1 /* MMIX-specific support for 64-bit ELF. 2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009, 2010, 2011, 3 2012 4 Free Software Foundation, Inc. 5 Contributed by Hans-Peter Nilsson <hp@bitrange.com> 6 7 This file is part of BFD, the Binary File Descriptor library. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 22 MA 02110-1301, USA. */ 23 24 25 /* No specific ABI or "processor-specific supplement" defined. */ 26 27 /* TODO: 28 - "Traditional" linker relaxation (shrinking whole sections). 29 - Merge reloc stubs jumping to same location. 30 - GETA stub relaxation (call a stub for out of range new 31 R_MMIX_GETA_STUBBABLE). */ 32 33 #include "sysdep.h" 34 #include "bfd.h" 35 #include "libbfd.h" 36 #include "elf-bfd.h" 37 #include "elf/mmix.h" 38 #include "opcode/mmix.h" 39 40 #define MINUS_ONE (((bfd_vma) 0) - 1) 41 42 #define MAX_PUSHJ_STUB_SIZE (5 * 4) 43 44 /* Put these everywhere in new code. */ 45 #define FATAL_DEBUG \ 46 _bfd_abort (__FILE__, __LINE__, \ 47 "Internal: Non-debugged code (test-case missing)") 48 49 #define BAD_CASE(x) \ 50 _bfd_abort (__FILE__, __LINE__, \ 51 "bad case for " #x) 52 53 struct _mmix_elf_section_data 54 { 55 struct bfd_elf_section_data elf; 56 union 57 { 58 struct bpo_reloc_section_info *reloc; 59 struct bpo_greg_section_info *greg; 60 } bpo; 61 62 struct pushj_stub_info 63 { 64 /* Maximum number of stubs needed for this section. */ 65 bfd_size_type n_pushj_relocs; 66 67 /* Size of stubs after a mmix_elf_relax_section round. */ 68 bfd_size_type stubs_size_sum; 69 70 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum 71 of these. Allocated in mmix_elf_check_common_relocs. */ 72 bfd_size_type *stub_size; 73 74 /* Offset of next stub during relocation. Somewhat redundant with the 75 above: error coverage is easier and we don't have to reset the 76 stubs_size_sum for relocation. */ 77 bfd_size_type stub_offset; 78 } pjs; 79 80 /* Whether there has been a warning that this section could not be 81 linked due to a specific cause. FIXME: a way to access the 82 linker info or output section, then stuff the limiter guard 83 there. */ 84 bfd_boolean has_warned_bpo; 85 bfd_boolean has_warned_pushj; 86 }; 87 88 #define mmix_elf_section_data(sec) \ 89 ((struct _mmix_elf_section_data *) elf_section_data (sec)) 90 91 /* For each section containing a base-plus-offset (BPO) reloc, we attach 92 this struct as mmix_elf_section_data (section)->bpo, which is otherwise 93 NULL. */ 94 struct bpo_reloc_section_info 95 { 96 /* The base is 1; this is the first number in this section. */ 97 size_t first_base_plus_offset_reloc; 98 99 /* Number of BPO-relocs in this section. */ 100 size_t n_bpo_relocs_this_section; 101 102 /* Running index, used at relocation time. */ 103 size_t bpo_index; 104 105 /* We don't have access to the bfd_link_info struct in 106 mmix_final_link_relocate. What we really want to get at is the 107 global single struct greg_relocation, so we stash it here. */ 108 asection *bpo_greg_section; 109 }; 110 111 /* Helper struct (in global context) for the one below. 112 There's one of these created for every BPO reloc. */ 113 struct bpo_reloc_request 114 { 115 bfd_vma value; 116 117 /* Valid after relaxation. The base is 0; the first register number 118 must be added. The offset is in range 0..255. */ 119 size_t regindex; 120 size_t offset; 121 122 /* The order number for this BPO reloc, corresponding to the order in 123 which BPO relocs were found. Used to create an index after reloc 124 requests are sorted. */ 125 size_t bpo_reloc_no; 126 127 /* Set when the value is computed. Better than coding "guard values" 128 into the other members. Is FALSE only for BPO relocs in a GC:ed 129 section. */ 130 bfd_boolean valid; 131 }; 132 133 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated 134 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME), 135 which is linked into the register contents section 136 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the 137 linker; using the same hook as for usual with BPO relocs does not 138 collide. */ 139 struct bpo_greg_section_info 140 { 141 /* After GC, this reflects the number of remaining, non-excluded 142 BPO-relocs. */ 143 size_t n_bpo_relocs; 144 145 /* This is the number of allocated bpo_reloc_requests; the size of 146 sorted_indexes. Valid after the check.*relocs functions are called 147 for all incoming sections. It includes the number of BPO relocs in 148 sections that were GC:ed. */ 149 size_t n_max_bpo_relocs; 150 151 /* A counter used to find out when to fold the BPO gregs, since we 152 don't have a single "after-relaxation" hook. */ 153 size_t n_remaining_bpo_relocs_this_relaxation_round; 154 155 /* The number of linker-allocated GREGs resulting from BPO relocs. 156 This is an approximation after _bfd_mmix_before_linker_allocation 157 and supposedly accurate after mmix_elf_relax_section is called for 158 all incoming non-collected sections. */ 159 size_t n_allocated_bpo_gregs; 160 161 /* Index into reloc_request[], sorted on increasing "value", secondary 162 by increasing index for strict sorting order. */ 163 size_t *bpo_reloc_indexes; 164 165 /* An array of all relocations, with the "value" member filled in by 166 the relaxation function. */ 167 struct bpo_reloc_request *reloc_request; 168 }; 169 170 171 extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *); 172 173 extern void mmix_elf_symbol_processing (bfd *, asymbol *); 174 175 /* Only intended to be called from a debugger. */ 176 extern void mmix_dump_bpo_gregs 177 (struct bfd_link_info *, bfd_error_handler_type); 178 179 static void 180 mmix_set_relaxable_size (bfd *, asection *, void *); 181 static bfd_reloc_status_type 182 mmix_elf_reloc (bfd *, arelent *, asymbol *, void *, 183 asection *, bfd *, char **); 184 static bfd_reloc_status_type 185 mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma, 186 bfd_signed_vma, bfd_vma, const char *, asection *, 187 char **); 188 189 190 /* Watch out: this currently needs to have elements with the same index as 191 their R_MMIX_ number. */ 192 static reloc_howto_type elf_mmix_howto_table[] = 193 { 194 /* This reloc does nothing. */ 195 HOWTO (R_MMIX_NONE, /* type */ 196 0, /* rightshift */ 197 2, /* size (0 = byte, 1 = short, 2 = long) */ 198 32, /* bitsize */ 199 FALSE, /* pc_relative */ 200 0, /* bitpos */ 201 complain_overflow_bitfield, /* complain_on_overflow */ 202 bfd_elf_generic_reloc, /* special_function */ 203 "R_MMIX_NONE", /* name */ 204 FALSE, /* partial_inplace */ 205 0, /* src_mask */ 206 0, /* dst_mask */ 207 FALSE), /* pcrel_offset */ 208 209 /* An 8 bit absolute relocation. */ 210 HOWTO (R_MMIX_8, /* type */ 211 0, /* rightshift */ 212 0, /* size (0 = byte, 1 = short, 2 = long) */ 213 8, /* bitsize */ 214 FALSE, /* pc_relative */ 215 0, /* bitpos */ 216 complain_overflow_bitfield, /* complain_on_overflow */ 217 bfd_elf_generic_reloc, /* special_function */ 218 "R_MMIX_8", /* name */ 219 FALSE, /* partial_inplace */ 220 0, /* src_mask */ 221 0xff, /* dst_mask */ 222 FALSE), /* pcrel_offset */ 223 224 /* An 16 bit absolute relocation. */ 225 HOWTO (R_MMIX_16, /* type */ 226 0, /* rightshift */ 227 1, /* size (0 = byte, 1 = short, 2 = long) */ 228 16, /* bitsize */ 229 FALSE, /* pc_relative */ 230 0, /* bitpos */ 231 complain_overflow_bitfield, /* complain_on_overflow */ 232 bfd_elf_generic_reloc, /* special_function */ 233 "R_MMIX_16", /* name */ 234 FALSE, /* partial_inplace */ 235 0, /* src_mask */ 236 0xffff, /* dst_mask */ 237 FALSE), /* pcrel_offset */ 238 239 /* An 24 bit absolute relocation. */ 240 HOWTO (R_MMIX_24, /* type */ 241 0, /* rightshift */ 242 2, /* size (0 = byte, 1 = short, 2 = long) */ 243 24, /* bitsize */ 244 FALSE, /* pc_relative */ 245 0, /* bitpos */ 246 complain_overflow_bitfield, /* complain_on_overflow */ 247 bfd_elf_generic_reloc, /* special_function */ 248 "R_MMIX_24", /* name */ 249 FALSE, /* partial_inplace */ 250 ~0xffffff, /* src_mask */ 251 0xffffff, /* dst_mask */ 252 FALSE), /* pcrel_offset */ 253 254 /* A 32 bit absolute relocation. */ 255 HOWTO (R_MMIX_32, /* type */ 256 0, /* rightshift */ 257 2, /* size (0 = byte, 1 = short, 2 = long) */ 258 32, /* bitsize */ 259 FALSE, /* pc_relative */ 260 0, /* bitpos */ 261 complain_overflow_bitfield, /* complain_on_overflow */ 262 bfd_elf_generic_reloc, /* special_function */ 263 "R_MMIX_32", /* name */ 264 FALSE, /* partial_inplace */ 265 0, /* src_mask */ 266 0xffffffff, /* dst_mask */ 267 FALSE), /* pcrel_offset */ 268 269 /* 64 bit relocation. */ 270 HOWTO (R_MMIX_64, /* type */ 271 0, /* rightshift */ 272 4, /* size (0 = byte, 1 = short, 2 = long) */ 273 64, /* bitsize */ 274 FALSE, /* pc_relative */ 275 0, /* bitpos */ 276 complain_overflow_bitfield, /* complain_on_overflow */ 277 bfd_elf_generic_reloc, /* special_function */ 278 "R_MMIX_64", /* name */ 279 FALSE, /* partial_inplace */ 280 0, /* src_mask */ 281 MINUS_ONE, /* dst_mask */ 282 FALSE), /* pcrel_offset */ 283 284 /* An 8 bit PC-relative relocation. */ 285 HOWTO (R_MMIX_PC_8, /* type */ 286 0, /* rightshift */ 287 0, /* size (0 = byte, 1 = short, 2 = long) */ 288 8, /* bitsize */ 289 TRUE, /* pc_relative */ 290 0, /* bitpos */ 291 complain_overflow_bitfield, /* complain_on_overflow */ 292 bfd_elf_generic_reloc, /* special_function */ 293 "R_MMIX_PC_8", /* name */ 294 FALSE, /* partial_inplace */ 295 0, /* src_mask */ 296 0xff, /* dst_mask */ 297 TRUE), /* pcrel_offset */ 298 299 /* An 16 bit PC-relative relocation. */ 300 HOWTO (R_MMIX_PC_16, /* type */ 301 0, /* rightshift */ 302 1, /* size (0 = byte, 1 = short, 2 = long) */ 303 16, /* bitsize */ 304 TRUE, /* pc_relative */ 305 0, /* bitpos */ 306 complain_overflow_bitfield, /* complain_on_overflow */ 307 bfd_elf_generic_reloc, /* special_function */ 308 "R_MMIX_PC_16", /* name */ 309 FALSE, /* partial_inplace */ 310 0, /* src_mask */ 311 0xffff, /* dst_mask */ 312 TRUE), /* pcrel_offset */ 313 314 /* An 24 bit PC-relative relocation. */ 315 HOWTO (R_MMIX_PC_24, /* type */ 316 0, /* rightshift */ 317 2, /* size (0 = byte, 1 = short, 2 = long) */ 318 24, /* bitsize */ 319 TRUE, /* pc_relative */ 320 0, /* bitpos */ 321 complain_overflow_bitfield, /* complain_on_overflow */ 322 bfd_elf_generic_reloc, /* special_function */ 323 "R_MMIX_PC_24", /* name */ 324 FALSE, /* partial_inplace */ 325 ~0xffffff, /* src_mask */ 326 0xffffff, /* dst_mask */ 327 TRUE), /* pcrel_offset */ 328 329 /* A 32 bit absolute PC-relative relocation. */ 330 HOWTO (R_MMIX_PC_32, /* type */ 331 0, /* rightshift */ 332 2, /* size (0 = byte, 1 = short, 2 = long) */ 333 32, /* bitsize */ 334 TRUE, /* pc_relative */ 335 0, /* bitpos */ 336 complain_overflow_bitfield, /* complain_on_overflow */ 337 bfd_elf_generic_reloc, /* special_function */ 338 "R_MMIX_PC_32", /* name */ 339 FALSE, /* partial_inplace */ 340 0, /* src_mask */ 341 0xffffffff, /* dst_mask */ 342 TRUE), /* pcrel_offset */ 343 344 /* 64 bit PC-relative relocation. */ 345 HOWTO (R_MMIX_PC_64, /* type */ 346 0, /* rightshift */ 347 4, /* size (0 = byte, 1 = short, 2 = long) */ 348 64, /* bitsize */ 349 TRUE, /* pc_relative */ 350 0, /* bitpos */ 351 complain_overflow_bitfield, /* complain_on_overflow */ 352 bfd_elf_generic_reloc, /* special_function */ 353 "R_MMIX_PC_64", /* name */ 354 FALSE, /* partial_inplace */ 355 0, /* src_mask */ 356 MINUS_ONE, /* dst_mask */ 357 TRUE), /* pcrel_offset */ 358 359 /* GNU extension to record C++ vtable hierarchy. */ 360 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */ 361 0, /* rightshift */ 362 0, /* size (0 = byte, 1 = short, 2 = long) */ 363 0, /* bitsize */ 364 FALSE, /* pc_relative */ 365 0, /* bitpos */ 366 complain_overflow_dont, /* complain_on_overflow */ 367 NULL, /* special_function */ 368 "R_MMIX_GNU_VTINHERIT", /* name */ 369 FALSE, /* partial_inplace */ 370 0, /* src_mask */ 371 0, /* dst_mask */ 372 TRUE), /* pcrel_offset */ 373 374 /* GNU extension to record C++ vtable member usage. */ 375 HOWTO (R_MMIX_GNU_VTENTRY, /* type */ 376 0, /* rightshift */ 377 0, /* size (0 = byte, 1 = short, 2 = long) */ 378 0, /* bitsize */ 379 FALSE, /* pc_relative */ 380 0, /* bitpos */ 381 complain_overflow_dont, /* complain_on_overflow */ 382 _bfd_elf_rel_vtable_reloc_fn, /* special_function */ 383 "R_MMIX_GNU_VTENTRY", /* name */ 384 FALSE, /* partial_inplace */ 385 0, /* src_mask */ 386 0, /* dst_mask */ 387 FALSE), /* pcrel_offset */ 388 389 /* The GETA relocation is supposed to get any address that could 390 possibly be reached by the GETA instruction. It can silently expand 391 to get a 64-bit operand, but will complain if any of the two least 392 significant bits are set. The howto members reflect a simple GETA. */ 393 HOWTO (R_MMIX_GETA, /* type */ 394 2, /* rightshift */ 395 2, /* size (0 = byte, 1 = short, 2 = long) */ 396 19, /* bitsize */ 397 TRUE, /* pc_relative */ 398 0, /* bitpos */ 399 complain_overflow_signed, /* complain_on_overflow */ 400 mmix_elf_reloc, /* special_function */ 401 "R_MMIX_GETA", /* name */ 402 FALSE, /* partial_inplace */ 403 ~0x0100ffff, /* src_mask */ 404 0x0100ffff, /* dst_mask */ 405 TRUE), /* pcrel_offset */ 406 407 HOWTO (R_MMIX_GETA_1, /* type */ 408 2, /* rightshift */ 409 2, /* size (0 = byte, 1 = short, 2 = long) */ 410 19, /* bitsize */ 411 TRUE, /* pc_relative */ 412 0, /* bitpos */ 413 complain_overflow_signed, /* complain_on_overflow */ 414 mmix_elf_reloc, /* special_function */ 415 "R_MMIX_GETA_1", /* name */ 416 FALSE, /* partial_inplace */ 417 ~0x0100ffff, /* src_mask */ 418 0x0100ffff, /* dst_mask */ 419 TRUE), /* pcrel_offset */ 420 421 HOWTO (R_MMIX_GETA_2, /* type */ 422 2, /* rightshift */ 423 2, /* size (0 = byte, 1 = short, 2 = long) */ 424 19, /* bitsize */ 425 TRUE, /* pc_relative */ 426 0, /* bitpos */ 427 complain_overflow_signed, /* complain_on_overflow */ 428 mmix_elf_reloc, /* special_function */ 429 "R_MMIX_GETA_2", /* name */ 430 FALSE, /* partial_inplace */ 431 ~0x0100ffff, /* src_mask */ 432 0x0100ffff, /* dst_mask */ 433 TRUE), /* pcrel_offset */ 434 435 HOWTO (R_MMIX_GETA_3, /* type */ 436 2, /* rightshift */ 437 2, /* size (0 = byte, 1 = short, 2 = long) */ 438 19, /* bitsize */ 439 TRUE, /* pc_relative */ 440 0, /* bitpos */ 441 complain_overflow_signed, /* complain_on_overflow */ 442 mmix_elf_reloc, /* special_function */ 443 "R_MMIX_GETA_3", /* name */ 444 FALSE, /* partial_inplace */ 445 ~0x0100ffff, /* src_mask */ 446 0x0100ffff, /* dst_mask */ 447 TRUE), /* pcrel_offset */ 448 449 /* The conditional branches are supposed to reach any (code) address. 450 It can silently expand to a 64-bit operand, but will emit an error if 451 any of the two least significant bits are set. The howto members 452 reflect a simple branch. */ 453 HOWTO (R_MMIX_CBRANCH, /* type */ 454 2, /* rightshift */ 455 2, /* size (0 = byte, 1 = short, 2 = long) */ 456 19, /* bitsize */ 457 TRUE, /* pc_relative */ 458 0, /* bitpos */ 459 complain_overflow_signed, /* complain_on_overflow */ 460 mmix_elf_reloc, /* special_function */ 461 "R_MMIX_CBRANCH", /* name */ 462 FALSE, /* partial_inplace */ 463 ~0x0100ffff, /* src_mask */ 464 0x0100ffff, /* dst_mask */ 465 TRUE), /* pcrel_offset */ 466 467 HOWTO (R_MMIX_CBRANCH_J, /* type */ 468 2, /* rightshift */ 469 2, /* size (0 = byte, 1 = short, 2 = long) */ 470 19, /* bitsize */ 471 TRUE, /* pc_relative */ 472 0, /* bitpos */ 473 complain_overflow_signed, /* complain_on_overflow */ 474 mmix_elf_reloc, /* special_function */ 475 "R_MMIX_CBRANCH_J", /* name */ 476 FALSE, /* partial_inplace */ 477 ~0x0100ffff, /* src_mask */ 478 0x0100ffff, /* dst_mask */ 479 TRUE), /* pcrel_offset */ 480 481 HOWTO (R_MMIX_CBRANCH_1, /* type */ 482 2, /* rightshift */ 483 2, /* size (0 = byte, 1 = short, 2 = long) */ 484 19, /* bitsize */ 485 TRUE, /* pc_relative */ 486 0, /* bitpos */ 487 complain_overflow_signed, /* complain_on_overflow */ 488 mmix_elf_reloc, /* special_function */ 489 "R_MMIX_CBRANCH_1", /* name */ 490 FALSE, /* partial_inplace */ 491 ~0x0100ffff, /* src_mask */ 492 0x0100ffff, /* dst_mask */ 493 TRUE), /* pcrel_offset */ 494 495 HOWTO (R_MMIX_CBRANCH_2, /* type */ 496 2, /* rightshift */ 497 2, /* size (0 = byte, 1 = short, 2 = long) */ 498 19, /* bitsize */ 499 TRUE, /* pc_relative */ 500 0, /* bitpos */ 501 complain_overflow_signed, /* complain_on_overflow */ 502 mmix_elf_reloc, /* special_function */ 503 "R_MMIX_CBRANCH_2", /* name */ 504 FALSE, /* partial_inplace */ 505 ~0x0100ffff, /* src_mask */ 506 0x0100ffff, /* dst_mask */ 507 TRUE), /* pcrel_offset */ 508 509 HOWTO (R_MMIX_CBRANCH_3, /* type */ 510 2, /* rightshift */ 511 2, /* size (0 = byte, 1 = short, 2 = long) */ 512 19, /* bitsize */ 513 TRUE, /* pc_relative */ 514 0, /* bitpos */ 515 complain_overflow_signed, /* complain_on_overflow */ 516 mmix_elf_reloc, /* special_function */ 517 "R_MMIX_CBRANCH_3", /* name */ 518 FALSE, /* partial_inplace */ 519 ~0x0100ffff, /* src_mask */ 520 0x0100ffff, /* dst_mask */ 521 TRUE), /* pcrel_offset */ 522 523 /* The PUSHJ instruction can reach any (code) address, as long as it's 524 the beginning of a function (no usable restriction). It can silently 525 expand to a 64-bit operand, but will emit an error if any of the two 526 least significant bits are set. It can also expand into a call to a 527 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple 528 PUSHJ. */ 529 HOWTO (R_MMIX_PUSHJ, /* type */ 530 2, /* rightshift */ 531 2, /* size (0 = byte, 1 = short, 2 = long) */ 532 19, /* bitsize */ 533 TRUE, /* pc_relative */ 534 0, /* bitpos */ 535 complain_overflow_signed, /* complain_on_overflow */ 536 mmix_elf_reloc, /* special_function */ 537 "R_MMIX_PUSHJ", /* name */ 538 FALSE, /* partial_inplace */ 539 ~0x0100ffff, /* src_mask */ 540 0x0100ffff, /* dst_mask */ 541 TRUE), /* pcrel_offset */ 542 543 HOWTO (R_MMIX_PUSHJ_1, /* type */ 544 2, /* rightshift */ 545 2, /* size (0 = byte, 1 = short, 2 = long) */ 546 19, /* bitsize */ 547 TRUE, /* pc_relative */ 548 0, /* bitpos */ 549 complain_overflow_signed, /* complain_on_overflow */ 550 mmix_elf_reloc, /* special_function */ 551 "R_MMIX_PUSHJ_1", /* name */ 552 FALSE, /* partial_inplace */ 553 ~0x0100ffff, /* src_mask */ 554 0x0100ffff, /* dst_mask */ 555 TRUE), /* pcrel_offset */ 556 557 HOWTO (R_MMIX_PUSHJ_2, /* type */ 558 2, /* rightshift */ 559 2, /* size (0 = byte, 1 = short, 2 = long) */ 560 19, /* bitsize */ 561 TRUE, /* pc_relative */ 562 0, /* bitpos */ 563 complain_overflow_signed, /* complain_on_overflow */ 564 mmix_elf_reloc, /* special_function */ 565 "R_MMIX_PUSHJ_2", /* name */ 566 FALSE, /* partial_inplace */ 567 ~0x0100ffff, /* src_mask */ 568 0x0100ffff, /* dst_mask */ 569 TRUE), /* pcrel_offset */ 570 571 HOWTO (R_MMIX_PUSHJ_3, /* type */ 572 2, /* rightshift */ 573 2, /* size (0 = byte, 1 = short, 2 = long) */ 574 19, /* bitsize */ 575 TRUE, /* pc_relative */ 576 0, /* bitpos */ 577 complain_overflow_signed, /* complain_on_overflow */ 578 mmix_elf_reloc, /* special_function */ 579 "R_MMIX_PUSHJ_3", /* name */ 580 FALSE, /* partial_inplace */ 581 ~0x0100ffff, /* src_mask */ 582 0x0100ffff, /* dst_mask */ 583 TRUE), /* pcrel_offset */ 584 585 /* A JMP is supposed to reach any (code) address. By itself, it can 586 reach +-64M; the expansion can reach all 64 bits. Note that the 64M 587 limit is soon reached if you link the program in wildly different 588 memory segments. The howto members reflect a trivial JMP. */ 589 HOWTO (R_MMIX_JMP, /* type */ 590 2, /* rightshift */ 591 2, /* size (0 = byte, 1 = short, 2 = long) */ 592 27, /* bitsize */ 593 TRUE, /* pc_relative */ 594 0, /* bitpos */ 595 complain_overflow_signed, /* complain_on_overflow */ 596 mmix_elf_reloc, /* special_function */ 597 "R_MMIX_JMP", /* name */ 598 FALSE, /* partial_inplace */ 599 ~0x1ffffff, /* src_mask */ 600 0x1ffffff, /* dst_mask */ 601 TRUE), /* pcrel_offset */ 602 603 HOWTO (R_MMIX_JMP_1, /* type */ 604 2, /* rightshift */ 605 2, /* size (0 = byte, 1 = short, 2 = long) */ 606 27, /* bitsize */ 607 TRUE, /* pc_relative */ 608 0, /* bitpos */ 609 complain_overflow_signed, /* complain_on_overflow */ 610 mmix_elf_reloc, /* special_function */ 611 "R_MMIX_JMP_1", /* name */ 612 FALSE, /* partial_inplace */ 613 ~0x1ffffff, /* src_mask */ 614 0x1ffffff, /* dst_mask */ 615 TRUE), /* pcrel_offset */ 616 617 HOWTO (R_MMIX_JMP_2, /* type */ 618 2, /* rightshift */ 619 2, /* size (0 = byte, 1 = short, 2 = long) */ 620 27, /* bitsize */ 621 TRUE, /* pc_relative */ 622 0, /* bitpos */ 623 complain_overflow_signed, /* complain_on_overflow */ 624 mmix_elf_reloc, /* special_function */ 625 "R_MMIX_JMP_2", /* name */ 626 FALSE, /* partial_inplace */ 627 ~0x1ffffff, /* src_mask */ 628 0x1ffffff, /* dst_mask */ 629 TRUE), /* pcrel_offset */ 630 631 HOWTO (R_MMIX_JMP_3, /* type */ 632 2, /* rightshift */ 633 2, /* size (0 = byte, 1 = short, 2 = long) */ 634 27, /* bitsize */ 635 TRUE, /* pc_relative */ 636 0, /* bitpos */ 637 complain_overflow_signed, /* complain_on_overflow */ 638 mmix_elf_reloc, /* special_function */ 639 "R_MMIX_JMP_3", /* name */ 640 FALSE, /* partial_inplace */ 641 ~0x1ffffff, /* src_mask */ 642 0x1ffffff, /* dst_mask */ 643 TRUE), /* pcrel_offset */ 644 645 /* When we don't emit link-time-relaxable code from the assembler, or 646 when relaxation has done all it can do, these relocs are used. For 647 GETA/PUSHJ/branches. */ 648 HOWTO (R_MMIX_ADDR19, /* type */ 649 2, /* rightshift */ 650 2, /* size (0 = byte, 1 = short, 2 = long) */ 651 19, /* bitsize */ 652 TRUE, /* pc_relative */ 653 0, /* bitpos */ 654 complain_overflow_signed, /* complain_on_overflow */ 655 mmix_elf_reloc, /* special_function */ 656 "R_MMIX_ADDR19", /* name */ 657 FALSE, /* partial_inplace */ 658 ~0x0100ffff, /* src_mask */ 659 0x0100ffff, /* dst_mask */ 660 TRUE), /* pcrel_offset */ 661 662 /* For JMP. */ 663 HOWTO (R_MMIX_ADDR27, /* type */ 664 2, /* rightshift */ 665 2, /* size (0 = byte, 1 = short, 2 = long) */ 666 27, /* bitsize */ 667 TRUE, /* pc_relative */ 668 0, /* bitpos */ 669 complain_overflow_signed, /* complain_on_overflow */ 670 mmix_elf_reloc, /* special_function */ 671 "R_MMIX_ADDR27", /* name */ 672 FALSE, /* partial_inplace */ 673 ~0x1ffffff, /* src_mask */ 674 0x1ffffff, /* dst_mask */ 675 TRUE), /* pcrel_offset */ 676 677 /* A general register or the value 0..255. If a value, then the 678 instruction (offset -3) needs adjusting. */ 679 HOWTO (R_MMIX_REG_OR_BYTE, /* type */ 680 0, /* rightshift */ 681 1, /* size (0 = byte, 1 = short, 2 = long) */ 682 8, /* bitsize */ 683 FALSE, /* pc_relative */ 684 0, /* bitpos */ 685 complain_overflow_bitfield, /* complain_on_overflow */ 686 mmix_elf_reloc, /* special_function */ 687 "R_MMIX_REG_OR_BYTE", /* name */ 688 FALSE, /* partial_inplace */ 689 0, /* src_mask */ 690 0xff, /* dst_mask */ 691 FALSE), /* pcrel_offset */ 692 693 /* A general register. */ 694 HOWTO (R_MMIX_REG, /* type */ 695 0, /* rightshift */ 696 1, /* size (0 = byte, 1 = short, 2 = long) */ 697 8, /* bitsize */ 698 FALSE, /* pc_relative */ 699 0, /* bitpos */ 700 complain_overflow_bitfield, /* complain_on_overflow */ 701 mmix_elf_reloc, /* special_function */ 702 "R_MMIX_REG", /* name */ 703 FALSE, /* partial_inplace */ 704 0, /* src_mask */ 705 0xff, /* dst_mask */ 706 FALSE), /* pcrel_offset */ 707 708 /* A register plus an index, corresponding to the relocation expression. 709 The sizes must correspond to the valid range of the expression, while 710 the bitmasks correspond to what we store in the image. */ 711 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */ 712 0, /* rightshift */ 713 4, /* size (0 = byte, 1 = short, 2 = long) */ 714 64, /* bitsize */ 715 FALSE, /* pc_relative */ 716 0, /* bitpos */ 717 complain_overflow_bitfield, /* complain_on_overflow */ 718 mmix_elf_reloc, /* special_function */ 719 "R_MMIX_BASE_PLUS_OFFSET", /* name */ 720 FALSE, /* partial_inplace */ 721 0, /* src_mask */ 722 0xffff, /* dst_mask */ 723 FALSE), /* pcrel_offset */ 724 725 /* A "magic" relocation for a LOCAL expression, asserting that the 726 expression is less than the number of global registers. No actual 727 modification of the contents is done. Implementing this as a 728 relocation was less intrusive than e.g. putting such expressions in a 729 section to discard *after* relocation. */ 730 HOWTO (R_MMIX_LOCAL, /* type */ 731 0, /* rightshift */ 732 0, /* size (0 = byte, 1 = short, 2 = long) */ 733 0, /* bitsize */ 734 FALSE, /* pc_relative */ 735 0, /* bitpos */ 736 complain_overflow_dont, /* complain_on_overflow */ 737 mmix_elf_reloc, /* special_function */ 738 "R_MMIX_LOCAL", /* name */ 739 FALSE, /* partial_inplace */ 740 0, /* src_mask */ 741 0, /* dst_mask */ 742 FALSE), /* pcrel_offset */ 743 744 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */ 745 2, /* rightshift */ 746 2, /* size (0 = byte, 1 = short, 2 = long) */ 747 19, /* bitsize */ 748 TRUE, /* pc_relative */ 749 0, /* bitpos */ 750 complain_overflow_signed, /* complain_on_overflow */ 751 mmix_elf_reloc, /* special_function */ 752 "R_MMIX_PUSHJ_STUBBABLE", /* name */ 753 FALSE, /* partial_inplace */ 754 ~0x0100ffff, /* src_mask */ 755 0x0100ffff, /* dst_mask */ 756 TRUE) /* pcrel_offset */ 757 }; 758 759 760 /* Map BFD reloc types to MMIX ELF reloc types. */ 761 762 struct mmix_reloc_map 763 { 764 bfd_reloc_code_real_type bfd_reloc_val; 765 enum elf_mmix_reloc_type elf_reloc_val; 766 }; 767 768 769 static const struct mmix_reloc_map mmix_reloc_map[] = 770 { 771 {BFD_RELOC_NONE, R_MMIX_NONE}, 772 {BFD_RELOC_8, R_MMIX_8}, 773 {BFD_RELOC_16, R_MMIX_16}, 774 {BFD_RELOC_24, R_MMIX_24}, 775 {BFD_RELOC_32, R_MMIX_32}, 776 {BFD_RELOC_64, R_MMIX_64}, 777 {BFD_RELOC_8_PCREL, R_MMIX_PC_8}, 778 {BFD_RELOC_16_PCREL, R_MMIX_PC_16}, 779 {BFD_RELOC_24_PCREL, R_MMIX_PC_24}, 780 {BFD_RELOC_32_PCREL, R_MMIX_PC_32}, 781 {BFD_RELOC_64_PCREL, R_MMIX_PC_64}, 782 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT}, 783 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY}, 784 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA}, 785 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH}, 786 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ}, 787 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP}, 788 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19}, 789 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27}, 790 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE}, 791 {BFD_RELOC_MMIX_REG, R_MMIX_REG}, 792 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET}, 793 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL}, 794 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE} 795 }; 796 797 static reloc_howto_type * 798 bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 799 bfd_reloc_code_real_type code) 800 { 801 unsigned int i; 802 803 for (i = 0; 804 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]); 805 i++) 806 { 807 if (mmix_reloc_map[i].bfd_reloc_val == code) 808 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val]; 809 } 810 811 return NULL; 812 } 813 814 static reloc_howto_type * 815 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 816 const char *r_name) 817 { 818 unsigned int i; 819 820 for (i = 0; 821 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]); 822 i++) 823 if (elf_mmix_howto_table[i].name != NULL 824 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0) 825 return &elf_mmix_howto_table[i]; 826 827 return NULL; 828 } 829 830 static bfd_boolean 831 mmix_elf_new_section_hook (bfd *abfd, asection *sec) 832 { 833 if (!sec->used_by_bfd) 834 { 835 struct _mmix_elf_section_data *sdata; 836 bfd_size_type amt = sizeof (*sdata); 837 838 sdata = bfd_zalloc (abfd, amt); 839 if (sdata == NULL) 840 return FALSE; 841 sec->used_by_bfd = sdata; 842 } 843 844 return _bfd_elf_new_section_hook (abfd, sec); 845 } 846 847 848 /* This function performs the actual bitfiddling and sanity check for a 849 final relocation. Each relocation gets its *worst*-case expansion 850 in size when it arrives here; any reduction in size should have been 851 caught in linker relaxation earlier. When we get here, the relocation 852 looks like the smallest instruction with SWYM:s (nop:s) appended to the 853 max size. We fill in those nop:s. 854 855 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra) 856 GETA $N,foo 857 -> 858 SETL $N,foo & 0xffff 859 INCML $N,(foo >> 16) & 0xffff 860 INCMH $N,(foo >> 32) & 0xffff 861 INCH $N,(foo >> 48) & 0xffff 862 863 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but 864 condbranches needing relaxation might be rare enough to not be 865 worthwhile.) 866 [P]Bcc $N,foo 867 -> 868 [~P]B~cc $N,.+20 869 SETL $255,foo & ... 870 INCML ... 871 INCMH ... 872 INCH ... 873 GO $255,$255,0 874 875 R_MMIX_PUSHJ: (FIXME: Relaxation...) 876 PUSHJ $N,foo 877 -> 878 SETL $255,foo & ... 879 INCML ... 880 INCMH ... 881 INCH ... 882 PUSHGO $N,$255,0 883 884 R_MMIX_JMP: (FIXME: Relaxation...) 885 JMP foo 886 -> 887 SETL $255,foo & ... 888 INCML ... 889 INCMH ... 890 INCH ... 891 GO $255,$255,0 892 893 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */ 894 895 static bfd_reloc_status_type 896 mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto, 897 void *datap, bfd_vma addr, bfd_vma value, 898 char **error_message) 899 { 900 bfd *abfd = isec->owner; 901 bfd_reloc_status_type flag = bfd_reloc_ok; 902 bfd_reloc_status_type r; 903 int offs = 0; 904 int reg = 255; 905 906 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences. 907 We handle the differences here and the common sequence later. */ 908 switch (howto->type) 909 { 910 case R_MMIX_GETA: 911 offs = 0; 912 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); 913 914 /* We change to an absolute value. */ 915 value += addr; 916 break; 917 918 case R_MMIX_CBRANCH: 919 { 920 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16; 921 922 /* Invert the condition and prediction bit, and set the offset 923 to five instructions ahead. 924 925 We *can* do better if we want to. If the branch is found to be 926 within limits, we could leave the branch as is; there'll just 927 be a bunch of NOP:s after it. But we shouldn't see this 928 sequence often enough that it's worth doing it. */ 929 930 bfd_put_32 (abfd, 931 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff) 932 | (24/4)), 933 (bfd_byte *) datap); 934 935 /* Put a "GO $255,$255,0" after the common sequence. */ 936 bfd_put_32 (abfd, 937 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00, 938 (bfd_byte *) datap + 20); 939 940 /* Common sequence starts at offset 4. */ 941 offs = 4; 942 943 /* We change to an absolute value. */ 944 value += addr; 945 } 946 break; 947 948 case R_MMIX_PUSHJ_STUBBABLE: 949 /* If the address fits, we're fine. */ 950 if ((value & 3) == 0 951 /* Note rightshift 0; see R_MMIX_JMP case below. */ 952 && (r = bfd_check_overflow (complain_overflow_signed, 953 howto->bitsize, 954 0, 955 bfd_arch_bits_per_address (abfd), 956 value)) == bfd_reloc_ok) 957 goto pcrel_mmix_reloc_fits; 958 else 959 { 960 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size; 961 962 /* We have the bytes at the PUSHJ insn and need to get the 963 position for the stub. There's supposed to be room allocated 964 for the stub. */ 965 bfd_byte *stubcontents 966 = ((bfd_byte *) datap 967 - (addr - (isec->output_section->vma + isec->output_offset)) 968 + size 969 + mmix_elf_section_data (isec)->pjs.stub_offset); 970 bfd_vma stubaddr; 971 972 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0) 973 { 974 /* This shouldn't happen when linking to ELF or mmo, so 975 this is an attempt to link to "binary", right? We 976 can't access the output bfd, so we can't verify that 977 assumption. We only know that the critical 978 mmix_elf_check_common_relocs has not been called, 979 which happens when the output format is different 980 from the input format (and is not mmo). */ 981 if (! mmix_elf_section_data (isec)->has_warned_pushj) 982 { 983 /* For the first such error per input section, produce 984 a verbose message. */ 985 *error_message 986 = _("invalid input relocation when producing" 987 " non-ELF, non-mmo format output." 988 "\n Please use the objcopy program to convert from" 989 " ELF or mmo," 990 "\n or assemble using" 991 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\""); 992 mmix_elf_section_data (isec)->has_warned_pushj = TRUE; 993 return bfd_reloc_dangerous; 994 } 995 996 /* For subsequent errors, return this one, which is 997 rate-limited but looks a little bit different, 998 hopefully without affecting user-friendliness. */ 999 return bfd_reloc_overflow; 1000 } 1001 1002 /* The address doesn't fit, so redirect the PUSHJ to the 1003 location of the stub. */ 1004 r = mmix_elf_perform_relocation (isec, 1005 &elf_mmix_howto_table 1006 [R_MMIX_ADDR19], 1007 datap, 1008 addr, 1009 isec->output_section->vma 1010 + isec->output_offset 1011 + size 1012 + (mmix_elf_section_data (isec) 1013 ->pjs.stub_offset) 1014 - addr, 1015 error_message); 1016 if (r != bfd_reloc_ok) 1017 return r; 1018 1019 stubaddr 1020 = (isec->output_section->vma 1021 + isec->output_offset 1022 + size 1023 + mmix_elf_section_data (isec)->pjs.stub_offset); 1024 1025 /* We generate a simple JMP if that suffices, else the whole 5 1026 insn stub. */ 1027 if (bfd_check_overflow (complain_overflow_signed, 1028 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize, 1029 0, 1030 bfd_arch_bits_per_address (abfd), 1031 addr + value - stubaddr) == bfd_reloc_ok) 1032 { 1033 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents); 1034 r = mmix_elf_perform_relocation (isec, 1035 &elf_mmix_howto_table 1036 [R_MMIX_ADDR27], 1037 stubcontents, 1038 stubaddr, 1039 value + addr - stubaddr, 1040 error_message); 1041 mmix_elf_section_data (isec)->pjs.stub_offset += 4; 1042 1043 if (size + mmix_elf_section_data (isec)->pjs.stub_offset 1044 > isec->size) 1045 abort (); 1046 1047 return r; 1048 } 1049 else 1050 { 1051 /* Put a "GO $255,0" after the common sequence. */ 1052 bfd_put_32 (abfd, 1053 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1054 | 0xff00, (bfd_byte *) stubcontents + 16); 1055 1056 /* Prepare for the general code to set the first part of the 1057 linker stub, and */ 1058 value += addr; 1059 datap = stubcontents; 1060 mmix_elf_section_data (isec)->pjs.stub_offset 1061 += MAX_PUSHJ_STUB_SIZE; 1062 } 1063 } 1064 break; 1065 1066 case R_MMIX_PUSHJ: 1067 { 1068 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); 1069 1070 /* Put a "PUSHGO $N,$255,0" after the common sequence. */ 1071 bfd_put_32 (abfd, 1072 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1073 | (inreg << 16) 1074 | 0xff00, 1075 (bfd_byte *) datap + 16); 1076 1077 /* We change to an absolute value. */ 1078 value += addr; 1079 } 1080 break; 1081 1082 case R_MMIX_JMP: 1083 /* This one is a little special. If we get here on a non-relaxing 1084 link, and the destination is actually in range, we don't need to 1085 execute the nops. 1086 If so, we fall through to the bit-fiddling relocs. 1087 1088 FIXME: bfd_check_overflow seems broken; the relocation is 1089 rightshifted before testing, so supply a zero rightshift. */ 1090 1091 if (! ((value & 3) == 0 1092 && (r = bfd_check_overflow (complain_overflow_signed, 1093 howto->bitsize, 1094 0, 1095 bfd_arch_bits_per_address (abfd), 1096 value)) == bfd_reloc_ok)) 1097 { 1098 /* If the relocation doesn't fit in a JMP, we let the NOP:s be 1099 modified below, and put a "GO $255,$255,0" after the 1100 address-loading sequence. */ 1101 bfd_put_32 (abfd, 1102 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1103 | 0xffff00, 1104 (bfd_byte *) datap + 16); 1105 1106 /* We change to an absolute value. */ 1107 value += addr; 1108 break; 1109 } 1110 /* FALLTHROUGH. */ 1111 case R_MMIX_ADDR19: 1112 case R_MMIX_ADDR27: 1113 pcrel_mmix_reloc_fits: 1114 /* These must be in range, or else we emit an error. */ 1115 if ((value & 3) == 0 1116 /* Note rightshift 0; see above. */ 1117 && (r = bfd_check_overflow (complain_overflow_signed, 1118 howto->bitsize, 1119 0, 1120 bfd_arch_bits_per_address (abfd), 1121 value)) == bfd_reloc_ok) 1122 { 1123 bfd_vma in1 1124 = bfd_get_32 (abfd, (bfd_byte *) datap); 1125 bfd_vma highbit; 1126 1127 if ((bfd_signed_vma) value < 0) 1128 { 1129 highbit = 1 << 24; 1130 value += (1 << (howto->bitsize - 1)); 1131 } 1132 else 1133 highbit = 0; 1134 1135 value >>= 2; 1136 1137 bfd_put_32 (abfd, 1138 (in1 & howto->src_mask) 1139 | highbit 1140 | (value & howto->dst_mask), 1141 (bfd_byte *) datap); 1142 1143 return bfd_reloc_ok; 1144 } 1145 else 1146 return bfd_reloc_overflow; 1147 1148 case R_MMIX_BASE_PLUS_OFFSET: 1149 { 1150 struct bpo_reloc_section_info *bpodata 1151 = mmix_elf_section_data (isec)->bpo.reloc; 1152 asection *bpo_greg_section; 1153 struct bpo_greg_section_info *gregdata; 1154 size_t bpo_index; 1155 1156 if (bpodata == NULL) 1157 { 1158 /* This shouldn't happen when linking to ELF or mmo, so 1159 this is an attempt to link to "binary", right? We 1160 can't access the output bfd, so we can't verify that 1161 assumption. We only know that the critical 1162 mmix_elf_check_common_relocs has not been called, which 1163 happens when the output format is different from the 1164 input format (and is not mmo). */ 1165 if (! mmix_elf_section_data (isec)->has_warned_bpo) 1166 { 1167 /* For the first such error per input section, produce 1168 a verbose message. */ 1169 *error_message 1170 = _("invalid input relocation when producing" 1171 " non-ELF, non-mmo format output." 1172 "\n Please use the objcopy program to convert from" 1173 " ELF or mmo," 1174 "\n or compile using the gcc-option" 1175 " \"-mno-base-addresses\"."); 1176 mmix_elf_section_data (isec)->has_warned_bpo = TRUE; 1177 return bfd_reloc_dangerous; 1178 } 1179 1180 /* For subsequent errors, return this one, which is 1181 rate-limited but looks a little bit different, 1182 hopefully without affecting user-friendliness. */ 1183 return bfd_reloc_overflow; 1184 } 1185 1186 bpo_greg_section = bpodata->bpo_greg_section; 1187 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg; 1188 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++]; 1189 1190 /* A consistency check: The value we now have in "relocation" must 1191 be the same as the value we stored for that relocation. It 1192 doesn't cost much, so can be left in at all times. */ 1193 if (value != gregdata->reloc_request[bpo_index].value) 1194 { 1195 (*_bfd_error_handler) 1196 (_("%s: Internal inconsistency error for value for\n\ 1197 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"), 1198 bfd_get_filename (isec->owner), 1199 (unsigned long) (value >> 32), (unsigned long) value, 1200 (unsigned long) (gregdata->reloc_request[bpo_index].value 1201 >> 32), 1202 (unsigned long) gregdata->reloc_request[bpo_index].value); 1203 bfd_set_error (bfd_error_bad_value); 1204 return bfd_reloc_overflow; 1205 } 1206 1207 /* Then store the register number and offset for that register 1208 into datap and datap + 1 respectively. */ 1209 bfd_put_8 (abfd, 1210 gregdata->reloc_request[bpo_index].regindex 1211 + bpo_greg_section->output_section->vma / 8, 1212 datap); 1213 bfd_put_8 (abfd, 1214 gregdata->reloc_request[bpo_index].offset, 1215 ((unsigned char *) datap) + 1); 1216 return bfd_reloc_ok; 1217 } 1218 1219 case R_MMIX_REG_OR_BYTE: 1220 case R_MMIX_REG: 1221 if (value > 255) 1222 return bfd_reloc_overflow; 1223 bfd_put_8 (abfd, value, datap); 1224 return bfd_reloc_ok; 1225 1226 default: 1227 BAD_CASE (howto->type); 1228 } 1229 1230 /* This code adds the common SETL/INCML/INCMH/INCH worst-case 1231 sequence. */ 1232 1233 /* Lowest two bits must be 0. We return bfd_reloc_overflow for 1234 everything that looks strange. */ 1235 if (value & 3) 1236 flag = bfd_reloc_overflow; 1237 1238 bfd_put_32 (abfd, 1239 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16), 1240 (bfd_byte *) datap + offs); 1241 bfd_put_32 (abfd, 1242 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16), 1243 (bfd_byte *) datap + offs + 4); 1244 bfd_put_32 (abfd, 1245 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16), 1246 (bfd_byte *) datap + offs + 8); 1247 bfd_put_32 (abfd, 1248 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16), 1249 (bfd_byte *) datap + offs + 12); 1250 1251 return flag; 1252 } 1253 1254 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */ 1255 1256 static void 1257 mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED, 1258 arelent *cache_ptr, 1259 Elf_Internal_Rela *dst) 1260 { 1261 unsigned int r_type; 1262 1263 r_type = ELF64_R_TYPE (dst->r_info); 1264 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max); 1265 cache_ptr->howto = &elf_mmix_howto_table[r_type]; 1266 } 1267 1268 /* Any MMIX-specific relocation gets here at assembly time or when linking 1269 to other formats (such as mmo); this is the relocation function from 1270 the reloc_table. We don't get here for final pure ELF linking. */ 1271 1272 static bfd_reloc_status_type 1273 mmix_elf_reloc (bfd *abfd, 1274 arelent *reloc_entry, 1275 asymbol *symbol, 1276 void * data, 1277 asection *input_section, 1278 bfd *output_bfd, 1279 char **error_message) 1280 { 1281 bfd_vma relocation; 1282 bfd_reloc_status_type r; 1283 asection *reloc_target_output_section; 1284 bfd_reloc_status_type flag = bfd_reloc_ok; 1285 bfd_vma output_base = 0; 1286 1287 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 1288 input_section, output_bfd, error_message); 1289 1290 /* If that was all that was needed (i.e. this isn't a final link, only 1291 some segment adjustments), we're done. */ 1292 if (r != bfd_reloc_continue) 1293 return r; 1294 1295 if (bfd_is_und_section (symbol->section) 1296 && (symbol->flags & BSF_WEAK) == 0 1297 && output_bfd == (bfd *) NULL) 1298 return bfd_reloc_undefined; 1299 1300 /* Is the address of the relocation really within the section? */ 1301 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 1302 return bfd_reloc_outofrange; 1303 1304 /* Work out which section the relocation is targeted at and the 1305 initial relocation command value. */ 1306 1307 /* Get symbol value. (Common symbols are special.) */ 1308 if (bfd_is_com_section (symbol->section)) 1309 relocation = 0; 1310 else 1311 relocation = symbol->value; 1312 1313 reloc_target_output_section = bfd_get_output_section (symbol); 1314 1315 /* Here the variable relocation holds the final address of the symbol we 1316 are relocating against, plus any addend. */ 1317 if (output_bfd) 1318 output_base = 0; 1319 else 1320 output_base = reloc_target_output_section->vma; 1321 1322 relocation += output_base + symbol->section->output_offset; 1323 1324 if (output_bfd != (bfd *) NULL) 1325 { 1326 /* Add in supplied addend. */ 1327 relocation += reloc_entry->addend; 1328 1329 /* This is a partial relocation, and we want to apply the 1330 relocation to the reloc entry rather than the raw data. 1331 Modify the reloc inplace to reflect what we now know. */ 1332 reloc_entry->addend = relocation; 1333 reloc_entry->address += input_section->output_offset; 1334 return flag; 1335 } 1336 1337 return mmix_final_link_relocate (reloc_entry->howto, input_section, 1338 data, reloc_entry->address, 1339 reloc_entry->addend, relocation, 1340 bfd_asymbol_name (symbol), 1341 reloc_target_output_section, 1342 error_message); 1343 } 1344 1345 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it 1346 for guidance if you're thinking of copying this. */ 1347 1348 static bfd_boolean 1349 mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, 1350 struct bfd_link_info *info, 1351 bfd *input_bfd, 1352 asection *input_section, 1353 bfd_byte *contents, 1354 Elf_Internal_Rela *relocs, 1355 Elf_Internal_Sym *local_syms, 1356 asection **local_sections) 1357 { 1358 Elf_Internal_Shdr *symtab_hdr; 1359 struct elf_link_hash_entry **sym_hashes; 1360 Elf_Internal_Rela *rel; 1361 Elf_Internal_Rela *relend; 1362 bfd_size_type size; 1363 size_t pjsno = 0; 1364 1365 size = input_section->rawsize ? input_section->rawsize : input_section->size; 1366 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 1367 sym_hashes = elf_sym_hashes (input_bfd); 1368 relend = relocs + input_section->reloc_count; 1369 1370 /* Zero the stub area before we start. */ 1371 if (input_section->rawsize != 0 1372 && input_section->size > input_section->rawsize) 1373 memset (contents + input_section->rawsize, 0, 1374 input_section->size - input_section->rawsize); 1375 1376 for (rel = relocs; rel < relend; rel ++) 1377 { 1378 reloc_howto_type *howto; 1379 unsigned long r_symndx; 1380 Elf_Internal_Sym *sym; 1381 asection *sec; 1382 struct elf_link_hash_entry *h; 1383 bfd_vma relocation; 1384 bfd_reloc_status_type r; 1385 const char *name = NULL; 1386 int r_type; 1387 bfd_boolean undefined_signalled = FALSE; 1388 1389 r_type = ELF64_R_TYPE (rel->r_info); 1390 1391 if (r_type == R_MMIX_GNU_VTINHERIT 1392 || r_type == R_MMIX_GNU_VTENTRY) 1393 continue; 1394 1395 r_symndx = ELF64_R_SYM (rel->r_info); 1396 1397 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info); 1398 h = NULL; 1399 sym = NULL; 1400 sec = NULL; 1401 1402 if (r_symndx < symtab_hdr->sh_info) 1403 { 1404 sym = local_syms + r_symndx; 1405 sec = local_sections [r_symndx]; 1406 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 1407 1408 name = bfd_elf_string_from_elf_section (input_bfd, 1409 symtab_hdr->sh_link, 1410 sym->st_name); 1411 if (name == NULL) 1412 name = bfd_section_name (input_bfd, sec); 1413 } 1414 else 1415 { 1416 bfd_boolean unresolved_reloc; 1417 1418 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 1419 r_symndx, symtab_hdr, sym_hashes, 1420 h, sec, relocation, 1421 unresolved_reloc, undefined_signalled); 1422 name = h->root.root.string; 1423 } 1424 1425 if (sec != NULL && discarded_section (sec)) 1426 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 1427 rel, 1, relend, howto, 0, contents); 1428 1429 if (info->relocatable) 1430 { 1431 /* This is a relocatable link. For most relocs we don't have to 1432 change anything, unless the reloc is against a section 1433 symbol, in which case we have to adjust according to where 1434 the section symbol winds up in the output section. */ 1435 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 1436 rel->r_addend += sec->output_offset; 1437 1438 /* For PUSHJ stub relocs however, we may need to change the 1439 reloc and the section contents, if the reloc doesn't reach 1440 beyond the end of the output section and previous stubs. 1441 Then we change the section contents to be a PUSHJ to the end 1442 of the input section plus stubs (we can do that without using 1443 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ 1444 at the stub location. */ 1445 if (r_type == R_MMIX_PUSHJ_STUBBABLE) 1446 { 1447 /* We've already checked whether we need a stub; use that 1448 knowledge. */ 1449 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno] 1450 != 0) 1451 { 1452 Elf_Internal_Rela relcpy; 1453 1454 if (mmix_elf_section_data (input_section) 1455 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE) 1456 abort (); 1457 1458 /* There's already a PUSHJ insn there, so just fill in 1459 the offset bits to the stub. */ 1460 if (mmix_final_link_relocate (elf_mmix_howto_table 1461 + R_MMIX_ADDR19, 1462 input_section, 1463 contents, 1464 rel->r_offset, 1465 0, 1466 input_section 1467 ->output_section->vma 1468 + input_section->output_offset 1469 + size 1470 + mmix_elf_section_data (input_section) 1471 ->pjs.stub_offset, 1472 NULL, NULL, NULL) != bfd_reloc_ok) 1473 return FALSE; 1474 1475 /* Put a JMP insn at the stub; it goes with the 1476 R_MMIX_JMP reloc. */ 1477 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24, 1478 contents 1479 + size 1480 + mmix_elf_section_data (input_section) 1481 ->pjs.stub_offset); 1482 1483 /* Change the reloc to be at the stub, and to a full 1484 R_MMIX_JMP reloc. */ 1485 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP); 1486 rel->r_offset 1487 = (size 1488 + mmix_elf_section_data (input_section) 1489 ->pjs.stub_offset); 1490 1491 mmix_elf_section_data (input_section)->pjs.stub_offset 1492 += MAX_PUSHJ_STUB_SIZE; 1493 1494 /* Shift this reloc to the end of the relocs to maintain 1495 the r_offset sorted reloc order. */ 1496 relcpy = *rel; 1497 memmove (rel, rel + 1, (char *) relend - (char *) rel); 1498 relend[-1] = relcpy; 1499 1500 /* Back up one reloc, or else we'd skip the next reloc 1501 in turn. */ 1502 rel--; 1503 } 1504 1505 pjsno++; 1506 } 1507 continue; 1508 } 1509 1510 r = mmix_final_link_relocate (howto, input_section, 1511 contents, rel->r_offset, 1512 rel->r_addend, relocation, name, sec, NULL); 1513 1514 if (r != bfd_reloc_ok) 1515 { 1516 bfd_boolean check_ok = TRUE; 1517 const char * msg = (const char *) NULL; 1518 1519 switch (r) 1520 { 1521 case bfd_reloc_overflow: 1522 check_ok = info->callbacks->reloc_overflow 1523 (info, (h ? &h->root : NULL), name, howto->name, 1524 (bfd_vma) 0, input_bfd, input_section, rel->r_offset); 1525 break; 1526 1527 case bfd_reloc_undefined: 1528 /* We may have sent this message above. */ 1529 if (! undefined_signalled) 1530 check_ok = info->callbacks->undefined_symbol 1531 (info, name, input_bfd, input_section, rel->r_offset, 1532 TRUE); 1533 undefined_signalled = TRUE; 1534 break; 1535 1536 case bfd_reloc_outofrange: 1537 msg = _("internal error: out of range error"); 1538 break; 1539 1540 case bfd_reloc_notsupported: 1541 msg = _("internal error: unsupported relocation error"); 1542 break; 1543 1544 case bfd_reloc_dangerous: 1545 msg = _("internal error: dangerous relocation"); 1546 break; 1547 1548 default: 1549 msg = _("internal error: unknown error"); 1550 break; 1551 } 1552 1553 if (msg) 1554 check_ok = info->callbacks->warning 1555 (info, msg, name, input_bfd, input_section, rel->r_offset); 1556 1557 if (! check_ok) 1558 return FALSE; 1559 } 1560 } 1561 1562 return TRUE; 1563 } 1564 1565 /* Perform a single relocation. By default we use the standard BFD 1566 routines. A few relocs we have to do ourselves. */ 1567 1568 static bfd_reloc_status_type 1569 mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section, 1570 bfd_byte *contents, bfd_vma r_offset, 1571 bfd_signed_vma r_addend, bfd_vma relocation, 1572 const char *symname, asection *symsec, 1573 char **error_message) 1574 { 1575 bfd_reloc_status_type r = bfd_reloc_ok; 1576 bfd_vma addr 1577 = (input_section->output_section->vma 1578 + input_section->output_offset 1579 + r_offset); 1580 bfd_signed_vma srel 1581 = (bfd_signed_vma) relocation + r_addend; 1582 1583 switch (howto->type) 1584 { 1585 /* All these are PC-relative. */ 1586 case R_MMIX_PUSHJ_STUBBABLE: 1587 case R_MMIX_PUSHJ: 1588 case R_MMIX_CBRANCH: 1589 case R_MMIX_ADDR19: 1590 case R_MMIX_GETA: 1591 case R_MMIX_ADDR27: 1592 case R_MMIX_JMP: 1593 contents += r_offset; 1594 1595 srel -= (input_section->output_section->vma 1596 + input_section->output_offset 1597 + r_offset); 1598 1599 r = mmix_elf_perform_relocation (input_section, howto, contents, 1600 addr, srel, error_message); 1601 break; 1602 1603 case R_MMIX_BASE_PLUS_OFFSET: 1604 if (symsec == NULL) 1605 return bfd_reloc_undefined; 1606 1607 /* Check that we're not relocating against a register symbol. */ 1608 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1609 MMIX_REG_CONTENTS_SECTION_NAME) == 0 1610 || strcmp (bfd_get_section_name (symsec->owner, symsec), 1611 MMIX_REG_SECTION_NAME) == 0) 1612 { 1613 /* Note: This is separated out into two messages in order 1614 to ease the translation into other languages. */ 1615 if (symname == NULL || *symname == 0) 1616 (*_bfd_error_handler) 1617 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"), 1618 bfd_get_filename (input_section->owner), 1619 bfd_get_section_name (symsec->owner, symsec)); 1620 else 1621 (*_bfd_error_handler) 1622 (_("%s: base-plus-offset relocation against register symbol: %s in %s"), 1623 bfd_get_filename (input_section->owner), symname, 1624 bfd_get_section_name (symsec->owner, symsec)); 1625 return bfd_reloc_overflow; 1626 } 1627 goto do_mmix_reloc; 1628 1629 case R_MMIX_REG_OR_BYTE: 1630 case R_MMIX_REG: 1631 /* For now, we handle these alike. They must refer to an register 1632 symbol, which is either relative to the register section and in 1633 the range 0..255, or is in the register contents section with vma 1634 regno * 8. */ 1635 1636 /* FIXME: A better way to check for reg contents section? 1637 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */ 1638 if (symsec == NULL) 1639 return bfd_reloc_undefined; 1640 1641 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1642 MMIX_REG_CONTENTS_SECTION_NAME) == 0) 1643 { 1644 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) 1645 { 1646 /* The bfd_reloc_outofrange return value, though intuitively 1647 a better value, will not get us an error. */ 1648 return bfd_reloc_overflow; 1649 } 1650 srel /= 8; 1651 } 1652 else if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1653 MMIX_REG_SECTION_NAME) == 0) 1654 { 1655 if (srel < 0 || srel > 255) 1656 /* The bfd_reloc_outofrange return value, though intuitively a 1657 better value, will not get us an error. */ 1658 return bfd_reloc_overflow; 1659 } 1660 else 1661 { 1662 /* Note: This is separated out into two messages in order 1663 to ease the translation into other languages. */ 1664 if (symname == NULL || *symname == 0) 1665 (*_bfd_error_handler) 1666 (_("%s: register relocation against non-register symbol: (unknown) in %s"), 1667 bfd_get_filename (input_section->owner), 1668 bfd_get_section_name (symsec->owner, symsec)); 1669 else 1670 (*_bfd_error_handler) 1671 (_("%s: register relocation against non-register symbol: %s in %s"), 1672 bfd_get_filename (input_section->owner), symname, 1673 bfd_get_section_name (symsec->owner, symsec)); 1674 1675 /* The bfd_reloc_outofrange return value, though intuitively a 1676 better value, will not get us an error. */ 1677 return bfd_reloc_overflow; 1678 } 1679 do_mmix_reloc: 1680 contents += r_offset; 1681 r = mmix_elf_perform_relocation (input_section, howto, contents, 1682 addr, srel, error_message); 1683 break; 1684 1685 case R_MMIX_LOCAL: 1686 /* This isn't a real relocation, it's just an assertion that the 1687 final relocation value corresponds to a local register. We 1688 ignore the actual relocation; nothing is changed. */ 1689 { 1690 asection *regsec 1691 = bfd_get_section_by_name (input_section->output_section->owner, 1692 MMIX_REG_CONTENTS_SECTION_NAME); 1693 bfd_vma first_global; 1694 1695 /* Check that this is an absolute value, or a reference to the 1696 register contents section or the register (symbol) section. 1697 Absolute numbers can get here as undefined section. Undefined 1698 symbols are signalled elsewhere, so there's no conflict in us 1699 accidentally handling it. */ 1700 if (!bfd_is_abs_section (symsec) 1701 && !bfd_is_und_section (symsec) 1702 && strcmp (bfd_get_section_name (symsec->owner, symsec), 1703 MMIX_REG_CONTENTS_SECTION_NAME) != 0 1704 && strcmp (bfd_get_section_name (symsec->owner, symsec), 1705 MMIX_REG_SECTION_NAME) != 0) 1706 { 1707 (*_bfd_error_handler) 1708 (_("%s: directive LOCAL valid only with a register or absolute value"), 1709 bfd_get_filename (input_section->owner)); 1710 1711 return bfd_reloc_overflow; 1712 } 1713 1714 /* If we don't have a register contents section, then $255 is the 1715 first global register. */ 1716 if (regsec == NULL) 1717 first_global = 255; 1718 else 1719 { 1720 first_global 1721 = bfd_get_section_vma (input_section->output_section->owner, 1722 regsec) / 8; 1723 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1724 MMIX_REG_CONTENTS_SECTION_NAME) == 0) 1725 { 1726 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) 1727 /* The bfd_reloc_outofrange return value, though 1728 intuitively a better value, will not get us an error. */ 1729 return bfd_reloc_overflow; 1730 srel /= 8; 1731 } 1732 } 1733 1734 if ((bfd_vma) srel >= first_global) 1735 { 1736 /* FIXME: Better error message. */ 1737 (*_bfd_error_handler) 1738 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."), 1739 bfd_get_filename (input_section->owner), (long) srel, (long) first_global); 1740 1741 return bfd_reloc_overflow; 1742 } 1743 } 1744 r = bfd_reloc_ok; 1745 break; 1746 1747 default: 1748 r = _bfd_final_link_relocate (howto, input_section->owner, input_section, 1749 contents, r_offset, 1750 relocation, r_addend); 1751 } 1752 1753 return r; 1754 } 1755 1756 /* Return the section that should be marked against GC for a given 1757 relocation. */ 1758 1759 static asection * 1760 mmix_elf_gc_mark_hook (asection *sec, 1761 struct bfd_link_info *info, 1762 Elf_Internal_Rela *rel, 1763 struct elf_link_hash_entry *h, 1764 Elf_Internal_Sym *sym) 1765 { 1766 if (h != NULL) 1767 switch (ELF64_R_TYPE (rel->r_info)) 1768 { 1769 case R_MMIX_GNU_VTINHERIT: 1770 case R_MMIX_GNU_VTENTRY: 1771 return NULL; 1772 } 1773 1774 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 1775 } 1776 1777 /* Update relocation info for a GC-excluded section. We could supposedly 1778 perform the allocation after GC, but there's no suitable hook between 1779 GC (or section merge) and the point when all input sections must be 1780 present. Better to waste some memory and (perhaps) a little time. */ 1781 1782 static bfd_boolean 1783 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, 1784 struct bfd_link_info *info ATTRIBUTE_UNUSED, 1785 asection *sec, 1786 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) 1787 { 1788 struct bpo_reloc_section_info *bpodata 1789 = mmix_elf_section_data (sec)->bpo.reloc; 1790 asection *allocated_gregs_section; 1791 1792 /* If no bpodata here, we have nothing to do. */ 1793 if (bpodata == NULL) 1794 return TRUE; 1795 1796 allocated_gregs_section = bpodata->bpo_greg_section; 1797 1798 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs 1799 -= bpodata->n_bpo_relocs_this_section; 1800 1801 return TRUE; 1802 } 1803 1804 /* Sort register relocs to come before expanding relocs. */ 1805 1806 static int 1807 mmix_elf_sort_relocs (const void * p1, const void * p2) 1808 { 1809 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1; 1810 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2; 1811 int r1_is_reg, r2_is_reg; 1812 1813 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive 1814 insns. */ 1815 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3)) 1816 return 1; 1817 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3)) 1818 return -1; 1819 1820 r1_is_reg 1821 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE 1822 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG); 1823 r2_is_reg 1824 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE 1825 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG); 1826 if (r1_is_reg != r2_is_reg) 1827 return r2_is_reg - r1_is_reg; 1828 1829 /* Neither or both are register relocs. Then sort on full offset. */ 1830 if (r1->r_offset > r2->r_offset) 1831 return 1; 1832 else if (r1->r_offset < r2->r_offset) 1833 return -1; 1834 return 0; 1835 } 1836 1837 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */ 1838 1839 static bfd_boolean 1840 mmix_elf_check_common_relocs (bfd *abfd, 1841 struct bfd_link_info *info, 1842 asection *sec, 1843 const Elf_Internal_Rela *relocs) 1844 { 1845 bfd *bpo_greg_owner = NULL; 1846 asection *allocated_gregs_section = NULL; 1847 struct bpo_greg_section_info *gregdata = NULL; 1848 struct bpo_reloc_section_info *bpodata = NULL; 1849 const Elf_Internal_Rela *rel; 1850 const Elf_Internal_Rela *rel_end; 1851 1852 /* We currently have to abuse this COFF-specific member, since there's 1853 no target-machine-dedicated member. There's no alternative outside 1854 the bfd_link_info struct; we can't specialize a hash-table since 1855 they're different between ELF and mmo. */ 1856 bpo_greg_owner = (bfd *) info->base_file; 1857 1858 rel_end = relocs + sec->reloc_count; 1859 for (rel = relocs; rel < rel_end; rel++) 1860 { 1861 switch (ELF64_R_TYPE (rel->r_info)) 1862 { 1863 /* This relocation causes a GREG allocation. We need to count 1864 them, and we need to create a section for them, so we need an 1865 object to fake as the owner of that section. We can't use 1866 the ELF dynobj for this, since the ELF bits assume lots of 1867 DSO-related stuff if that member is non-NULL. */ 1868 case R_MMIX_BASE_PLUS_OFFSET: 1869 /* We don't do anything with this reloc for a relocatable link. */ 1870 if (info->relocatable) 1871 break; 1872 1873 if (bpo_greg_owner == NULL) 1874 { 1875 bpo_greg_owner = abfd; 1876 info->base_file = bpo_greg_owner; 1877 } 1878 1879 if (allocated_gregs_section == NULL) 1880 allocated_gregs_section 1881 = bfd_get_section_by_name (bpo_greg_owner, 1882 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 1883 1884 if (allocated_gregs_section == NULL) 1885 { 1886 allocated_gregs_section 1887 = bfd_make_section_with_flags (bpo_greg_owner, 1888 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME, 1889 (SEC_HAS_CONTENTS 1890 | SEC_IN_MEMORY 1891 | SEC_LINKER_CREATED)); 1892 /* Setting both SEC_ALLOC and SEC_LOAD means the section is 1893 treated like any other section, and we'd get errors for 1894 address overlap with the text section. Let's set none of 1895 those flags, as that is what currently happens for usual 1896 GREG allocations, and that works. */ 1897 if (allocated_gregs_section == NULL 1898 || !bfd_set_section_alignment (bpo_greg_owner, 1899 allocated_gregs_section, 1900 3)) 1901 return FALSE; 1902 1903 gregdata = (struct bpo_greg_section_info *) 1904 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info)); 1905 if (gregdata == NULL) 1906 return FALSE; 1907 mmix_elf_section_data (allocated_gregs_section)->bpo.greg 1908 = gregdata; 1909 } 1910 else if (gregdata == NULL) 1911 gregdata 1912 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg; 1913 1914 /* Get ourselves some auxiliary info for the BPO-relocs. */ 1915 if (bpodata == NULL) 1916 { 1917 /* No use doing a separate iteration pass to find the upper 1918 limit - just use the number of relocs. */ 1919 bpodata = (struct bpo_reloc_section_info *) 1920 bfd_alloc (bpo_greg_owner, 1921 sizeof (struct bpo_reloc_section_info) 1922 * (sec->reloc_count + 1)); 1923 if (bpodata == NULL) 1924 return FALSE; 1925 mmix_elf_section_data (sec)->bpo.reloc = bpodata; 1926 bpodata->first_base_plus_offset_reloc 1927 = bpodata->bpo_index 1928 = gregdata->n_max_bpo_relocs; 1929 bpodata->bpo_greg_section 1930 = allocated_gregs_section; 1931 bpodata->n_bpo_relocs_this_section = 0; 1932 } 1933 1934 bpodata->n_bpo_relocs_this_section++; 1935 gregdata->n_max_bpo_relocs++; 1936 1937 /* We don't get another chance to set this before GC; we've not 1938 set up any hook that runs before GC. */ 1939 gregdata->n_bpo_relocs 1940 = gregdata->n_max_bpo_relocs; 1941 break; 1942 1943 case R_MMIX_PUSHJ_STUBBABLE: 1944 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++; 1945 break; 1946 } 1947 } 1948 1949 /* Allocate per-reloc stub storage and initialize it to the max stub 1950 size. */ 1951 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0) 1952 { 1953 size_t i; 1954 1955 mmix_elf_section_data (sec)->pjs.stub_size 1956 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs 1957 * sizeof (mmix_elf_section_data (sec) 1958 ->pjs.stub_size[0])); 1959 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL) 1960 return FALSE; 1961 1962 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++) 1963 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE; 1964 } 1965 1966 return TRUE; 1967 } 1968 1969 /* Look through the relocs for a section during the first phase. */ 1970 1971 static bfd_boolean 1972 mmix_elf_check_relocs (bfd *abfd, 1973 struct bfd_link_info *info, 1974 asection *sec, 1975 const Elf_Internal_Rela *relocs) 1976 { 1977 Elf_Internal_Shdr *symtab_hdr; 1978 struct elf_link_hash_entry **sym_hashes; 1979 const Elf_Internal_Rela *rel; 1980 const Elf_Internal_Rela *rel_end; 1981 1982 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1983 sym_hashes = elf_sym_hashes (abfd); 1984 1985 /* First we sort the relocs so that any register relocs come before 1986 expansion-relocs to the same insn. FIXME: Not done for mmo. */ 1987 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), 1988 mmix_elf_sort_relocs); 1989 1990 /* Do the common part. */ 1991 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs)) 1992 return FALSE; 1993 1994 if (info->relocatable) 1995 return TRUE; 1996 1997 rel_end = relocs + sec->reloc_count; 1998 for (rel = relocs; rel < rel_end; rel++) 1999 { 2000 struct elf_link_hash_entry *h; 2001 unsigned long r_symndx; 2002 2003 r_symndx = ELF64_R_SYM (rel->r_info); 2004 if (r_symndx < symtab_hdr->sh_info) 2005 h = NULL; 2006 else 2007 { 2008 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 2009 while (h->root.type == bfd_link_hash_indirect 2010 || h->root.type == bfd_link_hash_warning) 2011 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2012 } 2013 2014 switch (ELF64_R_TYPE (rel->r_info)) 2015 { 2016 /* This relocation describes the C++ object vtable hierarchy. 2017 Reconstruct it for later use during GC. */ 2018 case R_MMIX_GNU_VTINHERIT: 2019 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 2020 return FALSE; 2021 break; 2022 2023 /* This relocation describes which C++ vtable entries are actually 2024 used. Record for later use during GC. */ 2025 case R_MMIX_GNU_VTENTRY: 2026 BFD_ASSERT (h != NULL); 2027 if (h != NULL 2028 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 2029 return FALSE; 2030 break; 2031 } 2032 } 2033 2034 return TRUE; 2035 } 2036 2037 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo. 2038 Copied from elf_link_add_object_symbols. */ 2039 2040 bfd_boolean 2041 _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info) 2042 { 2043 asection *o; 2044 2045 for (o = abfd->sections; o != NULL; o = o->next) 2046 { 2047 Elf_Internal_Rela *internal_relocs; 2048 bfd_boolean ok; 2049 2050 if ((o->flags & SEC_RELOC) == 0 2051 || o->reloc_count == 0 2052 || ((info->strip == strip_all || info->strip == strip_debugger) 2053 && (o->flags & SEC_DEBUGGING) != 0) 2054 || bfd_is_abs_section (o->output_section)) 2055 continue; 2056 2057 internal_relocs 2058 = _bfd_elf_link_read_relocs (abfd, o, NULL, 2059 (Elf_Internal_Rela *) NULL, 2060 info->keep_memory); 2061 if (internal_relocs == NULL) 2062 return FALSE; 2063 2064 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs); 2065 2066 if (! info->keep_memory) 2067 free (internal_relocs); 2068 2069 if (! ok) 2070 return FALSE; 2071 } 2072 2073 return TRUE; 2074 } 2075 2076 /* Change symbols relative to the reg contents section to instead be to 2077 the register section, and scale them down to correspond to the register 2078 number. */ 2079 2080 static int 2081 mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED, 2082 const char *name ATTRIBUTE_UNUSED, 2083 Elf_Internal_Sym *sym, 2084 asection *input_sec, 2085 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) 2086 { 2087 if (input_sec != NULL 2088 && input_sec->name != NULL 2089 && ELF_ST_TYPE (sym->st_info) != STT_SECTION 2090 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0) 2091 { 2092 sym->st_value /= 8; 2093 sym->st_shndx = SHN_REGISTER; 2094 } 2095 2096 return 1; 2097 } 2098 2099 /* We fake a register section that holds values that are register numbers. 2100 Having a SHN_REGISTER and register section translates better to other 2101 formats (e.g. mmo) than for example a STT_REGISTER attribute. 2102 This section faking is based on a construct in elf32-mips.c. */ 2103 static asection mmix_elf_reg_section; 2104 static asymbol mmix_elf_reg_section_symbol; 2105 static asymbol *mmix_elf_reg_section_symbol_ptr; 2106 2107 /* Handle the special section numbers that a symbol may use. */ 2108 2109 void 2110 mmix_elf_symbol_processing (abfd, asym) 2111 bfd *abfd ATTRIBUTE_UNUSED; 2112 asymbol *asym; 2113 { 2114 elf_symbol_type *elfsym; 2115 2116 elfsym = (elf_symbol_type *) asym; 2117 switch (elfsym->internal_elf_sym.st_shndx) 2118 { 2119 case SHN_REGISTER: 2120 if (mmix_elf_reg_section.name == NULL) 2121 { 2122 /* Initialize the register section. */ 2123 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME; 2124 mmix_elf_reg_section.flags = SEC_NO_FLAGS; 2125 mmix_elf_reg_section.output_section = &mmix_elf_reg_section; 2126 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol; 2127 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr; 2128 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME; 2129 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM; 2130 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section; 2131 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol; 2132 } 2133 asym->section = &mmix_elf_reg_section; 2134 break; 2135 2136 default: 2137 break; 2138 } 2139 } 2140 2141 /* Given a BFD section, try to locate the corresponding ELF section 2142 index. */ 2143 2144 static bfd_boolean 2145 mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED, 2146 asection * sec, 2147 int * retval) 2148 { 2149 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0) 2150 *retval = SHN_REGISTER; 2151 else 2152 return FALSE; 2153 2154 return TRUE; 2155 } 2156 2157 /* Hook called by the linker routine which adds symbols from an object 2158 file. We must handle the special SHN_REGISTER section number here. 2159 2160 We also check that we only have *one* each of the section-start 2161 symbols, since otherwise having two with the same value would cause 2162 them to be "merged", but with the contents serialized. */ 2163 2164 static bfd_boolean 2165 mmix_elf_add_symbol_hook (bfd *abfd, 2166 struct bfd_link_info *info ATTRIBUTE_UNUSED, 2167 Elf_Internal_Sym *sym, 2168 const char **namep ATTRIBUTE_UNUSED, 2169 flagword *flagsp ATTRIBUTE_UNUSED, 2170 asection **secp, 2171 bfd_vma *valp ATTRIBUTE_UNUSED) 2172 { 2173 if (sym->st_shndx == SHN_REGISTER) 2174 { 2175 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME); 2176 (*secp)->flags |= SEC_LINKER_CREATED; 2177 } 2178 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.' 2179 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) 2180 { 2181 /* See if we have another one. */ 2182 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash, 2183 *namep, 2184 FALSE, 2185 FALSE, 2186 FALSE); 2187 2188 if (h != NULL && h->type != bfd_link_hash_undefined) 2189 { 2190 /* How do we get the asymbol (or really: the filename) from h? 2191 h->u.def.section->owner is NULL. */ 2192 ((*_bfd_error_handler) 2193 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"), 2194 bfd_get_filename (abfd), *namep, 2195 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX))); 2196 bfd_set_error (bfd_error_bad_value); 2197 return FALSE; 2198 } 2199 } 2200 2201 return TRUE; 2202 } 2203 2204 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */ 2205 2206 static bfd_boolean 2207 mmix_elf_is_local_label_name (bfd *abfd, const char *name) 2208 { 2209 const char *colpos; 2210 int digits; 2211 2212 /* Also include the default local-label definition. */ 2213 if (_bfd_elf_is_local_label_name (abfd, name)) 2214 return TRUE; 2215 2216 if (*name != 'L') 2217 return FALSE; 2218 2219 /* If there's no ":", or more than one, it's not a local symbol. */ 2220 colpos = strchr (name, ':'); 2221 if (colpos == NULL || strchr (colpos + 1, ':') != NULL) 2222 return FALSE; 2223 2224 /* Check that there are remaining characters and that they are digits. */ 2225 if (colpos[1] == 0) 2226 return FALSE; 2227 2228 digits = strspn (colpos + 1, "0123456789"); 2229 return digits != 0 && colpos[1 + digits] == 0; 2230 } 2231 2232 /* We get rid of the register section here. */ 2233 2234 bfd_boolean 2235 mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info) 2236 { 2237 /* We never output a register section, though we create one for 2238 temporary measures. Check that nobody entered contents into it. */ 2239 asection *reg_section; 2240 2241 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME); 2242 2243 if (reg_section != NULL) 2244 { 2245 /* FIXME: Pass error state gracefully. */ 2246 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS) 2247 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n")); 2248 2249 /* Really remove the section, if it hasn't already been done. */ 2250 if (!bfd_section_removed_from_list (abfd, reg_section)) 2251 { 2252 bfd_section_list_remove (abfd, reg_section); 2253 --abfd->section_count; 2254 } 2255 } 2256 2257 if (! bfd_elf_final_link (abfd, info)) 2258 return FALSE; 2259 2260 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by 2261 the regular linker machinery. We do it here, like other targets with 2262 special sections. */ 2263 if (info->base_file != NULL) 2264 { 2265 asection *greg_section 2266 = bfd_get_section_by_name ((bfd *) info->base_file, 2267 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2268 if (!bfd_set_section_contents (abfd, 2269 greg_section->output_section, 2270 greg_section->contents, 2271 (file_ptr) greg_section->output_offset, 2272 greg_section->size)) 2273 return FALSE; 2274 } 2275 return TRUE; 2276 } 2277 2278 /* We need to include the maximum size of PUSHJ-stubs in the initial 2279 section size. This is expected to shrink during linker relaxation. */ 2280 2281 static void 2282 mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED, 2283 asection *sec, 2284 void *ptr) 2285 { 2286 struct bfd_link_info *info = ptr; 2287 2288 /* Make sure we only do this for section where we know we want this, 2289 otherwise we might end up resetting the size of COMMONs. */ 2290 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0) 2291 return; 2292 2293 sec->rawsize = sec->size; 2294 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs 2295 * MAX_PUSHJ_STUB_SIZE); 2296 2297 /* For use in relocatable link, we start with a max stubs size. See 2298 mmix_elf_relax_section. */ 2299 if (info->relocatable && sec->output_section) 2300 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum 2301 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs 2302 * MAX_PUSHJ_STUB_SIZE); 2303 } 2304 2305 /* Initialize stuff for the linker-generated GREGs to match 2306 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */ 2307 2308 bfd_boolean 2309 _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED, 2310 struct bfd_link_info *info) 2311 { 2312 asection *bpo_gregs_section; 2313 bfd *bpo_greg_owner; 2314 struct bpo_greg_section_info *gregdata; 2315 size_t n_gregs; 2316 bfd_vma gregs_size; 2317 size_t i; 2318 size_t *bpo_reloc_indexes; 2319 bfd *ibfd; 2320 2321 /* Set the initial size of sections. */ 2322 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 2323 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info); 2324 2325 /* The bpo_greg_owner bfd is supposed to have been set by 2326 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen. 2327 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */ 2328 bpo_greg_owner = (bfd *) info->base_file; 2329 if (bpo_greg_owner == NULL) 2330 return TRUE; 2331 2332 bpo_gregs_section 2333 = bfd_get_section_by_name (bpo_greg_owner, 2334 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2335 2336 if (bpo_gregs_section == NULL) 2337 return TRUE; 2338 2339 /* We use the target-data handle in the ELF section data. */ 2340 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2341 if (gregdata == NULL) 2342 return FALSE; 2343 2344 n_gregs = gregdata->n_bpo_relocs; 2345 gregdata->n_allocated_bpo_gregs = n_gregs; 2346 2347 /* When this reaches zero during relaxation, all entries have been 2348 filled in and the size of the linker gregs can be calculated. */ 2349 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs; 2350 2351 /* Set the zeroth-order estimate for the GREGs size. */ 2352 gregs_size = n_gregs * 8; 2353 2354 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size)) 2355 return FALSE; 2356 2357 /* Allocate and set up the GREG arrays. They're filled in at relaxation 2358 time. Note that we must use the max number ever noted for the array, 2359 since the index numbers were created before GC. */ 2360 gregdata->reloc_request 2361 = bfd_zalloc (bpo_greg_owner, 2362 sizeof (struct bpo_reloc_request) 2363 * gregdata->n_max_bpo_relocs); 2364 2365 gregdata->bpo_reloc_indexes 2366 = bpo_reloc_indexes 2367 = bfd_alloc (bpo_greg_owner, 2368 gregdata->n_max_bpo_relocs 2369 * sizeof (size_t)); 2370 if (bpo_reloc_indexes == NULL) 2371 return FALSE; 2372 2373 /* The default order is an identity mapping. */ 2374 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2375 { 2376 bpo_reloc_indexes[i] = i; 2377 gregdata->reloc_request[i].bpo_reloc_no = i; 2378 } 2379 2380 return TRUE; 2381 } 2382 2383 /* Fill in contents in the linker allocated gregs. Everything is 2384 calculated at this point; we just move the contents into place here. */ 2385 2386 bfd_boolean 2387 _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED, 2388 struct bfd_link_info *link_info) 2389 { 2390 asection *bpo_gregs_section; 2391 bfd *bpo_greg_owner; 2392 struct bpo_greg_section_info *gregdata; 2393 size_t n_gregs; 2394 size_t i, j; 2395 size_t lastreg; 2396 bfd_byte *contents; 2397 2398 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs 2399 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such 2400 object, there was no R_MMIX_BASE_PLUS_OFFSET. */ 2401 bpo_greg_owner = (bfd *) link_info->base_file; 2402 if (bpo_greg_owner == NULL) 2403 return TRUE; 2404 2405 bpo_gregs_section 2406 = bfd_get_section_by_name (bpo_greg_owner, 2407 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2408 2409 /* This can't happen without DSO handling. When DSOs are handled 2410 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such 2411 section. */ 2412 if (bpo_gregs_section == NULL) 2413 return TRUE; 2414 2415 /* We use the target-data handle in the ELF section data. */ 2416 2417 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2418 if (gregdata == NULL) 2419 return FALSE; 2420 2421 n_gregs = gregdata->n_allocated_bpo_gregs; 2422 2423 bpo_gregs_section->contents 2424 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size); 2425 if (contents == NULL) 2426 return FALSE; 2427 2428 /* Sanity check: If these numbers mismatch, some relocation has not been 2429 accounted for and the rest of gregdata is probably inconsistent. 2430 It's a bug, but it's more helpful to identify it than segfaulting 2431 below. */ 2432 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round 2433 != gregdata->n_bpo_relocs) 2434 { 2435 (*_bfd_error_handler) 2436 (_("Internal inconsistency: remaining %u != max %u.\n\ 2437 Please report this bug."), 2438 gregdata->n_remaining_bpo_relocs_this_relaxation_round, 2439 gregdata->n_bpo_relocs); 2440 return FALSE; 2441 } 2442 2443 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++) 2444 if (gregdata->reloc_request[i].regindex != lastreg) 2445 { 2446 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value, 2447 contents + j * 8); 2448 lastreg = gregdata->reloc_request[i].regindex; 2449 j++; 2450 } 2451 2452 return TRUE; 2453 } 2454 2455 /* Sort valid relocs to come before non-valid relocs, then on increasing 2456 value. */ 2457 2458 static int 2459 bpo_reloc_request_sort_fn (const void * p1, const void * p2) 2460 { 2461 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1; 2462 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2; 2463 2464 /* Primary function is validity; non-valid relocs sorted after valid 2465 ones. */ 2466 if (r1->valid != r2->valid) 2467 return r2->valid - r1->valid; 2468 2469 /* Then sort on value. Don't simplify and return just the difference of 2470 the values: the upper bits of the 64-bit value would be truncated on 2471 a host with 32-bit ints. */ 2472 if (r1->value != r2->value) 2473 return r1->value > r2->value ? 1 : -1; 2474 2475 /* As a last re-sort, use the relocation number, so we get a stable 2476 sort. The *addresses* aren't stable since items are swapped during 2477 sorting. It depends on the qsort implementation if this actually 2478 happens. */ 2479 return r1->bpo_reloc_no > r2->bpo_reloc_no 2480 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0); 2481 } 2482 2483 /* For debug use only. Dumps the global register allocations resulting 2484 from base-plus-offset relocs. */ 2485 2486 void 2487 mmix_dump_bpo_gregs (link_info, pf) 2488 struct bfd_link_info *link_info; 2489 bfd_error_handler_type pf; 2490 { 2491 bfd *bpo_greg_owner; 2492 asection *bpo_gregs_section; 2493 struct bpo_greg_section_info *gregdata; 2494 unsigned int i; 2495 2496 if (link_info == NULL || link_info->base_file == NULL) 2497 return; 2498 2499 bpo_greg_owner = (bfd *) link_info->base_file; 2500 2501 bpo_gregs_section 2502 = bfd_get_section_by_name (bpo_greg_owner, 2503 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2504 2505 if (bpo_gregs_section == NULL) 2506 return; 2507 2508 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2509 if (gregdata == NULL) 2510 return; 2511 2512 if (pf == NULL) 2513 pf = _bfd_error_handler; 2514 2515 /* These format strings are not translated. They are for debug purposes 2516 only and never displayed to an end user. Should they escape, we 2517 surely want them in original. */ 2518 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\ 2519 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs, 2520 gregdata->n_max_bpo_relocs, 2521 gregdata->n_remaining_bpo_relocs_this_relaxation_round, 2522 gregdata->n_allocated_bpo_gregs); 2523 2524 if (gregdata->reloc_request) 2525 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2526 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n", 2527 i, 2528 (gregdata->bpo_reloc_indexes != NULL 2529 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1), 2530 gregdata->reloc_request[i].bpo_reloc_no, 2531 gregdata->reloc_request[i].valid, 2532 2533 (unsigned long) (gregdata->reloc_request[i].value >> 32), 2534 (unsigned long) gregdata->reloc_request[i].value, 2535 gregdata->reloc_request[i].regindex, 2536 gregdata->reloc_request[i].offset); 2537 } 2538 2539 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and 2540 when the last such reloc is done, an index-array is sorted according to 2541 the values and iterated over to produce register numbers (indexed by 0 2542 from the first allocated register number) and offsets for use in real 2543 relocation. (N.B.: Relocatable runs are handled, not just punted.) 2544 2545 PUSHJ stub accounting is also done here. 2546 2547 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */ 2548 2549 static bfd_boolean 2550 mmix_elf_relax_section (bfd *abfd, 2551 asection *sec, 2552 struct bfd_link_info *link_info, 2553 bfd_boolean *again) 2554 { 2555 Elf_Internal_Shdr *symtab_hdr; 2556 Elf_Internal_Rela *internal_relocs; 2557 Elf_Internal_Rela *irel, *irelend; 2558 asection *bpo_gregs_section = NULL; 2559 struct bpo_greg_section_info *gregdata; 2560 struct bpo_reloc_section_info *bpodata 2561 = mmix_elf_section_data (sec)->bpo.reloc; 2562 /* The initialization is to quiet compiler warnings. The value is to 2563 spot a missing actual initialization. */ 2564 size_t bpono = (size_t) -1; 2565 size_t pjsno = 0; 2566 Elf_Internal_Sym *isymbuf = NULL; 2567 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size; 2568 2569 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0; 2570 2571 /* Assume nothing changes. */ 2572 *again = FALSE; 2573 2574 /* We don't have to do anything if this section does not have relocs, or 2575 if this is not a code section. */ 2576 if ((sec->flags & SEC_RELOC) == 0 2577 || sec->reloc_count == 0 2578 || (sec->flags & SEC_CODE) == 0 2579 || (sec->flags & SEC_LINKER_CREATED) != 0 2580 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs, 2581 then nothing to do. */ 2582 || (bpodata == NULL 2583 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)) 2584 return TRUE; 2585 2586 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2587 2588 if (bpodata != NULL) 2589 { 2590 bpo_gregs_section = bpodata->bpo_greg_section; 2591 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2592 bpono = bpodata->first_base_plus_offset_reloc; 2593 } 2594 else 2595 gregdata = NULL; 2596 2597 /* Get a copy of the native relocations. */ 2598 internal_relocs 2599 = _bfd_elf_link_read_relocs (abfd, sec, NULL, 2600 (Elf_Internal_Rela *) NULL, 2601 link_info->keep_memory); 2602 if (internal_relocs == NULL) 2603 goto error_return; 2604 2605 /* Walk through them looking for relaxing opportunities. */ 2606 irelend = internal_relocs + sec->reloc_count; 2607 for (irel = internal_relocs; irel < irelend; irel++) 2608 { 2609 bfd_vma symval; 2610 struct elf_link_hash_entry *h = NULL; 2611 2612 /* We only process two relocs. */ 2613 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET 2614 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE) 2615 continue; 2616 2617 /* We process relocs in a distinctly different way when this is a 2618 relocatable link (for one, we don't look at symbols), so we avoid 2619 mixing its code with that for the "normal" relaxation. */ 2620 if (link_info->relocatable) 2621 { 2622 /* The only transformation in a relocatable link is to generate 2623 a full stub at the location of the stub calculated for the 2624 input section, if the relocated stub location, the end of the 2625 output section plus earlier stubs, cannot be reached. Thus 2626 relocatable linking can only lead to worse code, but it still 2627 works. */ 2628 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE) 2629 { 2630 /* If we can reach the end of the output-section and beyond 2631 any current stubs, then we don't need a stub for this 2632 reloc. The relaxed order of output stub allocation may 2633 not exactly match the straightforward order, so we always 2634 assume presence of output stubs, which will allow 2635 relaxation only on relocations indifferent to the 2636 presence of output stub allocations for other relocations 2637 and thus the order of output stub allocation. */ 2638 if (bfd_check_overflow (complain_overflow_signed, 2639 19, 2640 0, 2641 bfd_arch_bits_per_address (abfd), 2642 /* Output-stub location. */ 2643 sec->output_section->rawsize 2644 + (mmix_elf_section_data (sec 2645 ->output_section) 2646 ->pjs.stubs_size_sum) 2647 /* Location of this PUSHJ reloc. */ 2648 - (sec->output_offset + irel->r_offset) 2649 /* Don't count *this* stub twice. */ 2650 - (mmix_elf_section_data (sec) 2651 ->pjs.stub_size[pjsno] 2652 + MAX_PUSHJ_STUB_SIZE)) 2653 == bfd_reloc_ok) 2654 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; 2655 2656 mmix_elf_section_data (sec)->pjs.stubs_size_sum 2657 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; 2658 2659 pjsno++; 2660 } 2661 2662 continue; 2663 } 2664 2665 /* Get the value of the symbol referred to by the reloc. */ 2666 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info) 2667 { 2668 /* A local symbol. */ 2669 Elf_Internal_Sym *isym; 2670 asection *sym_sec; 2671 2672 /* Read this BFD's local symbols if we haven't already. */ 2673 if (isymbuf == NULL) 2674 { 2675 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 2676 if (isymbuf == NULL) 2677 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 2678 symtab_hdr->sh_info, 0, 2679 NULL, NULL, NULL); 2680 if (isymbuf == 0) 2681 goto error_return; 2682 } 2683 2684 isym = isymbuf + ELF64_R_SYM (irel->r_info); 2685 if (isym->st_shndx == SHN_UNDEF) 2686 sym_sec = bfd_und_section_ptr; 2687 else if (isym->st_shndx == SHN_ABS) 2688 sym_sec = bfd_abs_section_ptr; 2689 else if (isym->st_shndx == SHN_COMMON) 2690 sym_sec = bfd_com_section_ptr; 2691 else 2692 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 2693 symval = (isym->st_value 2694 + sym_sec->output_section->vma 2695 + sym_sec->output_offset); 2696 } 2697 else 2698 { 2699 unsigned long indx; 2700 2701 /* An external symbol. */ 2702 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info; 2703 h = elf_sym_hashes (abfd)[indx]; 2704 BFD_ASSERT (h != NULL); 2705 if (h->root.type != bfd_link_hash_defined 2706 && h->root.type != bfd_link_hash_defweak) 2707 { 2708 /* This appears to be a reference to an undefined symbol. Just 2709 ignore it--it will be caught by the regular reloc processing. 2710 We need to keep BPO reloc accounting consistent, though 2711 else we'll abort instead of emitting an error message. */ 2712 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET 2713 && gregdata != NULL) 2714 { 2715 gregdata->n_remaining_bpo_relocs_this_relaxation_round--; 2716 bpono++; 2717 } 2718 continue; 2719 } 2720 2721 symval = (h->root.u.def.value 2722 + h->root.u.def.section->output_section->vma 2723 + h->root.u.def.section->output_offset); 2724 } 2725 2726 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE) 2727 { 2728 bfd_vma value = symval + irel->r_addend; 2729 bfd_vma dot 2730 = (sec->output_section->vma 2731 + sec->output_offset 2732 + irel->r_offset); 2733 bfd_vma stubaddr 2734 = (sec->output_section->vma 2735 + sec->output_offset 2736 + size 2737 + mmix_elf_section_data (sec)->pjs.stubs_size_sum); 2738 2739 if ((value & 3) == 0 2740 && bfd_check_overflow (complain_overflow_signed, 2741 19, 2742 0, 2743 bfd_arch_bits_per_address (abfd), 2744 value - dot 2745 - (value > dot 2746 ? mmix_elf_section_data (sec) 2747 ->pjs.stub_size[pjsno] 2748 : 0)) 2749 == bfd_reloc_ok) 2750 /* If the reloc fits, no stub is needed. */ 2751 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; 2752 else 2753 /* Maybe we can get away with just a JMP insn? */ 2754 if ((value & 3) == 0 2755 && bfd_check_overflow (complain_overflow_signed, 2756 27, 2757 0, 2758 bfd_arch_bits_per_address (abfd), 2759 value - stubaddr 2760 - (value > dot 2761 ? mmix_elf_section_data (sec) 2762 ->pjs.stub_size[pjsno] - 4 2763 : 0)) 2764 == bfd_reloc_ok) 2765 /* Yep, account for a stub consisting of a single JMP insn. */ 2766 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4; 2767 else 2768 /* Nope, go for the full insn stub. It doesn't seem useful to 2769 emit the intermediate sizes; those will only be useful for 2770 a >64M program assuming contiguous code. */ 2771 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] 2772 = MAX_PUSHJ_STUB_SIZE; 2773 2774 mmix_elf_section_data (sec)->pjs.stubs_size_sum 2775 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; 2776 pjsno++; 2777 continue; 2778 } 2779 2780 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */ 2781 2782 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value 2783 = symval + irel->r_addend; 2784 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE; 2785 gregdata->n_remaining_bpo_relocs_this_relaxation_round--; 2786 } 2787 2788 /* Check if that was the last BPO-reloc. If so, sort the values and 2789 calculate how many registers we need to cover them. Set the size of 2790 the linker gregs, and if the number of registers changed, indicate 2791 that we need to relax some more because we have more work to do. */ 2792 if (gregdata != NULL 2793 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0) 2794 { 2795 size_t i; 2796 bfd_vma prev_base; 2797 size_t regindex; 2798 2799 /* First, reset the remaining relocs for the next round. */ 2800 gregdata->n_remaining_bpo_relocs_this_relaxation_round 2801 = gregdata->n_bpo_relocs; 2802 2803 qsort (gregdata->reloc_request, 2804 gregdata->n_max_bpo_relocs, 2805 sizeof (struct bpo_reloc_request), 2806 bpo_reloc_request_sort_fn); 2807 2808 /* Recalculate indexes. When we find a change (however unlikely 2809 after the initial iteration), we know we need to relax again, 2810 since items in the GREG-array are sorted by increasing value and 2811 stored in the relaxation phase. */ 2812 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2813 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] 2814 != i) 2815 { 2816 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] 2817 = i; 2818 *again = TRUE; 2819 } 2820 2821 /* Allocate register numbers (indexing from 0). Stop at the first 2822 non-valid reloc. */ 2823 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value; 2824 i < gregdata->n_bpo_relocs; 2825 i++) 2826 { 2827 if (gregdata->reloc_request[i].value > prev_base + 255) 2828 { 2829 regindex++; 2830 prev_base = gregdata->reloc_request[i].value; 2831 } 2832 gregdata->reloc_request[i].regindex = regindex; 2833 gregdata->reloc_request[i].offset 2834 = gregdata->reloc_request[i].value - prev_base; 2835 } 2836 2837 /* If it's not the same as the last time, we need to relax again, 2838 because the size of the section has changed. I'm not sure we 2839 actually need to do any adjustments since the shrinking happens 2840 at the start of this section, but better safe than sorry. */ 2841 if (gregdata->n_allocated_bpo_gregs != regindex + 1) 2842 { 2843 gregdata->n_allocated_bpo_gregs = regindex + 1; 2844 *again = TRUE; 2845 } 2846 2847 bpo_gregs_section->size = (regindex + 1) * 8; 2848 } 2849 2850 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) 2851 { 2852 if (! link_info->keep_memory) 2853 free (isymbuf); 2854 else 2855 { 2856 /* Cache the symbols for elf_link_input_bfd. */ 2857 symtab_hdr->contents = (unsigned char *) isymbuf; 2858 } 2859 } 2860 2861 if (internal_relocs != NULL 2862 && elf_section_data (sec)->relocs != internal_relocs) 2863 free (internal_relocs); 2864 2865 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) 2866 abort (); 2867 2868 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) 2869 { 2870 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum; 2871 *again = TRUE; 2872 } 2873 2874 return TRUE; 2875 2876 error_return: 2877 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) 2878 free (isymbuf); 2879 if (internal_relocs != NULL 2880 && elf_section_data (sec)->relocs != internal_relocs) 2881 free (internal_relocs); 2882 return FALSE; 2883 } 2884 2885 #define ELF_ARCH bfd_arch_mmix 2886 #define ELF_MACHINE_CODE EM_MMIX 2887 2888 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL). 2889 However, that's too much for something somewhere in the linker part of 2890 BFD; perhaps the start-address has to be a non-zero multiple of this 2891 number, or larger than this number. The symptom is that the linker 2892 complains: "warning: allocated section `.text' not in segment". We 2893 settle for 64k; the page-size used in examples is 8k. 2894 #define ELF_MAXPAGESIZE 0x10000 2895 2896 Unfortunately, this causes excessive padding in the supposedly small 2897 for-education programs that are the expected usage (where people would 2898 inspect output). We stick to 256 bytes just to have *some* default 2899 alignment. */ 2900 #define ELF_MAXPAGESIZE 0x100 2901 2902 #define TARGET_BIG_SYM bfd_elf64_mmix_vec 2903 #define TARGET_BIG_NAME "elf64-mmix" 2904 2905 #define elf_info_to_howto_rel NULL 2906 #define elf_info_to_howto mmix_info_to_howto_rela 2907 #define elf_backend_relocate_section mmix_elf_relocate_section 2908 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook 2909 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook 2910 2911 #define elf_backend_link_output_symbol_hook \ 2912 mmix_elf_link_output_symbol_hook 2913 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook 2914 2915 #define elf_backend_check_relocs mmix_elf_check_relocs 2916 #define elf_backend_symbol_processing mmix_elf_symbol_processing 2917 #define elf_backend_omit_section_dynsym \ 2918 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) 2919 2920 #define bfd_elf64_bfd_is_local_label_name \ 2921 mmix_elf_is_local_label_name 2922 2923 #define elf_backend_may_use_rel_p 0 2924 #define elf_backend_may_use_rela_p 1 2925 #define elf_backend_default_use_rela_p 1 2926 2927 #define elf_backend_can_gc_sections 1 2928 #define elf_backend_section_from_bfd_section \ 2929 mmix_elf_section_from_bfd_section 2930 2931 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook 2932 #define bfd_elf64_bfd_final_link mmix_elf_final_link 2933 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section 2934 2935 #include "elf64-target.h" 2936