xref: /netbsd-src/external/gpl3/binutils.old/dist/bfd/elf32-avr.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* AVR-specific support for 32-bit ELF
2    Copyright (C) 1999-2016 Free Software Foundation, Inc.
3    Contributed by Denis Chertykov <denisc@overta.ru>
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor,
20    Boston, MA 02110-1301, USA.  */
21 
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/avr.h"
27 #include "elf32-avr.h"
28 #include "bfd_stdint.h"
29 
30 /* Enable debugging printout at stdout with this variable.  */
31 static bfd_boolean debug_relax = FALSE;
32 
33 /* Enable debugging printout at stdout with this variable.  */
34 static bfd_boolean debug_stubs = FALSE;
35 
36 static bfd_reloc_status_type
37 bfd_elf_avr_diff_reloc (bfd *, arelent *, asymbol *, void *,
38 			asection *, bfd *, char **);
39 
40 /* Hash table initialization and handling.  Code is taken from the hppa port
41    and adapted to the needs of AVR.  */
42 
43 /* We use two hash tables to hold information for linking avr objects.
44 
45    The first is the elf32_avr_link_hash_table which is derived from the
46    stanard ELF linker hash table.  We use this as a place to attach the other
47    hash table and some static information.
48 
49    The second is the stub hash table which is derived from the base BFD
50    hash table.  The stub hash table holds the information on the linker
51    stubs.  */
52 
53 struct elf32_avr_stub_hash_entry
54 {
55   /* Base hash table entry structure.  */
56   struct bfd_hash_entry bh_root;
57 
58   /* Offset within stub_sec of the beginning of this stub.  */
59   bfd_vma stub_offset;
60 
61   /* Given the symbol's value and its section we can determine its final
62      value when building the stubs (so the stub knows where to jump).  */
63   bfd_vma target_value;
64 
65   /* This way we could mark stubs to be no longer necessary.  */
66   bfd_boolean is_actually_needed;
67 };
68 
69 struct elf32_avr_link_hash_table
70 {
71   /* The main hash table.  */
72   struct elf_link_hash_table etab;
73 
74   /* The stub hash table.  */
75   struct bfd_hash_table bstab;
76 
77   bfd_boolean no_stubs;
78 
79   /* Linker stub bfd.  */
80   bfd *stub_bfd;
81 
82   /* The stub section.  */
83   asection *stub_sec;
84 
85   /* Usually 0, unless we are generating code for a bootloader.  Will
86      be initialized by elf32_avr_size_stubs to the vma offset of the
87      output section associated with the stub section.  */
88   bfd_vma vector_base;
89 
90   /* Assorted information used by elf32_avr_size_stubs.  */
91   unsigned int        bfd_count;
92   unsigned int        top_index;
93   asection **         input_list;
94   Elf_Internal_Sym ** all_local_syms;
95 
96   /* Tables for mapping vma beyond the 128k boundary to the address of the
97      corresponding stub.  (AMT)
98      "amt_max_entry_cnt" reflects the number of entries that memory is allocated
99      for in the "amt_stub_offsets" and "amt_destination_addr" arrays.
100      "amt_entry_cnt" informs how many of these entries actually contain
101      useful data.  */
102   unsigned int amt_entry_cnt;
103   unsigned int amt_max_entry_cnt;
104   bfd_vma *    amt_stub_offsets;
105   bfd_vma *    amt_destination_addr;
106 };
107 
108 /* Various hash macros and functions.  */
109 #define avr_link_hash_table(p) \
110   /* PR 3874: Check that we have an AVR style hash table before using it.  */\
111   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
112   == AVR_ELF_DATA ? ((struct elf32_avr_link_hash_table *) ((p)->hash)) : NULL)
113 
114 #define avr_stub_hash_entry(ent) \
115   ((struct elf32_avr_stub_hash_entry *)(ent))
116 
117 #define avr_stub_hash_lookup(table, string, create, copy) \
118   ((struct elf32_avr_stub_hash_entry *) \
119    bfd_hash_lookup ((table), (string), (create), (copy)))
120 
121 static reloc_howto_type elf_avr_howto_table[] =
122 {
123   HOWTO (R_AVR_NONE,		/* type */
124 	 0,			/* rightshift */
125 	 3,			/* size (0 = byte, 1 = short, 2 = long) */
126 	 0,			/* bitsize */
127 	 FALSE,			/* pc_relative */
128 	 0,			/* bitpos */
129 	 complain_overflow_dont, /* complain_on_overflow */
130 	 bfd_elf_generic_reloc,	/* special_function */
131 	 "R_AVR_NONE",		/* name */
132 	 FALSE,			/* partial_inplace */
133 	 0,			/* src_mask */
134 	 0,			/* dst_mask */
135 	 FALSE),		/* pcrel_offset */
136 
137   HOWTO (R_AVR_32,		/* type */
138 	 0,			/* rightshift */
139 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
140 	 32,			/* bitsize */
141 	 FALSE,			/* pc_relative */
142 	 0,			/* bitpos */
143 	 complain_overflow_bitfield, /* complain_on_overflow */
144 	 bfd_elf_generic_reloc,	/* special_function */
145 	 "R_AVR_32",		/* name */
146 	 FALSE,			/* partial_inplace */
147 	 0xffffffff,		/* src_mask */
148 	 0xffffffff,		/* dst_mask */
149 	 FALSE),		/* pcrel_offset */
150 
151   /* A 7 bit PC relative relocation.  */
152   HOWTO (R_AVR_7_PCREL,		/* type */
153 	 1,			/* rightshift */
154 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
155 	 7,			/* bitsize */
156 	 TRUE,			/* pc_relative */
157 	 3,			/* bitpos */
158 	 complain_overflow_bitfield, /* complain_on_overflow */
159 	 bfd_elf_generic_reloc, /* special_function */
160 	 "R_AVR_7_PCREL",	/* name */
161 	 FALSE,			/* partial_inplace */
162 	 0xffff,		/* src_mask */
163 	 0xffff,		/* dst_mask */
164 	 TRUE),			/* pcrel_offset */
165 
166   /* A 13 bit PC relative relocation.  */
167   HOWTO (R_AVR_13_PCREL,	/* type */
168 	 1,			/* rightshift */
169 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
170 	 13,			/* bitsize */
171 	 TRUE,			/* pc_relative */
172 	 0,			/* bitpos */
173 	 complain_overflow_bitfield, /* complain_on_overflow */
174 	 bfd_elf_generic_reloc, /* special_function */
175 	 "R_AVR_13_PCREL",	/* name */
176 	 FALSE,			/* partial_inplace */
177 	 0xfff,			/* src_mask */
178 	 0xfff,			/* dst_mask */
179 	 TRUE),			/* pcrel_offset */
180 
181   /* A 16 bit absolute relocation.  */
182   HOWTO (R_AVR_16,		/* type */
183 	 0,			/* rightshift */
184 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
185 	 16,			/* bitsize */
186 	 FALSE,			/* pc_relative */
187 	 0,			/* bitpos */
188 	 complain_overflow_dont, /* complain_on_overflow */
189 	 bfd_elf_generic_reloc,	/* special_function */
190 	 "R_AVR_16",		/* name */
191 	 FALSE,			/* partial_inplace */
192 	 0xffff,		/* src_mask */
193 	 0xffff,		/* dst_mask */
194 	 FALSE),		/* pcrel_offset */
195 
196   /* A 16 bit absolute relocation for command address
197      Will be changed when linker stubs are needed.  */
198   HOWTO (R_AVR_16_PM,		/* type */
199 	 1,			/* rightshift */
200 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
201 	 16,			/* bitsize */
202 	 FALSE,			/* pc_relative */
203 	 0,			/* bitpos */
204 	 complain_overflow_bitfield, /* complain_on_overflow */
205 	 bfd_elf_generic_reloc,	/* special_function */
206 	 "R_AVR_16_PM",		/* name */
207 	 FALSE,			/* partial_inplace */
208 	 0xffff,		/* src_mask */
209 	 0xffff,		/* dst_mask */
210 	 FALSE),		/* pcrel_offset */
211   /* A low 8 bit absolute relocation of 16 bit address.
212      For LDI command.  */
213   HOWTO (R_AVR_LO8_LDI,		/* type */
214 	 0,			/* rightshift */
215 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
216 	 8,			/* bitsize */
217 	 FALSE,			/* pc_relative */
218 	 0,			/* bitpos */
219 	 complain_overflow_dont, /* complain_on_overflow */
220 	 bfd_elf_generic_reloc,	/* special_function */
221 	 "R_AVR_LO8_LDI",	/* name */
222 	 FALSE,			/* partial_inplace */
223 	 0xffff,		/* src_mask */
224 	 0xffff,		/* dst_mask */
225 	 FALSE),		/* pcrel_offset */
226   /* A high 8 bit absolute relocation of 16 bit address.
227      For LDI command.  */
228   HOWTO (R_AVR_HI8_LDI,		/* type */
229 	 8,			/* rightshift */
230 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
231 	 8,			/* bitsize */
232 	 FALSE,			/* pc_relative */
233 	 0,			/* bitpos */
234 	 complain_overflow_dont, /* complain_on_overflow */
235 	 bfd_elf_generic_reloc,	/* special_function */
236 	 "R_AVR_HI8_LDI",	/* name */
237 	 FALSE,			/* partial_inplace */
238 	 0xffff,		/* src_mask */
239 	 0xffff,		/* dst_mask */
240 	 FALSE),		/* pcrel_offset */
241   /* A high 6 bit absolute relocation of 22 bit address.
242      For LDI command.  As well second most significant 8 bit value of
243      a 32 bit link-time constant.  */
244   HOWTO (R_AVR_HH8_LDI,		/* type */
245 	 16,			/* rightshift */
246 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
247 	 8,			/* bitsize */
248 	 FALSE,			/* pc_relative */
249 	 0,			/* bitpos */
250 	 complain_overflow_dont, /* complain_on_overflow */
251 	 bfd_elf_generic_reloc,	/* special_function */
252 	 "R_AVR_HH8_LDI",	/* name */
253 	 FALSE,			/* partial_inplace */
254 	 0xffff,		/* src_mask */
255 	 0xffff,		/* dst_mask */
256 	 FALSE),		/* pcrel_offset */
257   /* A negative low 8 bit absolute relocation of 16 bit address.
258      For LDI command.  */
259   HOWTO (R_AVR_LO8_LDI_NEG,	/* type */
260 	 0,			/* rightshift */
261 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
262 	 8,			/* bitsize */
263 	 FALSE,			/* pc_relative */
264 	 0,			/* bitpos */
265 	 complain_overflow_dont, /* complain_on_overflow */
266 	 bfd_elf_generic_reloc,	/* special_function */
267 	 "R_AVR_LO8_LDI_NEG",	/* name */
268 	 FALSE,			/* partial_inplace */
269 	 0xffff,		/* src_mask */
270 	 0xffff,		/* dst_mask */
271 	 FALSE),		/* pcrel_offset */
272   /* A negative high 8 bit absolute relocation of 16 bit address.
273      For LDI command.  */
274   HOWTO (R_AVR_HI8_LDI_NEG,	/* type */
275 	 8,			/* rightshift */
276 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
277 	 8,			/* bitsize */
278 	 FALSE,			/* pc_relative */
279 	 0,			/* bitpos */
280 	 complain_overflow_dont, /* complain_on_overflow */
281 	 bfd_elf_generic_reloc,	/* special_function */
282 	 "R_AVR_HI8_LDI_NEG",	/* name */
283 	 FALSE,			/* partial_inplace */
284 	 0xffff,		/* src_mask */
285 	 0xffff,		/* dst_mask */
286 	 FALSE),		/* pcrel_offset */
287   /* A negative high 6 bit absolute relocation of 22 bit address.
288      For LDI command.  */
289   HOWTO (R_AVR_HH8_LDI_NEG,	/* type */
290 	 16,			/* rightshift */
291 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
292 	 8,			/* bitsize */
293 	 FALSE,			/* pc_relative */
294 	 0,			/* bitpos */
295 	 complain_overflow_dont, /* complain_on_overflow */
296 	 bfd_elf_generic_reloc,	/* special_function */
297 	 "R_AVR_HH8_LDI_NEG",	/* name */
298 	 FALSE,			/* partial_inplace */
299 	 0xffff,		/* src_mask */
300 	 0xffff,		/* dst_mask */
301 	 FALSE),		/* pcrel_offset */
302   /* A low 8 bit absolute relocation of 24 bit program memory address.
303      For LDI command.  Will not be changed when linker stubs are needed. */
304   HOWTO (R_AVR_LO8_LDI_PM,	/* type */
305 	 1,			/* rightshift */
306 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
307 	 8,			/* bitsize */
308 	 FALSE,			/* pc_relative */
309 	 0,			/* bitpos */
310 	 complain_overflow_dont, /* complain_on_overflow */
311 	 bfd_elf_generic_reloc,	/* special_function */
312 	 "R_AVR_LO8_LDI_PM",	/* name */
313 	 FALSE,			/* partial_inplace */
314 	 0xffff,		/* src_mask */
315 	 0xffff,		/* dst_mask */
316 	 FALSE),		/* pcrel_offset */
317   /* A low 8 bit absolute relocation of 24 bit program memory address.
318      For LDI command.  Will not be changed when linker stubs are needed. */
319   HOWTO (R_AVR_HI8_LDI_PM,	/* type */
320 	 9,			/* rightshift */
321 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
322 	 8,			/* bitsize */
323 	 FALSE,			/* pc_relative */
324 	 0,			/* bitpos */
325 	 complain_overflow_dont, /* complain_on_overflow */
326 	 bfd_elf_generic_reloc,	/* special_function */
327 	 "R_AVR_HI8_LDI_PM",	/* name */
328 	 FALSE,			/* partial_inplace */
329 	 0xffff,		/* src_mask */
330 	 0xffff,		/* dst_mask */
331 	 FALSE),		/* pcrel_offset */
332   /* A low 8 bit absolute relocation of 24 bit program memory address.
333      For LDI command.  Will not be changed when linker stubs are needed. */
334   HOWTO (R_AVR_HH8_LDI_PM,	/* type */
335 	 17,			/* rightshift */
336 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
337 	 8,			/* bitsize */
338 	 FALSE,			/* pc_relative */
339 	 0,			/* bitpos */
340 	 complain_overflow_dont, /* complain_on_overflow */
341 	 bfd_elf_generic_reloc,	/* special_function */
342 	 "R_AVR_HH8_LDI_PM",	/* name */
343 	 FALSE,			/* partial_inplace */
344 	 0xffff,		/* src_mask */
345 	 0xffff,		/* dst_mask */
346 	 FALSE),		/* pcrel_offset */
347   /* A low 8 bit absolute relocation of 24 bit program memory address.
348      For LDI command.  Will not be changed when linker stubs are needed. */
349   HOWTO (R_AVR_LO8_LDI_PM_NEG,	/* type */
350 	 1,			/* rightshift */
351 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
352 	 8,			/* bitsize */
353 	 FALSE,			/* pc_relative */
354 	 0,			/* bitpos */
355 	 complain_overflow_dont, /* complain_on_overflow */
356 	 bfd_elf_generic_reloc,	/* special_function */
357 	 "R_AVR_LO8_LDI_PM_NEG", /* name */
358 	 FALSE,			/* partial_inplace */
359 	 0xffff,		/* src_mask */
360 	 0xffff,		/* dst_mask */
361 	 FALSE),		/* pcrel_offset */
362   /* A low 8 bit absolute relocation of 24 bit program memory address.
363      For LDI command.  Will not be changed when linker stubs are needed. */
364   HOWTO (R_AVR_HI8_LDI_PM_NEG,	/* type */
365 	 9,			/* rightshift */
366 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
367 	 8,			/* bitsize */
368 	 FALSE,			/* pc_relative */
369 	 0,			/* bitpos */
370 	 complain_overflow_dont, /* complain_on_overflow */
371 	 bfd_elf_generic_reloc,	/* special_function */
372 	 "R_AVR_HI8_LDI_PM_NEG", /* name */
373 	 FALSE,			/* partial_inplace */
374 	 0xffff,		/* src_mask */
375 	 0xffff,		/* dst_mask */
376 	 FALSE),		/* pcrel_offset */
377   /* A low 8 bit absolute relocation of 24 bit program memory address.
378      For LDI command.  Will not be changed when linker stubs are needed. */
379   HOWTO (R_AVR_HH8_LDI_PM_NEG,	/* type */
380 	 17,			/* rightshift */
381 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
382 	 8,			/* bitsize */
383 	 FALSE,			/* pc_relative */
384 	 0,			/* bitpos */
385 	 complain_overflow_dont, /* complain_on_overflow */
386 	 bfd_elf_generic_reloc,	/* special_function */
387 	 "R_AVR_HH8_LDI_PM_NEG", /* name */
388 	 FALSE,			/* partial_inplace */
389 	 0xffff,		/* src_mask */
390 	 0xffff,		/* dst_mask */
391 	 FALSE),		/* pcrel_offset */
392   /* Relocation for CALL command in ATmega.  */
393   HOWTO (R_AVR_CALL,		/* type */
394 	 1,			/* rightshift */
395 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
396 	 23,			/* bitsize */
397 	 FALSE,			/* pc_relative */
398 	 0,			/* bitpos */
399 	 complain_overflow_dont,/* complain_on_overflow */
400 	 bfd_elf_generic_reloc,	/* special_function */
401 	 "R_AVR_CALL",		/* name */
402 	 FALSE,			/* partial_inplace */
403 	 0xffffffff,		/* src_mask */
404 	 0xffffffff,		/* dst_mask */
405 	 FALSE),			/* pcrel_offset */
406   /* A 16 bit absolute relocation of 16 bit address.
407      For LDI command.  */
408   HOWTO (R_AVR_LDI,		/* type */
409 	 0,			/* rightshift */
410 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
411 	 16,			/* bitsize */
412 	 FALSE,			/* pc_relative */
413 	 0,			/* bitpos */
414 	 complain_overflow_dont,/* complain_on_overflow */
415 	 bfd_elf_generic_reloc,	/* special_function */
416 	 "R_AVR_LDI",		/* name */
417 	 FALSE,			/* partial_inplace */
418 	 0xffff,		/* src_mask */
419 	 0xffff,		/* dst_mask */
420 	 FALSE),		/* pcrel_offset */
421   /* A 6 bit absolute relocation of 6 bit offset.
422      For ldd/sdd command.  */
423   HOWTO (R_AVR_6,		/* type */
424 	 0,			/* rightshift */
425 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
426 	 6,			/* bitsize */
427 	 FALSE,			/* pc_relative */
428 	 0,			/* bitpos */
429 	 complain_overflow_dont,/* complain_on_overflow */
430 	 bfd_elf_generic_reloc,	/* special_function */
431 	 "R_AVR_6",		/* name */
432 	 FALSE,			/* partial_inplace */
433 	 0xffff,		/* src_mask */
434 	 0xffff,		/* dst_mask */
435 	 FALSE),		/* pcrel_offset */
436   /* A 6 bit absolute relocation of 6 bit offset.
437      For sbiw/adiw command.  */
438   HOWTO (R_AVR_6_ADIW,		/* type */
439 	 0,			/* rightshift */
440 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
441 	 6,			/* bitsize */
442 	 FALSE,			/* pc_relative */
443 	 0,			/* bitpos */
444 	 complain_overflow_dont,/* complain_on_overflow */
445 	 bfd_elf_generic_reloc,	/* special_function */
446 	 "R_AVR_6_ADIW",	/* name */
447 	 FALSE,			/* partial_inplace */
448 	 0xffff,		/* src_mask */
449 	 0xffff,		/* dst_mask */
450 	 FALSE),		/* pcrel_offset */
451   /* Most significant 8 bit value of a 32 bit link-time constant.  */
452   HOWTO (R_AVR_MS8_LDI,		/* type */
453 	 24,			/* rightshift */
454 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
455 	 8,			/* bitsize */
456 	 FALSE,			/* pc_relative */
457 	 0,			/* bitpos */
458 	 complain_overflow_dont, /* complain_on_overflow */
459 	 bfd_elf_generic_reloc,	/* special_function */
460 	 "R_AVR_MS8_LDI",	/* name */
461 	 FALSE,			/* partial_inplace */
462 	 0xffff,		/* src_mask */
463 	 0xffff,		/* dst_mask */
464 	 FALSE),		/* pcrel_offset */
465   /* Negative most significant 8 bit value of a 32 bit link-time constant.  */
466   HOWTO (R_AVR_MS8_LDI_NEG,	/* type */
467 	 24,			/* rightshift */
468 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
469 	 8,			/* bitsize */
470 	 FALSE,			/* pc_relative */
471 	 0,			/* bitpos */
472 	 complain_overflow_dont, /* complain_on_overflow */
473 	 bfd_elf_generic_reloc,	/* special_function */
474 	 "R_AVR_MS8_LDI_NEG",	/* name */
475 	 FALSE,			/* partial_inplace */
476 	 0xffff,		/* src_mask */
477 	 0xffff,		/* dst_mask */
478 	 FALSE), 		/* pcrel_offset */
479   /* A low 8 bit absolute relocation of 24 bit program memory address.
480      For LDI command.  Will be changed when linker stubs are needed.  */
481   HOWTO (R_AVR_LO8_LDI_GS,      /* type */
482          1,                     /* rightshift */
483          1,                     /* size (0 = byte, 1 = short, 2 = long) */
484          8,                     /* bitsize */
485          FALSE,                 /* pc_relative */
486          0,                     /* bitpos */
487          complain_overflow_dont, /* complain_on_overflow */
488          bfd_elf_generic_reloc, /* special_function */
489          "R_AVR_LO8_LDI_GS",    /* name */
490          FALSE,                 /* partial_inplace */
491          0xffff,                /* src_mask */
492          0xffff,                /* dst_mask */
493          FALSE),                /* pcrel_offset */
494   /* A low 8 bit absolute relocation of 24 bit program memory address.
495      For LDI command.  Will be changed when linker stubs are needed.  */
496   HOWTO (R_AVR_HI8_LDI_GS,      /* type */
497          9,                     /* rightshift */
498          1,                     /* size (0 = byte, 1 = short, 2 = long) */
499          8,                     /* bitsize */
500          FALSE,                 /* pc_relative */
501          0,                     /* bitpos */
502          complain_overflow_dont, /* complain_on_overflow */
503          bfd_elf_generic_reloc, /* special_function */
504          "R_AVR_HI8_LDI_GS",    /* name */
505          FALSE,                 /* partial_inplace */
506          0xffff,                /* src_mask */
507          0xffff,                /* dst_mask */
508          FALSE),                /* pcrel_offset */
509   /* 8 bit offset.  */
510   HOWTO (R_AVR_8,		/* type */
511 	 0,			/* rightshift */
512 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
513 	 8,			/* bitsize */
514 	 FALSE,			/* pc_relative */
515 	 0,			/* bitpos */
516 	 complain_overflow_bitfield,/* complain_on_overflow */
517 	 bfd_elf_generic_reloc,	/* special_function */
518 	 "R_AVR_8",		/* name */
519 	 FALSE,			/* partial_inplace */
520 	 0x000000ff,		/* src_mask */
521 	 0x000000ff,		/* dst_mask */
522 	 FALSE),		/* pcrel_offset */
523   /* lo8-part to use in  .byte lo8(sym).  */
524   HOWTO (R_AVR_8_LO8,		/* type */
525 	 0,			/* rightshift */
526 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
527 	 8,			/* bitsize */
528 	 FALSE,			/* pc_relative */
529 	 0,			/* bitpos */
530 	 complain_overflow_dont,/* complain_on_overflow */
531 	 bfd_elf_generic_reloc,	/* special_function */
532 	 "R_AVR_8_LO8",		/* name */
533 	 FALSE,			/* partial_inplace */
534 	 0xffffff,		/* src_mask */
535 	 0xffffff,		/* dst_mask */
536 	 FALSE),		/* pcrel_offset */
537   /* hi8-part to use in  .byte hi8(sym).  */
538   HOWTO (R_AVR_8_HI8,		/* type */
539 	 8,			/* rightshift */
540 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
541 	 8,			/* bitsize */
542 	 FALSE,			/* pc_relative */
543 	 0,			/* bitpos */
544 	 complain_overflow_dont,/* complain_on_overflow */
545 	 bfd_elf_generic_reloc,	/* special_function */
546 	 "R_AVR_8_HI8",		/* name */
547 	 FALSE,			/* partial_inplace */
548 	 0xffffff,		/* src_mask */
549 	 0xffffff,		/* dst_mask */
550 	 FALSE),		/* pcrel_offset */
551   /* hlo8-part to use in  .byte hlo8(sym).  */
552   HOWTO (R_AVR_8_HLO8,		/* type */
553 	 16,			/* rightshift */
554 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
555 	 8,			/* bitsize */
556 	 FALSE,			/* pc_relative */
557 	 0,			/* bitpos */
558 	 complain_overflow_dont,/* complain_on_overflow */
559 	 bfd_elf_generic_reloc,	/* special_function */
560 	 "R_AVR_8_HLO8",	/* name */
561 	 FALSE,			/* partial_inplace */
562 	 0xffffff,		/* src_mask */
563 	 0xffffff,		/* dst_mask */
564 	 FALSE),		/* pcrel_offset */
565   HOWTO (R_AVR_DIFF8,		/* type */
566 	 0,             	/* rightshift */
567 	 0, 			/* size (0 = byte, 1 = short, 2 = long) */
568 	 8, 			/* bitsize */
569 	 FALSE,         	/* pc_relative */
570 	 0,             	/* bitpos */
571 	 complain_overflow_bitfield, /* complain_on_overflow */
572 	 bfd_elf_avr_diff_reloc, /* special_function */
573 	 "R_AVR_DIFF8",     	/* name */
574 	 FALSE,         	/* partial_inplace */
575 	 0,             	/* src_mask */
576 	 0xff,          	/* dst_mask */
577 	 FALSE),        	/* pcrel_offset */
578   HOWTO (R_AVR_DIFF16,  	/* type */
579 	 0,             	/* rightshift */
580 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
581 	 16,			/* bitsize */
582 	 FALSE,         	/* pc_relative */
583 	 0,             	/* bitpos */
584 	 complain_overflow_bitfield, /* complain_on_overflow */
585 	 bfd_elf_avr_diff_reloc,/* special_function */
586 	 "R_AVR_DIFF16",     	/* name */
587 	 FALSE,         	/* partial_inplace */
588 	 0,             	/* src_mask */
589 	 0xffff,        	/* dst_mask */
590 	 FALSE),        	/* pcrel_offset */
591   HOWTO (R_AVR_DIFF32,  	/* type */
592 	 0,             	/* rightshift */
593 	 2,         		/* size (0 = byte, 1 = short, 2 = long) */
594 	 32,        		/* bitsize */
595 	 FALSE,         	/* pc_relative */
596 	 0,             	/* bitpos */
597 	 complain_overflow_bitfield, /* complain_on_overflow */
598 	 bfd_elf_avr_diff_reloc,/* special_function */
599 	 "R_AVR_DIFF32",     	/* name */
600 	 FALSE,         	/* partial_inplace */
601 	 0,             	/* src_mask */
602 	 0xffffffff,    	/* dst_mask */
603 	 FALSE),        	/* pcrel_offset */
604   /* 7 bit immediate for LDS/STS in Tiny core.  */
605   HOWTO (R_AVR_LDS_STS_16,  /* type */
606 	 0,                     /* rightshift */
607 	 1,                     /* size (0 = byte, 1 = short, 2 = long) */
608 	 7,                     /* bitsize */
609 	 FALSE,                 /* pc_relative */
610 	 0,                     /* bitpos */
611 	 complain_overflow_dont,/* complain_on_overflow */
612 	 bfd_elf_generic_reloc, /* special_function */
613 	 "R_AVR_LDS_STS_16",    /* name */
614 	 FALSE,                 /* partial_inplace */
615 	 0xffff,                /* src_mask */
616 	 0xffff,                /* dst_mask */
617 	 FALSE),		/* pcrel_offset */
618 
619   HOWTO (R_AVR_PORT6,		/* type */
620 	 0,			/* rightshift */
621 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
622 	 6,			/* bitsize */
623 	 FALSE,			/* pc_relative */
624 	 0,			/* bitpos */
625 	 complain_overflow_dont,/* complain_on_overflow */
626 	 bfd_elf_generic_reloc,	/* special_function */
627 	 "R_AVR_PORT6",		/* name */
628 	 FALSE,			/* partial_inplace */
629 	 0xffffff,		/* src_mask */
630 	 0xffffff,		/* dst_mask */
631 	 FALSE),		/* pcrel_offset */
632   HOWTO (R_AVR_PORT5,		/* type */
633 	 0,			/* rightshift */
634 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
635 	 5,			/* bitsize */
636 	 FALSE,			/* pc_relative */
637 	 0,			/* bitpos */
638 	 complain_overflow_dont,/* complain_on_overflow */
639 	 bfd_elf_generic_reloc,	/* special_function */
640 	 "R_AVR_PORT5",		/* name */
641 	 FALSE,			/* partial_inplace */
642 	 0xffffff,		/* src_mask */
643 	 0xffffff,		/* dst_mask */
644 	 FALSE), 		/* pcrel_offset */
645 
646   /* A 32 bit PC relative relocation.  */
647   HOWTO (R_AVR_32_PCREL,	/* type */
648 	 0,				/* rightshift */
649 	 2,				/* size (0 = byte, 1 = short, 2 = long) */
650 	 32,			/* bitsize */
651 	 TRUE,			/* pc_relative */
652 	 0,				/* bitpos */
653 	 complain_overflow_bitfield, /* complain_on_overflow */
654 	 bfd_elf_generic_reloc, /* special_function */
655 	 "R_AVR_32_PCREL",	/* name */
656 	 FALSE,			/* partial_inplace */
657 	 0xffffffff,	/* src_mask */
658 	 0xffffffff,	/* dst_mask */
659 	 TRUE),			/* pcrel_offset */
660 };
661 
662 /* Map BFD reloc types to AVR ELF reloc types.  */
663 
664 struct avr_reloc_map
665 {
666   bfd_reloc_code_real_type bfd_reloc_val;
667   unsigned int elf_reloc_val;
668 };
669 
670 static const struct avr_reloc_map avr_reloc_map[] =
671 {
672   { BFD_RELOC_NONE,                 R_AVR_NONE },
673   { BFD_RELOC_32,                   R_AVR_32 },
674   { BFD_RELOC_AVR_7_PCREL,          R_AVR_7_PCREL },
675   { BFD_RELOC_AVR_13_PCREL,         R_AVR_13_PCREL },
676   { BFD_RELOC_16,                   R_AVR_16 },
677   { BFD_RELOC_AVR_16_PM,            R_AVR_16_PM },
678   { BFD_RELOC_AVR_LO8_LDI,          R_AVR_LO8_LDI},
679   { BFD_RELOC_AVR_HI8_LDI,          R_AVR_HI8_LDI },
680   { BFD_RELOC_AVR_HH8_LDI,          R_AVR_HH8_LDI },
681   { BFD_RELOC_AVR_MS8_LDI,          R_AVR_MS8_LDI },
682   { BFD_RELOC_AVR_LO8_LDI_NEG,      R_AVR_LO8_LDI_NEG },
683   { BFD_RELOC_AVR_HI8_LDI_NEG,      R_AVR_HI8_LDI_NEG },
684   { BFD_RELOC_AVR_HH8_LDI_NEG,      R_AVR_HH8_LDI_NEG },
685   { BFD_RELOC_AVR_MS8_LDI_NEG,      R_AVR_MS8_LDI_NEG },
686   { BFD_RELOC_AVR_LO8_LDI_PM,       R_AVR_LO8_LDI_PM },
687   { BFD_RELOC_AVR_LO8_LDI_GS,       R_AVR_LO8_LDI_GS },
688   { BFD_RELOC_AVR_HI8_LDI_PM,       R_AVR_HI8_LDI_PM },
689   { BFD_RELOC_AVR_HI8_LDI_GS,       R_AVR_HI8_LDI_GS },
690   { BFD_RELOC_AVR_HH8_LDI_PM,       R_AVR_HH8_LDI_PM },
691   { BFD_RELOC_AVR_LO8_LDI_PM_NEG,   R_AVR_LO8_LDI_PM_NEG },
692   { BFD_RELOC_AVR_HI8_LDI_PM_NEG,   R_AVR_HI8_LDI_PM_NEG },
693   { BFD_RELOC_AVR_HH8_LDI_PM_NEG,   R_AVR_HH8_LDI_PM_NEG },
694   { BFD_RELOC_AVR_CALL,             R_AVR_CALL },
695   { BFD_RELOC_AVR_LDI,              R_AVR_LDI  },
696   { BFD_RELOC_AVR_6,                R_AVR_6    },
697   { BFD_RELOC_AVR_6_ADIW,           R_AVR_6_ADIW },
698   { BFD_RELOC_8,                    R_AVR_8 },
699   { BFD_RELOC_AVR_8_LO,             R_AVR_8_LO8 },
700   { BFD_RELOC_AVR_8_HI,             R_AVR_8_HI8 },
701   { BFD_RELOC_AVR_8_HLO,            R_AVR_8_HLO8 },
702   { BFD_RELOC_AVR_DIFF8,            R_AVR_DIFF8 },
703   { BFD_RELOC_AVR_DIFF16,           R_AVR_DIFF16 },
704   { BFD_RELOC_AVR_DIFF32,           R_AVR_DIFF32 },
705   { BFD_RELOC_AVR_LDS_STS_16,       R_AVR_LDS_STS_16},
706   { BFD_RELOC_AVR_PORT6,            R_AVR_PORT6},
707   { BFD_RELOC_AVR_PORT5,            R_AVR_PORT5},
708   { BFD_RELOC_32_PCREL,             R_AVR_32_PCREL}
709 };
710 
711 /* Meant to be filled one day with the wrap around address for the
712    specific device.  I.e. should get the value 0x4000 for 16k devices,
713    0x8000 for 32k devices and so on.
714 
715    We initialize it here with a value of 0x1000000 resulting in
716    that we will never suggest a wrap-around jump during relaxation.
717    The logic of the source code later on assumes that in
718    avr_pc_wrap_around one single bit is set.  */
719 static bfd_vma avr_pc_wrap_around = 0x10000000;
720 
721 /* If this variable holds a value different from zero, the linker relaxation
722    machine will try to optimize call/ret sequences by a single jump
723    instruction. This option could be switched off by a linker switch.  */
724 static int avr_replace_call_ret_sequences = 1;
725 
726 
727 /* Per-section relaxation related information for avr.  */
728 
729 struct avr_relax_info
730 {
731   /* Track the avr property records that apply to this section.  */
732 
733   struct
734   {
735     /* Number of records in the list.  */
736     unsigned count;
737 
738     /* How many records worth of space have we allocated.  */
739     unsigned allocated;
740 
741     /* The records, only COUNT records are initialised.  */
742     struct avr_property_record *items;
743   } records;
744 };
745 
746 /* Per section data, specialised for avr.  */
747 
748 struct elf_avr_section_data
749 {
750   /* The standard data must appear first.  */
751   struct bfd_elf_section_data elf;
752 
753   /* Relaxation related information.  */
754   struct avr_relax_info relax_info;
755 };
756 
757 /* Possibly initialise avr specific data for new section SEC from ABFD.  */
758 
759 static bfd_boolean
760 elf_avr_new_section_hook (bfd *abfd, asection *sec)
761 {
762   if (!sec->used_by_bfd)
763     {
764       struct elf_avr_section_data *sdata;
765       bfd_size_type amt = sizeof (*sdata);
766 
767       sdata = bfd_zalloc (abfd, amt);
768       if (sdata == NULL)
769 	return FALSE;
770       sec->used_by_bfd = sdata;
771     }
772 
773   return _bfd_elf_new_section_hook (abfd, sec);
774 }
775 
776 /* Return a pointer to the relaxation information for SEC.  */
777 
778 static struct avr_relax_info *
779 get_avr_relax_info (asection *sec)
780 {
781   struct elf_avr_section_data *section_data;
782 
783   /* No info available if no section or if it is an output section.  */
784   if (!sec || sec == sec->output_section)
785     return NULL;
786 
787   section_data = (struct elf_avr_section_data *) elf_section_data (sec);
788   return &section_data->relax_info;
789 }
790 
791 /* Initialise the per section relaxation information for SEC.  */
792 
793 static void
794 init_avr_relax_info (asection *sec)
795 {
796   struct avr_relax_info *relax_info = get_avr_relax_info (sec);
797 
798   relax_info->records.count = 0;
799   relax_info->records.allocated = 0;
800   relax_info->records.items = NULL;
801 }
802 
803 /* Initialize an entry in the stub hash table.  */
804 
805 static struct bfd_hash_entry *
806 stub_hash_newfunc (struct bfd_hash_entry *entry,
807                    struct bfd_hash_table *table,
808                    const char *string)
809 {
810   /* Allocate the structure if it has not already been allocated by a
811      subclass.  */
812   if (entry == NULL)
813     {
814       entry = bfd_hash_allocate (table,
815                                  sizeof (struct elf32_avr_stub_hash_entry));
816       if (entry == NULL)
817         return entry;
818     }
819 
820   /* Call the allocation method of the superclass.  */
821   entry = bfd_hash_newfunc (entry, table, string);
822   if (entry != NULL)
823     {
824       struct elf32_avr_stub_hash_entry *hsh;
825 
826       /* Initialize the local fields.  */
827       hsh = avr_stub_hash_entry (entry);
828       hsh->stub_offset = 0;
829       hsh->target_value = 0;
830     }
831 
832   return entry;
833 }
834 
835 /* This function is just a straight passthrough to the real
836    function in linker.c.  Its prupose is so that its address
837    can be compared inside the avr_link_hash_table macro.  */
838 
839 static struct bfd_hash_entry *
840 elf32_avr_link_hash_newfunc (struct bfd_hash_entry * entry,
841 			     struct bfd_hash_table * table,
842 			     const char * string)
843 {
844   return _bfd_elf_link_hash_newfunc (entry, table, string);
845 }
846 
847 /* Free the derived linker hash table.  */
848 
849 static void
850 elf32_avr_link_hash_table_free (bfd *obfd)
851 {
852   struct elf32_avr_link_hash_table *htab
853     = (struct elf32_avr_link_hash_table *) obfd->link.hash;
854 
855   /* Free the address mapping table.  */
856   if (htab->amt_stub_offsets != NULL)
857     free (htab->amt_stub_offsets);
858   if (htab->amt_destination_addr != NULL)
859     free (htab->amt_destination_addr);
860 
861   bfd_hash_table_free (&htab->bstab);
862   _bfd_elf_link_hash_table_free (obfd);
863 }
864 
865 /* Create the derived linker hash table.  The AVR ELF port uses the derived
866    hash table to keep information specific to the AVR ELF linker (without
867    using static variables).  */
868 
869 static struct bfd_link_hash_table *
870 elf32_avr_link_hash_table_create (bfd *abfd)
871 {
872   struct elf32_avr_link_hash_table *htab;
873   bfd_size_type amt = sizeof (*htab);
874 
875   htab = bfd_zmalloc (amt);
876   if (htab == NULL)
877     return NULL;
878 
879   if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd,
880                                       elf32_avr_link_hash_newfunc,
881                                       sizeof (struct elf_link_hash_entry),
882 				      AVR_ELF_DATA))
883     {
884       free (htab);
885       return NULL;
886     }
887 
888   /* Init the stub hash table too.  */
889   if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
890                             sizeof (struct elf32_avr_stub_hash_entry)))
891     {
892       _bfd_elf_link_hash_table_free (abfd);
893       return NULL;
894     }
895   htab->etab.root.hash_table_free = elf32_avr_link_hash_table_free;
896 
897   return &htab->etab.root;
898 }
899 
900 /* Calculates the effective distance of a pc relative jump/call.  */
901 
902 static int
903 avr_relative_distance_considering_wrap_around (unsigned int distance)
904 {
905   unsigned int wrap_around_mask = avr_pc_wrap_around - 1;
906   int dist_with_wrap_around = distance & wrap_around_mask;
907 
908   if (dist_with_wrap_around > ((int) (avr_pc_wrap_around >> 1)))
909     dist_with_wrap_around -= avr_pc_wrap_around;
910 
911   return dist_with_wrap_around;
912 }
913 
914 
915 static reloc_howto_type *
916 bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
917 				 bfd_reloc_code_real_type code)
918 {
919   unsigned int i;
920 
921   for (i = 0;
922        i < sizeof (avr_reloc_map) / sizeof (struct avr_reloc_map);
923        i++)
924     if (avr_reloc_map[i].bfd_reloc_val == code)
925       return &elf_avr_howto_table[avr_reloc_map[i].elf_reloc_val];
926 
927   return NULL;
928 }
929 
930 static reloc_howto_type *
931 bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
932 				 const char *r_name)
933 {
934   unsigned int i;
935 
936   for (i = 0;
937        i < sizeof (elf_avr_howto_table) / sizeof (elf_avr_howto_table[0]);
938        i++)
939     if (elf_avr_howto_table[i].name != NULL
940 	&& strcasecmp (elf_avr_howto_table[i].name, r_name) == 0)
941       return &elf_avr_howto_table[i];
942 
943   return NULL;
944 }
945 
946 /* Set the howto pointer for an AVR ELF reloc.  */
947 
948 static void
949 avr_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
950 			arelent *cache_ptr,
951 			Elf_Internal_Rela *dst)
952 {
953   unsigned int r_type;
954 
955   r_type = ELF32_R_TYPE (dst->r_info);
956   if (r_type >= (unsigned int) R_AVR_max)
957     {
958       _bfd_error_handler (_("%B: invalid AVR reloc number: %d"), abfd, r_type);
959       r_type = 0;
960     }
961   cache_ptr->howto = &elf_avr_howto_table[r_type];
962 }
963 
964 static bfd_boolean
965 avr_stub_is_required_for_16_bit_reloc (bfd_vma relocation)
966 {
967   return (relocation >= 0x020000);
968 }
969 
970 /* Returns the address of the corresponding stub if there is one.
971    Returns otherwise an address above 0x020000.  This function
972    could also be used, if there is no knowledge on the section where
973    the destination is found.  */
974 
975 static bfd_vma
976 avr_get_stub_addr (bfd_vma srel,
977                    struct elf32_avr_link_hash_table *htab)
978 {
979   unsigned int sindex;
980   bfd_vma stub_sec_addr =
981               (htab->stub_sec->output_section->vma +
982 	       htab->stub_sec->output_offset);
983 
984   for (sindex = 0; sindex < htab->amt_max_entry_cnt; sindex ++)
985     if (htab->amt_destination_addr[sindex] == srel)
986       return htab->amt_stub_offsets[sindex] + stub_sec_addr;
987 
988   /* Return an address that could not be reached by 16 bit relocs.  */
989   return 0x020000;
990 }
991 
992 /* Perform a diff relocation. Nothing to do, as the difference value is already
993    written into the section's contents. */
994 
995 static bfd_reloc_status_type
996 bfd_elf_avr_diff_reloc (bfd *abfd ATTRIBUTE_UNUSED,
997 		      arelent *reloc_entry ATTRIBUTE_UNUSED,
998               asymbol *symbol ATTRIBUTE_UNUSED,
999               void *data ATTRIBUTE_UNUSED,
1000               asection *input_section ATTRIBUTE_UNUSED,
1001               bfd *output_bfd ATTRIBUTE_UNUSED,
1002               char **error_message ATTRIBUTE_UNUSED)
1003 {
1004   return bfd_reloc_ok;
1005 }
1006 
1007 
1008 /* Perform a single relocation.  By default we use the standard BFD
1009    routines, but a few relocs, we have to do them ourselves.  */
1010 
1011 static bfd_reloc_status_type
1012 avr_final_link_relocate (reloc_howto_type *                 howto,
1013 			 bfd *                              input_bfd,
1014 			 asection *                         input_section,
1015 			 bfd_byte *                         contents,
1016 			 Elf_Internal_Rela *                rel,
1017                          bfd_vma                            relocation,
1018                          struct elf32_avr_link_hash_table * htab)
1019 {
1020   bfd_reloc_status_type r = bfd_reloc_ok;
1021   bfd_vma               x;
1022   bfd_signed_vma	srel;
1023   bfd_signed_vma	reloc_addr;
1024   bfd_boolean           use_stubs = FALSE;
1025   /* Usually is 0, unless we are generating code for a bootloader.  */
1026   bfd_signed_vma        base_addr = htab->vector_base;
1027 
1028   /* Absolute addr of the reloc in the final excecutable.  */
1029   reloc_addr = rel->r_offset + input_section->output_section->vma
1030 	       + input_section->output_offset;
1031 
1032   switch (howto->type)
1033     {
1034     case R_AVR_7_PCREL:
1035       contents += rel->r_offset;
1036       srel = (bfd_signed_vma) relocation;
1037       srel += rel->r_addend;
1038       srel -= rel->r_offset;
1039       srel -= 2;	/* Branch instructions add 2 to the PC...  */
1040       srel -= (input_section->output_section->vma +
1041 	       input_section->output_offset);
1042 
1043       if (srel & 1)
1044 	return bfd_reloc_outofrange;
1045       if (srel > ((1 << 7) - 1) || (srel < - (1 << 7)))
1046 	return bfd_reloc_overflow;
1047       x = bfd_get_16 (input_bfd, contents);
1048       x = (x & 0xfc07) | (((srel >> 1) << 3) & 0x3f8);
1049       bfd_put_16 (input_bfd, x, contents);
1050       break;
1051 
1052     case R_AVR_13_PCREL:
1053       contents   += rel->r_offset;
1054       srel = (bfd_signed_vma) relocation;
1055       srel += rel->r_addend;
1056       srel -= rel->r_offset;
1057       srel -= 2;	/* Branch instructions add 2 to the PC...  */
1058       srel -= (input_section->output_section->vma +
1059 	       input_section->output_offset);
1060 
1061       if (srel & 1)
1062 	return bfd_reloc_outofrange;
1063 
1064       srel = avr_relative_distance_considering_wrap_around (srel);
1065 
1066       /* AVR addresses commands as words.  */
1067       srel >>= 1;
1068 
1069       /* Check for overflow.  */
1070       if (srel < -2048 || srel > 2047)
1071 	{
1072           /* Relative distance is too large.  */
1073 
1074 	  /* Always apply WRAPAROUND for avr2, avr25, and avr4.  */
1075 	  switch (bfd_get_mach (input_bfd))
1076 	    {
1077 	    case bfd_mach_avr2:
1078 	    case bfd_mach_avr25:
1079 	    case bfd_mach_avr4:
1080 	      break;
1081 
1082 	    default:
1083 	      return bfd_reloc_overflow;
1084 	    }
1085 	}
1086 
1087       x = bfd_get_16 (input_bfd, contents);
1088       x = (x & 0xf000) | (srel & 0xfff);
1089       bfd_put_16 (input_bfd, x, contents);
1090       break;
1091 
1092     case R_AVR_LO8_LDI:
1093       contents += rel->r_offset;
1094       srel = (bfd_signed_vma) relocation + rel->r_addend;
1095       x = bfd_get_16 (input_bfd, contents);
1096       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1097       bfd_put_16 (input_bfd, x, contents);
1098       break;
1099 
1100     case R_AVR_LDI:
1101       contents += rel->r_offset;
1102       srel = (bfd_signed_vma) relocation + rel->r_addend;
1103       if (((srel > 0) && (srel & 0xffff) > 255)
1104 	  || ((srel < 0) && ((-srel) & 0xffff) > 128))
1105         /* Remove offset for data/eeprom section.  */
1106         return bfd_reloc_overflow;
1107 
1108       x = bfd_get_16 (input_bfd, contents);
1109       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1110       bfd_put_16 (input_bfd, x, contents);
1111       break;
1112 
1113     case R_AVR_6:
1114       contents += rel->r_offset;
1115       srel = (bfd_signed_vma) relocation + rel->r_addend;
1116       if (((srel & 0xffff) > 63) || (srel < 0))
1117 	/* Remove offset for data/eeprom section.  */
1118 	return bfd_reloc_overflow;
1119       x = bfd_get_16 (input_bfd, contents);
1120       x = (x & 0xd3f8) | ((srel & 7) | ((srel & (3 << 3)) << 7)
1121                        | ((srel & (1 << 5)) << 8));
1122       bfd_put_16 (input_bfd, x, contents);
1123       break;
1124 
1125     case R_AVR_6_ADIW:
1126       contents += rel->r_offset;
1127       srel = (bfd_signed_vma) relocation + rel->r_addend;
1128       if (((srel & 0xffff) > 63) || (srel < 0))
1129 	/* Remove offset for data/eeprom section.  */
1130 	return bfd_reloc_overflow;
1131       x = bfd_get_16 (input_bfd, contents);
1132       x = (x & 0xff30) | (srel & 0xf) | ((srel & 0x30) << 2);
1133       bfd_put_16 (input_bfd, x, contents);
1134       break;
1135 
1136     case R_AVR_HI8_LDI:
1137       contents += rel->r_offset;
1138       srel = (bfd_signed_vma) relocation + rel->r_addend;
1139       srel = (srel >> 8) & 0xff;
1140       x = bfd_get_16 (input_bfd, contents);
1141       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1142       bfd_put_16 (input_bfd, x, contents);
1143       break;
1144 
1145     case R_AVR_HH8_LDI:
1146       contents += rel->r_offset;
1147       srel = (bfd_signed_vma) relocation + rel->r_addend;
1148       srel = (srel >> 16) & 0xff;
1149       x = bfd_get_16 (input_bfd, contents);
1150       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1151       bfd_put_16 (input_bfd, x, contents);
1152       break;
1153 
1154     case R_AVR_MS8_LDI:
1155       contents += rel->r_offset;
1156       srel = (bfd_signed_vma) relocation + rel->r_addend;
1157       srel = (srel >> 24) & 0xff;
1158       x = bfd_get_16 (input_bfd, contents);
1159       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1160       bfd_put_16 (input_bfd, x, contents);
1161       break;
1162 
1163     case R_AVR_LO8_LDI_NEG:
1164       contents += rel->r_offset;
1165       srel = (bfd_signed_vma) relocation + rel->r_addend;
1166       srel = -srel;
1167       x = bfd_get_16 (input_bfd, contents);
1168       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1169       bfd_put_16 (input_bfd, x, contents);
1170       break;
1171 
1172     case R_AVR_HI8_LDI_NEG:
1173       contents += rel->r_offset;
1174       srel = (bfd_signed_vma) relocation + rel->r_addend;
1175       srel = -srel;
1176       srel = (srel >> 8) & 0xff;
1177       x = bfd_get_16 (input_bfd, contents);
1178       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1179       bfd_put_16 (input_bfd, x, contents);
1180       break;
1181 
1182     case R_AVR_HH8_LDI_NEG:
1183       contents += rel->r_offset;
1184       srel = (bfd_signed_vma) relocation + rel->r_addend;
1185       srel = -srel;
1186       srel = (srel >> 16) & 0xff;
1187       x = bfd_get_16 (input_bfd, contents);
1188       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1189       bfd_put_16 (input_bfd, x, contents);
1190       break;
1191 
1192     case R_AVR_MS8_LDI_NEG:
1193       contents += rel->r_offset;
1194       srel = (bfd_signed_vma) relocation + rel->r_addend;
1195       srel = -srel;
1196       srel = (srel >> 24) & 0xff;
1197       x = bfd_get_16 (input_bfd, contents);
1198       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1199       bfd_put_16 (input_bfd, x, contents);
1200       break;
1201 
1202     case R_AVR_LO8_LDI_GS:
1203       use_stubs = (!htab->no_stubs);
1204       /* Fall through.  */
1205     case R_AVR_LO8_LDI_PM:
1206       contents += rel->r_offset;
1207       srel = (bfd_signed_vma) relocation + rel->r_addend;
1208 
1209       if (use_stubs
1210           && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1211         {
1212           bfd_vma old_srel = srel;
1213 
1214           /* We need to use the address of the stub instead.  */
1215           srel = avr_get_stub_addr (srel, htab);
1216           if (debug_stubs)
1217             printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1218                     "reloc at address 0x%x.\n",
1219                     (unsigned int) srel,
1220                     (unsigned int) old_srel,
1221                     (unsigned int) reloc_addr);
1222 
1223 	  if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1224 	    return bfd_reloc_outofrange;
1225         }
1226 
1227       if (srel & 1)
1228 	return bfd_reloc_outofrange;
1229       srel = srel >> 1;
1230       x = bfd_get_16 (input_bfd, contents);
1231       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1232       bfd_put_16 (input_bfd, x, contents);
1233       break;
1234 
1235     case R_AVR_HI8_LDI_GS:
1236       use_stubs = (!htab->no_stubs);
1237       /* Fall through.  */
1238     case R_AVR_HI8_LDI_PM:
1239       contents += rel->r_offset;
1240       srel = (bfd_signed_vma) relocation + rel->r_addend;
1241 
1242       if (use_stubs
1243           && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1244         {
1245           bfd_vma old_srel = srel;
1246 
1247           /* We need to use the address of the stub instead.  */
1248           srel = avr_get_stub_addr (srel, htab);
1249           if (debug_stubs)
1250             printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1251                     "reloc at address 0x%x.\n",
1252                     (unsigned int) srel,
1253                     (unsigned int) old_srel,
1254                     (unsigned int) reloc_addr);
1255 
1256 	  if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1257 	    return bfd_reloc_outofrange;
1258         }
1259 
1260       if (srel & 1)
1261 	return bfd_reloc_outofrange;
1262       srel = srel >> 1;
1263       srel = (srel >> 8) & 0xff;
1264       x = bfd_get_16 (input_bfd, contents);
1265       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1266       bfd_put_16 (input_bfd, x, contents);
1267       break;
1268 
1269     case R_AVR_HH8_LDI_PM:
1270       contents += rel->r_offset;
1271       srel = (bfd_signed_vma) relocation + rel->r_addend;
1272       if (srel & 1)
1273 	return bfd_reloc_outofrange;
1274       srel = srel >> 1;
1275       srel = (srel >> 16) & 0xff;
1276       x = bfd_get_16 (input_bfd, contents);
1277       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1278       bfd_put_16 (input_bfd, x, contents);
1279       break;
1280 
1281     case R_AVR_LO8_LDI_PM_NEG:
1282       contents += rel->r_offset;
1283       srel = (bfd_signed_vma) relocation + rel->r_addend;
1284       srel = -srel;
1285       if (srel & 1)
1286 	return bfd_reloc_outofrange;
1287       srel = srel >> 1;
1288       x = bfd_get_16 (input_bfd, contents);
1289       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1290       bfd_put_16 (input_bfd, x, contents);
1291       break;
1292 
1293     case R_AVR_HI8_LDI_PM_NEG:
1294       contents += rel->r_offset;
1295       srel = (bfd_signed_vma) relocation + rel->r_addend;
1296       srel = -srel;
1297       if (srel & 1)
1298 	return bfd_reloc_outofrange;
1299       srel = srel >> 1;
1300       srel = (srel >> 8) & 0xff;
1301       x = bfd_get_16 (input_bfd, contents);
1302       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1303       bfd_put_16 (input_bfd, x, contents);
1304       break;
1305 
1306     case R_AVR_HH8_LDI_PM_NEG:
1307       contents += rel->r_offset;
1308       srel = (bfd_signed_vma) relocation + rel->r_addend;
1309       srel = -srel;
1310       if (srel & 1)
1311 	return bfd_reloc_outofrange;
1312       srel = srel >> 1;
1313       srel = (srel >> 16) & 0xff;
1314       x = bfd_get_16 (input_bfd, contents);
1315       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1316       bfd_put_16 (input_bfd, x, contents);
1317       break;
1318 
1319     case R_AVR_CALL:
1320       contents += rel->r_offset;
1321       srel = (bfd_signed_vma) relocation + rel->r_addend;
1322       if (srel & 1)
1323 	return bfd_reloc_outofrange;
1324       srel = srel >> 1;
1325       x = bfd_get_16 (input_bfd, contents);
1326       x |= ((srel & 0x10000) | ((srel << 3) & 0x1f00000)) >> 16;
1327       bfd_put_16 (input_bfd, x, contents);
1328       bfd_put_16 (input_bfd, (bfd_vma) srel & 0xffff, contents+2);
1329       break;
1330 
1331     case R_AVR_16_PM:
1332       use_stubs = (!htab->no_stubs);
1333       contents += rel->r_offset;
1334       srel = (bfd_signed_vma) relocation + rel->r_addend;
1335 
1336       if (use_stubs
1337           && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1338         {
1339           bfd_vma old_srel = srel;
1340 
1341           /* We need to use the address of the stub instead.  */
1342           srel = avr_get_stub_addr (srel,htab);
1343           if (debug_stubs)
1344             printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1345                     "reloc at address 0x%x.\n",
1346                     (unsigned int) srel,
1347                     (unsigned int) old_srel,
1348                     (unsigned int) reloc_addr);
1349 
1350 	  if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1351 	    return bfd_reloc_outofrange;
1352         }
1353 
1354       if (srel & 1)
1355 	return bfd_reloc_outofrange;
1356       srel = srel >> 1;
1357       bfd_put_16 (input_bfd, (bfd_vma) srel &0x00ffff, contents);
1358       break;
1359 
1360     case R_AVR_DIFF8:
1361     case R_AVR_DIFF16:
1362     case R_AVR_DIFF32:
1363       /* Nothing to do here, as contents already contains the diff value. */
1364       r = bfd_reloc_ok;
1365       break;
1366 
1367    case R_AVR_LDS_STS_16:
1368       contents += rel->r_offset;
1369       srel = (bfd_signed_vma) relocation + rel->r_addend;
1370       if ((srel & 0xFFFF) < 0x40 || (srel & 0xFFFF) > 0xbf)
1371         return bfd_reloc_outofrange;
1372       srel = srel & 0x7f;
1373       x = bfd_get_16 (input_bfd, contents);
1374       x |= (srel & 0x0f) | ((srel & 0x30) << 5) | ((srel & 0x40) << 2);
1375       bfd_put_16 (input_bfd, x, contents);
1376       break;
1377 
1378     case R_AVR_PORT6:
1379       contents += rel->r_offset;
1380       srel = (bfd_signed_vma) relocation + rel->r_addend;
1381       if ((srel & 0xffff) > 0x3f)
1382         return bfd_reloc_outofrange;
1383       x = bfd_get_16 (input_bfd, contents);
1384       x = (x & 0xf9f0) | ((srel & 0x30) << 5) | (srel & 0x0f);
1385       bfd_put_16 (input_bfd, x, contents);
1386       break;
1387 
1388     case R_AVR_PORT5:
1389       contents += rel->r_offset;
1390       srel = (bfd_signed_vma) relocation + rel->r_addend;
1391       if ((srel & 0xffff) > 0x1f)
1392         return bfd_reloc_outofrange;
1393       x = bfd_get_16 (input_bfd, contents);
1394       x = (x & 0xff07) | ((srel & 0x1f) << 3);
1395       bfd_put_16 (input_bfd, x, contents);
1396       break;
1397 
1398     default:
1399       r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1400 				    contents, rel->r_offset,
1401 				    relocation, rel->r_addend);
1402     }
1403 
1404   return r;
1405 }
1406 
1407 /* Relocate an AVR ELF section.  */
1408 
1409 static bfd_boolean
1410 elf32_avr_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1411 			    struct bfd_link_info *info,
1412 			    bfd *input_bfd,
1413 			    asection *input_section,
1414 			    bfd_byte *contents,
1415 			    Elf_Internal_Rela *relocs,
1416 			    Elf_Internal_Sym *local_syms,
1417 			    asection **local_sections)
1418 {
1419   Elf_Internal_Shdr *           symtab_hdr;
1420   struct elf_link_hash_entry ** sym_hashes;
1421   Elf_Internal_Rela *           rel;
1422   Elf_Internal_Rela *           relend;
1423   struct elf32_avr_link_hash_table * htab = avr_link_hash_table (info);
1424 
1425   if (htab == NULL)
1426     return FALSE;
1427 
1428   symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1429   sym_hashes = elf_sym_hashes (input_bfd);
1430   relend     = relocs + input_section->reloc_count;
1431 
1432   for (rel = relocs; rel < relend; rel ++)
1433     {
1434       reloc_howto_type *           howto;
1435       unsigned long                r_symndx;
1436       Elf_Internal_Sym *           sym;
1437       asection *                   sec;
1438       struct elf_link_hash_entry * h;
1439       bfd_vma                      relocation;
1440       bfd_reloc_status_type        r;
1441       const char *                 name;
1442       int                          r_type;
1443 
1444       r_type = ELF32_R_TYPE (rel->r_info);
1445       r_symndx = ELF32_R_SYM (rel->r_info);
1446       howto  = elf_avr_howto_table + r_type;
1447       h      = NULL;
1448       sym    = NULL;
1449       sec    = NULL;
1450 
1451       if (r_symndx < symtab_hdr->sh_info)
1452 	{
1453 	  sym = local_syms + r_symndx;
1454 	  sec = local_sections [r_symndx];
1455 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1456 
1457 	  name = bfd_elf_string_from_elf_section
1458 	    (input_bfd, symtab_hdr->sh_link, sym->st_name);
1459 	  name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
1460 	}
1461       else
1462 	{
1463 	  bfd_boolean unresolved_reloc, warned, ignored;
1464 
1465 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1466 				   r_symndx, symtab_hdr, sym_hashes,
1467 				   h, sec, relocation,
1468 				   unresolved_reloc, warned, ignored);
1469 
1470 	  name = h->root.root.string;
1471 	}
1472 
1473       if (sec != NULL && discarded_section (sec))
1474 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1475 					 rel, 1, relend, howto, 0, contents);
1476 
1477       if (bfd_link_relocatable (info))
1478 	continue;
1479 
1480       r = avr_final_link_relocate (howto, input_bfd, input_section,
1481 				   contents, rel, relocation, htab);
1482 
1483       if (r != bfd_reloc_ok)
1484 	{
1485 	  const char * msg = (const char *) NULL;
1486 
1487 	  switch (r)
1488 	    {
1489 	    case bfd_reloc_overflow:
1490 	      (*info->callbacks->reloc_overflow)
1491 		(info, (h ? &h->root : NULL), name, howto->name,
1492 		 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1493 	      break;
1494 
1495 	    case bfd_reloc_undefined:
1496 	      (*info->callbacks->undefined_symbol)
1497 		(info, name, input_bfd, input_section, rel->r_offset, TRUE);
1498 	      break;
1499 
1500 	    case bfd_reloc_outofrange:
1501 	      msg = _("internal error: out of range error");
1502 	      break;
1503 
1504 	    case bfd_reloc_notsupported:
1505 	      msg = _("internal error: unsupported relocation error");
1506 	      break;
1507 
1508 	    case bfd_reloc_dangerous:
1509 	      msg = _("internal error: dangerous relocation");
1510 	      break;
1511 
1512 	    default:
1513 	      msg = _("internal error: unknown error");
1514 	      break;
1515 	    }
1516 
1517 	  if (msg)
1518 	    (*info->callbacks->warning) (info, msg, name, input_bfd,
1519 					 input_section, rel->r_offset);
1520 	}
1521     }
1522 
1523   return TRUE;
1524 }
1525 
1526 /* The final processing done just before writing out a AVR ELF object
1527    file.  This gets the AVR architecture right based on the machine
1528    number.  */
1529 
1530 static void
1531 bfd_elf_avr_final_write_processing (bfd *abfd,
1532 				    bfd_boolean linker ATTRIBUTE_UNUSED)
1533 {
1534   unsigned long val;
1535 
1536   switch (bfd_get_mach (abfd))
1537     {
1538     default:
1539     case bfd_mach_avr2:
1540       val = E_AVR_MACH_AVR2;
1541       break;
1542 
1543     case bfd_mach_avr1:
1544       val = E_AVR_MACH_AVR1;
1545       break;
1546 
1547     case bfd_mach_avr25:
1548       val = E_AVR_MACH_AVR25;
1549       break;
1550 
1551     case bfd_mach_avr3:
1552       val = E_AVR_MACH_AVR3;
1553       break;
1554 
1555     case bfd_mach_avr31:
1556       val = E_AVR_MACH_AVR31;
1557       break;
1558 
1559     case bfd_mach_avr35:
1560       val = E_AVR_MACH_AVR35;
1561       break;
1562 
1563     case bfd_mach_avr4:
1564       val = E_AVR_MACH_AVR4;
1565       break;
1566 
1567     case bfd_mach_avr5:
1568       val = E_AVR_MACH_AVR5;
1569       break;
1570 
1571     case bfd_mach_avr51:
1572       val = E_AVR_MACH_AVR51;
1573       break;
1574 
1575     case bfd_mach_avr6:
1576       val = E_AVR_MACH_AVR6;
1577       break;
1578 
1579     case bfd_mach_avrxmega1:
1580       val = E_AVR_MACH_XMEGA1;
1581       break;
1582 
1583     case bfd_mach_avrxmega2:
1584       val = E_AVR_MACH_XMEGA2;
1585       break;
1586 
1587     case bfd_mach_avrxmega3:
1588       val = E_AVR_MACH_XMEGA3;
1589       break;
1590 
1591     case bfd_mach_avrxmega4:
1592       val = E_AVR_MACH_XMEGA4;
1593       break;
1594 
1595     case bfd_mach_avrxmega5:
1596       val = E_AVR_MACH_XMEGA5;
1597       break;
1598 
1599     case bfd_mach_avrxmega6:
1600       val = E_AVR_MACH_XMEGA6;
1601       break;
1602 
1603     case bfd_mach_avrxmega7:
1604       val = E_AVR_MACH_XMEGA7;
1605       break;
1606 
1607    case bfd_mach_avrtiny:
1608       val = E_AVR_MACH_AVRTINY;
1609       break;
1610     }
1611 
1612   elf_elfheader (abfd)->e_machine = EM_AVR;
1613   elf_elfheader (abfd)->e_flags &= ~ EF_AVR_MACH;
1614   elf_elfheader (abfd)->e_flags |= val;
1615 }
1616 
1617 /* Set the right machine number.  */
1618 
1619 static bfd_boolean
1620 elf32_avr_object_p (bfd *abfd)
1621 {
1622   unsigned int e_set = bfd_mach_avr2;
1623 
1624   if (elf_elfheader (abfd)->e_machine == EM_AVR
1625       || elf_elfheader (abfd)->e_machine == EM_AVR_OLD)
1626     {
1627       int e_mach = elf_elfheader (abfd)->e_flags & EF_AVR_MACH;
1628 
1629       switch (e_mach)
1630 	{
1631 	default:
1632 	case E_AVR_MACH_AVR2:
1633 	  e_set = bfd_mach_avr2;
1634 	  break;
1635 
1636 	case E_AVR_MACH_AVR1:
1637 	  e_set = bfd_mach_avr1;
1638 	  break;
1639 
1640 	case E_AVR_MACH_AVR25:
1641 	  e_set = bfd_mach_avr25;
1642 	  break;
1643 
1644 	case E_AVR_MACH_AVR3:
1645 	  e_set = bfd_mach_avr3;
1646 	  break;
1647 
1648 	case E_AVR_MACH_AVR31:
1649 	  e_set = bfd_mach_avr31;
1650 	  break;
1651 
1652 	case E_AVR_MACH_AVR35:
1653 	  e_set = bfd_mach_avr35;
1654 	  break;
1655 
1656 	case E_AVR_MACH_AVR4:
1657 	  e_set = bfd_mach_avr4;
1658 	  break;
1659 
1660 	case E_AVR_MACH_AVR5:
1661 	  e_set = bfd_mach_avr5;
1662 	  break;
1663 
1664 	case E_AVR_MACH_AVR51:
1665 	  e_set = bfd_mach_avr51;
1666 	  break;
1667 
1668 	case E_AVR_MACH_AVR6:
1669 	  e_set = bfd_mach_avr6;
1670 	  break;
1671 
1672 	case E_AVR_MACH_XMEGA1:
1673 	  e_set = bfd_mach_avrxmega1;
1674 	  break;
1675 
1676 	case E_AVR_MACH_XMEGA2:
1677 	  e_set = bfd_mach_avrxmega2;
1678 	  break;
1679 
1680 	case E_AVR_MACH_XMEGA3:
1681 	  e_set = bfd_mach_avrxmega3;
1682 	  break;
1683 
1684 	case E_AVR_MACH_XMEGA4:
1685 	  e_set = bfd_mach_avrxmega4;
1686 	  break;
1687 
1688 	case E_AVR_MACH_XMEGA5:
1689 	  e_set = bfd_mach_avrxmega5;
1690 	  break;
1691 
1692 	case E_AVR_MACH_XMEGA6:
1693 	  e_set = bfd_mach_avrxmega6;
1694 	  break;
1695 
1696 	case E_AVR_MACH_XMEGA7:
1697 	  e_set = bfd_mach_avrxmega7;
1698 	  break;
1699 
1700     case E_AVR_MACH_AVRTINY:
1701       e_set = bfd_mach_avrtiny;
1702       break;
1703 	}
1704     }
1705   return bfd_default_set_arch_mach (abfd, bfd_arch_avr,
1706 				    e_set);
1707 }
1708 
1709 /* Returns whether the relocation type passed is a diff reloc. */
1710 
1711 static bfd_boolean
1712 elf32_avr_is_diff_reloc (Elf_Internal_Rela *irel)
1713 {
1714   return (ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF8
1715           ||ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF16
1716           || ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF32);
1717 }
1718 
1719 /* Reduce the diff value written in the section by count if the shrinked
1720    insn address happens to fall between the two symbols for which this
1721    diff reloc was emitted.  */
1722 
1723 static void
1724 elf32_avr_adjust_diff_reloc_value (bfd *abfd,
1725                                    struct bfd_section *isec,
1726                                    Elf_Internal_Rela *irel,
1727                                    bfd_vma symval,
1728                                    bfd_vma shrinked_insn_address,
1729                                    int count)
1730 {
1731   unsigned char *reloc_contents = NULL;
1732   unsigned char *isec_contents = elf_section_data (isec)->this_hdr.contents;
1733   if (isec_contents == NULL)
1734   {
1735     if (! bfd_malloc_and_get_section (abfd, isec, &isec_contents))
1736       return;
1737 
1738     elf_section_data (isec)->this_hdr.contents = isec_contents;
1739   }
1740 
1741   reloc_contents = isec_contents + irel->r_offset;
1742 
1743   /* Read value written in object file. */
1744  bfd_vma x = 0;
1745   switch (ELF32_R_TYPE (irel->r_info))
1746   {
1747   case R_AVR_DIFF8:
1748     {
1749       x = *reloc_contents;
1750       break;
1751     }
1752   case R_AVR_DIFF16:
1753     {
1754       x = bfd_get_16 (abfd, reloc_contents);
1755       break;
1756     }
1757   case R_AVR_DIFF32:
1758     {
1759       x = bfd_get_32 (abfd, reloc_contents);
1760       break;
1761     }
1762   default:
1763     {
1764       BFD_FAIL();
1765     }
1766   }
1767 
1768   /* For a diff reloc sym1 - sym2 the diff at assembly time (x) is written
1769      into the object file at the reloc offset. sym2's logical value is
1770      symval (<start_of_section>) + reloc addend. Compute the start and end
1771      addresses and check if the shrinked insn falls between sym1 and sym2. */
1772 
1773   bfd_vma end_address = symval + irel->r_addend;
1774   bfd_vma start_address = end_address - x;
1775 
1776   /* Reduce the diff value by count bytes and write it back into section
1777     contents. */
1778 
1779   if (shrinked_insn_address >= start_address
1780       && shrinked_insn_address <= end_address)
1781   {
1782     switch (ELF32_R_TYPE (irel->r_info))
1783     {
1784     case R_AVR_DIFF8:
1785       {
1786         *reloc_contents = (x - count);
1787         break;
1788       }
1789     case R_AVR_DIFF16:
1790       {
1791         bfd_put_16 (abfd, (x - count) & 0xFFFF, reloc_contents);
1792         break;
1793       }
1794     case R_AVR_DIFF32:
1795       {
1796         bfd_put_32 (abfd, (x - count) & 0xFFFFFFFF, reloc_contents);
1797         break;
1798       }
1799     default:
1800       {
1801         BFD_FAIL();
1802       }
1803     }
1804 
1805   }
1806 }
1807 
1808 /* Delete some bytes from a section while changing the size of an instruction.
1809    The parameter "addr" denotes the section-relative offset pointing just
1810    behind the shrinked instruction. "addr+count" point at the first
1811    byte just behind the original unshrinked instruction.  */
1812 
1813 static bfd_boolean
1814 elf32_avr_relax_delete_bytes (bfd *abfd,
1815                               asection *sec,
1816                               bfd_vma addr,
1817                               int count)
1818 {
1819   Elf_Internal_Shdr *symtab_hdr;
1820   unsigned int sec_shndx;
1821   bfd_byte *contents;
1822   Elf_Internal_Rela *irel, *irelend;
1823   Elf_Internal_Sym *isym;
1824   Elf_Internal_Sym *isymbuf = NULL;
1825   bfd_vma toaddr, reloc_toaddr;
1826   struct elf_link_hash_entry **sym_hashes;
1827   struct elf_link_hash_entry **end_hashes;
1828   unsigned int symcount;
1829   struct avr_relax_info *relax_info;
1830   struct avr_property_record *prop_record = NULL;
1831   bfd_boolean did_shrink = FALSE;
1832 
1833   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1834   sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
1835   contents = elf_section_data (sec)->this_hdr.contents;
1836   relax_info = get_avr_relax_info (sec);
1837 
1838   toaddr = sec->size;
1839 
1840   if (relax_info->records.count > 0)
1841     {
1842       /* There should be no property record within the range of deleted
1843          bytes, however, there might be a property record for ADDR, this is
1844          how we handle alignment directives.
1845          Find the next (if any) property record after the deleted bytes.  */
1846       unsigned int i;
1847 
1848       for (i = 0; i < relax_info->records.count; ++i)
1849         {
1850           bfd_vma offset = relax_info->records.items [i].offset;
1851 
1852           BFD_ASSERT (offset <= addr || offset >= (addr + count));
1853           if (offset >= (addr + count))
1854             {
1855               prop_record = &relax_info->records.items [i];
1856               toaddr = offset;
1857               break;
1858             }
1859         }
1860     }
1861 
1862   /* We need to look at all relocs with offsets less than toaddr. prop
1863      records handling adjusts toaddr downwards to avoid moving syms at the
1864      address of the property record, but all relocs with offsets between addr
1865      and the current value of toaddr need to have their offsets adjusted.
1866      Assume addr = 0, toaddr = 4 and count = 2. After prop records handling,
1867      toaddr becomes 2, but relocs with offsets 2 and 3 still need to be
1868      adjusted (to 0 and 1 respectively), as the first 2 bytes are now gone.
1869      So record the current value of toaddr here, and use it when adjusting
1870      reloc offsets. */
1871   reloc_toaddr = toaddr;
1872 
1873   irel = elf_section_data (sec)->relocs;
1874   irelend = irel + sec->reloc_count;
1875 
1876   /* Actually delete the bytes.  */
1877   if (toaddr - addr - count > 0)
1878     {
1879       memmove (contents + addr, contents + addr + count,
1880                (size_t) (toaddr - addr - count));
1881       did_shrink = TRUE;
1882     }
1883   if (prop_record == NULL)
1884     {
1885       sec->size -= count;
1886       did_shrink = TRUE;
1887     }
1888   else
1889     {
1890       /* Use the property record to fill in the bytes we've opened up.  */
1891       int fill = 0;
1892       switch (prop_record->type)
1893         {
1894         case RECORD_ORG_AND_FILL:
1895           fill = prop_record->data.org.fill;
1896           /* Fall through.  */
1897         case RECORD_ORG:
1898           break;
1899         case RECORD_ALIGN_AND_FILL:
1900           fill = prop_record->data.align.fill;
1901           /* Fall through.  */
1902         case RECORD_ALIGN:
1903           prop_record->data.align.preceding_deleted += count;
1904           break;
1905         };
1906       /* If toaddr == (addr + count), then we didn't delete anything, yet
1907          we fill count bytes backwards from toaddr. This is still ok - we
1908          end up overwriting the bytes we would have deleted. We just need
1909          to remember we didn't delete anything i.e. don't set did_shrink,
1910          so that we don't corrupt reloc offsets or symbol values.*/
1911       memset (contents + toaddr - count, fill, count);
1912 
1913       /* Adjust the TOADDR to avoid moving symbols located at the address
1914          of the property record, which has not moved.  */
1915       toaddr -= count;
1916     }
1917 
1918   if (!did_shrink)
1919     return TRUE;
1920 
1921   /* Adjust all the reloc addresses.  */
1922   for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
1923     {
1924       bfd_vma old_reloc_address;
1925 
1926       old_reloc_address = (sec->output_section->vma
1927                            + sec->output_offset + irel->r_offset);
1928 
1929       /* Get the new reloc address.  */
1930       if ((irel->r_offset > addr
1931            && irel->r_offset < reloc_toaddr))
1932         {
1933           if (debug_relax)
1934             printf ("Relocation at address 0x%x needs to be moved.\n"
1935                     "Old section offset: 0x%x, New section offset: 0x%x \n",
1936                     (unsigned int) old_reloc_address,
1937                     (unsigned int) irel->r_offset,
1938                     (unsigned int) ((irel->r_offset) - count));
1939 
1940           irel->r_offset -= count;
1941         }
1942 
1943     }
1944 
1945    /* The reloc's own addresses are now ok. However, we need to readjust
1946       the reloc's addend, i.e. the reloc's value if two conditions are met:
1947       1.) the reloc is relative to a symbol in this section that
1948           is located in front of the shrinked instruction
1949       2.) symbol plus addend end up behind the shrinked instruction.
1950 
1951       The most common case where this happens are relocs relative to
1952       the section-start symbol.
1953 
1954       This step needs to be done for all of the sections of the bfd.  */
1955 
1956   {
1957     struct bfd_section *isec;
1958 
1959     for (isec = abfd->sections; isec; isec = isec->next)
1960      {
1961        bfd_vma symval;
1962        bfd_vma shrinked_insn_address;
1963 
1964        if (isec->reloc_count == 0)
1965 	 continue;
1966 
1967        shrinked_insn_address = (sec->output_section->vma
1968                                 + sec->output_offset + addr - count);
1969 
1970        irel = elf_section_data (isec)->relocs;
1971        /* PR 12161: Read in the relocs for this section if necessary.  */
1972        if (irel == NULL)
1973          irel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
1974 
1975        for (irelend = irel + isec->reloc_count;
1976             irel < irelend;
1977             irel++)
1978          {
1979            /* Read this BFD's local symbols if we haven't done
1980               so already.  */
1981            if (isymbuf == NULL && symtab_hdr->sh_info != 0)
1982              {
1983                isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1984                if (isymbuf == NULL)
1985                  isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1986                                                  symtab_hdr->sh_info, 0,
1987                                                  NULL, NULL, NULL);
1988                if (isymbuf == NULL)
1989                  return FALSE;
1990              }
1991 
1992            /* Get the value of the symbol referred to by the reloc.  */
1993            if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
1994              {
1995                /* A local symbol.  */
1996                asection *sym_sec;
1997 
1998                isym = isymbuf + ELF32_R_SYM (irel->r_info);
1999                sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2000                symval = isym->st_value;
2001                /* If the reloc is absolute, it will not have
2002                   a symbol or section associated with it.  */
2003                if (sym_sec == sec)
2004                  {
2005                    symval += sym_sec->output_section->vma
2006                              + sym_sec->output_offset;
2007 
2008                    if (debug_relax)
2009                      printf ("Checking if the relocation's "
2010                              "addend needs corrections.\n"
2011                              "Address of anchor symbol: 0x%x \n"
2012                              "Address of relocation target: 0x%x \n"
2013                              "Address of relaxed insn: 0x%x \n",
2014                              (unsigned int) symval,
2015                              (unsigned int) (symval + irel->r_addend),
2016                              (unsigned int) shrinked_insn_address);
2017 
2018                    if (symval <= shrinked_insn_address
2019                        && (symval + irel->r_addend) > shrinked_insn_address)
2020                      {
2021                        if (elf32_avr_is_diff_reloc (irel))
2022                          {
2023                            elf32_avr_adjust_diff_reloc_value (abfd, isec, irel,
2024                                                          symval,
2025                                                          shrinked_insn_address,
2026                                                         count);
2027                          }
2028 
2029                        irel->r_addend -= count;
2030 
2031                        if (debug_relax)
2032                          printf ("Relocation's addend needed to be fixed \n");
2033                      }
2034                  }
2035 	       /* else...Reference symbol is absolute.  No adjustment needed.  */
2036 	     }
2037 	   /* else...Reference symbol is extern.  No need for adjusting
2038 	      the addend.  */
2039 	 }
2040      }
2041   }
2042 
2043   /* Adjust the local symbols defined in this section.  */
2044   isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2045   /* Fix PR 9841, there may be no local symbols.  */
2046   if (isym != NULL)
2047     {
2048       Elf_Internal_Sym *isymend;
2049 
2050       isymend = isym + symtab_hdr->sh_info;
2051       for (; isym < isymend; isym++)
2052 	{
2053 	  if (isym->st_shndx == sec_shndx)
2054             {
2055 	      if (isym->st_value > addr
2056                   && isym->st_value <= toaddr)
2057                 isym->st_value -= count;
2058 
2059               if (isym->st_value <= addr
2060                   && isym->st_value + isym->st_size > addr)
2061                 {
2062                   /* If this assert fires then we have a symbol that ends
2063                      part way through an instruction.  Does that make
2064                      sense?  */
2065                   BFD_ASSERT (isym->st_value + isym->st_size >= addr + count);
2066                   isym->st_size -= count;
2067                 }
2068             }
2069 	}
2070     }
2071 
2072   /* Now adjust the global symbols defined in this section.  */
2073   symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2074               - symtab_hdr->sh_info);
2075   sym_hashes = elf_sym_hashes (abfd);
2076   end_hashes = sym_hashes + symcount;
2077   for (; sym_hashes < end_hashes; sym_hashes++)
2078     {
2079       struct elf_link_hash_entry *sym_hash = *sym_hashes;
2080       if ((sym_hash->root.type == bfd_link_hash_defined
2081            || sym_hash->root.type == bfd_link_hash_defweak)
2082           && sym_hash->root.u.def.section == sec)
2083         {
2084           if (sym_hash->root.u.def.value > addr
2085               && sym_hash->root.u.def.value <= toaddr)
2086             sym_hash->root.u.def.value -= count;
2087 
2088           if (sym_hash->root.u.def.value <= addr
2089               && (sym_hash->root.u.def.value + sym_hash->size > addr))
2090             {
2091               /* If this assert fires then we have a symbol that ends
2092                  part way through an instruction.  Does that make
2093                  sense?  */
2094               BFD_ASSERT (sym_hash->root.u.def.value + sym_hash->size
2095                           >= addr + count);
2096               sym_hash->size -= count;
2097             }
2098         }
2099     }
2100 
2101   return TRUE;
2102 }
2103 
2104 static Elf_Internal_Sym *
2105 retrieve_local_syms (bfd *input_bfd)
2106 {
2107   Elf_Internal_Shdr *symtab_hdr;
2108   Elf_Internal_Sym *isymbuf;
2109   size_t locsymcount;
2110 
2111   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2112   locsymcount = symtab_hdr->sh_info;
2113 
2114   isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2115   if (isymbuf == NULL && locsymcount != 0)
2116     isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
2117 				    NULL, NULL, NULL);
2118 
2119   /* Save the symbols for this input file so they won't be read again.  */
2120   if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
2121     symtab_hdr->contents = (unsigned char *) isymbuf;
2122 
2123   return isymbuf;
2124 }
2125 
2126 /* Get the input section for a given symbol index.
2127    If the symbol is:
2128    . a section symbol, return the section;
2129    . a common symbol, return the common section;
2130    . an undefined symbol, return the undefined section;
2131    . an indirect symbol, follow the links;
2132    . an absolute value, return the absolute section.  */
2133 
2134 static asection *
2135 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
2136 {
2137   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2138   asection *target_sec = NULL;
2139   if (r_symndx < symtab_hdr->sh_info)
2140     {
2141       Elf_Internal_Sym *isymbuf;
2142       unsigned int section_index;
2143 
2144       isymbuf = retrieve_local_syms (abfd);
2145       section_index = isymbuf[r_symndx].st_shndx;
2146 
2147       if (section_index == SHN_UNDEF)
2148 	target_sec = bfd_und_section_ptr;
2149       else if (section_index == SHN_ABS)
2150 	target_sec = bfd_abs_section_ptr;
2151       else if (section_index == SHN_COMMON)
2152 	target_sec = bfd_com_section_ptr;
2153       else
2154 	target_sec = bfd_section_from_elf_index (abfd, section_index);
2155     }
2156   else
2157     {
2158       unsigned long indx = r_symndx - symtab_hdr->sh_info;
2159       struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
2160 
2161       while (h->root.type == bfd_link_hash_indirect
2162              || h->root.type == bfd_link_hash_warning)
2163         h = (struct elf_link_hash_entry *) h->root.u.i.link;
2164 
2165       switch (h->root.type)
2166 	{
2167 	case bfd_link_hash_defined:
2168 	case  bfd_link_hash_defweak:
2169 	  target_sec = h->root.u.def.section;
2170 	  break;
2171 	case bfd_link_hash_common:
2172 	  target_sec = bfd_com_section_ptr;
2173 	  break;
2174 	case bfd_link_hash_undefined:
2175 	case bfd_link_hash_undefweak:
2176 	  target_sec = bfd_und_section_ptr;
2177 	  break;
2178 	default: /* New indirect warning.  */
2179 	  target_sec = bfd_und_section_ptr;
2180 	  break;
2181 	}
2182     }
2183   return target_sec;
2184 }
2185 
2186 /* Get the section-relative offset for a symbol number.  */
2187 
2188 static bfd_vma
2189 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
2190 {
2191   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2192   bfd_vma offset = 0;
2193 
2194   if (r_symndx < symtab_hdr->sh_info)
2195     {
2196       Elf_Internal_Sym *isymbuf;
2197       isymbuf = retrieve_local_syms (abfd);
2198       offset = isymbuf[r_symndx].st_value;
2199     }
2200   else
2201     {
2202       unsigned long indx = r_symndx - symtab_hdr->sh_info;
2203       struct elf_link_hash_entry *h =
2204 	elf_sym_hashes (abfd)[indx];
2205 
2206       while (h->root.type == bfd_link_hash_indirect
2207              || h->root.type == bfd_link_hash_warning)
2208 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
2209       if (h->root.type == bfd_link_hash_defined
2210           || h->root.type == bfd_link_hash_defweak)
2211 	offset = h->root.u.def.value;
2212     }
2213   return offset;
2214 }
2215 
2216 /* Iterate over the property records in R_LIST, and copy each record into
2217    the list of records within the relaxation information for the section to
2218    which the record applies.  */
2219 
2220 static void
2221 avr_elf32_assign_records_to_sections (struct avr_property_record_list *r_list)
2222 {
2223   unsigned int i;
2224 
2225   for (i = 0; i < r_list->record_count; ++i)
2226     {
2227       struct avr_relax_info *relax_info;
2228 
2229       relax_info = get_avr_relax_info (r_list->records [i].section);
2230       BFD_ASSERT (relax_info != NULL);
2231 
2232       if (relax_info->records.count
2233           == relax_info->records.allocated)
2234         {
2235           /* Allocate more space.  */
2236           bfd_size_type size;
2237 
2238           relax_info->records.allocated += 10;
2239           size = (sizeof (struct avr_property_record)
2240                   * relax_info->records.allocated);
2241           relax_info->records.items
2242             = bfd_realloc (relax_info->records.items, size);
2243         }
2244 
2245       memcpy (&relax_info->records.items [relax_info->records.count],
2246               &r_list->records [i],
2247               sizeof (struct avr_property_record));
2248       relax_info->records.count++;
2249     }
2250 }
2251 
2252 /* Compare two STRUCT AVR_PROPERTY_RECORD in AP and BP, used as the
2253    ordering callback from QSORT.  */
2254 
2255 static int
2256 avr_property_record_compare (const void *ap, const void *bp)
2257 {
2258   const struct avr_property_record *a
2259     = (struct avr_property_record *) ap;
2260   const struct avr_property_record *b
2261     = (struct avr_property_record *) bp;
2262 
2263   if (a->offset != b->offset)
2264     return (a->offset - b->offset);
2265 
2266   if (a->section != b->section)
2267     return (bfd_get_section_vma (a->section->owner, a->section)
2268             - bfd_get_section_vma (b->section->owner, b->section));
2269 
2270   return (a->type - b->type);
2271 }
2272 
2273 /* Load all of the avr property sections from all of the bfd objects
2274    referenced from LINK_INFO.  All of the records within each property
2275    section are assigned to the STRUCT AVR_RELAX_INFO within the section
2276    specific data of the appropriate section.  */
2277 
2278 static void
2279 avr_load_all_property_sections (struct bfd_link_info *link_info)
2280 {
2281   bfd *abfd;
2282   asection *sec;
2283 
2284   /* Initialize the per-section relaxation info.  */
2285   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2286     for (sec = abfd->sections; sec != NULL; sec = sec->next)
2287       {
2288 	init_avr_relax_info (sec);
2289       }
2290 
2291   /* Load the descriptor tables from .avr.prop sections.  */
2292   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2293     {
2294       struct avr_property_record_list *r_list;
2295 
2296       r_list = avr_elf32_load_property_records (abfd);
2297       if (r_list != NULL)
2298         avr_elf32_assign_records_to_sections (r_list);
2299 
2300       free (r_list);
2301     }
2302 
2303   /* Now, for every section, ensure that the descriptor list in the
2304      relaxation data is sorted by ascending offset within the section.  */
2305   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2306     for (sec = abfd->sections; sec != NULL; sec = sec->next)
2307       {
2308         struct avr_relax_info *relax_info = get_avr_relax_info (sec);
2309         if (relax_info && relax_info->records.count > 0)
2310           {
2311             unsigned int i;
2312 
2313             qsort (relax_info->records.items,
2314                    relax_info->records.count,
2315                    sizeof (struct avr_property_record),
2316                    avr_property_record_compare);
2317 
2318             /* For debug purposes, list all the descriptors.  */
2319             for (i = 0; i < relax_info->records.count; ++i)
2320               {
2321                 switch (relax_info->records.items [i].type)
2322                   {
2323                   case RECORD_ORG:
2324                     break;
2325                   case RECORD_ORG_AND_FILL:
2326                     break;
2327                   case RECORD_ALIGN:
2328                     break;
2329                   case RECORD_ALIGN_AND_FILL:
2330                     break;
2331                   };
2332               }
2333           }
2334       }
2335 }
2336 
2337 /* This function handles relaxing for the avr.
2338    Many important relaxing opportunities within functions are already
2339    realized by the compiler itself.
2340    Here we try to replace  call (4 bytes) ->  rcall (2 bytes)
2341    and jump -> rjmp (safes also 2 bytes).
2342    As well we now optimize seqences of
2343      - call/rcall function
2344      - ret
2345    to yield
2346      - jmp/rjmp function
2347      - ret
2348    . In case that within a sequence
2349      - jmp/rjmp label
2350      - ret
2351    the ret could no longer be reached it is optimized away. In order
2352    to check if the ret is no longer needed, it is checked that the ret's address
2353    is not the target of a branch or jump within the same section, it is checked
2354    that there is no skip instruction before the jmp/rjmp and that there
2355    is no local or global label place at the address of the ret.
2356 
2357    We refrain from relaxing within sections ".vectors" and
2358    ".jumptables" in order to maintain the position of the instructions.
2359    There, however, we substitute jmp/call by a sequence rjmp,nop/rcall,nop
2360    if possible. (In future one could possibly use the space of the nop
2361    for the first instruction of the irq service function.
2362 
2363    The .jumptables sections is meant to be used for a future tablejump variant
2364    for the devices with 3-byte program counter where the table itself
2365    contains 4-byte jump instructions whose relative offset must not
2366    be changed.  */
2367 
2368 static bfd_boolean
2369 elf32_avr_relax_section (bfd *abfd,
2370 			 asection *sec,
2371                          struct bfd_link_info *link_info,
2372                          bfd_boolean *again)
2373 {
2374   Elf_Internal_Shdr *symtab_hdr;
2375   Elf_Internal_Rela *internal_relocs;
2376   Elf_Internal_Rela *irel, *irelend;
2377   bfd_byte *contents = NULL;
2378   Elf_Internal_Sym *isymbuf = NULL;
2379   struct elf32_avr_link_hash_table *htab;
2380   static bfd_boolean relaxation_initialised = FALSE;
2381 
2382   if (!relaxation_initialised)
2383     {
2384       relaxation_initialised = TRUE;
2385 
2386       /* Load entries from the .avr.prop sections.  */
2387       avr_load_all_property_sections (link_info);
2388     }
2389 
2390   /* If 'shrinkable' is FALSE, do not shrink by deleting bytes while
2391      relaxing. Such shrinking can cause issues for the sections such
2392      as .vectors and .jumptables. Instead the unused bytes should be
2393      filled with nop instructions. */
2394   bfd_boolean shrinkable = TRUE;
2395 
2396   if (!strcmp (sec->name,".vectors")
2397       || !strcmp (sec->name,".jumptables"))
2398     shrinkable = FALSE;
2399 
2400   if (bfd_link_relocatable (link_info))
2401     (*link_info->callbacks->einfo)
2402       (_("%P%F: --relax and -r may not be used together\n"));
2403 
2404   htab = avr_link_hash_table (link_info);
2405   if (htab == NULL)
2406     return FALSE;
2407 
2408   /* Assume nothing changes.  */
2409   *again = FALSE;
2410 
2411   if ((!htab->no_stubs) && (sec == htab->stub_sec))
2412     {
2413       /* We are just relaxing the stub section.
2414 	 Let's calculate the size needed again.  */
2415       bfd_size_type last_estimated_stub_section_size = htab->stub_sec->size;
2416 
2417       if (debug_relax)
2418         printf ("Relaxing the stub section. Size prior to this pass: %i\n",
2419                 (int) last_estimated_stub_section_size);
2420 
2421       elf32_avr_size_stubs (htab->stub_sec->output_section->owner,
2422                             link_info, FALSE);
2423 
2424       /* Check if the number of trampolines changed.  */
2425       if (last_estimated_stub_section_size != htab->stub_sec->size)
2426         *again = TRUE;
2427 
2428       if (debug_relax)
2429         printf ("Size of stub section after this pass: %i\n",
2430                 (int) htab->stub_sec->size);
2431 
2432       return TRUE;
2433     }
2434 
2435   /* We don't have to do anything for a relocatable link, if
2436      this section does not have relocs, or if this is not a
2437      code section.  */
2438   if (bfd_link_relocatable (link_info)
2439       || (sec->flags & SEC_RELOC) == 0
2440       || sec->reloc_count == 0
2441       || (sec->flags & SEC_CODE) == 0)
2442     return TRUE;
2443 
2444   /* Check if the object file to relax uses internal symbols so that we
2445      could fix up the relocations.  */
2446   if (!(elf_elfheader (abfd)->e_flags & EF_AVR_LINKRELAX_PREPARED))
2447     return TRUE;
2448 
2449   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2450 
2451   /* Get a copy of the native relocations.  */
2452   internal_relocs = (_bfd_elf_link_read_relocs
2453                      (abfd, sec, NULL, NULL, link_info->keep_memory));
2454   if (internal_relocs == NULL)
2455     goto error_return;
2456 
2457   /* Walk through the relocs looking for relaxing opportunities.  */
2458   irelend = internal_relocs + sec->reloc_count;
2459   for (irel = internal_relocs; irel < irelend; irel++)
2460     {
2461       bfd_vma symval;
2462 
2463       if (   ELF32_R_TYPE (irel->r_info) != R_AVR_13_PCREL
2464 	  && ELF32_R_TYPE (irel->r_info) != R_AVR_7_PCREL
2465 	  && ELF32_R_TYPE (irel->r_info) != R_AVR_CALL)
2466         continue;
2467 
2468       /* Get the section contents if we haven't done so already.  */
2469       if (contents == NULL)
2470         {
2471           /* Get cached copy if it exists.  */
2472           if (elf_section_data (sec)->this_hdr.contents != NULL)
2473             contents = elf_section_data (sec)->this_hdr.contents;
2474           else
2475             {
2476               /* Go get them off disk.  */
2477               if (! bfd_malloc_and_get_section (abfd, sec, &contents))
2478                 goto error_return;
2479             }
2480         }
2481 
2482       /* Read this BFD's local symbols if we haven't done so already.  */
2483       if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2484         {
2485           isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2486           if (isymbuf == NULL)
2487             isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2488                                             symtab_hdr->sh_info, 0,
2489                                             NULL, NULL, NULL);
2490           if (isymbuf == NULL)
2491             goto error_return;
2492         }
2493 
2494 
2495       /* Get the value of the symbol referred to by the reloc.  */
2496       if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2497         {
2498           /* A local symbol.  */
2499           Elf_Internal_Sym *isym;
2500           asection *sym_sec;
2501 
2502           isym = isymbuf + ELF32_R_SYM (irel->r_info);
2503           sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2504           symval = isym->st_value;
2505           /* If the reloc is absolute, it will not have
2506              a symbol or section associated with it.  */
2507           if (sym_sec)
2508             symval += sym_sec->output_section->vma
2509               + sym_sec->output_offset;
2510         }
2511       else
2512         {
2513           unsigned long indx;
2514           struct elf_link_hash_entry *h;
2515 
2516           /* An external symbol.  */
2517           indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2518           h = elf_sym_hashes (abfd)[indx];
2519           BFD_ASSERT (h != NULL);
2520           if (h->root.type != bfd_link_hash_defined
2521               && h->root.type != bfd_link_hash_defweak)
2522 	    /* This appears to be a reference to an undefined
2523 	       symbol.  Just ignore it--it will be caught by the
2524 	       regular reloc processing.  */
2525 	    continue;
2526 
2527           symval = (h->root.u.def.value
2528                     + h->root.u.def.section->output_section->vma
2529                     + h->root.u.def.section->output_offset);
2530         }
2531 
2532       /* For simplicity of coding, we are going to modify the section
2533          contents, the section relocs, and the BFD symbol table.  We
2534          must tell the rest of the code not to free up this
2535          information.  It would be possible to instead create a table
2536          of changes which have to be made, as is done in coff-mips.c;
2537          that would be more work, but would require less memory when
2538          the linker is run.  */
2539       switch (ELF32_R_TYPE (irel->r_info))
2540         {
2541 	  /* Try to turn a 22-bit absolute call/jump into an 13-bit
2542 	     pc-relative rcall/rjmp.  */
2543 	case R_AVR_CALL:
2544           {
2545             bfd_vma value = symval + irel->r_addend;
2546             bfd_vma dot, gap;
2547             int distance_short_enough = 0;
2548 
2549             /* Get the address of this instruction.  */
2550             dot = (sec->output_section->vma
2551                    + sec->output_offset + irel->r_offset);
2552 
2553             /* Compute the distance from this insn to the branch target.  */
2554             gap = value - dot;
2555 
2556             /* Check if the gap falls in the range that can be accommodated
2557                in 13bits signed (It is 12bits when encoded, as we deal with
2558                word addressing). */
2559             if (!shrinkable && ((int) gap >= -4096 && (int) gap <= 4095))
2560               distance_short_enough = 1;
2561             /* If shrinkable, then we can check for a range of distance which
2562                is two bytes farther on both the directions because the call
2563                or jump target will be closer by two bytes after the
2564                relaxation. */
2565             else if (shrinkable && ((int) gap >= -4094 && (int) gap <= 4097))
2566               distance_short_enough = 1;
2567 
2568             /* Here we handle the wrap-around case.  E.g. for a 16k device
2569                we could use a rjmp to jump from address 0x100 to 0x3d00!
2570                In order to make this work properly, we need to fill the
2571                vaiable avr_pc_wrap_around with the appropriate value.
2572                I.e. 0x4000 for a 16k device.  */
2573             {
2574 	      /* Shrinking the code size makes the gaps larger in the
2575 		 case of wrap-arounds.  So we use a heuristical safety
2576 		 margin to avoid that during relax the distance gets
2577 		 again too large for the short jumps.  Let's assume
2578 		 a typical code-size reduction due to relax for a
2579 		 16k device of 600 bytes.  So let's use twice the
2580 		 typical value as safety margin.  */
2581 	      int rgap;
2582 	      int safety_margin;
2583 
2584 	      int assumed_shrink = 600;
2585 	      if (avr_pc_wrap_around > 0x4000)
2586 		assumed_shrink = 900;
2587 
2588 	      safety_margin = 2 * assumed_shrink;
2589 
2590 	      rgap = avr_relative_distance_considering_wrap_around (gap);
2591 
2592 	      if (rgap >= (-4092 + safety_margin)
2593 		  && rgap <= (4094 - safety_margin))
2594 		distance_short_enough = 1;
2595             }
2596 
2597             if (distance_short_enough)
2598               {
2599                 unsigned char code_msb;
2600                 unsigned char code_lsb;
2601 
2602                 if (debug_relax)
2603                   printf ("shrinking jump/call instruction at address 0x%x"
2604                           " in section %s\n\n",
2605                           (int) dot, sec->name);
2606 
2607                 /* Note that we've changed the relocs, section contents,
2608                    etc.  */
2609                 elf_section_data (sec)->relocs = internal_relocs;
2610                 elf_section_data (sec)->this_hdr.contents = contents;
2611                 symtab_hdr->contents = (unsigned char *) isymbuf;
2612 
2613                 /* Get the instruction code for relaxing.  */
2614                 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset);
2615                 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
2616 
2617                 /* Mask out the relocation bits.  */
2618                 code_msb &= 0x94;
2619                 code_lsb &= 0x0E;
2620                 if (code_msb == 0x94 && code_lsb == 0x0E)
2621                   {
2622                     /* we are changing call -> rcall .  */
2623                     bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
2624                     bfd_put_8 (abfd, 0xD0, contents + irel->r_offset + 1);
2625                   }
2626                 else if (code_msb == 0x94 && code_lsb == 0x0C)
2627                   {
2628                     /* we are changeing jump -> rjmp.  */
2629                     bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
2630                     bfd_put_8 (abfd, 0xC0, contents + irel->r_offset + 1);
2631                   }
2632                 else
2633                   abort ();
2634 
2635                 /* Fix the relocation's type.  */
2636                 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
2637                                              R_AVR_13_PCREL);
2638 
2639                 /* We should not modify the ordering if 'shrinkable' is
2640                    FALSE. */
2641                 if (!shrinkable)
2642                   {
2643                     /* Let's insert a nop.  */
2644                     bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 2);
2645                     bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 3);
2646                   }
2647                 else
2648                   {
2649                     /* Delete two bytes of data.  */
2650                     if (!elf32_avr_relax_delete_bytes (abfd, sec,
2651                                                        irel->r_offset + 2, 2))
2652                       goto error_return;
2653 
2654                     /* That will change things, so, we should relax again.
2655                        Note that this is not required, and it may be slow.  */
2656                     *again = TRUE;
2657                   }
2658               }
2659           }
2660 
2661         default:
2662           {
2663             unsigned char code_msb;
2664             unsigned char code_lsb;
2665             bfd_vma dot;
2666 
2667             code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
2668             code_lsb = bfd_get_8 (abfd, contents + irel->r_offset + 0);
2669 
2670             /* Get the address of this instruction.  */
2671             dot = (sec->output_section->vma
2672                    + sec->output_offset + irel->r_offset);
2673 
2674             /* Here we look for rcall/ret or call/ret sequences that could be
2675                safely replaced by rjmp/ret or jmp/ret.  */
2676             if (((code_msb & 0xf0) == 0xd0)
2677                 && avr_replace_call_ret_sequences)
2678               {
2679                 /* This insn is a rcall.  */
2680                 unsigned char next_insn_msb = 0;
2681                 unsigned char next_insn_lsb = 0;
2682 
2683                 if (irel->r_offset + 3 < sec->size)
2684                   {
2685                     next_insn_msb =
2686 		      bfd_get_8 (abfd, contents + irel->r_offset + 3);
2687                     next_insn_lsb =
2688 		      bfd_get_8 (abfd, contents + irel->r_offset + 2);
2689                   }
2690 
2691 		if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2692                   {
2693                     /* The next insn is a ret. We now convert the rcall insn
2694                        into a rjmp instruction.  */
2695                     code_msb &= 0xef;
2696                     bfd_put_8 (abfd, code_msb, contents + irel->r_offset + 1);
2697                     if (debug_relax)
2698                       printf ("converted rcall/ret sequence at address 0x%x"
2699                               " into rjmp/ret sequence. Section is %s\n\n",
2700                               (int) dot, sec->name);
2701                     *again = TRUE;
2702                     break;
2703                   }
2704               }
2705             else if ((0x94 == (code_msb & 0xfe))
2706 		     && (0x0e == (code_lsb & 0x0e))
2707 		     && avr_replace_call_ret_sequences)
2708               {
2709                 /* This insn is a call.  */
2710                 unsigned char next_insn_msb = 0;
2711                 unsigned char next_insn_lsb = 0;
2712 
2713                 if (irel->r_offset + 5 < sec->size)
2714                   {
2715                     next_insn_msb =
2716 		      bfd_get_8 (abfd, contents + irel->r_offset + 5);
2717                     next_insn_lsb =
2718 		      bfd_get_8 (abfd, contents + irel->r_offset + 4);
2719                   }
2720 
2721                 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2722                   {
2723                     /* The next insn is a ret. We now convert the call insn
2724                        into a jmp instruction.  */
2725 
2726                     code_lsb &= 0xfd;
2727                     bfd_put_8 (abfd, code_lsb, contents + irel->r_offset);
2728                     if (debug_relax)
2729                       printf ("converted call/ret sequence at address 0x%x"
2730                               " into jmp/ret sequence. Section is %s\n\n",
2731                               (int) dot, sec->name);
2732                     *again = TRUE;
2733                     break;
2734                   }
2735               }
2736             else if ((0xc0 == (code_msb & 0xf0))
2737                      || ((0x94 == (code_msb & 0xfe))
2738                          && (0x0c == (code_lsb & 0x0e))))
2739               {
2740                 /* This insn is a rjmp or a jmp.  */
2741                 unsigned char next_insn_msb = 0;
2742                 unsigned char next_insn_lsb = 0;
2743                 int insn_size;
2744 
2745                 if (0xc0 == (code_msb & 0xf0))
2746                   insn_size = 2; /* rjmp insn */
2747                 else
2748                   insn_size = 4; /* jmp insn */
2749 
2750                 if (irel->r_offset + insn_size + 1 < sec->size)
2751                   {
2752                     next_insn_msb =
2753 		      bfd_get_8 (abfd, contents + irel->r_offset
2754 				 + insn_size + 1);
2755                     next_insn_lsb =
2756 		      bfd_get_8 (abfd, contents + irel->r_offset
2757 				 + insn_size);
2758                   }
2759 
2760                 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2761                   {
2762                     /* The next insn is a ret. We possibly could delete
2763                        this ret. First we need to check for preceding
2764                        sbis/sbic/sbrs or cpse "skip" instructions.  */
2765 
2766                     int there_is_preceding_non_skip_insn = 1;
2767                     bfd_vma address_of_ret;
2768 
2769                     address_of_ret = dot + insn_size;
2770 
2771                     if (debug_relax && (insn_size == 2))
2772                       printf ("found rjmp / ret sequence at address 0x%x\n",
2773                               (int) dot);
2774                     if (debug_relax && (insn_size == 4))
2775                       printf ("found jmp / ret sequence at address 0x%x\n",
2776                               (int) dot);
2777 
2778                     /* We have to make sure that there is a preceding insn.  */
2779                     if (irel->r_offset >= 2)
2780                       {
2781                         unsigned char preceding_msb;
2782                         unsigned char preceding_lsb;
2783 
2784                         preceding_msb =
2785 			  bfd_get_8 (abfd, contents + irel->r_offset - 1);
2786                         preceding_lsb =
2787 			  bfd_get_8 (abfd, contents + irel->r_offset - 2);
2788 
2789                         /* sbic.  */
2790                         if (0x99 == preceding_msb)
2791                           there_is_preceding_non_skip_insn = 0;
2792 
2793                         /* sbis.  */
2794                         if (0x9b == preceding_msb)
2795                           there_is_preceding_non_skip_insn = 0;
2796 
2797                         /* sbrc */
2798                         if ((0xfc == (preceding_msb & 0xfe)
2799 			     && (0x00 == (preceding_lsb & 0x08))))
2800                           there_is_preceding_non_skip_insn = 0;
2801 
2802                         /* sbrs */
2803                         if ((0xfe == (preceding_msb & 0xfe)
2804 			     && (0x00 == (preceding_lsb & 0x08))))
2805                           there_is_preceding_non_skip_insn = 0;
2806 
2807                         /* cpse */
2808                         if (0x10 == (preceding_msb & 0xfc))
2809                           there_is_preceding_non_skip_insn = 0;
2810 
2811                         if (there_is_preceding_non_skip_insn == 0)
2812                           if (debug_relax)
2813                             printf ("preceding skip insn prevents deletion of"
2814                                     " ret insn at Addy 0x%x in section %s\n",
2815                                     (int) dot + 2, sec->name);
2816                       }
2817                     else
2818                       {
2819                         /* There is no previous instruction.  */
2820                         there_is_preceding_non_skip_insn = 0;
2821                       }
2822 
2823                     if (there_is_preceding_non_skip_insn)
2824                       {
2825                         /* We now only have to make sure that there is no
2826                            local label defined at the address of the ret
2827                            instruction and that there is no local relocation
2828                            in this section pointing to the ret.  */
2829 
2830                         int deleting_ret_is_safe = 1;
2831                         unsigned int section_offset_of_ret_insn =
2832 			  irel->r_offset + insn_size;
2833                         Elf_Internal_Sym *isym, *isymend;
2834                         unsigned int sec_shndx;
2835 			struct bfd_section *isec;
2836 
2837                         sec_shndx =
2838 			  _bfd_elf_section_from_bfd_section (abfd, sec);
2839 
2840                         /* Check for local symbols.  */
2841                         isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2842                         isymend = isym + symtab_hdr->sh_info;
2843 			/* PR 6019: There may not be any local symbols.  */
2844                         for (; isym != NULL && isym < isymend; isym++)
2845 			  {
2846 			    if (isym->st_value == section_offset_of_ret_insn
2847 				&& isym->st_shndx == sec_shndx)
2848 			      {
2849 				deleting_ret_is_safe = 0;
2850 				if (debug_relax)
2851 				  printf ("local label prevents deletion of ret "
2852 					  "insn at address 0x%x\n",
2853 					  (int) dot + insn_size);
2854 			      }
2855 			  }
2856 
2857 			/* Now check for global symbols.  */
2858 			{
2859 			  int symcount;
2860 			  struct elf_link_hash_entry **sym_hashes;
2861 			  struct elf_link_hash_entry **end_hashes;
2862 
2863 			  symcount = (symtab_hdr->sh_size
2864 				      / sizeof (Elf32_External_Sym)
2865 				      - symtab_hdr->sh_info);
2866 			  sym_hashes = elf_sym_hashes (abfd);
2867 			  end_hashes = sym_hashes + symcount;
2868 			  for (; sym_hashes < end_hashes; sym_hashes++)
2869 			    {
2870 			      struct elf_link_hash_entry *sym_hash =
2871 				*sym_hashes;
2872 			      if ((sym_hash->root.type == bfd_link_hash_defined
2873 				   || sym_hash->root.type ==
2874 				   bfd_link_hash_defweak)
2875 				  && sym_hash->root.u.def.section == sec
2876 				  && sym_hash->root.u.def.value == section_offset_of_ret_insn)
2877 				{
2878 				  deleting_ret_is_safe = 0;
2879 				  if (debug_relax)
2880 				    printf ("global label prevents deletion of "
2881 					    "ret insn at address 0x%x\n",
2882 					    (int) dot + insn_size);
2883 				}
2884 			    }
2885 			}
2886 
2887 			/* Now we check for relocations pointing to ret.  */
2888 			for (isec = abfd->sections; isec && deleting_ret_is_safe; isec = isec->next)
2889 			  {
2890 			    Elf_Internal_Rela *rel;
2891 			    Elf_Internal_Rela *relend;
2892 
2893 			    rel = elf_section_data (isec)->relocs;
2894 			    if (rel == NULL)
2895 			      rel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
2896 
2897 			    relend = rel + isec->reloc_count;
2898 
2899 			    for (; rel && rel < relend; rel++)
2900 			      {
2901 				bfd_vma reloc_target = 0;
2902 
2903 				/* Read this BFD's local symbols if we haven't
2904 				   done so already.  */
2905 				if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2906 				  {
2907 				    isymbuf = (Elf_Internal_Sym *)
2908 				      symtab_hdr->contents;
2909 				    if (isymbuf == NULL)
2910 				      isymbuf = bfd_elf_get_elf_syms
2911 					(abfd,
2912 					 symtab_hdr,
2913 					 symtab_hdr->sh_info, 0,
2914 					 NULL, NULL, NULL);
2915 				    if (isymbuf == NULL)
2916 				      break;
2917 				  }
2918 
2919 				/* Get the value of the symbol referred to
2920 				   by the reloc.  */
2921 				if (ELF32_R_SYM (rel->r_info)
2922 				    < symtab_hdr->sh_info)
2923 				  {
2924 				    /* A local symbol.  */
2925 				    asection *sym_sec;
2926 
2927 				    isym = isymbuf
2928 				      + ELF32_R_SYM (rel->r_info);
2929 				    sym_sec = bfd_section_from_elf_index
2930 				      (abfd, isym->st_shndx);
2931 				    symval = isym->st_value;
2932 
2933 				    /* If the reloc is absolute, it will not
2934 				       have a symbol or section associated
2935 				       with it.  */
2936 
2937 				    if (sym_sec)
2938 				      {
2939 					symval +=
2940 					  sym_sec->output_section->vma
2941 					  + sym_sec->output_offset;
2942 					reloc_target = symval + rel->r_addend;
2943 				      }
2944 				    else
2945 				      {
2946 					reloc_target = symval + rel->r_addend;
2947 					/* Reference symbol is absolute.  */
2948 				      }
2949 				  }
2950 				/* else ... reference symbol is extern.  */
2951 
2952 				if (address_of_ret == reloc_target)
2953 				  {
2954 				    deleting_ret_is_safe = 0;
2955 				    if (debug_relax)
2956 				      printf ("ret from "
2957 					      "rjmp/jmp ret sequence at address"
2958 					      " 0x%x could not be deleted. ret"
2959 					      " is target of a relocation.\n",
2960 					      (int) address_of_ret);
2961 				    break;
2962 				  }
2963 			      }
2964 			  }
2965 
2966 			if (deleting_ret_is_safe)
2967 			  {
2968 			    if (debug_relax)
2969 			      printf ("unreachable ret instruction "
2970 				      "at address 0x%x deleted.\n",
2971 				      (int) dot + insn_size);
2972 
2973 			    /* Delete two bytes of data.  */
2974 			    if (!elf32_avr_relax_delete_bytes (abfd, sec,
2975 							       irel->r_offset + insn_size, 2))
2976 			      goto error_return;
2977 
2978 			    /* That will change things, so, we should relax
2979 			       again. Note that this is not required, and it
2980 			       may be slow.  */
2981 			    *again = TRUE;
2982 			    break;
2983 			  }
2984                       }
2985                   }
2986               }
2987             break;
2988           }
2989         }
2990     }
2991 
2992   if (!*again)
2993     {
2994       /* Look through all the property records in this section to see if
2995          there's any alignment records that can be moved.  */
2996       struct avr_relax_info *relax_info;
2997 
2998       relax_info = get_avr_relax_info (sec);
2999       if (relax_info->records.count > 0)
3000         {
3001           unsigned int i;
3002 
3003           for (i = 0; i < relax_info->records.count; ++i)
3004             {
3005               switch (relax_info->records.items [i].type)
3006                 {
3007                 case RECORD_ORG:
3008                 case RECORD_ORG_AND_FILL:
3009                   break;
3010                 case RECORD_ALIGN:
3011                 case RECORD_ALIGN_AND_FILL:
3012                   {
3013                     struct avr_property_record *record;
3014                     unsigned long bytes_to_align;
3015                     int count = 0;
3016 
3017                     /* Look for alignment directives that have had enough
3018                        bytes deleted before them, such that the directive
3019                        can be moved backwards and still maintain the
3020                        required alignment.  */
3021                     record = &relax_info->records.items [i];
3022                     bytes_to_align
3023                       = (unsigned long) (1 << record->data.align.bytes);
3024                     while (record->data.align.preceding_deleted >=
3025                            bytes_to_align)
3026                       {
3027                         record->data.align.preceding_deleted
3028                           -= bytes_to_align;
3029                         count += bytes_to_align;
3030                       }
3031 
3032                     if (count > 0)
3033                       {
3034                         bfd_vma addr = record->offset;
3035 
3036                         /* We can delete COUNT bytes and this alignment
3037                            directive will still be correctly aligned.
3038                            First move the alignment directive, then delete
3039                            the bytes.  */
3040                         record->offset -= count;
3041                         elf32_avr_relax_delete_bytes (abfd, sec,
3042                                                       addr - count,
3043                                                       count);
3044                         *again = TRUE;
3045                       }
3046                   }
3047                   break;
3048                 }
3049             }
3050         }
3051     }
3052 
3053   if (contents != NULL
3054       && elf_section_data (sec)->this_hdr.contents != contents)
3055     {
3056       if (! link_info->keep_memory)
3057         free (contents);
3058       else
3059         {
3060           /* Cache the section contents for elf_link_input_bfd.  */
3061           elf_section_data (sec)->this_hdr.contents = contents;
3062         }
3063     }
3064 
3065   if (internal_relocs != NULL
3066       && elf_section_data (sec)->relocs != internal_relocs)
3067     free (internal_relocs);
3068 
3069   return TRUE;
3070 
3071  error_return:
3072   if (isymbuf != NULL
3073       && symtab_hdr->contents != (unsigned char *) isymbuf)
3074     free (isymbuf);
3075   if (contents != NULL
3076       && elf_section_data (sec)->this_hdr.contents != contents)
3077     free (contents);
3078   if (internal_relocs != NULL
3079       && elf_section_data (sec)->relocs != internal_relocs)
3080     free (internal_relocs);
3081 
3082   return FALSE;
3083 }
3084 
3085 /* This is a version of bfd_generic_get_relocated_section_contents
3086    which uses elf32_avr_relocate_section.
3087 
3088    For avr it's essentially a cut and paste taken from the H8300 port.
3089    The author of the relaxation support patch for avr had absolutely no
3090    clue what is happening here but found out that this part of the code
3091    seems to be important.  */
3092 
3093 static bfd_byte *
3094 elf32_avr_get_relocated_section_contents (bfd *output_bfd,
3095                                           struct bfd_link_info *link_info,
3096                                           struct bfd_link_order *link_order,
3097                                           bfd_byte *data,
3098                                           bfd_boolean relocatable,
3099                                           asymbol **symbols)
3100 {
3101   Elf_Internal_Shdr *symtab_hdr;
3102   asection *input_section = link_order->u.indirect.section;
3103   bfd *input_bfd = input_section->owner;
3104   asection **sections = NULL;
3105   Elf_Internal_Rela *internal_relocs = NULL;
3106   Elf_Internal_Sym *isymbuf = NULL;
3107 
3108   /* We only need to handle the case of relaxing, or of having a
3109      particular set of section contents, specially.  */
3110   if (relocatable
3111       || elf_section_data (input_section)->this_hdr.contents == NULL)
3112     return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
3113                                                        link_order, data,
3114                                                        relocatable,
3115                                                        symbols);
3116   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3117 
3118   memcpy (data, elf_section_data (input_section)->this_hdr.contents,
3119           (size_t) input_section->size);
3120 
3121   if ((input_section->flags & SEC_RELOC) != 0
3122       && input_section->reloc_count > 0)
3123     {
3124       asection **secpp;
3125       Elf_Internal_Sym *isym, *isymend;
3126       bfd_size_type amt;
3127 
3128       internal_relocs = (_bfd_elf_link_read_relocs
3129                          (input_bfd, input_section, NULL, NULL, FALSE));
3130       if (internal_relocs == NULL)
3131         goto error_return;
3132 
3133       if (symtab_hdr->sh_info != 0)
3134         {
3135           isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3136           if (isymbuf == NULL)
3137             isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3138                                             symtab_hdr->sh_info, 0,
3139                                             NULL, NULL, NULL);
3140           if (isymbuf == NULL)
3141             goto error_return;
3142         }
3143 
3144       amt = symtab_hdr->sh_info;
3145       amt *= sizeof (asection *);
3146       sections = bfd_malloc (amt);
3147       if (sections == NULL && amt != 0)
3148         goto error_return;
3149 
3150       isymend = isymbuf + symtab_hdr->sh_info;
3151       for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
3152         {
3153           asection *isec;
3154 
3155           if (isym->st_shndx == SHN_UNDEF)
3156             isec = bfd_und_section_ptr;
3157           else if (isym->st_shndx == SHN_ABS)
3158             isec = bfd_abs_section_ptr;
3159           else if (isym->st_shndx == SHN_COMMON)
3160             isec = bfd_com_section_ptr;
3161           else
3162             isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
3163 
3164           *secpp = isec;
3165         }
3166 
3167       if (! elf32_avr_relocate_section (output_bfd, link_info, input_bfd,
3168                                         input_section, data, internal_relocs,
3169                                         isymbuf, sections))
3170         goto error_return;
3171 
3172       if (sections != NULL)
3173         free (sections);
3174       if (isymbuf != NULL
3175           && symtab_hdr->contents != (unsigned char *) isymbuf)
3176         free (isymbuf);
3177       if (elf_section_data (input_section)->relocs != internal_relocs)
3178         free (internal_relocs);
3179     }
3180 
3181   return data;
3182 
3183  error_return:
3184   if (sections != NULL)
3185     free (sections);
3186   if (isymbuf != NULL
3187       && symtab_hdr->contents != (unsigned char *) isymbuf)
3188     free (isymbuf);
3189   if (internal_relocs != NULL
3190       && elf_section_data (input_section)->relocs != internal_relocs)
3191     free (internal_relocs);
3192   return NULL;
3193 }
3194 
3195 
3196 /* Determines the hash entry name for a particular reloc. It consists of
3197    the identifier of the symbol section and the added reloc addend and
3198    symbol offset relative to the section the symbol is attached to.  */
3199 
3200 static char *
3201 avr_stub_name (const asection *symbol_section,
3202                const bfd_vma symbol_offset,
3203                const Elf_Internal_Rela *rela)
3204 {
3205   char *stub_name;
3206   bfd_size_type len;
3207 
3208   len = 8 + 1 + 8 + 1 + 1;
3209   stub_name = bfd_malloc (len);
3210 
3211   sprintf (stub_name, "%08x+%08x",
3212            symbol_section->id & 0xffffffff,
3213            (unsigned int) ((rela->r_addend & 0xffffffff) + symbol_offset));
3214 
3215   return stub_name;
3216 }
3217 
3218 
3219 /* Add a new stub entry to the stub hash.  Not all fields of the new
3220    stub entry are initialised.  */
3221 
3222 static struct elf32_avr_stub_hash_entry *
3223 avr_add_stub (const char *stub_name,
3224               struct elf32_avr_link_hash_table *htab)
3225 {
3226   struct elf32_avr_stub_hash_entry *hsh;
3227 
3228   /* Enter this entry into the linker stub hash table.  */
3229   hsh = avr_stub_hash_lookup (&htab->bstab, stub_name, TRUE, FALSE);
3230 
3231   if (hsh == NULL)
3232     {
3233       (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3234                              NULL, stub_name);
3235       return NULL;
3236     }
3237 
3238   hsh->stub_offset = 0;
3239   return hsh;
3240 }
3241 
3242 /* We assume that there is already space allocated for the stub section
3243    contents and that before building the stubs the section size is
3244    initialized to 0.  We assume that within the stub hash table entry,
3245    the absolute position of the jmp target has been written in the
3246    target_value field.  We write here the offset of the generated jmp insn
3247    relative to the trampoline section start to the stub_offset entry in
3248    the stub hash table entry.  */
3249 
3250 static  bfd_boolean
3251 avr_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
3252 {
3253   struct elf32_avr_stub_hash_entry *hsh;
3254   struct bfd_link_info *info;
3255   struct elf32_avr_link_hash_table *htab;
3256   bfd *stub_bfd;
3257   bfd_byte *loc;
3258   bfd_vma target;
3259   bfd_vma starget;
3260 
3261   /* Basic opcode */
3262   bfd_vma jmp_insn = 0x0000940c;
3263 
3264   /* Massage our args to the form they really have.  */
3265   hsh = avr_stub_hash_entry (bh);
3266 
3267   if (!hsh->is_actually_needed)
3268     return TRUE;
3269 
3270   info = (struct bfd_link_info *) in_arg;
3271 
3272   htab = avr_link_hash_table (info);
3273   if (htab == NULL)
3274     return FALSE;
3275 
3276   target = hsh->target_value;
3277 
3278   /* Make a note of the offset within the stubs for this entry.  */
3279   hsh->stub_offset = htab->stub_sec->size;
3280   loc = htab->stub_sec->contents + hsh->stub_offset;
3281 
3282   stub_bfd = htab->stub_sec->owner;
3283 
3284   if (debug_stubs)
3285     printf ("Building one Stub. Address: 0x%x, Offset: 0x%x\n",
3286              (unsigned int) target,
3287              (unsigned int) hsh->stub_offset);
3288 
3289   /* We now have to add the information on the jump target to the bare
3290      opcode bits already set in jmp_insn.  */
3291 
3292   /* Check for the alignment of the address.  */
3293   if (target & 1)
3294      return FALSE;
3295 
3296   starget = target >> 1;
3297   jmp_insn |= ((starget & 0x10000) | ((starget << 3) & 0x1f00000)) >> 16;
3298   bfd_put_16 (stub_bfd, jmp_insn, loc);
3299   bfd_put_16 (stub_bfd, (bfd_vma) starget & 0xffff, loc + 2);
3300 
3301   htab->stub_sec->size += 4;
3302 
3303   /* Now add the entries in the address mapping table if there is still
3304      space left.  */
3305   {
3306     unsigned int nr;
3307 
3308     nr = htab->amt_entry_cnt + 1;
3309     if (nr <= htab->amt_max_entry_cnt)
3310       {
3311         htab->amt_entry_cnt = nr;
3312 
3313         htab->amt_stub_offsets[nr - 1] = hsh->stub_offset;
3314         htab->amt_destination_addr[nr - 1] = target;
3315       }
3316   }
3317 
3318   return TRUE;
3319 }
3320 
3321 static bfd_boolean
3322 avr_mark_stub_not_to_be_necessary (struct bfd_hash_entry *bh,
3323                                    void *in_arg ATTRIBUTE_UNUSED)
3324 {
3325   struct elf32_avr_stub_hash_entry *hsh;
3326 
3327   hsh = avr_stub_hash_entry (bh);
3328   hsh->is_actually_needed = FALSE;
3329 
3330   return TRUE;
3331 }
3332 
3333 static bfd_boolean
3334 avr_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
3335 {
3336   struct elf32_avr_stub_hash_entry *hsh;
3337   struct elf32_avr_link_hash_table *htab;
3338   int size;
3339 
3340   /* Massage our args to the form they really have.  */
3341   hsh = avr_stub_hash_entry (bh);
3342   htab = in_arg;
3343 
3344   if (hsh->is_actually_needed)
3345     size = 4;
3346   else
3347     size = 0;
3348 
3349   htab->stub_sec->size += size;
3350   return TRUE;
3351 }
3352 
3353 void
3354 elf32_avr_setup_params (struct bfd_link_info *info,
3355                         bfd *avr_stub_bfd,
3356                         asection *avr_stub_section,
3357                         bfd_boolean no_stubs,
3358                         bfd_boolean deb_stubs,
3359                         bfd_boolean deb_relax,
3360                         bfd_vma pc_wrap_around,
3361                         bfd_boolean call_ret_replacement)
3362 {
3363   struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
3364 
3365   if (htab == NULL)
3366     return;
3367   htab->stub_sec = avr_stub_section;
3368   htab->stub_bfd = avr_stub_bfd;
3369   htab->no_stubs = no_stubs;
3370 
3371   debug_relax = deb_relax;
3372   debug_stubs = deb_stubs;
3373   avr_pc_wrap_around = pc_wrap_around;
3374   avr_replace_call_ret_sequences = call_ret_replacement;
3375 }
3376 
3377 
3378 /* Set up various things so that we can make a list of input sections
3379    for each output section included in the link.  Returns -1 on error,
3380    0 when no stubs will be needed, and 1 on success.  It also sets
3381    information on the stubs bfd and the stub section in the info
3382    struct.  */
3383 
3384 int
3385 elf32_avr_setup_section_lists (bfd *output_bfd,
3386                                struct bfd_link_info *info)
3387 {
3388   bfd *input_bfd;
3389   unsigned int bfd_count;
3390   unsigned int top_id, top_index;
3391   asection *section;
3392   asection **input_list, **list;
3393   bfd_size_type amt;
3394   struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
3395 
3396   if (htab == NULL || htab->no_stubs)
3397     return 0;
3398 
3399   /* Count the number of input BFDs and find the top input section id.  */
3400   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3401        input_bfd != NULL;
3402        input_bfd = input_bfd->link.next)
3403     {
3404       bfd_count += 1;
3405       for (section = input_bfd->sections;
3406            section != NULL;
3407            section = section->next)
3408 	if (top_id < section->id)
3409 	  top_id = section->id;
3410     }
3411 
3412   htab->bfd_count = bfd_count;
3413 
3414   /* We can't use output_bfd->section_count here to find the top output
3415      section index as some sections may have been removed, and
3416      strip_excluded_output_sections doesn't renumber the indices.  */
3417   for (section = output_bfd->sections, top_index = 0;
3418        section != NULL;
3419        section = section->next)
3420     if (top_index < section->index)
3421       top_index = section->index;
3422 
3423   htab->top_index = top_index;
3424   amt = sizeof (asection *) * (top_index + 1);
3425   input_list = bfd_malloc (amt);
3426   htab->input_list = input_list;
3427   if (input_list == NULL)
3428     return -1;
3429 
3430   /* For sections we aren't interested in, mark their entries with a
3431      value we can check later.  */
3432   list = input_list + top_index;
3433   do
3434     *list = bfd_abs_section_ptr;
3435   while (list-- != input_list);
3436 
3437   for (section = output_bfd->sections;
3438        section != NULL;
3439        section = section->next)
3440     if ((section->flags & SEC_CODE) != 0)
3441       input_list[section->index] = NULL;
3442 
3443   return 1;
3444 }
3445 
3446 
3447 /* Read in all local syms for all input bfds, and create hash entries
3448    for export stubs if we are building a multi-subspace shared lib.
3449    Returns -1 on error, 0 otherwise.  */
3450 
3451 static int
3452 get_local_syms (bfd *input_bfd, struct bfd_link_info *info)
3453 {
3454   unsigned int bfd_indx;
3455   Elf_Internal_Sym *local_syms, **all_local_syms;
3456   struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
3457   bfd_size_type amt;
3458 
3459   if (htab == NULL)
3460     return -1;
3461 
3462   /* We want to read in symbol extension records only once.  To do this
3463      we need to read in the local symbols in parallel and save them for
3464      later use; so hold pointers to the local symbols in an array.  */
3465   amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
3466   all_local_syms = bfd_zmalloc (amt);
3467   htab->all_local_syms = all_local_syms;
3468   if (all_local_syms == NULL)
3469     return -1;
3470 
3471   /* Walk over all the input BFDs, swapping in local symbols.
3472      If we are creating a shared library, create hash entries for the
3473      export stubs.  */
3474   for (bfd_indx = 0;
3475        input_bfd != NULL;
3476        input_bfd = input_bfd->link.next, bfd_indx++)
3477     {
3478       Elf_Internal_Shdr *symtab_hdr;
3479 
3480       /* We'll need the symbol table in a second.  */
3481       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3482       if (symtab_hdr->sh_info == 0)
3483 	continue;
3484 
3485       /* We need an array of the local symbols attached to the input bfd.  */
3486       local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
3487       if (local_syms == NULL)
3488 	{
3489 	  local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3490 					     symtab_hdr->sh_info, 0,
3491 					     NULL, NULL, NULL);
3492 	  /* Cache them for elf_link_input_bfd.  */
3493 	  symtab_hdr->contents = (unsigned char *) local_syms;
3494 	}
3495       if (local_syms == NULL)
3496 	return -1;
3497 
3498       all_local_syms[bfd_indx] = local_syms;
3499     }
3500 
3501   return 0;
3502 }
3503 
3504 #define ADD_DUMMY_STUBS_FOR_DEBUGGING 0
3505 
3506 bfd_boolean
3507 elf32_avr_size_stubs (bfd *output_bfd,
3508                       struct bfd_link_info *info,
3509                       bfd_boolean is_prealloc_run)
3510 {
3511   struct elf32_avr_link_hash_table *htab;
3512   int stub_changed = 0;
3513 
3514   htab = avr_link_hash_table (info);
3515   if (htab == NULL)
3516     return FALSE;
3517 
3518   /* At this point we initialize htab->vector_base
3519      To the start of the text output section.  */
3520   htab->vector_base = htab->stub_sec->output_section->vma;
3521 
3522   if (get_local_syms (info->input_bfds, info))
3523     {
3524       if (htab->all_local_syms)
3525 	goto error_ret_free_local;
3526       return FALSE;
3527     }
3528 
3529   if (ADD_DUMMY_STUBS_FOR_DEBUGGING)
3530     {
3531       struct elf32_avr_stub_hash_entry *test;
3532 
3533       test = avr_add_stub ("Hugo",htab);
3534       test->target_value = 0x123456;
3535       test->stub_offset = 13;
3536 
3537       test = avr_add_stub ("Hugo2",htab);
3538       test->target_value = 0x84210;
3539       test->stub_offset = 14;
3540     }
3541 
3542   while (1)
3543     {
3544       bfd *input_bfd;
3545       unsigned int bfd_indx;
3546 
3547       /* We will have to re-generate the stub hash table each time anything
3548          in memory has changed.  */
3549 
3550       bfd_hash_traverse (&htab->bstab, avr_mark_stub_not_to_be_necessary, htab);
3551       for (input_bfd = info->input_bfds, bfd_indx = 0;
3552            input_bfd != NULL;
3553            input_bfd = input_bfd->link.next, bfd_indx++)
3554         {
3555           Elf_Internal_Shdr *symtab_hdr;
3556           asection *section;
3557           Elf_Internal_Sym *local_syms;
3558 
3559           /* We'll need the symbol table in a second.  */
3560           symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3561           if (symtab_hdr->sh_info == 0)
3562             continue;
3563 
3564           local_syms = htab->all_local_syms[bfd_indx];
3565 
3566           /* Walk over each section attached to the input bfd.  */
3567           for (section = input_bfd->sections;
3568                section != NULL;
3569                section = section->next)
3570             {
3571               Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3572 
3573               /* If there aren't any relocs, then there's nothing more
3574                  to do.  */
3575               if ((section->flags & SEC_RELOC) == 0
3576                   || section->reloc_count == 0)
3577                 continue;
3578 
3579               /* If this section is a link-once section that will be
3580                  discarded, then don't create any stubs.  */
3581               if (section->output_section == NULL
3582                   || section->output_section->owner != output_bfd)
3583                 continue;
3584 
3585               /* Get the relocs.  */
3586               internal_relocs
3587                 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
3588                                              info->keep_memory);
3589               if (internal_relocs == NULL)
3590                 goto error_ret_free_local;
3591 
3592               /* Now examine each relocation.  */
3593               irela = internal_relocs;
3594               irelaend = irela + section->reloc_count;
3595               for (; irela < irelaend; irela++)
3596                 {
3597                   unsigned int r_type, r_indx;
3598                   struct elf32_avr_stub_hash_entry *hsh;
3599                   asection *sym_sec;
3600                   bfd_vma sym_value;
3601                   bfd_vma destination;
3602                   struct elf_link_hash_entry *hh;
3603                   char *stub_name;
3604 
3605                   r_type = ELF32_R_TYPE (irela->r_info);
3606                   r_indx = ELF32_R_SYM (irela->r_info);
3607 
3608                   /* Only look for 16 bit GS relocs. No other reloc will need a
3609                      stub.  */
3610                   if (!((r_type == R_AVR_16_PM)
3611                         || (r_type == R_AVR_LO8_LDI_GS)
3612                         || (r_type == R_AVR_HI8_LDI_GS)))
3613                     continue;
3614 
3615                   /* Now determine the call target, its name, value,
3616                      section.  */
3617                   sym_sec = NULL;
3618                   sym_value = 0;
3619                   destination = 0;
3620                   hh = NULL;
3621                   if (r_indx < symtab_hdr->sh_info)
3622                     {
3623                       /* It's a local symbol.  */
3624                       Elf_Internal_Sym *sym;
3625                       Elf_Internal_Shdr *hdr;
3626 		      unsigned int shndx;
3627 
3628                       sym = local_syms + r_indx;
3629                       if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3630                         sym_value = sym->st_value;
3631 		      shndx = sym->st_shndx;
3632 		      if (shndx < elf_numsections (input_bfd))
3633 			{
3634 			  hdr = elf_elfsections (input_bfd)[shndx];
3635 			  sym_sec = hdr->bfd_section;
3636 			  destination = (sym_value + irela->r_addend
3637 					 + sym_sec->output_offset
3638 					 + sym_sec->output_section->vma);
3639 			}
3640                     }
3641                   else
3642                     {
3643                       /* It's an external symbol.  */
3644                       int e_indx;
3645 
3646                       e_indx = r_indx - symtab_hdr->sh_info;
3647                       hh = elf_sym_hashes (input_bfd)[e_indx];
3648 
3649                       while (hh->root.type == bfd_link_hash_indirect
3650                              || hh->root.type == bfd_link_hash_warning)
3651                         hh = (struct elf_link_hash_entry *)
3652                               (hh->root.u.i.link);
3653 
3654                       if (hh->root.type == bfd_link_hash_defined
3655                           || hh->root.type == bfd_link_hash_defweak)
3656                         {
3657                           sym_sec = hh->root.u.def.section;
3658                           sym_value = hh->root.u.def.value;
3659                           if (sym_sec->output_section != NULL)
3660                           destination = (sym_value + irela->r_addend
3661                                          + sym_sec->output_offset
3662                                          + sym_sec->output_section->vma);
3663                         }
3664                       else if (hh->root.type == bfd_link_hash_undefweak)
3665                         {
3666                           if (! bfd_link_pic (info))
3667                             continue;
3668                         }
3669                       else if (hh->root.type == bfd_link_hash_undefined)
3670                         {
3671                           if (! (info->unresolved_syms_in_objects == RM_IGNORE
3672                                  && (ELF_ST_VISIBILITY (hh->other)
3673                                      == STV_DEFAULT)))
3674                              continue;
3675                         }
3676                       else
3677                         {
3678                           bfd_set_error (bfd_error_bad_value);
3679 
3680                           error_ret_free_internal:
3681                           if (elf_section_data (section)->relocs == NULL)
3682                             free (internal_relocs);
3683                           goto error_ret_free_local;
3684                         }
3685                     }
3686 
3687                   if (! avr_stub_is_required_for_16_bit_reloc
3688 		      (destination - htab->vector_base))
3689                     {
3690                       if (!is_prealloc_run)
3691 			/* We are having a reloc that does't need a stub.  */
3692 			continue;
3693 
3694 		      /* We don't right now know if a stub will be needed.
3695 			 Let's rather be on the safe side.  */
3696                     }
3697 
3698                   /* Get the name of this stub.  */
3699                   stub_name = avr_stub_name (sym_sec, sym_value, irela);
3700 
3701                   if (!stub_name)
3702                     goto error_ret_free_internal;
3703 
3704 
3705                   hsh = avr_stub_hash_lookup (&htab->bstab,
3706                                               stub_name,
3707                                               FALSE, FALSE);
3708                   if (hsh != NULL)
3709                     {
3710                       /* The proper stub has already been created.  Mark it
3711                          to be used and write the possibly changed destination
3712                          value.  */
3713                       hsh->is_actually_needed = TRUE;
3714                       hsh->target_value = destination;
3715                       free (stub_name);
3716                       continue;
3717                     }
3718 
3719                   hsh = avr_add_stub (stub_name, htab);
3720                   if (hsh == NULL)
3721                     {
3722                       free (stub_name);
3723                       goto error_ret_free_internal;
3724                     }
3725 
3726                   hsh->is_actually_needed = TRUE;
3727                   hsh->target_value = destination;
3728 
3729                   if (debug_stubs)
3730                     printf ("Adding stub with destination 0x%x to the"
3731                             " hash table.\n", (unsigned int) destination);
3732                   if (debug_stubs)
3733                     printf ("(Pre-Alloc run: %i)\n", is_prealloc_run);
3734 
3735                   stub_changed = TRUE;
3736                 }
3737 
3738               /* We're done with the internal relocs, free them.  */
3739               if (elf_section_data (section)->relocs == NULL)
3740                 free (internal_relocs);
3741             }
3742         }
3743 
3744       /* Re-Calculate the number of needed stubs.  */
3745       htab->stub_sec->size = 0;
3746       bfd_hash_traverse (&htab->bstab, avr_size_one_stub, htab);
3747 
3748       if (!stub_changed)
3749         break;
3750 
3751       stub_changed = FALSE;
3752     }
3753 
3754   free (htab->all_local_syms);
3755   return TRUE;
3756 
3757  error_ret_free_local:
3758   free (htab->all_local_syms);
3759   return FALSE;
3760 }
3761 
3762 
3763 /* Build all the stubs associated with the current output file.  The
3764    stubs are kept in a hash table attached to the main linker hash
3765    table.  We also set up the .plt entries for statically linked PIC
3766    functions here.  This function is called via hppaelf_finish in the
3767    linker.  */
3768 
3769 bfd_boolean
3770 elf32_avr_build_stubs (struct bfd_link_info *info)
3771 {
3772   asection *stub_sec;
3773   struct bfd_hash_table *table;
3774   struct elf32_avr_link_hash_table *htab;
3775   bfd_size_type total_size = 0;
3776 
3777   htab = avr_link_hash_table (info);
3778   if (htab == NULL)
3779     return FALSE;
3780 
3781   /* In case that there were several stub sections:  */
3782   for (stub_sec = htab->stub_bfd->sections;
3783        stub_sec != NULL;
3784        stub_sec = stub_sec->next)
3785     {
3786       bfd_size_type size;
3787 
3788       /* Allocate memory to hold the linker stubs.  */
3789       size = stub_sec->size;
3790       total_size += size;
3791 
3792       stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3793       if (stub_sec->contents == NULL && size != 0)
3794 	return FALSE;
3795       stub_sec->size = 0;
3796     }
3797 
3798   /* Allocate memory for the adress mapping table.  */
3799   htab->amt_entry_cnt = 0;
3800   htab->amt_max_entry_cnt = total_size / 4;
3801   htab->amt_stub_offsets = bfd_malloc (sizeof (bfd_vma)
3802                                        * htab->amt_max_entry_cnt);
3803   htab->amt_destination_addr = bfd_malloc (sizeof (bfd_vma)
3804 					   * htab->amt_max_entry_cnt );
3805 
3806   if (debug_stubs)
3807     printf ("Allocating %i entries in the AMT\n", htab->amt_max_entry_cnt);
3808 
3809   /* Build the stubs as directed by the stub hash table.  */
3810   table = &htab->bstab;
3811   bfd_hash_traverse (table, avr_build_one_stub, info);
3812 
3813   if (debug_stubs)
3814     printf ("Final Stub section Size: %i\n", (int) htab->stub_sec->size);
3815 
3816   return TRUE;
3817 }
3818 
3819 /* Callback used by QSORT to order relocations AP and BP.  */
3820 
3821 static int
3822 internal_reloc_compare (const void *ap, const void *bp)
3823 {
3824   const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
3825   const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
3826 
3827   if (a->r_offset != b->r_offset)
3828     return (a->r_offset - b->r_offset);
3829 
3830   /* We don't need to sort on these criteria for correctness,
3831      but enforcing a more strict ordering prevents unstable qsort
3832      from behaving differently with different implementations.
3833      Without the code below we get correct but different results
3834      on Solaris 2.7 and 2.8.  We would like to always produce the
3835      same results no matter the host.  */
3836 
3837   if (a->r_info != b->r_info)
3838     return (a->r_info - b->r_info);
3839 
3840   return (a->r_addend - b->r_addend);
3841 }
3842 
3843 /* Return true if ADDRESS is within the vma range of SECTION from ABFD.  */
3844 
3845 static bfd_boolean
3846 avr_is_section_for_address (bfd *abfd, asection *section, bfd_vma address)
3847 {
3848   bfd_vma vma;
3849   bfd_size_type size;
3850 
3851   vma = bfd_get_section_vma (abfd, section);
3852   if (address < vma)
3853     return FALSE;
3854 
3855   size = section->size;
3856   if (address >= vma + size)
3857     return FALSE;
3858 
3859   return TRUE;
3860 }
3861 
3862 /* Data structure used by AVR_FIND_SECTION_FOR_ADDRESS.  */
3863 
3864 struct avr_find_section_data
3865 {
3866   /* The address we're looking for.  */
3867   bfd_vma address;
3868 
3869   /* The section we've found.  */
3870   asection *section;
3871 };
3872 
3873 /* Helper function to locate the section holding a certain virtual memory
3874    address.  This is called via bfd_map_over_sections.  The DATA is an
3875    instance of STRUCT AVR_FIND_SECTION_DATA, the address field of which
3876    has been set to the address to search for, and the section field has
3877    been set to NULL.  If SECTION from ABFD contains ADDRESS then the
3878    section field in DATA will be set to SECTION.  As an optimisation, if
3879    the section field is already non-null then this function does not
3880    perform any checks, and just returns.  */
3881 
3882 static void
3883 avr_find_section_for_address (bfd *abfd,
3884                               asection *section, void *data)
3885 {
3886   struct avr_find_section_data *fs_data
3887     = (struct avr_find_section_data *) data;
3888 
3889   /* Return if already found.  */
3890   if (fs_data->section != NULL)
3891     return;
3892 
3893   /* If this section isn't part of the addressable code content, skip it.  */
3894   if ((bfd_get_section_flags (abfd, section) & SEC_ALLOC) == 0
3895       && (bfd_get_section_flags (abfd, section) & SEC_CODE) == 0)
3896     return;
3897 
3898   if (avr_is_section_for_address (abfd, section, fs_data->address))
3899     fs_data->section = section;
3900 }
3901 
3902 /* Load all of the property records from SEC, a section from ABFD.  Return
3903    a STRUCT AVR_PROPERTY_RECORD_LIST containing all the records.  The
3904    memory for the returned structure, and all of the records pointed too by
3905    the structure are allocated with a single call to malloc, so, only the
3906    pointer returned needs to be free'd.  */
3907 
3908 static struct avr_property_record_list *
3909 avr_elf32_load_records_from_section (bfd *abfd, asection *sec)
3910 {
3911   char *contents = NULL, *ptr;
3912   bfd_size_type size, mem_size;
3913   bfd_byte version, flags;
3914   uint16_t record_count, i;
3915   struct avr_property_record_list *r_list = NULL;
3916   Elf_Internal_Rela *internal_relocs = NULL, *rel, *rel_end;
3917   struct avr_find_section_data fs_data;
3918 
3919   fs_data.section = NULL;
3920 
3921   size = bfd_get_section_size (sec);
3922   contents = bfd_malloc (size);
3923   bfd_get_section_contents (abfd, sec, contents, 0, size);
3924   ptr = contents;
3925 
3926   /* Load the relocations for the '.avr.prop' section if there are any, and
3927      sort them.  */
3928   internal_relocs = (_bfd_elf_link_read_relocs
3929                      (abfd, sec, NULL, NULL, FALSE));
3930   if (internal_relocs)
3931     qsort (internal_relocs, sec->reloc_count,
3932            sizeof (Elf_Internal_Rela), internal_reloc_compare);
3933 
3934   /* There is a header at the start of the property record section SEC, the
3935      format of this header is:
3936        uint8_t  : version number
3937        uint8_t  : flags
3938        uint16_t : record counter
3939   */
3940 
3941   /* Check we have at least got a headers worth of bytes.  */
3942   if (size < AVR_PROPERTY_SECTION_HEADER_SIZE)
3943     goto load_failed;
3944 
3945   version = *((bfd_byte *) ptr);
3946   ptr++;
3947   flags = *((bfd_byte *) ptr);
3948   ptr++;
3949   record_count = *((uint16_t *) ptr);
3950   ptr+=2;
3951   BFD_ASSERT (ptr - contents == AVR_PROPERTY_SECTION_HEADER_SIZE);
3952 
3953   /* Now allocate space for the list structure, and all of the list
3954      elements in a single block.  */
3955   mem_size = sizeof (struct avr_property_record_list)
3956     + sizeof (struct avr_property_record) * record_count;
3957   r_list = bfd_malloc (mem_size);
3958   if (r_list == NULL)
3959     goto load_failed;
3960 
3961   r_list->version = version;
3962   r_list->flags = flags;
3963   r_list->section = sec;
3964   r_list->record_count = record_count;
3965   r_list->records = (struct avr_property_record *) (&r_list [1]);
3966   size -= AVR_PROPERTY_SECTION_HEADER_SIZE;
3967 
3968   /* Check that we understand the version number.  There is only one
3969      version number right now, anything else is an error.  */
3970   if (r_list->version != AVR_PROPERTY_RECORDS_VERSION)
3971     goto load_failed;
3972 
3973   rel = internal_relocs;
3974   rel_end = rel + sec->reloc_count;
3975   for (i = 0; i < record_count; ++i)
3976     {
3977       bfd_vma address;
3978 
3979       /* Each entry is a 32-bit address, followed by a single byte type.
3980          After that is the type specific data.  We must take care to
3981          ensure that we don't read beyond the end of the section data.  */
3982       if (size < 5)
3983         goto load_failed;
3984 
3985       r_list->records [i].section = NULL;
3986       r_list->records [i].offset = 0;
3987 
3988       if (rel)
3989         {
3990           /* The offset of the address within the .avr.prop section.  */
3991           size_t offset = ptr - contents;
3992 
3993           while (rel < rel_end && rel->r_offset < offset)
3994             ++rel;
3995 
3996           if (rel == rel_end)
3997             rel = NULL;
3998           else if (rel->r_offset == offset)
3999             {
4000               /* Find section and section offset.  */
4001               unsigned long r_symndx;
4002 
4003               asection * rel_sec;
4004               bfd_vma sec_offset;
4005 
4006               r_symndx = ELF32_R_SYM (rel->r_info);
4007               rel_sec = get_elf_r_symndx_section (abfd, r_symndx);
4008               sec_offset = get_elf_r_symndx_offset (abfd, r_symndx)
4009                 + rel->r_addend;
4010 
4011               r_list->records [i].section = rel_sec;
4012               r_list->records [i].offset = sec_offset;
4013             }
4014         }
4015 
4016       address = *((uint32_t *) ptr);
4017       ptr += 4;
4018       size -= 4;
4019 
4020       if (r_list->records [i].section == NULL)
4021         {
4022           /* Try to find section and offset from address.  */
4023           if (fs_data.section != NULL
4024               && !avr_is_section_for_address (abfd, fs_data.section,
4025                                               address))
4026             fs_data.section = NULL;
4027 
4028           if (fs_data.section == NULL)
4029             {
4030               fs_data.address = address;
4031               bfd_map_over_sections (abfd, avr_find_section_for_address,
4032                                      &fs_data);
4033             }
4034 
4035           if (fs_data.section == NULL)
4036             {
4037               fprintf (stderr, "Failed to find matching section.\n");
4038               goto load_failed;
4039             }
4040 
4041           r_list->records [i].section = fs_data.section;
4042           r_list->records [i].offset
4043             = address - bfd_get_section_vma (abfd, fs_data.section);
4044         }
4045 
4046       r_list->records [i].type = *((bfd_byte *) ptr);
4047       ptr += 1;
4048       size -= 1;
4049 
4050       switch (r_list->records [i].type)
4051         {
4052         case RECORD_ORG:
4053           /* Nothing else to load.  */
4054           break;
4055         case RECORD_ORG_AND_FILL:
4056           /* Just a 4-byte fill to load.  */
4057           if (size < 4)
4058             goto load_failed;
4059           r_list->records [i].data.org.fill = *((uint32_t *) ptr);
4060           ptr += 4;
4061           size -= 4;
4062           break;
4063         case RECORD_ALIGN:
4064           /* Just a 4-byte alignment to load.  */
4065           if (size < 4)
4066             goto load_failed;
4067           r_list->records [i].data.align.bytes = *((uint32_t *) ptr);
4068           ptr += 4;
4069           size -= 4;
4070           /* Just initialise PRECEDING_DELETED field, this field is
4071              used during linker relaxation.  */
4072           r_list->records [i].data.align.preceding_deleted = 0;
4073           break;
4074         case RECORD_ALIGN_AND_FILL:
4075           /* A 4-byte alignment, and a 4-byte fill to load.  */
4076           if (size < 8)
4077             goto load_failed;
4078           r_list->records [i].data.align.bytes = *((uint32_t *) ptr);
4079           ptr += 4;
4080           r_list->records [i].data.align.fill = *((uint32_t *) ptr);
4081           ptr += 4;
4082           size -= 8;
4083           /* Just initialise PRECEDING_DELETED field, this field is
4084              used during linker relaxation.  */
4085           r_list->records [i].data.align.preceding_deleted = 0;
4086           break;
4087         default:
4088           goto load_failed;
4089         }
4090     }
4091 
4092   free (contents);
4093   if (elf_section_data (sec)->relocs != internal_relocs)
4094     free (internal_relocs);
4095   return r_list;
4096 
4097  load_failed:
4098   if (elf_section_data (sec)->relocs != internal_relocs)
4099     free (internal_relocs);
4100   free (contents);
4101   free (r_list);
4102   return NULL;
4103 }
4104 
4105 /* Load all of the property records from ABFD.  See
4106    AVR_ELF32_LOAD_RECORDS_FROM_SECTION for details of the return value.  */
4107 
4108 struct avr_property_record_list *
4109 avr_elf32_load_property_records (bfd *abfd)
4110 {
4111   asection *sec;
4112 
4113   /* Find the '.avr.prop' section and load the contents into memory.  */
4114   sec = bfd_get_section_by_name (abfd, AVR_PROPERTY_RECORD_SECTION_NAME);
4115   if (sec == NULL)
4116     return NULL;
4117   return avr_elf32_load_records_from_section (abfd, sec);
4118 }
4119 
4120 const char *
4121 avr_elf32_property_record_name (struct avr_property_record *rec)
4122 {
4123   const char *str;
4124 
4125   switch (rec->type)
4126     {
4127     case RECORD_ORG:
4128       str = "ORG";
4129       break;
4130     case RECORD_ORG_AND_FILL:
4131       str = "ORG+FILL";
4132       break;
4133     case RECORD_ALIGN:
4134       str = "ALIGN";
4135       break;
4136     case RECORD_ALIGN_AND_FILL:
4137       str = "ALIGN+FILL";
4138       break;
4139     default:
4140       str = "unknown";
4141     }
4142 
4143   return str;
4144 }
4145 
4146 
4147 #define ELF_ARCH		bfd_arch_avr
4148 #define ELF_TARGET_ID		AVR_ELF_DATA
4149 #define ELF_MACHINE_CODE	EM_AVR
4150 #define ELF_MACHINE_ALT1	EM_AVR_OLD
4151 #define ELF_MAXPAGESIZE		1
4152 
4153 #define TARGET_LITTLE_SYM       avr_elf32_vec
4154 #define TARGET_LITTLE_NAME	"elf32-avr"
4155 
4156 #define bfd_elf32_bfd_link_hash_table_create elf32_avr_link_hash_table_create
4157 
4158 #define elf_info_to_howto	             avr_info_to_howto_rela
4159 #define elf_info_to_howto_rel	             NULL
4160 #define elf_backend_relocate_section         elf32_avr_relocate_section
4161 #define elf_backend_can_gc_sections          1
4162 #define elf_backend_rela_normal		     1
4163 #define elf_backend_final_write_processing \
4164 					bfd_elf_avr_final_write_processing
4165 #define elf_backend_object_p		elf32_avr_object_p
4166 
4167 #define bfd_elf32_bfd_relax_section elf32_avr_relax_section
4168 #define bfd_elf32_bfd_get_relocated_section_contents \
4169                                         elf32_avr_get_relocated_section_contents
4170 #define bfd_elf32_new_section_hook	elf_avr_new_section_hook
4171 
4172 #include "elf32-target.h"
4173