1 /* SPARC-specific support for 64-bit ELF 2 Copyright (C) 1993-2020 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 MA 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include <limits.h> 23 #include "bfd.h" 24 #include "libbfd.h" 25 #include "elf-bfd.h" 26 #include "elf/sparc.h" 27 #include "opcode/sparc.h" 28 #include "elfxx-sparc.h" 29 30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */ 31 #define MINUS_ONE (~ (bfd_vma) 0) 32 33 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA 34 section can represent up to two relocs, we must tell the user to allocate 35 more space. */ 36 37 static long 38 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec) 39 { 40 #if SIZEOF_LONG == SIZEOF_INT 41 if (sec->reloc_count >= LONG_MAX / 2 / sizeof (arelent *)) 42 { 43 bfd_set_error (bfd_error_file_too_big); 44 return -1; 45 } 46 #endif 47 return (sec->reloc_count * 2 + 1) * sizeof (arelent *); 48 } 49 50 static long 51 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd) 52 { 53 long ret = _bfd_elf_get_dynamic_reloc_upper_bound (abfd); 54 if (ret > LONG_MAX / 2) 55 { 56 bfd_set_error (bfd_error_file_too_big); 57 ret = -1; 58 } 59 else if (ret > 0) 60 ret *= 2; 61 return ret; 62 } 63 64 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of 65 them. We cannot use generic elf routines for this, because R_SPARC_OLO10 66 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations 67 for the same location, R_SPARC_LO10 and R_SPARC_13. */ 68 69 static bfd_boolean 70 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect, 71 Elf_Internal_Shdr *rel_hdr, 72 asymbol **symbols, bfd_boolean dynamic) 73 { 74 void * allocated = NULL; 75 bfd_byte *native_relocs; 76 arelent *relent; 77 unsigned int i; 78 int entsize; 79 bfd_size_type count; 80 arelent *relents; 81 82 allocated = bfd_malloc (rel_hdr->sh_size); 83 if (allocated == NULL) 84 goto error_return; 85 86 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0 87 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size) 88 goto error_return; 89 90 native_relocs = (bfd_byte *) allocated; 91 92 relents = asect->relocation + canon_reloc_count (asect); 93 94 entsize = rel_hdr->sh_entsize; 95 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela)); 96 97 count = rel_hdr->sh_size / entsize; 98 99 for (i = 0, relent = relents; i < count; 100 i++, relent++, native_relocs += entsize) 101 { 102 Elf_Internal_Rela rela; 103 unsigned int r_type; 104 105 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela); 106 107 /* The address of an ELF reloc is section relative for an object 108 file, and absolute for an executable file or shared library. 109 The address of a normal BFD reloc is always section relative, 110 and the address of a dynamic reloc is absolute.. */ 111 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic) 112 relent->address = rela.r_offset; 113 else 114 relent->address = rela.r_offset - asect->vma; 115 116 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF) 117 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; 118 else if (/* PR 17512: file: 996185f8. */ 119 ELF64_R_SYM (rela.r_info) > (dynamic 120 ? bfd_get_dynamic_symcount (abfd) 121 : bfd_get_symcount (abfd))) 122 { 123 _bfd_error_handler 124 /* xgettext:c-format */ 125 (_("%pB(%pA): relocation %d has invalid symbol index %ld"), 126 abfd, asect, i, (long) ELF64_R_SYM (rela.r_info)); 127 bfd_set_error (bfd_error_bad_value); 128 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; 129 } 130 else 131 { 132 asymbol **ps, *s; 133 134 ps = symbols + ELF64_R_SYM (rela.r_info) - 1; 135 s = *ps; 136 137 /* Canonicalize ELF section symbols. FIXME: Why? */ 138 if ((s->flags & BSF_SECTION_SYM) == 0) 139 relent->sym_ptr_ptr = ps; 140 else 141 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr; 142 } 143 144 relent->addend = rela.r_addend; 145 146 r_type = ELF64_R_TYPE_ID (rela.r_info); 147 if (r_type == R_SPARC_OLO10) 148 { 149 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, R_SPARC_LO10); 150 relent[1].address = relent->address; 151 relent++; 152 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; 153 relent->addend = ELF64_R_TYPE_DATA (rela.r_info); 154 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, R_SPARC_13); 155 } 156 else 157 { 158 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, r_type); 159 if (relent->howto == NULL) 160 goto error_return; 161 } 162 } 163 164 canon_reloc_count (asect) += relent - relents; 165 166 if (allocated != NULL) 167 free (allocated); 168 169 return TRUE; 170 171 error_return: 172 if (allocated != NULL) 173 free (allocated); 174 return FALSE; 175 } 176 177 /* Read in and swap the external relocs. */ 178 179 static bfd_boolean 180 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect, 181 asymbol **symbols, bfd_boolean dynamic) 182 { 183 struct bfd_elf_section_data * const d = elf_section_data (asect); 184 Elf_Internal_Shdr *rel_hdr; 185 Elf_Internal_Shdr *rel_hdr2; 186 bfd_size_type amt; 187 188 if (asect->relocation != NULL) 189 return TRUE; 190 191 if (! dynamic) 192 { 193 if ((asect->flags & SEC_RELOC) == 0 194 || asect->reloc_count == 0) 195 return TRUE; 196 197 rel_hdr = d->rel.hdr; 198 rel_hdr2 = d->rela.hdr; 199 200 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset) 201 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset)); 202 } 203 else 204 { 205 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this 206 case because relocations against this section may use the 207 dynamic symbol table, and in that case bfd_section_from_shdr 208 in elf.c does not update the RELOC_COUNT. */ 209 if (asect->size == 0) 210 return TRUE; 211 212 rel_hdr = &d->this_hdr; 213 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr); 214 rel_hdr2 = NULL; 215 } 216 217 amt = asect->reloc_count; 218 amt *= 2 * sizeof (arelent); 219 asect->relocation = (arelent *) bfd_alloc (abfd, amt); 220 if (asect->relocation == NULL) 221 return FALSE; 222 223 /* The elf64_sparc_slurp_one_reloc_table routine increments 224 canon_reloc_count. */ 225 canon_reloc_count (asect) = 0; 226 227 if (rel_hdr 228 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, 229 dynamic)) 230 return FALSE; 231 232 if (rel_hdr2 233 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols, 234 dynamic)) 235 return FALSE; 236 237 return TRUE; 238 } 239 240 /* Canonicalize the relocs. */ 241 242 static long 243 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section, 244 arelent **relptr, asymbol **symbols) 245 { 246 arelent *tblptr; 247 unsigned int i; 248 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 249 250 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE)) 251 return -1; 252 253 tblptr = section->relocation; 254 for (i = 0; i < canon_reloc_count (section); i++) 255 *relptr++ = tblptr++; 256 257 *relptr = NULL; 258 259 return canon_reloc_count (section); 260 } 261 262 263 /* Canonicalize the dynamic relocation entries. Note that we return 264 the dynamic relocations as a single block, although they are 265 actually associated with particular sections; the interface, which 266 was designed for SunOS style shared libraries, expects that there 267 is only one set of dynamic relocs. Any section that was actually 268 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses 269 the dynamic symbol table, is considered to be a dynamic reloc 270 section. */ 271 272 static long 273 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage, 274 asymbol **syms) 275 { 276 asection *s; 277 long ret; 278 279 if (elf_dynsymtab (abfd) == 0) 280 { 281 bfd_set_error (bfd_error_invalid_operation); 282 return -1; 283 } 284 285 ret = 0; 286 for (s = abfd->sections; s != NULL; s = s->next) 287 { 288 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) 289 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) 290 { 291 arelent *p; 292 long count, i; 293 294 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE)) 295 return -1; 296 count = canon_reloc_count (s); 297 p = s->relocation; 298 for (i = 0; i < count; i++) 299 *storage++ = p++; 300 ret += count; 301 } 302 } 303 304 *storage = NULL; 305 306 return ret; 307 } 308 309 /* Install a new set of internal relocs. */ 310 311 static void 312 elf64_sparc_set_reloc (bfd *abfd ATTRIBUTE_UNUSED, 313 asection *asect, 314 arelent **location, 315 unsigned int count) 316 { 317 asect->orelocation = location; 318 canon_reloc_count (asect) = count; 319 } 320 321 /* Write out the relocs. */ 322 323 static void 324 elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data) 325 { 326 bfd_boolean *failedp = (bfd_boolean *) data; 327 Elf_Internal_Shdr *rela_hdr; 328 bfd_vma addr_offset; 329 Elf64_External_Rela *outbound_relocas, *src_rela; 330 unsigned int idx, count; 331 asymbol *last_sym = 0; 332 int last_sym_idx = 0; 333 334 /* If we have already failed, don't do anything. */ 335 if (*failedp) 336 return; 337 338 if ((sec->flags & SEC_RELOC) == 0) 339 return; 340 341 /* The linker backend writes the relocs out itself, and sets the 342 reloc_count field to zero to inhibit writing them here. Also, 343 sometimes the SEC_RELOC flag gets set even when there aren't any 344 relocs. */ 345 if (canon_reloc_count (sec) == 0) 346 return; 347 348 /* We can combine two relocs that refer to the same address 349 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the 350 latter is R_SPARC_13 with no associated symbol. */ 351 count = 0; 352 for (idx = 0; idx < canon_reloc_count (sec); idx++) 353 { 354 bfd_vma addr; 355 356 ++count; 357 358 addr = sec->orelocation[idx]->address; 359 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10 360 && idx < canon_reloc_count (sec) - 1) 361 { 362 arelent *r = sec->orelocation[idx + 1]; 363 364 if (r->howto->type == R_SPARC_13 365 && r->address == addr 366 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section) 367 && (*r->sym_ptr_ptr)->value == 0) 368 ++idx; 369 } 370 } 371 372 rela_hdr = elf_section_data (sec)->rela.hdr; 373 374 rela_hdr->sh_size = rela_hdr->sh_entsize * count; 375 rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size); 376 if (rela_hdr->contents == NULL) 377 { 378 *failedp = TRUE; 379 return; 380 } 381 382 /* Figure out whether the relocations are RELA or REL relocations. */ 383 if (rela_hdr->sh_type != SHT_RELA) 384 abort (); 385 386 /* The address of an ELF reloc is section relative for an object 387 file, and absolute for an executable file or shared library. 388 The address of a BFD reloc is always section relative. */ 389 addr_offset = 0; 390 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) 391 addr_offset = sec->vma; 392 393 /* orelocation has the data, reloc_count has the count... */ 394 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents; 395 src_rela = outbound_relocas; 396 397 for (idx = 0; idx < canon_reloc_count (sec); idx++) 398 { 399 Elf_Internal_Rela dst_rela; 400 arelent *ptr; 401 asymbol *sym; 402 int n; 403 404 ptr = sec->orelocation[idx]; 405 sym = *ptr->sym_ptr_ptr; 406 if (sym == last_sym) 407 n = last_sym_idx; 408 else if (bfd_is_abs_section (sym->section) && sym->value == 0) 409 n = STN_UNDEF; 410 else 411 { 412 last_sym = sym; 413 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym); 414 if (n < 0) 415 { 416 *failedp = TRUE; 417 return; 418 } 419 last_sym_idx = n; 420 } 421 422 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL 423 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec 424 && ! _bfd_elf_validate_reloc (abfd, ptr)) 425 { 426 *failedp = TRUE; 427 return; 428 } 429 430 if (ptr->howto->type == R_SPARC_LO10 431 && idx < canon_reloc_count (sec) - 1) 432 { 433 arelent *r = sec->orelocation[idx + 1]; 434 435 if (r->howto->type == R_SPARC_13 436 && r->address == ptr->address 437 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section) 438 && (*r->sym_ptr_ptr)->value == 0) 439 { 440 idx++; 441 dst_rela.r_info 442 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend, 443 R_SPARC_OLO10)); 444 } 445 else 446 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10); 447 } 448 else 449 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type); 450 451 dst_rela.r_offset = ptr->address + addr_offset; 452 dst_rela.r_addend = ptr->addend; 453 454 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela); 455 ++src_rela; 456 } 457 } 458 459 /* Hook called by the linker routine which adds symbols from an object 460 file. We use it for STT_REGISTER symbols. */ 461 462 static bfd_boolean 463 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, 464 Elf_Internal_Sym *sym, const char **namep, 465 flagword *flagsp ATTRIBUTE_UNUSED, 466 asection **secp ATTRIBUTE_UNUSED, 467 bfd_vma *valp ATTRIBUTE_UNUSED) 468 { 469 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" }; 470 471 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER) 472 { 473 int reg; 474 struct _bfd_sparc_elf_app_reg *p; 475 476 reg = (int)sym->st_value; 477 switch (reg & ~1) 478 { 479 case 2: reg -= 2; break; 480 case 6: reg -= 4; break; 481 default: 482 _bfd_error_handler 483 (_("%pB: only registers %%g[2367] can be declared using STT_REGISTER"), 484 abfd); 485 return FALSE; 486 } 487 488 if (info->output_bfd->xvec != abfd->xvec 489 || (abfd->flags & DYNAMIC) != 0) 490 { 491 /* STT_REGISTER only works when linking an elf64_sparc object. 492 If STT_REGISTER comes from a dynamic object, don't put it into 493 the output bfd. The dynamic linker will recheck it. */ 494 *namep = NULL; 495 return TRUE; 496 } 497 498 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg; 499 500 if (p->name != NULL && strcmp (p->name, *namep)) 501 { 502 _bfd_error_handler 503 /* xgettext:c-format */ 504 (_("register %%g%d used incompatibly: %s in %pB," 505 " previously %s in %pB"), 506 (int) sym->st_value, **namep ? *namep : "#scratch", abfd, 507 *p->name ? p->name : "#scratch", p->abfd); 508 return FALSE; 509 } 510 511 if (p->name == NULL) 512 { 513 if (**namep) 514 { 515 struct elf_link_hash_entry *h; 516 517 h = (struct elf_link_hash_entry *) 518 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE); 519 520 if (h != NULL) 521 { 522 unsigned char type = h->type; 523 524 if (type > STT_FUNC) 525 type = 0; 526 _bfd_error_handler 527 /* xgettext:c-format */ 528 (_("symbol `%s' has differing types: REGISTER in %pB," 529 " previously %s in %pB"), 530 *namep, abfd, stt_types[type], p->abfd); 531 return FALSE; 532 } 533 534 p->name = bfd_hash_allocate (&info->hash->table, 535 strlen (*namep) + 1); 536 if (!p->name) 537 return FALSE; 538 539 strcpy (p->name, *namep); 540 } 541 else 542 p->name = ""; 543 p->bind = ELF_ST_BIND (sym->st_info); 544 p->abfd = abfd; 545 p->shndx = sym->st_shndx; 546 } 547 else 548 { 549 if (p->bind == STB_WEAK 550 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL) 551 { 552 p->bind = STB_GLOBAL; 553 p->abfd = abfd; 554 } 555 } 556 *namep = NULL; 557 return TRUE; 558 } 559 else if (*namep && **namep 560 && info->output_bfd->xvec == abfd->xvec) 561 { 562 int i; 563 struct _bfd_sparc_elf_app_reg *p; 564 565 p = _bfd_sparc_elf_hash_table(info)->app_regs; 566 for (i = 0; i < 4; i++, p++) 567 if (p->name != NULL && ! strcmp (p->name, *namep)) 568 { 569 unsigned char type = ELF_ST_TYPE (sym->st_info); 570 571 if (type > STT_FUNC) 572 type = 0; 573 _bfd_error_handler 574 /* xgettext:c-format */ 575 (_("Symbol `%s' has differing types: %s in %pB," 576 " previously REGISTER in %pB"), 577 *namep, stt_types[type], abfd, p->abfd); 578 return FALSE; 579 } 580 } 581 return TRUE; 582 } 583 584 /* This function takes care of emitting STT_REGISTER symbols 585 which we cannot easily keep in the symbol hash table. */ 586 587 static bfd_boolean 588 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED, 589 struct bfd_link_info *info, 590 void * flaginfo, 591 int (*func) (void *, const char *, 592 Elf_Internal_Sym *, 593 asection *, 594 struct elf_link_hash_entry *)) 595 { 596 int reg; 597 struct _bfd_sparc_elf_app_reg *app_regs = 598 _bfd_sparc_elf_hash_table(info)->app_regs; 599 Elf_Internal_Sym sym; 600 601 for (reg = 0; reg < 4; reg++) 602 if (app_regs [reg].name != NULL) 603 { 604 if (info->strip == strip_some 605 && bfd_hash_lookup (info->keep_hash, 606 app_regs [reg].name, 607 FALSE, FALSE) == NULL) 608 continue; 609 610 sym.st_value = reg < 2 ? reg + 2 : reg + 4; 611 sym.st_size = 0; 612 sym.st_other = 0; 613 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER); 614 sym.st_shndx = app_regs [reg].shndx; 615 sym.st_target_internal = 0; 616 if ((*func) (flaginfo, app_regs [reg].name, &sym, 617 sym.st_shndx == SHN_ABS 618 ? bfd_abs_section_ptr : bfd_und_section_ptr, 619 NULL) != 1) 620 return FALSE; 621 } 622 623 return TRUE; 624 } 625 626 static int 627 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type) 628 { 629 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER) 630 return STT_REGISTER; 631 else 632 return type; 633 } 634 635 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL 636 even in SHN_UNDEF section. */ 637 638 static void 639 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym) 640 { 641 elf_symbol_type *elfsym; 642 643 elfsym = (elf_symbol_type *) asym; 644 if (elfsym->internal_elf_sym.st_info 645 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER)) 646 { 647 asym->flags |= BSF_GLOBAL; 648 } 649 } 650 651 652 /* Functions for dealing with the e_flags field. */ 653 654 /* Merge backend specific data from an object file to the output 655 object file when linking. */ 656 657 static bfd_boolean 658 elf64_sparc_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) 659 { 660 bfd *obfd = info->output_bfd; 661 bfd_boolean error; 662 flagword new_flags, old_flags; 663 int new_mm, old_mm; 664 665 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 666 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 667 return TRUE; 668 669 new_flags = elf_elfheader (ibfd)->e_flags; 670 old_flags = elf_elfheader (obfd)->e_flags; 671 672 if (!elf_flags_init (obfd)) /* First call, no flags set */ 673 { 674 elf_flags_init (obfd) = TRUE; 675 elf_elfheader (obfd)->e_flags = new_flags; 676 } 677 678 else if (new_flags == old_flags) /* Compatible flags are ok */ 679 ; 680 681 else /* Incompatible flags */ 682 { 683 error = FALSE; 684 685 #define EF_SPARC_ISA_EXTENSIONS \ 686 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1) 687 688 if ((ibfd->flags & DYNAMIC) != 0) 689 { 690 /* We don't want dynamic objects memory ordering and 691 architecture to have any role. That's what dynamic linker 692 should do. */ 693 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS); 694 new_flags |= (old_flags 695 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS)); 696 } 697 else 698 { 699 /* Choose the highest architecture requirements. */ 700 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS); 701 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS); 702 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3)) 703 && (old_flags & EF_SPARC_HAL_R1)) 704 { 705 error = TRUE; 706 _bfd_error_handler 707 (_("%pB: linking UltraSPARC specific with HAL specific code"), 708 ibfd); 709 } 710 /* Choose the most restrictive memory ordering. */ 711 old_mm = (old_flags & EF_SPARCV9_MM); 712 new_mm = (new_flags & EF_SPARCV9_MM); 713 old_flags &= ~EF_SPARCV9_MM; 714 new_flags &= ~EF_SPARCV9_MM; 715 if (new_mm < old_mm) 716 old_mm = new_mm; 717 old_flags |= old_mm; 718 new_flags |= old_mm; 719 } 720 721 /* Warn about any other mismatches */ 722 if (new_flags != old_flags) 723 { 724 error = TRUE; 725 _bfd_error_handler 726 /* xgettext:c-format */ 727 (_("%pB: uses different e_flags (%#x) fields than previous modules (%#x)"), 728 ibfd, new_flags, old_flags); 729 } 730 731 elf_elfheader (obfd)->e_flags = old_flags; 732 733 if (error) 734 { 735 bfd_set_error (bfd_error_bad_value); 736 return FALSE; 737 } 738 } 739 return _bfd_sparc_elf_merge_private_bfd_data (ibfd, info); 740 } 741 742 /* MARCO: Set the correct entry size for the .stab section. */ 743 744 static bfd_boolean 745 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED, 746 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED, 747 asection *sec) 748 { 749 const char *name; 750 751 name = bfd_section_name (sec); 752 753 if (strcmp (name, ".stab") == 0) 754 { 755 /* Even in the 64bit case the stab entries are only 12 bytes long. */ 756 elf_section_data (sec)->this_hdr.sh_entsize = 12; 757 } 758 759 return TRUE; 760 } 761 762 /* Print a STT_REGISTER symbol to file FILE. */ 763 764 static const char * 765 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep, 766 asymbol *symbol) 767 { 768 FILE *file = (FILE *) filep; 769 int reg, type; 770 771 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info) 772 != STT_REGISTER) 773 return NULL; 774 775 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value; 776 type = symbol->flags; 777 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "", 778 ((type & BSF_LOCAL) 779 ? (type & BSF_GLOBAL) ? '!' : 'l' 780 : (type & BSF_GLOBAL) ? 'g' : ' '), 781 (type & BSF_WEAK) ? 'w' : ' '); 782 if (symbol->name == NULL || symbol->name [0] == '\0') 783 return "#scratch"; 784 else 785 return symbol->name; 786 } 787 788 /* Used to decide how to sort relocs in an optimal manner for the 789 dynamic linker, before writing them out. */ 790 791 static enum elf_reloc_type_class 792 elf64_sparc_reloc_type_class (const struct bfd_link_info *info, 793 const asection *rel_sec ATTRIBUTE_UNUSED, 794 const Elf_Internal_Rela *rela) 795 { 796 bfd *abfd = info->output_bfd; 797 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 798 struct _bfd_sparc_elf_link_hash_table *htab 799 = _bfd_sparc_elf_hash_table (info); 800 BFD_ASSERT (htab != NULL); 801 802 if (htab->elf.dynsym != NULL 803 && htab->elf.dynsym->contents != NULL) 804 { 805 /* Check relocation against STT_GNU_IFUNC symbol if there are 806 dynamic symbols. */ 807 unsigned long r_symndx = htab->r_symndx (rela->r_info); 808 if (r_symndx != STN_UNDEF) 809 { 810 Elf_Internal_Sym sym; 811 if (!bed->s->swap_symbol_in (abfd, 812 (htab->elf.dynsym->contents 813 + r_symndx * bed->s->sizeof_sym), 814 0, &sym)) 815 abort (); 816 817 if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC) 818 return reloc_class_ifunc; 819 } 820 } 821 822 switch ((int) ELF64_R_TYPE (rela->r_info)) 823 { 824 case R_SPARC_IRELATIVE: 825 return reloc_class_ifunc; 826 case R_SPARC_RELATIVE: 827 return reloc_class_relative; 828 case R_SPARC_JMP_SLOT: 829 return reloc_class_plt; 830 case R_SPARC_COPY: 831 return reloc_class_copy; 832 default: 833 return reloc_class_normal; 834 } 835 } 836 837 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in 838 standard ELF, because R_SPARC_OLO10 has secondary addend in 839 ELF64_R_TYPE_DATA field. This structure is used to redirect the 840 relocation handling routines. */ 841 842 const struct elf_size_info elf64_sparc_size_info = 843 { 844 sizeof (Elf64_External_Ehdr), 845 sizeof (Elf64_External_Phdr), 846 sizeof (Elf64_External_Shdr), 847 sizeof (Elf64_External_Rel), 848 sizeof (Elf64_External_Rela), 849 sizeof (Elf64_External_Sym), 850 sizeof (Elf64_External_Dyn), 851 sizeof (Elf_External_Note), 852 4, /* hash-table entry size. */ 853 /* Internal relocations per external relocations. 854 For link purposes we use just 1 internal per 855 1 external, for assembly and slurp symbol table 856 we use 2. */ 857 1, 858 64, /* arch_size. */ 859 3, /* log_file_align. */ 860 ELFCLASS64, 861 EV_CURRENT, 862 bfd_elf64_write_out_phdrs, 863 bfd_elf64_write_shdrs_and_ehdr, 864 bfd_elf64_checksum_contents, 865 elf64_sparc_write_relocs, 866 bfd_elf64_swap_symbol_in, 867 bfd_elf64_swap_symbol_out, 868 elf64_sparc_slurp_reloc_table, 869 bfd_elf64_slurp_symbol_table, 870 bfd_elf64_swap_dyn_in, 871 bfd_elf64_swap_dyn_out, 872 bfd_elf64_swap_reloc_in, 873 bfd_elf64_swap_reloc_out, 874 bfd_elf64_swap_reloca_in, 875 bfd_elf64_swap_reloca_out 876 }; 877 878 #define TARGET_BIG_SYM sparc_elf64_vec 879 #define TARGET_BIG_NAME "elf64-sparc" 880 #define ELF_ARCH bfd_arch_sparc 881 #define ELF_MAXPAGESIZE 0x100000 882 #define ELF_COMMONPAGESIZE 0x2000 883 884 /* This is the official ABI value. */ 885 #define ELF_MACHINE_CODE EM_SPARCV9 886 887 /* This is the value that we used before the ABI was released. */ 888 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9 889 890 #define elf_backend_reloc_type_class \ 891 elf64_sparc_reloc_type_class 892 #define bfd_elf64_get_reloc_upper_bound \ 893 elf64_sparc_get_reloc_upper_bound 894 #define bfd_elf64_get_dynamic_reloc_upper_bound \ 895 elf64_sparc_get_dynamic_reloc_upper_bound 896 #define bfd_elf64_canonicalize_reloc \ 897 elf64_sparc_canonicalize_reloc 898 #define bfd_elf64_canonicalize_dynamic_reloc \ 899 elf64_sparc_canonicalize_dynamic_reloc 900 #define bfd_elf64_set_reloc \ 901 elf64_sparc_set_reloc 902 #define elf_backend_add_symbol_hook \ 903 elf64_sparc_add_symbol_hook 904 #define elf_backend_get_symbol_type \ 905 elf64_sparc_get_symbol_type 906 #define elf_backend_symbol_processing \ 907 elf64_sparc_symbol_processing 908 #define elf_backend_print_symbol_all \ 909 elf64_sparc_print_symbol_all 910 #define elf_backend_output_arch_syms \ 911 elf64_sparc_output_arch_syms 912 #define bfd_elf64_bfd_merge_private_bfd_data \ 913 elf64_sparc_merge_private_bfd_data 914 #define elf_backend_fake_sections \ 915 elf64_sparc_fake_sections 916 #define elf_backend_size_info \ 917 elf64_sparc_size_info 918 919 #define elf_backend_plt_sym_val \ 920 _bfd_sparc_elf_plt_sym_val 921 #define bfd_elf64_bfd_link_hash_table_create \ 922 _bfd_sparc_elf_link_hash_table_create 923 #define elf_info_to_howto \ 924 _bfd_sparc_elf_info_to_howto 925 #define elf_backend_copy_indirect_symbol \ 926 _bfd_sparc_elf_copy_indirect_symbol 927 #define bfd_elf64_bfd_reloc_type_lookup \ 928 _bfd_sparc_elf_reloc_type_lookup 929 #define bfd_elf64_bfd_reloc_name_lookup \ 930 _bfd_sparc_elf_reloc_name_lookup 931 #define bfd_elf64_bfd_relax_section \ 932 _bfd_sparc_elf_relax_section 933 #define bfd_elf64_new_section_hook \ 934 _bfd_sparc_elf_new_section_hook 935 936 #define elf_backend_create_dynamic_sections \ 937 _bfd_sparc_elf_create_dynamic_sections 938 #define elf_backend_relocs_compatible \ 939 _bfd_elf_relocs_compatible 940 #define elf_backend_check_relocs \ 941 _bfd_sparc_elf_check_relocs 942 #define elf_backend_adjust_dynamic_symbol \ 943 _bfd_sparc_elf_adjust_dynamic_symbol 944 #define elf_backend_omit_section_dynsym \ 945 _bfd_sparc_elf_omit_section_dynsym 946 #define elf_backend_size_dynamic_sections \ 947 _bfd_sparc_elf_size_dynamic_sections 948 #define elf_backend_relocate_section \ 949 _bfd_sparc_elf_relocate_section 950 #define elf_backend_finish_dynamic_symbol \ 951 _bfd_sparc_elf_finish_dynamic_symbol 952 #define elf_backend_finish_dynamic_sections \ 953 _bfd_sparc_elf_finish_dynamic_sections 954 #define elf_backend_fixup_symbol \ 955 _bfd_sparc_elf_fixup_symbol 956 957 #define bfd_elf64_mkobject \ 958 _bfd_sparc_elf_mkobject 959 #define elf_backend_object_p \ 960 _bfd_sparc_elf_object_p 961 #define elf_backend_gc_mark_hook \ 962 _bfd_sparc_elf_gc_mark_hook 963 #define elf_backend_init_index_section \ 964 _bfd_elf_init_1_index_section 965 966 #define elf_backend_can_gc_sections 1 967 #define elf_backend_can_refcount 1 968 #define elf_backend_want_got_plt 0 969 #define elf_backend_plt_readonly 0 970 #define elf_backend_want_plt_sym 1 971 #define elf_backend_got_header_size 8 972 #define elf_backend_want_dynrelro 1 973 #define elf_backend_rela_normal 1 974 975 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */ 976 #define elf_backend_plt_alignment 8 977 978 #include "elf64-target.h" 979 980 /* FreeBSD support */ 981 #undef TARGET_BIG_SYM 982 #define TARGET_BIG_SYM sparc_elf64_fbsd_vec 983 #undef TARGET_BIG_NAME 984 #define TARGET_BIG_NAME "elf64-sparc-freebsd" 985 #undef ELF_OSABI 986 #define ELF_OSABI ELFOSABI_FREEBSD 987 988 #undef elf64_bed 989 #define elf64_bed elf64_sparc_fbsd_bed 990 991 #include "elf64-target.h" 992 993 /* Solaris 2. */ 994 995 #undef TARGET_BIG_SYM 996 #define TARGET_BIG_SYM sparc_elf64_sol2_vec 997 #undef TARGET_BIG_NAME 998 #define TARGET_BIG_NAME "elf64-sparc-sol2" 999 1000 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE 1001 objects won't be recognized. */ 1002 #undef ELF_OSABI 1003 1004 #undef elf64_bed 1005 #define elf64_bed elf64_sparc_sol2_bed 1006 1007 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte 1008 boundary. */ 1009 #undef elf_backend_static_tls_alignment 1010 #define elf_backend_static_tls_alignment 16 1011 1012 #include "elf64-target.h" 1013