1 /* AVR-specific support for 32-bit ELF 2 Copyright (C) 1999-2022 Free Software Foundation, Inc. 3 Contributed by Denis Chertykov <denisc@overta.ru> 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, 20 Boston, MA 02110-1301, USA. */ 21 22 #include "sysdep.h" 23 #include "bfd.h" 24 #include "libbfd.h" 25 #include "elf-bfd.h" 26 #include "elf/avr.h" 27 #include "elf32-avr.h" 28 29 /* Enable debugging printout at stdout with this variable. */ 30 static bool debug_relax = false; 31 32 /* Enable debugging printout at stdout with this variable. */ 33 static bool debug_stubs = false; 34 35 static bfd_reloc_status_type 36 bfd_elf_avr_diff_reloc (bfd *, arelent *, asymbol *, void *, 37 asection *, bfd *, char **); 38 39 /* Hash table initialization and handling. Code is taken from the hppa port 40 and adapted to the needs of AVR. */ 41 42 /* We use two hash tables to hold information for linking avr objects. 43 44 The first is the elf32_avr_link_hash_table which is derived from the 45 stanard ELF linker hash table. We use this as a place to attach the other 46 hash table and some static information. 47 48 The second is the stub hash table which is derived from the base BFD 49 hash table. The stub hash table holds the information on the linker 50 stubs. */ 51 52 struct elf32_avr_stub_hash_entry 53 { 54 /* Base hash table entry structure. */ 55 struct bfd_hash_entry bh_root; 56 57 /* Offset within stub_sec of the beginning of this stub. */ 58 bfd_vma stub_offset; 59 60 /* Given the symbol's value and its section we can determine its final 61 value when building the stubs (so the stub knows where to jump). */ 62 bfd_vma target_value; 63 64 /* This way we could mark stubs to be no longer necessary. */ 65 bool is_actually_needed; 66 }; 67 68 struct elf32_avr_link_hash_table 69 { 70 /* The main hash table. */ 71 struct elf_link_hash_table etab; 72 73 /* The stub hash table. */ 74 struct bfd_hash_table bstab; 75 76 bool no_stubs; 77 78 /* Linker stub bfd. */ 79 bfd *stub_bfd; 80 81 /* The stub section. */ 82 asection *stub_sec; 83 84 /* Usually 0, unless we are generating code for a bootloader. Will 85 be initialized by elf32_avr_size_stubs to the vma offset of the 86 output section associated with the stub section. */ 87 bfd_vma vector_base; 88 89 /* Assorted information used by elf32_avr_size_stubs. */ 90 unsigned int bfd_count; 91 unsigned int top_index; 92 asection ** input_list; 93 Elf_Internal_Sym ** all_local_syms; 94 95 /* Tables for mapping vma beyond the 128k boundary to the address of the 96 corresponding stub. (AMT) 97 "amt_max_entry_cnt" reflects the number of entries that memory is allocated 98 for in the "amt_stub_offsets" and "amt_destination_addr" arrays. 99 "amt_entry_cnt" informs how many of these entries actually contain 100 useful data. */ 101 unsigned int amt_entry_cnt; 102 unsigned int amt_max_entry_cnt; 103 bfd_vma * amt_stub_offsets; 104 bfd_vma * amt_destination_addr; 105 }; 106 107 /* Various hash macros and functions. */ 108 #define avr_link_hash_table(p) \ 109 ((is_elf_hash_table ((p)->hash) \ 110 && elf_hash_table_id (elf_hash_table (p)) == AVR_ELF_DATA) \ 111 ? (struct elf32_avr_link_hash_table *) (p)->hash : NULL) 112 113 #define avr_stub_hash_entry(ent) \ 114 ((struct elf32_avr_stub_hash_entry *)(ent)) 115 116 #define avr_stub_hash_lookup(table, string, create, copy) \ 117 ((struct elf32_avr_stub_hash_entry *) \ 118 bfd_hash_lookup ((table), (string), (create), (copy))) 119 120 static reloc_howto_type elf_avr_howto_table[] = 121 { 122 HOWTO (R_AVR_NONE, /* type */ 123 0, /* rightshift */ 124 0, /* size */ 125 0, /* bitsize */ 126 false, /* pc_relative */ 127 0, /* bitpos */ 128 complain_overflow_dont, /* complain_on_overflow */ 129 bfd_elf_generic_reloc, /* special_function */ 130 "R_AVR_NONE", /* name */ 131 false, /* partial_inplace */ 132 0, /* src_mask */ 133 0, /* dst_mask */ 134 false), /* pcrel_offset */ 135 136 HOWTO (R_AVR_32, /* type */ 137 0, /* rightshift */ 138 4, /* size */ 139 32, /* bitsize */ 140 false, /* pc_relative */ 141 0, /* bitpos */ 142 complain_overflow_bitfield, /* complain_on_overflow */ 143 bfd_elf_generic_reloc, /* special_function */ 144 "R_AVR_32", /* name */ 145 false, /* partial_inplace */ 146 0xffffffff, /* src_mask */ 147 0xffffffff, /* dst_mask */ 148 false), /* pcrel_offset */ 149 150 /* A 7 bit PC relative relocation. */ 151 HOWTO (R_AVR_7_PCREL, /* type */ 152 1, /* rightshift */ 153 2, /* size */ 154 7, /* bitsize */ 155 true, /* pc_relative */ 156 3, /* bitpos */ 157 complain_overflow_bitfield, /* complain_on_overflow */ 158 bfd_elf_generic_reloc, /* special_function */ 159 "R_AVR_7_PCREL", /* name */ 160 false, /* partial_inplace */ 161 0xffff, /* src_mask */ 162 0xffff, /* dst_mask */ 163 true), /* pcrel_offset */ 164 165 /* A 13 bit PC relative relocation. */ 166 HOWTO (R_AVR_13_PCREL, /* type */ 167 1, /* rightshift */ 168 2, /* size */ 169 13, /* bitsize */ 170 true, /* pc_relative */ 171 0, /* bitpos */ 172 complain_overflow_bitfield, /* complain_on_overflow */ 173 bfd_elf_generic_reloc, /* special_function */ 174 "R_AVR_13_PCREL", /* name */ 175 false, /* partial_inplace */ 176 0xfff, /* src_mask */ 177 0xfff, /* dst_mask */ 178 true), /* pcrel_offset */ 179 180 /* A 16 bit absolute relocation. */ 181 HOWTO (R_AVR_16, /* type */ 182 0, /* rightshift */ 183 2, /* size */ 184 16, /* bitsize */ 185 false, /* pc_relative */ 186 0, /* bitpos */ 187 complain_overflow_dont, /* complain_on_overflow */ 188 bfd_elf_generic_reloc, /* special_function */ 189 "R_AVR_16", /* name */ 190 false, /* partial_inplace */ 191 0xffff, /* src_mask */ 192 0xffff, /* dst_mask */ 193 false), /* pcrel_offset */ 194 195 /* A 16 bit absolute relocation for command address 196 Will be changed when linker stubs are needed. */ 197 HOWTO (R_AVR_16_PM, /* type */ 198 1, /* rightshift */ 199 2, /* size */ 200 16, /* bitsize */ 201 false, /* pc_relative */ 202 0, /* bitpos */ 203 complain_overflow_bitfield, /* complain_on_overflow */ 204 bfd_elf_generic_reloc, /* special_function */ 205 "R_AVR_16_PM", /* name */ 206 false, /* partial_inplace */ 207 0xffff, /* src_mask */ 208 0xffff, /* dst_mask */ 209 false), /* pcrel_offset */ 210 /* A low 8 bit absolute relocation of 16 bit address. 211 For LDI command. */ 212 HOWTO (R_AVR_LO8_LDI, /* type */ 213 0, /* rightshift */ 214 2, /* size */ 215 8, /* bitsize */ 216 false, /* pc_relative */ 217 0, /* bitpos */ 218 complain_overflow_dont, /* complain_on_overflow */ 219 bfd_elf_generic_reloc, /* special_function */ 220 "R_AVR_LO8_LDI", /* name */ 221 false, /* partial_inplace */ 222 0xffff, /* src_mask */ 223 0xffff, /* dst_mask */ 224 false), /* pcrel_offset */ 225 /* A high 8 bit absolute relocation of 16 bit address. 226 For LDI command. */ 227 HOWTO (R_AVR_HI8_LDI, /* type */ 228 8, /* rightshift */ 229 2, /* size */ 230 8, /* bitsize */ 231 false, /* pc_relative */ 232 0, /* bitpos */ 233 complain_overflow_dont, /* complain_on_overflow */ 234 bfd_elf_generic_reloc, /* special_function */ 235 "R_AVR_HI8_LDI", /* name */ 236 false, /* partial_inplace */ 237 0xffff, /* src_mask */ 238 0xffff, /* dst_mask */ 239 false), /* pcrel_offset */ 240 /* A high 6 bit absolute relocation of 22 bit address. 241 For LDI command. As well second most significant 8 bit value of 242 a 32 bit link-time constant. */ 243 HOWTO (R_AVR_HH8_LDI, /* type */ 244 16, /* rightshift */ 245 2, /* size */ 246 8, /* bitsize */ 247 false, /* pc_relative */ 248 0, /* bitpos */ 249 complain_overflow_dont, /* complain_on_overflow */ 250 bfd_elf_generic_reloc, /* special_function */ 251 "R_AVR_HH8_LDI", /* name */ 252 false, /* partial_inplace */ 253 0xffff, /* src_mask */ 254 0xffff, /* dst_mask */ 255 false), /* pcrel_offset */ 256 /* A negative low 8 bit absolute relocation of 16 bit address. 257 For LDI command. */ 258 HOWTO (R_AVR_LO8_LDI_NEG, /* type */ 259 0, /* rightshift */ 260 2, /* size */ 261 8, /* bitsize */ 262 false, /* pc_relative */ 263 0, /* bitpos */ 264 complain_overflow_dont, /* complain_on_overflow */ 265 bfd_elf_generic_reloc, /* special_function */ 266 "R_AVR_LO8_LDI_NEG", /* name */ 267 false, /* partial_inplace */ 268 0xffff, /* src_mask */ 269 0xffff, /* dst_mask */ 270 false), /* pcrel_offset */ 271 /* A negative high 8 bit absolute relocation of 16 bit address. 272 For LDI command. */ 273 HOWTO (R_AVR_HI8_LDI_NEG, /* type */ 274 8, /* rightshift */ 275 2, /* size */ 276 8, /* bitsize */ 277 false, /* pc_relative */ 278 0, /* bitpos */ 279 complain_overflow_dont, /* complain_on_overflow */ 280 bfd_elf_generic_reloc, /* special_function */ 281 "R_AVR_HI8_LDI_NEG", /* name */ 282 false, /* partial_inplace */ 283 0xffff, /* src_mask */ 284 0xffff, /* dst_mask */ 285 false), /* pcrel_offset */ 286 /* A negative high 6 bit absolute relocation of 22 bit address. 287 For LDI command. */ 288 HOWTO (R_AVR_HH8_LDI_NEG, /* type */ 289 16, /* rightshift */ 290 2, /* size */ 291 8, /* bitsize */ 292 false, /* pc_relative */ 293 0, /* bitpos */ 294 complain_overflow_dont, /* complain_on_overflow */ 295 bfd_elf_generic_reloc, /* special_function */ 296 "R_AVR_HH8_LDI_NEG", /* name */ 297 false, /* partial_inplace */ 298 0xffff, /* src_mask */ 299 0xffff, /* dst_mask */ 300 false), /* pcrel_offset */ 301 /* A low 8 bit absolute relocation of 24 bit program memory address. 302 For LDI command. Will not be changed when linker stubs are needed. */ 303 HOWTO (R_AVR_LO8_LDI_PM, /* type */ 304 1, /* rightshift */ 305 2, /* size */ 306 8, /* bitsize */ 307 false, /* pc_relative */ 308 0, /* bitpos */ 309 complain_overflow_dont, /* complain_on_overflow */ 310 bfd_elf_generic_reloc, /* special_function */ 311 "R_AVR_LO8_LDI_PM", /* name */ 312 false, /* partial_inplace */ 313 0xffff, /* src_mask */ 314 0xffff, /* dst_mask */ 315 false), /* pcrel_offset */ 316 /* A low 8 bit absolute relocation of 24 bit program memory address. 317 For LDI command. Will not be changed when linker stubs are needed. */ 318 HOWTO (R_AVR_HI8_LDI_PM, /* type */ 319 9, /* rightshift */ 320 2, /* size */ 321 8, /* bitsize */ 322 false, /* pc_relative */ 323 0, /* bitpos */ 324 complain_overflow_dont, /* complain_on_overflow */ 325 bfd_elf_generic_reloc, /* special_function */ 326 "R_AVR_HI8_LDI_PM", /* name */ 327 false, /* partial_inplace */ 328 0xffff, /* src_mask */ 329 0xffff, /* dst_mask */ 330 false), /* pcrel_offset */ 331 /* A low 8 bit absolute relocation of 24 bit program memory address. 332 For LDI command. Will not be changed when linker stubs are needed. */ 333 HOWTO (R_AVR_HH8_LDI_PM, /* type */ 334 17, /* rightshift */ 335 2, /* size */ 336 8, /* bitsize */ 337 false, /* pc_relative */ 338 0, /* bitpos */ 339 complain_overflow_dont, /* complain_on_overflow */ 340 bfd_elf_generic_reloc, /* special_function */ 341 "R_AVR_HH8_LDI_PM", /* name */ 342 false, /* partial_inplace */ 343 0xffff, /* src_mask */ 344 0xffff, /* dst_mask */ 345 false), /* pcrel_offset */ 346 /* A low 8 bit absolute relocation of 24 bit program memory address. 347 For LDI command. Will not be changed when linker stubs are needed. */ 348 HOWTO (R_AVR_LO8_LDI_PM_NEG, /* type */ 349 1, /* rightshift */ 350 2, /* size */ 351 8, /* bitsize */ 352 false, /* pc_relative */ 353 0, /* bitpos */ 354 complain_overflow_dont, /* complain_on_overflow */ 355 bfd_elf_generic_reloc, /* special_function */ 356 "R_AVR_LO8_LDI_PM_NEG", /* name */ 357 false, /* partial_inplace */ 358 0xffff, /* src_mask */ 359 0xffff, /* dst_mask */ 360 false), /* pcrel_offset */ 361 /* A low 8 bit absolute relocation of 24 bit program memory address. 362 For LDI command. Will not be changed when linker stubs are needed. */ 363 HOWTO (R_AVR_HI8_LDI_PM_NEG, /* type */ 364 9, /* rightshift */ 365 2, /* size */ 366 8, /* bitsize */ 367 false, /* pc_relative */ 368 0, /* bitpos */ 369 complain_overflow_dont, /* complain_on_overflow */ 370 bfd_elf_generic_reloc, /* special_function */ 371 "R_AVR_HI8_LDI_PM_NEG", /* name */ 372 false, /* partial_inplace */ 373 0xffff, /* src_mask */ 374 0xffff, /* dst_mask */ 375 false), /* pcrel_offset */ 376 /* A low 8 bit absolute relocation of 24 bit program memory address. 377 For LDI command. Will not be changed when linker stubs are needed. */ 378 HOWTO (R_AVR_HH8_LDI_PM_NEG, /* type */ 379 17, /* rightshift */ 380 2, /* size */ 381 8, /* bitsize */ 382 false, /* pc_relative */ 383 0, /* bitpos */ 384 complain_overflow_dont, /* complain_on_overflow */ 385 bfd_elf_generic_reloc, /* special_function */ 386 "R_AVR_HH8_LDI_PM_NEG", /* name */ 387 false, /* partial_inplace */ 388 0xffff, /* src_mask */ 389 0xffff, /* dst_mask */ 390 false), /* pcrel_offset */ 391 /* Relocation for CALL command in ATmega. */ 392 HOWTO (R_AVR_CALL, /* type */ 393 1, /* rightshift */ 394 4, /* size */ 395 23, /* bitsize */ 396 false, /* pc_relative */ 397 0, /* bitpos */ 398 complain_overflow_dont,/* complain_on_overflow */ 399 bfd_elf_generic_reloc, /* special_function */ 400 "R_AVR_CALL", /* name */ 401 false, /* partial_inplace */ 402 0xffffffff, /* src_mask */ 403 0xffffffff, /* dst_mask */ 404 false), /* pcrel_offset */ 405 /* A 16 bit absolute relocation of 16 bit address. 406 For LDI command. */ 407 HOWTO (R_AVR_LDI, /* type */ 408 0, /* rightshift */ 409 2, /* size */ 410 16, /* bitsize */ 411 false, /* pc_relative */ 412 0, /* bitpos */ 413 complain_overflow_dont,/* complain_on_overflow */ 414 bfd_elf_generic_reloc, /* special_function */ 415 "R_AVR_LDI", /* name */ 416 false, /* partial_inplace */ 417 0xffff, /* src_mask */ 418 0xffff, /* dst_mask */ 419 false), /* pcrel_offset */ 420 /* A 6 bit absolute relocation of 6 bit offset. 421 For ldd/sdd command. */ 422 HOWTO (R_AVR_6, /* type */ 423 0, /* rightshift */ 424 1, /* size */ 425 6, /* bitsize */ 426 false, /* pc_relative */ 427 0, /* bitpos */ 428 complain_overflow_dont,/* complain_on_overflow */ 429 bfd_elf_generic_reloc, /* special_function */ 430 "R_AVR_6", /* name */ 431 false, /* partial_inplace */ 432 0xffff, /* src_mask */ 433 0xffff, /* dst_mask */ 434 false), /* pcrel_offset */ 435 /* A 6 bit absolute relocation of 6 bit offset. 436 For sbiw/adiw command. */ 437 HOWTO (R_AVR_6_ADIW, /* type */ 438 0, /* rightshift */ 439 1, /* size */ 440 6, /* bitsize */ 441 false, /* pc_relative */ 442 0, /* bitpos */ 443 complain_overflow_dont,/* complain_on_overflow */ 444 bfd_elf_generic_reloc, /* special_function */ 445 "R_AVR_6_ADIW", /* name */ 446 false, /* partial_inplace */ 447 0xffff, /* src_mask */ 448 0xffff, /* dst_mask */ 449 false), /* pcrel_offset */ 450 /* Most significant 8 bit value of a 32 bit link-time constant. */ 451 HOWTO (R_AVR_MS8_LDI, /* type */ 452 24, /* rightshift */ 453 2, /* size */ 454 8, /* bitsize */ 455 false, /* pc_relative */ 456 0, /* bitpos */ 457 complain_overflow_dont, /* complain_on_overflow */ 458 bfd_elf_generic_reloc, /* special_function */ 459 "R_AVR_MS8_LDI", /* name */ 460 false, /* partial_inplace */ 461 0xffff, /* src_mask */ 462 0xffff, /* dst_mask */ 463 false), /* pcrel_offset */ 464 /* Negative most significant 8 bit value of a 32 bit link-time constant. */ 465 HOWTO (R_AVR_MS8_LDI_NEG, /* type */ 466 24, /* rightshift */ 467 2, /* size */ 468 8, /* bitsize */ 469 false, /* pc_relative */ 470 0, /* bitpos */ 471 complain_overflow_dont, /* complain_on_overflow */ 472 bfd_elf_generic_reloc, /* special_function */ 473 "R_AVR_MS8_LDI_NEG", /* name */ 474 false, /* partial_inplace */ 475 0xffff, /* src_mask */ 476 0xffff, /* dst_mask */ 477 false), /* pcrel_offset */ 478 /* A low 8 bit absolute relocation of 24 bit program memory address. 479 For LDI command. Will be changed when linker stubs are needed. */ 480 HOWTO (R_AVR_LO8_LDI_GS, /* type */ 481 1, /* rightshift */ 482 2, /* size */ 483 8, /* bitsize */ 484 false, /* pc_relative */ 485 0, /* bitpos */ 486 complain_overflow_dont, /* complain_on_overflow */ 487 bfd_elf_generic_reloc, /* special_function */ 488 "R_AVR_LO8_LDI_GS", /* name */ 489 false, /* partial_inplace */ 490 0xffff, /* src_mask */ 491 0xffff, /* dst_mask */ 492 false), /* pcrel_offset */ 493 /* A low 8 bit absolute relocation of 24 bit program memory address. 494 For LDI command. Will be changed when linker stubs are needed. */ 495 HOWTO (R_AVR_HI8_LDI_GS, /* type */ 496 9, /* rightshift */ 497 2, /* size */ 498 8, /* bitsize */ 499 false, /* pc_relative */ 500 0, /* bitpos */ 501 complain_overflow_dont, /* complain_on_overflow */ 502 bfd_elf_generic_reloc, /* special_function */ 503 "R_AVR_HI8_LDI_GS", /* name */ 504 false, /* partial_inplace */ 505 0xffff, /* src_mask */ 506 0xffff, /* dst_mask */ 507 false), /* pcrel_offset */ 508 /* 8 bit offset. */ 509 HOWTO (R_AVR_8, /* type */ 510 0, /* rightshift */ 511 1, /* size */ 512 8, /* bitsize */ 513 false, /* pc_relative */ 514 0, /* bitpos */ 515 complain_overflow_bitfield,/* complain_on_overflow */ 516 bfd_elf_generic_reloc, /* special_function */ 517 "R_AVR_8", /* name */ 518 false, /* partial_inplace */ 519 0x000000ff, /* src_mask */ 520 0x000000ff, /* dst_mask */ 521 false), /* pcrel_offset */ 522 /* lo8-part to use in .byte lo8(sym). */ 523 HOWTO (R_AVR_8_LO8, /* type */ 524 0, /* rightshift */ 525 1, /* size */ 526 8, /* bitsize */ 527 false, /* pc_relative */ 528 0, /* bitpos */ 529 complain_overflow_dont,/* complain_on_overflow */ 530 bfd_elf_generic_reloc, /* special_function */ 531 "R_AVR_8_LO8", /* name */ 532 false, /* partial_inplace */ 533 0xffffff, /* src_mask */ 534 0xffffff, /* dst_mask */ 535 false), /* pcrel_offset */ 536 /* hi8-part to use in .byte hi8(sym). */ 537 HOWTO (R_AVR_8_HI8, /* type */ 538 8, /* rightshift */ 539 1, /* size */ 540 8, /* bitsize */ 541 false, /* pc_relative */ 542 0, /* bitpos */ 543 complain_overflow_dont,/* complain_on_overflow */ 544 bfd_elf_generic_reloc, /* special_function */ 545 "R_AVR_8_HI8", /* name */ 546 false, /* partial_inplace */ 547 0xffffff, /* src_mask */ 548 0xffffff, /* dst_mask */ 549 false), /* pcrel_offset */ 550 /* hlo8-part to use in .byte hlo8(sym). */ 551 HOWTO (R_AVR_8_HLO8, /* type */ 552 16, /* rightshift */ 553 1, /* size */ 554 8, /* bitsize */ 555 false, /* pc_relative */ 556 0, /* bitpos */ 557 complain_overflow_dont,/* complain_on_overflow */ 558 bfd_elf_generic_reloc, /* special_function */ 559 "R_AVR_8_HLO8", /* name */ 560 false, /* partial_inplace */ 561 0xffffff, /* src_mask */ 562 0xffffff, /* dst_mask */ 563 false), /* pcrel_offset */ 564 HOWTO (R_AVR_DIFF8, /* type */ 565 0, /* rightshift */ 566 1, /* size */ 567 8, /* bitsize */ 568 false, /* pc_relative */ 569 0, /* bitpos */ 570 complain_overflow_bitfield, /* complain_on_overflow */ 571 bfd_elf_avr_diff_reloc, /* special_function */ 572 "R_AVR_DIFF8", /* name */ 573 false, /* partial_inplace */ 574 0, /* src_mask */ 575 0xff, /* dst_mask */ 576 false), /* pcrel_offset */ 577 HOWTO (R_AVR_DIFF16, /* type */ 578 0, /* rightshift */ 579 2, /* size */ 580 16, /* bitsize */ 581 false, /* pc_relative */ 582 0, /* bitpos */ 583 complain_overflow_bitfield, /* complain_on_overflow */ 584 bfd_elf_avr_diff_reloc,/* special_function */ 585 "R_AVR_DIFF16", /* name */ 586 false, /* partial_inplace */ 587 0, /* src_mask */ 588 0xffff, /* dst_mask */ 589 false), /* pcrel_offset */ 590 HOWTO (R_AVR_DIFF32, /* type */ 591 0, /* rightshift */ 592 4, /* size */ 593 32, /* bitsize */ 594 false, /* pc_relative */ 595 0, /* bitpos */ 596 complain_overflow_bitfield, /* complain_on_overflow */ 597 bfd_elf_avr_diff_reloc,/* special_function */ 598 "R_AVR_DIFF32", /* name */ 599 false, /* partial_inplace */ 600 0, /* src_mask */ 601 0xffffffff, /* dst_mask */ 602 false), /* pcrel_offset */ 603 /* 7 bit immediate for LDS/STS in Tiny core. */ 604 HOWTO (R_AVR_LDS_STS_16, /* type */ 605 0, /* rightshift */ 606 2, /* size */ 607 7, /* bitsize */ 608 false, /* pc_relative */ 609 0, /* bitpos */ 610 complain_overflow_dont,/* complain_on_overflow */ 611 bfd_elf_generic_reloc, /* special_function */ 612 "R_AVR_LDS_STS_16", /* name */ 613 false, /* partial_inplace */ 614 0xffff, /* src_mask */ 615 0xffff, /* dst_mask */ 616 false), /* pcrel_offset */ 617 618 HOWTO (R_AVR_PORT6, /* type */ 619 0, /* rightshift */ 620 1, /* size */ 621 6, /* bitsize */ 622 false, /* pc_relative */ 623 0, /* bitpos */ 624 complain_overflow_dont,/* complain_on_overflow */ 625 bfd_elf_generic_reloc, /* special_function */ 626 "R_AVR_PORT6", /* name */ 627 false, /* partial_inplace */ 628 0xffffff, /* src_mask */ 629 0xffffff, /* dst_mask */ 630 false), /* pcrel_offset */ 631 HOWTO (R_AVR_PORT5, /* type */ 632 0, /* rightshift */ 633 1, /* size */ 634 5, /* bitsize */ 635 false, /* pc_relative */ 636 0, /* bitpos */ 637 complain_overflow_dont,/* complain_on_overflow */ 638 bfd_elf_generic_reloc, /* special_function */ 639 "R_AVR_PORT5", /* name */ 640 false, /* partial_inplace */ 641 0xffffff, /* src_mask */ 642 0xffffff, /* dst_mask */ 643 false), /* pcrel_offset */ 644 645 /* A 32 bit PC relative relocation. */ 646 HOWTO (R_AVR_32_PCREL, /* type */ 647 0, /* rightshift */ 648 4, /* size */ 649 32, /* bitsize */ 650 true, /* pc_relative */ 651 0, /* bitpos */ 652 complain_overflow_bitfield, /* complain_on_overflow */ 653 bfd_elf_generic_reloc, /* special_function */ 654 "R_AVR_32_PCREL", /* name */ 655 false, /* partial_inplace */ 656 0xffffffff, /* src_mask */ 657 0xffffffff, /* dst_mask */ 658 true), /* pcrel_offset */ 659 }; 660 661 /* Map BFD reloc types to AVR ELF reloc types. */ 662 663 struct avr_reloc_map 664 { 665 bfd_reloc_code_real_type bfd_reloc_val; 666 unsigned int elf_reloc_val; 667 }; 668 669 static const struct avr_reloc_map avr_reloc_map[] = 670 { 671 { BFD_RELOC_NONE, R_AVR_NONE }, 672 { BFD_RELOC_32, R_AVR_32 }, 673 { BFD_RELOC_AVR_7_PCREL, R_AVR_7_PCREL }, 674 { BFD_RELOC_AVR_13_PCREL, R_AVR_13_PCREL }, 675 { BFD_RELOC_16, R_AVR_16 }, 676 { BFD_RELOC_AVR_16_PM, R_AVR_16_PM }, 677 { BFD_RELOC_AVR_LO8_LDI, R_AVR_LO8_LDI}, 678 { BFD_RELOC_AVR_HI8_LDI, R_AVR_HI8_LDI }, 679 { BFD_RELOC_AVR_HH8_LDI, R_AVR_HH8_LDI }, 680 { BFD_RELOC_AVR_MS8_LDI, R_AVR_MS8_LDI }, 681 { BFD_RELOC_AVR_LO8_LDI_NEG, R_AVR_LO8_LDI_NEG }, 682 { BFD_RELOC_AVR_HI8_LDI_NEG, R_AVR_HI8_LDI_NEG }, 683 { BFD_RELOC_AVR_HH8_LDI_NEG, R_AVR_HH8_LDI_NEG }, 684 { BFD_RELOC_AVR_MS8_LDI_NEG, R_AVR_MS8_LDI_NEG }, 685 { BFD_RELOC_AVR_LO8_LDI_PM, R_AVR_LO8_LDI_PM }, 686 { BFD_RELOC_AVR_LO8_LDI_GS, R_AVR_LO8_LDI_GS }, 687 { BFD_RELOC_AVR_HI8_LDI_PM, R_AVR_HI8_LDI_PM }, 688 { BFD_RELOC_AVR_HI8_LDI_GS, R_AVR_HI8_LDI_GS }, 689 { BFD_RELOC_AVR_HH8_LDI_PM, R_AVR_HH8_LDI_PM }, 690 { BFD_RELOC_AVR_LO8_LDI_PM_NEG, R_AVR_LO8_LDI_PM_NEG }, 691 { BFD_RELOC_AVR_HI8_LDI_PM_NEG, R_AVR_HI8_LDI_PM_NEG }, 692 { BFD_RELOC_AVR_HH8_LDI_PM_NEG, R_AVR_HH8_LDI_PM_NEG }, 693 { BFD_RELOC_AVR_CALL, R_AVR_CALL }, 694 { BFD_RELOC_AVR_LDI, R_AVR_LDI }, 695 { BFD_RELOC_AVR_6, R_AVR_6 }, 696 { BFD_RELOC_AVR_6_ADIW, R_AVR_6_ADIW }, 697 { BFD_RELOC_8, R_AVR_8 }, 698 { BFD_RELOC_AVR_8_LO, R_AVR_8_LO8 }, 699 { BFD_RELOC_AVR_8_HI, R_AVR_8_HI8 }, 700 { BFD_RELOC_AVR_8_HLO, R_AVR_8_HLO8 }, 701 { BFD_RELOC_AVR_DIFF8, R_AVR_DIFF8 }, 702 { BFD_RELOC_AVR_DIFF16, R_AVR_DIFF16 }, 703 { BFD_RELOC_AVR_DIFF32, R_AVR_DIFF32 }, 704 { BFD_RELOC_AVR_LDS_STS_16, R_AVR_LDS_STS_16}, 705 { BFD_RELOC_AVR_PORT6, R_AVR_PORT6}, 706 { BFD_RELOC_AVR_PORT5, R_AVR_PORT5}, 707 { BFD_RELOC_32_PCREL, R_AVR_32_PCREL} 708 }; 709 710 static const struct bfd_elf_special_section elf_avr_special_sections[] = 711 { 712 { STRING_COMMA_LEN (".noinit"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, 713 { NULL, 0, 0, 0, 0 } 714 }; 715 716 /* Meant to be filled one day with the wrap around address for the 717 specific device. I.e. should get the value 0x4000 for 16k devices, 718 0x8000 for 32k devices and so on. 719 720 We initialize it here with a value of 0x1000000 resulting in 721 that we will never suggest a wrap-around jump during relaxation. 722 The logic of the source code later on assumes that in 723 avr_pc_wrap_around one single bit is set. */ 724 static bfd_vma avr_pc_wrap_around = 0x10000000; 725 726 /* If this variable holds a value different from zero, the linker relaxation 727 machine will try to optimize call/ret sequences by a single jump 728 instruction. This option could be switched off by a linker switch. */ 729 static int avr_replace_call_ret_sequences = 1; 730 731 732 /* Per-section relaxation related information for avr. */ 733 734 struct avr_relax_info 735 { 736 /* Track the avr property records that apply to this section. */ 737 738 struct 739 { 740 /* Number of records in the list. */ 741 unsigned count; 742 743 /* How many records worth of space have we allocated. */ 744 unsigned allocated; 745 746 /* The records, only COUNT records are initialised. */ 747 struct avr_property_record *items; 748 } records; 749 }; 750 751 /* Per section data, specialised for avr. */ 752 753 struct elf_avr_section_data 754 { 755 /* The standard data must appear first. */ 756 struct bfd_elf_section_data elf; 757 758 /* Relaxation related information. */ 759 struct avr_relax_info relax_info; 760 }; 761 762 /* Possibly initialise avr specific data for new section SEC from ABFD. */ 763 764 static bool 765 elf_avr_new_section_hook (bfd *abfd, asection *sec) 766 { 767 if (!sec->used_by_bfd) 768 { 769 struct elf_avr_section_data *sdata; 770 size_t amt = sizeof (*sdata); 771 772 sdata = bfd_zalloc (abfd, amt); 773 if (sdata == NULL) 774 return false; 775 sec->used_by_bfd = sdata; 776 } 777 778 return _bfd_elf_new_section_hook (abfd, sec); 779 } 780 781 /* Return a pointer to the relaxation information for SEC. */ 782 783 static struct avr_relax_info * 784 get_avr_relax_info (asection *sec) 785 { 786 struct elf_avr_section_data *section_data; 787 788 /* No info available if no section or if it is an output section. */ 789 if (!sec || sec == sec->output_section) 790 return NULL; 791 792 section_data = (struct elf_avr_section_data *) elf_section_data (sec); 793 return §ion_data->relax_info; 794 } 795 796 /* Initialise the per section relaxation information for SEC. */ 797 798 static void 799 init_avr_relax_info (asection *sec) 800 { 801 struct avr_relax_info *relax_info = get_avr_relax_info (sec); 802 803 relax_info->records.count = 0; 804 relax_info->records.allocated = 0; 805 relax_info->records.items = NULL; 806 } 807 808 /* Initialize an entry in the stub hash table. */ 809 810 static struct bfd_hash_entry * 811 stub_hash_newfunc (struct bfd_hash_entry *entry, 812 struct bfd_hash_table *table, 813 const char *string) 814 { 815 /* Allocate the structure if it has not already been allocated by a 816 subclass. */ 817 if (entry == NULL) 818 { 819 entry = bfd_hash_allocate (table, 820 sizeof (struct elf32_avr_stub_hash_entry)); 821 if (entry == NULL) 822 return entry; 823 } 824 825 /* Call the allocation method of the superclass. */ 826 entry = bfd_hash_newfunc (entry, table, string); 827 if (entry != NULL) 828 { 829 struct elf32_avr_stub_hash_entry *hsh; 830 831 /* Initialize the local fields. */ 832 hsh = avr_stub_hash_entry (entry); 833 hsh->stub_offset = 0; 834 hsh->target_value = 0; 835 } 836 837 return entry; 838 } 839 840 /* This function is just a straight passthrough to the real 841 function in linker.c. Its prupose is so that its address 842 can be compared inside the avr_link_hash_table macro. */ 843 844 static struct bfd_hash_entry * 845 elf32_avr_link_hash_newfunc (struct bfd_hash_entry * entry, 846 struct bfd_hash_table * table, 847 const char * string) 848 { 849 return _bfd_elf_link_hash_newfunc (entry, table, string); 850 } 851 852 /* Free the derived linker hash table. */ 853 854 static void 855 elf32_avr_link_hash_table_free (bfd *obfd) 856 { 857 struct elf32_avr_link_hash_table *htab 858 = (struct elf32_avr_link_hash_table *) obfd->link.hash; 859 860 /* Free the address mapping table. */ 861 free (htab->amt_stub_offsets); 862 free (htab->amt_destination_addr); 863 864 bfd_hash_table_free (&htab->bstab); 865 _bfd_elf_link_hash_table_free (obfd); 866 } 867 868 /* Create the derived linker hash table. The AVR ELF port uses the derived 869 hash table to keep information specific to the AVR ELF linker (without 870 using static variables). */ 871 872 static struct bfd_link_hash_table * 873 elf32_avr_link_hash_table_create (bfd *abfd) 874 { 875 struct elf32_avr_link_hash_table *htab; 876 size_t amt = sizeof (*htab); 877 878 htab = bfd_zmalloc (amt); 879 if (htab == NULL) 880 return NULL; 881 882 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, 883 elf32_avr_link_hash_newfunc, 884 sizeof (struct elf_link_hash_entry), 885 AVR_ELF_DATA)) 886 { 887 free (htab); 888 return NULL; 889 } 890 891 /* Init the stub hash table too. */ 892 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc, 893 sizeof (struct elf32_avr_stub_hash_entry))) 894 { 895 _bfd_elf_link_hash_table_free (abfd); 896 return NULL; 897 } 898 htab->etab.root.hash_table_free = elf32_avr_link_hash_table_free; 899 900 return &htab->etab.root; 901 } 902 903 /* Calculates the effective distance of a pc relative jump/call. */ 904 905 static int 906 avr_relative_distance_considering_wrap_around (unsigned int distance) 907 { 908 unsigned int wrap_around_mask = avr_pc_wrap_around - 1; 909 int dist_with_wrap_around = distance & wrap_around_mask; 910 911 if (dist_with_wrap_around >= ((int) (avr_pc_wrap_around >> 1))) 912 dist_with_wrap_around -= avr_pc_wrap_around; 913 914 return dist_with_wrap_around; 915 } 916 917 918 static reloc_howto_type * 919 bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 920 bfd_reloc_code_real_type code) 921 { 922 unsigned int i; 923 924 for (i = 0; 925 i < sizeof (avr_reloc_map) / sizeof (struct avr_reloc_map); 926 i++) 927 if (avr_reloc_map[i].bfd_reloc_val == code) 928 return &elf_avr_howto_table[avr_reloc_map[i].elf_reloc_val]; 929 930 return NULL; 931 } 932 933 static reloc_howto_type * 934 bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 935 const char *r_name) 936 { 937 unsigned int i; 938 939 for (i = 0; 940 i < sizeof (elf_avr_howto_table) / sizeof (elf_avr_howto_table[0]); 941 i++) 942 if (elf_avr_howto_table[i].name != NULL 943 && strcasecmp (elf_avr_howto_table[i].name, r_name) == 0) 944 return &elf_avr_howto_table[i]; 945 946 return NULL; 947 } 948 949 /* Set the howto pointer for an AVR ELF reloc. */ 950 951 static bool 952 avr_info_to_howto_rela (bfd *abfd, 953 arelent *cache_ptr, 954 Elf_Internal_Rela *dst) 955 { 956 unsigned int r_type; 957 958 r_type = ELF32_R_TYPE (dst->r_info); 959 if (r_type >= (unsigned int) R_AVR_max) 960 { 961 /* xgettext:c-format */ 962 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), 963 abfd, r_type); 964 bfd_set_error (bfd_error_bad_value); 965 return false; 966 } 967 cache_ptr->howto = &elf_avr_howto_table[r_type]; 968 return true; 969 } 970 971 static bool 972 avr_stub_is_required_for_16_bit_reloc (bfd_vma relocation) 973 { 974 return (relocation >= 0x020000); 975 } 976 977 /* Returns the address of the corresponding stub if there is one. 978 Returns otherwise an address above 0x020000. This function 979 could also be used, if there is no knowledge on the section where 980 the destination is found. */ 981 982 static bfd_vma 983 avr_get_stub_addr (bfd_vma srel, 984 struct elf32_avr_link_hash_table *htab) 985 { 986 unsigned int sindex; 987 bfd_vma stub_sec_addr = 988 (htab->stub_sec->output_section->vma + 989 htab->stub_sec->output_offset); 990 991 for (sindex = 0; sindex < htab->amt_max_entry_cnt; sindex ++) 992 if (htab->amt_destination_addr[sindex] == srel) 993 return htab->amt_stub_offsets[sindex] + stub_sec_addr; 994 995 /* Return an address that could not be reached by 16 bit relocs. */ 996 return 0x020000; 997 } 998 999 /* Perform a diff relocation. Nothing to do, as the difference value is already 1000 written into the section's contents. */ 1001 1002 static bfd_reloc_status_type 1003 bfd_elf_avr_diff_reloc (bfd *abfd ATTRIBUTE_UNUSED, 1004 arelent *reloc_entry ATTRIBUTE_UNUSED, 1005 asymbol *symbol ATTRIBUTE_UNUSED, 1006 void *data ATTRIBUTE_UNUSED, 1007 asection *input_section ATTRIBUTE_UNUSED, 1008 bfd *output_bfd ATTRIBUTE_UNUSED, 1009 char **error_message ATTRIBUTE_UNUSED) 1010 { 1011 return bfd_reloc_ok; 1012 } 1013 1014 1015 /* Perform a single relocation. By default we use the standard BFD 1016 routines, but a few relocs, we have to do them ourselves. */ 1017 1018 static bfd_reloc_status_type 1019 avr_final_link_relocate (reloc_howto_type * howto, 1020 bfd * input_bfd, 1021 asection * input_section, 1022 bfd_byte * contents, 1023 Elf_Internal_Rela * rel, 1024 bfd_vma relocation, 1025 struct elf32_avr_link_hash_table * htab) 1026 { 1027 bfd_reloc_status_type r = bfd_reloc_ok; 1028 bfd_vma x; 1029 bfd_signed_vma srel; 1030 bfd_signed_vma reloc_addr; 1031 bool use_stubs = false; 1032 /* Usually is 0, unless we are generating code for a bootloader. */ 1033 bfd_signed_vma base_addr = htab->vector_base; 1034 1035 /* Absolute addr of the reloc in the final excecutable. */ 1036 reloc_addr = rel->r_offset + input_section->output_section->vma 1037 + input_section->output_offset; 1038 1039 switch (howto->type) 1040 { 1041 case R_AVR_7_PCREL: 1042 contents += rel->r_offset; 1043 srel = (bfd_signed_vma) relocation; 1044 srel += rel->r_addend; 1045 srel -= rel->r_offset; 1046 srel -= 2; /* Branch instructions add 2 to the PC... */ 1047 srel -= (input_section->output_section->vma + 1048 input_section->output_offset); 1049 1050 if (srel & 1) 1051 return bfd_reloc_outofrange; 1052 if (srel > ((1 << 7) - 1) || (srel < - (1 << 7))) 1053 return bfd_reloc_overflow; 1054 x = bfd_get_16 (input_bfd, contents); 1055 x = (x & 0xfc07) | (((srel >> 1) * 8) & 0x3f8); 1056 bfd_put_16 (input_bfd, x, contents); 1057 break; 1058 1059 case R_AVR_13_PCREL: 1060 contents += rel->r_offset; 1061 srel = (bfd_signed_vma) relocation; 1062 srel += rel->r_addend; 1063 srel -= rel->r_offset; 1064 srel -= 2; /* Branch instructions add 2 to the PC... */ 1065 srel -= (input_section->output_section->vma + 1066 input_section->output_offset); 1067 1068 if (srel & 1) 1069 return bfd_reloc_outofrange; 1070 1071 srel = avr_relative_distance_considering_wrap_around (srel); 1072 1073 /* AVR addresses commands as words. */ 1074 srel >>= 1; 1075 1076 /* Check for overflow. */ 1077 if (srel < -2048 || srel > 2047) 1078 { 1079 /* Relative distance is too large. */ 1080 1081 /* Always apply WRAPAROUND for avr2, avr25, and avr4. */ 1082 switch (bfd_get_mach (input_bfd)) 1083 { 1084 case bfd_mach_avr2: 1085 case bfd_mach_avr25: 1086 case bfd_mach_avr4: 1087 break; 1088 1089 default: 1090 return bfd_reloc_overflow; 1091 } 1092 } 1093 1094 x = bfd_get_16 (input_bfd, contents); 1095 x = (x & 0xf000) | (srel & 0xfff); 1096 bfd_put_16 (input_bfd, x, contents); 1097 break; 1098 1099 case R_AVR_LO8_LDI: 1100 contents += rel->r_offset; 1101 srel = (bfd_signed_vma) relocation + rel->r_addend; 1102 x = bfd_get_16 (input_bfd, contents); 1103 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00); 1104 bfd_put_16 (input_bfd, x, contents); 1105 break; 1106 1107 case R_AVR_LDI: 1108 contents += rel->r_offset; 1109 srel = (bfd_signed_vma) relocation + rel->r_addend; 1110 if (((srel > 0) && (srel & 0xffff) > 255) 1111 || ((srel < 0) && ((-srel) & 0xffff) > 128)) 1112 /* Remove offset for data/eeprom section. */ 1113 return bfd_reloc_overflow; 1114 1115 x = bfd_get_16 (input_bfd, contents); 1116 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00); 1117 bfd_put_16 (input_bfd, x, contents); 1118 break; 1119 1120 case R_AVR_6: 1121 contents += rel->r_offset; 1122 srel = (bfd_signed_vma) relocation + rel->r_addend; 1123 if (((srel & 0xffff) > 63) || (srel < 0)) 1124 /* Remove offset for data/eeprom section. */ 1125 return bfd_reloc_overflow; 1126 x = bfd_get_16 (input_bfd, contents); 1127 x = (x & 0xd3f8) | ((srel & 7) | ((srel & (3 << 3)) << 7) 1128 | ((srel & (1 << 5)) << 8)); 1129 bfd_put_16 (input_bfd, x, contents); 1130 break; 1131 1132 case R_AVR_6_ADIW: 1133 contents += rel->r_offset; 1134 srel = (bfd_signed_vma) relocation + rel->r_addend; 1135 if (((srel & 0xffff) > 63) || (srel < 0)) 1136 /* Remove offset for data/eeprom section. */ 1137 return bfd_reloc_overflow; 1138 x = bfd_get_16 (input_bfd, contents); 1139 x = (x & 0xff30) | (srel & 0xf) | ((srel & 0x30) << 2); 1140 bfd_put_16 (input_bfd, x, contents); 1141 break; 1142 1143 case R_AVR_HI8_LDI: 1144 contents += rel->r_offset; 1145 srel = (bfd_signed_vma) relocation + rel->r_addend; 1146 srel = (srel >> 8) & 0xff; 1147 x = bfd_get_16 (input_bfd, contents); 1148 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00); 1149 bfd_put_16 (input_bfd, x, contents); 1150 break; 1151 1152 case R_AVR_HH8_LDI: 1153 contents += rel->r_offset; 1154 srel = (bfd_signed_vma) relocation + rel->r_addend; 1155 srel = (srel >> 16) & 0xff; 1156 x = bfd_get_16 (input_bfd, contents); 1157 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00); 1158 bfd_put_16 (input_bfd, x, contents); 1159 break; 1160 1161 case R_AVR_MS8_LDI: 1162 contents += rel->r_offset; 1163 srel = (bfd_signed_vma) relocation + rel->r_addend; 1164 srel = (srel >> 24) & 0xff; 1165 x = bfd_get_16 (input_bfd, contents); 1166 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00); 1167 bfd_put_16 (input_bfd, x, contents); 1168 break; 1169 1170 case R_AVR_LO8_LDI_NEG: 1171 contents += rel->r_offset; 1172 srel = (bfd_signed_vma) relocation + rel->r_addend; 1173 srel = -srel; 1174 x = bfd_get_16 (input_bfd, contents); 1175 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00); 1176 bfd_put_16 (input_bfd, x, contents); 1177 break; 1178 1179 case R_AVR_HI8_LDI_NEG: 1180 contents += rel->r_offset; 1181 srel = (bfd_signed_vma) relocation + rel->r_addend; 1182 srel = -srel; 1183 srel = (srel >> 8) & 0xff; 1184 x = bfd_get_16 (input_bfd, contents); 1185 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00); 1186 bfd_put_16 (input_bfd, x, contents); 1187 break; 1188 1189 case R_AVR_HH8_LDI_NEG: 1190 contents += rel->r_offset; 1191 srel = (bfd_signed_vma) relocation + rel->r_addend; 1192 srel = -srel; 1193 srel = (srel >> 16) & 0xff; 1194 x = bfd_get_16 (input_bfd, contents); 1195 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00); 1196 bfd_put_16 (input_bfd, x, contents); 1197 break; 1198 1199 case R_AVR_MS8_LDI_NEG: 1200 contents += rel->r_offset; 1201 srel = (bfd_signed_vma) relocation + rel->r_addend; 1202 srel = -srel; 1203 srel = (srel >> 24) & 0xff; 1204 x = bfd_get_16 (input_bfd, contents); 1205 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00); 1206 bfd_put_16 (input_bfd, x, contents); 1207 break; 1208 1209 case R_AVR_LO8_LDI_GS: 1210 use_stubs = (!htab->no_stubs); 1211 /* Fall through. */ 1212 case R_AVR_LO8_LDI_PM: 1213 contents += rel->r_offset; 1214 srel = (bfd_signed_vma) relocation + rel->r_addend; 1215 1216 if (use_stubs 1217 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr)) 1218 { 1219 bfd_vma old_srel = srel; 1220 1221 /* We need to use the address of the stub instead. */ 1222 srel = avr_get_stub_addr (srel, htab); 1223 if (debug_stubs) 1224 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for " 1225 "reloc at address 0x%x.\n", 1226 (unsigned int) srel, 1227 (unsigned int) old_srel, 1228 (unsigned int) reloc_addr); 1229 1230 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr)) 1231 return bfd_reloc_outofrange; 1232 } 1233 1234 if (srel & 1) 1235 return bfd_reloc_outofrange; 1236 srel = srel >> 1; 1237 x = bfd_get_16 (input_bfd, contents); 1238 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00); 1239 bfd_put_16 (input_bfd, x, contents); 1240 break; 1241 1242 case R_AVR_HI8_LDI_GS: 1243 use_stubs = (!htab->no_stubs); 1244 /* Fall through. */ 1245 case R_AVR_HI8_LDI_PM: 1246 contents += rel->r_offset; 1247 srel = (bfd_signed_vma) relocation + rel->r_addend; 1248 1249 if (use_stubs 1250 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr)) 1251 { 1252 bfd_vma old_srel = srel; 1253 1254 /* We need to use the address of the stub instead. */ 1255 srel = avr_get_stub_addr (srel, htab); 1256 if (debug_stubs) 1257 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for " 1258 "reloc at address 0x%x.\n", 1259 (unsigned int) srel, 1260 (unsigned int) old_srel, 1261 (unsigned int) reloc_addr); 1262 1263 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr)) 1264 return bfd_reloc_outofrange; 1265 } 1266 1267 if (srel & 1) 1268 return bfd_reloc_outofrange; 1269 srel = srel >> 1; 1270 srel = (srel >> 8) & 0xff; 1271 x = bfd_get_16 (input_bfd, contents); 1272 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00); 1273 bfd_put_16 (input_bfd, x, contents); 1274 break; 1275 1276 case R_AVR_HH8_LDI_PM: 1277 contents += rel->r_offset; 1278 srel = (bfd_signed_vma) relocation + rel->r_addend; 1279 if (srel & 1) 1280 return bfd_reloc_outofrange; 1281 srel = srel >> 1; 1282 srel = (srel >> 16) & 0xff; 1283 x = bfd_get_16 (input_bfd, contents); 1284 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00); 1285 bfd_put_16 (input_bfd, x, contents); 1286 break; 1287 1288 case R_AVR_LO8_LDI_PM_NEG: 1289 contents += rel->r_offset; 1290 srel = (bfd_signed_vma) relocation + rel->r_addend; 1291 srel = -srel; 1292 if (srel & 1) 1293 return bfd_reloc_outofrange; 1294 srel = srel >> 1; 1295 x = bfd_get_16 (input_bfd, contents); 1296 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00); 1297 bfd_put_16 (input_bfd, x, contents); 1298 break; 1299 1300 case R_AVR_HI8_LDI_PM_NEG: 1301 contents += rel->r_offset; 1302 srel = (bfd_signed_vma) relocation + rel->r_addend; 1303 srel = -srel; 1304 if (srel & 1) 1305 return bfd_reloc_outofrange; 1306 srel = srel >> 1; 1307 srel = (srel >> 8) & 0xff; 1308 x = bfd_get_16 (input_bfd, contents); 1309 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00); 1310 bfd_put_16 (input_bfd, x, contents); 1311 break; 1312 1313 case R_AVR_HH8_LDI_PM_NEG: 1314 contents += rel->r_offset; 1315 srel = (bfd_signed_vma) relocation + rel->r_addend; 1316 srel = -srel; 1317 if (srel & 1) 1318 return bfd_reloc_outofrange; 1319 srel = srel >> 1; 1320 srel = (srel >> 16) & 0xff; 1321 x = bfd_get_16 (input_bfd, contents); 1322 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00); 1323 bfd_put_16 (input_bfd, x, contents); 1324 break; 1325 1326 case R_AVR_CALL: 1327 contents += rel->r_offset; 1328 srel = (bfd_signed_vma) relocation + rel->r_addend; 1329 if (srel & 1) 1330 return bfd_reloc_outofrange; 1331 srel = srel >> 1; 1332 x = bfd_get_16 (input_bfd, contents); 1333 x |= ((srel & 0x10000) | ((srel << 3) & 0x1f00000)) >> 16; 1334 bfd_put_16 (input_bfd, x, contents); 1335 bfd_put_16 (input_bfd, (bfd_vma) srel & 0xffff, contents+2); 1336 break; 1337 1338 case R_AVR_16_PM: 1339 use_stubs = (!htab->no_stubs); 1340 contents += rel->r_offset; 1341 srel = (bfd_signed_vma) relocation + rel->r_addend; 1342 1343 if (use_stubs 1344 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr)) 1345 { 1346 bfd_vma old_srel = srel; 1347 1348 /* We need to use the address of the stub instead. */ 1349 srel = avr_get_stub_addr (srel,htab); 1350 if (debug_stubs) 1351 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for " 1352 "reloc at address 0x%x.\n", 1353 (unsigned int) srel, 1354 (unsigned int) old_srel, 1355 (unsigned int) reloc_addr); 1356 1357 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr)) 1358 return bfd_reloc_outofrange; 1359 } 1360 1361 if (srel & 1) 1362 return bfd_reloc_outofrange; 1363 srel = srel >> 1; 1364 bfd_put_16 (input_bfd, (bfd_vma) srel &0x00ffff, contents); 1365 break; 1366 1367 case R_AVR_DIFF8: 1368 case R_AVR_DIFF16: 1369 case R_AVR_DIFF32: 1370 /* Nothing to do here, as contents already contains the diff value. */ 1371 r = bfd_reloc_ok; 1372 break; 1373 1374 case R_AVR_LDS_STS_16: 1375 contents += rel->r_offset; 1376 srel = (bfd_signed_vma) relocation + rel->r_addend; 1377 if ((srel & 0xFFFF) < 0x40 || (srel & 0xFFFF) > 0xbf) 1378 return bfd_reloc_outofrange; 1379 srel = srel & 0x7f; 1380 x = bfd_get_16 (input_bfd, contents); 1381 x |= (srel & 0x0f) | ((srel & 0x30) << 5) | ((srel & 0x40) << 2); 1382 bfd_put_16 (input_bfd, x, contents); 1383 break; 1384 1385 case R_AVR_PORT6: 1386 contents += rel->r_offset; 1387 srel = (bfd_signed_vma) relocation + rel->r_addend; 1388 if ((srel & 0xffff) > 0x3f) 1389 return bfd_reloc_outofrange; 1390 x = bfd_get_16 (input_bfd, contents); 1391 x = (x & 0xf9f0) | ((srel & 0x30) << 5) | (srel & 0x0f); 1392 bfd_put_16 (input_bfd, x, contents); 1393 break; 1394 1395 case R_AVR_PORT5: 1396 contents += rel->r_offset; 1397 srel = (bfd_signed_vma) relocation + rel->r_addend; 1398 if ((srel & 0xffff) > 0x1f) 1399 return bfd_reloc_outofrange; 1400 x = bfd_get_16 (input_bfd, contents); 1401 x = (x & 0xff07) | ((srel & 0x1f) << 3); 1402 bfd_put_16 (input_bfd, x, contents); 1403 break; 1404 1405 default: 1406 r = _bfd_final_link_relocate (howto, input_bfd, input_section, 1407 contents, rel->r_offset, 1408 relocation, rel->r_addend); 1409 } 1410 1411 return r; 1412 } 1413 1414 /* Relocate an AVR ELF section. */ 1415 1416 static int 1417 elf32_avr_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, 1418 struct bfd_link_info *info, 1419 bfd *input_bfd, 1420 asection *input_section, 1421 bfd_byte *contents, 1422 Elf_Internal_Rela *relocs, 1423 Elf_Internal_Sym *local_syms, 1424 asection **local_sections) 1425 { 1426 Elf_Internal_Shdr * symtab_hdr; 1427 struct elf_link_hash_entry ** sym_hashes; 1428 Elf_Internal_Rela * rel; 1429 Elf_Internal_Rela * relend; 1430 struct elf32_avr_link_hash_table * htab = avr_link_hash_table (info); 1431 1432 if (htab == NULL) 1433 return false; 1434 1435 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; 1436 sym_hashes = elf_sym_hashes (input_bfd); 1437 relend = relocs + input_section->reloc_count; 1438 1439 for (rel = relocs; rel < relend; rel ++) 1440 { 1441 reloc_howto_type * howto; 1442 unsigned long r_symndx; 1443 Elf_Internal_Sym * sym; 1444 asection * sec; 1445 struct elf_link_hash_entry * h; 1446 bfd_vma relocation; 1447 bfd_reloc_status_type r; 1448 const char * name; 1449 int r_type; 1450 1451 r_type = ELF32_R_TYPE (rel->r_info); 1452 r_symndx = ELF32_R_SYM (rel->r_info); 1453 howto = elf_avr_howto_table + r_type; 1454 h = NULL; 1455 sym = NULL; 1456 sec = NULL; 1457 1458 if (r_symndx < symtab_hdr->sh_info) 1459 { 1460 sym = local_syms + r_symndx; 1461 sec = local_sections [r_symndx]; 1462 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 1463 1464 name = bfd_elf_string_from_elf_section 1465 (input_bfd, symtab_hdr->sh_link, sym->st_name); 1466 name = name == NULL ? bfd_section_name (sec) : name; 1467 } 1468 else 1469 { 1470 bool unresolved_reloc, warned, ignored; 1471 1472 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 1473 r_symndx, symtab_hdr, sym_hashes, 1474 h, sec, relocation, 1475 unresolved_reloc, warned, ignored); 1476 1477 name = h->root.root.string; 1478 } 1479 1480 if (sec != NULL && discarded_section (sec)) 1481 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 1482 rel, 1, relend, howto, 0, contents); 1483 1484 if (bfd_link_relocatable (info)) 1485 continue; 1486 1487 r = avr_final_link_relocate (howto, input_bfd, input_section, 1488 contents, rel, relocation, htab); 1489 1490 if (r != bfd_reloc_ok) 1491 { 1492 const char * msg = (const char *) NULL; 1493 1494 switch (r) 1495 { 1496 case bfd_reloc_overflow: 1497 (*info->callbacks->reloc_overflow) 1498 (info, (h ? &h->root : NULL), name, howto->name, 1499 (bfd_vma) 0, input_bfd, input_section, rel->r_offset); 1500 break; 1501 1502 case bfd_reloc_undefined: 1503 (*info->callbacks->undefined_symbol) 1504 (info, name, input_bfd, input_section, rel->r_offset, true); 1505 break; 1506 1507 case bfd_reloc_outofrange: 1508 msg = _("internal error: out of range error"); 1509 break; 1510 1511 case bfd_reloc_notsupported: 1512 msg = _("internal error: unsupported relocation error"); 1513 break; 1514 1515 case bfd_reloc_dangerous: 1516 msg = _("internal error: dangerous relocation"); 1517 break; 1518 1519 default: 1520 msg = _("internal error: unknown error"); 1521 break; 1522 } 1523 1524 if (msg) 1525 (*info->callbacks->warning) (info, msg, name, input_bfd, 1526 input_section, rel->r_offset); 1527 } 1528 } 1529 1530 return true; 1531 } 1532 1533 /* The final processing done just before writing out a AVR ELF object 1534 file. This gets the AVR architecture right based on the machine 1535 number. */ 1536 1537 static bool 1538 bfd_elf_avr_final_write_processing (bfd *abfd) 1539 { 1540 unsigned long val; 1541 1542 switch (bfd_get_mach (abfd)) 1543 { 1544 default: 1545 case bfd_mach_avr2: 1546 val = E_AVR_MACH_AVR2; 1547 break; 1548 1549 case bfd_mach_avr1: 1550 val = E_AVR_MACH_AVR1; 1551 break; 1552 1553 case bfd_mach_avr25: 1554 val = E_AVR_MACH_AVR25; 1555 break; 1556 1557 case bfd_mach_avr3: 1558 val = E_AVR_MACH_AVR3; 1559 break; 1560 1561 case bfd_mach_avr31: 1562 val = E_AVR_MACH_AVR31; 1563 break; 1564 1565 case bfd_mach_avr35: 1566 val = E_AVR_MACH_AVR35; 1567 break; 1568 1569 case bfd_mach_avr4: 1570 val = E_AVR_MACH_AVR4; 1571 break; 1572 1573 case bfd_mach_avr5: 1574 val = E_AVR_MACH_AVR5; 1575 break; 1576 1577 case bfd_mach_avr51: 1578 val = E_AVR_MACH_AVR51; 1579 break; 1580 1581 case bfd_mach_avr6: 1582 val = E_AVR_MACH_AVR6; 1583 break; 1584 1585 case bfd_mach_avrxmega1: 1586 val = E_AVR_MACH_XMEGA1; 1587 break; 1588 1589 case bfd_mach_avrxmega2: 1590 val = E_AVR_MACH_XMEGA2; 1591 break; 1592 1593 case bfd_mach_avrxmega3: 1594 val = E_AVR_MACH_XMEGA3; 1595 break; 1596 1597 case bfd_mach_avrxmega4: 1598 val = E_AVR_MACH_XMEGA4; 1599 break; 1600 1601 case bfd_mach_avrxmega5: 1602 val = E_AVR_MACH_XMEGA5; 1603 break; 1604 1605 case bfd_mach_avrxmega6: 1606 val = E_AVR_MACH_XMEGA6; 1607 break; 1608 1609 case bfd_mach_avrxmega7: 1610 val = E_AVR_MACH_XMEGA7; 1611 break; 1612 1613 case bfd_mach_avrtiny: 1614 val = E_AVR_MACH_AVRTINY; 1615 break; 1616 } 1617 1618 elf_elfheader (abfd)->e_machine = EM_AVR; 1619 elf_elfheader (abfd)->e_flags &= ~ EF_AVR_MACH; 1620 elf_elfheader (abfd)->e_flags |= val; 1621 return _bfd_elf_final_write_processing (abfd); 1622 } 1623 1624 /* Set the right machine number. */ 1625 1626 static bool 1627 elf32_avr_object_p (bfd *abfd) 1628 { 1629 unsigned int e_set = bfd_mach_avr2; 1630 1631 if (elf_elfheader (abfd)->e_machine == EM_AVR 1632 || elf_elfheader (abfd)->e_machine == EM_AVR_OLD) 1633 { 1634 int e_mach = elf_elfheader (abfd)->e_flags & EF_AVR_MACH; 1635 1636 switch (e_mach) 1637 { 1638 default: 1639 case E_AVR_MACH_AVR2: 1640 e_set = bfd_mach_avr2; 1641 break; 1642 1643 case E_AVR_MACH_AVR1: 1644 e_set = bfd_mach_avr1; 1645 break; 1646 1647 case E_AVR_MACH_AVR25: 1648 e_set = bfd_mach_avr25; 1649 break; 1650 1651 case E_AVR_MACH_AVR3: 1652 e_set = bfd_mach_avr3; 1653 break; 1654 1655 case E_AVR_MACH_AVR31: 1656 e_set = bfd_mach_avr31; 1657 break; 1658 1659 case E_AVR_MACH_AVR35: 1660 e_set = bfd_mach_avr35; 1661 break; 1662 1663 case E_AVR_MACH_AVR4: 1664 e_set = bfd_mach_avr4; 1665 break; 1666 1667 case E_AVR_MACH_AVR5: 1668 e_set = bfd_mach_avr5; 1669 break; 1670 1671 case E_AVR_MACH_AVR51: 1672 e_set = bfd_mach_avr51; 1673 break; 1674 1675 case E_AVR_MACH_AVR6: 1676 e_set = bfd_mach_avr6; 1677 break; 1678 1679 case E_AVR_MACH_XMEGA1: 1680 e_set = bfd_mach_avrxmega1; 1681 break; 1682 1683 case E_AVR_MACH_XMEGA2: 1684 e_set = bfd_mach_avrxmega2; 1685 break; 1686 1687 case E_AVR_MACH_XMEGA3: 1688 e_set = bfd_mach_avrxmega3; 1689 break; 1690 1691 case E_AVR_MACH_XMEGA4: 1692 e_set = bfd_mach_avrxmega4; 1693 break; 1694 1695 case E_AVR_MACH_XMEGA5: 1696 e_set = bfd_mach_avrxmega5; 1697 break; 1698 1699 case E_AVR_MACH_XMEGA6: 1700 e_set = bfd_mach_avrxmega6; 1701 break; 1702 1703 case E_AVR_MACH_XMEGA7: 1704 e_set = bfd_mach_avrxmega7; 1705 break; 1706 1707 case E_AVR_MACH_AVRTINY: 1708 e_set = bfd_mach_avrtiny; 1709 break; 1710 } 1711 } 1712 return bfd_default_set_arch_mach (abfd, bfd_arch_avr, 1713 e_set); 1714 } 1715 1716 /* Returns whether the relocation type passed is a diff reloc. */ 1717 1718 static bool 1719 elf32_avr_is_diff_reloc (Elf_Internal_Rela *irel) 1720 { 1721 return (ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF8 1722 ||ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF16 1723 || ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF32); 1724 } 1725 1726 /* Reduce the diff value written in the section by count if the shrinked 1727 insn address happens to fall between the two symbols for which this 1728 diff reloc was emitted. */ 1729 1730 static void 1731 elf32_avr_adjust_diff_reloc_value (bfd *abfd, 1732 struct bfd_section *isec, 1733 Elf_Internal_Rela *irel, 1734 bfd_vma symval, 1735 bfd_vma shrinked_insn_address, 1736 int count) 1737 { 1738 unsigned char *reloc_contents = NULL; 1739 unsigned char *isec_contents = elf_section_data (isec)->this_hdr.contents; 1740 if (isec_contents == NULL) 1741 { 1742 if (! bfd_malloc_and_get_section (abfd, isec, &isec_contents)) 1743 return; 1744 1745 elf_section_data (isec)->this_hdr.contents = isec_contents; 1746 } 1747 1748 reloc_contents = isec_contents + irel->r_offset; 1749 1750 /* Read value written in object file. */ 1751 bfd_signed_vma x = 0; 1752 switch (ELF32_R_TYPE (irel->r_info)) 1753 { 1754 case R_AVR_DIFF8: 1755 { 1756 x = bfd_get_signed_8 (abfd, reloc_contents); 1757 break; 1758 } 1759 case R_AVR_DIFF16: 1760 { 1761 x = bfd_get_signed_16 (abfd, reloc_contents); 1762 break; 1763 } 1764 case R_AVR_DIFF32: 1765 { 1766 x = bfd_get_signed_32 (abfd, reloc_contents); 1767 break; 1768 } 1769 default: 1770 { 1771 BFD_FAIL(); 1772 } 1773 } 1774 1775 /* For a diff reloc sym1 - sym2 the diff at assembly time (x) is written 1776 into the object file at the reloc offset. sym2's logical value is 1777 symval (<start_of_section>) + reloc addend. Compute the start and end 1778 addresses and check if the shrinked insn falls between sym1 and sym2. */ 1779 1780 bfd_vma sym2_address = symval + irel->r_addend; 1781 bfd_vma sym1_address = sym2_address - x; 1782 1783 /* Don't assume sym2 is bigger than sym1 - the difference 1784 could be negative. Compute start and end addresses, and 1785 use those to see if they span shrinked_insn_address. */ 1786 1787 bfd_vma start_address = sym1_address < sym2_address 1788 ? sym1_address : sym2_address; 1789 bfd_vma end_address = sym1_address > sym2_address 1790 ? sym1_address : sym2_address; 1791 1792 1793 if (shrinked_insn_address >= start_address 1794 && shrinked_insn_address < end_address) 1795 { 1796 /* Reduce the diff value by count bytes and write it back into section 1797 contents. */ 1798 bfd_signed_vma new_diff = x < 0 ? x + count : x - count; 1799 1800 if (sym2_address > shrinked_insn_address) 1801 irel->r_addend -= count; 1802 1803 switch (ELF32_R_TYPE (irel->r_info)) 1804 { 1805 case R_AVR_DIFF8: 1806 { 1807 bfd_put_signed_8 (abfd, new_diff, reloc_contents); 1808 break; 1809 } 1810 case R_AVR_DIFF16: 1811 { 1812 bfd_put_signed_16 (abfd, new_diff & 0xFFFF, reloc_contents); 1813 break; 1814 } 1815 case R_AVR_DIFF32: 1816 { 1817 bfd_put_signed_32 (abfd, new_diff & 0xFFFFFFFF, reloc_contents); 1818 break; 1819 } 1820 default: 1821 { 1822 BFD_FAIL(); 1823 } 1824 } 1825 1826 } 1827 } 1828 1829 static void 1830 elf32_avr_adjust_reloc_if_spans_insn (bfd *abfd, 1831 asection *isec, 1832 Elf_Internal_Rela *irel, bfd_vma symval, 1833 bfd_vma shrinked_insn_address, 1834 bfd_vma shrink_boundary, 1835 int count) 1836 { 1837 1838 if (elf32_avr_is_diff_reloc (irel)) 1839 { 1840 elf32_avr_adjust_diff_reloc_value (abfd, isec, irel, 1841 symval, 1842 shrinked_insn_address, 1843 count); 1844 } 1845 else 1846 { 1847 bfd_vma reloc_value = symval + irel->r_addend; 1848 bool addend_within_shrink_boundary = reloc_value <= shrink_boundary; 1849 1850 bool reloc_spans_insn = 1851 (symval <= shrinked_insn_address 1852 && reloc_value > shrinked_insn_address 1853 && addend_within_shrink_boundary); 1854 1855 if (! reloc_spans_insn) 1856 return; 1857 1858 irel->r_addend -= count; 1859 1860 if (debug_relax) 1861 printf ("Relocation's addend needed to be fixed \n"); 1862 } 1863 } 1864 1865 static bool 1866 avr_should_move_sym (symvalue symval, 1867 bfd_vma start, 1868 bfd_vma end, 1869 bool did_pad) 1870 { 1871 bool sym_within_boundary = did_pad ? symval < end : symval <= end; 1872 return (symval > start && sym_within_boundary); 1873 } 1874 1875 static bool 1876 avr_should_reduce_sym_size (symvalue symval, 1877 symvalue symend, 1878 bfd_vma start, 1879 bfd_vma end, 1880 bool did_pad) 1881 { 1882 bool sym_end_within_boundary = did_pad ? symend < end : symend <= end; 1883 return (symval <= start && symend > start && sym_end_within_boundary); 1884 } 1885 1886 static bool 1887 avr_should_increase_sym_size (symvalue symval, 1888 symvalue symend, 1889 bfd_vma start, 1890 bfd_vma end, 1891 bool did_pad) 1892 { 1893 return (avr_should_move_sym (symval, start, end, did_pad) 1894 && symend >= end && did_pad); 1895 } 1896 1897 /* Delete some bytes from a section while changing the size of an instruction. 1898 The parameter "addr" denotes the section-relative offset pointing just 1899 behind the shrinked instruction. "addr+count" point at the first 1900 byte just behind the original unshrinked instruction. If delete_shrinks_insn 1901 is FALSE, we are deleting redundant padding bytes from relax_info prop 1902 record handling. In that case, addr is section-relative offset of start 1903 of padding, and count is the number of padding bytes to delete. */ 1904 1905 static bool 1906 elf32_avr_relax_delete_bytes (bfd *abfd, 1907 asection *sec, 1908 bfd_vma addr, 1909 int count, 1910 bool delete_shrinks_insn) 1911 { 1912 Elf_Internal_Shdr *symtab_hdr; 1913 unsigned int sec_shndx; 1914 bfd_byte *contents; 1915 Elf_Internal_Rela *irel, *irelend; 1916 Elf_Internal_Sym *isym; 1917 Elf_Internal_Sym *isymbuf = NULL; 1918 bfd_vma toaddr; 1919 struct elf_link_hash_entry **sym_hashes; 1920 struct elf_link_hash_entry **end_hashes; 1921 unsigned int symcount; 1922 struct avr_relax_info *relax_info; 1923 struct avr_property_record *prop_record = NULL; 1924 bool did_shrink = false; 1925 bool did_pad = false; 1926 1927 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1928 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 1929 contents = elf_section_data (sec)->this_hdr.contents; 1930 relax_info = get_avr_relax_info (sec); 1931 1932 toaddr = sec->size; 1933 1934 if (relax_info->records.count > 0) 1935 { 1936 /* There should be no property record within the range of deleted 1937 bytes, however, there might be a property record for ADDR, this is 1938 how we handle alignment directives. 1939 Find the next (if any) property record after the deleted bytes. */ 1940 unsigned int i; 1941 1942 for (i = 0; i < relax_info->records.count; ++i) 1943 { 1944 bfd_vma offset = relax_info->records.items [i].offset; 1945 1946 BFD_ASSERT (offset <= addr || offset >= (addr + count)); 1947 if (offset >= (addr + count)) 1948 { 1949 prop_record = &relax_info->records.items [i]; 1950 toaddr = offset; 1951 break; 1952 } 1953 } 1954 } 1955 1956 irel = elf_section_data (sec)->relocs; 1957 irelend = irel + sec->reloc_count; 1958 1959 /* Actually delete the bytes. */ 1960 if (toaddr - addr - count > 0) 1961 { 1962 memmove (contents + addr, contents + addr + count, 1963 (size_t) (toaddr - addr - count)); 1964 did_shrink = true; 1965 } 1966 if (prop_record == NULL) 1967 { 1968 sec->size -= count; 1969 did_shrink = true; 1970 } 1971 else 1972 { 1973 /* Use the property record to fill in the bytes we've opened up. */ 1974 int fill = 0; 1975 switch (prop_record->type) 1976 { 1977 case RECORD_ORG_AND_FILL: 1978 fill = prop_record->data.org.fill; 1979 /* Fall through. */ 1980 case RECORD_ORG: 1981 break; 1982 case RECORD_ALIGN_AND_FILL: 1983 fill = prop_record->data.align.fill; 1984 /* Fall through. */ 1985 case RECORD_ALIGN: 1986 prop_record->data.align.preceding_deleted += count; 1987 break; 1988 }; 1989 /* If toaddr == (addr + count), then we didn't delete anything, yet 1990 we fill count bytes backwards from toaddr. This is still ok - we 1991 end up overwriting the bytes we would have deleted. We just need 1992 to remember we didn't delete anything i.e. don't set did_shrink, 1993 so that we don't corrupt reloc offsets or symbol values.*/ 1994 memset (contents + toaddr - count, fill, count); 1995 did_pad = true; 1996 } 1997 1998 if (!did_shrink) 1999 return true; 2000 2001 /* Adjust all the reloc addresses. */ 2002 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) 2003 { 2004 bfd_vma old_reloc_address; 2005 2006 old_reloc_address = (sec->output_section->vma 2007 + sec->output_offset + irel->r_offset); 2008 2009 /* Get the new reloc address. */ 2010 if ((irel->r_offset > addr 2011 && irel->r_offset < toaddr)) 2012 { 2013 if (debug_relax) 2014 printf ("Relocation at address 0x%x needs to be moved.\n" 2015 "Old section offset: 0x%x, New section offset: 0x%x \n", 2016 (unsigned int) old_reloc_address, 2017 (unsigned int) irel->r_offset, 2018 (unsigned int) ((irel->r_offset) - count)); 2019 2020 irel->r_offset -= count; 2021 } 2022 2023 } 2024 2025 /* The reloc's own addresses are now ok. However, we need to readjust 2026 the reloc's addend, i.e. the reloc's value if two conditions are met: 2027 1.) the reloc is relative to a symbol in this section that 2028 is located in front of the shrinked instruction 2029 2.) symbol plus addend end up behind the shrinked instruction. 2030 2031 The most common case where this happens are relocs relative to 2032 the section-start symbol. 2033 2034 This step needs to be done for all of the sections of the bfd. */ 2035 2036 { 2037 struct bfd_section *isec; 2038 2039 for (isec = abfd->sections; isec; isec = isec->next) 2040 { 2041 bfd_vma symval; 2042 bfd_vma shrinked_insn_address; 2043 2044 if (isec->reloc_count == 0) 2045 continue; 2046 2047 shrinked_insn_address = (sec->output_section->vma 2048 + sec->output_offset + addr); 2049 if (delete_shrinks_insn) 2050 shrinked_insn_address -= count; 2051 2052 irel = elf_section_data (isec)->relocs; 2053 /* PR 12161: Read in the relocs for this section if necessary. */ 2054 if (irel == NULL) 2055 irel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, true); 2056 2057 for (irelend = irel + isec->reloc_count; 2058 irel < irelend; 2059 irel++) 2060 { 2061 /* Read this BFD's local symbols if we haven't done 2062 so already. */ 2063 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 2064 { 2065 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 2066 if (isymbuf == NULL) 2067 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 2068 symtab_hdr->sh_info, 0, 2069 NULL, NULL, NULL); 2070 if (isymbuf == NULL) 2071 return false; 2072 } 2073 2074 /* Get the value of the symbol referred to by the reloc. */ 2075 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) 2076 { 2077 /* A local symbol. */ 2078 asection *sym_sec; 2079 2080 isym = isymbuf + ELF32_R_SYM (irel->r_info); 2081 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 2082 symval = isym->st_value; 2083 /* If the reloc is absolute, it will not have 2084 a symbol or section associated with it. */ 2085 if (sym_sec == sec) 2086 { 2087 /* If there is an alignment boundary, we only need to 2088 adjust addends that end up below the boundary. */ 2089 bfd_vma shrink_boundary = (toaddr 2090 + sec->output_section->vma 2091 + sec->output_offset); 2092 2093 symval += sym_sec->output_section->vma 2094 + sym_sec->output_offset; 2095 2096 if (debug_relax) 2097 printf ("Checking if the relocation's " 2098 "addend needs corrections.\n" 2099 "Address of anchor symbol: 0x%x \n" 2100 "Address of relocation target: 0x%x \n" 2101 "Address of relaxed insn: 0x%x \n", 2102 (unsigned int) symval, 2103 (unsigned int) (symval + irel->r_addend), 2104 (unsigned int) shrinked_insn_address); 2105 2106 elf32_avr_adjust_reloc_if_spans_insn (abfd, isec, irel, 2107 symval, 2108 shrinked_insn_address, 2109 shrink_boundary, 2110 count); 2111 } 2112 /* else...Reference symbol is absolute. No adjustment needed. */ 2113 } 2114 /* else...Reference symbol is extern. No need for adjusting 2115 the addend. */ 2116 } 2117 } 2118 } 2119 2120 /* Adjust the local symbols defined in this section. */ 2121 isym = (Elf_Internal_Sym *) symtab_hdr->contents; 2122 /* Fix PR 9841, there may be no local symbols. */ 2123 if (isym != NULL) 2124 { 2125 Elf_Internal_Sym *isymend; 2126 2127 isymend = isym + symtab_hdr->sh_info; 2128 for (; isym < isymend; isym++) 2129 { 2130 if (isym->st_shndx == sec_shndx) 2131 { 2132 symvalue symval = isym->st_value; 2133 symvalue symend = symval + isym->st_size; 2134 if (avr_should_reduce_sym_size (symval, symend, 2135 addr, toaddr, did_pad)) 2136 { 2137 /* If this assert fires then we have a symbol that ends 2138 part way through an instruction. Does that make 2139 sense? */ 2140 BFD_ASSERT (isym->st_value + isym->st_size >= addr + count); 2141 isym->st_size -= count; 2142 } 2143 else if (avr_should_increase_sym_size (symval, symend, 2144 addr, toaddr, did_pad)) 2145 isym->st_size += count; 2146 2147 if (avr_should_move_sym (symval, addr, toaddr, did_pad)) 2148 isym->st_value -= count; 2149 } 2150 } 2151 } 2152 2153 /* Now adjust the global symbols defined in this section. */ 2154 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) 2155 - symtab_hdr->sh_info); 2156 sym_hashes = elf_sym_hashes (abfd); 2157 end_hashes = sym_hashes + symcount; 2158 for (; sym_hashes < end_hashes; sym_hashes++) 2159 { 2160 struct elf_link_hash_entry *sym_hash = *sym_hashes; 2161 if ((sym_hash->root.type == bfd_link_hash_defined 2162 || sym_hash->root.type == bfd_link_hash_defweak) 2163 && sym_hash->root.u.def.section == sec) 2164 { 2165 symvalue symval = sym_hash->root.u.def.value; 2166 symvalue symend = symval + sym_hash->size; 2167 2168 if (avr_should_reduce_sym_size (symval, symend, 2169 addr, toaddr, did_pad)) 2170 { 2171 /* If this assert fires then we have a symbol that ends 2172 part way through an instruction. Does that make 2173 sense? */ 2174 BFD_ASSERT (symend >= addr + count); 2175 sym_hash->size -= count; 2176 } 2177 else if (avr_should_increase_sym_size (symval, symend, 2178 addr, toaddr, did_pad)) 2179 sym_hash->size += count; 2180 2181 if (avr_should_move_sym (symval, addr, toaddr, did_pad)) 2182 sym_hash->root.u.def.value -= count; 2183 } 2184 } 2185 2186 return true; 2187 } 2188 2189 static Elf_Internal_Sym * 2190 retrieve_local_syms (bfd *input_bfd) 2191 { 2192 Elf_Internal_Shdr *symtab_hdr; 2193 Elf_Internal_Sym *isymbuf; 2194 size_t locsymcount; 2195 2196 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 2197 locsymcount = symtab_hdr->sh_info; 2198 2199 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 2200 if (isymbuf == NULL && locsymcount != 0) 2201 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, 2202 NULL, NULL, NULL); 2203 2204 /* Save the symbols for this input file so they won't be read again. */ 2205 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents) 2206 symtab_hdr->contents = (unsigned char *) isymbuf; 2207 2208 return isymbuf; 2209 } 2210 2211 /* Get the input section for a given symbol index. 2212 If the symbol is: 2213 . a section symbol, return the section; 2214 . a common symbol, return the common section; 2215 . an undefined symbol, return the undefined section; 2216 . an indirect symbol, follow the links; 2217 . an absolute value, return the absolute section. */ 2218 2219 static asection * 2220 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx) 2221 { 2222 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2223 asection *target_sec = NULL; 2224 if (r_symndx < symtab_hdr->sh_info) 2225 { 2226 Elf_Internal_Sym *isymbuf; 2227 unsigned int section_index; 2228 2229 isymbuf = retrieve_local_syms (abfd); 2230 section_index = isymbuf[r_symndx].st_shndx; 2231 2232 if (section_index == SHN_UNDEF) 2233 target_sec = bfd_und_section_ptr; 2234 else if (section_index == SHN_ABS) 2235 target_sec = bfd_abs_section_ptr; 2236 else if (section_index == SHN_COMMON) 2237 target_sec = bfd_com_section_ptr; 2238 else 2239 target_sec = bfd_section_from_elf_index (abfd, section_index); 2240 } 2241 else 2242 { 2243 unsigned long indx = r_symndx - symtab_hdr->sh_info; 2244 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx]; 2245 2246 while (h->root.type == bfd_link_hash_indirect 2247 || h->root.type == bfd_link_hash_warning) 2248 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2249 2250 switch (h->root.type) 2251 { 2252 case bfd_link_hash_defined: 2253 case bfd_link_hash_defweak: 2254 target_sec = h->root.u.def.section; 2255 break; 2256 case bfd_link_hash_common: 2257 target_sec = bfd_com_section_ptr; 2258 break; 2259 case bfd_link_hash_undefined: 2260 case bfd_link_hash_undefweak: 2261 target_sec = bfd_und_section_ptr; 2262 break; 2263 default: /* New indirect warning. */ 2264 target_sec = bfd_und_section_ptr; 2265 break; 2266 } 2267 } 2268 return target_sec; 2269 } 2270 2271 /* Get the section-relative offset for a symbol number. */ 2272 2273 static bfd_vma 2274 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx) 2275 { 2276 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2277 bfd_vma offset = 0; 2278 2279 if (r_symndx < symtab_hdr->sh_info) 2280 { 2281 Elf_Internal_Sym *isymbuf; 2282 isymbuf = retrieve_local_syms (abfd); 2283 offset = isymbuf[r_symndx].st_value; 2284 } 2285 else 2286 { 2287 unsigned long indx = r_symndx - symtab_hdr->sh_info; 2288 struct elf_link_hash_entry *h = 2289 elf_sym_hashes (abfd)[indx]; 2290 2291 while (h->root.type == bfd_link_hash_indirect 2292 || h->root.type == bfd_link_hash_warning) 2293 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2294 if (h->root.type == bfd_link_hash_defined 2295 || h->root.type == bfd_link_hash_defweak) 2296 offset = h->root.u.def.value; 2297 } 2298 return offset; 2299 } 2300 2301 /* Iterate over the property records in R_LIST, and copy each record into 2302 the list of records within the relaxation information for the section to 2303 which the record applies. */ 2304 2305 static void 2306 avr_elf32_assign_records_to_sections (struct avr_property_record_list *r_list) 2307 { 2308 unsigned int i; 2309 2310 for (i = 0; i < r_list->record_count; ++i) 2311 { 2312 struct avr_relax_info *relax_info; 2313 2314 relax_info = get_avr_relax_info (r_list->records [i].section); 2315 BFD_ASSERT (relax_info != NULL); 2316 2317 if (relax_info->records.count 2318 == relax_info->records.allocated) 2319 { 2320 /* Allocate more space. */ 2321 bfd_size_type size; 2322 2323 relax_info->records.allocated += 10; 2324 size = (sizeof (struct avr_property_record) 2325 * relax_info->records.allocated); 2326 relax_info->records.items 2327 = bfd_realloc (relax_info->records.items, size); 2328 } 2329 2330 memcpy (&relax_info->records.items [relax_info->records.count], 2331 &r_list->records [i], 2332 sizeof (struct avr_property_record)); 2333 relax_info->records.count++; 2334 } 2335 } 2336 2337 /* Compare two STRUCT AVR_PROPERTY_RECORD in AP and BP, used as the 2338 ordering callback from QSORT. */ 2339 2340 static int 2341 avr_property_record_compare (const void *ap, const void *bp) 2342 { 2343 const struct avr_property_record *a 2344 = (struct avr_property_record *) ap; 2345 const struct avr_property_record *b 2346 = (struct avr_property_record *) bp; 2347 2348 if (a->offset != b->offset) 2349 return (a->offset - b->offset); 2350 2351 if (a->section != b->section) 2352 return bfd_section_vma (a->section) - bfd_section_vma (b->section); 2353 2354 return (a->type - b->type); 2355 } 2356 2357 /* Load all of the avr property sections from all of the bfd objects 2358 referenced from LINK_INFO. All of the records within each property 2359 section are assigned to the STRUCT AVR_RELAX_INFO within the section 2360 specific data of the appropriate section. */ 2361 2362 static void 2363 avr_load_all_property_sections (struct bfd_link_info *link_info) 2364 { 2365 bfd *abfd; 2366 asection *sec; 2367 2368 /* Initialize the per-section relaxation info. */ 2369 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) 2370 for (sec = abfd->sections; sec != NULL; sec = sec->next) 2371 { 2372 init_avr_relax_info (sec); 2373 } 2374 2375 /* Load the descriptor tables from .avr.prop sections. */ 2376 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) 2377 { 2378 struct avr_property_record_list *r_list; 2379 2380 r_list = avr_elf32_load_property_records (abfd); 2381 if (r_list != NULL) 2382 avr_elf32_assign_records_to_sections (r_list); 2383 2384 free (r_list); 2385 } 2386 2387 /* Now, for every section, ensure that the descriptor list in the 2388 relaxation data is sorted by ascending offset within the section. */ 2389 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) 2390 for (sec = abfd->sections; sec != NULL; sec = sec->next) 2391 { 2392 struct avr_relax_info *relax_info = get_avr_relax_info (sec); 2393 if (relax_info && relax_info->records.count > 0) 2394 { 2395 unsigned int i; 2396 2397 qsort (relax_info->records.items, 2398 relax_info->records.count, 2399 sizeof (struct avr_property_record), 2400 avr_property_record_compare); 2401 2402 /* For debug purposes, list all the descriptors. */ 2403 for (i = 0; i < relax_info->records.count; ++i) 2404 { 2405 switch (relax_info->records.items [i].type) 2406 { 2407 case RECORD_ORG: 2408 break; 2409 case RECORD_ORG_AND_FILL: 2410 break; 2411 case RECORD_ALIGN: 2412 break; 2413 case RECORD_ALIGN_AND_FILL: 2414 break; 2415 }; 2416 } 2417 } 2418 } 2419 } 2420 2421 /* This function handles relaxing for the avr. 2422 Many important relaxing opportunities within functions are already 2423 realized by the compiler itself. 2424 Here we try to replace call (4 bytes) -> rcall (2 bytes) 2425 and jump -> rjmp (safes also 2 bytes). 2426 As well we now optimize seqences of 2427 - call/rcall function 2428 - ret 2429 to yield 2430 - jmp/rjmp function 2431 - ret 2432 . In case that within a sequence 2433 - jmp/rjmp label 2434 - ret 2435 the ret could no longer be reached it is optimized away. In order 2436 to check if the ret is no longer needed, it is checked that the ret's address 2437 is not the target of a branch or jump within the same section, it is checked 2438 that there is no skip instruction before the jmp/rjmp and that there 2439 is no local or global label place at the address of the ret. 2440 2441 We refrain from relaxing within sections ".vectors" and 2442 ".jumptables" in order to maintain the position of the instructions. 2443 There, however, we substitute jmp/call by a sequence rjmp,nop/rcall,nop 2444 if possible. (In future one could possibly use the space of the nop 2445 for the first instruction of the irq service function. 2446 2447 The .jumptables sections is meant to be used for a future tablejump variant 2448 for the devices with 3-byte program counter where the table itself 2449 contains 4-byte jump instructions whose relative offset must not 2450 be changed. */ 2451 2452 static bool 2453 elf32_avr_relax_section (bfd *abfd, 2454 asection *sec, 2455 struct bfd_link_info *link_info, 2456 bool *again) 2457 { 2458 Elf_Internal_Shdr *symtab_hdr; 2459 Elf_Internal_Rela *internal_relocs; 2460 Elf_Internal_Rela *irel, *irelend; 2461 bfd_byte *contents = NULL; 2462 Elf_Internal_Sym *isymbuf = NULL; 2463 struct elf32_avr_link_hash_table *htab; 2464 static bool relaxation_initialised = false; 2465 2466 if (!relaxation_initialised) 2467 { 2468 relaxation_initialised = true; 2469 2470 /* Load entries from the .avr.prop sections. */ 2471 avr_load_all_property_sections (link_info); 2472 } 2473 2474 /* If 'shrinkable' is FALSE, do not shrink by deleting bytes while 2475 relaxing. Such shrinking can cause issues for the sections such 2476 as .vectors and .jumptables. Instead the unused bytes should be 2477 filled with nop instructions. */ 2478 bool shrinkable = true; 2479 2480 if (!strcmp (sec->name,".vectors") 2481 || !strcmp (sec->name,".jumptables")) 2482 shrinkable = false; 2483 2484 if (bfd_link_relocatable (link_info)) 2485 (*link_info->callbacks->einfo) 2486 (_("%P%F: --relax and -r may not be used together\n")); 2487 2488 htab = avr_link_hash_table (link_info); 2489 if (htab == NULL) 2490 return false; 2491 2492 /* Assume nothing changes. */ 2493 *again = false; 2494 2495 if ((!htab->no_stubs) && (sec == htab->stub_sec)) 2496 { 2497 /* We are just relaxing the stub section. 2498 Let's calculate the size needed again. */ 2499 bfd_size_type last_estimated_stub_section_size = htab->stub_sec->size; 2500 2501 if (debug_relax) 2502 printf ("Relaxing the stub section. Size prior to this pass: %i\n", 2503 (int) last_estimated_stub_section_size); 2504 2505 elf32_avr_size_stubs (htab->stub_sec->output_section->owner, 2506 link_info, false); 2507 2508 /* Check if the number of trampolines changed. */ 2509 if (last_estimated_stub_section_size != htab->stub_sec->size) 2510 *again = true; 2511 2512 if (debug_relax) 2513 printf ("Size of stub section after this pass: %i\n", 2514 (int) htab->stub_sec->size); 2515 2516 return true; 2517 } 2518 2519 /* We don't have to do anything for a relocatable link, if 2520 this section does not have relocs, or if this is not a 2521 code section. */ 2522 if (bfd_link_relocatable (link_info) 2523 || (sec->flags & SEC_RELOC) == 0 2524 || sec->reloc_count == 0 2525 || (sec->flags & SEC_CODE) == 0) 2526 return true; 2527 2528 /* Check if the object file to relax uses internal symbols so that we 2529 could fix up the relocations. */ 2530 if (!(elf_elfheader (abfd)->e_flags & EF_AVR_LINKRELAX_PREPARED)) 2531 return true; 2532 2533 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2534 2535 /* Get a copy of the native relocations. */ 2536 internal_relocs = (_bfd_elf_link_read_relocs 2537 (abfd, sec, NULL, NULL, link_info->keep_memory)); 2538 if (internal_relocs == NULL) 2539 goto error_return; 2540 2541 /* Walk through the relocs looking for relaxing opportunities. */ 2542 irelend = internal_relocs + sec->reloc_count; 2543 for (irel = internal_relocs; irel < irelend; irel++) 2544 { 2545 bfd_vma symval; 2546 2547 if ( ELF32_R_TYPE (irel->r_info) != R_AVR_13_PCREL 2548 && ELF32_R_TYPE (irel->r_info) != R_AVR_7_PCREL 2549 && ELF32_R_TYPE (irel->r_info) != R_AVR_CALL) 2550 continue; 2551 2552 /* Get the section contents if we haven't done so already. */ 2553 if (contents == NULL) 2554 { 2555 /* Get cached copy if it exists. */ 2556 if (elf_section_data (sec)->this_hdr.contents != NULL) 2557 contents = elf_section_data (sec)->this_hdr.contents; 2558 else 2559 { 2560 /* Go get them off disk. */ 2561 if (! bfd_malloc_and_get_section (abfd, sec, &contents)) 2562 goto error_return; 2563 } 2564 } 2565 2566 /* Read this BFD's local symbols if we haven't done so already. */ 2567 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 2568 { 2569 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 2570 if (isymbuf == NULL) 2571 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 2572 symtab_hdr->sh_info, 0, 2573 NULL, NULL, NULL); 2574 if (isymbuf == NULL) 2575 goto error_return; 2576 } 2577 2578 2579 /* Get the value of the symbol referred to by the reloc. */ 2580 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) 2581 { 2582 /* A local symbol. */ 2583 Elf_Internal_Sym *isym; 2584 asection *sym_sec; 2585 2586 isym = isymbuf + ELF32_R_SYM (irel->r_info); 2587 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 2588 symval = isym->st_value; 2589 /* If the reloc is absolute, it will not have 2590 a symbol or section associated with it. */ 2591 if (sym_sec) 2592 symval += sym_sec->output_section->vma 2593 + sym_sec->output_offset; 2594 } 2595 else 2596 { 2597 unsigned long indx; 2598 struct elf_link_hash_entry *h; 2599 2600 /* An external symbol. */ 2601 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; 2602 h = elf_sym_hashes (abfd)[indx]; 2603 BFD_ASSERT (h != NULL); 2604 if (h->root.type != bfd_link_hash_defined 2605 && h->root.type != bfd_link_hash_defweak) 2606 /* This appears to be a reference to an undefined 2607 symbol. Just ignore it--it will be caught by the 2608 regular reloc processing. */ 2609 continue; 2610 2611 symval = (h->root.u.def.value 2612 + h->root.u.def.section->output_section->vma 2613 + h->root.u.def.section->output_offset); 2614 } 2615 2616 /* For simplicity of coding, we are going to modify the section 2617 contents, the section relocs, and the BFD symbol table. We 2618 must tell the rest of the code not to free up this 2619 information. It would be possible to instead create a table 2620 of changes which have to be made, as is done in coff-mips.c; 2621 that would be more work, but would require less memory when 2622 the linker is run. */ 2623 switch (ELF32_R_TYPE (irel->r_info)) 2624 { 2625 /* Try to turn a 22-bit absolute call/jump into an 13-bit 2626 pc-relative rcall/rjmp. */ 2627 case R_AVR_CALL: 2628 { 2629 bfd_vma value = symval + irel->r_addend; 2630 bfd_vma dot, gap; 2631 int distance_short_enough = 0; 2632 2633 /* Get the address of this instruction. */ 2634 dot = (sec->output_section->vma 2635 + sec->output_offset + irel->r_offset); 2636 2637 /* Compute the distance from this insn to the branch target. */ 2638 gap = value - dot; 2639 2640 /* The ISA manual states that addressable range is PC - 2k + 1 to 2641 PC + 2k. In bytes, that would be -4094 <= PC <= 4096. The range 2642 is shifted one word to the right, because pc-relative instructions 2643 implicitly add one word i.e. rjmp 0 jumps to next insn, not the 2644 current one. 2645 Therefore, for the !shrinkable case, the range is as above. 2646 If shrinkable, then the current code only deletes bytes 3 and 2647 4 of the absolute call/jmp, so the forward jump range increases 2648 by 2 bytes, but the backward (negative) jump range remains 2649 the same. */ 2650 2651 2652 /* Check if the gap falls in the range that can be accommodated 2653 in 13bits signed (It is 12bits when encoded, as we deal with 2654 word addressing). */ 2655 if (!shrinkable && ((int) gap >= -4094 && (int) gap <= 4096)) 2656 distance_short_enough = 1; 2657 /* If shrinkable, then we can check for a range of distance which 2658 is two bytes farther on the positive direction because the call 2659 or jump target will be closer by two bytes after the 2660 relaxation. */ 2661 else if (shrinkable && ((int) gap >= -4094 && (int) gap <= 4098)) 2662 distance_short_enough = 1; 2663 2664 /* Here we handle the wrap-around case. E.g. for a 16k device 2665 we could use a rjmp to jump from address 0x100 to 0x3d00! 2666 In order to make this work properly, we need to fill the 2667 vaiable avr_pc_wrap_around with the appropriate value. 2668 I.e. 0x4000 for a 16k device. */ 2669 { 2670 /* Shrinking the code size makes the gaps larger in the 2671 case of wrap-arounds. So we use a heuristical safety 2672 margin to avoid that during relax the distance gets 2673 again too large for the short jumps. Let's assume 2674 a typical code-size reduction due to relax for a 2675 16k device of 600 bytes. So let's use twice the 2676 typical value as safety margin. */ 2677 int rgap; 2678 int safety_margin; 2679 2680 int assumed_shrink = 600; 2681 if (avr_pc_wrap_around > 0x4000) 2682 assumed_shrink = 900; 2683 2684 safety_margin = 2 * assumed_shrink; 2685 2686 rgap = avr_relative_distance_considering_wrap_around (gap); 2687 2688 if (rgap >= (-4092 + safety_margin) 2689 && rgap <= (4094 - safety_margin)) 2690 distance_short_enough = 1; 2691 } 2692 2693 if (distance_short_enough) 2694 { 2695 unsigned char code_msb; 2696 unsigned char code_lsb; 2697 2698 if (debug_relax) 2699 printf ("shrinking jump/call instruction at address 0x%x" 2700 " in section %s\n\n", 2701 (int) dot, sec->name); 2702 2703 /* Note that we've changed the relocs, section contents, 2704 etc. */ 2705 elf_section_data (sec)->relocs = internal_relocs; 2706 elf_section_data (sec)->this_hdr.contents = contents; 2707 symtab_hdr->contents = (unsigned char *) isymbuf; 2708 2709 /* Get the instruction code for relaxing. */ 2710 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset); 2711 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1); 2712 2713 /* Mask out the relocation bits. */ 2714 code_msb &= 0x94; 2715 code_lsb &= 0x0E; 2716 if (code_msb == 0x94 && code_lsb == 0x0E) 2717 { 2718 /* we are changing call -> rcall . */ 2719 bfd_put_8 (abfd, 0x00, contents + irel->r_offset); 2720 bfd_put_8 (abfd, 0xD0, contents + irel->r_offset + 1); 2721 } 2722 else if (code_msb == 0x94 && code_lsb == 0x0C) 2723 { 2724 /* we are changeing jump -> rjmp. */ 2725 bfd_put_8 (abfd, 0x00, contents + irel->r_offset); 2726 bfd_put_8 (abfd, 0xC0, contents + irel->r_offset + 1); 2727 } 2728 else 2729 abort (); 2730 2731 /* Fix the relocation's type. */ 2732 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), 2733 R_AVR_13_PCREL); 2734 2735 /* We should not modify the ordering if 'shrinkable' is 2736 FALSE. */ 2737 if (!shrinkable) 2738 { 2739 /* Let's insert a nop. */ 2740 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 2); 2741 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 3); 2742 } 2743 else 2744 { 2745 /* Delete two bytes of data. */ 2746 if (!elf32_avr_relax_delete_bytes (abfd, sec, 2747 irel->r_offset + 2, 2, 2748 true)) 2749 goto error_return; 2750 2751 /* That will change things, so, we should relax again. 2752 Note that this is not required, and it may be slow. */ 2753 *again = true; 2754 } 2755 } 2756 } 2757 /* Fall through. */ 2758 2759 default: 2760 { 2761 unsigned char code_msb; 2762 unsigned char code_lsb; 2763 bfd_vma dot; 2764 2765 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1); 2766 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset + 0); 2767 2768 /* Get the address of this instruction. */ 2769 dot = (sec->output_section->vma 2770 + sec->output_offset + irel->r_offset); 2771 2772 /* Here we look for rcall/ret or call/ret sequences that could be 2773 safely replaced by rjmp/ret or jmp/ret. */ 2774 if (((code_msb & 0xf0) == 0xd0) 2775 && avr_replace_call_ret_sequences) 2776 { 2777 /* This insn is a rcall. */ 2778 unsigned char next_insn_msb = 0; 2779 unsigned char next_insn_lsb = 0; 2780 2781 if (irel->r_offset + 3 < sec->size) 2782 { 2783 next_insn_msb = 2784 bfd_get_8 (abfd, contents + irel->r_offset + 3); 2785 next_insn_lsb = 2786 bfd_get_8 (abfd, contents + irel->r_offset + 2); 2787 } 2788 2789 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb)) 2790 { 2791 /* The next insn is a ret. We now convert the rcall insn 2792 into a rjmp instruction. */ 2793 code_msb &= 0xef; 2794 bfd_put_8 (abfd, code_msb, contents + irel->r_offset + 1); 2795 if (debug_relax) 2796 printf ("converted rcall/ret sequence at address 0x%x" 2797 " into rjmp/ret sequence. Section is %s\n\n", 2798 (int) dot, sec->name); 2799 *again = true; 2800 break; 2801 } 2802 } 2803 else if ((0x94 == (code_msb & 0xfe)) 2804 && (0x0e == (code_lsb & 0x0e)) 2805 && avr_replace_call_ret_sequences) 2806 { 2807 /* This insn is a call. */ 2808 unsigned char next_insn_msb = 0; 2809 unsigned char next_insn_lsb = 0; 2810 2811 if (irel->r_offset + 5 < sec->size) 2812 { 2813 next_insn_msb = 2814 bfd_get_8 (abfd, contents + irel->r_offset + 5); 2815 next_insn_lsb = 2816 bfd_get_8 (abfd, contents + irel->r_offset + 4); 2817 } 2818 2819 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb)) 2820 { 2821 /* The next insn is a ret. We now convert the call insn 2822 into a jmp instruction. */ 2823 2824 code_lsb &= 0xfd; 2825 bfd_put_8 (abfd, code_lsb, contents + irel->r_offset); 2826 if (debug_relax) 2827 printf ("converted call/ret sequence at address 0x%x" 2828 " into jmp/ret sequence. Section is %s\n\n", 2829 (int) dot, sec->name); 2830 *again = true; 2831 break; 2832 } 2833 } 2834 else if ((0xc0 == (code_msb & 0xf0)) 2835 || ((0x94 == (code_msb & 0xfe)) 2836 && (0x0c == (code_lsb & 0x0e)))) 2837 { 2838 /* This insn is a rjmp or a jmp. */ 2839 unsigned char next_insn_msb = 0; 2840 unsigned char next_insn_lsb = 0; 2841 int insn_size; 2842 2843 if (0xc0 == (code_msb & 0xf0)) 2844 insn_size = 2; /* rjmp insn */ 2845 else 2846 insn_size = 4; /* jmp insn */ 2847 2848 if (irel->r_offset + insn_size + 1 < sec->size) 2849 { 2850 next_insn_msb = 2851 bfd_get_8 (abfd, contents + irel->r_offset 2852 + insn_size + 1); 2853 next_insn_lsb = 2854 bfd_get_8 (abfd, contents + irel->r_offset 2855 + insn_size); 2856 } 2857 2858 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb)) 2859 { 2860 /* The next insn is a ret. We possibly could delete 2861 this ret. First we need to check for preceding 2862 sbis/sbic/sbrs or cpse "skip" instructions. */ 2863 2864 int there_is_preceding_non_skip_insn = 1; 2865 bfd_vma address_of_ret; 2866 2867 address_of_ret = dot + insn_size; 2868 2869 if (debug_relax && (insn_size == 2)) 2870 printf ("found rjmp / ret sequence at address 0x%x\n", 2871 (int) dot); 2872 if (debug_relax && (insn_size == 4)) 2873 printf ("found jmp / ret sequence at address 0x%x\n", 2874 (int) dot); 2875 2876 /* We have to make sure that there is a preceding insn. */ 2877 if (irel->r_offset >= 2) 2878 { 2879 unsigned char preceding_msb; 2880 unsigned char preceding_lsb; 2881 2882 preceding_msb = 2883 bfd_get_8 (abfd, contents + irel->r_offset - 1); 2884 preceding_lsb = 2885 bfd_get_8 (abfd, contents + irel->r_offset - 2); 2886 2887 /* sbic. */ 2888 if (0x99 == preceding_msb) 2889 there_is_preceding_non_skip_insn = 0; 2890 2891 /* sbis. */ 2892 if (0x9b == preceding_msb) 2893 there_is_preceding_non_skip_insn = 0; 2894 2895 /* sbrc */ 2896 if ((0xfc == (preceding_msb & 0xfe) 2897 && (0x00 == (preceding_lsb & 0x08)))) 2898 there_is_preceding_non_skip_insn = 0; 2899 2900 /* sbrs */ 2901 if ((0xfe == (preceding_msb & 0xfe) 2902 && (0x00 == (preceding_lsb & 0x08)))) 2903 there_is_preceding_non_skip_insn = 0; 2904 2905 /* cpse */ 2906 if (0x10 == (preceding_msb & 0xfc)) 2907 there_is_preceding_non_skip_insn = 0; 2908 2909 if (there_is_preceding_non_skip_insn == 0) 2910 if (debug_relax) 2911 printf ("preceding skip insn prevents deletion of" 2912 " ret insn at Addy 0x%x in section %s\n", 2913 (int) dot + 2, sec->name); 2914 } 2915 else 2916 { 2917 /* There is no previous instruction. */ 2918 there_is_preceding_non_skip_insn = 0; 2919 } 2920 2921 if (there_is_preceding_non_skip_insn) 2922 { 2923 /* We now only have to make sure that there is no 2924 local label defined at the address of the ret 2925 instruction and that there is no local relocation 2926 in this section pointing to the ret. */ 2927 2928 int deleting_ret_is_safe = 1; 2929 unsigned int section_offset_of_ret_insn = 2930 irel->r_offset + insn_size; 2931 Elf_Internal_Sym *isym, *isymend; 2932 unsigned int sec_shndx; 2933 struct bfd_section *isec; 2934 2935 sec_shndx = 2936 _bfd_elf_section_from_bfd_section (abfd, sec); 2937 2938 /* Check for local symbols. */ 2939 isym = (Elf_Internal_Sym *) symtab_hdr->contents; 2940 isymend = isym + symtab_hdr->sh_info; 2941 /* PR 6019: There may not be any local symbols. */ 2942 for (; isym != NULL && isym < isymend; isym++) 2943 { 2944 if (isym->st_value == section_offset_of_ret_insn 2945 && isym->st_shndx == sec_shndx) 2946 { 2947 deleting_ret_is_safe = 0; 2948 if (debug_relax) 2949 printf ("local label prevents deletion of ret " 2950 "insn at address 0x%x\n", 2951 (int) dot + insn_size); 2952 } 2953 } 2954 2955 /* Now check for global symbols. */ 2956 { 2957 int symcount; 2958 struct elf_link_hash_entry **sym_hashes; 2959 struct elf_link_hash_entry **end_hashes; 2960 2961 symcount = (symtab_hdr->sh_size 2962 / sizeof (Elf32_External_Sym) 2963 - symtab_hdr->sh_info); 2964 sym_hashes = elf_sym_hashes (abfd); 2965 end_hashes = sym_hashes + symcount; 2966 for (; sym_hashes < end_hashes; sym_hashes++) 2967 { 2968 struct elf_link_hash_entry *sym_hash = 2969 *sym_hashes; 2970 if ((sym_hash->root.type == bfd_link_hash_defined 2971 || sym_hash->root.type == 2972 bfd_link_hash_defweak) 2973 && sym_hash->root.u.def.section == sec 2974 && sym_hash->root.u.def.value == section_offset_of_ret_insn) 2975 { 2976 deleting_ret_is_safe = 0; 2977 if (debug_relax) 2978 printf ("global label prevents deletion of " 2979 "ret insn at address 0x%x\n", 2980 (int) dot + insn_size); 2981 } 2982 } 2983 } 2984 2985 /* Now we check for relocations pointing to ret. */ 2986 for (isec = abfd->sections; isec && deleting_ret_is_safe; isec = isec->next) 2987 { 2988 Elf_Internal_Rela *rel; 2989 Elf_Internal_Rela *relend; 2990 2991 rel = elf_section_data (isec)->relocs; 2992 if (rel == NULL) 2993 rel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, true); 2994 2995 relend = rel + isec->reloc_count; 2996 2997 for (; rel && rel < relend; rel++) 2998 { 2999 bfd_vma reloc_target = 0; 3000 3001 /* Read this BFD's local symbols if we haven't 3002 done so already. */ 3003 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 3004 { 3005 isymbuf = (Elf_Internal_Sym *) 3006 symtab_hdr->contents; 3007 if (isymbuf == NULL) 3008 isymbuf = bfd_elf_get_elf_syms 3009 (abfd, 3010 symtab_hdr, 3011 symtab_hdr->sh_info, 0, 3012 NULL, NULL, NULL); 3013 if (isymbuf == NULL) 3014 break; 3015 } 3016 3017 /* Get the value of the symbol referred to 3018 by the reloc. */ 3019 if (ELF32_R_SYM (rel->r_info) 3020 < symtab_hdr->sh_info) 3021 { 3022 /* A local symbol. */ 3023 asection *sym_sec; 3024 3025 isym = isymbuf 3026 + ELF32_R_SYM (rel->r_info); 3027 sym_sec = bfd_section_from_elf_index 3028 (abfd, isym->st_shndx); 3029 symval = isym->st_value; 3030 3031 /* If the reloc is absolute, it will not 3032 have a symbol or section associated 3033 with it. */ 3034 3035 if (sym_sec) 3036 { 3037 symval += 3038 sym_sec->output_section->vma 3039 + sym_sec->output_offset; 3040 reloc_target = symval + rel->r_addend; 3041 } 3042 else 3043 { 3044 reloc_target = symval + rel->r_addend; 3045 /* Reference symbol is absolute. */ 3046 } 3047 } 3048 /* else ... reference symbol is extern. */ 3049 3050 if (address_of_ret == reloc_target) 3051 { 3052 deleting_ret_is_safe = 0; 3053 if (debug_relax) 3054 printf ("ret from " 3055 "rjmp/jmp ret sequence at address" 3056 " 0x%x could not be deleted. ret" 3057 " is target of a relocation.\n", 3058 (int) address_of_ret); 3059 break; 3060 } 3061 } 3062 } 3063 3064 if (deleting_ret_is_safe) 3065 { 3066 if (debug_relax) 3067 printf ("unreachable ret instruction " 3068 "at address 0x%x deleted.\n", 3069 (int) dot + insn_size); 3070 3071 /* Delete two bytes of data. */ 3072 if (!elf32_avr_relax_delete_bytes (abfd, sec, 3073 irel->r_offset + insn_size, 2, 3074 true)) 3075 goto error_return; 3076 3077 /* That will change things, so, we should relax 3078 again. Note that this is not required, and it 3079 may be slow. */ 3080 *again = true; 3081 break; 3082 } 3083 } 3084 } 3085 } 3086 break; 3087 } 3088 } 3089 } 3090 3091 if (!*again) 3092 { 3093 /* Look through all the property records in this section to see if 3094 there's any alignment records that can be moved. */ 3095 struct avr_relax_info *relax_info; 3096 3097 relax_info = get_avr_relax_info (sec); 3098 if (relax_info->records.count > 0) 3099 { 3100 unsigned int i; 3101 3102 for (i = 0; i < relax_info->records.count; ++i) 3103 { 3104 switch (relax_info->records.items [i].type) 3105 { 3106 case RECORD_ORG: 3107 case RECORD_ORG_AND_FILL: 3108 break; 3109 case RECORD_ALIGN: 3110 case RECORD_ALIGN_AND_FILL: 3111 { 3112 struct avr_property_record *record; 3113 unsigned long bytes_to_align; 3114 int count = 0; 3115 3116 /* Look for alignment directives that have had enough 3117 bytes deleted before them, such that the directive 3118 can be moved backwards and still maintain the 3119 required alignment. */ 3120 record = &relax_info->records.items [i]; 3121 bytes_to_align 3122 = (unsigned long) (1 << record->data.align.bytes); 3123 while (record->data.align.preceding_deleted >= 3124 bytes_to_align) 3125 { 3126 record->data.align.preceding_deleted 3127 -= bytes_to_align; 3128 count += bytes_to_align; 3129 } 3130 3131 if (count > 0) 3132 { 3133 bfd_vma addr = record->offset; 3134 3135 /* We can delete COUNT bytes and this alignment 3136 directive will still be correctly aligned. 3137 First move the alignment directive, then delete 3138 the bytes. */ 3139 record->offset -= count; 3140 elf32_avr_relax_delete_bytes (abfd, sec, 3141 addr - count, 3142 count, false); 3143 *again = true; 3144 } 3145 } 3146 break; 3147 } 3148 } 3149 } 3150 } 3151 3152 if (contents != NULL 3153 && elf_section_data (sec)->this_hdr.contents != contents) 3154 { 3155 if (! link_info->keep_memory) 3156 free (contents); 3157 else 3158 { 3159 /* Cache the section contents for elf_link_input_bfd. */ 3160 elf_section_data (sec)->this_hdr.contents = contents; 3161 } 3162 } 3163 3164 if (elf_section_data (sec)->relocs != internal_relocs) 3165 free (internal_relocs); 3166 3167 return true; 3168 3169 error_return: 3170 if (symtab_hdr->contents != (unsigned char *) isymbuf) 3171 free (isymbuf); 3172 if (elf_section_data (sec)->this_hdr.contents != contents) 3173 free (contents); 3174 if (elf_section_data (sec)->relocs != internal_relocs) 3175 free (internal_relocs); 3176 3177 return false; 3178 } 3179 3180 /* This is a version of bfd_generic_get_relocated_section_contents 3181 which uses elf32_avr_relocate_section. 3182 3183 For avr it's essentially a cut and paste taken from the H8300 port. 3184 The author of the relaxation support patch for avr had absolutely no 3185 clue what is happening here but found out that this part of the code 3186 seems to be important. */ 3187 3188 static bfd_byte * 3189 elf32_avr_get_relocated_section_contents (bfd *output_bfd, 3190 struct bfd_link_info *link_info, 3191 struct bfd_link_order *link_order, 3192 bfd_byte *data, 3193 bool relocatable, 3194 asymbol **symbols) 3195 { 3196 Elf_Internal_Shdr *symtab_hdr; 3197 asection *input_section = link_order->u.indirect.section; 3198 bfd *input_bfd = input_section->owner; 3199 asection **sections = NULL; 3200 Elf_Internal_Rela *internal_relocs = NULL; 3201 Elf_Internal_Sym *isymbuf = NULL; 3202 3203 /* We only need to handle the case of relaxing, or of having a 3204 particular set of section contents, specially. */ 3205 if (relocatable 3206 || elf_section_data (input_section)->this_hdr.contents == NULL) 3207 return bfd_generic_get_relocated_section_contents (output_bfd, link_info, 3208 link_order, data, 3209 relocatable, 3210 symbols); 3211 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 3212 3213 memcpy (data, elf_section_data (input_section)->this_hdr.contents, 3214 (size_t) input_section->size); 3215 3216 if ((input_section->flags & SEC_RELOC) != 0 3217 && input_section->reloc_count > 0) 3218 { 3219 asection **secpp; 3220 Elf_Internal_Sym *isym, *isymend; 3221 bfd_size_type amt; 3222 3223 internal_relocs = (_bfd_elf_link_read_relocs 3224 (input_bfd, input_section, NULL, NULL, false)); 3225 if (internal_relocs == NULL) 3226 goto error_return; 3227 3228 if (symtab_hdr->sh_info != 0) 3229 { 3230 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 3231 if (isymbuf == NULL) 3232 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 3233 symtab_hdr->sh_info, 0, 3234 NULL, NULL, NULL); 3235 if (isymbuf == NULL) 3236 goto error_return; 3237 } 3238 3239 amt = symtab_hdr->sh_info; 3240 amt *= sizeof (asection *); 3241 sections = bfd_malloc (amt); 3242 if (sections == NULL && amt != 0) 3243 goto error_return; 3244 3245 isymend = isymbuf + symtab_hdr->sh_info; 3246 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp) 3247 { 3248 asection *isec; 3249 3250 if (isym->st_shndx == SHN_UNDEF) 3251 isec = bfd_und_section_ptr; 3252 else if (isym->st_shndx == SHN_ABS) 3253 isec = bfd_abs_section_ptr; 3254 else if (isym->st_shndx == SHN_COMMON) 3255 isec = bfd_com_section_ptr; 3256 else 3257 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); 3258 3259 *secpp = isec; 3260 } 3261 3262 if (! elf32_avr_relocate_section (output_bfd, link_info, input_bfd, 3263 input_section, data, internal_relocs, 3264 isymbuf, sections)) 3265 goto error_return; 3266 3267 free (sections); 3268 if (symtab_hdr->contents != (unsigned char *) isymbuf) 3269 free (isymbuf); 3270 if (elf_section_data (input_section)->relocs != internal_relocs) 3271 free (internal_relocs); 3272 } 3273 3274 return data; 3275 3276 error_return: 3277 free (sections); 3278 if (symtab_hdr->contents != (unsigned char *) isymbuf) 3279 free (isymbuf); 3280 if (elf_section_data (input_section)->relocs != internal_relocs) 3281 free (internal_relocs); 3282 return NULL; 3283 } 3284 3285 3286 /* Determines the hash entry name for a particular reloc. It consists of 3287 the identifier of the symbol section and the added reloc addend and 3288 symbol offset relative to the section the symbol is attached to. */ 3289 3290 static char * 3291 avr_stub_name (const asection *symbol_section, 3292 const bfd_vma symbol_offset, 3293 const Elf_Internal_Rela *rela) 3294 { 3295 char *stub_name; 3296 bfd_size_type len; 3297 3298 len = 8 + 1 + 8 + 1 + 1; 3299 stub_name = bfd_malloc (len); 3300 if (stub_name != NULL) 3301 sprintf (stub_name, "%08x+%08x", 3302 symbol_section->id & 0xffffffff, 3303 (unsigned int) ((rela->r_addend & 0xffffffff) + symbol_offset)); 3304 3305 return stub_name; 3306 } 3307 3308 3309 /* Add a new stub entry to the stub hash. Not all fields of the new 3310 stub entry are initialised. */ 3311 3312 static struct elf32_avr_stub_hash_entry * 3313 avr_add_stub (const char *stub_name, 3314 struct elf32_avr_link_hash_table *htab) 3315 { 3316 struct elf32_avr_stub_hash_entry *hsh; 3317 3318 /* Enter this entry into the linker stub hash table. */ 3319 hsh = avr_stub_hash_lookup (&htab->bstab, stub_name, true, false); 3320 3321 if (hsh == NULL) 3322 { 3323 /* xgettext:c-format */ 3324 _bfd_error_handler (_("cannot create stub entry %s"), stub_name); 3325 return NULL; 3326 } 3327 3328 hsh->stub_offset = 0; 3329 return hsh; 3330 } 3331 3332 /* We assume that there is already space allocated for the stub section 3333 contents and that before building the stubs the section size is 3334 initialized to 0. We assume that within the stub hash table entry, 3335 the absolute position of the jmp target has been written in the 3336 target_value field. We write here the offset of the generated jmp insn 3337 relative to the trampoline section start to the stub_offset entry in 3338 the stub hash table entry. */ 3339 3340 static bool 3341 avr_build_one_stub (struct bfd_hash_entry *bh, void *in_arg) 3342 { 3343 struct elf32_avr_stub_hash_entry *hsh; 3344 struct bfd_link_info *info; 3345 struct elf32_avr_link_hash_table *htab; 3346 bfd *stub_bfd; 3347 bfd_byte *loc; 3348 bfd_vma target; 3349 bfd_vma starget; 3350 3351 /* Basic opcode */ 3352 bfd_vma jmp_insn = 0x0000940c; 3353 3354 /* Massage our args to the form they really have. */ 3355 hsh = avr_stub_hash_entry (bh); 3356 3357 if (!hsh->is_actually_needed) 3358 return true; 3359 3360 info = (struct bfd_link_info *) in_arg; 3361 3362 htab = avr_link_hash_table (info); 3363 if (htab == NULL) 3364 return false; 3365 3366 target = hsh->target_value; 3367 3368 /* Make a note of the offset within the stubs for this entry. */ 3369 hsh->stub_offset = htab->stub_sec->size; 3370 loc = htab->stub_sec->contents + hsh->stub_offset; 3371 3372 stub_bfd = htab->stub_sec->owner; 3373 3374 if (debug_stubs) 3375 printf ("Building one Stub. Address: 0x%x, Offset: 0x%x\n", 3376 (unsigned int) target, 3377 (unsigned int) hsh->stub_offset); 3378 3379 /* We now have to add the information on the jump target to the bare 3380 opcode bits already set in jmp_insn. */ 3381 3382 /* Check for the alignment of the address. */ 3383 if (target & 1) 3384 return false; 3385 3386 starget = target >> 1; 3387 jmp_insn |= ((starget & 0x10000) | ((starget << 3) & 0x1f00000)) >> 16; 3388 bfd_put_16 (stub_bfd, jmp_insn, loc); 3389 bfd_put_16 (stub_bfd, (bfd_vma) starget & 0xffff, loc + 2); 3390 3391 htab->stub_sec->size += 4; 3392 3393 /* Now add the entries in the address mapping table if there is still 3394 space left. */ 3395 { 3396 unsigned int nr; 3397 3398 nr = htab->amt_entry_cnt + 1; 3399 if (nr <= htab->amt_max_entry_cnt) 3400 { 3401 htab->amt_entry_cnt = nr; 3402 3403 htab->amt_stub_offsets[nr - 1] = hsh->stub_offset; 3404 htab->amt_destination_addr[nr - 1] = target; 3405 } 3406 } 3407 3408 return true; 3409 } 3410 3411 static bool 3412 avr_mark_stub_not_to_be_necessary (struct bfd_hash_entry *bh, 3413 void *in_arg ATTRIBUTE_UNUSED) 3414 { 3415 struct elf32_avr_stub_hash_entry *hsh; 3416 3417 hsh = avr_stub_hash_entry (bh); 3418 hsh->is_actually_needed = false; 3419 3420 return true; 3421 } 3422 3423 static bool 3424 avr_size_one_stub (struct bfd_hash_entry *bh, void *in_arg) 3425 { 3426 struct elf32_avr_stub_hash_entry *hsh; 3427 struct elf32_avr_link_hash_table *htab; 3428 int size; 3429 3430 /* Massage our args to the form they really have. */ 3431 hsh = avr_stub_hash_entry (bh); 3432 htab = in_arg; 3433 3434 if (hsh->is_actually_needed) 3435 size = 4; 3436 else 3437 size = 0; 3438 3439 htab->stub_sec->size += size; 3440 return true; 3441 } 3442 3443 void 3444 elf32_avr_setup_params (struct bfd_link_info *info, 3445 bfd *avr_stub_bfd, 3446 asection *avr_stub_section, 3447 bool no_stubs, 3448 bool deb_stubs, 3449 bool deb_relax, 3450 bfd_vma pc_wrap_around, 3451 bool call_ret_replacement) 3452 { 3453 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info); 3454 3455 if (htab == NULL) 3456 return; 3457 htab->stub_sec = avr_stub_section; 3458 htab->stub_bfd = avr_stub_bfd; 3459 htab->no_stubs = no_stubs; 3460 3461 debug_relax = deb_relax; 3462 debug_stubs = deb_stubs; 3463 avr_pc_wrap_around = pc_wrap_around; 3464 avr_replace_call_ret_sequences = call_ret_replacement; 3465 } 3466 3467 3468 /* Set up various things so that we can make a list of input sections 3469 for each output section included in the link. Returns -1 on error, 3470 0 when no stubs will be needed, and 1 on success. It also sets 3471 information on the stubs bfd and the stub section in the info 3472 struct. */ 3473 3474 int 3475 elf32_avr_setup_section_lists (bfd *output_bfd, 3476 struct bfd_link_info *info) 3477 { 3478 bfd *input_bfd; 3479 unsigned int bfd_count; 3480 unsigned int top_id, top_index; 3481 asection *section; 3482 asection **input_list, **list; 3483 size_t amt; 3484 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info); 3485 3486 if (htab == NULL || htab->no_stubs) 3487 return 0; 3488 3489 /* Count the number of input BFDs and find the top input section id. */ 3490 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; 3491 input_bfd != NULL; 3492 input_bfd = input_bfd->link.next) 3493 { 3494 bfd_count += 1; 3495 for (section = input_bfd->sections; 3496 section != NULL; 3497 section = section->next) 3498 if (top_id < section->id) 3499 top_id = section->id; 3500 } 3501 3502 htab->bfd_count = bfd_count; 3503 3504 /* We can't use output_bfd->section_count here to find the top output 3505 section index as some sections may have been removed, and 3506 strip_excluded_output_sections doesn't renumber the indices. */ 3507 for (section = output_bfd->sections, top_index = 0; 3508 section != NULL; 3509 section = section->next) 3510 if (top_index < section->index) 3511 top_index = section->index; 3512 3513 htab->top_index = top_index; 3514 amt = sizeof (asection *) * (top_index + 1); 3515 input_list = bfd_malloc (amt); 3516 htab->input_list = input_list; 3517 if (input_list == NULL) 3518 return -1; 3519 3520 /* For sections we aren't interested in, mark their entries with a 3521 value we can check later. */ 3522 list = input_list + top_index; 3523 do 3524 *list = bfd_abs_section_ptr; 3525 while (list-- != input_list); 3526 3527 for (section = output_bfd->sections; 3528 section != NULL; 3529 section = section->next) 3530 if ((section->flags & SEC_CODE) != 0) 3531 input_list[section->index] = NULL; 3532 3533 return 1; 3534 } 3535 3536 3537 /* Read in all local syms for all input bfds, and create hash entries 3538 for export stubs if we are building a multi-subspace shared lib. 3539 Returns -1 on error, 0 otherwise. */ 3540 3541 static int 3542 get_local_syms (bfd *input_bfd, struct bfd_link_info *info) 3543 { 3544 unsigned int bfd_indx; 3545 Elf_Internal_Sym *local_syms, **all_local_syms; 3546 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info); 3547 size_t amt; 3548 3549 if (htab == NULL) 3550 return -1; 3551 3552 /* We want to read in symbol extension records only once. To do this 3553 we need to read in the local symbols in parallel and save them for 3554 later use; so hold pointers to the local symbols in an array. */ 3555 amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count; 3556 all_local_syms = bfd_zmalloc (amt); 3557 htab->all_local_syms = all_local_syms; 3558 if (all_local_syms == NULL) 3559 return -1; 3560 3561 /* Walk over all the input BFDs, swapping in local symbols. 3562 If we are creating a shared library, create hash entries for the 3563 export stubs. */ 3564 for (bfd_indx = 0; 3565 input_bfd != NULL; 3566 input_bfd = input_bfd->link.next, bfd_indx++) 3567 { 3568 Elf_Internal_Shdr *symtab_hdr; 3569 3570 /* We'll need the symbol table in a second. */ 3571 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 3572 if (symtab_hdr->sh_info == 0) 3573 continue; 3574 3575 /* We need an array of the local symbols attached to the input bfd. */ 3576 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; 3577 if (local_syms == NULL) 3578 { 3579 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 3580 symtab_hdr->sh_info, 0, 3581 NULL, NULL, NULL); 3582 /* Cache them for elf_link_input_bfd. */ 3583 symtab_hdr->contents = (unsigned char *) local_syms; 3584 } 3585 if (local_syms == NULL) 3586 return -1; 3587 3588 all_local_syms[bfd_indx] = local_syms; 3589 } 3590 3591 return 0; 3592 } 3593 3594 #define ADD_DUMMY_STUBS_FOR_DEBUGGING 0 3595 3596 bool 3597 elf32_avr_size_stubs (bfd *output_bfd, 3598 struct bfd_link_info *info, 3599 bool is_prealloc_run) 3600 { 3601 struct elf32_avr_link_hash_table *htab; 3602 int stub_changed = 0; 3603 3604 htab = avr_link_hash_table (info); 3605 if (htab == NULL) 3606 return false; 3607 3608 /* At this point we initialize htab->vector_base 3609 To the start of the text output section. */ 3610 htab->vector_base = htab->stub_sec->output_section->vma; 3611 3612 if (get_local_syms (info->input_bfds, info)) 3613 { 3614 if (htab->all_local_syms) 3615 goto error_ret_free_local; 3616 return false; 3617 } 3618 3619 if (ADD_DUMMY_STUBS_FOR_DEBUGGING) 3620 { 3621 struct elf32_avr_stub_hash_entry *test; 3622 3623 test = avr_add_stub ("Hugo",htab); 3624 test->target_value = 0x123456; 3625 test->stub_offset = 13; 3626 3627 test = avr_add_stub ("Hugo2",htab); 3628 test->target_value = 0x84210; 3629 test->stub_offset = 14; 3630 } 3631 3632 while (1) 3633 { 3634 bfd *input_bfd; 3635 unsigned int bfd_indx; 3636 3637 /* We will have to re-generate the stub hash table each time anything 3638 in memory has changed. */ 3639 3640 bfd_hash_traverse (&htab->bstab, avr_mark_stub_not_to_be_necessary, htab); 3641 for (input_bfd = info->input_bfds, bfd_indx = 0; 3642 input_bfd != NULL; 3643 input_bfd = input_bfd->link.next, bfd_indx++) 3644 { 3645 Elf_Internal_Shdr *symtab_hdr; 3646 asection *section; 3647 Elf_Internal_Sym *local_syms; 3648 3649 /* We'll need the symbol table in a second. */ 3650 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 3651 if (symtab_hdr->sh_info == 0) 3652 continue; 3653 3654 local_syms = htab->all_local_syms[bfd_indx]; 3655 3656 /* Walk over each section attached to the input bfd. */ 3657 for (section = input_bfd->sections; 3658 section != NULL; 3659 section = section->next) 3660 { 3661 Elf_Internal_Rela *internal_relocs, *irelaend, *irela; 3662 3663 /* If there aren't any relocs, then there's nothing more 3664 to do. */ 3665 if ((section->flags & SEC_RELOC) == 0 3666 || section->reloc_count == 0) 3667 continue; 3668 3669 /* If this section is a link-once section that will be 3670 discarded, then don't create any stubs. */ 3671 if (section->output_section == NULL 3672 || section->output_section->owner != output_bfd) 3673 continue; 3674 3675 /* Get the relocs. */ 3676 internal_relocs 3677 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL, 3678 info->keep_memory); 3679 if (internal_relocs == NULL) 3680 goto error_ret_free_local; 3681 3682 /* Now examine each relocation. */ 3683 irela = internal_relocs; 3684 irelaend = irela + section->reloc_count; 3685 for (; irela < irelaend; irela++) 3686 { 3687 unsigned int r_type, r_indx; 3688 struct elf32_avr_stub_hash_entry *hsh; 3689 asection *sym_sec; 3690 bfd_vma sym_value; 3691 bfd_vma destination; 3692 struct elf_link_hash_entry *hh; 3693 char *stub_name; 3694 3695 r_type = ELF32_R_TYPE (irela->r_info); 3696 r_indx = ELF32_R_SYM (irela->r_info); 3697 3698 /* Only look for 16 bit GS relocs. No other reloc will need a 3699 stub. */ 3700 if (!((r_type == R_AVR_16_PM) 3701 || (r_type == R_AVR_LO8_LDI_GS) 3702 || (r_type == R_AVR_HI8_LDI_GS))) 3703 continue; 3704 3705 /* Now determine the call target, its name, value, 3706 section. */ 3707 sym_sec = NULL; 3708 sym_value = 0; 3709 destination = 0; 3710 hh = NULL; 3711 if (r_indx < symtab_hdr->sh_info) 3712 { 3713 /* It's a local symbol. */ 3714 Elf_Internal_Sym *sym; 3715 Elf_Internal_Shdr *hdr; 3716 unsigned int shndx; 3717 3718 sym = local_syms + r_indx; 3719 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) 3720 sym_value = sym->st_value; 3721 shndx = sym->st_shndx; 3722 if (shndx < elf_numsections (input_bfd)) 3723 { 3724 hdr = elf_elfsections (input_bfd)[shndx]; 3725 sym_sec = hdr->bfd_section; 3726 destination = (sym_value + irela->r_addend 3727 + sym_sec->output_offset 3728 + sym_sec->output_section->vma); 3729 } 3730 } 3731 else 3732 { 3733 /* It's an external symbol. */ 3734 int e_indx; 3735 3736 e_indx = r_indx - symtab_hdr->sh_info; 3737 hh = elf_sym_hashes (input_bfd)[e_indx]; 3738 3739 while (hh->root.type == bfd_link_hash_indirect 3740 || hh->root.type == bfd_link_hash_warning) 3741 hh = (struct elf_link_hash_entry *) 3742 (hh->root.u.i.link); 3743 3744 if (hh->root.type == bfd_link_hash_defined 3745 || hh->root.type == bfd_link_hash_defweak) 3746 { 3747 sym_sec = hh->root.u.def.section; 3748 sym_value = hh->root.u.def.value; 3749 if (sym_sec->output_section != NULL) 3750 destination = (sym_value + irela->r_addend 3751 + sym_sec->output_offset 3752 + sym_sec->output_section->vma); 3753 } 3754 else if (hh->root.type == bfd_link_hash_undefweak) 3755 { 3756 if (! bfd_link_pic (info)) 3757 continue; 3758 } 3759 else if (hh->root.type == bfd_link_hash_undefined) 3760 { 3761 if (! (info->unresolved_syms_in_objects == RM_IGNORE 3762 && (ELF_ST_VISIBILITY (hh->other) 3763 == STV_DEFAULT))) 3764 continue; 3765 } 3766 else 3767 { 3768 bfd_set_error (bfd_error_bad_value); 3769 3770 error_ret_free_internal: 3771 if (elf_section_data (section)->relocs == NULL) 3772 free (internal_relocs); 3773 goto error_ret_free_local; 3774 } 3775 } 3776 3777 if (! avr_stub_is_required_for_16_bit_reloc 3778 (destination - htab->vector_base)) 3779 { 3780 if (!is_prealloc_run) 3781 /* We are having a reloc that does't need a stub. */ 3782 continue; 3783 3784 /* We don't right now know if a stub will be needed. 3785 Let's rather be on the safe side. */ 3786 } 3787 3788 /* Get the name of this stub. */ 3789 stub_name = avr_stub_name (sym_sec, sym_value, irela); 3790 3791 if (!stub_name) 3792 goto error_ret_free_internal; 3793 3794 3795 hsh = avr_stub_hash_lookup (&htab->bstab, 3796 stub_name, 3797 false, false); 3798 if (hsh != NULL) 3799 { 3800 /* The proper stub has already been created. Mark it 3801 to be used and write the possibly changed destination 3802 value. */ 3803 hsh->is_actually_needed = true; 3804 hsh->target_value = destination; 3805 free (stub_name); 3806 continue; 3807 } 3808 3809 hsh = avr_add_stub (stub_name, htab); 3810 if (hsh == NULL) 3811 { 3812 free (stub_name); 3813 goto error_ret_free_internal; 3814 } 3815 3816 hsh->is_actually_needed = true; 3817 hsh->target_value = destination; 3818 3819 if (debug_stubs) 3820 printf ("Adding stub with destination 0x%x to the" 3821 " hash table.\n", (unsigned int) destination); 3822 if (debug_stubs) 3823 printf ("(Pre-Alloc run: %i)\n", is_prealloc_run); 3824 3825 stub_changed = true; 3826 } 3827 3828 /* We're done with the internal relocs, free them. */ 3829 if (elf_section_data (section)->relocs == NULL) 3830 free (internal_relocs); 3831 } 3832 } 3833 3834 /* Re-Calculate the number of needed stubs. */ 3835 htab->stub_sec->size = 0; 3836 bfd_hash_traverse (&htab->bstab, avr_size_one_stub, htab); 3837 3838 if (!stub_changed) 3839 break; 3840 3841 stub_changed = false; 3842 } 3843 3844 free (htab->all_local_syms); 3845 return true; 3846 3847 error_ret_free_local: 3848 free (htab->all_local_syms); 3849 return false; 3850 } 3851 3852 3853 /* Build all the stubs associated with the current output file. The 3854 stubs are kept in a hash table attached to the main linker hash 3855 table. We also set up the .plt entries for statically linked PIC 3856 functions here. This function is called via hppaelf_finish in the 3857 linker. */ 3858 3859 bool 3860 elf32_avr_build_stubs (struct bfd_link_info *info) 3861 { 3862 asection *stub_sec; 3863 struct bfd_hash_table *table; 3864 struct elf32_avr_link_hash_table *htab; 3865 bfd_size_type total_size = 0; 3866 3867 htab = avr_link_hash_table (info); 3868 if (htab == NULL) 3869 return false; 3870 3871 /* In case that there were several stub sections: */ 3872 for (stub_sec = htab->stub_bfd->sections; 3873 stub_sec != NULL; 3874 stub_sec = stub_sec->next) 3875 { 3876 bfd_size_type size; 3877 3878 /* Allocate memory to hold the linker stubs. */ 3879 size = stub_sec->size; 3880 total_size += size; 3881 3882 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size); 3883 if (stub_sec->contents == NULL && size != 0) 3884 return false; 3885 stub_sec->size = 0; 3886 } 3887 3888 /* Allocate memory for the adress mapping table. */ 3889 htab->amt_entry_cnt = 0; 3890 htab->amt_max_entry_cnt = total_size / 4; 3891 htab->amt_stub_offsets = bfd_malloc (sizeof (bfd_vma) 3892 * htab->amt_max_entry_cnt); 3893 htab->amt_destination_addr = bfd_malloc (sizeof (bfd_vma) 3894 * htab->amt_max_entry_cnt ); 3895 3896 if (debug_stubs) 3897 printf ("Allocating %i entries in the AMT\n", htab->amt_max_entry_cnt); 3898 3899 /* Build the stubs as directed by the stub hash table. */ 3900 table = &htab->bstab; 3901 bfd_hash_traverse (table, avr_build_one_stub, info); 3902 3903 if (debug_stubs) 3904 printf ("Final Stub section Size: %i\n", (int) htab->stub_sec->size); 3905 3906 return true; 3907 } 3908 3909 /* Callback used by QSORT to order relocations AP and BP. */ 3910 3911 static int 3912 internal_reloc_compare (const void *ap, const void *bp) 3913 { 3914 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; 3915 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; 3916 3917 if (a->r_offset != b->r_offset) 3918 return (a->r_offset - b->r_offset); 3919 3920 /* We don't need to sort on these criteria for correctness, 3921 but enforcing a more strict ordering prevents unstable qsort 3922 from behaving differently with different implementations. 3923 Without the code below we get correct but different results 3924 on Solaris 2.7 and 2.8. We would like to always produce the 3925 same results no matter the host. */ 3926 3927 if (a->r_info != b->r_info) 3928 return (a->r_info - b->r_info); 3929 3930 return (a->r_addend - b->r_addend); 3931 } 3932 3933 /* Return true if ADDRESS is within the vma range of SECTION from ABFD. */ 3934 3935 static bool 3936 avr_is_section_for_address (asection *section, bfd_vma address) 3937 { 3938 bfd_vma vma; 3939 bfd_size_type size; 3940 3941 vma = bfd_section_vma (section); 3942 if (address < vma) 3943 return false; 3944 3945 size = section->size; 3946 if (address >= vma + size) 3947 return false; 3948 3949 return true; 3950 } 3951 3952 /* Data structure used by AVR_FIND_SECTION_FOR_ADDRESS. */ 3953 3954 struct avr_find_section_data 3955 { 3956 /* The address we're looking for. */ 3957 bfd_vma address; 3958 3959 /* The section we've found. */ 3960 asection *section; 3961 }; 3962 3963 /* Helper function to locate the section holding a certain virtual memory 3964 address. This is called via bfd_map_over_sections. The DATA is an 3965 instance of STRUCT AVR_FIND_SECTION_DATA, the address field of which 3966 has been set to the address to search for, and the section field has 3967 been set to NULL. If SECTION from ABFD contains ADDRESS then the 3968 section field in DATA will be set to SECTION. As an optimisation, if 3969 the section field is already non-null then this function does not 3970 perform any checks, and just returns. */ 3971 3972 static void 3973 avr_find_section_for_address (bfd *abfd ATTRIBUTE_UNUSED, 3974 asection *section, void *data) 3975 { 3976 struct avr_find_section_data *fs_data 3977 = (struct avr_find_section_data *) data; 3978 3979 /* Return if already found. */ 3980 if (fs_data->section != NULL) 3981 return; 3982 3983 /* If this section isn't part of the addressable code content, skip it. */ 3984 if ((bfd_section_flags (section) & SEC_ALLOC) == 0 3985 && (bfd_section_flags (section) & SEC_CODE) == 0) 3986 return; 3987 3988 if (avr_is_section_for_address (section, fs_data->address)) 3989 fs_data->section = section; 3990 } 3991 3992 /* Load all of the property records from SEC, a section from ABFD. Return 3993 a STRUCT AVR_PROPERTY_RECORD_LIST containing all the records. The 3994 memory for the returned structure, and all of the records pointed too by 3995 the structure are allocated with a single call to malloc, so, only the 3996 pointer returned needs to be free'd. */ 3997 3998 static struct avr_property_record_list * 3999 avr_elf32_load_records_from_section (bfd *abfd, asection *sec) 4000 { 4001 bfd_byte *contents, *ptr; 4002 bfd_size_type size, mem_size; 4003 bfd_byte version, flags; 4004 uint16_t record_count, i; 4005 struct avr_property_record_list *r_list = NULL; 4006 Elf_Internal_Rela *internal_relocs = NULL, *rel, *rel_end; 4007 struct avr_find_section_data fs_data; 4008 4009 fs_data.section = NULL; 4010 4011 if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 4012 goto load_failed; 4013 ptr = contents; 4014 4015 /* Load the relocations for the '.avr.prop' section if there are any, and 4016 sort them. */ 4017 internal_relocs = (_bfd_elf_link_read_relocs 4018 (abfd, sec, NULL, NULL, false)); 4019 if (internal_relocs) 4020 qsort (internal_relocs, sec->reloc_count, 4021 sizeof (Elf_Internal_Rela), internal_reloc_compare); 4022 4023 /* There is a header at the start of the property record section SEC, the 4024 format of this header is: 4025 uint8_t : version number 4026 uint8_t : flags 4027 uint16_t : record counter 4028 */ 4029 4030 /* Check we have at least got a headers worth of bytes. */ 4031 size = bfd_section_size (sec); 4032 if (size < AVR_PROPERTY_SECTION_HEADER_SIZE) 4033 goto load_failed; 4034 4035 version = *ptr; 4036 ptr++; 4037 flags = *ptr; 4038 ptr++; 4039 record_count = bfd_get_16 (abfd, ptr); 4040 ptr += 2; 4041 BFD_ASSERT (ptr - contents == AVR_PROPERTY_SECTION_HEADER_SIZE); 4042 4043 /* Now allocate space for the list structure, and all of the list 4044 elements in a single block. */ 4045 mem_size = sizeof (struct avr_property_record_list) 4046 + sizeof (struct avr_property_record) * record_count; 4047 r_list = bfd_malloc (mem_size); 4048 if (r_list == NULL) 4049 goto load_failed; 4050 4051 r_list->version = version; 4052 r_list->flags = flags; 4053 r_list->section = sec; 4054 r_list->record_count = record_count; 4055 r_list->records = (struct avr_property_record *) (&r_list [1]); 4056 size -= AVR_PROPERTY_SECTION_HEADER_SIZE; 4057 4058 /* Check that we understand the version number. There is only one 4059 version number right now, anything else is an error. */ 4060 if (r_list->version != AVR_PROPERTY_RECORDS_VERSION) 4061 goto load_failed; 4062 4063 rel = internal_relocs; 4064 rel_end = rel + sec->reloc_count; 4065 for (i = 0; i < record_count; ++i) 4066 { 4067 bfd_vma address; 4068 4069 /* Each entry is a 32-bit address, followed by a single byte type. 4070 After that is the type specific data. We must take care to 4071 ensure that we don't read beyond the end of the section data. */ 4072 if (size < 5) 4073 goto load_failed; 4074 4075 r_list->records [i].section = NULL; 4076 r_list->records [i].offset = 0; 4077 4078 if (rel) 4079 { 4080 /* The offset of the address within the .avr.prop section. */ 4081 size_t offset = ptr - contents; 4082 4083 while (rel < rel_end && rel->r_offset < offset) 4084 ++rel; 4085 4086 if (rel == rel_end) 4087 rel = NULL; 4088 else if (rel->r_offset == offset) 4089 { 4090 /* Find section and section offset. */ 4091 unsigned long r_symndx; 4092 4093 asection * rel_sec; 4094 bfd_vma sec_offset; 4095 4096 r_symndx = ELF32_R_SYM (rel->r_info); 4097 rel_sec = get_elf_r_symndx_section (abfd, r_symndx); 4098 sec_offset = get_elf_r_symndx_offset (abfd, r_symndx) 4099 + rel->r_addend; 4100 4101 r_list->records [i].section = rel_sec; 4102 r_list->records [i].offset = sec_offset; 4103 } 4104 } 4105 4106 address = bfd_get_32 (abfd, ptr); 4107 ptr += 4; 4108 size -= 4; 4109 4110 if (r_list->records [i].section == NULL) 4111 { 4112 /* Try to find section and offset from address. */ 4113 if (fs_data.section != NULL 4114 && !avr_is_section_for_address (fs_data.section, address)) 4115 fs_data.section = NULL; 4116 4117 if (fs_data.section == NULL) 4118 { 4119 fs_data.address = address; 4120 bfd_map_over_sections (abfd, avr_find_section_for_address, 4121 &fs_data); 4122 } 4123 4124 if (fs_data.section == NULL) 4125 { 4126 fprintf (stderr, "Failed to find matching section.\n"); 4127 goto load_failed; 4128 } 4129 4130 r_list->records [i].section = fs_data.section; 4131 r_list->records [i].offset 4132 = address - bfd_section_vma (fs_data.section); 4133 } 4134 4135 r_list->records [i].type = *ptr; 4136 ptr += 1; 4137 size -= 1; 4138 4139 switch (r_list->records [i].type) 4140 { 4141 case RECORD_ORG: 4142 /* Nothing else to load. */ 4143 break; 4144 case RECORD_ORG_AND_FILL: 4145 /* Just a 4-byte fill to load. */ 4146 if (size < 4) 4147 goto load_failed; 4148 r_list->records [i].data.org.fill = bfd_get_32 (abfd, ptr); 4149 ptr += 4; 4150 size -= 4; 4151 break; 4152 case RECORD_ALIGN: 4153 /* Just a 4-byte alignment to load. */ 4154 if (size < 4) 4155 goto load_failed; 4156 r_list->records [i].data.align.bytes = bfd_get_32 (abfd, ptr); 4157 ptr += 4; 4158 size -= 4; 4159 /* Just initialise PRECEDING_DELETED field, this field is 4160 used during linker relaxation. */ 4161 r_list->records [i].data.align.preceding_deleted = 0; 4162 break; 4163 case RECORD_ALIGN_AND_FILL: 4164 /* A 4-byte alignment, and a 4-byte fill to load. */ 4165 if (size < 8) 4166 goto load_failed; 4167 r_list->records [i].data.align.bytes = bfd_get_32 (abfd, ptr); 4168 ptr += 4; 4169 r_list->records [i].data.align.fill = bfd_get_32 (abfd, ptr); 4170 ptr += 4; 4171 size -= 8; 4172 /* Just initialise PRECEDING_DELETED field, this field is 4173 used during linker relaxation. */ 4174 r_list->records [i].data.align.preceding_deleted = 0; 4175 break; 4176 default: 4177 goto load_failed; 4178 } 4179 } 4180 4181 free (contents); 4182 if (elf_section_data (sec)->relocs != internal_relocs) 4183 free (internal_relocs); 4184 return r_list; 4185 4186 load_failed: 4187 if (elf_section_data (sec)->relocs != internal_relocs) 4188 free (internal_relocs); 4189 free (contents); 4190 free (r_list); 4191 return NULL; 4192 } 4193 4194 /* Load all of the property records from ABFD. See 4195 AVR_ELF32_LOAD_RECORDS_FROM_SECTION for details of the return value. */ 4196 4197 struct avr_property_record_list * 4198 avr_elf32_load_property_records (bfd *abfd) 4199 { 4200 asection *sec; 4201 4202 /* Find the '.avr.prop' section and load the contents into memory. */ 4203 sec = bfd_get_section_by_name (abfd, AVR_PROPERTY_RECORD_SECTION_NAME); 4204 if (sec == NULL) 4205 return NULL; 4206 return avr_elf32_load_records_from_section (abfd, sec); 4207 } 4208 4209 const char * 4210 avr_elf32_property_record_name (struct avr_property_record *rec) 4211 { 4212 const char *str; 4213 4214 switch (rec->type) 4215 { 4216 case RECORD_ORG: 4217 str = "ORG"; 4218 break; 4219 case RECORD_ORG_AND_FILL: 4220 str = "ORG+FILL"; 4221 break; 4222 case RECORD_ALIGN: 4223 str = "ALIGN"; 4224 break; 4225 case RECORD_ALIGN_AND_FILL: 4226 str = "ALIGN+FILL"; 4227 break; 4228 default: 4229 str = "unknown"; 4230 } 4231 4232 return str; 4233 } 4234 4235 4236 #define ELF_ARCH bfd_arch_avr 4237 #define ELF_TARGET_ID AVR_ELF_DATA 4238 #define ELF_MACHINE_CODE EM_AVR 4239 #define ELF_MACHINE_ALT1 EM_AVR_OLD 4240 #define ELF_MAXPAGESIZE 1 4241 4242 #define TARGET_LITTLE_SYM avr_elf32_vec 4243 #define TARGET_LITTLE_NAME "elf32-avr" 4244 4245 #define bfd_elf32_bfd_link_hash_table_create elf32_avr_link_hash_table_create 4246 4247 #define elf_info_to_howto avr_info_to_howto_rela 4248 #define elf_info_to_howto_rel NULL 4249 #define elf_backend_relocate_section elf32_avr_relocate_section 4250 #define elf_backend_can_gc_sections 1 4251 #define elf_backend_rela_normal 1 4252 #define elf_backend_final_write_processing \ 4253 bfd_elf_avr_final_write_processing 4254 #define elf_backend_object_p elf32_avr_object_p 4255 4256 #define bfd_elf32_bfd_relax_section elf32_avr_relax_section 4257 #define bfd_elf32_bfd_get_relocated_section_contents \ 4258 elf32_avr_get_relocated_section_contents 4259 #define bfd_elf32_new_section_hook elf_avr_new_section_hook 4260 #define elf_backend_special_sections elf_avr_special_sections 4261 4262 #include "elf32-target.h" 4263