1 /* Xtensa-specific support for 32-bit ELF. 2 Copyright (C) 2003-2020 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or 7 modify it under the terms of the GNU General Public License as 8 published by the Free Software Foundation; either version 3 of the 9 License, or (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, but 12 WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 19 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include "bfd.h" 23 24 #include <stdarg.h> 25 #include <strings.h> 26 27 #include "bfdlink.h" 28 #include "libbfd.h" 29 #include "elf-bfd.h" 30 #include "elf/xtensa.h" 31 #include "splay-tree.h" 32 #include "xtensa-isa.h" 33 #include "xtensa-config.h" 34 35 /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */ 36 #define OCTETS_PER_BYTE(ABFD, SEC) 1 37 38 #define XTENSA_NO_NOP_REMOVAL 0 39 40 /* Local helper functions. */ 41 42 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int); 43 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4); 44 static bfd_reloc_status_type bfd_elf_xtensa_reloc 45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); 46 static bfd_boolean do_fix_for_relocatable_link 47 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *); 48 static void do_fix_for_final_link 49 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *); 50 51 /* Local functions to handle Xtensa configurability. */ 52 53 static bfd_boolean is_indirect_call_opcode (xtensa_opcode); 54 static bfd_boolean is_direct_call_opcode (xtensa_opcode); 55 static bfd_boolean is_windowed_call_opcode (xtensa_opcode); 56 static xtensa_opcode get_const16_opcode (void); 57 static xtensa_opcode get_l32r_opcode (void); 58 static bfd_vma l32r_offset (bfd_vma, bfd_vma); 59 static int get_relocation_opnd (xtensa_opcode, int); 60 static int get_relocation_slot (int); 61 static xtensa_opcode get_relocation_opcode 62 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); 63 static bfd_boolean is_l32r_relocation 64 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); 65 static bfd_boolean is_alt_relocation (int); 66 static bfd_boolean is_operand_relocation (int); 67 static bfd_size_type insn_decode_len 68 (bfd_byte *, bfd_size_type, bfd_size_type); 69 static int insn_num_slots 70 (bfd_byte *, bfd_size_type, bfd_size_type); 71 static xtensa_opcode insn_decode_opcode 72 (bfd_byte *, bfd_size_type, bfd_size_type, int); 73 static bfd_boolean check_branch_target_aligned 74 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); 75 static bfd_boolean check_loop_aligned 76 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); 77 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int); 78 static bfd_size_type get_asm_simplify_size 79 (bfd_byte *, bfd_size_type, bfd_size_type); 80 81 /* Functions for link-time code simplifications. */ 82 83 static bfd_reloc_status_type elf_xtensa_do_asm_simplify 84 (bfd_byte *, bfd_vma, bfd_vma, char **); 85 static bfd_reloc_status_type contract_asm_expansion 86 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **); 87 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode); 88 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *); 89 90 /* Access to internal relocations, section contents and symbols. */ 91 92 static Elf_Internal_Rela *retrieve_internal_relocs 93 (bfd *, asection *, bfd_boolean); 94 static void pin_internal_relocs (asection *, Elf_Internal_Rela *); 95 static void release_internal_relocs (asection *, Elf_Internal_Rela *); 96 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean); 97 static void pin_contents (asection *, bfd_byte *); 98 static void release_contents (asection *, bfd_byte *); 99 static Elf_Internal_Sym *retrieve_local_syms (bfd *); 100 101 /* Miscellaneous utility functions. */ 102 103 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int); 104 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int); 105 static asection *get_elf_r_symndx_section (bfd *, unsigned long); 106 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry 107 (bfd *, unsigned long); 108 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long); 109 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *); 110 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma); 111 static bfd_boolean xtensa_is_property_section (asection *); 112 static bfd_boolean xtensa_is_insntable_section (asection *); 113 static bfd_boolean xtensa_is_littable_section (asection *); 114 static bfd_boolean xtensa_is_proptable_section (asection *); 115 static int internal_reloc_compare (const void *, const void *); 116 static int internal_reloc_matches (const void *, const void *); 117 static asection *xtensa_get_property_section (asection *, const char *); 118 static flagword xtensa_get_property_predef_flags (asection *); 119 120 /* Other functions called directly by the linker. */ 121 122 typedef void (*deps_callback_t) 123 (asection *, bfd_vma, asection *, bfd_vma, void *); 124 extern bfd_boolean xtensa_callback_required_dependence 125 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *); 126 127 128 /* Globally visible flag for choosing size optimization of NOP removal 129 instead of branch-target-aware minimization for NOP removal. 130 When nonzero, narrow all instructions and remove all NOPs possible 131 around longcall expansions. */ 132 133 int elf32xtensa_size_opt; 134 135 136 /* The "new_section_hook" is used to set up a per-section 137 "xtensa_relax_info" data structure with additional information used 138 during relaxation. */ 139 140 typedef struct xtensa_relax_info_struct xtensa_relax_info; 141 142 143 /* The GNU tools do not easily allow extending interfaces to pass around 144 the pointer to the Xtensa ISA information, so instead we add a global 145 variable here (in BFD) that can be used by any of the tools that need 146 this information. */ 147 148 xtensa_isa xtensa_default_isa; 149 150 151 /* When this is true, relocations may have been modified to refer to 152 symbols from other input files. The per-section list of "fix" 153 records needs to be checked when resolving relocations. */ 154 155 static bfd_boolean relaxing_section = FALSE; 156 157 /* When this is true, during final links, literals that cannot be 158 coalesced and their relocations may be moved to other sections. */ 159 160 int elf32xtensa_no_literal_movement = 1; 161 162 /* Place property records for a section into individual property section 163 with xt.prop. prefix. */ 164 165 bfd_boolean elf32xtensa_separate_props = FALSE; 166 167 /* Rename one of the generic section flags to better document how it 168 is used here. */ 169 /* Whether relocations have been processed. */ 170 #define reloc_done sec_flg0 171 172 static reloc_howto_type elf_howto_table[] = 173 { 174 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont, 175 bfd_elf_xtensa_reloc, "R_XTENSA_NONE", 176 FALSE, 0, 0, FALSE), 177 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 178 bfd_elf_xtensa_reloc, "R_XTENSA_32", 179 TRUE, 0xffffffff, 0xffffffff, FALSE), 180 181 /* Replace a 32-bit value with a value from the runtime linker (only 182 used by linker-generated stub functions). The r_addend value is 183 special: 1 means to substitute a pointer to the runtime linker's 184 dynamic resolver function; 2 means to substitute the link map for 185 the shared object. */ 186 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont, 187 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE), 188 189 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 190 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT", 191 FALSE, 0, 0xffffffff, FALSE), 192 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 193 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT", 194 FALSE, 0, 0xffffffff, FALSE), 195 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 196 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE", 197 FALSE, 0, 0xffffffff, FALSE), 198 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 199 bfd_elf_xtensa_reloc, "R_XTENSA_PLT", 200 FALSE, 0, 0xffffffff, FALSE), 201 202 EMPTY_HOWTO (7), 203 204 /* Old relocations for backward compatibility. */ 205 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont, 206 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE), 207 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont, 208 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE), 209 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont, 210 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE), 211 212 /* Assembly auto-expansion. */ 213 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont, 214 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE), 215 /* Relax assembly auto-expansion. */ 216 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont, 217 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE), 218 219 EMPTY_HOWTO (13), 220 221 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, 222 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL", 223 FALSE, 0, 0xffffffff, TRUE), 224 225 /* GNU extension to record C++ vtable hierarchy. */ 226 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont, 227 NULL, "R_XTENSA_GNU_VTINHERIT", 228 FALSE, 0, 0, FALSE), 229 /* GNU extension to record C++ vtable member usage. */ 230 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont, 231 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY", 232 FALSE, 0, 0, FALSE), 233 234 /* Relocations for supporting difference of symbols. */ 235 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed, 236 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE), 237 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed, 238 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE), 239 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed, 240 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE), 241 242 /* General immediate operand relocations. */ 243 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE), 245 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE), 247 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE), 249 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE), 251 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE), 253 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE), 255 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE), 257 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE), 259 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE), 261 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE), 263 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE), 265 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE), 267 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE), 269 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE), 271 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE), 273 274 /* "Alternate" relocations. The meaning of these is opcode-specific. */ 275 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE), 277 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE), 279 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE), 281 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE), 283 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE), 285 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE), 287 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE), 289 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE), 291 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE), 293 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE), 295 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 296 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE), 297 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 298 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE), 299 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE), 301 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 302 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE), 303 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 304 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE), 305 306 /* TLS relocations. */ 307 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont, 308 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN", 309 FALSE, 0, 0xffffffff, FALSE), 310 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont, 311 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG", 312 FALSE, 0, 0xffffffff, FALSE), 313 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, 314 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF", 315 FALSE, 0, 0xffffffff, FALSE), 316 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, 317 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF", 318 FALSE, 0, 0xffffffff, FALSE), 319 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont, 320 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC", 321 FALSE, 0, 0, FALSE), 322 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont, 323 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG", 324 FALSE, 0, 0, FALSE), 325 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont, 326 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL", 327 FALSE, 0, 0, FALSE), 328 }; 329 330 #if DEBUG_GEN_RELOC 331 #define TRACE(str) \ 332 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str) 333 #else 334 #define TRACE(str) 335 #endif 336 337 static reloc_howto_type * 338 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 339 bfd_reloc_code_real_type code) 340 { 341 switch (code) 342 { 343 case BFD_RELOC_NONE: 344 TRACE ("BFD_RELOC_NONE"); 345 return &elf_howto_table[(unsigned) R_XTENSA_NONE ]; 346 347 case BFD_RELOC_32: 348 TRACE ("BFD_RELOC_32"); 349 return &elf_howto_table[(unsigned) R_XTENSA_32 ]; 350 351 case BFD_RELOC_32_PCREL: 352 TRACE ("BFD_RELOC_32_PCREL"); 353 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ]; 354 355 case BFD_RELOC_XTENSA_DIFF8: 356 TRACE ("BFD_RELOC_XTENSA_DIFF8"); 357 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ]; 358 359 case BFD_RELOC_XTENSA_DIFF16: 360 TRACE ("BFD_RELOC_XTENSA_DIFF16"); 361 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ]; 362 363 case BFD_RELOC_XTENSA_DIFF32: 364 TRACE ("BFD_RELOC_XTENSA_DIFF32"); 365 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ]; 366 367 case BFD_RELOC_XTENSA_RTLD: 368 TRACE ("BFD_RELOC_XTENSA_RTLD"); 369 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ]; 370 371 case BFD_RELOC_XTENSA_GLOB_DAT: 372 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT"); 373 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ]; 374 375 case BFD_RELOC_XTENSA_JMP_SLOT: 376 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT"); 377 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ]; 378 379 case BFD_RELOC_XTENSA_RELATIVE: 380 TRACE ("BFD_RELOC_XTENSA_RELATIVE"); 381 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ]; 382 383 case BFD_RELOC_XTENSA_PLT: 384 TRACE ("BFD_RELOC_XTENSA_PLT"); 385 return &elf_howto_table[(unsigned) R_XTENSA_PLT ]; 386 387 case BFD_RELOC_XTENSA_OP0: 388 TRACE ("BFD_RELOC_XTENSA_OP0"); 389 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; 390 391 case BFD_RELOC_XTENSA_OP1: 392 TRACE ("BFD_RELOC_XTENSA_OP1"); 393 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ]; 394 395 case BFD_RELOC_XTENSA_OP2: 396 TRACE ("BFD_RELOC_XTENSA_OP2"); 397 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ]; 398 399 case BFD_RELOC_XTENSA_ASM_EXPAND: 400 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND"); 401 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ]; 402 403 case BFD_RELOC_XTENSA_ASM_SIMPLIFY: 404 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY"); 405 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ]; 406 407 case BFD_RELOC_VTABLE_INHERIT: 408 TRACE ("BFD_RELOC_VTABLE_INHERIT"); 409 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ]; 410 411 case BFD_RELOC_VTABLE_ENTRY: 412 TRACE ("BFD_RELOC_VTABLE_ENTRY"); 413 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ]; 414 415 case BFD_RELOC_XTENSA_TLSDESC_FN: 416 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN"); 417 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ]; 418 419 case BFD_RELOC_XTENSA_TLSDESC_ARG: 420 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG"); 421 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ]; 422 423 case BFD_RELOC_XTENSA_TLS_DTPOFF: 424 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF"); 425 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ]; 426 427 case BFD_RELOC_XTENSA_TLS_TPOFF: 428 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF"); 429 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ]; 430 431 case BFD_RELOC_XTENSA_TLS_FUNC: 432 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC"); 433 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ]; 434 435 case BFD_RELOC_XTENSA_TLS_ARG: 436 TRACE ("BFD_RELOC_XTENSA_TLS_ARG"); 437 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ]; 438 439 case BFD_RELOC_XTENSA_TLS_CALL: 440 TRACE ("BFD_RELOC_XTENSA_TLS_CALL"); 441 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ]; 442 443 default: 444 if (code >= BFD_RELOC_XTENSA_SLOT0_OP 445 && code <= BFD_RELOC_XTENSA_SLOT14_OP) 446 { 447 unsigned n = (R_XTENSA_SLOT0_OP + 448 (code - BFD_RELOC_XTENSA_SLOT0_OP)); 449 return &elf_howto_table[n]; 450 } 451 452 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT 453 && code <= BFD_RELOC_XTENSA_SLOT14_ALT) 454 { 455 unsigned n = (R_XTENSA_SLOT0_ALT + 456 (code - BFD_RELOC_XTENSA_SLOT0_ALT)); 457 return &elf_howto_table[n]; 458 } 459 460 break; 461 } 462 463 /* xgettext:c-format */ 464 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code); 465 bfd_set_error (bfd_error_bad_value); 466 TRACE ("Unknown"); 467 return NULL; 468 } 469 470 static reloc_howto_type * 471 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 472 const char *r_name) 473 { 474 unsigned int i; 475 476 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) 477 if (elf_howto_table[i].name != NULL 478 && strcasecmp (elf_howto_table[i].name, r_name) == 0) 479 return &elf_howto_table[i]; 480 481 return NULL; 482 } 483 484 485 /* Given an ELF "rela" relocation, find the corresponding howto and record 486 it in the BFD internal arelent representation of the relocation. */ 487 488 static bfd_boolean 489 elf_xtensa_info_to_howto_rela (bfd *abfd, 490 arelent *cache_ptr, 491 Elf_Internal_Rela *dst) 492 { 493 unsigned int r_type = ELF32_R_TYPE (dst->r_info); 494 495 if (r_type >= (unsigned int) R_XTENSA_max) 496 { 497 /* xgettext:c-format */ 498 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), 499 abfd, r_type); 500 bfd_set_error (bfd_error_bad_value); 501 return FALSE; 502 } 503 cache_ptr->howto = &elf_howto_table[r_type]; 504 return TRUE; 505 } 506 507 508 /* Functions for the Xtensa ELF linker. */ 509 510 /* The name of the dynamic interpreter. This is put in the .interp 511 section. */ 512 513 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so" 514 515 /* The size in bytes of an entry in the procedure linkage table. 516 (This does _not_ include the space for the literals associated with 517 the PLT entry.) */ 518 519 #define PLT_ENTRY_SIZE 16 520 521 /* For _really_ large PLTs, we may need to alternate between literals 522 and code to keep the literals within the 256K range of the L32R 523 instructions in the code. It's unlikely that anyone would ever need 524 such a big PLT, but an arbitrary limit on the PLT size would be bad. 525 Thus, we split the PLT into chunks. Since there's very little 526 overhead (2 extra literals) for each chunk, the chunk size is kept 527 small so that the code for handling multiple chunks get used and 528 tested regularly. With 254 entries, there are 1K of literals for 529 each chunk, and that seems like a nice round number. */ 530 531 #define PLT_ENTRIES_PER_CHUNK 254 532 533 /* PLT entries are actually used as stub functions for lazy symbol 534 resolution. Once the symbol is resolved, the stub function is never 535 invoked. Note: the 32-byte frame size used here cannot be changed 536 without a corresponding change in the runtime linker. */ 537 538 static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] = 539 { 540 { 541 0x6c, 0x10, 0x04, /* entry sp, 32 */ 542 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ 543 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ 544 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ 545 0x0a, 0x80, 0x00, /* jx a8 */ 546 0 /* unused */ 547 }, 548 { 549 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ 550 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ 551 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ 552 0x0a, 0x80, 0x00, /* jx a8 */ 553 0 /* unused */ 554 } 555 }; 556 557 static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] = 558 { 559 { 560 0x36, 0x41, 0x00, /* entry sp, 32 */ 561 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ 562 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ 563 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ 564 0xa0, 0x08, 0x00, /* jx a8 */ 565 0 /* unused */ 566 }, 567 { 568 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ 569 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ 570 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ 571 0xa0, 0x08, 0x00, /* jx a8 */ 572 0 /* unused */ 573 } 574 }; 575 576 /* The size of the thread control block. */ 577 #define TCB_SIZE 8 578 579 struct elf_xtensa_link_hash_entry 580 { 581 struct elf_link_hash_entry elf; 582 583 bfd_signed_vma tlsfunc_refcount; 584 585 #define GOT_UNKNOWN 0 586 #define GOT_NORMAL 1 587 #define GOT_TLS_GD 2 /* global or local dynamic */ 588 #define GOT_TLS_IE 4 /* initial or local exec */ 589 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE) 590 unsigned char tls_type; 591 }; 592 593 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent)) 594 595 struct elf_xtensa_obj_tdata 596 { 597 struct elf_obj_tdata root; 598 599 /* tls_type for each local got entry. */ 600 char *local_got_tls_type; 601 602 bfd_signed_vma *local_tlsfunc_refcounts; 603 }; 604 605 #define elf_xtensa_tdata(abfd) \ 606 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any) 607 608 #define elf_xtensa_local_got_tls_type(abfd) \ 609 (elf_xtensa_tdata (abfd)->local_got_tls_type) 610 611 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \ 612 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts) 613 614 #define is_xtensa_elf(bfd) \ 615 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 616 && elf_tdata (bfd) != NULL \ 617 && elf_object_id (bfd) == XTENSA_ELF_DATA) 618 619 static bfd_boolean 620 elf_xtensa_mkobject (bfd *abfd) 621 { 622 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata), 623 XTENSA_ELF_DATA); 624 } 625 626 /* Xtensa ELF linker hash table. */ 627 628 struct elf_xtensa_link_hash_table 629 { 630 struct elf_link_hash_table elf; 631 632 /* Short-cuts to get to dynamic linker sections. */ 633 asection *sgotloc; 634 asection *spltlittbl; 635 636 /* Total count of PLT relocations seen during check_relocs. 637 The actual PLT code must be split into multiple sections and all 638 the sections have to be created before size_dynamic_sections, 639 where we figure out the exact number of PLT entries that will be 640 needed. It is OK if this count is an overestimate, e.g., some 641 relocations may be removed by GC. */ 642 int plt_reloc_count; 643 644 struct elf_xtensa_link_hash_entry *tlsbase; 645 }; 646 647 /* Get the Xtensa ELF linker hash table from a link_info structure. */ 648 649 #define elf_xtensa_hash_table(p) \ 650 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 651 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL) 652 653 /* Create an entry in an Xtensa ELF linker hash table. */ 654 655 static struct bfd_hash_entry * 656 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry, 657 struct bfd_hash_table *table, 658 const char *string) 659 { 660 /* Allocate the structure if it has not already been allocated by a 661 subclass. */ 662 if (entry == NULL) 663 { 664 entry = bfd_hash_allocate (table, 665 sizeof (struct elf_xtensa_link_hash_entry)); 666 if (entry == NULL) 667 return entry; 668 } 669 670 /* Call the allocation method of the superclass. */ 671 entry = _bfd_elf_link_hash_newfunc (entry, table, string); 672 if (entry != NULL) 673 { 674 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry); 675 eh->tlsfunc_refcount = 0; 676 eh->tls_type = GOT_UNKNOWN; 677 } 678 679 return entry; 680 } 681 682 /* Create an Xtensa ELF linker hash table. */ 683 684 static struct bfd_link_hash_table * 685 elf_xtensa_link_hash_table_create (bfd *abfd) 686 { 687 struct elf_link_hash_entry *tlsbase; 688 struct elf_xtensa_link_hash_table *ret; 689 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table); 690 691 ret = bfd_zmalloc (amt); 692 if (ret == NULL) 693 return NULL; 694 695 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, 696 elf_xtensa_link_hash_newfunc, 697 sizeof (struct elf_xtensa_link_hash_entry), 698 XTENSA_ELF_DATA)) 699 { 700 free (ret); 701 return NULL; 702 } 703 704 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking 705 for it later. */ 706 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_", 707 TRUE, FALSE, FALSE); 708 tlsbase->root.type = bfd_link_hash_new; 709 tlsbase->root.u.undef.abfd = NULL; 710 tlsbase->non_elf = 0; 711 ret->tlsbase = elf_xtensa_hash_entry (tlsbase); 712 ret->tlsbase->tls_type = GOT_UNKNOWN; 713 714 return &ret->elf.root; 715 } 716 717 /* Copy the extra info we tack onto an elf_link_hash_entry. */ 718 719 static void 720 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info, 721 struct elf_link_hash_entry *dir, 722 struct elf_link_hash_entry *ind) 723 { 724 struct elf_xtensa_link_hash_entry *edir, *eind; 725 726 edir = elf_xtensa_hash_entry (dir); 727 eind = elf_xtensa_hash_entry (ind); 728 729 if (ind->root.type == bfd_link_hash_indirect) 730 { 731 edir->tlsfunc_refcount += eind->tlsfunc_refcount; 732 eind->tlsfunc_refcount = 0; 733 734 if (dir->got.refcount <= 0) 735 { 736 edir->tls_type = eind->tls_type; 737 eind->tls_type = GOT_UNKNOWN; 738 } 739 } 740 741 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 742 } 743 744 static inline bfd_boolean 745 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h, 746 struct bfd_link_info *info) 747 { 748 /* Check if we should do dynamic things to this symbol. The 749 "ignore_protected" argument need not be set, because Xtensa code 750 does not require special handling of STV_PROTECTED to make function 751 pointer comparisons work properly. The PLT addresses are never 752 used for function pointers. */ 753 754 return _bfd_elf_dynamic_symbol_p (h, info, 0); 755 } 756 757 758 static int 759 property_table_compare (const void *ap, const void *bp) 760 { 761 const property_table_entry *a = (const property_table_entry *) ap; 762 const property_table_entry *b = (const property_table_entry *) bp; 763 764 if (a->address == b->address) 765 { 766 if (a->size != b->size) 767 return (a->size - b->size); 768 769 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN)) 770 return ((b->flags & XTENSA_PROP_ALIGN) 771 - (a->flags & XTENSA_PROP_ALIGN)); 772 773 if ((a->flags & XTENSA_PROP_ALIGN) 774 && (GET_XTENSA_PROP_ALIGNMENT (a->flags) 775 != GET_XTENSA_PROP_ALIGNMENT (b->flags))) 776 return (GET_XTENSA_PROP_ALIGNMENT (a->flags) 777 - GET_XTENSA_PROP_ALIGNMENT (b->flags)); 778 779 if ((a->flags & XTENSA_PROP_UNREACHABLE) 780 != (b->flags & XTENSA_PROP_UNREACHABLE)) 781 return ((b->flags & XTENSA_PROP_UNREACHABLE) 782 - (a->flags & XTENSA_PROP_UNREACHABLE)); 783 784 return (a->flags - b->flags); 785 } 786 787 return (a->address - b->address); 788 } 789 790 791 static int 792 property_table_matches (const void *ap, const void *bp) 793 { 794 const property_table_entry *a = (const property_table_entry *) ap; 795 const property_table_entry *b = (const property_table_entry *) bp; 796 797 /* Check if one entry overlaps with the other. */ 798 if ((b->address >= a->address && b->address < (a->address + a->size)) 799 || (a->address >= b->address && a->address < (b->address + b->size))) 800 return 0; 801 802 return (a->address - b->address); 803 } 804 805 806 /* Get the literal table or property table entries for the given 807 section. Sets TABLE_P and returns the number of entries. On 808 error, returns a negative value. */ 809 810 int 811 xtensa_read_table_entries (bfd *abfd, 812 asection *section, 813 property_table_entry **table_p, 814 const char *sec_name, 815 bfd_boolean output_addr) 816 { 817 asection *table_section; 818 bfd_size_type table_size = 0; 819 bfd_byte *table_data; 820 property_table_entry *blocks; 821 int blk, block_count; 822 bfd_size_type num_records; 823 Elf_Internal_Rela *internal_relocs, *irel, *rel_end; 824 bfd_vma section_addr, off; 825 flagword predef_flags; 826 bfd_size_type table_entry_size, section_limit; 827 828 if (!section 829 || !(section->flags & SEC_ALLOC) 830 || (section->flags & SEC_DEBUGGING)) 831 { 832 *table_p = NULL; 833 return 0; 834 } 835 836 table_section = xtensa_get_property_section (section, sec_name); 837 if (table_section) 838 table_size = table_section->size; 839 840 if (table_size == 0) 841 { 842 *table_p = NULL; 843 return 0; 844 } 845 846 predef_flags = xtensa_get_property_predef_flags (table_section); 847 table_entry_size = 12; 848 if (predef_flags) 849 table_entry_size -= 4; 850 851 num_records = table_size / table_entry_size; 852 table_data = retrieve_contents (abfd, table_section, TRUE); 853 blocks = (property_table_entry *) 854 bfd_malloc (num_records * sizeof (property_table_entry)); 855 block_count = 0; 856 857 if (output_addr) 858 section_addr = section->output_section->vma + section->output_offset; 859 else 860 section_addr = section->vma; 861 862 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE); 863 if (internal_relocs && !table_section->reloc_done) 864 { 865 qsort (internal_relocs, table_section->reloc_count, 866 sizeof (Elf_Internal_Rela), internal_reloc_compare); 867 irel = internal_relocs; 868 } 869 else 870 irel = NULL; 871 872 section_limit = bfd_get_section_limit (abfd, section); 873 rel_end = internal_relocs + table_section->reloc_count; 874 875 for (off = 0; off < table_size; off += table_entry_size) 876 { 877 bfd_vma address = bfd_get_32 (abfd, table_data + off); 878 879 /* Skip any relocations before the current offset. This should help 880 avoid confusion caused by unexpected relocations for the preceding 881 table entry. */ 882 while (irel && 883 (irel->r_offset < off 884 || (irel->r_offset == off 885 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE))) 886 { 887 irel += 1; 888 if (irel >= rel_end) 889 irel = 0; 890 } 891 892 if (irel && irel->r_offset == off) 893 { 894 bfd_vma sym_off; 895 unsigned long r_symndx = ELF32_R_SYM (irel->r_info); 896 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32); 897 898 if (get_elf_r_symndx_section (abfd, r_symndx) != section) 899 continue; 900 901 sym_off = get_elf_r_symndx_offset (abfd, r_symndx); 902 BFD_ASSERT (sym_off == 0); 903 address += (section_addr + sym_off + irel->r_addend); 904 } 905 else 906 { 907 if (address < section_addr 908 || address >= section_addr + section_limit) 909 continue; 910 } 911 912 blocks[block_count].address = address; 913 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4); 914 if (predef_flags) 915 blocks[block_count].flags = predef_flags; 916 else 917 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8); 918 block_count++; 919 } 920 921 release_contents (table_section, table_data); 922 release_internal_relocs (table_section, internal_relocs); 923 924 if (block_count > 0) 925 { 926 /* Now sort them into address order for easy reference. */ 927 qsort (blocks, block_count, sizeof (property_table_entry), 928 property_table_compare); 929 930 /* Check that the table contents are valid. Problems may occur, 931 for example, if an unrelocated object file is stripped. */ 932 for (blk = 1; blk < block_count; blk++) 933 { 934 /* The only circumstance where two entries may legitimately 935 have the same address is when one of them is a zero-size 936 placeholder to mark a place where fill can be inserted. 937 The zero-size entry should come first. */ 938 if (blocks[blk - 1].address == blocks[blk].address && 939 blocks[blk - 1].size != 0) 940 { 941 /* xgettext:c-format */ 942 _bfd_error_handler (_("%pB(%pA): invalid property table"), 943 abfd, section); 944 bfd_set_error (bfd_error_bad_value); 945 free (blocks); 946 return -1; 947 } 948 } 949 } 950 951 *table_p = blocks; 952 return block_count; 953 } 954 955 956 static property_table_entry * 957 elf_xtensa_find_property_entry (property_table_entry *property_table, 958 int property_table_size, 959 bfd_vma addr) 960 { 961 property_table_entry entry; 962 property_table_entry *rv; 963 964 if (property_table_size == 0) 965 return NULL; 966 967 entry.address = addr; 968 entry.size = 1; 969 entry.flags = 0; 970 971 rv = bsearch (&entry, property_table, property_table_size, 972 sizeof (property_table_entry), property_table_matches); 973 return rv; 974 } 975 976 977 static bfd_boolean 978 elf_xtensa_in_literal_pool (property_table_entry *lit_table, 979 int lit_table_size, 980 bfd_vma addr) 981 { 982 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr)) 983 return TRUE; 984 985 return FALSE; 986 } 987 988 989 /* Look through the relocs for a section during the first phase, and 990 calculate needed space in the dynamic reloc sections. */ 991 992 static bfd_boolean 993 elf_xtensa_check_relocs (bfd *abfd, 994 struct bfd_link_info *info, 995 asection *sec, 996 const Elf_Internal_Rela *relocs) 997 { 998 struct elf_xtensa_link_hash_table *htab; 999 Elf_Internal_Shdr *symtab_hdr; 1000 struct elf_link_hash_entry **sym_hashes; 1001 const Elf_Internal_Rela *rel; 1002 const Elf_Internal_Rela *rel_end; 1003 1004 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0) 1005 return TRUE; 1006 1007 BFD_ASSERT (is_xtensa_elf (abfd)); 1008 1009 htab = elf_xtensa_hash_table (info); 1010 if (htab == NULL) 1011 return FALSE; 1012 1013 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1014 sym_hashes = elf_sym_hashes (abfd); 1015 1016 rel_end = relocs + sec->reloc_count; 1017 for (rel = relocs; rel < rel_end; rel++) 1018 { 1019 unsigned int r_type; 1020 unsigned r_symndx; 1021 struct elf_link_hash_entry *h = NULL; 1022 struct elf_xtensa_link_hash_entry *eh; 1023 int tls_type, old_tls_type; 1024 bfd_boolean is_got = FALSE; 1025 bfd_boolean is_plt = FALSE; 1026 bfd_boolean is_tlsfunc = FALSE; 1027 1028 r_symndx = ELF32_R_SYM (rel->r_info); 1029 r_type = ELF32_R_TYPE (rel->r_info); 1030 1031 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) 1032 { 1033 /* xgettext:c-format */ 1034 _bfd_error_handler (_("%pB: bad symbol index: %d"), 1035 abfd, r_symndx); 1036 return FALSE; 1037 } 1038 1039 if (r_symndx >= symtab_hdr->sh_info) 1040 { 1041 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 1042 while (h->root.type == bfd_link_hash_indirect 1043 || h->root.type == bfd_link_hash_warning) 1044 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1045 } 1046 eh = elf_xtensa_hash_entry (h); 1047 1048 switch (r_type) 1049 { 1050 case R_XTENSA_TLSDESC_FN: 1051 if (bfd_link_pic (info)) 1052 { 1053 tls_type = GOT_TLS_GD; 1054 is_got = TRUE; 1055 is_tlsfunc = TRUE; 1056 } 1057 else 1058 tls_type = GOT_TLS_IE; 1059 break; 1060 1061 case R_XTENSA_TLSDESC_ARG: 1062 if (bfd_link_pic (info)) 1063 { 1064 tls_type = GOT_TLS_GD; 1065 is_got = TRUE; 1066 } 1067 else 1068 { 1069 tls_type = GOT_TLS_IE; 1070 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase) 1071 is_got = TRUE; 1072 } 1073 break; 1074 1075 case R_XTENSA_TLS_DTPOFF: 1076 if (bfd_link_pic (info)) 1077 tls_type = GOT_TLS_GD; 1078 else 1079 tls_type = GOT_TLS_IE; 1080 break; 1081 1082 case R_XTENSA_TLS_TPOFF: 1083 tls_type = GOT_TLS_IE; 1084 if (bfd_link_pic (info)) 1085 info->flags |= DF_STATIC_TLS; 1086 if (bfd_link_pic (info) || h) 1087 is_got = TRUE; 1088 break; 1089 1090 case R_XTENSA_32: 1091 tls_type = GOT_NORMAL; 1092 is_got = TRUE; 1093 break; 1094 1095 case R_XTENSA_PLT: 1096 tls_type = GOT_NORMAL; 1097 is_plt = TRUE; 1098 break; 1099 1100 case R_XTENSA_GNU_VTINHERIT: 1101 /* This relocation describes the C++ object vtable hierarchy. 1102 Reconstruct it for later use during GC. */ 1103 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 1104 return FALSE; 1105 continue; 1106 1107 case R_XTENSA_GNU_VTENTRY: 1108 /* This relocation describes which C++ vtable entries are actually 1109 used. Record for later use during GC. */ 1110 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 1111 return FALSE; 1112 continue; 1113 1114 default: 1115 /* Nothing to do for any other relocations. */ 1116 continue; 1117 } 1118 1119 if (h) 1120 { 1121 if (is_plt) 1122 { 1123 if (h->plt.refcount <= 0) 1124 { 1125 h->needs_plt = 1; 1126 h->plt.refcount = 1; 1127 } 1128 else 1129 h->plt.refcount += 1; 1130 1131 /* Keep track of the total PLT relocation count even if we 1132 don't yet know whether the dynamic sections will be 1133 created. */ 1134 htab->plt_reloc_count += 1; 1135 1136 if (elf_hash_table (info)->dynamic_sections_created) 1137 { 1138 if (! add_extra_plt_sections (info, htab->plt_reloc_count)) 1139 return FALSE; 1140 } 1141 } 1142 else if (is_got) 1143 { 1144 if (h->got.refcount <= 0) 1145 h->got.refcount = 1; 1146 else 1147 h->got.refcount += 1; 1148 } 1149 1150 if (is_tlsfunc) 1151 eh->tlsfunc_refcount += 1; 1152 1153 old_tls_type = eh->tls_type; 1154 } 1155 else 1156 { 1157 /* Allocate storage the first time. */ 1158 if (elf_local_got_refcounts (abfd) == NULL) 1159 { 1160 bfd_size_type size = symtab_hdr->sh_info; 1161 void *mem; 1162 1163 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); 1164 if (mem == NULL) 1165 return FALSE; 1166 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem; 1167 1168 mem = bfd_zalloc (abfd, size); 1169 if (mem == NULL) 1170 return FALSE; 1171 elf_xtensa_local_got_tls_type (abfd) = (char *) mem; 1172 1173 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); 1174 if (mem == NULL) 1175 return FALSE; 1176 elf_xtensa_local_tlsfunc_refcounts (abfd) 1177 = (bfd_signed_vma *) mem; 1178 } 1179 1180 /* This is a global offset table entry for a local symbol. */ 1181 if (is_got || is_plt) 1182 elf_local_got_refcounts (abfd) [r_symndx] += 1; 1183 1184 if (is_tlsfunc) 1185 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1; 1186 1187 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx]; 1188 } 1189 1190 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE)) 1191 tls_type |= old_tls_type; 1192 /* If a TLS symbol is accessed using IE at least once, 1193 there is no point to use a dynamic model for it. */ 1194 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN 1195 && ((old_tls_type & GOT_TLS_GD) == 0 1196 || (tls_type & GOT_TLS_IE) == 0)) 1197 { 1198 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD)) 1199 tls_type = old_tls_type; 1200 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD)) 1201 tls_type |= old_tls_type; 1202 else 1203 { 1204 _bfd_error_handler 1205 /* xgettext:c-format */ 1206 (_("%pB: `%s' accessed both as normal and thread local symbol"), 1207 abfd, 1208 h ? h->root.root.string : "<local>"); 1209 return FALSE; 1210 } 1211 } 1212 1213 if (old_tls_type != tls_type) 1214 { 1215 if (eh) 1216 eh->tls_type = tls_type; 1217 else 1218 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type; 1219 } 1220 } 1221 1222 return TRUE; 1223 } 1224 1225 1226 static void 1227 elf_xtensa_make_sym_local (struct bfd_link_info *info, 1228 struct elf_link_hash_entry *h) 1229 { 1230 if (bfd_link_pic (info)) 1231 { 1232 if (h->plt.refcount > 0) 1233 { 1234 /* For shared objects, there's no need for PLT entries for local 1235 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */ 1236 if (h->got.refcount < 0) 1237 h->got.refcount = 0; 1238 h->got.refcount += h->plt.refcount; 1239 h->plt.refcount = 0; 1240 } 1241 } 1242 else 1243 { 1244 /* Don't need any dynamic relocations at all. */ 1245 h->plt.refcount = 0; 1246 h->got.refcount = 0; 1247 } 1248 } 1249 1250 1251 static void 1252 elf_xtensa_hide_symbol (struct bfd_link_info *info, 1253 struct elf_link_hash_entry *h, 1254 bfd_boolean force_local) 1255 { 1256 /* For a shared link, move the plt refcount to the got refcount to leave 1257 space for RELATIVE relocs. */ 1258 elf_xtensa_make_sym_local (info, h); 1259 1260 _bfd_elf_link_hash_hide_symbol (info, h, force_local); 1261 } 1262 1263 1264 /* Return the section that should be marked against GC for a given 1265 relocation. */ 1266 1267 static asection * 1268 elf_xtensa_gc_mark_hook (asection *sec, 1269 struct bfd_link_info *info, 1270 Elf_Internal_Rela *rel, 1271 struct elf_link_hash_entry *h, 1272 Elf_Internal_Sym *sym) 1273 { 1274 /* Property sections are marked "KEEP" in the linker scripts, but they 1275 should not cause other sections to be marked. (This approach relies 1276 on elf_xtensa_discard_info to remove property table entries that 1277 describe discarded sections. Alternatively, it might be more 1278 efficient to avoid using "KEEP" in the linker scripts and instead use 1279 the gc_mark_extra_sections hook to mark only the property sections 1280 that describe marked sections. That alternative does not work well 1281 with the current property table sections, which do not correspond 1282 one-to-one with the sections they describe, but that should be fixed 1283 someday.) */ 1284 if (xtensa_is_property_section (sec)) 1285 return NULL; 1286 1287 if (h != NULL) 1288 switch (ELF32_R_TYPE (rel->r_info)) 1289 { 1290 case R_XTENSA_GNU_VTINHERIT: 1291 case R_XTENSA_GNU_VTENTRY: 1292 return NULL; 1293 } 1294 1295 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 1296 } 1297 1298 1299 /* Create all the dynamic sections. */ 1300 1301 static bfd_boolean 1302 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) 1303 { 1304 struct elf_xtensa_link_hash_table *htab; 1305 flagword flags, noalloc_flags; 1306 1307 htab = elf_xtensa_hash_table (info); 1308 if (htab == NULL) 1309 return FALSE; 1310 1311 /* First do all the standard stuff. */ 1312 if (! _bfd_elf_create_dynamic_sections (dynobj, info)) 1313 return FALSE; 1314 1315 /* Create any extra PLT sections in case check_relocs has already 1316 been called on all the non-dynamic input files. */ 1317 if (! add_extra_plt_sections (info, htab->plt_reloc_count)) 1318 return FALSE; 1319 1320 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY 1321 | SEC_LINKER_CREATED | SEC_READONLY); 1322 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD; 1323 1324 /* Mark the ".got.plt" section READONLY. */ 1325 if (htab->elf.sgotplt == NULL 1326 || !bfd_set_section_flags (htab->elf.sgotplt, flags)) 1327 return FALSE; 1328 1329 /* Create ".got.loc" (literal tables for use by dynamic linker). */ 1330 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc", 1331 flags); 1332 if (htab->sgotloc == NULL 1333 || !bfd_set_section_alignment (htab->sgotloc, 2)) 1334 return FALSE; 1335 1336 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */ 1337 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt", 1338 noalloc_flags); 1339 if (htab->spltlittbl == NULL 1340 || !bfd_set_section_alignment (htab->spltlittbl, 2)) 1341 return FALSE; 1342 1343 return TRUE; 1344 } 1345 1346 1347 static bfd_boolean 1348 add_extra_plt_sections (struct bfd_link_info *info, int count) 1349 { 1350 bfd *dynobj = elf_hash_table (info)->dynobj; 1351 int chunk; 1352 1353 /* Iterate over all chunks except 0 which uses the standard ".plt" and 1354 ".got.plt" sections. */ 1355 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--) 1356 { 1357 char *sname; 1358 flagword flags; 1359 asection *s; 1360 1361 /* Stop when we find a section has already been created. */ 1362 if (elf_xtensa_get_plt_section (info, chunk)) 1363 break; 1364 1365 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 1366 | SEC_LINKER_CREATED | SEC_READONLY); 1367 1368 sname = (char *) bfd_malloc (10); 1369 sprintf (sname, ".plt.%u", chunk); 1370 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE); 1371 if (s == NULL 1372 || !bfd_set_section_alignment (s, 2)) 1373 return FALSE; 1374 1375 sname = (char *) bfd_malloc (14); 1376 sprintf (sname, ".got.plt.%u", chunk); 1377 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags); 1378 if (s == NULL 1379 || !bfd_set_section_alignment (s, 2)) 1380 return FALSE; 1381 } 1382 1383 return TRUE; 1384 } 1385 1386 1387 /* Adjust a symbol defined by a dynamic object and referenced by a 1388 regular object. The current definition is in some section of the 1389 dynamic object, but we're not including those sections. We have to 1390 change the definition to something the rest of the link can 1391 understand. */ 1392 1393 static bfd_boolean 1394 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, 1395 struct elf_link_hash_entry *h) 1396 { 1397 /* If this is a weak symbol, and there is a real definition, the 1398 processor independent code will have arranged for us to see the 1399 real definition first, and we can just use the same value. */ 1400 if (h->is_weakalias) 1401 { 1402 struct elf_link_hash_entry *def = weakdef (h); 1403 BFD_ASSERT (def->root.type == bfd_link_hash_defined); 1404 h->root.u.def.section = def->root.u.def.section; 1405 h->root.u.def.value = def->root.u.def.value; 1406 return TRUE; 1407 } 1408 1409 /* This is a reference to a symbol defined by a dynamic object. The 1410 reference must go through the GOT, so there's no need for COPY relocs, 1411 .dynbss, etc. */ 1412 1413 return TRUE; 1414 } 1415 1416 1417 static bfd_boolean 1418 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg) 1419 { 1420 struct bfd_link_info *info; 1421 struct elf_xtensa_link_hash_table *htab; 1422 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h); 1423 1424 if (h->root.type == bfd_link_hash_indirect) 1425 return TRUE; 1426 1427 info = (struct bfd_link_info *) arg; 1428 htab = elf_xtensa_hash_table (info); 1429 if (htab == NULL) 1430 return FALSE; 1431 1432 /* If we saw any use of an IE model for this symbol, we can then optimize 1433 away GOT entries for any TLSDESC_FN relocs. */ 1434 if ((eh->tls_type & GOT_TLS_IE) != 0) 1435 { 1436 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount); 1437 h->got.refcount -= eh->tlsfunc_refcount; 1438 } 1439 1440 if (! elf_xtensa_dynamic_symbol_p (h, info)) 1441 elf_xtensa_make_sym_local (info, h); 1442 1443 if (! elf_xtensa_dynamic_symbol_p (h, info) 1444 && h->root.type == bfd_link_hash_undefweak) 1445 return TRUE; 1446 1447 if (h->plt.refcount > 0) 1448 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela)); 1449 1450 if (h->got.refcount > 0) 1451 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela)); 1452 1453 return TRUE; 1454 } 1455 1456 1457 static void 1458 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info) 1459 { 1460 struct elf_xtensa_link_hash_table *htab; 1461 bfd *i; 1462 1463 htab = elf_xtensa_hash_table (info); 1464 if (htab == NULL) 1465 return; 1466 1467 for (i = info->input_bfds; i; i = i->link.next) 1468 { 1469 bfd_signed_vma *local_got_refcounts; 1470 bfd_size_type j, cnt; 1471 Elf_Internal_Shdr *symtab_hdr; 1472 1473 local_got_refcounts = elf_local_got_refcounts (i); 1474 if (!local_got_refcounts) 1475 continue; 1476 1477 symtab_hdr = &elf_tdata (i)->symtab_hdr; 1478 cnt = symtab_hdr->sh_info; 1479 1480 for (j = 0; j < cnt; ++j) 1481 { 1482 /* If we saw any use of an IE model for this symbol, we can 1483 then optimize away GOT entries for any TLSDESC_FN relocs. */ 1484 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0) 1485 { 1486 bfd_signed_vma *tlsfunc_refcount 1487 = &elf_xtensa_local_tlsfunc_refcounts (i) [j]; 1488 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount); 1489 local_got_refcounts[j] -= *tlsfunc_refcount; 1490 } 1491 1492 if (local_got_refcounts[j] > 0) 1493 htab->elf.srelgot->size += (local_got_refcounts[j] 1494 * sizeof (Elf32_External_Rela)); 1495 } 1496 } 1497 } 1498 1499 1500 /* Set the sizes of the dynamic sections. */ 1501 1502 static bfd_boolean 1503 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, 1504 struct bfd_link_info *info) 1505 { 1506 struct elf_xtensa_link_hash_table *htab; 1507 bfd *dynobj, *abfd; 1508 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc; 1509 bfd_boolean relplt, relgot; 1510 int plt_entries, plt_chunks, chunk; 1511 1512 plt_entries = 0; 1513 plt_chunks = 0; 1514 1515 htab = elf_xtensa_hash_table (info); 1516 if (htab == NULL) 1517 return FALSE; 1518 1519 dynobj = elf_hash_table (info)->dynobj; 1520 if (dynobj == NULL) 1521 abort (); 1522 srelgot = htab->elf.srelgot; 1523 srelplt = htab->elf.srelplt; 1524 1525 if (elf_hash_table (info)->dynamic_sections_created) 1526 { 1527 BFD_ASSERT (htab->elf.srelgot != NULL 1528 && htab->elf.srelplt != NULL 1529 && htab->elf.sgot != NULL 1530 && htab->spltlittbl != NULL 1531 && htab->sgotloc != NULL); 1532 1533 /* Set the contents of the .interp section to the interpreter. */ 1534 if (bfd_link_executable (info) && !info->nointerp) 1535 { 1536 s = bfd_get_linker_section (dynobj, ".interp"); 1537 if (s == NULL) 1538 abort (); 1539 s->size = sizeof ELF_DYNAMIC_INTERPRETER; 1540 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 1541 } 1542 1543 /* Allocate room for one word in ".got". */ 1544 htab->elf.sgot->size = 4; 1545 1546 /* Allocate space in ".rela.got" for literals that reference global 1547 symbols and space in ".rela.plt" for literals that have PLT 1548 entries. */ 1549 elf_link_hash_traverse (elf_hash_table (info), 1550 elf_xtensa_allocate_dynrelocs, 1551 (void *) info); 1552 1553 /* If we are generating a shared object, we also need space in 1554 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that 1555 reference local symbols. */ 1556 if (bfd_link_pic (info)) 1557 elf_xtensa_allocate_local_got_size (info); 1558 1559 /* Allocate space in ".plt" to match the size of ".rela.plt". For 1560 each PLT entry, we need the PLT code plus a 4-byte literal. 1561 For each chunk of ".plt", we also need two more 4-byte 1562 literals, two corresponding entries in ".rela.got", and an 1563 8-byte entry in ".xt.lit.plt". */ 1564 spltlittbl = htab->spltlittbl; 1565 plt_entries = srelplt->size / sizeof (Elf32_External_Rela); 1566 plt_chunks = 1567 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; 1568 1569 /* Iterate over all the PLT chunks, including any extra sections 1570 created earlier because the initial count of PLT relocations 1571 was an overestimate. */ 1572 for (chunk = 0; 1573 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL; 1574 chunk++) 1575 { 1576 int chunk_entries; 1577 1578 sgotplt = elf_xtensa_get_gotplt_section (info, chunk); 1579 BFD_ASSERT (sgotplt != NULL); 1580 1581 if (chunk < plt_chunks - 1) 1582 chunk_entries = PLT_ENTRIES_PER_CHUNK; 1583 else if (chunk == plt_chunks - 1) 1584 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); 1585 else 1586 chunk_entries = 0; 1587 1588 if (chunk_entries != 0) 1589 { 1590 sgotplt->size = 4 * (chunk_entries + 2); 1591 splt->size = PLT_ENTRY_SIZE * chunk_entries; 1592 srelgot->size += 2 * sizeof (Elf32_External_Rela); 1593 spltlittbl->size += 8; 1594 } 1595 else 1596 { 1597 sgotplt->size = 0; 1598 splt->size = 0; 1599 } 1600 } 1601 1602 /* Allocate space in ".got.loc" to match the total size of all the 1603 literal tables. */ 1604 sgotloc = htab->sgotloc; 1605 sgotloc->size = spltlittbl->size; 1606 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) 1607 { 1608 if (abfd->flags & DYNAMIC) 1609 continue; 1610 for (s = abfd->sections; s != NULL; s = s->next) 1611 { 1612 if (! discarded_section (s) 1613 && xtensa_is_littable_section (s) 1614 && s != spltlittbl) 1615 sgotloc->size += s->size; 1616 } 1617 } 1618 } 1619 1620 /* Allocate memory for dynamic sections. */ 1621 relplt = FALSE; 1622 relgot = FALSE; 1623 for (s = dynobj->sections; s != NULL; s = s->next) 1624 { 1625 const char *name; 1626 1627 if ((s->flags & SEC_LINKER_CREATED) == 0) 1628 continue; 1629 1630 /* It's OK to base decisions on the section name, because none 1631 of the dynobj section names depend upon the input files. */ 1632 name = bfd_section_name (s); 1633 1634 if (CONST_STRNEQ (name, ".rela")) 1635 { 1636 if (s->size != 0) 1637 { 1638 if (strcmp (name, ".rela.plt") == 0) 1639 relplt = TRUE; 1640 else if (strcmp (name, ".rela.got") == 0) 1641 relgot = TRUE; 1642 1643 /* We use the reloc_count field as a counter if we need 1644 to copy relocs into the output file. */ 1645 s->reloc_count = 0; 1646 } 1647 } 1648 else if (! CONST_STRNEQ (name, ".plt.") 1649 && ! CONST_STRNEQ (name, ".got.plt.") 1650 && strcmp (name, ".got") != 0 1651 && strcmp (name, ".plt") != 0 1652 && strcmp (name, ".got.plt") != 0 1653 && strcmp (name, ".xt.lit.plt") != 0 1654 && strcmp (name, ".got.loc") != 0) 1655 { 1656 /* It's not one of our sections, so don't allocate space. */ 1657 continue; 1658 } 1659 1660 if (s->size == 0) 1661 { 1662 /* If we don't need this section, strip it from the output 1663 file. We must create the ".plt*" and ".got.plt*" 1664 sections in create_dynamic_sections and/or check_relocs 1665 based on a conservative estimate of the PLT relocation 1666 count, because the sections must be created before the 1667 linker maps input sections to output sections. The 1668 linker does that before size_dynamic_sections, where we 1669 compute the exact size of the PLT, so there may be more 1670 of these sections than are actually needed. */ 1671 s->flags |= SEC_EXCLUDE; 1672 } 1673 else if ((s->flags & SEC_HAS_CONTENTS) != 0) 1674 { 1675 /* Allocate memory for the section contents. */ 1676 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); 1677 if (s->contents == NULL) 1678 return FALSE; 1679 } 1680 } 1681 1682 if (elf_hash_table (info)->dynamic_sections_created) 1683 { 1684 /* Add the special XTENSA_RTLD relocations now. The offsets won't be 1685 known until finish_dynamic_sections, but we need to get the relocs 1686 in place before they are sorted. */ 1687 for (chunk = 0; chunk < plt_chunks; chunk++) 1688 { 1689 Elf_Internal_Rela irela; 1690 bfd_byte *loc; 1691 1692 irela.r_offset = 0; 1693 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD); 1694 irela.r_addend = 0; 1695 1696 loc = (srelgot->contents 1697 + srelgot->reloc_count * sizeof (Elf32_External_Rela)); 1698 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); 1699 bfd_elf32_swap_reloca_out (output_bfd, &irela, 1700 loc + sizeof (Elf32_External_Rela)); 1701 srelgot->reloc_count += 2; 1702 } 1703 1704 /* Add some entries to the .dynamic section. We fill in the 1705 values later, in elf_xtensa_finish_dynamic_sections, but we 1706 must add the entries now so that we get the correct size for 1707 the .dynamic section. The DT_DEBUG entry is filled in by the 1708 dynamic linker and used by the debugger. */ 1709 #define add_dynamic_entry(TAG, VAL) \ 1710 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 1711 1712 if (bfd_link_executable (info)) 1713 { 1714 if (!add_dynamic_entry (DT_DEBUG, 0)) 1715 return FALSE; 1716 } 1717 1718 if (relplt) 1719 { 1720 if (!add_dynamic_entry (DT_PLTRELSZ, 0) 1721 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 1722 || !add_dynamic_entry (DT_JMPREL, 0)) 1723 return FALSE; 1724 } 1725 1726 if (relgot) 1727 { 1728 if (!add_dynamic_entry (DT_RELA, 0) 1729 || !add_dynamic_entry (DT_RELASZ, 0) 1730 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) 1731 return FALSE; 1732 } 1733 1734 if (!add_dynamic_entry (DT_PLTGOT, 0) 1735 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0) 1736 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0)) 1737 return FALSE; 1738 } 1739 #undef add_dynamic_entry 1740 1741 return TRUE; 1742 } 1743 1744 static bfd_boolean 1745 elf_xtensa_always_size_sections (bfd *output_bfd, 1746 struct bfd_link_info *info) 1747 { 1748 struct elf_xtensa_link_hash_table *htab; 1749 asection *tls_sec; 1750 1751 htab = elf_xtensa_hash_table (info); 1752 if (htab == NULL) 1753 return FALSE; 1754 1755 tls_sec = htab->elf.tls_sec; 1756 1757 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0) 1758 { 1759 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf; 1760 struct bfd_link_hash_entry *bh = &tlsbase->root; 1761 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 1762 1763 tlsbase->type = STT_TLS; 1764 if (!(_bfd_generic_link_add_one_symbol 1765 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, 1766 tls_sec, 0, NULL, FALSE, 1767 bed->collect, &bh))) 1768 return FALSE; 1769 tlsbase->def_regular = 1; 1770 tlsbase->other = STV_HIDDEN; 1771 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); 1772 } 1773 1774 return TRUE; 1775 } 1776 1777 1778 /* Return the base VMA address which should be subtracted from real addresses 1779 when resolving @dtpoff relocation. 1780 This is PT_TLS segment p_vaddr. */ 1781 1782 static bfd_vma 1783 dtpoff_base (struct bfd_link_info *info) 1784 { 1785 /* If tls_sec is NULL, we should have signalled an error already. */ 1786 if (elf_hash_table (info)->tls_sec == NULL) 1787 return 0; 1788 return elf_hash_table (info)->tls_sec->vma; 1789 } 1790 1791 /* Return the relocation value for @tpoff relocation 1792 if STT_TLS virtual address is ADDRESS. */ 1793 1794 static bfd_vma 1795 tpoff (struct bfd_link_info *info, bfd_vma address) 1796 { 1797 struct elf_link_hash_table *htab = elf_hash_table (info); 1798 bfd_vma base; 1799 1800 /* If tls_sec is NULL, we should have signalled an error already. */ 1801 if (htab->tls_sec == NULL) 1802 return 0; 1803 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); 1804 return address - htab->tls_sec->vma + base; 1805 } 1806 1807 /* Perform the specified relocation. The instruction at (contents + address) 1808 is modified to set one operand to represent the value in "relocation". The 1809 operand position is determined by the relocation type recorded in the 1810 howto. */ 1811 1812 #define CALL_SEGMENT_BITS (30) 1813 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS) 1814 1815 static bfd_reloc_status_type 1816 elf_xtensa_do_reloc (reloc_howto_type *howto, 1817 bfd *abfd, 1818 asection *input_section, 1819 bfd_vma relocation, 1820 bfd_byte *contents, 1821 bfd_vma address, 1822 bfd_boolean is_weak_undef, 1823 char **error_message) 1824 { 1825 xtensa_format fmt; 1826 xtensa_opcode opcode; 1827 xtensa_isa isa = xtensa_default_isa; 1828 static xtensa_insnbuf ibuff = NULL; 1829 static xtensa_insnbuf sbuff = NULL; 1830 bfd_vma self_address; 1831 bfd_size_type input_size; 1832 int opnd, slot; 1833 uint32 newval; 1834 1835 if (!ibuff) 1836 { 1837 ibuff = xtensa_insnbuf_alloc (isa); 1838 sbuff = xtensa_insnbuf_alloc (isa); 1839 } 1840 1841 input_size = bfd_get_section_limit (abfd, input_section); 1842 1843 /* Calculate the PC address for this instruction. */ 1844 self_address = (input_section->output_section->vma 1845 + input_section->output_offset 1846 + address); 1847 1848 switch (howto->type) 1849 { 1850 case R_XTENSA_NONE: 1851 case R_XTENSA_DIFF8: 1852 case R_XTENSA_DIFF16: 1853 case R_XTENSA_DIFF32: 1854 case R_XTENSA_TLS_FUNC: 1855 case R_XTENSA_TLS_ARG: 1856 case R_XTENSA_TLS_CALL: 1857 return bfd_reloc_ok; 1858 1859 case R_XTENSA_ASM_EXPAND: 1860 if (!is_weak_undef) 1861 { 1862 /* Check for windowed CALL across a 1GB boundary. */ 1863 opcode = get_expanded_call_opcode (contents + address, 1864 input_size - address, 0); 1865 if (is_windowed_call_opcode (opcode)) 1866 { 1867 if ((self_address >> CALL_SEGMENT_BITS) 1868 != (relocation >> CALL_SEGMENT_BITS)) 1869 { 1870 *error_message = "windowed longcall crosses 1GB boundary; " 1871 "return may fail"; 1872 return bfd_reloc_dangerous; 1873 } 1874 } 1875 } 1876 return bfd_reloc_ok; 1877 1878 case R_XTENSA_ASM_SIMPLIFY: 1879 { 1880 /* Convert the L32R/CALLX to CALL. */ 1881 bfd_reloc_status_type retval = 1882 elf_xtensa_do_asm_simplify (contents, address, input_size, 1883 error_message); 1884 if (retval != bfd_reloc_ok) 1885 return bfd_reloc_dangerous; 1886 1887 /* The CALL needs to be relocated. Continue below for that part. */ 1888 address += 3; 1889 self_address += 3; 1890 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ]; 1891 } 1892 break; 1893 1894 case R_XTENSA_32: 1895 { 1896 bfd_vma x; 1897 x = bfd_get_32 (abfd, contents + address); 1898 x = x + relocation; 1899 bfd_put_32 (abfd, x, contents + address); 1900 } 1901 return bfd_reloc_ok; 1902 1903 case R_XTENSA_32_PCREL: 1904 bfd_put_32 (abfd, relocation - self_address, contents + address); 1905 return bfd_reloc_ok; 1906 1907 case R_XTENSA_PLT: 1908 case R_XTENSA_TLSDESC_FN: 1909 case R_XTENSA_TLSDESC_ARG: 1910 case R_XTENSA_TLS_DTPOFF: 1911 case R_XTENSA_TLS_TPOFF: 1912 bfd_put_32 (abfd, relocation, contents + address); 1913 return bfd_reloc_ok; 1914 } 1915 1916 /* Only instruction slot-specific relocations handled below.... */ 1917 slot = get_relocation_slot (howto->type); 1918 if (slot == XTENSA_UNDEFINED) 1919 { 1920 *error_message = "unexpected relocation"; 1921 return bfd_reloc_dangerous; 1922 } 1923 1924 /* Read the instruction into a buffer and decode the opcode. */ 1925 xtensa_insnbuf_from_chars (isa, ibuff, contents + address, 1926 input_size - address); 1927 fmt = xtensa_format_decode (isa, ibuff); 1928 if (fmt == XTENSA_UNDEFINED) 1929 { 1930 *error_message = "cannot decode instruction format"; 1931 return bfd_reloc_dangerous; 1932 } 1933 1934 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); 1935 1936 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff); 1937 if (opcode == XTENSA_UNDEFINED) 1938 { 1939 *error_message = "cannot decode instruction opcode"; 1940 return bfd_reloc_dangerous; 1941 } 1942 1943 /* Check for opcode-specific "alternate" relocations. */ 1944 if (is_alt_relocation (howto->type)) 1945 { 1946 if (opcode == get_l32r_opcode ()) 1947 { 1948 /* Handle the special-case of non-PC-relative L32R instructions. */ 1949 bfd *output_bfd = input_section->output_section->owner; 1950 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4"); 1951 if (!lit4_sec) 1952 { 1953 *error_message = "relocation references missing .lit4 section"; 1954 return bfd_reloc_dangerous; 1955 } 1956 self_address = ((lit4_sec->vma & ~0xfff) 1957 + 0x40000 - 3); /* -3 to compensate for do_reloc */ 1958 newval = relocation; 1959 opnd = 1; 1960 } 1961 else if (opcode == get_const16_opcode ()) 1962 { 1963 /* ALT used for high 16 bits. 1964 Ignore 32-bit overflow. */ 1965 newval = (relocation >> 16) & 0xffff; 1966 opnd = 1; 1967 } 1968 else 1969 { 1970 /* No other "alternate" relocations currently defined. */ 1971 *error_message = "unexpected relocation"; 1972 return bfd_reloc_dangerous; 1973 } 1974 } 1975 else /* Not an "alternate" relocation.... */ 1976 { 1977 if (opcode == get_const16_opcode ()) 1978 { 1979 newval = relocation & 0xffff; 1980 opnd = 1; 1981 } 1982 else 1983 { 1984 /* ...normal PC-relative relocation.... */ 1985 1986 /* Determine which operand is being relocated. */ 1987 opnd = get_relocation_opnd (opcode, howto->type); 1988 if (opnd == XTENSA_UNDEFINED) 1989 { 1990 *error_message = "unexpected relocation"; 1991 return bfd_reloc_dangerous; 1992 } 1993 1994 if (!howto->pc_relative) 1995 { 1996 *error_message = "expected PC-relative relocation"; 1997 return bfd_reloc_dangerous; 1998 } 1999 2000 newval = relocation; 2001 } 2002 } 2003 2004 /* Apply the relocation. */ 2005 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address) 2006 || xtensa_operand_encode (isa, opcode, opnd, &newval) 2007 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot, 2008 sbuff, newval)) 2009 { 2010 const char *opname = xtensa_opcode_name (isa, opcode); 2011 const char *msg; 2012 2013 msg = "cannot encode"; 2014 if (is_direct_call_opcode (opcode)) 2015 { 2016 if ((relocation & 0x3) != 0) 2017 msg = "misaligned call target"; 2018 else 2019 msg = "call target out of range"; 2020 } 2021 else if (opcode == get_l32r_opcode ()) 2022 { 2023 if ((relocation & 0x3) != 0) 2024 msg = "misaligned literal target"; 2025 else if (is_alt_relocation (howto->type)) 2026 msg = "literal target out of range (too many literals)"; 2027 else if (self_address > relocation) 2028 msg = "literal target out of range (try using text-section-literals)"; 2029 else 2030 msg = "literal placed after use"; 2031 } 2032 2033 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg); 2034 return bfd_reloc_dangerous; 2035 } 2036 2037 /* Check for calls across 1GB boundaries. */ 2038 if (is_direct_call_opcode (opcode) 2039 && is_windowed_call_opcode (opcode)) 2040 { 2041 if ((self_address >> CALL_SEGMENT_BITS) 2042 != (relocation >> CALL_SEGMENT_BITS)) 2043 { 2044 *error_message = 2045 "windowed call crosses 1GB boundary; return may fail"; 2046 return bfd_reloc_dangerous; 2047 } 2048 } 2049 2050 /* Write the modified instruction back out of the buffer. */ 2051 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff); 2052 xtensa_insnbuf_to_chars (isa, ibuff, contents + address, 2053 input_size - address); 2054 return bfd_reloc_ok; 2055 } 2056 2057 2058 static char * 2059 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...) 2060 { 2061 /* To reduce the size of the memory leak, 2062 we only use a single message buffer. */ 2063 static bfd_size_type alloc_size = 0; 2064 static char *message = NULL; 2065 bfd_size_type orig_len, len = 0; 2066 bfd_boolean is_append; 2067 va_list ap; 2068 2069 va_start (ap, arglen); 2070 2071 is_append = (origmsg == message); 2072 2073 orig_len = strlen (origmsg); 2074 len = orig_len + strlen (fmt) + arglen + 20; 2075 if (len > alloc_size) 2076 { 2077 message = (char *) bfd_realloc_or_free (message, len); 2078 alloc_size = len; 2079 } 2080 if (message != NULL) 2081 { 2082 if (!is_append) 2083 memcpy (message, origmsg, orig_len); 2084 vsprintf (message + orig_len, fmt, ap); 2085 } 2086 va_end (ap); 2087 return message; 2088 } 2089 2090 2091 /* This function is registered as the "special_function" in the 2092 Xtensa howto for handling simplify operations. 2093 bfd_perform_relocation / bfd_install_relocation use it to 2094 perform (install) the specified relocation. Since this replaces the code 2095 in bfd_perform_relocation, it is basically an Xtensa-specific, 2096 stripped-down version of bfd_perform_relocation. */ 2097 2098 static bfd_reloc_status_type 2099 bfd_elf_xtensa_reloc (bfd *abfd, 2100 arelent *reloc_entry, 2101 asymbol *symbol, 2102 void *data, 2103 asection *input_section, 2104 bfd *output_bfd, 2105 char **error_message) 2106 { 2107 bfd_vma relocation; 2108 bfd_reloc_status_type flag; 2109 bfd_size_type octets = (reloc_entry->address 2110 * OCTETS_PER_BYTE (abfd, input_section)); 2111 bfd_vma output_base = 0; 2112 reloc_howto_type *howto = reloc_entry->howto; 2113 asection *reloc_target_output_section; 2114 bfd_boolean is_weak_undef; 2115 2116 if (!xtensa_default_isa) 2117 xtensa_default_isa = xtensa_isa_init (0, 0); 2118 2119 /* ELF relocs are against symbols. If we are producing relocatable 2120 output, and the reloc is against an external symbol, the resulting 2121 reloc will also be against the same symbol. In such a case, we 2122 don't want to change anything about the way the reloc is handled, 2123 since it will all be done at final link time. This test is similar 2124 to what bfd_elf_generic_reloc does except that it lets relocs with 2125 howto->partial_inplace go through even if the addend is non-zero. 2126 (The real problem is that partial_inplace is set for XTENSA_32 2127 relocs to begin with, but that's a long story and there's little we 2128 can do about it now....) */ 2129 2130 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0) 2131 { 2132 reloc_entry->address += input_section->output_offset; 2133 return bfd_reloc_ok; 2134 } 2135 2136 /* Is the address of the relocation really within the section? */ 2137 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2138 return bfd_reloc_outofrange; 2139 2140 /* Work out which section the relocation is targeted at and the 2141 initial relocation command value. */ 2142 2143 /* Get symbol value. (Common symbols are special.) */ 2144 if (bfd_is_com_section (symbol->section)) 2145 relocation = 0; 2146 else 2147 relocation = symbol->value; 2148 2149 reloc_target_output_section = symbol->section->output_section; 2150 2151 /* Convert input-section-relative symbol value to absolute. */ 2152 if ((output_bfd && !howto->partial_inplace) 2153 || reloc_target_output_section == NULL) 2154 output_base = 0; 2155 else 2156 output_base = reloc_target_output_section->vma; 2157 2158 relocation += output_base + symbol->section->output_offset; 2159 2160 /* Add in supplied addend. */ 2161 relocation += reloc_entry->addend; 2162 2163 /* Here the variable relocation holds the final address of the 2164 symbol we are relocating against, plus any addend. */ 2165 if (output_bfd) 2166 { 2167 if (!howto->partial_inplace) 2168 { 2169 /* This is a partial relocation, and we want to apply the relocation 2170 to the reloc entry rather than the raw data. Everything except 2171 relocations against section symbols has already been handled 2172 above. */ 2173 2174 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM); 2175 reloc_entry->addend = relocation; 2176 reloc_entry->address += input_section->output_offset; 2177 return bfd_reloc_ok; 2178 } 2179 else 2180 { 2181 reloc_entry->address += input_section->output_offset; 2182 reloc_entry->addend = 0; 2183 } 2184 } 2185 2186 is_weak_undef = (bfd_is_und_section (symbol->section) 2187 && (symbol->flags & BSF_WEAK) != 0); 2188 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation, 2189 (bfd_byte *) data, (bfd_vma) octets, 2190 is_weak_undef, error_message); 2191 2192 if (flag == bfd_reloc_dangerous) 2193 { 2194 /* Add the symbol name to the error message. */ 2195 if (! *error_message) 2196 *error_message = ""; 2197 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)", 2198 strlen (symbol->name) + 17, 2199 symbol->name, 2200 (unsigned long) reloc_entry->addend); 2201 } 2202 2203 return flag; 2204 } 2205 2206 2207 /* Set up an entry in the procedure linkage table. */ 2208 2209 static bfd_vma 2210 elf_xtensa_create_plt_entry (struct bfd_link_info *info, 2211 bfd *output_bfd, 2212 unsigned reloc_index) 2213 { 2214 asection *splt, *sgotplt; 2215 bfd_vma plt_base, got_base; 2216 bfd_vma code_offset, lit_offset, abi_offset; 2217 int chunk; 2218 2219 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; 2220 splt = elf_xtensa_get_plt_section (info, chunk); 2221 sgotplt = elf_xtensa_get_gotplt_section (info, chunk); 2222 BFD_ASSERT (splt != NULL && sgotplt != NULL); 2223 2224 plt_base = splt->output_section->vma + splt->output_offset; 2225 got_base = sgotplt->output_section->vma + sgotplt->output_offset; 2226 2227 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4; 2228 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE; 2229 2230 /* Fill in the literal entry. This is the offset of the dynamic 2231 relocation entry. */ 2232 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela), 2233 sgotplt->contents + lit_offset); 2234 2235 /* Fill in the entry in the procedure linkage table. */ 2236 memcpy (splt->contents + code_offset, 2237 (bfd_big_endian (output_bfd) 2238 ? elf_xtensa_be_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED] 2239 : elf_xtensa_le_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]), 2240 PLT_ENTRY_SIZE); 2241 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0; 2242 bfd_put_16 (output_bfd, l32r_offset (got_base + 0, 2243 plt_base + code_offset + abi_offset), 2244 splt->contents + code_offset + abi_offset + 1); 2245 bfd_put_16 (output_bfd, l32r_offset (got_base + 4, 2246 plt_base + code_offset + abi_offset + 3), 2247 splt->contents + code_offset + abi_offset + 4); 2248 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset, 2249 plt_base + code_offset + abi_offset + 6), 2250 splt->contents + code_offset + abi_offset + 7); 2251 2252 return plt_base + code_offset; 2253 } 2254 2255 2256 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *); 2257 2258 static bfd_boolean 2259 replace_tls_insn (Elf_Internal_Rela *rel, 2260 bfd *abfd, 2261 asection *input_section, 2262 bfd_byte *contents, 2263 bfd_boolean is_ld_model, 2264 char **error_message) 2265 { 2266 static xtensa_insnbuf ibuff = NULL; 2267 static xtensa_insnbuf sbuff = NULL; 2268 xtensa_isa isa = xtensa_default_isa; 2269 xtensa_format fmt; 2270 xtensa_opcode old_op, new_op; 2271 bfd_size_type input_size; 2272 int r_type; 2273 unsigned dest_reg, src_reg; 2274 2275 if (ibuff == NULL) 2276 { 2277 ibuff = xtensa_insnbuf_alloc (isa); 2278 sbuff = xtensa_insnbuf_alloc (isa); 2279 } 2280 2281 input_size = bfd_get_section_limit (abfd, input_section); 2282 2283 /* Read the instruction into a buffer and decode the opcode. */ 2284 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset, 2285 input_size - rel->r_offset); 2286 fmt = xtensa_format_decode (isa, ibuff); 2287 if (fmt == XTENSA_UNDEFINED) 2288 { 2289 *error_message = "cannot decode instruction format"; 2290 return FALSE; 2291 } 2292 2293 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1); 2294 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff); 2295 2296 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff); 2297 if (old_op == XTENSA_UNDEFINED) 2298 { 2299 *error_message = "cannot decode instruction opcode"; 2300 return FALSE; 2301 } 2302 2303 r_type = ELF32_R_TYPE (rel->r_info); 2304 switch (r_type) 2305 { 2306 case R_XTENSA_TLS_FUNC: 2307 case R_XTENSA_TLS_ARG: 2308 if (old_op != get_l32r_opcode () 2309 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, 2310 sbuff, &dest_reg) != 0) 2311 { 2312 *error_message = "cannot extract L32R destination for TLS access"; 2313 return FALSE; 2314 } 2315 break; 2316 2317 case R_XTENSA_TLS_CALL: 2318 if (! get_indirect_call_dest_reg (old_op, &dest_reg) 2319 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, 2320 sbuff, &src_reg) != 0) 2321 { 2322 *error_message = "cannot extract CALLXn operands for TLS access"; 2323 return FALSE; 2324 } 2325 break; 2326 2327 default: 2328 abort (); 2329 } 2330 2331 if (is_ld_model) 2332 { 2333 switch (r_type) 2334 { 2335 case R_XTENSA_TLS_FUNC: 2336 case R_XTENSA_TLS_ARG: 2337 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older 2338 versions of Xtensa). */ 2339 new_op = xtensa_opcode_lookup (isa, "nop"); 2340 if (new_op == XTENSA_UNDEFINED) 2341 { 2342 new_op = xtensa_opcode_lookup (isa, "or"); 2343 if (new_op == XTENSA_UNDEFINED 2344 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 2345 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, 2346 sbuff, 1) != 0 2347 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, 2348 sbuff, 1) != 0 2349 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, 2350 sbuff, 1) != 0) 2351 { 2352 *error_message = "cannot encode OR for TLS access"; 2353 return FALSE; 2354 } 2355 } 2356 else 2357 { 2358 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0) 2359 { 2360 *error_message = "cannot encode NOP for TLS access"; 2361 return FALSE; 2362 } 2363 } 2364 break; 2365 2366 case R_XTENSA_TLS_CALL: 2367 /* Read THREADPTR into the CALLX's return value register. */ 2368 new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); 2369 if (new_op == XTENSA_UNDEFINED 2370 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 2371 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, 2372 sbuff, dest_reg + 2) != 0) 2373 { 2374 *error_message = "cannot encode RUR.THREADPTR for TLS access"; 2375 return FALSE; 2376 } 2377 break; 2378 } 2379 } 2380 else 2381 { 2382 switch (r_type) 2383 { 2384 case R_XTENSA_TLS_FUNC: 2385 new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); 2386 if (new_op == XTENSA_UNDEFINED 2387 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 2388 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, 2389 sbuff, dest_reg) != 0) 2390 { 2391 *error_message = "cannot encode RUR.THREADPTR for TLS access"; 2392 return FALSE; 2393 } 2394 break; 2395 2396 case R_XTENSA_TLS_ARG: 2397 /* Nothing to do. Keep the original L32R instruction. */ 2398 return TRUE; 2399 2400 case R_XTENSA_TLS_CALL: 2401 /* Add the CALLX's src register (holding the THREADPTR value) 2402 to the first argument register (holding the offset) and put 2403 the result in the CALLX's return value register. */ 2404 new_op = xtensa_opcode_lookup (isa, "add"); 2405 if (new_op == XTENSA_UNDEFINED 2406 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 2407 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, 2408 sbuff, dest_reg + 2) != 0 2409 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, 2410 sbuff, dest_reg + 2) != 0 2411 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, 2412 sbuff, src_reg) != 0) 2413 { 2414 *error_message = "cannot encode ADD for TLS access"; 2415 return FALSE; 2416 } 2417 break; 2418 } 2419 } 2420 2421 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff); 2422 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset, 2423 input_size - rel->r_offset); 2424 2425 return TRUE; 2426 } 2427 2428 2429 #define IS_XTENSA_TLS_RELOC(R_TYPE) \ 2430 ((R_TYPE) == R_XTENSA_TLSDESC_FN \ 2431 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \ 2432 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \ 2433 || (R_TYPE) == R_XTENSA_TLS_TPOFF \ 2434 || (R_TYPE) == R_XTENSA_TLS_FUNC \ 2435 || (R_TYPE) == R_XTENSA_TLS_ARG \ 2436 || (R_TYPE) == R_XTENSA_TLS_CALL) 2437 2438 /* Relocate an Xtensa ELF section. This is invoked by the linker for 2439 both relocatable and final links. */ 2440 2441 static bfd_boolean 2442 elf_xtensa_relocate_section (bfd *output_bfd, 2443 struct bfd_link_info *info, 2444 bfd *input_bfd, 2445 asection *input_section, 2446 bfd_byte *contents, 2447 Elf_Internal_Rela *relocs, 2448 Elf_Internal_Sym *local_syms, 2449 asection **local_sections) 2450 { 2451 struct elf_xtensa_link_hash_table *htab; 2452 Elf_Internal_Shdr *symtab_hdr; 2453 Elf_Internal_Rela *rel; 2454 Elf_Internal_Rela *relend; 2455 struct elf_link_hash_entry **sym_hashes; 2456 property_table_entry *lit_table = 0; 2457 int ltblsize = 0; 2458 char *local_got_tls_types; 2459 char *error_message = NULL; 2460 bfd_size_type input_size; 2461 int tls_type; 2462 2463 if (!xtensa_default_isa) 2464 xtensa_default_isa = xtensa_isa_init (0, 0); 2465 2466 if (!is_xtensa_elf (input_bfd)) 2467 { 2468 bfd_set_error (bfd_error_wrong_format); 2469 return FALSE; 2470 } 2471 2472 htab = elf_xtensa_hash_table (info); 2473 if (htab == NULL) 2474 return FALSE; 2475 2476 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 2477 sym_hashes = elf_sym_hashes (input_bfd); 2478 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd); 2479 2480 if (elf_hash_table (info)->dynamic_sections_created) 2481 { 2482 ltblsize = xtensa_read_table_entries (input_bfd, input_section, 2483 &lit_table, XTENSA_LIT_SEC_NAME, 2484 TRUE); 2485 if (ltblsize < 0) 2486 return FALSE; 2487 } 2488 2489 input_size = bfd_get_section_limit (input_bfd, input_section); 2490 2491 rel = relocs; 2492 relend = relocs + input_section->reloc_count; 2493 for (; rel < relend; rel++) 2494 { 2495 int r_type; 2496 reloc_howto_type *howto; 2497 unsigned long r_symndx; 2498 struct elf_link_hash_entry *h; 2499 Elf_Internal_Sym *sym; 2500 char sym_type; 2501 const char *name; 2502 asection *sec; 2503 bfd_vma relocation; 2504 bfd_reloc_status_type r; 2505 bfd_boolean is_weak_undef; 2506 bfd_boolean unresolved_reloc; 2507 bfd_boolean warned; 2508 bfd_boolean dynamic_symbol; 2509 2510 r_type = ELF32_R_TYPE (rel->r_info); 2511 if (r_type == (int) R_XTENSA_GNU_VTINHERIT 2512 || r_type == (int) R_XTENSA_GNU_VTENTRY) 2513 continue; 2514 2515 if (r_type < 0 || r_type >= (int) R_XTENSA_max) 2516 { 2517 bfd_set_error (bfd_error_bad_value); 2518 return FALSE; 2519 } 2520 howto = &elf_howto_table[r_type]; 2521 2522 r_symndx = ELF32_R_SYM (rel->r_info); 2523 2524 h = NULL; 2525 sym = NULL; 2526 sec = NULL; 2527 is_weak_undef = FALSE; 2528 unresolved_reloc = FALSE; 2529 warned = FALSE; 2530 2531 if (howto->partial_inplace && !bfd_link_relocatable (info)) 2532 { 2533 /* Because R_XTENSA_32 was made partial_inplace to fix some 2534 problems with DWARF info in partial links, there may be 2535 an addend stored in the contents. Take it out of there 2536 and move it back into the addend field of the reloc. */ 2537 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset); 2538 bfd_put_32 (input_bfd, 0, contents + rel->r_offset); 2539 } 2540 2541 if (r_symndx < symtab_hdr->sh_info) 2542 { 2543 sym = local_syms + r_symndx; 2544 sym_type = ELF32_ST_TYPE (sym->st_info); 2545 sec = local_sections[r_symndx]; 2546 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 2547 } 2548 else 2549 { 2550 bfd_boolean ignored; 2551 2552 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 2553 r_symndx, symtab_hdr, sym_hashes, 2554 h, sec, relocation, 2555 unresolved_reloc, warned, ignored); 2556 2557 if (relocation == 0 2558 && !unresolved_reloc 2559 && h->root.type == bfd_link_hash_undefweak) 2560 is_weak_undef = TRUE; 2561 2562 sym_type = h->type; 2563 } 2564 2565 if (sec != NULL && discarded_section (sec)) 2566 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 2567 rel, 1, relend, howto, 0, contents); 2568 2569 if (bfd_link_relocatable (info)) 2570 { 2571 bfd_vma dest_addr; 2572 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx); 2573 2574 /* This is a relocatable link. 2575 1) If the reloc is against a section symbol, adjust 2576 according to the output section. 2577 2) If there is a new target for this relocation, 2578 the new target will be in the same output section. 2579 We adjust the relocation by the output section 2580 difference. */ 2581 2582 if (relaxing_section) 2583 { 2584 /* Check if this references a section in another input file. */ 2585 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section, 2586 contents)) 2587 return FALSE; 2588 } 2589 2590 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset 2591 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend; 2592 2593 if (r_type == R_XTENSA_ASM_SIMPLIFY) 2594 { 2595 error_message = NULL; 2596 /* Convert ASM_SIMPLIFY into the simpler relocation 2597 so that they never escape a relaxing link. */ 2598 r = contract_asm_expansion (contents, input_size, rel, 2599 &error_message); 2600 if (r != bfd_reloc_ok) 2601 (*info->callbacks->reloc_dangerous) 2602 (info, error_message, 2603 input_bfd, input_section, rel->r_offset); 2604 2605 r_type = ELF32_R_TYPE (rel->r_info); 2606 } 2607 2608 /* This is a relocatable link, so we don't have to change 2609 anything unless the reloc is against a section symbol, 2610 in which case we have to adjust according to where the 2611 section symbol winds up in the output section. */ 2612 if (r_symndx < symtab_hdr->sh_info) 2613 { 2614 sym = local_syms + r_symndx; 2615 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) 2616 { 2617 sec = local_sections[r_symndx]; 2618 rel->r_addend += sec->output_offset + sym->st_value; 2619 } 2620 } 2621 2622 /* If there is an addend with a partial_inplace howto, 2623 then move the addend to the contents. This is a hack 2624 to work around problems with DWARF in relocatable links 2625 with some previous version of BFD. Now we can't easily get 2626 rid of the hack without breaking backward compatibility.... */ 2627 r = bfd_reloc_ok; 2628 howto = &elf_howto_table[r_type]; 2629 if (howto->partial_inplace && rel->r_addend) 2630 { 2631 r = elf_xtensa_do_reloc (howto, input_bfd, input_section, 2632 rel->r_addend, contents, 2633 rel->r_offset, FALSE, 2634 &error_message); 2635 rel->r_addend = 0; 2636 } 2637 else 2638 { 2639 /* Put the correct bits in the target instruction, even 2640 though the relocation will still be present in the output 2641 file. This makes disassembly clearer, as well as 2642 allowing loadable kernel modules to work without needing 2643 relocations on anything other than calls and l32r's. */ 2644 2645 /* If it is not in the same section, there is nothing we can do. */ 2646 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP && 2647 sym_sec->output_section == input_section->output_section) 2648 { 2649 r = elf_xtensa_do_reloc (howto, input_bfd, input_section, 2650 dest_addr, contents, 2651 rel->r_offset, FALSE, 2652 &error_message); 2653 } 2654 } 2655 if (r != bfd_reloc_ok) 2656 (*info->callbacks->reloc_dangerous) 2657 (info, error_message, 2658 input_bfd, input_section, rel->r_offset); 2659 2660 /* Done with work for relocatable link; continue with next reloc. */ 2661 continue; 2662 } 2663 2664 /* This is a final link. */ 2665 2666 if (relaxing_section) 2667 { 2668 /* Check if this references a section in another input file. */ 2669 do_fix_for_final_link (rel, input_bfd, input_section, contents, 2670 &relocation); 2671 } 2672 2673 /* Sanity check the address. */ 2674 if (rel->r_offset >= input_size 2675 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE) 2676 { 2677 _bfd_error_handler 2678 /* xgettext:c-format */ 2679 (_("%pB(%pA+%#" PRIx64 "): " 2680 "relocation offset out of range (size=%#" PRIx64 ")"), 2681 input_bfd, input_section, (uint64_t) rel->r_offset, 2682 (uint64_t) input_size); 2683 bfd_set_error (bfd_error_bad_value); 2684 return FALSE; 2685 } 2686 2687 if (h != NULL) 2688 name = h->root.root.string; 2689 else 2690 { 2691 name = (bfd_elf_string_from_elf_section 2692 (input_bfd, symtab_hdr->sh_link, sym->st_name)); 2693 if (name == NULL || *name == '\0') 2694 name = bfd_section_name (sec); 2695 } 2696 2697 if (r_symndx != STN_UNDEF 2698 && r_type != R_XTENSA_NONE 2699 && (h == NULL 2700 || h->root.type == bfd_link_hash_defined 2701 || h->root.type == bfd_link_hash_defweak) 2702 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS)) 2703 { 2704 _bfd_error_handler 2705 ((sym_type == STT_TLS 2706 /* xgettext:c-format */ 2707 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s") 2708 /* xgettext:c-format */ 2709 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")), 2710 input_bfd, 2711 input_section, 2712 (uint64_t) rel->r_offset, 2713 howto->name, 2714 name); 2715 } 2716 2717 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); 2718 2719 tls_type = GOT_UNKNOWN; 2720 if (h) 2721 tls_type = elf_xtensa_hash_entry (h)->tls_type; 2722 else if (local_got_tls_types) 2723 tls_type = local_got_tls_types [r_symndx]; 2724 2725 switch (r_type) 2726 { 2727 case R_XTENSA_32: 2728 case R_XTENSA_PLT: 2729 if (elf_hash_table (info)->dynamic_sections_created 2730 && (input_section->flags & SEC_ALLOC) != 0 2731 && (dynamic_symbol || bfd_link_pic (info))) 2732 { 2733 Elf_Internal_Rela outrel; 2734 bfd_byte *loc; 2735 asection *srel; 2736 2737 if (dynamic_symbol && r_type == R_XTENSA_PLT) 2738 srel = htab->elf.srelplt; 2739 else 2740 srel = htab->elf.srelgot; 2741 2742 BFD_ASSERT (srel != NULL); 2743 2744 outrel.r_offset = 2745 _bfd_elf_section_offset (output_bfd, info, 2746 input_section, rel->r_offset); 2747 2748 if ((outrel.r_offset | 1) == (bfd_vma) -1) 2749 memset (&outrel, 0, sizeof outrel); 2750 else 2751 { 2752 outrel.r_offset += (input_section->output_section->vma 2753 + input_section->output_offset); 2754 2755 /* Complain if the relocation is in a read-only section 2756 and not in a literal pool. */ 2757 if ((input_section->flags & SEC_READONLY) != 0 2758 && !elf_xtensa_in_literal_pool (lit_table, ltblsize, 2759 outrel.r_offset)) 2760 { 2761 error_message = 2762 _("dynamic relocation in read-only section"); 2763 (*info->callbacks->reloc_dangerous) 2764 (info, error_message, 2765 input_bfd, input_section, rel->r_offset); 2766 } 2767 2768 if (dynamic_symbol) 2769 { 2770 outrel.r_addend = rel->r_addend; 2771 rel->r_addend = 0; 2772 2773 if (r_type == R_XTENSA_32) 2774 { 2775 outrel.r_info = 2776 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT); 2777 relocation = 0; 2778 } 2779 else /* r_type == R_XTENSA_PLT */ 2780 { 2781 outrel.r_info = 2782 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT); 2783 2784 /* Create the PLT entry and set the initial 2785 contents of the literal entry to the address of 2786 the PLT entry. */ 2787 relocation = 2788 elf_xtensa_create_plt_entry (info, output_bfd, 2789 srel->reloc_count); 2790 } 2791 unresolved_reloc = FALSE; 2792 } 2793 else if (!is_weak_undef) 2794 { 2795 /* Generate a RELATIVE relocation. */ 2796 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE); 2797 outrel.r_addend = 0; 2798 } 2799 else 2800 { 2801 continue; 2802 } 2803 } 2804 2805 loc = (srel->contents 2806 + srel->reloc_count++ * sizeof (Elf32_External_Rela)); 2807 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 2808 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count 2809 <= srel->size); 2810 } 2811 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol) 2812 { 2813 /* This should only happen for non-PIC code, which is not 2814 supposed to be used on systems with dynamic linking. 2815 Just ignore these relocations. */ 2816 continue; 2817 } 2818 break; 2819 2820 case R_XTENSA_TLS_TPOFF: 2821 /* Switch to LE model for local symbols in an executable. */ 2822 if (! bfd_link_pic (info) && ! dynamic_symbol) 2823 { 2824 relocation = tpoff (info, relocation); 2825 break; 2826 } 2827 /* fall through */ 2828 2829 case R_XTENSA_TLSDESC_FN: 2830 case R_XTENSA_TLSDESC_ARG: 2831 { 2832 if (r_type == R_XTENSA_TLSDESC_FN) 2833 { 2834 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0) 2835 r_type = R_XTENSA_NONE; 2836 } 2837 else if (r_type == R_XTENSA_TLSDESC_ARG) 2838 { 2839 if (bfd_link_pic (info)) 2840 { 2841 if ((tls_type & GOT_TLS_IE) != 0) 2842 r_type = R_XTENSA_TLS_TPOFF; 2843 } 2844 else 2845 { 2846 r_type = R_XTENSA_TLS_TPOFF; 2847 if (! dynamic_symbol) 2848 { 2849 relocation = tpoff (info, relocation); 2850 break; 2851 } 2852 } 2853 } 2854 2855 if (r_type == R_XTENSA_NONE) 2856 /* Nothing to do here; skip to the next reloc. */ 2857 continue; 2858 2859 if (! elf_hash_table (info)->dynamic_sections_created) 2860 { 2861 error_message = 2862 _("TLS relocation invalid without dynamic sections"); 2863 (*info->callbacks->reloc_dangerous) 2864 (info, error_message, 2865 input_bfd, input_section, rel->r_offset); 2866 } 2867 else 2868 { 2869 Elf_Internal_Rela outrel; 2870 bfd_byte *loc; 2871 asection *srel = htab->elf.srelgot; 2872 int indx; 2873 2874 outrel.r_offset = (input_section->output_section->vma 2875 + input_section->output_offset 2876 + rel->r_offset); 2877 2878 /* Complain if the relocation is in a read-only section 2879 and not in a literal pool. */ 2880 if ((input_section->flags & SEC_READONLY) != 0 2881 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize, 2882 outrel.r_offset)) 2883 { 2884 error_message = 2885 _("dynamic relocation in read-only section"); 2886 (*info->callbacks->reloc_dangerous) 2887 (info, error_message, 2888 input_bfd, input_section, rel->r_offset); 2889 } 2890 2891 indx = h && h->dynindx != -1 ? h->dynindx : 0; 2892 if (indx == 0) 2893 outrel.r_addend = relocation - dtpoff_base (info); 2894 else 2895 outrel.r_addend = 0; 2896 rel->r_addend = 0; 2897 2898 outrel.r_info = ELF32_R_INFO (indx, r_type); 2899 relocation = 0; 2900 unresolved_reloc = FALSE; 2901 2902 BFD_ASSERT (srel); 2903 loc = (srel->contents 2904 + srel->reloc_count++ * sizeof (Elf32_External_Rela)); 2905 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 2906 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count 2907 <= srel->size); 2908 } 2909 } 2910 break; 2911 2912 case R_XTENSA_TLS_DTPOFF: 2913 if (! bfd_link_pic (info)) 2914 /* Switch from LD model to LE model. */ 2915 relocation = tpoff (info, relocation); 2916 else 2917 relocation -= dtpoff_base (info); 2918 break; 2919 2920 case R_XTENSA_TLS_FUNC: 2921 case R_XTENSA_TLS_ARG: 2922 case R_XTENSA_TLS_CALL: 2923 /* Check if optimizing to IE or LE model. */ 2924 if ((tls_type & GOT_TLS_IE) != 0) 2925 { 2926 bfd_boolean is_ld_model = 2927 (h && elf_xtensa_hash_entry (h) == htab->tlsbase); 2928 if (! replace_tls_insn (rel, input_bfd, input_section, contents, 2929 is_ld_model, &error_message)) 2930 (*info->callbacks->reloc_dangerous) 2931 (info, error_message, 2932 input_bfd, input_section, rel->r_offset); 2933 2934 if (r_type != R_XTENSA_TLS_ARG || is_ld_model) 2935 { 2936 /* Skip subsequent relocations on the same instruction. */ 2937 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset) 2938 rel++; 2939 } 2940 } 2941 continue; 2942 2943 default: 2944 if (elf_hash_table (info)->dynamic_sections_created 2945 && dynamic_symbol && (is_operand_relocation (r_type) 2946 || r_type == R_XTENSA_32_PCREL)) 2947 { 2948 error_message = 2949 vsprint_msg ("invalid relocation for dynamic symbol", ": %s", 2950 strlen (name) + 2, name); 2951 (*info->callbacks->reloc_dangerous) 2952 (info, error_message, input_bfd, input_section, rel->r_offset); 2953 continue; 2954 } 2955 break; 2956 } 2957 2958 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 2959 because such sections are not SEC_ALLOC and thus ld.so will 2960 not process them. */ 2961 if (unresolved_reloc 2962 && !((input_section->flags & SEC_DEBUGGING) != 0 2963 && h->def_dynamic) 2964 && _bfd_elf_section_offset (output_bfd, info, input_section, 2965 rel->r_offset) != (bfd_vma) -1) 2966 { 2967 _bfd_error_handler 2968 /* xgettext:c-format */ 2969 (_("%pB(%pA+%#" PRIx64 "): " 2970 "unresolvable %s relocation against symbol `%s'"), 2971 input_bfd, 2972 input_section, 2973 (uint64_t) rel->r_offset, 2974 howto->name, 2975 name); 2976 return FALSE; 2977 } 2978 2979 /* TLS optimizations may have changed r_type; update "howto". */ 2980 howto = &elf_howto_table[r_type]; 2981 2982 /* There's no point in calling bfd_perform_relocation here. 2983 Just go directly to our "special function". */ 2984 r = elf_xtensa_do_reloc (howto, input_bfd, input_section, 2985 relocation + rel->r_addend, 2986 contents, rel->r_offset, is_weak_undef, 2987 &error_message); 2988 2989 if (r != bfd_reloc_ok && !warned) 2990 { 2991 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other); 2992 BFD_ASSERT (error_message != NULL); 2993 2994 if (rel->r_addend == 0) 2995 error_message = vsprint_msg (error_message, ": %s", 2996 strlen (name) + 2, name); 2997 else 2998 error_message = vsprint_msg (error_message, ": (%s+0x%x)", 2999 strlen (name) + 22, 3000 name, (int) rel->r_addend); 3001 3002 (*info->callbacks->reloc_dangerous) 3003 (info, error_message, input_bfd, input_section, rel->r_offset); 3004 } 3005 } 3006 3007 if (lit_table) 3008 free (lit_table); 3009 3010 input_section->reloc_done = TRUE; 3011 3012 return TRUE; 3013 } 3014 3015 3016 /* Finish up dynamic symbol handling. There's not much to do here since 3017 the PLT and GOT entries are all set up by relocate_section. */ 3018 3019 static bfd_boolean 3020 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, 3021 struct bfd_link_info *info ATTRIBUTE_UNUSED, 3022 struct elf_link_hash_entry *h, 3023 Elf_Internal_Sym *sym) 3024 { 3025 if (h->needs_plt && !h->def_regular) 3026 { 3027 /* Mark the symbol as undefined, rather than as defined in 3028 the .plt section. Leave the value alone. */ 3029 sym->st_shndx = SHN_UNDEF; 3030 /* If the symbol is weak, we do need to clear the value. 3031 Otherwise, the PLT entry would provide a definition for 3032 the symbol even if the symbol wasn't defined anywhere, 3033 and so the symbol would never be NULL. */ 3034 if (!h->ref_regular_nonweak) 3035 sym->st_value = 0; 3036 } 3037 3038 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ 3039 if (h == elf_hash_table (info)->hdynamic 3040 || h == elf_hash_table (info)->hgot) 3041 sym->st_shndx = SHN_ABS; 3042 3043 return TRUE; 3044 } 3045 3046 3047 /* Combine adjacent literal table entries in the output. Adjacent 3048 entries within each input section may have been removed during 3049 relaxation, but we repeat the process here, even though it's too late 3050 to shrink the output section, because it's important to minimize the 3051 number of literal table entries to reduce the start-up work for the 3052 runtime linker. Returns the number of remaining table entries or -1 3053 on error. */ 3054 3055 static int 3056 elf_xtensa_combine_prop_entries (bfd *output_bfd, 3057 asection *sxtlit, 3058 asection *sgotloc) 3059 { 3060 bfd_byte *contents; 3061 property_table_entry *table; 3062 bfd_size_type section_size, sgotloc_size; 3063 bfd_vma offset; 3064 int n, m, num; 3065 3066 section_size = sxtlit->size; 3067 BFD_ASSERT (section_size % 8 == 0); 3068 num = section_size / 8; 3069 3070 sgotloc_size = sgotloc->size; 3071 if (sgotloc_size != section_size) 3072 { 3073 _bfd_error_handler 3074 (_("internal inconsistency in size of .got.loc section")); 3075 return -1; 3076 } 3077 3078 table = bfd_malloc (num * sizeof (property_table_entry)); 3079 if (table == 0) 3080 return -1; 3081 3082 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this 3083 propagates to the output section, where it doesn't really apply and 3084 where it breaks the following call to bfd_malloc_and_get_section. */ 3085 sxtlit->flags &= ~SEC_IN_MEMORY; 3086 3087 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents)) 3088 { 3089 if (contents != 0) 3090 free (contents); 3091 free (table); 3092 return -1; 3093 } 3094 3095 /* There should never be any relocations left at this point, so this 3096 is quite a bit easier than what is done during relaxation. */ 3097 3098 /* Copy the raw contents into a property table array and sort it. */ 3099 offset = 0; 3100 for (n = 0; n < num; n++) 3101 { 3102 table[n].address = bfd_get_32 (output_bfd, &contents[offset]); 3103 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]); 3104 offset += 8; 3105 } 3106 qsort (table, num, sizeof (property_table_entry), property_table_compare); 3107 3108 for (n = 0; n < num; n++) 3109 { 3110 bfd_boolean remove_entry = FALSE; 3111 3112 if (table[n].size == 0) 3113 remove_entry = TRUE; 3114 else if (n > 0 3115 && (table[n-1].address + table[n-1].size == table[n].address)) 3116 { 3117 table[n-1].size += table[n].size; 3118 remove_entry = TRUE; 3119 } 3120 3121 if (remove_entry) 3122 { 3123 for (m = n; m < num - 1; m++) 3124 { 3125 table[m].address = table[m+1].address; 3126 table[m].size = table[m+1].size; 3127 } 3128 3129 n--; 3130 num--; 3131 } 3132 } 3133 3134 /* Copy the data back to the raw contents. */ 3135 offset = 0; 3136 for (n = 0; n < num; n++) 3137 { 3138 bfd_put_32 (output_bfd, table[n].address, &contents[offset]); 3139 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]); 3140 offset += 8; 3141 } 3142 3143 /* Clear the removed bytes. */ 3144 if ((bfd_size_type) (num * 8) < section_size) 3145 memset (&contents[num * 8], 0, section_size - num * 8); 3146 3147 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0, 3148 section_size)) 3149 return -1; 3150 3151 /* Copy the contents to ".got.loc". */ 3152 memcpy (sgotloc->contents, contents, section_size); 3153 3154 free (contents); 3155 free (table); 3156 return num; 3157 } 3158 3159 3160 /* Finish up the dynamic sections. */ 3161 3162 static bfd_boolean 3163 elf_xtensa_finish_dynamic_sections (bfd *output_bfd, 3164 struct bfd_link_info *info) 3165 { 3166 struct elf_xtensa_link_hash_table *htab; 3167 bfd *dynobj; 3168 asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc; 3169 Elf32_External_Dyn *dyncon, *dynconend; 3170 int num_xtlit_entries = 0; 3171 3172 if (! elf_hash_table (info)->dynamic_sections_created) 3173 return TRUE; 3174 3175 htab = elf_xtensa_hash_table (info); 3176 if (htab == NULL) 3177 return FALSE; 3178 3179 dynobj = elf_hash_table (info)->dynobj; 3180 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 3181 BFD_ASSERT (sdyn != NULL); 3182 3183 /* Set the first entry in the global offset table to the address of 3184 the dynamic section. */ 3185 sgot = htab->elf.sgot; 3186 if (sgot) 3187 { 3188 BFD_ASSERT (sgot->size == 4); 3189 if (sdyn == NULL) 3190 bfd_put_32 (output_bfd, 0, sgot->contents); 3191 else 3192 bfd_put_32 (output_bfd, 3193 sdyn->output_section->vma + sdyn->output_offset, 3194 sgot->contents); 3195 } 3196 3197 srelplt = htab->elf.srelplt; 3198 srelgot = htab->elf.srelgot; 3199 if (srelplt && srelplt->size != 0) 3200 { 3201 asection *sgotplt, *spltlittbl; 3202 int chunk, plt_chunks, plt_entries; 3203 Elf_Internal_Rela irela; 3204 bfd_byte *loc; 3205 unsigned rtld_reloc; 3206 3207 spltlittbl = htab->spltlittbl; 3208 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL); 3209 3210 /* Find the first XTENSA_RTLD relocation. Presumably the rest 3211 of them follow immediately after.... */ 3212 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++) 3213 { 3214 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); 3215 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); 3216 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD) 3217 break; 3218 } 3219 BFD_ASSERT (rtld_reloc < srelgot->reloc_count); 3220 3221 plt_entries = srelplt->size / sizeof (Elf32_External_Rela); 3222 plt_chunks = 3223 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; 3224 3225 for (chunk = 0; chunk < plt_chunks; chunk++) 3226 { 3227 int chunk_entries = 0; 3228 3229 sgotplt = elf_xtensa_get_gotplt_section (info, chunk); 3230 BFD_ASSERT (sgotplt != NULL); 3231 3232 /* Emit special RTLD relocations for the first two entries in 3233 each chunk of the .got.plt section. */ 3234 3235 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); 3236 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); 3237 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); 3238 irela.r_offset = (sgotplt->output_section->vma 3239 + sgotplt->output_offset); 3240 irela.r_addend = 1; /* tell rtld to set value to resolver function */ 3241 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); 3242 rtld_reloc += 1; 3243 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); 3244 3245 /* Next literal immediately follows the first. */ 3246 loc += sizeof (Elf32_External_Rela); 3247 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); 3248 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); 3249 irela.r_offset = (sgotplt->output_section->vma 3250 + sgotplt->output_offset + 4); 3251 /* Tell rtld to set value to object's link map. */ 3252 irela.r_addend = 2; 3253 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); 3254 rtld_reloc += 1; 3255 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); 3256 3257 /* Fill in the literal table. */ 3258 if (chunk < plt_chunks - 1) 3259 chunk_entries = PLT_ENTRIES_PER_CHUNK; 3260 else 3261 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); 3262 3263 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size); 3264 bfd_put_32 (output_bfd, 3265 sgotplt->output_section->vma + sgotplt->output_offset, 3266 spltlittbl->contents + (chunk * 8) + 0); 3267 bfd_put_32 (output_bfd, 3268 8 + (chunk_entries * 4), 3269 spltlittbl->contents + (chunk * 8) + 4); 3270 } 3271 3272 /* The .xt.lit.plt section has just been modified. This must 3273 happen before the code below which combines adjacent literal 3274 table entries, and the .xt.lit.plt contents have to be forced to 3275 the output here. */ 3276 if (! bfd_set_section_contents (output_bfd, 3277 spltlittbl->output_section, 3278 spltlittbl->contents, 3279 spltlittbl->output_offset, 3280 spltlittbl->size)) 3281 return FALSE; 3282 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */ 3283 spltlittbl->flags &= ~SEC_HAS_CONTENTS; 3284 } 3285 3286 /* All the dynamic relocations have been emitted at this point. 3287 Make sure the relocation sections are the correct size. */ 3288 if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela) 3289 * srelgot->reloc_count)) 3290 || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela) 3291 * srelplt->reloc_count))) 3292 abort (); 3293 3294 /* Combine adjacent literal table entries. */ 3295 BFD_ASSERT (! bfd_link_relocatable (info)); 3296 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit"); 3297 sgotloc = htab->sgotloc; 3298 BFD_ASSERT (sgotloc); 3299 if (sxtlit) 3300 { 3301 num_xtlit_entries = 3302 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc); 3303 if (num_xtlit_entries < 0) 3304 return FALSE; 3305 } 3306 3307 dyncon = (Elf32_External_Dyn *) sdyn->contents; 3308 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); 3309 for (; dyncon < dynconend; dyncon++) 3310 { 3311 Elf_Internal_Dyn dyn; 3312 3313 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); 3314 3315 switch (dyn.d_tag) 3316 { 3317 default: 3318 break; 3319 3320 case DT_XTENSA_GOT_LOC_SZ: 3321 dyn.d_un.d_val = num_xtlit_entries; 3322 break; 3323 3324 case DT_XTENSA_GOT_LOC_OFF: 3325 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma 3326 + htab->sgotloc->output_offset); 3327 break; 3328 3329 case DT_PLTGOT: 3330 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma 3331 + htab->elf.sgot->output_offset); 3332 break; 3333 3334 case DT_JMPREL: 3335 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma 3336 + htab->elf.srelplt->output_offset); 3337 break; 3338 3339 case DT_PLTRELSZ: 3340 dyn.d_un.d_val = htab->elf.srelplt->size; 3341 break; 3342 } 3343 3344 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 3345 } 3346 3347 return TRUE; 3348 } 3349 3350 3351 /* Functions for dealing with the e_flags field. */ 3352 3353 /* Merge backend specific data from an object file to the output 3354 object file when linking. */ 3355 3356 static bfd_boolean 3357 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) 3358 { 3359 bfd *obfd = info->output_bfd; 3360 unsigned out_mach, in_mach; 3361 flagword out_flag, in_flag; 3362 3363 /* Check if we have the same endianness. */ 3364 if (!_bfd_generic_verify_endian_match (ibfd, info)) 3365 return FALSE; 3366 3367 /* Don't even pretend to support mixed-format linking. */ 3368 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 3369 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 3370 return FALSE; 3371 3372 out_flag = elf_elfheader (obfd)->e_flags; 3373 in_flag = elf_elfheader (ibfd)->e_flags; 3374 3375 out_mach = out_flag & EF_XTENSA_MACH; 3376 in_mach = in_flag & EF_XTENSA_MACH; 3377 if (out_mach != in_mach) 3378 { 3379 _bfd_error_handler 3380 /* xgettext:c-format */ 3381 (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"), 3382 ibfd, out_mach, in_mach); 3383 bfd_set_error (bfd_error_wrong_format); 3384 return FALSE; 3385 } 3386 3387 if (! elf_flags_init (obfd)) 3388 { 3389 elf_flags_init (obfd) = TRUE; 3390 elf_elfheader (obfd)->e_flags = in_flag; 3391 3392 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 3393 && bfd_get_arch_info (obfd)->the_default) 3394 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), 3395 bfd_get_mach (ibfd)); 3396 3397 return TRUE; 3398 } 3399 3400 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN)) 3401 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN); 3402 3403 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT)) 3404 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT); 3405 3406 return TRUE; 3407 } 3408 3409 3410 static bfd_boolean 3411 elf_xtensa_set_private_flags (bfd *abfd, flagword flags) 3412 { 3413 BFD_ASSERT (!elf_flags_init (abfd) 3414 || elf_elfheader (abfd)->e_flags == flags); 3415 3416 elf_elfheader (abfd)->e_flags |= flags; 3417 elf_flags_init (abfd) = TRUE; 3418 3419 return TRUE; 3420 } 3421 3422 3423 static bfd_boolean 3424 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg) 3425 { 3426 FILE *f = (FILE *) farg; 3427 flagword e_flags = elf_elfheader (abfd)->e_flags; 3428 3429 fprintf (f, "\nXtensa header:\n"); 3430 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH) 3431 fprintf (f, "\nMachine = Base\n"); 3432 else 3433 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH); 3434 3435 fprintf (f, "Insn tables = %s\n", 3436 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false"); 3437 3438 fprintf (f, "Literal tables = %s\n", 3439 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false"); 3440 3441 return _bfd_elf_print_private_bfd_data (abfd, farg); 3442 } 3443 3444 3445 /* Set the right machine number for an Xtensa ELF file. */ 3446 3447 static bfd_boolean 3448 elf_xtensa_object_p (bfd *abfd) 3449 { 3450 int mach; 3451 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; 3452 3453 switch (arch) 3454 { 3455 case E_XTENSA_MACH: 3456 mach = bfd_mach_xtensa; 3457 break; 3458 default: 3459 return FALSE; 3460 } 3461 3462 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach); 3463 return TRUE; 3464 } 3465 3466 3467 /* The final processing done just before writing out an Xtensa ELF object 3468 file. This gets the Xtensa architecture right based on the machine 3469 number. */ 3470 3471 static bfd_boolean 3472 elf_xtensa_final_write_processing (bfd *abfd) 3473 { 3474 int mach; 3475 unsigned long val = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; 3476 3477 switch (mach = bfd_get_mach (abfd)) 3478 { 3479 case bfd_mach_xtensa: 3480 val = E_XTENSA_MACH; 3481 break; 3482 default: 3483 break; 3484 } 3485 3486 elf_elfheader (abfd)->e_flags &= ~EF_XTENSA_MACH; 3487 elf_elfheader (abfd)->e_flags |= val; 3488 return _bfd_elf_final_write_processing (abfd); 3489 } 3490 3491 3492 static enum elf_reloc_type_class 3493 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 3494 const asection *rel_sec ATTRIBUTE_UNUSED, 3495 const Elf_Internal_Rela *rela) 3496 { 3497 switch ((int) ELF32_R_TYPE (rela->r_info)) 3498 { 3499 case R_XTENSA_RELATIVE: 3500 return reloc_class_relative; 3501 case R_XTENSA_JMP_SLOT: 3502 return reloc_class_plt; 3503 default: 3504 return reloc_class_normal; 3505 } 3506 } 3507 3508 3509 static bfd_boolean 3510 elf_xtensa_discard_info_for_section (bfd *abfd, 3511 struct elf_reloc_cookie *cookie, 3512 struct bfd_link_info *info, 3513 asection *sec) 3514 { 3515 bfd_byte *contents; 3516 bfd_vma offset, actual_offset; 3517 bfd_size_type removed_bytes = 0; 3518 bfd_size_type entry_size; 3519 3520 if (sec->output_section 3521 && bfd_is_abs_section (sec->output_section)) 3522 return FALSE; 3523 3524 if (xtensa_is_proptable_section (sec)) 3525 entry_size = 12; 3526 else 3527 entry_size = 8; 3528 3529 if (sec->size == 0 || sec->size % entry_size != 0) 3530 return FALSE; 3531 3532 contents = retrieve_contents (abfd, sec, info->keep_memory); 3533 if (!contents) 3534 return FALSE; 3535 3536 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory); 3537 if (!cookie->rels) 3538 { 3539 release_contents (sec, contents); 3540 return FALSE; 3541 } 3542 3543 /* Sort the relocations. They should already be in order when 3544 relaxation is enabled, but it might not be. */ 3545 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela), 3546 internal_reloc_compare); 3547 3548 cookie->rel = cookie->rels; 3549 cookie->relend = cookie->rels + sec->reloc_count; 3550 3551 for (offset = 0; offset < sec->size; offset += entry_size) 3552 { 3553 actual_offset = offset - removed_bytes; 3554 3555 /* The ...symbol_deleted_p function will skip over relocs but it 3556 won't adjust their offsets, so do that here. */ 3557 while (cookie->rel < cookie->relend 3558 && cookie->rel->r_offset < offset) 3559 { 3560 cookie->rel->r_offset -= removed_bytes; 3561 cookie->rel++; 3562 } 3563 3564 while (cookie->rel < cookie->relend 3565 && cookie->rel->r_offset == offset) 3566 { 3567 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie)) 3568 { 3569 /* Remove the table entry. (If the reloc type is NONE, then 3570 the entry has already been merged with another and deleted 3571 during relaxation.) */ 3572 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE) 3573 { 3574 /* Shift the contents up. */ 3575 if (offset + entry_size < sec->size) 3576 memmove (&contents[actual_offset], 3577 &contents[actual_offset + entry_size], 3578 sec->size - offset - entry_size); 3579 removed_bytes += entry_size; 3580 } 3581 3582 /* Remove this relocation. */ 3583 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); 3584 } 3585 3586 /* Adjust the relocation offset for previous removals. This 3587 should not be done before calling ...symbol_deleted_p 3588 because it might mess up the offset comparisons there. 3589 Make sure the offset doesn't underflow in the case where 3590 the first entry is removed. */ 3591 if (cookie->rel->r_offset >= removed_bytes) 3592 cookie->rel->r_offset -= removed_bytes; 3593 else 3594 cookie->rel->r_offset = 0; 3595 3596 cookie->rel++; 3597 } 3598 } 3599 3600 if (removed_bytes != 0) 3601 { 3602 /* Adjust any remaining relocs (shouldn't be any). */ 3603 for (; cookie->rel < cookie->relend; cookie->rel++) 3604 { 3605 if (cookie->rel->r_offset >= removed_bytes) 3606 cookie->rel->r_offset -= removed_bytes; 3607 else 3608 cookie->rel->r_offset = 0; 3609 } 3610 3611 /* Clear the removed bytes. */ 3612 memset (&contents[sec->size - removed_bytes], 0, removed_bytes); 3613 3614 pin_contents (sec, contents); 3615 pin_internal_relocs (sec, cookie->rels); 3616 3617 /* Shrink size. */ 3618 if (sec->rawsize == 0) 3619 sec->rawsize = sec->size; 3620 sec->size -= removed_bytes; 3621 3622 if (xtensa_is_littable_section (sec)) 3623 { 3624 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc; 3625 if (sgotloc) 3626 sgotloc->size -= removed_bytes; 3627 } 3628 } 3629 else 3630 { 3631 release_contents (sec, contents); 3632 release_internal_relocs (sec, cookie->rels); 3633 } 3634 3635 return (removed_bytes != 0); 3636 } 3637 3638 3639 static bfd_boolean 3640 elf_xtensa_discard_info (bfd *abfd, 3641 struct elf_reloc_cookie *cookie, 3642 struct bfd_link_info *info) 3643 { 3644 asection *sec; 3645 bfd_boolean changed = FALSE; 3646 3647 for (sec = abfd->sections; sec != NULL; sec = sec->next) 3648 { 3649 if (xtensa_is_property_section (sec)) 3650 { 3651 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec)) 3652 changed = TRUE; 3653 } 3654 } 3655 3656 return changed; 3657 } 3658 3659 3660 static bfd_boolean 3661 elf_xtensa_ignore_discarded_relocs (asection *sec) 3662 { 3663 return xtensa_is_property_section (sec); 3664 } 3665 3666 3667 static unsigned int 3668 elf_xtensa_action_discarded (asection *sec) 3669 { 3670 if (strcmp (".xt_except_table", sec->name) == 0) 3671 return 0; 3672 3673 if (strcmp (".xt_except_desc", sec->name) == 0) 3674 return 0; 3675 3676 return _bfd_elf_default_action_discarded (sec); 3677 } 3678 3679 3680 /* Support for core dump NOTE sections. */ 3681 3682 static bfd_boolean 3683 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 3684 { 3685 int offset; 3686 unsigned int size; 3687 3688 /* The size for Xtensa is variable, so don't try to recognize the format 3689 based on the size. Just assume this is GNU/Linux. */ 3690 3691 /* pr_cursig */ 3692 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); 3693 3694 /* pr_pid */ 3695 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); 3696 3697 /* pr_reg */ 3698 offset = 72; 3699 size = note->descsz - offset - 4; 3700 3701 /* Make a ".reg/999" section. */ 3702 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 3703 size, note->descpos + offset); 3704 } 3705 3706 3707 static bfd_boolean 3708 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 3709 { 3710 switch (note->descsz) 3711 { 3712 default: 3713 return FALSE; 3714 3715 case 128: /* GNU/Linux elf_prpsinfo */ 3716 elf_tdata (abfd)->core->program 3717 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16); 3718 elf_tdata (abfd)->core->command 3719 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80); 3720 } 3721 3722 /* Note that for some reason, a spurious space is tacked 3723 onto the end of the args in some (at least one anyway) 3724 implementations, so strip it off if it exists. */ 3725 3726 { 3727 char *command = elf_tdata (abfd)->core->command; 3728 int n = strlen (command); 3729 3730 if (0 < n && command[n - 1] == ' ') 3731 command[n - 1] = '\0'; 3732 } 3733 3734 return TRUE; 3735 } 3736 3737 3738 /* Generic Xtensa configurability stuff. */ 3739 3740 static xtensa_opcode callx0_op = XTENSA_UNDEFINED; 3741 static xtensa_opcode callx4_op = XTENSA_UNDEFINED; 3742 static xtensa_opcode callx8_op = XTENSA_UNDEFINED; 3743 static xtensa_opcode callx12_op = XTENSA_UNDEFINED; 3744 static xtensa_opcode call0_op = XTENSA_UNDEFINED; 3745 static xtensa_opcode call4_op = XTENSA_UNDEFINED; 3746 static xtensa_opcode call8_op = XTENSA_UNDEFINED; 3747 static xtensa_opcode call12_op = XTENSA_UNDEFINED; 3748 3749 static void 3750 init_call_opcodes (void) 3751 { 3752 if (callx0_op == XTENSA_UNDEFINED) 3753 { 3754 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0"); 3755 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4"); 3756 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8"); 3757 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12"); 3758 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0"); 3759 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4"); 3760 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8"); 3761 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12"); 3762 } 3763 } 3764 3765 3766 static bfd_boolean 3767 is_indirect_call_opcode (xtensa_opcode opcode) 3768 { 3769 init_call_opcodes (); 3770 return (opcode == callx0_op 3771 || opcode == callx4_op 3772 || opcode == callx8_op 3773 || opcode == callx12_op); 3774 } 3775 3776 3777 static bfd_boolean 3778 is_direct_call_opcode (xtensa_opcode opcode) 3779 { 3780 init_call_opcodes (); 3781 return (opcode == call0_op 3782 || opcode == call4_op 3783 || opcode == call8_op 3784 || opcode == call12_op); 3785 } 3786 3787 3788 static bfd_boolean 3789 is_windowed_call_opcode (xtensa_opcode opcode) 3790 { 3791 init_call_opcodes (); 3792 return (opcode == call4_op 3793 || opcode == call8_op 3794 || opcode == call12_op 3795 || opcode == callx4_op 3796 || opcode == callx8_op 3797 || opcode == callx12_op); 3798 } 3799 3800 3801 static bfd_boolean 3802 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst) 3803 { 3804 unsigned dst = (unsigned) -1; 3805 3806 init_call_opcodes (); 3807 if (opcode == callx0_op) 3808 dst = 0; 3809 else if (opcode == callx4_op) 3810 dst = 4; 3811 else if (opcode == callx8_op) 3812 dst = 8; 3813 else if (opcode == callx12_op) 3814 dst = 12; 3815 3816 if (dst == (unsigned) -1) 3817 return FALSE; 3818 3819 *pdst = dst; 3820 return TRUE; 3821 } 3822 3823 3824 static xtensa_opcode 3825 get_const16_opcode (void) 3826 { 3827 static bfd_boolean done_lookup = FALSE; 3828 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED; 3829 if (!done_lookup) 3830 { 3831 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16"); 3832 done_lookup = TRUE; 3833 } 3834 return const16_opcode; 3835 } 3836 3837 3838 static xtensa_opcode 3839 get_l32r_opcode (void) 3840 { 3841 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED; 3842 static bfd_boolean done_lookup = FALSE; 3843 3844 if (!done_lookup) 3845 { 3846 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r"); 3847 done_lookup = TRUE; 3848 } 3849 return l32r_opcode; 3850 } 3851 3852 3853 static bfd_vma 3854 l32r_offset (bfd_vma addr, bfd_vma pc) 3855 { 3856 bfd_vma offset; 3857 3858 offset = addr - ((pc+3) & -4); 3859 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0); 3860 offset = (signed int) offset >> 2; 3861 BFD_ASSERT ((signed int) offset >> 16 == -1); 3862 return offset; 3863 } 3864 3865 3866 static xtensa_opcode 3867 get_rsr_lend_opcode (void) 3868 { 3869 static xtensa_opcode rsr_lend_opcode = XTENSA_UNDEFINED; 3870 static bfd_boolean done_lookup = FALSE; 3871 if (!done_lookup) 3872 { 3873 rsr_lend_opcode = xtensa_opcode_lookup (xtensa_default_isa, "rsr.lend"); 3874 done_lookup = TRUE; 3875 } 3876 return rsr_lend_opcode; 3877 } 3878 3879 static xtensa_opcode 3880 get_wsr_lbeg_opcode (void) 3881 { 3882 static xtensa_opcode wsr_lbeg_opcode = XTENSA_UNDEFINED; 3883 static bfd_boolean done_lookup = FALSE; 3884 if (!done_lookup) 3885 { 3886 wsr_lbeg_opcode = xtensa_opcode_lookup (xtensa_default_isa, "wsr.lbeg"); 3887 done_lookup = TRUE; 3888 } 3889 return wsr_lbeg_opcode; 3890 } 3891 3892 3893 static int 3894 get_relocation_opnd (xtensa_opcode opcode, int r_type) 3895 { 3896 xtensa_isa isa = xtensa_default_isa; 3897 int last_immed, last_opnd, opi; 3898 3899 if (opcode == XTENSA_UNDEFINED) 3900 return XTENSA_UNDEFINED; 3901 3902 /* Find the last visible PC-relative immediate operand for the opcode. 3903 If there are no PC-relative immediates, then choose the last visible 3904 immediate; otherwise, fail and return XTENSA_UNDEFINED. */ 3905 last_immed = XTENSA_UNDEFINED; 3906 last_opnd = xtensa_opcode_num_operands (isa, opcode); 3907 for (opi = last_opnd - 1; opi >= 0; opi--) 3908 { 3909 if (xtensa_operand_is_visible (isa, opcode, opi) == 0) 3910 continue; 3911 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1) 3912 { 3913 last_immed = opi; 3914 break; 3915 } 3916 if (last_immed == XTENSA_UNDEFINED 3917 && xtensa_operand_is_register (isa, opcode, opi) == 0) 3918 last_immed = opi; 3919 } 3920 if (last_immed < 0) 3921 return XTENSA_UNDEFINED; 3922 3923 /* If the operand number was specified in an old-style relocation, 3924 check for consistency with the operand computed above. */ 3925 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2) 3926 { 3927 int reloc_opnd = r_type - R_XTENSA_OP0; 3928 if (reloc_opnd != last_immed) 3929 return XTENSA_UNDEFINED; 3930 } 3931 3932 return last_immed; 3933 } 3934 3935 3936 int 3937 get_relocation_slot (int r_type) 3938 { 3939 switch (r_type) 3940 { 3941 case R_XTENSA_OP0: 3942 case R_XTENSA_OP1: 3943 case R_XTENSA_OP2: 3944 return 0; 3945 3946 default: 3947 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) 3948 return r_type - R_XTENSA_SLOT0_OP; 3949 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) 3950 return r_type - R_XTENSA_SLOT0_ALT; 3951 break; 3952 } 3953 3954 return XTENSA_UNDEFINED; 3955 } 3956 3957 3958 /* Get the opcode for a relocation. */ 3959 3960 static xtensa_opcode 3961 get_relocation_opcode (bfd *abfd, 3962 asection *sec, 3963 bfd_byte *contents, 3964 Elf_Internal_Rela *irel) 3965 { 3966 static xtensa_insnbuf ibuff = NULL; 3967 static xtensa_insnbuf sbuff = NULL; 3968 xtensa_isa isa = xtensa_default_isa; 3969 xtensa_format fmt; 3970 int slot; 3971 3972 if (contents == NULL) 3973 return XTENSA_UNDEFINED; 3974 3975 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset) 3976 return XTENSA_UNDEFINED; 3977 3978 if (ibuff == NULL) 3979 { 3980 ibuff = xtensa_insnbuf_alloc (isa); 3981 sbuff = xtensa_insnbuf_alloc (isa); 3982 } 3983 3984 /* Decode the instruction. */ 3985 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset], 3986 sec->size - irel->r_offset); 3987 fmt = xtensa_format_decode (isa, ibuff); 3988 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info)); 3989 if (slot == XTENSA_UNDEFINED) 3990 return XTENSA_UNDEFINED; 3991 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); 3992 return xtensa_opcode_decode (isa, fmt, slot, sbuff); 3993 } 3994 3995 3996 bfd_boolean 3997 is_l32r_relocation (bfd *abfd, 3998 asection *sec, 3999 bfd_byte *contents, 4000 Elf_Internal_Rela *irel) 4001 { 4002 xtensa_opcode opcode; 4003 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info))) 4004 return FALSE; 4005 opcode = get_relocation_opcode (abfd, sec, contents, irel); 4006 return (opcode == get_l32r_opcode ()); 4007 } 4008 4009 4010 static bfd_size_type 4011 get_asm_simplify_size (bfd_byte *contents, 4012 bfd_size_type content_len, 4013 bfd_size_type offset) 4014 { 4015 bfd_size_type insnlen, size = 0; 4016 4017 /* Decode the size of the next two instructions. */ 4018 insnlen = insn_decode_len (contents, content_len, offset); 4019 if (insnlen == 0) 4020 return 0; 4021 4022 size += insnlen; 4023 4024 insnlen = insn_decode_len (contents, content_len, offset + size); 4025 if (insnlen == 0) 4026 return 0; 4027 4028 size += insnlen; 4029 return size; 4030 } 4031 4032 4033 bfd_boolean 4034 is_alt_relocation (int r_type) 4035 { 4036 return (r_type >= R_XTENSA_SLOT0_ALT 4037 && r_type <= R_XTENSA_SLOT14_ALT); 4038 } 4039 4040 4041 bfd_boolean 4042 is_operand_relocation (int r_type) 4043 { 4044 switch (r_type) 4045 { 4046 case R_XTENSA_OP0: 4047 case R_XTENSA_OP1: 4048 case R_XTENSA_OP2: 4049 return TRUE; 4050 4051 default: 4052 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) 4053 return TRUE; 4054 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) 4055 return TRUE; 4056 break; 4057 } 4058 4059 return FALSE; 4060 } 4061 4062 4063 #define MIN_INSN_LENGTH 2 4064 4065 /* Return 0 if it fails to decode. */ 4066 4067 bfd_size_type 4068 insn_decode_len (bfd_byte *contents, 4069 bfd_size_type content_len, 4070 bfd_size_type offset) 4071 { 4072 int insn_len; 4073 xtensa_isa isa = xtensa_default_isa; 4074 xtensa_format fmt; 4075 static xtensa_insnbuf ibuff = NULL; 4076 4077 if (offset + MIN_INSN_LENGTH > content_len) 4078 return 0; 4079 4080 if (ibuff == NULL) 4081 ibuff = xtensa_insnbuf_alloc (isa); 4082 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], 4083 content_len - offset); 4084 fmt = xtensa_format_decode (isa, ibuff); 4085 if (fmt == XTENSA_UNDEFINED) 4086 return 0; 4087 insn_len = xtensa_format_length (isa, fmt); 4088 if (insn_len == XTENSA_UNDEFINED) 4089 return 0; 4090 return insn_len; 4091 } 4092 4093 int 4094 insn_num_slots (bfd_byte *contents, 4095 bfd_size_type content_len, 4096 bfd_size_type offset) 4097 { 4098 xtensa_isa isa = xtensa_default_isa; 4099 xtensa_format fmt; 4100 static xtensa_insnbuf ibuff = NULL; 4101 4102 if (offset + MIN_INSN_LENGTH > content_len) 4103 return XTENSA_UNDEFINED; 4104 4105 if (ibuff == NULL) 4106 ibuff = xtensa_insnbuf_alloc (isa); 4107 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], 4108 content_len - offset); 4109 fmt = xtensa_format_decode (isa, ibuff); 4110 if (fmt == XTENSA_UNDEFINED) 4111 return XTENSA_UNDEFINED; 4112 return xtensa_format_num_slots (isa, fmt); 4113 } 4114 4115 4116 /* Decode the opcode for a single slot instruction. 4117 Return 0 if it fails to decode or the instruction is multi-slot. */ 4118 4119 xtensa_opcode 4120 insn_decode_opcode (bfd_byte *contents, 4121 bfd_size_type content_len, 4122 bfd_size_type offset, 4123 int slot) 4124 { 4125 xtensa_isa isa = xtensa_default_isa; 4126 xtensa_format fmt; 4127 static xtensa_insnbuf insnbuf = NULL; 4128 static xtensa_insnbuf slotbuf = NULL; 4129 4130 if (offset + MIN_INSN_LENGTH > content_len) 4131 return XTENSA_UNDEFINED; 4132 4133 if (insnbuf == NULL) 4134 { 4135 insnbuf = xtensa_insnbuf_alloc (isa); 4136 slotbuf = xtensa_insnbuf_alloc (isa); 4137 } 4138 4139 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], 4140 content_len - offset); 4141 fmt = xtensa_format_decode (isa, insnbuf); 4142 if (fmt == XTENSA_UNDEFINED) 4143 return XTENSA_UNDEFINED; 4144 4145 if (slot >= xtensa_format_num_slots (isa, fmt)) 4146 return XTENSA_UNDEFINED; 4147 4148 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); 4149 return xtensa_opcode_decode (isa, fmt, slot, slotbuf); 4150 } 4151 4152 4153 /* The offset is the offset in the contents. 4154 The address is the address of that offset. */ 4155 4156 static bfd_boolean 4157 check_branch_target_aligned (bfd_byte *contents, 4158 bfd_size_type content_length, 4159 bfd_vma offset, 4160 bfd_vma address) 4161 { 4162 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset); 4163 if (insn_len == 0) 4164 return FALSE; 4165 return check_branch_target_aligned_address (address, insn_len); 4166 } 4167 4168 4169 static bfd_boolean 4170 check_loop_aligned (bfd_byte *contents, 4171 bfd_size_type content_length, 4172 bfd_vma offset, 4173 bfd_vma address) 4174 { 4175 bfd_size_type loop_len, insn_len; 4176 xtensa_opcode opcode; 4177 4178 opcode = insn_decode_opcode (contents, content_length, offset, 0); 4179 if (opcode == XTENSA_UNDEFINED 4180 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1) 4181 { 4182 BFD_ASSERT (FALSE); 4183 return FALSE; 4184 } 4185 4186 loop_len = insn_decode_len (contents, content_length, offset); 4187 insn_len = insn_decode_len (contents, content_length, offset + loop_len); 4188 if (loop_len == 0 || insn_len == 0) 4189 { 4190 BFD_ASSERT (FALSE); 4191 return FALSE; 4192 } 4193 4194 /* If this is relaxed loop, analyze first instruction of the actual loop 4195 body. It must be at offset 27 from the loop instruction address. */ 4196 if (insn_len == 3 4197 && insn_num_slots (contents, content_length, offset + loop_len) == 1 4198 && insn_decode_opcode (contents, content_length, 4199 offset + loop_len, 0) == get_rsr_lend_opcode() 4200 && insn_decode_len (contents, content_length, offset + loop_len + 3) == 3 4201 && insn_num_slots (contents, content_length, offset + loop_len + 3) == 1 4202 && insn_decode_opcode (contents, content_length, 4203 offset + loop_len + 3, 0) == get_wsr_lbeg_opcode()) 4204 { 4205 loop_len = 27; 4206 insn_len = insn_decode_len (contents, content_length, offset + loop_len); 4207 } 4208 return check_branch_target_aligned_address (address + loop_len, insn_len); 4209 } 4210 4211 4212 static bfd_boolean 4213 check_branch_target_aligned_address (bfd_vma addr, int len) 4214 { 4215 if (len == 8) 4216 return (addr % 8 == 0); 4217 return ((addr >> 2) == ((addr + len - 1) >> 2)); 4218 } 4219 4220 4221 /* Instruction widening and narrowing. */ 4222 4223 /* When FLIX is available we need to access certain instructions only 4224 when they are 16-bit or 24-bit instructions. This table caches 4225 information about such instructions by walking through all the 4226 opcodes and finding the smallest single-slot format into which each 4227 can be encoded. */ 4228 4229 static xtensa_format *op_single_fmt_table = NULL; 4230 4231 4232 static void 4233 init_op_single_format_table (void) 4234 { 4235 xtensa_isa isa = xtensa_default_isa; 4236 xtensa_insnbuf ibuf; 4237 xtensa_opcode opcode; 4238 xtensa_format fmt; 4239 int num_opcodes; 4240 4241 if (op_single_fmt_table) 4242 return; 4243 4244 ibuf = xtensa_insnbuf_alloc (isa); 4245 num_opcodes = xtensa_isa_num_opcodes (isa); 4246 4247 op_single_fmt_table = (xtensa_format *) 4248 bfd_malloc (sizeof (xtensa_format) * num_opcodes); 4249 for (opcode = 0; opcode < num_opcodes; opcode++) 4250 { 4251 op_single_fmt_table[opcode] = XTENSA_UNDEFINED; 4252 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) 4253 { 4254 if (xtensa_format_num_slots (isa, fmt) == 1 4255 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0) 4256 { 4257 xtensa_opcode old_fmt = op_single_fmt_table[opcode]; 4258 int fmt_length = xtensa_format_length (isa, fmt); 4259 if (old_fmt == XTENSA_UNDEFINED 4260 || fmt_length < xtensa_format_length (isa, old_fmt)) 4261 op_single_fmt_table[opcode] = fmt; 4262 } 4263 } 4264 } 4265 xtensa_insnbuf_free (isa, ibuf); 4266 } 4267 4268 4269 static xtensa_format 4270 get_single_format (xtensa_opcode opcode) 4271 { 4272 init_op_single_format_table (); 4273 return op_single_fmt_table[opcode]; 4274 } 4275 4276 4277 /* For the set of narrowable instructions we do NOT include the 4278 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities 4279 involved during linker relaxation that may require these to 4280 re-expand in some conditions. Also, the narrowing "or" -> mov.n 4281 requires special case code to ensure it only works when op1 == op2. */ 4282 4283 struct string_pair 4284 { 4285 const char *wide; 4286 const char *narrow; 4287 }; 4288 4289 struct string_pair narrowable[] = 4290 { 4291 { "add", "add.n" }, 4292 { "addi", "addi.n" }, 4293 { "addmi", "addi.n" }, 4294 { "l32i", "l32i.n" }, 4295 { "movi", "movi.n" }, 4296 { "ret", "ret.n" }, 4297 { "retw", "retw.n" }, 4298 { "s32i", "s32i.n" }, 4299 { "or", "mov.n" } /* special case only when op1 == op2 */ 4300 }; 4301 4302 struct string_pair widenable[] = 4303 { 4304 { "add", "add.n" }, 4305 { "addi", "addi.n" }, 4306 { "addmi", "addi.n" }, 4307 { "beqz", "beqz.n" }, 4308 { "bnez", "bnez.n" }, 4309 { "l32i", "l32i.n" }, 4310 { "movi", "movi.n" }, 4311 { "ret", "ret.n" }, 4312 { "retw", "retw.n" }, 4313 { "s32i", "s32i.n" }, 4314 { "or", "mov.n" } /* special case only when op1 == op2 */ 4315 }; 4316 4317 4318 /* Check if an instruction can be "narrowed", i.e., changed from a standard 4319 3-byte instruction to a 2-byte "density" instruction. If it is valid, 4320 return the instruction buffer holding the narrow instruction. Otherwise, 4321 return 0. The set of valid narrowing are specified by a string table 4322 but require some special case operand checks in some cases. */ 4323 4324 static xtensa_insnbuf 4325 can_narrow_instruction (xtensa_insnbuf slotbuf, 4326 xtensa_format fmt, 4327 xtensa_opcode opcode) 4328 { 4329 xtensa_isa isa = xtensa_default_isa; 4330 xtensa_format o_fmt; 4331 unsigned opi; 4332 4333 static xtensa_insnbuf o_insnbuf = NULL; 4334 static xtensa_insnbuf o_slotbuf = NULL; 4335 4336 if (o_insnbuf == NULL) 4337 { 4338 o_insnbuf = xtensa_insnbuf_alloc (isa); 4339 o_slotbuf = xtensa_insnbuf_alloc (isa); 4340 } 4341 4342 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++) 4343 { 4344 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0); 4345 4346 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide)) 4347 { 4348 uint32 value, newval; 4349 int i, operand_count, o_operand_count; 4350 xtensa_opcode o_opcode; 4351 4352 /* Address does not matter in this case. We might need to 4353 fix it to handle branches/jumps. */ 4354 bfd_vma self_address = 0; 4355 4356 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow); 4357 if (o_opcode == XTENSA_UNDEFINED) 4358 return 0; 4359 o_fmt = get_single_format (o_opcode); 4360 if (o_fmt == XTENSA_UNDEFINED) 4361 return 0; 4362 4363 if (xtensa_format_length (isa, fmt) != 3 4364 || xtensa_format_length (isa, o_fmt) != 2) 4365 return 0; 4366 4367 xtensa_format_encode (isa, o_fmt, o_insnbuf); 4368 operand_count = xtensa_opcode_num_operands (isa, opcode); 4369 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); 4370 4371 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) 4372 return 0; 4373 4374 if (!is_or) 4375 { 4376 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) 4377 return 0; 4378 } 4379 else 4380 { 4381 uint32 rawval0, rawval1, rawval2; 4382 4383 if (o_operand_count + 1 != operand_count 4384 || xtensa_operand_get_field (isa, opcode, 0, 4385 fmt, 0, slotbuf, &rawval0) != 0 4386 || xtensa_operand_get_field (isa, opcode, 1, 4387 fmt, 0, slotbuf, &rawval1) != 0 4388 || xtensa_operand_get_field (isa, opcode, 2, 4389 fmt, 0, slotbuf, &rawval2) != 0 4390 || rawval1 != rawval2 4391 || rawval0 == rawval1 /* it is a nop */) 4392 return 0; 4393 } 4394 4395 for (i = 0; i < o_operand_count; ++i) 4396 { 4397 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0, 4398 slotbuf, &value) 4399 || xtensa_operand_decode (isa, opcode, i, &value)) 4400 return 0; 4401 4402 /* PC-relative branches need adjustment, but 4403 the PC-rel operand will always have a relocation. */ 4404 newval = value; 4405 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, 4406 self_address) 4407 || xtensa_operand_encode (isa, o_opcode, i, &newval) 4408 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, 4409 o_slotbuf, newval)) 4410 return 0; 4411 } 4412 4413 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) 4414 return 0; 4415 4416 return o_insnbuf; 4417 } 4418 } 4419 return 0; 4420 } 4421 4422 4423 /* Attempt to narrow an instruction. If the narrowing is valid, perform 4424 the action in-place directly into the contents and return TRUE. Otherwise, 4425 the return value is FALSE and the contents are not modified. */ 4426 4427 static bfd_boolean 4428 narrow_instruction (bfd_byte *contents, 4429 bfd_size_type content_length, 4430 bfd_size_type offset) 4431 { 4432 xtensa_opcode opcode; 4433 bfd_size_type insn_len; 4434 xtensa_isa isa = xtensa_default_isa; 4435 xtensa_format fmt; 4436 xtensa_insnbuf o_insnbuf; 4437 4438 static xtensa_insnbuf insnbuf = NULL; 4439 static xtensa_insnbuf slotbuf = NULL; 4440 4441 if (insnbuf == NULL) 4442 { 4443 insnbuf = xtensa_insnbuf_alloc (isa); 4444 slotbuf = xtensa_insnbuf_alloc (isa); 4445 } 4446 4447 BFD_ASSERT (offset < content_length); 4448 4449 if (content_length < 2) 4450 return FALSE; 4451 4452 /* We will hand-code a few of these for a little while. 4453 These have all been specified in the assembler aleady. */ 4454 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], 4455 content_length - offset); 4456 fmt = xtensa_format_decode (isa, insnbuf); 4457 if (xtensa_format_num_slots (isa, fmt) != 1) 4458 return FALSE; 4459 4460 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) 4461 return FALSE; 4462 4463 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); 4464 if (opcode == XTENSA_UNDEFINED) 4465 return FALSE; 4466 insn_len = xtensa_format_length (isa, fmt); 4467 if (insn_len > content_length) 4468 return FALSE; 4469 4470 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode); 4471 if (o_insnbuf) 4472 { 4473 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, 4474 content_length - offset); 4475 return TRUE; 4476 } 4477 4478 return FALSE; 4479 } 4480 4481 4482 /* Check if an instruction can be "widened", i.e., changed from a 2-byte 4483 "density" instruction to a standard 3-byte instruction. If it is valid, 4484 return the instruction buffer holding the wide instruction. Otherwise, 4485 return 0. The set of valid widenings are specified by a string table 4486 but require some special case operand checks in some cases. */ 4487 4488 static xtensa_insnbuf 4489 can_widen_instruction (xtensa_insnbuf slotbuf, 4490 xtensa_format fmt, 4491 xtensa_opcode opcode) 4492 { 4493 xtensa_isa isa = xtensa_default_isa; 4494 xtensa_format o_fmt; 4495 unsigned opi; 4496 4497 static xtensa_insnbuf o_insnbuf = NULL; 4498 static xtensa_insnbuf o_slotbuf = NULL; 4499 4500 if (o_insnbuf == NULL) 4501 { 4502 o_insnbuf = xtensa_insnbuf_alloc (isa); 4503 o_slotbuf = xtensa_insnbuf_alloc (isa); 4504 } 4505 4506 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++) 4507 { 4508 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0); 4509 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0 4510 || strcmp ("bnez", widenable[opi].wide) == 0); 4511 4512 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow)) 4513 { 4514 uint32 value, newval; 4515 int i, operand_count, o_operand_count, check_operand_count; 4516 xtensa_opcode o_opcode; 4517 4518 /* Address does not matter in this case. We might need to fix it 4519 to handle branches/jumps. */ 4520 bfd_vma self_address = 0; 4521 4522 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide); 4523 if (o_opcode == XTENSA_UNDEFINED) 4524 return 0; 4525 o_fmt = get_single_format (o_opcode); 4526 if (o_fmt == XTENSA_UNDEFINED) 4527 return 0; 4528 4529 if (xtensa_format_length (isa, fmt) != 2 4530 || xtensa_format_length (isa, o_fmt) != 3) 4531 return 0; 4532 4533 xtensa_format_encode (isa, o_fmt, o_insnbuf); 4534 operand_count = xtensa_opcode_num_operands (isa, opcode); 4535 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); 4536 check_operand_count = o_operand_count; 4537 4538 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) 4539 return 0; 4540 4541 if (!is_or) 4542 { 4543 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) 4544 return 0; 4545 } 4546 else 4547 { 4548 uint32 rawval0, rawval1; 4549 4550 if (o_operand_count != operand_count + 1 4551 || xtensa_operand_get_field (isa, opcode, 0, 4552 fmt, 0, slotbuf, &rawval0) != 0 4553 || xtensa_operand_get_field (isa, opcode, 1, 4554 fmt, 0, slotbuf, &rawval1) != 0 4555 || rawval0 == rawval1 /* it is a nop */) 4556 return 0; 4557 } 4558 if (is_branch) 4559 check_operand_count--; 4560 4561 for (i = 0; i < check_operand_count; i++) 4562 { 4563 int new_i = i; 4564 if (is_or && i == o_operand_count - 1) 4565 new_i = i - 1; 4566 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0, 4567 slotbuf, &value) 4568 || xtensa_operand_decode (isa, opcode, new_i, &value)) 4569 return 0; 4570 4571 /* PC-relative branches need adjustment, but 4572 the PC-rel operand will always have a relocation. */ 4573 newval = value; 4574 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, 4575 self_address) 4576 || xtensa_operand_encode (isa, o_opcode, i, &newval) 4577 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, 4578 o_slotbuf, newval)) 4579 return 0; 4580 } 4581 4582 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) 4583 return 0; 4584 4585 return o_insnbuf; 4586 } 4587 } 4588 return 0; 4589 } 4590 4591 4592 /* Attempt to widen an instruction. If the widening is valid, perform 4593 the action in-place directly into the contents and return TRUE. Otherwise, 4594 the return value is FALSE and the contents are not modified. */ 4595 4596 static bfd_boolean 4597 widen_instruction (bfd_byte *contents, 4598 bfd_size_type content_length, 4599 bfd_size_type offset) 4600 { 4601 xtensa_opcode opcode; 4602 bfd_size_type insn_len; 4603 xtensa_isa isa = xtensa_default_isa; 4604 xtensa_format fmt; 4605 xtensa_insnbuf o_insnbuf; 4606 4607 static xtensa_insnbuf insnbuf = NULL; 4608 static xtensa_insnbuf slotbuf = NULL; 4609 4610 if (insnbuf == NULL) 4611 { 4612 insnbuf = xtensa_insnbuf_alloc (isa); 4613 slotbuf = xtensa_insnbuf_alloc (isa); 4614 } 4615 4616 BFD_ASSERT (offset < content_length); 4617 4618 if (content_length < 2) 4619 return FALSE; 4620 4621 /* We will hand-code a few of these for a little while. 4622 These have all been specified in the assembler aleady. */ 4623 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], 4624 content_length - offset); 4625 fmt = xtensa_format_decode (isa, insnbuf); 4626 if (xtensa_format_num_slots (isa, fmt) != 1) 4627 return FALSE; 4628 4629 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) 4630 return FALSE; 4631 4632 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); 4633 if (opcode == XTENSA_UNDEFINED) 4634 return FALSE; 4635 insn_len = xtensa_format_length (isa, fmt); 4636 if (insn_len > content_length) 4637 return FALSE; 4638 4639 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode); 4640 if (o_insnbuf) 4641 { 4642 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, 4643 content_length - offset); 4644 return TRUE; 4645 } 4646 return FALSE; 4647 } 4648 4649 4650 /* Code for transforming CALLs at link-time. */ 4651 4652 static bfd_reloc_status_type 4653 elf_xtensa_do_asm_simplify (bfd_byte *contents, 4654 bfd_vma address, 4655 bfd_vma content_length, 4656 char **error_message) 4657 { 4658 static xtensa_insnbuf insnbuf = NULL; 4659 static xtensa_insnbuf slotbuf = NULL; 4660 xtensa_format core_format = XTENSA_UNDEFINED; 4661 xtensa_opcode opcode; 4662 xtensa_opcode direct_call_opcode; 4663 xtensa_isa isa = xtensa_default_isa; 4664 bfd_byte *chbuf = contents + address; 4665 int opn; 4666 4667 if (insnbuf == NULL) 4668 { 4669 insnbuf = xtensa_insnbuf_alloc (isa); 4670 slotbuf = xtensa_insnbuf_alloc (isa); 4671 } 4672 4673 if (content_length < address) 4674 { 4675 *error_message = _("attempt to convert L32R/CALLX to CALL failed"); 4676 return bfd_reloc_other; 4677 } 4678 4679 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0); 4680 direct_call_opcode = swap_callx_for_call_opcode (opcode); 4681 if (direct_call_opcode == XTENSA_UNDEFINED) 4682 { 4683 *error_message = _("attempt to convert L32R/CALLX to CALL failed"); 4684 return bfd_reloc_other; 4685 } 4686 4687 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */ 4688 core_format = xtensa_format_lookup (isa, "x24"); 4689 opcode = xtensa_opcode_lookup (isa, "or"); 4690 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode); 4691 for (opn = 0; opn < 3; opn++) 4692 { 4693 uint32 regno = 1; 4694 xtensa_operand_encode (isa, opcode, opn, ®no); 4695 xtensa_operand_set_field (isa, opcode, opn, core_format, 0, 4696 slotbuf, regno); 4697 } 4698 xtensa_format_encode (isa, core_format, insnbuf); 4699 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); 4700 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address); 4701 4702 /* Assemble a CALL ("callN 0") into the 3 byte offset. */ 4703 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode); 4704 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0); 4705 4706 xtensa_format_encode (isa, core_format, insnbuf); 4707 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); 4708 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3, 4709 content_length - address - 3); 4710 4711 return bfd_reloc_ok; 4712 } 4713 4714 4715 static bfd_reloc_status_type 4716 contract_asm_expansion (bfd_byte *contents, 4717 bfd_vma content_length, 4718 Elf_Internal_Rela *irel, 4719 char **error_message) 4720 { 4721 bfd_reloc_status_type retval = 4722 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length, 4723 error_message); 4724 4725 if (retval != bfd_reloc_ok) 4726 return bfd_reloc_dangerous; 4727 4728 /* Update the irel->r_offset field so that the right immediate and 4729 the right instruction are modified during the relocation. */ 4730 irel->r_offset += 3; 4731 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP); 4732 return bfd_reloc_ok; 4733 } 4734 4735 4736 static xtensa_opcode 4737 swap_callx_for_call_opcode (xtensa_opcode opcode) 4738 { 4739 init_call_opcodes (); 4740 4741 if (opcode == callx0_op) return call0_op; 4742 if (opcode == callx4_op) return call4_op; 4743 if (opcode == callx8_op) return call8_op; 4744 if (opcode == callx12_op) return call12_op; 4745 4746 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */ 4747 return XTENSA_UNDEFINED; 4748 } 4749 4750 4751 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN; 4752 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode. 4753 If not, return XTENSA_UNDEFINED. */ 4754 4755 #define L32R_TARGET_REG_OPERAND 0 4756 #define CONST16_TARGET_REG_OPERAND 0 4757 #define CALLN_SOURCE_OPERAND 0 4758 4759 static xtensa_opcode 4760 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r) 4761 { 4762 static xtensa_insnbuf insnbuf = NULL; 4763 static xtensa_insnbuf slotbuf = NULL; 4764 xtensa_format fmt; 4765 xtensa_opcode opcode; 4766 xtensa_isa isa = xtensa_default_isa; 4767 uint32 regno, const16_regno, call_regno; 4768 int offset = 0; 4769 4770 if (insnbuf == NULL) 4771 { 4772 insnbuf = xtensa_insnbuf_alloc (isa); 4773 slotbuf = xtensa_insnbuf_alloc (isa); 4774 } 4775 4776 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize); 4777 fmt = xtensa_format_decode (isa, insnbuf); 4778 if (fmt == XTENSA_UNDEFINED 4779 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) 4780 return XTENSA_UNDEFINED; 4781 4782 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); 4783 if (opcode == XTENSA_UNDEFINED) 4784 return XTENSA_UNDEFINED; 4785 4786 if (opcode == get_l32r_opcode ()) 4787 { 4788 if (p_uses_l32r) 4789 *p_uses_l32r = TRUE; 4790 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND, 4791 fmt, 0, slotbuf, ®no) 4792 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND, 4793 ®no)) 4794 return XTENSA_UNDEFINED; 4795 } 4796 else if (opcode == get_const16_opcode ()) 4797 { 4798 if (p_uses_l32r) 4799 *p_uses_l32r = FALSE; 4800 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, 4801 fmt, 0, slotbuf, ®no) 4802 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, 4803 ®no)) 4804 return XTENSA_UNDEFINED; 4805 4806 /* Check that the next instruction is also CONST16. */ 4807 offset += xtensa_format_length (isa, fmt); 4808 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); 4809 fmt = xtensa_format_decode (isa, insnbuf); 4810 if (fmt == XTENSA_UNDEFINED 4811 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) 4812 return XTENSA_UNDEFINED; 4813 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); 4814 if (opcode != get_const16_opcode ()) 4815 return XTENSA_UNDEFINED; 4816 4817 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, 4818 fmt, 0, slotbuf, &const16_regno) 4819 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, 4820 &const16_regno) 4821 || const16_regno != regno) 4822 return XTENSA_UNDEFINED; 4823 } 4824 else 4825 return XTENSA_UNDEFINED; 4826 4827 /* Next instruction should be an CALLXn with operand 0 == regno. */ 4828 offset += xtensa_format_length (isa, fmt); 4829 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); 4830 fmt = xtensa_format_decode (isa, insnbuf); 4831 if (fmt == XTENSA_UNDEFINED 4832 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) 4833 return XTENSA_UNDEFINED; 4834 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); 4835 if (opcode == XTENSA_UNDEFINED 4836 || !is_indirect_call_opcode (opcode)) 4837 return XTENSA_UNDEFINED; 4838 4839 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND, 4840 fmt, 0, slotbuf, &call_regno) 4841 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND, 4842 &call_regno)) 4843 return XTENSA_UNDEFINED; 4844 4845 if (call_regno != regno) 4846 return XTENSA_UNDEFINED; 4847 4848 return opcode; 4849 } 4850 4851 4852 /* Data structures used during relaxation. */ 4853 4854 /* r_reloc: relocation values. */ 4855 4856 /* Through the relaxation process, we need to keep track of the values 4857 that will result from evaluating relocations. The standard ELF 4858 relocation structure is not sufficient for this purpose because we're 4859 operating on multiple input files at once, so we need to know which 4860 input file a relocation refers to. The r_reloc structure thus 4861 records both the input file (bfd) and ELF relocation. 4862 4863 For efficiency, an r_reloc also contains a "target_offset" field to 4864 cache the target-section-relative offset value that is represented by 4865 the relocation. 4866 4867 The r_reloc also contains a virtual offset that allows multiple 4868 inserted literals to be placed at the same "address" with 4869 different offsets. */ 4870 4871 typedef struct r_reloc_struct r_reloc; 4872 4873 struct r_reloc_struct 4874 { 4875 bfd *abfd; 4876 Elf_Internal_Rela rela; 4877 bfd_vma target_offset; 4878 bfd_vma virtual_offset; 4879 }; 4880 4881 4882 /* The r_reloc structure is included by value in literal_value, but not 4883 every literal_value has an associated relocation -- some are simple 4884 constants. In such cases, we set all the fields in the r_reloc 4885 struct to zero. The r_reloc_is_const function should be used to 4886 detect this case. */ 4887 4888 static bfd_boolean 4889 r_reloc_is_const (const r_reloc *r_rel) 4890 { 4891 return (r_rel->abfd == NULL); 4892 } 4893 4894 4895 static bfd_vma 4896 r_reloc_get_target_offset (const r_reloc *r_rel) 4897 { 4898 bfd_vma target_offset; 4899 unsigned long r_symndx; 4900 4901 BFD_ASSERT (!r_reloc_is_const (r_rel)); 4902 r_symndx = ELF32_R_SYM (r_rel->rela.r_info); 4903 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx); 4904 return (target_offset + r_rel->rela.r_addend); 4905 } 4906 4907 4908 static struct elf_link_hash_entry * 4909 r_reloc_get_hash_entry (const r_reloc *r_rel) 4910 { 4911 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); 4912 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx); 4913 } 4914 4915 4916 static asection * 4917 r_reloc_get_section (const r_reloc *r_rel) 4918 { 4919 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); 4920 return get_elf_r_symndx_section (r_rel->abfd, r_symndx); 4921 } 4922 4923 4924 static bfd_boolean 4925 r_reloc_is_defined (const r_reloc *r_rel) 4926 { 4927 asection *sec; 4928 if (r_rel == NULL) 4929 return FALSE; 4930 4931 sec = r_reloc_get_section (r_rel); 4932 if (sec == bfd_abs_section_ptr 4933 || sec == bfd_com_section_ptr 4934 || sec == bfd_und_section_ptr) 4935 return FALSE; 4936 return TRUE; 4937 } 4938 4939 4940 static void 4941 r_reloc_init (r_reloc *r_rel, 4942 bfd *abfd, 4943 Elf_Internal_Rela *irel, 4944 bfd_byte *contents, 4945 bfd_size_type content_length) 4946 { 4947 int r_type; 4948 reloc_howto_type *howto; 4949 4950 if (irel) 4951 { 4952 r_rel->rela = *irel; 4953 r_rel->abfd = abfd; 4954 r_rel->target_offset = r_reloc_get_target_offset (r_rel); 4955 r_rel->virtual_offset = 0; 4956 r_type = ELF32_R_TYPE (r_rel->rela.r_info); 4957 howto = &elf_howto_table[r_type]; 4958 if (howto->partial_inplace) 4959 { 4960 bfd_vma inplace_val; 4961 BFD_ASSERT (r_rel->rela.r_offset < content_length); 4962 4963 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]); 4964 r_rel->target_offset += inplace_val; 4965 } 4966 } 4967 else 4968 memset (r_rel, 0, sizeof (r_reloc)); 4969 } 4970 4971 4972 #if DEBUG 4973 4974 static void 4975 print_r_reloc (FILE *fp, const r_reloc *r_rel) 4976 { 4977 if (r_reloc_is_defined (r_rel)) 4978 { 4979 asection *sec = r_reloc_get_section (r_rel); 4980 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name); 4981 } 4982 else if (r_reloc_get_hash_entry (r_rel)) 4983 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string); 4984 else 4985 fprintf (fp, " ?? + "); 4986 4987 fprintf_vma (fp, r_rel->target_offset); 4988 if (r_rel->virtual_offset) 4989 { 4990 fprintf (fp, " + "); 4991 fprintf_vma (fp, r_rel->virtual_offset); 4992 } 4993 4994 fprintf (fp, ")"); 4995 } 4996 4997 #endif /* DEBUG */ 4998 4999 5000 /* source_reloc: relocations that reference literals. */ 5001 5002 /* To determine whether literals can be coalesced, we need to first 5003 record all the relocations that reference the literals. The 5004 source_reloc structure below is used for this purpose. The 5005 source_reloc entries are kept in a per-literal-section array, sorted 5006 by offset within the literal section (i.e., target offset). 5007 5008 The source_sec and r_rel.rela.r_offset fields identify the source of 5009 the relocation. The r_rel field records the relocation value, i.e., 5010 the offset of the literal being referenced. The opnd field is needed 5011 to determine the range of the immediate field to which the relocation 5012 applies, so we can determine whether another literal with the same 5013 value is within range. The is_null field is true when the relocation 5014 is being removed (e.g., when an L32R is being removed due to a CALLX 5015 that is converted to a direct CALL). */ 5016 5017 typedef struct source_reloc_struct source_reloc; 5018 5019 struct source_reloc_struct 5020 { 5021 asection *source_sec; 5022 r_reloc r_rel; 5023 xtensa_opcode opcode; 5024 int opnd; 5025 bfd_boolean is_null; 5026 bfd_boolean is_abs_literal; 5027 }; 5028 5029 5030 static void 5031 init_source_reloc (source_reloc *reloc, 5032 asection *source_sec, 5033 const r_reloc *r_rel, 5034 xtensa_opcode opcode, 5035 int opnd, 5036 bfd_boolean is_abs_literal) 5037 { 5038 reloc->source_sec = source_sec; 5039 reloc->r_rel = *r_rel; 5040 reloc->opcode = opcode; 5041 reloc->opnd = opnd; 5042 reloc->is_null = FALSE; 5043 reloc->is_abs_literal = is_abs_literal; 5044 } 5045 5046 5047 /* Find the source_reloc for a particular source offset and relocation 5048 type. Note that the array is sorted by _target_ offset, so this is 5049 just a linear search. */ 5050 5051 static source_reloc * 5052 find_source_reloc (source_reloc *src_relocs, 5053 int src_count, 5054 asection *sec, 5055 Elf_Internal_Rela *irel) 5056 { 5057 int i; 5058 5059 for (i = 0; i < src_count; i++) 5060 { 5061 if (src_relocs[i].source_sec == sec 5062 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset 5063 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info) 5064 == ELF32_R_TYPE (irel->r_info))) 5065 return &src_relocs[i]; 5066 } 5067 5068 return NULL; 5069 } 5070 5071 5072 static int 5073 source_reloc_compare (const void *ap, const void *bp) 5074 { 5075 const source_reloc *a = (const source_reloc *) ap; 5076 const source_reloc *b = (const source_reloc *) bp; 5077 5078 if (a->r_rel.target_offset != b->r_rel.target_offset) 5079 return (a->r_rel.target_offset - b->r_rel.target_offset); 5080 5081 /* We don't need to sort on these criteria for correctness, 5082 but enforcing a more strict ordering prevents unstable qsort 5083 from behaving differently with different implementations. 5084 Without the code below we get correct but different results 5085 on Solaris 2.7 and 2.8. We would like to always produce the 5086 same results no matter the host. */ 5087 5088 if ((!a->is_null) - (!b->is_null)) 5089 return ((!a->is_null) - (!b->is_null)); 5090 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela); 5091 } 5092 5093 5094 /* Literal values and value hash tables. */ 5095 5096 /* Literals with the same value can be coalesced. The literal_value 5097 structure records the value of a literal: the "r_rel" field holds the 5098 information from the relocation on the literal (if there is one) and 5099 the "value" field holds the contents of the literal word itself. 5100 5101 The value_map structure records a literal value along with the 5102 location of a literal holding that value. The value_map hash table 5103 is indexed by the literal value, so that we can quickly check if a 5104 particular literal value has been seen before and is thus a candidate 5105 for coalescing. */ 5106 5107 typedef struct literal_value_struct literal_value; 5108 typedef struct value_map_struct value_map; 5109 typedef struct value_map_hash_table_struct value_map_hash_table; 5110 5111 struct literal_value_struct 5112 { 5113 r_reloc r_rel; 5114 unsigned long value; 5115 bfd_boolean is_abs_literal; 5116 }; 5117 5118 struct value_map_struct 5119 { 5120 literal_value val; /* The literal value. */ 5121 r_reloc loc; /* Location of the literal. */ 5122 value_map *next; 5123 }; 5124 5125 struct value_map_hash_table_struct 5126 { 5127 unsigned bucket_count; 5128 value_map **buckets; 5129 unsigned count; 5130 bfd_boolean has_last_loc; 5131 r_reloc last_loc; 5132 }; 5133 5134 5135 static void 5136 init_literal_value (literal_value *lit, 5137 const r_reloc *r_rel, 5138 unsigned long value, 5139 bfd_boolean is_abs_literal) 5140 { 5141 lit->r_rel = *r_rel; 5142 lit->value = value; 5143 lit->is_abs_literal = is_abs_literal; 5144 } 5145 5146 5147 static bfd_boolean 5148 literal_value_equal (const literal_value *src1, 5149 const literal_value *src2, 5150 bfd_boolean final_static_link) 5151 { 5152 struct elf_link_hash_entry *h1, *h2; 5153 5154 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel)) 5155 return FALSE; 5156 5157 if (r_reloc_is_const (&src1->r_rel)) 5158 return (src1->value == src2->value); 5159 5160 if (ELF32_R_TYPE (src1->r_rel.rela.r_info) 5161 != ELF32_R_TYPE (src2->r_rel.rela.r_info)) 5162 return FALSE; 5163 5164 if (src1->r_rel.target_offset != src2->r_rel.target_offset) 5165 return FALSE; 5166 5167 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset) 5168 return FALSE; 5169 5170 if (src1->value != src2->value) 5171 return FALSE; 5172 5173 /* Now check for the same section (if defined) or the same elf_hash 5174 (if undefined or weak). */ 5175 h1 = r_reloc_get_hash_entry (&src1->r_rel); 5176 h2 = r_reloc_get_hash_entry (&src2->r_rel); 5177 if (r_reloc_is_defined (&src1->r_rel) 5178 && (final_static_link 5179 || ((!h1 || h1->root.type != bfd_link_hash_defweak) 5180 && (!h2 || h2->root.type != bfd_link_hash_defweak)))) 5181 { 5182 if (r_reloc_get_section (&src1->r_rel) 5183 != r_reloc_get_section (&src2->r_rel)) 5184 return FALSE; 5185 } 5186 else 5187 { 5188 /* Require that the hash entries (i.e., symbols) be identical. */ 5189 if (h1 != h2 || h1 == 0) 5190 return FALSE; 5191 } 5192 5193 if (src1->is_abs_literal != src2->is_abs_literal) 5194 return FALSE; 5195 5196 return TRUE; 5197 } 5198 5199 5200 /* Must be power of 2. */ 5201 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024 5202 5203 static value_map_hash_table * 5204 value_map_hash_table_init (void) 5205 { 5206 value_map_hash_table *values; 5207 5208 values = (value_map_hash_table *) 5209 bfd_zmalloc (sizeof (value_map_hash_table)); 5210 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT; 5211 values->count = 0; 5212 values->buckets = (value_map **) 5213 bfd_zmalloc (sizeof (value_map *) * values->bucket_count); 5214 if (values->buckets == NULL) 5215 { 5216 free (values); 5217 return NULL; 5218 } 5219 values->has_last_loc = FALSE; 5220 5221 return values; 5222 } 5223 5224 5225 static void 5226 value_map_hash_table_delete (value_map_hash_table *table) 5227 { 5228 free (table->buckets); 5229 free (table); 5230 } 5231 5232 5233 static unsigned 5234 hash_bfd_vma (bfd_vma val) 5235 { 5236 return (val >> 2) + (val >> 10); 5237 } 5238 5239 5240 static unsigned 5241 literal_value_hash (const literal_value *src) 5242 { 5243 unsigned hash_val; 5244 5245 hash_val = hash_bfd_vma (src->value); 5246 if (!r_reloc_is_const (&src->r_rel)) 5247 { 5248 void *sec_or_hash; 5249 5250 hash_val += hash_bfd_vma (src->is_abs_literal * 1000); 5251 hash_val += hash_bfd_vma (src->r_rel.target_offset); 5252 hash_val += hash_bfd_vma (src->r_rel.virtual_offset); 5253 5254 /* Now check for the same section and the same elf_hash. */ 5255 if (r_reloc_is_defined (&src->r_rel)) 5256 sec_or_hash = r_reloc_get_section (&src->r_rel); 5257 else 5258 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel); 5259 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash); 5260 } 5261 return hash_val; 5262 } 5263 5264 5265 /* Check if the specified literal_value has been seen before. */ 5266 5267 static value_map * 5268 value_map_get_cached_value (value_map_hash_table *map, 5269 const literal_value *val, 5270 bfd_boolean final_static_link) 5271 { 5272 value_map *map_e; 5273 value_map *bucket; 5274 unsigned idx; 5275 5276 idx = literal_value_hash (val); 5277 idx = idx & (map->bucket_count - 1); 5278 bucket = map->buckets[idx]; 5279 for (map_e = bucket; map_e; map_e = map_e->next) 5280 { 5281 if (literal_value_equal (&map_e->val, val, final_static_link)) 5282 return map_e; 5283 } 5284 return NULL; 5285 } 5286 5287 5288 /* Record a new literal value. It is illegal to call this if VALUE 5289 already has an entry here. */ 5290 5291 static value_map * 5292 add_value_map (value_map_hash_table *map, 5293 const literal_value *val, 5294 const r_reloc *loc, 5295 bfd_boolean final_static_link) 5296 { 5297 value_map **bucket_p; 5298 unsigned idx; 5299 5300 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map)); 5301 if (val_e == NULL) 5302 { 5303 bfd_set_error (bfd_error_no_memory); 5304 return NULL; 5305 } 5306 5307 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link)); 5308 val_e->val = *val; 5309 val_e->loc = *loc; 5310 5311 idx = literal_value_hash (val); 5312 idx = idx & (map->bucket_count - 1); 5313 bucket_p = &map->buckets[idx]; 5314 5315 val_e->next = *bucket_p; 5316 *bucket_p = val_e; 5317 map->count++; 5318 /* FIXME: Consider resizing the hash table if we get too many entries. */ 5319 5320 return val_e; 5321 } 5322 5323 5324 /* Lists of text actions (ta_) for narrowing, widening, longcall 5325 conversion, space fill, code & literal removal, etc. */ 5326 5327 /* The following text actions are generated: 5328 5329 "ta_remove_insn" remove an instruction or instructions 5330 "ta_remove_longcall" convert longcall to call 5331 "ta_convert_longcall" convert longcall to nop/call 5332 "ta_narrow_insn" narrow a wide instruction 5333 "ta_widen" widen a narrow instruction 5334 "ta_fill" add fill or remove fill 5335 removed < 0 is a fill; branches to the fill address will be 5336 changed to address + fill size (e.g., address - removed) 5337 removed >= 0 branches to the fill address will stay unchanged 5338 "ta_remove_literal" remove a literal; this action is 5339 indicated when a literal is removed 5340 or replaced. 5341 "ta_add_literal" insert a new literal; this action is 5342 indicated when a literal has been moved. 5343 It may use a virtual_offset because 5344 multiple literals can be placed at the 5345 same location. 5346 5347 For each of these text actions, we also record the number of bytes 5348 removed by performing the text action. In the case of a "ta_widen" 5349 or a "ta_fill" that adds space, the removed_bytes will be negative. */ 5350 5351 typedef struct text_action_struct text_action; 5352 typedef struct text_action_list_struct text_action_list; 5353 typedef enum text_action_enum_t text_action_t; 5354 5355 enum text_action_enum_t 5356 { 5357 ta_none, 5358 ta_remove_insn, /* removed = -size */ 5359 ta_remove_longcall, /* removed = -size */ 5360 ta_convert_longcall, /* removed = 0 */ 5361 ta_narrow_insn, /* removed = -1 */ 5362 ta_widen_insn, /* removed = +1 */ 5363 ta_fill, /* removed = +size */ 5364 ta_remove_literal, 5365 ta_add_literal 5366 }; 5367 5368 5369 /* Structure for a text action record. */ 5370 struct text_action_struct 5371 { 5372 text_action_t action; 5373 asection *sec; /* Optional */ 5374 bfd_vma offset; 5375 bfd_vma virtual_offset; /* Zero except for adding literals. */ 5376 int removed_bytes; 5377 literal_value value; /* Only valid when adding literals. */ 5378 }; 5379 5380 struct removal_by_action_entry_struct 5381 { 5382 bfd_vma offset; 5383 int removed; 5384 int eq_removed; 5385 int eq_removed_before_fill; 5386 }; 5387 typedef struct removal_by_action_entry_struct removal_by_action_entry; 5388 5389 struct removal_by_action_map_struct 5390 { 5391 unsigned n_entries; 5392 removal_by_action_entry *entry; 5393 }; 5394 typedef struct removal_by_action_map_struct removal_by_action_map; 5395 5396 5397 /* List of all of the actions taken on a text section. */ 5398 struct text_action_list_struct 5399 { 5400 unsigned count; 5401 splay_tree tree; 5402 removal_by_action_map map; 5403 }; 5404 5405 5406 static text_action * 5407 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset) 5408 { 5409 text_action a; 5410 5411 /* It is not necessary to fill at the end of a section. */ 5412 if (sec->size == offset) 5413 return NULL; 5414 5415 a.offset = offset; 5416 a.action = ta_fill; 5417 5418 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a); 5419 if (node) 5420 return (text_action *)node->value; 5421 return NULL; 5422 } 5423 5424 5425 static int 5426 compute_removed_action_diff (const text_action *ta, 5427 asection *sec, 5428 bfd_vma offset, 5429 int removed, 5430 int removable_space) 5431 { 5432 int new_removed; 5433 int current_removed = 0; 5434 5435 if (ta) 5436 current_removed = ta->removed_bytes; 5437 5438 BFD_ASSERT (ta == NULL || ta->offset == offset); 5439 BFD_ASSERT (ta == NULL || ta->action == ta_fill); 5440 5441 /* It is not necessary to fill at the end of a section. Clean this up. */ 5442 if (sec->size == offset) 5443 new_removed = removable_space - 0; 5444 else 5445 { 5446 int space; 5447 int added = -removed - current_removed; 5448 /* Ignore multiples of the section alignment. */ 5449 added = ((1 << sec->alignment_power) - 1) & added; 5450 new_removed = (-added); 5451 5452 /* Modify for removable. */ 5453 space = removable_space - new_removed; 5454 new_removed = (removable_space 5455 - (((1 << sec->alignment_power) - 1) & space)); 5456 } 5457 return (new_removed - current_removed); 5458 } 5459 5460 5461 static void 5462 adjust_fill_action (text_action *ta, int fill_diff) 5463 { 5464 ta->removed_bytes += fill_diff; 5465 } 5466 5467 5468 static int 5469 text_action_compare (splay_tree_key a, splay_tree_key b) 5470 { 5471 text_action *pa = (text_action *)a; 5472 text_action *pb = (text_action *)b; 5473 static const int action_priority[] = 5474 { 5475 [ta_fill] = 0, 5476 [ta_none] = 1, 5477 [ta_convert_longcall] = 2, 5478 [ta_narrow_insn] = 3, 5479 [ta_remove_insn] = 4, 5480 [ta_remove_longcall] = 5, 5481 [ta_remove_literal] = 6, 5482 [ta_widen_insn] = 7, 5483 [ta_add_literal] = 8, 5484 }; 5485 5486 if (pa->offset == pb->offset) 5487 { 5488 if (pa->action == pb->action) 5489 return 0; 5490 return action_priority[pa->action] - action_priority[pb->action]; 5491 } 5492 else 5493 return pa->offset < pb->offset ? -1 : 1; 5494 } 5495 5496 static text_action * 5497 action_first (text_action_list *action_list) 5498 { 5499 splay_tree_node node = splay_tree_min (action_list->tree); 5500 return node ? (text_action *)node->value : NULL; 5501 } 5502 5503 static text_action * 5504 action_next (text_action_list *action_list, text_action *action) 5505 { 5506 splay_tree_node node = splay_tree_successor (action_list->tree, 5507 (splay_tree_key)action); 5508 return node ? (text_action *)node->value : NULL; 5509 } 5510 5511 /* Add a modification action to the text. For the case of adding or 5512 removing space, modify any current fill and assume that 5513 "unreachable_space" bytes can be freely contracted. Note that a 5514 negative removed value is a fill. */ 5515 5516 static void 5517 text_action_add (text_action_list *l, 5518 text_action_t action, 5519 asection *sec, 5520 bfd_vma offset, 5521 int removed) 5522 { 5523 text_action *ta; 5524 text_action a; 5525 5526 /* It is not necessary to fill at the end of a section. */ 5527 if (action == ta_fill && sec->size == offset) 5528 return; 5529 5530 /* It is not necessary to fill 0 bytes. */ 5531 if (action == ta_fill && removed == 0) 5532 return; 5533 5534 a.action = action; 5535 a.offset = offset; 5536 5537 if (action == ta_fill) 5538 { 5539 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a); 5540 5541 if (node) 5542 { 5543 ta = (text_action *)node->value; 5544 ta->removed_bytes += removed; 5545 return; 5546 } 5547 } 5548 else 5549 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL); 5550 5551 ta = (text_action *) bfd_zmalloc (sizeof (text_action)); 5552 ta->action = action; 5553 ta->sec = sec; 5554 ta->offset = offset; 5555 ta->removed_bytes = removed; 5556 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta); 5557 ++l->count; 5558 } 5559 5560 5561 static void 5562 text_action_add_literal (text_action_list *l, 5563 text_action_t action, 5564 const r_reloc *loc, 5565 const literal_value *value, 5566 int removed) 5567 { 5568 text_action *ta; 5569 asection *sec = r_reloc_get_section (loc); 5570 bfd_vma offset = loc->target_offset; 5571 bfd_vma virtual_offset = loc->virtual_offset; 5572 5573 BFD_ASSERT (action == ta_add_literal); 5574 5575 /* Create a new record and fill it up. */ 5576 ta = (text_action *) bfd_zmalloc (sizeof (text_action)); 5577 ta->action = action; 5578 ta->sec = sec; 5579 ta->offset = offset; 5580 ta->virtual_offset = virtual_offset; 5581 ta->value = *value; 5582 ta->removed_bytes = removed; 5583 5584 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL); 5585 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta); 5586 ++l->count; 5587 } 5588 5589 5590 /* Find the total offset adjustment for the relaxations specified by 5591 text_actions, beginning from a particular starting action. This is 5592 typically used from offset_with_removed_text to search an entire list of 5593 actions, but it may also be called directly when adjusting adjacent offsets 5594 so that each search may begin where the previous one left off. */ 5595 5596 static int 5597 removed_by_actions (text_action_list *action_list, 5598 text_action **p_start_action, 5599 bfd_vma offset, 5600 bfd_boolean before_fill) 5601 { 5602 text_action *r; 5603 int removed = 0; 5604 5605 r = *p_start_action; 5606 if (r) 5607 { 5608 splay_tree_node node = splay_tree_lookup (action_list->tree, 5609 (splay_tree_key)r); 5610 BFD_ASSERT (node != NULL && r == (text_action *)node->value); 5611 } 5612 5613 while (r) 5614 { 5615 if (r->offset > offset) 5616 break; 5617 5618 if (r->offset == offset 5619 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0)) 5620 break; 5621 5622 removed += r->removed_bytes; 5623 5624 r = action_next (action_list, r); 5625 } 5626 5627 *p_start_action = r; 5628 return removed; 5629 } 5630 5631 5632 static bfd_vma 5633 offset_with_removed_text (text_action_list *action_list, bfd_vma offset) 5634 { 5635 text_action *r = action_first (action_list); 5636 5637 return offset - removed_by_actions (action_list, &r, offset, FALSE); 5638 } 5639 5640 5641 static unsigned 5642 action_list_count (text_action_list *action_list) 5643 { 5644 return action_list->count; 5645 } 5646 5647 typedef struct map_action_fn_context_struct map_action_fn_context; 5648 struct map_action_fn_context_struct 5649 { 5650 int removed; 5651 removal_by_action_map map; 5652 bfd_boolean eq_complete; 5653 }; 5654 5655 static int 5656 map_action_fn (splay_tree_node node, void *p) 5657 { 5658 map_action_fn_context *ctx = p; 5659 text_action *r = (text_action *)node->value; 5660 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries; 5661 5662 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset) 5663 { 5664 --ientry; 5665 } 5666 else 5667 { 5668 ++ctx->map.n_entries; 5669 ctx->eq_complete = FALSE; 5670 ientry->offset = r->offset; 5671 ientry->eq_removed_before_fill = ctx->removed; 5672 } 5673 5674 if (!ctx->eq_complete) 5675 { 5676 if (r->action != ta_fill || r->removed_bytes >= 0) 5677 { 5678 ientry->eq_removed = ctx->removed; 5679 ctx->eq_complete = TRUE; 5680 } 5681 else 5682 ientry->eq_removed = ctx->removed + r->removed_bytes; 5683 } 5684 5685 ctx->removed += r->removed_bytes; 5686 ientry->removed = ctx->removed; 5687 return 0; 5688 } 5689 5690 static void 5691 map_removal_by_action (text_action_list *action_list) 5692 { 5693 map_action_fn_context ctx; 5694 5695 ctx.removed = 0; 5696 ctx.map.n_entries = 0; 5697 ctx.map.entry = bfd_malloc (action_list_count (action_list) * 5698 sizeof (removal_by_action_entry)); 5699 ctx.eq_complete = FALSE; 5700 5701 splay_tree_foreach (action_list->tree, map_action_fn, &ctx); 5702 action_list->map = ctx.map; 5703 } 5704 5705 static int 5706 removed_by_actions_map (text_action_list *action_list, bfd_vma offset, 5707 bfd_boolean before_fill) 5708 { 5709 unsigned a, b; 5710 5711 if (!action_list->map.entry) 5712 map_removal_by_action (action_list); 5713 5714 if (!action_list->map.n_entries) 5715 return 0; 5716 5717 a = 0; 5718 b = action_list->map.n_entries; 5719 5720 while (b - a > 1) 5721 { 5722 unsigned c = (a + b) / 2; 5723 5724 if (action_list->map.entry[c].offset <= offset) 5725 a = c; 5726 else 5727 b = c; 5728 } 5729 5730 if (action_list->map.entry[a].offset < offset) 5731 { 5732 return action_list->map.entry[a].removed; 5733 } 5734 else if (action_list->map.entry[a].offset == offset) 5735 { 5736 return before_fill ? 5737 action_list->map.entry[a].eq_removed_before_fill : 5738 action_list->map.entry[a].eq_removed; 5739 } 5740 else 5741 { 5742 return 0; 5743 } 5744 } 5745 5746 static bfd_vma 5747 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset) 5748 { 5749 int removed = removed_by_actions_map (action_list, offset, FALSE); 5750 return offset - removed; 5751 } 5752 5753 5754 /* The find_insn_action routine will only find non-fill actions. */ 5755 5756 static text_action * 5757 find_insn_action (text_action_list *action_list, bfd_vma offset) 5758 { 5759 static const text_action_t action[] = 5760 { 5761 ta_convert_longcall, 5762 ta_remove_longcall, 5763 ta_widen_insn, 5764 ta_narrow_insn, 5765 ta_remove_insn, 5766 }; 5767 text_action a; 5768 unsigned i; 5769 5770 a.offset = offset; 5771 for (i = 0; i < sizeof (action) / sizeof (*action); ++i) 5772 { 5773 splay_tree_node node; 5774 5775 a.action = action[i]; 5776 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a); 5777 if (node) 5778 return (text_action *)node->value; 5779 } 5780 return NULL; 5781 } 5782 5783 5784 #if DEBUG 5785 5786 static void 5787 print_action (FILE *fp, text_action *r) 5788 { 5789 const char *t = "unknown"; 5790 switch (r->action) 5791 { 5792 case ta_remove_insn: 5793 t = "remove_insn"; break; 5794 case ta_remove_longcall: 5795 t = "remove_longcall"; break; 5796 case ta_convert_longcall: 5797 t = "convert_longcall"; break; 5798 case ta_narrow_insn: 5799 t = "narrow_insn"; break; 5800 case ta_widen_insn: 5801 t = "widen_insn"; break; 5802 case ta_fill: 5803 t = "fill"; break; 5804 case ta_none: 5805 t = "none"; break; 5806 case ta_remove_literal: 5807 t = "remove_literal"; break; 5808 case ta_add_literal: 5809 t = "add_literal"; break; 5810 } 5811 5812 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n", 5813 r->sec->owner->filename, 5814 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes); 5815 } 5816 5817 static int 5818 print_action_list_fn (splay_tree_node node, void *p) 5819 { 5820 text_action *r = (text_action *)node->value; 5821 5822 print_action (p, r); 5823 return 0; 5824 } 5825 5826 static void 5827 print_action_list (FILE *fp, text_action_list *action_list) 5828 { 5829 fprintf (fp, "Text Action\n"); 5830 splay_tree_foreach (action_list->tree, print_action_list_fn, fp); 5831 } 5832 5833 #endif /* DEBUG */ 5834 5835 5836 /* Lists of literals being coalesced or removed. */ 5837 5838 /* In the usual case, the literal identified by "from" is being 5839 coalesced with another literal identified by "to". If the literal is 5840 unused and is being removed altogether, "to.abfd" will be NULL. 5841 The removed_literal entries are kept on a per-section list, sorted 5842 by the "from" offset field. */ 5843 5844 typedef struct removed_literal_struct removed_literal; 5845 typedef struct removed_literal_map_entry_struct removed_literal_map_entry; 5846 typedef struct removed_literal_list_struct removed_literal_list; 5847 5848 struct removed_literal_struct 5849 { 5850 r_reloc from; 5851 r_reloc to; 5852 removed_literal *next; 5853 }; 5854 5855 struct removed_literal_map_entry_struct 5856 { 5857 bfd_vma addr; 5858 removed_literal *literal; 5859 }; 5860 5861 struct removed_literal_list_struct 5862 { 5863 removed_literal *head; 5864 removed_literal *tail; 5865 5866 unsigned n_map; 5867 removed_literal_map_entry *map; 5868 }; 5869 5870 5871 /* Record that the literal at "from" is being removed. If "to" is not 5872 NULL, the "from" literal is being coalesced with the "to" literal. */ 5873 5874 static void 5875 add_removed_literal (removed_literal_list *removed_list, 5876 const r_reloc *from, 5877 const r_reloc *to) 5878 { 5879 removed_literal *r, *new_r, *next_r; 5880 5881 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal)); 5882 5883 new_r->from = *from; 5884 if (to) 5885 new_r->to = *to; 5886 else 5887 new_r->to.abfd = NULL; 5888 new_r->next = NULL; 5889 5890 r = removed_list->head; 5891 if (r == NULL) 5892 { 5893 removed_list->head = new_r; 5894 removed_list->tail = new_r; 5895 } 5896 /* Special check for common case of append. */ 5897 else if (removed_list->tail->from.target_offset < from->target_offset) 5898 { 5899 removed_list->tail->next = new_r; 5900 removed_list->tail = new_r; 5901 } 5902 else 5903 { 5904 while (r->from.target_offset < from->target_offset && r->next) 5905 { 5906 r = r->next; 5907 } 5908 next_r = r->next; 5909 r->next = new_r; 5910 new_r->next = next_r; 5911 if (next_r == NULL) 5912 removed_list->tail = new_r; 5913 } 5914 } 5915 5916 static void 5917 map_removed_literal (removed_literal_list *removed_list) 5918 { 5919 unsigned n_map = 0; 5920 unsigned i; 5921 removed_literal_map_entry *map = NULL; 5922 removed_literal *r = removed_list->head; 5923 5924 for (i = 0; r; ++i, r = r->next) 5925 { 5926 if (i == n_map) 5927 { 5928 n_map = (n_map * 2) + 2; 5929 map = bfd_realloc (map, n_map * sizeof (*map)); 5930 } 5931 map[i].addr = r->from.target_offset; 5932 map[i].literal = r; 5933 } 5934 removed_list->map = map; 5935 removed_list->n_map = i; 5936 } 5937 5938 static int 5939 removed_literal_compare (const void *a, const void *b) 5940 { 5941 const removed_literal_map_entry *pa = a; 5942 const removed_literal_map_entry *pb = b; 5943 5944 if (pa->addr == pb->addr) 5945 return 0; 5946 else 5947 return pa->addr < pb->addr ? -1 : 1; 5948 } 5949 5950 /* Check if the list of removed literals contains an entry for the 5951 given address. Return the entry if found. */ 5952 5953 static removed_literal * 5954 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr) 5955 { 5956 removed_literal_map_entry *p; 5957 removed_literal *r = NULL; 5958 5959 if (removed_list->map == NULL) 5960 map_removed_literal (removed_list); 5961 5962 p = bsearch (&addr, removed_list->map, removed_list->n_map, 5963 sizeof (*removed_list->map), removed_literal_compare); 5964 if (p) 5965 { 5966 while (p != removed_list->map && (p - 1)->addr == addr) 5967 --p; 5968 r = p->literal; 5969 } 5970 return r; 5971 } 5972 5973 5974 #if DEBUG 5975 5976 static void 5977 print_removed_literals (FILE *fp, removed_literal_list *removed_list) 5978 { 5979 removed_literal *r; 5980 r = removed_list->head; 5981 if (r) 5982 fprintf (fp, "Removed Literals\n"); 5983 for (; r != NULL; r = r->next) 5984 { 5985 print_r_reloc (fp, &r->from); 5986 fprintf (fp, " => "); 5987 if (r->to.abfd == NULL) 5988 fprintf (fp, "REMOVED"); 5989 else 5990 print_r_reloc (fp, &r->to); 5991 fprintf (fp, "\n"); 5992 } 5993 } 5994 5995 #endif /* DEBUG */ 5996 5997 5998 /* Per-section data for relaxation. */ 5999 6000 typedef struct reloc_bfd_fix_struct reloc_bfd_fix; 6001 6002 struct xtensa_relax_info_struct 6003 { 6004 bfd_boolean is_relaxable_literal_section; 6005 bfd_boolean is_relaxable_asm_section; 6006 int visited; /* Number of times visited. */ 6007 6008 source_reloc *src_relocs; /* Array[src_count]. */ 6009 int src_count; 6010 int src_next; /* Next src_relocs entry to assign. */ 6011 6012 removed_literal_list removed_list; 6013 text_action_list action_list; 6014 6015 reloc_bfd_fix *fix_list; 6016 reloc_bfd_fix *fix_array; 6017 unsigned fix_array_count; 6018 6019 /* Support for expanding the reloc array that is stored 6020 in the section structure. If the relocations have been 6021 reallocated, the newly allocated relocations will be referenced 6022 here along with the actual size allocated. The relocation 6023 count will always be found in the section structure. */ 6024 Elf_Internal_Rela *allocated_relocs; 6025 unsigned relocs_count; 6026 unsigned allocated_relocs_count; 6027 }; 6028 6029 struct elf_xtensa_section_data 6030 { 6031 struct bfd_elf_section_data elf; 6032 xtensa_relax_info relax_info; 6033 }; 6034 6035 6036 static bfd_boolean 6037 elf_xtensa_new_section_hook (bfd *abfd, asection *sec) 6038 { 6039 if (!sec->used_by_bfd) 6040 { 6041 struct elf_xtensa_section_data *sdata; 6042 bfd_size_type amt = sizeof (*sdata); 6043 6044 sdata = bfd_zalloc (abfd, amt); 6045 if (sdata == NULL) 6046 return FALSE; 6047 sec->used_by_bfd = sdata; 6048 } 6049 6050 return _bfd_elf_new_section_hook (abfd, sec); 6051 } 6052 6053 6054 static xtensa_relax_info * 6055 get_xtensa_relax_info (asection *sec) 6056 { 6057 struct elf_xtensa_section_data *section_data; 6058 6059 /* No info available if no section or if it is an output section. */ 6060 if (!sec || sec == sec->output_section) 6061 return NULL; 6062 6063 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec); 6064 return §ion_data->relax_info; 6065 } 6066 6067 6068 static void 6069 init_xtensa_relax_info (asection *sec) 6070 { 6071 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); 6072 6073 relax_info->is_relaxable_literal_section = FALSE; 6074 relax_info->is_relaxable_asm_section = FALSE; 6075 relax_info->visited = 0; 6076 6077 relax_info->src_relocs = NULL; 6078 relax_info->src_count = 0; 6079 relax_info->src_next = 0; 6080 6081 relax_info->removed_list.head = NULL; 6082 relax_info->removed_list.tail = NULL; 6083 6084 relax_info->action_list.tree = splay_tree_new (text_action_compare, 6085 NULL, NULL); 6086 relax_info->action_list.map.n_entries = 0; 6087 relax_info->action_list.map.entry = NULL; 6088 6089 relax_info->fix_list = NULL; 6090 relax_info->fix_array = NULL; 6091 relax_info->fix_array_count = 0; 6092 6093 relax_info->allocated_relocs = NULL; 6094 relax_info->relocs_count = 0; 6095 relax_info->allocated_relocs_count = 0; 6096 } 6097 6098 6099 /* Coalescing literals may require a relocation to refer to a section in 6100 a different input file, but the standard relocation information 6101 cannot express that. Instead, the reloc_bfd_fix structures are used 6102 to "fix" the relocations that refer to sections in other input files. 6103 These structures are kept on per-section lists. The "src_type" field 6104 records the relocation type in case there are multiple relocations on 6105 the same location. FIXME: This is ugly; an alternative might be to 6106 add new symbols with the "owner" field to some other input file. */ 6107 6108 struct reloc_bfd_fix_struct 6109 { 6110 asection *src_sec; 6111 bfd_vma src_offset; 6112 unsigned src_type; /* Relocation type. */ 6113 6114 asection *target_sec; 6115 bfd_vma target_offset; 6116 bfd_boolean translated; 6117 6118 reloc_bfd_fix *next; 6119 }; 6120 6121 6122 static reloc_bfd_fix * 6123 reloc_bfd_fix_init (asection *src_sec, 6124 bfd_vma src_offset, 6125 unsigned src_type, 6126 asection *target_sec, 6127 bfd_vma target_offset, 6128 bfd_boolean translated) 6129 { 6130 reloc_bfd_fix *fix; 6131 6132 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix)); 6133 fix->src_sec = src_sec; 6134 fix->src_offset = src_offset; 6135 fix->src_type = src_type; 6136 fix->target_sec = target_sec; 6137 fix->target_offset = target_offset; 6138 fix->translated = translated; 6139 6140 return fix; 6141 } 6142 6143 6144 static void 6145 add_fix (asection *src_sec, reloc_bfd_fix *fix) 6146 { 6147 xtensa_relax_info *relax_info; 6148 6149 relax_info = get_xtensa_relax_info (src_sec); 6150 fix->next = relax_info->fix_list; 6151 relax_info->fix_list = fix; 6152 } 6153 6154 6155 static int 6156 fix_compare (const void *ap, const void *bp) 6157 { 6158 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap; 6159 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp; 6160 6161 if (a->src_offset != b->src_offset) 6162 return (a->src_offset - b->src_offset); 6163 return (a->src_type - b->src_type); 6164 } 6165 6166 6167 static void 6168 cache_fix_array (asection *sec) 6169 { 6170 unsigned i, count = 0; 6171 reloc_bfd_fix *r; 6172 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); 6173 6174 if (relax_info == NULL) 6175 return; 6176 if (relax_info->fix_list == NULL) 6177 return; 6178 6179 for (r = relax_info->fix_list; r != NULL; r = r->next) 6180 count++; 6181 6182 relax_info->fix_array = 6183 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count); 6184 relax_info->fix_array_count = count; 6185 6186 r = relax_info->fix_list; 6187 for (i = 0; i < count; i++, r = r->next) 6188 { 6189 relax_info->fix_array[count - 1 - i] = *r; 6190 relax_info->fix_array[count - 1 - i].next = NULL; 6191 } 6192 6193 qsort (relax_info->fix_array, relax_info->fix_array_count, 6194 sizeof (reloc_bfd_fix), fix_compare); 6195 } 6196 6197 6198 static reloc_bfd_fix * 6199 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type) 6200 { 6201 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); 6202 reloc_bfd_fix *rv; 6203 reloc_bfd_fix key; 6204 6205 if (relax_info == NULL) 6206 return NULL; 6207 if (relax_info->fix_list == NULL) 6208 return NULL; 6209 6210 if (relax_info->fix_array == NULL) 6211 cache_fix_array (sec); 6212 6213 key.src_offset = offset; 6214 key.src_type = type; 6215 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count, 6216 sizeof (reloc_bfd_fix), fix_compare); 6217 return rv; 6218 } 6219 6220 6221 /* Section caching. */ 6222 6223 typedef struct section_cache_struct section_cache_t; 6224 6225 struct section_cache_struct 6226 { 6227 asection *sec; 6228 6229 bfd_byte *contents; /* Cache of the section contents. */ 6230 bfd_size_type content_length; 6231 6232 property_table_entry *ptbl; /* Cache of the section property table. */ 6233 unsigned pte_count; 6234 6235 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ 6236 unsigned reloc_count; 6237 }; 6238 6239 6240 static void 6241 init_section_cache (section_cache_t *sec_cache) 6242 { 6243 memset (sec_cache, 0, sizeof (*sec_cache)); 6244 } 6245 6246 6247 static void 6248 free_section_cache (section_cache_t *sec_cache) 6249 { 6250 if (sec_cache->sec) 6251 { 6252 release_contents (sec_cache->sec, sec_cache->contents); 6253 release_internal_relocs (sec_cache->sec, sec_cache->relocs); 6254 if (sec_cache->ptbl) 6255 free (sec_cache->ptbl); 6256 } 6257 } 6258 6259 6260 static bfd_boolean 6261 section_cache_section (section_cache_t *sec_cache, 6262 asection *sec, 6263 struct bfd_link_info *link_info) 6264 { 6265 bfd *abfd; 6266 property_table_entry *prop_table = NULL; 6267 int ptblsize = 0; 6268 bfd_byte *contents = NULL; 6269 Elf_Internal_Rela *internal_relocs = NULL; 6270 bfd_size_type sec_size; 6271 6272 if (sec == NULL) 6273 return FALSE; 6274 if (sec == sec_cache->sec) 6275 return TRUE; 6276 6277 abfd = sec->owner; 6278 sec_size = bfd_get_section_limit (abfd, sec); 6279 6280 /* Get the contents. */ 6281 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 6282 if (contents == NULL && sec_size != 0) 6283 goto err; 6284 6285 /* Get the relocations. */ 6286 internal_relocs = retrieve_internal_relocs (abfd, sec, 6287 link_info->keep_memory); 6288 6289 /* Get the entry table. */ 6290 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, 6291 XTENSA_PROP_SEC_NAME, FALSE); 6292 if (ptblsize < 0) 6293 goto err; 6294 6295 /* Fill in the new section cache. */ 6296 free_section_cache (sec_cache); 6297 init_section_cache (sec_cache); 6298 6299 sec_cache->sec = sec; 6300 sec_cache->contents = contents; 6301 sec_cache->content_length = sec_size; 6302 sec_cache->relocs = internal_relocs; 6303 sec_cache->reloc_count = sec->reloc_count; 6304 sec_cache->pte_count = ptblsize; 6305 sec_cache->ptbl = prop_table; 6306 6307 return TRUE; 6308 6309 err: 6310 release_contents (sec, contents); 6311 release_internal_relocs (sec, internal_relocs); 6312 if (prop_table) 6313 free (prop_table); 6314 return FALSE; 6315 } 6316 6317 6318 /* Extended basic blocks. */ 6319 6320 /* An ebb_struct represents an Extended Basic Block. Within this 6321 range, we guarantee that all instructions are decodable, the 6322 property table entries are contiguous, and no property table 6323 specifies a segment that cannot have instructions moved. This 6324 structure contains caches of the contents, property table and 6325 relocations for the specified section for easy use. The range is 6326 specified by ranges of indices for the byte offset, property table 6327 offsets and relocation offsets. These must be consistent. */ 6328 6329 typedef struct ebb_struct ebb_t; 6330 6331 struct ebb_struct 6332 { 6333 asection *sec; 6334 6335 bfd_byte *contents; /* Cache of the section contents. */ 6336 bfd_size_type content_length; 6337 6338 property_table_entry *ptbl; /* Cache of the section property table. */ 6339 unsigned pte_count; 6340 6341 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ 6342 unsigned reloc_count; 6343 6344 bfd_vma start_offset; /* Offset in section. */ 6345 unsigned start_ptbl_idx; /* Offset in the property table. */ 6346 unsigned start_reloc_idx; /* Offset in the relocations. */ 6347 6348 bfd_vma end_offset; 6349 unsigned end_ptbl_idx; 6350 unsigned end_reloc_idx; 6351 6352 bfd_boolean ends_section; /* Is this the last ebb in a section? */ 6353 6354 /* The unreachable property table at the end of this set of blocks; 6355 NULL if the end is not an unreachable block. */ 6356 property_table_entry *ends_unreachable; 6357 }; 6358 6359 6360 enum ebb_target_enum 6361 { 6362 EBB_NO_ALIGN = 0, 6363 EBB_DESIRE_TGT_ALIGN, 6364 EBB_REQUIRE_TGT_ALIGN, 6365 EBB_REQUIRE_LOOP_ALIGN, 6366 EBB_REQUIRE_ALIGN 6367 }; 6368 6369 6370 /* proposed_action_struct is similar to the text_action_struct except 6371 that is represents a potential transformation, not one that will 6372 occur. We build a list of these for an extended basic block 6373 and use them to compute the actual actions desired. We must be 6374 careful that the entire set of actual actions we perform do not 6375 break any relocations that would fit if the actions were not 6376 performed. */ 6377 6378 typedef struct proposed_action_struct proposed_action; 6379 6380 struct proposed_action_struct 6381 { 6382 enum ebb_target_enum align_type; /* for the target alignment */ 6383 bfd_vma alignment_pow; 6384 text_action_t action; 6385 bfd_vma offset; 6386 int removed_bytes; 6387 bfd_boolean do_action; /* If false, then we will not perform the action. */ 6388 }; 6389 6390 6391 /* The ebb_constraint_struct keeps a set of proposed actions for an 6392 extended basic block. */ 6393 6394 typedef struct ebb_constraint_struct ebb_constraint; 6395 6396 struct ebb_constraint_struct 6397 { 6398 ebb_t ebb; 6399 bfd_boolean start_movable; 6400 6401 /* Bytes of extra space at the beginning if movable. */ 6402 int start_extra_space; 6403 6404 enum ebb_target_enum start_align; 6405 6406 bfd_boolean end_movable; 6407 6408 /* Bytes of extra space at the end if movable. */ 6409 int end_extra_space; 6410 6411 unsigned action_count; 6412 unsigned action_allocated; 6413 6414 /* Array of proposed actions. */ 6415 proposed_action *actions; 6416 6417 /* Action alignments -- one for each proposed action. */ 6418 enum ebb_target_enum *action_aligns; 6419 }; 6420 6421 6422 static void 6423 init_ebb_constraint (ebb_constraint *c) 6424 { 6425 memset (c, 0, sizeof (ebb_constraint)); 6426 } 6427 6428 6429 static void 6430 free_ebb_constraint (ebb_constraint *c) 6431 { 6432 if (c->actions) 6433 free (c->actions); 6434 } 6435 6436 6437 static void 6438 init_ebb (ebb_t *ebb, 6439 asection *sec, 6440 bfd_byte *contents, 6441 bfd_size_type content_length, 6442 property_table_entry *prop_table, 6443 unsigned ptblsize, 6444 Elf_Internal_Rela *internal_relocs, 6445 unsigned reloc_count) 6446 { 6447 memset (ebb, 0, sizeof (ebb_t)); 6448 ebb->sec = sec; 6449 ebb->contents = contents; 6450 ebb->content_length = content_length; 6451 ebb->ptbl = prop_table; 6452 ebb->pte_count = ptblsize; 6453 ebb->relocs = internal_relocs; 6454 ebb->reloc_count = reloc_count; 6455 ebb->start_offset = 0; 6456 ebb->end_offset = ebb->content_length - 1; 6457 ebb->start_ptbl_idx = 0; 6458 ebb->end_ptbl_idx = ptblsize; 6459 ebb->start_reloc_idx = 0; 6460 ebb->end_reloc_idx = reloc_count; 6461 } 6462 6463 6464 /* Extend the ebb to all decodable contiguous sections. The algorithm 6465 for building a basic block around an instruction is to push it 6466 forward until we hit the end of a section, an unreachable block or 6467 a block that cannot be transformed. Then we push it backwards 6468 searching for similar conditions. */ 6469 6470 static bfd_boolean extend_ebb_bounds_forward (ebb_t *); 6471 static bfd_boolean extend_ebb_bounds_backward (ebb_t *); 6472 static bfd_size_type insn_block_decodable_len 6473 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type); 6474 6475 static bfd_boolean 6476 extend_ebb_bounds (ebb_t *ebb) 6477 { 6478 if (!extend_ebb_bounds_forward (ebb)) 6479 return FALSE; 6480 if (!extend_ebb_bounds_backward (ebb)) 6481 return FALSE; 6482 return TRUE; 6483 } 6484 6485 6486 static bfd_boolean 6487 extend_ebb_bounds_forward (ebb_t *ebb) 6488 { 6489 property_table_entry *the_entry, *new_entry; 6490 6491 the_entry = &ebb->ptbl[ebb->end_ptbl_idx]; 6492 6493 /* Stop when (1) we cannot decode an instruction, (2) we are at 6494 the end of the property tables, (3) we hit a non-contiguous property 6495 table entry, (4) we hit a NO_TRANSFORM region. */ 6496 6497 while (1) 6498 { 6499 bfd_vma entry_end; 6500 bfd_size_type insn_block_len; 6501 6502 entry_end = the_entry->address - ebb->sec->vma + the_entry->size; 6503 insn_block_len = 6504 insn_block_decodable_len (ebb->contents, ebb->content_length, 6505 ebb->end_offset, 6506 entry_end - ebb->end_offset); 6507 if (insn_block_len != (entry_end - ebb->end_offset)) 6508 { 6509 _bfd_error_handler 6510 /* xgettext:c-format */ 6511 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; " 6512 "possible configuration mismatch"), 6513 ebb->sec->owner, ebb->sec, 6514 (uint64_t) (ebb->end_offset + insn_block_len)); 6515 return FALSE; 6516 } 6517 ebb->end_offset += insn_block_len; 6518 6519 if (ebb->end_offset == ebb->sec->size) 6520 ebb->ends_section = TRUE; 6521 6522 /* Update the reloc counter. */ 6523 while (ebb->end_reloc_idx + 1 < ebb->reloc_count 6524 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset 6525 < ebb->end_offset)) 6526 { 6527 ebb->end_reloc_idx++; 6528 } 6529 6530 if (ebb->end_ptbl_idx + 1 == ebb->pte_count) 6531 return TRUE; 6532 6533 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; 6534 if (((new_entry->flags & XTENSA_PROP_INSN) == 0) 6535 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) 6536 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0)) 6537 break; 6538 6539 if (the_entry->address + the_entry->size != new_entry->address) 6540 break; 6541 6542 the_entry = new_entry; 6543 ebb->end_ptbl_idx++; 6544 } 6545 6546 /* Quick check for an unreachable or end of file just at the end. */ 6547 if (ebb->end_ptbl_idx + 1 == ebb->pte_count) 6548 { 6549 if (ebb->end_offset == ebb->content_length) 6550 ebb->ends_section = TRUE; 6551 } 6552 else 6553 { 6554 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; 6555 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0 6556 && the_entry->address + the_entry->size == new_entry->address) 6557 ebb->ends_unreachable = new_entry; 6558 } 6559 6560 /* Any other ending requires exact alignment. */ 6561 return TRUE; 6562 } 6563 6564 6565 static bfd_boolean 6566 extend_ebb_bounds_backward (ebb_t *ebb) 6567 { 6568 property_table_entry *the_entry, *new_entry; 6569 6570 the_entry = &ebb->ptbl[ebb->start_ptbl_idx]; 6571 6572 /* Stop when (1) we cannot decode the instructions in the current entry. 6573 (2) we are at the beginning of the property tables, (3) we hit a 6574 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */ 6575 6576 while (1) 6577 { 6578 bfd_vma block_begin; 6579 bfd_size_type insn_block_len; 6580 6581 block_begin = the_entry->address - ebb->sec->vma; 6582 insn_block_len = 6583 insn_block_decodable_len (ebb->contents, ebb->content_length, 6584 block_begin, 6585 ebb->start_offset - block_begin); 6586 if (insn_block_len != ebb->start_offset - block_begin) 6587 { 6588 _bfd_error_handler 6589 /* xgettext:c-format */ 6590 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; " 6591 "possible configuration mismatch"), 6592 ebb->sec->owner, ebb->sec, 6593 (uint64_t) (ebb->end_offset + insn_block_len)); 6594 return FALSE; 6595 } 6596 ebb->start_offset -= insn_block_len; 6597 6598 /* Update the reloc counter. */ 6599 while (ebb->start_reloc_idx > 0 6600 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset 6601 >= ebb->start_offset)) 6602 { 6603 ebb->start_reloc_idx--; 6604 } 6605 6606 if (ebb->start_ptbl_idx == 0) 6607 return TRUE; 6608 6609 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1]; 6610 if ((new_entry->flags & XTENSA_PROP_INSN) == 0 6611 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) 6612 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0)) 6613 return TRUE; 6614 if (new_entry->address + new_entry->size != the_entry->address) 6615 return TRUE; 6616 6617 the_entry = new_entry; 6618 ebb->start_ptbl_idx--; 6619 } 6620 return TRUE; 6621 } 6622 6623 6624 static bfd_size_type 6625 insn_block_decodable_len (bfd_byte *contents, 6626 bfd_size_type content_len, 6627 bfd_vma block_offset, 6628 bfd_size_type block_len) 6629 { 6630 bfd_vma offset = block_offset; 6631 6632 while (offset < block_offset + block_len) 6633 { 6634 bfd_size_type insn_len = 0; 6635 6636 insn_len = insn_decode_len (contents, content_len, offset); 6637 if (insn_len == 0) 6638 return (offset - block_offset); 6639 offset += insn_len; 6640 } 6641 return (offset - block_offset); 6642 } 6643 6644 6645 static void 6646 ebb_propose_action (ebb_constraint *c, 6647 enum ebb_target_enum align_type, 6648 bfd_vma alignment_pow, 6649 text_action_t action, 6650 bfd_vma offset, 6651 int removed_bytes, 6652 bfd_boolean do_action) 6653 { 6654 proposed_action *act; 6655 6656 if (c->action_allocated <= c->action_count) 6657 { 6658 unsigned new_allocated, i; 6659 proposed_action *new_actions; 6660 6661 new_allocated = (c->action_count + 2) * 2; 6662 new_actions = (proposed_action *) 6663 bfd_zmalloc (sizeof (proposed_action) * new_allocated); 6664 6665 for (i = 0; i < c->action_count; i++) 6666 new_actions[i] = c->actions[i]; 6667 if (c->actions) 6668 free (c->actions); 6669 c->actions = new_actions; 6670 c->action_allocated = new_allocated; 6671 } 6672 6673 act = &c->actions[c->action_count]; 6674 act->align_type = align_type; 6675 act->alignment_pow = alignment_pow; 6676 act->action = action; 6677 act->offset = offset; 6678 act->removed_bytes = removed_bytes; 6679 act->do_action = do_action; 6680 6681 c->action_count++; 6682 } 6683 6684 6685 /* Access to internal relocations, section contents and symbols. */ 6686 6687 /* During relaxation, we need to modify relocations, section contents, 6688 and symbol definitions, and we need to keep the original values from 6689 being reloaded from the input files, i.e., we need to "pin" the 6690 modified values in memory. We also want to continue to observe the 6691 setting of the "keep-memory" flag. The following functions wrap the 6692 standard BFD functions to take care of this for us. */ 6693 6694 static Elf_Internal_Rela * 6695 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory) 6696 { 6697 Elf_Internal_Rela *internal_relocs; 6698 6699 if ((sec->flags & SEC_LINKER_CREATED) != 0) 6700 return NULL; 6701 6702 internal_relocs = elf_section_data (sec)->relocs; 6703 if (internal_relocs == NULL) 6704 internal_relocs = (_bfd_elf_link_read_relocs 6705 (abfd, sec, NULL, NULL, keep_memory)); 6706 return internal_relocs; 6707 } 6708 6709 6710 static void 6711 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) 6712 { 6713 elf_section_data (sec)->relocs = internal_relocs; 6714 } 6715 6716 6717 static void 6718 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) 6719 { 6720 if (internal_relocs 6721 && elf_section_data (sec)->relocs != internal_relocs) 6722 free (internal_relocs); 6723 } 6724 6725 6726 static bfd_byte * 6727 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory) 6728 { 6729 bfd_byte *contents; 6730 bfd_size_type sec_size; 6731 6732 sec_size = bfd_get_section_limit (abfd, sec); 6733 contents = elf_section_data (sec)->this_hdr.contents; 6734 6735 if (contents == NULL && sec_size != 0) 6736 { 6737 if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 6738 { 6739 if (contents) 6740 free (contents); 6741 return NULL; 6742 } 6743 if (keep_memory) 6744 elf_section_data (sec)->this_hdr.contents = contents; 6745 } 6746 return contents; 6747 } 6748 6749 6750 static void 6751 pin_contents (asection *sec, bfd_byte *contents) 6752 { 6753 elf_section_data (sec)->this_hdr.contents = contents; 6754 } 6755 6756 6757 static void 6758 release_contents (asection *sec, bfd_byte *contents) 6759 { 6760 if (contents && elf_section_data (sec)->this_hdr.contents != contents) 6761 free (contents); 6762 } 6763 6764 6765 static Elf_Internal_Sym * 6766 retrieve_local_syms (bfd *input_bfd) 6767 { 6768 Elf_Internal_Shdr *symtab_hdr; 6769 Elf_Internal_Sym *isymbuf; 6770 size_t locsymcount; 6771 6772 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 6773 locsymcount = symtab_hdr->sh_info; 6774 6775 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 6776 if (isymbuf == NULL && locsymcount != 0) 6777 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, 6778 NULL, NULL, NULL); 6779 6780 /* Save the symbols for this input file so they won't be read again. */ 6781 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents) 6782 symtab_hdr->contents = (unsigned char *) isymbuf; 6783 6784 return isymbuf; 6785 } 6786 6787 6788 /* Code for link-time relaxation. */ 6789 6790 /* Initialization for relaxation: */ 6791 static bfd_boolean analyze_relocations (struct bfd_link_info *); 6792 static bfd_boolean find_relaxable_sections 6793 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *); 6794 static bfd_boolean collect_source_relocs 6795 (bfd *, asection *, struct bfd_link_info *); 6796 static bfd_boolean is_resolvable_asm_expansion 6797 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *, 6798 bfd_boolean *); 6799 static Elf_Internal_Rela *find_associated_l32r_irel 6800 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *); 6801 static bfd_boolean compute_text_actions 6802 (bfd *, asection *, struct bfd_link_info *); 6803 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *); 6804 static bfd_boolean compute_ebb_actions (ebb_constraint *); 6805 typedef struct reloc_range_list_struct reloc_range_list; 6806 static bfd_boolean check_section_ebb_pcrels_fit 6807 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, 6808 reloc_range_list *, const ebb_constraint *, 6809 const xtensa_opcode *); 6810 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *); 6811 static void text_action_add_proposed 6812 (text_action_list *, const ebb_constraint *, asection *); 6813 6814 /* First pass: */ 6815 static bfd_boolean compute_removed_literals 6816 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *); 6817 static Elf_Internal_Rela *get_irel_at_offset 6818 (asection *, Elf_Internal_Rela *, bfd_vma); 6819 static bfd_boolean is_removable_literal 6820 (const source_reloc *, int, const source_reloc *, int, asection *, 6821 property_table_entry *, int); 6822 static bfd_boolean remove_dead_literal 6823 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *, 6824 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int); 6825 static bfd_boolean identify_literal_placement 6826 (bfd *, asection *, bfd_byte *, struct bfd_link_info *, 6827 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int, 6828 source_reloc *, property_table_entry *, int, section_cache_t *, 6829 bfd_boolean); 6830 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *); 6831 static bfd_boolean coalesce_shared_literal 6832 (asection *, source_reloc *, property_table_entry *, int, value_map *); 6833 static bfd_boolean move_shared_literal 6834 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *, 6835 int, const r_reloc *, const literal_value *, section_cache_t *); 6836 6837 /* Second pass: */ 6838 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *); 6839 static bfd_boolean translate_section_fixes (asection *); 6840 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *); 6841 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *); 6842 static void shrink_dynamic_reloc_sections 6843 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *); 6844 static bfd_boolean move_literal 6845 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *, 6846 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *); 6847 static bfd_boolean relax_property_section 6848 (bfd *, asection *, struct bfd_link_info *); 6849 6850 /* Third pass: */ 6851 static bfd_boolean relax_section_symbols (bfd *, asection *); 6852 6853 6854 static bfd_boolean 6855 elf_xtensa_relax_section (bfd *abfd, 6856 asection *sec, 6857 struct bfd_link_info *link_info, 6858 bfd_boolean *again) 6859 { 6860 static value_map_hash_table *values = NULL; 6861 static bfd_boolean relocations_analyzed = FALSE; 6862 xtensa_relax_info *relax_info; 6863 6864 if (!relocations_analyzed) 6865 { 6866 /* Do some overall initialization for relaxation. */ 6867 values = value_map_hash_table_init (); 6868 if (values == NULL) 6869 return FALSE; 6870 relaxing_section = TRUE; 6871 if (!analyze_relocations (link_info)) 6872 return FALSE; 6873 relocations_analyzed = TRUE; 6874 } 6875 *again = FALSE; 6876 6877 /* Don't mess with linker-created sections. */ 6878 if ((sec->flags & SEC_LINKER_CREATED) != 0) 6879 return TRUE; 6880 6881 relax_info = get_xtensa_relax_info (sec); 6882 BFD_ASSERT (relax_info != NULL); 6883 6884 switch (relax_info->visited) 6885 { 6886 case 0: 6887 /* Note: It would be nice to fold this pass into 6888 analyze_relocations, but it is important for this step that the 6889 sections be examined in link order. */ 6890 if (!compute_removed_literals (abfd, sec, link_info, values)) 6891 return FALSE; 6892 *again = TRUE; 6893 break; 6894 6895 case 1: 6896 if (values) 6897 value_map_hash_table_delete (values); 6898 values = NULL; 6899 if (!relax_section (abfd, sec, link_info)) 6900 return FALSE; 6901 *again = TRUE; 6902 break; 6903 6904 case 2: 6905 if (!relax_section_symbols (abfd, sec)) 6906 return FALSE; 6907 break; 6908 } 6909 6910 relax_info->visited++; 6911 return TRUE; 6912 } 6913 6914 6915 /* Initialization for relaxation. */ 6916 6917 /* This function is called once at the start of relaxation. It scans 6918 all the input sections and marks the ones that are relaxable (i.e., 6919 literal sections with L32R relocations against them), and then 6920 collects source_reloc information for all the relocations against 6921 those relaxable sections. During this process, it also detects 6922 longcalls, i.e., calls relaxed by the assembler into indirect 6923 calls, that can be optimized back into direct calls. Within each 6924 extended basic block (ebb) containing an optimized longcall, it 6925 computes a set of "text actions" that can be performed to remove 6926 the L32R associated with the longcall while optionally preserving 6927 branch target alignments. */ 6928 6929 static bfd_boolean 6930 analyze_relocations (struct bfd_link_info *link_info) 6931 { 6932 bfd *abfd; 6933 asection *sec; 6934 bfd_boolean is_relaxable = FALSE; 6935 6936 /* Initialize the per-section relaxation info. */ 6937 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) 6938 for (sec = abfd->sections; sec != NULL; sec = sec->next) 6939 { 6940 init_xtensa_relax_info (sec); 6941 } 6942 6943 /* Mark relaxable sections (and count relocations against each one). */ 6944 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) 6945 for (sec = abfd->sections; sec != NULL; sec = sec->next) 6946 { 6947 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable)) 6948 return FALSE; 6949 } 6950 6951 /* Bail out if there are no relaxable sections. */ 6952 if (!is_relaxable) 6953 return TRUE; 6954 6955 /* Allocate space for source_relocs. */ 6956 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) 6957 for (sec = abfd->sections; sec != NULL; sec = sec->next) 6958 { 6959 xtensa_relax_info *relax_info; 6960 6961 relax_info = get_xtensa_relax_info (sec); 6962 if (relax_info->is_relaxable_literal_section 6963 || relax_info->is_relaxable_asm_section) 6964 { 6965 relax_info->src_relocs = (source_reloc *) 6966 bfd_malloc (relax_info->src_count * sizeof (source_reloc)); 6967 } 6968 else 6969 relax_info->src_count = 0; 6970 } 6971 6972 /* Collect info on relocations against each relaxable section. */ 6973 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) 6974 for (sec = abfd->sections; sec != NULL; sec = sec->next) 6975 { 6976 if (!collect_source_relocs (abfd, sec, link_info)) 6977 return FALSE; 6978 } 6979 6980 /* Compute the text actions. */ 6981 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) 6982 for (sec = abfd->sections; sec != NULL; sec = sec->next) 6983 { 6984 if (!compute_text_actions (abfd, sec, link_info)) 6985 return FALSE; 6986 } 6987 6988 return TRUE; 6989 } 6990 6991 6992 /* Find all the sections that might be relaxed. The motivation for 6993 this pass is that collect_source_relocs() needs to record _all_ the 6994 relocations that target each relaxable section. That is expensive 6995 and unnecessary unless the target section is actually going to be 6996 relaxed. This pass identifies all such sections by checking if 6997 they have L32Rs pointing to them. In the process, the total number 6998 of relocations targeting each section is also counted so that we 6999 know how much space to allocate for source_relocs against each 7000 relaxable literal section. */ 7001 7002 static bfd_boolean 7003 find_relaxable_sections (bfd *abfd, 7004 asection *sec, 7005 struct bfd_link_info *link_info, 7006 bfd_boolean *is_relaxable_p) 7007 { 7008 Elf_Internal_Rela *internal_relocs; 7009 bfd_byte *contents; 7010 bfd_boolean ok = TRUE; 7011 unsigned i; 7012 xtensa_relax_info *source_relax_info; 7013 bfd_boolean is_l32r_reloc; 7014 7015 internal_relocs = retrieve_internal_relocs (abfd, sec, 7016 link_info->keep_memory); 7017 if (internal_relocs == NULL) 7018 return ok; 7019 7020 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 7021 if (contents == NULL && sec->size != 0) 7022 { 7023 ok = FALSE; 7024 goto error_return; 7025 } 7026 7027 source_relax_info = get_xtensa_relax_info (sec); 7028 for (i = 0; i < sec->reloc_count; i++) 7029 { 7030 Elf_Internal_Rela *irel = &internal_relocs[i]; 7031 r_reloc r_rel; 7032 asection *target_sec; 7033 xtensa_relax_info *target_relax_info; 7034 7035 /* If this section has not already been marked as "relaxable", and 7036 if it contains any ASM_EXPAND relocations (marking expanded 7037 longcalls) that can be optimized into direct calls, then mark 7038 the section as "relaxable". */ 7039 if (source_relax_info 7040 && !source_relax_info->is_relaxable_asm_section 7041 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND) 7042 { 7043 bfd_boolean is_reachable = FALSE; 7044 if (is_resolvable_asm_expansion (abfd, sec, contents, irel, 7045 link_info, &is_reachable) 7046 && is_reachable) 7047 { 7048 source_relax_info->is_relaxable_asm_section = TRUE; 7049 *is_relaxable_p = TRUE; 7050 } 7051 } 7052 7053 r_reloc_init (&r_rel, abfd, irel, contents, 7054 bfd_get_section_limit (abfd, sec)); 7055 7056 target_sec = r_reloc_get_section (&r_rel); 7057 target_relax_info = get_xtensa_relax_info (target_sec); 7058 if (!target_relax_info) 7059 continue; 7060 7061 /* Count PC-relative operand relocations against the target section. 7062 Note: The conditions tested here must match the conditions under 7063 which init_source_reloc is called in collect_source_relocs(). */ 7064 is_l32r_reloc = FALSE; 7065 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) 7066 { 7067 xtensa_opcode opcode = 7068 get_relocation_opcode (abfd, sec, contents, irel); 7069 if (opcode != XTENSA_UNDEFINED) 7070 { 7071 is_l32r_reloc = (opcode == get_l32r_opcode ()); 7072 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info)) 7073 || is_l32r_reloc) 7074 target_relax_info->src_count++; 7075 } 7076 } 7077 7078 if (is_l32r_reloc && r_reloc_is_defined (&r_rel)) 7079 { 7080 /* Mark the target section as relaxable. */ 7081 target_relax_info->is_relaxable_literal_section = TRUE; 7082 *is_relaxable_p = TRUE; 7083 } 7084 } 7085 7086 error_return: 7087 release_contents (sec, contents); 7088 release_internal_relocs (sec, internal_relocs); 7089 return ok; 7090 } 7091 7092 7093 /* Record _all_ the relocations that point to relaxable sections, and 7094 get rid of ASM_EXPAND relocs by either converting them to 7095 ASM_SIMPLIFY or by removing them. */ 7096 7097 static bfd_boolean 7098 collect_source_relocs (bfd *abfd, 7099 asection *sec, 7100 struct bfd_link_info *link_info) 7101 { 7102 Elf_Internal_Rela *internal_relocs; 7103 bfd_byte *contents; 7104 bfd_boolean ok = TRUE; 7105 unsigned i; 7106 bfd_size_type sec_size; 7107 7108 internal_relocs = retrieve_internal_relocs (abfd, sec, 7109 link_info->keep_memory); 7110 if (internal_relocs == NULL) 7111 return ok; 7112 7113 sec_size = bfd_get_section_limit (abfd, sec); 7114 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 7115 if (contents == NULL && sec_size != 0) 7116 { 7117 ok = FALSE; 7118 goto error_return; 7119 } 7120 7121 /* Record relocations against relaxable literal sections. */ 7122 for (i = 0; i < sec->reloc_count; i++) 7123 { 7124 Elf_Internal_Rela *irel = &internal_relocs[i]; 7125 r_reloc r_rel; 7126 asection *target_sec; 7127 xtensa_relax_info *target_relax_info; 7128 7129 r_reloc_init (&r_rel, abfd, irel, contents, sec_size); 7130 7131 target_sec = r_reloc_get_section (&r_rel); 7132 target_relax_info = get_xtensa_relax_info (target_sec); 7133 7134 if (target_relax_info 7135 && (target_relax_info->is_relaxable_literal_section 7136 || target_relax_info->is_relaxable_asm_section)) 7137 { 7138 xtensa_opcode opcode = XTENSA_UNDEFINED; 7139 int opnd = -1; 7140 bfd_boolean is_abs_literal = FALSE; 7141 7142 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) 7143 { 7144 /* None of the current alternate relocs are PC-relative, 7145 and only PC-relative relocs matter here. However, we 7146 still need to record the opcode for literal 7147 coalescing. */ 7148 opcode = get_relocation_opcode (abfd, sec, contents, irel); 7149 if (opcode == get_l32r_opcode ()) 7150 { 7151 is_abs_literal = TRUE; 7152 opnd = 1; 7153 } 7154 else 7155 opcode = XTENSA_UNDEFINED; 7156 } 7157 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) 7158 { 7159 opcode = get_relocation_opcode (abfd, sec, contents, irel); 7160 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); 7161 } 7162 7163 if (opcode != XTENSA_UNDEFINED) 7164 { 7165 int src_next = target_relax_info->src_next++; 7166 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next]; 7167 7168 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd, 7169 is_abs_literal); 7170 } 7171 } 7172 } 7173 7174 /* Now get rid of ASM_EXPAND relocations. At this point, the 7175 src_relocs array for the target literal section may still be 7176 incomplete, but it must at least contain the entries for the L32R 7177 relocations associated with ASM_EXPANDs because they were just 7178 added in the preceding loop over the relocations. */ 7179 7180 for (i = 0; i < sec->reloc_count; i++) 7181 { 7182 Elf_Internal_Rela *irel = &internal_relocs[i]; 7183 bfd_boolean is_reachable; 7184 7185 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, 7186 &is_reachable)) 7187 continue; 7188 7189 if (is_reachable) 7190 { 7191 Elf_Internal_Rela *l32r_irel; 7192 r_reloc r_rel; 7193 asection *target_sec; 7194 xtensa_relax_info *target_relax_info; 7195 7196 /* Mark the source_reloc for the L32R so that it will be 7197 removed in compute_removed_literals(), along with the 7198 associated literal. */ 7199 l32r_irel = find_associated_l32r_irel (abfd, sec, contents, 7200 irel, internal_relocs); 7201 if (l32r_irel == NULL) 7202 continue; 7203 7204 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size); 7205 7206 target_sec = r_reloc_get_section (&r_rel); 7207 target_relax_info = get_xtensa_relax_info (target_sec); 7208 7209 if (target_relax_info 7210 && (target_relax_info->is_relaxable_literal_section 7211 || target_relax_info->is_relaxable_asm_section)) 7212 { 7213 source_reloc *s_reloc; 7214 7215 /* Search the source_relocs for the entry corresponding to 7216 the l32r_irel. Note: The src_relocs array is not yet 7217 sorted, but it wouldn't matter anyway because we're 7218 searching by source offset instead of target offset. */ 7219 s_reloc = find_source_reloc (target_relax_info->src_relocs, 7220 target_relax_info->src_next, 7221 sec, l32r_irel); 7222 BFD_ASSERT (s_reloc); 7223 s_reloc->is_null = TRUE; 7224 } 7225 7226 /* Convert this reloc to ASM_SIMPLIFY. */ 7227 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), 7228 R_XTENSA_ASM_SIMPLIFY); 7229 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); 7230 7231 pin_internal_relocs (sec, internal_relocs); 7232 } 7233 else 7234 { 7235 /* It is resolvable but doesn't reach. We resolve now 7236 by eliminating the relocation -- the call will remain 7237 expanded into L32R/CALLX. */ 7238 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); 7239 pin_internal_relocs (sec, internal_relocs); 7240 } 7241 } 7242 7243 error_return: 7244 release_contents (sec, contents); 7245 release_internal_relocs (sec, internal_relocs); 7246 return ok; 7247 } 7248 7249 7250 /* Return TRUE if the asm expansion can be resolved. Generally it can 7251 be resolved on a final link or when a partial link locates it in the 7252 same section as the target. Set "is_reachable" flag if the target of 7253 the call is within the range of a direct call, given the current VMA 7254 for this section and the target section. */ 7255 7256 bfd_boolean 7257 is_resolvable_asm_expansion (bfd *abfd, 7258 asection *sec, 7259 bfd_byte *contents, 7260 Elf_Internal_Rela *irel, 7261 struct bfd_link_info *link_info, 7262 bfd_boolean *is_reachable_p) 7263 { 7264 asection *target_sec; 7265 asection *s; 7266 bfd_vma first_vma; 7267 bfd_vma last_vma; 7268 unsigned int first_align; 7269 unsigned int adjust; 7270 bfd_vma target_offset; 7271 r_reloc r_rel; 7272 xtensa_opcode opcode, direct_call_opcode; 7273 bfd_vma self_address; 7274 bfd_vma dest_address; 7275 bfd_boolean uses_l32r; 7276 bfd_size_type sec_size; 7277 7278 *is_reachable_p = FALSE; 7279 7280 if (contents == NULL) 7281 return FALSE; 7282 7283 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND) 7284 return FALSE; 7285 7286 sec_size = bfd_get_section_limit (abfd, sec); 7287 opcode = get_expanded_call_opcode (contents + irel->r_offset, 7288 sec_size - irel->r_offset, &uses_l32r); 7289 /* Optimization of longcalls that use CONST16 is not yet implemented. */ 7290 if (!uses_l32r) 7291 return FALSE; 7292 7293 direct_call_opcode = swap_callx_for_call_opcode (opcode); 7294 if (direct_call_opcode == XTENSA_UNDEFINED) 7295 return FALSE; 7296 7297 /* Check and see that the target resolves. */ 7298 r_reloc_init (&r_rel, abfd, irel, contents, sec_size); 7299 if (!r_reloc_is_defined (&r_rel)) 7300 return FALSE; 7301 7302 target_sec = r_reloc_get_section (&r_rel); 7303 target_offset = r_rel.target_offset; 7304 7305 /* If the target is in a shared library, then it doesn't reach. This 7306 isn't supposed to come up because the compiler should never generate 7307 non-PIC calls on systems that use shared libraries, but the linker 7308 shouldn't crash regardless. */ 7309 if (!target_sec->output_section) 7310 return FALSE; 7311 7312 /* For relocatable sections, we can only simplify when the output 7313 section of the target is the same as the output section of the 7314 source. */ 7315 if (bfd_link_relocatable (link_info) 7316 && (target_sec->output_section != sec->output_section 7317 || is_reloc_sym_weak (abfd, irel))) 7318 return FALSE; 7319 7320 if (target_sec->output_section != sec->output_section) 7321 { 7322 /* If the two sections are sufficiently far away that relaxation 7323 might take the call out of range, we can't simplify. For 7324 example, a positive displacement call into another memory 7325 could get moved to a lower address due to literal removal, 7326 but the destination won't move, and so the displacment might 7327 get larger. 7328 7329 If the displacement is negative, assume the destination could 7330 move as far back as the start of the output section. The 7331 self_address will be at least as far into the output section 7332 as it is prior to relaxation. 7333 7334 If the displacement is postive, assume the destination will be in 7335 it's pre-relaxed location (because relaxation only makes sections 7336 smaller). The self_address could go all the way to the beginning 7337 of the output section. */ 7338 7339 dest_address = target_sec->output_section->vma; 7340 self_address = sec->output_section->vma; 7341 7342 if (sec->output_section->vma > target_sec->output_section->vma) 7343 self_address += sec->output_offset + irel->r_offset + 3; 7344 else 7345 dest_address += bfd_get_section_limit (abfd, target_sec->output_section); 7346 /* Call targets should be four-byte aligned. */ 7347 dest_address = (dest_address + 3) & ~3; 7348 } 7349 else 7350 { 7351 7352 self_address = (sec->output_section->vma 7353 + sec->output_offset + irel->r_offset + 3); 7354 dest_address = (target_sec->output_section->vma 7355 + target_sec->output_offset + target_offset); 7356 } 7357 7358 /* Adjust addresses with alignments for the worst case to see if call insn 7359 can fit. Don't relax l32r + callx to call if the target can be out of 7360 range due to alignment. 7361 Caller and target addresses are highest and lowest address. 7362 Search all sections between caller and target, looking for max alignment. 7363 The adjustment is max alignment bytes. If the alignment at the lowest 7364 address is less than the adjustment, apply the adjustment to highest 7365 address. */ 7366 7367 /* Start from lowest address. 7368 Lowest address aligmnet is from input section. 7369 Initial alignment (adjust) is from input section. */ 7370 if (dest_address > self_address) 7371 { 7372 s = sec->output_section; 7373 last_vma = dest_address; 7374 first_align = sec->alignment_power; 7375 adjust = target_sec->alignment_power; 7376 } 7377 else 7378 { 7379 s = target_sec->output_section; 7380 last_vma = self_address; 7381 first_align = target_sec->alignment_power; 7382 adjust = sec->alignment_power; 7383 } 7384 7385 first_vma = s->vma; 7386 7387 /* Find the largest alignment in output section list. */ 7388 for (; s && s->vma >= first_vma && s->vma <= last_vma ; s = s->next) 7389 { 7390 if (s->alignment_power > adjust) 7391 adjust = s->alignment_power; 7392 } 7393 7394 if (adjust > first_align) 7395 { 7396 /* Alignment may enlarge the range, adjust highest address. */ 7397 adjust = 1 << adjust; 7398 if (dest_address > self_address) 7399 { 7400 dest_address += adjust; 7401 } 7402 else 7403 { 7404 self_address += adjust; 7405 } 7406 } 7407 7408 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0, 7409 self_address, dest_address); 7410 7411 if ((self_address >> CALL_SEGMENT_BITS) != 7412 (dest_address >> CALL_SEGMENT_BITS)) 7413 return FALSE; 7414 7415 return TRUE; 7416 } 7417 7418 7419 static Elf_Internal_Rela * 7420 find_associated_l32r_irel (bfd *abfd, 7421 asection *sec, 7422 bfd_byte *contents, 7423 Elf_Internal_Rela *other_irel, 7424 Elf_Internal_Rela *internal_relocs) 7425 { 7426 unsigned i; 7427 7428 for (i = 0; i < sec->reloc_count; i++) 7429 { 7430 Elf_Internal_Rela *irel = &internal_relocs[i]; 7431 7432 if (irel == other_irel) 7433 continue; 7434 if (irel->r_offset != other_irel->r_offset) 7435 continue; 7436 if (is_l32r_relocation (abfd, sec, contents, irel)) 7437 return irel; 7438 } 7439 7440 return NULL; 7441 } 7442 7443 7444 static xtensa_opcode * 7445 build_reloc_opcodes (bfd *abfd, 7446 asection *sec, 7447 bfd_byte *contents, 7448 Elf_Internal_Rela *internal_relocs) 7449 { 7450 unsigned i; 7451 xtensa_opcode *reloc_opcodes = 7452 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count); 7453 for (i = 0; i < sec->reloc_count; i++) 7454 { 7455 Elf_Internal_Rela *irel = &internal_relocs[i]; 7456 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel); 7457 } 7458 return reloc_opcodes; 7459 } 7460 7461 struct reloc_range_struct 7462 { 7463 bfd_vma addr; 7464 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */ 7465 /* Original irel index in the array of relocations for a section. */ 7466 unsigned irel_index; 7467 }; 7468 typedef struct reloc_range_struct reloc_range; 7469 7470 typedef struct reloc_range_list_entry_struct reloc_range_list_entry; 7471 struct reloc_range_list_entry_struct 7472 { 7473 reloc_range_list_entry *next; 7474 reloc_range_list_entry *prev; 7475 Elf_Internal_Rela *irel; 7476 xtensa_opcode opcode; 7477 int opnum; 7478 }; 7479 7480 struct reloc_range_list_struct 7481 { 7482 /* The rest of the structure is only meaningful when ok is TRUE. */ 7483 bfd_boolean ok; 7484 7485 unsigned n_range; /* Number of range markers. */ 7486 reloc_range *range; /* Sorted range markers. */ 7487 7488 unsigned first; /* Index of a first range element in the list. */ 7489 unsigned last; /* One past index of a last range element in the list. */ 7490 7491 unsigned n_list; /* Number of list elements. */ 7492 reloc_range_list_entry *reloc; /* */ 7493 reloc_range_list_entry list_root; 7494 }; 7495 7496 static int 7497 reloc_range_compare (const void *a, const void *b) 7498 { 7499 const reloc_range *ra = a; 7500 const reloc_range *rb = b; 7501 7502 if (ra->addr != rb->addr) 7503 return ra->addr < rb->addr ? -1 : 1; 7504 if (ra->add != rb->add) 7505 return ra->add ? -1 : 1; 7506 return 0; 7507 } 7508 7509 static void 7510 build_reloc_ranges (bfd *abfd, asection *sec, 7511 bfd_byte *contents, 7512 Elf_Internal_Rela *internal_relocs, 7513 xtensa_opcode *reloc_opcodes, 7514 reloc_range_list *list) 7515 { 7516 unsigned i; 7517 size_t n = 0; 7518 size_t max_n = 0; 7519 reloc_range *ranges = NULL; 7520 reloc_range_list_entry *reloc = 7521 bfd_malloc (sec->reloc_count * sizeof (*reloc)); 7522 7523 memset (list, 0, sizeof (*list)); 7524 list->ok = TRUE; 7525 7526 for (i = 0; i < sec->reloc_count; i++) 7527 { 7528 Elf_Internal_Rela *irel = &internal_relocs[i]; 7529 int r_type = ELF32_R_TYPE (irel->r_info); 7530 reloc_howto_type *howto = &elf_howto_table[r_type]; 7531 r_reloc r_rel; 7532 7533 if (r_type == R_XTENSA_ASM_SIMPLIFY 7534 || r_type == R_XTENSA_32_PCREL 7535 || !howto->pc_relative) 7536 continue; 7537 7538 r_reloc_init (&r_rel, abfd, irel, contents, 7539 bfd_get_section_limit (abfd, sec)); 7540 7541 if (r_reloc_get_section (&r_rel) != sec) 7542 continue; 7543 7544 if (n + 2 > max_n) 7545 { 7546 max_n = (max_n + 2) * 2; 7547 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges)); 7548 } 7549 7550 ranges[n].addr = irel->r_offset; 7551 ranges[n + 1].addr = r_rel.target_offset; 7552 7553 ranges[n].add = ranges[n].addr < ranges[n + 1].addr; 7554 ranges[n + 1].add = !ranges[n].add; 7555 7556 ranges[n].irel_index = i; 7557 ranges[n + 1].irel_index = i; 7558 7559 n += 2; 7560 7561 reloc[i].irel = irel; 7562 7563 /* Every relocation won't possibly be checked in the optimized version of 7564 check_section_ebb_pcrels_fit, so this needs to be done here. */ 7565 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) 7566 { 7567 /* None of the current alternate relocs are PC-relative, 7568 and only PC-relative relocs matter here. */ 7569 } 7570 else 7571 { 7572 xtensa_opcode opcode; 7573 int opnum; 7574 7575 if (reloc_opcodes) 7576 opcode = reloc_opcodes[i]; 7577 else 7578 opcode = get_relocation_opcode (abfd, sec, contents, irel); 7579 7580 if (opcode == XTENSA_UNDEFINED) 7581 { 7582 list->ok = FALSE; 7583 break; 7584 } 7585 7586 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); 7587 if (opnum == XTENSA_UNDEFINED) 7588 { 7589 list->ok = FALSE; 7590 break; 7591 } 7592 7593 /* Record relocation opcode and opnum as we've calculated them 7594 anyway and they won't change. */ 7595 reloc[i].opcode = opcode; 7596 reloc[i].opnum = opnum; 7597 } 7598 } 7599 7600 if (list->ok) 7601 { 7602 ranges = bfd_realloc (ranges, n * sizeof (*ranges)); 7603 qsort (ranges, n, sizeof (*ranges), reloc_range_compare); 7604 7605 list->n_range = n; 7606 list->range = ranges; 7607 list->reloc = reloc; 7608 list->list_root.prev = &list->list_root; 7609 list->list_root.next = &list->list_root; 7610 } 7611 else 7612 { 7613 free (ranges); 7614 free (reloc); 7615 } 7616 } 7617 7618 static void reloc_range_list_append (reloc_range_list *list, 7619 unsigned irel_index) 7620 { 7621 reloc_range_list_entry *entry = list->reloc + irel_index; 7622 7623 entry->prev = list->list_root.prev; 7624 entry->next = &list->list_root; 7625 entry->prev->next = entry; 7626 entry->next->prev = entry; 7627 ++list->n_list; 7628 } 7629 7630 static void reloc_range_list_remove (reloc_range_list *list, 7631 unsigned irel_index) 7632 { 7633 reloc_range_list_entry *entry = list->reloc + irel_index; 7634 7635 entry->next->prev = entry->prev; 7636 entry->prev->next = entry->next; 7637 --list->n_list; 7638 } 7639 7640 /* Update relocation list object so that it lists all relocations that cross 7641 [first; last] range. Range bounds should not decrease with successive 7642 invocations. */ 7643 static void reloc_range_list_update_range (reloc_range_list *list, 7644 bfd_vma first, bfd_vma last) 7645 { 7646 /* This should not happen: EBBs are iterated from lower addresses to higher. 7647 But even if that happens there's no need to break: just flush current list 7648 and start from scratch. */ 7649 if ((list->last > 0 && list->range[list->last - 1].addr > last) || 7650 (list->first > 0 && list->range[list->first - 1].addr >= first)) 7651 { 7652 list->first = 0; 7653 list->last = 0; 7654 list->n_list = 0; 7655 list->list_root.next = &list->list_root; 7656 list->list_root.prev = &list->list_root; 7657 fprintf (stderr, "%s: move backwards requested\n", __func__); 7658 } 7659 7660 for (; list->last < list->n_range && 7661 list->range[list->last].addr <= last; ++list->last) 7662 if (list->range[list->last].add) 7663 reloc_range_list_append (list, list->range[list->last].irel_index); 7664 7665 for (; list->first < list->n_range && 7666 list->range[list->first].addr < first; ++list->first) 7667 if (!list->range[list->first].add) 7668 reloc_range_list_remove (list, list->range[list->first].irel_index); 7669 } 7670 7671 static void free_reloc_range_list (reloc_range_list *list) 7672 { 7673 free (list->range); 7674 free (list->reloc); 7675 } 7676 7677 /* The compute_text_actions function will build a list of potential 7678 transformation actions for code in the extended basic block of each 7679 longcall that is optimized to a direct call. From this list we 7680 generate a set of actions to actually perform that optimizes for 7681 space and, if not using size_opt, maintains branch target 7682 alignments. 7683 7684 These actions to be performed are placed on a per-section list. 7685 The actual changes are performed by relax_section() in the second 7686 pass. */ 7687 7688 bfd_boolean 7689 compute_text_actions (bfd *abfd, 7690 asection *sec, 7691 struct bfd_link_info *link_info) 7692 { 7693 xtensa_opcode *reloc_opcodes = NULL; 7694 xtensa_relax_info *relax_info; 7695 bfd_byte *contents; 7696 Elf_Internal_Rela *internal_relocs; 7697 bfd_boolean ok = TRUE; 7698 unsigned i; 7699 property_table_entry *prop_table = 0; 7700 int ptblsize = 0; 7701 bfd_size_type sec_size; 7702 reloc_range_list relevant_relocs; 7703 7704 relax_info = get_xtensa_relax_info (sec); 7705 BFD_ASSERT (relax_info); 7706 BFD_ASSERT (relax_info->src_next == relax_info->src_count); 7707 7708 /* Do nothing if the section contains no optimized longcalls. */ 7709 if (!relax_info->is_relaxable_asm_section) 7710 return ok; 7711 7712 internal_relocs = retrieve_internal_relocs (abfd, sec, 7713 link_info->keep_memory); 7714 7715 if (internal_relocs) 7716 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), 7717 internal_reloc_compare); 7718 7719 sec_size = bfd_get_section_limit (abfd, sec); 7720 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 7721 if (contents == NULL && sec_size != 0) 7722 { 7723 ok = FALSE; 7724 goto error_return; 7725 } 7726 7727 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, 7728 XTENSA_PROP_SEC_NAME, FALSE); 7729 if (ptblsize < 0) 7730 { 7731 ok = FALSE; 7732 goto error_return; 7733 } 7734 7735 /* Precompute the opcode for each relocation. */ 7736 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs); 7737 7738 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes, 7739 &relevant_relocs); 7740 7741 for (i = 0; i < sec->reloc_count; i++) 7742 { 7743 Elf_Internal_Rela *irel = &internal_relocs[i]; 7744 bfd_vma r_offset; 7745 property_table_entry *the_entry; 7746 int ptbl_idx; 7747 ebb_t *ebb; 7748 ebb_constraint ebb_table; 7749 bfd_size_type simplify_size; 7750 7751 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY) 7752 continue; 7753 r_offset = irel->r_offset; 7754 7755 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset); 7756 if (simplify_size == 0) 7757 { 7758 _bfd_error_handler 7759 /* xgettext:c-format */ 7760 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for " 7761 "XTENSA_ASM_SIMPLIFY relocation; " 7762 "possible configuration mismatch"), 7763 sec->owner, sec, (uint64_t) r_offset); 7764 continue; 7765 } 7766 7767 /* If the instruction table is not around, then don't do this 7768 relaxation. */ 7769 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, 7770 sec->vma + irel->r_offset); 7771 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL) 7772 { 7773 text_action_add (&relax_info->action_list, 7774 ta_convert_longcall, sec, r_offset, 7775 0); 7776 continue; 7777 } 7778 7779 /* If the next longcall happens to be at the same address as an 7780 unreachable section of size 0, then skip forward. */ 7781 ptbl_idx = the_entry - prop_table; 7782 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE) 7783 && the_entry->size == 0 7784 && ptbl_idx + 1 < ptblsize 7785 && (prop_table[ptbl_idx + 1].address 7786 == prop_table[ptbl_idx].address)) 7787 { 7788 ptbl_idx++; 7789 the_entry++; 7790 } 7791 7792 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM) 7793 /* NO_REORDER is OK */ 7794 continue; 7795 7796 init_ebb_constraint (&ebb_table); 7797 ebb = &ebb_table.ebb; 7798 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize, 7799 internal_relocs, sec->reloc_count); 7800 ebb->start_offset = r_offset + simplify_size; 7801 ebb->end_offset = r_offset + simplify_size; 7802 ebb->start_ptbl_idx = ptbl_idx; 7803 ebb->end_ptbl_idx = ptbl_idx; 7804 ebb->start_reloc_idx = i; 7805 ebb->end_reloc_idx = i; 7806 7807 if (!extend_ebb_bounds (ebb) 7808 || !compute_ebb_proposed_actions (&ebb_table) 7809 || !compute_ebb_actions (&ebb_table) 7810 || !check_section_ebb_pcrels_fit (abfd, sec, contents, 7811 internal_relocs, 7812 &relevant_relocs, 7813 &ebb_table, reloc_opcodes) 7814 || !check_section_ebb_reduces (&ebb_table)) 7815 { 7816 /* If anything goes wrong or we get unlucky and something does 7817 not fit, with our plan because of expansion between 7818 critical branches, just convert to a NOP. */ 7819 7820 text_action_add (&relax_info->action_list, 7821 ta_convert_longcall, sec, r_offset, 0); 7822 i = ebb_table.ebb.end_reloc_idx; 7823 free_ebb_constraint (&ebb_table); 7824 continue; 7825 } 7826 7827 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec); 7828 7829 /* Update the index so we do not go looking at the relocations 7830 we have already processed. */ 7831 i = ebb_table.ebb.end_reloc_idx; 7832 free_ebb_constraint (&ebb_table); 7833 } 7834 7835 free_reloc_range_list (&relevant_relocs); 7836 7837 #if DEBUG 7838 if (action_list_count (&relax_info->action_list)) 7839 print_action_list (stderr, &relax_info->action_list); 7840 #endif 7841 7842 error_return: 7843 release_contents (sec, contents); 7844 release_internal_relocs (sec, internal_relocs); 7845 if (prop_table) 7846 free (prop_table); 7847 if (reloc_opcodes) 7848 free (reloc_opcodes); 7849 7850 return ok; 7851 } 7852 7853 7854 /* Do not widen an instruction if it is preceeded by a 7855 loop opcode. It might cause misalignment. */ 7856 7857 static bfd_boolean 7858 prev_instr_is_a_loop (bfd_byte *contents, 7859 bfd_size_type content_length, 7860 bfd_size_type offset) 7861 { 7862 xtensa_opcode prev_opcode; 7863 7864 if (offset < 3) 7865 return FALSE; 7866 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0); 7867 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1); 7868 } 7869 7870 7871 /* Find all of the possible actions for an extended basic block. */ 7872 7873 bfd_boolean 7874 compute_ebb_proposed_actions (ebb_constraint *ebb_table) 7875 { 7876 const ebb_t *ebb = &ebb_table->ebb; 7877 unsigned rel_idx = ebb->start_reloc_idx; 7878 property_table_entry *entry, *start_entry, *end_entry; 7879 bfd_vma offset = 0; 7880 xtensa_isa isa = xtensa_default_isa; 7881 xtensa_format fmt; 7882 static xtensa_insnbuf insnbuf = NULL; 7883 static xtensa_insnbuf slotbuf = NULL; 7884 7885 if (insnbuf == NULL) 7886 { 7887 insnbuf = xtensa_insnbuf_alloc (isa); 7888 slotbuf = xtensa_insnbuf_alloc (isa); 7889 } 7890 7891 start_entry = &ebb->ptbl[ebb->start_ptbl_idx]; 7892 end_entry = &ebb->ptbl[ebb->end_ptbl_idx]; 7893 7894 for (entry = start_entry; entry <= end_entry; entry++) 7895 { 7896 bfd_vma start_offset, end_offset; 7897 bfd_size_type insn_len; 7898 7899 start_offset = entry->address - ebb->sec->vma; 7900 end_offset = entry->address + entry->size - ebb->sec->vma; 7901 7902 if (entry == start_entry) 7903 start_offset = ebb->start_offset; 7904 if (entry == end_entry) 7905 end_offset = ebb->end_offset; 7906 offset = start_offset; 7907 7908 if (offset == entry->address - ebb->sec->vma 7909 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0) 7910 { 7911 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN; 7912 BFD_ASSERT (offset != end_offset); 7913 if (offset == end_offset) 7914 return FALSE; 7915 7916 insn_len = insn_decode_len (ebb->contents, ebb->content_length, 7917 offset); 7918 if (insn_len == 0) 7919 goto decode_error; 7920 7921 if (check_branch_target_aligned_address (offset, insn_len)) 7922 align_type = EBB_REQUIRE_TGT_ALIGN; 7923 7924 ebb_propose_action (ebb_table, align_type, 0, 7925 ta_none, offset, 0, TRUE); 7926 } 7927 7928 while (offset != end_offset) 7929 { 7930 Elf_Internal_Rela *irel; 7931 xtensa_opcode opcode; 7932 7933 while (rel_idx < ebb->end_reloc_idx 7934 && (ebb->relocs[rel_idx].r_offset < offset 7935 || (ebb->relocs[rel_idx].r_offset == offset 7936 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info) 7937 != R_XTENSA_ASM_SIMPLIFY)))) 7938 rel_idx++; 7939 7940 /* Check for longcall. */ 7941 irel = &ebb->relocs[rel_idx]; 7942 if (irel->r_offset == offset 7943 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY) 7944 { 7945 bfd_size_type simplify_size; 7946 7947 simplify_size = get_asm_simplify_size (ebb->contents, 7948 ebb->content_length, 7949 irel->r_offset); 7950 if (simplify_size == 0) 7951 goto decode_error; 7952 7953 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, 7954 ta_convert_longcall, offset, 0, TRUE); 7955 7956 offset += simplify_size; 7957 continue; 7958 } 7959 7960 if (offset + MIN_INSN_LENGTH > ebb->content_length) 7961 goto decode_error; 7962 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset], 7963 ebb->content_length - offset); 7964 fmt = xtensa_format_decode (isa, insnbuf); 7965 if (fmt == XTENSA_UNDEFINED) 7966 goto decode_error; 7967 insn_len = xtensa_format_length (isa, fmt); 7968 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED) 7969 goto decode_error; 7970 7971 if (xtensa_format_num_slots (isa, fmt) != 1) 7972 { 7973 offset += insn_len; 7974 continue; 7975 } 7976 7977 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf); 7978 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); 7979 if (opcode == XTENSA_UNDEFINED) 7980 goto decode_error; 7981 7982 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0 7983 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 7984 && can_narrow_instruction (slotbuf, fmt, opcode) != 0) 7985 { 7986 /* Add an instruction narrow action. */ 7987 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, 7988 ta_narrow_insn, offset, 0, FALSE); 7989 } 7990 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 7991 && can_widen_instruction (slotbuf, fmt, opcode) != 0 7992 && ! prev_instr_is_a_loop (ebb->contents, 7993 ebb->content_length, offset)) 7994 { 7995 /* Add an instruction widen action. */ 7996 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, 7997 ta_widen_insn, offset, 0, FALSE); 7998 } 7999 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1) 8000 { 8001 /* Check for branch targets. */ 8002 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0, 8003 ta_none, offset, 0, TRUE); 8004 } 8005 8006 offset += insn_len; 8007 } 8008 } 8009 8010 if (ebb->ends_unreachable) 8011 { 8012 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, 8013 ta_fill, ebb->end_offset, 0, TRUE); 8014 } 8015 8016 return TRUE; 8017 8018 decode_error: 8019 _bfd_error_handler 8020 /* xgettext:c-format */ 8021 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; " 8022 "possible configuration mismatch"), 8023 ebb->sec->owner, ebb->sec, (uint64_t) offset); 8024 return FALSE; 8025 } 8026 8027 8028 /* After all of the information has collected about the 8029 transformations possible in an EBB, compute the appropriate actions 8030 here in compute_ebb_actions. We still must check later to make 8031 sure that the actions do not break any relocations. The algorithm 8032 used here is pretty greedy. Basically, it removes as many no-ops 8033 as possible so that the end of the EBB has the same alignment 8034 characteristics as the original. First, it uses narrowing, then 8035 fill space at the end of the EBB, and finally widenings. If that 8036 does not work, it tries again with one fewer no-op removed. The 8037 optimization will only be performed if all of the branch targets 8038 that were aligned before transformation are also aligned after the 8039 transformation. 8040 8041 When the size_opt flag is set, ignore the branch target alignments, 8042 narrow all wide instructions, and remove all no-ops unless the end 8043 of the EBB prevents it. */ 8044 8045 bfd_boolean 8046 compute_ebb_actions (ebb_constraint *ebb_table) 8047 { 8048 unsigned i = 0; 8049 unsigned j; 8050 int removed_bytes = 0; 8051 ebb_t *ebb = &ebb_table->ebb; 8052 unsigned seg_idx_start = 0; 8053 unsigned seg_idx_end = 0; 8054 8055 /* We perform this like the assembler relaxation algorithm: Start by 8056 assuming all instructions are narrow and all no-ops removed; then 8057 walk through.... */ 8058 8059 /* For each segment of this that has a solid constraint, check to 8060 see if there are any combinations that will keep the constraint. 8061 If so, use it. */ 8062 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++) 8063 { 8064 bfd_boolean requires_text_end_align = FALSE; 8065 unsigned longcall_count = 0; 8066 unsigned longcall_convert_count = 0; 8067 unsigned narrowable_count = 0; 8068 unsigned narrowable_convert_count = 0; 8069 unsigned widenable_count = 0; 8070 unsigned widenable_convert_count = 0; 8071 8072 proposed_action *action = NULL; 8073 int align = (1 << ebb_table->ebb.sec->alignment_power); 8074 8075 seg_idx_start = seg_idx_end; 8076 8077 for (i = seg_idx_start; i < ebb_table->action_count; i++) 8078 { 8079 action = &ebb_table->actions[i]; 8080 if (action->action == ta_convert_longcall) 8081 longcall_count++; 8082 if (action->action == ta_narrow_insn) 8083 narrowable_count++; 8084 if (action->action == ta_widen_insn) 8085 widenable_count++; 8086 if (action->action == ta_fill) 8087 break; 8088 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN) 8089 break; 8090 if (action->align_type == EBB_REQUIRE_TGT_ALIGN 8091 && !elf32xtensa_size_opt) 8092 break; 8093 } 8094 seg_idx_end = i; 8095 8096 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable) 8097 requires_text_end_align = TRUE; 8098 8099 if (elf32xtensa_size_opt && !requires_text_end_align 8100 && action->align_type != EBB_REQUIRE_LOOP_ALIGN 8101 && action->align_type != EBB_REQUIRE_TGT_ALIGN) 8102 { 8103 longcall_convert_count = longcall_count; 8104 narrowable_convert_count = narrowable_count; 8105 widenable_convert_count = 0; 8106 } 8107 else 8108 { 8109 /* There is a constraint. Convert the max number of longcalls. */ 8110 narrowable_convert_count = 0; 8111 longcall_convert_count = 0; 8112 widenable_convert_count = 0; 8113 8114 for (j = 0; j < longcall_count; j++) 8115 { 8116 int removed = (longcall_count - j) * 3 & (align - 1); 8117 unsigned desire_narrow = (align - removed) & (align - 1); 8118 unsigned desire_widen = removed; 8119 if (desire_narrow <= narrowable_count) 8120 { 8121 narrowable_convert_count = desire_narrow; 8122 narrowable_convert_count += 8123 (align * ((narrowable_count - narrowable_convert_count) 8124 / align)); 8125 longcall_convert_count = (longcall_count - j); 8126 widenable_convert_count = 0; 8127 break; 8128 } 8129 if (desire_widen <= widenable_count && !elf32xtensa_size_opt) 8130 { 8131 narrowable_convert_count = 0; 8132 longcall_convert_count = longcall_count - j; 8133 widenable_convert_count = desire_widen; 8134 break; 8135 } 8136 } 8137 } 8138 8139 /* Now the number of conversions are saved. Do them. */ 8140 for (i = seg_idx_start; i < seg_idx_end; i++) 8141 { 8142 action = &ebb_table->actions[i]; 8143 switch (action->action) 8144 { 8145 case ta_convert_longcall: 8146 if (longcall_convert_count != 0) 8147 { 8148 action->action = ta_remove_longcall; 8149 action->do_action = TRUE; 8150 action->removed_bytes += 3; 8151 longcall_convert_count--; 8152 } 8153 break; 8154 case ta_narrow_insn: 8155 if (narrowable_convert_count != 0) 8156 { 8157 action->do_action = TRUE; 8158 action->removed_bytes += 1; 8159 narrowable_convert_count--; 8160 } 8161 break; 8162 case ta_widen_insn: 8163 if (widenable_convert_count != 0) 8164 { 8165 action->do_action = TRUE; 8166 action->removed_bytes -= 1; 8167 widenable_convert_count--; 8168 } 8169 break; 8170 default: 8171 break; 8172 } 8173 } 8174 } 8175 8176 /* Now we move on to some local opts. Try to remove each of the 8177 remaining longcalls. */ 8178 8179 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable) 8180 { 8181 removed_bytes = 0; 8182 for (i = 0; i < ebb_table->action_count; i++) 8183 { 8184 int old_removed_bytes = removed_bytes; 8185 proposed_action *action = &ebb_table->actions[i]; 8186 8187 if (action->do_action && action->action == ta_convert_longcall) 8188 { 8189 bfd_boolean bad_alignment = FALSE; 8190 removed_bytes += 3; 8191 for (j = i + 1; j < ebb_table->action_count; j++) 8192 { 8193 proposed_action *new_action = &ebb_table->actions[j]; 8194 bfd_vma offset = new_action->offset; 8195 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN) 8196 { 8197 if (!check_branch_target_aligned 8198 (ebb_table->ebb.contents, 8199 ebb_table->ebb.content_length, 8200 offset, offset - removed_bytes)) 8201 { 8202 bad_alignment = TRUE; 8203 break; 8204 } 8205 } 8206 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN) 8207 { 8208 if (!check_loop_aligned (ebb_table->ebb.contents, 8209 ebb_table->ebb.content_length, 8210 offset, 8211 offset - removed_bytes)) 8212 { 8213 bad_alignment = TRUE; 8214 break; 8215 } 8216 } 8217 if (new_action->action == ta_narrow_insn 8218 && !new_action->do_action 8219 && ebb_table->ebb.sec->alignment_power == 2) 8220 { 8221 /* Narrow an instruction and we are done. */ 8222 new_action->do_action = TRUE; 8223 new_action->removed_bytes += 1; 8224 bad_alignment = FALSE; 8225 break; 8226 } 8227 if (new_action->action == ta_widen_insn 8228 && new_action->do_action 8229 && ebb_table->ebb.sec->alignment_power == 2) 8230 { 8231 /* Narrow an instruction and we are done. */ 8232 new_action->do_action = FALSE; 8233 new_action->removed_bytes += 1; 8234 bad_alignment = FALSE; 8235 break; 8236 } 8237 if (new_action->do_action) 8238 removed_bytes += new_action->removed_bytes; 8239 } 8240 if (!bad_alignment) 8241 { 8242 action->removed_bytes += 3; 8243 action->action = ta_remove_longcall; 8244 action->do_action = TRUE; 8245 } 8246 } 8247 removed_bytes = old_removed_bytes; 8248 if (action->do_action) 8249 removed_bytes += action->removed_bytes; 8250 } 8251 } 8252 8253 removed_bytes = 0; 8254 for (i = 0; i < ebb_table->action_count; ++i) 8255 { 8256 proposed_action *action = &ebb_table->actions[i]; 8257 if (action->do_action) 8258 removed_bytes += action->removed_bytes; 8259 } 8260 8261 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0 8262 && ebb->ends_unreachable) 8263 { 8264 proposed_action *action; 8265 int br; 8266 int extra_space; 8267 8268 BFD_ASSERT (ebb_table->action_count != 0); 8269 action = &ebb_table->actions[ebb_table->action_count - 1]; 8270 BFD_ASSERT (action->action == ta_fill); 8271 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE); 8272 8273 extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable); 8274 br = action->removed_bytes + removed_bytes + extra_space; 8275 br = br & ((1 << ebb->sec->alignment_power ) - 1); 8276 8277 action->removed_bytes = extra_space - br; 8278 } 8279 return TRUE; 8280 } 8281 8282 8283 /* The xlate_map is a sorted array of address mappings designed to 8284 answer the offset_with_removed_text() query with a binary search instead 8285 of a linear search through the section's action_list. */ 8286 8287 typedef struct xlate_map_entry xlate_map_entry_t; 8288 typedef struct xlate_map xlate_map_t; 8289 8290 struct xlate_map_entry 8291 { 8292 bfd_vma orig_address; 8293 bfd_vma new_address; 8294 unsigned size; 8295 }; 8296 8297 struct xlate_map 8298 { 8299 unsigned entry_count; 8300 xlate_map_entry_t *entry; 8301 }; 8302 8303 8304 static int 8305 xlate_compare (const void *a_v, const void *b_v) 8306 { 8307 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v; 8308 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v; 8309 if (a->orig_address < b->orig_address) 8310 return -1; 8311 if (a->orig_address > (b->orig_address + b->size - 1)) 8312 return 1; 8313 return 0; 8314 } 8315 8316 8317 static bfd_vma 8318 xlate_offset_with_removed_text (const xlate_map_t *map, 8319 text_action_list *action_list, 8320 bfd_vma offset) 8321 { 8322 void *r; 8323 xlate_map_entry_t *e; 8324 struct xlate_map_entry se; 8325 8326 if (map == NULL) 8327 return offset_with_removed_text (action_list, offset); 8328 8329 if (map->entry_count == 0) 8330 return offset; 8331 8332 se.orig_address = offset; 8333 r = bsearch (&se, map->entry, map->entry_count, 8334 sizeof (xlate_map_entry_t), &xlate_compare); 8335 e = (xlate_map_entry_t *) r; 8336 8337 /* There could be a jump past the end of the section, 8338 allow it using the last xlate map entry to translate its address. */ 8339 if (e == NULL) 8340 { 8341 e = map->entry + map->entry_count - 1; 8342 if (xlate_compare (&se, e) <= 0) 8343 e = NULL; 8344 } 8345 BFD_ASSERT (e != NULL); 8346 if (e == NULL) 8347 return offset; 8348 return e->new_address - e->orig_address + offset; 8349 } 8350 8351 typedef struct xlate_map_context_struct xlate_map_context; 8352 struct xlate_map_context_struct 8353 { 8354 xlate_map_t *map; 8355 xlate_map_entry_t *current_entry; 8356 int removed; 8357 }; 8358 8359 static int 8360 xlate_map_fn (splay_tree_node node, void *p) 8361 { 8362 text_action *r = (text_action *)node->value; 8363 xlate_map_context *ctx = p; 8364 unsigned orig_size = 0; 8365 8366 switch (r->action) 8367 { 8368 case ta_none: 8369 case ta_remove_insn: 8370 case ta_convert_longcall: 8371 case ta_remove_literal: 8372 case ta_add_literal: 8373 break; 8374 case ta_remove_longcall: 8375 orig_size = 6; 8376 break; 8377 case ta_narrow_insn: 8378 orig_size = 3; 8379 break; 8380 case ta_widen_insn: 8381 orig_size = 2; 8382 break; 8383 case ta_fill: 8384 break; 8385 } 8386 ctx->current_entry->size = 8387 r->offset + orig_size - ctx->current_entry->orig_address; 8388 if (ctx->current_entry->size != 0) 8389 { 8390 ctx->current_entry++; 8391 ctx->map->entry_count++; 8392 } 8393 ctx->current_entry->orig_address = r->offset + orig_size; 8394 ctx->removed += r->removed_bytes; 8395 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed; 8396 ctx->current_entry->size = 0; 8397 return 0; 8398 } 8399 8400 /* Build a binary searchable offset translation map from a section's 8401 action list. */ 8402 8403 static xlate_map_t * 8404 build_xlate_map (asection *sec, xtensa_relax_info *relax_info) 8405 { 8406 text_action_list *action_list = &relax_info->action_list; 8407 unsigned num_actions = 0; 8408 xlate_map_context ctx; 8409 8410 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t)); 8411 8412 if (ctx.map == NULL) 8413 return NULL; 8414 8415 num_actions = action_list_count (action_list); 8416 ctx.map->entry = (xlate_map_entry_t *) 8417 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1)); 8418 if (ctx.map->entry == NULL) 8419 { 8420 free (ctx.map); 8421 return NULL; 8422 } 8423 ctx.map->entry_count = 0; 8424 8425 ctx.removed = 0; 8426 ctx.current_entry = &ctx.map->entry[0]; 8427 8428 ctx.current_entry->orig_address = 0; 8429 ctx.current_entry->new_address = 0; 8430 ctx.current_entry->size = 0; 8431 8432 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx); 8433 8434 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec) 8435 - ctx.current_entry->orig_address); 8436 if (ctx.current_entry->size != 0) 8437 ctx.map->entry_count++; 8438 8439 return ctx.map; 8440 } 8441 8442 8443 /* Free an offset translation map. */ 8444 8445 static void 8446 free_xlate_map (xlate_map_t *map) 8447 { 8448 if (map && map->entry) 8449 free (map->entry); 8450 if (map) 8451 free (map); 8452 } 8453 8454 8455 /* Use check_section_ebb_pcrels_fit to make sure that all of the 8456 relocations in a section will fit if a proposed set of actions 8457 are performed. */ 8458 8459 static bfd_boolean 8460 check_section_ebb_pcrels_fit (bfd *abfd, 8461 asection *sec, 8462 bfd_byte *contents, 8463 Elf_Internal_Rela *internal_relocs, 8464 reloc_range_list *relevant_relocs, 8465 const ebb_constraint *constraint, 8466 const xtensa_opcode *reloc_opcodes) 8467 { 8468 unsigned i, j; 8469 unsigned n = sec->reloc_count; 8470 Elf_Internal_Rela *irel; 8471 xlate_map_t *xmap = NULL; 8472 bfd_boolean ok = TRUE; 8473 xtensa_relax_info *relax_info; 8474 reloc_range_list_entry *entry = NULL; 8475 8476 relax_info = get_xtensa_relax_info (sec); 8477 8478 if (relax_info && sec->reloc_count > 100) 8479 { 8480 xmap = build_xlate_map (sec, relax_info); 8481 /* NULL indicates out of memory, but the slow version 8482 can still be used. */ 8483 } 8484 8485 if (relevant_relocs && constraint->action_count) 8486 { 8487 if (!relevant_relocs->ok) 8488 { 8489 ok = FALSE; 8490 n = 0; 8491 } 8492 else 8493 { 8494 bfd_vma min_offset, max_offset; 8495 min_offset = max_offset = constraint->actions[0].offset; 8496 8497 for (i = 1; i < constraint->action_count; ++i) 8498 { 8499 proposed_action *action = &constraint->actions[i]; 8500 bfd_vma offset = action->offset; 8501 8502 if (offset < min_offset) 8503 min_offset = offset; 8504 if (offset > max_offset) 8505 max_offset = offset; 8506 } 8507 reloc_range_list_update_range (relevant_relocs, min_offset, 8508 max_offset); 8509 n = relevant_relocs->n_list; 8510 entry = &relevant_relocs->list_root; 8511 } 8512 } 8513 else 8514 { 8515 relevant_relocs = NULL; 8516 } 8517 8518 for (i = 0; i < n; i++) 8519 { 8520 r_reloc r_rel; 8521 bfd_vma orig_self_offset, orig_target_offset; 8522 bfd_vma self_offset, target_offset; 8523 int r_type; 8524 reloc_howto_type *howto; 8525 int self_removed_bytes, target_removed_bytes; 8526 8527 if (relevant_relocs) 8528 { 8529 entry = entry->next; 8530 irel = entry->irel; 8531 } 8532 else 8533 { 8534 irel = internal_relocs + i; 8535 } 8536 r_type = ELF32_R_TYPE (irel->r_info); 8537 8538 howto = &elf_howto_table[r_type]; 8539 /* We maintain the required invariant: PC-relative relocations 8540 that fit before linking must fit after linking. Thus we only 8541 need to deal with relocations to the same section that are 8542 PC-relative. */ 8543 if (r_type == R_XTENSA_ASM_SIMPLIFY 8544 || r_type == R_XTENSA_32_PCREL 8545 || !howto->pc_relative) 8546 continue; 8547 8548 r_reloc_init (&r_rel, abfd, irel, contents, 8549 bfd_get_section_limit (abfd, sec)); 8550 8551 if (r_reloc_get_section (&r_rel) != sec) 8552 continue; 8553 8554 orig_self_offset = irel->r_offset; 8555 orig_target_offset = r_rel.target_offset; 8556 8557 self_offset = orig_self_offset; 8558 target_offset = orig_target_offset; 8559 8560 if (relax_info) 8561 { 8562 self_offset = 8563 xlate_offset_with_removed_text (xmap, &relax_info->action_list, 8564 orig_self_offset); 8565 target_offset = 8566 xlate_offset_with_removed_text (xmap, &relax_info->action_list, 8567 orig_target_offset); 8568 } 8569 8570 self_removed_bytes = 0; 8571 target_removed_bytes = 0; 8572 8573 for (j = 0; j < constraint->action_count; ++j) 8574 { 8575 proposed_action *action = &constraint->actions[j]; 8576 bfd_vma offset = action->offset; 8577 int removed_bytes = action->removed_bytes; 8578 if (offset < orig_self_offset 8579 || (offset == orig_self_offset && action->action == ta_fill 8580 && action->removed_bytes < 0)) 8581 self_removed_bytes += removed_bytes; 8582 if (offset < orig_target_offset 8583 || (offset == orig_target_offset && action->action == ta_fill 8584 && action->removed_bytes < 0)) 8585 target_removed_bytes += removed_bytes; 8586 } 8587 self_offset -= self_removed_bytes; 8588 target_offset -= target_removed_bytes; 8589 8590 /* Try to encode it. Get the operand and check. */ 8591 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) 8592 { 8593 /* None of the current alternate relocs are PC-relative, 8594 and only PC-relative relocs matter here. */ 8595 } 8596 else 8597 { 8598 xtensa_opcode opcode; 8599 int opnum; 8600 8601 if (relevant_relocs) 8602 { 8603 opcode = entry->opcode; 8604 opnum = entry->opnum; 8605 } 8606 else 8607 { 8608 if (reloc_opcodes) 8609 opcode = reloc_opcodes[relevant_relocs ? 8610 (unsigned)(entry - relevant_relocs->reloc) : i]; 8611 else 8612 opcode = get_relocation_opcode (abfd, sec, contents, irel); 8613 if (opcode == XTENSA_UNDEFINED) 8614 { 8615 ok = FALSE; 8616 break; 8617 } 8618 8619 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); 8620 if (opnum == XTENSA_UNDEFINED) 8621 { 8622 ok = FALSE; 8623 break; 8624 } 8625 } 8626 8627 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset)) 8628 { 8629 ok = FALSE; 8630 break; 8631 } 8632 } 8633 } 8634 8635 if (xmap) 8636 free_xlate_map (xmap); 8637 8638 return ok; 8639 } 8640 8641 8642 static bfd_boolean 8643 check_section_ebb_reduces (const ebb_constraint *constraint) 8644 { 8645 int removed = 0; 8646 unsigned i; 8647 8648 for (i = 0; i < constraint->action_count; i++) 8649 { 8650 const proposed_action *action = &constraint->actions[i]; 8651 if (action->do_action) 8652 removed += action->removed_bytes; 8653 } 8654 if (removed < 0) 8655 return FALSE; 8656 8657 return TRUE; 8658 } 8659 8660 8661 void 8662 text_action_add_proposed (text_action_list *l, 8663 const ebb_constraint *ebb_table, 8664 asection *sec) 8665 { 8666 unsigned i; 8667 8668 for (i = 0; i < ebb_table->action_count; i++) 8669 { 8670 proposed_action *action = &ebb_table->actions[i]; 8671 8672 if (!action->do_action) 8673 continue; 8674 switch (action->action) 8675 { 8676 case ta_remove_insn: 8677 case ta_remove_longcall: 8678 case ta_convert_longcall: 8679 case ta_narrow_insn: 8680 case ta_widen_insn: 8681 case ta_fill: 8682 case ta_remove_literal: 8683 text_action_add (l, action->action, sec, action->offset, 8684 action->removed_bytes); 8685 break; 8686 case ta_none: 8687 break; 8688 default: 8689 BFD_ASSERT (0); 8690 break; 8691 } 8692 } 8693 } 8694 8695 8696 int 8697 xtensa_compute_fill_extra_space (property_table_entry *entry) 8698 { 8699 int fill_extra_space; 8700 8701 if (!entry) 8702 return 0; 8703 8704 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0) 8705 return 0; 8706 8707 fill_extra_space = entry->size; 8708 if ((entry->flags & XTENSA_PROP_ALIGN) != 0) 8709 { 8710 /* Fill bytes for alignment: 8711 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */ 8712 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags); 8713 int nsm = (1 << pow) - 1; 8714 bfd_vma addr = entry->address + entry->size; 8715 bfd_vma align_fill = nsm - ((addr + nsm) & nsm); 8716 fill_extra_space += align_fill; 8717 } 8718 return fill_extra_space; 8719 } 8720 8721 8722 /* First relaxation pass. */ 8723 8724 /* If the section contains relaxable literals, check each literal to 8725 see if it has the same value as another literal that has already 8726 been seen, either in the current section or a previous one. If so, 8727 add an entry to the per-section list of removed literals. The 8728 actual changes are deferred until the next pass. */ 8729 8730 static bfd_boolean 8731 compute_removed_literals (bfd *abfd, 8732 asection *sec, 8733 struct bfd_link_info *link_info, 8734 value_map_hash_table *values) 8735 { 8736 xtensa_relax_info *relax_info; 8737 bfd_byte *contents; 8738 Elf_Internal_Rela *internal_relocs; 8739 source_reloc *src_relocs, *rel; 8740 bfd_boolean ok = TRUE; 8741 property_table_entry *prop_table = NULL; 8742 int ptblsize; 8743 int i, prev_i; 8744 bfd_boolean last_loc_is_prev = FALSE; 8745 bfd_vma last_target_offset = 0; 8746 section_cache_t target_sec_cache; 8747 bfd_size_type sec_size; 8748 8749 init_section_cache (&target_sec_cache); 8750 8751 /* Do nothing if it is not a relaxable literal section. */ 8752 relax_info = get_xtensa_relax_info (sec); 8753 BFD_ASSERT (relax_info); 8754 if (!relax_info->is_relaxable_literal_section) 8755 return ok; 8756 8757 internal_relocs = retrieve_internal_relocs (abfd, sec, 8758 link_info->keep_memory); 8759 8760 sec_size = bfd_get_section_limit (abfd, sec); 8761 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 8762 if (contents == NULL && sec_size != 0) 8763 { 8764 ok = FALSE; 8765 goto error_return; 8766 } 8767 8768 /* Sort the source_relocs by target offset. */ 8769 src_relocs = relax_info->src_relocs; 8770 qsort (src_relocs, relax_info->src_count, 8771 sizeof (source_reloc), source_reloc_compare); 8772 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), 8773 internal_reloc_compare); 8774 8775 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, 8776 XTENSA_PROP_SEC_NAME, FALSE); 8777 if (ptblsize < 0) 8778 { 8779 ok = FALSE; 8780 goto error_return; 8781 } 8782 8783 prev_i = -1; 8784 for (i = 0; i < relax_info->src_count; i++) 8785 { 8786 Elf_Internal_Rela *irel = NULL; 8787 8788 rel = &src_relocs[i]; 8789 if (get_l32r_opcode () != rel->opcode) 8790 continue; 8791 irel = get_irel_at_offset (sec, internal_relocs, 8792 rel->r_rel.target_offset); 8793 8794 /* If the relocation on this is not a simple R_XTENSA_32 or 8795 R_XTENSA_PLT then do not consider it. This may happen when 8796 the difference of two symbols is used in a literal. */ 8797 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32 8798 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT)) 8799 continue; 8800 8801 /* If the target_offset for this relocation is the same as the 8802 previous relocation, then we've already considered whether the 8803 literal can be coalesced. Skip to the next one.... */ 8804 if (i != 0 && prev_i != -1 8805 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset) 8806 continue; 8807 prev_i = i; 8808 8809 if (last_loc_is_prev && 8810 last_target_offset + 4 != rel->r_rel.target_offset) 8811 last_loc_is_prev = FALSE; 8812 8813 /* Check if the relocation was from an L32R that is being removed 8814 because a CALLX was converted to a direct CALL, and check if 8815 there are no other relocations to the literal. */ 8816 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count, 8817 sec, prop_table, ptblsize)) 8818 { 8819 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs, 8820 irel, rel, prop_table, ptblsize)) 8821 { 8822 ok = FALSE; 8823 goto error_return; 8824 } 8825 last_target_offset = rel->r_rel.target_offset; 8826 continue; 8827 } 8828 8829 if (!identify_literal_placement (abfd, sec, contents, link_info, 8830 values, 8831 &last_loc_is_prev, irel, 8832 relax_info->src_count - i, rel, 8833 prop_table, ptblsize, 8834 &target_sec_cache, rel->is_abs_literal)) 8835 { 8836 ok = FALSE; 8837 goto error_return; 8838 } 8839 last_target_offset = rel->r_rel.target_offset; 8840 } 8841 8842 #if DEBUG 8843 print_removed_literals (stderr, &relax_info->removed_list); 8844 print_action_list (stderr, &relax_info->action_list); 8845 #endif /* DEBUG */ 8846 8847 error_return: 8848 if (prop_table) 8849 free (prop_table); 8850 free_section_cache (&target_sec_cache); 8851 8852 release_contents (sec, contents); 8853 release_internal_relocs (sec, internal_relocs); 8854 return ok; 8855 } 8856 8857 8858 static Elf_Internal_Rela * 8859 get_irel_at_offset (asection *sec, 8860 Elf_Internal_Rela *internal_relocs, 8861 bfd_vma offset) 8862 { 8863 unsigned i; 8864 Elf_Internal_Rela *irel; 8865 unsigned r_type; 8866 Elf_Internal_Rela key; 8867 8868 if (!internal_relocs) 8869 return NULL; 8870 8871 key.r_offset = offset; 8872 irel = bsearch (&key, internal_relocs, sec->reloc_count, 8873 sizeof (Elf_Internal_Rela), internal_reloc_matches); 8874 if (!irel) 8875 return NULL; 8876 8877 /* bsearch does not guarantee which will be returned if there are 8878 multiple matches. We need the first that is not an alignment. */ 8879 i = irel - internal_relocs; 8880 while (i > 0) 8881 { 8882 if (internal_relocs[i-1].r_offset != offset) 8883 break; 8884 i--; 8885 } 8886 for ( ; i < sec->reloc_count; i++) 8887 { 8888 irel = &internal_relocs[i]; 8889 r_type = ELF32_R_TYPE (irel->r_info); 8890 if (irel->r_offset == offset && r_type != R_XTENSA_NONE) 8891 return irel; 8892 } 8893 8894 return NULL; 8895 } 8896 8897 8898 bfd_boolean 8899 is_removable_literal (const source_reloc *rel, 8900 int i, 8901 const source_reloc *src_relocs, 8902 int src_count, 8903 asection *sec, 8904 property_table_entry *prop_table, 8905 int ptblsize) 8906 { 8907 const source_reloc *curr_rel; 8908 property_table_entry *entry; 8909 8910 if (!rel->is_null) 8911 return FALSE; 8912 8913 entry = elf_xtensa_find_property_entry (prop_table, ptblsize, 8914 sec->vma + rel->r_rel.target_offset); 8915 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) 8916 return FALSE; 8917 8918 for (++i; i < src_count; ++i) 8919 { 8920 curr_rel = &src_relocs[i]; 8921 /* If all others have the same target offset.... */ 8922 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset) 8923 return TRUE; 8924 8925 if (!curr_rel->is_null 8926 && !xtensa_is_property_section (curr_rel->source_sec) 8927 && !(curr_rel->source_sec->flags & SEC_DEBUGGING)) 8928 return FALSE; 8929 } 8930 return TRUE; 8931 } 8932 8933 8934 bfd_boolean 8935 remove_dead_literal (bfd *abfd, 8936 asection *sec, 8937 struct bfd_link_info *link_info, 8938 Elf_Internal_Rela *internal_relocs, 8939 Elf_Internal_Rela *irel, 8940 source_reloc *rel, 8941 property_table_entry *prop_table, 8942 int ptblsize) 8943 { 8944 property_table_entry *entry; 8945 xtensa_relax_info *relax_info; 8946 8947 relax_info = get_xtensa_relax_info (sec); 8948 if (!relax_info) 8949 return FALSE; 8950 8951 entry = elf_xtensa_find_property_entry (prop_table, ptblsize, 8952 sec->vma + rel->r_rel.target_offset); 8953 8954 /* Mark the unused literal so that it will be removed. */ 8955 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL); 8956 8957 text_action_add (&relax_info->action_list, 8958 ta_remove_literal, sec, rel->r_rel.target_offset, 4); 8959 8960 /* If the section is 4-byte aligned, do not add fill. */ 8961 if (sec->alignment_power > 2) 8962 { 8963 int fill_extra_space; 8964 bfd_vma entry_sec_offset; 8965 text_action *fa; 8966 property_table_entry *the_add_entry; 8967 int removed_diff; 8968 8969 if (entry) 8970 entry_sec_offset = entry->address - sec->vma + entry->size; 8971 else 8972 entry_sec_offset = rel->r_rel.target_offset + 4; 8973 8974 /* If the literal range is at the end of the section, 8975 do not add fill. */ 8976 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, 8977 entry_sec_offset); 8978 fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry); 8979 8980 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); 8981 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, 8982 -4, fill_extra_space); 8983 if (fa) 8984 adjust_fill_action (fa, removed_diff); 8985 else 8986 text_action_add (&relax_info->action_list, 8987 ta_fill, sec, entry_sec_offset, removed_diff); 8988 } 8989 8990 /* Zero out the relocation on this literal location. */ 8991 if (irel) 8992 { 8993 if (elf_hash_table (link_info)->dynamic_sections_created) 8994 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); 8995 8996 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); 8997 pin_internal_relocs (sec, internal_relocs); 8998 } 8999 9000 /* Do not modify "last_loc_is_prev". */ 9001 return TRUE; 9002 } 9003 9004 9005 bfd_boolean 9006 identify_literal_placement (bfd *abfd, 9007 asection *sec, 9008 bfd_byte *contents, 9009 struct bfd_link_info *link_info, 9010 value_map_hash_table *values, 9011 bfd_boolean *last_loc_is_prev_p, 9012 Elf_Internal_Rela *irel, 9013 int remaining_src_rels, 9014 source_reloc *rel, 9015 property_table_entry *prop_table, 9016 int ptblsize, 9017 section_cache_t *target_sec_cache, 9018 bfd_boolean is_abs_literal) 9019 { 9020 literal_value val; 9021 value_map *val_map; 9022 xtensa_relax_info *relax_info; 9023 bfd_boolean literal_placed = FALSE; 9024 r_reloc r_rel; 9025 unsigned long value; 9026 bfd_boolean final_static_link; 9027 bfd_size_type sec_size; 9028 9029 relax_info = get_xtensa_relax_info (sec); 9030 if (!relax_info) 9031 return FALSE; 9032 9033 sec_size = bfd_get_section_limit (abfd, sec); 9034 9035 final_static_link = 9036 (!bfd_link_relocatable (link_info) 9037 && !elf_hash_table (link_info)->dynamic_sections_created); 9038 9039 /* The placement algorithm first checks to see if the literal is 9040 already in the value map. If so and the value map is reachable 9041 from all uses, then the literal is moved to that location. If 9042 not, then we identify the last location where a fresh literal was 9043 placed. If the literal can be safely moved there, then we do so. 9044 If not, then we assume that the literal is not to move and leave 9045 the literal where it is, marking it as the last literal 9046 location. */ 9047 9048 /* Find the literal value. */ 9049 value = 0; 9050 r_reloc_init (&r_rel, abfd, irel, contents, sec_size); 9051 if (!irel) 9052 { 9053 BFD_ASSERT (rel->r_rel.target_offset < sec_size); 9054 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset); 9055 } 9056 init_literal_value (&val, &r_rel, value, is_abs_literal); 9057 9058 /* Check if we've seen another literal with the same value that 9059 is in the same output section. */ 9060 val_map = value_map_get_cached_value (values, &val, final_static_link); 9061 9062 if (val_map 9063 && (r_reloc_get_section (&val_map->loc)->output_section 9064 == sec->output_section) 9065 && relocations_reach (rel, remaining_src_rels, &val_map->loc) 9066 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map)) 9067 { 9068 /* No change to last_loc_is_prev. */ 9069 literal_placed = TRUE; 9070 } 9071 9072 /* For relocatable links, do not try to move literals. To do it 9073 correctly might increase the number of relocations in an input 9074 section making the default relocatable linking fail. */ 9075 if (!bfd_link_relocatable (link_info) && !literal_placed 9076 && values->has_last_loc && !(*last_loc_is_prev_p)) 9077 { 9078 asection *target_sec = r_reloc_get_section (&values->last_loc); 9079 if (target_sec && target_sec->output_section == sec->output_section) 9080 { 9081 /* Increment the virtual offset. */ 9082 r_reloc try_loc = values->last_loc; 9083 try_loc.virtual_offset += 4; 9084 9085 /* There is a last loc that was in the same output section. */ 9086 if (relocations_reach (rel, remaining_src_rels, &try_loc) 9087 && move_shared_literal (sec, link_info, rel, 9088 prop_table, ptblsize, 9089 &try_loc, &val, target_sec_cache)) 9090 { 9091 values->last_loc.virtual_offset += 4; 9092 literal_placed = TRUE; 9093 if (!val_map) 9094 val_map = add_value_map (values, &val, &try_loc, 9095 final_static_link); 9096 else 9097 val_map->loc = try_loc; 9098 } 9099 } 9100 } 9101 9102 if (!literal_placed) 9103 { 9104 /* Nothing worked, leave the literal alone but update the last loc. */ 9105 values->has_last_loc = TRUE; 9106 values->last_loc = rel->r_rel; 9107 if (!val_map) 9108 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link); 9109 else 9110 val_map->loc = rel->r_rel; 9111 *last_loc_is_prev_p = TRUE; 9112 } 9113 9114 return TRUE; 9115 } 9116 9117 9118 /* Check if the original relocations (presumably on L32R instructions) 9119 identified by reloc[0..N] can be changed to reference the literal 9120 identified by r_rel. If r_rel is out of range for any of the 9121 original relocations, then we don't want to coalesce the original 9122 literal with the one at r_rel. We only check reloc[0..N], where the 9123 offsets are all the same as for reloc[0] (i.e., they're all 9124 referencing the same literal) and where N is also bounded by the 9125 number of remaining entries in the "reloc" array. The "reloc" array 9126 is sorted by target offset so we know all the entries for the same 9127 literal will be contiguous. */ 9128 9129 static bfd_boolean 9130 relocations_reach (source_reloc *reloc, 9131 int remaining_relocs, 9132 const r_reloc *r_rel) 9133 { 9134 bfd_vma from_offset, source_address, dest_address; 9135 asection *sec; 9136 int i; 9137 9138 if (!r_reloc_is_defined (r_rel)) 9139 return FALSE; 9140 9141 sec = r_reloc_get_section (r_rel); 9142 from_offset = reloc[0].r_rel.target_offset; 9143 9144 for (i = 0; i < remaining_relocs; i++) 9145 { 9146 if (reloc[i].r_rel.target_offset != from_offset) 9147 break; 9148 9149 /* Ignore relocations that have been removed. */ 9150 if (reloc[i].is_null) 9151 continue; 9152 9153 /* The original and new output section for these must be the same 9154 in order to coalesce. */ 9155 if (r_reloc_get_section (&reloc[i].r_rel)->output_section 9156 != sec->output_section) 9157 return FALSE; 9158 9159 /* Absolute literals in the same output section can always be 9160 combined. */ 9161 if (reloc[i].is_abs_literal) 9162 continue; 9163 9164 /* A literal with no PC-relative relocations can be moved anywhere. */ 9165 if (reloc[i].opnd != -1) 9166 { 9167 /* Otherwise, check to see that it fits. */ 9168 source_address = (reloc[i].source_sec->output_section->vma 9169 + reloc[i].source_sec->output_offset 9170 + reloc[i].r_rel.rela.r_offset); 9171 dest_address = (sec->output_section->vma 9172 + sec->output_offset 9173 + r_rel->target_offset); 9174 9175 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd, 9176 source_address, dest_address)) 9177 return FALSE; 9178 } 9179 } 9180 9181 return TRUE; 9182 } 9183 9184 9185 /* Move a literal to another literal location because it is 9186 the same as the other literal value. */ 9187 9188 static bfd_boolean 9189 coalesce_shared_literal (asection *sec, 9190 source_reloc *rel, 9191 property_table_entry *prop_table, 9192 int ptblsize, 9193 value_map *val_map) 9194 { 9195 property_table_entry *entry; 9196 text_action *fa; 9197 property_table_entry *the_add_entry; 9198 int removed_diff; 9199 xtensa_relax_info *relax_info; 9200 9201 relax_info = get_xtensa_relax_info (sec); 9202 if (!relax_info) 9203 return FALSE; 9204 9205 entry = elf_xtensa_find_property_entry 9206 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); 9207 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) 9208 return TRUE; 9209 9210 /* Mark that the literal will be coalesced. */ 9211 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc); 9212 9213 text_action_add (&relax_info->action_list, 9214 ta_remove_literal, sec, rel->r_rel.target_offset, 4); 9215 9216 /* If the section is 4-byte aligned, do not add fill. */ 9217 if (sec->alignment_power > 2) 9218 { 9219 int fill_extra_space; 9220 bfd_vma entry_sec_offset; 9221 9222 if (entry) 9223 entry_sec_offset = entry->address - sec->vma + entry->size; 9224 else 9225 entry_sec_offset = rel->r_rel.target_offset + 4; 9226 9227 /* If the literal range is at the end of the section, 9228 do not add fill. */ 9229 fill_extra_space = 0; 9230 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, 9231 entry_sec_offset); 9232 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) 9233 fill_extra_space = the_add_entry->size; 9234 9235 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); 9236 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, 9237 -4, fill_extra_space); 9238 if (fa) 9239 adjust_fill_action (fa, removed_diff); 9240 else 9241 text_action_add (&relax_info->action_list, 9242 ta_fill, sec, entry_sec_offset, removed_diff); 9243 } 9244 9245 return TRUE; 9246 } 9247 9248 9249 /* Move a literal to another location. This may actually increase the 9250 total amount of space used because of alignments so we need to do 9251 this carefully. Also, it may make a branch go out of range. */ 9252 9253 static bfd_boolean 9254 move_shared_literal (asection *sec, 9255 struct bfd_link_info *link_info, 9256 source_reloc *rel, 9257 property_table_entry *prop_table, 9258 int ptblsize, 9259 const r_reloc *target_loc, 9260 const literal_value *lit_value, 9261 section_cache_t *target_sec_cache) 9262 { 9263 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL; 9264 text_action *fa, *target_fa; 9265 int removed_diff; 9266 xtensa_relax_info *relax_info, *target_relax_info; 9267 asection *target_sec; 9268 ebb_t *ebb; 9269 ebb_constraint ebb_table; 9270 bfd_boolean relocs_fit; 9271 9272 /* If this routine always returns FALSE, the literals that cannot be 9273 coalesced will not be moved. */ 9274 if (elf32xtensa_no_literal_movement) 9275 return FALSE; 9276 9277 relax_info = get_xtensa_relax_info (sec); 9278 if (!relax_info) 9279 return FALSE; 9280 9281 target_sec = r_reloc_get_section (target_loc); 9282 target_relax_info = get_xtensa_relax_info (target_sec); 9283 9284 /* Literals to undefined sections may not be moved because they 9285 must report an error. */ 9286 if (bfd_is_und_section (target_sec)) 9287 return FALSE; 9288 9289 src_entry = elf_xtensa_find_property_entry 9290 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); 9291 9292 if (!section_cache_section (target_sec_cache, target_sec, link_info)) 9293 return FALSE; 9294 9295 target_entry = elf_xtensa_find_property_entry 9296 (target_sec_cache->ptbl, target_sec_cache->pte_count, 9297 target_sec->vma + target_loc->target_offset); 9298 9299 if (!target_entry) 9300 return FALSE; 9301 9302 /* Make sure that we have not broken any branches. */ 9303 relocs_fit = FALSE; 9304 9305 init_ebb_constraint (&ebb_table); 9306 ebb = &ebb_table.ebb; 9307 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents, 9308 target_sec_cache->content_length, 9309 target_sec_cache->ptbl, target_sec_cache->pte_count, 9310 target_sec_cache->relocs, target_sec_cache->reloc_count); 9311 9312 /* Propose to add 4 bytes + worst-case alignment size increase to 9313 destination. */ 9314 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0, 9315 ta_fill, target_loc->target_offset, 9316 -4 - (1 << target_sec->alignment_power), TRUE); 9317 9318 /* Check all of the PC-relative relocations to make sure they still fit. */ 9319 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec, 9320 target_sec_cache->contents, 9321 target_sec_cache->relocs, NULL, 9322 &ebb_table, NULL); 9323 9324 if (!relocs_fit) 9325 return FALSE; 9326 9327 text_action_add_literal (&target_relax_info->action_list, 9328 ta_add_literal, target_loc, lit_value, -4); 9329 9330 if (target_sec->alignment_power > 2 && target_entry != src_entry) 9331 { 9332 /* May need to add or remove some fill to maintain alignment. */ 9333 int fill_extra_space; 9334 bfd_vma entry_sec_offset; 9335 9336 entry_sec_offset = 9337 target_entry->address - target_sec->vma + target_entry->size; 9338 9339 /* If the literal range is at the end of the section, 9340 do not add fill. */ 9341 fill_extra_space = 0; 9342 the_add_entry = 9343 elf_xtensa_find_property_entry (target_sec_cache->ptbl, 9344 target_sec_cache->pte_count, 9345 entry_sec_offset); 9346 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) 9347 fill_extra_space = the_add_entry->size; 9348 9349 target_fa = find_fill_action (&target_relax_info->action_list, 9350 target_sec, entry_sec_offset); 9351 removed_diff = compute_removed_action_diff (target_fa, target_sec, 9352 entry_sec_offset, 4, 9353 fill_extra_space); 9354 if (target_fa) 9355 adjust_fill_action (target_fa, removed_diff); 9356 else 9357 text_action_add (&target_relax_info->action_list, 9358 ta_fill, target_sec, entry_sec_offset, removed_diff); 9359 } 9360 9361 /* Mark that the literal will be moved to the new location. */ 9362 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc); 9363 9364 /* Remove the literal. */ 9365 text_action_add (&relax_info->action_list, 9366 ta_remove_literal, sec, rel->r_rel.target_offset, 4); 9367 9368 /* If the section is 4-byte aligned, do not add fill. */ 9369 if (sec->alignment_power > 2 && target_entry != src_entry) 9370 { 9371 int fill_extra_space; 9372 bfd_vma entry_sec_offset; 9373 9374 if (src_entry) 9375 entry_sec_offset = src_entry->address - sec->vma + src_entry->size; 9376 else 9377 entry_sec_offset = rel->r_rel.target_offset+4; 9378 9379 /* If the literal range is at the end of the section, 9380 do not add fill. */ 9381 fill_extra_space = 0; 9382 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, 9383 entry_sec_offset); 9384 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) 9385 fill_extra_space = the_add_entry->size; 9386 9387 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); 9388 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, 9389 -4, fill_extra_space); 9390 if (fa) 9391 adjust_fill_action (fa, removed_diff); 9392 else 9393 text_action_add (&relax_info->action_list, 9394 ta_fill, sec, entry_sec_offset, removed_diff); 9395 } 9396 9397 return TRUE; 9398 } 9399 9400 9401 /* Second relaxation pass. */ 9402 9403 static int 9404 action_remove_bytes_fn (splay_tree_node node, void *p) 9405 { 9406 bfd_size_type *final_size = p; 9407 text_action *action = (text_action *)node->value; 9408 9409 *final_size -= action->removed_bytes; 9410 return 0; 9411 } 9412 9413 /* Modify all of the relocations to point to the right spot, and if this 9414 is a relaxable section, delete the unwanted literals and fix the 9415 section size. */ 9416 9417 bfd_boolean 9418 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info) 9419 { 9420 Elf_Internal_Rela *internal_relocs; 9421 xtensa_relax_info *relax_info; 9422 bfd_byte *contents; 9423 bfd_boolean ok = TRUE; 9424 unsigned i; 9425 bfd_boolean rv = FALSE; 9426 bfd_boolean virtual_action; 9427 bfd_size_type sec_size; 9428 9429 sec_size = bfd_get_section_limit (abfd, sec); 9430 relax_info = get_xtensa_relax_info (sec); 9431 BFD_ASSERT (relax_info); 9432 9433 /* First translate any of the fixes that have been added already. */ 9434 translate_section_fixes (sec); 9435 9436 /* Handle property sections (e.g., literal tables) specially. */ 9437 if (xtensa_is_property_section (sec)) 9438 { 9439 BFD_ASSERT (!relax_info->is_relaxable_literal_section); 9440 return relax_property_section (abfd, sec, link_info); 9441 } 9442 9443 internal_relocs = retrieve_internal_relocs (abfd, sec, 9444 link_info->keep_memory); 9445 if (!internal_relocs && !action_list_count (&relax_info->action_list)) 9446 return TRUE; 9447 9448 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 9449 if (contents == NULL && sec_size != 0) 9450 { 9451 ok = FALSE; 9452 goto error_return; 9453 } 9454 9455 if (internal_relocs) 9456 { 9457 for (i = 0; i < sec->reloc_count; i++) 9458 { 9459 Elf_Internal_Rela *irel; 9460 xtensa_relax_info *target_relax_info; 9461 bfd_vma source_offset, old_source_offset; 9462 r_reloc r_rel; 9463 unsigned r_type; 9464 asection *target_sec; 9465 9466 /* Locally change the source address. 9467 Translate the target to the new target address. 9468 If it points to this section and has been removed, 9469 NULLify it. 9470 Write it back. */ 9471 9472 irel = &internal_relocs[i]; 9473 source_offset = irel->r_offset; 9474 old_source_offset = source_offset; 9475 9476 r_type = ELF32_R_TYPE (irel->r_info); 9477 r_reloc_init (&r_rel, abfd, irel, contents, 9478 bfd_get_section_limit (abfd, sec)); 9479 9480 /* If this section could have changed then we may need to 9481 change the relocation's offset. */ 9482 9483 if (relax_info->is_relaxable_literal_section 9484 || relax_info->is_relaxable_asm_section) 9485 { 9486 pin_internal_relocs (sec, internal_relocs); 9487 9488 if (r_type != R_XTENSA_NONE 9489 && find_removed_literal (&relax_info->removed_list, 9490 irel->r_offset)) 9491 { 9492 /* Remove this relocation. */ 9493 if (elf_hash_table (link_info)->dynamic_sections_created) 9494 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); 9495 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); 9496 irel->r_offset = offset_with_removed_text_map 9497 (&relax_info->action_list, irel->r_offset); 9498 continue; 9499 } 9500 9501 if (r_type == R_XTENSA_ASM_SIMPLIFY) 9502 { 9503 text_action *action = 9504 find_insn_action (&relax_info->action_list, 9505 irel->r_offset); 9506 if (action && (action->action == ta_convert_longcall 9507 || action->action == ta_remove_longcall)) 9508 { 9509 bfd_reloc_status_type retval; 9510 char *error_message = NULL; 9511 9512 retval = contract_asm_expansion (contents, sec_size, 9513 irel, &error_message); 9514 if (retval != bfd_reloc_ok) 9515 { 9516 (*link_info->callbacks->reloc_dangerous) 9517 (link_info, error_message, abfd, sec, 9518 irel->r_offset); 9519 goto error_return; 9520 } 9521 /* Update the action so that the code that moves 9522 the contents will do the right thing. */ 9523 /* ta_remove_longcall and ta_remove_insn actions are 9524 grouped together in the tree as well as 9525 ta_convert_longcall and ta_none, so that changes below 9526 can be done w/o removing and reinserting action into 9527 the tree. */ 9528 9529 if (action->action == ta_remove_longcall) 9530 action->action = ta_remove_insn; 9531 else 9532 action->action = ta_none; 9533 /* Refresh the info in the r_rel. */ 9534 r_reloc_init (&r_rel, abfd, irel, contents, sec_size); 9535 r_type = ELF32_R_TYPE (irel->r_info); 9536 } 9537 } 9538 9539 source_offset = offset_with_removed_text_map 9540 (&relax_info->action_list, irel->r_offset); 9541 irel->r_offset = source_offset; 9542 } 9543 9544 /* If the target section could have changed then 9545 we may need to change the relocation's target offset. */ 9546 9547 target_sec = r_reloc_get_section (&r_rel); 9548 9549 /* For a reference to a discarded section from a DWARF section, 9550 i.e., where action_discarded is PRETEND, the symbol will 9551 eventually be modified to refer to the kept section (at least if 9552 the kept and discarded sections are the same size). Anticipate 9553 that here and adjust things accordingly. */ 9554 if (! elf_xtensa_ignore_discarded_relocs (sec) 9555 && elf_xtensa_action_discarded (sec) == PRETEND 9556 && sec->sec_info_type != SEC_INFO_TYPE_STABS 9557 && target_sec != NULL 9558 && discarded_section (target_sec)) 9559 { 9560 /* It would be natural to call _bfd_elf_check_kept_section 9561 here, but it's not exported from elflink.c. It's also a 9562 fairly expensive check. Adjusting the relocations to the 9563 discarded section is fairly harmless; it will only adjust 9564 some addends and difference values. If it turns out that 9565 _bfd_elf_check_kept_section fails later, it won't matter, 9566 so just compare the section names to find the right group 9567 member. */ 9568 asection *kept = target_sec->kept_section; 9569 if (kept != NULL) 9570 { 9571 if ((kept->flags & SEC_GROUP) != 0) 9572 { 9573 asection *first = elf_next_in_group (kept); 9574 asection *s = first; 9575 9576 kept = NULL; 9577 while (s != NULL) 9578 { 9579 if (strcmp (s->name, target_sec->name) == 0) 9580 { 9581 kept = s; 9582 break; 9583 } 9584 s = elf_next_in_group (s); 9585 if (s == first) 9586 break; 9587 } 9588 } 9589 } 9590 if (kept != NULL 9591 && ((target_sec->rawsize != 0 9592 ? target_sec->rawsize : target_sec->size) 9593 == (kept->rawsize != 0 ? kept->rawsize : kept->size))) 9594 target_sec = kept; 9595 } 9596 9597 target_relax_info = get_xtensa_relax_info (target_sec); 9598 if (target_relax_info 9599 && (target_relax_info->is_relaxable_literal_section 9600 || target_relax_info->is_relaxable_asm_section)) 9601 { 9602 r_reloc new_reloc; 9603 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec); 9604 9605 if (r_type == R_XTENSA_DIFF8 9606 || r_type == R_XTENSA_DIFF16 9607 || r_type == R_XTENSA_DIFF32) 9608 { 9609 bfd_signed_vma diff_value = 0; 9610 bfd_vma new_end_offset, diff_mask = 0; 9611 9612 if (bfd_get_section_limit (abfd, sec) < old_source_offset) 9613 { 9614 (*link_info->callbacks->reloc_dangerous) 9615 (link_info, _("invalid relocation address"), 9616 abfd, sec, old_source_offset); 9617 goto error_return; 9618 } 9619 9620 switch (r_type) 9621 { 9622 case R_XTENSA_DIFF8: 9623 diff_value = 9624 bfd_get_signed_8 (abfd, &contents[old_source_offset]); 9625 break; 9626 case R_XTENSA_DIFF16: 9627 diff_value = 9628 bfd_get_signed_16 (abfd, &contents[old_source_offset]); 9629 break; 9630 case R_XTENSA_DIFF32: 9631 diff_value = 9632 bfd_get_signed_32 (abfd, &contents[old_source_offset]); 9633 break; 9634 } 9635 9636 new_end_offset = offset_with_removed_text_map 9637 (&target_relax_info->action_list, 9638 r_rel.target_offset + diff_value); 9639 diff_value = new_end_offset - new_reloc.target_offset; 9640 9641 switch (r_type) 9642 { 9643 case R_XTENSA_DIFF8: 9644 diff_mask = 0x7f; 9645 bfd_put_signed_8 (abfd, diff_value, 9646 &contents[old_source_offset]); 9647 break; 9648 case R_XTENSA_DIFF16: 9649 diff_mask = 0x7fff; 9650 bfd_put_signed_16 (abfd, diff_value, 9651 &contents[old_source_offset]); 9652 break; 9653 case R_XTENSA_DIFF32: 9654 diff_mask = 0x7fffffff; 9655 bfd_put_signed_32 (abfd, diff_value, 9656 &contents[old_source_offset]); 9657 break; 9658 } 9659 9660 /* Check for overflow. Sign bits must be all zeroes or all ones */ 9661 if ((diff_value & ~diff_mask) != 0 && 9662 (diff_value & ~diff_mask) != (-1 & ~diff_mask)) 9663 { 9664 (*link_info->callbacks->reloc_dangerous) 9665 (link_info, _("overflow after relaxation"), 9666 abfd, sec, old_source_offset); 9667 goto error_return; 9668 } 9669 9670 pin_contents (sec, contents); 9671 } 9672 9673 /* If the relocation still references a section in the same 9674 input file, modify the relocation directly instead of 9675 adding a "fix" record. */ 9676 if (target_sec->owner == abfd) 9677 { 9678 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info); 9679 irel->r_info = ELF32_R_INFO (r_symndx, r_type); 9680 irel->r_addend = new_reloc.rela.r_addend; 9681 pin_internal_relocs (sec, internal_relocs); 9682 } 9683 else 9684 { 9685 bfd_vma addend_displacement; 9686 reloc_bfd_fix *fix; 9687 9688 addend_displacement = 9689 new_reloc.target_offset + new_reloc.virtual_offset; 9690 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 9691 target_sec, 9692 addend_displacement, TRUE); 9693 add_fix (sec, fix); 9694 } 9695 } 9696 } 9697 } 9698 9699 if ((relax_info->is_relaxable_literal_section 9700 || relax_info->is_relaxable_asm_section) 9701 && action_list_count (&relax_info->action_list)) 9702 { 9703 /* Walk through the planned actions and build up a table 9704 of move, copy and fill records. Use the move, copy and 9705 fill records to perform the actions once. */ 9706 9707 bfd_size_type final_size, copy_size, orig_insn_size; 9708 bfd_byte *scratch = NULL; 9709 bfd_byte *dup_contents = NULL; 9710 bfd_size_type orig_size = sec->size; 9711 bfd_vma orig_dot = 0; 9712 bfd_vma orig_dot_copied = 0; /* Byte copied already from 9713 orig dot in physical memory. */ 9714 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */ 9715 bfd_vma dup_dot = 0; 9716 9717 text_action *action; 9718 9719 final_size = sec->size; 9720 9721 splay_tree_foreach (relax_info->action_list.tree, 9722 action_remove_bytes_fn, &final_size); 9723 scratch = (bfd_byte *) bfd_zmalloc (final_size); 9724 dup_contents = (bfd_byte *) bfd_zmalloc (final_size); 9725 9726 /* The dot is the current fill location. */ 9727 #if DEBUG 9728 print_action_list (stderr, &relax_info->action_list); 9729 #endif 9730 9731 for (action = action_first (&relax_info->action_list); action; 9732 action = action_next (&relax_info->action_list, action)) 9733 { 9734 virtual_action = FALSE; 9735 if (action->offset > orig_dot) 9736 { 9737 orig_dot += orig_dot_copied; 9738 orig_dot_copied = 0; 9739 orig_dot_vo = 0; 9740 /* Out of the virtual world. */ 9741 } 9742 9743 if (action->offset > orig_dot) 9744 { 9745 copy_size = action->offset - orig_dot; 9746 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); 9747 orig_dot += copy_size; 9748 dup_dot += copy_size; 9749 BFD_ASSERT (action->offset == orig_dot); 9750 } 9751 else if (action->offset < orig_dot) 9752 { 9753 if (action->action == ta_fill 9754 && action->offset - action->removed_bytes == orig_dot) 9755 { 9756 /* This is OK because the fill only effects the dup_dot. */ 9757 } 9758 else if (action->action == ta_add_literal) 9759 { 9760 /* TBD. Might need to handle this. */ 9761 } 9762 } 9763 if (action->offset == orig_dot) 9764 { 9765 if (action->virtual_offset > orig_dot_vo) 9766 { 9767 if (orig_dot_vo == 0) 9768 { 9769 /* Need to copy virtual_offset bytes. Probably four. */ 9770 copy_size = action->virtual_offset - orig_dot_vo; 9771 memmove (&dup_contents[dup_dot], 9772 &contents[orig_dot], copy_size); 9773 orig_dot_copied = copy_size; 9774 dup_dot += copy_size; 9775 } 9776 virtual_action = TRUE; 9777 } 9778 else 9779 BFD_ASSERT (action->virtual_offset <= orig_dot_vo); 9780 } 9781 switch (action->action) 9782 { 9783 case ta_remove_literal: 9784 case ta_remove_insn: 9785 BFD_ASSERT (action->removed_bytes >= 0); 9786 orig_dot += action->removed_bytes; 9787 break; 9788 9789 case ta_narrow_insn: 9790 orig_insn_size = 3; 9791 copy_size = 2; 9792 memmove (scratch, &contents[orig_dot], orig_insn_size); 9793 BFD_ASSERT (action->removed_bytes == 1); 9794 rv = narrow_instruction (scratch, final_size, 0); 9795 BFD_ASSERT (rv); 9796 memmove (&dup_contents[dup_dot], scratch, copy_size); 9797 orig_dot += orig_insn_size; 9798 dup_dot += copy_size; 9799 break; 9800 9801 case ta_fill: 9802 if (action->removed_bytes >= 0) 9803 orig_dot += action->removed_bytes; 9804 else 9805 { 9806 /* Already zeroed in dup_contents. Just bump the 9807 counters. */ 9808 dup_dot += (-action->removed_bytes); 9809 } 9810 break; 9811 9812 case ta_none: 9813 BFD_ASSERT (action->removed_bytes == 0); 9814 break; 9815 9816 case ta_convert_longcall: 9817 case ta_remove_longcall: 9818 /* These will be removed or converted before we get here. */ 9819 BFD_ASSERT (0); 9820 break; 9821 9822 case ta_widen_insn: 9823 orig_insn_size = 2; 9824 copy_size = 3; 9825 memmove (scratch, &contents[orig_dot], orig_insn_size); 9826 BFD_ASSERT (action->removed_bytes == -1); 9827 rv = widen_instruction (scratch, final_size, 0); 9828 BFD_ASSERT (rv); 9829 memmove (&dup_contents[dup_dot], scratch, copy_size); 9830 orig_dot += orig_insn_size; 9831 dup_dot += copy_size; 9832 break; 9833 9834 case ta_add_literal: 9835 orig_insn_size = 0; 9836 copy_size = 4; 9837 BFD_ASSERT (action->removed_bytes == -4); 9838 /* TBD -- place the literal value here and insert 9839 into the table. */ 9840 memset (&dup_contents[dup_dot], 0, 4); 9841 pin_internal_relocs (sec, internal_relocs); 9842 pin_contents (sec, contents); 9843 9844 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents, 9845 relax_info, &internal_relocs, &action->value)) 9846 goto error_return; 9847 9848 if (virtual_action) 9849 orig_dot_vo += copy_size; 9850 9851 orig_dot += orig_insn_size; 9852 dup_dot += copy_size; 9853 break; 9854 9855 default: 9856 /* Not implemented yet. */ 9857 BFD_ASSERT (0); 9858 break; 9859 } 9860 9861 BFD_ASSERT (dup_dot <= final_size); 9862 BFD_ASSERT (orig_dot <= orig_size); 9863 } 9864 9865 orig_dot += orig_dot_copied; 9866 orig_dot_copied = 0; 9867 9868 if (orig_dot != orig_size) 9869 { 9870 copy_size = orig_size - orig_dot; 9871 BFD_ASSERT (orig_size > orig_dot); 9872 BFD_ASSERT (dup_dot + copy_size == final_size); 9873 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); 9874 orig_dot += copy_size; 9875 dup_dot += copy_size; 9876 } 9877 BFD_ASSERT (orig_size == orig_dot); 9878 BFD_ASSERT (final_size == dup_dot); 9879 9880 /* Move the dup_contents back. */ 9881 if (final_size > orig_size) 9882 { 9883 /* Contents need to be reallocated. Swap the dup_contents into 9884 contents. */ 9885 sec->contents = dup_contents; 9886 free (contents); 9887 contents = dup_contents; 9888 pin_contents (sec, contents); 9889 } 9890 else 9891 { 9892 BFD_ASSERT (final_size <= orig_size); 9893 memset (contents, 0, orig_size); 9894 memcpy (contents, dup_contents, final_size); 9895 free (dup_contents); 9896 } 9897 free (scratch); 9898 pin_contents (sec, contents); 9899 9900 if (sec->rawsize == 0) 9901 sec->rawsize = sec->size; 9902 sec->size = final_size; 9903 } 9904 9905 error_return: 9906 release_internal_relocs (sec, internal_relocs); 9907 release_contents (sec, contents); 9908 return ok; 9909 } 9910 9911 9912 static bfd_boolean 9913 translate_section_fixes (asection *sec) 9914 { 9915 xtensa_relax_info *relax_info; 9916 reloc_bfd_fix *r; 9917 9918 relax_info = get_xtensa_relax_info (sec); 9919 if (!relax_info) 9920 return TRUE; 9921 9922 for (r = relax_info->fix_list; r != NULL; r = r->next) 9923 if (!translate_reloc_bfd_fix (r)) 9924 return FALSE; 9925 9926 return TRUE; 9927 } 9928 9929 9930 /* Translate a fix given the mapping in the relax info for the target 9931 section. If it has already been translated, no work is required. */ 9932 9933 static bfd_boolean 9934 translate_reloc_bfd_fix (reloc_bfd_fix *fix) 9935 { 9936 reloc_bfd_fix new_fix; 9937 asection *sec; 9938 xtensa_relax_info *relax_info; 9939 removed_literal *removed; 9940 bfd_vma new_offset, target_offset; 9941 9942 if (fix->translated) 9943 return TRUE; 9944 9945 sec = fix->target_sec; 9946 target_offset = fix->target_offset; 9947 9948 relax_info = get_xtensa_relax_info (sec); 9949 if (!relax_info) 9950 { 9951 fix->translated = TRUE; 9952 return TRUE; 9953 } 9954 9955 new_fix = *fix; 9956 9957 /* The fix does not need to be translated if the section cannot change. */ 9958 if (!relax_info->is_relaxable_literal_section 9959 && !relax_info->is_relaxable_asm_section) 9960 { 9961 fix->translated = TRUE; 9962 return TRUE; 9963 } 9964 9965 /* If the literal has been moved and this relocation was on an 9966 opcode, then the relocation should move to the new literal 9967 location. Otherwise, the relocation should move within the 9968 section. */ 9969 9970 removed = FALSE; 9971 if (is_operand_relocation (fix->src_type)) 9972 { 9973 /* Check if the original relocation is against a literal being 9974 removed. */ 9975 removed = find_removed_literal (&relax_info->removed_list, 9976 target_offset); 9977 } 9978 9979 if (removed) 9980 { 9981 asection *new_sec; 9982 9983 /* The fact that there is still a relocation to this literal indicates 9984 that the literal is being coalesced, not simply removed. */ 9985 BFD_ASSERT (removed->to.abfd != NULL); 9986 9987 /* This was moved to some other address (possibly another section). */ 9988 new_sec = r_reloc_get_section (&removed->to); 9989 if (new_sec != sec) 9990 { 9991 sec = new_sec; 9992 relax_info = get_xtensa_relax_info (sec); 9993 if (!relax_info || 9994 (!relax_info->is_relaxable_literal_section 9995 && !relax_info->is_relaxable_asm_section)) 9996 { 9997 target_offset = removed->to.target_offset; 9998 new_fix.target_sec = new_sec; 9999 new_fix.target_offset = target_offset; 10000 new_fix.translated = TRUE; 10001 *fix = new_fix; 10002 return TRUE; 10003 } 10004 } 10005 target_offset = removed->to.target_offset; 10006 new_fix.target_sec = new_sec; 10007 } 10008 10009 /* The target address may have been moved within its section. */ 10010 new_offset = offset_with_removed_text (&relax_info->action_list, 10011 target_offset); 10012 10013 new_fix.target_offset = new_offset; 10014 new_fix.target_offset = new_offset; 10015 new_fix.translated = TRUE; 10016 *fix = new_fix; 10017 return TRUE; 10018 } 10019 10020 10021 /* Fix up a relocation to take account of removed literals. */ 10022 10023 static asection * 10024 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec) 10025 { 10026 xtensa_relax_info *relax_info; 10027 removed_literal *removed; 10028 bfd_vma target_offset, base_offset; 10029 10030 *new_rel = *orig_rel; 10031 10032 if (!r_reloc_is_defined (orig_rel)) 10033 return sec ; 10034 10035 relax_info = get_xtensa_relax_info (sec); 10036 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section 10037 || relax_info->is_relaxable_asm_section)); 10038 10039 target_offset = orig_rel->target_offset; 10040 10041 removed = FALSE; 10042 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info))) 10043 { 10044 /* Check if the original relocation is against a literal being 10045 removed. */ 10046 removed = find_removed_literal (&relax_info->removed_list, 10047 target_offset); 10048 } 10049 if (removed && removed->to.abfd) 10050 { 10051 asection *new_sec; 10052 10053 /* The fact that there is still a relocation to this literal indicates 10054 that the literal is being coalesced, not simply removed. */ 10055 BFD_ASSERT (removed->to.abfd != NULL); 10056 10057 /* This was moved to some other address 10058 (possibly in another section). */ 10059 *new_rel = removed->to; 10060 new_sec = r_reloc_get_section (new_rel); 10061 if (new_sec != sec) 10062 { 10063 sec = new_sec; 10064 relax_info = get_xtensa_relax_info (sec); 10065 if (!relax_info 10066 || (!relax_info->is_relaxable_literal_section 10067 && !relax_info->is_relaxable_asm_section)) 10068 return sec; 10069 } 10070 target_offset = new_rel->target_offset; 10071 } 10072 10073 /* Find the base offset of the reloc symbol, excluding any addend from the 10074 reloc or from the section contents (for a partial_inplace reloc). Then 10075 find the adjusted values of the offsets due to relaxation. The base 10076 offset is needed to determine the change to the reloc's addend; the reloc 10077 addend should not be adjusted due to relaxations located before the base 10078 offset. */ 10079 10080 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend; 10081 if (base_offset <= target_offset) 10082 { 10083 int base_removed = removed_by_actions_map (&relax_info->action_list, 10084 base_offset, FALSE); 10085 int addend_removed = removed_by_actions_map (&relax_info->action_list, 10086 target_offset, FALSE) - 10087 base_removed; 10088 10089 new_rel->target_offset = target_offset - base_removed - addend_removed; 10090 new_rel->rela.r_addend -= addend_removed; 10091 } 10092 else 10093 { 10094 /* Handle a negative addend. The base offset comes first. */ 10095 int tgt_removed = removed_by_actions_map (&relax_info->action_list, 10096 target_offset, FALSE); 10097 int addend_removed = removed_by_actions_map (&relax_info->action_list, 10098 base_offset, FALSE) - 10099 tgt_removed; 10100 10101 new_rel->target_offset = target_offset - tgt_removed; 10102 new_rel->rela.r_addend += addend_removed; 10103 } 10104 10105 return sec; 10106 } 10107 10108 10109 /* For dynamic links, there may be a dynamic relocation for each 10110 literal. The number of dynamic relocations must be computed in 10111 size_dynamic_sections, which occurs before relaxation. When a 10112 literal is removed, this function checks if there is a corresponding 10113 dynamic relocation and shrinks the size of the appropriate dynamic 10114 relocation section accordingly. At this point, the contents of the 10115 dynamic relocation sections have not yet been filled in, so there's 10116 nothing else that needs to be done. */ 10117 10118 static void 10119 shrink_dynamic_reloc_sections (struct bfd_link_info *info, 10120 bfd *abfd, 10121 asection *input_section, 10122 Elf_Internal_Rela *rel) 10123 { 10124 struct elf_xtensa_link_hash_table *htab; 10125 Elf_Internal_Shdr *symtab_hdr; 10126 struct elf_link_hash_entry **sym_hashes; 10127 unsigned long r_symndx; 10128 int r_type; 10129 struct elf_link_hash_entry *h; 10130 bfd_boolean dynamic_symbol; 10131 10132 htab = elf_xtensa_hash_table (info); 10133 if (htab == NULL) 10134 return; 10135 10136 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 10137 sym_hashes = elf_sym_hashes (abfd); 10138 10139 r_type = ELF32_R_TYPE (rel->r_info); 10140 r_symndx = ELF32_R_SYM (rel->r_info); 10141 10142 if (r_symndx < symtab_hdr->sh_info) 10143 h = NULL; 10144 else 10145 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 10146 10147 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); 10148 10149 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) 10150 && (input_section->flags & SEC_ALLOC) != 0 10151 && (dynamic_symbol || bfd_link_pic (info)) 10152 && (!h || h->root.type != bfd_link_hash_undefweak 10153 || (dynamic_symbol 10154 && (bfd_link_dll (info) || info->export_dynamic)))) 10155 { 10156 asection *srel; 10157 bfd_boolean is_plt = FALSE; 10158 10159 if (dynamic_symbol && r_type == R_XTENSA_PLT) 10160 { 10161 srel = htab->elf.srelplt; 10162 is_plt = TRUE; 10163 } 10164 else 10165 srel = htab->elf.srelgot; 10166 10167 /* Reduce size of the .rela.* section by one reloc. */ 10168 BFD_ASSERT (srel != NULL); 10169 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela)); 10170 srel->size -= sizeof (Elf32_External_Rela); 10171 10172 if (is_plt) 10173 { 10174 asection *splt, *sgotplt, *srelgot; 10175 int reloc_index, chunk; 10176 10177 /* Find the PLT reloc index of the entry being removed. This 10178 is computed from the size of ".rela.plt". It is needed to 10179 figure out which PLT chunk to resize. Usually "last index 10180 = size - 1" since the index starts at zero, but in this 10181 context, the size has just been decremented so there's no 10182 need to subtract one. */ 10183 reloc_index = srel->size / sizeof (Elf32_External_Rela); 10184 10185 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; 10186 splt = elf_xtensa_get_plt_section (info, chunk); 10187 sgotplt = elf_xtensa_get_gotplt_section (info, chunk); 10188 BFD_ASSERT (splt != NULL && sgotplt != NULL); 10189 10190 /* Check if an entire PLT chunk has just been eliminated. */ 10191 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0) 10192 { 10193 /* The two magic GOT entries for that chunk can go away. */ 10194 srelgot = htab->elf.srelgot; 10195 BFD_ASSERT (srelgot != NULL); 10196 srelgot->reloc_count -= 2; 10197 srelgot->size -= 2 * sizeof (Elf32_External_Rela); 10198 sgotplt->size -= 8; 10199 10200 /* There should be only one entry left (and it will be 10201 removed below). */ 10202 BFD_ASSERT (sgotplt->size == 4); 10203 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE); 10204 } 10205 10206 BFD_ASSERT (sgotplt->size >= 4); 10207 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE); 10208 10209 sgotplt->size -= 4; 10210 splt->size -= PLT_ENTRY_SIZE; 10211 } 10212 } 10213 } 10214 10215 10216 /* Take an r_rel and move it to another section. This usually 10217 requires extending the interal_relocation array and pinning it. If 10218 the original r_rel is from the same BFD, we can complete this here. 10219 Otherwise, we add a fix record to let the final link fix the 10220 appropriate address. Contents and internal relocations for the 10221 section must be pinned after calling this routine. */ 10222 10223 static bfd_boolean 10224 move_literal (bfd *abfd, 10225 struct bfd_link_info *link_info, 10226 asection *sec, 10227 bfd_vma offset, 10228 bfd_byte *contents, 10229 xtensa_relax_info *relax_info, 10230 Elf_Internal_Rela **internal_relocs_p, 10231 const literal_value *lit) 10232 { 10233 Elf_Internal_Rela *new_relocs = NULL; 10234 size_t new_relocs_count = 0; 10235 Elf_Internal_Rela this_rela; 10236 const r_reloc *r_rel; 10237 10238 r_rel = &lit->r_rel; 10239 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p); 10240 10241 if (r_reloc_is_const (r_rel)) 10242 bfd_put_32 (abfd, lit->value, contents + offset); 10243 else 10244 { 10245 int r_type; 10246 unsigned i; 10247 reloc_bfd_fix *fix; 10248 unsigned insert_at; 10249 10250 r_type = ELF32_R_TYPE (r_rel->rela.r_info); 10251 10252 /* This is the difficult case. We have to create a fix up. */ 10253 this_rela.r_offset = offset; 10254 this_rela.r_info = ELF32_R_INFO (0, r_type); 10255 this_rela.r_addend = 10256 r_rel->target_offset - r_reloc_get_target_offset (r_rel); 10257 bfd_put_32 (abfd, lit->value, contents + offset); 10258 10259 /* Currently, we cannot move relocations during a relocatable link. */ 10260 BFD_ASSERT (!bfd_link_relocatable (link_info)); 10261 fix = reloc_bfd_fix_init (sec, offset, r_type, 10262 r_reloc_get_section (r_rel), 10263 r_rel->target_offset + r_rel->virtual_offset, 10264 FALSE); 10265 /* We also need to mark that relocations are needed here. */ 10266 sec->flags |= SEC_RELOC; 10267 10268 translate_reloc_bfd_fix (fix); 10269 /* This fix has not yet been translated. */ 10270 add_fix (sec, fix); 10271 10272 /* Add the relocation. If we have already allocated our own 10273 space for the relocations and we have room for more, then use 10274 it. Otherwise, allocate new space and move the literals. */ 10275 insert_at = sec->reloc_count; 10276 for (i = 0; i < sec->reloc_count; ++i) 10277 { 10278 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset) 10279 { 10280 insert_at = i; 10281 break; 10282 } 10283 } 10284 10285 if (*internal_relocs_p != relax_info->allocated_relocs 10286 || sec->reloc_count + 1 > relax_info->allocated_relocs_count) 10287 { 10288 BFD_ASSERT (relax_info->allocated_relocs == NULL 10289 || sec->reloc_count == relax_info->relocs_count); 10290 10291 if (relax_info->allocated_relocs_count == 0) 10292 new_relocs_count = (sec->reloc_count + 2) * 2; 10293 else 10294 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2; 10295 10296 new_relocs = (Elf_Internal_Rela *) 10297 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count)); 10298 if (!new_relocs) 10299 return FALSE; 10300 10301 /* We could handle this more quickly by finding the split point. */ 10302 if (insert_at != 0) 10303 memcpy (new_relocs, *internal_relocs_p, 10304 insert_at * sizeof (Elf_Internal_Rela)); 10305 10306 new_relocs[insert_at] = this_rela; 10307 10308 if (insert_at != sec->reloc_count) 10309 memcpy (new_relocs + insert_at + 1, 10310 (*internal_relocs_p) + insert_at, 10311 (sec->reloc_count - insert_at) 10312 * sizeof (Elf_Internal_Rela)); 10313 10314 if (*internal_relocs_p != relax_info->allocated_relocs) 10315 { 10316 /* The first time we re-allocate, we can only free the 10317 old relocs if they were allocated with bfd_malloc. 10318 This is not true when keep_memory is in effect. */ 10319 if (!link_info->keep_memory) 10320 free (*internal_relocs_p); 10321 } 10322 else 10323 free (*internal_relocs_p); 10324 relax_info->allocated_relocs = new_relocs; 10325 relax_info->allocated_relocs_count = new_relocs_count; 10326 elf_section_data (sec)->relocs = new_relocs; 10327 sec->reloc_count++; 10328 relax_info->relocs_count = sec->reloc_count; 10329 *internal_relocs_p = new_relocs; 10330 } 10331 else 10332 { 10333 if (insert_at != sec->reloc_count) 10334 { 10335 unsigned idx; 10336 for (idx = sec->reloc_count; idx > insert_at; idx--) 10337 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1]; 10338 } 10339 (*internal_relocs_p)[insert_at] = this_rela; 10340 sec->reloc_count++; 10341 if (relax_info->allocated_relocs) 10342 relax_info->relocs_count = sec->reloc_count; 10343 } 10344 } 10345 return TRUE; 10346 } 10347 10348 10349 /* This is similar to relax_section except that when a target is moved, 10350 we shift addresses up. We also need to modify the size. This 10351 algorithm does NOT allow for relocations into the middle of the 10352 property sections. */ 10353 10354 static bfd_boolean 10355 relax_property_section (bfd *abfd, 10356 asection *sec, 10357 struct bfd_link_info *link_info) 10358 { 10359 Elf_Internal_Rela *internal_relocs; 10360 bfd_byte *contents; 10361 unsigned i; 10362 bfd_boolean ok = TRUE; 10363 bfd_boolean is_full_prop_section; 10364 size_t last_zfill_target_offset = 0; 10365 asection *last_zfill_target_sec = NULL; 10366 bfd_size_type sec_size; 10367 bfd_size_type entry_size; 10368 10369 sec_size = bfd_get_section_limit (abfd, sec); 10370 internal_relocs = retrieve_internal_relocs (abfd, sec, 10371 link_info->keep_memory); 10372 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 10373 if (contents == NULL && sec_size != 0) 10374 { 10375 ok = FALSE; 10376 goto error_return; 10377 } 10378 10379 is_full_prop_section = xtensa_is_proptable_section (sec); 10380 if (is_full_prop_section) 10381 entry_size = 12; 10382 else 10383 entry_size = 8; 10384 10385 if (internal_relocs) 10386 { 10387 for (i = 0; i < sec->reloc_count; i++) 10388 { 10389 Elf_Internal_Rela *irel; 10390 xtensa_relax_info *target_relax_info; 10391 unsigned r_type; 10392 asection *target_sec; 10393 literal_value val; 10394 bfd_byte *size_p, *flags_p; 10395 10396 /* Locally change the source address. 10397 Translate the target to the new target address. 10398 If it points to this section and has been removed, MOVE IT. 10399 Also, don't forget to modify the associated SIZE at 10400 (offset + 4). */ 10401 10402 irel = &internal_relocs[i]; 10403 r_type = ELF32_R_TYPE (irel->r_info); 10404 if (r_type == R_XTENSA_NONE) 10405 continue; 10406 10407 /* Find the literal value. */ 10408 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size); 10409 size_p = &contents[irel->r_offset + 4]; 10410 flags_p = NULL; 10411 if (is_full_prop_section) 10412 flags_p = &contents[irel->r_offset + 8]; 10413 BFD_ASSERT (irel->r_offset + entry_size <= sec_size); 10414 10415 target_sec = r_reloc_get_section (&val.r_rel); 10416 target_relax_info = get_xtensa_relax_info (target_sec); 10417 10418 if (target_relax_info 10419 && (target_relax_info->is_relaxable_literal_section 10420 || target_relax_info->is_relaxable_asm_section )) 10421 { 10422 /* Translate the relocation's destination. */ 10423 bfd_vma old_offset = val.r_rel.target_offset; 10424 bfd_vma new_offset; 10425 long old_size, new_size; 10426 int removed_by_old_offset = 10427 removed_by_actions_map (&target_relax_info->action_list, 10428 old_offset, FALSE); 10429 new_offset = old_offset - removed_by_old_offset; 10430 10431 /* Assert that we are not out of bounds. */ 10432 old_size = bfd_get_32 (abfd, size_p); 10433 new_size = old_size; 10434 10435 if (old_size == 0) 10436 { 10437 /* Only the first zero-sized unreachable entry is 10438 allowed to expand. In this case the new offset 10439 should be the offset before the fill and the new 10440 size is the expansion size. For other zero-sized 10441 entries the resulting size should be zero with an 10442 offset before or after the fill address depending 10443 on whether the expanding unreachable entry 10444 preceeds it. */ 10445 if (last_zfill_target_sec == 0 10446 || last_zfill_target_sec != target_sec 10447 || last_zfill_target_offset != old_offset) 10448 { 10449 bfd_vma new_end_offset = new_offset; 10450 10451 /* Recompute the new_offset, but this time don't 10452 include any fill inserted by relaxation. */ 10453 removed_by_old_offset = 10454 removed_by_actions_map (&target_relax_info->action_list, 10455 old_offset, TRUE); 10456 new_offset = old_offset - removed_by_old_offset; 10457 10458 /* If it is not unreachable and we have not yet 10459 seen an unreachable at this address, place it 10460 before the fill address. */ 10461 if (flags_p && (bfd_get_32 (abfd, flags_p) 10462 & XTENSA_PROP_UNREACHABLE) != 0) 10463 { 10464 new_size = new_end_offset - new_offset; 10465 10466 last_zfill_target_sec = target_sec; 10467 last_zfill_target_offset = old_offset; 10468 } 10469 } 10470 } 10471 else 10472 { 10473 int removed_by_old_offset_size = 10474 removed_by_actions_map (&target_relax_info->action_list, 10475 old_offset + old_size, TRUE); 10476 new_size -= removed_by_old_offset_size - removed_by_old_offset; 10477 } 10478 10479 if (new_size != old_size) 10480 { 10481 bfd_put_32 (abfd, new_size, size_p); 10482 pin_contents (sec, contents); 10483 } 10484 10485 if (new_offset != old_offset) 10486 { 10487 bfd_vma diff = new_offset - old_offset; 10488 irel->r_addend += diff; 10489 pin_internal_relocs (sec, internal_relocs); 10490 } 10491 } 10492 } 10493 } 10494 10495 /* Combine adjacent property table entries. This is also done in 10496 finish_dynamic_sections() but at that point it's too late to 10497 reclaim the space in the output section, so we do this twice. */ 10498 10499 if (internal_relocs && (!bfd_link_relocatable (link_info) 10500 || xtensa_is_littable_section (sec))) 10501 { 10502 Elf_Internal_Rela *last_irel = NULL; 10503 Elf_Internal_Rela *irel, *next_rel, *rel_end; 10504 int removed_bytes = 0; 10505 bfd_vma offset; 10506 flagword predef_flags; 10507 10508 predef_flags = xtensa_get_property_predef_flags (sec); 10509 10510 /* Walk over memory and relocations at the same time. 10511 This REQUIRES that the internal_relocs be sorted by offset. */ 10512 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), 10513 internal_reloc_compare); 10514 10515 pin_internal_relocs (sec, internal_relocs); 10516 pin_contents (sec, contents); 10517 10518 next_rel = internal_relocs; 10519 rel_end = internal_relocs + sec->reloc_count; 10520 10521 BFD_ASSERT (sec->size % entry_size == 0); 10522 10523 for (offset = 0; offset < sec->size; offset += entry_size) 10524 { 10525 Elf_Internal_Rela *offset_rel, *extra_rel; 10526 bfd_vma bytes_to_remove, size, actual_offset; 10527 bfd_boolean remove_this_rel; 10528 flagword flags; 10529 10530 /* Find the first relocation for the entry at the current offset. 10531 Adjust the offsets of any extra relocations for the previous 10532 entry. */ 10533 offset_rel = NULL; 10534 if (next_rel) 10535 { 10536 for (irel = next_rel; irel < rel_end; irel++) 10537 { 10538 if ((irel->r_offset == offset 10539 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) 10540 || irel->r_offset > offset) 10541 { 10542 offset_rel = irel; 10543 break; 10544 } 10545 irel->r_offset -= removed_bytes; 10546 } 10547 } 10548 10549 /* Find the next relocation (if there are any left). */ 10550 extra_rel = NULL; 10551 if (offset_rel) 10552 { 10553 for (irel = offset_rel + 1; irel < rel_end; irel++) 10554 { 10555 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) 10556 { 10557 extra_rel = irel; 10558 break; 10559 } 10560 } 10561 } 10562 10563 /* Check if there are relocations on the current entry. There 10564 should usually be a relocation on the offset field. If there 10565 are relocations on the size or flags, then we can't optimize 10566 this entry. Also, find the next relocation to examine on the 10567 next iteration. */ 10568 if (offset_rel) 10569 { 10570 if (offset_rel->r_offset >= offset + entry_size) 10571 { 10572 next_rel = offset_rel; 10573 /* There are no relocations on the current entry, but we 10574 might still be able to remove it if the size is zero. */ 10575 offset_rel = NULL; 10576 } 10577 else if (offset_rel->r_offset > offset 10578 || (extra_rel 10579 && extra_rel->r_offset < offset + entry_size)) 10580 { 10581 /* There is a relocation on the size or flags, so we can't 10582 do anything with this entry. Continue with the next. */ 10583 next_rel = offset_rel; 10584 continue; 10585 } 10586 else 10587 { 10588 BFD_ASSERT (offset_rel->r_offset == offset); 10589 offset_rel->r_offset -= removed_bytes; 10590 next_rel = offset_rel + 1; 10591 } 10592 } 10593 else 10594 next_rel = NULL; 10595 10596 remove_this_rel = FALSE; 10597 bytes_to_remove = 0; 10598 actual_offset = offset - removed_bytes; 10599 size = bfd_get_32 (abfd, &contents[actual_offset + 4]); 10600 10601 if (is_full_prop_section) 10602 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]); 10603 else 10604 flags = predef_flags; 10605 10606 if (size == 0 10607 && (flags & XTENSA_PROP_ALIGN) == 0 10608 && (flags & XTENSA_PROP_UNREACHABLE) == 0) 10609 { 10610 /* Always remove entries with zero size and no alignment. */ 10611 bytes_to_remove = entry_size; 10612 if (offset_rel) 10613 remove_this_rel = TRUE; 10614 } 10615 else if (offset_rel 10616 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32) 10617 { 10618 if (last_irel) 10619 { 10620 flagword old_flags; 10621 bfd_vma old_size = 10622 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]); 10623 bfd_vma old_address = 10624 (last_irel->r_addend 10625 + bfd_get_32 (abfd, &contents[last_irel->r_offset])); 10626 bfd_vma new_address = 10627 (offset_rel->r_addend 10628 + bfd_get_32 (abfd, &contents[actual_offset])); 10629 if (is_full_prop_section) 10630 old_flags = bfd_get_32 10631 (abfd, &contents[last_irel->r_offset + 8]); 10632 else 10633 old_flags = predef_flags; 10634 10635 if ((ELF32_R_SYM (offset_rel->r_info) 10636 == ELF32_R_SYM (last_irel->r_info)) 10637 && old_address + old_size == new_address 10638 && old_flags == flags 10639 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0 10640 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0) 10641 { 10642 /* Fix the old size. */ 10643 bfd_put_32 (abfd, old_size + size, 10644 &contents[last_irel->r_offset + 4]); 10645 bytes_to_remove = entry_size; 10646 remove_this_rel = TRUE; 10647 } 10648 else 10649 last_irel = offset_rel; 10650 } 10651 else 10652 last_irel = offset_rel; 10653 } 10654 10655 if (remove_this_rel) 10656 { 10657 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); 10658 offset_rel->r_offset = 0; 10659 } 10660 10661 if (bytes_to_remove != 0) 10662 { 10663 removed_bytes += bytes_to_remove; 10664 if (offset + bytes_to_remove < sec->size) 10665 memmove (&contents[actual_offset], 10666 &contents[actual_offset + bytes_to_remove], 10667 sec->size - offset - bytes_to_remove); 10668 } 10669 } 10670 10671 if (removed_bytes) 10672 { 10673 /* Fix up any extra relocations on the last entry. */ 10674 for (irel = next_rel; irel < rel_end; irel++) 10675 irel->r_offset -= removed_bytes; 10676 10677 /* Clear the removed bytes. */ 10678 memset (&contents[sec->size - removed_bytes], 0, removed_bytes); 10679 10680 if (sec->rawsize == 0) 10681 sec->rawsize = sec->size; 10682 sec->size -= removed_bytes; 10683 10684 if (xtensa_is_littable_section (sec)) 10685 { 10686 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc; 10687 if (sgotloc) 10688 sgotloc->size -= removed_bytes; 10689 } 10690 } 10691 } 10692 10693 error_return: 10694 release_internal_relocs (sec, internal_relocs); 10695 release_contents (sec, contents); 10696 return ok; 10697 } 10698 10699 10700 /* Third relaxation pass. */ 10701 10702 /* Change symbol values to account for removed literals. */ 10703 10704 bfd_boolean 10705 relax_section_symbols (bfd *abfd, asection *sec) 10706 { 10707 xtensa_relax_info *relax_info; 10708 unsigned int sec_shndx; 10709 Elf_Internal_Shdr *symtab_hdr; 10710 Elf_Internal_Sym *isymbuf; 10711 unsigned i, num_syms, num_locals; 10712 10713 relax_info = get_xtensa_relax_info (sec); 10714 BFD_ASSERT (relax_info); 10715 10716 if (!relax_info->is_relaxable_literal_section 10717 && !relax_info->is_relaxable_asm_section) 10718 return TRUE; 10719 10720 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 10721 10722 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 10723 isymbuf = retrieve_local_syms (abfd); 10724 10725 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym); 10726 num_locals = symtab_hdr->sh_info; 10727 10728 /* Adjust the local symbols defined in this section. */ 10729 for (i = 0; i < num_locals; i++) 10730 { 10731 Elf_Internal_Sym *isym = &isymbuf[i]; 10732 10733 if (isym->st_shndx == sec_shndx) 10734 { 10735 bfd_vma orig_addr = isym->st_value; 10736 int removed = removed_by_actions_map (&relax_info->action_list, 10737 orig_addr, FALSE); 10738 10739 isym->st_value -= removed; 10740 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC) 10741 isym->st_size -= 10742 removed_by_actions_map (&relax_info->action_list, 10743 orig_addr + isym->st_size, FALSE) - 10744 removed; 10745 } 10746 } 10747 10748 /* Now adjust the global symbols defined in this section. */ 10749 for (i = 0; i < (num_syms - num_locals); i++) 10750 { 10751 struct elf_link_hash_entry *sym_hash; 10752 10753 sym_hash = elf_sym_hashes (abfd)[i]; 10754 10755 if (sym_hash->root.type == bfd_link_hash_warning) 10756 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link; 10757 10758 if ((sym_hash->root.type == bfd_link_hash_defined 10759 || sym_hash->root.type == bfd_link_hash_defweak) 10760 && sym_hash->root.u.def.section == sec) 10761 { 10762 bfd_vma orig_addr = sym_hash->root.u.def.value; 10763 int removed = removed_by_actions_map (&relax_info->action_list, 10764 orig_addr, FALSE); 10765 10766 sym_hash->root.u.def.value -= removed; 10767 10768 if (sym_hash->type == STT_FUNC) 10769 sym_hash->size -= 10770 removed_by_actions_map (&relax_info->action_list, 10771 orig_addr + sym_hash->size, FALSE) - 10772 removed; 10773 } 10774 } 10775 10776 return TRUE; 10777 } 10778 10779 10780 /* "Fix" handling functions, called while performing relocations. */ 10781 10782 static bfd_boolean 10783 do_fix_for_relocatable_link (Elf_Internal_Rela *rel, 10784 bfd *input_bfd, 10785 asection *input_section, 10786 bfd_byte *contents) 10787 { 10788 r_reloc r_rel; 10789 asection *sec, *old_sec; 10790 bfd_vma old_offset; 10791 int r_type = ELF32_R_TYPE (rel->r_info); 10792 reloc_bfd_fix *fix; 10793 10794 if (r_type == R_XTENSA_NONE) 10795 return TRUE; 10796 10797 fix = get_bfd_fix (input_section, rel->r_offset, r_type); 10798 if (!fix) 10799 return TRUE; 10800 10801 r_reloc_init (&r_rel, input_bfd, rel, contents, 10802 bfd_get_section_limit (input_bfd, input_section)); 10803 old_sec = r_reloc_get_section (&r_rel); 10804 old_offset = r_rel.target_offset; 10805 10806 if (!old_sec || !r_reloc_is_defined (&r_rel)) 10807 { 10808 if (r_type != R_XTENSA_ASM_EXPAND) 10809 { 10810 _bfd_error_handler 10811 /* xgettext:c-format */ 10812 (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"), 10813 input_bfd, input_section, (uint64_t) rel->r_offset, 10814 elf_howto_table[r_type].name); 10815 return FALSE; 10816 } 10817 /* Leave it be. Resolution will happen in a later stage. */ 10818 } 10819 else 10820 { 10821 sec = fix->target_sec; 10822 rel->r_addend += ((sec->output_offset + fix->target_offset) 10823 - (old_sec->output_offset + old_offset)); 10824 } 10825 return TRUE; 10826 } 10827 10828 10829 static void 10830 do_fix_for_final_link (Elf_Internal_Rela *rel, 10831 bfd *input_bfd, 10832 asection *input_section, 10833 bfd_byte *contents, 10834 bfd_vma *relocationp) 10835 { 10836 asection *sec; 10837 int r_type = ELF32_R_TYPE (rel->r_info); 10838 reloc_bfd_fix *fix; 10839 bfd_vma fixup_diff; 10840 10841 if (r_type == R_XTENSA_NONE) 10842 return; 10843 10844 fix = get_bfd_fix (input_section, rel->r_offset, r_type); 10845 if (!fix) 10846 return; 10847 10848 sec = fix->target_sec; 10849 10850 fixup_diff = rel->r_addend; 10851 if (elf_howto_table[fix->src_type].partial_inplace) 10852 { 10853 bfd_vma inplace_val; 10854 BFD_ASSERT (fix->src_offset 10855 < bfd_get_section_limit (input_bfd, input_section)); 10856 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]); 10857 fixup_diff += inplace_val; 10858 } 10859 10860 *relocationp = (sec->output_section->vma 10861 + sec->output_offset 10862 + fix->target_offset - fixup_diff); 10863 } 10864 10865 10866 /* Miscellaneous utility functions.... */ 10867 10868 static asection * 10869 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk) 10870 { 10871 bfd *dynobj; 10872 char plt_name[17]; 10873 10874 if (chunk == 0) 10875 return elf_hash_table (info)->splt; 10876 10877 dynobj = elf_hash_table (info)->dynobj; 10878 sprintf (plt_name, ".plt.%u", chunk); 10879 return bfd_get_linker_section (dynobj, plt_name); 10880 } 10881 10882 10883 static asection * 10884 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk) 10885 { 10886 bfd *dynobj; 10887 char got_name[21]; 10888 10889 if (chunk == 0) 10890 return elf_hash_table (info)->sgotplt; 10891 10892 dynobj = elf_hash_table (info)->dynobj; 10893 sprintf (got_name, ".got.plt.%u", chunk); 10894 return bfd_get_linker_section (dynobj, got_name); 10895 } 10896 10897 10898 /* Get the input section for a given symbol index. 10899 If the symbol is: 10900 . a section symbol, return the section; 10901 . a common symbol, return the common section; 10902 . an undefined symbol, return the undefined section; 10903 . an indirect symbol, follow the links; 10904 . an absolute value, return the absolute section. */ 10905 10906 static asection * 10907 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx) 10908 { 10909 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 10910 asection *target_sec = NULL; 10911 if (r_symndx < symtab_hdr->sh_info) 10912 { 10913 Elf_Internal_Sym *isymbuf; 10914 unsigned int section_index; 10915 10916 isymbuf = retrieve_local_syms (abfd); 10917 section_index = isymbuf[r_symndx].st_shndx; 10918 10919 if (section_index == SHN_UNDEF) 10920 target_sec = bfd_und_section_ptr; 10921 else if (section_index == SHN_ABS) 10922 target_sec = bfd_abs_section_ptr; 10923 else if (section_index == SHN_COMMON) 10924 target_sec = bfd_com_section_ptr; 10925 else 10926 target_sec = bfd_section_from_elf_index (abfd, section_index); 10927 } 10928 else 10929 { 10930 unsigned long indx = r_symndx - symtab_hdr->sh_info; 10931 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx]; 10932 10933 while (h->root.type == bfd_link_hash_indirect 10934 || h->root.type == bfd_link_hash_warning) 10935 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10936 10937 switch (h->root.type) 10938 { 10939 case bfd_link_hash_defined: 10940 case bfd_link_hash_defweak: 10941 target_sec = h->root.u.def.section; 10942 break; 10943 case bfd_link_hash_common: 10944 target_sec = bfd_com_section_ptr; 10945 break; 10946 case bfd_link_hash_undefined: 10947 case bfd_link_hash_undefweak: 10948 target_sec = bfd_und_section_ptr; 10949 break; 10950 default: /* New indirect warning. */ 10951 target_sec = bfd_und_section_ptr; 10952 break; 10953 } 10954 } 10955 return target_sec; 10956 } 10957 10958 10959 static struct elf_link_hash_entry * 10960 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx) 10961 { 10962 unsigned long indx; 10963 struct elf_link_hash_entry *h; 10964 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 10965 10966 if (r_symndx < symtab_hdr->sh_info) 10967 return NULL; 10968 10969 indx = r_symndx - symtab_hdr->sh_info; 10970 h = elf_sym_hashes (abfd)[indx]; 10971 while (h->root.type == bfd_link_hash_indirect 10972 || h->root.type == bfd_link_hash_warning) 10973 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10974 return h; 10975 } 10976 10977 10978 /* Get the section-relative offset for a symbol number. */ 10979 10980 static bfd_vma 10981 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx) 10982 { 10983 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 10984 bfd_vma offset = 0; 10985 10986 if (r_symndx < symtab_hdr->sh_info) 10987 { 10988 Elf_Internal_Sym *isymbuf; 10989 isymbuf = retrieve_local_syms (abfd); 10990 offset = isymbuf[r_symndx].st_value; 10991 } 10992 else 10993 { 10994 unsigned long indx = r_symndx - symtab_hdr->sh_info; 10995 struct elf_link_hash_entry *h = 10996 elf_sym_hashes (abfd)[indx]; 10997 10998 while (h->root.type == bfd_link_hash_indirect 10999 || h->root.type == bfd_link_hash_warning) 11000 h = (struct elf_link_hash_entry *) h->root.u.i.link; 11001 if (h->root.type == bfd_link_hash_defined 11002 || h->root.type == bfd_link_hash_defweak) 11003 offset = h->root.u.def.value; 11004 } 11005 return offset; 11006 } 11007 11008 11009 static bfd_boolean 11010 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel) 11011 { 11012 unsigned long r_symndx = ELF32_R_SYM (rel->r_info); 11013 struct elf_link_hash_entry *h; 11014 11015 h = get_elf_r_symndx_hash_entry (abfd, r_symndx); 11016 if (h && h->root.type == bfd_link_hash_defweak) 11017 return TRUE; 11018 return FALSE; 11019 } 11020 11021 11022 static bfd_boolean 11023 pcrel_reloc_fits (xtensa_opcode opc, 11024 int opnd, 11025 bfd_vma self_address, 11026 bfd_vma dest_address) 11027 { 11028 xtensa_isa isa = xtensa_default_isa; 11029 uint32 valp = dest_address; 11030 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address) 11031 || xtensa_operand_encode (isa, opc, opnd, &valp)) 11032 return FALSE; 11033 return TRUE; 11034 } 11035 11036 11037 static bfd_boolean 11038 xtensa_is_property_section (asection *sec) 11039 { 11040 if (xtensa_is_insntable_section (sec) 11041 || xtensa_is_littable_section (sec) 11042 || xtensa_is_proptable_section (sec)) 11043 return TRUE; 11044 11045 return FALSE; 11046 } 11047 11048 11049 static bfd_boolean 11050 xtensa_is_insntable_section (asection *sec) 11051 { 11052 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME) 11053 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x.")) 11054 return TRUE; 11055 11056 return FALSE; 11057 } 11058 11059 11060 static bfd_boolean 11061 xtensa_is_littable_section (asection *sec) 11062 { 11063 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME) 11064 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p.")) 11065 return TRUE; 11066 11067 return FALSE; 11068 } 11069 11070 11071 static bfd_boolean 11072 xtensa_is_proptable_section (asection *sec) 11073 { 11074 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME) 11075 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop.")) 11076 return TRUE; 11077 11078 return FALSE; 11079 } 11080 11081 11082 static int 11083 internal_reloc_compare (const void *ap, const void *bp) 11084 { 11085 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; 11086 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; 11087 11088 if (a->r_offset != b->r_offset) 11089 return (a->r_offset - b->r_offset); 11090 11091 /* We don't need to sort on these criteria for correctness, 11092 but enforcing a more strict ordering prevents unstable qsort 11093 from behaving differently with different implementations. 11094 Without the code below we get correct but different results 11095 on Solaris 2.7 and 2.8. We would like to always produce the 11096 same results no matter the host. */ 11097 11098 if (a->r_info != b->r_info) 11099 return (a->r_info - b->r_info); 11100 11101 return (a->r_addend - b->r_addend); 11102 } 11103 11104 11105 static int 11106 internal_reloc_matches (const void *ap, const void *bp) 11107 { 11108 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; 11109 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; 11110 11111 /* Check if one entry overlaps with the other; this shouldn't happen 11112 except when searching for a match. */ 11113 return (a->r_offset - b->r_offset); 11114 } 11115 11116 11117 /* Predicate function used to look up a section in a particular group. */ 11118 11119 static bfd_boolean 11120 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf) 11121 { 11122 const char *gname = inf; 11123 const char *group_name = elf_group_name (sec); 11124 11125 return (group_name == gname 11126 || (group_name != NULL 11127 && gname != NULL 11128 && strcmp (group_name, gname) == 0)); 11129 } 11130 11131 11132 static char * 11133 xtensa_add_names (const char *base, const char *suffix) 11134 { 11135 if (suffix) 11136 { 11137 size_t base_len = strlen (base); 11138 size_t suffix_len = strlen (suffix); 11139 char *str = bfd_malloc (base_len + suffix_len + 1); 11140 11141 memcpy (str, base, base_len); 11142 memcpy (str + base_len, suffix, suffix_len + 1); 11143 return str; 11144 } 11145 else 11146 { 11147 return strdup (base); 11148 } 11149 } 11150 11151 static int linkonce_len = sizeof (".gnu.linkonce.") - 1; 11152 11153 static char * 11154 xtensa_property_section_name (asection *sec, const char *base_name, 11155 bfd_boolean separate_sections) 11156 { 11157 const char *suffix, *group_name; 11158 char *prop_sec_name; 11159 11160 group_name = elf_group_name (sec); 11161 if (group_name) 11162 { 11163 suffix = strrchr (sec->name, '.'); 11164 if (suffix == sec->name) 11165 suffix = 0; 11166 prop_sec_name = xtensa_add_names (base_name, suffix); 11167 } 11168 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0) 11169 { 11170 char *linkonce_kind = 0; 11171 11172 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0) 11173 linkonce_kind = "x."; 11174 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0) 11175 linkonce_kind = "p."; 11176 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0) 11177 linkonce_kind = "prop."; 11178 else 11179 abort (); 11180 11181 prop_sec_name = (char *) bfd_malloc (strlen (sec->name) 11182 + strlen (linkonce_kind) + 1); 11183 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len); 11184 strcpy (prop_sec_name + linkonce_len, linkonce_kind); 11185 11186 suffix = sec->name + linkonce_len; 11187 /* For backward compatibility, replace "t." instead of inserting 11188 the new linkonce_kind (but not for "prop" sections). */ 11189 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.') 11190 suffix += 2; 11191 strcat (prop_sec_name + linkonce_len, suffix); 11192 } 11193 else 11194 { 11195 prop_sec_name = xtensa_add_names (base_name, 11196 separate_sections ? sec->name : NULL); 11197 } 11198 11199 return prop_sec_name; 11200 } 11201 11202 11203 static asection * 11204 xtensa_get_separate_property_section (asection *sec, const char *base_name, 11205 bfd_boolean separate_section) 11206 { 11207 char *prop_sec_name; 11208 asection *prop_sec; 11209 11210 prop_sec_name = xtensa_property_section_name (sec, base_name, 11211 separate_section); 11212 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, 11213 match_section_group, 11214 (void *) elf_group_name (sec)); 11215 free (prop_sec_name); 11216 return prop_sec; 11217 } 11218 11219 static asection * 11220 xtensa_get_property_section (asection *sec, const char *base_name) 11221 { 11222 asection *prop_sec; 11223 11224 /* Try individual property section first. */ 11225 prop_sec = xtensa_get_separate_property_section (sec, base_name, TRUE); 11226 11227 /* Refer to a common property section if individual is not present. */ 11228 if (!prop_sec) 11229 prop_sec = xtensa_get_separate_property_section (sec, base_name, FALSE); 11230 11231 return prop_sec; 11232 } 11233 11234 11235 asection * 11236 xtensa_make_property_section (asection *sec, const char *base_name) 11237 { 11238 char *prop_sec_name; 11239 asection *prop_sec; 11240 11241 /* Check if the section already exists. */ 11242 prop_sec_name = xtensa_property_section_name (sec, base_name, 11243 elf32xtensa_separate_props); 11244 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, 11245 match_section_group, 11246 (void *) elf_group_name (sec)); 11247 /* If not, create it. */ 11248 if (! prop_sec) 11249 { 11250 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY); 11251 flags |= (bfd_section_flags (sec) 11252 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES)); 11253 11254 prop_sec = bfd_make_section_anyway_with_flags 11255 (sec->owner, strdup (prop_sec_name), flags); 11256 if (! prop_sec) 11257 return 0; 11258 11259 elf_group_name (prop_sec) = elf_group_name (sec); 11260 } 11261 11262 free (prop_sec_name); 11263 return prop_sec; 11264 } 11265 11266 11267 flagword 11268 xtensa_get_property_predef_flags (asection *sec) 11269 { 11270 if (xtensa_is_insntable_section (sec)) 11271 return (XTENSA_PROP_INSN 11272 | XTENSA_PROP_NO_TRANSFORM 11273 | XTENSA_PROP_INSN_NO_REORDER); 11274 11275 if (xtensa_is_littable_section (sec)) 11276 return (XTENSA_PROP_LITERAL 11277 | XTENSA_PROP_NO_TRANSFORM 11278 | XTENSA_PROP_INSN_NO_REORDER); 11279 11280 return 0; 11281 } 11282 11283 11284 /* Other functions called directly by the linker. */ 11285 11286 bfd_boolean 11287 xtensa_callback_required_dependence (bfd *abfd, 11288 asection *sec, 11289 struct bfd_link_info *link_info, 11290 deps_callback_t callback, 11291 void *closure) 11292 { 11293 Elf_Internal_Rela *internal_relocs; 11294 bfd_byte *contents; 11295 unsigned i; 11296 bfd_boolean ok = TRUE; 11297 bfd_size_type sec_size; 11298 11299 sec_size = bfd_get_section_limit (abfd, sec); 11300 11301 /* ".plt*" sections have no explicit relocations but they contain L32R 11302 instructions that reference the corresponding ".got.plt*" sections. */ 11303 if ((sec->flags & SEC_LINKER_CREATED) != 0 11304 && CONST_STRNEQ (sec->name, ".plt")) 11305 { 11306 asection *sgotplt; 11307 11308 /* Find the corresponding ".got.plt*" section. */ 11309 if (sec->name[4] == '\0') 11310 sgotplt = elf_hash_table (link_info)->sgotplt; 11311 else 11312 { 11313 char got_name[14]; 11314 int chunk = 0; 11315 11316 BFD_ASSERT (sec->name[4] == '.'); 11317 chunk = strtol (&sec->name[5], NULL, 10); 11318 11319 sprintf (got_name, ".got.plt.%u", chunk); 11320 sgotplt = bfd_get_linker_section (sec->owner, got_name); 11321 } 11322 BFD_ASSERT (sgotplt); 11323 11324 /* Assume worst-case offsets: L32R at the very end of the ".plt" 11325 section referencing a literal at the very beginning of 11326 ".got.plt". This is very close to the real dependence, anyway. */ 11327 (*callback) (sec, sec_size, sgotplt, 0, closure); 11328 } 11329 11330 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault 11331 when building uclibc, which runs "ld -b binary /dev/null". */ 11332 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 11333 return ok; 11334 11335 internal_relocs = retrieve_internal_relocs (abfd, sec, 11336 link_info->keep_memory); 11337 if (internal_relocs == NULL 11338 || sec->reloc_count == 0) 11339 return ok; 11340 11341 /* Cache the contents for the duration of this scan. */ 11342 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 11343 if (contents == NULL && sec_size != 0) 11344 { 11345 ok = FALSE; 11346 goto error_return; 11347 } 11348 11349 if (!xtensa_default_isa) 11350 xtensa_default_isa = xtensa_isa_init (0, 0); 11351 11352 for (i = 0; i < sec->reloc_count; i++) 11353 { 11354 Elf_Internal_Rela *irel = &internal_relocs[i]; 11355 if (is_l32r_relocation (abfd, sec, contents, irel)) 11356 { 11357 r_reloc l32r_rel; 11358 asection *target_sec; 11359 bfd_vma target_offset; 11360 11361 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size); 11362 target_sec = NULL; 11363 target_offset = 0; 11364 /* L32Rs must be local to the input file. */ 11365 if (r_reloc_is_defined (&l32r_rel)) 11366 { 11367 target_sec = r_reloc_get_section (&l32r_rel); 11368 target_offset = l32r_rel.target_offset; 11369 } 11370 (*callback) (sec, irel->r_offset, target_sec, target_offset, 11371 closure); 11372 } 11373 } 11374 11375 error_return: 11376 release_internal_relocs (sec, internal_relocs); 11377 release_contents (sec, contents); 11378 return ok; 11379 } 11380 11381 /* The default literal sections should always be marked as "code" (i.e., 11382 SHF_EXECINSTR). This is particularly important for the Linux kernel 11383 module loader so that the literals are not placed after the text. */ 11384 static const struct bfd_elf_special_section elf_xtensa_special_sections[] = 11385 { 11386 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 11387 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 11388 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 11389 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 }, 11390 { NULL, 0, 0, 0, 0 } 11391 }; 11392 11393 #define ELF_TARGET_ID XTENSA_ELF_DATA 11394 #ifndef ELF_ARCH 11395 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec 11396 #define TARGET_LITTLE_NAME "elf32-xtensa-le" 11397 #define TARGET_BIG_SYM xtensa_elf32_be_vec 11398 #define TARGET_BIG_NAME "elf32-xtensa-be" 11399 #define ELF_ARCH bfd_arch_xtensa 11400 11401 #define ELF_MACHINE_CODE EM_XTENSA 11402 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD 11403 11404 #define ELF_MAXPAGESIZE 0x1000 11405 #endif /* ELF_ARCH */ 11406 11407 #define elf_backend_can_gc_sections 1 11408 #define elf_backend_can_refcount 1 11409 #define elf_backend_plt_readonly 1 11410 #define elf_backend_got_header_size 4 11411 #define elf_backend_want_dynbss 0 11412 #define elf_backend_want_got_plt 1 11413 #define elf_backend_dtrel_excludes_plt 1 11414 11415 #define elf_info_to_howto elf_xtensa_info_to_howto_rela 11416 11417 #define bfd_elf32_mkobject elf_xtensa_mkobject 11418 11419 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data 11420 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook 11421 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data 11422 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section 11423 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup 11424 #define bfd_elf32_bfd_reloc_name_lookup \ 11425 elf_xtensa_reloc_name_lookup 11426 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags 11427 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create 11428 11429 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol 11430 #define elf_backend_check_relocs elf_xtensa_check_relocs 11431 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections 11432 #define elf_backend_discard_info elf_xtensa_discard_info 11433 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs 11434 #define elf_backend_final_write_processing elf_xtensa_final_write_processing 11435 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections 11436 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol 11437 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook 11438 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus 11439 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo 11440 #define elf_backend_hide_symbol elf_xtensa_hide_symbol 11441 #define elf_backend_object_p elf_xtensa_object_p 11442 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class 11443 #define elf_backend_relocate_section elf_xtensa_relocate_section 11444 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections 11445 #define elf_backend_always_size_sections elf_xtensa_always_size_sections 11446 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all 11447 #define elf_backend_special_sections elf_xtensa_special_sections 11448 #define elf_backend_action_discarded elf_xtensa_action_discarded 11449 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol 11450 11451 #include "elf32-target.h" 11452