xref: /netbsd-src/external/gpl3/binutils.old/dist/bfd/elf64-mmix.c (revision 9fd8799cb5ceb66c69f2eb1a6d26a1d587ba1f1e)
1 /* MMIX-specific support for 64-bit ELF.
2    Copyright (C) 2001-2018 Free Software Foundation, Inc.
3    Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 
23 /* No specific ABI or "processor-specific supplement" defined.  */
24 
25 /* TODO:
26    - "Traditional" linker relaxation (shrinking whole sections).
27    - Merge reloc stubs jumping to same location.
28    - GETA stub relaxation (call a stub for out of range new
29      R_MMIX_GETA_STUBBABLE).  */
30 
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/mmix.h"
36 #include "opcode/mmix.h"
37 
38 #define MINUS_ONE	(((bfd_vma) 0) - 1)
39 
40 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
41 
42 /* Put these everywhere in new code.  */
43 #define FATAL_DEBUG						\
44  _bfd_abort (__FILE__, __LINE__,				\
45 	     "Internal: Non-debugged code (test-case missing)")
46 
47 #define BAD_CASE(x)				\
48  _bfd_abort (__FILE__, __LINE__,		\
49 	     "bad case for " #x)
50 
51 struct _mmix_elf_section_data
52 {
53   struct bfd_elf_section_data elf;
54   union
55   {
56     struct bpo_reloc_section_info *reloc;
57     struct bpo_greg_section_info *greg;
58   } bpo;
59 
60   struct pushj_stub_info
61   {
62     /* Maximum number of stubs needed for this section.  */
63     bfd_size_type n_pushj_relocs;
64 
65     /* Size of stubs after a mmix_elf_relax_section round.  */
66     bfd_size_type stubs_size_sum;
67 
68     /* Per-reloc stubs_size_sum information.  The stubs_size_sum member is the sum
69        of these.  Allocated in mmix_elf_check_common_relocs.  */
70     bfd_size_type *stub_size;
71 
72     /* Offset of next stub during relocation.  Somewhat redundant with the
73        above: error coverage is easier and we don't have to reset the
74        stubs_size_sum for relocation.  */
75     bfd_size_type stub_offset;
76   } pjs;
77 
78   /* Whether there has been a warning that this section could not be
79      linked due to a specific cause.  FIXME: a way to access the
80      linker info or output section, then stuff the limiter guard
81      there. */
82   bfd_boolean has_warned_bpo;
83   bfd_boolean has_warned_pushj;
84 };
85 
86 #define mmix_elf_section_data(sec) \
87   ((struct _mmix_elf_section_data *) elf_section_data (sec))
88 
89 /* For each section containing a base-plus-offset (BPO) reloc, we attach
90    this struct as mmix_elf_section_data (section)->bpo, which is otherwise
91    NULL.  */
92 struct bpo_reloc_section_info
93   {
94     /* The base is 1; this is the first number in this section.  */
95     size_t first_base_plus_offset_reloc;
96 
97     /* Number of BPO-relocs in this section.  */
98     size_t n_bpo_relocs_this_section;
99 
100     /* Running index, used at relocation time.  */
101     size_t bpo_index;
102 
103     /* We don't have access to the bfd_link_info struct in
104        mmix_final_link_relocate.  What we really want to get at is the
105        global single struct greg_relocation, so we stash it here.  */
106     asection *bpo_greg_section;
107   };
108 
109 /* Helper struct (in global context) for the one below.
110    There's one of these created for every BPO reloc.  */
111 struct bpo_reloc_request
112   {
113     bfd_vma value;
114 
115     /* Valid after relaxation.  The base is 0; the first register number
116        must be added.  The offset is in range 0..255.  */
117     size_t regindex;
118     size_t offset;
119 
120     /* The order number for this BPO reloc, corresponding to the order in
121        which BPO relocs were found.  Used to create an index after reloc
122        requests are sorted.  */
123     size_t bpo_reloc_no;
124 
125     /* Set when the value is computed.  Better than coding "guard values"
126        into the other members.  Is FALSE only for BPO relocs in a GC:ed
127        section.  */
128     bfd_boolean valid;
129   };
130 
131 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
132    greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
133    which is linked into the register contents section
134    (MMIX_REG_CONTENTS_SECTION_NAME).  This section is created by the
135    linker; using the same hook as for usual with BPO relocs does not
136    collide.  */
137 struct bpo_greg_section_info
138   {
139     /* After GC, this reflects the number of remaining, non-excluded
140        BPO-relocs.  */
141     size_t n_bpo_relocs;
142 
143     /* This is the number of allocated bpo_reloc_requests; the size of
144        sorted_indexes.  Valid after the check.*relocs functions are called
145        for all incoming sections.  It includes the number of BPO relocs in
146        sections that were GC:ed.  */
147     size_t n_max_bpo_relocs;
148 
149     /* A counter used to find out when to fold the BPO gregs, since we
150        don't have a single "after-relaxation" hook.  */
151     size_t n_remaining_bpo_relocs_this_relaxation_round;
152 
153     /* The number of linker-allocated GREGs resulting from BPO relocs.
154        This is an approximation after _bfd_mmix_before_linker_allocation
155        and supposedly accurate after mmix_elf_relax_section is called for
156        all incoming non-collected sections.  */
157     size_t n_allocated_bpo_gregs;
158 
159     /* Index into reloc_request[], sorted on increasing "value", secondary
160        by increasing index for strict sorting order.  */
161     size_t *bpo_reloc_indexes;
162 
163     /* An array of all relocations, with the "value" member filled in by
164        the relaxation function.  */
165     struct bpo_reloc_request *reloc_request;
166   };
167 
168 
169 extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
170 
171 extern void mmix_elf_symbol_processing (bfd *, asymbol *);
172 
173 /* Only intended to be called from a debugger.  */
174 extern void mmix_dump_bpo_gregs
175   (struct bfd_link_info *, void (*) (const char *, ...));
176 
177 static void
178 mmix_set_relaxable_size (bfd *, asection *, void *);
179 static bfd_reloc_status_type
180 mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
181 		asection *, bfd *, char **);
182 static bfd_reloc_status_type
183 mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
184 			  bfd_signed_vma, bfd_vma, const char *, asection *,
185 			  char **);
186 
187 
188 /* Watch out: this currently needs to have elements with the same index as
189    their R_MMIX_ number.  */
190 static reloc_howto_type elf_mmix_howto_table[] =
191  {
192   /* This reloc does nothing.  */
193   HOWTO (R_MMIX_NONE,		/* type */
194 	 0,			/* rightshift */
195 	 3,			/* size (0 = byte, 1 = short, 2 = long) */
196 	 0,			/* bitsize */
197 	 FALSE,			/* pc_relative */
198 	 0,			/* bitpos */
199 	 complain_overflow_dont, /* complain_on_overflow */
200 	 bfd_elf_generic_reloc,	/* special_function */
201 	 "R_MMIX_NONE",		/* name */
202 	 FALSE,			/* partial_inplace */
203 	 0,			/* src_mask */
204 	 0,			/* dst_mask */
205 	 FALSE),		/* pcrel_offset */
206 
207   /* An 8 bit absolute relocation.  */
208   HOWTO (R_MMIX_8,		/* type */
209 	 0,			/* rightshift */
210 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
211 	 8,			/* bitsize */
212 	 FALSE,			/* pc_relative */
213 	 0,			/* bitpos */
214 	 complain_overflow_bitfield, /* complain_on_overflow */
215 	 bfd_elf_generic_reloc,	/* special_function */
216 	 "R_MMIX_8",		/* name */
217 	 FALSE,			/* partial_inplace */
218 	 0,			/* src_mask */
219 	 0xff,			/* dst_mask */
220 	 FALSE),		/* pcrel_offset */
221 
222   /* An 16 bit absolute relocation.  */
223   HOWTO (R_MMIX_16,		/* type */
224 	 0,			/* rightshift */
225 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
226 	 16,			/* bitsize */
227 	 FALSE,			/* pc_relative */
228 	 0,			/* bitpos */
229 	 complain_overflow_bitfield, /* complain_on_overflow */
230 	 bfd_elf_generic_reloc,	/* special_function */
231 	 "R_MMIX_16",		/* name */
232 	 FALSE,			/* partial_inplace */
233 	 0,			/* src_mask */
234 	 0xffff,		/* dst_mask */
235 	 FALSE),		/* pcrel_offset */
236 
237   /* An 24 bit absolute relocation.  */
238   HOWTO (R_MMIX_24,		/* type */
239 	 0,			/* rightshift */
240 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
241 	 24,			/* bitsize */
242 	 FALSE,			/* pc_relative */
243 	 0,			/* bitpos */
244 	 complain_overflow_bitfield, /* complain_on_overflow */
245 	 bfd_elf_generic_reloc,	/* special_function */
246 	 "R_MMIX_24",		/* name */
247 	 FALSE,			/* partial_inplace */
248 	 ~0xffffff,		/* src_mask */
249 	 0xffffff,		/* dst_mask */
250 	 FALSE),		/* pcrel_offset */
251 
252   /* A 32 bit absolute relocation.  */
253   HOWTO (R_MMIX_32,		/* type */
254 	 0,			/* rightshift */
255 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
256 	 32,			/* bitsize */
257 	 FALSE,			/* pc_relative */
258 	 0,			/* bitpos */
259 	 complain_overflow_bitfield, /* complain_on_overflow */
260 	 bfd_elf_generic_reloc,	/* special_function */
261 	 "R_MMIX_32",		/* name */
262 	 FALSE,			/* partial_inplace */
263 	 0,			/* src_mask */
264 	 0xffffffff,		/* dst_mask */
265 	 FALSE),		/* pcrel_offset */
266 
267   /* 64 bit relocation.  */
268   HOWTO (R_MMIX_64,		/* type */
269 	 0,			/* rightshift */
270 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
271 	 64,			/* bitsize */
272 	 FALSE,			/* pc_relative */
273 	 0,			/* bitpos */
274 	 complain_overflow_bitfield, /* complain_on_overflow */
275 	 bfd_elf_generic_reloc,	/* special_function */
276 	 "R_MMIX_64",		/* name */
277 	 FALSE,			/* partial_inplace */
278 	 0,			/* src_mask */
279 	 MINUS_ONE,		/* dst_mask */
280 	 FALSE),		/* pcrel_offset */
281 
282   /* An 8 bit PC-relative relocation.  */
283   HOWTO (R_MMIX_PC_8,		/* type */
284 	 0,			/* rightshift */
285 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
286 	 8,			/* bitsize */
287 	 TRUE,			/* pc_relative */
288 	 0,			/* bitpos */
289 	 complain_overflow_bitfield, /* complain_on_overflow */
290 	 bfd_elf_generic_reloc,	/* special_function */
291 	 "R_MMIX_PC_8",		/* name */
292 	 FALSE,			/* partial_inplace */
293 	 0,			/* src_mask */
294 	 0xff,			/* dst_mask */
295 	 TRUE),			/* pcrel_offset */
296 
297   /* An 16 bit PC-relative relocation.  */
298   HOWTO (R_MMIX_PC_16,		/* type */
299 	 0,			/* rightshift */
300 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
301 	 16,			/* bitsize */
302 	 TRUE,			/* pc_relative */
303 	 0,			/* bitpos */
304 	 complain_overflow_bitfield, /* complain_on_overflow */
305 	 bfd_elf_generic_reloc,	/* special_function */
306 	 "R_MMIX_PC_16",	/* name */
307 	 FALSE,			/* partial_inplace */
308 	 0,			/* src_mask */
309 	 0xffff,		/* dst_mask */
310 	 TRUE),			/* pcrel_offset */
311 
312   /* An 24 bit PC-relative relocation.  */
313   HOWTO (R_MMIX_PC_24,		/* type */
314 	 0,			/* rightshift */
315 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
316 	 24,			/* bitsize */
317 	 TRUE,			/* pc_relative */
318 	 0,			/* bitpos */
319 	 complain_overflow_bitfield, /* complain_on_overflow */
320 	 bfd_elf_generic_reloc,	/* special_function */
321 	 "R_MMIX_PC_24",	/* name */
322 	 FALSE,			/* partial_inplace */
323 	 ~0xffffff,		/* src_mask */
324 	 0xffffff,		/* dst_mask */
325 	 TRUE),			/* pcrel_offset */
326 
327   /* A 32 bit absolute PC-relative relocation.  */
328   HOWTO (R_MMIX_PC_32,		/* type */
329 	 0,			/* rightshift */
330 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
331 	 32,			/* bitsize */
332 	 TRUE,			/* pc_relative */
333 	 0,			/* bitpos */
334 	 complain_overflow_bitfield, /* complain_on_overflow */
335 	 bfd_elf_generic_reloc,	/* special_function */
336 	 "R_MMIX_PC_32",	/* name */
337 	 FALSE,			/* partial_inplace */
338 	 0,			/* src_mask */
339 	 0xffffffff,		/* dst_mask */
340 	 TRUE),			/* pcrel_offset */
341 
342   /* 64 bit PC-relative relocation.  */
343   HOWTO (R_MMIX_PC_64,		/* type */
344 	 0,			/* rightshift */
345 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
346 	 64,			/* bitsize */
347 	 TRUE,			/* pc_relative */
348 	 0,			/* bitpos */
349 	 complain_overflow_bitfield, /* complain_on_overflow */
350 	 bfd_elf_generic_reloc,	/* special_function */
351 	 "R_MMIX_PC_64",	/* name */
352 	 FALSE,			/* partial_inplace */
353 	 0,			/* src_mask */
354 	 MINUS_ONE,		/* dst_mask */
355 	 TRUE),			/* pcrel_offset */
356 
357   /* GNU extension to record C++ vtable hierarchy.  */
358   HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
359 	 0,			/* rightshift */
360 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
361 	 0,			/* bitsize */
362 	 FALSE,			/* pc_relative */
363 	 0,			/* bitpos */
364 	 complain_overflow_dont, /* complain_on_overflow */
365 	 NULL,			/* special_function */
366 	 "R_MMIX_GNU_VTINHERIT", /* name */
367 	 FALSE,			/* partial_inplace */
368 	 0,			/* src_mask */
369 	 0,			/* dst_mask */
370 	 TRUE),			/* pcrel_offset */
371 
372   /* GNU extension to record C++ vtable member usage.  */
373   HOWTO (R_MMIX_GNU_VTENTRY,	/* type */
374 	 0,			/* rightshift */
375 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
376 	 0,			/* bitsize */
377 	 FALSE,			/* pc_relative */
378 	 0,			/* bitpos */
379 	 complain_overflow_dont, /* complain_on_overflow */
380 	 _bfd_elf_rel_vtable_reloc_fn,	/* special_function */
381 	 "R_MMIX_GNU_VTENTRY", /* name */
382 	 FALSE,			/* partial_inplace */
383 	 0,			/* src_mask */
384 	 0,			/* dst_mask */
385 	 FALSE),		/* pcrel_offset */
386 
387   /* The GETA relocation is supposed to get any address that could
388      possibly be reached by the GETA instruction.  It can silently expand
389      to get a 64-bit operand, but will complain if any of the two least
390      significant bits are set.  The howto members reflect a simple GETA.  */
391   HOWTO (R_MMIX_GETA,		/* type */
392 	 2,			/* rightshift */
393 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
394 	 19,			/* bitsize */
395 	 TRUE,			/* pc_relative */
396 	 0,			/* bitpos */
397 	 complain_overflow_signed, /* complain_on_overflow */
398 	 mmix_elf_reloc,	/* special_function */
399 	 "R_MMIX_GETA",		/* name */
400 	 FALSE,			/* partial_inplace */
401 	 ~0x0100ffff,		/* src_mask */
402 	 0x0100ffff,		/* dst_mask */
403 	 TRUE),			/* pcrel_offset */
404 
405   HOWTO (R_MMIX_GETA_1,		/* type */
406 	 2,			/* rightshift */
407 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
408 	 19,			/* bitsize */
409 	 TRUE,			/* pc_relative */
410 	 0,			/* bitpos */
411 	 complain_overflow_signed, /* complain_on_overflow */
412 	 mmix_elf_reloc,	/* special_function */
413 	 "R_MMIX_GETA_1",		/* name */
414 	 FALSE,			/* partial_inplace */
415 	 ~0x0100ffff,		/* src_mask */
416 	 0x0100ffff,		/* dst_mask */
417 	 TRUE),			/* pcrel_offset */
418 
419   HOWTO (R_MMIX_GETA_2,		/* type */
420 	 2,			/* rightshift */
421 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
422 	 19,			/* bitsize */
423 	 TRUE,			/* pc_relative */
424 	 0,			/* bitpos */
425 	 complain_overflow_signed, /* complain_on_overflow */
426 	 mmix_elf_reloc,	/* special_function */
427 	 "R_MMIX_GETA_2",		/* name */
428 	 FALSE,			/* partial_inplace */
429 	 ~0x0100ffff,		/* src_mask */
430 	 0x0100ffff,		/* dst_mask */
431 	 TRUE),			/* pcrel_offset */
432 
433   HOWTO (R_MMIX_GETA_3,		/* type */
434 	 2,			/* rightshift */
435 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
436 	 19,			/* bitsize */
437 	 TRUE,			/* pc_relative */
438 	 0,			/* bitpos */
439 	 complain_overflow_signed, /* complain_on_overflow */
440 	 mmix_elf_reloc,	/* special_function */
441 	 "R_MMIX_GETA_3",		/* name */
442 	 FALSE,			/* partial_inplace */
443 	 ~0x0100ffff,		/* src_mask */
444 	 0x0100ffff,		/* dst_mask */
445 	 TRUE),			/* pcrel_offset */
446 
447   /* The conditional branches are supposed to reach any (code) address.
448      It can silently expand to a 64-bit operand, but will emit an error if
449      any of the two least significant bits are set.  The howto members
450      reflect a simple branch.  */
451   HOWTO (R_MMIX_CBRANCH,	/* type */
452 	 2,			/* rightshift */
453 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
454 	 19,			/* bitsize */
455 	 TRUE,			/* pc_relative */
456 	 0,			/* bitpos */
457 	 complain_overflow_signed, /* complain_on_overflow */
458 	 mmix_elf_reloc,	/* special_function */
459 	 "R_MMIX_CBRANCH",	/* name */
460 	 FALSE,			/* partial_inplace */
461 	 ~0x0100ffff,		/* src_mask */
462 	 0x0100ffff,		/* dst_mask */
463 	 TRUE),			/* pcrel_offset */
464 
465   HOWTO (R_MMIX_CBRANCH_J,	/* type */
466 	 2,			/* rightshift */
467 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
468 	 19,			/* bitsize */
469 	 TRUE,			/* pc_relative */
470 	 0,			/* bitpos */
471 	 complain_overflow_signed, /* complain_on_overflow */
472 	 mmix_elf_reloc,	/* special_function */
473 	 "R_MMIX_CBRANCH_J",	/* name */
474 	 FALSE,			/* partial_inplace */
475 	 ~0x0100ffff,		/* src_mask */
476 	 0x0100ffff,		/* dst_mask */
477 	 TRUE),			/* pcrel_offset */
478 
479   HOWTO (R_MMIX_CBRANCH_1,	/* type */
480 	 2,			/* rightshift */
481 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
482 	 19,			/* bitsize */
483 	 TRUE,			/* pc_relative */
484 	 0,			/* bitpos */
485 	 complain_overflow_signed, /* complain_on_overflow */
486 	 mmix_elf_reloc,	/* special_function */
487 	 "R_MMIX_CBRANCH_1",	/* name */
488 	 FALSE,			/* partial_inplace */
489 	 ~0x0100ffff,		/* src_mask */
490 	 0x0100ffff,		/* dst_mask */
491 	 TRUE),			/* pcrel_offset */
492 
493   HOWTO (R_MMIX_CBRANCH_2,	/* type */
494 	 2,			/* rightshift */
495 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
496 	 19,			/* bitsize */
497 	 TRUE,			/* pc_relative */
498 	 0,			/* bitpos */
499 	 complain_overflow_signed, /* complain_on_overflow */
500 	 mmix_elf_reloc,	/* special_function */
501 	 "R_MMIX_CBRANCH_2",	/* name */
502 	 FALSE,			/* partial_inplace */
503 	 ~0x0100ffff,		/* src_mask */
504 	 0x0100ffff,		/* dst_mask */
505 	 TRUE),			/* pcrel_offset */
506 
507   HOWTO (R_MMIX_CBRANCH_3,	/* type */
508 	 2,			/* rightshift */
509 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
510 	 19,			/* bitsize */
511 	 TRUE,			/* pc_relative */
512 	 0,			/* bitpos */
513 	 complain_overflow_signed, /* complain_on_overflow */
514 	 mmix_elf_reloc,	/* special_function */
515 	 "R_MMIX_CBRANCH_3",	/* name */
516 	 FALSE,			/* partial_inplace */
517 	 ~0x0100ffff,		/* src_mask */
518 	 0x0100ffff,		/* dst_mask */
519 	 TRUE),			/* pcrel_offset */
520 
521   /* The PUSHJ instruction can reach any (code) address, as long as it's
522      the beginning of a function (no usable restriction).  It can silently
523      expand to a 64-bit operand, but will emit an error if any of the two
524      least significant bits are set.  It can also expand into a call to a
525      stub; see R_MMIX_PUSHJ_STUBBABLE.  The howto members reflect a simple
526      PUSHJ.  */
527   HOWTO (R_MMIX_PUSHJ,		/* type */
528 	 2,			/* rightshift */
529 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
530 	 19,			/* bitsize */
531 	 TRUE,			/* pc_relative */
532 	 0,			/* bitpos */
533 	 complain_overflow_signed, /* complain_on_overflow */
534 	 mmix_elf_reloc,	/* special_function */
535 	 "R_MMIX_PUSHJ",	/* name */
536 	 FALSE,			/* partial_inplace */
537 	 ~0x0100ffff,		/* src_mask */
538 	 0x0100ffff,		/* dst_mask */
539 	 TRUE),			/* pcrel_offset */
540 
541   HOWTO (R_MMIX_PUSHJ_1,	/* type */
542 	 2,			/* rightshift */
543 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
544 	 19,			/* bitsize */
545 	 TRUE,			/* pc_relative */
546 	 0,			/* bitpos */
547 	 complain_overflow_signed, /* complain_on_overflow */
548 	 mmix_elf_reloc,	/* special_function */
549 	 "R_MMIX_PUSHJ_1",	/* name */
550 	 FALSE,			/* partial_inplace */
551 	 ~0x0100ffff,		/* src_mask */
552 	 0x0100ffff,		/* dst_mask */
553 	 TRUE),			/* pcrel_offset */
554 
555   HOWTO (R_MMIX_PUSHJ_2,	/* type */
556 	 2,			/* rightshift */
557 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
558 	 19,			/* bitsize */
559 	 TRUE,			/* pc_relative */
560 	 0,			/* bitpos */
561 	 complain_overflow_signed, /* complain_on_overflow */
562 	 mmix_elf_reloc,	/* special_function */
563 	 "R_MMIX_PUSHJ_2",	/* name */
564 	 FALSE,			/* partial_inplace */
565 	 ~0x0100ffff,		/* src_mask */
566 	 0x0100ffff,		/* dst_mask */
567 	 TRUE),			/* pcrel_offset */
568 
569   HOWTO (R_MMIX_PUSHJ_3,	/* type */
570 	 2,			/* rightshift */
571 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
572 	 19,			/* bitsize */
573 	 TRUE,			/* pc_relative */
574 	 0,			/* bitpos */
575 	 complain_overflow_signed, /* complain_on_overflow */
576 	 mmix_elf_reloc,	/* special_function */
577 	 "R_MMIX_PUSHJ_3",	/* name */
578 	 FALSE,			/* partial_inplace */
579 	 ~0x0100ffff,		/* src_mask */
580 	 0x0100ffff,		/* dst_mask */
581 	 TRUE),			/* pcrel_offset */
582 
583   /* A JMP is supposed to reach any (code) address.  By itself, it can
584      reach +-64M; the expansion can reach all 64 bits.  Note that the 64M
585      limit is soon reached if you link the program in wildly different
586      memory segments.  The howto members reflect a trivial JMP.  */
587   HOWTO (R_MMIX_JMP,		/* type */
588 	 2,			/* rightshift */
589 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
590 	 27,			/* bitsize */
591 	 TRUE,			/* pc_relative */
592 	 0,			/* bitpos */
593 	 complain_overflow_signed, /* complain_on_overflow */
594 	 mmix_elf_reloc,	/* special_function */
595 	 "R_MMIX_JMP",		/* name */
596 	 FALSE,			/* partial_inplace */
597 	 ~0x1ffffff,		/* src_mask */
598 	 0x1ffffff,		/* dst_mask */
599 	 TRUE),			/* pcrel_offset */
600 
601   HOWTO (R_MMIX_JMP_1,		/* type */
602 	 2,			/* rightshift */
603 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
604 	 27,			/* bitsize */
605 	 TRUE,			/* pc_relative */
606 	 0,			/* bitpos */
607 	 complain_overflow_signed, /* complain_on_overflow */
608 	 mmix_elf_reloc,	/* special_function */
609 	 "R_MMIX_JMP_1",	/* name */
610 	 FALSE,			/* partial_inplace */
611 	 ~0x1ffffff,		/* src_mask */
612 	 0x1ffffff,		/* dst_mask */
613 	 TRUE),			/* pcrel_offset */
614 
615   HOWTO (R_MMIX_JMP_2,		/* type */
616 	 2,			/* rightshift */
617 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
618 	 27,			/* bitsize */
619 	 TRUE,			/* pc_relative */
620 	 0,			/* bitpos */
621 	 complain_overflow_signed, /* complain_on_overflow */
622 	 mmix_elf_reloc,	/* special_function */
623 	 "R_MMIX_JMP_2",	/* name */
624 	 FALSE,			/* partial_inplace */
625 	 ~0x1ffffff,		/* src_mask */
626 	 0x1ffffff,		/* dst_mask */
627 	 TRUE),			/* pcrel_offset */
628 
629   HOWTO (R_MMIX_JMP_3,		/* type */
630 	 2,			/* rightshift */
631 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
632 	 27,			/* bitsize */
633 	 TRUE,			/* pc_relative */
634 	 0,			/* bitpos */
635 	 complain_overflow_signed, /* complain_on_overflow */
636 	 mmix_elf_reloc,	/* special_function */
637 	 "R_MMIX_JMP_3",	/* name */
638 	 FALSE,			/* partial_inplace */
639 	 ~0x1ffffff,		/* src_mask */
640 	 0x1ffffff,		/* dst_mask */
641 	 TRUE),			/* pcrel_offset */
642 
643   /* When we don't emit link-time-relaxable code from the assembler, or
644      when relaxation has done all it can do, these relocs are used.  For
645      GETA/PUSHJ/branches.  */
646   HOWTO (R_MMIX_ADDR19,		/* type */
647 	 2,			/* rightshift */
648 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
649 	 19,			/* bitsize */
650 	 TRUE,			/* pc_relative */
651 	 0,			/* bitpos */
652 	 complain_overflow_signed, /* complain_on_overflow */
653 	 mmix_elf_reloc,	/* special_function */
654 	 "R_MMIX_ADDR19",	/* name */
655 	 FALSE,			/* partial_inplace */
656 	 ~0x0100ffff,		/* src_mask */
657 	 0x0100ffff,		/* dst_mask */
658 	 TRUE),			/* pcrel_offset */
659 
660   /* For JMP.  */
661   HOWTO (R_MMIX_ADDR27,		/* type */
662 	 2,			/* rightshift */
663 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
664 	 27,			/* bitsize */
665 	 TRUE,			/* pc_relative */
666 	 0,			/* bitpos */
667 	 complain_overflow_signed, /* complain_on_overflow */
668 	 mmix_elf_reloc,	/* special_function */
669 	 "R_MMIX_ADDR27",	/* name */
670 	 FALSE,			/* partial_inplace */
671 	 ~0x1ffffff,		/* src_mask */
672 	 0x1ffffff,		/* dst_mask */
673 	 TRUE),			/* pcrel_offset */
674 
675   /* A general register or the value 0..255.  If a value, then the
676      instruction (offset -3) needs adjusting.  */
677   HOWTO (R_MMIX_REG_OR_BYTE,	/* type */
678 	 0,			/* rightshift */
679 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
680 	 8,			/* bitsize */
681 	 FALSE,			/* pc_relative */
682 	 0,			/* bitpos */
683 	 complain_overflow_bitfield, /* complain_on_overflow */
684 	 mmix_elf_reloc,	/* special_function */
685 	 "R_MMIX_REG_OR_BYTE",	/* name */
686 	 FALSE,			/* partial_inplace */
687 	 0,			/* src_mask */
688 	 0xff,			/* dst_mask */
689 	 FALSE),		/* pcrel_offset */
690 
691   /* A general register.  */
692   HOWTO (R_MMIX_REG,		/* type */
693 	 0,			/* rightshift */
694 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
695 	 8,			/* bitsize */
696 	 FALSE,			/* pc_relative */
697 	 0,			/* bitpos */
698 	 complain_overflow_bitfield, /* complain_on_overflow */
699 	 mmix_elf_reloc,	/* special_function */
700 	 "R_MMIX_REG",		/* name */
701 	 FALSE,			/* partial_inplace */
702 	 0,			/* src_mask */
703 	 0xff,			/* dst_mask */
704 	 FALSE),		/* pcrel_offset */
705 
706   /* A register plus an index, corresponding to the relocation expression.
707      The sizes must correspond to the valid range of the expression, while
708      the bitmasks correspond to what we store in the image.  */
709   HOWTO (R_MMIX_BASE_PLUS_OFFSET,	/* type */
710 	 0,			/* rightshift */
711 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
712 	 64,			/* bitsize */
713 	 FALSE,			/* pc_relative */
714 	 0,			/* bitpos */
715 	 complain_overflow_bitfield, /* complain_on_overflow */
716 	 mmix_elf_reloc,	/* special_function */
717 	 "R_MMIX_BASE_PLUS_OFFSET", /* name */
718 	 FALSE,			/* partial_inplace */
719 	 0,			/* src_mask */
720 	 0xffff,		/* dst_mask */
721 	 FALSE),		/* pcrel_offset */
722 
723   /* A "magic" relocation for a LOCAL expression, asserting that the
724      expression is less than the number of global registers.  No actual
725      modification of the contents is done.  Implementing this as a
726      relocation was less intrusive than e.g. putting such expressions in a
727      section to discard *after* relocation.  */
728   HOWTO (R_MMIX_LOCAL,		/* type */
729 	 0,			/* rightshift */
730 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
731 	 0,			/* bitsize */
732 	 FALSE,			/* pc_relative */
733 	 0,			/* bitpos */
734 	 complain_overflow_dont, /* complain_on_overflow */
735 	 mmix_elf_reloc,	/* special_function */
736 	 "R_MMIX_LOCAL",	/* name */
737 	 FALSE,			/* partial_inplace */
738 	 0,			/* src_mask */
739 	 0,			/* dst_mask */
740 	 FALSE),		/* pcrel_offset */
741 
742   HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
743 	 2,			/* rightshift */
744 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
745 	 19,			/* bitsize */
746 	 TRUE,			/* pc_relative */
747 	 0,			/* bitpos */
748 	 complain_overflow_signed, /* complain_on_overflow */
749 	 mmix_elf_reloc,	/* special_function */
750 	 "R_MMIX_PUSHJ_STUBBABLE", /* name */
751 	 FALSE,			/* partial_inplace */
752 	 ~0x0100ffff,		/* src_mask */
753 	 0x0100ffff,		/* dst_mask */
754 	 TRUE)			/* pcrel_offset */
755  };
756 
757 
758 /* Map BFD reloc types to MMIX ELF reloc types.  */
759 
760 struct mmix_reloc_map
761   {
762     bfd_reloc_code_real_type bfd_reloc_val;
763     enum elf_mmix_reloc_type elf_reloc_val;
764   };
765 
766 
767 static const struct mmix_reloc_map mmix_reloc_map[] =
768   {
769     {BFD_RELOC_NONE, R_MMIX_NONE},
770     {BFD_RELOC_8, R_MMIX_8},
771     {BFD_RELOC_16, R_MMIX_16},
772     {BFD_RELOC_24, R_MMIX_24},
773     {BFD_RELOC_32, R_MMIX_32},
774     {BFD_RELOC_64, R_MMIX_64},
775     {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
776     {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
777     {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
778     {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
779     {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
780     {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
781     {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
782     {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
783     {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
784     {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
785     {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
786     {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
787     {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
788     {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
789     {BFD_RELOC_MMIX_REG, R_MMIX_REG},
790     {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
791     {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
792     {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
793   };
794 
795 static reloc_howto_type *
796 bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
797 				 bfd_reloc_code_real_type code)
798 {
799   unsigned int i;
800 
801   for (i = 0;
802        i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
803        i++)
804     {
805       if (mmix_reloc_map[i].bfd_reloc_val == code)
806 	return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
807     }
808 
809   return NULL;
810 }
811 
812 static reloc_howto_type *
813 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
814 				 const char *r_name)
815 {
816   unsigned int i;
817 
818   for (i = 0;
819        i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
820        i++)
821     if (elf_mmix_howto_table[i].name != NULL
822 	&& strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
823       return &elf_mmix_howto_table[i];
824 
825   return NULL;
826 }
827 
828 static bfd_boolean
829 mmix_elf_new_section_hook (bfd *abfd, asection *sec)
830 {
831   if (!sec->used_by_bfd)
832     {
833       struct _mmix_elf_section_data *sdata;
834       bfd_size_type amt = sizeof (*sdata);
835 
836       sdata = bfd_zalloc (abfd, amt);
837       if (sdata == NULL)
838 	return FALSE;
839       sec->used_by_bfd = sdata;
840     }
841 
842   return _bfd_elf_new_section_hook (abfd, sec);
843 }
844 
845 
846 /* This function performs the actual bitfiddling and sanity check for a
847    final relocation.  Each relocation gets its *worst*-case expansion
848    in size when it arrives here; any reduction in size should have been
849    caught in linker relaxation earlier.  When we get here, the relocation
850    looks like the smallest instruction with SWYM:s (nop:s) appended to the
851    max size.  We fill in those nop:s.
852 
853    R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
854     GETA $N,foo
855    ->
856     SETL $N,foo & 0xffff
857     INCML $N,(foo >> 16) & 0xffff
858     INCMH $N,(foo >> 32) & 0xffff
859     INCH $N,(foo >> 48) & 0xffff
860 
861    R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
862    condbranches needing relaxation might be rare enough to not be
863    worthwhile.)
864     [P]Bcc $N,foo
865    ->
866     [~P]B~cc $N,.+20
867     SETL $255,foo & ...
868     INCML ...
869     INCMH ...
870     INCH ...
871     GO $255,$255,0
872 
873    R_MMIX_PUSHJ: (FIXME: Relaxation...)
874     PUSHJ $N,foo
875    ->
876     SETL $255,foo & ...
877     INCML ...
878     INCMH ...
879     INCH ...
880     PUSHGO $N,$255,0
881 
882    R_MMIX_JMP: (FIXME: Relaxation...)
883     JMP foo
884    ->
885     SETL $255,foo & ...
886     INCML ...
887     INCMH ...
888     INCH ...
889     GO $255,$255,0
890 
891    R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in.  */
892 
893 static bfd_reloc_status_type
894 mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
895 			     void *datap, bfd_vma addr, bfd_vma value,
896 			     char **error_message)
897 {
898   bfd *abfd = isec->owner;
899   bfd_reloc_status_type flag = bfd_reloc_ok;
900   bfd_reloc_status_type r;
901   int offs = 0;
902   int reg = 255;
903 
904   /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
905      We handle the differences here and the common sequence later.  */
906   switch (howto->type)
907     {
908     case R_MMIX_GETA:
909       offs = 0;
910       reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
911 
912       /* We change to an absolute value.  */
913       value += addr;
914       break;
915 
916     case R_MMIX_CBRANCH:
917       {
918 	int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
919 
920 	/* Invert the condition and prediction bit, and set the offset
921 	   to five instructions ahead.
922 
923 	   We *can* do better if we want to.  If the branch is found to be
924 	   within limits, we could leave the branch as is; there'll just
925 	   be a bunch of NOP:s after it.  But we shouldn't see this
926 	   sequence often enough that it's worth doing it.  */
927 
928 	bfd_put_32 (abfd,
929 		    (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
930 		     | (24/4)),
931 		    (bfd_byte *) datap);
932 
933 	/* Put a "GO $255,$255,0" after the common sequence.  */
934 	bfd_put_32 (abfd,
935 		    ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
936 		    (bfd_byte *) datap + 20);
937 
938 	/* Common sequence starts at offset 4.  */
939 	offs = 4;
940 
941 	/* We change to an absolute value.  */
942 	value += addr;
943       }
944       break;
945 
946     case R_MMIX_PUSHJ_STUBBABLE:
947       /* If the address fits, we're fine.  */
948       if ((value & 3) == 0
949 	  /* Note rightshift 0; see R_MMIX_JMP case below.  */
950 	  && (r = bfd_check_overflow (complain_overflow_signed,
951 				      howto->bitsize,
952 				      0,
953 				      bfd_arch_bits_per_address (abfd),
954 				      value)) == bfd_reloc_ok)
955 	goto pcrel_mmix_reloc_fits;
956       else
957 	{
958 	  bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
959 
960 	  /* We have the bytes at the PUSHJ insn and need to get the
961 	     position for the stub.  There's supposed to be room allocated
962 	     for the stub.  */
963 	  bfd_byte *stubcontents
964 	    = ((bfd_byte *) datap
965 	       - (addr - (isec->output_section->vma + isec->output_offset))
966 	       + size
967 	       + mmix_elf_section_data (isec)->pjs.stub_offset);
968 	  bfd_vma stubaddr;
969 
970 	  if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
971 	    {
972 	      /* This shouldn't happen when linking to ELF or mmo, so
973 		 this is an attempt to link to "binary", right?  We
974 		 can't access the output bfd, so we can't verify that
975 		 assumption.  We only know that the critical
976 		 mmix_elf_check_common_relocs has not been called,
977 		 which happens when the output format is different
978 		 from the input format (and is not mmo).  */
979 	      if (! mmix_elf_section_data (isec)->has_warned_pushj)
980 		{
981 		  /* For the first such error per input section, produce
982 		     a verbose message.  */
983 		  *error_message
984 		    = _("invalid input relocation when producing"
985 			" non-ELF, non-mmo format output;"
986 			" please use the objcopy program to convert from"
987 			" ELF or mmo,"
988 			" or assemble using"
989 			" \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
990 		  mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
991 		  return bfd_reloc_dangerous;
992 		}
993 
994 	      /* For subsequent errors, return this one, which is
995 		 rate-limited but looks a little bit different,
996 		 hopefully without affecting user-friendliness.  */
997 	      return bfd_reloc_overflow;
998 	    }
999 
1000 	  /* The address doesn't fit, so redirect the PUSHJ to the
1001 	     location of the stub.  */
1002 	  r = mmix_elf_perform_relocation (isec,
1003 					   &elf_mmix_howto_table
1004 					   [R_MMIX_ADDR19],
1005 					   datap,
1006 					   addr,
1007 					   isec->output_section->vma
1008 					   + isec->output_offset
1009 					   + size
1010 					   + (mmix_elf_section_data (isec)
1011 					      ->pjs.stub_offset)
1012 					   - addr,
1013 					   error_message);
1014 	  if (r != bfd_reloc_ok)
1015 	    return r;
1016 
1017 	  stubaddr
1018 	    = (isec->output_section->vma
1019 	       + isec->output_offset
1020 	       + size
1021 	       + mmix_elf_section_data (isec)->pjs.stub_offset);
1022 
1023 	  /* We generate a simple JMP if that suffices, else the whole 5
1024 	     insn stub.  */
1025 	  if (bfd_check_overflow (complain_overflow_signed,
1026 				  elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1027 				  0,
1028 				  bfd_arch_bits_per_address (abfd),
1029 				  addr + value - stubaddr) == bfd_reloc_ok)
1030 	    {
1031 	      bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1032 	      r = mmix_elf_perform_relocation (isec,
1033 					       &elf_mmix_howto_table
1034 					       [R_MMIX_ADDR27],
1035 					       stubcontents,
1036 					       stubaddr,
1037 					       value + addr - stubaddr,
1038 					       error_message);
1039 	      mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040 
1041 	      if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 		  > isec->size)
1043 		abort ();
1044 
1045 	      return r;
1046 	    }
1047 	  else
1048 	    {
1049 	      /* Put a "GO $255,0" after the common sequence.  */
1050 	      bfd_put_32 (abfd,
1051 			  ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 			  | 0xff00, (bfd_byte *) stubcontents + 16);
1053 
1054 	      /* Prepare for the general code to set the first part of the
1055 		 linker stub, and */
1056 	      value += addr;
1057 	      datap = stubcontents;
1058 	      mmix_elf_section_data (isec)->pjs.stub_offset
1059 		+= MAX_PUSHJ_STUB_SIZE;
1060 	    }
1061 	}
1062       break;
1063 
1064     case R_MMIX_PUSHJ:
1065       {
1066 	int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067 
1068 	/* Put a "PUSHGO $N,$255,0" after the common sequence.  */
1069 	bfd_put_32 (abfd,
1070 		    ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 		    | (inreg << 16)
1072 		    | 0xff00,
1073 		    (bfd_byte *) datap + 16);
1074 
1075 	/* We change to an absolute value.  */
1076 	value += addr;
1077       }
1078       break;
1079 
1080     case R_MMIX_JMP:
1081       /* This one is a little special.  If we get here on a non-relaxing
1082 	 link, and the destination is actually in range, we don't need to
1083 	 execute the nops.
1084 	 If so, we fall through to the bit-fiddling relocs.
1085 
1086 	 FIXME: bfd_check_overflow seems broken; the relocation is
1087 	 rightshifted before testing, so supply a zero rightshift.  */
1088 
1089       if (! ((value & 3) == 0
1090 	     && (r = bfd_check_overflow (complain_overflow_signed,
1091 					 howto->bitsize,
1092 					 0,
1093 					 bfd_arch_bits_per_address (abfd),
1094 					 value)) == bfd_reloc_ok))
1095 	{
1096 	  /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 	     modified below, and put a "GO $255,$255,0" after the
1098 	     address-loading sequence.  */
1099 	  bfd_put_32 (abfd,
1100 		      ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 		      | 0xffff00,
1102 		      (bfd_byte *) datap + 16);
1103 
1104 	  /* We change to an absolute value.  */
1105 	  value += addr;
1106 	  break;
1107 	}
1108       /* FALLTHROUGH.  */
1109     case R_MMIX_ADDR19:
1110     case R_MMIX_ADDR27:
1111     pcrel_mmix_reloc_fits:
1112       /* These must be in range, or else we emit an error.  */
1113       if ((value & 3) == 0
1114 	  /* Note rightshift 0; see above.  */
1115 	  && (r = bfd_check_overflow (complain_overflow_signed,
1116 				      howto->bitsize,
1117 				      0,
1118 				      bfd_arch_bits_per_address (abfd),
1119 				      value)) == bfd_reloc_ok)
1120 	{
1121 	  bfd_vma in1
1122 	    = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 	  bfd_vma highbit;
1124 
1125 	  if ((bfd_signed_vma) value < 0)
1126 	    {
1127 	      highbit = 1 << 24;
1128 	      value += (1 << (howto->bitsize - 1));
1129 	    }
1130 	  else
1131 	    highbit = 0;
1132 
1133 	  value >>= 2;
1134 
1135 	  bfd_put_32 (abfd,
1136 		      (in1 & howto->src_mask)
1137 		      | highbit
1138 		      | (value & howto->dst_mask),
1139 		      (bfd_byte *) datap);
1140 
1141 	  return bfd_reloc_ok;
1142 	}
1143       else
1144 	return bfd_reloc_overflow;
1145 
1146     case R_MMIX_BASE_PLUS_OFFSET:
1147       {
1148 	struct bpo_reloc_section_info *bpodata
1149 	  = mmix_elf_section_data (isec)->bpo.reloc;
1150 	asection *bpo_greg_section;
1151 	struct bpo_greg_section_info *gregdata;
1152 	size_t bpo_index;
1153 
1154 	if (bpodata == NULL)
1155 	  {
1156 	    /* This shouldn't happen when linking to ELF or mmo, so
1157 	       this is an attempt to link to "binary", right?  We
1158 	       can't access the output bfd, so we can't verify that
1159 	       assumption.  We only know that the critical
1160 	       mmix_elf_check_common_relocs has not been called, which
1161 	       happens when the output format is different from the
1162 	       input format (and is not mmo).  */
1163 	    if (! mmix_elf_section_data (isec)->has_warned_bpo)
1164 	      {
1165 		/* For the first such error per input section, produce
1166 		   a verbose message.  */
1167 		*error_message
1168 		  = _("invalid input relocation when producing"
1169 		      " non-ELF, non-mmo format output;"
1170 		      " please use the objcopy program to convert from"
1171 		      " ELF or mmo,"
1172 		      " or compile using the gcc-option"
1173 		      " \"-mno-base-addresses\".");
1174 		mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
1175 		return bfd_reloc_dangerous;
1176 	      }
1177 
1178 	    /* For subsequent errors, return this one, which is
1179 	       rate-limited but looks a little bit different,
1180 	       hopefully without affecting user-friendliness.  */
1181 	    return bfd_reloc_overflow;
1182 	  }
1183 
1184 	bpo_greg_section = bpodata->bpo_greg_section;
1185 	gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1186 	bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1187 
1188 	/* A consistency check: The value we now have in "relocation" must
1189 	   be the same as the value we stored for that relocation.  It
1190 	   doesn't cost much, so can be left in at all times.  */
1191 	if (value != gregdata->reloc_request[bpo_index].value)
1192 	  {
1193 	    _bfd_error_handler
1194 	      /* xgettext:c-format */
1195 	      (_("%pB: Internal inconsistency error for value for\n\
1196  linker-allocated global register: linked: %#" PRIx64 " != relaxed: %#" PRIx64 ""),
1197 	       isec->owner,
1198 	       (uint64_t) value,
1199 	       (uint64_t) gregdata->reloc_request[bpo_index].value);
1200 	    bfd_set_error (bfd_error_bad_value);
1201 	    return bfd_reloc_overflow;
1202 	  }
1203 
1204 	/* Then store the register number and offset for that register
1205 	   into datap and datap + 1 respectively.  */
1206 	bfd_put_8 (abfd,
1207 		   gregdata->reloc_request[bpo_index].regindex
1208 		   + bpo_greg_section->output_section->vma / 8,
1209 		   datap);
1210 	bfd_put_8 (abfd,
1211 		   gregdata->reloc_request[bpo_index].offset,
1212 		   ((unsigned char *) datap) + 1);
1213 	return bfd_reloc_ok;
1214       }
1215 
1216     case R_MMIX_REG_OR_BYTE:
1217     case R_MMIX_REG:
1218       if (value > 255)
1219 	return bfd_reloc_overflow;
1220       bfd_put_8 (abfd, value, datap);
1221       return bfd_reloc_ok;
1222 
1223     default:
1224       BAD_CASE (howto->type);
1225     }
1226 
1227   /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1228      sequence.  */
1229 
1230   /* Lowest two bits must be 0.  We return bfd_reloc_overflow for
1231      everything that looks strange.  */
1232   if (value & 3)
1233     flag = bfd_reloc_overflow;
1234 
1235   bfd_put_32 (abfd,
1236 	      (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1237 	      (bfd_byte *) datap + offs);
1238   bfd_put_32 (abfd,
1239 	      (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1240 	      (bfd_byte *) datap + offs + 4);
1241   bfd_put_32 (abfd,
1242 	      (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1243 	      (bfd_byte *) datap + offs + 8);
1244   bfd_put_32 (abfd,
1245 	      (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1246 	      (bfd_byte *) datap + offs + 12);
1247 
1248   return flag;
1249 }
1250 
1251 /* Set the howto pointer for an MMIX ELF reloc (type RELA).  */
1252 
1253 static bfd_boolean
1254 mmix_info_to_howto_rela (bfd *abfd,
1255 			 arelent *cache_ptr,
1256 			 Elf_Internal_Rela *dst)
1257 {
1258   unsigned int r_type;
1259 
1260   r_type = ELF64_R_TYPE (dst->r_info);
1261   if (r_type >= (unsigned int) R_MMIX_max)
1262     {
1263       /* xgettext:c-format */
1264       _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1265 			  abfd, r_type);
1266       bfd_set_error (bfd_error_bad_value);
1267       return FALSE;
1268     }
1269   cache_ptr->howto = &elf_mmix_howto_table[r_type];
1270   return TRUE;
1271 }
1272 
1273 /* Any MMIX-specific relocation gets here at assembly time or when linking
1274    to other formats (such as mmo); this is the relocation function from
1275    the reloc_table.  We don't get here for final pure ELF linking.  */
1276 
1277 static bfd_reloc_status_type
1278 mmix_elf_reloc (bfd *abfd,
1279 		arelent *reloc_entry,
1280 		asymbol *symbol,
1281 		void * data,
1282 		asection *input_section,
1283 		bfd *output_bfd,
1284 		char **error_message)
1285 {
1286   bfd_vma relocation;
1287   bfd_reloc_status_type r;
1288   asection *reloc_target_output_section;
1289   bfd_reloc_status_type flag = bfd_reloc_ok;
1290   bfd_vma output_base = 0;
1291 
1292   r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1293 			     input_section, output_bfd, error_message);
1294 
1295   /* If that was all that was needed (i.e. this isn't a final link, only
1296      some segment adjustments), we're done.  */
1297   if (r != bfd_reloc_continue)
1298     return r;
1299 
1300   if (bfd_is_und_section (symbol->section)
1301       && (symbol->flags & BSF_WEAK) == 0
1302       && output_bfd == (bfd *) NULL)
1303     return bfd_reloc_undefined;
1304 
1305   /* Is the address of the relocation really within the section?  */
1306   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1307     return bfd_reloc_outofrange;
1308 
1309   /* Work out which section the relocation is targeted at and the
1310      initial relocation command value.  */
1311 
1312   /* Get symbol value.  (Common symbols are special.)  */
1313   if (bfd_is_com_section (symbol->section))
1314     relocation = 0;
1315   else
1316     relocation = symbol->value;
1317 
1318   reloc_target_output_section = bfd_get_output_section (symbol);
1319 
1320   /* Here the variable relocation holds the final address of the symbol we
1321      are relocating against, plus any addend.  */
1322   if (output_bfd)
1323     output_base = 0;
1324   else
1325     output_base = reloc_target_output_section->vma;
1326 
1327   relocation += output_base + symbol->section->output_offset;
1328 
1329   if (output_bfd != (bfd *) NULL)
1330     {
1331       /* Add in supplied addend.  */
1332       relocation += reloc_entry->addend;
1333 
1334       /* This is a partial relocation, and we want to apply the
1335 	 relocation to the reloc entry rather than the raw data.
1336 	 Modify the reloc inplace to reflect what we now know.  */
1337       reloc_entry->addend = relocation;
1338       reloc_entry->address += input_section->output_offset;
1339       return flag;
1340     }
1341 
1342   return mmix_final_link_relocate (reloc_entry->howto, input_section,
1343 				   data, reloc_entry->address,
1344 				   reloc_entry->addend, relocation,
1345 				   bfd_asymbol_name (symbol),
1346 				   reloc_target_output_section,
1347 				   error_message);
1348 }
1349 
1350 /* Relocate an MMIX ELF section.  Modified from elf32-fr30.c; look to it
1351    for guidance if you're thinking of copying this.  */
1352 
1353 static bfd_boolean
1354 mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1355 			   struct bfd_link_info *info,
1356 			   bfd *input_bfd,
1357 			   asection *input_section,
1358 			   bfd_byte *contents,
1359 			   Elf_Internal_Rela *relocs,
1360 			   Elf_Internal_Sym *local_syms,
1361 			   asection **local_sections)
1362 {
1363   Elf_Internal_Shdr *symtab_hdr;
1364   struct elf_link_hash_entry **sym_hashes;
1365   Elf_Internal_Rela *rel;
1366   Elf_Internal_Rela *relend;
1367   bfd_size_type size;
1368   size_t pjsno = 0;
1369 
1370   size = input_section->rawsize ? input_section->rawsize : input_section->size;
1371   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1372   sym_hashes = elf_sym_hashes (input_bfd);
1373   relend = relocs + input_section->reloc_count;
1374 
1375   /* Zero the stub area before we start.  */
1376   if (input_section->rawsize != 0
1377       && input_section->size > input_section->rawsize)
1378     memset (contents + input_section->rawsize, 0,
1379 	    input_section->size - input_section->rawsize);
1380 
1381   for (rel = relocs; rel < relend; rel ++)
1382     {
1383       reloc_howto_type *howto;
1384       unsigned long r_symndx;
1385       Elf_Internal_Sym *sym;
1386       asection *sec;
1387       struct elf_link_hash_entry *h;
1388       bfd_vma relocation;
1389       bfd_reloc_status_type r;
1390       const char *name = NULL;
1391       int r_type;
1392       bfd_boolean undefined_signalled = FALSE;
1393 
1394       r_type = ELF64_R_TYPE (rel->r_info);
1395 
1396       if (r_type == R_MMIX_GNU_VTINHERIT
1397 	  || r_type == R_MMIX_GNU_VTENTRY)
1398 	continue;
1399 
1400       r_symndx = ELF64_R_SYM (rel->r_info);
1401 
1402       howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1403       h = NULL;
1404       sym = NULL;
1405       sec = NULL;
1406 
1407       if (r_symndx < symtab_hdr->sh_info)
1408 	{
1409 	  sym = local_syms + r_symndx;
1410 	  sec = local_sections [r_symndx];
1411 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1412 
1413 	  name = bfd_elf_string_from_elf_section (input_bfd,
1414 						  symtab_hdr->sh_link,
1415 						  sym->st_name);
1416 	  if (name == NULL)
1417 	    name = bfd_section_name (input_bfd, sec);
1418 	}
1419       else
1420 	{
1421 	  bfd_boolean unresolved_reloc, ignored;
1422 
1423 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1424 				   r_symndx, symtab_hdr, sym_hashes,
1425 				   h, sec, relocation,
1426 				   unresolved_reloc, undefined_signalled,
1427 				   ignored);
1428 	  name = h->root.root.string;
1429 	}
1430 
1431       if (sec != NULL && discarded_section (sec))
1432 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1433 					 rel, 1, relend, howto, 0, contents);
1434 
1435       if (bfd_link_relocatable (info))
1436 	{
1437 	  /* This is a relocatable link.  For most relocs we don't have to
1438 	     change anything, unless the reloc is against a section
1439 	     symbol, in which case we have to adjust according to where
1440 	     the section symbol winds up in the output section.  */
1441 	  if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1442 	    rel->r_addend += sec->output_offset;
1443 
1444 	  /* For PUSHJ stub relocs however, we may need to change the
1445 	     reloc and the section contents, if the reloc doesn't reach
1446 	     beyond the end of the output section and previous stubs.
1447 	     Then we change the section contents to be a PUSHJ to the end
1448 	     of the input section plus stubs (we can do that without using
1449 	     a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1450 	     at the stub location.  */
1451 	  if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1452 	    {
1453 	      /* We've already checked whether we need a stub; use that
1454 		 knowledge.  */
1455 	      if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1456 		  != 0)
1457 		{
1458 		  Elf_Internal_Rela relcpy;
1459 
1460 		  if (mmix_elf_section_data (input_section)
1461 		      ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1462 		    abort ();
1463 
1464 		  /* There's already a PUSHJ insn there, so just fill in
1465 		     the offset bits to the stub.  */
1466 		  if (mmix_final_link_relocate (elf_mmix_howto_table
1467 						+ R_MMIX_ADDR19,
1468 						input_section,
1469 						contents,
1470 						rel->r_offset,
1471 						0,
1472 						input_section
1473 						->output_section->vma
1474 						+ input_section->output_offset
1475 						+ size
1476 						+ mmix_elf_section_data (input_section)
1477 						->pjs.stub_offset,
1478 						NULL, NULL, NULL) != bfd_reloc_ok)
1479 		    return FALSE;
1480 
1481 		  /* Put a JMP insn at the stub; it goes with the
1482 		     R_MMIX_JMP reloc.  */
1483 		  bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1484 			      contents
1485 			      + size
1486 			      + mmix_elf_section_data (input_section)
1487 			      ->pjs.stub_offset);
1488 
1489 		  /* Change the reloc to be at the stub, and to a full
1490 		     R_MMIX_JMP reloc.  */
1491 		  rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1492 		  rel->r_offset
1493 		    = (size
1494 		       + mmix_elf_section_data (input_section)
1495 		       ->pjs.stub_offset);
1496 
1497 		  mmix_elf_section_data (input_section)->pjs.stub_offset
1498 		    += MAX_PUSHJ_STUB_SIZE;
1499 
1500 		  /* Shift this reloc to the end of the relocs to maintain
1501 		     the r_offset sorted reloc order.  */
1502 		  relcpy = *rel;
1503 		  memmove (rel, rel + 1, (char *) relend - (char *) rel);
1504 		  relend[-1] = relcpy;
1505 
1506 		  /* Back up one reloc, or else we'd skip the next reloc
1507 		   in turn.  */
1508 		  rel--;
1509 		}
1510 
1511 	      pjsno++;
1512 	    }
1513 	  continue;
1514 	}
1515 
1516       r = mmix_final_link_relocate (howto, input_section,
1517 				    contents, rel->r_offset,
1518 				    rel->r_addend, relocation, name, sec, NULL);
1519 
1520       if (r != bfd_reloc_ok)
1521 	{
1522 	  const char * msg = (const char *) NULL;
1523 
1524 	  switch (r)
1525 	    {
1526 	    case bfd_reloc_overflow:
1527 	      info->callbacks->reloc_overflow
1528 		(info, (h ? &h->root : NULL), name, howto->name,
1529 		 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1530 	      break;
1531 
1532 	    case bfd_reloc_undefined:
1533 	      /* We may have sent this message above.  */
1534 	      if (! undefined_signalled)
1535 		info->callbacks->undefined_symbol
1536 		  (info, name, input_bfd, input_section, rel->r_offset, TRUE);
1537 	      undefined_signalled = TRUE;
1538 	      break;
1539 
1540 	    case bfd_reloc_outofrange:
1541 	      msg = _("internal error: out of range error");
1542 	      break;
1543 
1544 	    case bfd_reloc_notsupported:
1545 	      msg = _("internal error: unsupported relocation error");
1546 	      break;
1547 
1548 	    case bfd_reloc_dangerous:
1549 	      msg = _("internal error: dangerous relocation");
1550 	      break;
1551 
1552 	    default:
1553 	      msg = _("internal error: unknown error");
1554 	      break;
1555 	    }
1556 
1557 	  if (msg)
1558 	    (*info->callbacks->warning) (info, msg, name, input_bfd,
1559 					 input_section, rel->r_offset);
1560 	}
1561     }
1562 
1563   return TRUE;
1564 }
1565 
1566 /* Perform a single relocation.  By default we use the standard BFD
1567    routines.  A few relocs we have to do ourselves.  */
1568 
1569 static bfd_reloc_status_type
1570 mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
1571 			  bfd_byte *contents, bfd_vma r_offset,
1572 			  bfd_signed_vma r_addend, bfd_vma relocation,
1573 			  const char *symname, asection *symsec,
1574 			  char **error_message)
1575 {
1576   bfd_reloc_status_type r = bfd_reloc_ok;
1577   bfd_vma addr
1578     = (input_section->output_section->vma
1579        + input_section->output_offset
1580        + r_offset);
1581   bfd_signed_vma srel
1582     = (bfd_signed_vma) relocation + r_addend;
1583 
1584   switch (howto->type)
1585     {
1586       /* All these are PC-relative.  */
1587     case R_MMIX_PUSHJ_STUBBABLE:
1588     case R_MMIX_PUSHJ:
1589     case R_MMIX_CBRANCH:
1590     case R_MMIX_ADDR19:
1591     case R_MMIX_GETA:
1592     case R_MMIX_ADDR27:
1593     case R_MMIX_JMP:
1594       contents += r_offset;
1595 
1596       srel -= (input_section->output_section->vma
1597 	       + input_section->output_offset
1598 	       + r_offset);
1599 
1600       r = mmix_elf_perform_relocation (input_section, howto, contents,
1601 				       addr, srel, error_message);
1602       break;
1603 
1604     case R_MMIX_BASE_PLUS_OFFSET:
1605       if (symsec == NULL)
1606 	return bfd_reloc_undefined;
1607 
1608       /* Check that we're not relocating against a register symbol.  */
1609       if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1610 		  MMIX_REG_CONTENTS_SECTION_NAME) == 0
1611 	  || strcmp (bfd_get_section_name (symsec->owner, symsec),
1612 		     MMIX_REG_SECTION_NAME) == 0)
1613 	{
1614 	  /* Note: This is separated out into two messages in order
1615 	     to ease the translation into other languages.  */
1616 	  if (symname == NULL || *symname == 0)
1617 	    _bfd_error_handler
1618 	      /* xgettext:c-format */
1619 	      (_("%pB: base-plus-offset relocation against register symbol:"
1620 		 " (unknown) in %pA"),
1621 	       input_section->owner, symsec);
1622 	  else
1623 	    _bfd_error_handler
1624 	      /* xgettext:c-format */
1625 	      (_("%pB: base-plus-offset relocation against register symbol:"
1626 		 " %s in %pA"),
1627 	       input_section->owner, symname, symsec);
1628 	  return bfd_reloc_overflow;
1629 	}
1630       goto do_mmix_reloc;
1631 
1632     case R_MMIX_REG_OR_BYTE:
1633     case R_MMIX_REG:
1634       /* For now, we handle these alike.  They must refer to an register
1635 	 symbol, which is either relative to the register section and in
1636 	 the range 0..255, or is in the register contents section with vma
1637 	 regno * 8.  */
1638 
1639       /* FIXME: A better way to check for reg contents section?
1640 	 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1641       if (symsec == NULL)
1642 	return bfd_reloc_undefined;
1643 
1644       if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1645 		  MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1646 	{
1647 	  if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1648 	    {
1649 	      /* The bfd_reloc_outofrange return value, though intuitively
1650 		 a better value, will not get us an error.  */
1651 	      return bfd_reloc_overflow;
1652 	    }
1653 	  srel /= 8;
1654 	}
1655       else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1656 		       MMIX_REG_SECTION_NAME) == 0)
1657 	{
1658 	  if (srel < 0 || srel > 255)
1659 	    /* The bfd_reloc_outofrange return value, though intuitively a
1660 	       better value, will not get us an error.  */
1661 	    return bfd_reloc_overflow;
1662 	}
1663       else
1664 	{
1665 	  /* Note: This is separated out into two messages in order
1666 	     to ease the translation into other languages.  */
1667 	  if (symname == NULL || *symname == 0)
1668 	    _bfd_error_handler
1669 	      /* xgettext:c-format */
1670 	      (_("%pB: register relocation against non-register symbol:"
1671 		 " (unknown) in %pA"),
1672 	       input_section->owner, symsec);
1673 	  else
1674 	    _bfd_error_handler
1675 	      /* xgettext:c-format */
1676 	      (_("%pB: register relocation against non-register symbol:"
1677 		 " %s in %pA"),
1678 	       input_section->owner, symname, symsec);
1679 
1680 	  /* The bfd_reloc_outofrange return value, though intuitively a
1681 	     better value, will not get us an error.  */
1682 	  return bfd_reloc_overflow;
1683 	}
1684     do_mmix_reloc:
1685       contents += r_offset;
1686       r = mmix_elf_perform_relocation (input_section, howto, contents,
1687 				       addr, srel, error_message);
1688       break;
1689 
1690     case R_MMIX_LOCAL:
1691       /* This isn't a real relocation, it's just an assertion that the
1692 	 final relocation value corresponds to a local register.  We
1693 	 ignore the actual relocation; nothing is changed.  */
1694       {
1695 	asection *regsec
1696 	  = bfd_get_section_by_name (input_section->output_section->owner,
1697 				     MMIX_REG_CONTENTS_SECTION_NAME);
1698 	bfd_vma first_global;
1699 
1700 	/* Check that this is an absolute value, or a reference to the
1701 	   register contents section or the register (symbol) section.
1702 	   Absolute numbers can get here as undefined section.  Undefined
1703 	   symbols are signalled elsewhere, so there's no conflict in us
1704 	   accidentally handling it.  */
1705 	if (!bfd_is_abs_section (symsec)
1706 	    && !bfd_is_und_section (symsec)
1707 	    && strcmp (bfd_get_section_name (symsec->owner, symsec),
1708 		       MMIX_REG_CONTENTS_SECTION_NAME) != 0
1709 	    && strcmp (bfd_get_section_name (symsec->owner, symsec),
1710 		       MMIX_REG_SECTION_NAME) != 0)
1711 	{
1712 	  _bfd_error_handler
1713 	    (_("%pB: directive LOCAL valid only with a register or absolute value"),
1714 	     input_section->owner);
1715 
1716 	  return bfd_reloc_overflow;
1717 	}
1718 
1719       /* If we don't have a register contents section, then $255 is the
1720 	 first global register.  */
1721       if (regsec == NULL)
1722 	first_global = 255;
1723       else
1724 	{
1725 	  first_global
1726 	    = bfd_get_section_vma (input_section->output_section->owner,
1727 				   regsec) / 8;
1728 	  if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1729 		      MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1730 	    {
1731 	      if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1732 		/* The bfd_reloc_outofrange return value, though
1733 		   intuitively a better value, will not get us an error.  */
1734 		return bfd_reloc_overflow;
1735 	      srel /= 8;
1736 	    }
1737 	}
1738 
1739 	if ((bfd_vma) srel >= first_global)
1740 	  {
1741 	    /* FIXME: Better error message.  */
1742 	    _bfd_error_handler
1743 	      /* xgettext:c-format */
1744 	      (_("%pB: LOCAL directive: "
1745 		 "register $%" PRId64 " is not a local register;"
1746 		 " first global register is $%" PRId64),
1747 	       input_section->owner, (int64_t) srel, (int64_t) first_global);
1748 
1749 	    return bfd_reloc_overflow;
1750 	  }
1751       }
1752       r = bfd_reloc_ok;
1753       break;
1754 
1755     default:
1756       r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1757 				    contents, r_offset,
1758 				    relocation, r_addend);
1759     }
1760 
1761   return r;
1762 }
1763 
1764 /* Return the section that should be marked against GC for a given
1765    relocation.  */
1766 
1767 static asection *
1768 mmix_elf_gc_mark_hook (asection *sec,
1769 		       struct bfd_link_info *info,
1770 		       Elf_Internal_Rela *rel,
1771 		       struct elf_link_hash_entry *h,
1772 		       Elf_Internal_Sym *sym)
1773 {
1774   if (h != NULL)
1775     switch (ELF64_R_TYPE (rel->r_info))
1776       {
1777       case R_MMIX_GNU_VTINHERIT:
1778       case R_MMIX_GNU_VTENTRY:
1779 	return NULL;
1780       }
1781 
1782   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1783 }
1784 
1785 /* Sort register relocs to come before expanding relocs.  */
1786 
1787 static int
1788 mmix_elf_sort_relocs (const void * p1, const void * p2)
1789 {
1790   const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1791   const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1792   int r1_is_reg, r2_is_reg;
1793 
1794   /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1795      insns.  */
1796   if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1797     return 1;
1798   else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1799     return -1;
1800 
1801   r1_is_reg
1802     = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1803        || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1804   r2_is_reg
1805     = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1806        || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1807   if (r1_is_reg != r2_is_reg)
1808     return r2_is_reg - r1_is_reg;
1809 
1810   /* Neither or both are register relocs.  Then sort on full offset.  */
1811   if (r1->r_offset > r2->r_offset)
1812     return 1;
1813   else if (r1->r_offset < r2->r_offset)
1814     return -1;
1815   return 0;
1816 }
1817 
1818 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking.  */
1819 
1820 static bfd_boolean
1821 mmix_elf_check_common_relocs  (bfd *abfd,
1822 			       struct bfd_link_info *info,
1823 			       asection *sec,
1824 			       const Elf_Internal_Rela *relocs)
1825 {
1826   bfd *bpo_greg_owner = NULL;
1827   asection *allocated_gregs_section = NULL;
1828   struct bpo_greg_section_info *gregdata = NULL;
1829   struct bpo_reloc_section_info *bpodata = NULL;
1830   const Elf_Internal_Rela *rel;
1831   const Elf_Internal_Rela *rel_end;
1832 
1833   /* We currently have to abuse this COFF-specific member, since there's
1834      no target-machine-dedicated member.  There's no alternative outside
1835      the bfd_link_info struct; we can't specialize a hash-table since
1836      they're different between ELF and mmo.  */
1837   bpo_greg_owner = (bfd *) info->base_file;
1838 
1839   rel_end = relocs + sec->reloc_count;
1840   for (rel = relocs; rel < rel_end; rel++)
1841     {
1842       switch (ELF64_R_TYPE (rel->r_info))
1843 	{
1844 	  /* This relocation causes a GREG allocation.  We need to count
1845 	     them, and we need to create a section for them, so we need an
1846 	     object to fake as the owner of that section.  We can't use
1847 	     the ELF dynobj for this, since the ELF bits assume lots of
1848 	     DSO-related stuff if that member is non-NULL.  */
1849 	case R_MMIX_BASE_PLUS_OFFSET:
1850 	  /* We don't do anything with this reloc for a relocatable link.  */
1851 	  if (bfd_link_relocatable (info))
1852 	    break;
1853 
1854 	  if (bpo_greg_owner == NULL)
1855 	    {
1856 	      bpo_greg_owner = abfd;
1857 	      info->base_file = bpo_greg_owner;
1858 	    }
1859 
1860 	  if (allocated_gregs_section == NULL)
1861 	    allocated_gregs_section
1862 	      = bfd_get_section_by_name (bpo_greg_owner,
1863 					 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1864 
1865 	  if (allocated_gregs_section == NULL)
1866 	    {
1867 	      allocated_gregs_section
1868 		= bfd_make_section_with_flags (bpo_greg_owner,
1869 					       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1870 					       (SEC_HAS_CONTENTS
1871 						| SEC_IN_MEMORY
1872 						| SEC_LINKER_CREATED));
1873 	      /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1874 		 treated like any other section, and we'd get errors for
1875 		 address overlap with the text section.  Let's set none of
1876 		 those flags, as that is what currently happens for usual
1877 		 GREG allocations, and that works.  */
1878 	      if (allocated_gregs_section == NULL
1879 		  || !bfd_set_section_alignment (bpo_greg_owner,
1880 						 allocated_gregs_section,
1881 						 3))
1882 		return FALSE;
1883 
1884 	      gregdata = (struct bpo_greg_section_info *)
1885 		bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1886 	      if (gregdata == NULL)
1887 		return FALSE;
1888 	      mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1889 		= gregdata;
1890 	    }
1891 	  else if (gregdata == NULL)
1892 	    gregdata
1893 	      = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1894 
1895 	  /* Get ourselves some auxiliary info for the BPO-relocs.  */
1896 	  if (bpodata == NULL)
1897 	    {
1898 	      /* No use doing a separate iteration pass to find the upper
1899 		 limit - just use the number of relocs.  */
1900 	      bpodata = (struct bpo_reloc_section_info *)
1901 		bfd_alloc (bpo_greg_owner,
1902 			   sizeof (struct bpo_reloc_section_info)
1903 			   * (sec->reloc_count + 1));
1904 	      if (bpodata == NULL)
1905 		return FALSE;
1906 	      mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1907 	      bpodata->first_base_plus_offset_reloc
1908 		= bpodata->bpo_index
1909 		= gregdata->n_max_bpo_relocs;
1910 	      bpodata->bpo_greg_section
1911 		= allocated_gregs_section;
1912 	      bpodata->n_bpo_relocs_this_section = 0;
1913 	    }
1914 
1915 	  bpodata->n_bpo_relocs_this_section++;
1916 	  gregdata->n_max_bpo_relocs++;
1917 
1918 	  /* We don't get another chance to set this before GC; we've not
1919 	     set up any hook that runs before GC.  */
1920 	  gregdata->n_bpo_relocs
1921 	    = gregdata->n_max_bpo_relocs;
1922 	  break;
1923 
1924 	case R_MMIX_PUSHJ_STUBBABLE:
1925 	  mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1926 	  break;
1927 	}
1928     }
1929 
1930   /* Allocate per-reloc stub storage and initialize it to the max stub
1931      size.  */
1932   if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1933     {
1934       size_t i;
1935 
1936       mmix_elf_section_data (sec)->pjs.stub_size
1937 	= bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1938 		     * sizeof (mmix_elf_section_data (sec)
1939 			       ->pjs.stub_size[0]));
1940       if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1941 	return FALSE;
1942 
1943       for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1944 	mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1945     }
1946 
1947   return TRUE;
1948 }
1949 
1950 /* Look through the relocs for a section during the first phase.  */
1951 
1952 static bfd_boolean
1953 mmix_elf_check_relocs (bfd *abfd,
1954 		       struct bfd_link_info *info,
1955 		       asection *sec,
1956 		       const Elf_Internal_Rela *relocs)
1957 {
1958   Elf_Internal_Shdr *symtab_hdr;
1959   struct elf_link_hash_entry **sym_hashes;
1960   const Elf_Internal_Rela *rel;
1961   const Elf_Internal_Rela *rel_end;
1962 
1963   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1964   sym_hashes = elf_sym_hashes (abfd);
1965 
1966   /* First we sort the relocs so that any register relocs come before
1967      expansion-relocs to the same insn.  FIXME: Not done for mmo.  */
1968   qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1969 	 mmix_elf_sort_relocs);
1970 
1971   /* Do the common part.  */
1972   if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
1973     return FALSE;
1974 
1975   if (bfd_link_relocatable (info))
1976     return TRUE;
1977 
1978   rel_end = relocs + sec->reloc_count;
1979   for (rel = relocs; rel < rel_end; rel++)
1980     {
1981       struct elf_link_hash_entry *h;
1982       unsigned long r_symndx;
1983 
1984       r_symndx = ELF64_R_SYM (rel->r_info);
1985       if (r_symndx < symtab_hdr->sh_info)
1986 	h = NULL;
1987       else
1988 	{
1989 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1990 	  while (h->root.type == bfd_link_hash_indirect
1991 		 || h->root.type == bfd_link_hash_warning)
1992 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1993 	}
1994 
1995       switch (ELF64_R_TYPE (rel->r_info))
1996 	{
1997 	/* This relocation describes the C++ object vtable hierarchy.
1998 	   Reconstruct it for later use during GC.  */
1999 	case R_MMIX_GNU_VTINHERIT:
2000 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2001 	    return FALSE;
2002 	  break;
2003 
2004 	/* This relocation describes which C++ vtable entries are actually
2005 	   used.  Record for later use during GC.  */
2006 	case R_MMIX_GNU_VTENTRY:
2007 	  BFD_ASSERT (h != NULL);
2008 	  if (h != NULL
2009 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2010 	    return FALSE;
2011 	  break;
2012 	}
2013     }
2014 
2015   return TRUE;
2016 }
2017 
2018 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2019    Copied from elf_link_add_object_symbols.  */
2020 
2021 bfd_boolean
2022 _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
2023 {
2024   asection *o;
2025 
2026   for (o = abfd->sections; o != NULL; o = o->next)
2027     {
2028       Elf_Internal_Rela *internal_relocs;
2029       bfd_boolean ok;
2030 
2031       if ((o->flags & SEC_RELOC) == 0
2032 	  || o->reloc_count == 0
2033 	  || ((info->strip == strip_all || info->strip == strip_debugger)
2034 	      && (o->flags & SEC_DEBUGGING) != 0)
2035 	  || bfd_is_abs_section (o->output_section))
2036 	continue;
2037 
2038       internal_relocs
2039 	= _bfd_elf_link_read_relocs (abfd, o, NULL,
2040 				     (Elf_Internal_Rela *) NULL,
2041 				     info->keep_memory);
2042       if (internal_relocs == NULL)
2043 	return FALSE;
2044 
2045       ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2046 
2047       if (! info->keep_memory)
2048 	free (internal_relocs);
2049 
2050       if (! ok)
2051 	return FALSE;
2052     }
2053 
2054   return TRUE;
2055 }
2056 
2057 /* Change symbols relative to the reg contents section to instead be to
2058    the register section, and scale them down to correspond to the register
2059    number.  */
2060 
2061 static int
2062 mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2063 				  const char *name ATTRIBUTE_UNUSED,
2064 				  Elf_Internal_Sym *sym,
2065 				  asection *input_sec,
2066 				  struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
2067 {
2068   if (input_sec != NULL
2069       && input_sec->name != NULL
2070       && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2071       && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2072     {
2073       sym->st_value /= 8;
2074       sym->st_shndx = SHN_REGISTER;
2075     }
2076 
2077   return 1;
2078 }
2079 
2080 /* We fake a register section that holds values that are register numbers.
2081    Having a SHN_REGISTER and register section translates better to other
2082    formats (e.g. mmo) than for example a STT_REGISTER attribute.
2083    This section faking is based on a construct in elf32-mips.c.  */
2084 static asection mmix_elf_reg_section;
2085 static asymbol mmix_elf_reg_section_symbol;
2086 static asymbol *mmix_elf_reg_section_symbol_ptr;
2087 
2088 /* Handle the special section numbers that a symbol may use.  */
2089 
2090 void
2091 mmix_elf_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
2092 {
2093   elf_symbol_type *elfsym;
2094 
2095   elfsym = (elf_symbol_type *) asym;
2096   switch (elfsym->internal_elf_sym.st_shndx)
2097     {
2098     case SHN_REGISTER:
2099       if (mmix_elf_reg_section.name == NULL)
2100 	{
2101 	  /* Initialize the register section.  */
2102 	  mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2103 	  mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2104 	  mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2105 	  mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2106 	  mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2107 	  mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2108 	  mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2109 	  mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2110 	  mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2111 	}
2112       asym->section = &mmix_elf_reg_section;
2113       break;
2114 
2115     default:
2116       break;
2117     }
2118 }
2119 
2120 /* Given a BFD section, try to locate the corresponding ELF section
2121    index.  */
2122 
2123 static bfd_boolean
2124 mmix_elf_section_from_bfd_section (bfd *       abfd ATTRIBUTE_UNUSED,
2125 				   asection *  sec,
2126 				   int *       retval)
2127 {
2128   if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2129     *retval = SHN_REGISTER;
2130   else
2131     return FALSE;
2132 
2133   return TRUE;
2134 }
2135 
2136 /* Hook called by the linker routine which adds symbols from an object
2137    file.  We must handle the special SHN_REGISTER section number here.
2138 
2139    We also check that we only have *one* each of the section-start
2140    symbols, since otherwise having two with the same value would cause
2141    them to be "merged", but with the contents serialized.  */
2142 
2143 static bfd_boolean
2144 mmix_elf_add_symbol_hook (bfd *abfd,
2145 			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
2146 			  Elf_Internal_Sym *sym,
2147 			  const char **namep ATTRIBUTE_UNUSED,
2148 			  flagword *flagsp ATTRIBUTE_UNUSED,
2149 			  asection **secp,
2150 			  bfd_vma *valp ATTRIBUTE_UNUSED)
2151 {
2152   if (sym->st_shndx == SHN_REGISTER)
2153     {
2154       *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2155       (*secp)->flags |= SEC_LINKER_CREATED;
2156     }
2157   else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2158 	   && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
2159     {
2160       /* See if we have another one.  */
2161       struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2162 							    *namep,
2163 							    FALSE,
2164 							    FALSE,
2165 							    FALSE);
2166 
2167       if (h != NULL && h->type != bfd_link_hash_undefined)
2168 	{
2169 	  /* How do we get the asymbol (or really: the filename) from h?
2170 	     h->u.def.section->owner is NULL.  */
2171 	  _bfd_error_handler
2172 	    /* xgettext:c-format */
2173 	    (_("%pB: error: multiple definition of `%s'; start of %s "
2174 	       "is set in a earlier linked file"),
2175 	     abfd, *namep,
2176 	     *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX));
2177 	   bfd_set_error (bfd_error_bad_value);
2178 	   return FALSE;
2179 	}
2180     }
2181 
2182   return TRUE;
2183 }
2184 
2185 /* We consider symbols matching "L.*:[0-9]+" to be local symbols.  */
2186 
2187 static bfd_boolean
2188 mmix_elf_is_local_label_name (bfd *abfd, const char *name)
2189 {
2190   const char *colpos;
2191   int digits;
2192 
2193   /* Also include the default local-label definition.  */
2194   if (_bfd_elf_is_local_label_name (abfd, name))
2195     return TRUE;
2196 
2197   if (*name != 'L')
2198     return FALSE;
2199 
2200   /* If there's no ":", or more than one, it's not a local symbol.  */
2201   colpos = strchr (name, ':');
2202   if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2203     return FALSE;
2204 
2205   /* Check that there are remaining characters and that they are digits.  */
2206   if (colpos[1] == 0)
2207     return FALSE;
2208 
2209   digits = strspn (colpos + 1, "0123456789");
2210   return digits != 0 && colpos[1 + digits] == 0;
2211 }
2212 
2213 /* We get rid of the register section here.  */
2214 
2215 bfd_boolean
2216 mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
2217 {
2218   /* We never output a register section, though we create one for
2219      temporary measures.  Check that nobody entered contents into it.  */
2220   asection *reg_section;
2221 
2222   reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2223 
2224   if (reg_section != NULL)
2225     {
2226       /* FIXME: Pass error state gracefully.  */
2227       if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2228 	_bfd_abort (__FILE__, __LINE__, _("register section has contents\n"));
2229 
2230       /* Really remove the section, if it hasn't already been done.  */
2231       if (!bfd_section_removed_from_list (abfd, reg_section))
2232 	{
2233 	  bfd_section_list_remove (abfd, reg_section);
2234 	  --abfd->section_count;
2235 	}
2236     }
2237 
2238   if (! bfd_elf_final_link (abfd, info))
2239     return FALSE;
2240 
2241   /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2242      the regular linker machinery.  We do it here, like other targets with
2243      special sections.  */
2244   if (info->base_file != NULL)
2245     {
2246       asection *greg_section
2247 	= bfd_get_section_by_name ((bfd *) info->base_file,
2248 				   MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2249       if (!bfd_set_section_contents (abfd,
2250 				     greg_section->output_section,
2251 				     greg_section->contents,
2252 				     (file_ptr) greg_section->output_offset,
2253 				     greg_section->size))
2254 	return FALSE;
2255     }
2256   return TRUE;
2257 }
2258 
2259 /* We need to include the maximum size of PUSHJ-stubs in the initial
2260    section size.  This is expected to shrink during linker relaxation.  */
2261 
2262 static void
2263 mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
2264 			 asection *sec,
2265 			 void *ptr)
2266 {
2267   struct bfd_link_info *info = ptr;
2268 
2269   /* Make sure we only do this for section where we know we want this,
2270      otherwise we might end up resetting the size of COMMONs.  */
2271   if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2272     return;
2273 
2274   sec->rawsize = sec->size;
2275   sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2276 		* MAX_PUSHJ_STUB_SIZE);
2277 
2278   /* For use in relocatable link, we start with a max stubs size.  See
2279      mmix_elf_relax_section.  */
2280   if (bfd_link_relocatable (info) && sec->output_section)
2281     mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2282       += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2283 	  * MAX_PUSHJ_STUB_SIZE);
2284 }
2285 
2286 /* Initialize stuff for the linker-generated GREGs to match
2287    R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker.  */
2288 
2289 bfd_boolean
2290 _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2291 				    struct bfd_link_info *info)
2292 {
2293   asection *bpo_gregs_section;
2294   bfd *bpo_greg_owner;
2295   struct bpo_greg_section_info *gregdata;
2296   size_t n_gregs;
2297   bfd_vma gregs_size;
2298   size_t i;
2299   size_t *bpo_reloc_indexes;
2300   bfd *ibfd;
2301 
2302   /* Set the initial size of sections.  */
2303   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2304     bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2305 
2306   /* The bpo_greg_owner bfd is supposed to have been set by
2307      mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2308      If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET.  */
2309   bpo_greg_owner = (bfd *) info->base_file;
2310   if (bpo_greg_owner == NULL)
2311     return TRUE;
2312 
2313   bpo_gregs_section
2314     = bfd_get_section_by_name (bpo_greg_owner,
2315 			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2316 
2317   if (bpo_gregs_section == NULL)
2318     return TRUE;
2319 
2320   /* We use the target-data handle in the ELF section data.  */
2321   gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2322   if (gregdata == NULL)
2323     return FALSE;
2324 
2325   n_gregs = gregdata->n_bpo_relocs;
2326   gregdata->n_allocated_bpo_gregs = n_gregs;
2327 
2328   /* When this reaches zero during relaxation, all entries have been
2329      filled in and the size of the linker gregs can be calculated.  */
2330   gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2331 
2332   /* Set the zeroth-order estimate for the GREGs size.  */
2333   gregs_size = n_gregs * 8;
2334 
2335   if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2336     return FALSE;
2337 
2338   /* Allocate and set up the GREG arrays.  They're filled in at relaxation
2339      time.  Note that we must use the max number ever noted for the array,
2340      since the index numbers were created before GC.  */
2341   gregdata->reloc_request
2342     = bfd_zalloc (bpo_greg_owner,
2343 		  sizeof (struct bpo_reloc_request)
2344 		  * gregdata->n_max_bpo_relocs);
2345 
2346   gregdata->bpo_reloc_indexes
2347     = bpo_reloc_indexes
2348     = bfd_alloc (bpo_greg_owner,
2349 		 gregdata->n_max_bpo_relocs
2350 		 * sizeof (size_t));
2351   if (bpo_reloc_indexes == NULL)
2352     return FALSE;
2353 
2354   /* The default order is an identity mapping.  */
2355   for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2356     {
2357       bpo_reloc_indexes[i] = i;
2358       gregdata->reloc_request[i].bpo_reloc_no = i;
2359     }
2360 
2361   return TRUE;
2362 }
2363 
2364 /* Fill in contents in the linker allocated gregs.  Everything is
2365    calculated at this point; we just move the contents into place here.  */
2366 
2367 bfd_boolean
2368 _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2369 				   struct bfd_link_info *link_info)
2370 {
2371   asection *bpo_gregs_section;
2372   bfd *bpo_greg_owner;
2373   struct bpo_greg_section_info *gregdata;
2374   size_t n_gregs;
2375   size_t i, j;
2376   size_t lastreg;
2377   bfd_byte *contents;
2378 
2379   /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2380      when the first R_MMIX_BASE_PLUS_OFFSET is seen.  If there is no such
2381      object, there was no R_MMIX_BASE_PLUS_OFFSET.  */
2382   bpo_greg_owner = (bfd *) link_info->base_file;
2383   if (bpo_greg_owner == NULL)
2384     return TRUE;
2385 
2386   bpo_gregs_section
2387     = bfd_get_section_by_name (bpo_greg_owner,
2388 			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2389 
2390   /* This can't happen without DSO handling.  When DSOs are handled
2391      without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2392      section.  */
2393   if (bpo_gregs_section == NULL)
2394     return TRUE;
2395 
2396   /* We use the target-data handle in the ELF section data.  */
2397 
2398   gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2399   if (gregdata == NULL)
2400     return FALSE;
2401 
2402   n_gregs = gregdata->n_allocated_bpo_gregs;
2403 
2404   bpo_gregs_section->contents
2405     = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2406   if (contents == NULL)
2407     return FALSE;
2408 
2409   /* Sanity check: If these numbers mismatch, some relocation has not been
2410      accounted for and the rest of gregdata is probably inconsistent.
2411      It's a bug, but it's more helpful to identify it than segfaulting
2412      below.  */
2413   if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2414       != gregdata->n_bpo_relocs)
2415     {
2416       _bfd_error_handler
2417 	/* xgettext:c-format */
2418 	(_("internal inconsistency: remaining %lu != max %lu;"
2419 	   " please report this bug"),
2420 	 (unsigned long) gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2421 	 (unsigned long) gregdata->n_bpo_relocs);
2422       return FALSE;
2423     }
2424 
2425   for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2426     if (gregdata->reloc_request[i].regindex != lastreg)
2427       {
2428 	bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2429 		    contents + j * 8);
2430 	lastreg = gregdata->reloc_request[i].regindex;
2431 	j++;
2432       }
2433 
2434   return TRUE;
2435 }
2436 
2437 /* Sort valid relocs to come before non-valid relocs, then on increasing
2438    value.  */
2439 
2440 static int
2441 bpo_reloc_request_sort_fn (const void * p1, const void * p2)
2442 {
2443   const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2444   const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2445 
2446   /* Primary function is validity; non-valid relocs sorted after valid
2447      ones.  */
2448   if (r1->valid != r2->valid)
2449     return r2->valid - r1->valid;
2450 
2451   /* Then sort on value.  Don't simplify and return just the difference of
2452      the values: the upper bits of the 64-bit value would be truncated on
2453      a host with 32-bit ints.  */
2454   if (r1->value != r2->value)
2455     return r1->value > r2->value ? 1 : -1;
2456 
2457   /* As a last re-sort, use the relocation number, so we get a stable
2458      sort.  The *addresses* aren't stable since items are swapped during
2459      sorting.  It depends on the qsort implementation if this actually
2460      happens.  */
2461   return r1->bpo_reloc_no > r2->bpo_reloc_no
2462     ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2463 }
2464 
2465 /* For debug use only.  Dumps the global register allocations resulting
2466    from base-plus-offset relocs.  */
2467 
2468 void
2469 mmix_dump_bpo_gregs (struct bfd_link_info *link_info,
2470 		     void (*pf) (const char *fmt, ...))
2471 {
2472   bfd *bpo_greg_owner;
2473   asection *bpo_gregs_section;
2474   struct bpo_greg_section_info *gregdata;
2475   unsigned int i;
2476 
2477   if (link_info == NULL || link_info->base_file == NULL)
2478     return;
2479 
2480   bpo_greg_owner = (bfd *) link_info->base_file;
2481 
2482   bpo_gregs_section
2483     = bfd_get_section_by_name (bpo_greg_owner,
2484 			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2485 
2486   if (bpo_gregs_section == NULL)
2487     return;
2488 
2489   gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2490   if (gregdata == NULL)
2491     return;
2492 
2493   if (pf == NULL)
2494     pf = _bfd_error_handler;
2495 
2496   /* These format strings are not translated.  They are for debug purposes
2497      only and never displayed to an end user.  Should they escape, we
2498      surely want them in original.  */
2499   (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2500  n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2501      gregdata->n_max_bpo_relocs,
2502      gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2503      gregdata->n_allocated_bpo_gregs);
2504 
2505   if (gregdata->reloc_request)
2506     for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2507       (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx  r: %3u o: %3u\n",
2508 	     i,
2509 	     (gregdata->bpo_reloc_indexes != NULL
2510 	      ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2511 	     gregdata->reloc_request[i].bpo_reloc_no,
2512 	     gregdata->reloc_request[i].valid,
2513 
2514 	     (unsigned long) (gregdata->reloc_request[i].value >> 32),
2515 	     (unsigned long) gregdata->reloc_request[i].value,
2516 	     gregdata->reloc_request[i].regindex,
2517 	     gregdata->reloc_request[i].offset);
2518 }
2519 
2520 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2521    when the last such reloc is done, an index-array is sorted according to
2522    the values and iterated over to produce register numbers (indexed by 0
2523    from the first allocated register number) and offsets for use in real
2524    relocation.  (N.B.: Relocatable runs are handled, not just punted.)
2525 
2526    PUSHJ stub accounting is also done here.
2527 
2528    Symbol- and reloc-reading infrastructure copied from elf-m10200.c.  */
2529 
2530 static bfd_boolean
2531 mmix_elf_relax_section (bfd *abfd,
2532 			asection *sec,
2533 			struct bfd_link_info *link_info,
2534 			bfd_boolean *again)
2535 {
2536   Elf_Internal_Shdr *symtab_hdr;
2537   Elf_Internal_Rela *internal_relocs;
2538   Elf_Internal_Rela *irel, *irelend;
2539   asection *bpo_gregs_section = NULL;
2540   struct bpo_greg_section_info *gregdata;
2541   struct bpo_reloc_section_info *bpodata
2542     = mmix_elf_section_data (sec)->bpo.reloc;
2543   /* The initialization is to quiet compiler warnings.  The value is to
2544      spot a missing actual initialization.  */
2545   size_t bpono = (size_t) -1;
2546   size_t pjsno = 0;
2547   Elf_Internal_Sym *isymbuf = NULL;
2548   bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2549 
2550   mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2551 
2552   /* Assume nothing changes.  */
2553   *again = FALSE;
2554 
2555   /* We don't have to do anything if this section does not have relocs, or
2556      if this is not a code section.  */
2557   if ((sec->flags & SEC_RELOC) == 0
2558       || sec->reloc_count == 0
2559       || (sec->flags & SEC_CODE) == 0
2560       || (sec->flags & SEC_LINKER_CREATED) != 0
2561       /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2562 	 then nothing to do.  */
2563       || (bpodata == NULL
2564 	  && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2565     return TRUE;
2566 
2567   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2568 
2569   if (bpodata != NULL)
2570     {
2571       bpo_gregs_section = bpodata->bpo_greg_section;
2572       gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2573       bpono = bpodata->first_base_plus_offset_reloc;
2574     }
2575   else
2576     gregdata = NULL;
2577 
2578   /* Get a copy of the native relocations.  */
2579   internal_relocs
2580     = _bfd_elf_link_read_relocs (abfd, sec, NULL,
2581 				 (Elf_Internal_Rela *) NULL,
2582 				 link_info->keep_memory);
2583   if (internal_relocs == NULL)
2584     goto error_return;
2585 
2586   /* Walk through them looking for relaxing opportunities.  */
2587   irelend = internal_relocs + sec->reloc_count;
2588   for (irel = internal_relocs; irel < irelend; irel++)
2589     {
2590       bfd_vma symval;
2591       struct elf_link_hash_entry *h = NULL;
2592 
2593       /* We only process two relocs.  */
2594       if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2595 	  && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2596 	continue;
2597 
2598       /* We process relocs in a distinctly different way when this is a
2599 	 relocatable link (for one, we don't look at symbols), so we avoid
2600 	 mixing its code with that for the "normal" relaxation.  */
2601       if (bfd_link_relocatable (link_info))
2602 	{
2603 	  /* The only transformation in a relocatable link is to generate
2604 	     a full stub at the location of the stub calculated for the
2605 	     input section, if the relocated stub location, the end of the
2606 	     output section plus earlier stubs, cannot be reached.  Thus
2607 	     relocatable linking can only lead to worse code, but it still
2608 	     works.  */
2609 	  if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2610 	    {
2611 	      /* If we can reach the end of the output-section and beyond
2612 		 any current stubs, then we don't need a stub for this
2613 		 reloc.  The relaxed order of output stub allocation may
2614 		 not exactly match the straightforward order, so we always
2615 		 assume presence of output stubs, which will allow
2616 		 relaxation only on relocations indifferent to the
2617 		 presence of output stub allocations for other relocations
2618 		 and thus the order of output stub allocation.  */
2619 	      if (bfd_check_overflow (complain_overflow_signed,
2620 				      19,
2621 				      0,
2622 				      bfd_arch_bits_per_address (abfd),
2623 				      /* Output-stub location.  */
2624 				      sec->output_section->rawsize
2625 				      + (mmix_elf_section_data (sec
2626 							       ->output_section)
2627 					 ->pjs.stubs_size_sum)
2628 				      /* Location of this PUSHJ reloc.  */
2629 				      - (sec->output_offset + irel->r_offset)
2630 				      /* Don't count *this* stub twice.  */
2631 				      - (mmix_elf_section_data (sec)
2632 					 ->pjs.stub_size[pjsno]
2633 					 + MAX_PUSHJ_STUB_SIZE))
2634 		  == bfd_reloc_ok)
2635 		mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2636 
2637 	      mmix_elf_section_data (sec)->pjs.stubs_size_sum
2638 		+= mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2639 
2640 	      pjsno++;
2641 	    }
2642 
2643 	  continue;
2644 	}
2645 
2646       /* Get the value of the symbol referred to by the reloc.  */
2647       if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2648 	{
2649 	  /* A local symbol.  */
2650 	  Elf_Internal_Sym *isym;
2651 	  asection *sym_sec;
2652 
2653 	  /* Read this BFD's local symbols if we haven't already.  */
2654 	  if (isymbuf == NULL)
2655 	    {
2656 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2657 	      if (isymbuf == NULL)
2658 		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2659 						symtab_hdr->sh_info, 0,
2660 						NULL, NULL, NULL);
2661 	      if (isymbuf == 0)
2662 		goto error_return;
2663 	    }
2664 
2665 	  isym = isymbuf + ELF64_R_SYM (irel->r_info);
2666 	  if (isym->st_shndx == SHN_UNDEF)
2667 	    sym_sec = bfd_und_section_ptr;
2668 	  else if (isym->st_shndx == SHN_ABS)
2669 	    sym_sec = bfd_abs_section_ptr;
2670 	  else if (isym->st_shndx == SHN_COMMON)
2671 	    sym_sec = bfd_com_section_ptr;
2672 	  else
2673 	    sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2674 	  symval = (isym->st_value
2675 		    + sym_sec->output_section->vma
2676 		    + sym_sec->output_offset);
2677 	}
2678       else
2679 	{
2680 	  unsigned long indx;
2681 
2682 	  /* An external symbol.  */
2683 	  indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2684 	  h = elf_sym_hashes (abfd)[indx];
2685 	  BFD_ASSERT (h != NULL);
2686 	  if (h->root.type == bfd_link_hash_undefweak)
2687 	    /* FIXME: for R_MMIX_PUSHJ_STUBBABLE, there are alternatives to
2688 	       the canonical value 0 for an unresolved weak symbol to
2689 	       consider: as the debug-friendly approach, resolve to "abort"
2690 	       (or a port-specific function), or as the space-friendly
2691 	       approach resolve to the next instruction (like some other
2692 	       ports, notably ARM and AArch64).  These alternatives require
2693 	       matching code in mmix_elf_perform_relocation or its caller.  */
2694 	    symval = 0;
2695 	  else if (h->root.type == bfd_link_hash_defined
2696 		   || h->root.type == bfd_link_hash_defweak)
2697 	    symval = (h->root.u.def.value
2698 		      + h->root.u.def.section->output_section->vma
2699 		      + h->root.u.def.section->output_offset);
2700 	  else
2701 	    {
2702 	      /* This appears to be a reference to an undefined symbol.  Just
2703 		 ignore it--it will be caught by the regular reloc processing.
2704 		 We need to keep BPO reloc accounting consistent, though
2705 		 else we'll abort instead of emitting an error message.  */
2706 	      if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2707 		  && gregdata != NULL)
2708 		{
2709 		  gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2710 		  bpono++;
2711 		}
2712 	      continue;
2713 	    }
2714 	}
2715 
2716       if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2717 	{
2718 	  bfd_vma value = symval + irel->r_addend;
2719 	  bfd_vma dot
2720 	    = (sec->output_section->vma
2721 	       + sec->output_offset
2722 	       + irel->r_offset);
2723 	  bfd_vma stubaddr
2724 	    = (sec->output_section->vma
2725 	       + sec->output_offset
2726 	       + size
2727 	       + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2728 
2729 	  if ((value & 3) == 0
2730 	      && bfd_check_overflow (complain_overflow_signed,
2731 				     19,
2732 				     0,
2733 				     bfd_arch_bits_per_address (abfd),
2734 				     value - dot
2735 				     - (value > dot
2736 					? mmix_elf_section_data (sec)
2737 					->pjs.stub_size[pjsno]
2738 					: 0))
2739 	      == bfd_reloc_ok)
2740 	    /* If the reloc fits, no stub is needed.  */
2741 	    mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2742 	  else
2743 	    /* Maybe we can get away with just a JMP insn?  */
2744 	    if ((value & 3) == 0
2745 		&& bfd_check_overflow (complain_overflow_signed,
2746 				       27,
2747 				       0,
2748 				       bfd_arch_bits_per_address (abfd),
2749 				       value - stubaddr
2750 				       - (value > dot
2751 					  ? mmix_elf_section_data (sec)
2752 					  ->pjs.stub_size[pjsno] - 4
2753 					  : 0))
2754 		== bfd_reloc_ok)
2755 	      /* Yep, account for a stub consisting of a single JMP insn.  */
2756 	      mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2757 	  else
2758 	    /* Nope, go for the full insn stub.  It doesn't seem useful to
2759 	       emit the intermediate sizes; those will only be useful for
2760 	       a >64M program assuming contiguous code.  */
2761 	    mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2762 	      = MAX_PUSHJ_STUB_SIZE;
2763 
2764 	  mmix_elf_section_data (sec)->pjs.stubs_size_sum
2765 	    += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2766 	  pjsno++;
2767 	  continue;
2768 	}
2769 
2770       /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc.  */
2771 
2772       gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2773 	= symval + irel->r_addend;
2774       gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2775       gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2776     }
2777 
2778   /* Check if that was the last BPO-reloc.  If so, sort the values and
2779      calculate how many registers we need to cover them.  Set the size of
2780      the linker gregs, and if the number of registers changed, indicate
2781      that we need to relax some more because we have more work to do.  */
2782   if (gregdata != NULL
2783       && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2784     {
2785       size_t i;
2786       bfd_vma prev_base;
2787       size_t regindex;
2788 
2789       /* First, reset the remaining relocs for the next round.  */
2790       gregdata->n_remaining_bpo_relocs_this_relaxation_round
2791 	= gregdata->n_bpo_relocs;
2792 
2793       qsort (gregdata->reloc_request,
2794 	     gregdata->n_max_bpo_relocs,
2795 	     sizeof (struct bpo_reloc_request),
2796 	     bpo_reloc_request_sort_fn);
2797 
2798       /* Recalculate indexes.  When we find a change (however unlikely
2799 	 after the initial iteration), we know we need to relax again,
2800 	 since items in the GREG-array are sorted by increasing value and
2801 	 stored in the relaxation phase.  */
2802       for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2803 	if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2804 	    != i)
2805 	  {
2806 	    gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2807 	      = i;
2808 	    *again = TRUE;
2809 	  }
2810 
2811       /* Allocate register numbers (indexing from 0).  Stop at the first
2812 	 non-valid reloc.  */
2813       for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2814 	   i < gregdata->n_bpo_relocs;
2815 	   i++)
2816 	{
2817 	  if (gregdata->reloc_request[i].value > prev_base + 255)
2818 	    {
2819 	      regindex++;
2820 	      prev_base = gregdata->reloc_request[i].value;
2821 	    }
2822 	  gregdata->reloc_request[i].regindex = regindex;
2823 	  gregdata->reloc_request[i].offset
2824 	    = gregdata->reloc_request[i].value - prev_base;
2825 	}
2826 
2827       /* If it's not the same as the last time, we need to relax again,
2828 	 because the size of the section has changed.  I'm not sure we
2829 	 actually need to do any adjustments since the shrinking happens
2830 	 at the start of this section, but better safe than sorry.  */
2831       if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2832 	{
2833 	  gregdata->n_allocated_bpo_gregs = regindex + 1;
2834 	  *again = TRUE;
2835 	}
2836 
2837       bpo_gregs_section->size = (regindex + 1) * 8;
2838     }
2839 
2840   if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2841     {
2842       if (! link_info->keep_memory)
2843 	free (isymbuf);
2844       else
2845 	{
2846 	  /* Cache the symbols for elf_link_input_bfd.  */
2847 	  symtab_hdr->contents = (unsigned char *) isymbuf;
2848 	}
2849     }
2850 
2851   BFD_ASSERT(pjsno == mmix_elf_section_data (sec)->pjs.n_pushj_relocs);
2852 
2853   if (internal_relocs != NULL
2854       && elf_section_data (sec)->relocs != internal_relocs)
2855     free (internal_relocs);
2856 
2857   if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2858     abort ();
2859 
2860   if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2861     {
2862       sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2863       *again = TRUE;
2864     }
2865 
2866   return TRUE;
2867 
2868  error_return:
2869   if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2870     free (isymbuf);
2871   if (internal_relocs != NULL
2872       && elf_section_data (sec)->relocs != internal_relocs)
2873     free (internal_relocs);
2874   return FALSE;
2875 }
2876 
2877 #define ELF_ARCH		bfd_arch_mmix
2878 #define ELF_MACHINE_CODE	EM_MMIX
2879 
2880 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2881    However, that's too much for something somewhere in the linker part of
2882    BFD; perhaps the start-address has to be a non-zero multiple of this
2883    number, or larger than this number.  The symptom is that the linker
2884    complains: "warning: allocated section `.text' not in segment".  We
2885    settle for 64k; the page-size used in examples is 8k.
2886    #define ELF_MAXPAGESIZE 0x10000
2887 
2888    Unfortunately, this causes excessive padding in the supposedly small
2889    for-education programs that are the expected usage (where people would
2890    inspect output).  We stick to 256 bytes just to have *some* default
2891    alignment.  */
2892 #define ELF_MAXPAGESIZE 0x100
2893 
2894 #define TARGET_BIG_SYM		mmix_elf64_vec
2895 #define TARGET_BIG_NAME		"elf64-mmix"
2896 
2897 #define elf_info_to_howto_rel		NULL
2898 #define elf_info_to_howto		mmix_info_to_howto_rela
2899 #define elf_backend_relocate_section	mmix_elf_relocate_section
2900 #define elf_backend_gc_mark_hook	mmix_elf_gc_mark_hook
2901 
2902 #define elf_backend_link_output_symbol_hook \
2903 	mmix_elf_link_output_symbol_hook
2904 #define elf_backend_add_symbol_hook	mmix_elf_add_symbol_hook
2905 
2906 #define elf_backend_check_relocs	mmix_elf_check_relocs
2907 #define elf_backend_symbol_processing	mmix_elf_symbol_processing
2908 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
2909 
2910 #define bfd_elf64_bfd_copy_link_hash_symbol_type \
2911   _bfd_generic_copy_link_hash_symbol_type
2912 
2913 #define bfd_elf64_bfd_is_local_label_name \
2914 	mmix_elf_is_local_label_name
2915 
2916 #define elf_backend_may_use_rel_p	0
2917 #define elf_backend_may_use_rela_p	1
2918 #define elf_backend_default_use_rela_p	1
2919 
2920 #define elf_backend_can_gc_sections	1
2921 #define elf_backend_section_from_bfd_section \
2922 	mmix_elf_section_from_bfd_section
2923 
2924 #define bfd_elf64_new_section_hook	mmix_elf_new_section_hook
2925 #define bfd_elf64_bfd_final_link	mmix_elf_final_link
2926 #define bfd_elf64_bfd_relax_section	mmix_elf_relax_section
2927 
2928 #include "elf64-target.h"
2929