1 /* Support for HPPA 64-bit ELF 2 Copyright (C) 1999-2016 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 MA 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include "alloca-conf.h" 23 #include "bfd.h" 24 #include "libbfd.h" 25 #include "elf-bfd.h" 26 #include "elf/hppa.h" 27 #include "libhppa.h" 28 #include "elf64-hppa.h" 29 #include "libiberty.h" 30 31 #define ARCH_SIZE 64 32 33 #define PLT_ENTRY_SIZE 0x10 34 #define DLT_ENTRY_SIZE 0x8 35 #define OPD_ENTRY_SIZE 0x20 36 37 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl" 38 39 /* The stub is supposed to load the target address and target's DP 40 value out of the PLT, then do an external branch to the target 41 address. 42 43 LDD PLTOFF(%r27),%r1 44 BVE (%r1) 45 LDD PLTOFF+8(%r27),%r27 46 47 Note that we must use the LDD with a 14 bit displacement, not the one 48 with a 5 bit displacement. */ 49 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00, 50 0x53, 0x7b, 0x00, 0x00 }; 51 52 struct elf64_hppa_link_hash_entry 53 { 54 struct elf_link_hash_entry eh; 55 56 /* Offsets for this symbol in various linker sections. */ 57 bfd_vma dlt_offset; 58 bfd_vma plt_offset; 59 bfd_vma opd_offset; 60 bfd_vma stub_offset; 61 62 /* The index of the (possibly local) symbol in the input bfd and its 63 associated BFD. Needed so that we can have relocs against local 64 symbols in shared libraries. */ 65 long sym_indx; 66 bfd *owner; 67 68 /* Dynamic symbols may need to have two different values. One for 69 the dynamic symbol table, one for the normal symbol table. 70 71 In such cases we store the symbol's real value and section 72 index here so we can restore the real value before we write 73 the normal symbol table. */ 74 bfd_vma st_value; 75 int st_shndx; 76 77 /* Used to count non-got, non-plt relocations for delayed sizing 78 of relocation sections. */ 79 struct elf64_hppa_dyn_reloc_entry 80 { 81 /* Next relocation in the chain. */ 82 struct elf64_hppa_dyn_reloc_entry *next; 83 84 /* The type of the relocation. */ 85 int type; 86 87 /* The input section of the relocation. */ 88 asection *sec; 89 90 /* Number of relocs copied in this section. */ 91 bfd_size_type count; 92 93 /* The index of the section symbol for the input section of 94 the relocation. Only needed when building shared libraries. */ 95 int sec_symndx; 96 97 /* The offset within the input section of the relocation. */ 98 bfd_vma offset; 99 100 /* The addend for the relocation. */ 101 bfd_vma addend; 102 103 } *reloc_entries; 104 105 /* Nonzero if this symbol needs an entry in one of the linker 106 sections. */ 107 unsigned want_dlt; 108 unsigned want_plt; 109 unsigned want_opd; 110 unsigned want_stub; 111 }; 112 113 struct elf64_hppa_link_hash_table 114 { 115 struct elf_link_hash_table root; 116 117 /* Shortcuts to get to the various linker defined sections. */ 118 asection *dlt_sec; 119 asection *dlt_rel_sec; 120 asection *plt_sec; 121 asection *plt_rel_sec; 122 asection *opd_sec; 123 asection *opd_rel_sec; 124 asection *other_rel_sec; 125 126 /* Offset of __gp within .plt section. When the PLT gets large we want 127 to slide __gp into the PLT section so that we can continue to use 128 single DP relative instructions to load values out of the PLT. */ 129 bfd_vma gp_offset; 130 131 /* Note this is not strictly correct. We should create a stub section for 132 each input section with calls. The stub section should be placed before 133 the section with the call. */ 134 asection *stub_sec; 135 136 bfd_vma text_segment_base; 137 bfd_vma data_segment_base; 138 139 /* We build tables to map from an input section back to its 140 symbol index. This is the BFD for which we currently have 141 a map. */ 142 bfd *section_syms_bfd; 143 144 /* Array of symbol numbers for each input section attached to the 145 current BFD. */ 146 int *section_syms; 147 }; 148 149 #define hppa_link_hash_table(p) \ 150 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 151 == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL) 152 153 #define hppa_elf_hash_entry(ent) \ 154 ((struct elf64_hppa_link_hash_entry *)(ent)) 155 156 #define eh_name(eh) \ 157 (eh ? eh->root.root.string : "<undef>") 158 159 typedef struct bfd_hash_entry *(*new_hash_entry_func) 160 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); 161 162 static struct bfd_link_hash_table *elf64_hppa_hash_table_create 163 (bfd *abfd); 164 165 /* This must follow the definitions of the various derived linker 166 hash tables and shared functions. */ 167 #include "elf-hppa.h" 168 169 static bfd_boolean elf64_hppa_object_p 170 (bfd *); 171 172 static void elf64_hppa_post_process_headers 173 (bfd *, struct bfd_link_info *); 174 175 static bfd_boolean elf64_hppa_create_dynamic_sections 176 (bfd *, struct bfd_link_info *); 177 178 static bfd_boolean elf64_hppa_adjust_dynamic_symbol 179 (struct bfd_link_info *, struct elf_link_hash_entry *); 180 181 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions 182 (struct elf_link_hash_entry *, void *); 183 184 static bfd_boolean elf64_hppa_size_dynamic_sections 185 (bfd *, struct bfd_link_info *); 186 187 static int elf64_hppa_link_output_symbol_hook 188 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, 189 asection *, struct elf_link_hash_entry *); 190 191 static bfd_boolean elf64_hppa_finish_dynamic_symbol 192 (bfd *, struct bfd_link_info *, 193 struct elf_link_hash_entry *, Elf_Internal_Sym *); 194 195 static bfd_boolean elf64_hppa_finish_dynamic_sections 196 (bfd *, struct bfd_link_info *); 197 198 static bfd_boolean elf64_hppa_check_relocs 199 (bfd *, struct bfd_link_info *, 200 asection *, const Elf_Internal_Rela *); 201 202 static bfd_boolean elf64_hppa_dynamic_symbol_p 203 (struct elf_link_hash_entry *, struct bfd_link_info *); 204 205 static bfd_boolean elf64_hppa_mark_exported_functions 206 (struct elf_link_hash_entry *, void *); 207 208 static bfd_boolean elf64_hppa_finalize_opd 209 (struct elf_link_hash_entry *, void *); 210 211 static bfd_boolean elf64_hppa_finalize_dlt 212 (struct elf_link_hash_entry *, void *); 213 214 static bfd_boolean allocate_global_data_dlt 215 (struct elf_link_hash_entry *, void *); 216 217 static bfd_boolean allocate_global_data_plt 218 (struct elf_link_hash_entry *, void *); 219 220 static bfd_boolean allocate_global_data_stub 221 (struct elf_link_hash_entry *, void *); 222 223 static bfd_boolean allocate_global_data_opd 224 (struct elf_link_hash_entry *, void *); 225 226 static bfd_boolean get_reloc_section 227 (bfd *, struct elf64_hppa_link_hash_table *, asection *); 228 229 static bfd_boolean count_dyn_reloc 230 (bfd *, struct elf64_hppa_link_hash_entry *, 231 int, asection *, int, bfd_vma, bfd_vma); 232 233 static bfd_boolean allocate_dynrel_entries 234 (struct elf_link_hash_entry *, void *); 235 236 static bfd_boolean elf64_hppa_finalize_dynreloc 237 (struct elf_link_hash_entry *, void *); 238 239 static bfd_boolean get_opd 240 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); 241 242 static bfd_boolean get_plt 243 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); 244 245 static bfd_boolean get_dlt 246 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); 247 248 static bfd_boolean get_stub 249 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); 250 251 static int elf64_hppa_elf_get_symbol_type 252 (Elf_Internal_Sym *, int); 253 254 /* Initialize an entry in the link hash table. */ 255 256 static struct bfd_hash_entry * 257 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry, 258 struct bfd_hash_table *table, 259 const char *string) 260 { 261 /* Allocate the structure if it has not already been allocated by a 262 subclass. */ 263 if (entry == NULL) 264 { 265 entry = bfd_hash_allocate (table, 266 sizeof (struct elf64_hppa_link_hash_entry)); 267 if (entry == NULL) 268 return entry; 269 } 270 271 /* Call the allocation method of the superclass. */ 272 entry = _bfd_elf_link_hash_newfunc (entry, table, string); 273 if (entry != NULL) 274 { 275 struct elf64_hppa_link_hash_entry *hh; 276 277 /* Initialize our local data. All zeros. */ 278 hh = hppa_elf_hash_entry (entry); 279 memset (&hh->dlt_offset, 0, 280 (sizeof (struct elf64_hppa_link_hash_entry) 281 - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset))); 282 } 283 284 return entry; 285 } 286 287 /* Create the derived linker hash table. The PA64 ELF port uses this 288 derived hash table to keep information specific to the PA ElF 289 linker (without using static variables). */ 290 291 static struct bfd_link_hash_table* 292 elf64_hppa_hash_table_create (bfd *abfd) 293 { 294 struct elf64_hppa_link_hash_table *htab; 295 bfd_size_type amt = sizeof (*htab); 296 297 htab = bfd_zmalloc (amt); 298 if (htab == NULL) 299 return NULL; 300 301 if (!_bfd_elf_link_hash_table_init (&htab->root, abfd, 302 hppa64_link_hash_newfunc, 303 sizeof (struct elf64_hppa_link_hash_entry), 304 HPPA64_ELF_DATA)) 305 { 306 free (htab); 307 return NULL; 308 } 309 310 htab->text_segment_base = (bfd_vma) -1; 311 htab->data_segment_base = (bfd_vma) -1; 312 313 return &htab->root.root; 314 } 315 316 /* Return nonzero if ABFD represents a PA2.0 ELF64 file. 317 318 Additionally we set the default architecture and machine. */ 319 static bfd_boolean 320 elf64_hppa_object_p (bfd *abfd) 321 { 322 Elf_Internal_Ehdr * i_ehdrp; 323 unsigned int flags; 324 325 i_ehdrp = elf_elfheader (abfd); 326 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0) 327 { 328 /* GCC on hppa-linux produces binaries with OSABI=GNU, 329 but the kernel produces corefiles with OSABI=SysV. */ 330 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU 331 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ 332 return FALSE; 333 } 334 else 335 { 336 /* HPUX produces binaries with OSABI=HPUX, 337 but the kernel produces corefiles with OSABI=SysV. */ 338 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX 339 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ 340 return FALSE; 341 } 342 343 flags = i_ehdrp->e_flags; 344 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) 345 { 346 case EFA_PARISC_1_0: 347 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); 348 case EFA_PARISC_1_1: 349 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); 350 case EFA_PARISC_2_0: 351 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64) 352 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); 353 else 354 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); 355 case EFA_PARISC_2_0 | EF_PARISC_WIDE: 356 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); 357 } 358 /* Don't be fussy. */ 359 return TRUE; 360 } 361 362 /* Given section type (hdr->sh_type), return a boolean indicating 363 whether or not the section is an elf64-hppa specific section. */ 364 static bfd_boolean 365 elf64_hppa_section_from_shdr (bfd *abfd, 366 Elf_Internal_Shdr *hdr, 367 const char *name, 368 int shindex) 369 { 370 switch (hdr->sh_type) 371 { 372 case SHT_PARISC_EXT: 373 if (strcmp (name, ".PARISC.archext") != 0) 374 return FALSE; 375 break; 376 case SHT_PARISC_UNWIND: 377 if (strcmp (name, ".PARISC.unwind") != 0) 378 return FALSE; 379 break; 380 case SHT_PARISC_DOC: 381 case SHT_PARISC_ANNOT: 382 default: 383 return FALSE; 384 } 385 386 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 387 return FALSE; 388 389 return TRUE; 390 } 391 392 /* SEC is a section containing relocs for an input BFD when linking; return 393 a suitable section for holding relocs in the output BFD for a link. */ 394 395 static bfd_boolean 396 get_reloc_section (bfd *abfd, 397 struct elf64_hppa_link_hash_table *hppa_info, 398 asection *sec) 399 { 400 const char *srel_name; 401 asection *srel; 402 bfd *dynobj; 403 404 srel_name = (bfd_elf_string_from_elf_section 405 (abfd, elf_elfheader(abfd)->e_shstrndx, 406 _bfd_elf_single_rel_hdr(sec)->sh_name)); 407 if (srel_name == NULL) 408 return FALSE; 409 410 dynobj = hppa_info->root.dynobj; 411 if (!dynobj) 412 hppa_info->root.dynobj = dynobj = abfd; 413 414 srel = bfd_get_linker_section (dynobj, srel_name); 415 if (srel == NULL) 416 { 417 srel = bfd_make_section_anyway_with_flags (dynobj, srel_name, 418 (SEC_ALLOC 419 | SEC_LOAD 420 | SEC_HAS_CONTENTS 421 | SEC_IN_MEMORY 422 | SEC_LINKER_CREATED 423 | SEC_READONLY)); 424 if (srel == NULL 425 || !bfd_set_section_alignment (dynobj, srel, 3)) 426 return FALSE; 427 } 428 429 hppa_info->other_rel_sec = srel; 430 return TRUE; 431 } 432 433 /* Add a new entry to the list of dynamic relocations against DYN_H. 434 435 We use this to keep a record of all the FPTR relocations against a 436 particular symbol so that we can create FPTR relocations in the 437 output file. */ 438 439 static bfd_boolean 440 count_dyn_reloc (bfd *abfd, 441 struct elf64_hppa_link_hash_entry *hh, 442 int type, 443 asection *sec, 444 int sec_symndx, 445 bfd_vma offset, 446 bfd_vma addend) 447 { 448 struct elf64_hppa_dyn_reloc_entry *rent; 449 450 rent = (struct elf64_hppa_dyn_reloc_entry *) 451 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)); 452 if (!rent) 453 return FALSE; 454 455 rent->next = hh->reloc_entries; 456 rent->type = type; 457 rent->sec = sec; 458 rent->sec_symndx = sec_symndx; 459 rent->offset = offset; 460 rent->addend = addend; 461 hh->reloc_entries = rent; 462 463 return TRUE; 464 } 465 466 /* Return a pointer to the local DLT, PLT and OPD reference counts 467 for ABFD. Returns NULL if the storage allocation fails. */ 468 469 static bfd_signed_vma * 470 hppa64_elf_local_refcounts (bfd *abfd) 471 { 472 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 473 bfd_signed_vma *local_refcounts; 474 475 local_refcounts = elf_local_got_refcounts (abfd); 476 if (local_refcounts == NULL) 477 { 478 bfd_size_type size; 479 480 /* Allocate space for local DLT, PLT and OPD reference 481 counts. Done this way to save polluting elf_obj_tdata 482 with another target specific pointer. */ 483 size = symtab_hdr->sh_info; 484 size *= 3 * sizeof (bfd_signed_vma); 485 local_refcounts = bfd_zalloc (abfd, size); 486 elf_local_got_refcounts (abfd) = local_refcounts; 487 } 488 return local_refcounts; 489 } 490 491 /* Scan the RELOCS and record the type of dynamic entries that each 492 referenced symbol needs. */ 493 494 static bfd_boolean 495 elf64_hppa_check_relocs (bfd *abfd, 496 struct bfd_link_info *info, 497 asection *sec, 498 const Elf_Internal_Rela *relocs) 499 { 500 struct elf64_hppa_link_hash_table *hppa_info; 501 const Elf_Internal_Rela *relend; 502 Elf_Internal_Shdr *symtab_hdr; 503 const Elf_Internal_Rela *rel; 504 unsigned int sec_symndx; 505 506 if (bfd_link_relocatable (info)) 507 return TRUE; 508 509 /* If this is the first dynamic object found in the link, create 510 the special sections required for dynamic linking. */ 511 if (! elf_hash_table (info)->dynamic_sections_created) 512 { 513 if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) 514 return FALSE; 515 } 516 517 hppa_info = hppa_link_hash_table (info); 518 if (hppa_info == NULL) 519 return FALSE; 520 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 521 522 /* If necessary, build a new table holding section symbols indices 523 for this BFD. */ 524 525 if (bfd_link_pic (info) && hppa_info->section_syms_bfd != abfd) 526 { 527 unsigned long i; 528 unsigned int highest_shndx; 529 Elf_Internal_Sym *local_syms = NULL; 530 Elf_Internal_Sym *isym, *isymend; 531 bfd_size_type amt; 532 533 /* We're done with the old cache of section index to section symbol 534 index information. Free it. 535 536 ?!? Note we leak the last section_syms array. Presumably we 537 could free it in one of the later routines in this file. */ 538 if (hppa_info->section_syms) 539 free (hppa_info->section_syms); 540 541 /* Read this BFD's local symbols. */ 542 if (symtab_hdr->sh_info != 0) 543 { 544 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; 545 if (local_syms == NULL) 546 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr, 547 symtab_hdr->sh_info, 0, 548 NULL, NULL, NULL); 549 if (local_syms == NULL) 550 return FALSE; 551 } 552 553 /* Record the highest section index referenced by the local symbols. */ 554 highest_shndx = 0; 555 isymend = local_syms + symtab_hdr->sh_info; 556 for (isym = local_syms; isym < isymend; isym++) 557 { 558 if (isym->st_shndx > highest_shndx 559 && isym->st_shndx < SHN_LORESERVE) 560 highest_shndx = isym->st_shndx; 561 } 562 563 /* Allocate an array to hold the section index to section symbol index 564 mapping. Bump by one since we start counting at zero. */ 565 highest_shndx++; 566 amt = highest_shndx; 567 amt *= sizeof (int); 568 hppa_info->section_syms = (int *) bfd_malloc (amt); 569 570 /* Now walk the local symbols again. If we find a section symbol, 571 record the index of the symbol into the section_syms array. */ 572 for (i = 0, isym = local_syms; isym < isymend; i++, isym++) 573 { 574 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) 575 hppa_info->section_syms[isym->st_shndx] = i; 576 } 577 578 /* We are finished with the local symbols. */ 579 if (local_syms != NULL 580 && symtab_hdr->contents != (unsigned char *) local_syms) 581 { 582 if (! info->keep_memory) 583 free (local_syms); 584 else 585 { 586 /* Cache the symbols for elf_link_input_bfd. */ 587 symtab_hdr->contents = (unsigned char *) local_syms; 588 } 589 } 590 591 /* Record which BFD we built the section_syms mapping for. */ 592 hppa_info->section_syms_bfd = abfd; 593 } 594 595 /* Record the symbol index for this input section. We may need it for 596 relocations when building shared libraries. When not building shared 597 libraries this value is never really used, but assign it to zero to 598 prevent out of bounds memory accesses in other routines. */ 599 if (bfd_link_pic (info)) 600 { 601 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec); 602 603 /* If we did not find a section symbol for this section, then 604 something went terribly wrong above. */ 605 if (sec_symndx == SHN_BAD) 606 return FALSE; 607 608 if (sec_symndx < SHN_LORESERVE) 609 sec_symndx = hppa_info->section_syms[sec_symndx]; 610 else 611 sec_symndx = 0; 612 } 613 else 614 sec_symndx = 0; 615 616 relend = relocs + sec->reloc_count; 617 for (rel = relocs; rel < relend; ++rel) 618 { 619 enum 620 { 621 NEED_DLT = 1, 622 NEED_PLT = 2, 623 NEED_STUB = 4, 624 NEED_OPD = 8, 625 NEED_DYNREL = 16, 626 }; 627 628 unsigned long r_symndx = ELF64_R_SYM (rel->r_info); 629 struct elf64_hppa_link_hash_entry *hh; 630 int need_entry; 631 bfd_boolean maybe_dynamic; 632 int dynrel_type = R_PARISC_NONE; 633 static reloc_howto_type *howto; 634 635 if (r_symndx >= symtab_hdr->sh_info) 636 { 637 /* We're dealing with a global symbol -- find its hash entry 638 and mark it as being referenced. */ 639 long indx = r_symndx - symtab_hdr->sh_info; 640 hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]); 641 while (hh->eh.root.type == bfd_link_hash_indirect 642 || hh->eh.root.type == bfd_link_hash_warning) 643 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); 644 645 /* PR15323, ref flags aren't set for references in the same 646 object. */ 647 hh->eh.root.non_ir_ref = 1; 648 hh->eh.ref_regular = 1; 649 } 650 else 651 hh = NULL; 652 653 /* We can only get preliminary data on whether a symbol is 654 locally or externally defined, as not all of the input files 655 have yet been processed. Do something with what we know, as 656 this may help reduce memory usage and processing time later. */ 657 maybe_dynamic = FALSE; 658 if (hh && ((bfd_link_pic (info) 659 && (!info->symbolic 660 || info->unresolved_syms_in_shared_libs == RM_IGNORE)) 661 || !hh->eh.def_regular 662 || hh->eh.root.type == bfd_link_hash_defweak)) 663 maybe_dynamic = TRUE; 664 665 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info); 666 need_entry = 0; 667 switch (howto->type) 668 { 669 /* These are simple indirect references to symbols through the 670 DLT. We need to create a DLT entry for any symbols which 671 appears in a DLTIND relocation. */ 672 case R_PARISC_DLTIND21L: 673 case R_PARISC_DLTIND14R: 674 case R_PARISC_DLTIND14F: 675 case R_PARISC_DLTIND14WR: 676 case R_PARISC_DLTIND14DR: 677 need_entry = NEED_DLT; 678 break; 679 680 /* ?!? These need a DLT entry. But I have no idea what to do with 681 the "link time TP value. */ 682 case R_PARISC_LTOFF_TP21L: 683 case R_PARISC_LTOFF_TP14R: 684 case R_PARISC_LTOFF_TP14F: 685 case R_PARISC_LTOFF_TP64: 686 case R_PARISC_LTOFF_TP14WR: 687 case R_PARISC_LTOFF_TP14DR: 688 case R_PARISC_LTOFF_TP16F: 689 case R_PARISC_LTOFF_TP16WF: 690 case R_PARISC_LTOFF_TP16DF: 691 need_entry = NEED_DLT; 692 break; 693 694 /* These are function calls. Depending on their precise target we 695 may need to make a stub for them. The stub uses the PLT, so we 696 need to create PLT entries for these symbols too. */ 697 case R_PARISC_PCREL12F: 698 case R_PARISC_PCREL17F: 699 case R_PARISC_PCREL22F: 700 case R_PARISC_PCREL32: 701 case R_PARISC_PCREL64: 702 case R_PARISC_PCREL21L: 703 case R_PARISC_PCREL17R: 704 case R_PARISC_PCREL17C: 705 case R_PARISC_PCREL14R: 706 case R_PARISC_PCREL14F: 707 case R_PARISC_PCREL22C: 708 case R_PARISC_PCREL14WR: 709 case R_PARISC_PCREL14DR: 710 case R_PARISC_PCREL16F: 711 case R_PARISC_PCREL16WF: 712 case R_PARISC_PCREL16DF: 713 /* Function calls might need to go through the .plt, and 714 might need a long branch stub. */ 715 if (hh != NULL && hh->eh.type != STT_PARISC_MILLI) 716 need_entry = (NEED_PLT | NEED_STUB); 717 else 718 need_entry = 0; 719 break; 720 721 case R_PARISC_PLTOFF21L: 722 case R_PARISC_PLTOFF14R: 723 case R_PARISC_PLTOFF14F: 724 case R_PARISC_PLTOFF14WR: 725 case R_PARISC_PLTOFF14DR: 726 case R_PARISC_PLTOFF16F: 727 case R_PARISC_PLTOFF16WF: 728 case R_PARISC_PLTOFF16DF: 729 need_entry = (NEED_PLT); 730 break; 731 732 case R_PARISC_DIR64: 733 if (bfd_link_pic (info) || maybe_dynamic) 734 need_entry = (NEED_DYNREL); 735 dynrel_type = R_PARISC_DIR64; 736 break; 737 738 /* This is an indirect reference through the DLT to get the address 739 of a OPD descriptor. Thus we need to make a DLT entry that points 740 to an OPD entry. */ 741 case R_PARISC_LTOFF_FPTR21L: 742 case R_PARISC_LTOFF_FPTR14R: 743 case R_PARISC_LTOFF_FPTR14WR: 744 case R_PARISC_LTOFF_FPTR14DR: 745 case R_PARISC_LTOFF_FPTR32: 746 case R_PARISC_LTOFF_FPTR64: 747 case R_PARISC_LTOFF_FPTR16F: 748 case R_PARISC_LTOFF_FPTR16WF: 749 case R_PARISC_LTOFF_FPTR16DF: 750 if (bfd_link_pic (info) || maybe_dynamic) 751 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT); 752 else 753 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT); 754 dynrel_type = R_PARISC_FPTR64; 755 break; 756 757 /* This is a simple OPD entry. */ 758 case R_PARISC_FPTR64: 759 if (bfd_link_pic (info) || maybe_dynamic) 760 need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL); 761 else 762 need_entry = (NEED_OPD | NEED_PLT); 763 dynrel_type = R_PARISC_FPTR64; 764 break; 765 766 /* Add more cases as needed. */ 767 } 768 769 if (!need_entry) 770 continue; 771 772 if (hh) 773 { 774 /* Stash away enough information to be able to find this symbol 775 regardless of whether or not it is local or global. */ 776 hh->owner = abfd; 777 hh->sym_indx = r_symndx; 778 } 779 780 /* Create what's needed. */ 781 if (need_entry & NEED_DLT) 782 { 783 /* Allocate space for a DLT entry, as well as a dynamic 784 relocation for this entry. */ 785 if (! hppa_info->dlt_sec 786 && ! get_dlt (abfd, info, hppa_info)) 787 goto err_out; 788 789 if (hh != NULL) 790 { 791 hh->want_dlt = 1; 792 hh->eh.got.refcount += 1; 793 } 794 else 795 { 796 bfd_signed_vma *local_dlt_refcounts; 797 798 /* This is a DLT entry for a local symbol. */ 799 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd); 800 if (local_dlt_refcounts == NULL) 801 return FALSE; 802 local_dlt_refcounts[r_symndx] += 1; 803 } 804 } 805 806 if (need_entry & NEED_PLT) 807 { 808 if (! hppa_info->plt_sec 809 && ! get_plt (abfd, info, hppa_info)) 810 goto err_out; 811 812 if (hh != NULL) 813 { 814 hh->want_plt = 1; 815 hh->eh.needs_plt = 1; 816 hh->eh.plt.refcount += 1; 817 } 818 else 819 { 820 bfd_signed_vma *local_dlt_refcounts; 821 bfd_signed_vma *local_plt_refcounts; 822 823 /* This is a PLT entry for a local symbol. */ 824 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd); 825 if (local_dlt_refcounts == NULL) 826 return FALSE; 827 local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info; 828 local_plt_refcounts[r_symndx] += 1; 829 } 830 } 831 832 if (need_entry & NEED_STUB) 833 { 834 if (! hppa_info->stub_sec 835 && ! get_stub (abfd, info, hppa_info)) 836 goto err_out; 837 if (hh) 838 hh->want_stub = 1; 839 } 840 841 if (need_entry & NEED_OPD) 842 { 843 if (! hppa_info->opd_sec 844 && ! get_opd (abfd, info, hppa_info)) 845 goto err_out; 846 847 /* FPTRs are not allocated by the dynamic linker for PA64, 848 though it is possible that will change in the future. */ 849 850 if (hh != NULL) 851 hh->want_opd = 1; 852 else 853 { 854 bfd_signed_vma *local_dlt_refcounts; 855 bfd_signed_vma *local_opd_refcounts; 856 857 /* This is a OPD for a local symbol. */ 858 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd); 859 if (local_dlt_refcounts == NULL) 860 return FALSE; 861 local_opd_refcounts = (local_dlt_refcounts 862 + 2 * symtab_hdr->sh_info); 863 local_opd_refcounts[r_symndx] += 1; 864 } 865 } 866 867 /* Add a new dynamic relocation to the chain of dynamic 868 relocations for this symbol. */ 869 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC)) 870 { 871 if (! hppa_info->other_rel_sec 872 && ! get_reloc_section (abfd, hppa_info, sec)) 873 goto err_out; 874 875 /* Count dynamic relocations against global symbols. */ 876 if (hh != NULL 877 && !count_dyn_reloc (abfd, hh, dynrel_type, sec, 878 sec_symndx, rel->r_offset, rel->r_addend)) 879 goto err_out; 880 881 /* If we are building a shared library and we just recorded 882 a dynamic R_PARISC_FPTR64 relocation, then make sure the 883 section symbol for this section ends up in the dynamic 884 symbol table. */ 885 if (bfd_link_pic (info) && dynrel_type == R_PARISC_FPTR64 886 && ! (bfd_elf_link_record_local_dynamic_symbol 887 (info, abfd, sec_symndx))) 888 return FALSE; 889 } 890 } 891 892 return TRUE; 893 894 err_out: 895 return FALSE; 896 } 897 898 struct elf64_hppa_allocate_data 899 { 900 struct bfd_link_info *info; 901 bfd_size_type ofs; 902 }; 903 904 /* Should we do dynamic things to this symbol? */ 905 906 static bfd_boolean 907 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh, 908 struct bfd_link_info *info) 909 { 910 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols 911 and relocations that retrieve a function descriptor? Assume the 912 worst for now. */ 913 if (_bfd_elf_dynamic_symbol_p (eh, info, 1)) 914 { 915 /* ??? Why is this here and not elsewhere is_local_label_name. */ 916 if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$') 917 return FALSE; 918 919 return TRUE; 920 } 921 else 922 return FALSE; 923 } 924 925 /* Mark all functions exported by this file so that we can later allocate 926 entries in .opd for them. */ 927 928 static bfd_boolean 929 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data) 930 { 931 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); 932 struct bfd_link_info *info = (struct bfd_link_info *)data; 933 struct elf64_hppa_link_hash_table *hppa_info; 934 935 hppa_info = hppa_link_hash_table (info); 936 if (hppa_info == NULL) 937 return FALSE; 938 939 if (eh 940 && (eh->root.type == bfd_link_hash_defined 941 || eh->root.type == bfd_link_hash_defweak) 942 && eh->root.u.def.section->output_section != NULL 943 && eh->type == STT_FUNC) 944 { 945 if (! hppa_info->opd_sec 946 && ! get_opd (hppa_info->root.dynobj, info, hppa_info)) 947 return FALSE; 948 949 hh->want_opd = 1; 950 951 /* Put a flag here for output_symbol_hook. */ 952 hh->st_shndx = -1; 953 eh->needs_plt = 1; 954 } 955 956 return TRUE; 957 } 958 959 /* Allocate space for a DLT entry. */ 960 961 static bfd_boolean 962 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data) 963 { 964 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); 965 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; 966 967 if (hh->want_dlt) 968 { 969 if (bfd_link_pic (x->info)) 970 { 971 /* Possibly add the symbol to the local dynamic symbol 972 table since we might need to create a dynamic relocation 973 against it. */ 974 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI) 975 { 976 bfd *owner = eh->root.u.def.section->owner; 977 978 if (! (bfd_elf_link_record_local_dynamic_symbol 979 (x->info, owner, hh->sym_indx))) 980 return FALSE; 981 } 982 } 983 984 hh->dlt_offset = x->ofs; 985 x->ofs += DLT_ENTRY_SIZE; 986 } 987 return TRUE; 988 } 989 990 /* Allocate space for a DLT.PLT entry. */ 991 992 static bfd_boolean 993 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data) 994 { 995 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); 996 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data; 997 998 if (hh->want_plt 999 && elf64_hppa_dynamic_symbol_p (eh, x->info) 1000 && !((eh->root.type == bfd_link_hash_defined 1001 || eh->root.type == bfd_link_hash_defweak) 1002 && eh->root.u.def.section->output_section != NULL)) 1003 { 1004 hh->plt_offset = x->ofs; 1005 x->ofs += PLT_ENTRY_SIZE; 1006 if (hh->plt_offset < 0x2000) 1007 { 1008 struct elf64_hppa_link_hash_table *hppa_info; 1009 1010 hppa_info = hppa_link_hash_table (x->info); 1011 if (hppa_info == NULL) 1012 return FALSE; 1013 1014 hppa_info->gp_offset = hh->plt_offset; 1015 } 1016 } 1017 else 1018 hh->want_plt = 0; 1019 1020 return TRUE; 1021 } 1022 1023 /* Allocate space for a STUB entry. */ 1024 1025 static bfd_boolean 1026 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data) 1027 { 1028 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); 1029 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; 1030 1031 if (hh->want_stub 1032 && elf64_hppa_dynamic_symbol_p (eh, x->info) 1033 && !((eh->root.type == bfd_link_hash_defined 1034 || eh->root.type == bfd_link_hash_defweak) 1035 && eh->root.u.def.section->output_section != NULL)) 1036 { 1037 hh->stub_offset = x->ofs; 1038 x->ofs += sizeof (plt_stub); 1039 } 1040 else 1041 hh->want_stub = 0; 1042 return TRUE; 1043 } 1044 1045 /* Allocate space for a FPTR entry. */ 1046 1047 static bfd_boolean 1048 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data) 1049 { 1050 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); 1051 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; 1052 1053 if (hh && hh->want_opd) 1054 { 1055 /* We never need an opd entry for a symbol which is not 1056 defined by this output file. */ 1057 if (hh && (hh->eh.root.type == bfd_link_hash_undefined 1058 || hh->eh.root.type == bfd_link_hash_undefweak 1059 || hh->eh.root.u.def.section->output_section == NULL)) 1060 hh->want_opd = 0; 1061 1062 /* If we are creating a shared library, took the address of a local 1063 function or might export this function from this object file, then 1064 we have to create an opd descriptor. */ 1065 else if (bfd_link_pic (x->info) 1066 || hh == NULL 1067 || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI) 1068 || (hh->eh.root.type == bfd_link_hash_defined 1069 || hh->eh.root.type == bfd_link_hash_defweak)) 1070 { 1071 /* If we are creating a shared library, then we will have to 1072 create a runtime relocation for the symbol to properly 1073 initialize the .opd entry. Make sure the symbol gets 1074 added to the dynamic symbol table. */ 1075 if (bfd_link_pic (x->info) 1076 && (hh == NULL || (hh->eh.dynindx == -1))) 1077 { 1078 bfd *owner; 1079 /* PR 6511: Default to using the dynamic symbol table. */ 1080 owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner); 1081 1082 if (!bfd_elf_link_record_local_dynamic_symbol 1083 (x->info, owner, hh->sym_indx)) 1084 return FALSE; 1085 } 1086 1087 /* This may not be necessary or desirable anymore now that 1088 we have some support for dealing with section symbols 1089 in dynamic relocs. But name munging does make the result 1090 much easier to debug. ie, the EPLT reloc will reference 1091 a symbol like .foobar, instead of .text + offset. */ 1092 if (bfd_link_pic (x->info) && eh) 1093 { 1094 char *new_name; 1095 struct elf_link_hash_entry *nh; 1096 1097 new_name = concat (".", eh->root.root.string, NULL); 1098 1099 nh = elf_link_hash_lookup (elf_hash_table (x->info), 1100 new_name, TRUE, TRUE, TRUE); 1101 1102 free (new_name); 1103 nh->root.type = eh->root.type; 1104 nh->root.u.def.value = eh->root.u.def.value; 1105 nh->root.u.def.section = eh->root.u.def.section; 1106 1107 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh)) 1108 return FALSE; 1109 } 1110 hh->opd_offset = x->ofs; 1111 x->ofs += OPD_ENTRY_SIZE; 1112 } 1113 1114 /* Otherwise we do not need an opd entry. */ 1115 else 1116 hh->want_opd = 0; 1117 } 1118 return TRUE; 1119 } 1120 1121 /* HP requires the EI_OSABI field to be filled in. The assignment to 1122 EI_ABIVERSION may not be strictly necessary. */ 1123 1124 static void 1125 elf64_hppa_post_process_headers (bfd *abfd, 1126 struct bfd_link_info *link_info ATTRIBUTE_UNUSED) 1127 { 1128 Elf_Internal_Ehdr * i_ehdrp; 1129 1130 i_ehdrp = elf_elfheader (abfd); 1131 1132 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi; 1133 i_ehdrp->e_ident[EI_ABIVERSION] = 1; 1134 } 1135 1136 /* Create function descriptor section (.opd). This section is called .opd 1137 because it contains "official procedure descriptors". The "official" 1138 refers to the fact that these descriptors are used when taking the address 1139 of a procedure, thus ensuring a unique address for each procedure. */ 1140 1141 static bfd_boolean 1142 get_opd (bfd *abfd, 1143 struct bfd_link_info *info ATTRIBUTE_UNUSED, 1144 struct elf64_hppa_link_hash_table *hppa_info) 1145 { 1146 asection *opd; 1147 bfd *dynobj; 1148 1149 opd = hppa_info->opd_sec; 1150 if (!opd) 1151 { 1152 dynobj = hppa_info->root.dynobj; 1153 if (!dynobj) 1154 hppa_info->root.dynobj = dynobj = abfd; 1155 1156 opd = bfd_make_section_anyway_with_flags (dynobj, ".opd", 1157 (SEC_ALLOC 1158 | SEC_LOAD 1159 | SEC_HAS_CONTENTS 1160 | SEC_IN_MEMORY 1161 | SEC_LINKER_CREATED)); 1162 if (!opd 1163 || !bfd_set_section_alignment (abfd, opd, 3)) 1164 { 1165 BFD_ASSERT (0); 1166 return FALSE; 1167 } 1168 1169 hppa_info->opd_sec = opd; 1170 } 1171 1172 return TRUE; 1173 } 1174 1175 /* Create the PLT section. */ 1176 1177 static bfd_boolean 1178 get_plt (bfd *abfd, 1179 struct bfd_link_info *info ATTRIBUTE_UNUSED, 1180 struct elf64_hppa_link_hash_table *hppa_info) 1181 { 1182 asection *plt; 1183 bfd *dynobj; 1184 1185 plt = hppa_info->plt_sec; 1186 if (!plt) 1187 { 1188 dynobj = hppa_info->root.dynobj; 1189 if (!dynobj) 1190 hppa_info->root.dynobj = dynobj = abfd; 1191 1192 plt = bfd_make_section_anyway_with_flags (dynobj, ".plt", 1193 (SEC_ALLOC 1194 | SEC_LOAD 1195 | SEC_HAS_CONTENTS 1196 | SEC_IN_MEMORY 1197 | SEC_LINKER_CREATED)); 1198 if (!plt 1199 || !bfd_set_section_alignment (abfd, plt, 3)) 1200 { 1201 BFD_ASSERT (0); 1202 return FALSE; 1203 } 1204 1205 hppa_info->plt_sec = plt; 1206 } 1207 1208 return TRUE; 1209 } 1210 1211 /* Create the DLT section. */ 1212 1213 static bfd_boolean 1214 get_dlt (bfd *abfd, 1215 struct bfd_link_info *info ATTRIBUTE_UNUSED, 1216 struct elf64_hppa_link_hash_table *hppa_info) 1217 { 1218 asection *dlt; 1219 bfd *dynobj; 1220 1221 dlt = hppa_info->dlt_sec; 1222 if (!dlt) 1223 { 1224 dynobj = hppa_info->root.dynobj; 1225 if (!dynobj) 1226 hppa_info->root.dynobj = dynobj = abfd; 1227 1228 dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt", 1229 (SEC_ALLOC 1230 | SEC_LOAD 1231 | SEC_HAS_CONTENTS 1232 | SEC_IN_MEMORY 1233 | SEC_LINKER_CREATED)); 1234 if (!dlt 1235 || !bfd_set_section_alignment (abfd, dlt, 3)) 1236 { 1237 BFD_ASSERT (0); 1238 return FALSE; 1239 } 1240 1241 hppa_info->dlt_sec = dlt; 1242 } 1243 1244 return TRUE; 1245 } 1246 1247 /* Create the stubs section. */ 1248 1249 static bfd_boolean 1250 get_stub (bfd *abfd, 1251 struct bfd_link_info *info ATTRIBUTE_UNUSED, 1252 struct elf64_hppa_link_hash_table *hppa_info) 1253 { 1254 asection *stub; 1255 bfd *dynobj; 1256 1257 stub = hppa_info->stub_sec; 1258 if (!stub) 1259 { 1260 dynobj = hppa_info->root.dynobj; 1261 if (!dynobj) 1262 hppa_info->root.dynobj = dynobj = abfd; 1263 1264 stub = bfd_make_section_anyway_with_flags (dynobj, ".stub", 1265 (SEC_ALLOC | SEC_LOAD 1266 | SEC_HAS_CONTENTS 1267 | SEC_IN_MEMORY 1268 | SEC_READONLY 1269 | SEC_LINKER_CREATED)); 1270 if (!stub 1271 || !bfd_set_section_alignment (abfd, stub, 3)) 1272 { 1273 BFD_ASSERT (0); 1274 return FALSE; 1275 } 1276 1277 hppa_info->stub_sec = stub; 1278 } 1279 1280 return TRUE; 1281 } 1282 1283 /* Create sections necessary for dynamic linking. This is only a rough 1284 cut and will likely change as we learn more about the somewhat 1285 unusual dynamic linking scheme HP uses. 1286 1287 .stub: 1288 Contains code to implement cross-space calls. The first time one 1289 of the stubs is used it will call into the dynamic linker, later 1290 calls will go straight to the target. 1291 1292 The only stub we support right now looks like 1293 1294 ldd OFFSET(%dp),%r1 1295 bve %r0(%r1) 1296 ldd OFFSET+8(%dp),%dp 1297 1298 Other stubs may be needed in the future. We may want the remove 1299 the break/nop instruction. It is only used right now to keep the 1300 offset of a .plt entry and a .stub entry in sync. 1301 1302 .dlt: 1303 This is what most people call the .got. HP used a different name. 1304 Losers. 1305 1306 .rela.dlt: 1307 Relocations for the DLT. 1308 1309 .plt: 1310 Function pointers as address,gp pairs. 1311 1312 .rela.plt: 1313 Should contain dynamic IPLT (and EPLT?) relocations. 1314 1315 .opd: 1316 FPTRS 1317 1318 .rela.opd: 1319 EPLT relocations for symbols exported from shared libraries. */ 1320 1321 static bfd_boolean 1322 elf64_hppa_create_dynamic_sections (bfd *abfd, 1323 struct bfd_link_info *info) 1324 { 1325 asection *s; 1326 struct elf64_hppa_link_hash_table *hppa_info; 1327 1328 hppa_info = hppa_link_hash_table (info); 1329 if (hppa_info == NULL) 1330 return FALSE; 1331 1332 if (! get_stub (abfd, info, hppa_info)) 1333 return FALSE; 1334 1335 if (! get_dlt (abfd, info, hppa_info)) 1336 return FALSE; 1337 1338 if (! get_plt (abfd, info, hppa_info)) 1339 return FALSE; 1340 1341 if (! get_opd (abfd, info, hppa_info)) 1342 return FALSE; 1343 1344 s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt", 1345 (SEC_ALLOC | SEC_LOAD 1346 | SEC_HAS_CONTENTS 1347 | SEC_IN_MEMORY 1348 | SEC_READONLY 1349 | SEC_LINKER_CREATED)); 1350 if (s == NULL 1351 || !bfd_set_section_alignment (abfd, s, 3)) 1352 return FALSE; 1353 hppa_info->dlt_rel_sec = s; 1354 1355 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt", 1356 (SEC_ALLOC | SEC_LOAD 1357 | SEC_HAS_CONTENTS 1358 | SEC_IN_MEMORY 1359 | SEC_READONLY 1360 | SEC_LINKER_CREATED)); 1361 if (s == NULL 1362 || !bfd_set_section_alignment (abfd, s, 3)) 1363 return FALSE; 1364 hppa_info->plt_rel_sec = s; 1365 1366 s = bfd_make_section_anyway_with_flags (abfd, ".rela.data", 1367 (SEC_ALLOC | SEC_LOAD 1368 | SEC_HAS_CONTENTS 1369 | SEC_IN_MEMORY 1370 | SEC_READONLY 1371 | SEC_LINKER_CREATED)); 1372 if (s == NULL 1373 || !bfd_set_section_alignment (abfd, s, 3)) 1374 return FALSE; 1375 hppa_info->other_rel_sec = s; 1376 1377 s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd", 1378 (SEC_ALLOC | SEC_LOAD 1379 | SEC_HAS_CONTENTS 1380 | SEC_IN_MEMORY 1381 | SEC_READONLY 1382 | SEC_LINKER_CREATED)); 1383 if (s == NULL 1384 || !bfd_set_section_alignment (abfd, s, 3)) 1385 return FALSE; 1386 hppa_info->opd_rel_sec = s; 1387 1388 return TRUE; 1389 } 1390 1391 /* Allocate dynamic relocations for those symbols that turned out 1392 to be dynamic. */ 1393 1394 static bfd_boolean 1395 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data) 1396 { 1397 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); 1398 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; 1399 struct elf64_hppa_link_hash_table *hppa_info; 1400 struct elf64_hppa_dyn_reloc_entry *rent; 1401 bfd_boolean dynamic_symbol, shared; 1402 1403 hppa_info = hppa_link_hash_table (x->info); 1404 if (hppa_info == NULL) 1405 return FALSE; 1406 1407 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info); 1408 shared = bfd_link_pic (x->info); 1409 1410 /* We may need to allocate relocations for a non-dynamic symbol 1411 when creating a shared library. */ 1412 if (!dynamic_symbol && !shared) 1413 return TRUE; 1414 1415 /* Take care of the normal data relocations. */ 1416 1417 for (rent = hh->reloc_entries; rent; rent = rent->next) 1418 { 1419 /* Allocate one iff we are building a shared library, the relocation 1420 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */ 1421 if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd) 1422 continue; 1423 1424 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela); 1425 1426 /* Make sure this symbol gets into the dynamic symbol table if it is 1427 not already recorded. ?!? This should not be in the loop since 1428 the symbol need only be added once. */ 1429 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI) 1430 if (!bfd_elf_link_record_local_dynamic_symbol 1431 (x->info, rent->sec->owner, hh->sym_indx)) 1432 return FALSE; 1433 } 1434 1435 /* Take care of the GOT and PLT relocations. */ 1436 1437 if ((dynamic_symbol || shared) && hh->want_dlt) 1438 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela); 1439 1440 /* If we are building a shared library, then every symbol that has an 1441 opd entry will need an EPLT relocation to relocate the symbol's address 1442 and __gp value based on the runtime load address. */ 1443 if (shared && hh->want_opd) 1444 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela); 1445 1446 if (hh->want_plt && dynamic_symbol) 1447 { 1448 bfd_size_type t = 0; 1449 1450 /* Dynamic symbols get one IPLT relocation. Local symbols in 1451 shared libraries get two REL relocations. Local symbols in 1452 main applications get nothing. */ 1453 if (dynamic_symbol) 1454 t = sizeof (Elf64_External_Rela); 1455 else if (shared) 1456 t = 2 * sizeof (Elf64_External_Rela); 1457 1458 hppa_info->plt_rel_sec->size += t; 1459 } 1460 1461 return TRUE; 1462 } 1463 1464 /* Adjust a symbol defined by a dynamic object and referenced by a 1465 regular object. */ 1466 1467 static bfd_boolean 1468 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, 1469 struct elf_link_hash_entry *eh) 1470 { 1471 /* ??? Undefined symbols with PLT entries should be re-defined 1472 to be the PLT entry. */ 1473 1474 /* If this is a weak symbol, and there is a real definition, the 1475 processor independent code will have arranged for us to see the 1476 real definition first, and we can just use the same value. */ 1477 if (eh->u.weakdef != NULL) 1478 { 1479 BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined 1480 || eh->u.weakdef->root.type == bfd_link_hash_defweak); 1481 eh->root.u.def.section = eh->u.weakdef->root.u.def.section; 1482 eh->root.u.def.value = eh->u.weakdef->root.u.def.value; 1483 return TRUE; 1484 } 1485 1486 /* If this is a reference to a symbol defined by a dynamic object which 1487 is not a function, we might allocate the symbol in our .dynbss section 1488 and allocate a COPY dynamic relocation. 1489 1490 But PA64 code is canonically PIC, so as a rule we can avoid this sort 1491 of hackery. */ 1492 1493 return TRUE; 1494 } 1495 1496 /* This function is called via elf_link_hash_traverse to mark millicode 1497 symbols with a dynindx of -1 and to remove the string table reference 1498 from the dynamic symbol table. If the symbol is not a millicode symbol, 1499 elf64_hppa_mark_exported_functions is called. */ 1500 1501 static bfd_boolean 1502 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh, 1503 void *data) 1504 { 1505 struct bfd_link_info *info = (struct bfd_link_info *) data; 1506 1507 if (eh->type == STT_PARISC_MILLI) 1508 { 1509 if (eh->dynindx != -1) 1510 { 1511 eh->dynindx = -1; 1512 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, 1513 eh->dynstr_index); 1514 } 1515 return TRUE; 1516 } 1517 1518 return elf64_hppa_mark_exported_functions (eh, data); 1519 } 1520 1521 /* Set the final sizes of the dynamic sections and allocate memory for 1522 the contents of our special sections. */ 1523 1524 static bfd_boolean 1525 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) 1526 { 1527 struct elf64_hppa_link_hash_table *hppa_info; 1528 struct elf64_hppa_allocate_data data; 1529 bfd *dynobj; 1530 bfd *ibfd; 1531 asection *sec; 1532 bfd_boolean plt; 1533 bfd_boolean relocs; 1534 bfd_boolean reltext; 1535 1536 hppa_info = hppa_link_hash_table (info); 1537 if (hppa_info == NULL) 1538 return FALSE; 1539 1540 dynobj = elf_hash_table (info)->dynobj; 1541 BFD_ASSERT (dynobj != NULL); 1542 1543 /* Mark each function this program exports so that we will allocate 1544 space in the .opd section for each function's FPTR. If we are 1545 creating dynamic sections, change the dynamic index of millicode 1546 symbols to -1 and remove them from the string table for .dynstr. 1547 1548 We have to traverse the main linker hash table since we have to 1549 find functions which may not have been mentioned in any relocs. */ 1550 elf_link_hash_traverse (elf_hash_table (info), 1551 (elf_hash_table (info)->dynamic_sections_created 1552 ? elf64_hppa_mark_milli_and_exported_functions 1553 : elf64_hppa_mark_exported_functions), 1554 info); 1555 1556 if (elf_hash_table (info)->dynamic_sections_created) 1557 { 1558 /* Set the contents of the .interp section to the interpreter. */ 1559 if (bfd_link_executable (info) && !info->nointerp) 1560 { 1561 sec = bfd_get_linker_section (dynobj, ".interp"); 1562 BFD_ASSERT (sec != NULL); 1563 sec->size = sizeof ELF_DYNAMIC_INTERPRETER; 1564 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 1565 } 1566 } 1567 else 1568 { 1569 /* We may have created entries in the .rela.got section. 1570 However, if we are not creating the dynamic sections, we will 1571 not actually use these entries. Reset the size of .rela.dlt, 1572 which will cause it to get stripped from the output file 1573 below. */ 1574 sec = bfd_get_linker_section (dynobj, ".rela.dlt"); 1575 if (sec != NULL) 1576 sec->size = 0; 1577 } 1578 1579 /* Set up DLT, PLT and OPD offsets for local syms, and space for local 1580 dynamic relocs. */ 1581 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 1582 { 1583 bfd_signed_vma *local_dlt; 1584 bfd_signed_vma *end_local_dlt; 1585 bfd_signed_vma *local_plt; 1586 bfd_signed_vma *end_local_plt; 1587 bfd_signed_vma *local_opd; 1588 bfd_signed_vma *end_local_opd; 1589 bfd_size_type locsymcount; 1590 Elf_Internal_Shdr *symtab_hdr; 1591 asection *srel; 1592 1593 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 1594 continue; 1595 1596 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 1597 { 1598 struct elf64_hppa_dyn_reloc_entry *hdh_p; 1599 1600 for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *) 1601 elf_section_data (sec)->local_dynrel); 1602 hdh_p != NULL; 1603 hdh_p = hdh_p->next) 1604 { 1605 if (!bfd_is_abs_section (hdh_p->sec) 1606 && bfd_is_abs_section (hdh_p->sec->output_section)) 1607 { 1608 /* Input section has been discarded, either because 1609 it is a copy of a linkonce section or due to 1610 linker script /DISCARD/, so we'll be discarding 1611 the relocs too. */ 1612 } 1613 else if (hdh_p->count != 0) 1614 { 1615 srel = elf_section_data (hdh_p->sec)->sreloc; 1616 srel->size += hdh_p->count * sizeof (Elf64_External_Rela); 1617 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0) 1618 info->flags |= DF_TEXTREL; 1619 } 1620 } 1621 } 1622 1623 local_dlt = elf_local_got_refcounts (ibfd); 1624 if (!local_dlt) 1625 continue; 1626 1627 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; 1628 locsymcount = symtab_hdr->sh_info; 1629 end_local_dlt = local_dlt + locsymcount; 1630 sec = hppa_info->dlt_sec; 1631 srel = hppa_info->dlt_rel_sec; 1632 for (; local_dlt < end_local_dlt; ++local_dlt) 1633 { 1634 if (*local_dlt > 0) 1635 { 1636 *local_dlt = sec->size; 1637 sec->size += DLT_ENTRY_SIZE; 1638 if (bfd_link_pic (info)) 1639 { 1640 srel->size += sizeof (Elf64_External_Rela); 1641 } 1642 } 1643 else 1644 *local_dlt = (bfd_vma) -1; 1645 } 1646 1647 local_plt = end_local_dlt; 1648 end_local_plt = local_plt + locsymcount; 1649 if (! hppa_info->root.dynamic_sections_created) 1650 { 1651 /* Won't be used, but be safe. */ 1652 for (; local_plt < end_local_plt; ++local_plt) 1653 *local_plt = (bfd_vma) -1; 1654 } 1655 else 1656 { 1657 sec = hppa_info->plt_sec; 1658 srel = hppa_info->plt_rel_sec; 1659 for (; local_plt < end_local_plt; ++local_plt) 1660 { 1661 if (*local_plt > 0) 1662 { 1663 *local_plt = sec->size; 1664 sec->size += PLT_ENTRY_SIZE; 1665 if (bfd_link_pic (info)) 1666 srel->size += sizeof (Elf64_External_Rela); 1667 } 1668 else 1669 *local_plt = (bfd_vma) -1; 1670 } 1671 } 1672 1673 local_opd = end_local_plt; 1674 end_local_opd = local_opd + locsymcount; 1675 if (! hppa_info->root.dynamic_sections_created) 1676 { 1677 /* Won't be used, but be safe. */ 1678 for (; local_opd < end_local_opd; ++local_opd) 1679 *local_opd = (bfd_vma) -1; 1680 } 1681 else 1682 { 1683 sec = hppa_info->opd_sec; 1684 srel = hppa_info->opd_rel_sec; 1685 for (; local_opd < end_local_opd; ++local_opd) 1686 { 1687 if (*local_opd > 0) 1688 { 1689 *local_opd = sec->size; 1690 sec->size += OPD_ENTRY_SIZE; 1691 if (bfd_link_pic (info)) 1692 srel->size += sizeof (Elf64_External_Rela); 1693 } 1694 else 1695 *local_opd = (bfd_vma) -1; 1696 } 1697 } 1698 } 1699 1700 /* Allocate the GOT entries. */ 1701 1702 data.info = info; 1703 if (hppa_info->dlt_sec) 1704 { 1705 data.ofs = hppa_info->dlt_sec->size; 1706 elf_link_hash_traverse (elf_hash_table (info), 1707 allocate_global_data_dlt, &data); 1708 hppa_info->dlt_sec->size = data.ofs; 1709 } 1710 1711 if (hppa_info->plt_sec) 1712 { 1713 data.ofs = hppa_info->plt_sec->size; 1714 elf_link_hash_traverse (elf_hash_table (info), 1715 allocate_global_data_plt, &data); 1716 hppa_info->plt_sec->size = data.ofs; 1717 } 1718 1719 if (hppa_info->stub_sec) 1720 { 1721 data.ofs = 0x0; 1722 elf_link_hash_traverse (elf_hash_table (info), 1723 allocate_global_data_stub, &data); 1724 hppa_info->stub_sec->size = data.ofs; 1725 } 1726 1727 /* Allocate space for entries in the .opd section. */ 1728 if (hppa_info->opd_sec) 1729 { 1730 data.ofs = hppa_info->opd_sec->size; 1731 elf_link_hash_traverse (elf_hash_table (info), 1732 allocate_global_data_opd, &data); 1733 hppa_info->opd_sec->size = data.ofs; 1734 } 1735 1736 /* Now allocate space for dynamic relocations, if necessary. */ 1737 if (hppa_info->root.dynamic_sections_created) 1738 elf_link_hash_traverse (elf_hash_table (info), 1739 allocate_dynrel_entries, &data); 1740 1741 /* The sizes of all the sections are set. Allocate memory for them. */ 1742 plt = FALSE; 1743 relocs = FALSE; 1744 reltext = FALSE; 1745 for (sec = dynobj->sections; sec != NULL; sec = sec->next) 1746 { 1747 const char *name; 1748 1749 if ((sec->flags & SEC_LINKER_CREATED) == 0) 1750 continue; 1751 1752 /* It's OK to base decisions on the section name, because none 1753 of the dynobj section names depend upon the input files. */ 1754 name = bfd_get_section_name (dynobj, sec); 1755 1756 if (strcmp (name, ".plt") == 0) 1757 { 1758 /* Remember whether there is a PLT. */ 1759 plt = sec->size != 0; 1760 } 1761 else if (strcmp (name, ".opd") == 0 1762 || CONST_STRNEQ (name, ".dlt") 1763 || strcmp (name, ".stub") == 0 1764 || strcmp (name, ".got") == 0) 1765 { 1766 /* Strip this section if we don't need it; see the comment below. */ 1767 } 1768 else if (CONST_STRNEQ (name, ".rela")) 1769 { 1770 if (sec->size != 0) 1771 { 1772 asection *target; 1773 1774 /* Remember whether there are any reloc sections other 1775 than .rela.plt. */ 1776 if (strcmp (name, ".rela.plt") != 0) 1777 { 1778 const char *outname; 1779 1780 relocs = TRUE; 1781 1782 /* If this relocation section applies to a read only 1783 section, then we probably need a DT_TEXTREL 1784 entry. The entries in the .rela.plt section 1785 really apply to the .got section, which we 1786 created ourselves and so know is not readonly. */ 1787 outname = bfd_get_section_name (output_bfd, 1788 sec->output_section); 1789 target = bfd_get_section_by_name (output_bfd, outname + 4); 1790 if (target != NULL 1791 && (target->flags & SEC_READONLY) != 0 1792 && (target->flags & SEC_ALLOC) != 0) 1793 reltext = TRUE; 1794 } 1795 1796 /* We use the reloc_count field as a counter if we need 1797 to copy relocs into the output file. */ 1798 sec->reloc_count = 0; 1799 } 1800 } 1801 else 1802 { 1803 /* It's not one of our sections, so don't allocate space. */ 1804 continue; 1805 } 1806 1807 if (sec->size == 0) 1808 { 1809 /* If we don't need this section, strip it from the 1810 output file. This is mostly to handle .rela.bss and 1811 .rela.plt. We must create both sections in 1812 create_dynamic_sections, because they must be created 1813 before the linker maps input sections to output 1814 sections. The linker does that before 1815 adjust_dynamic_symbol is called, and it is that 1816 function which decides whether anything needs to go 1817 into these sections. */ 1818 sec->flags |= SEC_EXCLUDE; 1819 continue; 1820 } 1821 1822 if ((sec->flags & SEC_HAS_CONTENTS) == 0) 1823 continue; 1824 1825 /* Allocate memory for the section contents if it has not 1826 been allocated already. We use bfd_zalloc here in case 1827 unused entries are not reclaimed before the section's 1828 contents are written out. This should not happen, but this 1829 way if it does, we get a R_PARISC_NONE reloc instead of 1830 garbage. */ 1831 if (sec->contents == NULL) 1832 { 1833 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size); 1834 if (sec->contents == NULL) 1835 return FALSE; 1836 } 1837 } 1838 1839 if (elf_hash_table (info)->dynamic_sections_created) 1840 { 1841 /* Always create a DT_PLTGOT. It actually has nothing to do with 1842 the PLT, it is how we communicate the __gp value of a load 1843 module to the dynamic linker. */ 1844 #define add_dynamic_entry(TAG, VAL) \ 1845 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 1846 1847 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0) 1848 || !add_dynamic_entry (DT_PLTGOT, 0)) 1849 return FALSE; 1850 1851 /* Add some entries to the .dynamic section. We fill in the 1852 values later, in elf64_hppa_finish_dynamic_sections, but we 1853 must add the entries now so that we get the correct size for 1854 the .dynamic section. The DT_DEBUG entry is filled in by the 1855 dynamic linker and used by the debugger. */ 1856 if (! bfd_link_pic (info)) 1857 { 1858 if (!add_dynamic_entry (DT_DEBUG, 0) 1859 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0) 1860 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0)) 1861 return FALSE; 1862 } 1863 1864 /* Force DT_FLAGS to always be set. 1865 Required by HPUX 11.00 patch PHSS_26559. */ 1866 if (!add_dynamic_entry (DT_FLAGS, (info)->flags)) 1867 return FALSE; 1868 1869 if (plt) 1870 { 1871 if (!add_dynamic_entry (DT_PLTRELSZ, 0) 1872 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 1873 || !add_dynamic_entry (DT_JMPREL, 0)) 1874 return FALSE; 1875 } 1876 1877 if (relocs) 1878 { 1879 if (!add_dynamic_entry (DT_RELA, 0) 1880 || !add_dynamic_entry (DT_RELASZ, 0) 1881 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela))) 1882 return FALSE; 1883 } 1884 1885 if (reltext) 1886 { 1887 if (!add_dynamic_entry (DT_TEXTREL, 0)) 1888 return FALSE; 1889 info->flags |= DF_TEXTREL; 1890 } 1891 } 1892 #undef add_dynamic_entry 1893 1894 return TRUE; 1895 } 1896 1897 /* Called after we have output the symbol into the dynamic symbol 1898 table, but before we output the symbol into the normal symbol 1899 table. 1900 1901 For some symbols we had to change their address when outputting 1902 the dynamic symbol table. We undo that change here so that 1903 the symbols have their expected value in the normal symbol 1904 table. Ick. */ 1905 1906 static int 1907 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED, 1908 const char *name, 1909 Elf_Internal_Sym *sym, 1910 asection *input_sec ATTRIBUTE_UNUSED, 1911 struct elf_link_hash_entry *eh) 1912 { 1913 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); 1914 1915 /* We may be called with the file symbol or section symbols. 1916 They never need munging, so it is safe to ignore them. */ 1917 if (!name || !eh) 1918 return 1; 1919 1920 /* Function symbols for which we created .opd entries *may* have been 1921 munged by finish_dynamic_symbol and have to be un-munged here. 1922 1923 Note that finish_dynamic_symbol sometimes turns dynamic symbols 1924 into non-dynamic ones, so we initialize st_shndx to -1 in 1925 mark_exported_functions and check to see if it was overwritten 1926 here instead of just checking eh->dynindx. */ 1927 if (hh->want_opd && hh->st_shndx != -1) 1928 { 1929 /* Restore the saved value and section index. */ 1930 sym->st_value = hh->st_value; 1931 sym->st_shndx = hh->st_shndx; 1932 } 1933 1934 return 1; 1935 } 1936 1937 /* Finish up dynamic symbol handling. We set the contents of various 1938 dynamic sections here. */ 1939 1940 static bfd_boolean 1941 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd, 1942 struct bfd_link_info *info, 1943 struct elf_link_hash_entry *eh, 1944 Elf_Internal_Sym *sym) 1945 { 1946 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); 1947 asection *stub, *splt, *sopd, *spltrel; 1948 struct elf64_hppa_link_hash_table *hppa_info; 1949 1950 hppa_info = hppa_link_hash_table (info); 1951 if (hppa_info == NULL) 1952 return FALSE; 1953 1954 stub = hppa_info->stub_sec; 1955 splt = hppa_info->plt_sec; 1956 sopd = hppa_info->opd_sec; 1957 spltrel = hppa_info->plt_rel_sec; 1958 1959 /* Incredible. It is actually necessary to NOT use the symbol's real 1960 value when building the dynamic symbol table for a shared library. 1961 At least for symbols that refer to functions. 1962 1963 We will store a new value and section index into the symbol long 1964 enough to output it into the dynamic symbol table, then we restore 1965 the original values (in elf64_hppa_link_output_symbol_hook). */ 1966 if (hh->want_opd) 1967 { 1968 BFD_ASSERT (sopd != NULL); 1969 1970 /* Save away the original value and section index so that we 1971 can restore them later. */ 1972 hh->st_value = sym->st_value; 1973 hh->st_shndx = sym->st_shndx; 1974 1975 /* For the dynamic symbol table entry, we want the value to be 1976 address of this symbol's entry within the .opd section. */ 1977 sym->st_value = (hh->opd_offset 1978 + sopd->output_offset 1979 + sopd->output_section->vma); 1980 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, 1981 sopd->output_section); 1982 } 1983 1984 /* Initialize a .plt entry if requested. */ 1985 if (hh->want_plt 1986 && elf64_hppa_dynamic_symbol_p (eh, info)) 1987 { 1988 bfd_vma value; 1989 Elf_Internal_Rela rel; 1990 bfd_byte *loc; 1991 1992 BFD_ASSERT (splt != NULL && spltrel != NULL); 1993 1994 /* We do not actually care about the value in the PLT entry 1995 if we are creating a shared library and the symbol is 1996 still undefined, we create a dynamic relocation to fill 1997 in the correct value. */ 1998 if (bfd_link_pic (info) && eh->root.type == bfd_link_hash_undefined) 1999 value = 0; 2000 else 2001 value = (eh->root.u.def.value + eh->root.u.def.section->vma); 2002 2003 /* Fill in the entry in the procedure linkage table. 2004 2005 The format of a plt entry is 2006 <funcaddr> <__gp>. 2007 2008 plt_offset is the offset within the PLT section at which to 2009 install the PLT entry. 2010 2011 We are modifying the in-memory PLT contents here, so we do not add 2012 in the output_offset of the PLT section. */ 2013 2014 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset); 2015 value = _bfd_get_gp_value (splt->output_section->owner); 2016 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8); 2017 2018 /* Create a dynamic IPLT relocation for this entry. 2019 2020 We are creating a relocation in the output file's PLT section, 2021 which is included within the DLT secton. So we do need to include 2022 the PLT's output_offset in the computation of the relocation's 2023 address. */ 2024 rel.r_offset = (hh->plt_offset + splt->output_offset 2025 + splt->output_section->vma); 2026 rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT); 2027 rel.r_addend = 0; 2028 2029 loc = spltrel->contents; 2030 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela); 2031 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc); 2032 } 2033 2034 /* Initialize an external call stub entry if requested. */ 2035 if (hh->want_stub 2036 && elf64_hppa_dynamic_symbol_p (eh, info)) 2037 { 2038 bfd_vma value; 2039 int insn; 2040 unsigned int max_offset; 2041 2042 BFD_ASSERT (stub != NULL); 2043 2044 /* Install the generic stub template. 2045 2046 We are modifying the contents of the stub section, so we do not 2047 need to include the stub section's output_offset here. */ 2048 memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub)); 2049 2050 /* Fix up the first ldd instruction. 2051 2052 We are modifying the contents of the STUB section in memory, 2053 so we do not need to include its output offset in this computation. 2054 2055 Note the plt_offset value is the value of the PLT entry relative to 2056 the start of the PLT section. These instructions will reference 2057 data relative to the value of __gp, which may not necessarily have 2058 the same address as the start of the PLT section. 2059 2060 gp_offset contains the offset of __gp within the PLT section. */ 2061 value = hh->plt_offset - hppa_info->gp_offset; 2062 2063 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset); 2064 if (output_bfd->arch_info->mach >= 25) 2065 { 2066 /* Wide mode allows 16 bit offsets. */ 2067 max_offset = 32768; 2068 insn &= ~ 0xfff1; 2069 insn |= re_assemble_16 ((int) value); 2070 } 2071 else 2072 { 2073 max_offset = 8192; 2074 insn &= ~ 0x3ff1; 2075 insn |= re_assemble_14 ((int) value); 2076 } 2077 2078 if ((value & 7) || value + max_offset >= 2*max_offset - 8) 2079 { 2080 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"), 2081 hh->eh.root.root.string, 2082 (long) value); 2083 return FALSE; 2084 } 2085 2086 bfd_put_32 (stub->owner, (bfd_vma) insn, 2087 stub->contents + hh->stub_offset); 2088 2089 /* Fix up the second ldd instruction. */ 2090 value += 8; 2091 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8); 2092 if (output_bfd->arch_info->mach >= 25) 2093 { 2094 insn &= ~ 0xfff1; 2095 insn |= re_assemble_16 ((int) value); 2096 } 2097 else 2098 { 2099 insn &= ~ 0x3ff1; 2100 insn |= re_assemble_14 ((int) value); 2101 } 2102 bfd_put_32 (stub->owner, (bfd_vma) insn, 2103 stub->contents + hh->stub_offset + 8); 2104 } 2105 2106 return TRUE; 2107 } 2108 2109 /* The .opd section contains FPTRs for each function this file 2110 exports. Initialize the FPTR entries. */ 2111 2112 static bfd_boolean 2113 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data) 2114 { 2115 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); 2116 struct bfd_link_info *info = (struct bfd_link_info *)data; 2117 struct elf64_hppa_link_hash_table *hppa_info; 2118 asection *sopd; 2119 asection *sopdrel; 2120 2121 hppa_info = hppa_link_hash_table (info); 2122 if (hppa_info == NULL) 2123 return FALSE; 2124 2125 sopd = hppa_info->opd_sec; 2126 sopdrel = hppa_info->opd_rel_sec; 2127 2128 if (hh->want_opd) 2129 { 2130 bfd_vma value; 2131 2132 /* The first two words of an .opd entry are zero. 2133 2134 We are modifying the contents of the OPD section in memory, so we 2135 do not need to include its output offset in this computation. */ 2136 memset (sopd->contents + hh->opd_offset, 0, 16); 2137 2138 value = (eh->root.u.def.value 2139 + eh->root.u.def.section->output_section->vma 2140 + eh->root.u.def.section->output_offset); 2141 2142 /* The next word is the address of the function. */ 2143 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16); 2144 2145 /* The last word is our local __gp value. */ 2146 value = _bfd_get_gp_value (sopd->output_section->owner); 2147 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24); 2148 } 2149 2150 /* If we are generating a shared library, we must generate EPLT relocations 2151 for each entry in the .opd, even for static functions (they may have 2152 had their address taken). */ 2153 if (bfd_link_pic (info) && hh->want_opd) 2154 { 2155 Elf_Internal_Rela rel; 2156 bfd_byte *loc; 2157 int dynindx; 2158 2159 /* We may need to do a relocation against a local symbol, in 2160 which case we have to look up it's dynamic symbol index off 2161 the local symbol hash table. */ 2162 if (eh->dynindx != -1) 2163 dynindx = eh->dynindx; 2164 else 2165 dynindx 2166 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner, 2167 hh->sym_indx); 2168 2169 /* The offset of this relocation is the absolute address of the 2170 .opd entry for this symbol. */ 2171 rel.r_offset = (hh->opd_offset + sopd->output_offset 2172 + sopd->output_section->vma); 2173 2174 /* If H is non-null, then we have an external symbol. 2175 2176 It is imperative that we use a different dynamic symbol for the 2177 EPLT relocation if the symbol has global scope. 2178 2179 In the dynamic symbol table, the function symbol will have a value 2180 which is address of the function's .opd entry. 2181 2182 Thus, we can not use that dynamic symbol for the EPLT relocation 2183 (if we did, the data in the .opd would reference itself rather 2184 than the actual address of the function). Instead we have to use 2185 a new dynamic symbol which has the same value as the original global 2186 function symbol. 2187 2188 We prefix the original symbol with a "." and use the new symbol in 2189 the EPLT relocation. This new symbol has already been recorded in 2190 the symbol table, we just have to look it up and use it. 2191 2192 We do not have such problems with static functions because we do 2193 not make their addresses in the dynamic symbol table point to 2194 the .opd entry. Ultimately this should be safe since a static 2195 function can not be directly referenced outside of its shared 2196 library. 2197 2198 We do have to play similar games for FPTR relocations in shared 2199 libraries, including those for static symbols. See the FPTR 2200 handling in elf64_hppa_finalize_dynreloc. */ 2201 if (eh) 2202 { 2203 char *new_name; 2204 struct elf_link_hash_entry *nh; 2205 2206 new_name = concat (".", eh->root.root.string, NULL); 2207 2208 nh = elf_link_hash_lookup (elf_hash_table (info), 2209 new_name, TRUE, TRUE, FALSE); 2210 2211 /* All we really want from the new symbol is its dynamic 2212 symbol index. */ 2213 if (nh) 2214 dynindx = nh->dynindx; 2215 free (new_name); 2216 } 2217 2218 rel.r_addend = 0; 2219 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT); 2220 2221 loc = sopdrel->contents; 2222 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela); 2223 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc); 2224 } 2225 return TRUE; 2226 } 2227 2228 /* The .dlt section contains addresses for items referenced through the 2229 dlt. Note that we can have a DLTIND relocation for a local symbol, thus 2230 we can not depend on finish_dynamic_symbol to initialize the .dlt. */ 2231 2232 static bfd_boolean 2233 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data) 2234 { 2235 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); 2236 struct bfd_link_info *info = (struct bfd_link_info *)data; 2237 struct elf64_hppa_link_hash_table *hppa_info; 2238 asection *sdlt, *sdltrel; 2239 2240 hppa_info = hppa_link_hash_table (info); 2241 if (hppa_info == NULL) 2242 return FALSE; 2243 2244 sdlt = hppa_info->dlt_sec; 2245 sdltrel = hppa_info->dlt_rel_sec; 2246 2247 /* H/DYN_H may refer to a local variable and we know it's 2248 address, so there is no need to create a relocation. Just install 2249 the proper value into the DLT, note this shortcut can not be 2250 skipped when building a shared library. */ 2251 if (! bfd_link_pic (info) && hh && hh->want_dlt) 2252 { 2253 bfd_vma value; 2254 2255 /* If we had an LTOFF_FPTR style relocation we want the DLT entry 2256 to point to the FPTR entry in the .opd section. 2257 2258 We include the OPD's output offset in this computation as 2259 we are referring to an absolute address in the resulting 2260 object file. */ 2261 if (hh->want_opd) 2262 { 2263 value = (hh->opd_offset 2264 + hppa_info->opd_sec->output_offset 2265 + hppa_info->opd_sec->output_section->vma); 2266 } 2267 else if ((eh->root.type == bfd_link_hash_defined 2268 || eh->root.type == bfd_link_hash_defweak) 2269 && eh->root.u.def.section) 2270 { 2271 value = eh->root.u.def.value + eh->root.u.def.section->output_offset; 2272 if (eh->root.u.def.section->output_section) 2273 value += eh->root.u.def.section->output_section->vma; 2274 else 2275 value += eh->root.u.def.section->vma; 2276 } 2277 else 2278 /* We have an undefined function reference. */ 2279 value = 0; 2280 2281 /* We do not need to include the output offset of the DLT section 2282 here because we are modifying the in-memory contents. */ 2283 bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset); 2284 } 2285 2286 /* Create a relocation for the DLT entry associated with this symbol. 2287 When building a shared library the symbol does not have to be dynamic. */ 2288 if (hh->want_dlt 2289 && (elf64_hppa_dynamic_symbol_p (eh, info) || bfd_link_pic (info))) 2290 { 2291 Elf_Internal_Rela rel; 2292 bfd_byte *loc; 2293 int dynindx; 2294 2295 /* We may need to do a relocation against a local symbol, in 2296 which case we have to look up it's dynamic symbol index off 2297 the local symbol hash table. */ 2298 if (eh && eh->dynindx != -1) 2299 dynindx = eh->dynindx; 2300 else 2301 dynindx 2302 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner, 2303 hh->sym_indx); 2304 2305 /* Create a dynamic relocation for this entry. Do include the output 2306 offset of the DLT entry since we need an absolute address in the 2307 resulting object file. */ 2308 rel.r_offset = (hh->dlt_offset + sdlt->output_offset 2309 + sdlt->output_section->vma); 2310 if (eh && eh->type == STT_FUNC) 2311 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64); 2312 else 2313 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64); 2314 rel.r_addend = 0; 2315 2316 loc = sdltrel->contents; 2317 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela); 2318 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc); 2319 } 2320 return TRUE; 2321 } 2322 2323 /* Finalize the dynamic relocations. Specifically the FPTR relocations 2324 for dynamic functions used to initialize static data. */ 2325 2326 static bfd_boolean 2327 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh, 2328 void *data) 2329 { 2330 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); 2331 struct bfd_link_info *info = (struct bfd_link_info *)data; 2332 struct elf64_hppa_link_hash_table *hppa_info; 2333 int dynamic_symbol; 2334 2335 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info); 2336 2337 if (!dynamic_symbol && !bfd_link_pic (info)) 2338 return TRUE; 2339 2340 if (hh->reloc_entries) 2341 { 2342 struct elf64_hppa_dyn_reloc_entry *rent; 2343 int dynindx; 2344 2345 hppa_info = hppa_link_hash_table (info); 2346 if (hppa_info == NULL) 2347 return FALSE; 2348 2349 /* We may need to do a relocation against a local symbol, in 2350 which case we have to look up it's dynamic symbol index off 2351 the local symbol hash table. */ 2352 if (eh->dynindx != -1) 2353 dynindx = eh->dynindx; 2354 else 2355 dynindx 2356 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner, 2357 hh->sym_indx); 2358 2359 for (rent = hh->reloc_entries; rent; rent = rent->next) 2360 { 2361 Elf_Internal_Rela rel; 2362 bfd_byte *loc; 2363 2364 /* Allocate one iff we are building a shared library, the relocation 2365 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */ 2366 if (!bfd_link_pic (info) 2367 && rent->type == R_PARISC_FPTR64 && hh->want_opd) 2368 continue; 2369 2370 /* Create a dynamic relocation for this entry. 2371 2372 We need the output offset for the reloc's section because 2373 we are creating an absolute address in the resulting object 2374 file. */ 2375 rel.r_offset = (rent->offset + rent->sec->output_offset 2376 + rent->sec->output_section->vma); 2377 2378 /* An FPTR64 relocation implies that we took the address of 2379 a function and that the function has an entry in the .opd 2380 section. We want the FPTR64 relocation to reference the 2381 entry in .opd. 2382 2383 We could munge the symbol value in the dynamic symbol table 2384 (in fact we already do for functions with global scope) to point 2385 to the .opd entry. Then we could use that dynamic symbol in 2386 this relocation. 2387 2388 Or we could do something sensible, not munge the symbol's 2389 address and instead just use a different symbol to reference 2390 the .opd entry. At least that seems sensible until you 2391 realize there's no local dynamic symbols we can use for that 2392 purpose. Thus the hair in the check_relocs routine. 2393 2394 We use a section symbol recorded by check_relocs as the 2395 base symbol for the relocation. The addend is the difference 2396 between the section symbol and the address of the .opd entry. */ 2397 if (bfd_link_pic (info) 2398 && rent->type == R_PARISC_FPTR64 && hh->want_opd) 2399 { 2400 bfd_vma value, value2; 2401 2402 /* First compute the address of the opd entry for this symbol. */ 2403 value = (hh->opd_offset 2404 + hppa_info->opd_sec->output_section->vma 2405 + hppa_info->opd_sec->output_offset); 2406 2407 /* Compute the value of the start of the section with 2408 the relocation. */ 2409 value2 = (rent->sec->output_section->vma 2410 + rent->sec->output_offset); 2411 2412 /* Compute the difference between the start of the section 2413 with the relocation and the opd entry. */ 2414 value -= value2; 2415 2416 /* The result becomes the addend of the relocation. */ 2417 rel.r_addend = value; 2418 2419 /* The section symbol becomes the symbol for the dynamic 2420 relocation. */ 2421 dynindx 2422 = _bfd_elf_link_lookup_local_dynindx (info, 2423 rent->sec->owner, 2424 rent->sec_symndx); 2425 } 2426 else 2427 rel.r_addend = rent->addend; 2428 2429 rel.r_info = ELF64_R_INFO (dynindx, rent->type); 2430 2431 loc = hppa_info->other_rel_sec->contents; 2432 loc += (hppa_info->other_rel_sec->reloc_count++ 2433 * sizeof (Elf64_External_Rela)); 2434 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner, 2435 &rel, loc); 2436 } 2437 } 2438 2439 return TRUE; 2440 } 2441 2442 /* Used to decide how to sort relocs in an optimal manner for the 2443 dynamic linker, before writing them out. */ 2444 2445 static enum elf_reloc_type_class 2446 elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 2447 const asection *rel_sec ATTRIBUTE_UNUSED, 2448 const Elf_Internal_Rela *rela) 2449 { 2450 if (ELF64_R_SYM (rela->r_info) == STN_UNDEF) 2451 return reloc_class_relative; 2452 2453 switch ((int) ELF64_R_TYPE (rela->r_info)) 2454 { 2455 case R_PARISC_IPLT: 2456 return reloc_class_plt; 2457 case R_PARISC_COPY: 2458 return reloc_class_copy; 2459 default: 2460 return reloc_class_normal; 2461 } 2462 } 2463 2464 /* Finish up the dynamic sections. */ 2465 2466 static bfd_boolean 2467 elf64_hppa_finish_dynamic_sections (bfd *output_bfd, 2468 struct bfd_link_info *info) 2469 { 2470 bfd *dynobj; 2471 asection *sdyn; 2472 struct elf64_hppa_link_hash_table *hppa_info; 2473 2474 hppa_info = hppa_link_hash_table (info); 2475 if (hppa_info == NULL) 2476 return FALSE; 2477 2478 /* Finalize the contents of the .opd section. */ 2479 elf_link_hash_traverse (elf_hash_table (info), 2480 elf64_hppa_finalize_opd, 2481 info); 2482 2483 elf_link_hash_traverse (elf_hash_table (info), 2484 elf64_hppa_finalize_dynreloc, 2485 info); 2486 2487 /* Finalize the contents of the .dlt section. */ 2488 dynobj = elf_hash_table (info)->dynobj; 2489 /* Finalize the contents of the .dlt section. */ 2490 elf_link_hash_traverse (elf_hash_table (info), 2491 elf64_hppa_finalize_dlt, 2492 info); 2493 2494 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 2495 2496 if (elf_hash_table (info)->dynamic_sections_created) 2497 { 2498 Elf64_External_Dyn *dyncon, *dynconend; 2499 2500 BFD_ASSERT (sdyn != NULL); 2501 2502 dyncon = (Elf64_External_Dyn *) sdyn->contents; 2503 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size); 2504 for (; dyncon < dynconend; dyncon++) 2505 { 2506 Elf_Internal_Dyn dyn; 2507 asection *s; 2508 2509 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); 2510 2511 switch (dyn.d_tag) 2512 { 2513 default: 2514 break; 2515 2516 case DT_HP_LOAD_MAP: 2517 /* Compute the absolute address of 16byte scratchpad area 2518 for the dynamic linker. 2519 2520 By convention the linker script will allocate the scratchpad 2521 area at the start of the .data section. So all we have to 2522 to is find the start of the .data section. */ 2523 s = bfd_get_section_by_name (output_bfd, ".data"); 2524 if (!s) 2525 return FALSE; 2526 dyn.d_un.d_ptr = s->vma; 2527 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); 2528 break; 2529 2530 case DT_PLTGOT: 2531 /* HP's use PLTGOT to set the GOT register. */ 2532 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd); 2533 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); 2534 break; 2535 2536 case DT_JMPREL: 2537 s = hppa_info->plt_rel_sec; 2538 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 2539 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); 2540 break; 2541 2542 case DT_PLTRELSZ: 2543 s = hppa_info->plt_rel_sec; 2544 dyn.d_un.d_val = s->size; 2545 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); 2546 break; 2547 2548 case DT_RELA: 2549 s = hppa_info->other_rel_sec; 2550 if (! s || ! s->size) 2551 s = hppa_info->dlt_rel_sec; 2552 if (! s || ! s->size) 2553 s = hppa_info->opd_rel_sec; 2554 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 2555 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); 2556 break; 2557 2558 case DT_RELASZ: 2559 s = hppa_info->other_rel_sec; 2560 dyn.d_un.d_val = s->size; 2561 s = hppa_info->dlt_rel_sec; 2562 dyn.d_un.d_val += s->size; 2563 s = hppa_info->opd_rel_sec; 2564 dyn.d_un.d_val += s->size; 2565 /* There is some question about whether or not the size of 2566 the PLT relocs should be included here. HP's tools do 2567 it, so we'll emulate them. */ 2568 s = hppa_info->plt_rel_sec; 2569 dyn.d_un.d_val += s->size; 2570 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); 2571 break; 2572 2573 } 2574 } 2575 } 2576 2577 return TRUE; 2578 } 2579 2580 /* Support for core dump NOTE sections. */ 2581 2582 static bfd_boolean 2583 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 2584 { 2585 int offset; 2586 size_t size; 2587 2588 switch (note->descsz) 2589 { 2590 default: 2591 return FALSE; 2592 2593 case 760: /* Linux/hppa */ 2594 /* pr_cursig */ 2595 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); 2596 2597 /* pr_pid */ 2598 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32); 2599 2600 /* pr_reg */ 2601 offset = 112; 2602 size = 640; 2603 2604 break; 2605 } 2606 2607 /* Make a ".reg/999" section. */ 2608 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 2609 size, note->descpos + offset); 2610 } 2611 2612 static bfd_boolean 2613 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 2614 { 2615 char * command; 2616 int n; 2617 2618 switch (note->descsz) 2619 { 2620 default: 2621 return FALSE; 2622 2623 case 136: /* Linux/hppa elf_prpsinfo. */ 2624 elf_tdata (abfd)->core->program 2625 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16); 2626 elf_tdata (abfd)->core->command 2627 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80); 2628 } 2629 2630 /* Note that for some reason, a spurious space is tacked 2631 onto the end of the args in some (at least one anyway) 2632 implementations, so strip it off if it exists. */ 2633 command = elf_tdata (abfd)->core->command; 2634 n = strlen (command); 2635 2636 if (0 < n && command[n - 1] == ' ') 2637 command[n - 1] = '\0'; 2638 2639 return TRUE; 2640 } 2641 2642 /* Return the number of additional phdrs we will need. 2643 2644 The generic ELF code only creates PT_PHDRs for executables. The HP 2645 dynamic linker requires PT_PHDRs for dynamic libraries too. 2646 2647 This routine indicates that the backend needs one additional program 2648 header for that case. 2649 2650 Note we do not have access to the link info structure here, so we have 2651 to guess whether or not we are building a shared library based on the 2652 existence of a .interp section. */ 2653 2654 static int 2655 elf64_hppa_additional_program_headers (bfd *abfd, 2656 struct bfd_link_info *info ATTRIBUTE_UNUSED) 2657 { 2658 asection *s; 2659 2660 /* If we are creating a shared library, then we have to create a 2661 PT_PHDR segment. HP's dynamic linker chokes without it. */ 2662 s = bfd_get_section_by_name (abfd, ".interp"); 2663 if (! s) 2664 return 1; 2665 return 0; 2666 } 2667 2668 /* Allocate and initialize any program headers required by this 2669 specific backend. 2670 2671 The generic ELF code only creates PT_PHDRs for executables. The HP 2672 dynamic linker requires PT_PHDRs for dynamic libraries too. 2673 2674 This allocates the PT_PHDR and initializes it in a manner suitable 2675 for the HP linker. 2676 2677 Note we do not have access to the link info structure here, so we have 2678 to guess whether or not we are building a shared library based on the 2679 existence of a .interp section. */ 2680 2681 static bfd_boolean 2682 elf64_hppa_modify_segment_map (bfd *abfd, 2683 struct bfd_link_info *info ATTRIBUTE_UNUSED) 2684 { 2685 struct elf_segment_map *m; 2686 asection *s; 2687 2688 s = bfd_get_section_by_name (abfd, ".interp"); 2689 if (! s) 2690 { 2691 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 2692 if (m->p_type == PT_PHDR) 2693 break; 2694 if (m == NULL) 2695 { 2696 m = ((struct elf_segment_map *) 2697 bfd_zalloc (abfd, (bfd_size_type) sizeof *m)); 2698 if (m == NULL) 2699 return FALSE; 2700 2701 m->p_type = PT_PHDR; 2702 m->p_flags = PF_R | PF_X; 2703 m->p_flags_valid = 1; 2704 m->p_paddr_valid = 1; 2705 m->includes_phdrs = 1; 2706 2707 m->next = elf_seg_map (abfd); 2708 elf_seg_map (abfd) = m; 2709 } 2710 } 2711 2712 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 2713 if (m->p_type == PT_LOAD) 2714 { 2715 unsigned int i; 2716 2717 for (i = 0; i < m->count; i++) 2718 { 2719 /* The code "hint" is not really a hint. It is a requirement 2720 for certain versions of the HP dynamic linker. Worse yet, 2721 it must be set even if the shared library does not have 2722 any code in its "text" segment (thus the check for .hash 2723 to catch this situation). */ 2724 if (m->sections[i]->flags & SEC_CODE 2725 || (strcmp (m->sections[i]->name, ".hash") == 0)) 2726 m->p_flags |= (PF_X | PF_HP_CODE); 2727 } 2728 } 2729 2730 return TRUE; 2731 } 2732 2733 /* Called when writing out an object file to decide the type of a 2734 symbol. */ 2735 static int 2736 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, 2737 int type) 2738 { 2739 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) 2740 return STT_PARISC_MILLI; 2741 else 2742 return type; 2743 } 2744 2745 /* Support HP specific sections for core files. */ 2746 2747 static bfd_boolean 2748 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index, 2749 const char *typename) 2750 { 2751 if (hdr->p_type == PT_HP_CORE_KERNEL) 2752 { 2753 asection *sect; 2754 2755 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename)) 2756 return FALSE; 2757 2758 sect = bfd_make_section_anyway (abfd, ".kernel"); 2759 if (sect == NULL) 2760 return FALSE; 2761 sect->size = hdr->p_filesz; 2762 sect->filepos = hdr->p_offset; 2763 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY; 2764 return TRUE; 2765 } 2766 2767 if (hdr->p_type == PT_HP_CORE_PROC) 2768 { 2769 int sig; 2770 2771 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0) 2772 return FALSE; 2773 if (bfd_bread (&sig, 4, abfd) != 4) 2774 return FALSE; 2775 2776 elf_tdata (abfd)->core->signal = sig; 2777 2778 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename)) 2779 return FALSE; 2780 2781 /* GDB uses the ".reg" section to read register contents. */ 2782 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz, 2783 hdr->p_offset); 2784 } 2785 2786 if (hdr->p_type == PT_HP_CORE_LOADABLE 2787 || hdr->p_type == PT_HP_CORE_STACK 2788 || hdr->p_type == PT_HP_CORE_MMF) 2789 hdr->p_type = PT_LOAD; 2790 2791 return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename); 2792 } 2793 2794 /* Hook called by the linker routine which adds symbols from an object 2795 file. HP's libraries define symbols with HP specific section 2796 indices, which we have to handle. */ 2797 2798 static bfd_boolean 2799 elf_hppa_add_symbol_hook (bfd *abfd, 2800 struct bfd_link_info *info ATTRIBUTE_UNUSED, 2801 Elf_Internal_Sym *sym, 2802 const char **namep ATTRIBUTE_UNUSED, 2803 flagword *flagsp ATTRIBUTE_UNUSED, 2804 asection **secp, 2805 bfd_vma *valp) 2806 { 2807 unsigned int sec_index = sym->st_shndx; 2808 2809 switch (sec_index) 2810 { 2811 case SHN_PARISC_ANSI_COMMON: 2812 *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common"); 2813 (*secp)->flags |= SEC_IS_COMMON; 2814 *valp = sym->st_size; 2815 break; 2816 2817 case SHN_PARISC_HUGE_COMMON: 2818 *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common"); 2819 (*secp)->flags |= SEC_IS_COMMON; 2820 *valp = sym->st_size; 2821 break; 2822 } 2823 2824 return TRUE; 2825 } 2826 2827 static bfd_boolean 2828 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h, 2829 void *data) 2830 { 2831 struct bfd_link_info *info = data; 2832 2833 /* If we are not creating a shared library, and this symbol is 2834 referenced by a shared library but is not defined anywhere, then 2835 the generic code will warn that it is undefined. 2836 2837 This behavior is undesirable on HPs since the standard shared 2838 libraries contain references to undefined symbols. 2839 2840 So we twiddle the flags associated with such symbols so that they 2841 will not trigger the warning. ?!? FIXME. This is horribly fragile. 2842 2843 Ultimately we should have better controls over the generic ELF BFD 2844 linker code. */ 2845 if (! bfd_link_relocatable (info) 2846 && info->unresolved_syms_in_shared_libs != RM_IGNORE 2847 && h->root.type == bfd_link_hash_undefined 2848 && h->ref_dynamic 2849 && !h->ref_regular) 2850 { 2851 h->ref_dynamic = 0; 2852 h->pointer_equality_needed = 1; 2853 } 2854 2855 return TRUE; 2856 } 2857 2858 static bfd_boolean 2859 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h, 2860 void *data) 2861 { 2862 struct bfd_link_info *info = data; 2863 2864 /* If we are not creating a shared library, and this symbol is 2865 referenced by a shared library but is not defined anywhere, then 2866 the generic code will warn that it is undefined. 2867 2868 This behavior is undesirable on HPs since the standard shared 2869 libraries contain references to undefined symbols. 2870 2871 So we twiddle the flags associated with such symbols so that they 2872 will not trigger the warning. ?!? FIXME. This is horribly fragile. 2873 2874 Ultimately we should have better controls over the generic ELF BFD 2875 linker code. */ 2876 if (! bfd_link_relocatable (info) 2877 && info->unresolved_syms_in_shared_libs != RM_IGNORE 2878 && h->root.type == bfd_link_hash_undefined 2879 && !h->ref_dynamic 2880 && !h->ref_regular 2881 && h->pointer_equality_needed) 2882 { 2883 h->ref_dynamic = 1; 2884 h->pointer_equality_needed = 0; 2885 } 2886 2887 return TRUE; 2888 } 2889 2890 static bfd_boolean 2891 elf_hppa_is_dynamic_loader_symbol (const char *name) 2892 { 2893 return (! strcmp (name, "__CPU_REVISION") 2894 || ! strcmp (name, "__CPU_KEYBITS_1") 2895 || ! strcmp (name, "__SYSTEM_ID_D") 2896 || ! strcmp (name, "__FPU_MODEL") 2897 || ! strcmp (name, "__FPU_REVISION") 2898 || ! strcmp (name, "__ARGC") 2899 || ! strcmp (name, "__ARGV") 2900 || ! strcmp (name, "__ENVP") 2901 || ! strcmp (name, "__TLS_SIZE_D") 2902 || ! strcmp (name, "__LOAD_INFO") 2903 || ! strcmp (name, "__systab")); 2904 } 2905 2906 /* Record the lowest address for the data and text segments. */ 2907 static void 2908 elf_hppa_record_segment_addrs (bfd *abfd, 2909 asection *section, 2910 void *data) 2911 { 2912 struct elf64_hppa_link_hash_table *hppa_info = data; 2913 2914 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) 2915 { 2916 bfd_vma value; 2917 Elf_Internal_Phdr *p; 2918 2919 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section); 2920 BFD_ASSERT (p != NULL); 2921 value = p->p_vaddr; 2922 2923 if (section->flags & SEC_READONLY) 2924 { 2925 if (value < hppa_info->text_segment_base) 2926 hppa_info->text_segment_base = value; 2927 } 2928 else 2929 { 2930 if (value < hppa_info->data_segment_base) 2931 hppa_info->data_segment_base = value; 2932 } 2933 } 2934 } 2935 2936 /* Called after we have seen all the input files/sections, but before 2937 final symbol resolution and section placement has been determined. 2938 2939 We use this hook to (possibly) provide a value for __gp, then we 2940 fall back to the generic ELF final link routine. */ 2941 2942 static bfd_boolean 2943 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info) 2944 { 2945 struct stat buf; 2946 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info); 2947 2948 if (hppa_info == NULL) 2949 return FALSE; 2950 2951 if (! bfd_link_relocatable (info)) 2952 { 2953 struct elf_link_hash_entry *gp; 2954 bfd_vma gp_val; 2955 2956 /* The linker script defines a value for __gp iff it was referenced 2957 by one of the objects being linked. First try to find the symbol 2958 in the hash table. If that fails, just compute the value __gp 2959 should have had. */ 2960 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE, 2961 FALSE, FALSE); 2962 2963 if (gp) 2964 { 2965 2966 /* Adjust the value of __gp as we may want to slide it into the 2967 .plt section so that the stubs can access PLT entries without 2968 using an addil sequence. */ 2969 gp->root.u.def.value += hppa_info->gp_offset; 2970 2971 gp_val = (gp->root.u.def.section->output_section->vma 2972 + gp->root.u.def.section->output_offset 2973 + gp->root.u.def.value); 2974 } 2975 else 2976 { 2977 asection *sec; 2978 2979 /* First look for a .plt section. If found, then __gp is the 2980 address of the .plt + gp_offset. 2981 2982 If no .plt is found, then look for .dlt, .opd and .data (in 2983 that order) and set __gp to the base address of whichever 2984 section is found first. */ 2985 2986 sec = hppa_info->plt_sec; 2987 if (sec && ! (sec->flags & SEC_EXCLUDE)) 2988 gp_val = (sec->output_offset 2989 + sec->output_section->vma 2990 + hppa_info->gp_offset); 2991 else 2992 { 2993 sec = hppa_info->dlt_sec; 2994 if (!sec || (sec->flags & SEC_EXCLUDE)) 2995 sec = hppa_info->opd_sec; 2996 if (!sec || (sec->flags & SEC_EXCLUDE)) 2997 sec = bfd_get_section_by_name (abfd, ".data"); 2998 if (!sec || (sec->flags & SEC_EXCLUDE)) 2999 gp_val = 0; 3000 else 3001 gp_val = sec->output_offset + sec->output_section->vma; 3002 } 3003 } 3004 3005 /* Install whatever value we found/computed for __gp. */ 3006 _bfd_set_gp_value (abfd, gp_val); 3007 } 3008 3009 /* We need to know the base of the text and data segments so that we 3010 can perform SEGREL relocations. We will record the base addresses 3011 when we encounter the first SEGREL relocation. */ 3012 hppa_info->text_segment_base = (bfd_vma)-1; 3013 hppa_info->data_segment_base = (bfd_vma)-1; 3014 3015 /* HP's shared libraries have references to symbols that are not 3016 defined anywhere. The generic ELF BFD linker code will complain 3017 about such symbols. 3018 3019 So we detect the losing case and arrange for the flags on the symbol 3020 to indicate that it was never referenced. This keeps the generic 3021 ELF BFD link code happy and appears to not create any secondary 3022 problems. Ultimately we need a way to control the behavior of the 3023 generic ELF BFD link code better. */ 3024 elf_link_hash_traverse (elf_hash_table (info), 3025 elf_hppa_unmark_useless_dynamic_symbols, 3026 info); 3027 3028 /* Invoke the regular ELF backend linker to do all the work. */ 3029 if (!bfd_elf_final_link (abfd, info)) 3030 return FALSE; 3031 3032 elf_link_hash_traverse (elf_hash_table (info), 3033 elf_hppa_remark_useless_dynamic_symbols, 3034 info); 3035 3036 /* If we're producing a final executable, sort the contents of the 3037 unwind section. */ 3038 if (bfd_link_relocatable (info)) 3039 return TRUE; 3040 3041 /* Do not attempt to sort non-regular files. This is here 3042 especially for configure scripts and kernel builds which run 3043 tests with "ld [...] -o /dev/null". */ 3044 if (stat (abfd->filename, &buf) != 0 3045 || !S_ISREG(buf.st_mode)) 3046 return TRUE; 3047 3048 return elf_hppa_sort_unwind (abfd); 3049 } 3050 3051 /* Relocate the given INSN. VALUE should be the actual value we want 3052 to insert into the instruction, ie by this point we should not be 3053 concerned with computing an offset relative to the DLT, PC, etc. 3054 Instead this routine is meant to handle the bit manipulations needed 3055 to insert the relocation into the given instruction. */ 3056 3057 static int 3058 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type) 3059 { 3060 switch (r_type) 3061 { 3062 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to 3063 the "B" instruction. */ 3064 case R_PARISC_PCREL22F: 3065 case R_PARISC_PCREL22C: 3066 return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value); 3067 3068 /* This is any 12 bit branch. */ 3069 case R_PARISC_PCREL12F: 3070 return (insn & ~0x1ffd) | re_assemble_12 (sym_value); 3071 3072 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds 3073 to the "B" instruction as well as BE. */ 3074 case R_PARISC_PCREL17F: 3075 case R_PARISC_DIR17F: 3076 case R_PARISC_DIR17R: 3077 case R_PARISC_PCREL17C: 3078 case R_PARISC_PCREL17R: 3079 return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value); 3080 3081 /* ADDIL or LDIL instructions. */ 3082 case R_PARISC_DLTREL21L: 3083 case R_PARISC_DLTIND21L: 3084 case R_PARISC_LTOFF_FPTR21L: 3085 case R_PARISC_PCREL21L: 3086 case R_PARISC_LTOFF_TP21L: 3087 case R_PARISC_DPREL21L: 3088 case R_PARISC_PLTOFF21L: 3089 case R_PARISC_DIR21L: 3090 return (insn & ~0x1fffff) | re_assemble_21 (sym_value); 3091 3092 /* LDO and integer loads/stores with 14 bit displacements. */ 3093 case R_PARISC_DLTREL14R: 3094 case R_PARISC_DLTREL14F: 3095 case R_PARISC_DLTIND14R: 3096 case R_PARISC_DLTIND14F: 3097 case R_PARISC_LTOFF_FPTR14R: 3098 case R_PARISC_PCREL14R: 3099 case R_PARISC_PCREL14F: 3100 case R_PARISC_LTOFF_TP14R: 3101 case R_PARISC_LTOFF_TP14F: 3102 case R_PARISC_DPREL14R: 3103 case R_PARISC_DPREL14F: 3104 case R_PARISC_PLTOFF14R: 3105 case R_PARISC_PLTOFF14F: 3106 case R_PARISC_DIR14R: 3107 case R_PARISC_DIR14F: 3108 return (insn & ~0x3fff) | low_sign_unext (sym_value, 14); 3109 3110 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */ 3111 case R_PARISC_LTOFF_FPTR16F: 3112 case R_PARISC_PCREL16F: 3113 case R_PARISC_LTOFF_TP16F: 3114 case R_PARISC_GPREL16F: 3115 case R_PARISC_PLTOFF16F: 3116 case R_PARISC_DIR16F: 3117 case R_PARISC_LTOFF16F: 3118 return (insn & ~0xffff) | re_assemble_16 (sym_value); 3119 3120 /* Doubleword loads and stores with a 14 bit displacement. */ 3121 case R_PARISC_DLTREL14DR: 3122 case R_PARISC_DLTIND14DR: 3123 case R_PARISC_LTOFF_FPTR14DR: 3124 case R_PARISC_LTOFF_FPTR16DF: 3125 case R_PARISC_PCREL14DR: 3126 case R_PARISC_PCREL16DF: 3127 case R_PARISC_LTOFF_TP14DR: 3128 case R_PARISC_LTOFF_TP16DF: 3129 case R_PARISC_DPREL14DR: 3130 case R_PARISC_GPREL16DF: 3131 case R_PARISC_PLTOFF14DR: 3132 case R_PARISC_PLTOFF16DF: 3133 case R_PARISC_DIR14DR: 3134 case R_PARISC_DIR16DF: 3135 case R_PARISC_LTOFF16DF: 3136 return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13) 3137 | ((sym_value & 0x1ff8) << 1)); 3138 3139 /* Floating point single word load/store instructions. */ 3140 case R_PARISC_DLTREL14WR: 3141 case R_PARISC_DLTIND14WR: 3142 case R_PARISC_LTOFF_FPTR14WR: 3143 case R_PARISC_LTOFF_FPTR16WF: 3144 case R_PARISC_PCREL14WR: 3145 case R_PARISC_PCREL16WF: 3146 case R_PARISC_LTOFF_TP14WR: 3147 case R_PARISC_LTOFF_TP16WF: 3148 case R_PARISC_DPREL14WR: 3149 case R_PARISC_GPREL16WF: 3150 case R_PARISC_PLTOFF14WR: 3151 case R_PARISC_PLTOFF16WF: 3152 case R_PARISC_DIR16WF: 3153 case R_PARISC_DIR14WR: 3154 case R_PARISC_LTOFF16WF: 3155 return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13) 3156 | ((sym_value & 0x1ffc) << 1)); 3157 3158 default: 3159 return insn; 3160 } 3161 } 3162 3163 /* Compute the value for a relocation (REL) during a final link stage, 3164 then insert the value into the proper location in CONTENTS. 3165 3166 VALUE is a tentative value for the relocation and may be overridden 3167 and modified here based on the specific relocation to be performed. 3168 3169 For example we do conversions for PC-relative branches in this routine 3170 or redirection of calls to external routines to stubs. 3171 3172 The work of actually applying the relocation is left to a helper 3173 routine in an attempt to reduce the complexity and size of this 3174 function. */ 3175 3176 static bfd_reloc_status_type 3177 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel, 3178 bfd *input_bfd, 3179 bfd *output_bfd, 3180 asection *input_section, 3181 bfd_byte *contents, 3182 bfd_vma value, 3183 struct bfd_link_info *info, 3184 asection *sym_sec, 3185 struct elf_link_hash_entry *eh) 3186 { 3187 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info); 3188 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); 3189 bfd_vma *local_offsets; 3190 Elf_Internal_Shdr *symtab_hdr; 3191 int insn; 3192 bfd_vma max_branch_offset = 0; 3193 bfd_vma offset = rel->r_offset; 3194 bfd_signed_vma addend = rel->r_addend; 3195 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info); 3196 unsigned int r_symndx = ELF_R_SYM (rel->r_info); 3197 unsigned int r_type = howto->type; 3198 bfd_byte *hit_data = contents + offset; 3199 3200 if (hppa_info == NULL) 3201 return bfd_reloc_notsupported; 3202 3203 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 3204 local_offsets = elf_local_got_offsets (input_bfd); 3205 insn = bfd_get_32 (input_bfd, hit_data); 3206 3207 switch (r_type) 3208 { 3209 case R_PARISC_NONE: 3210 break; 3211 3212 /* Basic function call support. 3213 3214 Note for a call to a function defined in another dynamic library 3215 we want to redirect the call to a stub. */ 3216 3217 /* PC relative relocs without an implicit offset. */ 3218 case R_PARISC_PCREL21L: 3219 case R_PARISC_PCREL14R: 3220 case R_PARISC_PCREL14F: 3221 case R_PARISC_PCREL14WR: 3222 case R_PARISC_PCREL14DR: 3223 case R_PARISC_PCREL16F: 3224 case R_PARISC_PCREL16WF: 3225 case R_PARISC_PCREL16DF: 3226 { 3227 /* If this is a call to a function defined in another dynamic 3228 library, then redirect the call to the local stub for this 3229 function. */ 3230 if (sym_sec == NULL || sym_sec->output_section == NULL) 3231 value = (hh->stub_offset + hppa_info->stub_sec->output_offset 3232 + hppa_info->stub_sec->output_section->vma); 3233 3234 /* Turn VALUE into a proper PC relative address. */ 3235 value -= (offset + input_section->output_offset 3236 + input_section->output_section->vma); 3237 3238 /* Adjust for any field selectors. */ 3239 if (r_type == R_PARISC_PCREL21L) 3240 value = hppa_field_adjust (value, -8 + addend, e_lsel); 3241 else if (r_type == R_PARISC_PCREL14F 3242 || r_type == R_PARISC_PCREL16F 3243 || r_type == R_PARISC_PCREL16WF 3244 || r_type == R_PARISC_PCREL16DF) 3245 value = hppa_field_adjust (value, -8 + addend, e_fsel); 3246 else 3247 value = hppa_field_adjust (value, -8 + addend, e_rsel); 3248 3249 /* Apply the relocation to the given instruction. */ 3250 insn = elf_hppa_relocate_insn (insn, (int) value, r_type); 3251 break; 3252 } 3253 3254 case R_PARISC_PCREL12F: 3255 case R_PARISC_PCREL22F: 3256 case R_PARISC_PCREL17F: 3257 case R_PARISC_PCREL22C: 3258 case R_PARISC_PCREL17C: 3259 case R_PARISC_PCREL17R: 3260 { 3261 /* If this is a call to a function defined in another dynamic 3262 library, then redirect the call to the local stub for this 3263 function. */ 3264 if (sym_sec == NULL || sym_sec->output_section == NULL) 3265 value = (hh->stub_offset + hppa_info->stub_sec->output_offset 3266 + hppa_info->stub_sec->output_section->vma); 3267 3268 /* Turn VALUE into a proper PC relative address. */ 3269 value -= (offset + input_section->output_offset 3270 + input_section->output_section->vma); 3271 addend -= 8; 3272 3273 if (r_type == (unsigned int) R_PARISC_PCREL22F) 3274 max_branch_offset = (1 << (22-1)) << 2; 3275 else if (r_type == (unsigned int) R_PARISC_PCREL17F) 3276 max_branch_offset = (1 << (17-1)) << 2; 3277 else if (r_type == (unsigned int) R_PARISC_PCREL12F) 3278 max_branch_offset = (1 << (12-1)) << 2; 3279 3280 /* Make sure we can reach the branch target. */ 3281 if (max_branch_offset != 0 3282 && value + addend + max_branch_offset >= 2*max_branch_offset) 3283 { 3284 (*_bfd_error_handler) 3285 (_("%B(%A+0x%" BFD_VMA_FMT "x): cannot reach %s"), 3286 input_bfd, 3287 input_section, 3288 offset, 3289 eh ? eh->root.root.string : "unknown"); 3290 bfd_set_error (bfd_error_bad_value); 3291 return bfd_reloc_overflow; 3292 } 3293 3294 /* Adjust for any field selectors. */ 3295 if (r_type == R_PARISC_PCREL17R) 3296 value = hppa_field_adjust (value, addend, e_rsel); 3297 else 3298 value = hppa_field_adjust (value, addend, e_fsel); 3299 3300 /* All branches are implicitly shifted by 2 places. */ 3301 value >>= 2; 3302 3303 /* Apply the relocation to the given instruction. */ 3304 insn = elf_hppa_relocate_insn (insn, (int) value, r_type); 3305 break; 3306 } 3307 3308 /* Indirect references to data through the DLT. */ 3309 case R_PARISC_DLTIND14R: 3310 case R_PARISC_DLTIND14F: 3311 case R_PARISC_DLTIND14DR: 3312 case R_PARISC_DLTIND14WR: 3313 case R_PARISC_DLTIND21L: 3314 case R_PARISC_LTOFF_FPTR14R: 3315 case R_PARISC_LTOFF_FPTR14DR: 3316 case R_PARISC_LTOFF_FPTR14WR: 3317 case R_PARISC_LTOFF_FPTR21L: 3318 case R_PARISC_LTOFF_FPTR16F: 3319 case R_PARISC_LTOFF_FPTR16WF: 3320 case R_PARISC_LTOFF_FPTR16DF: 3321 case R_PARISC_LTOFF_TP21L: 3322 case R_PARISC_LTOFF_TP14R: 3323 case R_PARISC_LTOFF_TP14F: 3324 case R_PARISC_LTOFF_TP14WR: 3325 case R_PARISC_LTOFF_TP14DR: 3326 case R_PARISC_LTOFF_TP16F: 3327 case R_PARISC_LTOFF_TP16WF: 3328 case R_PARISC_LTOFF_TP16DF: 3329 case R_PARISC_LTOFF16F: 3330 case R_PARISC_LTOFF16WF: 3331 case R_PARISC_LTOFF16DF: 3332 { 3333 bfd_vma off; 3334 3335 /* If this relocation was against a local symbol, then we still 3336 have not set up the DLT entry (it's not convenient to do so 3337 in the "finalize_dlt" routine because it is difficult to get 3338 to the local symbol's value). 3339 3340 So, if this is a local symbol (h == NULL), then we need to 3341 fill in its DLT entry. 3342 3343 Similarly we may still need to set up an entry in .opd for 3344 a local function which had its address taken. */ 3345 if (hh == NULL) 3346 { 3347 bfd_vma *local_opd_offsets, *local_dlt_offsets; 3348 3349 if (local_offsets == NULL) 3350 abort (); 3351 3352 /* Now do .opd creation if needed. */ 3353 if (r_type == R_PARISC_LTOFF_FPTR14R 3354 || r_type == R_PARISC_LTOFF_FPTR14DR 3355 || r_type == R_PARISC_LTOFF_FPTR14WR 3356 || r_type == R_PARISC_LTOFF_FPTR21L 3357 || r_type == R_PARISC_LTOFF_FPTR16F 3358 || r_type == R_PARISC_LTOFF_FPTR16WF 3359 || r_type == R_PARISC_LTOFF_FPTR16DF) 3360 { 3361 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info; 3362 off = local_opd_offsets[r_symndx]; 3363 3364 /* The last bit records whether we've already initialised 3365 this local .opd entry. */ 3366 if ((off & 1) != 0) 3367 { 3368 BFD_ASSERT (off != (bfd_vma) -1); 3369 off &= ~1; 3370 } 3371 else 3372 { 3373 local_opd_offsets[r_symndx] |= 1; 3374 3375 /* The first two words of an .opd entry are zero. */ 3376 memset (hppa_info->opd_sec->contents + off, 0, 16); 3377 3378 /* The next word is the address of the function. */ 3379 bfd_put_64 (hppa_info->opd_sec->owner, value + addend, 3380 (hppa_info->opd_sec->contents + off + 16)); 3381 3382 /* The last word is our local __gp value. */ 3383 value = _bfd_get_gp_value 3384 (hppa_info->opd_sec->output_section->owner); 3385 bfd_put_64 (hppa_info->opd_sec->owner, value, 3386 (hppa_info->opd_sec->contents + off + 24)); 3387 } 3388 3389 /* The DLT value is the address of the .opd entry. */ 3390 value = (off 3391 + hppa_info->opd_sec->output_offset 3392 + hppa_info->opd_sec->output_section->vma); 3393 addend = 0; 3394 } 3395 3396 local_dlt_offsets = local_offsets; 3397 off = local_dlt_offsets[r_symndx]; 3398 3399 if ((off & 1) != 0) 3400 { 3401 BFD_ASSERT (off != (bfd_vma) -1); 3402 off &= ~1; 3403 } 3404 else 3405 { 3406 local_dlt_offsets[r_symndx] |= 1; 3407 bfd_put_64 (hppa_info->dlt_sec->owner, 3408 value + addend, 3409 hppa_info->dlt_sec->contents + off); 3410 } 3411 } 3412 else 3413 off = hh->dlt_offset; 3414 3415 /* We want the value of the DLT offset for this symbol, not 3416 the symbol's actual address. Note that __gp may not point 3417 to the start of the DLT, so we have to compute the absolute 3418 address, then subtract out the value of __gp. */ 3419 value = (off 3420 + hppa_info->dlt_sec->output_offset 3421 + hppa_info->dlt_sec->output_section->vma); 3422 value -= _bfd_get_gp_value (output_bfd); 3423 3424 /* All DLTIND relocations are basically the same at this point, 3425 except that we need different field selectors for the 21bit 3426 version vs the 14bit versions. */ 3427 if (r_type == R_PARISC_DLTIND21L 3428 || r_type == R_PARISC_LTOFF_FPTR21L 3429 || r_type == R_PARISC_LTOFF_TP21L) 3430 value = hppa_field_adjust (value, 0, e_lsel); 3431 else if (r_type == R_PARISC_DLTIND14F 3432 || r_type == R_PARISC_LTOFF_FPTR16F 3433 || r_type == R_PARISC_LTOFF_FPTR16WF 3434 || r_type == R_PARISC_LTOFF_FPTR16DF 3435 || r_type == R_PARISC_LTOFF16F 3436 || r_type == R_PARISC_LTOFF16DF 3437 || r_type == R_PARISC_LTOFF16WF 3438 || r_type == R_PARISC_LTOFF_TP16F 3439 || r_type == R_PARISC_LTOFF_TP16WF 3440 || r_type == R_PARISC_LTOFF_TP16DF) 3441 value = hppa_field_adjust (value, 0, e_fsel); 3442 else 3443 value = hppa_field_adjust (value, 0, e_rsel); 3444 3445 insn = elf_hppa_relocate_insn (insn, (int) value, r_type); 3446 break; 3447 } 3448 3449 case R_PARISC_DLTREL14R: 3450 case R_PARISC_DLTREL14F: 3451 case R_PARISC_DLTREL14DR: 3452 case R_PARISC_DLTREL14WR: 3453 case R_PARISC_DLTREL21L: 3454 case R_PARISC_DPREL21L: 3455 case R_PARISC_DPREL14WR: 3456 case R_PARISC_DPREL14DR: 3457 case R_PARISC_DPREL14R: 3458 case R_PARISC_DPREL14F: 3459 case R_PARISC_GPREL16F: 3460 case R_PARISC_GPREL16WF: 3461 case R_PARISC_GPREL16DF: 3462 { 3463 /* Subtract out the global pointer value to make value a DLT 3464 relative address. */ 3465 value -= _bfd_get_gp_value (output_bfd); 3466 3467 /* All DLTREL relocations are basically the same at this point, 3468 except that we need different field selectors for the 21bit 3469 version vs the 14bit versions. */ 3470 if (r_type == R_PARISC_DLTREL21L 3471 || r_type == R_PARISC_DPREL21L) 3472 value = hppa_field_adjust (value, addend, e_lrsel); 3473 else if (r_type == R_PARISC_DLTREL14F 3474 || r_type == R_PARISC_DPREL14F 3475 || r_type == R_PARISC_GPREL16F 3476 || r_type == R_PARISC_GPREL16WF 3477 || r_type == R_PARISC_GPREL16DF) 3478 value = hppa_field_adjust (value, addend, e_fsel); 3479 else 3480 value = hppa_field_adjust (value, addend, e_rrsel); 3481 3482 insn = elf_hppa_relocate_insn (insn, (int) value, r_type); 3483 break; 3484 } 3485 3486 case R_PARISC_DIR21L: 3487 case R_PARISC_DIR17R: 3488 case R_PARISC_DIR17F: 3489 case R_PARISC_DIR14R: 3490 case R_PARISC_DIR14F: 3491 case R_PARISC_DIR14WR: 3492 case R_PARISC_DIR14DR: 3493 case R_PARISC_DIR16F: 3494 case R_PARISC_DIR16WF: 3495 case R_PARISC_DIR16DF: 3496 { 3497 /* All DIR relocations are basically the same at this point, 3498 except that branch offsets need to be divided by four, and 3499 we need different field selectors. Note that we don't 3500 redirect absolute calls to local stubs. */ 3501 3502 if (r_type == R_PARISC_DIR21L) 3503 value = hppa_field_adjust (value, addend, e_lrsel); 3504 else if (r_type == R_PARISC_DIR17F 3505 || r_type == R_PARISC_DIR16F 3506 || r_type == R_PARISC_DIR16WF 3507 || r_type == R_PARISC_DIR16DF 3508 || r_type == R_PARISC_DIR14F) 3509 value = hppa_field_adjust (value, addend, e_fsel); 3510 else 3511 value = hppa_field_adjust (value, addend, e_rrsel); 3512 3513 if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F) 3514 /* All branches are implicitly shifted by 2 places. */ 3515 value >>= 2; 3516 3517 insn = elf_hppa_relocate_insn (insn, (int) value, r_type); 3518 break; 3519 } 3520 3521 case R_PARISC_PLTOFF21L: 3522 case R_PARISC_PLTOFF14R: 3523 case R_PARISC_PLTOFF14F: 3524 case R_PARISC_PLTOFF14WR: 3525 case R_PARISC_PLTOFF14DR: 3526 case R_PARISC_PLTOFF16F: 3527 case R_PARISC_PLTOFF16WF: 3528 case R_PARISC_PLTOFF16DF: 3529 { 3530 /* We want the value of the PLT offset for this symbol, not 3531 the symbol's actual address. Note that __gp may not point 3532 to the start of the DLT, so we have to compute the absolute 3533 address, then subtract out the value of __gp. */ 3534 value = (hh->plt_offset 3535 + hppa_info->plt_sec->output_offset 3536 + hppa_info->plt_sec->output_section->vma); 3537 value -= _bfd_get_gp_value (output_bfd); 3538 3539 /* All PLTOFF relocations are basically the same at this point, 3540 except that we need different field selectors for the 21bit 3541 version vs the 14bit versions. */ 3542 if (r_type == R_PARISC_PLTOFF21L) 3543 value = hppa_field_adjust (value, addend, e_lrsel); 3544 else if (r_type == R_PARISC_PLTOFF14F 3545 || r_type == R_PARISC_PLTOFF16F 3546 || r_type == R_PARISC_PLTOFF16WF 3547 || r_type == R_PARISC_PLTOFF16DF) 3548 value = hppa_field_adjust (value, addend, e_fsel); 3549 else 3550 value = hppa_field_adjust (value, addend, e_rrsel); 3551 3552 insn = elf_hppa_relocate_insn (insn, (int) value, r_type); 3553 break; 3554 } 3555 3556 case R_PARISC_LTOFF_FPTR32: 3557 { 3558 /* We may still need to create the FPTR itself if it was for 3559 a local symbol. */ 3560 if (hh == NULL) 3561 { 3562 /* The first two words of an .opd entry are zero. */ 3563 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16); 3564 3565 /* The next word is the address of the function. */ 3566 bfd_put_64 (hppa_info->opd_sec->owner, value + addend, 3567 (hppa_info->opd_sec->contents 3568 + hh->opd_offset + 16)); 3569 3570 /* The last word is our local __gp value. */ 3571 value = _bfd_get_gp_value 3572 (hppa_info->opd_sec->output_section->owner); 3573 bfd_put_64 (hppa_info->opd_sec->owner, value, 3574 hppa_info->opd_sec->contents + hh->opd_offset + 24); 3575 3576 /* The DLT value is the address of the .opd entry. */ 3577 value = (hh->opd_offset 3578 + hppa_info->opd_sec->output_offset 3579 + hppa_info->opd_sec->output_section->vma); 3580 3581 bfd_put_64 (hppa_info->dlt_sec->owner, 3582 value, 3583 hppa_info->dlt_sec->contents + hh->dlt_offset); 3584 } 3585 3586 /* We want the value of the DLT offset for this symbol, not 3587 the symbol's actual address. Note that __gp may not point 3588 to the start of the DLT, so we have to compute the absolute 3589 address, then subtract out the value of __gp. */ 3590 value = (hh->dlt_offset 3591 + hppa_info->dlt_sec->output_offset 3592 + hppa_info->dlt_sec->output_section->vma); 3593 value -= _bfd_get_gp_value (output_bfd); 3594 bfd_put_32 (input_bfd, value, hit_data); 3595 return bfd_reloc_ok; 3596 } 3597 3598 case R_PARISC_LTOFF_FPTR64: 3599 case R_PARISC_LTOFF_TP64: 3600 { 3601 /* We may still need to create the FPTR itself if it was for 3602 a local symbol. */ 3603 if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64) 3604 { 3605 /* The first two words of an .opd entry are zero. */ 3606 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16); 3607 3608 /* The next word is the address of the function. */ 3609 bfd_put_64 (hppa_info->opd_sec->owner, value + addend, 3610 (hppa_info->opd_sec->contents 3611 + hh->opd_offset + 16)); 3612 3613 /* The last word is our local __gp value. */ 3614 value = _bfd_get_gp_value 3615 (hppa_info->opd_sec->output_section->owner); 3616 bfd_put_64 (hppa_info->opd_sec->owner, value, 3617 hppa_info->opd_sec->contents + hh->opd_offset + 24); 3618 3619 /* The DLT value is the address of the .opd entry. */ 3620 value = (hh->opd_offset 3621 + hppa_info->opd_sec->output_offset 3622 + hppa_info->opd_sec->output_section->vma); 3623 3624 bfd_put_64 (hppa_info->dlt_sec->owner, 3625 value, 3626 hppa_info->dlt_sec->contents + hh->dlt_offset); 3627 } 3628 3629 /* We want the value of the DLT offset for this symbol, not 3630 the symbol's actual address. Note that __gp may not point 3631 to the start of the DLT, so we have to compute the absolute 3632 address, then subtract out the value of __gp. */ 3633 value = (hh->dlt_offset 3634 + hppa_info->dlt_sec->output_offset 3635 + hppa_info->dlt_sec->output_section->vma); 3636 value -= _bfd_get_gp_value (output_bfd); 3637 bfd_put_64 (input_bfd, value, hit_data); 3638 return bfd_reloc_ok; 3639 } 3640 3641 case R_PARISC_DIR32: 3642 bfd_put_32 (input_bfd, value + addend, hit_data); 3643 return bfd_reloc_ok; 3644 3645 case R_PARISC_DIR64: 3646 bfd_put_64 (input_bfd, value + addend, hit_data); 3647 return bfd_reloc_ok; 3648 3649 case R_PARISC_GPREL64: 3650 /* Subtract out the global pointer value to make value a DLT 3651 relative address. */ 3652 value -= _bfd_get_gp_value (output_bfd); 3653 3654 bfd_put_64 (input_bfd, value + addend, hit_data); 3655 return bfd_reloc_ok; 3656 3657 case R_PARISC_LTOFF64: 3658 /* We want the value of the DLT offset for this symbol, not 3659 the symbol's actual address. Note that __gp may not point 3660 to the start of the DLT, so we have to compute the absolute 3661 address, then subtract out the value of __gp. */ 3662 value = (hh->dlt_offset 3663 + hppa_info->dlt_sec->output_offset 3664 + hppa_info->dlt_sec->output_section->vma); 3665 value -= _bfd_get_gp_value (output_bfd); 3666 3667 bfd_put_64 (input_bfd, value + addend, hit_data); 3668 return bfd_reloc_ok; 3669 3670 case R_PARISC_PCREL32: 3671 { 3672 /* If this is a call to a function defined in another dynamic 3673 library, then redirect the call to the local stub for this 3674 function. */ 3675 if (sym_sec == NULL || sym_sec->output_section == NULL) 3676 value = (hh->stub_offset + hppa_info->stub_sec->output_offset 3677 + hppa_info->stub_sec->output_section->vma); 3678 3679 /* Turn VALUE into a proper PC relative address. */ 3680 value -= (offset + input_section->output_offset 3681 + input_section->output_section->vma); 3682 3683 value += addend; 3684 value -= 8; 3685 bfd_put_32 (input_bfd, value, hit_data); 3686 return bfd_reloc_ok; 3687 } 3688 3689 case R_PARISC_PCREL64: 3690 { 3691 /* If this is a call to a function defined in another dynamic 3692 library, then redirect the call to the local stub for this 3693 function. */ 3694 if (sym_sec == NULL || sym_sec->output_section == NULL) 3695 value = (hh->stub_offset + hppa_info->stub_sec->output_offset 3696 + hppa_info->stub_sec->output_section->vma); 3697 3698 /* Turn VALUE into a proper PC relative address. */ 3699 value -= (offset + input_section->output_offset 3700 + input_section->output_section->vma); 3701 3702 value += addend; 3703 value -= 8; 3704 bfd_put_64 (input_bfd, value, hit_data); 3705 return bfd_reloc_ok; 3706 } 3707 3708 case R_PARISC_FPTR64: 3709 { 3710 bfd_vma off; 3711 3712 /* We may still need to create the FPTR itself if it was for 3713 a local symbol. */ 3714 if (hh == NULL) 3715 { 3716 bfd_vma *local_opd_offsets; 3717 3718 if (local_offsets == NULL) 3719 abort (); 3720 3721 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info; 3722 off = local_opd_offsets[r_symndx]; 3723 3724 /* The last bit records whether we've already initialised 3725 this local .opd entry. */ 3726 if ((off & 1) != 0) 3727 { 3728 BFD_ASSERT (off != (bfd_vma) -1); 3729 off &= ~1; 3730 } 3731 else 3732 { 3733 /* The first two words of an .opd entry are zero. */ 3734 memset (hppa_info->opd_sec->contents + off, 0, 16); 3735 3736 /* The next word is the address of the function. */ 3737 bfd_put_64 (hppa_info->opd_sec->owner, value + addend, 3738 (hppa_info->opd_sec->contents + off + 16)); 3739 3740 /* The last word is our local __gp value. */ 3741 value = _bfd_get_gp_value 3742 (hppa_info->opd_sec->output_section->owner); 3743 bfd_put_64 (hppa_info->opd_sec->owner, value, 3744 hppa_info->opd_sec->contents + off + 24); 3745 } 3746 } 3747 else 3748 off = hh->opd_offset; 3749 3750 if (hh == NULL || hh->want_opd) 3751 /* We want the value of the OPD offset for this symbol. */ 3752 value = (off 3753 + hppa_info->opd_sec->output_offset 3754 + hppa_info->opd_sec->output_section->vma); 3755 else 3756 /* We want the address of the symbol. */ 3757 value += addend; 3758 3759 bfd_put_64 (input_bfd, value, hit_data); 3760 return bfd_reloc_ok; 3761 } 3762 3763 case R_PARISC_SECREL32: 3764 if (sym_sec) 3765 value -= sym_sec->output_section->vma; 3766 bfd_put_32 (input_bfd, value + addend, hit_data); 3767 return bfd_reloc_ok; 3768 3769 case R_PARISC_SEGREL32: 3770 case R_PARISC_SEGREL64: 3771 { 3772 /* If this is the first SEGREL relocation, then initialize 3773 the segment base values. */ 3774 if (hppa_info->text_segment_base == (bfd_vma) -1) 3775 bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs, 3776 hppa_info); 3777 3778 /* VALUE holds the absolute address. We want to include the 3779 addend, then turn it into a segment relative address. 3780 3781 The segment is derived from SYM_SEC. We assume that there are 3782 only two segments of note in the resulting executable/shlib. 3783 A readonly segment (.text) and a readwrite segment (.data). */ 3784 value += addend; 3785 3786 if (sym_sec->flags & SEC_CODE) 3787 value -= hppa_info->text_segment_base; 3788 else 3789 value -= hppa_info->data_segment_base; 3790 3791 if (r_type == R_PARISC_SEGREL32) 3792 bfd_put_32 (input_bfd, value, hit_data); 3793 else 3794 bfd_put_64 (input_bfd, value, hit_data); 3795 return bfd_reloc_ok; 3796 } 3797 3798 /* Something we don't know how to handle. */ 3799 default: 3800 return bfd_reloc_notsupported; 3801 } 3802 3803 /* Update the instruction word. */ 3804 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data); 3805 return bfd_reloc_ok; 3806 } 3807 3808 /* Relocate an HPPA ELF section. */ 3809 3810 static bfd_boolean 3811 elf64_hppa_relocate_section (bfd *output_bfd, 3812 struct bfd_link_info *info, 3813 bfd *input_bfd, 3814 asection *input_section, 3815 bfd_byte *contents, 3816 Elf_Internal_Rela *relocs, 3817 Elf_Internal_Sym *local_syms, 3818 asection **local_sections) 3819 { 3820 Elf_Internal_Shdr *symtab_hdr; 3821 Elf_Internal_Rela *rel; 3822 Elf_Internal_Rela *relend; 3823 struct elf64_hppa_link_hash_table *hppa_info; 3824 3825 hppa_info = hppa_link_hash_table (info); 3826 if (hppa_info == NULL) 3827 return FALSE; 3828 3829 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 3830 3831 rel = relocs; 3832 relend = relocs + input_section->reloc_count; 3833 for (; rel < relend; rel++) 3834 { 3835 int r_type; 3836 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info); 3837 unsigned long r_symndx; 3838 struct elf_link_hash_entry *eh; 3839 Elf_Internal_Sym *sym; 3840 asection *sym_sec; 3841 bfd_vma relocation; 3842 bfd_reloc_status_type r; 3843 3844 r_type = ELF_R_TYPE (rel->r_info); 3845 if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED) 3846 { 3847 bfd_set_error (bfd_error_bad_value); 3848 return FALSE; 3849 } 3850 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY 3851 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT) 3852 continue; 3853 3854 /* This is a final link. */ 3855 r_symndx = ELF_R_SYM (rel->r_info); 3856 eh = NULL; 3857 sym = NULL; 3858 sym_sec = NULL; 3859 if (r_symndx < symtab_hdr->sh_info) 3860 { 3861 /* This is a local symbol, hh defaults to NULL. */ 3862 sym = local_syms + r_symndx; 3863 sym_sec = local_sections[r_symndx]; 3864 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel); 3865 } 3866 else 3867 { 3868 /* This is not a local symbol. */ 3869 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); 3870 3871 /* It seems this can happen with erroneous or unsupported 3872 input (mixing a.out and elf in an archive, for example.) */ 3873 if (sym_hashes == NULL) 3874 return FALSE; 3875 3876 eh = sym_hashes[r_symndx - symtab_hdr->sh_info]; 3877 3878 if (info->wrap_hash != NULL 3879 && (input_section->flags & SEC_DEBUGGING) != 0) 3880 eh = ((struct elf_link_hash_entry *) 3881 unwrap_hash_lookup (info, input_bfd, &eh->root)); 3882 3883 while (eh->root.type == bfd_link_hash_indirect 3884 || eh->root.type == bfd_link_hash_warning) 3885 eh = (struct elf_link_hash_entry *) eh->root.u.i.link; 3886 3887 relocation = 0; 3888 if (eh->root.type == bfd_link_hash_defined 3889 || eh->root.type == bfd_link_hash_defweak) 3890 { 3891 sym_sec = eh->root.u.def.section; 3892 if (sym_sec != NULL 3893 && sym_sec->output_section != NULL) 3894 relocation = (eh->root.u.def.value 3895 + sym_sec->output_section->vma 3896 + sym_sec->output_offset); 3897 } 3898 else if (eh->root.type == bfd_link_hash_undefweak) 3899 ; 3900 else if (info->unresolved_syms_in_objects == RM_IGNORE 3901 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT) 3902 ; 3903 else if (!bfd_link_relocatable (info) 3904 && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string)) 3905 continue; 3906 else if (!bfd_link_relocatable (info)) 3907 { 3908 bfd_boolean err; 3909 err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR 3910 || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT); 3911 (*info->callbacks->undefined_symbol) (info, 3912 eh->root.root.string, 3913 input_bfd, 3914 input_section, 3915 rel->r_offset, err); 3916 } 3917 3918 if (!bfd_link_relocatable (info) 3919 && relocation == 0 3920 && eh->root.type != bfd_link_hash_defined 3921 && eh->root.type != bfd_link_hash_defweak 3922 && eh->root.type != bfd_link_hash_undefweak) 3923 { 3924 if (info->unresolved_syms_in_objects == RM_IGNORE 3925 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT 3926 && eh->type == STT_PARISC_MILLI) 3927 (*info->callbacks->undefined_symbol) 3928 (info, eh_name (eh), input_bfd, 3929 input_section, rel->r_offset, FALSE); 3930 } 3931 } 3932 3933 if (sym_sec != NULL && discarded_section (sym_sec)) 3934 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 3935 rel, 1, relend, howto, 0, contents); 3936 3937 if (bfd_link_relocatable (info)) 3938 continue; 3939 3940 r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd, 3941 input_section, contents, 3942 relocation, info, sym_sec, 3943 eh); 3944 3945 if (r != bfd_reloc_ok) 3946 { 3947 switch (r) 3948 { 3949 default: 3950 abort (); 3951 case bfd_reloc_overflow: 3952 { 3953 const char *sym_name; 3954 3955 if (eh != NULL) 3956 sym_name = NULL; 3957 else 3958 { 3959 sym_name = bfd_elf_string_from_elf_section (input_bfd, 3960 symtab_hdr->sh_link, 3961 sym->st_name); 3962 if (sym_name == NULL) 3963 return FALSE; 3964 if (*sym_name == '\0') 3965 sym_name = bfd_section_name (input_bfd, sym_sec); 3966 } 3967 3968 (*info->callbacks->reloc_overflow) 3969 (info, (eh ? &eh->root : NULL), sym_name, howto->name, 3970 (bfd_vma) 0, input_bfd, input_section, rel->r_offset); 3971 } 3972 break; 3973 } 3974 } 3975 } 3976 return TRUE; 3977 } 3978 3979 static const struct bfd_elf_special_section elf64_hppa_special_sections[] = 3980 { 3981 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 3982 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 3983 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, 3984 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, 3985 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, 3986 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, 3987 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS }, 3988 { NULL, 0, 0, 0, 0 } 3989 }; 3990 3991 /* The hash bucket size is the standard one, namely 4. */ 3992 3993 const struct elf_size_info hppa64_elf_size_info = 3994 { 3995 sizeof (Elf64_External_Ehdr), 3996 sizeof (Elf64_External_Phdr), 3997 sizeof (Elf64_External_Shdr), 3998 sizeof (Elf64_External_Rel), 3999 sizeof (Elf64_External_Rela), 4000 sizeof (Elf64_External_Sym), 4001 sizeof (Elf64_External_Dyn), 4002 sizeof (Elf_External_Note), 4003 4, 4004 1, 4005 64, 3, 4006 ELFCLASS64, EV_CURRENT, 4007 bfd_elf64_write_out_phdrs, 4008 bfd_elf64_write_shdrs_and_ehdr, 4009 bfd_elf64_checksum_contents, 4010 bfd_elf64_write_relocs, 4011 bfd_elf64_swap_symbol_in, 4012 bfd_elf64_swap_symbol_out, 4013 bfd_elf64_slurp_reloc_table, 4014 bfd_elf64_slurp_symbol_table, 4015 bfd_elf64_swap_dyn_in, 4016 bfd_elf64_swap_dyn_out, 4017 bfd_elf64_swap_reloc_in, 4018 bfd_elf64_swap_reloc_out, 4019 bfd_elf64_swap_reloca_in, 4020 bfd_elf64_swap_reloca_out 4021 }; 4022 4023 #define TARGET_BIG_SYM hppa_elf64_vec 4024 #define TARGET_BIG_NAME "elf64-hppa" 4025 #define ELF_ARCH bfd_arch_hppa 4026 #define ELF_TARGET_ID HPPA64_ELF_DATA 4027 #define ELF_MACHINE_CODE EM_PARISC 4028 /* This is not strictly correct. The maximum page size for PA2.0 is 4029 64M. But everything still uses 4k. */ 4030 #define ELF_MAXPAGESIZE 0x1000 4031 #define ELF_OSABI ELFOSABI_HPUX 4032 4033 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup 4034 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup 4035 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name 4036 #define elf_info_to_howto elf_hppa_info_to_howto 4037 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel 4038 4039 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr 4040 #define elf_backend_object_p elf64_hppa_object_p 4041 #define elf_backend_final_write_processing \ 4042 elf_hppa_final_write_processing 4043 #define elf_backend_fake_sections elf_hppa_fake_sections 4044 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook 4045 4046 #define elf_backend_relocate_section elf_hppa_relocate_section 4047 4048 #define bfd_elf64_bfd_final_link elf_hppa_final_link 4049 4050 #define elf_backend_create_dynamic_sections \ 4051 elf64_hppa_create_dynamic_sections 4052 #define elf_backend_post_process_headers elf64_hppa_post_process_headers 4053 4054 #define elf_backend_omit_section_dynsym \ 4055 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) 4056 #define elf_backend_adjust_dynamic_symbol \ 4057 elf64_hppa_adjust_dynamic_symbol 4058 4059 #define elf_backend_size_dynamic_sections \ 4060 elf64_hppa_size_dynamic_sections 4061 4062 #define elf_backend_finish_dynamic_symbol \ 4063 elf64_hppa_finish_dynamic_symbol 4064 #define elf_backend_finish_dynamic_sections \ 4065 elf64_hppa_finish_dynamic_sections 4066 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus 4067 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo 4068 4069 /* Stuff for the BFD linker: */ 4070 #define bfd_elf64_bfd_link_hash_table_create \ 4071 elf64_hppa_hash_table_create 4072 4073 #define elf_backend_check_relocs \ 4074 elf64_hppa_check_relocs 4075 4076 #define elf_backend_size_info \ 4077 hppa64_elf_size_info 4078 4079 #define elf_backend_additional_program_headers \ 4080 elf64_hppa_additional_program_headers 4081 4082 #define elf_backend_modify_segment_map \ 4083 elf64_hppa_modify_segment_map 4084 4085 #define elf_backend_link_output_symbol_hook \ 4086 elf64_hppa_link_output_symbol_hook 4087 4088 #define elf_backend_want_got_plt 0 4089 #define elf_backend_plt_readonly 0 4090 #define elf_backend_want_plt_sym 0 4091 #define elf_backend_got_header_size 0 4092 #define elf_backend_type_change_ok TRUE 4093 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type 4094 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class 4095 #define elf_backend_rela_normal 1 4096 #define elf_backend_special_sections elf64_hppa_special_sections 4097 #define elf_backend_action_discarded elf_hppa_action_discarded 4098 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr 4099 4100 #define elf64_bed elf64_hppa_hpux_bed 4101 4102 #include "elf64-target.h" 4103 4104 #undef TARGET_BIG_SYM 4105 #define TARGET_BIG_SYM hppa_elf64_linux_vec 4106 #undef TARGET_BIG_NAME 4107 #define TARGET_BIG_NAME "elf64-hppa-linux" 4108 #undef ELF_OSABI 4109 #define ELF_OSABI ELFOSABI_GNU 4110 #undef elf64_bed 4111 #define elf64_bed elf64_hppa_linux_bed 4112 4113 #include "elf64-target.h" 4114