xref: /netbsd-src/external/gpl3/binutils.old/dist/bfd/elf64-hppa.c (revision 4d342c046e3288fb5a1edcd33cfec48c41c80664)
1 /* Support for HPPA 64-bit ELF
2    Copyright (C) 1999-2018 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19    MA 02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include "alloca-conf.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #include "libiberty.h"
30 
31 #define ARCH_SIZE	       64
32 
33 #define PLT_ENTRY_SIZE 0x10
34 #define DLT_ENTRY_SIZE 0x8
35 #define OPD_ENTRY_SIZE 0x20
36 
37 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
38 
39 /* The stub is supposed to load the target address and target's DP
40    value out of the PLT, then do an external branch to the target
41    address.
42 
43    LDD PLTOFF(%r27),%r1
44    BVE (%r1)
45    LDD PLTOFF+8(%r27),%r27
46 
47    Note that we must use the LDD with a 14 bit displacement, not the one
48    with a 5 bit displacement.  */
49 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
50 			  0x53, 0x7b, 0x00, 0x00 };
51 
52 struct elf64_hppa_link_hash_entry
53 {
54   struct elf_link_hash_entry eh;
55 
56   /* Offsets for this symbol in various linker sections.  */
57   bfd_vma dlt_offset;
58   bfd_vma plt_offset;
59   bfd_vma opd_offset;
60   bfd_vma stub_offset;
61 
62   /* The index of the (possibly local) symbol in the input bfd and its
63      associated BFD.  Needed so that we can have relocs against local
64      symbols in shared libraries.  */
65   long sym_indx;
66   bfd *owner;
67 
68   /* Dynamic symbols may need to have two different values.  One for
69      the dynamic symbol table, one for the normal symbol table.
70 
71      In such cases we store the symbol's real value and section
72      index here so we can restore the real value before we write
73      the normal symbol table.  */
74   bfd_vma st_value;
75   int st_shndx;
76 
77   /* Used to count non-got, non-plt relocations for delayed sizing
78      of relocation sections.  */
79   struct elf64_hppa_dyn_reloc_entry
80   {
81     /* Next relocation in the chain.  */
82     struct elf64_hppa_dyn_reloc_entry *next;
83 
84     /* The type of the relocation.  */
85     int type;
86 
87     /* The input section of the relocation.  */
88     asection *sec;
89 
90     /* Number of relocs copied in this section.  */
91     bfd_size_type count;
92 
93     /* The index of the section symbol for the input section of
94        the relocation.  Only needed when building shared libraries.  */
95     int sec_symndx;
96 
97     /* The offset within the input section of the relocation.  */
98     bfd_vma offset;
99 
100     /* The addend for the relocation.  */
101     bfd_vma addend;
102 
103   } *reloc_entries;
104 
105   /* Nonzero if this symbol needs an entry in one of the linker
106      sections.  */
107   unsigned want_dlt;
108   unsigned want_plt;
109   unsigned want_opd;
110   unsigned want_stub;
111 };
112 
113 struct elf64_hppa_link_hash_table
114 {
115   struct elf_link_hash_table root;
116 
117   /* Shortcuts to get to the various linker defined sections.  */
118   asection *dlt_sec;
119   asection *dlt_rel_sec;
120   asection *plt_sec;
121   asection *plt_rel_sec;
122   asection *opd_sec;
123   asection *opd_rel_sec;
124   asection *other_rel_sec;
125 
126   /* Offset of __gp within .plt section.  When the PLT gets large we want
127      to slide __gp into the PLT section so that we can continue to use
128      single DP relative instructions to load values out of the PLT.  */
129   bfd_vma gp_offset;
130 
131   /* Note this is not strictly correct.  We should create a stub section for
132      each input section with calls.  The stub section should be placed before
133      the section with the call.  */
134   asection *stub_sec;
135 
136   bfd_vma text_segment_base;
137   bfd_vma data_segment_base;
138 
139   /* We build tables to map from an input section back to its
140      symbol index.  This is the BFD for which we currently have
141      a map.  */
142   bfd *section_syms_bfd;
143 
144   /* Array of symbol numbers for each input section attached to the
145      current BFD.  */
146   int *section_syms;
147 };
148 
149 #define hppa_link_hash_table(p) \
150   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
151   == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
152 
153 #define hppa_elf_hash_entry(ent) \
154   ((struct elf64_hppa_link_hash_entry *)(ent))
155 
156 #define eh_name(eh) \
157   (eh ? eh->root.root.string : "<undef>")
158 
159 typedef struct bfd_hash_entry *(*new_hash_entry_func)
160   (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
161 
162 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
163   (bfd *abfd);
164 
165 /* This must follow the definitions of the various derived linker
166    hash tables and shared functions.  */
167 #include "elf-hppa.h"
168 
169 static bfd_boolean elf64_hppa_object_p
170   (bfd *);
171 
172 static void elf64_hppa_post_process_headers
173   (bfd *, struct bfd_link_info *);
174 
175 static bfd_boolean elf64_hppa_create_dynamic_sections
176   (bfd *, struct bfd_link_info *);
177 
178 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
179   (struct bfd_link_info *, struct elf_link_hash_entry *);
180 
181 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
182   (struct elf_link_hash_entry *, void *);
183 
184 static bfd_boolean elf64_hppa_size_dynamic_sections
185   (bfd *, struct bfd_link_info *);
186 
187 static int elf64_hppa_link_output_symbol_hook
188   (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
189    asection *, struct elf_link_hash_entry *);
190 
191 static bfd_boolean elf64_hppa_finish_dynamic_symbol
192   (bfd *, struct bfd_link_info *,
193    struct elf_link_hash_entry *, Elf_Internal_Sym *);
194 
195 static bfd_boolean elf64_hppa_finish_dynamic_sections
196   (bfd *, struct bfd_link_info *);
197 
198 static bfd_boolean elf64_hppa_check_relocs
199   (bfd *, struct bfd_link_info *,
200    asection *, const Elf_Internal_Rela *);
201 
202 static bfd_boolean elf64_hppa_dynamic_symbol_p
203   (struct elf_link_hash_entry *, struct bfd_link_info *);
204 
205 static bfd_boolean elf64_hppa_mark_exported_functions
206   (struct elf_link_hash_entry *, void *);
207 
208 static bfd_boolean elf64_hppa_finalize_opd
209   (struct elf_link_hash_entry *, void *);
210 
211 static bfd_boolean elf64_hppa_finalize_dlt
212   (struct elf_link_hash_entry *, void *);
213 
214 static bfd_boolean allocate_global_data_dlt
215   (struct elf_link_hash_entry *, void *);
216 
217 static bfd_boolean allocate_global_data_plt
218   (struct elf_link_hash_entry *, void *);
219 
220 static bfd_boolean allocate_global_data_stub
221   (struct elf_link_hash_entry *, void *);
222 
223 static bfd_boolean allocate_global_data_opd
224   (struct elf_link_hash_entry *, void *);
225 
226 static bfd_boolean get_reloc_section
227   (bfd *, struct elf64_hppa_link_hash_table *, asection *);
228 
229 static bfd_boolean count_dyn_reloc
230   (bfd *, struct elf64_hppa_link_hash_entry *,
231    int, asection *, int, bfd_vma, bfd_vma);
232 
233 static bfd_boolean allocate_dynrel_entries
234   (struct elf_link_hash_entry *, void *);
235 
236 static bfd_boolean elf64_hppa_finalize_dynreloc
237   (struct elf_link_hash_entry *, void *);
238 
239 static bfd_boolean get_opd
240   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
241 
242 static bfd_boolean get_plt
243   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
244 
245 static bfd_boolean get_dlt
246   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
247 
248 static bfd_boolean get_stub
249   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
250 
251 static int elf64_hppa_elf_get_symbol_type
252   (Elf_Internal_Sym *, int);
253 
254 /* Initialize an entry in the link hash table.  */
255 
256 static struct bfd_hash_entry *
257 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
258 			  struct bfd_hash_table *table,
259 			  const char *string)
260 {
261   /* Allocate the structure if it has not already been allocated by a
262      subclass.  */
263   if (entry == NULL)
264     {
265       entry = bfd_hash_allocate (table,
266 				 sizeof (struct elf64_hppa_link_hash_entry));
267       if (entry == NULL)
268 	return entry;
269     }
270 
271   /* Call the allocation method of the superclass.  */
272   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
273   if (entry != NULL)
274     {
275       struct elf64_hppa_link_hash_entry *hh;
276 
277       /* Initialize our local data.  All zeros.  */
278       hh = hppa_elf_hash_entry (entry);
279       memset (&hh->dlt_offset, 0,
280 	      (sizeof (struct elf64_hppa_link_hash_entry)
281 	       - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
282     }
283 
284   return entry;
285 }
286 
287 /* Create the derived linker hash table.  The PA64 ELF port uses this
288    derived hash table to keep information specific to the PA ElF
289    linker (without using static variables).  */
290 
291 static struct bfd_link_hash_table*
292 elf64_hppa_hash_table_create (bfd *abfd)
293 {
294   struct elf64_hppa_link_hash_table *htab;
295   bfd_size_type amt = sizeof (*htab);
296 
297   htab = bfd_zmalloc (amt);
298   if (htab == NULL)
299     return NULL;
300 
301   if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
302 				      hppa64_link_hash_newfunc,
303 				      sizeof (struct elf64_hppa_link_hash_entry),
304 				      HPPA64_ELF_DATA))
305     {
306       free (htab);
307       return NULL;
308     }
309 
310   htab->text_segment_base = (bfd_vma) -1;
311   htab->data_segment_base = (bfd_vma) -1;
312 
313   return &htab->root.root;
314 }
315 
316 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
317 
318    Additionally we set the default architecture and machine.  */
319 static bfd_boolean
320 elf64_hppa_object_p (bfd *abfd)
321 {
322   Elf_Internal_Ehdr * i_ehdrp;
323   unsigned int flags;
324 
325   i_ehdrp = elf_elfheader (abfd);
326   if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
327     {
328       /* GCC on hppa-linux produces binaries with OSABI=GNU,
329 	 but the kernel produces corefiles with OSABI=SysV.  */
330       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
331 	  && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
332 	return FALSE;
333     }
334   else
335     {
336       /* HPUX produces binaries with OSABI=HPUX,
337 	 but the kernel produces corefiles with OSABI=SysV.  */
338       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
339 	  && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
340 	return FALSE;
341     }
342 
343   flags = i_ehdrp->e_flags;
344   switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
345     {
346     case EFA_PARISC_1_0:
347       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
348     case EFA_PARISC_1_1:
349       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
350     case EFA_PARISC_2_0:
351       if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
352 	return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
353       else
354 	return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
355     case EFA_PARISC_2_0 | EF_PARISC_WIDE:
356       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
357     }
358   /* Don't be fussy.  */
359   return TRUE;
360 }
361 
362 /* Given section type (hdr->sh_type), return a boolean indicating
363    whether or not the section is an elf64-hppa specific section.  */
364 static bfd_boolean
365 elf64_hppa_section_from_shdr (bfd *abfd,
366 			      Elf_Internal_Shdr *hdr,
367 			      const char *name,
368 			      int shindex)
369 {
370   switch (hdr->sh_type)
371     {
372     case SHT_PARISC_EXT:
373       if (strcmp (name, ".PARISC.archext") != 0)
374 	return FALSE;
375       break;
376     case SHT_PARISC_UNWIND:
377       if (strcmp (name, ".PARISC.unwind") != 0)
378 	return FALSE;
379       break;
380     case SHT_PARISC_DOC:
381     case SHT_PARISC_ANNOT:
382     default:
383       return FALSE;
384     }
385 
386   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
387     return FALSE;
388 
389   return TRUE;
390 }
391 
392 /* SEC is a section containing relocs for an input BFD when linking; return
393    a suitable section for holding relocs in the output BFD for a link.  */
394 
395 static bfd_boolean
396 get_reloc_section (bfd *abfd,
397 		   struct elf64_hppa_link_hash_table *hppa_info,
398 		   asection *sec)
399 {
400   const char *srel_name;
401   asection *srel;
402   bfd *dynobj;
403 
404   srel_name = (bfd_elf_string_from_elf_section
405 	       (abfd, elf_elfheader(abfd)->e_shstrndx,
406 		_bfd_elf_single_rel_hdr(sec)->sh_name));
407   if (srel_name == NULL)
408     return FALSE;
409 
410   dynobj = hppa_info->root.dynobj;
411   if (!dynobj)
412     hppa_info->root.dynobj = dynobj = abfd;
413 
414   srel = bfd_get_linker_section (dynobj, srel_name);
415   if (srel == NULL)
416     {
417       srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
418 						 (SEC_ALLOC
419 						  | SEC_LOAD
420 						  | SEC_HAS_CONTENTS
421 						  | SEC_IN_MEMORY
422 						  | SEC_LINKER_CREATED
423 						  | SEC_READONLY));
424       if (srel == NULL
425 	  || !bfd_set_section_alignment (dynobj, srel, 3))
426 	return FALSE;
427     }
428 
429   hppa_info->other_rel_sec = srel;
430   return TRUE;
431 }
432 
433 /* Add a new entry to the list of dynamic relocations against DYN_H.
434 
435    We use this to keep a record of all the FPTR relocations against a
436    particular symbol so that we can create FPTR relocations in the
437    output file.  */
438 
439 static bfd_boolean
440 count_dyn_reloc (bfd *abfd,
441 		 struct elf64_hppa_link_hash_entry *hh,
442 		 int type,
443 		 asection *sec,
444 		 int sec_symndx,
445 		 bfd_vma offset,
446 		 bfd_vma addend)
447 {
448   struct elf64_hppa_dyn_reloc_entry *rent;
449 
450   rent = (struct elf64_hppa_dyn_reloc_entry *)
451   bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
452   if (!rent)
453     return FALSE;
454 
455   rent->next = hh->reloc_entries;
456   rent->type = type;
457   rent->sec = sec;
458   rent->sec_symndx = sec_symndx;
459   rent->offset = offset;
460   rent->addend = addend;
461   hh->reloc_entries = rent;
462 
463   return TRUE;
464 }
465 
466 /* Return a pointer to the local DLT, PLT and OPD reference counts
467    for ABFD.  Returns NULL if the storage allocation fails.  */
468 
469 static bfd_signed_vma *
470 hppa64_elf_local_refcounts (bfd *abfd)
471 {
472   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
473   bfd_signed_vma *local_refcounts;
474 
475   local_refcounts = elf_local_got_refcounts (abfd);
476   if (local_refcounts == NULL)
477     {
478       bfd_size_type size;
479 
480       /* Allocate space for local DLT, PLT and OPD reference
481 	 counts.  Done this way to save polluting elf_obj_tdata
482 	 with another target specific pointer.  */
483       size = symtab_hdr->sh_info;
484       size *= 3 * sizeof (bfd_signed_vma);
485       local_refcounts = bfd_zalloc (abfd, size);
486       elf_local_got_refcounts (abfd) = local_refcounts;
487     }
488   return local_refcounts;
489 }
490 
491 /* Scan the RELOCS and record the type of dynamic entries that each
492    referenced symbol needs.  */
493 
494 static bfd_boolean
495 elf64_hppa_check_relocs (bfd *abfd,
496 			 struct bfd_link_info *info,
497 			 asection *sec,
498 			 const Elf_Internal_Rela *relocs)
499 {
500   struct elf64_hppa_link_hash_table *hppa_info;
501   const Elf_Internal_Rela *relend;
502   Elf_Internal_Shdr *symtab_hdr;
503   const Elf_Internal_Rela *rel;
504   unsigned int sec_symndx;
505 
506   if (bfd_link_relocatable (info))
507     return TRUE;
508 
509   /* If this is the first dynamic object found in the link, create
510      the special sections required for dynamic linking.  */
511   if (! elf_hash_table (info)->dynamic_sections_created)
512     {
513       if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
514 	return FALSE;
515     }
516 
517   hppa_info = hppa_link_hash_table (info);
518   if (hppa_info == NULL)
519     return FALSE;
520   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
521 
522   /* If necessary, build a new table holding section symbols indices
523      for this BFD.  */
524 
525   if (bfd_link_pic (info) && hppa_info->section_syms_bfd != abfd)
526     {
527       unsigned long i;
528       unsigned int highest_shndx;
529       Elf_Internal_Sym *local_syms = NULL;
530       Elf_Internal_Sym *isym, *isymend;
531       bfd_size_type amt;
532 
533       /* We're done with the old cache of section index to section symbol
534 	 index information.  Free it.
535 
536 	 ?!? Note we leak the last section_syms array.  Presumably we
537 	 could free it in one of the later routines in this file.  */
538       if (hppa_info->section_syms)
539 	free (hppa_info->section_syms);
540 
541       /* Read this BFD's local symbols.  */
542       if (symtab_hdr->sh_info != 0)
543 	{
544 	  local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
545 	  if (local_syms == NULL)
546 	    local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
547 					       symtab_hdr->sh_info, 0,
548 					       NULL, NULL, NULL);
549 	  if (local_syms == NULL)
550 	    return FALSE;
551 	}
552 
553       /* Record the highest section index referenced by the local symbols.  */
554       highest_shndx = 0;
555       isymend = local_syms + symtab_hdr->sh_info;
556       for (isym = local_syms; isym < isymend; isym++)
557 	{
558 	  if (isym->st_shndx > highest_shndx
559 	      && isym->st_shndx < SHN_LORESERVE)
560 	    highest_shndx = isym->st_shndx;
561 	}
562 
563       /* Allocate an array to hold the section index to section symbol index
564 	 mapping.  Bump by one since we start counting at zero.  */
565       highest_shndx++;
566       amt = highest_shndx;
567       amt *= sizeof (int);
568       hppa_info->section_syms = (int *) bfd_malloc (amt);
569 
570       /* Now walk the local symbols again.  If we find a section symbol,
571 	 record the index of the symbol into the section_syms array.  */
572       for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
573 	{
574 	  if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
575 	    hppa_info->section_syms[isym->st_shndx] = i;
576 	}
577 
578       /* We are finished with the local symbols.  */
579       if (local_syms != NULL
580 	  && symtab_hdr->contents != (unsigned char *) local_syms)
581 	{
582 	  if (! info->keep_memory)
583 	    free (local_syms);
584 	  else
585 	    {
586 	      /* Cache the symbols for elf_link_input_bfd.  */
587 	      symtab_hdr->contents = (unsigned char *) local_syms;
588 	    }
589 	}
590 
591       /* Record which BFD we built the section_syms mapping for.  */
592       hppa_info->section_syms_bfd = abfd;
593     }
594 
595   /* Record the symbol index for this input section.  We may need it for
596      relocations when building shared libraries.  When not building shared
597      libraries this value is never really used, but assign it to zero to
598      prevent out of bounds memory accesses in other routines.  */
599   if (bfd_link_pic (info))
600     {
601       sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
602 
603       /* If we did not find a section symbol for this section, then
604 	 something went terribly wrong above.  */
605       if (sec_symndx == SHN_BAD)
606 	return FALSE;
607 
608       if (sec_symndx < SHN_LORESERVE)
609 	sec_symndx = hppa_info->section_syms[sec_symndx];
610       else
611 	sec_symndx = 0;
612     }
613   else
614     sec_symndx = 0;
615 
616   relend = relocs + sec->reloc_count;
617   for (rel = relocs; rel < relend; ++rel)
618     {
619       enum
620 	{
621 	  NEED_DLT = 1,
622 	  NEED_PLT = 2,
623 	  NEED_STUB = 4,
624 	  NEED_OPD = 8,
625 	  NEED_DYNREL = 16,
626 	};
627 
628       unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
629       struct elf64_hppa_link_hash_entry *hh;
630       int need_entry;
631       bfd_boolean maybe_dynamic;
632       int dynrel_type = R_PARISC_NONE;
633       static reloc_howto_type *howto;
634 
635       if (r_symndx >= symtab_hdr->sh_info)
636 	{
637 	  /* We're dealing with a global symbol -- find its hash entry
638 	     and mark it as being referenced.  */
639 	  long indx = r_symndx - symtab_hdr->sh_info;
640 	  hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
641 	  while (hh->eh.root.type == bfd_link_hash_indirect
642 		 || hh->eh.root.type == bfd_link_hash_warning)
643 	    hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
644 
645 	  /* PR15323, ref flags aren't set for references in the same
646 	     object.  */
647 	  hh->eh.ref_regular = 1;
648 	}
649       else
650 	hh = NULL;
651 
652       /* We can only get preliminary data on whether a symbol is
653 	 locally or externally defined, as not all of the input files
654 	 have yet been processed.  Do something with what we know, as
655 	 this may help reduce memory usage and processing time later.  */
656       maybe_dynamic = FALSE;
657       if (hh && ((bfd_link_pic (info)
658 		 && (!info->symbolic
659 		     || info->unresolved_syms_in_shared_libs == RM_IGNORE))
660 		|| !hh->eh.def_regular
661 		|| hh->eh.root.type == bfd_link_hash_defweak))
662 	maybe_dynamic = TRUE;
663 
664       howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
665       need_entry = 0;
666       switch (howto->type)
667 	{
668 	/* These are simple indirect references to symbols through the
669 	   DLT.  We need to create a DLT entry for any symbols which
670 	   appears in a DLTIND relocation.  */
671 	case R_PARISC_DLTIND21L:
672 	case R_PARISC_DLTIND14R:
673 	case R_PARISC_DLTIND14F:
674 	case R_PARISC_DLTIND14WR:
675 	case R_PARISC_DLTIND14DR:
676 	  need_entry = NEED_DLT;
677 	  break;
678 
679 	/* ?!?  These need a DLT entry.  But I have no idea what to do with
680 	   the "link time TP value.  */
681 	case R_PARISC_LTOFF_TP21L:
682 	case R_PARISC_LTOFF_TP14R:
683 	case R_PARISC_LTOFF_TP14F:
684 	case R_PARISC_LTOFF_TP64:
685 	case R_PARISC_LTOFF_TP14WR:
686 	case R_PARISC_LTOFF_TP14DR:
687 	case R_PARISC_LTOFF_TP16F:
688 	case R_PARISC_LTOFF_TP16WF:
689 	case R_PARISC_LTOFF_TP16DF:
690 	  need_entry = NEED_DLT;
691 	  break;
692 
693 	/* These are function calls.  Depending on their precise target we
694 	   may need to make a stub for them.  The stub uses the PLT, so we
695 	   need to create PLT entries for these symbols too.  */
696 	case R_PARISC_PCREL12F:
697 	case R_PARISC_PCREL17F:
698 	case R_PARISC_PCREL22F:
699 	case R_PARISC_PCREL32:
700 	case R_PARISC_PCREL64:
701 	case R_PARISC_PCREL21L:
702 	case R_PARISC_PCREL17R:
703 	case R_PARISC_PCREL17C:
704 	case R_PARISC_PCREL14R:
705 	case R_PARISC_PCREL14F:
706 	case R_PARISC_PCREL22C:
707 	case R_PARISC_PCREL14WR:
708 	case R_PARISC_PCREL14DR:
709 	case R_PARISC_PCREL16F:
710 	case R_PARISC_PCREL16WF:
711 	case R_PARISC_PCREL16DF:
712 	  /* Function calls might need to go through the .plt, and
713 	     might need a long branch stub.  */
714 	  if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
715 	    need_entry = (NEED_PLT | NEED_STUB);
716 	  else
717 	    need_entry = 0;
718 	  break;
719 
720 	case R_PARISC_PLTOFF21L:
721 	case R_PARISC_PLTOFF14R:
722 	case R_PARISC_PLTOFF14F:
723 	case R_PARISC_PLTOFF14WR:
724 	case R_PARISC_PLTOFF14DR:
725 	case R_PARISC_PLTOFF16F:
726 	case R_PARISC_PLTOFF16WF:
727 	case R_PARISC_PLTOFF16DF:
728 	  need_entry = (NEED_PLT);
729 	  break;
730 
731 	case R_PARISC_DIR64:
732 	  if (bfd_link_pic (info) || maybe_dynamic)
733 	    need_entry = (NEED_DYNREL);
734 	  dynrel_type = R_PARISC_DIR64;
735 	  break;
736 
737 	/* This is an indirect reference through the DLT to get the address
738 	   of a OPD descriptor.  Thus we need to make a DLT entry that points
739 	   to an OPD entry.  */
740 	case R_PARISC_LTOFF_FPTR21L:
741 	case R_PARISC_LTOFF_FPTR14R:
742 	case R_PARISC_LTOFF_FPTR14WR:
743 	case R_PARISC_LTOFF_FPTR14DR:
744 	case R_PARISC_LTOFF_FPTR32:
745 	case R_PARISC_LTOFF_FPTR64:
746 	case R_PARISC_LTOFF_FPTR16F:
747 	case R_PARISC_LTOFF_FPTR16WF:
748 	case R_PARISC_LTOFF_FPTR16DF:
749 	  if (bfd_link_pic (info) || maybe_dynamic)
750 	    need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
751 	  else
752 	    need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
753 	  dynrel_type = R_PARISC_FPTR64;
754 	  break;
755 
756 	/* This is a simple OPD entry.  */
757 	case R_PARISC_FPTR64:
758 	  if (bfd_link_pic (info) || maybe_dynamic)
759 	    need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
760 	  else
761 	    need_entry = (NEED_OPD | NEED_PLT);
762 	  dynrel_type = R_PARISC_FPTR64;
763 	  break;
764 
765 	/* Add more cases as needed.  */
766 	}
767 
768       if (!need_entry)
769 	continue;
770 
771       if (hh)
772 	{
773 	  /* Stash away enough information to be able to find this symbol
774 	     regardless of whether or not it is local or global.  */
775 	  hh->owner = abfd;
776 	  hh->sym_indx = r_symndx;
777 	}
778 
779       /* Create what's needed.  */
780       if (need_entry & NEED_DLT)
781 	{
782 	  /* Allocate space for a DLT entry, as well as a dynamic
783 	     relocation for this entry.  */
784 	  if (! hppa_info->dlt_sec
785 	      && ! get_dlt (abfd, info, hppa_info))
786 	    goto err_out;
787 
788 	  if (hh != NULL)
789 	    {
790 	      hh->want_dlt = 1;
791 	      hh->eh.got.refcount += 1;
792 	    }
793 	  else
794 	    {
795 	      bfd_signed_vma *local_dlt_refcounts;
796 
797 	      /* This is a DLT entry for a local symbol.  */
798 	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
799 	      if (local_dlt_refcounts == NULL)
800 		return FALSE;
801 	      local_dlt_refcounts[r_symndx] += 1;
802 	    }
803 	}
804 
805       if (need_entry & NEED_PLT)
806 	{
807 	  if (! hppa_info->plt_sec
808 	      && ! get_plt (abfd, info, hppa_info))
809 	    goto err_out;
810 
811 	  if (hh != NULL)
812 	    {
813 	      hh->want_plt = 1;
814 	      hh->eh.needs_plt = 1;
815 	      hh->eh.plt.refcount += 1;
816 	    }
817 	  else
818 	    {
819 	      bfd_signed_vma *local_dlt_refcounts;
820 	      bfd_signed_vma *local_plt_refcounts;
821 
822 	      /* This is a PLT entry for a local symbol.  */
823 	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
824 	      if (local_dlt_refcounts == NULL)
825 		return FALSE;
826 	      local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
827 	      local_plt_refcounts[r_symndx] += 1;
828 	    }
829 	}
830 
831       if (need_entry & NEED_STUB)
832 	{
833 	  if (! hppa_info->stub_sec
834 	      && ! get_stub (abfd, info, hppa_info))
835 	    goto err_out;
836 	  if (hh)
837 	    hh->want_stub = 1;
838 	}
839 
840       if (need_entry & NEED_OPD)
841 	{
842 	  if (! hppa_info->opd_sec
843 	      && ! get_opd (abfd, info, hppa_info))
844 	    goto err_out;
845 
846 	  /* FPTRs are not allocated by the dynamic linker for PA64,
847 	     though it is possible that will change in the future.  */
848 
849 	  if (hh != NULL)
850 	    hh->want_opd = 1;
851 	  else
852 	    {
853 	      bfd_signed_vma *local_dlt_refcounts;
854 	      bfd_signed_vma *local_opd_refcounts;
855 
856 	      /* This is a OPD for a local symbol.  */
857 	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
858 	      if (local_dlt_refcounts == NULL)
859 		return FALSE;
860 	      local_opd_refcounts = (local_dlt_refcounts
861 				     + 2 * symtab_hdr->sh_info);
862 	      local_opd_refcounts[r_symndx] += 1;
863 	    }
864 	}
865 
866       /* Add a new dynamic relocation to the chain of dynamic
867 	 relocations for this symbol.  */
868       if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
869 	{
870 	  if (! hppa_info->other_rel_sec
871 	      && ! get_reloc_section (abfd, hppa_info, sec))
872 	    goto err_out;
873 
874 	  /* Count dynamic relocations against global symbols.  */
875 	  if (hh != NULL
876 	      && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
877 				   sec_symndx, rel->r_offset, rel->r_addend))
878 	    goto err_out;
879 
880 	  /* If we are building a shared library and we just recorded
881 	     a dynamic R_PARISC_FPTR64 relocation, then make sure the
882 	     section symbol for this section ends up in the dynamic
883 	     symbol table.  */
884 	  if (bfd_link_pic (info) && dynrel_type == R_PARISC_FPTR64
885 	      && ! (bfd_elf_link_record_local_dynamic_symbol
886 		    (info, abfd, sec_symndx)))
887 	    return FALSE;
888 	}
889     }
890 
891   return TRUE;
892 
893  err_out:
894   return FALSE;
895 }
896 
897 struct elf64_hppa_allocate_data
898 {
899   struct bfd_link_info *info;
900   bfd_size_type ofs;
901 };
902 
903 /* Should we do dynamic things to this symbol?  */
904 
905 static bfd_boolean
906 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
907 			     struct bfd_link_info *info)
908 {
909   /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
910      and relocations that retrieve a function descriptor?  Assume the
911      worst for now.  */
912   if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
913     {
914       /* ??? Why is this here and not elsewhere is_local_label_name.  */
915       if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
916 	return FALSE;
917 
918       return TRUE;
919     }
920   else
921     return FALSE;
922 }
923 
924 /* Mark all functions exported by this file so that we can later allocate
925    entries in .opd for them.  */
926 
927 static bfd_boolean
928 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
929 {
930   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
931   struct bfd_link_info *info = (struct bfd_link_info *)data;
932   struct elf64_hppa_link_hash_table *hppa_info;
933 
934   hppa_info = hppa_link_hash_table (info);
935   if (hppa_info == NULL)
936     return FALSE;
937 
938   if (eh
939       && (eh->root.type == bfd_link_hash_defined
940 	  || eh->root.type == bfd_link_hash_defweak)
941       && eh->root.u.def.section->output_section != NULL
942       && eh->type == STT_FUNC)
943     {
944       if (! hppa_info->opd_sec
945 	  && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
946 	return FALSE;
947 
948       hh->want_opd = 1;
949 
950       /* Put a flag here for output_symbol_hook.  */
951       hh->st_shndx = -1;
952       eh->needs_plt = 1;
953     }
954 
955   return TRUE;
956 }
957 
958 /* Allocate space for a DLT entry.  */
959 
960 static bfd_boolean
961 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
962 {
963   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
964   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
965 
966   if (hh->want_dlt)
967     {
968       if (bfd_link_pic (x->info))
969 	{
970 	  /* Possibly add the symbol to the local dynamic symbol
971 	     table since we might need to create a dynamic relocation
972 	     against it.  */
973 	  if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
974 	    {
975 	      bfd *owner = eh->root.u.def.section->owner;
976 
977 	      if (! (bfd_elf_link_record_local_dynamic_symbol
978 		     (x->info, owner, hh->sym_indx)))
979 		return FALSE;
980 	    }
981 	}
982 
983       hh->dlt_offset = x->ofs;
984       x->ofs += DLT_ENTRY_SIZE;
985     }
986   return TRUE;
987 }
988 
989 /* Allocate space for a DLT.PLT entry.  */
990 
991 static bfd_boolean
992 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
993 {
994   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
995   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
996 
997   if (hh->want_plt
998       && elf64_hppa_dynamic_symbol_p (eh, x->info)
999       && !((eh->root.type == bfd_link_hash_defined
1000 	    || eh->root.type == bfd_link_hash_defweak)
1001 	   && eh->root.u.def.section->output_section != NULL))
1002     {
1003       hh->plt_offset = x->ofs;
1004       x->ofs += PLT_ENTRY_SIZE;
1005       if (hh->plt_offset < 0x2000)
1006 	{
1007 	  struct elf64_hppa_link_hash_table *hppa_info;
1008 
1009 	  hppa_info = hppa_link_hash_table (x->info);
1010 	  if (hppa_info == NULL)
1011 	    return FALSE;
1012 
1013 	  hppa_info->gp_offset = hh->plt_offset;
1014 	}
1015     }
1016   else
1017     hh->want_plt = 0;
1018 
1019   return TRUE;
1020 }
1021 
1022 /* Allocate space for a STUB entry.  */
1023 
1024 static bfd_boolean
1025 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1026 {
1027   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1028   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1029 
1030   if (hh->want_stub
1031       && elf64_hppa_dynamic_symbol_p (eh, x->info)
1032       && !((eh->root.type == bfd_link_hash_defined
1033 	    || eh->root.type == bfd_link_hash_defweak)
1034 	   && eh->root.u.def.section->output_section != NULL))
1035     {
1036       hh->stub_offset = x->ofs;
1037       x->ofs += sizeof (plt_stub);
1038     }
1039   else
1040     hh->want_stub = 0;
1041   return TRUE;
1042 }
1043 
1044 /* Allocate space for a FPTR entry.  */
1045 
1046 static bfd_boolean
1047 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1048 {
1049   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1050   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1051 
1052   if (hh && hh->want_opd)
1053     {
1054       /* We never need an opd entry for a symbol which is not
1055 	 defined by this output file.  */
1056       if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1057 		 || hh->eh.root.type == bfd_link_hash_undefweak
1058 		 || hh->eh.root.u.def.section->output_section == NULL))
1059 	hh->want_opd = 0;
1060 
1061       /* If we are creating a shared library, took the address of a local
1062 	 function or might export this function from this object file, then
1063 	 we have to create an opd descriptor.  */
1064       else if (bfd_link_pic (x->info)
1065 	       || hh == NULL
1066 	       || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1067 	       || (hh->eh.root.type == bfd_link_hash_defined
1068 		   || hh->eh.root.type == bfd_link_hash_defweak))
1069 	{
1070 	  /* If we are creating a shared library, then we will have to
1071 	     create a runtime relocation for the symbol to properly
1072 	     initialize the .opd entry.  Make sure the symbol gets
1073 	     added to the dynamic symbol table.  */
1074 	  if (bfd_link_pic (x->info)
1075 	      && (hh == NULL || (hh->eh.dynindx == -1)))
1076 	    {
1077 	      bfd *owner;
1078 	      /* PR 6511: Default to using the dynamic symbol table.  */
1079 	      owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1080 
1081 	      if (!bfd_elf_link_record_local_dynamic_symbol
1082 		    (x->info, owner, hh->sym_indx))
1083 		return FALSE;
1084 	    }
1085 
1086 	  /* This may not be necessary or desirable anymore now that
1087 	     we have some support for dealing with section symbols
1088 	     in dynamic relocs.  But name munging does make the result
1089 	     much easier to debug.  ie, the EPLT reloc will reference
1090 	     a symbol like .foobar, instead of .text + offset.  */
1091 	  if (bfd_link_pic (x->info) && eh)
1092 	    {
1093 	      char *new_name;
1094 	      struct elf_link_hash_entry *nh;
1095 
1096 	      new_name = concat (".", eh->root.root.string, NULL);
1097 
1098 	      nh = elf_link_hash_lookup (elf_hash_table (x->info),
1099 					 new_name, TRUE, TRUE, TRUE);
1100 
1101 	      free (new_name);
1102 	      nh->root.type = eh->root.type;
1103 	      nh->root.u.def.value = eh->root.u.def.value;
1104 	      nh->root.u.def.section = eh->root.u.def.section;
1105 
1106 	      if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1107 		return FALSE;
1108 	     }
1109 	  hh->opd_offset = x->ofs;
1110 	  x->ofs += OPD_ENTRY_SIZE;
1111 	}
1112 
1113       /* Otherwise we do not need an opd entry.  */
1114       else
1115 	hh->want_opd = 0;
1116     }
1117   return TRUE;
1118 }
1119 
1120 /* HP requires the EI_OSABI field to be filled in.  The assignment to
1121    EI_ABIVERSION may not be strictly necessary.  */
1122 
1123 static void
1124 elf64_hppa_post_process_headers (bfd *abfd,
1125 			 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
1126 {
1127   Elf_Internal_Ehdr * i_ehdrp;
1128 
1129   i_ehdrp = elf_elfheader (abfd);
1130 
1131   i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1132   i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1133 }
1134 
1135 /* Create function descriptor section (.opd).  This section is called .opd
1136    because it contains "official procedure descriptors".  The "official"
1137    refers to the fact that these descriptors are used when taking the address
1138    of a procedure, thus ensuring a unique address for each procedure.  */
1139 
1140 static bfd_boolean
1141 get_opd (bfd *abfd,
1142 	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1143 	 struct elf64_hppa_link_hash_table *hppa_info)
1144 {
1145   asection *opd;
1146   bfd *dynobj;
1147 
1148   opd = hppa_info->opd_sec;
1149   if (!opd)
1150     {
1151       dynobj = hppa_info->root.dynobj;
1152       if (!dynobj)
1153 	hppa_info->root.dynobj = dynobj = abfd;
1154 
1155       opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1156 						(SEC_ALLOC
1157 						 | SEC_LOAD
1158 						 | SEC_HAS_CONTENTS
1159 						 | SEC_IN_MEMORY
1160 						 | SEC_LINKER_CREATED));
1161       if (!opd
1162 	  || !bfd_set_section_alignment (abfd, opd, 3))
1163 	{
1164 	  BFD_ASSERT (0);
1165 	  return FALSE;
1166 	}
1167 
1168       hppa_info->opd_sec = opd;
1169     }
1170 
1171   return TRUE;
1172 }
1173 
1174 /* Create the PLT section.  */
1175 
1176 static bfd_boolean
1177 get_plt (bfd *abfd,
1178 	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1179 	 struct elf64_hppa_link_hash_table *hppa_info)
1180 {
1181   asection *plt;
1182   bfd *dynobj;
1183 
1184   plt = hppa_info->plt_sec;
1185   if (!plt)
1186     {
1187       dynobj = hppa_info->root.dynobj;
1188       if (!dynobj)
1189 	hppa_info->root.dynobj = dynobj = abfd;
1190 
1191       plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1192 						(SEC_ALLOC
1193 						 | SEC_LOAD
1194 						 | SEC_HAS_CONTENTS
1195 						 | SEC_IN_MEMORY
1196 						 | SEC_LINKER_CREATED));
1197       if (!plt
1198 	  || !bfd_set_section_alignment (abfd, plt, 3))
1199 	{
1200 	  BFD_ASSERT (0);
1201 	  return FALSE;
1202 	}
1203 
1204       hppa_info->plt_sec = plt;
1205     }
1206 
1207   return TRUE;
1208 }
1209 
1210 /* Create the DLT section.  */
1211 
1212 static bfd_boolean
1213 get_dlt (bfd *abfd,
1214 	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1215 	 struct elf64_hppa_link_hash_table *hppa_info)
1216 {
1217   asection *dlt;
1218   bfd *dynobj;
1219 
1220   dlt = hppa_info->dlt_sec;
1221   if (!dlt)
1222     {
1223       dynobj = hppa_info->root.dynobj;
1224       if (!dynobj)
1225 	hppa_info->root.dynobj = dynobj = abfd;
1226 
1227       dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1228 						(SEC_ALLOC
1229 						 | SEC_LOAD
1230 						 | SEC_HAS_CONTENTS
1231 						 | SEC_IN_MEMORY
1232 						 | SEC_LINKER_CREATED));
1233       if (!dlt
1234 	  || !bfd_set_section_alignment (abfd, dlt, 3))
1235 	{
1236 	  BFD_ASSERT (0);
1237 	  return FALSE;
1238 	}
1239 
1240       hppa_info->dlt_sec = dlt;
1241     }
1242 
1243   return TRUE;
1244 }
1245 
1246 /* Create the stubs section.  */
1247 
1248 static bfd_boolean
1249 get_stub (bfd *abfd,
1250 	  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1251 	  struct elf64_hppa_link_hash_table *hppa_info)
1252 {
1253   asection *stub;
1254   bfd *dynobj;
1255 
1256   stub = hppa_info->stub_sec;
1257   if (!stub)
1258     {
1259       dynobj = hppa_info->root.dynobj;
1260       if (!dynobj)
1261 	hppa_info->root.dynobj = dynobj = abfd;
1262 
1263       stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1264 						 (SEC_ALLOC | SEC_LOAD
1265 						  | SEC_HAS_CONTENTS
1266 						  | SEC_IN_MEMORY
1267 						  | SEC_READONLY
1268 						  | SEC_LINKER_CREATED));
1269       if (!stub
1270 	  || !bfd_set_section_alignment (abfd, stub, 3))
1271 	{
1272 	  BFD_ASSERT (0);
1273 	  return FALSE;
1274 	}
1275 
1276       hppa_info->stub_sec = stub;
1277     }
1278 
1279   return TRUE;
1280 }
1281 
1282 /* Create sections necessary for dynamic linking.  This is only a rough
1283    cut and will likely change as we learn more about the somewhat
1284    unusual dynamic linking scheme HP uses.
1285 
1286    .stub:
1287 	Contains code to implement cross-space calls.  The first time one
1288 	of the stubs is used it will call into the dynamic linker, later
1289 	calls will go straight to the target.
1290 
1291 	The only stub we support right now looks like
1292 
1293 	ldd OFFSET(%dp),%r1
1294 	bve %r0(%r1)
1295 	ldd OFFSET+8(%dp),%dp
1296 
1297 	Other stubs may be needed in the future.  We may want the remove
1298 	the break/nop instruction.  It is only used right now to keep the
1299 	offset of a .plt entry and a .stub entry in sync.
1300 
1301    .dlt:
1302 	This is what most people call the .got.  HP used a different name.
1303 	Losers.
1304 
1305    .rela.dlt:
1306 	Relocations for the DLT.
1307 
1308    .plt:
1309 	Function pointers as address,gp pairs.
1310 
1311    .rela.plt:
1312 	Should contain dynamic IPLT (and EPLT?) relocations.
1313 
1314    .opd:
1315 	FPTRS
1316 
1317    .rela.opd:
1318 	EPLT relocations for symbols exported from shared libraries.  */
1319 
1320 static bfd_boolean
1321 elf64_hppa_create_dynamic_sections (bfd *abfd,
1322 				    struct bfd_link_info *info)
1323 {
1324   asection *s;
1325   struct elf64_hppa_link_hash_table *hppa_info;
1326 
1327   hppa_info = hppa_link_hash_table (info);
1328   if (hppa_info == NULL)
1329     return FALSE;
1330 
1331   if (! get_stub (abfd, info, hppa_info))
1332     return FALSE;
1333 
1334   if (! get_dlt (abfd, info, hppa_info))
1335     return FALSE;
1336 
1337   if (! get_plt (abfd, info, hppa_info))
1338     return FALSE;
1339 
1340   if (! get_opd (abfd, info, hppa_info))
1341     return FALSE;
1342 
1343   s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1344 					  (SEC_ALLOC | SEC_LOAD
1345 					   | SEC_HAS_CONTENTS
1346 					   | SEC_IN_MEMORY
1347 					   | SEC_READONLY
1348 					   | SEC_LINKER_CREATED));
1349   if (s == NULL
1350       || !bfd_set_section_alignment (abfd, s, 3))
1351     return FALSE;
1352   hppa_info->dlt_rel_sec = s;
1353 
1354   s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1355 					  (SEC_ALLOC | SEC_LOAD
1356 					   | SEC_HAS_CONTENTS
1357 					   | SEC_IN_MEMORY
1358 					   | SEC_READONLY
1359 					   | SEC_LINKER_CREATED));
1360   if (s == NULL
1361       || !bfd_set_section_alignment (abfd, s, 3))
1362     return FALSE;
1363   hppa_info->plt_rel_sec = s;
1364 
1365   s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1366 					  (SEC_ALLOC | SEC_LOAD
1367 					   | SEC_HAS_CONTENTS
1368 					   | SEC_IN_MEMORY
1369 					   | SEC_READONLY
1370 					   | SEC_LINKER_CREATED));
1371   if (s == NULL
1372       || !bfd_set_section_alignment (abfd, s, 3))
1373     return FALSE;
1374   hppa_info->other_rel_sec = s;
1375 
1376   s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1377 					  (SEC_ALLOC | SEC_LOAD
1378 					   | SEC_HAS_CONTENTS
1379 					   | SEC_IN_MEMORY
1380 					   | SEC_READONLY
1381 					   | SEC_LINKER_CREATED));
1382   if (s == NULL
1383       || !bfd_set_section_alignment (abfd, s, 3))
1384     return FALSE;
1385   hppa_info->opd_rel_sec = s;
1386 
1387   return TRUE;
1388 }
1389 
1390 /* Allocate dynamic relocations for those symbols that turned out
1391    to be dynamic.  */
1392 
1393 static bfd_boolean
1394 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1395 {
1396   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1397   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1398   struct elf64_hppa_link_hash_table *hppa_info;
1399   struct elf64_hppa_dyn_reloc_entry *rent;
1400   bfd_boolean dynamic_symbol, shared;
1401 
1402   hppa_info = hppa_link_hash_table (x->info);
1403   if (hppa_info == NULL)
1404     return FALSE;
1405 
1406   dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1407   shared = bfd_link_pic (x->info);
1408 
1409   /* We may need to allocate relocations for a non-dynamic symbol
1410      when creating a shared library.  */
1411   if (!dynamic_symbol && !shared)
1412     return TRUE;
1413 
1414   /* Take care of the normal data relocations.  */
1415 
1416   for (rent = hh->reloc_entries; rent; rent = rent->next)
1417     {
1418       /* Allocate one iff we are building a shared library, the relocation
1419 	 isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
1420       if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1421 	continue;
1422 
1423       hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1424 
1425       /* Make sure this symbol gets into the dynamic symbol table if it is
1426 	 not already recorded.  ?!? This should not be in the loop since
1427 	 the symbol need only be added once.  */
1428       if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1429 	if (!bfd_elf_link_record_local_dynamic_symbol
1430 	    (x->info, rent->sec->owner, hh->sym_indx))
1431 	  return FALSE;
1432     }
1433 
1434   /* Take care of the GOT and PLT relocations.  */
1435 
1436   if ((dynamic_symbol || shared) && hh->want_dlt)
1437     hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1438 
1439   /* If we are building a shared library, then every symbol that has an
1440      opd entry will need an EPLT relocation to relocate the symbol's address
1441      and __gp value based on the runtime load address.  */
1442   if (shared && hh->want_opd)
1443     hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1444 
1445   if (hh->want_plt && dynamic_symbol)
1446     {
1447       bfd_size_type t = 0;
1448 
1449       /* Dynamic symbols get one IPLT relocation.  Local symbols in
1450 	 shared libraries get two REL relocations.  Local symbols in
1451 	 main applications get nothing.  */
1452       if (dynamic_symbol)
1453 	t = sizeof (Elf64_External_Rela);
1454       else if (shared)
1455 	t = 2 * sizeof (Elf64_External_Rela);
1456 
1457       hppa_info->plt_rel_sec->size += t;
1458     }
1459 
1460   return TRUE;
1461 }
1462 
1463 /* Adjust a symbol defined by a dynamic object and referenced by a
1464    regular object.  */
1465 
1466 static bfd_boolean
1467 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1468 				  struct elf_link_hash_entry *eh)
1469 {
1470   /* ??? Undefined symbols with PLT entries should be re-defined
1471      to be the PLT entry.  */
1472 
1473   /* If this is a weak symbol, and there is a real definition, the
1474      processor independent code will have arranged for us to see the
1475      real definition first, and we can just use the same value.  */
1476   if (eh->is_weakalias)
1477     {
1478       struct elf_link_hash_entry *def = weakdef (eh);
1479       BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1480       eh->root.u.def.section = def->root.u.def.section;
1481       eh->root.u.def.value = def->root.u.def.value;
1482       return TRUE;
1483     }
1484 
1485   /* If this is a reference to a symbol defined by a dynamic object which
1486      is not a function, we might allocate the symbol in our .dynbss section
1487      and allocate a COPY dynamic relocation.
1488 
1489      But PA64 code is canonically PIC, so as a rule we can avoid this sort
1490      of hackery.  */
1491 
1492   return TRUE;
1493 }
1494 
1495 /* This function is called via elf_link_hash_traverse to mark millicode
1496    symbols with a dynindx of -1 and to remove the string table reference
1497    from the dynamic symbol table.  If the symbol is not a millicode symbol,
1498    elf64_hppa_mark_exported_functions is called.  */
1499 
1500 static bfd_boolean
1501 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1502 					      void *data)
1503 {
1504   struct bfd_link_info *info = (struct bfd_link_info *) data;
1505 
1506   if (eh->type == STT_PARISC_MILLI)
1507     {
1508       if (eh->dynindx != -1)
1509 	{
1510 	  eh->dynindx = -1;
1511 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1512 				  eh->dynstr_index);
1513 	}
1514       return TRUE;
1515     }
1516 
1517   return elf64_hppa_mark_exported_functions (eh, data);
1518 }
1519 
1520 /* Set the final sizes of the dynamic sections and allocate memory for
1521    the contents of our special sections.  */
1522 
1523 static bfd_boolean
1524 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1525 {
1526   struct elf64_hppa_link_hash_table *hppa_info;
1527   struct elf64_hppa_allocate_data data;
1528   bfd *dynobj;
1529   bfd *ibfd;
1530   asection *sec;
1531   bfd_boolean plt;
1532   bfd_boolean relocs;
1533   bfd_boolean reltext;
1534 
1535   hppa_info = hppa_link_hash_table (info);
1536   if (hppa_info == NULL)
1537     return FALSE;
1538 
1539   dynobj = hppa_info->root.dynobj;
1540   BFD_ASSERT (dynobj != NULL);
1541 
1542   /* Mark each function this program exports so that we will allocate
1543      space in the .opd section for each function's FPTR.  If we are
1544      creating dynamic sections, change the dynamic index of millicode
1545      symbols to -1 and remove them from the string table for .dynstr.
1546 
1547      We have to traverse the main linker hash table since we have to
1548      find functions which may not have been mentioned in any relocs.  */
1549   elf_link_hash_traverse (&hppa_info->root,
1550 			  (hppa_info->root.dynamic_sections_created
1551 			   ? elf64_hppa_mark_milli_and_exported_functions
1552 			   : elf64_hppa_mark_exported_functions),
1553 			  info);
1554 
1555   if (hppa_info->root.dynamic_sections_created)
1556     {
1557       /* Set the contents of the .interp section to the interpreter.  */
1558       if (bfd_link_executable (info) && !info->nointerp)
1559 	{
1560 	  sec = bfd_get_linker_section (dynobj, ".interp");
1561 	  BFD_ASSERT (sec != NULL);
1562 	  sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1563 	  sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1564 	}
1565     }
1566   else
1567     {
1568       /* We may have created entries in the .rela.got section.
1569 	 However, if we are not creating the dynamic sections, we will
1570 	 not actually use these entries.  Reset the size of .rela.dlt,
1571 	 which will cause it to get stripped from the output file
1572 	 below.  */
1573       sec = hppa_info->dlt_rel_sec;
1574       if (sec != NULL)
1575 	sec->size = 0;
1576     }
1577 
1578   /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1579      dynamic relocs.  */
1580   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1581     {
1582       bfd_signed_vma *local_dlt;
1583       bfd_signed_vma *end_local_dlt;
1584       bfd_signed_vma *local_plt;
1585       bfd_signed_vma *end_local_plt;
1586       bfd_signed_vma *local_opd;
1587       bfd_signed_vma *end_local_opd;
1588       bfd_size_type locsymcount;
1589       Elf_Internal_Shdr *symtab_hdr;
1590       asection *srel;
1591 
1592       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1593 	continue;
1594 
1595       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1596 	{
1597 	  struct elf64_hppa_dyn_reloc_entry *hdh_p;
1598 
1599 	  for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1600 		    elf_section_data (sec)->local_dynrel);
1601 	       hdh_p != NULL;
1602 	       hdh_p = hdh_p->next)
1603 	    {
1604 	      if (!bfd_is_abs_section (hdh_p->sec)
1605 		  && bfd_is_abs_section (hdh_p->sec->output_section))
1606 		{
1607 		  /* Input section has been discarded, either because
1608 		     it is a copy of a linkonce section or due to
1609 		     linker script /DISCARD/, so we'll be discarding
1610 		     the relocs too.  */
1611 		}
1612 	      else if (hdh_p->count != 0)
1613 		{
1614 		  srel = elf_section_data (hdh_p->sec)->sreloc;
1615 		  srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1616 		  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1617 		    info->flags |= DF_TEXTREL;
1618 		}
1619 	    }
1620 	}
1621 
1622       local_dlt = elf_local_got_refcounts (ibfd);
1623       if (!local_dlt)
1624 	continue;
1625 
1626       symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1627       locsymcount = symtab_hdr->sh_info;
1628       end_local_dlt = local_dlt + locsymcount;
1629       sec = hppa_info->dlt_sec;
1630       srel = hppa_info->dlt_rel_sec;
1631       for (; local_dlt < end_local_dlt; ++local_dlt)
1632 	{
1633 	  if (*local_dlt > 0)
1634 	    {
1635 	      *local_dlt = sec->size;
1636 	      sec->size += DLT_ENTRY_SIZE;
1637 	      if (bfd_link_pic (info))
1638 		{
1639 		  srel->size += sizeof (Elf64_External_Rela);
1640 		}
1641 	    }
1642 	  else
1643 	    *local_dlt = (bfd_vma) -1;
1644 	}
1645 
1646       local_plt = end_local_dlt;
1647       end_local_plt = local_plt + locsymcount;
1648       if (! hppa_info->root.dynamic_sections_created)
1649 	{
1650 	  /* Won't be used, but be safe.  */
1651 	  for (; local_plt < end_local_plt; ++local_plt)
1652 	    *local_plt = (bfd_vma) -1;
1653 	}
1654       else
1655 	{
1656 	  sec = hppa_info->plt_sec;
1657 	  srel = hppa_info->plt_rel_sec;
1658 	  for (; local_plt < end_local_plt; ++local_plt)
1659 	    {
1660 	      if (*local_plt > 0)
1661 		{
1662 		  *local_plt = sec->size;
1663 		  sec->size += PLT_ENTRY_SIZE;
1664 		  if (bfd_link_pic (info))
1665 		    srel->size += sizeof (Elf64_External_Rela);
1666 		}
1667 	      else
1668 		*local_plt = (bfd_vma) -1;
1669 	    }
1670 	}
1671 
1672       local_opd = end_local_plt;
1673       end_local_opd = local_opd + locsymcount;
1674       if (! hppa_info->root.dynamic_sections_created)
1675 	{
1676 	  /* Won't be used, but be safe.  */
1677 	  for (; local_opd < end_local_opd; ++local_opd)
1678 	    *local_opd = (bfd_vma) -1;
1679 	}
1680       else
1681 	{
1682 	  sec = hppa_info->opd_sec;
1683 	  srel = hppa_info->opd_rel_sec;
1684 	  for (; local_opd < end_local_opd; ++local_opd)
1685 	    {
1686 	      if (*local_opd > 0)
1687 		{
1688 		  *local_opd = sec->size;
1689 		  sec->size += OPD_ENTRY_SIZE;
1690 		  if (bfd_link_pic (info))
1691 		    srel->size += sizeof (Elf64_External_Rela);
1692 		}
1693 	      else
1694 		*local_opd = (bfd_vma) -1;
1695 	    }
1696 	}
1697     }
1698 
1699   /* Allocate the GOT entries.  */
1700 
1701   data.info = info;
1702   if (hppa_info->dlt_sec)
1703     {
1704       data.ofs = hppa_info->dlt_sec->size;
1705       elf_link_hash_traverse (&hppa_info->root,
1706 			      allocate_global_data_dlt, &data);
1707       hppa_info->dlt_sec->size = data.ofs;
1708     }
1709 
1710   if (hppa_info->plt_sec)
1711     {
1712       data.ofs = hppa_info->plt_sec->size;
1713       elf_link_hash_traverse (&hppa_info->root,
1714 			      allocate_global_data_plt, &data);
1715       hppa_info->plt_sec->size = data.ofs;
1716     }
1717 
1718   if (hppa_info->stub_sec)
1719     {
1720       data.ofs = 0x0;
1721       elf_link_hash_traverse (&hppa_info->root,
1722 			      allocate_global_data_stub, &data);
1723       hppa_info->stub_sec->size = data.ofs;
1724     }
1725 
1726   /* Allocate space for entries in the .opd section.  */
1727   if (hppa_info->opd_sec)
1728     {
1729       data.ofs = hppa_info->opd_sec->size;
1730       elf_link_hash_traverse (&hppa_info->root,
1731 			      allocate_global_data_opd, &data);
1732       hppa_info->opd_sec->size = data.ofs;
1733     }
1734 
1735   /* Now allocate space for dynamic relocations, if necessary.  */
1736   if (hppa_info->root.dynamic_sections_created)
1737     elf_link_hash_traverse (&hppa_info->root,
1738 			    allocate_dynrel_entries, &data);
1739 
1740   /* The sizes of all the sections are set.  Allocate memory for them.  */
1741   plt = FALSE;
1742   relocs = FALSE;
1743   reltext = FALSE;
1744   for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1745     {
1746       const char *name;
1747 
1748       if ((sec->flags & SEC_LINKER_CREATED) == 0)
1749 	continue;
1750 
1751       /* It's OK to base decisions on the section name, because none
1752 	 of the dynobj section names depend upon the input files.  */
1753       name = bfd_get_section_name (dynobj, sec);
1754 
1755       if (strcmp (name, ".plt") == 0)
1756 	{
1757 	  /* Remember whether there is a PLT.  */
1758 	  plt = sec->size != 0;
1759 	}
1760       else if (strcmp (name, ".opd") == 0
1761 	       || CONST_STRNEQ (name, ".dlt")
1762 	       || strcmp (name, ".stub") == 0
1763 	       || strcmp (name, ".got") == 0)
1764 	{
1765 	  /* Strip this section if we don't need it; see the comment below.  */
1766 	}
1767       else if (CONST_STRNEQ (name, ".rela"))
1768 	{
1769 	  if (sec->size != 0)
1770 	    {
1771 	      asection *target;
1772 
1773 	      /* Remember whether there are any reloc sections other
1774 		 than .rela.plt.  */
1775 	      if (strcmp (name, ".rela.plt") != 0)
1776 		{
1777 		  const char *outname;
1778 
1779 		  relocs = TRUE;
1780 
1781 		  /* If this relocation section applies to a read only
1782 		     section, then we probably need a DT_TEXTREL
1783 		     entry.  The entries in the .rela.plt section
1784 		     really apply to the .got section, which we
1785 		     created ourselves and so know is not readonly.  */
1786 		  outname = bfd_get_section_name (output_bfd,
1787 						  sec->output_section);
1788 		  target = bfd_get_section_by_name (output_bfd, outname + 4);
1789 		  if (target != NULL
1790 		      && (target->flags & SEC_READONLY) != 0
1791 		      && (target->flags & SEC_ALLOC) != 0)
1792 		    reltext = TRUE;
1793 		}
1794 
1795 	      /* We use the reloc_count field as a counter if we need
1796 		 to copy relocs into the output file.  */
1797 	      sec->reloc_count = 0;
1798 	    }
1799 	}
1800       else
1801 	{
1802 	  /* It's not one of our sections, so don't allocate space.  */
1803 	  continue;
1804 	}
1805 
1806       if (sec->size == 0)
1807 	{
1808 	  /* If we don't need this section, strip it from the
1809 	     output file.  This is mostly to handle .rela.bss and
1810 	     .rela.plt.  We must create both sections in
1811 	     create_dynamic_sections, because they must be created
1812 	     before the linker maps input sections to output
1813 	     sections.  The linker does that before
1814 	     adjust_dynamic_symbol is called, and it is that
1815 	     function which decides whether anything needs to go
1816 	     into these sections.  */
1817 	  sec->flags |= SEC_EXCLUDE;
1818 	  continue;
1819 	}
1820 
1821       if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1822 	continue;
1823 
1824       /* Allocate memory for the section contents if it has not
1825 	 been allocated already.  We use bfd_zalloc here in case
1826 	 unused entries are not reclaimed before the section's
1827 	 contents are written out.  This should not happen, but this
1828 	 way if it does, we get a R_PARISC_NONE reloc instead of
1829 	 garbage.  */
1830       if (sec->contents == NULL)
1831 	{
1832 	  sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1833 	  if (sec->contents == NULL)
1834 	    return FALSE;
1835 	}
1836     }
1837 
1838   if (hppa_info->root.dynamic_sections_created)
1839     {
1840       /* Always create a DT_PLTGOT.  It actually has nothing to do with
1841 	 the PLT, it is how we communicate the __gp value of a load
1842 	 module to the dynamic linker.  */
1843 #define add_dynamic_entry(TAG, VAL) \
1844   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1845 
1846       if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1847 	  || !add_dynamic_entry (DT_PLTGOT, 0))
1848 	return FALSE;
1849 
1850       /* Add some entries to the .dynamic section.  We fill in the
1851 	 values later, in elf64_hppa_finish_dynamic_sections, but we
1852 	 must add the entries now so that we get the correct size for
1853 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
1854 	 dynamic linker and used by the debugger.  */
1855       if (! bfd_link_pic (info))
1856 	{
1857 	  if (!add_dynamic_entry (DT_DEBUG, 0)
1858 	      || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1859 	      || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1860 	    return FALSE;
1861 	}
1862 
1863       /* Force DT_FLAGS to always be set.
1864 	 Required by HPUX 11.00 patch PHSS_26559.  */
1865       if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1866 	return FALSE;
1867 
1868       if (plt)
1869 	{
1870 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1871 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1872 	      || !add_dynamic_entry (DT_JMPREL, 0))
1873 	    return FALSE;
1874 	}
1875 
1876       if (relocs)
1877 	{
1878 	  if (!add_dynamic_entry (DT_RELA, 0)
1879 	      || !add_dynamic_entry (DT_RELASZ, 0)
1880 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1881 	    return FALSE;
1882 	}
1883 
1884       if (reltext)
1885 	{
1886 	  if (!add_dynamic_entry (DT_TEXTREL, 0))
1887 	    return FALSE;
1888 	  info->flags |= DF_TEXTREL;
1889 	}
1890     }
1891 #undef add_dynamic_entry
1892 
1893   return TRUE;
1894 }
1895 
1896 /* Called after we have output the symbol into the dynamic symbol
1897    table, but before we output the symbol into the normal symbol
1898    table.
1899 
1900    For some symbols we had to change their address when outputting
1901    the dynamic symbol table.  We undo that change here so that
1902    the symbols have their expected value in the normal symbol
1903    table.  Ick.  */
1904 
1905 static int
1906 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1907 				    const char *name,
1908 				    Elf_Internal_Sym *sym,
1909 				    asection *input_sec ATTRIBUTE_UNUSED,
1910 				    struct elf_link_hash_entry *eh)
1911 {
1912   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1913 
1914   /* We may be called with the file symbol or section symbols.
1915      They never need munging, so it is safe to ignore them.  */
1916   if (!name || !eh)
1917     return 1;
1918 
1919   /* Function symbols for which we created .opd entries *may* have been
1920      munged by finish_dynamic_symbol and have to be un-munged here.
1921 
1922      Note that finish_dynamic_symbol sometimes turns dynamic symbols
1923      into non-dynamic ones, so we initialize st_shndx to -1 in
1924      mark_exported_functions and check to see if it was overwritten
1925      here instead of just checking eh->dynindx.  */
1926   if (hh->want_opd && hh->st_shndx != -1)
1927     {
1928       /* Restore the saved value and section index.  */
1929       sym->st_value = hh->st_value;
1930       sym->st_shndx = hh->st_shndx;
1931     }
1932 
1933   return 1;
1934 }
1935 
1936 /* Finish up dynamic symbol handling.  We set the contents of various
1937    dynamic sections here.  */
1938 
1939 static bfd_boolean
1940 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1941 				  struct bfd_link_info *info,
1942 				  struct elf_link_hash_entry *eh,
1943 				  Elf_Internal_Sym *sym)
1944 {
1945   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1946   asection *stub, *splt, *sopd, *spltrel;
1947   struct elf64_hppa_link_hash_table *hppa_info;
1948 
1949   hppa_info = hppa_link_hash_table (info);
1950   if (hppa_info == NULL)
1951     return FALSE;
1952 
1953   stub = hppa_info->stub_sec;
1954   splt = hppa_info->plt_sec;
1955   sopd = hppa_info->opd_sec;
1956   spltrel = hppa_info->plt_rel_sec;
1957 
1958   /* Incredible.  It is actually necessary to NOT use the symbol's real
1959      value when building the dynamic symbol table for a shared library.
1960      At least for symbols that refer to functions.
1961 
1962      We will store a new value and section index into the symbol long
1963      enough to output it into the dynamic symbol table, then we restore
1964      the original values (in elf64_hppa_link_output_symbol_hook).  */
1965   if (hh->want_opd)
1966     {
1967       BFD_ASSERT (sopd != NULL);
1968 
1969       /* Save away the original value and section index so that we
1970 	 can restore them later.  */
1971       hh->st_value = sym->st_value;
1972       hh->st_shndx = sym->st_shndx;
1973 
1974       /* For the dynamic symbol table entry, we want the value to be
1975 	 address of this symbol's entry within the .opd section.  */
1976       sym->st_value = (hh->opd_offset
1977 		       + sopd->output_offset
1978 		       + sopd->output_section->vma);
1979       sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1980 							 sopd->output_section);
1981     }
1982 
1983   /* Initialize a .plt entry if requested.  */
1984   if (hh->want_plt
1985       && elf64_hppa_dynamic_symbol_p (eh, info))
1986     {
1987       bfd_vma value;
1988       Elf_Internal_Rela rel;
1989       bfd_byte *loc;
1990 
1991       BFD_ASSERT (splt != NULL && spltrel != NULL);
1992 
1993       /* We do not actually care about the value in the PLT entry
1994 	 if we are creating a shared library and the symbol is
1995 	 still undefined, we create a dynamic relocation to fill
1996 	 in the correct value.  */
1997       if (bfd_link_pic (info) && eh->root.type == bfd_link_hash_undefined)
1998 	value = 0;
1999       else
2000 	value = (eh->root.u.def.value + eh->root.u.def.section->vma);
2001 
2002       /* Fill in the entry in the procedure linkage table.
2003 
2004 	 The format of a plt entry is
2005 	 <funcaddr> <__gp>.
2006 
2007 	 plt_offset is the offset within the PLT section at which to
2008 	 install the PLT entry.
2009 
2010 	 We are modifying the in-memory PLT contents here, so we do not add
2011 	 in the output_offset of the PLT section.  */
2012 
2013       bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2014       value = _bfd_get_gp_value (splt->output_section->owner);
2015       bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2016 
2017       /* Create a dynamic IPLT relocation for this entry.
2018 
2019 	 We are creating a relocation in the output file's PLT section,
2020 	 which is included within the DLT secton.  So we do need to include
2021 	 the PLT's output_offset in the computation of the relocation's
2022 	 address.  */
2023       rel.r_offset = (hh->plt_offset + splt->output_offset
2024 		      + splt->output_section->vma);
2025       rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2026       rel.r_addend = 0;
2027 
2028       loc = spltrel->contents;
2029       loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2030       bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2031     }
2032 
2033   /* Initialize an external call stub entry if requested.  */
2034   if (hh->want_stub
2035       && elf64_hppa_dynamic_symbol_p (eh, info))
2036     {
2037       bfd_vma value;
2038       int insn;
2039       unsigned int max_offset;
2040 
2041       BFD_ASSERT (stub != NULL);
2042 
2043       /* Install the generic stub template.
2044 
2045 	 We are modifying the contents of the stub section, so we do not
2046 	 need to include the stub section's output_offset here.  */
2047       memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2048 
2049       /* Fix up the first ldd instruction.
2050 
2051 	 We are modifying the contents of the STUB section in memory,
2052 	 so we do not need to include its output offset in this computation.
2053 
2054 	 Note the plt_offset value is the value of the PLT entry relative to
2055 	 the start of the PLT section.  These instructions will reference
2056 	 data relative to the value of __gp, which may not necessarily have
2057 	 the same address as the start of the PLT section.
2058 
2059 	 gp_offset contains the offset of __gp within the PLT section.  */
2060       value = hh->plt_offset - hppa_info->gp_offset;
2061 
2062       insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2063       if (output_bfd->arch_info->mach >= 25)
2064 	{
2065 	  /* Wide mode allows 16 bit offsets.  */
2066 	  max_offset = 32768;
2067 	  insn &= ~ 0xfff1;
2068 	  insn |= re_assemble_16 ((int) value);
2069 	}
2070       else
2071 	{
2072 	  max_offset = 8192;
2073 	  insn &= ~ 0x3ff1;
2074 	  insn |= re_assemble_14 ((int) value);
2075 	}
2076 
2077       if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2078 	{
2079 	  _bfd_error_handler
2080 	    /* xgettext:c-format */
2081 	    (_("stub entry for %s cannot load .plt, dp offset = %" PRId64),
2082 	     hh->eh.root.root.string, (int64_t) value);
2083 	  return FALSE;
2084 	}
2085 
2086       bfd_put_32 (stub->owner, (bfd_vma) insn,
2087 		  stub->contents + hh->stub_offset);
2088 
2089       /* Fix up the second ldd instruction.  */
2090       value += 8;
2091       insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2092       if (output_bfd->arch_info->mach >= 25)
2093 	{
2094 	  insn &= ~ 0xfff1;
2095 	  insn |= re_assemble_16 ((int) value);
2096 	}
2097       else
2098 	{
2099 	  insn &= ~ 0x3ff1;
2100 	  insn |= re_assemble_14 ((int) value);
2101 	}
2102       bfd_put_32 (stub->owner, (bfd_vma) insn,
2103 		  stub->contents + hh->stub_offset + 8);
2104     }
2105 
2106   return TRUE;
2107 }
2108 
2109 /* The .opd section contains FPTRs for each function this file
2110    exports.  Initialize the FPTR entries.  */
2111 
2112 static bfd_boolean
2113 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2114 {
2115   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2116   struct bfd_link_info *info = (struct bfd_link_info *)data;
2117   struct elf64_hppa_link_hash_table *hppa_info;
2118   asection *sopd;
2119   asection *sopdrel;
2120 
2121   hppa_info = hppa_link_hash_table (info);
2122   if (hppa_info == NULL)
2123     return FALSE;
2124 
2125   sopd = hppa_info->opd_sec;
2126   sopdrel = hppa_info->opd_rel_sec;
2127 
2128   if (hh->want_opd)
2129     {
2130       bfd_vma value;
2131 
2132       /* The first two words of an .opd entry are zero.
2133 
2134 	 We are modifying the contents of the OPD section in memory, so we
2135 	 do not need to include its output offset in this computation.  */
2136       memset (sopd->contents + hh->opd_offset, 0, 16);
2137 
2138       value = (eh->root.u.def.value
2139 	       + eh->root.u.def.section->output_section->vma
2140 	       + eh->root.u.def.section->output_offset);
2141 
2142       /* The next word is the address of the function.  */
2143       bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2144 
2145       /* The last word is our local __gp value.  */
2146       value = _bfd_get_gp_value (sopd->output_section->owner);
2147       bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2148     }
2149 
2150   /* If we are generating a shared library, we must generate EPLT relocations
2151      for each entry in the .opd, even for static functions (they may have
2152      had their address taken).  */
2153   if (bfd_link_pic (info) && hh->want_opd)
2154     {
2155       Elf_Internal_Rela rel;
2156       bfd_byte *loc;
2157       int dynindx;
2158 
2159       /* We may need to do a relocation against a local symbol, in
2160 	 which case we have to look up it's dynamic symbol index off
2161 	 the local symbol hash table.  */
2162       if (eh->dynindx != -1)
2163 	dynindx = eh->dynindx;
2164       else
2165 	dynindx
2166 	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2167 						hh->sym_indx);
2168 
2169       /* The offset of this relocation is the absolute address of the
2170 	 .opd entry for this symbol.  */
2171       rel.r_offset = (hh->opd_offset + sopd->output_offset
2172 		      + sopd->output_section->vma);
2173 
2174       /* If H is non-null, then we have an external symbol.
2175 
2176 	 It is imperative that we use a different dynamic symbol for the
2177 	 EPLT relocation if the symbol has global scope.
2178 
2179 	 In the dynamic symbol table, the function symbol will have a value
2180 	 which is address of the function's .opd entry.
2181 
2182 	 Thus, we can not use that dynamic symbol for the EPLT relocation
2183 	 (if we did, the data in the .opd would reference itself rather
2184 	 than the actual address of the function).  Instead we have to use
2185 	 a new dynamic symbol which has the same value as the original global
2186 	 function symbol.
2187 
2188 	 We prefix the original symbol with a "." and use the new symbol in
2189 	 the EPLT relocation.  This new symbol has already been recorded in
2190 	 the symbol table, we just have to look it up and use it.
2191 
2192 	 We do not have such problems with static functions because we do
2193 	 not make their addresses in the dynamic symbol table point to
2194 	 the .opd entry.  Ultimately this should be safe since a static
2195 	 function can not be directly referenced outside of its shared
2196 	 library.
2197 
2198 	 We do have to play similar games for FPTR relocations in shared
2199 	 libraries, including those for static symbols.  See the FPTR
2200 	 handling in elf64_hppa_finalize_dynreloc.  */
2201       if (eh)
2202 	{
2203 	  char *new_name;
2204 	  struct elf_link_hash_entry *nh;
2205 
2206 	  new_name = concat (".", eh->root.root.string, NULL);
2207 
2208 	  nh = elf_link_hash_lookup (elf_hash_table (info),
2209 				     new_name, TRUE, TRUE, FALSE);
2210 
2211 	  /* All we really want from the new symbol is its dynamic
2212 	     symbol index.  */
2213 	  if (nh)
2214 	    dynindx = nh->dynindx;
2215 	  free (new_name);
2216 	}
2217 
2218       rel.r_addend = 0;
2219       rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2220 
2221       loc = sopdrel->contents;
2222       loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2223       bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2224     }
2225   return TRUE;
2226 }
2227 
2228 /* The .dlt section contains addresses for items referenced through the
2229    dlt.  Note that we can have a DLTIND relocation for a local symbol, thus
2230    we can not depend on finish_dynamic_symbol to initialize the .dlt.  */
2231 
2232 static bfd_boolean
2233 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2234 {
2235   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2236   struct bfd_link_info *info = (struct bfd_link_info *)data;
2237   struct elf64_hppa_link_hash_table *hppa_info;
2238   asection *sdlt, *sdltrel;
2239 
2240   hppa_info = hppa_link_hash_table (info);
2241   if (hppa_info == NULL)
2242     return FALSE;
2243 
2244   sdlt = hppa_info->dlt_sec;
2245   sdltrel = hppa_info->dlt_rel_sec;
2246 
2247   /* H/DYN_H may refer to a local variable and we know it's
2248      address, so there is no need to create a relocation.  Just install
2249      the proper value into the DLT, note this shortcut can not be
2250      skipped when building a shared library.  */
2251   if (! bfd_link_pic (info) && hh && hh->want_dlt)
2252     {
2253       bfd_vma value;
2254 
2255       /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2256 	 to point to the FPTR entry in the .opd section.
2257 
2258 	 We include the OPD's output offset in this computation as
2259 	 we are referring to an absolute address in the resulting
2260 	 object file.  */
2261       if (hh->want_opd)
2262 	{
2263 	  value = (hh->opd_offset
2264 		   + hppa_info->opd_sec->output_offset
2265 		   + hppa_info->opd_sec->output_section->vma);
2266 	}
2267       else if ((eh->root.type == bfd_link_hash_defined
2268 		|| eh->root.type == bfd_link_hash_defweak)
2269 	       && eh->root.u.def.section)
2270 	{
2271 	  value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2272 	  if (eh->root.u.def.section->output_section)
2273 	    value += eh->root.u.def.section->output_section->vma;
2274 	  else
2275 	    value += eh->root.u.def.section->vma;
2276 	}
2277       else
2278 	/* We have an undefined function reference.  */
2279 	value = 0;
2280 
2281       /* We do not need to include the output offset of the DLT section
2282 	 here because we are modifying the in-memory contents.  */
2283       bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2284     }
2285 
2286   /* Create a relocation for the DLT entry associated with this symbol.
2287      When building a shared library the symbol does not have to be dynamic.  */
2288   if (hh->want_dlt
2289       && (elf64_hppa_dynamic_symbol_p (eh, info) || bfd_link_pic (info)))
2290     {
2291       Elf_Internal_Rela rel;
2292       bfd_byte *loc;
2293       int dynindx;
2294 
2295       /* We may need to do a relocation against a local symbol, in
2296 	 which case we have to look up it's dynamic symbol index off
2297 	 the local symbol hash table.  */
2298       if (eh && eh->dynindx != -1)
2299 	dynindx = eh->dynindx;
2300       else
2301 	dynindx
2302 	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2303 						hh->sym_indx);
2304 
2305       /* Create a dynamic relocation for this entry.  Do include the output
2306 	 offset of the DLT entry since we need an absolute address in the
2307 	 resulting object file.  */
2308       rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2309 		      + sdlt->output_section->vma);
2310       if (eh && eh->type == STT_FUNC)
2311 	  rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2312       else
2313 	  rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2314       rel.r_addend = 0;
2315 
2316       loc = sdltrel->contents;
2317       loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2318       bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2319     }
2320   return TRUE;
2321 }
2322 
2323 /* Finalize the dynamic relocations.  Specifically the FPTR relocations
2324    for dynamic functions used to initialize static data.  */
2325 
2326 static bfd_boolean
2327 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2328 			      void *data)
2329 {
2330   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2331   struct bfd_link_info *info = (struct bfd_link_info *)data;
2332   struct elf64_hppa_link_hash_table *hppa_info;
2333   int dynamic_symbol;
2334 
2335   dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2336 
2337   if (!dynamic_symbol && !bfd_link_pic (info))
2338     return TRUE;
2339 
2340   if (hh->reloc_entries)
2341     {
2342       struct elf64_hppa_dyn_reloc_entry *rent;
2343       int dynindx;
2344 
2345       hppa_info = hppa_link_hash_table (info);
2346       if (hppa_info == NULL)
2347 	return FALSE;
2348 
2349       /* We may need to do a relocation against a local symbol, in
2350 	 which case we have to look up it's dynamic symbol index off
2351 	 the local symbol hash table.  */
2352       if (eh->dynindx != -1)
2353 	dynindx = eh->dynindx;
2354       else
2355 	dynindx
2356 	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2357 						hh->sym_indx);
2358 
2359       for (rent = hh->reloc_entries; rent; rent = rent->next)
2360 	{
2361 	  Elf_Internal_Rela rel;
2362 	  bfd_byte *loc;
2363 
2364 	  /* Allocate one iff we are building a shared library, the relocation
2365 	     isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
2366 	  if (!bfd_link_pic (info)
2367 	      && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2368 	    continue;
2369 
2370 	  /* Create a dynamic relocation for this entry.
2371 
2372 	     We need the output offset for the reloc's section because
2373 	     we are creating an absolute address in the resulting object
2374 	     file.  */
2375 	  rel.r_offset = (rent->offset + rent->sec->output_offset
2376 			  + rent->sec->output_section->vma);
2377 
2378 	  /* An FPTR64 relocation implies that we took the address of
2379 	     a function and that the function has an entry in the .opd
2380 	     section.  We want the FPTR64 relocation to reference the
2381 	     entry in .opd.
2382 
2383 	     We could munge the symbol value in the dynamic symbol table
2384 	     (in fact we already do for functions with global scope) to point
2385 	     to the .opd entry.  Then we could use that dynamic symbol in
2386 	     this relocation.
2387 
2388 	     Or we could do something sensible, not munge the symbol's
2389 	     address and instead just use a different symbol to reference
2390 	     the .opd entry.  At least that seems sensible until you
2391 	     realize there's no local dynamic symbols we can use for that
2392 	     purpose.  Thus the hair in the check_relocs routine.
2393 
2394 	     We use a section symbol recorded by check_relocs as the
2395 	     base symbol for the relocation.  The addend is the difference
2396 	     between the section symbol and the address of the .opd entry.  */
2397 	  if (bfd_link_pic (info)
2398 	      && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2399 	    {
2400 	      bfd_vma value, value2;
2401 
2402 	      /* First compute the address of the opd entry for this symbol.  */
2403 	      value = (hh->opd_offset
2404 		       + hppa_info->opd_sec->output_section->vma
2405 		       + hppa_info->opd_sec->output_offset);
2406 
2407 	      /* Compute the value of the start of the section with
2408 		 the relocation.  */
2409 	      value2 = (rent->sec->output_section->vma
2410 			+ rent->sec->output_offset);
2411 
2412 	      /* Compute the difference between the start of the section
2413 		 with the relocation and the opd entry.  */
2414 	      value -= value2;
2415 
2416 	      /* The result becomes the addend of the relocation.  */
2417 	      rel.r_addend = value;
2418 
2419 	      /* The section symbol becomes the symbol for the dynamic
2420 		 relocation.  */
2421 	      dynindx
2422 		= _bfd_elf_link_lookup_local_dynindx (info,
2423 						      rent->sec->owner,
2424 						      rent->sec_symndx);
2425 	    }
2426 	  else
2427 	    rel.r_addend = rent->addend;
2428 
2429 	  rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2430 
2431 	  loc = hppa_info->other_rel_sec->contents;
2432 	  loc += (hppa_info->other_rel_sec->reloc_count++
2433 		  * sizeof (Elf64_External_Rela));
2434 	  bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2435 				     &rel, loc);
2436 	}
2437     }
2438 
2439   return TRUE;
2440 }
2441 
2442 /* Used to decide how to sort relocs in an optimal manner for the
2443    dynamic linker, before writing them out.  */
2444 
2445 static enum elf_reloc_type_class
2446 elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2447 			     const asection *rel_sec ATTRIBUTE_UNUSED,
2448 			     const Elf_Internal_Rela *rela)
2449 {
2450   if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2451     return reloc_class_relative;
2452 
2453   switch ((int) ELF64_R_TYPE (rela->r_info))
2454     {
2455     case R_PARISC_IPLT:
2456       return reloc_class_plt;
2457     case R_PARISC_COPY:
2458       return reloc_class_copy;
2459     default:
2460       return reloc_class_normal;
2461     }
2462 }
2463 
2464 /* Finish up the dynamic sections.  */
2465 
2466 static bfd_boolean
2467 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2468 				    struct bfd_link_info *info)
2469 {
2470   bfd *dynobj;
2471   asection *sdyn;
2472   struct elf64_hppa_link_hash_table *hppa_info;
2473 
2474   hppa_info = hppa_link_hash_table (info);
2475   if (hppa_info == NULL)
2476     return FALSE;
2477 
2478   /* Finalize the contents of the .opd section.  */
2479   elf_link_hash_traverse (elf_hash_table (info),
2480 			  elf64_hppa_finalize_opd,
2481 			  info);
2482 
2483   elf_link_hash_traverse (elf_hash_table (info),
2484 			  elf64_hppa_finalize_dynreloc,
2485 			  info);
2486 
2487   /* Finalize the contents of the .dlt section.  */
2488   dynobj = elf_hash_table (info)->dynobj;
2489   /* Finalize the contents of the .dlt section.  */
2490   elf_link_hash_traverse (elf_hash_table (info),
2491 			  elf64_hppa_finalize_dlt,
2492 			  info);
2493 
2494   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2495 
2496   if (elf_hash_table (info)->dynamic_sections_created)
2497     {
2498       Elf64_External_Dyn *dyncon, *dynconend;
2499 
2500       BFD_ASSERT (sdyn != NULL);
2501 
2502       dyncon = (Elf64_External_Dyn *) sdyn->contents;
2503       dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2504       for (; dyncon < dynconend; dyncon++)
2505 	{
2506 	  Elf_Internal_Dyn dyn;
2507 	  asection *s;
2508 
2509 	  bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2510 
2511 	  switch (dyn.d_tag)
2512 	    {
2513 	    default:
2514 	      break;
2515 
2516 	    case DT_HP_LOAD_MAP:
2517 	      /* Compute the absolute address of 16byte scratchpad area
2518 		 for the dynamic linker.
2519 
2520 		 By convention the linker script will allocate the scratchpad
2521 		 area at the start of the .data section.  So all we have to
2522 		 to is find the start of the .data section.  */
2523 	      s = bfd_get_section_by_name (output_bfd, ".data");
2524 	      if (!s)
2525 		return FALSE;
2526 	      dyn.d_un.d_ptr = s->vma;
2527 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2528 	      break;
2529 
2530 	    case DT_PLTGOT:
2531 	      /* HP's use PLTGOT to set the GOT register.  */
2532 	      dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2533 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2534 	      break;
2535 
2536 	    case DT_JMPREL:
2537 	      s = hppa_info->plt_rel_sec;
2538 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2539 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2540 	      break;
2541 
2542 	    case DT_PLTRELSZ:
2543 	      s = hppa_info->plt_rel_sec;
2544 	      dyn.d_un.d_val = s->size;
2545 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2546 	      break;
2547 
2548 	    case DT_RELA:
2549 	      s = hppa_info->other_rel_sec;
2550 	      if (! s || ! s->size)
2551 		s = hppa_info->dlt_rel_sec;
2552 	      if (! s || ! s->size)
2553 		s = hppa_info->opd_rel_sec;
2554 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2555 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2556 	      break;
2557 
2558 	    case DT_RELASZ:
2559 	      s = hppa_info->other_rel_sec;
2560 	      dyn.d_un.d_val = s->size;
2561 	      s = hppa_info->dlt_rel_sec;
2562 	      dyn.d_un.d_val += s->size;
2563 	      s = hppa_info->opd_rel_sec;
2564 	      dyn.d_un.d_val += s->size;
2565 	      /* There is some question about whether or not the size of
2566 		 the PLT relocs should be included here.  HP's tools do
2567 		 it, so we'll emulate them.  */
2568 	      s = hppa_info->plt_rel_sec;
2569 	      dyn.d_un.d_val += s->size;
2570 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2571 	      break;
2572 
2573 	    }
2574 	}
2575     }
2576 
2577   return TRUE;
2578 }
2579 
2580 /* Support for core dump NOTE sections.  */
2581 
2582 static bfd_boolean
2583 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2584 {
2585   int offset;
2586   size_t size;
2587 
2588   switch (note->descsz)
2589     {
2590       default:
2591 	return FALSE;
2592 
2593       case 760:		/* Linux/hppa */
2594 	/* pr_cursig */
2595 	elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2596 
2597 	/* pr_pid */
2598 	elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2599 
2600 	/* pr_reg */
2601 	offset = 112;
2602 	size = 640;
2603 
2604 	break;
2605     }
2606 
2607   /* Make a ".reg/999" section.  */
2608   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2609 					  size, note->descpos + offset);
2610 }
2611 
2612 static bfd_boolean
2613 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2614 {
2615   char * command;
2616   int n;
2617 
2618   switch (note->descsz)
2619     {
2620     default:
2621       return FALSE;
2622 
2623     case 136:		/* Linux/hppa elf_prpsinfo.  */
2624       elf_tdata (abfd)->core->program
2625 	= _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2626       elf_tdata (abfd)->core->command
2627 	= _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2628     }
2629 
2630   /* Note that for some reason, a spurious space is tacked
2631      onto the end of the args in some (at least one anyway)
2632      implementations, so strip it off if it exists.  */
2633   command = elf_tdata (abfd)->core->command;
2634   n = strlen (command);
2635 
2636   if (0 < n && command[n - 1] == ' ')
2637     command[n - 1] = '\0';
2638 
2639   return TRUE;
2640 }
2641 
2642 /* Return the number of additional phdrs we will need.
2643 
2644    The generic ELF code only creates PT_PHDRs for executables.  The HP
2645    dynamic linker requires PT_PHDRs for dynamic libraries too.
2646 
2647    This routine indicates that the backend needs one additional program
2648    header for that case.
2649 
2650    Note we do not have access to the link info structure here, so we have
2651    to guess whether or not we are building a shared library based on the
2652    existence of a .interp section.  */
2653 
2654 static int
2655 elf64_hppa_additional_program_headers (bfd *abfd,
2656 				struct bfd_link_info *info ATTRIBUTE_UNUSED)
2657 {
2658   asection *s;
2659 
2660   /* If we are creating a shared library, then we have to create a
2661      PT_PHDR segment.  HP's dynamic linker chokes without it.  */
2662   s = bfd_get_section_by_name (abfd, ".interp");
2663   if (! s)
2664     return 1;
2665   return 0;
2666 }
2667 
2668 static bfd_boolean
2669 elf64_hppa_allow_non_load_phdr (bfd *abfd ATTRIBUTE_UNUSED,
2670 				const Elf_Internal_Phdr *phdr ATTRIBUTE_UNUSED,
2671 				unsigned int count ATTRIBUTE_UNUSED)
2672 {
2673   return TRUE;
2674 }
2675 
2676 /* Allocate and initialize any program headers required by this
2677    specific backend.
2678 
2679    The generic ELF code only creates PT_PHDRs for executables.  The HP
2680    dynamic linker requires PT_PHDRs for dynamic libraries too.
2681 
2682    This allocates the PT_PHDR and initializes it in a manner suitable
2683    for the HP linker.
2684 
2685    Note we do not have access to the link info structure here, so we have
2686    to guess whether or not we are building a shared library based on the
2687    existence of a .interp section.  */
2688 
2689 static bfd_boolean
2690 elf64_hppa_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
2691 {
2692   struct elf_segment_map *m;
2693 
2694   m = elf_seg_map (abfd);
2695   if (info != NULL && !info->user_phdrs && m != NULL && m->p_type != PT_PHDR)
2696     {
2697       m = ((struct elf_segment_map *)
2698 	   bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2699       if (m == NULL)
2700 	return FALSE;
2701 
2702       m->p_type = PT_PHDR;
2703       m->p_flags = PF_R | PF_X;
2704       m->p_flags_valid = 1;
2705       m->p_paddr_valid = 1;
2706       m->includes_phdrs = 1;
2707 
2708       m->next = elf_seg_map (abfd);
2709       elf_seg_map (abfd) = m;
2710     }
2711 
2712   for (m = elf_seg_map (abfd) ; m != NULL; m = m->next)
2713     if (m->p_type == PT_LOAD)
2714       {
2715 	unsigned int i;
2716 
2717 	for (i = 0; i < m->count; i++)
2718 	  {
2719 	    /* The code "hint" is not really a hint.  It is a requirement
2720 	       for certain versions of the HP dynamic linker.  Worse yet,
2721 	       it must be set even if the shared library does not have
2722 	       any code in its "text" segment (thus the check for .hash
2723 	       to catch this situation).  */
2724 	    if (m->sections[i]->flags & SEC_CODE
2725 		|| (strcmp (m->sections[i]->name, ".hash") == 0))
2726 	      m->p_flags |= (PF_X | PF_HP_CODE);
2727 	  }
2728       }
2729 
2730   return TRUE;
2731 }
2732 
2733 /* Called when writing out an object file to decide the type of a
2734    symbol.  */
2735 static int
2736 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2737 				int type)
2738 {
2739   if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2740     return STT_PARISC_MILLI;
2741   else
2742     return type;
2743 }
2744 
2745 /* Support HP specific sections for core files.  */
2746 
2747 static bfd_boolean
2748 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2749 			      const char *typename)
2750 {
2751   if (hdr->p_type == PT_HP_CORE_KERNEL)
2752     {
2753       asection *sect;
2754 
2755       if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2756 	return FALSE;
2757 
2758       sect = bfd_make_section_anyway (abfd, ".kernel");
2759       if (sect == NULL)
2760 	return FALSE;
2761       sect->size = hdr->p_filesz;
2762       sect->filepos = hdr->p_offset;
2763       sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2764       return TRUE;
2765     }
2766 
2767   if (hdr->p_type == PT_HP_CORE_PROC)
2768     {
2769       int sig;
2770 
2771       if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2772 	return FALSE;
2773       if (bfd_bread (&sig, 4, abfd) != 4)
2774 	return FALSE;
2775 
2776       elf_tdata (abfd)->core->signal = sig;
2777 
2778       if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2779 	return FALSE;
2780 
2781       /* GDB uses the ".reg" section to read register contents.  */
2782       return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2783 					      hdr->p_offset);
2784     }
2785 
2786   if (hdr->p_type == PT_HP_CORE_LOADABLE
2787       || hdr->p_type == PT_HP_CORE_STACK
2788       || hdr->p_type == PT_HP_CORE_MMF)
2789     hdr->p_type = PT_LOAD;
2790 
2791   return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2792 }
2793 
2794 /* Hook called by the linker routine which adds symbols from an object
2795    file.  HP's libraries define symbols with HP specific section
2796    indices, which we have to handle.  */
2797 
2798 static bfd_boolean
2799 elf_hppa_add_symbol_hook (bfd *abfd,
2800 			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
2801 			  Elf_Internal_Sym *sym,
2802 			  const char **namep ATTRIBUTE_UNUSED,
2803 			  flagword *flagsp ATTRIBUTE_UNUSED,
2804 			  asection **secp,
2805 			  bfd_vma *valp)
2806 {
2807   unsigned int sec_index = sym->st_shndx;
2808 
2809   switch (sec_index)
2810     {
2811     case SHN_PARISC_ANSI_COMMON:
2812       *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2813       (*secp)->flags |= SEC_IS_COMMON;
2814       *valp = sym->st_size;
2815       break;
2816 
2817     case SHN_PARISC_HUGE_COMMON:
2818       *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2819       (*secp)->flags |= SEC_IS_COMMON;
2820       *valp = sym->st_size;
2821       break;
2822     }
2823 
2824   return TRUE;
2825 }
2826 
2827 static bfd_boolean
2828 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2829 					 void *data)
2830 {
2831   struct bfd_link_info *info = data;
2832 
2833   /* If we are not creating a shared library, and this symbol is
2834      referenced by a shared library but is not defined anywhere, then
2835      the generic code will warn that it is undefined.
2836 
2837      This behavior is undesirable on HPs since the standard shared
2838      libraries contain references to undefined symbols.
2839 
2840      So we twiddle the flags associated with such symbols so that they
2841      will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
2842 
2843      Ultimately we should have better controls over the generic ELF BFD
2844      linker code.  */
2845   if (! bfd_link_relocatable (info)
2846       && info->unresolved_syms_in_shared_libs != RM_IGNORE
2847       && h->root.type == bfd_link_hash_undefined
2848       && h->ref_dynamic
2849       && !h->ref_regular)
2850     {
2851       h->ref_dynamic = 0;
2852       h->pointer_equality_needed = 1;
2853     }
2854 
2855   return TRUE;
2856 }
2857 
2858 static bfd_boolean
2859 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2860 					 void *data)
2861 {
2862   struct bfd_link_info *info = data;
2863 
2864   /* If we are not creating a shared library, and this symbol is
2865      referenced by a shared library but is not defined anywhere, then
2866      the generic code will warn that it is undefined.
2867 
2868      This behavior is undesirable on HPs since the standard shared
2869      libraries contain references to undefined symbols.
2870 
2871      So we twiddle the flags associated with such symbols so that they
2872      will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
2873 
2874      Ultimately we should have better controls over the generic ELF BFD
2875      linker code.  */
2876   if (! bfd_link_relocatable (info)
2877       && info->unresolved_syms_in_shared_libs != RM_IGNORE
2878       && h->root.type == bfd_link_hash_undefined
2879       && !h->ref_dynamic
2880       && !h->ref_regular
2881       && h->pointer_equality_needed)
2882     {
2883       h->ref_dynamic = 1;
2884       h->pointer_equality_needed = 0;
2885     }
2886 
2887   return TRUE;
2888 }
2889 
2890 static bfd_boolean
2891 elf_hppa_is_dynamic_loader_symbol (const char *name)
2892 {
2893   return (! strcmp (name, "__CPU_REVISION")
2894 	  || ! strcmp (name, "__CPU_KEYBITS_1")
2895 	  || ! strcmp (name, "__SYSTEM_ID_D")
2896 	  || ! strcmp (name, "__FPU_MODEL")
2897 	  || ! strcmp (name, "__FPU_REVISION")
2898 	  || ! strcmp (name, "__ARGC")
2899 	  || ! strcmp (name, "__ARGV")
2900 	  || ! strcmp (name, "__ENVP")
2901 	  || ! strcmp (name, "__TLS_SIZE_D")
2902 	  || ! strcmp (name, "__LOAD_INFO")
2903 	  || ! strcmp (name, "__systab"));
2904 }
2905 
2906 /* Record the lowest address for the data and text segments.  */
2907 static void
2908 elf_hppa_record_segment_addrs (bfd *abfd,
2909 			       asection *section,
2910 			       void *data)
2911 {
2912   struct elf64_hppa_link_hash_table *hppa_info = data;
2913 
2914   if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2915     {
2916       bfd_vma value;
2917       Elf_Internal_Phdr *p;
2918 
2919       p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2920       BFD_ASSERT (p != NULL);
2921       value = p->p_vaddr;
2922 
2923       if (section->flags & SEC_READONLY)
2924 	{
2925 	  if (value < hppa_info->text_segment_base)
2926 	    hppa_info->text_segment_base = value;
2927 	}
2928       else
2929 	{
2930 	  if (value < hppa_info->data_segment_base)
2931 	    hppa_info->data_segment_base = value;
2932 	}
2933     }
2934 }
2935 
2936 /* Called after we have seen all the input files/sections, but before
2937    final symbol resolution and section placement has been determined.
2938 
2939    We use this hook to (possibly) provide a value for __gp, then we
2940    fall back to the generic ELF final link routine.  */
2941 
2942 static bfd_boolean
2943 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2944 {
2945   struct stat buf;
2946   struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2947 
2948   if (hppa_info == NULL)
2949     return FALSE;
2950 
2951   if (! bfd_link_relocatable (info))
2952     {
2953       struct elf_link_hash_entry *gp;
2954       bfd_vma gp_val;
2955 
2956       /* The linker script defines a value for __gp iff it was referenced
2957 	 by one of the objects being linked.  First try to find the symbol
2958 	 in the hash table.  If that fails, just compute the value __gp
2959 	 should have had.  */
2960       gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2961 				 FALSE, FALSE);
2962 
2963       if (gp)
2964 	{
2965 
2966 	  /* Adjust the value of __gp as we may want to slide it into the
2967 	     .plt section so that the stubs can access PLT entries without
2968 	     using an addil sequence.  */
2969 	  gp->root.u.def.value += hppa_info->gp_offset;
2970 
2971 	  gp_val = (gp->root.u.def.section->output_section->vma
2972 		    + gp->root.u.def.section->output_offset
2973 		    + gp->root.u.def.value);
2974 	}
2975       else
2976 	{
2977 	  asection *sec;
2978 
2979 	  /* First look for a .plt section.  If found, then __gp is the
2980 	     address of the .plt + gp_offset.
2981 
2982 	     If no .plt is found, then look for .dlt, .opd and .data (in
2983 	     that order) and set __gp to the base address of whichever
2984 	     section is found first.  */
2985 
2986 	  sec = hppa_info->plt_sec;
2987 	  if (sec && ! (sec->flags & SEC_EXCLUDE))
2988 	    gp_val = (sec->output_offset
2989 		      + sec->output_section->vma
2990 		      + hppa_info->gp_offset);
2991 	  else
2992 	    {
2993 	      sec = hppa_info->dlt_sec;
2994 	      if (!sec || (sec->flags & SEC_EXCLUDE))
2995 		sec = hppa_info->opd_sec;
2996 	      if (!sec || (sec->flags & SEC_EXCLUDE))
2997 		sec = bfd_get_section_by_name (abfd, ".data");
2998 	      if (!sec || (sec->flags & SEC_EXCLUDE))
2999 		gp_val = 0;
3000 	      else
3001 		gp_val = sec->output_offset + sec->output_section->vma;
3002 	    }
3003 	}
3004 
3005       /* Install whatever value we found/computed for __gp.  */
3006       _bfd_set_gp_value (abfd, gp_val);
3007     }
3008 
3009   /* We need to know the base of the text and data segments so that we
3010      can perform SEGREL relocations.  We will record the base addresses
3011      when we encounter the first SEGREL relocation.  */
3012   hppa_info->text_segment_base = (bfd_vma)-1;
3013   hppa_info->data_segment_base = (bfd_vma)-1;
3014 
3015   /* HP's shared libraries have references to symbols that are not
3016      defined anywhere.  The generic ELF BFD linker code will complain
3017      about such symbols.
3018 
3019      So we detect the losing case and arrange for the flags on the symbol
3020      to indicate that it was never referenced.  This keeps the generic
3021      ELF BFD link code happy and appears to not create any secondary
3022      problems.  Ultimately we need a way to control the behavior of the
3023      generic ELF BFD link code better.  */
3024   elf_link_hash_traverse (elf_hash_table (info),
3025 			  elf_hppa_unmark_useless_dynamic_symbols,
3026 			  info);
3027 
3028   /* Invoke the regular ELF backend linker to do all the work.  */
3029   if (!bfd_elf_final_link (abfd, info))
3030     return FALSE;
3031 
3032   elf_link_hash_traverse (elf_hash_table (info),
3033 			  elf_hppa_remark_useless_dynamic_symbols,
3034 			  info);
3035 
3036   /* If we're producing a final executable, sort the contents of the
3037      unwind section. */
3038   if (bfd_link_relocatable (info))
3039     return TRUE;
3040 
3041   /* Do not attempt to sort non-regular files.  This is here
3042      especially for configure scripts and kernel builds which run
3043      tests with "ld [...] -o /dev/null".  */
3044   if (stat (abfd->filename, &buf) != 0
3045       || !S_ISREG(buf.st_mode))
3046     return TRUE;
3047 
3048   return elf_hppa_sort_unwind (abfd);
3049 }
3050 
3051 /* Relocate the given INSN.  VALUE should be the actual value we want
3052    to insert into the instruction, ie by this point we should not be
3053    concerned with computing an offset relative to the DLT, PC, etc.
3054    Instead this routine is meant to handle the bit manipulations needed
3055    to insert the relocation into the given instruction.  */
3056 
3057 static int
3058 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3059 {
3060   switch (r_type)
3061     {
3062     /* This is any 22 bit branch.  In PA2.0 syntax it corresponds to
3063        the "B" instruction.  */
3064     case R_PARISC_PCREL22F:
3065     case R_PARISC_PCREL22C:
3066       return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3067 
3068       /* This is any 12 bit branch.  */
3069     case R_PARISC_PCREL12F:
3070       return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3071 
3072     /* This is any 17 bit branch.  In PA2.0 syntax it also corresponds
3073        to the "B" instruction as well as BE.  */
3074     case R_PARISC_PCREL17F:
3075     case R_PARISC_DIR17F:
3076     case R_PARISC_DIR17R:
3077     case R_PARISC_PCREL17C:
3078     case R_PARISC_PCREL17R:
3079       return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3080 
3081     /* ADDIL or LDIL instructions.  */
3082     case R_PARISC_DLTREL21L:
3083     case R_PARISC_DLTIND21L:
3084     case R_PARISC_LTOFF_FPTR21L:
3085     case R_PARISC_PCREL21L:
3086     case R_PARISC_LTOFF_TP21L:
3087     case R_PARISC_DPREL21L:
3088     case R_PARISC_PLTOFF21L:
3089     case R_PARISC_DIR21L:
3090       return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3091 
3092     /* LDO and integer loads/stores with 14 bit displacements.  */
3093     case R_PARISC_DLTREL14R:
3094     case R_PARISC_DLTREL14F:
3095     case R_PARISC_DLTIND14R:
3096     case R_PARISC_DLTIND14F:
3097     case R_PARISC_LTOFF_FPTR14R:
3098     case R_PARISC_PCREL14R:
3099     case R_PARISC_PCREL14F:
3100     case R_PARISC_LTOFF_TP14R:
3101     case R_PARISC_LTOFF_TP14F:
3102     case R_PARISC_DPREL14R:
3103     case R_PARISC_DPREL14F:
3104     case R_PARISC_PLTOFF14R:
3105     case R_PARISC_PLTOFF14F:
3106     case R_PARISC_DIR14R:
3107     case R_PARISC_DIR14F:
3108       return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3109 
3110     /* PA2.0W LDO and integer loads/stores with 16 bit displacements.  */
3111     case R_PARISC_LTOFF_FPTR16F:
3112     case R_PARISC_PCREL16F:
3113     case R_PARISC_LTOFF_TP16F:
3114     case R_PARISC_GPREL16F:
3115     case R_PARISC_PLTOFF16F:
3116     case R_PARISC_DIR16F:
3117     case R_PARISC_LTOFF16F:
3118       return (insn & ~0xffff) | re_assemble_16 (sym_value);
3119 
3120     /* Doubleword loads and stores with a 14 bit displacement.  */
3121     case R_PARISC_DLTREL14DR:
3122     case R_PARISC_DLTIND14DR:
3123     case R_PARISC_LTOFF_FPTR14DR:
3124     case R_PARISC_LTOFF_FPTR16DF:
3125     case R_PARISC_PCREL14DR:
3126     case R_PARISC_PCREL16DF:
3127     case R_PARISC_LTOFF_TP14DR:
3128     case R_PARISC_LTOFF_TP16DF:
3129     case R_PARISC_DPREL14DR:
3130     case R_PARISC_GPREL16DF:
3131     case R_PARISC_PLTOFF14DR:
3132     case R_PARISC_PLTOFF16DF:
3133     case R_PARISC_DIR14DR:
3134     case R_PARISC_DIR16DF:
3135     case R_PARISC_LTOFF16DF:
3136       return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3137 				 | ((sym_value & 0x1ff8) << 1));
3138 
3139     /* Floating point single word load/store instructions.  */
3140     case R_PARISC_DLTREL14WR:
3141     case R_PARISC_DLTIND14WR:
3142     case R_PARISC_LTOFF_FPTR14WR:
3143     case R_PARISC_LTOFF_FPTR16WF:
3144     case R_PARISC_PCREL14WR:
3145     case R_PARISC_PCREL16WF:
3146     case R_PARISC_LTOFF_TP14WR:
3147     case R_PARISC_LTOFF_TP16WF:
3148     case R_PARISC_DPREL14WR:
3149     case R_PARISC_GPREL16WF:
3150     case R_PARISC_PLTOFF14WR:
3151     case R_PARISC_PLTOFF16WF:
3152     case R_PARISC_DIR16WF:
3153     case R_PARISC_DIR14WR:
3154     case R_PARISC_LTOFF16WF:
3155       return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3156 				 | ((sym_value & 0x1ffc) << 1));
3157 
3158     default:
3159       return insn;
3160     }
3161 }
3162 
3163 /* Compute the value for a relocation (REL) during a final link stage,
3164    then insert the value into the proper location in CONTENTS.
3165 
3166    VALUE is a tentative value for the relocation and may be overridden
3167    and modified here based on the specific relocation to be performed.
3168 
3169    For example we do conversions for PC-relative branches in this routine
3170    or redirection of calls to external routines to stubs.
3171 
3172    The work of actually applying the relocation is left to a helper
3173    routine in an attempt to reduce the complexity and size of this
3174    function.  */
3175 
3176 static bfd_reloc_status_type
3177 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3178 			      bfd *input_bfd,
3179 			      bfd *output_bfd,
3180 			      asection *input_section,
3181 			      bfd_byte *contents,
3182 			      bfd_vma value,
3183 			      struct bfd_link_info *info,
3184 			      asection *sym_sec,
3185 			      struct elf_link_hash_entry *eh)
3186 {
3187   struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3188   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3189   bfd_vma *local_offsets;
3190   Elf_Internal_Shdr *symtab_hdr;
3191   int insn;
3192   bfd_vma max_branch_offset = 0;
3193   bfd_vma offset = rel->r_offset;
3194   bfd_signed_vma addend = rel->r_addend;
3195   reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3196   unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3197   unsigned int r_type = howto->type;
3198   bfd_byte *hit_data = contents + offset;
3199 
3200   if (hppa_info == NULL)
3201     return bfd_reloc_notsupported;
3202 
3203   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3204   local_offsets = elf_local_got_offsets (input_bfd);
3205   insn = bfd_get_32 (input_bfd, hit_data);
3206 
3207   switch (r_type)
3208     {
3209     case R_PARISC_NONE:
3210       break;
3211 
3212     /* Basic function call support.
3213 
3214        Note for a call to a function defined in another dynamic library
3215        we want to redirect the call to a stub.  */
3216 
3217     /* PC relative relocs without an implicit offset.  */
3218     case R_PARISC_PCREL21L:
3219     case R_PARISC_PCREL14R:
3220     case R_PARISC_PCREL14F:
3221     case R_PARISC_PCREL14WR:
3222     case R_PARISC_PCREL14DR:
3223     case R_PARISC_PCREL16F:
3224     case R_PARISC_PCREL16WF:
3225     case R_PARISC_PCREL16DF:
3226       {
3227 	/* If this is a call to a function defined in another dynamic
3228 	   library, then redirect the call to the local stub for this
3229 	   function.  */
3230 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3231 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3232 		   + hppa_info->stub_sec->output_section->vma);
3233 
3234 	/* Turn VALUE into a proper PC relative address.  */
3235 	value -= (offset + input_section->output_offset
3236 		  + input_section->output_section->vma);
3237 
3238 	/* Adjust for any field selectors.  */
3239 	if (r_type == R_PARISC_PCREL21L)
3240 	  value = hppa_field_adjust (value, -8 + addend, e_lsel);
3241 	else if (r_type == R_PARISC_PCREL14F
3242 		 || r_type == R_PARISC_PCREL16F
3243 		 || r_type == R_PARISC_PCREL16WF
3244 		 || r_type == R_PARISC_PCREL16DF)
3245 	  value = hppa_field_adjust (value, -8 + addend, e_fsel);
3246 	else
3247 	  value = hppa_field_adjust (value, -8 + addend, e_rsel);
3248 
3249 	/* Apply the relocation to the given instruction.  */
3250 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3251 	break;
3252       }
3253 
3254     case R_PARISC_PCREL12F:
3255     case R_PARISC_PCREL22F:
3256     case R_PARISC_PCREL17F:
3257     case R_PARISC_PCREL22C:
3258     case R_PARISC_PCREL17C:
3259     case R_PARISC_PCREL17R:
3260       {
3261 	/* If this is a call to a function defined in another dynamic
3262 	   library, then redirect the call to the local stub for this
3263 	   function.  */
3264 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3265 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3266 		   + hppa_info->stub_sec->output_section->vma);
3267 
3268 	/* Turn VALUE into a proper PC relative address.  */
3269 	value -= (offset + input_section->output_offset
3270 		  + input_section->output_section->vma);
3271 	addend -= 8;
3272 
3273 	if (r_type == (unsigned int) R_PARISC_PCREL22F)
3274 	  max_branch_offset = (1 << (22-1)) << 2;
3275 	else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3276 	  max_branch_offset = (1 << (17-1)) << 2;
3277 	else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3278 	  max_branch_offset = (1 << (12-1)) << 2;
3279 
3280 	/* Make sure we can reach the branch target.  */
3281 	if (max_branch_offset != 0
3282 	    && value + addend + max_branch_offset >= 2*max_branch_offset)
3283 	  {
3284 	    _bfd_error_handler
3285 	      /* xgettext:c-format */
3286 	      (_("%pB(%pA+%#" PRIx64 "): cannot reach %s"),
3287 	      input_bfd,
3288 	      input_section,
3289 	      (uint64_t) offset,
3290 	      eh ? eh->root.root.string : "unknown");
3291 	    bfd_set_error (bfd_error_bad_value);
3292 	    return bfd_reloc_overflow;
3293 	  }
3294 
3295 	/* Adjust for any field selectors.  */
3296 	if (r_type == R_PARISC_PCREL17R)
3297 	  value = hppa_field_adjust (value, addend, e_rsel);
3298 	else
3299 	  value = hppa_field_adjust (value, addend, e_fsel);
3300 
3301 	/* All branches are implicitly shifted by 2 places.  */
3302 	value >>= 2;
3303 
3304 	/* Apply the relocation to the given instruction.  */
3305 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3306 	break;
3307       }
3308 
3309     /* Indirect references to data through the DLT.  */
3310     case R_PARISC_DLTIND14R:
3311     case R_PARISC_DLTIND14F:
3312     case R_PARISC_DLTIND14DR:
3313     case R_PARISC_DLTIND14WR:
3314     case R_PARISC_DLTIND21L:
3315     case R_PARISC_LTOFF_FPTR14R:
3316     case R_PARISC_LTOFF_FPTR14DR:
3317     case R_PARISC_LTOFF_FPTR14WR:
3318     case R_PARISC_LTOFF_FPTR21L:
3319     case R_PARISC_LTOFF_FPTR16F:
3320     case R_PARISC_LTOFF_FPTR16WF:
3321     case R_PARISC_LTOFF_FPTR16DF:
3322     case R_PARISC_LTOFF_TP21L:
3323     case R_PARISC_LTOFF_TP14R:
3324     case R_PARISC_LTOFF_TP14F:
3325     case R_PARISC_LTOFF_TP14WR:
3326     case R_PARISC_LTOFF_TP14DR:
3327     case R_PARISC_LTOFF_TP16F:
3328     case R_PARISC_LTOFF_TP16WF:
3329     case R_PARISC_LTOFF_TP16DF:
3330     case R_PARISC_LTOFF16F:
3331     case R_PARISC_LTOFF16WF:
3332     case R_PARISC_LTOFF16DF:
3333       {
3334 	bfd_vma off;
3335 
3336 	/* If this relocation was against a local symbol, then we still
3337 	   have not set up the DLT entry (it's not convenient to do so
3338 	   in the "finalize_dlt" routine because it is difficult to get
3339 	   to the local symbol's value).
3340 
3341 	   So, if this is a local symbol (h == NULL), then we need to
3342 	   fill in its DLT entry.
3343 
3344 	   Similarly we may still need to set up an entry in .opd for
3345 	   a local function which had its address taken.  */
3346 	if (hh == NULL)
3347 	  {
3348 	    bfd_vma *local_opd_offsets, *local_dlt_offsets;
3349 
3350 	    if (local_offsets == NULL)
3351 	      abort ();
3352 
3353 	    /* Now do .opd creation if needed.  */
3354 	    if (r_type == R_PARISC_LTOFF_FPTR14R
3355 		|| r_type == R_PARISC_LTOFF_FPTR14DR
3356 		|| r_type == R_PARISC_LTOFF_FPTR14WR
3357 		|| r_type == R_PARISC_LTOFF_FPTR21L
3358 		|| r_type == R_PARISC_LTOFF_FPTR16F
3359 		|| r_type == R_PARISC_LTOFF_FPTR16WF
3360 		|| r_type == R_PARISC_LTOFF_FPTR16DF)
3361 	      {
3362 		local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3363 		off = local_opd_offsets[r_symndx];
3364 
3365 		/* The last bit records whether we've already initialised
3366 		   this local .opd entry.  */
3367 		if ((off & 1) != 0)
3368 		  {
3369 		    BFD_ASSERT (off != (bfd_vma) -1);
3370 		    off &= ~1;
3371 		  }
3372 		else
3373 		  {
3374 		    local_opd_offsets[r_symndx] |= 1;
3375 
3376 		    /* The first two words of an .opd entry are zero.  */
3377 		    memset (hppa_info->opd_sec->contents + off, 0, 16);
3378 
3379 		    /* The next word is the address of the function.  */
3380 		    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3381 				(hppa_info->opd_sec->contents + off + 16));
3382 
3383 		    /* The last word is our local __gp value.  */
3384 		    value = _bfd_get_gp_value
3385 			      (hppa_info->opd_sec->output_section->owner);
3386 		    bfd_put_64 (hppa_info->opd_sec->owner, value,
3387 				(hppa_info->opd_sec->contents + off + 24));
3388 		  }
3389 
3390 		/* The DLT value is the address of the .opd entry.  */
3391 		value = (off
3392 			 + hppa_info->opd_sec->output_offset
3393 			 + hppa_info->opd_sec->output_section->vma);
3394 		addend = 0;
3395 	      }
3396 
3397 	    local_dlt_offsets = local_offsets;
3398 	    off = local_dlt_offsets[r_symndx];
3399 
3400 	    if ((off & 1) != 0)
3401 	      {
3402 		BFD_ASSERT (off != (bfd_vma) -1);
3403 		off &= ~1;
3404 	      }
3405 	    else
3406 	      {
3407 		local_dlt_offsets[r_symndx] |= 1;
3408 		bfd_put_64 (hppa_info->dlt_sec->owner,
3409 			    value + addend,
3410 			    hppa_info->dlt_sec->contents + off);
3411 	      }
3412 	  }
3413 	else
3414 	  off = hh->dlt_offset;
3415 
3416 	/* We want the value of the DLT offset for this symbol, not
3417 	   the symbol's actual address.  Note that __gp may not point
3418 	   to the start of the DLT, so we have to compute the absolute
3419 	   address, then subtract out the value of __gp.  */
3420 	value = (off
3421 		 + hppa_info->dlt_sec->output_offset
3422 		 + hppa_info->dlt_sec->output_section->vma);
3423 	value -= _bfd_get_gp_value (output_bfd);
3424 
3425 	/* All DLTIND relocations are basically the same at this point,
3426 	   except that we need different field selectors for the 21bit
3427 	   version vs the 14bit versions.  */
3428 	if (r_type == R_PARISC_DLTIND21L
3429 	    || r_type == R_PARISC_LTOFF_FPTR21L
3430 	    || r_type == R_PARISC_LTOFF_TP21L)
3431 	  value = hppa_field_adjust (value, 0, e_lsel);
3432 	else if (r_type == R_PARISC_DLTIND14F
3433 		 || r_type == R_PARISC_LTOFF_FPTR16F
3434 		 || r_type == R_PARISC_LTOFF_FPTR16WF
3435 		 || r_type == R_PARISC_LTOFF_FPTR16DF
3436 		 || r_type == R_PARISC_LTOFF16F
3437 		 || r_type == R_PARISC_LTOFF16DF
3438 		 || r_type == R_PARISC_LTOFF16WF
3439 		 || r_type == R_PARISC_LTOFF_TP16F
3440 		 || r_type == R_PARISC_LTOFF_TP16WF
3441 		 || r_type == R_PARISC_LTOFF_TP16DF)
3442 	  value = hppa_field_adjust (value, 0, e_fsel);
3443 	else
3444 	  value = hppa_field_adjust (value, 0, e_rsel);
3445 
3446 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3447 	break;
3448       }
3449 
3450     case R_PARISC_DLTREL14R:
3451     case R_PARISC_DLTREL14F:
3452     case R_PARISC_DLTREL14DR:
3453     case R_PARISC_DLTREL14WR:
3454     case R_PARISC_DLTREL21L:
3455     case R_PARISC_DPREL21L:
3456     case R_PARISC_DPREL14WR:
3457     case R_PARISC_DPREL14DR:
3458     case R_PARISC_DPREL14R:
3459     case R_PARISC_DPREL14F:
3460     case R_PARISC_GPREL16F:
3461     case R_PARISC_GPREL16WF:
3462     case R_PARISC_GPREL16DF:
3463       {
3464 	/* Subtract out the global pointer value to make value a DLT
3465 	   relative address.  */
3466 	value -= _bfd_get_gp_value (output_bfd);
3467 
3468 	/* All DLTREL relocations are basically the same at this point,
3469 	   except that we need different field selectors for the 21bit
3470 	   version vs the 14bit versions.  */
3471 	if (r_type == R_PARISC_DLTREL21L
3472 	    || r_type == R_PARISC_DPREL21L)
3473 	  value = hppa_field_adjust (value, addend, e_lrsel);
3474 	else if (r_type == R_PARISC_DLTREL14F
3475 		 || r_type == R_PARISC_DPREL14F
3476 		 || r_type == R_PARISC_GPREL16F
3477 		 || r_type == R_PARISC_GPREL16WF
3478 		 || r_type == R_PARISC_GPREL16DF)
3479 	  value = hppa_field_adjust (value, addend, e_fsel);
3480 	else
3481 	  value = hppa_field_adjust (value, addend, e_rrsel);
3482 
3483 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3484 	break;
3485       }
3486 
3487     case R_PARISC_DIR21L:
3488     case R_PARISC_DIR17R:
3489     case R_PARISC_DIR17F:
3490     case R_PARISC_DIR14R:
3491     case R_PARISC_DIR14F:
3492     case R_PARISC_DIR14WR:
3493     case R_PARISC_DIR14DR:
3494     case R_PARISC_DIR16F:
3495     case R_PARISC_DIR16WF:
3496     case R_PARISC_DIR16DF:
3497       {
3498 	/* All DIR relocations are basically the same at this point,
3499 	   except that branch offsets need to be divided by four, and
3500 	   we need different field selectors.  Note that we don't
3501 	   redirect absolute calls to local stubs.  */
3502 
3503 	if (r_type == R_PARISC_DIR21L)
3504 	  value = hppa_field_adjust (value, addend, e_lrsel);
3505 	else if (r_type == R_PARISC_DIR17F
3506 		 || r_type == R_PARISC_DIR16F
3507 		 || r_type == R_PARISC_DIR16WF
3508 		 || r_type == R_PARISC_DIR16DF
3509 		 || r_type == R_PARISC_DIR14F)
3510 	  value = hppa_field_adjust (value, addend, e_fsel);
3511 	else
3512 	  value = hppa_field_adjust (value, addend, e_rrsel);
3513 
3514 	if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3515 	  /* All branches are implicitly shifted by 2 places.  */
3516 	  value >>= 2;
3517 
3518 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3519 	break;
3520       }
3521 
3522     case R_PARISC_PLTOFF21L:
3523     case R_PARISC_PLTOFF14R:
3524     case R_PARISC_PLTOFF14F:
3525     case R_PARISC_PLTOFF14WR:
3526     case R_PARISC_PLTOFF14DR:
3527     case R_PARISC_PLTOFF16F:
3528     case R_PARISC_PLTOFF16WF:
3529     case R_PARISC_PLTOFF16DF:
3530       {
3531 	/* We want the value of the PLT offset for this symbol, not
3532 	   the symbol's actual address.  Note that __gp may not point
3533 	   to the start of the DLT, so we have to compute the absolute
3534 	   address, then subtract out the value of __gp.  */
3535 	value = (hh->plt_offset
3536 		 + hppa_info->plt_sec->output_offset
3537 		 + hppa_info->plt_sec->output_section->vma);
3538 	value -= _bfd_get_gp_value (output_bfd);
3539 
3540 	/* All PLTOFF relocations are basically the same at this point,
3541 	   except that we need different field selectors for the 21bit
3542 	   version vs the 14bit versions.  */
3543 	if (r_type == R_PARISC_PLTOFF21L)
3544 	  value = hppa_field_adjust (value, addend, e_lrsel);
3545 	else if (r_type == R_PARISC_PLTOFF14F
3546 		 || r_type == R_PARISC_PLTOFF16F
3547 		 || r_type == R_PARISC_PLTOFF16WF
3548 		 || r_type == R_PARISC_PLTOFF16DF)
3549 	  value = hppa_field_adjust (value, addend, e_fsel);
3550 	else
3551 	  value = hppa_field_adjust (value, addend, e_rrsel);
3552 
3553 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3554 	break;
3555       }
3556 
3557     case R_PARISC_LTOFF_FPTR32:
3558       {
3559 	/* We may still need to create the FPTR itself if it was for
3560 	   a local symbol.  */
3561 	if (hh == NULL)
3562 	  {
3563 	    /* The first two words of an .opd entry are zero.  */
3564 	    memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3565 
3566 	    /* The next word is the address of the function.  */
3567 	    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3568 			(hppa_info->opd_sec->contents
3569 			 + hh->opd_offset + 16));
3570 
3571 	    /* The last word is our local __gp value.  */
3572 	    value = _bfd_get_gp_value
3573 		      (hppa_info->opd_sec->output_section->owner);
3574 	    bfd_put_64 (hppa_info->opd_sec->owner, value,
3575 			hppa_info->opd_sec->contents + hh->opd_offset + 24);
3576 
3577 	    /* The DLT value is the address of the .opd entry.  */
3578 	    value = (hh->opd_offset
3579 		     + hppa_info->opd_sec->output_offset
3580 		     + hppa_info->opd_sec->output_section->vma);
3581 
3582 	    bfd_put_64 (hppa_info->dlt_sec->owner,
3583 			value,
3584 			hppa_info->dlt_sec->contents + hh->dlt_offset);
3585 	  }
3586 
3587 	/* We want the value of the DLT offset for this symbol, not
3588 	   the symbol's actual address.  Note that __gp may not point
3589 	   to the start of the DLT, so we have to compute the absolute
3590 	   address, then subtract out the value of __gp.  */
3591 	value = (hh->dlt_offset
3592 		 + hppa_info->dlt_sec->output_offset
3593 		 + hppa_info->dlt_sec->output_section->vma);
3594 	value -= _bfd_get_gp_value (output_bfd);
3595 	bfd_put_32 (input_bfd, value, hit_data);
3596 	return bfd_reloc_ok;
3597       }
3598 
3599     case R_PARISC_LTOFF_FPTR64:
3600     case R_PARISC_LTOFF_TP64:
3601       {
3602 	/* We may still need to create the FPTR itself if it was for
3603 	   a local symbol.  */
3604 	if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3605 	  {
3606 	    /* The first two words of an .opd entry are zero.  */
3607 	    memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3608 
3609 	    /* The next word is the address of the function.  */
3610 	    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3611 			(hppa_info->opd_sec->contents
3612 			 + hh->opd_offset + 16));
3613 
3614 	    /* The last word is our local __gp value.  */
3615 	    value = _bfd_get_gp_value
3616 		      (hppa_info->opd_sec->output_section->owner);
3617 	    bfd_put_64 (hppa_info->opd_sec->owner, value,
3618 			hppa_info->opd_sec->contents + hh->opd_offset + 24);
3619 
3620 	    /* The DLT value is the address of the .opd entry.  */
3621 	    value = (hh->opd_offset
3622 		     + hppa_info->opd_sec->output_offset
3623 		     + hppa_info->opd_sec->output_section->vma);
3624 
3625 	    bfd_put_64 (hppa_info->dlt_sec->owner,
3626 			value,
3627 			hppa_info->dlt_sec->contents + hh->dlt_offset);
3628 	  }
3629 
3630 	/* We want the value of the DLT offset for this symbol, not
3631 	   the symbol's actual address.  Note that __gp may not point
3632 	   to the start of the DLT, so we have to compute the absolute
3633 	   address, then subtract out the value of __gp.  */
3634 	value = (hh->dlt_offset
3635 		 + hppa_info->dlt_sec->output_offset
3636 		 + hppa_info->dlt_sec->output_section->vma);
3637 	value -= _bfd_get_gp_value (output_bfd);
3638 	bfd_put_64 (input_bfd, value, hit_data);
3639 	return bfd_reloc_ok;
3640       }
3641 
3642     case R_PARISC_DIR32:
3643       bfd_put_32 (input_bfd, value + addend, hit_data);
3644       return bfd_reloc_ok;
3645 
3646     case R_PARISC_DIR64:
3647       bfd_put_64 (input_bfd, value + addend, hit_data);
3648       return bfd_reloc_ok;
3649 
3650     case R_PARISC_GPREL64:
3651       /* Subtract out the global pointer value to make value a DLT
3652 	 relative address.  */
3653       value -= _bfd_get_gp_value (output_bfd);
3654 
3655       bfd_put_64 (input_bfd, value + addend, hit_data);
3656       return bfd_reloc_ok;
3657 
3658     case R_PARISC_LTOFF64:
3659 	/* We want the value of the DLT offset for this symbol, not
3660 	   the symbol's actual address.  Note that __gp may not point
3661 	   to the start of the DLT, so we have to compute the absolute
3662 	   address, then subtract out the value of __gp.  */
3663       value = (hh->dlt_offset
3664 	       + hppa_info->dlt_sec->output_offset
3665 	       + hppa_info->dlt_sec->output_section->vma);
3666       value -= _bfd_get_gp_value (output_bfd);
3667 
3668       bfd_put_64 (input_bfd, value + addend, hit_data);
3669       return bfd_reloc_ok;
3670 
3671     case R_PARISC_PCREL32:
3672       {
3673 	/* If this is a call to a function defined in another dynamic
3674 	   library, then redirect the call to the local stub for this
3675 	   function.  */
3676 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3677 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3678 		   + hppa_info->stub_sec->output_section->vma);
3679 
3680 	/* Turn VALUE into a proper PC relative address.  */
3681 	value -= (offset + input_section->output_offset
3682 		  + input_section->output_section->vma);
3683 
3684 	value += addend;
3685 	value -= 8;
3686 	bfd_put_32 (input_bfd, value, hit_data);
3687 	return bfd_reloc_ok;
3688       }
3689 
3690     case R_PARISC_PCREL64:
3691       {
3692 	/* If this is a call to a function defined in another dynamic
3693 	   library, then redirect the call to the local stub for this
3694 	   function.  */
3695 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3696 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3697 		   + hppa_info->stub_sec->output_section->vma);
3698 
3699 	/* Turn VALUE into a proper PC relative address.  */
3700 	value -= (offset + input_section->output_offset
3701 		  + input_section->output_section->vma);
3702 
3703 	value += addend;
3704 	value -= 8;
3705 	bfd_put_64 (input_bfd, value, hit_data);
3706 	return bfd_reloc_ok;
3707       }
3708 
3709     case R_PARISC_FPTR64:
3710       {
3711 	bfd_vma off;
3712 
3713 	/* We may still need to create the FPTR itself if it was for
3714 	   a local symbol.  */
3715 	if (hh == NULL)
3716 	  {
3717 	    bfd_vma *local_opd_offsets;
3718 
3719 	    if (local_offsets == NULL)
3720 	      abort ();
3721 
3722 	    local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3723 	    off = local_opd_offsets[r_symndx];
3724 
3725 	    /* The last bit records whether we've already initialised
3726 	       this local .opd entry.  */
3727 	    if ((off & 1) != 0)
3728 	      {
3729 		BFD_ASSERT (off != (bfd_vma) -1);
3730 		off &= ~1;
3731 	      }
3732 	    else
3733 	      {
3734 		/* The first two words of an .opd entry are zero.  */
3735 		memset (hppa_info->opd_sec->contents + off, 0, 16);
3736 
3737 		/* The next word is the address of the function.  */
3738 		bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3739 			    (hppa_info->opd_sec->contents + off + 16));
3740 
3741 		/* The last word is our local __gp value.  */
3742 		value = _bfd_get_gp_value
3743 			  (hppa_info->opd_sec->output_section->owner);
3744 		bfd_put_64 (hppa_info->opd_sec->owner, value,
3745 			    hppa_info->opd_sec->contents + off + 24);
3746 	      }
3747 	  }
3748 	else
3749 	  off = hh->opd_offset;
3750 
3751 	if (hh == NULL || hh->want_opd)
3752 	  /* We want the value of the OPD offset for this symbol.  */
3753 	  value = (off
3754 		   + hppa_info->opd_sec->output_offset
3755 		   + hppa_info->opd_sec->output_section->vma);
3756 	else
3757 	  /* We want the address of the symbol.  */
3758 	  value += addend;
3759 
3760 	bfd_put_64 (input_bfd, value, hit_data);
3761 	return bfd_reloc_ok;
3762       }
3763 
3764     case R_PARISC_SECREL32:
3765       if (sym_sec)
3766 	value -= sym_sec->output_section->vma;
3767       bfd_put_32 (input_bfd, value + addend, hit_data);
3768       return bfd_reloc_ok;
3769 
3770     case R_PARISC_SEGREL32:
3771     case R_PARISC_SEGREL64:
3772       {
3773 	/* If this is the first SEGREL relocation, then initialize
3774 	   the segment base values.  */
3775 	if (hppa_info->text_segment_base == (bfd_vma) -1)
3776 	  bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3777 				 hppa_info);
3778 
3779 	/* VALUE holds the absolute address.  We want to include the
3780 	   addend, then turn it into a segment relative address.
3781 
3782 	   The segment is derived from SYM_SEC.  We assume that there are
3783 	   only two segments of note in the resulting executable/shlib.
3784 	   A readonly segment (.text) and a readwrite segment (.data).  */
3785 	value += addend;
3786 
3787 	if (sym_sec->flags & SEC_CODE)
3788 	  value -= hppa_info->text_segment_base;
3789 	else
3790 	  value -= hppa_info->data_segment_base;
3791 
3792 	if (r_type == R_PARISC_SEGREL32)
3793 	  bfd_put_32 (input_bfd, value, hit_data);
3794 	else
3795 	  bfd_put_64 (input_bfd, value, hit_data);
3796 	return bfd_reloc_ok;
3797       }
3798 
3799     /* Something we don't know how to handle.  */
3800     default:
3801       return bfd_reloc_notsupported;
3802     }
3803 
3804   /* Update the instruction word.  */
3805   bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3806   return bfd_reloc_ok;
3807 }
3808 
3809 /* Relocate an HPPA ELF section.  */
3810 
3811 static bfd_boolean
3812 elf64_hppa_relocate_section (bfd *output_bfd,
3813 			   struct bfd_link_info *info,
3814 			   bfd *input_bfd,
3815 			   asection *input_section,
3816 			   bfd_byte *contents,
3817 			   Elf_Internal_Rela *relocs,
3818 			   Elf_Internal_Sym *local_syms,
3819 			   asection **local_sections)
3820 {
3821   Elf_Internal_Shdr *symtab_hdr;
3822   Elf_Internal_Rela *rel;
3823   Elf_Internal_Rela *relend;
3824   struct elf64_hppa_link_hash_table *hppa_info;
3825 
3826   hppa_info = hppa_link_hash_table (info);
3827   if (hppa_info == NULL)
3828     return FALSE;
3829 
3830   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3831 
3832   rel = relocs;
3833   relend = relocs + input_section->reloc_count;
3834   for (; rel < relend; rel++)
3835     {
3836       int r_type;
3837       reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3838       unsigned long r_symndx;
3839       struct elf_link_hash_entry *eh;
3840       Elf_Internal_Sym *sym;
3841       asection *sym_sec;
3842       bfd_vma relocation;
3843       bfd_reloc_status_type r;
3844 
3845       r_type = ELF_R_TYPE (rel->r_info);
3846       if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3847 	{
3848 	  bfd_set_error (bfd_error_bad_value);
3849 	  return FALSE;
3850 	}
3851       if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3852 	  || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3853 	continue;
3854 
3855       /* This is a final link.  */
3856       r_symndx = ELF_R_SYM (rel->r_info);
3857       eh = NULL;
3858       sym = NULL;
3859       sym_sec = NULL;
3860       if (r_symndx < symtab_hdr->sh_info)
3861 	{
3862 	  /* This is a local symbol, hh defaults to NULL.  */
3863 	  sym = local_syms + r_symndx;
3864 	  sym_sec = local_sections[r_symndx];
3865 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3866 	}
3867       else
3868 	{
3869 	  /* This is not a local symbol.  */
3870 	  struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3871 
3872 	  /* It seems this can happen with erroneous or unsupported
3873 	     input (mixing a.out and elf in an archive, for example.)  */
3874 	  if (sym_hashes == NULL)
3875 	    return FALSE;
3876 
3877 	  eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3878 
3879 	  if (info->wrap_hash != NULL
3880 	      && (input_section->flags & SEC_DEBUGGING) != 0)
3881 	    eh = ((struct elf_link_hash_entry *)
3882 		  unwrap_hash_lookup (info, input_bfd, &eh->root));
3883 
3884 	  while (eh->root.type == bfd_link_hash_indirect
3885 		 || eh->root.type == bfd_link_hash_warning)
3886 	    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3887 
3888 	  relocation = 0;
3889 	  if (eh->root.type == bfd_link_hash_defined
3890 	      || eh->root.type == bfd_link_hash_defweak)
3891 	    {
3892 	      sym_sec = eh->root.u.def.section;
3893 	      if (sym_sec != NULL
3894 		  && sym_sec->output_section != NULL)
3895 		relocation = (eh->root.u.def.value
3896 			      + sym_sec->output_section->vma
3897 			      + sym_sec->output_offset);
3898 	    }
3899 	  else if (eh->root.type == bfd_link_hash_undefweak)
3900 	    ;
3901 	  else if (info->unresolved_syms_in_objects == RM_IGNORE
3902 		   && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3903 	    ;
3904 	  else if (!bfd_link_relocatable (info)
3905 		   && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3906 	    continue;
3907 	  else if (!bfd_link_relocatable (info))
3908 	    {
3909 	      bfd_boolean err;
3910 	      err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3911 		     || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3912 	      (*info->callbacks->undefined_symbol) (info,
3913 						    eh->root.root.string,
3914 						    input_bfd,
3915 						    input_section,
3916 						    rel->r_offset, err);
3917 	    }
3918 
3919 	  if (!bfd_link_relocatable (info)
3920 	      && relocation == 0
3921 	      && eh->root.type != bfd_link_hash_defined
3922 	      && eh->root.type != bfd_link_hash_defweak
3923 	      && eh->root.type != bfd_link_hash_undefweak)
3924 	    {
3925 	      if (info->unresolved_syms_in_objects == RM_IGNORE
3926 		  && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3927 		  && eh->type == STT_PARISC_MILLI)
3928 		(*info->callbacks->undefined_symbol)
3929 		  (info, eh_name (eh), input_bfd,
3930 		   input_section, rel->r_offset, FALSE);
3931 	    }
3932 	}
3933 
3934       if (sym_sec != NULL && discarded_section (sym_sec))
3935 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3936 					 rel, 1, relend, howto, 0, contents);
3937 
3938       if (bfd_link_relocatable (info))
3939 	continue;
3940 
3941       r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3942 					input_section, contents,
3943 					relocation, info, sym_sec,
3944 					eh);
3945 
3946       if (r != bfd_reloc_ok)
3947 	{
3948 	  switch (r)
3949 	    {
3950 	    default:
3951 	      abort ();
3952 	    case bfd_reloc_overflow:
3953 	      {
3954 		const char *sym_name;
3955 
3956 		if (eh != NULL)
3957 		  sym_name = NULL;
3958 		else
3959 		  {
3960 		    sym_name = bfd_elf_string_from_elf_section (input_bfd,
3961 								symtab_hdr->sh_link,
3962 								sym->st_name);
3963 		    if (sym_name == NULL)
3964 		      return FALSE;
3965 		    if (*sym_name == '\0')
3966 		      sym_name = bfd_section_name (input_bfd, sym_sec);
3967 		  }
3968 
3969 		(*info->callbacks->reloc_overflow)
3970 		  (info, (eh ? &eh->root : NULL), sym_name, howto->name,
3971 		   (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3972 	      }
3973 	      break;
3974 	    }
3975 	}
3976     }
3977   return TRUE;
3978 }
3979 
3980 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3981 {
3982   { STRING_COMMA_LEN (".fini"),	 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3983   { STRING_COMMA_LEN (".init"),	 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3984   { STRING_COMMA_LEN (".plt"),	 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3985   { STRING_COMMA_LEN (".dlt"),	 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3986   { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3987   { STRING_COMMA_LEN (".sbss"),	 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3988   { STRING_COMMA_LEN (".tbss"),	 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3989   { NULL,		     0,	 0, 0,		  0 }
3990 };
3991 
3992 /* The hash bucket size is the standard one, namely 4.  */
3993 
3994 const struct elf_size_info hppa64_elf_size_info =
3995 {
3996   sizeof (Elf64_External_Ehdr),
3997   sizeof (Elf64_External_Phdr),
3998   sizeof (Elf64_External_Shdr),
3999   sizeof (Elf64_External_Rel),
4000   sizeof (Elf64_External_Rela),
4001   sizeof (Elf64_External_Sym),
4002   sizeof (Elf64_External_Dyn),
4003   sizeof (Elf_External_Note),
4004   4,
4005   1,
4006   64, 3,
4007   ELFCLASS64, EV_CURRENT,
4008   bfd_elf64_write_out_phdrs,
4009   bfd_elf64_write_shdrs_and_ehdr,
4010   bfd_elf64_checksum_contents,
4011   bfd_elf64_write_relocs,
4012   bfd_elf64_swap_symbol_in,
4013   bfd_elf64_swap_symbol_out,
4014   bfd_elf64_slurp_reloc_table,
4015   bfd_elf64_slurp_symbol_table,
4016   bfd_elf64_swap_dyn_in,
4017   bfd_elf64_swap_dyn_out,
4018   bfd_elf64_swap_reloc_in,
4019   bfd_elf64_swap_reloc_out,
4020   bfd_elf64_swap_reloca_in,
4021   bfd_elf64_swap_reloca_out
4022 };
4023 
4024 #define TARGET_BIG_SYM			hppa_elf64_vec
4025 #define TARGET_BIG_NAME			"elf64-hppa"
4026 #define ELF_ARCH			bfd_arch_hppa
4027 #define ELF_TARGET_ID			HPPA64_ELF_DATA
4028 #define ELF_MACHINE_CODE		EM_PARISC
4029 /* This is not strictly correct.  The maximum page size for PA2.0 is
4030    64M.  But everything still uses 4k.  */
4031 #define ELF_MAXPAGESIZE			0x1000
4032 #define ELF_OSABI			ELFOSABI_HPUX
4033 
4034 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4035 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4036 #define bfd_elf64_bfd_is_local_label_name       elf_hppa_is_local_label_name
4037 #define elf_info_to_howto		elf_hppa_info_to_howto
4038 #define elf_info_to_howto_rel		elf_hppa_info_to_howto_rel
4039 
4040 #define elf_backend_section_from_shdr	elf64_hppa_section_from_shdr
4041 #define elf_backend_object_p		elf64_hppa_object_p
4042 #define elf_backend_final_write_processing \
4043 					elf_hppa_final_write_processing
4044 #define elf_backend_fake_sections	elf_hppa_fake_sections
4045 #define elf_backend_add_symbol_hook	elf_hppa_add_symbol_hook
4046 
4047 #define elf_backend_relocate_section	elf_hppa_relocate_section
4048 
4049 #define bfd_elf64_bfd_final_link	elf_hppa_final_link
4050 
4051 #define elf_backend_create_dynamic_sections \
4052 					elf64_hppa_create_dynamic_sections
4053 #define elf_backend_post_process_headers	elf64_hppa_post_process_headers
4054 
4055 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
4056 
4057 #define elf_backend_adjust_dynamic_symbol \
4058 					elf64_hppa_adjust_dynamic_symbol
4059 
4060 #define elf_backend_size_dynamic_sections \
4061 					elf64_hppa_size_dynamic_sections
4062 
4063 #define elf_backend_finish_dynamic_symbol \
4064 					elf64_hppa_finish_dynamic_symbol
4065 #define elf_backend_finish_dynamic_sections \
4066 					elf64_hppa_finish_dynamic_sections
4067 #define elf_backend_grok_prstatus	elf64_hppa_grok_prstatus
4068 #define elf_backend_grok_psinfo		elf64_hppa_grok_psinfo
4069 
4070 /* Stuff for the BFD linker: */
4071 #define bfd_elf64_bfd_link_hash_table_create \
4072 	elf64_hppa_hash_table_create
4073 
4074 #define elf_backend_check_relocs \
4075 	elf64_hppa_check_relocs
4076 
4077 #define elf_backend_size_info \
4078   hppa64_elf_size_info
4079 
4080 #define elf_backend_additional_program_headers \
4081 	elf64_hppa_additional_program_headers
4082 
4083 #define elf_backend_modify_segment_map \
4084 	elf64_hppa_modify_segment_map
4085 
4086 #define elf_backend_allow_non_load_phdr \
4087 	elf64_hppa_allow_non_load_phdr
4088 
4089 #define elf_backend_link_output_symbol_hook \
4090 	elf64_hppa_link_output_symbol_hook
4091 
4092 #define elf_backend_want_got_plt	0
4093 #define elf_backend_plt_readonly	0
4094 #define elf_backend_want_plt_sym	0
4095 #define elf_backend_got_header_size     0
4096 #define elf_backend_type_change_ok	TRUE
4097 #define elf_backend_get_symbol_type	elf64_hppa_elf_get_symbol_type
4098 #define elf_backend_reloc_type_class	elf64_hppa_reloc_type_class
4099 #define elf_backend_rela_normal		1
4100 #define elf_backend_special_sections	elf64_hppa_special_sections
4101 #define elf_backend_action_discarded	elf_hppa_action_discarded
4102 #define elf_backend_section_from_phdr   elf64_hppa_section_from_phdr
4103 
4104 #define elf64_bed			elf64_hppa_hpux_bed
4105 
4106 #include "elf64-target.h"
4107 
4108 #undef TARGET_BIG_SYM
4109 #define TARGET_BIG_SYM			hppa_elf64_linux_vec
4110 #undef TARGET_BIG_NAME
4111 #define TARGET_BIG_NAME			"elf64-hppa-linux"
4112 #undef ELF_OSABI
4113 #define ELF_OSABI			ELFOSABI_GNU
4114 #undef elf64_bed
4115 #define elf64_bed			elf64_hppa_linux_bed
4116 
4117 #include "elf64-target.h"
4118