_hash 7032 && (bed->record_xhash_symbol == NULL 7033 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))) 7034 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0) 7035 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0) 7036 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize) 7037 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT, 7038 bed->s->sizeof_sym)) 7039 return FALSE; 7040 } 7041 } 7042 7043 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info)) 7044 return FALSE; 7045 7046 /* The backend must work out the sizes of all the other dynamic 7047 sections. */ 7048 if (dynobj != NULL 7049 && bed->elf_backend_size_dynamic_sections != NULL 7050 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) 7051 return FALSE; 7052 7053 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) 7054 { 7055 if (elf_tdata (output_bfd)->cverdefs) 7056 { 7057 unsigned int crefs = elf_tdata (output_bfd)->cverdefs; 7058 7059 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0) 7060 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs)) 7061 return FALSE; 7062 } 7063 7064 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS)) 7065 { 7066 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags)) 7067 return FALSE; 7068 } 7069 else if (info->flags & DF_BIND_NOW) 7070 { 7071 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0)) 7072 return FALSE; 7073 } 7074 7075 if (info->flags_1) 7076 { 7077 if (bfd_link_executable (info)) 7078 info->flags_1 &= ~ (DF_1_INITFIRST 7079 | DF_1_NODELETE 7080 | DF_1_NOOPEN); 7081 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1)) 7082 return FALSE; 7083 } 7084 7085 if (elf_tdata (output_bfd)->cverrefs) 7086 { 7087 unsigned int crefs = elf_tdata (output_bfd)->cverrefs; 7088 7089 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0) 7090 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) 7091 return FALSE; 7092 } 7093 7094 if ((elf_tdata (output_bfd)->cverrefs == 0 7095 && elf_tdata (output_bfd)->cverdefs == 0) 7096 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1) 7097 { 7098 asection *s; 7099 7100 s = bfd_get_linker_section (dynobj, ".gnu.version"); 7101 s->flags |= SEC_EXCLUDE; 7102 } 7103 } 7104 return TRUE; 7105 } 7106 7107 /* Find the first non-excluded output section. We'll use its 7108 section symbol for some emitted relocs. */ 7109 void 7110 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info) 7111 { 7112 asection *s; 7113 asection *found = NULL; 7114 7115 for (s = output_bfd->sections; s != NULL; s = s->next) 7116 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC 7117 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) 7118 { 7119 found = s; 7120 if ((s->flags & SEC_THREAD_LOCAL) == 0) 7121 break; 7122 } 7123 elf_hash_table (info)->text_index_section = found; 7124 } 7125 7126 /* Find two non-excluded output sections, one for code, one for data. 7127 We'll use their section symbols for some emitted relocs. */ 7128 void 7129 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info) 7130 { 7131 asection *s; 7132 asection *found = NULL; 7133 7134 /* Data first, since setting text_index_section changes 7135 _bfd_elf_omit_section_dynsym_default. */ 7136 for (s = output_bfd->sections; s != NULL; s = s->next) 7137 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC 7138 && !(s->flags & SEC_READONLY) 7139 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) 7140 { 7141 found = s; 7142 if ((s->flags & SEC_THREAD_LOCAL) == 0) 7143 break; 7144 } 7145 elf_hash_table (info)->data_index_section = found; 7146 7147 for (s = output_bfd->sections; s != NULL; s = s->next) 7148 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC 7149 && (s->flags & SEC_READONLY) 7150 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) 7151 { 7152 found = s; 7153 break; 7154 } 7155 elf_hash_table (info)->text_index_section = found; 7156 } 7157 7158 #define GNU_HASH_SECTION_NAME(bed) \ 7159 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash" 7160 7161 bfd_boolean 7162 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info) 7163 { 7164 const struct elf_backend_data *bed; 7165 unsigned long section_sym_count; 7166 bfd_size_type dynsymcount = 0; 7167 7168 if (!is_elf_hash_table (info->hash)) 7169 return TRUE; 7170 7171 bed = get_elf_backend_data (output_bfd); 7172 (*bed->elf_backend_init_index_section) (output_bfd, info); 7173 7174 /* Assign dynsym indices. In a shared library we generate a section 7175 symbol for each output section, which come first. Next come all 7176 of the back-end allocated local dynamic syms, followed by the rest 7177 of the global symbols. 7178 7179 This is usually not needed for static binaries, however backends 7180 can request to always do it, e.g. the MIPS backend uses dynamic 7181 symbol counts to lay out GOT, which will be produced in the 7182 presence of GOT relocations even in static binaries (holding fixed 7183 data in that case, to satisfy those relocations). */ 7184 7185 if (elf_hash_table (info)->dynamic_sections_created 7186 || bed->always_renumber_dynsyms) 7187 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info, 7188 §ion_sym_count); 7189 7190 if (elf_hash_table (info)->dynamic_sections_created) 7191 { 7192 bfd *dynobj; 7193 asection *s; 7194 unsigned int dtagcount; 7195 7196 dynobj = elf_hash_table (info)->dynobj; 7197 7198 /* Work out the size of the symbol version section. */ 7199 s = bfd_get_linker_section (dynobj, ".gnu.version"); 7200 BFD_ASSERT (s != NULL); 7201 if ((s->flags & SEC_EXCLUDE) == 0) 7202 { 7203 s->size = dynsymcount * sizeof (Elf_External_Versym); 7204 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 7205 if (s->contents == NULL) 7206 return FALSE; 7207 7208 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0)) 7209 return FALSE; 7210 } 7211 7212 /* Set the size of the .dynsym and .hash sections. We counted 7213 the number of dynamic symbols in elf_link_add_object_symbols. 7214 We will build the contents of .dynsym and .hash when we build 7215 the final symbol table, because until then we do not know the 7216 correct value to give the symbols. We built the .dynstr 7217 section as we went along in elf_link_add_object_symbols. */ 7218 s = elf_hash_table (info)->dynsym; 7219 BFD_ASSERT (s != NULL); 7220 s->size = dynsymcount * bed->s->sizeof_sym; 7221 7222 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); 7223 if (s->contents == NULL) 7224 return FALSE; 7225 7226 /* The first entry in .dynsym is a dummy symbol. Clear all the 7227 section syms, in case we don't output them all. */ 7228 ++section_sym_count; 7229 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym); 7230 7231 elf_hash_table (info)->bucketcount = 0; 7232 7233 /* Compute the size of the hashing table. As a side effect this 7234 computes the hash values for all the names we export. */ 7235 if (info->emit_hash) 7236 { 7237 unsigned long int *hashcodes; 7238 struct hash_codes_info hashinf; 7239 bfd_size_type amt; 7240 unsigned long int nsyms; 7241 size_t bucketcount; 7242 size_t hash_entry_size; 7243 7244 /* Compute the hash values for all exported symbols. At the same 7245 time store the values in an array so that we could use them for 7246 optimizations. */ 7247 amt = dynsymcount * sizeof (unsigned long int); 7248 hashcodes = (unsigned long int *) bfd_malloc (amt); 7249 if (hashcodes == NULL) 7250 return FALSE; 7251 hashinf.hashcodes = hashcodes; 7252 hashinf.error = FALSE; 7253 7254 /* Put all hash values in HASHCODES. */ 7255 elf_link_hash_traverse (elf_hash_table (info), 7256 elf_collect_hash_codes, &hashinf); 7257 if (hashinf.error) 7258 { 7259 free (hashcodes); 7260 return FALSE; 7261 } 7262 7263 nsyms = hashinf.hashcodes - hashcodes; 7264 bucketcount 7265 = compute_bucket_count (info, hashcodes, nsyms, 0); 7266 free (hashcodes); 7267 7268 if (bucketcount == 0 && nsyms > 0) 7269 return FALSE; 7270 7271 elf_hash_table (info)->bucketcount = bucketcount; 7272 7273 s = bfd_get_linker_section (dynobj, ".hash"); 7274 BFD_ASSERT (s != NULL); 7275 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; 7276 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size); 7277 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 7278 if (s->contents == NULL) 7279 return FALSE; 7280 7281 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); 7282 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, 7283 s->contents + hash_entry_size); 7284 } 7285 7286 if (info->emit_gnu_hash) 7287 { 7288 size_t i, cnt; 7289 unsigned char *contents; 7290 struct collect_gnu_hash_codes cinfo; 7291 bfd_size_type amt; 7292 size_t bucketcount; 7293 7294 memset (&cinfo, 0, sizeof (cinfo)); 7295 7296 /* Compute the hash values for all exported symbols. At the same 7297 time store the values in an array so that we could use them for 7298 optimizations. */ 7299 amt = dynsymcount * 2 * sizeof (unsigned long int); 7300 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt); 7301 if (cinfo.hashcodes == NULL) 7302 return FALSE; 7303 7304 cinfo.hashval = cinfo.hashcodes + dynsymcount; 7305 cinfo.min_dynindx = -1; 7306 cinfo.output_bfd = output_bfd; 7307 cinfo.bed = bed; 7308 7309 /* Put all hash values in HASHCODES. */ 7310 elf_link_hash_traverse (elf_hash_table (info), 7311 elf_collect_gnu_hash_codes, &cinfo); 7312 if (cinfo.error) 7313 { 7314 free (cinfo.hashcodes); 7315 return FALSE; 7316 } 7317 7318 bucketcount 7319 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1); 7320 7321 if (bucketcount == 0) 7322 { 7323 free (cinfo.hashcodes); 7324 return FALSE; 7325 } 7326 7327 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed)); 7328 BFD_ASSERT (s != NULL); 7329 7330 if (cinfo.nsyms == 0) 7331 { 7332 /* Empty .gnu.hash or .MIPS.xhash section is special. */ 7333 BFD_ASSERT (cinfo.min_dynindx == -1); 7334 free (cinfo.hashcodes); 7335 s->size = 5 * 4 + bed->s->arch_size / 8; 7336 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 7337 if (contents == NULL) 7338 return FALSE; 7339 s->contents = contents; 7340 /* 1 empty bucket. */ 7341 bfd_put_32 (output_bfd, 1, contents); 7342 /* SYMIDX above the special symbol 0. */ 7343 bfd_put_32 (output_bfd, 1, contents + 4); 7344 /* Just one word for bitmask. */ 7345 bfd_put_32 (output_bfd, 1, contents + 8); 7346 /* Only hash fn bloom filter. */ 7347 bfd_put_32 (output_bfd, 0, contents + 12); 7348 /* No hashes are valid - empty bitmask. */ 7349 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16); 7350 /* No hashes in the only bucket. */ 7351 bfd_put_32 (output_bfd, 0, 7352 contents + 16 + bed->s->arch_size / 8); 7353 } 7354 else 7355 { 7356 unsigned long int maskwords, maskbitslog2, x; 7357 BFD_ASSERT (cinfo.min_dynindx != -1); 7358 7359 x = cinfo.nsyms; 7360 maskbitslog2 = 1; 7361 while ((x >>= 1) != 0) 7362 ++maskbitslog2; 7363 if (maskbitslog2 < 3) 7364 maskbitslog2 = 5; 7365 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms) 7366 maskbitslog2 = maskbitslog2 + 3; 7367 else 7368 maskbitslog2 = maskbitslog2 + 2; 7369 if (bed->s->arch_size == 64) 7370 { 7371 if (maskbitslog2 == 5) 7372 maskbitslog2 = 6; 7373 cinfo.shift1 = 6; 7374 } 7375 else 7376 cinfo.shift1 = 5; 7377 cinfo.mask = (1 << cinfo.shift1) - 1; 7378 cinfo.shift2 = maskbitslog2; 7379 cinfo.maskbits = 1 << maskbitslog2; 7380 maskwords = 1 << (maskbitslog2 - cinfo.shift1); 7381 amt = bucketcount * sizeof (unsigned long int) * 2; 7382 amt += maskwords * sizeof (bfd_vma); 7383 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt); 7384 if (cinfo.bitmask == NULL) 7385 { 7386 free (cinfo.hashcodes); 7387 return FALSE; 7388 } 7389 7390 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords); 7391 cinfo.indx = cinfo.counts + bucketcount; 7392 cinfo.symindx = dynsymcount - cinfo.nsyms; 7393 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma)); 7394 7395 /* Determine how often each hash bucket is used. */ 7396 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0])); 7397 for (i = 0; i < cinfo.nsyms; ++i) 7398 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount]; 7399 7400 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i) 7401 if (cinfo.counts[i] != 0) 7402 { 7403 cinfo.indx[i] = cnt; 7404 cnt += cinfo.counts[i]; 7405 } 7406 BFD_ASSERT (cnt == dynsymcount); 7407 cinfo.bucketcount = bucketcount; 7408 cinfo.local_indx = cinfo.min_dynindx; 7409 7410 s->size = (4 + bucketcount + cinfo.nsyms) * 4; 7411 s->size += cinfo.maskbits / 8; 7412 if (bed->record_xhash_symbol != NULL) 7413 s->size += cinfo.nsyms * 4; 7414 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 7415 if (contents == NULL) 7416 { 7417 free (cinfo.bitmask); 7418 free (cinfo.hashcodes); 7419 return FALSE; 7420 } 7421 7422 s->contents = contents; 7423 bfd_put_32 (output_bfd, bucketcount, contents); 7424 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4); 7425 bfd_put_32 (output_bfd, maskwords, contents + 8); 7426 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12); 7427 contents += 16 + cinfo.maskbits / 8; 7428 7429 for (i = 0; i < bucketcount; ++i) 7430 { 7431 if (cinfo.counts[i] == 0) 7432 bfd_put_32 (output_bfd, 0, contents); 7433 else 7434 bfd_put_32 (output_bfd, cinfo.indx[i], contents); 7435 contents += 4; 7436 } 7437 7438 cinfo.contents = contents; 7439 7440 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents; 7441 /* Renumber dynamic symbols, if populating .gnu.hash section. 7442 If using .MIPS.xhash, populate the translation table. */ 7443 elf_link_hash_traverse (elf_hash_table (info), 7444 elf_gnu_hash_process_symidx, &cinfo); 7445 7446 contents = s->contents + 16; 7447 for (i = 0; i < maskwords; ++i) 7448 { 7449 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i], 7450 contents); 7451 contents += bed->s->arch_size / 8; 7452 } 7453 7454 free (cinfo.bitmask); 7455 free (cinfo.hashcodes); 7456 } 7457 } 7458 7459 s = bfd_get_linker_section (dynobj, ".dynstr"); 7460 BFD_ASSERT (s != NULL); 7461 7462 elf_finalize_dynstr (output_bfd, info); 7463 7464 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 7465 7466 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount) 7467 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0)) 7468 return FALSE; 7469 } 7470 7471 return TRUE; 7472 } 7473 7474 /* Make sure sec_info_type is cleared if sec_info is cleared too. */ 7475 7476 static void 7477 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED, 7478 asection *sec) 7479 { 7480 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE); 7481 sec->sec_info_type = SEC_INFO_TYPE_NONE; 7482 } 7483 7484 /* Finish SHF_MERGE section merging. */ 7485 7486 bfd_boolean 7487 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info) 7488 { 7489 bfd *ibfd; 7490 asection *sec; 7491 7492 if (!is_elf_hash_table (info->hash)) 7493 return FALSE; 7494 7495 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 7496 if ((ibfd->flags & DYNAMIC) == 0 7497 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour 7498 && (elf_elfheader (ibfd)->e_ident[EI_CLASS] 7499 == get_elf_backend_data (obfd)->s->elfclass)) 7500 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 7501 if ((sec->flags & SEC_MERGE) != 0 7502 && !bfd_is_abs_section (sec->output_section)) 7503 { 7504 struct bfd_elf_section_data *secdata; 7505 7506 secdata = elf_section_data (sec); 7507 if (! _bfd_add_merge_section (obfd, 7508 &elf_hash_table (info)->merge_info, 7509 sec, &secdata->sec_info)) 7510 return FALSE; 7511 else if (secdata->sec_info) 7512 sec->sec_info_type = SEC_INFO_TYPE_MERGE; 7513 } 7514 7515 if (elf_hash_table (info)->merge_info != NULL) 7516 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info, 7517 merge_sections_remove_hook); 7518 return TRUE; 7519 } 7520 7521 /* Create an entry in an ELF linker hash table. */ 7522 7523 struct bfd_hash_entry * 7524 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry, 7525 struct bfd_hash_table *table, 7526 const char *string) 7527 { 7528 /* Allocate the structure if it has not already been allocated by a 7529 subclass. */ 7530 if (entry == NULL) 7531 { 7532 entry = (struct bfd_hash_entry *) 7533 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)); 7534 if (entry == NULL) 7535 return entry; 7536 } 7537 7538 /* Call the allocation method of the superclass. */ 7539 entry = _bfd_link_hash_newfunc (entry, table, string); 7540 if (entry != NULL) 7541 { 7542 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry; 7543 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table; 7544 7545 /* Set local fields. */ 7546 ret->indx = -1; 7547 ret->dynindx = -1; 7548 ret->got = htab->init_got_refcount; 7549 ret->plt = htab->init_plt_refcount; 7550 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry) 7551 - offsetof (struct elf_link_hash_entry, size))); 7552 /* Assume that we have been called by a non-ELF symbol reader. 7553 This flag is then reset by the code which reads an ELF input 7554 file. This ensures that a symbol created by a non-ELF symbol 7555 reader will have the flag set correctly. */ 7556 ret->non_elf = 1; 7557 } 7558 7559 return entry; 7560 } 7561 7562 /* Copy data from an indirect symbol to its direct symbol, hiding the 7563 old indirect symbol. Also used for copying flags to a weakdef. */ 7564 7565 void 7566 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info, 7567 struct elf_link_hash_entry *dir, 7568 struct elf_link_hash_entry *ind) 7569 { 7570 struct elf_link_hash_table *htab; 7571 7572 /* Copy down any references that we may have already seen to the 7573 symbol which just became indirect. */ 7574 7575 if (dir->versioned != versioned_hidden) 7576 dir->ref_dynamic |= ind->ref_dynamic; 7577 dir->ref_regular |= ind->ref_regular; 7578 dir->ref_regular_nonweak |= ind->ref_regular_nonweak; 7579 dir->non_got_ref |= ind->non_got_ref; 7580 dir->needs_plt |= ind->needs_plt; 7581 dir->pointer_equality_needed |= ind->pointer_equality_needed; 7582 7583 if (ind->root.type != bfd_link_hash_indirect) 7584 return; 7585 7586 /* Copy over the global and procedure linkage table refcount entries. 7587 These may have been already set up by a check_relocs routine. */ 7588 htab = elf_hash_table (info); 7589 if (ind->got.refcount > htab->init_got_refcount.refcount) 7590 { 7591 if (dir->got.refcount < 0) 7592 dir->got.refcount = 0; 7593 dir->got.refcount += ind->got.refcount; 7594 ind->got.refcount = htab->init_got_refcount.refcount; 7595 } 7596 7597 if (ind->plt.refcount > htab->init_plt_refcount.refcount) 7598 { 7599 if (dir->plt.refcount < 0) 7600 dir->plt.refcount = 0; 7601 dir->plt.refcount += ind->plt.refcount; 7602 ind->plt.refcount = htab->init_plt_refcount.refcount; 7603 } 7604 7605 if (ind->dynindx != -1) 7606 { 7607 if (dir->dynindx != -1) 7608 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index); 7609 dir->dynindx = ind->dynindx; 7610 dir->dynstr_index = ind->dynstr_index; 7611 ind->dynindx = -1; 7612 ind->dynstr_index = 0; 7613 } 7614 } 7615 7616 void 7617 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info, 7618 struct elf_link_hash_entry *h, 7619 bfd_boolean force_local) 7620 { 7621 /* STT_GNU_IFUNC symbol must go through PLT. */ 7622 if (h->type != STT_GNU_IFUNC) 7623 { 7624 h->plt = elf_hash_table (info)->init_plt_offset; 7625 h->needs_plt = 0; 7626 } 7627 if (force_local) 7628 { 7629 h->forced_local = 1; 7630 if (h->dynindx != -1) 7631 { 7632 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, 7633 h->dynstr_index); 7634 h->dynindx = -1; 7635 h->dynstr_index = 0; 7636 } 7637 } 7638 } 7639 7640 /* Hide a symbol. */ 7641 7642 void 7643 _bfd_elf_link_hide_symbol (bfd *output_bfd, 7644 struct bfd_link_info *info, 7645 struct bfd_link_hash_entry *h) 7646 { 7647 if (is_elf_hash_table (info->hash)) 7648 { 7649 const struct elf_backend_data *bed 7650 = get_elf_backend_data (output_bfd); 7651 struct elf_link_hash_entry *eh 7652 = (struct elf_link_hash_entry *) h; 7653 bed->elf_backend_hide_symbol (info, eh, TRUE); 7654 eh->def_dynamic = 0; 7655 eh->ref_dynamic = 0; 7656 eh->dynamic_def = 0; 7657 } 7658 } 7659 7660 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our 7661 caller. */ 7662 7663 bfd_boolean 7664 _bfd_elf_link_hash_table_init 7665 (struct elf_link_hash_table *table, 7666 bfd *abfd, 7667 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, 7668 struct bfd_hash_table *, 7669 const char *), 7670 unsigned int entsize, 7671 enum elf_target_id target_id) 7672 { 7673 bfd_boolean ret; 7674 int can_refcount = get_elf_backend_data (abfd)->can_refcount; 7675 7676 table->init_got_refcount.refcount = can_refcount - 1; 7677 table->init_plt_refcount.refcount = can_refcount - 1; 7678 table->init_got_offset.offset = -(bfd_vma) 1; 7679 table->init_plt_offset.offset = -(bfd_vma) 1; 7680 /* The first dynamic symbol is a dummy. */ 7681 table->dynsymcount = 1; 7682 7683 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize); 7684 7685 table->root.type = bfd_link_elf_hash_table; 7686 table->hash_table_id = target_id; 7687 7688 return ret; 7689 } 7690 7691 /* Create an ELF linker hash table. */ 7692 7693 struct bfd_link_hash_table * 7694 _bfd_elf_link_hash_table_create (bfd *abfd) 7695 { 7696 struct elf_link_hash_table *ret; 7697 bfd_size_type amt = sizeof (struct elf_link_hash_table); 7698 7699 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt); 7700 if (ret == NULL) 7701 return NULL; 7702 7703 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc, 7704 sizeof (struct elf_link_hash_entry), 7705 GENERIC_ELF_DATA)) 7706 { 7707 free (ret); 7708 return NULL; 7709 } 7710 ret->root.hash_table_free = _bfd_elf_link_hash_table_free; 7711 7712 return &ret->root; 7713 } 7714 7715 /* Destroy an ELF linker hash table. */ 7716 7717 void 7718 _bfd_elf_link_hash_table_free (bfd *obfd) 7719 { 7720 struct elf_link_hash_table *htab; 7721 7722 htab = (struct elf_link_hash_table *) obfd->link.hash; 7723 if (htab->dynstr != NULL) 7724 _bfd_elf_strtab_free (htab->dynstr); 7725 _bfd_merge_sections_free (htab->merge_info); 7726 _bfd_generic_link_hash_table_free (obfd); 7727 } 7728 7729 /* This is a hook for the ELF emulation code in the generic linker to 7730 tell the backend linker what file name to use for the DT_NEEDED 7731 entry for a dynamic object. */ 7732 7733 void 7734 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name) 7735 { 7736 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 7737 && bfd_get_format (abfd) == bfd_object) 7738 elf_dt_name (abfd) = name; 7739 } 7740 7741 int 7742 bfd_elf_get_dyn_lib_class (bfd *abfd) 7743 { 7744 int lib_class; 7745 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 7746 && bfd_get_format (abfd) == bfd_object) 7747 lib_class = elf_dyn_lib_class (abfd); 7748 else 7749 lib_class = 0; 7750 return lib_class; 7751 } 7752 7753 void 7754 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class) 7755 { 7756 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 7757 && bfd_get_format (abfd) == bfd_object) 7758 elf_dyn_lib_class (abfd) = lib_class; 7759 } 7760 7761 /* Get the list of DT_NEEDED entries for a link. This is a hook for 7762 the linker ELF emulation code. */ 7763 7764 struct bfd_link_needed_list * 7765 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED, 7766 struct bfd_link_info *info) 7767 { 7768 if (! is_elf_hash_table (info->hash)) 7769 return NULL; 7770 return elf_hash_table (info)->needed; 7771 } 7772 7773 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a 7774 hook for the linker ELF emulation code. */ 7775 7776 struct bfd_link_needed_list * 7777 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED, 7778 struct bfd_link_info *info) 7779 { 7780 if (! is_elf_hash_table (info->hash)) 7781 return NULL; 7782 return elf_hash_table (info)->runpath; 7783 } 7784 7785 /* Get the name actually used for a dynamic object for a link. This 7786 is the SONAME entry if there is one. Otherwise, it is the string 7787 passed to bfd_elf_set_dt_needed_name, or it is the filename. */ 7788 7789 const char * 7790 bfd_elf_get_dt_soname (bfd *abfd) 7791 { 7792 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 7793 && bfd_get_format (abfd) == bfd_object) 7794 return elf_dt_name (abfd); 7795 return NULL; 7796 } 7797 7798 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for 7799 the ELF linker emulation code. */ 7800 7801 bfd_boolean 7802 bfd_elf_get_bfd_needed_list (bfd *abfd, 7803 struct bfd_link_needed_list **pneeded) 7804 { 7805 asection *s; 7806 bfd_byte *dynbuf = NULL; 7807 unsigned int elfsec; 7808 unsigned long shlink; 7809 bfd_byte *extdyn, *extdynend; 7810 size_t extdynsize; 7811 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); 7812 7813 *pneeded = NULL; 7814 7815 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour 7816 || bfd_get_format (abfd) != bfd_object) 7817 return TRUE; 7818 7819 s = bfd_get_section_by_name (abfd, ".dynamic"); 7820 if (s == NULL || s->size == 0) 7821 return TRUE; 7822 7823 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) 7824 goto error_return; 7825 7826 elfsec = _bfd_elf_section_from_bfd_section (abfd, s); 7827 if (elfsec == SHN_BAD) 7828 goto error_return; 7829 7830 shlink = elf_elfsections (abfd)[elfsec]->sh_link; 7831 7832 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; 7833 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; 7834 7835 extdyn = dynbuf; 7836 extdynend = extdyn + s->size; 7837 for (; extdyn < extdynend; extdyn += extdynsize) 7838 { 7839 Elf_Internal_Dyn dyn; 7840 7841 (*swap_dyn_in) (abfd, extdyn, &dyn); 7842 7843 if (dyn.d_tag == DT_NULL) 7844 break; 7845 7846 if (dyn.d_tag == DT_NEEDED) 7847 { 7848 const char *string; 7849 struct bfd_link_needed_list *l; 7850 unsigned int tagv = dyn.d_un.d_val; 7851 bfd_size_type amt; 7852 7853 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 7854 if (string == NULL) 7855 goto error_return; 7856 7857 amt = sizeof *l; 7858 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 7859 if (l == NULL) 7860 goto error_return; 7861 7862 l->by = abfd; 7863 l->name = string; 7864 l->next = *pneeded; 7865 *pneeded = l; 7866 } 7867 } 7868 7869 free (dynbuf); 7870 7871 return TRUE; 7872 7873 error_return: 7874 if (dynbuf != NULL) 7875 free (dynbuf); 7876 return FALSE; 7877 } 7878 7879 struct elf_symbuf_symbol 7880 { 7881 unsigned long st_name; /* Symbol name, index in string tbl */ 7882 unsigned char st_info; /* Type and binding attributes */ 7883 unsigned char st_other; /* Visibilty, and target specific */ 7884 }; 7885 7886 struct elf_symbuf_head 7887 { 7888 struct elf_symbuf_symbol *ssym; 7889 size_t count; 7890 unsigned int st_shndx; 7891 }; 7892 7893 struct elf_symbol 7894 { 7895 union 7896 { 7897 Elf_Internal_Sym *isym; 7898 struct elf_symbuf_symbol *ssym; 7899 void *p; 7900 } u; 7901 const char *name; 7902 }; 7903 7904 /* Sort references to symbols by ascending section number. */ 7905 7906 static int 7907 elf_sort_elf_symbol (const void *arg1, const void *arg2) 7908 { 7909 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1; 7910 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2; 7911 7912 if (s1->st_shndx != s2->st_shndx) 7913 return s1->st_shndx > s2->st_shndx ? 1 : -1; 7914 /* Final sort by the address of the sym in the symbuf ensures 7915 a stable sort. */ 7916 if (s1 != s2) 7917 return s1 > s2 ? 1 : -1; 7918 return 0; 7919 } 7920 7921 static int 7922 elf_sym_name_compare (const void *arg1, const void *arg2) 7923 { 7924 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1; 7925 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2; 7926 int ret = strcmp (s1->name, s2->name); 7927 if (ret != 0) 7928 return ret; 7929 if (s1->u.p != s2->u.p) 7930 return s1->u.p > s2->u.p ? 1 : -1; 7931 return 0; 7932 } 7933 7934 static struct elf_symbuf_head * 7935 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf) 7936 { 7937 Elf_Internal_Sym **ind, **indbufend, **indbuf; 7938 struct elf_symbuf_symbol *ssym; 7939 struct elf_symbuf_head *ssymbuf, *ssymhead; 7940 size_t i, shndx_count, total_size; 7941 7942 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf)); 7943 if (indbuf == NULL) 7944 return NULL; 7945 7946 for (ind = indbuf, i = 0; i < symcount; i++) 7947 if (isymbuf[i].st_shndx != SHN_UNDEF) 7948 *ind++ = &isymbuf[i]; 7949 indbufend = ind; 7950 7951 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *), 7952 elf_sort_elf_symbol); 7953 7954 shndx_count = 0; 7955 if (indbufend > indbuf) 7956 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++) 7957 if (ind[0]->st_shndx != ind[1]->st_shndx) 7958 shndx_count++; 7959 7960 total_size = ((shndx_count + 1) * sizeof (*ssymbuf) 7961 + (indbufend - indbuf) * sizeof (*ssym)); 7962 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size); 7963 if (ssymbuf == NULL) 7964 { 7965 free (indbuf); 7966 return NULL; 7967 } 7968 7969 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1); 7970 ssymbuf->ssym = NULL; 7971 ssymbuf->count = shndx_count; 7972 ssymbuf->st_shndx = 0; 7973 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++) 7974 { 7975 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx) 7976 { 7977 ssymhead++; 7978 ssymhead->ssym = ssym; 7979 ssymhead->count = 0; 7980 ssymhead->st_shndx = (*ind)->st_shndx; 7981 } 7982 ssym->st_name = (*ind)->st_name; 7983 ssym->st_info = (*ind)->st_info; 7984 ssym->st_other = (*ind)->st_other; 7985 ssymhead->count++; 7986 } 7987 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count 7988 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf) 7989 == total_size)); 7990 7991 free (indbuf); 7992 return ssymbuf; 7993 } 7994 7995 /* Check if 2 sections define the same set of local and global 7996 symbols. */ 7997 7998 static bfd_boolean 7999 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2, 8000 struct bfd_link_info *info) 8001 { 8002 bfd *bfd1, *bfd2; 8003 const struct elf_backend_data *bed1, *bed2; 8004 Elf_Internal_Shdr *hdr1, *hdr2; 8005 size_t symcount1, symcount2; 8006 Elf_Internal_Sym *isymbuf1, *isymbuf2; 8007 struct elf_symbuf_head *ssymbuf1, *ssymbuf2; 8008 Elf_Internal_Sym *isym, *isymend; 8009 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL; 8010 size_t count1, count2, i; 8011 unsigned int shndx1, shndx2; 8012 bfd_boolean result; 8013 8014 bfd1 = sec1->owner; 8015 bfd2 = sec2->owner; 8016 8017 /* Both sections have to be in ELF. */ 8018 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour 8019 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour) 8020 return FALSE; 8021 8022 if (elf_section_type (sec1) != elf_section_type (sec2)) 8023 return FALSE; 8024 8025 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1); 8026 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2); 8027 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD) 8028 return FALSE; 8029 8030 bed1 = get_elf_backend_data (bfd1); 8031 bed2 = get_elf_backend_data (bfd2); 8032 hdr1 = &elf_tdata (bfd1)->symtab_hdr; 8033 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym; 8034 hdr2 = &elf_tdata (bfd2)->symtab_hdr; 8035 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym; 8036 8037 if (symcount1 == 0 || symcount2 == 0) 8038 return FALSE; 8039 8040 result = FALSE; 8041 isymbuf1 = NULL; 8042 isymbuf2 = NULL; 8043 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf; 8044 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf; 8045 8046 if (ssymbuf1 == NULL) 8047 { 8048 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0, 8049 NULL, NULL, NULL); 8050 if (isymbuf1 == NULL) 8051 goto done; 8052 8053 if (!info->reduce_memory_overheads) 8054 { 8055 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1); 8056 elf_tdata (bfd1)->symbuf = ssymbuf1; 8057 } 8058 } 8059 8060 if (ssymbuf1 == NULL || ssymbuf2 == NULL) 8061 { 8062 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0, 8063 NULL, NULL, NULL); 8064 if (isymbuf2 == NULL) 8065 goto done; 8066 8067 if (ssymbuf1 != NULL && !info->reduce_memory_overheads) 8068 { 8069 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2); 8070 elf_tdata (bfd2)->symbuf = ssymbuf2; 8071 } 8072 } 8073 8074 if (ssymbuf1 != NULL && ssymbuf2 != NULL) 8075 { 8076 /* Optimized faster version. */ 8077 size_t lo, hi, mid; 8078 struct elf_symbol *symp; 8079 struct elf_symbuf_symbol *ssym, *ssymend; 8080 8081 lo = 0; 8082 hi = ssymbuf1->count; 8083 ssymbuf1++; 8084 count1 = 0; 8085 while (lo < hi) 8086 { 8087 mid = (lo + hi) / 2; 8088 if (shndx1 < ssymbuf1[mid].st_shndx) 8089 hi = mid; 8090 else if (shndx1 > ssymbuf1[mid].st_shndx) 8091 lo = mid + 1; 8092 else 8093 { 8094 count1 = ssymbuf1[mid].count; 8095 ssymbuf1 += mid; 8096 break; 8097 } 8098 } 8099 8100 lo = 0; 8101 hi = ssymbuf2->count; 8102 ssymbuf2++; 8103 count2 = 0; 8104 while (lo < hi) 8105 { 8106 mid = (lo + hi) / 2; 8107 if (shndx2 < ssymbuf2[mid].st_shndx) 8108 hi = mid; 8109 else if (shndx2 > ssymbuf2[mid].st_shndx) 8110 lo = mid + 1; 8111 else 8112 { 8113 count2 = ssymbuf2[mid].count; 8114 ssymbuf2 += mid; 8115 break; 8116 } 8117 } 8118 8119 if (count1 == 0 || count2 == 0 || count1 != count2) 8120 goto done; 8121 8122 symtable1 8123 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1)); 8124 symtable2 8125 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2)); 8126 if (symtable1 == NULL || symtable2 == NULL) 8127 goto done; 8128 8129 symp = symtable1; 8130 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1; 8131 ssym < ssymend; ssym++, symp++) 8132 { 8133 symp->u.ssym = ssym; 8134 symp->name = bfd_elf_string_from_elf_section (bfd1, 8135 hdr1->sh_link, 8136 ssym->st_name); 8137 } 8138 8139 symp = symtable2; 8140 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2; 8141 ssym < ssymend; ssym++, symp++) 8142 { 8143 symp->u.ssym = ssym; 8144 symp->name = bfd_elf_string_from_elf_section (bfd2, 8145 hdr2->sh_link, 8146 ssym->st_name); 8147 } 8148 8149 /* Sort symbol by name. */ 8150 qsort (symtable1, count1, sizeof (struct elf_symbol), 8151 elf_sym_name_compare); 8152 qsort (symtable2, count1, sizeof (struct elf_symbol), 8153 elf_sym_name_compare); 8154 8155 for (i = 0; i < count1; i++) 8156 /* Two symbols must have the same binding, type and name. */ 8157 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info 8158 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other 8159 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) 8160 goto done; 8161 8162 result = TRUE; 8163 goto done; 8164 } 8165 8166 symtable1 = (struct elf_symbol *) 8167 bfd_malloc (symcount1 * sizeof (struct elf_symbol)); 8168 symtable2 = (struct elf_symbol *) 8169 bfd_malloc (symcount2 * sizeof (struct elf_symbol)); 8170 if (symtable1 == NULL || symtable2 == NULL) 8171 goto done; 8172 8173 /* Count definitions in the section. */ 8174 count1 = 0; 8175 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++) 8176 if (isym->st_shndx == shndx1) 8177 symtable1[count1++].u.isym = isym; 8178 8179 count2 = 0; 8180 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++) 8181 if (isym->st_shndx == shndx2) 8182 symtable2[count2++].u.isym = isym; 8183 8184 if (count1 == 0 || count2 == 0 || count1 != count2) 8185 goto done; 8186 8187 for (i = 0; i < count1; i++) 8188 symtable1[i].name 8189 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link, 8190 symtable1[i].u.isym->st_name); 8191 8192 for (i = 0; i < count2; i++) 8193 symtable2[i].name 8194 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link, 8195 symtable2[i].u.isym->st_name); 8196 8197 /* Sort symbol by name. */ 8198 qsort (symtable1, count1, sizeof (struct elf_symbol), 8199 elf_sym_name_compare); 8200 qsort (symtable2, count1, sizeof (struct elf_symbol), 8201 elf_sym_name_compare); 8202 8203 for (i = 0; i < count1; i++) 8204 /* Two symbols must have the same binding, type and name. */ 8205 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info 8206 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other 8207 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) 8208 goto done; 8209 8210 result = TRUE; 8211 8212 done: 8213 if (symtable1) 8214 free (symtable1); 8215 if (symtable2) 8216 free (symtable2); 8217 if (isymbuf1) 8218 free (isymbuf1); 8219 if (isymbuf2) 8220 free (isymbuf2); 8221 8222 return result; 8223 } 8224 8225 /* Return TRUE if 2 section types are compatible. */ 8226 8227 bfd_boolean 8228 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec, 8229 bfd *bbfd, const asection *bsec) 8230 { 8231 if (asec == NULL 8232 || bsec == NULL 8233 || abfd->xvec->flavour != bfd_target_elf_flavour 8234 || bbfd->xvec->flavour != bfd_target_elf_flavour) 8235 return TRUE; 8236 8237 return elf_section_type (asec) == elf_section_type (bsec); 8238 } 8239 8240 /* Final phase of ELF linker. */ 8241 8242 /* A structure we use to avoid passing large numbers of arguments. */ 8243 8244 struct elf_final_link_info 8245 { 8246 /* General link information. */ 8247 struct bfd_link_info *info; 8248 /* Output BFD. */ 8249 bfd *output_bfd; 8250 /* Symbol string table. */ 8251 struct elf_strtab_hash *symstrtab; 8252 /* .hash section. */ 8253 asection *hash_sec; 8254 /* symbol version section (.gnu.version). */ 8255 asection *symver_sec; 8256 /* Buffer large enough to hold contents of any section. */ 8257 bfd_byte *contents; 8258 /* Buffer large enough to hold external relocs of any section. */ 8259 void *external_relocs; 8260 /* Buffer large enough to hold internal relocs of any section. */ 8261 Elf_Internal_Rela *internal_relocs; 8262 /* Buffer large enough to hold external local symbols of any input 8263 BFD. */ 8264 bfd_byte *external_syms; 8265 /* And a buffer for symbol section indices. */ 8266 Elf_External_Sym_Shndx *locsym_shndx; 8267 /* Buffer large enough to hold internal local symbols of any input 8268 BFD. */ 8269 Elf_Internal_Sym *internal_syms; 8270 /* Array large enough to hold a symbol index for each local symbol 8271 of any input BFD. */ 8272 long *indices; 8273 /* Array large enough to hold a section pointer for each local 8274 symbol of any input BFD. */ 8275 asection **sections; 8276 /* Buffer for SHT_SYMTAB_SHNDX section. */ 8277 Elf_External_Sym_Shndx *symshndxbuf; 8278 /* Number of STT_FILE syms seen. */ 8279 size_t filesym_count; 8280 }; 8281 8282 /* This struct is used to pass information to elf_link_output_extsym. */ 8283 8284 struct elf_outext_info 8285 { 8286 bfd_boolean failed; 8287 bfd_boolean localsyms; 8288 bfd_boolean file_sym_done; 8289 struct elf_final_link_info *flinfo; 8290 }; 8291 8292 8293 /* Support for evaluating a complex relocation. 8294 8295 Complex relocations are generalized, self-describing relocations. The 8296 implementation of them consists of two parts: complex symbols, and the 8297 relocations themselves. 8298 8299 The relocations are use a reserved elf-wide relocation type code (R_RELC 8300 external / BFD_RELOC_RELC internal) and an encoding of relocation field 8301 information (start bit, end bit, word width, etc) into the addend. This 8302 information is extracted from CGEN-generated operand tables within gas. 8303 8304 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC 8305 internal) representing prefix-notation expressions, including but not 8306 limited to those sorts of expressions normally encoded as addends in the 8307 addend field. The symbol mangling format is: 8308 8309 <node> := <literal> 8310 | <unary-operator> ':' <node> 8311 | <binary-operator> ':' <node> ':' <node> 8312 ; 8313 8314 <literal> := 's' <digits=N> ':' <N character symbol name> 8315 | 'S' <digits=N> ':' <N character section name> 8316 | '#' <hexdigits> 8317 ; 8318 8319 <binary-operator> := as in C 8320 <unary-operator> := as in C, plus "0-" for unambiguous negation. */ 8321 8322 static void 8323 set_symbol_value (bfd *bfd_with_globals, 8324 Elf_Internal_Sym *isymbuf, 8325 size_t locsymcount, 8326 size_t symidx, 8327 bfd_vma val) 8328 { 8329 struct elf_link_hash_entry **sym_hashes; 8330 struct elf_link_hash_entry *h; 8331 size_t extsymoff = locsymcount; 8332 8333 if (symidx < locsymcount) 8334 { 8335 Elf_Internal_Sym *sym; 8336 8337 sym = isymbuf + symidx; 8338 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL) 8339 { 8340 /* It is a local symbol: move it to the 8341 "absolute" section and give it a value. */ 8342 sym->st_shndx = SHN_ABS; 8343 sym->st_value = val; 8344 return; 8345 } 8346 BFD_ASSERT (elf_bad_symtab (bfd_with_globals)); 8347 extsymoff = 0; 8348 } 8349 8350 /* It is a global symbol: set its link type 8351 to "defined" and give it a value. */ 8352 8353 sym_hashes = elf_sym_hashes (bfd_with_globals); 8354 h = sym_hashes [symidx - extsymoff]; 8355 while (h->root.type == bfd_link_hash_indirect 8356 || h->root.type == bfd_link_hash_warning) 8357 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8358 h->root.type = bfd_link_hash_defined; 8359 h->root.u.def.value = val; 8360 h->root.u.def.section = bfd_abs_section_ptr; 8361 } 8362 8363 static bfd_boolean 8364 resolve_symbol (const char *name, 8365 bfd *input_bfd, 8366 struct elf_final_link_info *flinfo, 8367 bfd_vma *result, 8368 Elf_Internal_Sym *isymbuf, 8369 size_t locsymcount) 8370 { 8371 Elf_Internal_Sym *sym; 8372 struct bfd_link_hash_entry *global_entry; 8373 const char *candidate = NULL; 8374 Elf_Internal_Shdr *symtab_hdr; 8375 size_t i; 8376 8377 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; 8378 8379 for (i = 0; i < locsymcount; ++ i) 8380 { 8381 sym = isymbuf + i; 8382 8383 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL) 8384 continue; 8385 8386 candidate = bfd_elf_string_from_elf_section (input_bfd, 8387 symtab_hdr->sh_link, 8388 sym->st_name); 8389 #ifdef DEBUG 8390 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n", 8391 name, candidate, (unsigned long) sym->st_value); 8392 #endif 8393 if (candidate && strcmp (candidate, name) == 0) 8394 { 8395 asection *sec = flinfo->sections [i]; 8396 8397 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0); 8398 *result += sec->output_offset + sec->output_section->vma; 8399 #ifdef DEBUG 8400 printf ("Found symbol with value %8.8lx\n", 8401 (unsigned long) *result); 8402 #endif 8403 return TRUE; 8404 } 8405 } 8406 8407 /* Hmm, haven't found it yet. perhaps it is a global. */ 8408 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name, 8409 FALSE, FALSE, TRUE); 8410 if (!global_entry) 8411 return FALSE; 8412 8413 if (global_entry->type == bfd_link_hash_defined 8414 || global_entry->type == bfd_link_hash_defweak) 8415 { 8416 *result = (global_entry->u.def.value 8417 + global_entry->u.def.section->output_section->vma 8418 + global_entry->u.def.section->output_offset); 8419 #ifdef DEBUG 8420 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n", 8421 global_entry->root.string, (unsigned long) *result); 8422 #endif 8423 return TRUE; 8424 } 8425 8426 return FALSE; 8427 } 8428 8429 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in 8430 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section 8431 names like "foo.end" which is the end address of section "foo". */ 8432 8433 static bfd_boolean 8434 resolve_section (const char *name, 8435 asection *sections, 8436 bfd_vma *result, 8437 bfd * abfd) 8438 { 8439 asection *curr; 8440 unsigned int len; 8441 8442 for (curr = sections; curr; curr = curr->next) 8443 if (strcmp (curr->name, name) == 0) 8444 { 8445 *result = curr->vma; 8446 return TRUE; 8447 } 8448 8449 /* Hmm. still haven't found it. try pseudo-section names. */ 8450 /* FIXME: This could be coded more efficiently... */ 8451 for (curr = sections; curr; curr = curr->next) 8452 { 8453 len = strlen (curr->name); 8454 if (len > strlen (name)) 8455 continue; 8456 8457 if (strncmp (curr->name, name, len) == 0) 8458 { 8459 if (strncmp (".end", name + len, 4) == 0) 8460 { 8461 *result = (curr->vma 8462 + curr->size / bfd_octets_per_byte (abfd, curr)); 8463 return TRUE; 8464 } 8465 8466 /* Insert more pseudo-section names here, if you like. */ 8467 } 8468 } 8469 8470 return FALSE; 8471 } 8472 8473 static void 8474 undefined_reference (const char *reftype, const char *name) 8475 { 8476 /* xgettext:c-format */ 8477 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"), 8478 reftype, name); 8479 } 8480 8481 static bfd_boolean 8482 eval_symbol (bfd_vma *result, 8483 const char **symp, 8484 bfd *input_bfd, 8485 struct elf_final_link_info *flinfo, 8486 bfd_vma dot, 8487 Elf_Internal_Sym *isymbuf, 8488 size_t locsymcount, 8489 int signed_p) 8490 { 8491 size_t len; 8492 size_t symlen; 8493 bfd_vma a; 8494 bfd_vma b; 8495 char symbuf[4096]; 8496 const char *sym = *symp; 8497 const char *symend; 8498 bfd_boolean symbol_is_section = FALSE; 8499 8500 len = strlen (sym); 8501 symend = sym + len; 8502 8503 if (len < 1 || len > sizeof (symbuf)) 8504 { 8505 bfd_set_error (bfd_error_invalid_operation); 8506 return FALSE; 8507 } 8508 8509 switch (* sym) 8510 { 8511 case '.': 8512 *result = dot; 8513 *symp = sym + 1; 8514 return TRUE; 8515 8516 case '#': 8517 ++sym; 8518 *result = strtoul (sym, (char **) symp, 16); 8519 return TRUE; 8520 8521 case 'S': 8522 symbol_is_section = TRUE; 8523 /* Fall through. */ 8524 case 's': 8525 ++sym; 8526 symlen = strtol (sym, (char **) symp, 10); 8527 sym = *symp + 1; /* Skip the trailing ':'. */ 8528 8529 if (symend < sym || symlen + 1 > sizeof (symbuf)) 8530 { 8531 bfd_set_error (bfd_error_invalid_operation); 8532 return FALSE; 8533 } 8534 8535 memcpy (symbuf, sym, symlen); 8536 symbuf[symlen] = '\0'; 8537 *symp = sym + symlen; 8538 8539 /* Is it always possible, with complex symbols, that gas "mis-guessed" 8540 the symbol as a section, or vice-versa. so we're pretty liberal in our 8541 interpretation here; section means "try section first", not "must be a 8542 section", and likewise with symbol. */ 8543 8544 if (symbol_is_section) 8545 { 8546 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd) 8547 && !resolve_symbol (symbuf, input_bfd, flinfo, result, 8548 isymbuf, locsymcount)) 8549 { 8550 undefined_reference ("section", symbuf); 8551 return FALSE; 8552 } 8553 } 8554 else 8555 { 8556 if (!resolve_symbol (symbuf, input_bfd, flinfo, result, 8557 isymbuf, locsymcount) 8558 && !resolve_section (symbuf, flinfo->output_bfd->sections, 8559 result, input_bfd)) 8560 { 8561 undefined_reference ("symbol", symbuf); 8562 return FALSE; 8563 } 8564 } 8565 8566 return TRUE; 8567 8568 /* All that remains are operators. */ 8569 8570 #define UNARY_OP(op) \ 8571 if (strncmp (sym, #op, strlen (#op)) == 0) \ 8572 { \ 8573 sym += strlen (#op); \ 8574 if (*sym == ':') \ 8575 ++sym; \ 8576 *symp = sym; \ 8577 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ 8578 isymbuf, locsymcount, signed_p)) \ 8579 return FALSE; \ 8580 if (signed_p) \ 8581 *result = op ((bfd_signed_vma) a); \ 8582 else \ 8583 *result = op a; \ 8584 return TRUE; \ 8585 } 8586 8587 #define BINARY_OP(op) \ 8588 if (strncmp (sym, #op, strlen (#op)) == 0) \ 8589 { \ 8590 sym += strlen (#op); \ 8591 if (*sym == ':') \ 8592 ++sym; \ 8593 *symp = sym; \ 8594 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ 8595 isymbuf, locsymcount, signed_p)) \ 8596 return FALSE; \ 8597 ++*symp; \ 8598 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \ 8599 isymbuf, locsymcount, signed_p)) \ 8600 return FALSE; \ 8601 if (signed_p) \ 8602 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \ 8603 else \ 8604 *result = a op b; \ 8605 return TRUE; \ 8606 } 8607 8608 default: 8609 UNARY_OP (0-); 8610 BINARY_OP (<<); 8611 BINARY_OP (>>); 8612 BINARY_OP (==); 8613 BINARY_OP (!=); 8614 BINARY_OP (<=); 8615 BINARY_OP (>=); 8616 BINARY_OP (&&); 8617 BINARY_OP (||); 8618 UNARY_OP (~); 8619 UNARY_OP (!); 8620 BINARY_OP (*); 8621 BINARY_OP (/); 8622 BINARY_OP (%); 8623 BINARY_OP (^); 8624 BINARY_OP (|); 8625 BINARY_OP (&); 8626 BINARY_OP (+); 8627 BINARY_OP (-); 8628 BINARY_OP (<); 8629 BINARY_OP (>); 8630 #undef UNARY_OP 8631 #undef BINARY_OP 8632 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym); 8633 bfd_set_error (bfd_error_invalid_operation); 8634 return FALSE; 8635 } 8636 } 8637 8638 static void 8639 put_value (bfd_vma size, 8640 unsigned long chunksz, 8641 bfd *input_bfd, 8642 bfd_vma x, 8643 bfd_byte *location) 8644 { 8645 location += (size - chunksz); 8646 8647 for (; size; size -= chunksz, location -= chunksz) 8648 { 8649 switch (chunksz) 8650 { 8651 case 1: 8652 bfd_put_8 (input_bfd, x, location); 8653 x >>= 8; 8654 break; 8655 case 2: 8656 bfd_put_16 (input_bfd, x, location); 8657 x >>= 16; 8658 break; 8659 case 4: 8660 bfd_put_32 (input_bfd, x, location); 8661 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */ 8662 x >>= 16; 8663 x >>= 16; 8664 break; 8665 #ifdef BFD64 8666 case 8: 8667 bfd_put_64 (input_bfd, x, location); 8668 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */ 8669 x >>= 32; 8670 x >>= 32; 8671 break; 8672 #endif 8673 default: 8674 abort (); 8675 break; 8676 } 8677 } 8678 } 8679 8680 static bfd_vma 8681 get_value (bfd_vma size, 8682 unsigned long chunksz, 8683 bfd *input_bfd, 8684 bfd_byte *location) 8685 { 8686 int shift; 8687 bfd_vma x = 0; 8688 8689 /* Sanity checks. */ 8690 BFD_ASSERT (chunksz <= sizeof (x) 8691 && size >= chunksz 8692 && chunksz != 0 8693 && (size % chunksz) == 0 8694 && input_bfd != NULL 8695 && location != NULL); 8696 8697 if (chunksz == sizeof (x)) 8698 { 8699 BFD_ASSERT (size == chunksz); 8700 8701 /* Make sure that we do not perform an undefined shift operation. 8702 We know that size == chunksz so there will only be one iteration 8703 of the loop below. */ 8704 shift = 0; 8705 } 8706 else 8707 shift = 8 * chunksz; 8708 8709 for (; size; size -= chunksz, location += chunksz) 8710 { 8711 switch (chunksz) 8712 { 8713 case 1: 8714 x = (x << shift) | bfd_get_8 (input_bfd, location); 8715 break; 8716 case 2: 8717 x = (x << shift) | bfd_get_16 (input_bfd, location); 8718 break; 8719 case 4: 8720 x = (x << shift) | bfd_get_32 (input_bfd, location); 8721 break; 8722 #ifdef BFD64 8723 case 8: 8724 x = (x << shift) | bfd_get_64 (input_bfd, location); 8725 break; 8726 #endif 8727 default: 8728 abort (); 8729 } 8730 } 8731 return x; 8732 } 8733 8734 static void 8735 decode_complex_addend (unsigned long *start, /* in bits */ 8736 unsigned long *oplen, /* in bits */ 8737 unsigned long *len, /* in bits */ 8738 unsigned long *wordsz, /* in bytes */ 8739 unsigned long *chunksz, /* in bytes */ 8740 unsigned long *lsb0_p, 8741 unsigned long *signed_p, 8742 unsigned long *trunc_p, 8743 unsigned long encoded) 8744 { 8745 * start = encoded & 0x3F; 8746 * len = (encoded >> 6) & 0x3F; 8747 * oplen = (encoded >> 12) & 0x3F; 8748 * wordsz = (encoded >> 18) & 0xF; 8749 * chunksz = (encoded >> 22) & 0xF; 8750 * lsb0_p = (encoded >> 27) & 1; 8751 * signed_p = (encoded >> 28) & 1; 8752 * trunc_p = (encoded >> 29) & 1; 8753 } 8754 8755 bfd_reloc_status_type 8756 bfd_elf_perform_complex_relocation (bfd *input_bfd, 8757 asection *input_section, 8758 bfd_byte *contents, 8759 Elf_Internal_Rela *rel, 8760 bfd_vma relocation) 8761 { 8762 bfd_vma shift, x, mask; 8763 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p; 8764 bfd_reloc_status_type r; 8765 bfd_size_type octets; 8766 8767 /* Perform this reloc, since it is complex. 8768 (this is not to say that it necessarily refers to a complex 8769 symbol; merely that it is a self-describing CGEN based reloc. 8770 i.e. the addend has the complete reloc information (bit start, end, 8771 word size, etc) encoded within it.). */ 8772 8773 decode_complex_addend (&start, &oplen, &len, &wordsz, 8774 &chunksz, &lsb0_p, &signed_p, 8775 &trunc_p, rel->r_addend); 8776 8777 mask = (((1L << (len - 1)) - 1) << 1) | 1; 8778 8779 if (lsb0_p) 8780 shift = (start + 1) - len; 8781 else 8782 shift = (8 * wordsz) - (start + len); 8783 8784 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section); 8785 x = get_value (wordsz, chunksz, input_bfd, contents + octets); 8786 8787 #ifdef DEBUG 8788 printf ("Doing complex reloc: " 8789 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, " 8790 "chunksz %ld, start %ld, len %ld, oplen %ld\n" 8791 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n", 8792 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len, 8793 oplen, (unsigned long) x, (unsigned long) mask, 8794 (unsigned long) relocation); 8795 #endif 8796 8797 r = bfd_reloc_ok; 8798 if (! trunc_p) 8799 /* Now do an overflow check. */ 8800 r = bfd_check_overflow ((signed_p 8801 ? complain_overflow_signed 8802 : complain_overflow_unsigned), 8803 len, 0, (8 * wordsz), 8804 relocation); 8805 8806 /* Do the deed. */ 8807 x = (x & ~(mask << shift)) | ((relocation & mask) << shift); 8808 8809 #ifdef DEBUG 8810 printf (" relocation: %8.8lx\n" 8811 " shifted mask: %8.8lx\n" 8812 " shifted/masked reloc: %8.8lx\n" 8813 " result: %8.8lx\n", 8814 (unsigned long) relocation, (unsigned long) (mask << shift), 8815 (unsigned long) ((relocation & mask) << shift), (unsigned long) x); 8816 #endif 8817 put_value (wordsz, chunksz, input_bfd, x, contents + octets); 8818 return r; 8819 } 8820 8821 /* Functions to read r_offset from external (target order) reloc 8822 entry. Faster than bfd_getl32 et al, because we let the compiler 8823 know the value is aligned. */ 8824 8825 static bfd_vma 8826 ext32l_r_offset (const void *p) 8827 { 8828 union aligned32 8829 { 8830 uint32_t v; 8831 unsigned char c[4]; 8832 }; 8833 const union aligned32 *a 8834 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; 8835 8836 uint32_t aval = ( (uint32_t) a->c[0] 8837 | (uint32_t) a->c[1] << 8 8838 | (uint32_t) a->c[2] << 16 8839 | (uint32_t) a->c[3] << 24); 8840 return aval; 8841 } 8842 8843 static bfd_vma 8844 ext32b_r_offset (const void *p) 8845 { 8846 union aligned32 8847 { 8848 uint32_t v; 8849 unsigned char c[4]; 8850 }; 8851 const union aligned32 *a 8852 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; 8853 8854 uint32_t aval = ( (uint32_t) a->c[0] << 24 8855 | (uint32_t) a->c[1] << 16 8856 | (uint32_t) a->c[2] << 8 8857 | (uint32_t) a->c[3]); 8858 return aval; 8859 } 8860 8861 #ifdef BFD_HOST_64_BIT 8862 static bfd_vma 8863 ext64l_r_offset (const void *p) 8864 { 8865 union aligned64 8866 { 8867 uint64_t v; 8868 unsigned char c[8]; 8869 }; 8870 const union aligned64 *a 8871 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; 8872 8873 uint64_t aval = ( (uint64_t) a->c[0] 8874 | (uint64_t) a->c[1] << 8 8875 | (uint64_t) a->c[2] << 16 8876 | (uint64_t) a->c[3] << 24 8877 | (uint64_t) a->c[4] << 32 8878 | (uint64_t) a->c[5] << 40 8879 | (uint64_t) a->c[6] << 48 8880 | (uint64_t) a->c[7] << 56); 8881 return aval; 8882 } 8883 8884 static bfd_vma 8885 ext64b_r_offset (const void *p) 8886 { 8887 union aligned64 8888 { 8889 uint64_t v; 8890 unsigned char c[8]; 8891 }; 8892 const union aligned64 *a 8893 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; 8894 8895 uint64_t aval = ( (uint64_t) a->c[0] << 56 8896 | (uint64_t) a->c[1] << 48 8897 | (uint64_t) a->c[2] << 40 8898 | (uint64_t) a->c[3] << 32 8899 | (uint64_t) a->c[4] << 24 8900 | (uint64_t) a->c[5] << 16 8901 | (uint64_t) a->c[6] << 8 8902 | (uint64_t) a->c[7]); 8903 return aval; 8904 } 8905 #endif 8906 8907 /* When performing a relocatable link, the input relocations are 8908 preserved. But, if they reference global symbols, the indices 8909 referenced must be updated. Update all the relocations found in 8910 RELDATA. */ 8911 8912 static bfd_boolean 8913 elf_link_adjust_relocs (bfd *abfd, 8914 asection *sec, 8915 struct bfd_elf_section_reloc_data *reldata, 8916 bfd_boolean sort, 8917 struct bfd_link_info *info) 8918 { 8919 unsigned int i; 8920 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 8921 bfd_byte *erela; 8922 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 8923 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 8924 bfd_vma r_type_mask; 8925 int r_sym_shift; 8926 unsigned int count = reldata->count; 8927 struct elf_link_hash_entry **rel_hash = reldata->hashes; 8928 8929 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel) 8930 { 8931 swap_in = bed->s->swap_reloc_in; 8932 swap_out = bed->s->swap_reloc_out; 8933 } 8934 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela) 8935 { 8936 swap_in = bed->s->swap_reloca_in; 8937 swap_out = bed->s->swap_reloca_out; 8938 } 8939 else 8940 abort (); 8941 8942 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL) 8943 abort (); 8944 8945 if (bed->s->arch_size == 32) 8946 { 8947 r_type_mask = 0xff; 8948 r_sym_shift = 8; 8949 } 8950 else 8951 { 8952 r_type_mask = 0xffffffff; 8953 r_sym_shift = 32; 8954 } 8955 8956 erela = reldata->hdr->contents; 8957 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize) 8958 { 8959 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL]; 8960 unsigned int j; 8961 8962 if (*rel_hash == NULL) 8963 continue; 8964 8965 if ((*rel_hash)->indx == -2 8966 && info->gc_sections 8967 && ! info->gc_keep_exported) 8968 { 8969 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */ 8970 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"), 8971 abfd, sec, 8972 (*rel_hash)->root.root.string); 8973 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"), 8974 abfd, sec); 8975 bfd_set_error (bfd_error_invalid_operation); 8976 return FALSE; 8977 } 8978 BFD_ASSERT ((*rel_hash)->indx >= 0); 8979 8980 (*swap_in) (abfd, erela, irela); 8981 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++) 8982 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift 8983 | (irela[j].r_info & r_type_mask)); 8984 (*swap_out) (abfd, irela, erela); 8985 } 8986 8987 if (bed->elf_backend_update_relocs) 8988 (*bed->elf_backend_update_relocs) (sec, reldata); 8989 8990 if (sort && count != 0) 8991 { 8992 bfd_vma (*ext_r_off) (const void *); 8993 bfd_vma r_off; 8994 size_t elt_size; 8995 bfd_byte *base, *end, *p, *loc; 8996 bfd_byte *buf = NULL; 8997 8998 if (bed->s->arch_size == 32) 8999 { 9000 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) 9001 ext_r_off = ext32l_r_offset; 9002 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) 9003 ext_r_off = ext32b_r_offset; 9004 else 9005 abort (); 9006 } 9007 else 9008 { 9009 #ifdef BFD_HOST_64_BIT 9010 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) 9011 ext_r_off = ext64l_r_offset; 9012 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) 9013 ext_r_off = ext64b_r_offset; 9014 else 9015 #endif 9016 abort (); 9017 } 9018 9019 /* Must use a stable sort here. A modified insertion sort, 9020 since the relocs are mostly sorted already. */ 9021 elt_size = reldata->hdr->sh_entsize; 9022 base = reldata->hdr->contents; 9023 end = base + count * elt_size; 9024 if (elt_size > sizeof (Elf64_External_Rela)) 9025 abort (); 9026 9027 /* Ensure the first element is lowest. This acts as a sentinel, 9028 speeding the main loop below. */ 9029 r_off = (*ext_r_off) (base); 9030 for (p = loc = base; (p += elt_size) < end; ) 9031 { 9032 bfd_vma r_off2 = (*ext_r_off) (p); 9033 if (r_off > r_off2) 9034 { 9035 r_off = r_off2; 9036 loc = p; 9037 } 9038 } 9039 if (loc != base) 9040 { 9041 /* Don't just swap *base and *loc as that changes the order 9042 of the original base[0] and base[1] if they happen to 9043 have the same r_offset. */ 9044 bfd_byte onebuf[sizeof (Elf64_External_Rela)]; 9045 memcpy (onebuf, loc, elt_size); 9046 memmove (base + elt_size, base, loc - base); 9047 memcpy (base, onebuf, elt_size); 9048 } 9049 9050 for (p = base + elt_size; (p += elt_size) < end; ) 9051 { 9052 /* base to p is sorted, *p is next to insert. */ 9053 r_off = (*ext_r_off) (p); 9054 /* Search the sorted region for location to insert. */ 9055 loc = p - elt_size; 9056 while (r_off < (*ext_r_off) (loc)) 9057 loc -= elt_size; 9058 loc += elt_size; 9059 if (loc != p) 9060 { 9061 /* Chances are there is a run of relocs to insert here, 9062 from one of more input files. Files are not always 9063 linked in order due to the way elf_link_input_bfd is 9064 called. See pr17666. */ 9065 size_t sortlen = p - loc; 9066 bfd_vma r_off2 = (*ext_r_off) (loc); 9067 size_t runlen = elt_size; 9068 size_t buf_size = 96 * 1024; 9069 while (p + runlen < end 9070 && (sortlen <= buf_size 9071 || runlen + elt_size <= buf_size) 9072 && r_off2 > (*ext_r_off) (p + runlen)) 9073 runlen += elt_size; 9074 if (buf == NULL) 9075 { 9076 buf = bfd_malloc (buf_size); 9077 if (buf == NULL) 9078 return FALSE; 9079 } 9080 if (runlen < sortlen) 9081 { 9082 memcpy (buf, p, runlen); 9083 memmove (loc + runlen, loc, sortlen); 9084 memcpy (loc, buf, runlen); 9085 } 9086 else 9087 { 9088 memcpy (buf, loc, sortlen); 9089 memmove (loc, p, runlen); 9090 memcpy (loc + runlen, buf, sortlen); 9091 } 9092 p += runlen - elt_size; 9093 } 9094 } 9095 /* Hashes are no longer valid. */ 9096 free (reldata->hashes); 9097 reldata->hashes = NULL; 9098 free (buf); 9099 } 9100 return TRUE; 9101 } 9102 9103 struct elf_link_sort_rela 9104 { 9105 union { 9106 bfd_vma offset; 9107 bfd_vma sym_mask; 9108 } u; 9109 enum elf_reloc_type_class type; 9110 /* We use this as an array of size int_rels_per_ext_rel. */ 9111 Elf_Internal_Rela rela[1]; 9112 }; 9113 9114 /* qsort stability here and for cmp2 is only an issue if multiple 9115 dynamic relocations are emitted at the same address. But targets 9116 that apply a series of dynamic relocations each operating on the 9117 result of the prior relocation can't use -z combreloc as 9118 implemented anyway. Such schemes tend to be broken by sorting on 9119 symbol index. That leaves dynamic NONE relocs as the only other 9120 case where ld might emit multiple relocs at the same address, and 9121 those are only emitted due to target bugs. */ 9122 9123 static int 9124 elf_link_sort_cmp1 (const void *A, const void *B) 9125 { 9126 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; 9127 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; 9128 int relativea, relativeb; 9129 9130 relativea = a->type == reloc_class_relative; 9131 relativeb = b->type == reloc_class_relative; 9132 9133 if (relativea < relativeb) 9134 return 1; 9135 if (relativea > relativeb) 9136 return -1; 9137 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask)) 9138 return -1; 9139 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask)) 9140 return 1; 9141 if (a->rela->r_offset < b->rela->r_offset) 9142 return -1; 9143 if (a->rela->r_offset > b->rela->r_offset) 9144 return 1; 9145 return 0; 9146 } 9147 9148 static int 9149 elf_link_sort_cmp2 (const void *A, const void *B) 9150 { 9151 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; 9152 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; 9153 9154 if (a->type < b->type) 9155 return -1; 9156 if (a->type > b->type) 9157 return 1; 9158 if (a->u.offset < b->u.offset) 9159 return -1; 9160 if (a->u.offset > b->u.offset) 9161 return 1; 9162 if (a->rela->r_offset < b->rela->r_offset) 9163 return -1; 9164 if (a->rela->r_offset > b->rela->r_offset) 9165 return 1; 9166 return 0; 9167 } 9168 9169 static size_t 9170 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec) 9171 { 9172 asection *dynamic_relocs; 9173 asection *rela_dyn; 9174 asection *rel_dyn; 9175 bfd_size_type count, size; 9176 size_t i, ret, sort_elt, ext_size; 9177 bfd_byte *sort, *s_non_relative, *p; 9178 struct elf_link_sort_rela *sq; 9179 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 9180 int i2e = bed->s->int_rels_per_ext_rel; 9181 unsigned int opb = bfd_octets_per_byte (abfd, NULL); 9182 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 9183 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 9184 struct bfd_link_order *lo; 9185 bfd_vma r_sym_mask; 9186 bfd_boolean use_rela; 9187 9188 /* Find a dynamic reloc section. */ 9189 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn"); 9190 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn"); 9191 if (rela_dyn != NULL && rela_dyn->size > 0 9192 && rel_dyn != NULL && rel_dyn->size > 0) 9193 { 9194 bfd_boolean use_rela_initialised = FALSE; 9195 9196 /* This is just here to stop gcc from complaining. 9197 Its initialization checking code is not perfect. */ 9198 use_rela = TRUE; 9199 9200 /* Both sections are present. Examine the sizes 9201 of the indirect sections to help us choose. */ 9202 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next) 9203 if (lo->type == bfd_indirect_link_order) 9204 { 9205 asection *o = lo->u.indirect.section; 9206 9207 if ((o->size % bed->s->sizeof_rela) == 0) 9208 { 9209 if ((o->size % bed->s->sizeof_rel) == 0) 9210 /* Section size is divisible by both rel and rela sizes. 9211 It is of no help to us. */ 9212 ; 9213 else 9214 { 9215 /* Section size is only divisible by rela. */ 9216 if (use_rela_initialised && !use_rela) 9217 { 9218 _bfd_error_handler (_("%pB: unable to sort relocs - " 9219 "they are in more than one size"), 9220 abfd); 9221 bfd_set_error (bfd_error_invalid_operation); 9222 return 0; 9223 } 9224 else 9225 { 9226 use_rela = TRUE; 9227 use_rela_initialised = TRUE; 9228 } 9229 } 9230 } 9231 else if ((o->size % bed->s->sizeof_rel) == 0) 9232 { 9233 /* Section size is only divisible by rel. */ 9234 if (use_rela_initialised && use_rela) 9235 { 9236 _bfd_error_handler (_("%pB: unable to sort relocs - " 9237 "they are in more than one size"), 9238 abfd); 9239 bfd_set_error (bfd_error_invalid_operation); 9240 return 0; 9241 } 9242 else 9243 { 9244 use_rela = FALSE; 9245 use_rela_initialised = TRUE; 9246 } 9247 } 9248 else 9249 { 9250 /* The section size is not divisible by either - 9251 something is wrong. */ 9252 _bfd_error_handler (_("%pB: unable to sort relocs - " 9253 "they are of an unknown size"), abfd); 9254 bfd_set_error (bfd_error_invalid_operation); 9255 return 0; 9256 } 9257 } 9258 9259 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next) 9260 if (lo->type == bfd_indirect_link_order) 9261 { 9262 asection *o = lo->u.indirect.section; 9263 9264 if ((o->size % bed->s->sizeof_rela) == 0) 9265 { 9266 if ((o->size % bed->s->sizeof_rel) == 0) 9267 /* Section size is divisible by both rel and rela sizes. 9268 It is of no help to us. */ 9269 ; 9270 else 9271 { 9272 /* Section size is only divisible by rela. */ 9273 if (use_rela_initialised && !use_rela) 9274 { 9275 _bfd_error_handler (_("%pB: unable to sort relocs - " 9276 "they are in more than one size"), 9277 abfd); 9278 bfd_set_error (bfd_error_invalid_operation); 9279 return 0; 9280 } 9281 else 9282 { 9283 use_rela = TRUE; 9284 use_rela_initialised = TRUE; 9285 } 9286 } 9287 } 9288 else if ((o->size % bed->s->sizeof_rel) == 0) 9289 { 9290 /* Section size is only divisible by rel. */ 9291 if (use_rela_initialised && use_rela) 9292 { 9293 _bfd_error_handler (_("%pB: unable to sort relocs - " 9294 "they are in more than one size"), 9295 abfd); 9296 bfd_set_error (bfd_error_invalid_operation); 9297 return 0; 9298 } 9299 else 9300 { 9301 use_rela = FALSE; 9302 use_rela_initialised = TRUE; 9303 } 9304 } 9305 else 9306 { 9307 /* The section size is not divisible by either - 9308 something is wrong. */ 9309 _bfd_error_handler (_("%pB: unable to sort relocs - " 9310 "they are of an unknown size"), abfd); 9311 bfd_set_error (bfd_error_invalid_operation); 9312 return 0; 9313 } 9314 } 9315 9316 if (! use_rela_initialised) 9317 /* Make a guess. */ 9318 use_rela = TRUE; 9319 } 9320 else if (rela_dyn != NULL && rela_dyn->size > 0) 9321 use_rela = TRUE; 9322 else if (rel_dyn != NULL && rel_dyn->size > 0) 9323 use_rela = FALSE; 9324 else 9325 return 0; 9326 9327 if (use_rela) 9328 { 9329 dynamic_relocs = rela_dyn; 9330 ext_size = bed->s->sizeof_rela; 9331 swap_in = bed->s->swap_reloca_in; 9332 swap_out = bed->s->swap_reloca_out; 9333 } 9334 else 9335 { 9336 dynamic_relocs = rel_dyn; 9337 ext_size = bed->s->sizeof_rel; 9338 swap_in = bed->s->swap_reloc_in; 9339 swap_out = bed->s->swap_reloc_out; 9340 } 9341 9342 size = 0; 9343 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) 9344 if (lo->type == bfd_indirect_link_order) 9345 size += lo->u.indirect.section->size; 9346 9347 if (size != dynamic_relocs->size) 9348 return 0; 9349 9350 sort_elt = (sizeof (struct elf_link_sort_rela) 9351 + (i2e - 1) * sizeof (Elf_Internal_Rela)); 9352 9353 count = dynamic_relocs->size / ext_size; 9354 if (count == 0) 9355 return 0; 9356 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count); 9357 9358 if (sort == NULL) 9359 { 9360 (*info->callbacks->warning) 9361 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0); 9362 return 0; 9363 } 9364 9365 if (bed->s->arch_size == 32) 9366 r_sym_mask = ~(bfd_vma) 0xff; 9367 else 9368 r_sym_mask = ~(bfd_vma) 0xffffffff; 9369 9370 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) 9371 if (lo->type == bfd_indirect_link_order) 9372 { 9373 bfd_byte *erel, *erelend; 9374 asection *o = lo->u.indirect.section; 9375 9376 if (o->contents == NULL && o->size != 0) 9377 { 9378 /* This is a reloc section that is being handled as a normal 9379 section. See bfd_section_from_shdr. We can't combine 9380 relocs in this case. */ 9381 free (sort); 9382 return 0; 9383 } 9384 erel = o->contents; 9385 erelend = o->contents + o->size; 9386 p = sort + o->output_offset * opb / ext_size * sort_elt; 9387 9388 while (erel < erelend) 9389 { 9390 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; 9391 9392 (*swap_in) (abfd, erel, s->rela); 9393 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela); 9394 s->u.sym_mask = r_sym_mask; 9395 p += sort_elt; 9396 erel += ext_size; 9397 } 9398 } 9399 9400 qsort (sort, count, sort_elt, elf_link_sort_cmp1); 9401 9402 for (i = 0, p = sort; i < count; i++, p += sort_elt) 9403 { 9404 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; 9405 if (s->type != reloc_class_relative) 9406 break; 9407 } 9408 ret = i; 9409 s_non_relative = p; 9410 9411 sq = (struct elf_link_sort_rela *) s_non_relative; 9412 for (; i < count; i++, p += sort_elt) 9413 { 9414 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p; 9415 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0) 9416 sq = sp; 9417 sp->u.offset = sq->rela->r_offset; 9418 } 9419 9420 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2); 9421 9422 struct elf_link_hash_table *htab = elf_hash_table (info); 9423 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs) 9424 { 9425 /* We have plt relocs in .rela.dyn. */ 9426 sq = (struct elf_link_sort_rela *) sort; 9427 for (i = 0; i < count; i++) 9428 if (sq[count - i - 1].type != reloc_class_plt) 9429 break; 9430 if (i != 0 && htab->srelplt->size == i * ext_size) 9431 { 9432 struct bfd_link_order **plo; 9433 /* Put srelplt link_order last. This is so the output_offset 9434 set in the next loop is correct for DT_JMPREL. */ 9435 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; ) 9436 if ((*plo)->type == bfd_indirect_link_order 9437 && (*plo)->u.indirect.section == htab->srelplt) 9438 { 9439 lo = *plo; 9440 *plo = lo->next; 9441 } 9442 else 9443 plo = &(*plo)->next; 9444 *plo = lo; 9445 lo->next = NULL; 9446 dynamic_relocs->map_tail.link_order = lo; 9447 } 9448 } 9449 9450 p = sort; 9451 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) 9452 if (lo->type == bfd_indirect_link_order) 9453 { 9454 bfd_byte *erel, *erelend; 9455 asection *o = lo->u.indirect.section; 9456 9457 erel = o->contents; 9458 erelend = o->contents + o->size; 9459 o->output_offset = (p - sort) / sort_elt * ext_size / opb; 9460 while (erel < erelend) 9461 { 9462 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; 9463 (*swap_out) (abfd, s->rela, erel); 9464 p += sort_elt; 9465 erel += ext_size; 9466 } 9467 } 9468 9469 free (sort); 9470 *psec = dynamic_relocs; 9471 return ret; 9472 } 9473 9474 /* Add a symbol to the output symbol string table. */ 9475 9476 static int 9477 elf_link_output_symstrtab (struct elf_final_link_info *flinfo, 9478 const char *name, 9479 Elf_Internal_Sym *elfsym, 9480 asection *input_sec, 9481 struct elf_link_hash_entry *h) 9482 { 9483 int (*output_symbol_hook) 9484 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *, 9485 struct elf_link_hash_entry *); 9486 struct elf_link_hash_table *hash_table; 9487 const struct elf_backend_data *bed; 9488 bfd_size_type strtabsize; 9489 9490 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); 9491 9492 bed = get_elf_backend_data (flinfo->output_bfd); 9493 output_symbol_hook = bed->elf_backend_link_output_symbol_hook; 9494 if (output_symbol_hook != NULL) 9495 { 9496 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h); 9497 if (ret != 1) 9498 return ret; 9499 } 9500 9501 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC) 9502 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc; 9503 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE) 9504 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique; 9505 9506 if (name == NULL 9507 || *name == '\0' 9508 || (input_sec->flags & SEC_EXCLUDE)) 9509 elfsym->st_name = (unsigned long) -1; 9510 else 9511 { 9512 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize 9513 to get the final offset for st_name. */ 9514 elfsym->st_name 9515 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab, 9516 name, FALSE); 9517 if (elfsym->st_name == (unsigned long) -1) 9518 return 0; 9519 } 9520 9521 hash_table = elf_hash_table (flinfo->info); 9522 strtabsize = hash_table->strtabsize; 9523 if (strtabsize <= hash_table->strtabcount) 9524 { 9525 strtabsize += strtabsize; 9526 hash_table->strtabsize = strtabsize; 9527 strtabsize *= sizeof (*hash_table->strtab); 9528 hash_table->strtab 9529 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab, 9530 strtabsize); 9531 if (hash_table->strtab == NULL) 9532 return 0; 9533 } 9534 hash_table->strtab[hash_table->strtabcount].sym = *elfsym; 9535 hash_table->strtab[hash_table->strtabcount].dest_index 9536 = hash_table->strtabcount; 9537 hash_table->strtab[hash_table->strtabcount].destshndx_index 9538 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0; 9539 9540 flinfo->output_bfd->symcount += 1; 9541 hash_table->strtabcount += 1; 9542 9543 return 1; 9544 } 9545 9546 /* Swap symbols out to the symbol table and flush the output symbols to 9547 the file. */ 9548 9549 static bfd_boolean 9550 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo) 9551 { 9552 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info); 9553 bfd_size_type amt; 9554 size_t i; 9555 const struct elf_backend_data *bed; 9556 bfd_byte *symbuf; 9557 Elf_Internal_Shdr *hdr; 9558 file_ptr pos; 9559 bfd_boolean ret; 9560 9561 if (!hash_table->strtabcount) 9562 return TRUE; 9563 9564 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); 9565 9566 bed = get_elf_backend_data (flinfo->output_bfd); 9567 9568 amt = bed->s->sizeof_sym * hash_table->strtabcount; 9569 symbuf = (bfd_byte *) bfd_malloc (amt); 9570 if (symbuf == NULL) 9571 return FALSE; 9572 9573 if (flinfo->symshndxbuf) 9574 { 9575 amt = sizeof (Elf_External_Sym_Shndx); 9576 amt *= bfd_get_symcount (flinfo->output_bfd); 9577 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt); 9578 if (flinfo->symshndxbuf == NULL) 9579 { 9580 free (symbuf); 9581 return FALSE; 9582 } 9583 } 9584 9585 for (i = 0; i < hash_table->strtabcount; i++) 9586 { 9587 struct elf_sym_strtab *elfsym = &hash_table->strtab[i]; 9588 if (elfsym->sym.st_name == (unsigned long) -1) 9589 elfsym->sym.st_name = 0; 9590 else 9591 elfsym->sym.st_name 9592 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab, 9593 elfsym->sym.st_name); 9594 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym, 9595 ((bfd_byte *) symbuf 9596 + (elfsym->dest_index 9597 * bed->s->sizeof_sym)), 9598 (flinfo->symshndxbuf 9599 + elfsym->destshndx_index)); 9600 } 9601 9602 /* Allow the linker to examine the strtab and symtab now they are 9603 populated. */ 9604 9605 if (flinfo->info->callbacks->examine_strtab) 9606 flinfo->info->callbacks->examine_strtab (hash_table->strtab, 9607 hash_table->strtabcount, 9608 flinfo->symstrtab); 9609 9610 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr; 9611 pos = hdr->sh_offset + hdr->sh_size; 9612 amt = hash_table->strtabcount * bed->s->sizeof_sym; 9613 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0 9614 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt) 9615 { 9616 hdr->sh_size += amt; 9617 ret = TRUE; 9618 } 9619 else 9620 ret = FALSE; 9621 9622 free (symbuf); 9623 9624 free (hash_table->strtab); 9625 hash_table->strtab = NULL; 9626 9627 return ret; 9628 } 9629 9630 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */ 9631 9632 static bfd_boolean 9633 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym) 9634 { 9635 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff) 9636 && sym->st_shndx < SHN_LORESERVE) 9637 { 9638 /* The gABI doesn't support dynamic symbols in output sections 9639 beyond 64k. */ 9640 _bfd_error_handler 9641 /* xgettext:c-format */ 9642 (_("%pB: too many sections: %d (>= %d)"), 9643 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff); 9644 bfd_set_error (bfd_error_nonrepresentable_section); 9645 return FALSE; 9646 } 9647 return TRUE; 9648 } 9649 9650 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in 9651 allowing an unsatisfied unversioned symbol in the DSO to match a 9652 versioned symbol that would normally require an explicit version. 9653 We also handle the case that a DSO references a hidden symbol 9654 which may be satisfied by a versioned symbol in another DSO. */ 9655 9656 static bfd_boolean 9657 elf_link_check_versioned_symbol (struct bfd_link_info *info, 9658 const struct elf_backend_data *bed, 9659 struct elf_link_hash_entry *h) 9660 { 9661 bfd *abfd; 9662 struct elf_link_loaded_list *loaded; 9663 9664 if (!is_elf_hash_table (info->hash)) 9665 return FALSE; 9666 9667 /* Check indirect symbol. */ 9668 while (h->root.type == bfd_link_hash_indirect) 9669 h = (struct elf_link_hash_entry *) h->root.u.i.link; 9670 9671 switch (h->root.type) 9672 { 9673 default: 9674 abfd = NULL; 9675 break; 9676 9677 case bfd_link_hash_undefined: 9678 case bfd_link_hash_undefweak: 9679 abfd = h->root.u.undef.abfd; 9680 if (abfd == NULL 9681 || (abfd->flags & DYNAMIC) == 0 9682 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0) 9683 return FALSE; 9684 break; 9685 9686 case bfd_link_hash_defined: 9687 case bfd_link_hash_defweak: 9688 abfd = h->root.u.def.section->owner; 9689 break; 9690 9691 case bfd_link_hash_common: 9692 abfd = h->root.u.c.p->section->owner; 9693 break; 9694 } 9695 BFD_ASSERT (abfd != NULL); 9696 9697 for (loaded = elf_hash_table (info)->loaded; 9698 loaded != NULL; 9699 loaded = loaded->next) 9700 { 9701 bfd *input; 9702 Elf_Internal_Shdr *hdr; 9703 size_t symcount; 9704 size_t extsymcount; 9705 size_t extsymoff; 9706 Elf_Internal_Shdr *versymhdr; 9707 Elf_Internal_Sym *isym; 9708 Elf_Internal_Sym *isymend; 9709 Elf_Internal_Sym *isymbuf; 9710 Elf_External_Versym *ever; 9711 Elf_External_Versym *extversym; 9712 9713 input = loaded->abfd; 9714 9715 /* We check each DSO for a possible hidden versioned definition. */ 9716 if (input == abfd 9717 || (input->flags & DYNAMIC) == 0 9718 || elf_dynversym (input) == 0) 9719 continue; 9720 9721 hdr = &elf_tdata (input)->dynsymtab_hdr; 9722 9723 symcount = hdr->sh_size / bed->s->sizeof_sym; 9724 if (elf_bad_symtab (input)) 9725 { 9726 extsymcount = symcount; 9727 extsymoff = 0; 9728 } 9729 else 9730 { 9731 extsymcount = symcount - hdr->sh_info; 9732 extsymoff = hdr->sh_info; 9733 } 9734 9735 if (extsymcount == 0) 9736 continue; 9737 9738 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff, 9739 NULL, NULL, NULL); 9740 if (isymbuf == NULL) 9741 return FALSE; 9742 9743 /* Read in any version definitions. */ 9744 versymhdr = &elf_tdata (input)->dynversym_hdr; 9745 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size); 9746 if (extversym == NULL) 9747 goto error_ret; 9748 9749 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0 9750 || (bfd_bread (extversym, versymhdr->sh_size, input) 9751 != versymhdr->sh_size)) 9752 { 9753 free (extversym); 9754 error_ret: 9755 free (isymbuf); 9756 return FALSE; 9757 } 9758 9759 ever = extversym + extsymoff; 9760 isymend = isymbuf + extsymcount; 9761 for (isym = isymbuf; isym < isymend; isym++, ever++) 9762 { 9763 const char *name; 9764 Elf_Internal_Versym iver; 9765 unsigned short version_index; 9766 9767 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL 9768 || isym->st_shndx == SHN_UNDEF) 9769 continue; 9770 9771 name = bfd_elf_string_from_elf_section (input, 9772 hdr->sh_link, 9773 isym->st_name); 9774 if (strcmp (name, h->root.root.string) != 0) 9775 continue; 9776 9777 _bfd_elf_swap_versym_in (input, ever, &iver); 9778 9779 if ((iver.vs_vers & VERSYM_HIDDEN) == 0 9780 && !(h->def_regular 9781 && h->forced_local)) 9782 { 9783 /* If we have a non-hidden versioned sym, then it should 9784 have provided a definition for the undefined sym unless 9785 it is defined in a non-shared object and forced local. 9786 */ 9787 abort (); 9788 } 9789 9790 version_index = iver.vs_vers & VERSYM_VERSION; 9791 if (version_index == 1 || version_index == 2) 9792 { 9793 /* This is the base or first version. We can use it. */ 9794 free (extversym); 9795 free (isymbuf); 9796 return TRUE; 9797 } 9798 } 9799 9800 free (extversym); 9801 free (isymbuf); 9802 } 9803 9804 return FALSE; 9805 } 9806 9807 /* Convert ELF common symbol TYPE. */ 9808 9809 static int 9810 elf_link_convert_common_type (struct bfd_link_info *info, int type) 9811 { 9812 /* Commom symbol can only appear in relocatable link. */ 9813 if (!bfd_link_relocatable (info)) 9814 abort (); 9815 switch (info->elf_stt_common) 9816 { 9817 case unchanged: 9818 break; 9819 case elf_stt_common: 9820 type = STT_COMMON; 9821 break; 9822 case no_elf_stt_common: 9823 type = STT_OBJECT; 9824 break; 9825 } 9826 return type; 9827 } 9828 9829 /* Add an external symbol to the symbol table. This is called from 9830 the hash table traversal routine. When generating a shared object, 9831 we go through the symbol table twice. The first time we output 9832 anything that might have been forced to local scope in a version 9833 script. The second time we output the symbols that are still 9834 global symbols. */ 9835 9836 static bfd_boolean 9837 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data) 9838 { 9839 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh; 9840 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; 9841 struct elf_final_link_info *flinfo = eoinfo->flinfo; 9842 bfd_boolean strip; 9843 Elf_Internal_Sym sym; 9844 asection *input_sec; 9845 const struct elf_backend_data *bed; 9846 long indx; 9847 int ret; 9848 unsigned int type; 9849 9850 if (h->root.type == bfd_link_hash_warning) 9851 { 9852 h = (struct elf_link_hash_entry *) h->root.u.i.link; 9853 if (h->root.type == bfd_link_hash_new) 9854 return TRUE; 9855 } 9856 9857 /* Decide whether to output this symbol in this pass. */ 9858 if (eoinfo->localsyms) 9859 { 9860 if (!h->forced_local) 9861 return TRUE; 9862 } 9863 else 9864 { 9865 if (h->forced_local) 9866 return TRUE; 9867 } 9868 9869 bed = get_elf_backend_data (flinfo->output_bfd); 9870 9871 if (h->root.type == bfd_link_hash_undefined) 9872 { 9873 /* If we have an undefined symbol reference here then it must have 9874 come from a shared library that is being linked in. (Undefined 9875 references in regular files have already been handled unless 9876 they are in unreferenced sections which are removed by garbage 9877 collection). */ 9878 bfd_boolean ignore_undef = FALSE; 9879 9880 /* Some symbols may be special in that the fact that they're 9881 undefined can be safely ignored - let backend determine that. */ 9882 if (bed->elf_backend_ignore_undef_symbol) 9883 ignore_undef = bed->elf_backend_ignore_undef_symbol (h); 9884 9885 /* If we are reporting errors for this situation then do so now. */ 9886 if (!ignore_undef 9887 && h->ref_dynamic_nonweak 9888 && (!h->ref_regular || flinfo->info->gc_sections) 9889 && !elf_link_check_versioned_symbol (flinfo->info, bed, h) 9890 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE) 9891 (*flinfo->info->callbacks->undefined_symbol) 9892 (flinfo->info, h->root.root.string, 9893 h->ref_regular ? NULL : h->root.u.undef.abfd, 9894 NULL, 0, 9895 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR); 9896 9897 /* Strip a global symbol defined in a discarded section. */ 9898 if (h->indx == -3) 9899 return TRUE; 9900 } 9901 9902 /* We should also warn if a forced local symbol is referenced from 9903 shared libraries. */ 9904 if (bfd_link_executable (flinfo->info) 9905 && h->forced_local 9906 && h->ref_dynamic 9907 && h->def_regular 9908 && !h->dynamic_def 9909 && h->ref_dynamic_nonweak 9910 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)) 9911 { 9912 bfd *def_bfd; 9913 const char *msg; 9914 struct elf_link_hash_entry *hi = h; 9915 9916 /* Check indirect symbol. */ 9917 while (hi->root.type == bfd_link_hash_indirect) 9918 hi = (struct elf_link_hash_entry *) hi->root.u.i.link; 9919 9920 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) 9921 /* xgettext:c-format */ 9922 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO"); 9923 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) 9924 /* xgettext:c-format */ 9925 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO"); 9926 else 9927 /* xgettext:c-format */ 9928 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO"); 9929 def_bfd = flinfo->output_bfd; 9930 if (hi->root.u.def.section != bfd_abs_section_ptr) 9931 def_bfd = hi->root.u.def.section->owner; 9932 _bfd_error_handler (msg, flinfo->output_bfd, 9933 h->root.root.string, def_bfd); 9934 bfd_set_error (bfd_error_bad_value); 9935 eoinfo->failed = TRUE; 9936 return FALSE; 9937 } 9938 9939 /* We don't want to output symbols that have never been mentioned by 9940 a regular file, or that we have been told to strip. However, if 9941 h->indx is set to -2, the symbol is used by a reloc and we must 9942 output it. */ 9943 strip = FALSE; 9944 if (h->indx == -2) 9945 ; 9946 else if ((h->def_dynamic 9947 || h->ref_dynamic 9948 || h->root.type == bfd_link_hash_new) 9949 && !h->def_regular 9950 && !h->ref_regular) 9951 strip = TRUE; 9952 else if (flinfo->info->strip == strip_all) 9953 strip = TRUE; 9954 else if (flinfo->info->strip == strip_some 9955 && bfd_hash_lookup (flinfo->info->keep_hash, 9956 h->root.root.string, FALSE, FALSE) == NULL) 9957 strip = TRUE; 9958 else if ((h->root.type == bfd_link_hash_defined 9959 || h->root.type == bfd_link_hash_defweak) 9960 && ((flinfo->info->strip_discarded 9961 && discarded_section (h->root.u.def.section)) 9962 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0 9963 && h->root.u.def.section->owner != NULL 9964 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0))) 9965 strip = TRUE; 9966 else if ((h->root.type == bfd_link_hash_undefined 9967 || h->root.type == bfd_link_hash_undefweak) 9968 && h->root.u.undef.abfd != NULL 9969 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0) 9970 strip = TRUE; 9971 9972 type = h->type; 9973 9974 /* If we're stripping it, and it's not a dynamic symbol, there's 9975 nothing else to do. However, if it is a forced local symbol or 9976 an ifunc symbol we need to give the backend finish_dynamic_symbol 9977 function a chance to make it dynamic. */ 9978 if (strip 9979 && h->dynindx == -1 9980 && type != STT_GNU_IFUNC 9981 && !h->forced_local) 9982 return TRUE; 9983 9984 sym.st_value = 0; 9985 sym.st_size = h->size; 9986 sym.st_other = h->other; 9987 switch (h->root.type) 9988 { 9989 default: 9990 case bfd_link_hash_new: 9991 case bfd_link_hash_warning: 9992 abort (); 9993 return FALSE; 9994 9995 case bfd_link_hash_undefined: 9996 case bfd_link_hash_undefweak: 9997 input_sec = bfd_und_section_ptr; 9998 sym.st_shndx = SHN_UNDEF; 9999 break; 10000 10001 case bfd_link_hash_defined: 10002 case bfd_link_hash_defweak: 10003 { 10004 input_sec = h->root.u.def.section; 10005 if (input_sec->output_section != NULL) 10006 { 10007 sym.st_shndx = 10008 _bfd_elf_section_from_bfd_section (flinfo->output_bfd, 10009 input_sec->output_section); 10010 if (sym.st_shndx == SHN_BAD) 10011 { 10012 _bfd_error_handler 10013 /* xgettext:c-format */ 10014 (_("%pB: could not find output section %pA for input section %pA"), 10015 flinfo->output_bfd, input_sec->output_section, input_sec); 10016 bfd_set_error (bfd_error_nonrepresentable_section); 10017 eoinfo->failed = TRUE; 10018 return FALSE; 10019 } 10020 10021 /* ELF symbols in relocatable files are section relative, 10022 but in nonrelocatable files they are virtual 10023 addresses. */ 10024 sym.st_value = h->root.u.def.value + input_sec->output_offset; 10025 if (!bfd_link_relocatable (flinfo->info)) 10026 { 10027 sym.st_value += input_sec->output_section->vma; 10028 if (h->type == STT_TLS) 10029 { 10030 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec; 10031 if (tls_sec != NULL) 10032 sym.st_value -= tls_sec->vma; 10033 } 10034 } 10035 } 10036 else 10037 { 10038 BFD_ASSERT (input_sec->owner == NULL 10039 || (input_sec->owner->flags & DYNAMIC) != 0); 10040 sym.st_shndx = SHN_UNDEF; 10041 input_sec = bfd_und_section_ptr; 10042 } 10043 } 10044 break; 10045 10046 case bfd_link_hash_common: 10047 input_sec = h->root.u.c.p->section; 10048 sym.st_shndx = bed->common_section_index (input_sec); 10049 sym.st_value = 1 << h->root.u.c.p->alignment_power; 10050 break; 10051 10052 case bfd_link_hash_indirect: 10053 /* These symbols are created by symbol versioning. They point 10054 to the decorated version of the name. For example, if the 10055 symbol foo@@GNU_1.2 is the default, which should be used when 10056 foo is used with no version, then we add an indirect symbol 10057 foo which points to foo@@GNU_1.2. We ignore these symbols, 10058 since the indirected symbol is already in the hash table. */ 10059 return TRUE; 10060 } 10061 10062 if (type == STT_COMMON || type == STT_OBJECT) 10063 switch (h->root.type) 10064 { 10065 case bfd_link_hash_common: 10066 type = elf_link_convert_common_type (flinfo->info, type); 10067 break; 10068 case bfd_link_hash_defined: 10069 case bfd_link_hash_defweak: 10070 if (bed->common_definition (&sym)) 10071 type = elf_link_convert_common_type (flinfo->info, type); 10072 else 10073 type = STT_OBJECT; 10074 break; 10075 case bfd_link_hash_undefined: 10076 case bfd_link_hash_undefweak: 10077 break; 10078 default: 10079 abort (); 10080 } 10081 10082 if (h->forced_local) 10083 { 10084 sym.st_info = ELF_ST_INFO (STB_LOCAL, type); 10085 /* Turn off visibility on local symbol. */ 10086 sym.st_other &= ~ELF_ST_VISIBILITY (-1); 10087 } 10088 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */ 10089 else if (h->unique_global && h->def_regular) 10090 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type); 10091 else if (h->root.type == bfd_link_hash_undefweak 10092 || h->root.type == bfd_link_hash_defweak) 10093 sym.st_info = ELF_ST_INFO (STB_WEAK, type); 10094 else 10095 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); 10096 sym.st_target_internal = h->target_internal; 10097 10098 /* Give the processor backend a chance to tweak the symbol value, 10099 and also to finish up anything that needs to be done for this 10100 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for 10101 forced local syms when non-shared is due to a historical quirk. 10102 STT_GNU_IFUNC symbol must go through PLT. */ 10103 if ((h->type == STT_GNU_IFUNC 10104 && h->def_regular 10105 && !bfd_link_relocatable (flinfo->info)) 10106 || ((h->dynindx != -1 10107 || h->forced_local) 10108 && ((bfd_link_pic (flinfo->info) 10109 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 10110 || h->root.type != bfd_link_hash_undefweak)) 10111 || !h->forced_local) 10112 && elf_hash_table (flinfo->info)->dynamic_sections_created)) 10113 { 10114 if (! ((*bed->elf_backend_finish_dynamic_symbol) 10115 (flinfo->output_bfd, flinfo->info, h, &sym))) 10116 { 10117 eoinfo->failed = TRUE; 10118 return FALSE; 10119 } 10120 } 10121 10122 /* If we are marking the symbol as undefined, and there are no 10123 non-weak references to this symbol from a regular object, then 10124 mark the symbol as weak undefined; if there are non-weak 10125 references, mark the symbol as strong. We can't do this earlier, 10126 because it might not be marked as undefined until the 10127 finish_dynamic_symbol routine gets through with it. */ 10128 if (sym.st_shndx == SHN_UNDEF 10129 && h->ref_regular 10130 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL 10131 || ELF_ST_BIND (sym.st_info) == STB_WEAK)) 10132 { 10133 int bindtype; 10134 type = ELF_ST_TYPE (sym.st_info); 10135 10136 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */ 10137 if (type == STT_GNU_IFUNC) 10138 type = STT_FUNC; 10139 10140 if (h->ref_regular_nonweak) 10141 bindtype = STB_GLOBAL; 10142 else 10143 bindtype = STB_WEAK; 10144 sym.st_info = ELF_ST_INFO (bindtype, type); 10145 } 10146 10147 /* If this is a symbol defined in a dynamic library, don't use the 10148 symbol size from the dynamic library. Relinking an executable 10149 against a new library may introduce gratuitous changes in the 10150 executable's symbols if we keep the size. */ 10151 if (sym.st_shndx == SHN_UNDEF 10152 && !h->def_regular 10153 && h->def_dynamic) 10154 sym.st_size = 0; 10155 10156 /* If a non-weak symbol with non-default visibility is not defined 10157 locally, it is a fatal error. */ 10158 if (!bfd_link_relocatable (flinfo->info) 10159 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT 10160 && ELF_ST_BIND (sym.st_info) != STB_WEAK 10161 && h->root.type == bfd_link_hash_undefined 10162 && !h->def_regular) 10163 { 10164 const char *msg; 10165 10166 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED) 10167 /* xgettext:c-format */ 10168 msg = _("%pB: protected symbol `%s' isn't defined"); 10169 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL) 10170 /* xgettext:c-format */ 10171 msg = _("%pB: internal symbol `%s' isn't defined"); 10172 else 10173 /* xgettext:c-format */ 10174 msg = _("%pB: hidden symbol `%s' isn't defined"); 10175 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string); 10176 bfd_set_error (bfd_error_bad_value); 10177 eoinfo->failed = TRUE; 10178 return FALSE; 10179 } 10180 10181 /* If this symbol should be put in the .dynsym section, then put it 10182 there now. We already know the symbol index. We also fill in 10183 the entry in the .hash section. */ 10184 if (h->dynindx != -1 10185 && elf_hash_table (flinfo->info)->dynamic_sections_created 10186 && elf_hash_table (flinfo->info)->dynsym != NULL 10187 && !discarded_section (elf_hash_table (flinfo->info)->dynsym)) 10188 { 10189 bfd_byte *esym; 10190 10191 /* Since there is no version information in the dynamic string, 10192 if there is no version info in symbol version section, we will 10193 have a run-time problem if not linking executable, referenced 10194 by shared library, or not bound locally. */ 10195 if (h->verinfo.verdef == NULL 10196 && (!bfd_link_executable (flinfo->info) 10197 || h->ref_dynamic 10198 || !h->def_regular)) 10199 { 10200 char *p = strrchr (h->root.root.string, ELF_VER_CHR); 10201 10202 if (p && p [1] != '\0') 10203 { 10204 _bfd_error_handler 10205 /* xgettext:c-format */ 10206 (_("%pB: no symbol version section for versioned symbol `%s'"), 10207 flinfo->output_bfd, h->root.root.string); 10208 eoinfo->failed = TRUE; 10209 return FALSE; 10210 } 10211 } 10212 10213 sym.st_name = h->dynstr_index; 10214 esym = (elf_hash_table (flinfo->info)->dynsym->contents 10215 + h->dynindx * bed->s->sizeof_sym); 10216 if (!check_dynsym (flinfo->output_bfd, &sym)) 10217 { 10218 eoinfo->failed = TRUE; 10219 return FALSE; 10220 } 10221 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0); 10222 10223 if (flinfo->hash_sec != NULL) 10224 { 10225 size_t hash_entry_size; 10226 bfd_byte *bucketpos; 10227 bfd_vma chain; 10228 size_t bucketcount; 10229 size_t bucket; 10230 10231 bucketcount = elf_hash_table (flinfo->info)->bucketcount; 10232 bucket = h->u.elf_hash_value % bucketcount; 10233 10234 hash_entry_size 10235 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize; 10236 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents 10237 + (bucket + 2) * hash_entry_size); 10238 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos); 10239 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx, 10240 bucketpos); 10241 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain, 10242 ((bfd_byte *) flinfo->hash_sec->contents 10243 + (bucketcount + 2 + h->dynindx) * hash_entry_size)); 10244 } 10245 10246 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL) 10247 { 10248 Elf_Internal_Versym iversym; 10249 Elf_External_Versym *eversym; 10250 10251 if (!h->def_regular && !ELF_COMMON_DEF_P (h)) 10252 { 10253 if (h->verinfo.verdef == NULL 10254 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) 10255 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) 10256 iversym.vs_vers = 0; 10257 else 10258 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; 10259 } 10260 else 10261 { 10262 if (h->verinfo.vertree == NULL) 10263 iversym.vs_vers = 1; 10264 else 10265 iversym.vs_vers = h->verinfo.vertree->vernum + 1; 10266 if (flinfo->info->create_default_symver) 10267 iversym.vs_vers++; 10268 } 10269 10270 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is 10271 defined locally. */ 10272 if (h->versioned == versioned_hidden && h->def_regular) 10273 iversym.vs_vers |= VERSYM_HIDDEN; 10274 10275 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents; 10276 eversym += h->dynindx; 10277 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym); 10278 } 10279 } 10280 10281 /* If the symbol is undefined, and we didn't output it to .dynsym, 10282 strip it from .symtab too. Obviously we can't do this for 10283 relocatable output or when needed for --emit-relocs. */ 10284 else if (input_sec == bfd_und_section_ptr 10285 && h->indx != -2 10286 /* PR 22319 Do not strip global undefined symbols marked as being needed. */ 10287 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL) 10288 && !bfd_link_relocatable (flinfo->info)) 10289 return TRUE; 10290 10291 /* Also strip others that we couldn't earlier due to dynamic symbol 10292 processing. */ 10293 if (strip) 10294 return TRUE; 10295 if ((input_sec->flags & SEC_EXCLUDE) != 0) 10296 return TRUE; 10297 10298 /* Output a FILE symbol so that following locals are not associated 10299 with the wrong input file. We need one for forced local symbols 10300 if we've seen more than one FILE symbol or when we have exactly 10301 one FILE symbol but global symbols are present in a file other 10302 than the one with the FILE symbol. We also need one if linker 10303 defined symbols are present. In practice these conditions are 10304 always met, so just emit the FILE symbol unconditionally. */ 10305 if (eoinfo->localsyms 10306 && !eoinfo->file_sym_done 10307 && eoinfo->flinfo->filesym_count != 0) 10308 { 10309 Elf_Internal_Sym fsym; 10310 10311 memset (&fsym, 0, sizeof (fsym)); 10312 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); 10313 fsym.st_shndx = SHN_ABS; 10314 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym, 10315 bfd_und_section_ptr, NULL)) 10316 return FALSE; 10317 10318 eoinfo->file_sym_done = TRUE; 10319 } 10320 10321 indx = bfd_get_symcount (flinfo->output_bfd); 10322 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym, 10323 input_sec, h); 10324 if (ret == 0) 10325 { 10326 eoinfo->failed = TRUE; 10327 return FALSE; 10328 } 10329 else if (ret == 1) 10330 h->indx = indx; 10331 else if (h->indx == -2) 10332 abort(); 10333 10334 return TRUE; 10335 } 10336 10337 /* Return TRUE if special handling is done for relocs in SEC against 10338 symbols defined in discarded sections. */ 10339 10340 static bfd_boolean 10341 elf_section_ignore_discarded_relocs (asection *sec) 10342 { 10343 const struct elf_backend_data *bed; 10344 10345 switch (sec->sec_info_type) 10346 { 10347 case SEC_INFO_TYPE_STABS: 10348 case SEC_INFO_TYPE_EH_FRAME: 10349 case SEC_INFO_TYPE_EH_FRAME_ENTRY: 10350 return TRUE; 10351 default: 10352 break; 10353 } 10354 10355 bed = get_elf_backend_data (sec->owner); 10356 if (bed->elf_backend_ignore_discarded_relocs != NULL 10357 && (*bed->elf_backend_ignore_discarded_relocs) (sec)) 10358 return TRUE; 10359 10360 return FALSE; 10361 } 10362 10363 /* Return a mask saying how ld should treat relocations in SEC against 10364 symbols defined in discarded sections. If this function returns 10365 COMPLAIN set, ld will issue a warning message. If this function 10366 returns PRETEND set, and the discarded section was link-once and the 10367 same size as the kept link-once section, ld will pretend that the 10368 symbol was actually defined in the kept section. Otherwise ld will 10369 zero the reloc (at least that is the intent, but some cooperation by 10370 the target dependent code is needed, particularly for REL targets). */ 10371 10372 unsigned int 10373 _bfd_elf_default_action_discarded (asection *sec) 10374 { 10375 if (sec->flags & SEC_DEBUGGING) 10376 return PRETEND; 10377 10378 if (strcmp (".eh_frame", sec->name) == 0) 10379 return 0; 10380 10381 if (strcmp (".gcc_except_table", sec->name) == 0) 10382 return 0; 10383 10384 return COMPLAIN | PRETEND; 10385 } 10386 10387 /* Find a match between a section and a member of a section group. */ 10388 10389 static asection * 10390 match_group_member (asection *sec, asection *group, 10391 struct bfd_link_info *info) 10392 { 10393 asection *first = elf_next_in_group (group); 10394 asection *s = first; 10395 10396 while (s != NULL) 10397 { 10398 if (bfd_elf_match_symbols_in_sections (s, sec, info)) 10399 return s; 10400 10401 s = elf_next_in_group (s); 10402 if (s == first) 10403 break; 10404 } 10405 10406 return NULL; 10407 } 10408 10409 /* Check if the kept section of a discarded section SEC can be used 10410 to replace it. Return the replacement if it is OK. Otherwise return 10411 NULL. */ 10412 10413 asection * 10414 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info) 10415 { 10416 asection *kept; 10417 10418 kept = sec->kept_section; 10419 if (kept != NULL) 10420 { 10421 if ((kept->flags & SEC_GROUP) != 0) 10422 kept = match_group_member (sec, kept, info); 10423 if (kept != NULL 10424 && ((sec->rawsize != 0 ? sec->rawsize : sec->size) 10425 != (kept->rawsize != 0 ? kept->rawsize : kept->size))) 10426 kept = NULL; 10427 sec->kept_section = kept; 10428 } 10429 return kept; 10430 } 10431 10432 /* Link an input file into the linker output file. This function 10433 handles all the sections and relocations of the input file at once. 10434 This is so that we only have to read the local symbols once, and 10435 don't have to keep them in memory. */ 10436 10437 static bfd_boolean 10438 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd) 10439 { 10440 int (*relocate_section) 10441 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, 10442 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **); 10443 bfd *output_bfd; 10444 Elf_Internal_Shdr *symtab_hdr; 10445 size_t locsymcount; 10446 size_t extsymoff; 10447 Elf_Internal_Sym *isymbuf; 10448 Elf_Internal_Sym *isym; 10449 Elf_Internal_Sym *isymend; 10450 long *pindex; 10451 asection **ppsection; 10452 asection *o; 10453 const struct elf_backend_data *bed; 10454 struct elf_link_hash_entry **sym_hashes; 10455 bfd_size_type address_size; 10456 bfd_vma r_type_mask; 10457 int r_sym_shift; 10458 bfd_boolean have_file_sym = FALSE; 10459 10460 output_bfd = flinfo->output_bfd; 10461 bed = get_elf_backend_data (output_bfd); 10462 relocate_section = bed->elf_backend_relocate_section; 10463 10464 /* If this is a dynamic object, we don't want to do anything here: 10465 we don't want the local symbols, and we don't want the section 10466 contents. */ 10467 if ((input_bfd->flags & DYNAMIC) != 0) 10468 return TRUE; 10469 10470 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 10471 if (elf_bad_symtab (input_bfd)) 10472 { 10473 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; 10474 extsymoff = 0; 10475 } 10476 else 10477 { 10478 locsymcount = symtab_hdr->sh_info; 10479 extsymoff = symtab_hdr->sh_info; 10480 } 10481 10482 /* Read the local symbols. */ 10483 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 10484 if (isymbuf == NULL && locsymcount != 0) 10485 { 10486 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, 10487 flinfo->internal_syms, 10488 flinfo->external_syms, 10489 flinfo->locsym_shndx); 10490 if (isymbuf == NULL) 10491 return FALSE; 10492 } 10493 10494 /* Find local symbol sections and adjust values of symbols in 10495 SEC_MERGE sections. Write out those local symbols we know are 10496 going into the output file. */ 10497 isymend = isymbuf + locsymcount; 10498 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections; 10499 isym < isymend; 10500 isym++, pindex++, ppsection++) 10501 { 10502 asection *isec; 10503 const char *name; 10504 Elf_Internal_Sym osym; 10505 long indx; 10506 int ret; 10507 10508 *pindex = -1; 10509 10510 if (elf_bad_symtab (input_bfd)) 10511 { 10512 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) 10513 { 10514 *ppsection = NULL; 10515 continue; 10516 } 10517 } 10518 10519 if (isym->st_shndx == SHN_UNDEF) 10520 isec = bfd_und_section_ptr; 10521 else if (isym->st_shndx == SHN_ABS) 10522 isec = bfd_abs_section_ptr; 10523 else if (isym->st_shndx == SHN_COMMON) 10524 isec = bfd_com_section_ptr; 10525 else 10526 { 10527 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); 10528 if (isec == NULL) 10529 { 10530 /* Don't attempt to output symbols with st_shnx in the 10531 reserved range other than SHN_ABS and SHN_COMMON. */ 10532 isec = bfd_und_section_ptr; 10533 } 10534 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE 10535 && ELF_ST_TYPE (isym->st_info) != STT_SECTION) 10536 isym->st_value = 10537 _bfd_merged_section_offset (output_bfd, &isec, 10538 elf_section_data (isec)->sec_info, 10539 isym->st_value); 10540 } 10541 10542 *ppsection = isec; 10543 10544 /* Don't output the first, undefined, symbol. In fact, don't 10545 output any undefined local symbol. */ 10546 if (isec == bfd_und_section_ptr) 10547 continue; 10548 10549 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) 10550 { 10551 /* We never output section symbols. Instead, we use the 10552 section symbol of the corresponding section in the output 10553 file. */ 10554 continue; 10555 } 10556 10557 /* If we are stripping all symbols, we don't want to output this 10558 one. */ 10559 if (flinfo->info->strip == strip_all) 10560 continue; 10561 10562 /* If we are discarding all local symbols, we don't want to 10563 output this one. If we are generating a relocatable output 10564 file, then some of the local symbols may be required by 10565 relocs; we output them below as we discover that they are 10566 needed. */ 10567 if (flinfo->info->discard == discard_all) 10568 continue; 10569 10570 /* If this symbol is defined in a section which we are 10571 discarding, we don't need to keep it. */ 10572 if (isym->st_shndx != SHN_UNDEF 10573 && isym->st_shndx < SHN_LORESERVE 10574 && bfd_section_removed_from_list (output_bfd, 10575 isec->output_section)) 10576 continue; 10577 10578 /* Get the name of the symbol. */ 10579 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, 10580 isym->st_name); 10581 if (name == NULL) 10582 return FALSE; 10583 10584 /* See if we are discarding symbols with this name. */ 10585 if ((flinfo->info->strip == strip_some 10586 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE) 10587 == NULL)) 10588 || (((flinfo->info->discard == discard_sec_merge 10589 && (isec->flags & SEC_MERGE) 10590 && !bfd_link_relocatable (flinfo->info)) 10591 || flinfo->info->discard == discard_l) 10592 && bfd_is_local_label_name (input_bfd, name))) 10593 continue; 10594 10595 if (ELF_ST_TYPE (isym->st_info) == STT_FILE) 10596 { 10597 if (input_bfd->lto_output) 10598 /* -flto puts a temp file name here. This means builds 10599 are not reproducible. Discard the symbol. */ 10600 continue; 10601 have_file_sym = TRUE; 10602 flinfo->filesym_count += 1; 10603 } 10604 if (!have_file_sym) 10605 { 10606 /* In the absence of debug info, bfd_find_nearest_line uses 10607 FILE symbols to determine the source file for local 10608 function symbols. Provide a FILE symbol here if input 10609 files lack such, so that their symbols won't be 10610 associated with a previous input file. It's not the 10611 source file, but the best we can do. */ 10612 have_file_sym = TRUE; 10613 flinfo->filesym_count += 1; 10614 memset (&osym, 0, sizeof (osym)); 10615 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); 10616 osym.st_shndx = SHN_ABS; 10617 if (!elf_link_output_symstrtab (flinfo, 10618 (input_bfd->lto_output ? NULL 10619 : input_bfd->filename), 10620 &osym, bfd_abs_section_ptr, 10621 NULL)) 10622 return FALSE; 10623 } 10624 10625 osym = *isym; 10626 10627 /* Adjust the section index for the output file. */ 10628 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, 10629 isec->output_section); 10630 if (osym.st_shndx == SHN_BAD) 10631 return FALSE; 10632 10633 /* ELF symbols in relocatable files are section relative, but 10634 in executable files they are virtual addresses. Note that 10635 this code assumes that all ELF sections have an associated 10636 BFD section with a reasonable value for output_offset; below 10637 we assume that they also have a reasonable value for 10638 output_section. Any special sections must be set up to meet 10639 these requirements. */ 10640 osym.st_value += isec->output_offset; 10641 if (!bfd_link_relocatable (flinfo->info)) 10642 { 10643 osym.st_value += isec->output_section->vma; 10644 if (ELF_ST_TYPE (osym.st_info) == STT_TLS) 10645 { 10646 /* STT_TLS symbols are relative to PT_TLS segment base. */ 10647 if (elf_hash_table (flinfo->info)->tls_sec != NULL) 10648 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma; 10649 else 10650 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info), 10651 STT_NOTYPE); 10652 } 10653 } 10654 10655 indx = bfd_get_symcount (output_bfd); 10656 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL); 10657 if (ret == 0) 10658 return FALSE; 10659 else if (ret == 1) 10660 *pindex = indx; 10661 } 10662 10663 if (bed->s->arch_size == 32) 10664 { 10665 r_type_mask = 0xff; 10666 r_sym_shift = 8; 10667 address_size = 4; 10668 } 10669 else 10670 { 10671 r_type_mask = 0xffffffff; 10672 r_sym_shift = 32; 10673 address_size = 8; 10674 } 10675 10676 /* Relocate the contents of each section. */ 10677 sym_hashes = elf_sym_hashes (input_bfd); 10678 for (o = input_bfd->sections; o != NULL; o = o->next) 10679 { 10680 bfd_byte *contents; 10681 10682 if (! o->linker_mark) 10683 { 10684 /* This section was omitted from the link. */ 10685 continue; 10686 } 10687 10688 if (!flinfo->info->resolve_section_groups 10689 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP) 10690 { 10691 /* Deal with the group signature symbol. */ 10692 struct bfd_elf_section_data *sec_data = elf_section_data (o); 10693 unsigned long symndx = sec_data->this_hdr.sh_info; 10694 asection *osec = o->output_section; 10695 10696 BFD_ASSERT (bfd_link_relocatable (flinfo->info)); 10697 if (symndx >= locsymcount 10698 || (elf_bad_symtab (input_bfd) 10699 && flinfo->sections[symndx] == NULL)) 10700 { 10701 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff]; 10702 while (h->root.type == bfd_link_hash_indirect 10703 || h->root.type == bfd_link_hash_warning) 10704 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10705 /* Arrange for symbol to be output. */ 10706 h->indx = -2; 10707 elf_section_data (osec)->this_hdr.sh_info = -2; 10708 } 10709 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION) 10710 { 10711 /* We'll use the output section target_index. */ 10712 asection *sec = flinfo->sections[symndx]->output_section; 10713 elf_section_data (osec)->this_hdr.sh_info = sec->target_index; 10714 } 10715 else 10716 { 10717 if (flinfo->indices[symndx] == -1) 10718 { 10719 /* Otherwise output the local symbol now. */ 10720 Elf_Internal_Sym sym = isymbuf[symndx]; 10721 asection *sec = flinfo->sections[symndx]->output_section; 10722 const char *name; 10723 long indx; 10724 int ret; 10725 10726 name = bfd_elf_string_from_elf_section (input_bfd, 10727 symtab_hdr->sh_link, 10728 sym.st_name); 10729 if (name == NULL) 10730 return FALSE; 10731 10732 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, 10733 sec); 10734 if (sym.st_shndx == SHN_BAD) 10735 return FALSE; 10736 10737 sym.st_value += o->output_offset; 10738 10739 indx = bfd_get_symcount (output_bfd); 10740 ret = elf_link_output_symstrtab (flinfo, name, &sym, o, 10741 NULL); 10742 if (ret == 0) 10743 return FALSE; 10744 else if (ret == 1) 10745 flinfo->indices[symndx] = indx; 10746 else 10747 abort (); 10748 } 10749 elf_section_data (osec)->this_hdr.sh_info 10750 = flinfo->indices[symndx]; 10751 } 10752 } 10753 10754 if ((o->flags & SEC_HAS_CONTENTS) == 0 10755 || (o->size == 0 && (o->flags & SEC_RELOC) == 0)) 10756 continue; 10757 10758 if ((o->flags & SEC_LINKER_CREATED) != 0) 10759 { 10760 /* Section was created by _bfd_elf_link_create_dynamic_sections 10761 or somesuch. */ 10762 continue; 10763 } 10764 10765 /* Get the contents of the section. They have been cached by a 10766 relaxation routine. Note that o is a section in an input 10767 file, so the contents field will not have been set by any of 10768 the routines which work on output files. */ 10769 if (elf_section_data (o)->this_hdr.contents != NULL) 10770 { 10771 contents = elf_section_data (o)->this_hdr.contents; 10772 if (bed->caches_rawsize 10773 && o->rawsize != 0 10774 && o->rawsize < o->size) 10775 { 10776 memcpy (flinfo->contents, contents, o->rawsize); 10777 contents = flinfo->contents; 10778 } 10779 } 10780 else 10781 { 10782 contents = flinfo->contents; 10783 if (! bfd_get_full_section_contents (input_bfd, o, &contents)) 10784 return FALSE; 10785 } 10786 10787 if ((o->flags & SEC_RELOC) != 0) 10788 { 10789 Elf_Internal_Rela *internal_relocs; 10790 Elf_Internal_Rela *rel, *relend; 10791 int action_discarded; 10792 int ret; 10793 10794 /* Get the swapped relocs. */ 10795 internal_relocs 10796 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs, 10797 flinfo->internal_relocs, FALSE); 10798 if (internal_relocs == NULL 10799 && o->reloc_count > 0) 10800 return FALSE; 10801 10802 /* We need to reverse-copy input .ctors/.dtors sections if 10803 they are placed in .init_array/.finit_array for output. */ 10804 if (o->size > address_size 10805 && ((strncmp (o->name, ".ctors", 6) == 0 10806 && strcmp (o->output_section->name, 10807 ".init_array") == 0) 10808 || (strncmp (o->name, ".dtors", 6) == 0 10809 && strcmp (o->output_section->name, 10810 ".fini_array") == 0)) 10811 && (o->name[6] == 0 || o->name[6] == '.')) 10812 { 10813 if (o->size * bed->s->int_rels_per_ext_rel 10814 != o->reloc_count * address_size) 10815 { 10816 _bfd_error_handler 10817 /* xgettext:c-format */ 10818 (_("error: %pB: size of section %pA is not " 10819 "multiple of address size"), 10820 input_bfd, o); 10821 bfd_set_error (bfd_error_bad_value); 10822 return FALSE; 10823 } 10824 o->flags |= SEC_ELF_REVERSE_COPY; 10825 } 10826 10827 action_discarded = -1; 10828 if (!elf_section_ignore_discarded_relocs (o)) 10829 action_discarded = (*bed->action_discarded) (o); 10830 10831 /* Run through the relocs evaluating complex reloc symbols and 10832 looking for relocs against symbols from discarded sections 10833 or section symbols from removed link-once sections. 10834 Complain about relocs against discarded sections. Zero 10835 relocs against removed link-once sections. */ 10836 10837 rel = internal_relocs; 10838 relend = rel + o->reloc_count; 10839 for ( ; rel < relend; rel++) 10840 { 10841 unsigned long r_symndx = rel->r_info >> r_sym_shift; 10842 unsigned int s_type; 10843 asection **ps, *sec; 10844 struct elf_link_hash_entry *h = NULL; 10845 const char *sym_name; 10846 10847 if (r_symndx == STN_UNDEF) 10848 continue; 10849 10850 if (r_symndx >= locsymcount 10851 || (elf_bad_symtab (input_bfd) 10852 && flinfo->sections[r_symndx] == NULL)) 10853 { 10854 h = sym_hashes[r_symndx - extsymoff]; 10855 10856 /* Badly formatted input files can contain relocs that 10857 reference non-existant symbols. Check here so that 10858 we do not seg fault. */ 10859 if (h == NULL) 10860 { 10861 _bfd_error_handler 10862 /* xgettext:c-format */ 10863 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA " 10864 "that references a non-existent global symbol"), 10865 input_bfd, (uint64_t) rel->r_info, o); 10866 bfd_set_error (bfd_error_bad_value); 10867 return FALSE; 10868 } 10869 10870 while (h->root.type == bfd_link_hash_indirect 10871 || h->root.type == bfd_link_hash_warning) 10872 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10873 10874 s_type = h->type; 10875 10876 /* If a plugin symbol is referenced from a non-IR file, 10877 mark the symbol as undefined. Note that the 10878 linker may attach linker created dynamic sections 10879 to the plugin bfd. Symbols defined in linker 10880 created sections are not plugin symbols. */ 10881 if ((h->root.non_ir_ref_regular 10882 || h->root.non_ir_ref_dynamic) 10883 && (h->root.type == bfd_link_hash_defined 10884 || h->root.type == bfd_link_hash_defweak) 10885 && (h->root.u.def.section->flags 10886 & SEC_LINKER_CREATED) == 0 10887 && h->root.u.def.section->owner != NULL 10888 && (h->root.u.def.section->owner->flags 10889 & BFD_PLUGIN) != 0) 10890 { 10891 h->root.type = bfd_link_hash_undefined; 10892 h->root.u.undef.abfd = h->root.u.def.section->owner; 10893 } 10894 10895 ps = NULL; 10896 if (h->root.type == bfd_link_hash_defined 10897 || h->root.type == bfd_link_hash_defweak) 10898 ps = &h->root.u.def.section; 10899 10900 sym_name = h->root.root.string; 10901 } 10902 else 10903 { 10904 Elf_Internal_Sym *sym = isymbuf + r_symndx; 10905 10906 s_type = ELF_ST_TYPE (sym->st_info); 10907 ps = &flinfo->sections[r_symndx]; 10908 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, 10909 sym, *ps); 10910 } 10911 10912 if ((s_type == STT_RELC || s_type == STT_SRELC) 10913 && !bfd_link_relocatable (flinfo->info)) 10914 { 10915 bfd_vma val; 10916 bfd_vma dot = (rel->r_offset 10917 + o->output_offset + o->output_section->vma); 10918 #ifdef DEBUG 10919 printf ("Encountered a complex symbol!"); 10920 printf (" (input_bfd %s, section %s, reloc %ld\n", 10921 input_bfd->filename, o->name, 10922 (long) (rel - internal_relocs)); 10923 printf (" symbol: idx %8.8lx, name %s\n", 10924 r_symndx, sym_name); 10925 printf (" reloc : info %8.8lx, addr %8.8lx\n", 10926 (unsigned long) rel->r_info, 10927 (unsigned long) rel->r_offset); 10928 #endif 10929 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot, 10930 isymbuf, locsymcount, s_type == STT_SRELC)) 10931 return FALSE; 10932 10933 /* Symbol evaluated OK. Update to absolute value. */ 10934 set_symbol_value (input_bfd, isymbuf, locsymcount, 10935 r_symndx, val); 10936 continue; 10937 } 10938 10939 if (action_discarded != -1 && ps != NULL) 10940 { 10941 /* Complain if the definition comes from a 10942 discarded section. */ 10943 if ((sec = *ps) != NULL && discarded_section (sec)) 10944 { 10945 BFD_ASSERT (r_symndx != STN_UNDEF); 10946 if (action_discarded & COMPLAIN) 10947 (*flinfo->info->callbacks->einfo) 10948 /* xgettext:c-format */ 10949 (_("%X`%s' referenced in section `%pA' of %pB: " 10950 "defined in discarded section `%pA' of %pB\n"), 10951 sym_name, o, input_bfd, sec, sec->owner); 10952 10953 /* Try to do the best we can to support buggy old 10954 versions of gcc. Pretend that the symbol is 10955 really defined in the kept linkonce section. 10956 FIXME: This is quite broken. Modifying the 10957 symbol here means we will be changing all later 10958 uses of the symbol, not just in this section. */ 10959 if (action_discarded & PRETEND) 10960 { 10961 asection *kept; 10962 10963 kept = _bfd_elf_check_kept_section (sec, 10964 flinfo->info); 10965 if (kept != NULL) 10966 { 10967 *ps = kept; 10968 continue; 10969 } 10970 } 10971 } 10972 } 10973 } 10974 10975 /* Relocate the section by invoking a back end routine. 10976 10977 The back end routine is responsible for adjusting the 10978 section contents as necessary, and (if using Rela relocs 10979 and generating a relocatable output file) adjusting the 10980 reloc addend as necessary. 10981 10982 The back end routine does not have to worry about setting 10983 the reloc address or the reloc symbol index. 10984 10985 The back end routine is given a pointer to the swapped in 10986 internal symbols, and can access the hash table entries 10987 for the external symbols via elf_sym_hashes (input_bfd). 10988 10989 When generating relocatable output, the back end routine 10990 must handle STB_LOCAL/STT_SECTION symbols specially. The 10991 output symbol is going to be a section symbol 10992 corresponding to the output section, which will require 10993 the addend to be adjusted. */ 10994 10995 ret = (*relocate_section) (output_bfd, flinfo->info, 10996 input_bfd, o, contents, 10997 internal_relocs, 10998 isymbuf, 10999 flinfo->sections); 11000 if (!ret) 11001 return FALSE; 11002 11003 if (ret == 2 11004 || bfd_link_relocatable (flinfo->info) 11005 || flinfo->info->emitrelocations) 11006 { 11007 Elf_Internal_Rela *irela; 11008 Elf_Internal_Rela *irelaend, *irelamid; 11009 bfd_vma last_offset; 11010 struct elf_link_hash_entry **rel_hash; 11011 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list; 11012 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr; 11013 unsigned int next_erel; 11014 bfd_boolean rela_normal; 11015 struct bfd_elf_section_data *esdi, *esdo; 11016 11017 esdi = elf_section_data (o); 11018 esdo = elf_section_data (o->output_section); 11019 rela_normal = FALSE; 11020 11021 /* Adjust the reloc addresses and symbol indices. */ 11022 11023 irela = internal_relocs; 11024 irelaend = irela + o->reloc_count; 11025 rel_hash = esdo->rel.hashes + esdo->rel.count; 11026 /* We start processing the REL relocs, if any. When we reach 11027 IRELAMID in the loop, we switch to the RELA relocs. */ 11028 irelamid = irela; 11029 if (esdi->rel.hdr != NULL) 11030 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr) 11031 * bed->s->int_rels_per_ext_rel); 11032 rel_hash_list = rel_hash; 11033 rela_hash_list = NULL; 11034 last_offset = o->output_offset; 11035 if (!bfd_link_relocatable (flinfo->info)) 11036 last_offset += o->output_section->vma; 11037 for (next_erel = 0; irela < irelaend; irela++, next_erel++) 11038 { 11039 unsigned long r_symndx; 11040 asection *sec; 11041 Elf_Internal_Sym sym; 11042 11043 if (next_erel == bed->s->int_rels_per_ext_rel) 11044 { 11045 rel_hash++; 11046 next_erel = 0; 11047 } 11048 11049 if (irela == irelamid) 11050 { 11051 rel_hash = esdo->rela.hashes + esdo->rela.count; 11052 rela_hash_list = rel_hash; 11053 rela_normal = bed->rela_normal; 11054 } 11055 11056 irela->r_offset = _bfd_elf_section_offset (output_bfd, 11057 flinfo->info, o, 11058 irela->r_offset); 11059 if (irela->r_offset >= (bfd_vma) -2) 11060 { 11061 /* This is a reloc for a deleted entry or somesuch. 11062 Turn it into an R_*_NONE reloc, at the same 11063 offset as the last reloc. elf_eh_frame.c and 11064 bfd_elf_discard_info rely on reloc offsets 11065 being ordered. */ 11066 irela->r_offset = last_offset; 11067 irela->r_info = 0; 11068 irela->r_addend = 0; 11069 continue; 11070 } 11071 11072 irela->r_offset += o->output_offset; 11073 11074 /* Relocs in an executable have to be virtual addresses. */ 11075 if (!bfd_link_relocatable (flinfo->info)) 11076 irela->r_offset += o->output_section->vma; 11077 11078 last_offset = irela->r_offset; 11079 11080 r_symndx = irela->r_info >> r_sym_shift; 11081 if (r_symndx == STN_UNDEF) 11082 continue; 11083 11084 if (r_symndx >= locsymcount 11085 || (elf_bad_symtab (input_bfd) 11086 && flinfo->sections[r_symndx] == NULL)) 11087 { 11088 struct elf_link_hash_entry *rh; 11089 unsigned long indx; 11090 11091 /* This is a reloc against a global symbol. We 11092 have not yet output all the local symbols, so 11093 we do not know the symbol index of any global 11094 symbol. We set the rel_hash entry for this 11095 reloc to point to the global hash table entry 11096 for this symbol. The symbol index is then 11097 set at the end of bfd_elf_final_link. */ 11098 indx = r_symndx - extsymoff; 11099 rh = elf_sym_hashes (input_bfd)[indx]; 11100 while (rh->root.type == bfd_link_hash_indirect 11101 || rh->root.type == bfd_link_hash_warning) 11102 rh = (struct elf_link_hash_entry *) rh->root.u.i.link; 11103 11104 /* Setting the index to -2 tells 11105 elf_link_output_extsym that this symbol is 11106 used by a reloc. */ 11107 BFD_ASSERT (rh->indx < 0); 11108 rh->indx = -2; 11109 *rel_hash = rh; 11110 11111 continue; 11112 } 11113 11114 /* This is a reloc against a local symbol. */ 11115 11116 *rel_hash = NULL; 11117 sym = isymbuf[r_symndx]; 11118 sec = flinfo->sections[r_symndx]; 11119 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION) 11120 { 11121 /* I suppose the backend ought to fill in the 11122 section of any STT_SECTION symbol against a 11123 processor specific section. */ 11124 r_symndx = STN_UNDEF; 11125 if (bfd_is_abs_section (sec)) 11126 ; 11127 else if (sec == NULL || sec->owner == NULL) 11128 { 11129 bfd_set_error (bfd_error_bad_value); 11130 return FALSE; 11131 } 11132 else 11133 { 11134 asection *osec = sec->output_section; 11135 11136 /* If we have discarded a section, the output 11137 section will be the absolute section. In 11138 case of discarded SEC_MERGE sections, use 11139 the kept section. relocate_section should 11140 have already handled discarded linkonce 11141 sections. */ 11142 if (bfd_is_abs_section (osec) 11143 && sec->kept_section != NULL 11144 && sec->kept_section->output_section != NULL) 11145 { 11146 osec = sec->kept_section->output_section; 11147 irela->r_addend -= osec->vma; 11148 } 11149 11150 if (!bfd_is_abs_section (osec)) 11151 { 11152 r_symndx = osec->target_index; 11153 if (r_symndx == STN_UNDEF) 11154 { 11155 irela->r_addend += osec->vma; 11156 osec = _bfd_nearby_section (output_bfd, osec, 11157 osec->vma); 11158 irela->r_addend -= osec->vma; 11159 r_symndx = osec->target_index; 11160 } 11161 } 11162 } 11163 11164 /* Adjust the addend according to where the 11165 section winds up in the output section. */ 11166 if (rela_normal) 11167 irela->r_addend += sec->output_offset; 11168 } 11169 else 11170 { 11171 if (flinfo->indices[r_symndx] == -1) 11172 { 11173 unsigned long shlink; 11174 const char *name; 11175 asection *osec; 11176 long indx; 11177 11178 if (flinfo->info->strip == strip_all) 11179 { 11180 /* You can't do ld -r -s. */ 11181 bfd_set_error (bfd_error_invalid_operation); 11182 return FALSE; 11183 } 11184 11185 /* This symbol was skipped earlier, but 11186 since it is needed by a reloc, we 11187 must output it now. */ 11188 shlink = symtab_hdr->sh_link; 11189 name = (bfd_elf_string_from_elf_section 11190 (input_bfd, shlink, sym.st_name)); 11191 if (name == NULL) 11192 return FALSE; 11193 11194 osec = sec->output_section; 11195 sym.st_shndx = 11196 _bfd_elf_section_from_bfd_section (output_bfd, 11197 osec); 11198 if (sym.st_shndx == SHN_BAD) 11199 return FALSE; 11200 11201 sym.st_value += sec->output_offset; 11202 if (!bfd_link_relocatable (flinfo->info)) 11203 { 11204 sym.st_value += osec->vma; 11205 if (ELF_ST_TYPE (sym.st_info) == STT_TLS) 11206 { 11207 struct elf_link_hash_table *htab 11208 = elf_hash_table (flinfo->info); 11209 11210 /* STT_TLS symbols are relative to PT_TLS 11211 segment base. */ 11212 if (htab->tls_sec != NULL) 11213 sym.st_value -= htab->tls_sec->vma; 11214 else 11215 sym.st_info 11216 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info), 11217 STT_NOTYPE); 11218 } 11219 } 11220 11221 indx = bfd_get_symcount (output_bfd); 11222 ret = elf_link_output_symstrtab (flinfo, name, 11223 &sym, sec, 11224 NULL); 11225 if (ret == 0) 11226 return FALSE; 11227 else if (ret == 1) 11228 flinfo->indices[r_symndx] = indx; 11229 else 11230 abort (); 11231 } 11232 11233 r_symndx = flinfo->indices[r_symndx]; 11234 } 11235 11236 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift 11237 | (irela->r_info & r_type_mask)); 11238 } 11239 11240 /* Swap out the relocs. */ 11241 input_rel_hdr = esdi->rel.hdr; 11242 if (input_rel_hdr && input_rel_hdr->sh_size != 0) 11243 { 11244 if (!bed->elf_backend_emit_relocs (output_bfd, o, 11245 input_rel_hdr, 11246 internal_relocs, 11247 rel_hash_list)) 11248 return FALSE; 11249 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr) 11250 * bed->s->int_rels_per_ext_rel); 11251 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr); 11252 } 11253 11254 input_rela_hdr = esdi->rela.hdr; 11255 if (input_rela_hdr && input_rela_hdr->sh_size != 0) 11256 { 11257 if (!bed->elf_backend_emit_relocs (output_bfd, o, 11258 input_rela_hdr, 11259 internal_relocs, 11260 rela_hash_list)) 11261 return FALSE; 11262 } 11263 } 11264 } 11265 11266 /* Write out the modified section contents. */ 11267 if (bed->elf_backend_write_section 11268 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o, 11269 contents)) 11270 { 11271 /* Section written out. */ 11272 } 11273 else switch (o->sec_info_type) 11274 { 11275 case SEC_INFO_TYPE_STABS: 11276 if (! (_bfd_write_section_stabs 11277 (output_bfd, 11278 &elf_hash_table (flinfo->info)->stab_info, 11279 o, &elf_section_data (o)->sec_info, contents))) 11280 return FALSE; 11281 break; 11282 case SEC_INFO_TYPE_MERGE: 11283 if (! _bfd_write_merged_section (output_bfd, o, 11284 elf_section_data (o)->sec_info)) 11285 return FALSE; 11286 break; 11287 case SEC_INFO_TYPE_EH_FRAME: 11288 { 11289 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info, 11290 o, contents)) 11291 return FALSE; 11292 } 11293 break; 11294 case SEC_INFO_TYPE_EH_FRAME_ENTRY: 11295 { 11296 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd, 11297 flinfo->info, 11298 o, contents)) 11299 return FALSE; 11300 } 11301 break; 11302 default: 11303 { 11304 if (! (o->flags & SEC_EXCLUDE)) 11305 { 11306 file_ptr offset = (file_ptr) o->output_offset; 11307 bfd_size_type todo = o->size; 11308 11309 offset *= bfd_octets_per_byte (output_bfd, o); 11310 11311 if ((o->flags & SEC_ELF_REVERSE_COPY)) 11312 { 11313 /* Reverse-copy input section to output. */ 11314 do 11315 { 11316 todo -= address_size; 11317 if (! bfd_set_section_contents (output_bfd, 11318 o->output_section, 11319 contents + todo, 11320 offset, 11321 address_size)) 11322 return FALSE; 11323 if (todo == 0) 11324 break; 11325 offset += address_size; 11326 } 11327 while (1); 11328 } 11329 else if (! bfd_set_section_contents (output_bfd, 11330 o->output_section, 11331 contents, 11332 offset, todo)) 11333 return FALSE; 11334 } 11335 } 11336 break; 11337 } 11338 } 11339 11340 return TRUE; 11341 } 11342 11343 /* Generate a reloc when linking an ELF file. This is a reloc 11344 requested by the linker, and does not come from any input file. This 11345 is used to build constructor and destructor tables when linking 11346 with -Ur. */ 11347 11348 static bfd_boolean 11349 elf_reloc_link_order (bfd *output_bfd, 11350 struct bfd_link_info *info, 11351 asection *output_section, 11352 struct bfd_link_order *link_order) 11353 { 11354 reloc_howto_type *howto; 11355 long indx; 11356 bfd_vma offset; 11357 bfd_vma addend; 11358 struct bfd_elf_section_reloc_data *reldata; 11359 struct elf_link_hash_entry **rel_hash_ptr; 11360 Elf_Internal_Shdr *rel_hdr; 11361 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 11362 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL]; 11363 bfd_byte *erel; 11364 unsigned int i; 11365 struct bfd_elf_section_data *esdo = elf_section_data (output_section); 11366 11367 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); 11368 if (howto == NULL) 11369 { 11370 bfd_set_error (bfd_error_bad_value); 11371 return FALSE; 11372 } 11373 11374 addend = link_order->u.reloc.p->addend; 11375 11376 if (esdo->rel.hdr) 11377 reldata = &esdo->rel; 11378 else if (esdo->rela.hdr) 11379 reldata = &esdo->rela; 11380 else 11381 { 11382 reldata = NULL; 11383 BFD_ASSERT (0); 11384 } 11385 11386 /* Figure out the symbol index. */ 11387 rel_hash_ptr = reldata->hashes + reldata->count; 11388 if (link_order->type == bfd_section_reloc_link_order) 11389 { 11390 indx = link_order->u.reloc.p->u.section->target_index; 11391 BFD_ASSERT (indx != 0); 11392 *rel_hash_ptr = NULL; 11393 } 11394 else 11395 { 11396 struct elf_link_hash_entry *h; 11397 11398 /* Treat a reloc against a defined symbol as though it were 11399 actually against the section. */ 11400 h = ((struct elf_link_hash_entry *) 11401 bfd_wrapped_link_hash_lookup (output_bfd, info, 11402 link_order->u.reloc.p->u.name, 11403 FALSE, FALSE, TRUE)); 11404 if (h != NULL 11405 && (h->root.type == bfd_link_hash_defined 11406 || h->root.type == bfd_link_hash_defweak)) 11407 { 11408 asection *section; 11409 11410 section = h->root.u.def.section; 11411 indx = section->output_section->target_index; 11412 *rel_hash_ptr = NULL; 11413 /* It seems that we ought to add the symbol value to the 11414 addend here, but in practice it has already been added 11415 because it was passed to constructor_callback. */ 11416 addend += section->output_section->vma + section->output_offset; 11417 } 11418 else if (h != NULL) 11419 { 11420 /* Setting the index to -2 tells elf_link_output_extsym that 11421 this symbol is used by a reloc. */ 11422 h->indx = -2; 11423 *rel_hash_ptr = h; 11424 indx = 0; 11425 } 11426 else 11427 { 11428 (*info->callbacks->unattached_reloc) 11429 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0); 11430 indx = 0; 11431 } 11432 } 11433 11434 /* If this is an inplace reloc, we must write the addend into the 11435 object file. */ 11436 if (howto->partial_inplace && addend != 0) 11437 { 11438 bfd_size_type size; 11439 bfd_reloc_status_type rstat; 11440 bfd_byte *buf; 11441 bfd_boolean ok; 11442 const char *sym_name; 11443 bfd_size_type octets; 11444 11445 size = (bfd_size_type) bfd_get_reloc_size (howto); 11446 buf = (bfd_byte *) bfd_zmalloc (size); 11447 if (buf == NULL && size != 0) 11448 return FALSE; 11449 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); 11450 switch (rstat) 11451 { 11452 case bfd_reloc_ok: 11453 break; 11454 11455 default: 11456 case bfd_reloc_outofrange: 11457 abort (); 11458 11459 case bfd_reloc_overflow: 11460 if (link_order->type == bfd_section_reloc_link_order) 11461 sym_name = bfd_section_name (link_order->u.reloc.p->u.section); 11462 else 11463 sym_name = link_order->u.reloc.p->u.name; 11464 (*info->callbacks->reloc_overflow) (info, NULL, sym_name, 11465 howto->name, addend, NULL, NULL, 11466 (bfd_vma) 0); 11467 break; 11468 } 11469 11470 octets = link_order->offset * bfd_octets_per_byte (output_bfd, 11471 output_section); 11472 ok = bfd_set_section_contents (output_bfd, output_section, buf, 11473 octets, size); 11474 free (buf); 11475 if (! ok) 11476 return FALSE; 11477 } 11478 11479 /* The address of a reloc is relative to the section in a 11480 relocatable file, and is a virtual address in an executable 11481 file. */ 11482 offset = link_order->offset; 11483 if (! bfd_link_relocatable (info)) 11484 offset += output_section->vma; 11485 11486 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) 11487 { 11488 irel[i].r_offset = offset; 11489 irel[i].r_info = 0; 11490 irel[i].r_addend = 0; 11491 } 11492 if (bed->s->arch_size == 32) 11493 irel[0].r_info = ELF32_R_INFO (indx, howto->type); 11494 else 11495 #ifdef BFD64 11496 { 11497 bfd_uint64_t indx64 = indx; 11498 irel[0].r_info = ELF64_R_INFO (indx64, howto->type); 11499 } 11500 #else 11501 BFD_FAIL(); 11502 #endif 11503 11504 rel_hdr = reldata->hdr; 11505 erel = rel_hdr->contents; 11506 if (rel_hdr->sh_type == SHT_REL) 11507 { 11508 erel += reldata->count * bed->s->sizeof_rel; 11509 (*bed->s->swap_reloc_out) (output_bfd, irel, erel); 11510 } 11511 else 11512 { 11513 irel[0].r_addend = addend; 11514 erel += reldata->count * bed->s->sizeof_rela; 11515 (*bed->s->swap_reloca_out) (output_bfd, irel, erel); 11516 } 11517 11518 ++reldata->count; 11519 11520 return TRUE; 11521 } 11522 11523 11524 /* Compare two sections based on the locations of the sections they are 11525 linked to. Used by elf_fixup_link_order. */ 11526 11527 static int 11528 compare_link_order (const void *a, const void *b) 11529 { 11530 const struct bfd_link_order *alo = *(const struct bfd_link_order **) a; 11531 const struct bfd_link_order *blo = *(const struct bfd_link_order **) b; 11532 asection *asec = elf_linked_to_section (alo->u.indirect.section); 11533 asection *bsec = elf_linked_to_section (blo->u.indirect.section); 11534 bfd_vma apos = asec->output_section->lma + asec->output_offset; 11535 bfd_vma bpos = bsec->output_section->lma + bsec->output_offset; 11536 11537 if (apos < bpos) 11538 return -1; 11539 if (apos > bpos) 11540 return 1; 11541 11542 /* The only way we should get matching LMAs is when the first of two 11543 sections has zero size. */ 11544 if (asec->size < bsec->size) 11545 return -1; 11546 if (asec->size > bsec->size) 11547 return 1; 11548 11549 /* If they are both zero size then they almost certainly have the same 11550 VMA and thus are not ordered with respect to each other. Test VMA 11551 anyway, and fall back to id to make the result reproducible across 11552 qsort implementations. */ 11553 apos = asec->output_section->vma + asec->output_offset; 11554 bpos = bsec->output_section->vma + bsec->output_offset; 11555 if (apos < bpos) 11556 return -1; 11557 if (apos > bpos) 11558 return 1; 11559 11560 return asec->id - bsec->id; 11561 } 11562 11563 11564 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same 11565 order as their linked sections. Returns false if this could not be done 11566 because an output section includes both ordered and unordered 11567 sections. Ideally we'd do this in the linker proper. */ 11568 11569 static bfd_boolean 11570 elf_fixup_link_order (bfd *abfd, asection *o) 11571 { 11572 size_t seen_linkorder; 11573 size_t seen_other; 11574 size_t n; 11575 struct bfd_link_order *p; 11576 bfd *sub; 11577 struct bfd_link_order **sections; 11578 asection *s, *other_sec, *linkorder_sec; 11579 bfd_vma offset; 11580 11581 other_sec = NULL; 11582 linkorder_sec = NULL; 11583 seen_other = 0; 11584 seen_linkorder = 0; 11585 for (p = o->map_head.link_order; p != NULL; p = p->next) 11586 { 11587 if (p->type == bfd_indirect_link_order) 11588 { 11589 s = p->u.indirect.section; 11590 sub = s->owner; 11591 if ((s->flags & SEC_LINKER_CREATED) == 0 11592 && bfd_get_flavour (sub) == bfd_target_elf_flavour 11593 && elf_section_data (s) != NULL 11594 && elf_linked_to_section (s) != NULL) 11595 { 11596 seen_linkorder++; 11597 linkorder_sec = s; 11598 } 11599 else 11600 { 11601 seen_other++; 11602 other_sec = s; 11603 } 11604 } 11605 else 11606 seen_other++; 11607 11608 if (seen_other && seen_linkorder) 11609 { 11610 if (other_sec && linkorder_sec) 11611 _bfd_error_handler 11612 /* xgettext:c-format */ 11613 (_("%pA has both ordered [`%pA' in %pB] " 11614 "and unordered [`%pA' in %pB] sections"), 11615 o, linkorder_sec, linkorder_sec->owner, 11616 other_sec, other_sec->owner); 11617 else 11618 _bfd_error_handler 11619 (_("%pA has both ordered and unordered sections"), o); 11620 bfd_set_error (bfd_error_bad_value); 11621 return FALSE; 11622 } 11623 } 11624 11625 if (!seen_linkorder) 11626 return TRUE; 11627 11628 sections = bfd_malloc (seen_linkorder * sizeof (*sections)); 11629 if (sections == NULL) 11630 return FALSE; 11631 11632 seen_linkorder = 0; 11633 for (p = o->map_head.link_order; p != NULL; p = p->next) 11634 sections[seen_linkorder++] = p; 11635 11636 /* Sort the input sections in the order of their linked section. */ 11637 qsort (sections, seen_linkorder, sizeof (*sections), compare_link_order); 11638 11639 /* Change the offsets of the sections. */ 11640 offset = 0; 11641 for (n = 0; n < seen_linkorder; n++) 11642 { 11643 bfd_vma mask; 11644 s = sections[n]->u.indirect.section; 11645 mask = ~(bfd_vma) 0 << s->alignment_power; 11646 offset = (offset + ~mask) & mask; 11647 s->output_offset = offset / bfd_octets_per_byte (abfd, s); 11648 sections[n]->offset = offset; 11649 offset += sections[n]->size; 11650 } 11651 11652 free (sections); 11653 return TRUE; 11654 } 11655 11656 /* Generate an import library in INFO->implib_bfd from symbols in ABFD. 11657 Returns TRUE upon success, FALSE otherwise. */ 11658 11659 static bfd_boolean 11660 elf_output_implib (bfd *abfd, struct bfd_link_info *info) 11661 { 11662 bfd_boolean ret = FALSE; 11663 bfd *implib_bfd; 11664 const struct elf_backend_data *bed; 11665 flagword flags; 11666 enum bfd_architecture arch; 11667 unsigned int mach; 11668 asymbol **sympp = NULL; 11669 long symsize; 11670 long symcount; 11671 long src_count; 11672 elf_symbol_type *osymbuf; 11673 11674 implib_bfd = info->out_implib_bfd; 11675 bed = get_elf_backend_data (abfd); 11676 11677 if (!bfd_set_format (implib_bfd, bfd_object)) 11678 return FALSE; 11679 11680 /* Use flag from executable but make it a relocatable object. */ 11681 flags = bfd_get_file_flags (abfd); 11682 flags &= ~HAS_RELOC; 11683 if (!bfd_set_start_address (implib_bfd, 0) 11684 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P)) 11685 return FALSE; 11686 11687 /* Copy architecture of output file to import library file. */ 11688 arch = bfd_get_arch (abfd); 11689 mach = bfd_get_mach (abfd); 11690 if (!bfd_set_arch_mach (implib_bfd, arch, mach) 11691 && (abfd->target_defaulted 11692 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd))) 11693 return FALSE; 11694 11695 /* Get symbol table size. */ 11696 symsize = bfd_get_symtab_upper_bound (abfd); 11697 if (symsize < 0) 11698 return FALSE; 11699 11700 /* Read in the symbol table. */ 11701 sympp = (asymbol **) bfd_malloc (symsize); 11702 if (sympp == NULL) 11703 return FALSE; 11704 11705 symcount = bfd_canonicalize_symtab (abfd, sympp); 11706 if (symcount < 0) 11707 goto free_sym_buf; 11708 11709 /* Allow the BFD backend to copy any private header data it 11710 understands from the output BFD to the import library BFD. */ 11711 if (! bfd_copy_private_header_data (abfd, implib_bfd)) 11712 goto free_sym_buf; 11713 11714 /* Filter symbols to appear in the import library. */ 11715 if (bed->elf_backend_filter_implib_symbols) 11716 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp, 11717 symcount); 11718 else 11719 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount); 11720 if (symcount == 0) 11721 { 11722 bfd_set_error (bfd_error_no_symbols); 11723 _bfd_error_handler (_("%pB: no symbol found for import library"), 11724 implib_bfd); 11725 goto free_sym_buf; 11726 } 11727 11728 11729 /* Make symbols absolute. */ 11730 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount, 11731 sizeof (*osymbuf)); 11732 if (osymbuf == NULL) 11733 goto free_sym_buf; 11734 11735 for (src_count = 0; src_count < symcount; src_count++) 11736 { 11737 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count], 11738 sizeof (*osymbuf)); 11739 osymbuf[src_count].symbol.section = bfd_abs_section_ptr; 11740 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS; 11741 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma; 11742 osymbuf[src_count].internal_elf_sym.st_value = 11743 osymbuf[src_count].symbol.value; 11744 sympp[src_count] = &osymbuf[src_count].symbol; 11745 } 11746 11747 bfd_set_symtab (implib_bfd, sympp, symcount); 11748 11749 /* Allow the BFD backend to copy any private data it understands 11750 from the output BFD to the import library BFD. This is done last 11751 to permit the routine to look at the filtered symbol table. */ 11752 if (! bfd_copy_private_bfd_data (abfd, implib_bfd)) 11753 goto free_sym_buf; 11754 11755 if (!bfd_close (implib_bfd)) 11756 goto free_sym_buf; 11757 11758 ret = TRUE; 11759 11760 free_sym_buf: 11761 free (sympp); 11762 return ret; 11763 } 11764 11765 static void 11766 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo) 11767 { 11768 asection *o; 11769 11770 if (flinfo->symstrtab != NULL) 11771 _bfd_elf_strtab_free (flinfo->symstrtab); 11772 if (flinfo->contents != NULL) 11773 free (flinfo->contents); 11774 if (flinfo->external_relocs != NULL) 11775 free (flinfo->external_relocs); 11776 if (flinfo->internal_relocs != NULL) 11777 free (flinfo->internal_relocs); 11778 if (flinfo->external_syms != NULL) 11779 free (flinfo->external_syms); 11780 if (flinfo->locsym_shndx != NULL) 11781 free (flinfo->locsym_shndx); 11782 if (flinfo->internal_syms != NULL) 11783 free (flinfo->internal_syms); 11784 if (flinfo->indices != NULL) 11785 free (flinfo->indices); 11786 if (flinfo->sections != NULL) 11787 free (flinfo->sections); 11788 if (flinfo->symshndxbuf != NULL 11789 && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1) 11790 free (flinfo->symshndxbuf); 11791 for (o = obfd->sections; o != NULL; o = o->next) 11792 { 11793 struct bfd_elf_section_data *esdo = elf_section_data (o); 11794 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL) 11795 free (esdo->rel.hashes); 11796 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL) 11797 free (esdo->rela.hashes); 11798 } 11799 } 11800 11801 /* Do the final step of an ELF link. */ 11802 11803 bfd_boolean 11804 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info) 11805 { 11806 bfd_boolean dynamic; 11807 bfd_boolean emit_relocs; 11808 bfd *dynobj; 11809 struct elf_final_link_info flinfo; 11810 asection *o; 11811 struct bfd_link_order *p; 11812 bfd *sub; 11813 bfd_size_type max_contents_size; 11814 bfd_size_type max_external_reloc_size; 11815 bfd_size_type max_internal_reloc_count; 11816 bfd_size_type max_sym_count; 11817 bfd_size_type max_sym_shndx_count; 11818 Elf_Internal_Sym elfsym; 11819 unsigned int i; 11820 Elf_Internal_Shdr *symtab_hdr; 11821 Elf_Internal_Shdr *symtab_shndx_hdr; 11822 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 11823 struct elf_outext_info eoinfo; 11824 bfd_boolean merged; 11825 size_t relativecount = 0; 11826 asection *reldyn = 0; 11827 bfd_size_type amt; 11828 asection *attr_section = NULL; 11829 bfd_vma attr_size = 0; 11830 const char *std_attrs_section; 11831 struct elf_link_hash_table *htab = elf_hash_table (info); 11832 bfd_boolean sections_removed; 11833 11834 if (!is_elf_hash_table (htab)) 11835 return FALSE; 11836 11837 if (bfd_link_pic (info)) 11838 abfd->flags |= DYNAMIC; 11839 11840 dynamic = htab->dynamic_sections_created; 11841 dynobj = htab->dynobj; 11842 11843 emit_relocs = (bfd_link_relocatable (info) 11844 || info->emitrelocations); 11845 11846 flinfo.info = info; 11847 flinfo.output_bfd = abfd; 11848 flinfo.symstrtab = _bfd_elf_strtab_init (); 11849 if (flinfo.symstrtab == NULL) 11850 return FALSE; 11851 11852 if (! dynamic) 11853 { 11854 flinfo.hash_sec = NULL; 11855 flinfo.symver_sec = NULL; 11856 } 11857 else 11858 { 11859 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash"); 11860 /* Note that dynsym_sec can be NULL (on VMS). */ 11861 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version"); 11862 /* Note that it is OK if symver_sec is NULL. */ 11863 } 11864 11865 flinfo.contents = NULL; 11866 flinfo.external_relocs = NULL; 11867 flinfo.internal_relocs = NULL; 11868 flinfo.external_syms = NULL; 11869 flinfo.locsym_shndx = NULL; 11870 flinfo.internal_syms = NULL; 11871 flinfo.indices = NULL; 11872 flinfo.sections = NULL; 11873 flinfo.symshndxbuf = NULL; 11874 flinfo.filesym_count = 0; 11875 11876 /* The object attributes have been merged. Remove the input 11877 sections from the link, and set the contents of the output 11878 section. */ 11879 sections_removed = FALSE; 11880 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section; 11881 for (o = abfd->sections; o != NULL; o = o->next) 11882 { 11883 bfd_boolean remove_section = FALSE; 11884 11885 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0) 11886 || strcmp (o->name, ".gnu.attributes") == 0) 11887 { 11888 for (p = o->map_head.link_order; p != NULL; p = p->next) 11889 { 11890 asection *input_section; 11891 11892 if (p->type != bfd_indirect_link_order) 11893 continue; 11894 input_section = p->u.indirect.section; 11895 /* Hack: reset the SEC_HAS_CONTENTS flag so that 11896 elf_link_input_bfd ignores this section. */ 11897 input_section->flags &= ~SEC_HAS_CONTENTS; 11898 } 11899 11900 attr_size = bfd_elf_obj_attr_size (abfd); 11901 bfd_set_section_size (o, attr_size); 11902 /* Skip this section later on. */ 11903 o->map_head.link_order = NULL; 11904 if (attr_size) 11905 attr_section = o; 11906 else 11907 remove_section = TRUE; 11908 } 11909 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0) 11910 { 11911 /* Remove empty group section from linker output. */ 11912 remove_section = TRUE; 11913 } 11914 if (remove_section) 11915 { 11916 o->flags |= SEC_EXCLUDE; 11917 bfd_section_list_remove (abfd, o); 11918 abfd->section_count--; 11919 sections_removed = TRUE; 11920 } 11921 } 11922 if (sections_removed) 11923 _bfd_fix_excluded_sec_syms (abfd, info); 11924 11925 /* Count up the number of relocations we will output for each output 11926 section, so that we know the sizes of the reloc sections. We 11927 also figure out some maximum sizes. */ 11928 max_contents_size = 0; 11929 max_external_reloc_size = 0; 11930 max_internal_reloc_count = 0; 11931 max_sym_count = 0; 11932 max_sym_shndx_count = 0; 11933 merged = FALSE; 11934 for (o = abfd->sections; o != NULL; o = o->next) 11935 { 11936 struct bfd_elf_section_data *esdo = elf_section_data (o); 11937 o->reloc_count = 0; 11938 11939 for (p = o->map_head.link_order; p != NULL; p = p->next) 11940 { 11941 unsigned int reloc_count = 0; 11942 unsigned int additional_reloc_count = 0; 11943 struct bfd_elf_section_data *esdi = NULL; 11944 11945 if (p->type == bfd_section_reloc_link_order 11946 || p->type == bfd_symbol_reloc_link_order) 11947 reloc_count = 1; 11948 else if (p->type == bfd_indirect_link_order) 11949 { 11950 asection *sec; 11951 11952 sec = p->u.indirect.section; 11953 11954 /* Mark all sections which are to be included in the 11955 link. This will normally be every section. We need 11956 to do this so that we can identify any sections which 11957 the linker has decided to not include. */ 11958 sec->linker_mark = TRUE; 11959 11960 if (sec->flags & SEC_MERGE) 11961 merged = TRUE; 11962 11963 if (sec->rawsize > max_contents_size) 11964 max_contents_size = sec->rawsize; 11965 if (sec->size > max_contents_size) 11966 max_contents_size = sec->size; 11967 11968 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour 11969 && (sec->owner->flags & DYNAMIC) == 0) 11970 { 11971 size_t sym_count; 11972 11973 /* We are interested in just local symbols, not all 11974 symbols. */ 11975 if (elf_bad_symtab (sec->owner)) 11976 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size 11977 / bed->s->sizeof_sym); 11978 else 11979 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; 11980 11981 if (sym_count > max_sym_count) 11982 max_sym_count = sym_count; 11983 11984 if (sym_count > max_sym_shndx_count 11985 && elf_symtab_shndx_list (sec->owner) != NULL) 11986 max_sym_shndx_count = sym_count; 11987 11988 if (esdo->this_hdr.sh_type == SHT_REL 11989 || esdo->this_hdr.sh_type == SHT_RELA) 11990 /* Some backends use reloc_count in relocation sections 11991 to count particular types of relocs. Of course, 11992 reloc sections themselves can't have relocations. */ 11993 ; 11994 else if (emit_relocs) 11995 { 11996 reloc_count = sec->reloc_count; 11997 if (bed->elf_backend_count_additional_relocs) 11998 { 11999 int c; 12000 c = (*bed->elf_backend_count_additional_relocs) (sec); 12001 additional_reloc_count += c; 12002 } 12003 } 12004 else if (bed->elf_backend_count_relocs) 12005 reloc_count = (*bed->elf_backend_count_relocs) (info, sec); 12006 12007 esdi = elf_section_data (sec); 12008 12009 if ((sec->flags & SEC_RELOC) != 0) 12010 { 12011 size_t ext_size = 0; 12012 12013 if (esdi->rel.hdr != NULL) 12014 ext_size = esdi->rel.hdr->sh_size; 12015 if (esdi->rela.hdr != NULL) 12016 ext_size += esdi->rela.hdr->sh_size; 12017 12018 if (ext_size > max_external_reloc_size) 12019 max_external_reloc_size = ext_size; 12020 if (sec->reloc_count > max_internal_reloc_count) 12021 max_internal_reloc_count = sec->reloc_count; 12022 } 12023 } 12024 } 12025 12026 if (reloc_count == 0) 12027 continue; 12028 12029 reloc_count += additional_reloc_count; 12030 o->reloc_count += reloc_count; 12031 12032 if (p->type == bfd_indirect_link_order && emit_relocs) 12033 { 12034 if (esdi->rel.hdr) 12035 { 12036 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr); 12037 esdo->rel.count += additional_reloc_count; 12038 } 12039 if (esdi->rela.hdr) 12040 { 12041 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr); 12042 esdo->rela.count += additional_reloc_count; 12043 } 12044 } 12045 else 12046 { 12047 if (o->use_rela_p) 12048 esdo->rela.count += reloc_count; 12049 else 12050 esdo->rel.count += reloc_count; 12051 } 12052 } 12053 12054 if (o->reloc_count > 0) 12055 o->flags |= SEC_RELOC; 12056 else 12057 { 12058 /* Explicitly clear the SEC_RELOC flag. The linker tends to 12059 set it (this is probably a bug) and if it is set 12060 assign_section_numbers will create a reloc section. */ 12061 o->flags &=~ SEC_RELOC; 12062 } 12063 12064 /* If the SEC_ALLOC flag is not set, force the section VMA to 12065 zero. This is done in elf_fake_sections as well, but forcing 12066 the VMA to 0 here will ensure that relocs against these 12067 sections are handled correctly. */ 12068 if ((o->flags & SEC_ALLOC) == 0 12069 && ! o->user_set_vma) 12070 o->vma = 0; 12071 } 12072 12073 if (! bfd_link_relocatable (info) && merged) 12074 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd); 12075 12076 /* Figure out the file positions for everything but the symbol table 12077 and the relocs. We set symcount to force assign_section_numbers 12078 to create a symbol table. */ 12079 abfd->symcount = info->strip != strip_all || emit_relocs; 12080 BFD_ASSERT (! abfd->output_has_begun); 12081 if (! _bfd_elf_compute_section_file_positions (abfd, info)) 12082 goto error_return; 12083 12084 /* Set sizes, and assign file positions for reloc sections. */ 12085 for (o = abfd->sections; o != NULL; o = o->next) 12086 { 12087 struct bfd_elf_section_data *esdo = elf_section_data (o); 12088 if ((o->flags & SEC_RELOC) != 0) 12089 { 12090 if (esdo->rel.hdr 12091 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel))) 12092 goto error_return; 12093 12094 if (esdo->rela.hdr 12095 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela))) 12096 goto error_return; 12097 } 12098 12099 /* _bfd_elf_compute_section_file_positions makes temporary use 12100 of target_index. Reset it. */ 12101 o->target_index = 0; 12102 12103 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them 12104 to count upwards while actually outputting the relocations. */ 12105 esdo->rel.count = 0; 12106 esdo->rela.count = 0; 12107 12108 if ((esdo->this_hdr.sh_offset == (file_ptr) -1) 12109 && !bfd_section_is_ctf (o)) 12110 { 12111 /* Cache the section contents so that they can be compressed 12112 later. Use bfd_malloc since it will be freed by 12113 bfd_compress_section_contents. */ 12114 unsigned char *contents = esdo->this_hdr.contents; 12115 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL) 12116 abort (); 12117 contents 12118 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size); 12119 if (contents == NULL) 12120 goto error_return; 12121 esdo->this_hdr.contents = contents; 12122 } 12123 } 12124 12125 /* We have now assigned file positions for all the sections except .symtab, 12126 .strtab, and non-loaded reloc and compressed debugging sections. We start 12127 the .symtab section at the current file position, and write directly to it. 12128 We build the .strtab section in memory. */ 12129 abfd->symcount = 0; 12130 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 12131 /* sh_name is set in prep_headers. */ 12132 symtab_hdr->sh_type = SHT_SYMTAB; 12133 /* sh_flags, sh_addr and sh_size all start off zero. */ 12134 symtab_hdr->sh_entsize = bed->s->sizeof_sym; 12135 /* sh_link is set in assign_section_numbers. */ 12136 /* sh_info is set below. */ 12137 /* sh_offset is set just below. */ 12138 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; 12139 12140 if (max_sym_count < 20) 12141 max_sym_count = 20; 12142 htab->strtabsize = max_sym_count; 12143 amt = max_sym_count * sizeof (struct elf_sym_strtab); 12144 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt); 12145 if (htab->strtab == NULL) 12146 goto error_return; 12147 /* The real buffer will be allocated in elf_link_swap_symbols_out. */ 12148 flinfo.symshndxbuf 12149 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF) 12150 ? (Elf_External_Sym_Shndx *) -1 : NULL); 12151 12152 if (info->strip != strip_all || emit_relocs) 12153 { 12154 file_ptr off = elf_next_file_pos (abfd); 12155 12156 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE); 12157 12158 /* Note that at this point elf_next_file_pos (abfd) is 12159 incorrect. We do not yet know the size of the .symtab section. 12160 We correct next_file_pos below, after we do know the size. */ 12161 12162 /* Start writing out the symbol table. The first symbol is always a 12163 dummy symbol. */ 12164 elfsym.st_value = 0; 12165 elfsym.st_size = 0; 12166 elfsym.st_info = 0; 12167 elfsym.st_other = 0; 12168 elfsym.st_shndx = SHN_UNDEF; 12169 elfsym.st_target_internal = 0; 12170 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, 12171 bfd_und_section_ptr, NULL) != 1) 12172 goto error_return; 12173 12174 /* Output a symbol for each section. We output these even if we are 12175 discarding local symbols, since they are used for relocs. These 12176 symbols have no names. We store the index of each one in the 12177 index field of the section, so that we can find it again when 12178 outputting relocs. */ 12179 12180 elfsym.st_size = 0; 12181 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); 12182 elfsym.st_other = 0; 12183 elfsym.st_value = 0; 12184 elfsym.st_target_internal = 0; 12185 for (i = 1; i < elf_numsections (abfd); i++) 12186 { 12187 o = bfd_section_from_elf_index (abfd, i); 12188 if (o != NULL) 12189 { 12190 o->target_index = bfd_get_symcount (abfd); 12191 elfsym.st_shndx = i; 12192 if (!bfd_link_relocatable (info)) 12193 elfsym.st_value = o->vma; 12194 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o, 12195 NULL) != 1) 12196 goto error_return; 12197 } 12198 } 12199 } 12200 12201 /* Allocate some memory to hold information read in from the input 12202 files. */ 12203 if (max_contents_size != 0) 12204 { 12205 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); 12206 if (flinfo.contents == NULL) 12207 goto error_return; 12208 } 12209 12210 if (max_external_reloc_size != 0) 12211 { 12212 flinfo.external_relocs = bfd_malloc (max_external_reloc_size); 12213 if (flinfo.external_relocs == NULL) 12214 goto error_return; 12215 } 12216 12217 if (max_internal_reloc_count != 0) 12218 { 12219 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela); 12220 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt); 12221 if (flinfo.internal_relocs == NULL) 12222 goto error_return; 12223 } 12224 12225 if (max_sym_count != 0) 12226 { 12227 amt = max_sym_count * bed->s->sizeof_sym; 12228 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt); 12229 if (flinfo.external_syms == NULL) 12230 goto error_return; 12231 12232 amt = max_sym_count * sizeof (Elf_Internal_Sym); 12233 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt); 12234 if (flinfo.internal_syms == NULL) 12235 goto error_return; 12236 12237 amt = max_sym_count * sizeof (long); 12238 flinfo.indices = (long int *) bfd_malloc (amt); 12239 if (flinfo.indices == NULL) 12240 goto error_return; 12241 12242 amt = max_sym_count * sizeof (asection *); 12243 flinfo.sections = (asection **) bfd_malloc (amt); 12244 if (flinfo.sections == NULL) 12245 goto error_return; 12246 } 12247 12248 if (max_sym_shndx_count != 0) 12249 { 12250 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx); 12251 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt); 12252 if (flinfo.locsym_shndx == NULL) 12253 goto error_return; 12254 } 12255 12256 if (htab->tls_sec) 12257 { 12258 bfd_vma base, end = 0; 12259 asection *sec; 12260 12261 for (sec = htab->tls_sec; 12262 sec && (sec->flags & SEC_THREAD_LOCAL); 12263 sec = sec->next) 12264 { 12265 bfd_size_type size = sec->size; 12266 12267 if (size == 0 12268 && (sec->flags & SEC_HAS_CONTENTS) == 0) 12269 { 12270 struct bfd_link_order *ord = sec->map_tail.link_order; 12271 12272 if (ord != NULL) 12273 size = ord->offset + ord->size; 12274 } 12275 end = sec->vma + size; 12276 } 12277 base = htab->tls_sec->vma; 12278 /* Only align end of TLS section if static TLS doesn't have special 12279 alignment requirements. */ 12280 if (bed->static_tls_alignment == 1) 12281 end = align_power (end, htab->tls_sec->alignment_power); 12282 htab->tls_size = end - base; 12283 } 12284 12285 /* Reorder SHF_LINK_ORDER sections. */ 12286 for (o = abfd->sections; o != NULL; o = o->next) 12287 { 12288 if (!elf_fixup_link_order (abfd, o)) 12289 return FALSE; 12290 } 12291 12292 if (!_bfd_elf_fixup_eh_frame_hdr (info)) 12293 return FALSE; 12294 12295 /* Since ELF permits relocations to be against local symbols, we 12296 must have the local symbols available when we do the relocations. 12297 Since we would rather only read the local symbols once, and we 12298 would rather not keep them in memory, we handle all the 12299 relocations for a single input file at the same time. 12300 12301 Unfortunately, there is no way to know the total number of local 12302 symbols until we have seen all of them, and the local symbol 12303 indices precede the global symbol indices. This means that when 12304 we are generating relocatable output, and we see a reloc against 12305 a global symbol, we can not know the symbol index until we have 12306 finished examining all the local symbols to see which ones we are 12307 going to output. To deal with this, we keep the relocations in 12308 memory, and don't output them until the end of the link. This is 12309 an unfortunate waste of memory, but I don't see a good way around 12310 it. Fortunately, it only happens when performing a relocatable 12311 link, which is not the common case. FIXME: If keep_memory is set 12312 we could write the relocs out and then read them again; I don't 12313 know how bad the memory loss will be. */ 12314 12315 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 12316 sub->output_has_begun = FALSE; 12317 for (o = abfd->sections; o != NULL; o = o->next) 12318 { 12319 for (p = o->map_head.link_order; p != NULL; p = p->next) 12320 { 12321 if (p->type == bfd_indirect_link_order 12322 && (bfd_get_flavour ((sub = p->u.indirect.section->owner)) 12323 == bfd_target_elf_flavour) 12324 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass) 12325 { 12326 if (! sub->output_has_begun) 12327 { 12328 if (! elf_link_input_bfd (&flinfo, sub)) 12329 goto error_return; 12330 sub->output_has_begun = TRUE; 12331 } 12332 } 12333 else if (p->type == bfd_section_reloc_link_order 12334 || p->type == bfd_symbol_reloc_link_order) 12335 { 12336 if (! elf_reloc_link_order (abfd, info, o, p)) 12337 goto error_return; 12338 } 12339 else 12340 { 12341 if (! _bfd_default_link_order (abfd, info, o, p)) 12342 { 12343 if (p->type == bfd_indirect_link_order 12344 && (bfd_get_flavour (sub) 12345 == bfd_target_elf_flavour) 12346 && (elf_elfheader (sub)->e_ident[EI_CLASS] 12347 != bed->s->elfclass)) 12348 { 12349 const char *iclass, *oclass; 12350 12351 switch (bed->s->elfclass) 12352 { 12353 case ELFCLASS64: oclass = "ELFCLASS64"; break; 12354 case ELFCLASS32: oclass = "ELFCLASS32"; break; 12355 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break; 12356 default: abort (); 12357 } 12358 12359 switch (elf_elfheader (sub)->e_ident[EI_CLASS]) 12360 { 12361 case ELFCLASS64: iclass = "ELFCLASS64"; break; 12362 case ELFCLASS32: iclass = "ELFCLASS32"; break; 12363 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break; 12364 default: abort (); 12365 } 12366 12367 bfd_set_error (bfd_error_wrong_format); 12368 _bfd_error_handler 12369 /* xgettext:c-format */ 12370 (_("%pB: file class %s incompatible with %s"), 12371 sub, iclass, oclass); 12372 } 12373 12374 goto error_return; 12375 } 12376 } 12377 } 12378 } 12379 12380 /* Free symbol buffer if needed. */ 12381 if (!info->reduce_memory_overheads) 12382 { 12383 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 12384 if (bfd_get_flavour (sub) == bfd_target_elf_flavour 12385 && elf_tdata (sub)->symbuf) 12386 { 12387 free (elf_tdata (sub)->symbuf); 12388 elf_tdata (sub)->symbuf = NULL; 12389 } 12390 } 12391 12392 /* Output any global symbols that got converted to local in a 12393 version script or due to symbol visibility. We do this in a 12394 separate step since ELF requires all local symbols to appear 12395 prior to any global symbols. FIXME: We should only do this if 12396 some global symbols were, in fact, converted to become local. 12397 FIXME: Will this work correctly with the Irix 5 linker? */ 12398 eoinfo.failed = FALSE; 12399 eoinfo.flinfo = &flinfo; 12400 eoinfo.localsyms = TRUE; 12401 eoinfo.file_sym_done = FALSE; 12402 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); 12403 if (eoinfo.failed) 12404 return FALSE; 12405 12406 /* If backend needs to output some local symbols not present in the hash 12407 table, do it now. */ 12408 if (bed->elf_backend_output_arch_local_syms 12409 && (info->strip != strip_all || emit_relocs)) 12410 { 12411 typedef int (*out_sym_func) 12412 (void *, const char *, Elf_Internal_Sym *, asection *, 12413 struct elf_link_hash_entry *); 12414 12415 if (! ((*bed->elf_backend_output_arch_local_syms) 12416 (abfd, info, &flinfo, 12417 (out_sym_func) elf_link_output_symstrtab))) 12418 return FALSE; 12419 } 12420 12421 /* That wrote out all the local symbols. Finish up the symbol table 12422 with the global symbols. Even if we want to strip everything we 12423 can, we still need to deal with those global symbols that got 12424 converted to local in a version script. */ 12425 12426 /* The sh_info field records the index of the first non local symbol. */ 12427 symtab_hdr->sh_info = bfd_get_symcount (abfd); 12428 12429 if (dynamic 12430 && htab->dynsym != NULL 12431 && htab->dynsym->output_section != bfd_abs_section_ptr) 12432 { 12433 Elf_Internal_Sym sym; 12434 bfd_byte *dynsym = htab->dynsym->contents; 12435 12436 o = htab->dynsym->output_section; 12437 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1; 12438 12439 /* Write out the section symbols for the output sections. */ 12440 if (bfd_link_pic (info) 12441 || htab->is_relocatable_executable) 12442 { 12443 asection *s; 12444 12445 sym.st_size = 0; 12446 sym.st_name = 0; 12447 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); 12448 sym.st_other = 0; 12449 sym.st_target_internal = 0; 12450 12451 for (s = abfd->sections; s != NULL; s = s->next) 12452 { 12453 int indx; 12454 bfd_byte *dest; 12455 long dynindx; 12456 12457 dynindx = elf_section_data (s)->dynindx; 12458 if (dynindx <= 0) 12459 continue; 12460 indx = elf_section_data (s)->this_idx; 12461 BFD_ASSERT (indx > 0); 12462 sym.st_shndx = indx; 12463 if (! check_dynsym (abfd, &sym)) 12464 return FALSE; 12465 sym.st_value = s->vma; 12466 dest = dynsym + dynindx * bed->s->sizeof_sym; 12467 bed->s->swap_symbol_out (abfd, &sym, dest, 0); 12468 } 12469 } 12470 12471 /* Write out the local dynsyms. */ 12472 if (htab->dynlocal) 12473 { 12474 struct elf_link_local_dynamic_entry *e; 12475 for (e = htab->dynlocal; e ; e = e->next) 12476 { 12477 asection *s; 12478 bfd_byte *dest; 12479 12480 /* Copy the internal symbol and turn off visibility. 12481 Note that we saved a word of storage and overwrote 12482 the original st_name with the dynstr_index. */ 12483 sym = e->isym; 12484 sym.st_other &= ~ELF_ST_VISIBILITY (-1); 12485 12486 s = bfd_section_from_elf_index (e->input_bfd, 12487 e->isym.st_shndx); 12488 if (s != NULL) 12489 { 12490 sym.st_shndx = 12491 elf_section_data (s->output_section)->this_idx; 12492 if (! check_dynsym (abfd, &sym)) 12493 return FALSE; 12494 sym.st_value = (s->output_section->vma 12495 + s->output_offset 12496 + e->isym.st_value); 12497 } 12498 12499 dest = dynsym + e->dynindx * bed->s->sizeof_sym; 12500 bed->s->swap_symbol_out (abfd, &sym, dest, 0); 12501 } 12502 } 12503 } 12504 12505 /* We get the global symbols from the hash table. */ 12506 eoinfo.failed = FALSE; 12507 eoinfo.localsyms = FALSE; 12508 eoinfo.flinfo = &flinfo; 12509 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); 12510 if (eoinfo.failed) 12511 return FALSE; 12512 12513 /* If backend needs to output some symbols not present in the hash 12514 table, do it now. */ 12515 if (bed->elf_backend_output_arch_syms 12516 && (info->strip != strip_all || emit_relocs)) 12517 { 12518 typedef int (*out_sym_func) 12519 (void *, const char *, Elf_Internal_Sym *, asection *, 12520 struct elf_link_hash_entry *); 12521 12522 if (! ((*bed->elf_backend_output_arch_syms) 12523 (abfd, info, &flinfo, 12524 (out_sym_func) elf_link_output_symstrtab))) 12525 return FALSE; 12526 } 12527 12528 /* Finalize the .strtab section. */ 12529 _bfd_elf_strtab_finalize (flinfo.symstrtab); 12530 12531 /* Swap out the .strtab section. */ 12532 if (!elf_link_swap_symbols_out (&flinfo)) 12533 return FALSE; 12534 12535 /* Now we know the size of the symtab section. */ 12536 if (bfd_get_symcount (abfd) > 0) 12537 { 12538 /* Finish up and write out the symbol string table (.strtab) 12539 section. */ 12540 Elf_Internal_Shdr *symstrtab_hdr = NULL; 12541 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size; 12542 12543 if (elf_symtab_shndx_list (abfd)) 12544 { 12545 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; 12546 12547 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0) 12548 { 12549 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; 12550 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); 12551 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); 12552 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx); 12553 symtab_shndx_hdr->sh_size = amt; 12554 12555 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr, 12556 off, TRUE); 12557 12558 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0 12559 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt)) 12560 return FALSE; 12561 } 12562 } 12563 12564 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; 12565 /* sh_name was set in prep_headers. */ 12566 symstrtab_hdr->sh_type = SHT_STRTAB; 12567 symstrtab_hdr->sh_flags = bed->elf_strtab_flags; 12568 symstrtab_hdr->sh_addr = 0; 12569 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab); 12570 symstrtab_hdr->sh_entsize = 0; 12571 symstrtab_hdr->sh_link = 0; 12572 symstrtab_hdr->sh_info = 0; 12573 /* sh_offset is set just below. */ 12574 symstrtab_hdr->sh_addralign = 1; 12575 12576 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, 12577 off, TRUE); 12578 elf_next_file_pos (abfd) = off; 12579 12580 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 12581 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab)) 12582 return FALSE; 12583 } 12584 12585 if (info->out_implib_bfd && !elf_output_implib (abfd, info)) 12586 { 12587 _bfd_error_handler (_("%pB: failed to generate import library"), 12588 info->out_implib_bfd); 12589 return FALSE; 12590 } 12591 12592 /* Adjust the relocs to have the correct symbol indices. */ 12593 for (o = abfd->sections; o != NULL; o = o->next) 12594 { 12595 struct bfd_elf_section_data *esdo = elf_section_data (o); 12596 bfd_boolean sort; 12597 12598 if ((o->flags & SEC_RELOC) == 0) 12599 continue; 12600 12601 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o); 12602 if (esdo->rel.hdr != NULL 12603 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info)) 12604 return FALSE; 12605 if (esdo->rela.hdr != NULL 12606 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info)) 12607 return FALSE; 12608 12609 /* Set the reloc_count field to 0 to prevent write_relocs from 12610 trying to swap the relocs out itself. */ 12611 o->reloc_count = 0; 12612 } 12613 12614 if (dynamic && info->combreloc && dynobj != NULL) 12615 relativecount = elf_link_sort_relocs (abfd, info, &reldyn); 12616 12617 /* If we are linking against a dynamic object, or generating a 12618 shared library, finish up the dynamic linking information. */ 12619 if (dynamic) 12620 { 12621 bfd_byte *dyncon, *dynconend; 12622 12623 /* Fix up .dynamic entries. */ 12624 o = bfd_get_linker_section (dynobj, ".dynamic"); 12625 BFD_ASSERT (o != NULL); 12626 12627 dyncon = o->contents; 12628 dynconend = o->contents + o->size; 12629 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) 12630 { 12631 Elf_Internal_Dyn dyn; 12632 const char *name; 12633 unsigned int type; 12634 bfd_size_type sh_size; 12635 bfd_vma sh_addr; 12636 12637 bed->s->swap_dyn_in (dynobj, dyncon, &dyn); 12638 12639 switch (dyn.d_tag) 12640 { 12641 default: 12642 continue; 12643 case DT_NULL: 12644 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend) 12645 { 12646 switch (elf_section_data (reldyn)->this_hdr.sh_type) 12647 { 12648 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break; 12649 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break; 12650 default: continue; 12651 } 12652 dyn.d_un.d_val = relativecount; 12653 relativecount = 0; 12654 break; 12655 } 12656 continue; 12657 12658 case DT_INIT: 12659 name = info->init_function; 12660 goto get_sym; 12661 case DT_FINI: 12662 name = info->fini_function; 12663 get_sym: 12664 { 12665 struct elf_link_hash_entry *h; 12666 12667 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE); 12668 if (h != NULL 12669 && (h->root.type == bfd_link_hash_defined 12670 || h->root.type == bfd_link_hash_defweak)) 12671 { 12672 dyn.d_un.d_ptr = h->root.u.def.value; 12673 o = h->root.u.def.section; 12674 if (o->output_section != NULL) 12675 dyn.d_un.d_ptr += (o->output_section->vma 12676 + o->output_offset); 12677 else 12678 { 12679 /* The symbol is imported from another shared 12680 library and does not apply to this one. */ 12681 dyn.d_un.d_ptr = 0; 12682 } 12683 break; 12684 } 12685 } 12686 continue; 12687 12688 case DT_PREINIT_ARRAYSZ: 12689 name = ".preinit_array"; 12690 goto get_out_size; 12691 case DT_INIT_ARRAYSZ: 12692 name = ".init_array"; 12693 goto get_out_size; 12694 case DT_FINI_ARRAYSZ: 12695 name = ".fini_array"; 12696 get_out_size: 12697 o = bfd_get_section_by_name (abfd, name); 12698 if (o == NULL) 12699 { 12700 _bfd_error_handler 12701 (_("could not find section %s"), name); 12702 goto error_return; 12703 } 12704 if (o->size == 0) 12705 _bfd_error_handler 12706 (_("warning: %s section has zero size"), name); 12707 dyn.d_un.d_val = o->size; 12708 break; 12709 12710 case DT_PREINIT_ARRAY: 12711 name = ".preinit_array"; 12712 goto get_out_vma; 12713 case DT_INIT_ARRAY: 12714 name = ".init_array"; 12715 goto get_out_vma; 12716 case DT_FINI_ARRAY: 12717 name = ".fini_array"; 12718 get_out_vma: 12719 o = bfd_get_section_by_name (abfd, name); 12720 goto do_vma; 12721 12722 case DT_HASH: 12723 name = ".hash"; 12724 goto get_vma; 12725 case DT_GNU_HASH: 12726 name = ".gnu.hash"; 12727 goto get_vma; 12728 case DT_STRTAB: 12729 name = ".dynstr"; 12730 goto get_vma; 12731 case DT_SYMTAB: 12732 name = ".dynsym"; 12733 goto get_vma; 12734 case DT_VERDEF: 12735 name = ".gnu.version_d"; 12736 goto get_vma; 12737 case DT_VERNEED: 12738 name = ".gnu.version_r"; 12739 goto get_vma; 12740 case DT_VERSYM: 12741 name = ".gnu.version"; 12742 get_vma: 12743 o = bfd_get_linker_section (dynobj, name); 12744 do_vma: 12745 if (o == NULL || bfd_is_abs_section (o->output_section)) 12746 { 12747 _bfd_error_handler 12748 (_("could not find section %s"), name); 12749 goto error_return; 12750 } 12751 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE) 12752 { 12753 _bfd_error_handler 12754 (_("warning: section '%s' is being made into a note"), name); 12755 bfd_set_error (bfd_error_nonrepresentable_section); 12756 goto error_return; 12757 } 12758 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset; 12759 break; 12760 12761 case DT_REL: 12762 case DT_RELA: 12763 case DT_RELSZ: 12764 case DT_RELASZ: 12765 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) 12766 type = SHT_REL; 12767 else 12768 type = SHT_RELA; 12769 sh_size = 0; 12770 sh_addr = 0; 12771 for (i = 1; i < elf_numsections (abfd); i++) 12772 { 12773 Elf_Internal_Shdr *hdr; 12774 12775 hdr = elf_elfsections (abfd)[i]; 12776 if (hdr->sh_type == type 12777 && (hdr->sh_flags & SHF_ALLOC) != 0) 12778 { 12779 sh_size += hdr->sh_size; 12780 if (sh_addr == 0 12781 || sh_addr > hdr->sh_addr) 12782 sh_addr = hdr->sh_addr; 12783 } 12784 } 12785 12786 if (bed->dtrel_excludes_plt && htab->srelplt != NULL) 12787 { 12788 /* Don't count procedure linkage table relocs in the 12789 overall reloc count. */ 12790 sh_size -= htab->srelplt->size; 12791 if (sh_size == 0) 12792 /* If the size is zero, make the address zero too. 12793 This is to avoid a glibc bug. If the backend 12794 emits DT_RELA/DT_RELASZ even when DT_RELASZ is 12795 zero, then we'll put DT_RELA at the end of 12796 DT_JMPREL. glibc will interpret the end of 12797 DT_RELA matching the end of DT_JMPREL as the 12798 case where DT_RELA includes DT_JMPREL, and for 12799 LD_BIND_NOW will decide that processing DT_RELA 12800 will process the PLT relocs too. Net result: 12801 No PLT relocs applied. */ 12802 sh_addr = 0; 12803 12804 /* If .rela.plt is the first .rela section, exclude 12805 it from DT_RELA. */ 12806 else if (sh_addr == (htab->srelplt->output_section->vma 12807 + htab->srelplt->output_offset)) 12808 sh_addr += htab->srelplt->size; 12809 } 12810 12811 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) 12812 dyn.d_un.d_val = sh_size; 12813 else 12814 dyn.d_un.d_ptr = sh_addr; 12815 break; 12816 } 12817 bed->s->swap_dyn_out (dynobj, &dyn, dyncon); 12818 } 12819 } 12820 12821 /* If we have created any dynamic sections, then output them. */ 12822 if (dynobj != NULL) 12823 { 12824 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) 12825 goto error_return; 12826 12827 /* Check for DT_TEXTREL (late, in case the backend removes it). */ 12828 if (((info->warn_shared_textrel && bfd_link_pic (info)) 12829 || info->error_textrel) 12830 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL) 12831 { 12832 bfd_byte *dyncon, *dynconend; 12833 12834 dyncon = o->contents; 12835 dynconend = o->contents + o->size; 12836 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) 12837 { 12838 Elf_Internal_Dyn dyn; 12839 12840 bed->s->swap_dyn_in (dynobj, dyncon, &dyn); 12841 12842 if (dyn.d_tag == DT_TEXTREL) 12843 { 12844 if (info->error_textrel) 12845 info->callbacks->einfo 12846 (_("%P%X: read-only segment has dynamic relocations\n")); 12847 else 12848 info->callbacks->einfo 12849 (_("%P: warning: creating a DT_TEXTREL in a shared object\n")); 12850 break; 12851 } 12852 } 12853 } 12854 12855 for (o = dynobj->sections; o != NULL; o = o->next) 12856 { 12857 if ((o->flags & SEC_HAS_CONTENTS) == 0 12858 || o->size == 0 12859 || o->output_section == bfd_abs_section_ptr) 12860 continue; 12861 if ((o->flags & SEC_LINKER_CREATED) == 0) 12862 { 12863 /* At this point, we are only interested in sections 12864 created by _bfd_elf_link_create_dynamic_sections. */ 12865 continue; 12866 } 12867 if (htab->stab_info.stabstr == o) 12868 continue; 12869 if (htab->eh_info.hdr_sec == o) 12870 continue; 12871 if (strcmp (o->name, ".dynstr") != 0) 12872 { 12873 bfd_size_type octets = ((file_ptr) o->output_offset 12874 * bfd_octets_per_byte (abfd, o)); 12875 if (!bfd_set_section_contents (abfd, o->output_section, 12876 o->contents, octets, o->size)) 12877 goto error_return; 12878 } 12879 else 12880 { 12881 /* The contents of the .dynstr section are actually in a 12882 stringtab. */ 12883 file_ptr off; 12884 12885 off = elf_section_data (o->output_section)->this_hdr.sh_offset; 12886 if (bfd_seek (abfd, off, SEEK_SET) != 0 12887 || !_bfd_elf_strtab_emit (abfd, htab->dynstr)) 12888 goto error_return; 12889 } 12890 } 12891 } 12892 12893 if (!info->resolve_section_groups) 12894 { 12895 bfd_boolean failed = FALSE; 12896 12897 BFD_ASSERT (bfd_link_relocatable (info)); 12898 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); 12899 if (failed) 12900 goto error_return; 12901 } 12902 12903 /* If we have optimized stabs strings, output them. */ 12904 if (htab->stab_info.stabstr != NULL) 12905 { 12906 if (!_bfd_write_stab_strings (abfd, &htab->stab_info)) 12907 goto error_return; 12908 } 12909 12910 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info)) 12911 goto error_return; 12912 12913 if (info->callbacks->emit_ctf) 12914 info->callbacks->emit_ctf (); 12915 12916 elf_final_link_free (abfd, &flinfo); 12917 12918 if (attr_section) 12919 { 12920 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size); 12921 if (contents == NULL) 12922 return FALSE; /* Bail out and fail. */ 12923 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size); 12924 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size); 12925 free (contents); 12926 } 12927 12928 return TRUE; 12929 12930 error_return: 12931 elf_final_link_free (abfd, &flinfo); 12932 return FALSE; 12933 } 12934 12935 /* Initialize COOKIE for input bfd ABFD. */ 12936 12937 static bfd_boolean 12938 init_reloc_cookie (struct elf_reloc_cookie *cookie, 12939 struct bfd_link_info *info, bfd *abfd) 12940 { 12941 Elf_Internal_Shdr *symtab_hdr; 12942 const struct elf_backend_data *bed; 12943 12944 bed = get_elf_backend_data (abfd); 12945 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 12946 12947 cookie->abfd = abfd; 12948 cookie->sym_hashes = elf_sym_hashes (abfd); 12949 cookie->bad_symtab = elf_bad_symtab (abfd); 12950 if (cookie->bad_symtab) 12951 { 12952 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; 12953 cookie->extsymoff = 0; 12954 } 12955 else 12956 { 12957 cookie->locsymcount = symtab_hdr->sh_info; 12958 cookie->extsymoff = symtab_hdr->sh_info; 12959 } 12960 12961 if (bed->s->arch_size == 32) 12962 cookie->r_sym_shift = 8; 12963 else 12964 cookie->r_sym_shift = 32; 12965 12966 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; 12967 if (cookie->locsyms == NULL && cookie->locsymcount != 0) 12968 { 12969 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, 12970 cookie->locsymcount, 0, 12971 NULL, NULL, NULL); 12972 if (cookie->locsyms == NULL) 12973 { 12974 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n")); 12975 return FALSE; 12976 } 12977 if (info->keep_memory) 12978 symtab_hdr->contents = (bfd_byte *) cookie->locsyms; 12979 } 12980 return TRUE; 12981 } 12982 12983 /* Free the memory allocated by init_reloc_cookie, if appropriate. */ 12984 12985 static void 12986 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd) 12987 { 12988 Elf_Internal_Shdr *symtab_hdr; 12989 12990 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 12991 if (cookie->locsyms != NULL 12992 && symtab_hdr->contents != (unsigned char *) cookie->locsyms) 12993 free (cookie->locsyms); 12994 } 12995 12996 /* Initialize the relocation information in COOKIE for input section SEC 12997 of input bfd ABFD. */ 12998 12999 static bfd_boolean 13000 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie, 13001 struct bfd_link_info *info, bfd *abfd, 13002 asection *sec) 13003 { 13004 if (sec->reloc_count == 0) 13005 { 13006 cookie->rels = NULL; 13007 cookie->relend = NULL; 13008 } 13009 else 13010 { 13011 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, 13012 info->keep_memory); 13013 if (cookie->rels == NULL) 13014 return FALSE; 13015 cookie->rel = cookie->rels; 13016 cookie->relend = cookie->rels + sec->reloc_count; 13017 } 13018 cookie->rel = cookie->rels; 13019 return TRUE; 13020 } 13021 13022 /* Free the memory allocated by init_reloc_cookie_rels, 13023 if appropriate. */ 13024 13025 static void 13026 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie, 13027 asection *sec) 13028 { 13029 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels) 13030 free (cookie->rels); 13031 } 13032 13033 /* Initialize the whole of COOKIE for input section SEC. */ 13034 13035 static bfd_boolean 13036 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, 13037 struct bfd_link_info *info, 13038 asection *sec) 13039 { 13040 if (!init_reloc_cookie (cookie, info, sec->owner)) 13041 goto error1; 13042 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec)) 13043 goto error2; 13044 return TRUE; 13045 13046 error2: 13047 fini_reloc_cookie (cookie, sec->owner); 13048 error1: 13049 return FALSE; 13050 } 13051 13052 /* Free the memory allocated by init_reloc_cookie_for_section, 13053 if appropriate. */ 13054 13055 static void 13056 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, 13057 asection *sec) 13058 { 13059 fini_reloc_cookie_rels (cookie, sec); 13060 fini_reloc_cookie (cookie, sec->owner); 13061 } 13062 13063 /* Garbage collect unused sections. */ 13064 13065 /* Default gc_mark_hook. */ 13066 13067 asection * 13068 _bfd_elf_gc_mark_hook (asection *sec, 13069 struct bfd_link_info *info ATTRIBUTE_UNUSED, 13070 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, 13071 struct elf_link_hash_entry *h, 13072 Elf_Internal_Sym *sym) 13073 { 13074 if (h != NULL) 13075 { 13076 switch (h->root.type) 13077 { 13078 case bfd_link_hash_defined: 13079 case bfd_link_hash_defweak: 13080 return h->root.u.def.section; 13081 13082 case bfd_link_hash_common: 13083 return h->root.u.c.p->section; 13084 13085 default: 13086 break; 13087 } 13088 } 13089 else 13090 return bfd_section_from_elf_index (sec->owner, sym->st_shndx); 13091 13092 return NULL; 13093 } 13094 13095 /* Return the debug definition section. */ 13096 13097 static asection * 13098 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED, 13099 struct bfd_link_info *info ATTRIBUTE_UNUSED, 13100 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, 13101 struct elf_link_hash_entry *h, 13102 Elf_Internal_Sym *sym) 13103 { 13104 if (h != NULL) 13105 { 13106 /* Return the global debug definition section. */ 13107 if ((h->root.type == bfd_link_hash_defined 13108 || h->root.type == bfd_link_hash_defweak) 13109 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0) 13110 return h->root.u.def.section; 13111 } 13112 else 13113 { 13114 /* Return the local debug definition section. */ 13115 asection *isec = bfd_section_from_elf_index (sec->owner, 13116 sym->st_shndx); 13117 if ((isec->flags & SEC_DEBUGGING) != 0) 13118 return isec; 13119 } 13120 13121 return NULL; 13122 } 13123 13124 /* COOKIE->rel describes a relocation against section SEC, which is 13125 a section we've decided to keep. Return the section that contains 13126 the relocation symbol, or NULL if no section contains it. */ 13127 13128 asection * 13129 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec, 13130 elf_gc_mark_hook_fn gc_mark_hook, 13131 struct elf_reloc_cookie *cookie, 13132 bfd_boolean *start_stop) 13133 { 13134 unsigned long r_symndx; 13135 struct elf_link_hash_entry *h, *hw; 13136 13137 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift; 13138 if (r_symndx == STN_UNDEF) 13139 return NULL; 13140 13141 if (r_symndx >= cookie->locsymcount 13142 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) 13143 { 13144 h = cookie->sym_hashes[r_symndx - cookie->extsymoff]; 13145 if (h == NULL) 13146 { 13147 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"), 13148 sec->owner); 13149 return NULL; 13150 } 13151 while (h->root.type == bfd_link_hash_indirect 13152 || h->root.type == bfd_link_hash_warning) 13153 h = (struct elf_link_hash_entry *) h->root.u.i.link; 13154 h->mark = 1; 13155 /* Keep all aliases of the symbol too. If an object symbol 13156 needs to be copied into .dynbss then all of its aliases 13157 should be present as dynamic symbols, not just the one used 13158 on the copy relocation. */ 13159 hw = h; 13160 while (hw->is_weakalias) 13161 { 13162 hw = hw->u.alias; 13163 hw->mark = 1; 13164 } 13165 13166 if (start_stop != NULL) 13167 { 13168 /* To work around a glibc bug, mark XXX input sections 13169 when there is a reference to __start_XXX or __stop_XXX 13170 symbols. */ 13171 if (h->start_stop) 13172 { 13173 asection *s = h->u2.start_stop_section; 13174 *start_stop = !s->gc_mark; 13175 return s; 13176 } 13177 } 13178 13179 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL); 13180 } 13181 13182 return (*gc_mark_hook) (sec, info, cookie->rel, NULL, 13183 &cookie->locsyms[r_symndx]); 13184 } 13185 13186 /* COOKIE->rel describes a relocation against section SEC, which is 13187 a section we've decided to keep. Mark the section that contains 13188 the relocation symbol. */ 13189 13190 bfd_boolean 13191 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info, 13192 asection *sec, 13193 elf_gc_mark_hook_fn gc_mark_hook, 13194 struct elf_reloc_cookie *cookie) 13195 { 13196 asection *rsec; 13197 bfd_boolean start_stop = FALSE; 13198 13199 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop); 13200 while (rsec != NULL) 13201 { 13202 if (!rsec->gc_mark) 13203 { 13204 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour 13205 || (rsec->owner->flags & DYNAMIC) != 0) 13206 rsec->gc_mark = 1; 13207 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook)) 13208 return FALSE; 13209 } 13210 if (!start_stop) 13211 break; 13212 rsec = bfd_get_next_section_by_name (rsec->owner, rsec); 13213 } 13214 return TRUE; 13215 } 13216 13217 /* The mark phase of garbage collection. For a given section, mark 13218 it and any sections in this section's group, and all the sections 13219 which define symbols to which it refers. */ 13220 13221 bfd_boolean 13222 _bfd_elf_gc_mark (struct bfd_link_info *info, 13223 asection *sec, 13224 elf_gc_mark_hook_fn gc_mark_hook) 13225 { 13226 bfd_boolean ret; 13227 asection *group_sec, *eh_frame; 13228 13229 sec->gc_mark = 1; 13230 13231 /* Mark all the sections in the group. */ 13232 group_sec = elf_section_data (sec)->next_in_group; 13233 if (group_sec && !group_sec->gc_mark) 13234 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook)) 13235 return FALSE; 13236 13237 /* Look through the section relocs. */ 13238 ret = TRUE; 13239 eh_frame = elf_eh_frame_section (sec->owner); 13240 if ((sec->flags & SEC_RELOC) != 0 13241 && sec->reloc_count > 0 13242 && sec != eh_frame) 13243 { 13244 struct elf_reloc_cookie cookie; 13245 13246 if (!init_reloc_cookie_for_section (&cookie, info, sec)) 13247 ret = FALSE; 13248 else 13249 { 13250 for (; cookie.rel < cookie.relend; cookie.rel++) 13251 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie)) 13252 { 13253 ret = FALSE; 13254 break; 13255 } 13256 fini_reloc_cookie_for_section (&cookie, sec); 13257 } 13258 } 13259 13260 if (ret && eh_frame && elf_fde_list (sec)) 13261 { 13262 struct elf_reloc_cookie cookie; 13263 13264 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame)) 13265 ret = FALSE; 13266 else 13267 { 13268 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame, 13269 gc_mark_hook, &cookie)) 13270 ret = FALSE; 13271 fini_reloc_cookie_for_section (&cookie, eh_frame); 13272 } 13273 } 13274 13275 eh_frame = elf_section_eh_frame_entry (sec); 13276 if (ret && eh_frame && !eh_frame->gc_mark) 13277 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook)) 13278 ret = FALSE; 13279 13280 return ret; 13281 } 13282 13283 /* Scan and mark sections in a special or debug section group. */ 13284 13285 static void 13286 _bfd_elf_gc_mark_debug_special_section_group (asection *grp) 13287 { 13288 /* Point to first section of section group. */ 13289 asection *ssec; 13290 /* Used to iterate the section group. */ 13291 asection *msec; 13292 13293 bfd_boolean is_special_grp = TRUE; 13294 bfd_boolean is_debug_grp = TRUE; 13295 13296 /* First scan to see if group contains any section other than debug 13297 and special section. */ 13298 ssec = msec = elf_next_in_group (grp); 13299 do 13300 { 13301 if ((msec->flags & SEC_DEBUGGING) == 0) 13302 is_debug_grp = FALSE; 13303 13304 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0) 13305 is_special_grp = FALSE; 13306 13307 msec = elf_next_in_group (msec); 13308 } 13309 while (msec != ssec); 13310 13311 /* If this is a pure debug section group or pure special section group, 13312 keep all sections in this group. */ 13313 if (is_debug_grp || is_special_grp) 13314 { 13315 do 13316 { 13317 msec->gc_mark = 1; 13318 msec = elf_next_in_group (msec); 13319 } 13320 while (msec != ssec); 13321 } 13322 } 13323 13324 /* Keep debug and special sections. */ 13325 13326 bfd_boolean 13327 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info, 13328 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED) 13329 { 13330 bfd *ibfd; 13331 13332 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 13333 { 13334 asection *isec; 13335 bfd_boolean some_kept; 13336 bfd_boolean debug_frag_seen; 13337 bfd_boolean has_kept_debug_info; 13338 13339 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 13340 continue; 13341 isec = ibfd->sections; 13342 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 13343 continue; 13344 13345 /* Ensure all linker created sections are kept, 13346 see if any other section is already marked, 13347 and note if we have any fragmented debug sections. */ 13348 debug_frag_seen = some_kept = has_kept_debug_info = FALSE; 13349 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 13350 { 13351 if ((isec->flags & SEC_LINKER_CREATED) != 0) 13352 isec->gc_mark = 1; 13353 else if (isec->gc_mark 13354 && (isec->flags & SEC_ALLOC) != 0 13355 && elf_section_type (isec) != SHT_NOTE) 13356 some_kept = TRUE; 13357 13358 if (!debug_frag_seen 13359 && (isec->flags & SEC_DEBUGGING) 13360 && CONST_STRNEQ (isec->name, ".debug_line.")) 13361 debug_frag_seen = TRUE; 13362 } 13363 13364 /* If no non-note alloc section in this file will be kept, then 13365 we can toss out the debug and special sections. */ 13366 if (!some_kept) 13367 continue; 13368 13369 /* Keep debug and special sections like .comment when they are 13370 not part of a group. Also keep section groups that contain 13371 just debug sections or special sections. */ 13372 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 13373 { 13374 if ((isec->flags & SEC_GROUP) != 0) 13375 _bfd_elf_gc_mark_debug_special_section_group (isec); 13376 else if (((isec->flags & SEC_DEBUGGING) != 0 13377 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0) 13378 && elf_next_in_group (isec) == NULL) 13379 isec->gc_mark = 1; 13380 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0) 13381 has_kept_debug_info = TRUE; 13382 } 13383 13384 /* Look for CODE sections which are going to be discarded, 13385 and find and discard any fragmented debug sections which 13386 are associated with that code section. */ 13387 if (debug_frag_seen) 13388 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 13389 if ((isec->flags & SEC_CODE) != 0 13390 && isec->gc_mark == 0) 13391 { 13392 unsigned int ilen; 13393 asection *dsec; 13394 13395 ilen = strlen (isec->name); 13396 13397 /* Association is determined by the name of the debug 13398 section containing the name of the code section as 13399 a suffix. For example .debug_line.text.foo is a 13400 debug section associated with .text.foo. */ 13401 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next) 13402 { 13403 unsigned int dlen; 13404 13405 if (dsec->gc_mark == 0 13406 || (dsec->flags & SEC_DEBUGGING) == 0) 13407 continue; 13408 13409 dlen = strlen (dsec->name); 13410 13411 if (dlen > ilen 13412 && strncmp (dsec->name + (dlen - ilen), 13413 isec->name, ilen) == 0) 13414 dsec->gc_mark = 0; 13415 } 13416 } 13417 13418 /* Mark debug sections referenced by kept debug sections. */ 13419 if (has_kept_debug_info) 13420 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 13421 if (isec->gc_mark 13422 && (isec->flags & SEC_DEBUGGING) != 0) 13423 if (!_bfd_elf_gc_mark (info, isec, 13424 elf_gc_mark_debug_section)) 13425 return FALSE; 13426 } 13427 return TRUE; 13428 } 13429 13430 static bfd_boolean 13431 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info) 13432 { 13433 bfd *sub; 13434 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 13435 13436 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 13437 { 13438 asection *o; 13439 13440 if (bfd_get_flavour (sub) != bfd_target_elf_flavour 13441 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info)) 13442 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) 13443 continue; 13444 o = sub->sections; 13445 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 13446 continue; 13447 13448 for (o = sub->sections; o != NULL; o = o->next) 13449 { 13450 /* When any section in a section group is kept, we keep all 13451 sections in the section group. If the first member of 13452 the section group is excluded, we will also exclude the 13453 group section. */ 13454 if (o->flags & SEC_GROUP) 13455 { 13456 asection *first = elf_next_in_group (o); 13457 o->gc_mark = first->gc_mark; 13458 } 13459 13460 if (o->gc_mark) 13461 continue; 13462 13463 /* Skip sweeping sections already excluded. */ 13464 if (o->flags & SEC_EXCLUDE) 13465 continue; 13466 13467 /* Since this is early in the link process, it is simple 13468 to remove a section from the output. */ 13469 o->flags |= SEC_EXCLUDE; 13470 13471 if (info->print_gc_sections && o->size != 0) 13472 /* xgettext:c-format */ 13473 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"), 13474 o, sub); 13475 } 13476 } 13477 13478 return TRUE; 13479 } 13480 13481 /* Propagate collected vtable information. This is called through 13482 elf_link_hash_traverse. */ 13483 13484 static bfd_boolean 13485 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp) 13486 { 13487 /* Those that are not vtables. */ 13488 if (h->start_stop 13489 || h->u2.vtable == NULL 13490 || h->u2.vtable->parent == NULL) 13491 return TRUE; 13492 13493 /* Those vtables that do not have parents, we cannot merge. */ 13494 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1) 13495 return TRUE; 13496 13497 /* If we've already been done, exit. */ 13498 if (h->u2.vtable->used && h->u2.vtable->used[-1]) 13499 return TRUE; 13500 13501 /* Make sure the parent's table is up to date. */ 13502 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp); 13503 13504 if (h->u2.vtable->used == NULL) 13505 { 13506 /* None of this table's entries were referenced. Re-use the 13507 parent's table. */ 13508 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used; 13509 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size; 13510 } 13511 else 13512 { 13513 size_t n; 13514 bfd_boolean *cu, *pu; 13515 13516 /* Or the parent's entries into ours. */ 13517 cu = h->u2.vtable->used; 13518 cu[-1] = TRUE; 13519 pu = h->u2.vtable->parent->u2.vtable->used; 13520 if (pu != NULL) 13521 { 13522 const struct elf_backend_data *bed; 13523 unsigned int log_file_align; 13524 13525 bed = get_elf_backend_data (h->root.u.def.section->owner); 13526 log_file_align = bed->s->log_file_align; 13527 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align; 13528 while (n--) 13529 { 13530 if (*pu) 13531 *cu = TRUE; 13532 pu++; 13533 cu++; 13534 } 13535 } 13536 } 13537 13538 return TRUE; 13539 } 13540 13541 static bfd_boolean 13542 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp) 13543 { 13544 asection *sec; 13545 bfd_vma hstart, hend; 13546 Elf_Internal_Rela *relstart, *relend, *rel; 13547 const struct elf_backend_data *bed; 13548 unsigned int log_file_align; 13549 13550 /* Take care of both those symbols that do not describe vtables as 13551 well as those that are not loaded. */ 13552 if (h->start_stop 13553 || h->u2.vtable == NULL 13554 || h->u2.vtable->parent == NULL) 13555 return TRUE; 13556 13557 BFD_ASSERT (h->root.type == bfd_link_hash_defined 13558 || h->root.type == bfd_link_hash_defweak); 13559 13560 sec = h->root.u.def.section; 13561 hstart = h->root.u.def.value; 13562 hend = hstart + h->size; 13563 13564 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE); 13565 if (!relstart) 13566 return *(bfd_boolean *) okp = FALSE; 13567 bed = get_elf_backend_data (sec->owner); 13568 log_file_align = bed->s->log_file_align; 13569 13570 relend = relstart + sec->reloc_count; 13571 13572 for (rel = relstart; rel < relend; ++rel) 13573 if (rel->r_offset >= hstart && rel->r_offset < hend) 13574 { 13575 /* If the entry is in use, do nothing. */ 13576 if (h->u2.vtable->used 13577 && (rel->r_offset - hstart) < h->u2.vtable->size) 13578 { 13579 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align; 13580 if (h->u2.vtable->used[entry]) 13581 continue; 13582 } 13583 /* Otherwise, kill it. */ 13584 rel->r_offset = rel->r_info = rel->r_addend = 0; 13585 } 13586 13587 return TRUE; 13588 } 13589 13590 /* Mark sections containing dynamically referenced symbols. When 13591 building shared libraries, we must assume that any visible symbol is 13592 referenced. */ 13593 13594 bfd_boolean 13595 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf) 13596 { 13597 struct bfd_link_info *info = (struct bfd_link_info *) inf; 13598 struct bfd_elf_dynamic_list *d = info->dynamic_list; 13599 13600 if ((h->root.type == bfd_link_hash_defined 13601 || h->root.type == bfd_link_hash_defweak) 13602 && ((h->ref_dynamic && !h->forced_local) 13603 || ((h->def_regular || ELF_COMMON_DEF_P (h)) 13604 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL 13605 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN 13606 && (!bfd_link_executable (info) 13607 || info->gc_keep_exported 13608 || info->export_dynamic 13609 || (h->dynamic 13610 && d != NULL 13611 && (*d->match) (&d->head, NULL, h->root.root.string))) 13612 && (h->versioned >= versioned 13613 || !bfd_hide_sym_by_version (info->version_info, 13614 h->root.root.string))))) 13615 h->root.u.def.section->flags |= SEC_KEEP; 13616 13617 return TRUE; 13618 } 13619 13620 /* Keep all sections containing symbols undefined on the command-line, 13621 and the section containing the entry symbol. */ 13622 13623 void 13624 _bfd_elf_gc_keep (struct bfd_link_info *info) 13625 { 13626 struct bfd_sym_chain *sym; 13627 13628 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next) 13629 { 13630 struct elf_link_hash_entry *h; 13631 13632 h = elf_link_hash_lookup (elf_hash_table (info), sym->name, 13633 FALSE, FALSE, FALSE); 13634 13635 if (h != NULL 13636 && (h->root.type == bfd_link_hash_defined 13637 || h->root.type == bfd_link_hash_defweak) 13638 && !bfd_is_abs_section (h->root.u.def.section) 13639 && !bfd_is_und_section (h->root.u.def.section)) 13640 h->root.u.def.section->flags |= SEC_KEEP; 13641 } 13642 } 13643 13644 bfd_boolean 13645 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED, 13646 struct bfd_link_info *info) 13647 { 13648 bfd *ibfd = info->input_bfds; 13649 13650 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 13651 { 13652 asection *sec; 13653 struct elf_reloc_cookie cookie; 13654 13655 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 13656 continue; 13657 sec = ibfd->sections; 13658 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 13659 continue; 13660 13661 if (!init_reloc_cookie (&cookie, info, ibfd)) 13662 return FALSE; 13663 13664 for (sec = ibfd->sections; sec; sec = sec->next) 13665 { 13666 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry") 13667 && init_reloc_cookie_rels (&cookie, info, ibfd, sec)) 13668 { 13669 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie); 13670 fini_reloc_cookie_rels (&cookie, sec); 13671 } 13672 } 13673 } 13674 return TRUE; 13675 } 13676 13677 /* Do mark and sweep of unused sections. */ 13678 13679 bfd_boolean 13680 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info) 13681 { 13682 bfd_boolean ok = TRUE; 13683 bfd *sub; 13684 elf_gc_mark_hook_fn gc_mark_hook; 13685 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 13686 struct elf_link_hash_table *htab; 13687 13688 if (!bed->can_gc_sections 13689 || !is_elf_hash_table (info->hash)) 13690 { 13691 _bfd_error_handler(_("warning: gc-sections option ignored")); 13692 return TRUE; 13693 } 13694 13695 bed->gc_keep (info); 13696 htab = elf_hash_table (info); 13697 13698 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section 13699 at the .eh_frame section if we can mark the FDEs individually. */ 13700 for (sub = info->input_bfds; 13701 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL; 13702 sub = sub->link.next) 13703 { 13704 asection *sec; 13705 struct elf_reloc_cookie cookie; 13706 13707 sec = sub->sections; 13708 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 13709 continue; 13710 sec = bfd_get_section_by_name (sub, ".eh_frame"); 13711 while (sec && init_reloc_cookie_for_section (&cookie, info, sec)) 13712 { 13713 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie); 13714 if (elf_section_data (sec)->sec_info 13715 && (sec->flags & SEC_LINKER_CREATED) == 0) 13716 elf_eh_frame_section (sub) = sec; 13717 fini_reloc_cookie_for_section (&cookie, sec); 13718 sec = bfd_get_next_section_by_name (NULL, sec); 13719 } 13720 } 13721 13722 /* Apply transitive closure to the vtable entry usage info. */ 13723 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok); 13724 if (!ok) 13725 return FALSE; 13726 13727 /* Kill the vtable relocations that were not used. */ 13728 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok); 13729 if (!ok) 13730 return FALSE; 13731 13732 /* Mark dynamically referenced symbols. */ 13733 if (htab->dynamic_sections_created || info->gc_keep_exported) 13734 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info); 13735 13736 /* Grovel through relocs to find out who stays ... */ 13737 gc_mark_hook = bed->gc_mark_hook; 13738 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 13739 { 13740 asection *o; 13741 13742 if (bfd_get_flavour (sub) != bfd_target_elf_flavour 13743 || elf_object_id (sub) != elf_hash_table_id (htab) 13744 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) 13745 continue; 13746 13747 o = sub->sections; 13748 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 13749 continue; 13750 13751 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep). 13752 Also treat note sections as a root, if the section is not part 13753 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as 13754 well as FINI_ARRAY sections for ld -r. */ 13755 for (o = sub->sections; o != NULL; o = o->next) 13756 if (!o->gc_mark 13757 && (o->flags & SEC_EXCLUDE) == 0 13758 && ((o->flags & SEC_KEEP) != 0 13759 || (bfd_link_relocatable (info) 13760 && ((elf_section_data (o)->this_hdr.sh_type 13761 == SHT_PREINIT_ARRAY) 13762 || (elf_section_data (o)->this_hdr.sh_type 13763 == SHT_INIT_ARRAY) 13764 || (elf_section_data (o)->this_hdr.sh_type 13765 == SHT_FINI_ARRAY))) 13766 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE 13767 && elf_next_in_group (o) == NULL ))) 13768 { 13769 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) 13770 return FALSE; 13771 } 13772 } 13773 13774 /* Allow the backend to mark additional target specific sections. */ 13775 bed->gc_mark_extra_sections (info, gc_mark_hook); 13776 13777 /* ... and mark SEC_EXCLUDE for those that go. */ 13778 return elf_gc_sweep (abfd, info); 13779 } 13780 13781 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */ 13782 13783 bfd_boolean 13784 bfd_elf_gc_record_vtinherit (bfd *abfd, 13785 asection *sec, 13786 struct elf_link_hash_entry *h, 13787 bfd_vma offset) 13788 { 13789 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; 13790 struct elf_link_hash_entry **search, *child; 13791 size_t extsymcount; 13792 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 13793 13794 /* The sh_info field of the symtab header tells us where the 13795 external symbols start. We don't care about the local symbols at 13796 this point. */ 13797 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym; 13798 if (!elf_bad_symtab (abfd)) 13799 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; 13800 13801 sym_hashes = elf_sym_hashes (abfd); 13802 sym_hashes_end = sym_hashes + extsymcount; 13803 13804 /* Hunt down the child symbol, which is in this section at the same 13805 offset as the relocation. */ 13806 for (search = sym_hashes; search != sym_hashes_end; ++search) 13807 { 13808 if ((child = *search) != NULL 13809 && (child->root.type == bfd_link_hash_defined 13810 || child->root.type == bfd_link_hash_defweak) 13811 && child->root.u.def.section == sec 13812 && child->root.u.def.value == offset) 13813 goto win; 13814 } 13815 13816 /* xgettext:c-format */ 13817 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"), 13818 abfd, sec, (uint64_t) offset); 13819 bfd_set_error (bfd_error_invalid_operation); 13820 return FALSE; 13821 13822 win: 13823 if (!child->u2.vtable) 13824 { 13825 child->u2.vtable = ((struct elf_link_virtual_table_entry *) 13826 bfd_zalloc (abfd, sizeof (*child->u2.vtable))); 13827 if (!child->u2.vtable) 13828 return FALSE; 13829 } 13830 if (!h) 13831 { 13832 /* This *should* only be the absolute section. It could potentially 13833 be that someone has defined a non-global vtable though, which 13834 would be bad. It isn't worth paging in the local symbols to be 13835 sure though; that case should simply be handled by the assembler. */ 13836 13837 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1; 13838 } 13839 else 13840 child->u2.vtable->parent = h; 13841 13842 return TRUE; 13843 } 13844 13845 /* Called from check_relocs to record the existence of a VTENTRY reloc. */ 13846 13847 bfd_boolean 13848 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec, 13849 struct elf_link_hash_entry *h, 13850 bfd_vma addend) 13851 { 13852 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 13853 unsigned int log_file_align = bed->s->log_file_align; 13854 13855 if (!h) 13856 { 13857 /* xgettext:c-format */ 13858 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"), 13859 abfd, sec); 13860 bfd_set_error (bfd_error_bad_value); 13861 return FALSE; 13862 } 13863 13864 if (!h->u2.vtable) 13865 { 13866 h->u2.vtable = ((struct elf_link_virtual_table_entry *) 13867 bfd_zalloc (abfd, sizeof (*h->u2.vtable))); 13868 if (!h->u2.vtable) 13869 return FALSE; 13870 } 13871 13872 if (addend >= h->u2.vtable->size) 13873 { 13874 size_t size, bytes, file_align; 13875 bfd_boolean *ptr = h->u2.vtable->used; 13876 13877 /* While the symbol is undefined, we have to be prepared to handle 13878 a zero size. */ 13879 file_align = 1 << log_file_align; 13880 if (h->root.type == bfd_link_hash_undefined) 13881 size = addend + file_align; 13882 else 13883 { 13884 size = h->size; 13885 if (addend >= size) 13886 { 13887 /* Oops! We've got a reference past the defined end of 13888 the table. This is probably a bug -- shall we warn? */ 13889 size = addend + file_align; 13890 } 13891 } 13892 size = (size + file_align - 1) & -file_align; 13893 13894 /* Allocate one extra entry for use as a "done" flag for the 13895 consolidation pass. */ 13896 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean); 13897 13898 if (ptr) 13899 { 13900 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes); 13901 13902 if (ptr != NULL) 13903 { 13904 size_t oldbytes; 13905 13906 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1) 13907 * sizeof (bfd_boolean)); 13908 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes); 13909 } 13910 } 13911 else 13912 ptr = (bfd_boolean *) bfd_zmalloc (bytes); 13913 13914 if (ptr == NULL) 13915 return FALSE; 13916 13917 /* And arrange for that done flag to be at index -1. */ 13918 h->u2.vtable->used = ptr + 1; 13919 h->u2.vtable->size = size; 13920 } 13921 13922 h->u2.vtable->used[addend >> log_file_align] = TRUE; 13923 13924 return TRUE; 13925 } 13926 13927 /* Map an ELF section header flag to its corresponding string. */ 13928 typedef struct 13929 { 13930 char *flag_name; 13931 flagword flag_value; 13932 } elf_flags_to_name_table; 13933 13934 static elf_flags_to_name_table elf_flags_to_names [] = 13935 { 13936 { "SHF_WRITE", SHF_WRITE }, 13937 { "SHF_ALLOC", SHF_ALLOC }, 13938 { "SHF_EXECINSTR", SHF_EXECINSTR }, 13939 { "SHF_MERGE", SHF_MERGE }, 13940 { "SHF_STRINGS", SHF_STRINGS }, 13941 { "SHF_INFO_LINK", SHF_INFO_LINK}, 13942 { "SHF_LINK_ORDER", SHF_LINK_ORDER}, 13943 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING}, 13944 { "SHF_GROUP", SHF_GROUP }, 13945 { "SHF_TLS", SHF_TLS }, 13946 { "SHF_MASKOS", SHF_MASKOS }, 13947 { "SHF_EXCLUDE", SHF_EXCLUDE }, 13948 }; 13949 13950 /* Returns TRUE if the section is to be included, otherwise FALSE. */ 13951 bfd_boolean 13952 bfd_elf_lookup_section_flags (struct bfd_link_info *info, 13953 struct flag_info *flaginfo, 13954 asection *section) 13955 { 13956 const bfd_vma sh_flags = elf_section_flags (section); 13957 13958 if (!flaginfo->flags_initialized) 13959 { 13960 bfd *obfd = info->output_bfd; 13961 const struct elf_backend_data *bed = get_elf_backend_data (obfd); 13962 struct flag_info_list *tf = flaginfo->flag_list; 13963 int with_hex = 0; 13964 int without_hex = 0; 13965 13966 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next) 13967 { 13968 unsigned i; 13969 flagword (*lookup) (char *); 13970 13971 lookup = bed->elf_backend_lookup_section_flags_hook; 13972 if (lookup != NULL) 13973 { 13974 flagword hexval = (*lookup) ((char *) tf->name); 13975 13976 if (hexval != 0) 13977 { 13978 if (tf->with == with_flags) 13979 with_hex |= hexval; 13980 else if (tf->with == without_flags) 13981 without_hex |= hexval; 13982 tf->valid = TRUE; 13983 continue; 13984 } 13985 } 13986 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i) 13987 { 13988 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0) 13989 { 13990 if (tf->with == with_flags) 13991 with_hex |= elf_flags_to_names[i].flag_value; 13992 else if (tf->with == without_flags) 13993 without_hex |= elf_flags_to_names[i].flag_value; 13994 tf->valid = TRUE; 13995 break; 13996 } 13997 } 13998 if (!tf->valid) 13999 { 14000 info->callbacks->einfo 14001 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name); 14002 return FALSE; 14003 } 14004 } 14005 flaginfo->flags_initialized = TRUE; 14006 flaginfo->only_with_flags |= with_hex; 14007 flaginfo->not_with_flags |= without_hex; 14008 } 14009 14010 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags) 14011 return FALSE; 14012 14013 if ((flaginfo->not_with_flags & sh_flags) != 0) 14014 return FALSE; 14015 14016 return TRUE; 14017 } 14018 14019 struct alloc_got_off_arg { 14020 bfd_vma gotoff; 14021 struct bfd_link_info *info; 14022 }; 14023 14024 /* We need a special top-level link routine to convert got reference counts 14025 to real got offsets. */ 14026 14027 static bfd_boolean 14028 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg) 14029 { 14030 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg; 14031 bfd *obfd = gofarg->info->output_bfd; 14032 const struct elf_backend_data *bed = get_elf_backend_data (obfd); 14033 14034 if (h->got.refcount > 0) 14035 { 14036 h->got.offset = gofarg->gotoff; 14037 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0); 14038 } 14039 else 14040 h->got.offset = (bfd_vma) -1; 14041 14042 return TRUE; 14043 } 14044 14045 /* And an accompanying bit to work out final got entry offsets once 14046 we're done. Should be called from final_link. */ 14047 14048 bfd_boolean 14049 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd, 14050 struct bfd_link_info *info) 14051 { 14052 bfd *i; 14053 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14054 bfd_vma gotoff; 14055 struct alloc_got_off_arg gofarg; 14056 14057 BFD_ASSERT (abfd == info->output_bfd); 14058 14059 if (! is_elf_hash_table (info->hash)) 14060 return FALSE; 14061 14062 /* The GOT offset is relative to the .got section, but the GOT header is 14063 put into the .got.plt section, if the backend uses it. */ 14064 if (bed->want_got_plt) 14065 gotoff = 0; 14066 else 14067 gotoff = bed->got_header_size; 14068 14069 /* Do the local .got entries first. */ 14070 for (i = info->input_bfds; i; i = i->link.next) 14071 { 14072 bfd_signed_vma *local_got; 14073 size_t j, locsymcount; 14074 Elf_Internal_Shdr *symtab_hdr; 14075 14076 if (bfd_get_flavour (i) != bfd_target_elf_flavour) 14077 continue; 14078 14079 local_got = elf_local_got_refcounts (i); 14080 if (!local_got) 14081 continue; 14082 14083 symtab_hdr = &elf_tdata (i)->symtab_hdr; 14084 if (elf_bad_symtab (i)) 14085 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; 14086 else 14087 locsymcount = symtab_hdr->sh_info; 14088 14089 for (j = 0; j < locsymcount; ++j) 14090 { 14091 if (local_got[j] > 0) 14092 { 14093 local_got[j] = gotoff; 14094 gotoff += bed->got_elt_size (abfd, info, NULL, i, j); 14095 } 14096 else 14097 local_got[j] = (bfd_vma) -1; 14098 } 14099 } 14100 14101 /* Then the global .got entries. .plt refcounts are handled by 14102 adjust_dynamic_symbol */ 14103 gofarg.gotoff = gotoff; 14104 gofarg.info = info; 14105 elf_link_hash_traverse (elf_hash_table (info), 14106 elf_gc_allocate_got_offsets, 14107 &gofarg); 14108 return TRUE; 14109 } 14110 14111 /* Many folk need no more in the way of final link than this, once 14112 got entry reference counting is enabled. */ 14113 14114 bfd_boolean 14115 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info) 14116 { 14117 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info)) 14118 return FALSE; 14119 14120 /* Invoke the regular ELF backend linker to do all the work. */ 14121 return bfd_elf_final_link (abfd, info); 14122 } 14123 14124 bfd_boolean 14125 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie) 14126 { 14127 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie; 14128 14129 if (rcookie->bad_symtab) 14130 rcookie->rel = rcookie->rels; 14131 14132 for (; rcookie->rel < rcookie->relend; rcookie->rel++) 14133 { 14134 unsigned long r_symndx; 14135 14136 if (! rcookie->bad_symtab) 14137 if (rcookie->rel->r_offset > offset) 14138 return FALSE; 14139 if (rcookie->rel->r_offset != offset) 14140 continue; 14141 14142 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift; 14143 if (r_symndx == STN_UNDEF) 14144 return TRUE; 14145 14146 if (r_symndx >= rcookie->locsymcount 14147 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL) 14148 { 14149 struct elf_link_hash_entry *h; 14150 14151 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff]; 14152 14153 while (h->root.type == bfd_link_hash_indirect 14154 || h->root.type == bfd_link_hash_warning) 14155 h = (struct elf_link_hash_entry *) h->root.u.i.link; 14156 14157 if ((h->root.type == bfd_link_hash_defined 14158 || h->root.type == bfd_link_hash_defweak) 14159 && (h->root.u.def.section->owner != rcookie->abfd 14160 || h->root.u.def.section->kept_section != NULL 14161 || discarded_section (h->root.u.def.section))) 14162 return TRUE; 14163 } 14164 else 14165 { 14166 /* It's not a relocation against a global symbol, 14167 but it could be a relocation against a local 14168 symbol for a discarded section. */ 14169 asection *isec; 14170 Elf_Internal_Sym *isym; 14171 14172 /* Need to: get the symbol; get the section. */ 14173 isym = &rcookie->locsyms[r_symndx]; 14174 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx); 14175 if (isec != NULL 14176 && (isec->kept_section != NULL 14177 || discarded_section (isec))) 14178 return TRUE; 14179 } 14180 return FALSE; 14181 } 14182 return FALSE; 14183 } 14184 14185 /* Discard unneeded references to discarded sections. 14186 Returns -1 on error, 1 if any section's size was changed, 0 if 14187 nothing changed. This function assumes that the relocations are in 14188 sorted order, which is true for all known assemblers. */ 14189 14190 int 14191 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info) 14192 { 14193 struct elf_reloc_cookie cookie; 14194 asection *o; 14195 bfd *abfd; 14196 int changed = 0; 14197 14198 if (info->traditional_format 14199 || !is_elf_hash_table (info->hash)) 14200 return 0; 14201 14202 o = bfd_get_section_by_name (output_bfd, ".stab"); 14203 if (o != NULL) 14204 { 14205 asection *i; 14206 14207 for (i = o->map_head.s; i != NULL; i = i->map_head.s) 14208 { 14209 if (i->size == 0 14210 || i->reloc_count == 0 14211 || i->sec_info_type != SEC_INFO_TYPE_STABS) 14212 continue; 14213 14214 abfd = i->owner; 14215 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 14216 continue; 14217 14218 if (!init_reloc_cookie_for_section (&cookie, info, i)) 14219 return -1; 14220 14221 if (_bfd_discard_section_stabs (abfd, i, 14222 elf_section_data (i)->sec_info, 14223 bfd_elf_reloc_symbol_deleted_p, 14224 &cookie)) 14225 changed = 1; 14226 14227 fini_reloc_cookie_for_section (&cookie, i); 14228 } 14229 } 14230 14231 o = NULL; 14232 if (info->eh_frame_hdr_type != COMPACT_EH_HDR) 14233 o = bfd_get_section_by_name (output_bfd, ".eh_frame"); 14234 if (o != NULL) 14235 { 14236 asection *i; 14237 int eh_changed = 0; 14238 unsigned int eh_alignment; 14239 14240 for (i = o->map_head.s; i != NULL; i = i->map_head.s) 14241 { 14242 if (i->size == 0) 14243 continue; 14244 14245 abfd = i->owner; 14246 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 14247 continue; 14248 14249 if (!init_reloc_cookie_for_section (&cookie, info, i)) 14250 return -1; 14251 14252 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie); 14253 if (_bfd_elf_discard_section_eh_frame (abfd, info, i, 14254 bfd_elf_reloc_symbol_deleted_p, 14255 &cookie)) 14256 { 14257 eh_changed = 1; 14258 if (i->size != i->rawsize) 14259 changed = 1; 14260 } 14261 14262 fini_reloc_cookie_for_section (&cookie, i); 14263 } 14264 14265 eh_alignment = 1 << o->alignment_power; 14266 /* Skip over zero terminator, and prevent empty sections from 14267 adding alignment padding at the end. */ 14268 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s) 14269 if (i->size == 0) 14270 i->flags |= SEC_EXCLUDE; 14271 else if (i->size > 4) 14272 break; 14273 /* The last non-empty eh_frame section doesn't need padding. */ 14274 if (i != NULL) 14275 i = i->map_tail.s; 14276 /* Any prior sections must pad the last FDE out to the output 14277 section alignment. Otherwise we might have zero padding 14278 between sections, which would be seen as a terminator. */ 14279 for (; i != NULL; i = i->map_tail.s) 14280 if (i->size == 4) 14281 /* All but the last zero terminator should have been removed. */ 14282 BFD_FAIL (); 14283 else 14284 { 14285 bfd_size_type size 14286 = (i->size + eh_alignment - 1) & -eh_alignment; 14287 if (i->size != size) 14288 { 14289 i->size = size; 14290 changed = 1; 14291 eh_changed = 1; 14292 } 14293 } 14294 if (eh_changed) 14295 elf_link_hash_traverse (elf_hash_table (info), 14296 _bfd_elf_adjust_eh_frame_global_symbol, NULL); 14297 } 14298 14299 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) 14300 { 14301 const struct elf_backend_data *bed; 14302 asection *s; 14303 14304 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 14305 continue; 14306 s = abfd->sections; 14307 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 14308 continue; 14309 14310 bed = get_elf_backend_data (abfd); 14311 14312 if (bed->elf_backend_discard_info != NULL) 14313 { 14314 if (!init_reloc_cookie (&cookie, info, abfd)) 14315 return -1; 14316 14317 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info)) 14318 changed = 1; 14319 14320 fini_reloc_cookie (&cookie, abfd); 14321 } 14322 } 14323 14324 if (info->eh_frame_hdr_type == COMPACT_EH_HDR) 14325 _bfd_elf_end_eh_frame_parsing (info); 14326 14327 if (info->eh_frame_hdr_type 14328 && !bfd_link_relocatable (info) 14329 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info)) 14330 changed = 1; 14331 14332 return changed; 14333 } 14334 14335 bfd_boolean 14336 _bfd_elf_section_already_linked (bfd *abfd, 14337 asection *sec, 14338 struct bfd_link_info *info) 14339 { 14340 flagword flags; 14341 const char *name, *key; 14342 struct bfd_section_already_linked *l; 14343 struct bfd_section_already_linked_hash_entry *already_linked_list; 14344 14345 if (sec->output_section == bfd_abs_section_ptr) 14346 return FALSE; 14347 14348 flags = sec->flags; 14349 14350 /* Return if it isn't a linkonce section. A comdat group section 14351 also has SEC_LINK_ONCE set. */ 14352 if ((flags & SEC_LINK_ONCE) == 0) 14353 return FALSE; 14354 14355 /* Don't put group member sections on our list of already linked 14356 sections. They are handled as a group via their group section. */ 14357 if (elf_sec_group (sec) != NULL) 14358 return FALSE; 14359 14360 /* For a SHT_GROUP section, use the group signature as the key. */ 14361 name = sec->name; 14362 if ((flags & SEC_GROUP) != 0 14363 && elf_next_in_group (sec) != NULL 14364 && elf_group_name (elf_next_in_group (sec)) != NULL) 14365 key = elf_group_name (elf_next_in_group (sec)); 14366 else 14367 { 14368 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */ 14369 if (CONST_STRNEQ (name, ".gnu.linkonce.") 14370 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL) 14371 key++; 14372 else 14373 /* Must be a user linkonce section that doesn't follow gcc's 14374 naming convention. In this case we won't be matching 14375 single member groups. */ 14376 key = name; 14377 } 14378 14379 already_linked_list = bfd_section_already_linked_table_lookup (key); 14380 14381 for (l = already_linked_list->entry; l != NULL; l = l->next) 14382 { 14383 /* We may have 2 different types of sections on the list: group 14384 sections with a signature of <key> (<key> is some string), 14385 and linkonce sections named .gnu.linkonce.<type>.<key>. 14386 Match like sections. LTO plugin sections are an exception. 14387 They are always named .gnu.linkonce.t.<key> and match either 14388 type of section. */ 14389 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP) 14390 && ((flags & SEC_GROUP) != 0 14391 || strcmp (name, l->sec->name) == 0)) 14392 || (l->sec->owner->flags & BFD_PLUGIN) != 0) 14393 { 14394 /* The section has already been linked. See if we should 14395 issue a warning. */ 14396 if (!_bfd_handle_already_linked (sec, l, info)) 14397 return FALSE; 14398 14399 if (flags & SEC_GROUP) 14400 { 14401 asection *first = elf_next_in_group (sec); 14402 asection *s = first; 14403 14404 while (s != NULL) 14405 { 14406 s->output_section = bfd_abs_section_ptr; 14407 /* Record which group discards it. */ 14408 s->kept_section = l->sec; 14409 s = elf_next_in_group (s); 14410 /* These lists are circular. */ 14411 if (s == first) 14412 break; 14413 } 14414 } 14415 14416 return TRUE; 14417 } 14418 } 14419 14420 /* A single member comdat group section may be discarded by a 14421 linkonce section and vice versa. */ 14422 if ((flags & SEC_GROUP) != 0) 14423 { 14424 asection *first = elf_next_in_group (sec); 14425 14426 if (first != NULL && elf_next_in_group (first) == first) 14427 /* Check this single member group against linkonce sections. */ 14428 for (l = already_linked_list->entry; l != NULL; l = l->next) 14429 if ((l->sec->flags & SEC_GROUP) == 0 14430 && bfd_elf_match_symbols_in_sections (l->sec, first, info)) 14431 { 14432 first->output_section = bfd_abs_section_ptr; 14433 first->kept_section = l->sec; 14434 sec->output_section = bfd_abs_section_ptr; 14435 break; 14436 } 14437 } 14438 else 14439 /* Check this linkonce section against single member groups. */ 14440 for (l = already_linked_list->entry; l != NULL; l = l->next) 14441 if (l->sec->flags & SEC_GROUP) 14442 { 14443 asection *first = elf_next_in_group (l->sec); 14444 14445 if (first != NULL 14446 && elf_next_in_group (first) == first 14447 && bfd_elf_match_symbols_in_sections (first, sec, info)) 14448 { 14449 sec->output_section = bfd_abs_section_ptr; 14450 sec->kept_section = first; 14451 break; 14452 } 14453 } 14454 14455 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F' 14456 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4 14457 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce' 14458 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its 14459 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded 14460 but its `.gnu.linkonce.t.F' is discarded means we chose one-only 14461 `.gnu.linkonce.t.F' section from a different bfd not requiring any 14462 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded. 14463 The reverse order cannot happen as there is never a bfd with only the 14464 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not 14465 matter as here were are looking only for cross-bfd sections. */ 14466 14467 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r.")) 14468 for (l = already_linked_list->entry; l != NULL; l = l->next) 14469 if ((l->sec->flags & SEC_GROUP) == 0 14470 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t.")) 14471 { 14472 if (abfd != l->sec->owner) 14473 sec->output_section = bfd_abs_section_ptr; 14474 break; 14475 } 14476 14477 /* This is the first section with this name. Record it. */ 14478 if (!bfd_section_already_linked_table_insert (already_linked_list, sec)) 14479 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n")); 14480 return sec->output_section == bfd_abs_section_ptr; 14481 } 14482 14483 bfd_boolean 14484 _bfd_elf_common_definition (Elf_Internal_Sym *sym) 14485 { 14486 return sym->st_shndx == SHN_COMMON; 14487 } 14488 14489 unsigned int 14490 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED) 14491 { 14492 return SHN_COMMON; 14493 } 14494 14495 asection * 14496 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED) 14497 { 14498 return bfd_com_section_ptr; 14499 } 14500 14501 bfd_vma 14502 _bfd_elf_default_got_elt_size (bfd *abfd, 14503 struct bfd_link_info *info ATTRIBUTE_UNUSED, 14504 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED, 14505 bfd *ibfd ATTRIBUTE_UNUSED, 14506 unsigned long symndx ATTRIBUTE_UNUSED) 14507 { 14508 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14509 return bed->s->arch_size / 8; 14510 } 14511 14512 /* Routines to support the creation of dynamic relocs. */ 14513 14514 /* Returns the name of the dynamic reloc section associated with SEC. */ 14515 14516 static const char * 14517 get_dynamic_reloc_section_name (bfd * abfd, 14518 asection * sec, 14519 bfd_boolean is_rela) 14520 { 14521 char *name; 14522 const char *old_name = bfd_section_name (sec); 14523 const char *prefix = is_rela ? ".rela" : ".rel"; 14524 14525 if (old_name == NULL) 14526 return NULL; 14527 14528 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1); 14529 sprintf (name, "%s%s", prefix, old_name); 14530 14531 return name; 14532 } 14533 14534 /* Returns the dynamic reloc section associated with SEC. 14535 If necessary compute the name of the dynamic reloc section based 14536 on SEC's name (looked up in ABFD's string table) and the setting 14537 of IS_RELA. */ 14538 14539 asection * 14540 _bfd_elf_get_dynamic_reloc_section (bfd * abfd, 14541 asection * sec, 14542 bfd_boolean is_rela) 14543 { 14544 asection * reloc_sec = elf_section_data (sec)->sreloc; 14545 14546 if (reloc_sec == NULL) 14547 { 14548 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); 14549 14550 if (name != NULL) 14551 { 14552 reloc_sec = bfd_get_linker_section (abfd, name); 14553 14554 if (reloc_sec != NULL) 14555 elf_section_data (sec)->sreloc = reloc_sec; 14556 } 14557 } 14558 14559 return reloc_sec; 14560 } 14561 14562 /* Returns the dynamic reloc section associated with SEC. If the 14563 section does not exist it is created and attached to the DYNOBJ 14564 bfd and stored in the SRELOC field of SEC's elf_section_data 14565 structure. 14566 14567 ALIGNMENT is the alignment for the newly created section and 14568 IS_RELA defines whether the name should be .rela.<SEC's name> 14569 or .rel.<SEC's name>. The section name is looked up in the 14570 string table associated with ABFD. */ 14571 14572 asection * 14573 _bfd_elf_make_dynamic_reloc_section (asection *sec, 14574 bfd *dynobj, 14575 unsigned int alignment, 14576 bfd *abfd, 14577 bfd_boolean is_rela) 14578 { 14579 asection * reloc_sec = elf_section_data (sec)->sreloc; 14580 14581 if (reloc_sec == NULL) 14582 { 14583 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); 14584 14585 if (name == NULL) 14586 return NULL; 14587 14588 reloc_sec = bfd_get_linker_section (dynobj, name); 14589 14590 if (reloc_sec == NULL) 14591 { 14592 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY 14593 | SEC_IN_MEMORY | SEC_LINKER_CREATED); 14594 if ((sec->flags & SEC_ALLOC) != 0) 14595 flags |= SEC_ALLOC | SEC_LOAD; 14596 14597 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags); 14598 if (reloc_sec != NULL) 14599 { 14600 /* _bfd_elf_get_sec_type_attr chooses a section type by 14601 name. Override as it may be wrong, eg. for a user 14602 section named "auto" we'll get ".relauto" which is 14603 seen to be a .rela section. */ 14604 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL; 14605 if (!bfd_set_section_alignment (reloc_sec, alignment)) 14606 reloc_sec = NULL; 14607 } 14608 } 14609 14610 elf_section_data (sec)->sreloc = reloc_sec; 14611 } 14612 14613 return reloc_sec; 14614 } 14615 14616 /* Copy the ELF symbol type and other attributes for a linker script 14617 assignment from HSRC to HDEST. Generally this should be treated as 14618 if we found a strong non-dynamic definition for HDEST (except that 14619 ld ignores multiple definition errors). */ 14620 void 14621 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd, 14622 struct bfd_link_hash_entry *hdest, 14623 struct bfd_link_hash_entry *hsrc) 14624 { 14625 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest; 14626 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc; 14627 Elf_Internal_Sym isym; 14628 14629 ehdest->type = ehsrc->type; 14630 ehdest->target_internal = ehsrc->target_internal; 14631 14632 isym.st_other = ehsrc->other; 14633 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE); 14634 } 14635 14636 /* Append a RELA relocation REL to section S in BFD. */ 14637 14638 void 14639 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) 14640 { 14641 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14642 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); 14643 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size); 14644 bed->s->swap_reloca_out (abfd, rel, loc); 14645 } 14646 14647 /* Append a REL relocation REL to section S in BFD. */ 14648 14649 void 14650 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel) 14651 { 14652 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14653 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel); 14654 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size); 14655 bed->s->swap_reloc_out (abfd, rel, loc); 14656 } 14657 14658 /* Define __start, __stop, .startof. or .sizeof. symbol. */ 14659 14660 struct bfd_link_hash_entry * 14661 bfd_elf_define_start_stop (struct bfd_link_info *info, 14662 const char *symbol, asection *sec) 14663 { 14664 struct elf_link_hash_entry *h; 14665 14666 h = elf_link_hash_lookup (elf_hash_table (info), symbol, 14667 FALSE, FALSE, TRUE); 14668 if (h != NULL 14669 && (h->root.type == bfd_link_hash_undefined 14670 || h->root.type == bfd_link_hash_undefweak 14671 || ((h->ref_regular || h->def_dynamic) && !h->def_regular))) 14672 { 14673 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic; 14674 h->root.type = bfd_link_hash_defined; 14675 h->root.u.def.section = sec; 14676 h->root.u.def.value = 0; 14677 h->def_regular = 1; 14678 h->def_dynamic = 0; 14679 h->start_stop = 1; 14680 h->u2.start_stop_section = sec; 14681 if (symbol[0] == '.') 14682 { 14683 /* .startof. and .sizeof. symbols are local. */ 14684 const struct elf_backend_data *bed; 14685 bed = get_elf_backend_data (info->output_bfd); 14686 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 14687 } 14688 else 14689 { 14690 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) 14691 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED; 14692 if (was_dynamic) 14693 bfd_elf_link_record_dynamic_symbol (info, h); 14694 } 14695 return &h->root; 14696 } 14697 return NULL; 14698 } 14699