1 /* BFD back-end for Renesas Super-H COFF binaries. 2 Copyright (C) 1993-2018 Free Software Foundation, Inc. 3 Contributed by Cygnus Support. 4 Written by Steve Chamberlain, <sac@cygnus.com>. 5 Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>. 6 7 This file is part of BFD, the Binary File Descriptor library. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 22 MA 02110-1301, USA. */ 23 24 #include "sysdep.h" 25 #include "bfd.h" 26 #include "libiberty.h" 27 #include "libbfd.h" 28 #include "bfdlink.h" 29 #include "coff/sh.h" 30 #include "coff/internal.h" 31 32 #undef bfd_pe_print_pdata 33 34 #ifdef COFF_WITH_PE 35 #include "coff/pe.h" 36 37 #ifndef COFF_IMAGE_WITH_PE 38 static bfd_boolean sh_align_load_span 39 (bfd *, asection *, bfd_byte *, 40 bfd_boolean (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma), 41 void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *); 42 43 #define _bfd_sh_align_load_span sh_align_load_span 44 #endif 45 46 #define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata 47 48 #else 49 50 #define bfd_pe_print_pdata NULL 51 52 #endif /* COFF_WITH_PE. */ 53 54 #include "libcoff.h" 55 56 /* Internal functions. */ 57 58 #ifdef COFF_WITH_PE 59 /* Can't build import tables with 2**4 alignment. */ 60 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2 61 #else 62 /* Default section alignment to 2**4. */ 63 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4 64 #endif 65 66 #ifdef COFF_IMAGE_WITH_PE 67 /* Align PE executables. */ 68 #define COFF_PAGE_SIZE 0x1000 69 #endif 70 71 /* Generate long file names. */ 72 #define COFF_LONG_FILENAMES 73 74 #ifdef COFF_WITH_PE 75 /* Return TRUE if this relocation should 76 appear in the output .reloc section. */ 77 78 static bfd_boolean 79 in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED, 80 reloc_howto_type * howto) 81 { 82 return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE; 83 } 84 #endif 85 86 static bfd_reloc_status_type 87 sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); 88 static bfd_boolean 89 sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *, 90 bfd_byte *, struct internal_reloc *, 91 struct internal_syment *, asection **); 92 static bfd_boolean 93 sh_align_loads (bfd *, asection *, struct internal_reloc *, 94 bfd_byte *, bfd_boolean *); 95 96 /* The supported relocations. There are a lot of relocations defined 97 in coff/internal.h which we do not expect to ever see. */ 98 static reloc_howto_type sh_coff_howtos[] = 99 { 100 EMPTY_HOWTO (0), 101 EMPTY_HOWTO (1), 102 #ifdef COFF_WITH_PE 103 /* Windows CE */ 104 HOWTO (R_SH_IMM32CE, /* type */ 105 0, /* rightshift */ 106 2, /* size (0 = byte, 1 = short, 2 = long) */ 107 32, /* bitsize */ 108 FALSE, /* pc_relative */ 109 0, /* bitpos */ 110 complain_overflow_bitfield, /* complain_on_overflow */ 111 sh_reloc, /* special_function */ 112 "r_imm32ce", /* name */ 113 TRUE, /* partial_inplace */ 114 0xffffffff, /* src_mask */ 115 0xffffffff, /* dst_mask */ 116 FALSE), /* pcrel_offset */ 117 #else 118 EMPTY_HOWTO (2), 119 #endif 120 EMPTY_HOWTO (3), /* R_SH_PCREL8 */ 121 EMPTY_HOWTO (4), /* R_SH_PCREL16 */ 122 EMPTY_HOWTO (5), /* R_SH_HIGH8 */ 123 EMPTY_HOWTO (6), /* R_SH_IMM24 */ 124 EMPTY_HOWTO (7), /* R_SH_LOW16 */ 125 EMPTY_HOWTO (8), 126 EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */ 127 128 HOWTO (R_SH_PCDISP8BY2, /* type */ 129 1, /* rightshift */ 130 1, /* size (0 = byte, 1 = short, 2 = long) */ 131 8, /* bitsize */ 132 TRUE, /* pc_relative */ 133 0, /* bitpos */ 134 complain_overflow_signed, /* complain_on_overflow */ 135 sh_reloc, /* special_function */ 136 "r_pcdisp8by2", /* name */ 137 TRUE, /* partial_inplace */ 138 0xff, /* src_mask */ 139 0xff, /* dst_mask */ 140 TRUE), /* pcrel_offset */ 141 142 EMPTY_HOWTO (11), /* R_SH_PCDISP8 */ 143 144 HOWTO (R_SH_PCDISP, /* type */ 145 1, /* rightshift */ 146 1, /* size (0 = byte, 1 = short, 2 = long) */ 147 12, /* bitsize */ 148 TRUE, /* pc_relative */ 149 0, /* bitpos */ 150 complain_overflow_signed, /* complain_on_overflow */ 151 sh_reloc, /* special_function */ 152 "r_pcdisp12by2", /* name */ 153 TRUE, /* partial_inplace */ 154 0xfff, /* src_mask */ 155 0xfff, /* dst_mask */ 156 TRUE), /* pcrel_offset */ 157 158 EMPTY_HOWTO (13), 159 160 HOWTO (R_SH_IMM32, /* type */ 161 0, /* rightshift */ 162 2, /* size (0 = byte, 1 = short, 2 = long) */ 163 32, /* bitsize */ 164 FALSE, /* pc_relative */ 165 0, /* bitpos */ 166 complain_overflow_bitfield, /* complain_on_overflow */ 167 sh_reloc, /* special_function */ 168 "r_imm32", /* name */ 169 TRUE, /* partial_inplace */ 170 0xffffffff, /* src_mask */ 171 0xffffffff, /* dst_mask */ 172 FALSE), /* pcrel_offset */ 173 174 EMPTY_HOWTO (15), 175 #ifdef COFF_WITH_PE 176 HOWTO (R_SH_IMAGEBASE, /* type */ 177 0, /* rightshift */ 178 2, /* size (0 = byte, 1 = short, 2 = long) */ 179 32, /* bitsize */ 180 FALSE, /* pc_relative */ 181 0, /* bitpos */ 182 complain_overflow_bitfield, /* complain_on_overflow */ 183 sh_reloc, /* special_function */ 184 "rva32", /* name */ 185 TRUE, /* partial_inplace */ 186 0xffffffff, /* src_mask */ 187 0xffffffff, /* dst_mask */ 188 FALSE), /* pcrel_offset */ 189 #else 190 EMPTY_HOWTO (16), /* R_SH_IMM8 */ 191 #endif 192 EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */ 193 EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */ 194 EMPTY_HOWTO (19), /* R_SH_IMM4 */ 195 EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */ 196 EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */ 197 198 HOWTO (R_SH_PCRELIMM8BY2, /* type */ 199 1, /* rightshift */ 200 1, /* size (0 = byte, 1 = short, 2 = long) */ 201 8, /* bitsize */ 202 TRUE, /* pc_relative */ 203 0, /* bitpos */ 204 complain_overflow_unsigned, /* complain_on_overflow */ 205 sh_reloc, /* special_function */ 206 "r_pcrelimm8by2", /* name */ 207 TRUE, /* partial_inplace */ 208 0xff, /* src_mask */ 209 0xff, /* dst_mask */ 210 TRUE), /* pcrel_offset */ 211 212 HOWTO (R_SH_PCRELIMM8BY4, /* type */ 213 2, /* rightshift */ 214 1, /* size (0 = byte, 1 = short, 2 = long) */ 215 8, /* bitsize */ 216 TRUE, /* pc_relative */ 217 0, /* bitpos */ 218 complain_overflow_unsigned, /* complain_on_overflow */ 219 sh_reloc, /* special_function */ 220 "r_pcrelimm8by4", /* name */ 221 TRUE, /* partial_inplace */ 222 0xff, /* src_mask */ 223 0xff, /* dst_mask */ 224 TRUE), /* pcrel_offset */ 225 226 HOWTO (R_SH_IMM16, /* type */ 227 0, /* rightshift */ 228 1, /* size (0 = byte, 1 = short, 2 = long) */ 229 16, /* bitsize */ 230 FALSE, /* pc_relative */ 231 0, /* bitpos */ 232 complain_overflow_bitfield, /* complain_on_overflow */ 233 sh_reloc, /* special_function */ 234 "r_imm16", /* name */ 235 TRUE, /* partial_inplace */ 236 0xffff, /* src_mask */ 237 0xffff, /* dst_mask */ 238 FALSE), /* pcrel_offset */ 239 240 HOWTO (R_SH_SWITCH16, /* type */ 241 0, /* rightshift */ 242 1, /* size (0 = byte, 1 = short, 2 = long) */ 243 16, /* bitsize */ 244 FALSE, /* pc_relative */ 245 0, /* bitpos */ 246 complain_overflow_bitfield, /* complain_on_overflow */ 247 sh_reloc, /* special_function */ 248 "r_switch16", /* name */ 249 TRUE, /* partial_inplace */ 250 0xffff, /* src_mask */ 251 0xffff, /* dst_mask */ 252 FALSE), /* pcrel_offset */ 253 254 HOWTO (R_SH_SWITCH32, /* type */ 255 0, /* rightshift */ 256 2, /* size (0 = byte, 1 = short, 2 = long) */ 257 32, /* bitsize */ 258 FALSE, /* pc_relative */ 259 0, /* bitpos */ 260 complain_overflow_bitfield, /* complain_on_overflow */ 261 sh_reloc, /* special_function */ 262 "r_switch32", /* name */ 263 TRUE, /* partial_inplace */ 264 0xffffffff, /* src_mask */ 265 0xffffffff, /* dst_mask */ 266 FALSE), /* pcrel_offset */ 267 268 HOWTO (R_SH_USES, /* type */ 269 0, /* rightshift */ 270 1, /* size (0 = byte, 1 = short, 2 = long) */ 271 16, /* bitsize */ 272 FALSE, /* pc_relative */ 273 0, /* bitpos */ 274 complain_overflow_bitfield, /* complain_on_overflow */ 275 sh_reloc, /* special_function */ 276 "r_uses", /* name */ 277 TRUE, /* partial_inplace */ 278 0xffff, /* src_mask */ 279 0xffff, /* dst_mask */ 280 FALSE), /* pcrel_offset */ 281 282 HOWTO (R_SH_COUNT, /* type */ 283 0, /* rightshift */ 284 2, /* size (0 = byte, 1 = short, 2 = long) */ 285 32, /* bitsize */ 286 FALSE, /* pc_relative */ 287 0, /* bitpos */ 288 complain_overflow_bitfield, /* complain_on_overflow */ 289 sh_reloc, /* special_function */ 290 "r_count", /* name */ 291 TRUE, /* partial_inplace */ 292 0xffffffff, /* src_mask */ 293 0xffffffff, /* dst_mask */ 294 FALSE), /* pcrel_offset */ 295 296 HOWTO (R_SH_ALIGN, /* type */ 297 0, /* rightshift */ 298 2, /* size (0 = byte, 1 = short, 2 = long) */ 299 32, /* bitsize */ 300 FALSE, /* pc_relative */ 301 0, /* bitpos */ 302 complain_overflow_bitfield, /* complain_on_overflow */ 303 sh_reloc, /* special_function */ 304 "r_align", /* name */ 305 TRUE, /* partial_inplace */ 306 0xffffffff, /* src_mask */ 307 0xffffffff, /* dst_mask */ 308 FALSE), /* pcrel_offset */ 309 310 HOWTO (R_SH_CODE, /* type */ 311 0, /* rightshift */ 312 2, /* size (0 = byte, 1 = short, 2 = long) */ 313 32, /* bitsize */ 314 FALSE, /* pc_relative */ 315 0, /* bitpos */ 316 complain_overflow_bitfield, /* complain_on_overflow */ 317 sh_reloc, /* special_function */ 318 "r_code", /* name */ 319 TRUE, /* partial_inplace */ 320 0xffffffff, /* src_mask */ 321 0xffffffff, /* dst_mask */ 322 FALSE), /* pcrel_offset */ 323 324 HOWTO (R_SH_DATA, /* type */ 325 0, /* rightshift */ 326 2, /* size (0 = byte, 1 = short, 2 = long) */ 327 32, /* bitsize */ 328 FALSE, /* pc_relative */ 329 0, /* bitpos */ 330 complain_overflow_bitfield, /* complain_on_overflow */ 331 sh_reloc, /* special_function */ 332 "r_data", /* name */ 333 TRUE, /* partial_inplace */ 334 0xffffffff, /* src_mask */ 335 0xffffffff, /* dst_mask */ 336 FALSE), /* pcrel_offset */ 337 338 HOWTO (R_SH_LABEL, /* type */ 339 0, /* rightshift */ 340 2, /* size (0 = byte, 1 = short, 2 = long) */ 341 32, /* bitsize */ 342 FALSE, /* pc_relative */ 343 0, /* bitpos */ 344 complain_overflow_bitfield, /* complain_on_overflow */ 345 sh_reloc, /* special_function */ 346 "r_label", /* name */ 347 TRUE, /* partial_inplace */ 348 0xffffffff, /* src_mask */ 349 0xffffffff, /* dst_mask */ 350 FALSE), /* pcrel_offset */ 351 352 HOWTO (R_SH_SWITCH8, /* type */ 353 0, /* rightshift */ 354 0, /* size (0 = byte, 1 = short, 2 = long) */ 355 8, /* bitsize */ 356 FALSE, /* pc_relative */ 357 0, /* bitpos */ 358 complain_overflow_bitfield, /* complain_on_overflow */ 359 sh_reloc, /* special_function */ 360 "r_switch8", /* name */ 361 TRUE, /* partial_inplace */ 362 0xff, /* src_mask */ 363 0xff, /* dst_mask */ 364 FALSE) /* pcrel_offset */ 365 }; 366 367 #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0]) 368 369 /* Check for a bad magic number. */ 370 #define BADMAG(x) SHBADMAG(x) 371 372 /* Customize coffcode.h (this is not currently used). */ 373 #define SH 1 374 375 /* FIXME: This should not be set here. */ 376 #define __A_MAGIC_SET__ 377 378 #ifndef COFF_WITH_PE 379 /* Swap the r_offset field in and out. */ 380 #define SWAP_IN_RELOC_OFFSET H_GET_32 381 #define SWAP_OUT_RELOC_OFFSET H_PUT_32 382 383 /* Swap out extra information in the reloc structure. */ 384 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \ 385 do \ 386 { \ 387 dst->r_stuff[0] = 'S'; \ 388 dst->r_stuff[1] = 'C'; \ 389 } \ 390 while (0) 391 #endif 392 393 /* Get the value of a symbol, when performing a relocation. */ 394 395 static long 396 get_symbol_value (asymbol *symbol) 397 { 398 bfd_vma relocation; 399 400 if (bfd_is_com_section (symbol->section)) 401 relocation = 0; 402 else 403 relocation = (symbol->value + 404 symbol->section->output_section->vma + 405 symbol->section->output_offset); 406 407 return relocation; 408 } 409 410 #ifdef COFF_WITH_PE 411 /* Convert an rtype to howto for the COFF backend linker. 412 Copied from coff-i386. */ 413 #define coff_rtype_to_howto coff_sh_rtype_to_howto 414 415 416 static reloc_howto_type * 417 coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED, 418 asection * sec, 419 struct internal_reloc * rel, 420 struct coff_link_hash_entry * h, 421 struct internal_syment * sym, 422 bfd_vma * addendp) 423 { 424 reloc_howto_type * howto; 425 426 howto = sh_coff_howtos + rel->r_type; 427 428 *addendp = 0; 429 430 if (howto->pc_relative) 431 *addendp += sec->vma; 432 433 if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0) 434 { 435 /* This is a common symbol. The section contents include the 436 size (sym->n_value) as an addend. The relocate_section 437 function will be adding in the final value of the symbol. We 438 need to subtract out the current size in order to get the 439 correct result. */ 440 BFD_ASSERT (h != NULL); 441 } 442 443 if (howto->pc_relative) 444 { 445 *addendp -= 4; 446 447 /* If the symbol is defined, then the generic code is going to 448 add back the symbol value in order to cancel out an 449 adjustment it made to the addend. However, we set the addend 450 to 0 at the start of this function. We need to adjust here, 451 to avoid the adjustment the generic code will make. FIXME: 452 This is getting a bit hackish. */ 453 if (sym != NULL && sym->n_scnum != 0) 454 *addendp -= sym->n_value; 455 } 456 457 if (rel->r_type == R_SH_IMAGEBASE) 458 *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase; 459 460 return howto; 461 } 462 463 #endif /* COFF_WITH_PE */ 464 465 /* This structure is used to map BFD reloc codes to SH PE relocs. */ 466 struct shcoff_reloc_map 467 { 468 bfd_reloc_code_real_type bfd_reloc_val; 469 unsigned char shcoff_reloc_val; 470 }; 471 472 #ifdef COFF_WITH_PE 473 /* An array mapping BFD reloc codes to SH PE relocs. */ 474 static const struct shcoff_reloc_map sh_reloc_map[] = 475 { 476 { BFD_RELOC_32, R_SH_IMM32CE }, 477 { BFD_RELOC_RVA, R_SH_IMAGEBASE }, 478 { BFD_RELOC_CTOR, R_SH_IMM32CE }, 479 }; 480 #else 481 /* An array mapping BFD reloc codes to SH PE relocs. */ 482 static const struct shcoff_reloc_map sh_reloc_map[] = 483 { 484 { BFD_RELOC_32, R_SH_IMM32 }, 485 { BFD_RELOC_CTOR, R_SH_IMM32 }, 486 }; 487 #endif 488 489 /* Given a BFD reloc code, return the howto structure for the 490 corresponding SH PE reloc. */ 491 #define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup 492 #define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup 493 494 static reloc_howto_type * 495 sh_coff_reloc_type_lookup (bfd *abfd, 496 bfd_reloc_code_real_type code) 497 { 498 unsigned int i; 499 500 for (i = ARRAY_SIZE (sh_reloc_map); i--;) 501 if (sh_reloc_map[i].bfd_reloc_val == code) 502 return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val]; 503 504 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), 505 abfd, (unsigned int) code); 506 return NULL; 507 } 508 509 static reloc_howto_type * 510 sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 511 const char *r_name) 512 { 513 unsigned int i; 514 515 for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++) 516 if (sh_coff_howtos[i].name != NULL 517 && strcasecmp (sh_coff_howtos[i].name, r_name) == 0) 518 return &sh_coff_howtos[i]; 519 520 return NULL; 521 } 522 523 /* This macro is used in coffcode.h to get the howto corresponding to 524 an internal reloc. */ 525 526 #define RTYPE2HOWTO(relent, internal) \ 527 ((relent)->howto = \ 528 ((internal)->r_type < SH_COFF_HOWTO_COUNT \ 529 ? &sh_coff_howtos[(internal)->r_type] \ 530 : (reloc_howto_type *) NULL)) 531 532 /* This is the same as the macro in coffcode.h, except that it copies 533 r_offset into reloc_entry->addend for some relocs. */ 534 #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \ 535 { \ 536 coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \ 537 if (ptr && bfd_asymbol_bfd (ptr) != abfd) \ 538 coffsym = (obj_symbols (abfd) \ 539 + (cache_ptr->sym_ptr_ptr - symbols)); \ 540 else if (ptr) \ 541 coffsym = coff_symbol_from (ptr); \ 542 if (coffsym != (coff_symbol_type *) NULL \ 543 && coffsym->native->u.syment.n_scnum == 0) \ 544 cache_ptr->addend = 0; \ 545 else if (ptr && bfd_asymbol_bfd (ptr) == abfd \ 546 && ptr->section != (asection *) NULL) \ 547 cache_ptr->addend = - (ptr->section->vma + ptr->value); \ 548 else \ 549 cache_ptr->addend = 0; \ 550 if ((reloc).r_type == R_SH_SWITCH8 \ 551 || (reloc).r_type == R_SH_SWITCH16 \ 552 || (reloc).r_type == R_SH_SWITCH32 \ 553 || (reloc).r_type == R_SH_USES \ 554 || (reloc).r_type == R_SH_COUNT \ 555 || (reloc).r_type == R_SH_ALIGN) \ 556 cache_ptr->addend = (reloc).r_offset; \ 557 } 558 559 /* This is the howto function for the SH relocations. */ 560 561 static bfd_reloc_status_type 562 sh_reloc (bfd * abfd, 563 arelent * reloc_entry, 564 asymbol * symbol_in, 565 void * data, 566 asection * input_section, 567 bfd * output_bfd, 568 char ** error_message ATTRIBUTE_UNUSED) 569 { 570 unsigned long insn; 571 bfd_vma sym_value; 572 unsigned short r_type; 573 bfd_vma addr = reloc_entry->address; 574 bfd_byte *hit_data = addr + (bfd_byte *) data; 575 576 r_type = reloc_entry->howto->type; 577 578 if (output_bfd != NULL) 579 { 580 /* Partial linking--do nothing. */ 581 reloc_entry->address += input_section->output_offset; 582 return bfd_reloc_ok; 583 } 584 585 /* Almost all relocs have to do with relaxing. If any work must be 586 done for them, it has been done in sh_relax_section. */ 587 if (r_type != R_SH_IMM32 588 #ifdef COFF_WITH_PE 589 && r_type != R_SH_IMM32CE 590 && r_type != R_SH_IMAGEBASE 591 #endif 592 && (r_type != R_SH_PCDISP 593 || (symbol_in->flags & BSF_LOCAL) != 0)) 594 return bfd_reloc_ok; 595 596 if (symbol_in != NULL 597 && bfd_is_und_section (symbol_in->section)) 598 return bfd_reloc_undefined; 599 600 if (addr > input_section->size) 601 return bfd_reloc_outofrange; 602 603 sym_value = get_symbol_value (symbol_in); 604 605 switch (r_type) 606 { 607 case R_SH_IMM32: 608 #ifdef COFF_WITH_PE 609 case R_SH_IMM32CE: 610 #endif 611 insn = bfd_get_32 (abfd, hit_data); 612 insn += sym_value + reloc_entry->addend; 613 bfd_put_32 (abfd, (bfd_vma) insn, hit_data); 614 break; 615 #ifdef COFF_WITH_PE 616 case R_SH_IMAGEBASE: 617 insn = bfd_get_32 (abfd, hit_data); 618 insn += sym_value + reloc_entry->addend; 619 insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; 620 bfd_put_32 (abfd, (bfd_vma) insn, hit_data); 621 break; 622 #endif 623 case R_SH_PCDISP: 624 insn = bfd_get_16 (abfd, hit_data); 625 sym_value += reloc_entry->addend; 626 sym_value -= (input_section->output_section->vma 627 + input_section->output_offset 628 + addr 629 + 4); 630 sym_value += (insn & 0xfff) << 1; 631 if (insn & 0x800) 632 sym_value -= 0x1000; 633 insn = (insn & 0xf000) | (sym_value & 0xfff); 634 bfd_put_16 (abfd, (bfd_vma) insn, hit_data); 635 if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000) 636 return bfd_reloc_overflow; 637 break; 638 default: 639 abort (); 640 break; 641 } 642 643 return bfd_reloc_ok; 644 } 645 646 #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match 647 648 /* We can do relaxing. */ 649 #define coff_bfd_relax_section sh_relax_section 650 651 /* We use the special COFF backend linker. */ 652 #define coff_relocate_section sh_relocate_section 653 654 /* When relaxing, we need to use special code to get the relocated 655 section contents. */ 656 #define coff_bfd_get_relocated_section_contents \ 657 sh_coff_get_relocated_section_contents 658 659 #include "coffcode.h" 660 661 static bfd_boolean 662 sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int); 663 664 /* This function handles relaxing on the SH. 665 666 Function calls on the SH look like this: 667 668 movl L1,r0 669 ... 670 jsr @r0 671 ... 672 L1: 673 .long function 674 675 The compiler and assembler will cooperate to create R_SH_USES 676 relocs on the jsr instructions. The r_offset field of the 677 R_SH_USES reloc is the PC relative offset to the instruction which 678 loads the register (the r_offset field is computed as though it 679 were a jump instruction, so the offset value is actually from four 680 bytes past the instruction). The linker can use this reloc to 681 determine just which function is being called, and thus decide 682 whether it is possible to replace the jsr with a bsr. 683 684 If multiple function calls are all based on a single register load 685 (i.e., the same function is called multiple times), the compiler 686 guarantees that each function call will have an R_SH_USES reloc. 687 Therefore, if the linker is able to convert each R_SH_USES reloc 688 which refers to that address, it can safely eliminate the register 689 load. 690 691 When the assembler creates an R_SH_USES reloc, it examines it to 692 determine which address is being loaded (L1 in the above example). 693 It then counts the number of references to that address, and 694 creates an R_SH_COUNT reloc at that address. The r_offset field of 695 the R_SH_COUNT reloc will be the number of references. If the 696 linker is able to eliminate a register load, it can use the 697 R_SH_COUNT reloc to see whether it can also eliminate the function 698 address. 699 700 SH relaxing also handles another, unrelated, matter. On the SH, if 701 a load or store instruction is not aligned on a four byte boundary, 702 the memory cycle interferes with the 32 bit instruction fetch, 703 causing a one cycle bubble in the pipeline. Therefore, we try to 704 align load and store instructions on four byte boundaries if we 705 can, by swapping them with one of the adjacent instructions. */ 706 707 static bfd_boolean 708 sh_relax_section (bfd *abfd, 709 asection *sec, 710 struct bfd_link_info *link_info, 711 bfd_boolean *again) 712 { 713 struct internal_reloc *internal_relocs; 714 bfd_boolean have_code; 715 struct internal_reloc *irel, *irelend; 716 bfd_byte *contents = NULL; 717 718 *again = FALSE; 719 720 if (bfd_link_relocatable (link_info) 721 || (sec->flags & SEC_RELOC) == 0 722 || sec->reloc_count == 0) 723 return TRUE; 724 725 if (coff_section_data (abfd, sec) == NULL) 726 { 727 bfd_size_type amt = sizeof (struct coff_section_tdata); 728 sec->used_by_bfd = bfd_zalloc (abfd, amt); 729 if (sec->used_by_bfd == NULL) 730 return FALSE; 731 } 732 733 internal_relocs = (_bfd_coff_read_internal_relocs 734 (abfd, sec, link_info->keep_memory, 735 (bfd_byte *) NULL, FALSE, 736 (struct internal_reloc *) NULL)); 737 if (internal_relocs == NULL) 738 goto error_return; 739 740 have_code = FALSE; 741 742 irelend = internal_relocs + sec->reloc_count; 743 for (irel = internal_relocs; irel < irelend; irel++) 744 { 745 bfd_vma laddr, paddr, symval; 746 unsigned short insn; 747 struct internal_reloc *irelfn, *irelscan, *irelcount; 748 struct internal_syment sym; 749 bfd_signed_vma foff; 750 751 if (irel->r_type == R_SH_CODE) 752 have_code = TRUE; 753 754 if (irel->r_type != R_SH_USES) 755 continue; 756 757 /* Get the section contents. */ 758 if (contents == NULL) 759 { 760 if (coff_section_data (abfd, sec)->contents != NULL) 761 contents = coff_section_data (abfd, sec)->contents; 762 else 763 { 764 if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 765 goto error_return; 766 } 767 } 768 769 /* The r_offset field of the R_SH_USES reloc will point us to 770 the register load. The 4 is because the r_offset field is 771 computed as though it were a jump offset, which are based 772 from 4 bytes after the jump instruction. */ 773 laddr = irel->r_vaddr - sec->vma + 4; 774 /* Careful to sign extend the 32-bit offset. */ 775 laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000; 776 if (laddr >= sec->size) 777 { 778 /* xgettext: c-format */ 779 _bfd_error_handler 780 (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES offset"), 781 abfd, (uint64_t) irel->r_vaddr); 782 continue; 783 } 784 insn = bfd_get_16 (abfd, contents + laddr); 785 786 /* If the instruction is not mov.l NN,rN, we don't know what to do. */ 787 if ((insn & 0xf000) != 0xd000) 788 { 789 _bfd_error_handler 790 /* xgettext: c-format */ 791 (_("%pB: %#" PRIx64 ": warning: R_SH_USES points to unrecognized insn %#x"), 792 abfd, (uint64_t) irel->r_vaddr, insn); 793 continue; 794 } 795 796 /* Get the address from which the register is being loaded. The 797 displacement in the mov.l instruction is quadrupled. It is a 798 displacement from four bytes after the movl instruction, but, 799 before adding in the PC address, two least significant bits 800 of the PC are cleared. We assume that the section is aligned 801 on a four byte boundary. */ 802 paddr = insn & 0xff; 803 paddr *= 4; 804 paddr += (laddr + 4) &~ (bfd_vma) 3; 805 if (paddr >= sec->size) 806 { 807 _bfd_error_handler 808 /* xgettext: c-format */ 809 (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES load offset"), 810 abfd, (uint64_t) irel->r_vaddr); 811 continue; 812 } 813 814 /* Get the reloc for the address from which the register is 815 being loaded. This reloc will tell us which function is 816 actually being called. */ 817 paddr += sec->vma; 818 for (irelfn = internal_relocs; irelfn < irelend; irelfn++) 819 if (irelfn->r_vaddr == paddr 820 #ifdef COFF_WITH_PE 821 && (irelfn->r_type == R_SH_IMM32 822 || irelfn->r_type == R_SH_IMM32CE 823 || irelfn->r_type == R_SH_IMAGEBASE) 824 825 #else 826 && irelfn->r_type == R_SH_IMM32 827 #endif 828 ) 829 break; 830 if (irelfn >= irelend) 831 { 832 _bfd_error_handler 833 /* xgettext: c-format */ 834 (_("%pB: %#" PRIx64 ": warning: could not find expected reloc"), 835 abfd, (uint64_t) paddr); 836 continue; 837 } 838 839 /* Get the value of the symbol referred to by the reloc. */ 840 if (! _bfd_coff_get_external_symbols (abfd)) 841 goto error_return; 842 bfd_coff_swap_sym_in (abfd, 843 ((bfd_byte *) obj_coff_external_syms (abfd) 844 + (irelfn->r_symndx 845 * bfd_coff_symesz (abfd))), 846 &sym); 847 if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index) 848 { 849 _bfd_error_handler 850 /* xgettext: c-format */ 851 (_("%pB: %#" PRIx64 ": warning: symbol in unexpected section"), 852 abfd, (uint64_t) paddr); 853 continue; 854 } 855 856 if (sym.n_sclass != C_EXT) 857 { 858 symval = (sym.n_value 859 - sec->vma 860 + sec->output_section->vma 861 + sec->output_offset); 862 } 863 else 864 { 865 struct coff_link_hash_entry *h; 866 867 h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx]; 868 BFD_ASSERT (h != NULL); 869 if (h->root.type != bfd_link_hash_defined 870 && h->root.type != bfd_link_hash_defweak) 871 { 872 /* This appears to be a reference to an undefined 873 symbol. Just ignore it--it will be caught by the 874 regular reloc processing. */ 875 continue; 876 } 877 878 symval = (h->root.u.def.value 879 + h->root.u.def.section->output_section->vma 880 + h->root.u.def.section->output_offset); 881 } 882 883 symval += bfd_get_32 (abfd, contents + paddr - sec->vma); 884 885 /* See if this function call can be shortened. */ 886 foff = (symval 887 - (irel->r_vaddr 888 - sec->vma 889 + sec->output_section->vma 890 + sec->output_offset 891 + 4)); 892 if (foff < -0x1000 || foff >= 0x1000) 893 { 894 /* After all that work, we can't shorten this function call. */ 895 continue; 896 } 897 898 /* Shorten the function call. */ 899 900 /* For simplicity of coding, we are going to modify the section 901 contents, the section relocs, and the BFD symbol table. We 902 must tell the rest of the code not to free up this 903 information. It would be possible to instead create a table 904 of changes which have to be made, as is done in coff-mips.c; 905 that would be more work, but would require less memory when 906 the linker is run. */ 907 908 coff_section_data (abfd, sec)->relocs = internal_relocs; 909 coff_section_data (abfd, sec)->keep_relocs = TRUE; 910 911 coff_section_data (abfd, sec)->contents = contents; 912 coff_section_data (abfd, sec)->keep_contents = TRUE; 913 914 obj_coff_keep_syms (abfd) = TRUE; 915 916 /* Replace the jsr with a bsr. */ 917 918 /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and 919 replace the jsr with a bsr. */ 920 irel->r_type = R_SH_PCDISP; 921 irel->r_symndx = irelfn->r_symndx; 922 if (sym.n_sclass != C_EXT) 923 { 924 /* If this needs to be changed because of future relaxing, 925 it will be handled here like other internal PCDISP 926 relocs. */ 927 bfd_put_16 (abfd, 928 (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff), 929 contents + irel->r_vaddr - sec->vma); 930 } 931 else 932 { 933 /* We can't fully resolve this yet, because the external 934 symbol value may be changed by future relaxing. We let 935 the final link phase handle it. */ 936 bfd_put_16 (abfd, (bfd_vma) 0xb000, 937 contents + irel->r_vaddr - sec->vma); 938 } 939 940 /* See if there is another R_SH_USES reloc referring to the same 941 register load. */ 942 for (irelscan = internal_relocs; irelscan < irelend; irelscan++) 943 if (irelscan->r_type == R_SH_USES 944 && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset) 945 break; 946 if (irelscan < irelend) 947 { 948 /* Some other function call depends upon this register load, 949 and we have not yet converted that function call. 950 Indeed, we may never be able to convert it. There is 951 nothing else we can do at this point. */ 952 continue; 953 } 954 955 /* Look for a R_SH_COUNT reloc on the location where the 956 function address is stored. Do this before deleting any 957 bytes, to avoid confusion about the address. */ 958 for (irelcount = internal_relocs; irelcount < irelend; irelcount++) 959 if (irelcount->r_vaddr == paddr 960 && irelcount->r_type == R_SH_COUNT) 961 break; 962 963 /* Delete the register load. */ 964 if (! sh_relax_delete_bytes (abfd, sec, laddr, 2)) 965 goto error_return; 966 967 /* That will change things, so, just in case it permits some 968 other function call to come within range, we should relax 969 again. Note that this is not required, and it may be slow. */ 970 *again = TRUE; 971 972 /* Now check whether we got a COUNT reloc. */ 973 if (irelcount >= irelend) 974 { 975 _bfd_error_handler 976 /* xgettext: c-format */ 977 (_("%pB: %#" PRIx64 ": warning: could not find expected COUNT reloc"), 978 abfd, (uint64_t) paddr); 979 continue; 980 } 981 982 /* The number of uses is stored in the r_offset field. We've 983 just deleted one. */ 984 if (irelcount->r_offset == 0) 985 { 986 /* xgettext: c-format */ 987 _bfd_error_handler (_("%pB: %#" PRIx64 ": warning: bad count"), 988 abfd, (uint64_t) paddr); 989 continue; 990 } 991 992 --irelcount->r_offset; 993 994 /* If there are no more uses, we can delete the address. Reload 995 the address from irelfn, in case it was changed by the 996 previous call to sh_relax_delete_bytes. */ 997 if (irelcount->r_offset == 0) 998 { 999 if (! sh_relax_delete_bytes (abfd, sec, 1000 irelfn->r_vaddr - sec->vma, 4)) 1001 goto error_return; 1002 } 1003 1004 /* We've done all we can with that function call. */ 1005 } 1006 1007 /* Look for load and store instructions that we can align on four 1008 byte boundaries. */ 1009 if (have_code) 1010 { 1011 bfd_boolean swapped; 1012 1013 /* Get the section contents. */ 1014 if (contents == NULL) 1015 { 1016 if (coff_section_data (abfd, sec)->contents != NULL) 1017 contents = coff_section_data (abfd, sec)->contents; 1018 else 1019 { 1020 if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 1021 goto error_return; 1022 } 1023 } 1024 1025 if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped)) 1026 goto error_return; 1027 1028 if (swapped) 1029 { 1030 coff_section_data (abfd, sec)->relocs = internal_relocs; 1031 coff_section_data (abfd, sec)->keep_relocs = TRUE; 1032 1033 coff_section_data (abfd, sec)->contents = contents; 1034 coff_section_data (abfd, sec)->keep_contents = TRUE; 1035 1036 obj_coff_keep_syms (abfd) = TRUE; 1037 } 1038 } 1039 1040 if (internal_relocs != NULL 1041 && internal_relocs != coff_section_data (abfd, sec)->relocs) 1042 { 1043 if (! link_info->keep_memory) 1044 free (internal_relocs); 1045 else 1046 coff_section_data (abfd, sec)->relocs = internal_relocs; 1047 } 1048 1049 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents) 1050 { 1051 if (! link_info->keep_memory) 1052 free (contents); 1053 else 1054 /* Cache the section contents for coff_link_input_bfd. */ 1055 coff_section_data (abfd, sec)->contents = contents; 1056 } 1057 1058 return TRUE; 1059 1060 error_return: 1061 if (internal_relocs != NULL 1062 && internal_relocs != coff_section_data (abfd, sec)->relocs) 1063 free (internal_relocs); 1064 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents) 1065 free (contents); 1066 return FALSE; 1067 } 1068 1069 /* Delete some bytes from a section while relaxing. */ 1070 1071 static bfd_boolean 1072 sh_relax_delete_bytes (bfd *abfd, 1073 asection *sec, 1074 bfd_vma addr, 1075 int count) 1076 { 1077 bfd_byte *contents; 1078 struct internal_reloc *irel, *irelend; 1079 struct internal_reloc *irelalign; 1080 bfd_vma toaddr; 1081 bfd_byte *esym, *esymend; 1082 bfd_size_type symesz; 1083 struct coff_link_hash_entry **sym_hash; 1084 asection *o; 1085 1086 contents = coff_section_data (abfd, sec)->contents; 1087 1088 /* The deletion must stop at the next ALIGN reloc for an alignment 1089 power larger than the number of bytes we are deleting. */ 1090 1091 irelalign = NULL; 1092 toaddr = sec->size; 1093 1094 irel = coff_section_data (abfd, sec)->relocs; 1095 irelend = irel + sec->reloc_count; 1096 for (; irel < irelend; irel++) 1097 { 1098 if (irel->r_type == R_SH_ALIGN 1099 && irel->r_vaddr - sec->vma > addr 1100 && count < (1 << irel->r_offset)) 1101 { 1102 irelalign = irel; 1103 toaddr = irel->r_vaddr - sec->vma; 1104 break; 1105 } 1106 } 1107 1108 /* Actually delete the bytes. */ 1109 memmove (contents + addr, contents + addr + count, 1110 (size_t) (toaddr - addr - count)); 1111 if (irelalign == NULL) 1112 sec->size -= count; 1113 else 1114 { 1115 int i; 1116 1117 #define NOP_OPCODE (0x0009) 1118 1119 BFD_ASSERT ((count & 1) == 0); 1120 for (i = 0; i < count; i += 2) 1121 bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i); 1122 } 1123 1124 /* Adjust all the relocs. */ 1125 for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++) 1126 { 1127 bfd_vma nraddr, stop; 1128 bfd_vma start = 0; 1129 int insn = 0; 1130 struct internal_syment sym; 1131 int off, adjust, oinsn; 1132 bfd_signed_vma voff = 0; 1133 bfd_boolean overflow; 1134 1135 /* Get the new reloc address. */ 1136 nraddr = irel->r_vaddr - sec->vma; 1137 if ((irel->r_vaddr - sec->vma > addr 1138 && irel->r_vaddr - sec->vma < toaddr) 1139 || (irel->r_type == R_SH_ALIGN 1140 && irel->r_vaddr - sec->vma == toaddr)) 1141 nraddr -= count; 1142 1143 /* See if this reloc was for the bytes we have deleted, in which 1144 case we no longer care about it. Don't delete relocs which 1145 represent addresses, though. */ 1146 if (irel->r_vaddr - sec->vma >= addr 1147 && irel->r_vaddr - sec->vma < addr + count 1148 && irel->r_type != R_SH_ALIGN 1149 && irel->r_type != R_SH_CODE 1150 && irel->r_type != R_SH_DATA 1151 && irel->r_type != R_SH_LABEL) 1152 irel->r_type = R_SH_UNUSED; 1153 1154 /* If this is a PC relative reloc, see if the range it covers 1155 includes the bytes we have deleted. */ 1156 switch (irel->r_type) 1157 { 1158 default: 1159 break; 1160 1161 case R_SH_PCDISP8BY2: 1162 case R_SH_PCDISP: 1163 case R_SH_PCRELIMM8BY2: 1164 case R_SH_PCRELIMM8BY4: 1165 start = irel->r_vaddr - sec->vma; 1166 insn = bfd_get_16 (abfd, contents + nraddr); 1167 break; 1168 } 1169 1170 switch (irel->r_type) 1171 { 1172 default: 1173 start = stop = addr; 1174 break; 1175 1176 case R_SH_IMM32: 1177 #ifdef COFF_WITH_PE 1178 case R_SH_IMM32CE: 1179 case R_SH_IMAGEBASE: 1180 #endif 1181 /* If this reloc is against a symbol defined in this 1182 section, and the symbol will not be adjusted below, we 1183 must check the addend to see it will put the value in 1184 range to be adjusted, and hence must be changed. */ 1185 bfd_coff_swap_sym_in (abfd, 1186 ((bfd_byte *) obj_coff_external_syms (abfd) 1187 + (irel->r_symndx 1188 * bfd_coff_symesz (abfd))), 1189 &sym); 1190 if (sym.n_sclass != C_EXT 1191 && sym.n_scnum == sec->target_index 1192 && ((bfd_vma) sym.n_value <= addr 1193 || (bfd_vma) sym.n_value >= toaddr)) 1194 { 1195 bfd_vma val; 1196 1197 val = bfd_get_32 (abfd, contents + nraddr); 1198 val += sym.n_value; 1199 if (val > addr && val < toaddr) 1200 bfd_put_32 (abfd, val - count, contents + nraddr); 1201 } 1202 start = stop = addr; 1203 break; 1204 1205 case R_SH_PCDISP8BY2: 1206 off = insn & 0xff; 1207 if (off & 0x80) 1208 off -= 0x100; 1209 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); 1210 break; 1211 1212 case R_SH_PCDISP: 1213 bfd_coff_swap_sym_in (abfd, 1214 ((bfd_byte *) obj_coff_external_syms (abfd) 1215 + (irel->r_symndx 1216 * bfd_coff_symesz (abfd))), 1217 &sym); 1218 if (sym.n_sclass == C_EXT) 1219 start = stop = addr; 1220 else 1221 { 1222 off = insn & 0xfff; 1223 if (off & 0x800) 1224 off -= 0x1000; 1225 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); 1226 } 1227 break; 1228 1229 case R_SH_PCRELIMM8BY2: 1230 off = insn & 0xff; 1231 stop = start + 4 + off * 2; 1232 break; 1233 1234 case R_SH_PCRELIMM8BY4: 1235 off = insn & 0xff; 1236 stop = (start &~ (bfd_vma) 3) + 4 + off * 4; 1237 break; 1238 1239 case R_SH_SWITCH8: 1240 case R_SH_SWITCH16: 1241 case R_SH_SWITCH32: 1242 /* These relocs types represent 1243 .word L2-L1 1244 The r_offset field holds the difference between the reloc 1245 address and L1. That is the start of the reloc, and 1246 adding in the contents gives us the top. We must adjust 1247 both the r_offset field and the section contents. */ 1248 1249 start = irel->r_vaddr - sec->vma; 1250 stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset); 1251 1252 if (start > addr 1253 && start < toaddr 1254 && (stop <= addr || stop >= toaddr)) 1255 irel->r_offset += count; 1256 else if (stop > addr 1257 && stop < toaddr 1258 && (start <= addr || start >= toaddr)) 1259 irel->r_offset -= count; 1260 1261 start = stop; 1262 1263 if (irel->r_type == R_SH_SWITCH16) 1264 voff = bfd_get_signed_16 (abfd, contents + nraddr); 1265 else if (irel->r_type == R_SH_SWITCH8) 1266 voff = bfd_get_8 (abfd, contents + nraddr); 1267 else 1268 voff = bfd_get_signed_32 (abfd, contents + nraddr); 1269 stop = (bfd_vma) ((bfd_signed_vma) start + voff); 1270 1271 break; 1272 1273 case R_SH_USES: 1274 start = irel->r_vaddr - sec->vma; 1275 stop = (bfd_vma) ((bfd_signed_vma) start 1276 + (long) irel->r_offset 1277 + 4); 1278 break; 1279 } 1280 1281 if (start > addr 1282 && start < toaddr 1283 && (stop <= addr || stop >= toaddr)) 1284 adjust = count; 1285 else if (stop > addr 1286 && stop < toaddr 1287 && (start <= addr || start >= toaddr)) 1288 adjust = - count; 1289 else 1290 adjust = 0; 1291 1292 if (adjust != 0) 1293 { 1294 oinsn = insn; 1295 overflow = FALSE; 1296 switch (irel->r_type) 1297 { 1298 default: 1299 abort (); 1300 break; 1301 1302 case R_SH_PCDISP8BY2: 1303 case R_SH_PCRELIMM8BY2: 1304 insn += adjust / 2; 1305 if ((oinsn & 0xff00) != (insn & 0xff00)) 1306 overflow = TRUE; 1307 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); 1308 break; 1309 1310 case R_SH_PCDISP: 1311 insn += adjust / 2; 1312 if ((oinsn & 0xf000) != (insn & 0xf000)) 1313 overflow = TRUE; 1314 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); 1315 break; 1316 1317 case R_SH_PCRELIMM8BY4: 1318 BFD_ASSERT (adjust == count || count >= 4); 1319 if (count >= 4) 1320 insn += adjust / 4; 1321 else 1322 { 1323 if ((irel->r_vaddr & 3) == 0) 1324 ++insn; 1325 } 1326 if ((oinsn & 0xff00) != (insn & 0xff00)) 1327 overflow = TRUE; 1328 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); 1329 break; 1330 1331 case R_SH_SWITCH8: 1332 voff += adjust; 1333 if (voff < 0 || voff >= 0xff) 1334 overflow = TRUE; 1335 bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr); 1336 break; 1337 1338 case R_SH_SWITCH16: 1339 voff += adjust; 1340 if (voff < - 0x8000 || voff >= 0x8000) 1341 overflow = TRUE; 1342 bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr); 1343 break; 1344 1345 case R_SH_SWITCH32: 1346 voff += adjust; 1347 bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr); 1348 break; 1349 1350 case R_SH_USES: 1351 irel->r_offset += adjust; 1352 break; 1353 } 1354 1355 if (overflow) 1356 { 1357 _bfd_error_handler 1358 /* xgettext: c-format */ 1359 (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"), 1360 abfd, (uint64_t) irel->r_vaddr); 1361 bfd_set_error (bfd_error_bad_value); 1362 return FALSE; 1363 } 1364 } 1365 1366 irel->r_vaddr = nraddr + sec->vma; 1367 } 1368 1369 /* Look through all the other sections. If there contain any IMM32 1370 relocs against internal symbols which we are not going to adjust 1371 below, we may need to adjust the addends. */ 1372 for (o = abfd->sections; o != NULL; o = o->next) 1373 { 1374 struct internal_reloc *internal_relocs; 1375 struct internal_reloc *irelscan, *irelscanend; 1376 bfd_byte *ocontents; 1377 1378 if (o == sec 1379 || (o->flags & SEC_RELOC) == 0 1380 || o->reloc_count == 0) 1381 continue; 1382 1383 /* We always cache the relocs. Perhaps, if info->keep_memory is 1384 FALSE, we should free them, if we are permitted to, when we 1385 leave sh_coff_relax_section. */ 1386 internal_relocs = (_bfd_coff_read_internal_relocs 1387 (abfd, o, TRUE, (bfd_byte *) NULL, FALSE, 1388 (struct internal_reloc *) NULL)); 1389 if (internal_relocs == NULL) 1390 return FALSE; 1391 1392 ocontents = NULL; 1393 irelscanend = internal_relocs + o->reloc_count; 1394 for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++) 1395 { 1396 struct internal_syment sym; 1397 1398 #ifdef COFF_WITH_PE 1399 if (irelscan->r_type != R_SH_IMM32 1400 && irelscan->r_type != R_SH_IMAGEBASE 1401 && irelscan->r_type != R_SH_IMM32CE) 1402 #else 1403 if (irelscan->r_type != R_SH_IMM32) 1404 #endif 1405 continue; 1406 1407 bfd_coff_swap_sym_in (abfd, 1408 ((bfd_byte *) obj_coff_external_syms (abfd) 1409 + (irelscan->r_symndx 1410 * bfd_coff_symesz (abfd))), 1411 &sym); 1412 if (sym.n_sclass != C_EXT 1413 && sym.n_scnum == sec->target_index 1414 && ((bfd_vma) sym.n_value <= addr 1415 || (bfd_vma) sym.n_value >= toaddr)) 1416 { 1417 bfd_vma val; 1418 1419 if (ocontents == NULL) 1420 { 1421 if (coff_section_data (abfd, o)->contents != NULL) 1422 ocontents = coff_section_data (abfd, o)->contents; 1423 else 1424 { 1425 if (!bfd_malloc_and_get_section (abfd, o, &ocontents)) 1426 return FALSE; 1427 /* We always cache the section contents. 1428 Perhaps, if info->keep_memory is FALSE, we 1429 should free them, if we are permitted to, 1430 when we leave sh_coff_relax_section. */ 1431 coff_section_data (abfd, o)->contents = ocontents; 1432 } 1433 } 1434 1435 val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma); 1436 val += sym.n_value; 1437 if (val > addr && val < toaddr) 1438 bfd_put_32 (abfd, val - count, 1439 ocontents + irelscan->r_vaddr - o->vma); 1440 1441 coff_section_data (abfd, o)->keep_contents = TRUE; 1442 } 1443 } 1444 } 1445 1446 /* Adjusting the internal symbols will not work if something has 1447 already retrieved the generic symbols. It would be possible to 1448 make this work by adjusting the generic symbols at the same time. 1449 However, this case should not arise in normal usage. */ 1450 if (obj_symbols (abfd) != NULL 1451 || obj_raw_syments (abfd) != NULL) 1452 { 1453 _bfd_error_handler 1454 (_("%pB: fatal: generic symbols retrieved before relaxing"), abfd); 1455 bfd_set_error (bfd_error_invalid_operation); 1456 return FALSE; 1457 } 1458 1459 /* Adjust all the symbols. */ 1460 sym_hash = obj_coff_sym_hashes (abfd); 1461 symesz = bfd_coff_symesz (abfd); 1462 esym = (bfd_byte *) obj_coff_external_syms (abfd); 1463 esymend = esym + obj_raw_syment_count (abfd) * symesz; 1464 while (esym < esymend) 1465 { 1466 struct internal_syment isym; 1467 1468 bfd_coff_swap_sym_in (abfd, esym, &isym); 1469 1470 if (isym.n_scnum == sec->target_index 1471 && (bfd_vma) isym.n_value > addr 1472 && (bfd_vma) isym.n_value < toaddr) 1473 { 1474 isym.n_value -= count; 1475 1476 bfd_coff_swap_sym_out (abfd, &isym, esym); 1477 1478 if (*sym_hash != NULL) 1479 { 1480 BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined 1481 || (*sym_hash)->root.type == bfd_link_hash_defweak); 1482 BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr 1483 && (*sym_hash)->root.u.def.value < toaddr); 1484 (*sym_hash)->root.u.def.value -= count; 1485 } 1486 } 1487 1488 esym += (isym.n_numaux + 1) * symesz; 1489 sym_hash += isym.n_numaux + 1; 1490 } 1491 1492 /* See if we can move the ALIGN reloc forward. We have adjusted 1493 r_vaddr for it already. */ 1494 if (irelalign != NULL) 1495 { 1496 bfd_vma alignto, alignaddr; 1497 1498 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset); 1499 alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma, 1500 1 << irelalign->r_offset); 1501 if (alignto != alignaddr) 1502 { 1503 /* Tail recursion. */ 1504 return sh_relax_delete_bytes (abfd, sec, alignaddr, 1505 (int) (alignto - alignaddr)); 1506 } 1507 } 1508 1509 return TRUE; 1510 } 1511 1512 /* This is yet another version of the SH opcode table, used to rapidly 1513 get information about a particular instruction. */ 1514 1515 /* The opcode map is represented by an array of these structures. The 1516 array is indexed by the high order four bits in the instruction. */ 1517 1518 struct sh_major_opcode 1519 { 1520 /* A pointer to the instruction list. This is an array which 1521 contains all the instructions with this major opcode. */ 1522 const struct sh_minor_opcode *minor_opcodes; 1523 /* The number of elements in minor_opcodes. */ 1524 unsigned short count; 1525 }; 1526 1527 /* This structure holds information for a set of SH opcodes. The 1528 instruction code is anded with the mask value, and the resulting 1529 value is used to search the order opcode list. */ 1530 1531 struct sh_minor_opcode 1532 { 1533 /* The sorted opcode list. */ 1534 const struct sh_opcode *opcodes; 1535 /* The number of elements in opcodes. */ 1536 unsigned short count; 1537 /* The mask value to use when searching the opcode list. */ 1538 unsigned short mask; 1539 }; 1540 1541 /* This structure holds information for an SH instruction. An array 1542 of these structures is sorted in order by opcode. */ 1543 1544 struct sh_opcode 1545 { 1546 /* The code for this instruction, after it has been anded with the 1547 mask value in the sh_major_opcode structure. */ 1548 unsigned short opcode; 1549 /* Flags for this instruction. */ 1550 unsigned long flags; 1551 }; 1552 1553 /* Flag which appear in the sh_opcode structure. */ 1554 1555 /* This instruction loads a value from memory. */ 1556 #define LOAD (0x1) 1557 1558 /* This instruction stores a value to memory. */ 1559 #define STORE (0x2) 1560 1561 /* This instruction is a branch. */ 1562 #define BRANCH (0x4) 1563 1564 /* This instruction has a delay slot. */ 1565 #define DELAY (0x8) 1566 1567 /* This instruction uses the value in the register in the field at 1568 mask 0x0f00 of the instruction. */ 1569 #define USES1 (0x10) 1570 #define USES1_REG(x) ((x & 0x0f00) >> 8) 1571 1572 /* This instruction uses the value in the register in the field at 1573 mask 0x00f0 of the instruction. */ 1574 #define USES2 (0x20) 1575 #define USES2_REG(x) ((x & 0x00f0) >> 4) 1576 1577 /* This instruction uses the value in register 0. */ 1578 #define USESR0 (0x40) 1579 1580 /* This instruction sets the value in the register in the field at 1581 mask 0x0f00 of the instruction. */ 1582 #define SETS1 (0x80) 1583 #define SETS1_REG(x) ((x & 0x0f00) >> 8) 1584 1585 /* This instruction sets the value in the register in the field at 1586 mask 0x00f0 of the instruction. */ 1587 #define SETS2 (0x100) 1588 #define SETS2_REG(x) ((x & 0x00f0) >> 4) 1589 1590 /* This instruction sets register 0. */ 1591 #define SETSR0 (0x200) 1592 1593 /* This instruction sets a special register. */ 1594 #define SETSSP (0x400) 1595 1596 /* This instruction uses a special register. */ 1597 #define USESSP (0x800) 1598 1599 /* This instruction uses the floating point register in the field at 1600 mask 0x0f00 of the instruction. */ 1601 #define USESF1 (0x1000) 1602 #define USESF1_REG(x) ((x & 0x0f00) >> 8) 1603 1604 /* This instruction uses the floating point register in the field at 1605 mask 0x00f0 of the instruction. */ 1606 #define USESF2 (0x2000) 1607 #define USESF2_REG(x) ((x & 0x00f0) >> 4) 1608 1609 /* This instruction uses floating point register 0. */ 1610 #define USESF0 (0x4000) 1611 1612 /* This instruction sets the floating point register in the field at 1613 mask 0x0f00 of the instruction. */ 1614 #define SETSF1 (0x8000) 1615 #define SETSF1_REG(x) ((x & 0x0f00) >> 8) 1616 1617 #define USESAS (0x10000) 1618 #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2) 1619 #define USESR8 (0x20000) 1620 #define SETSAS (0x40000) 1621 #define SETSAS_REG(x) USESAS_REG (x) 1622 1623 #define MAP(a) a, sizeof a / sizeof a[0] 1624 1625 #ifndef COFF_IMAGE_WITH_PE 1626 1627 /* The opcode maps. */ 1628 1629 static const struct sh_opcode sh_opcode00[] = 1630 { 1631 { 0x0008, SETSSP }, /* clrt */ 1632 { 0x0009, 0 }, /* nop */ 1633 { 0x000b, BRANCH | DELAY | USESSP }, /* rts */ 1634 { 0x0018, SETSSP }, /* sett */ 1635 { 0x0019, SETSSP }, /* div0u */ 1636 { 0x001b, 0 }, /* sleep */ 1637 { 0x0028, SETSSP }, /* clrmac */ 1638 { 0x002b, BRANCH | DELAY | SETSSP }, /* rte */ 1639 { 0x0038, USESSP | SETSSP }, /* ldtlb */ 1640 { 0x0048, SETSSP }, /* clrs */ 1641 { 0x0058, SETSSP } /* sets */ 1642 }; 1643 1644 static const struct sh_opcode sh_opcode01[] = 1645 { 1646 { 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */ 1647 { 0x000a, SETS1 | USESSP }, /* sts mach,rn */ 1648 { 0x001a, SETS1 | USESSP }, /* sts macl,rn */ 1649 { 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */ 1650 { 0x0029, SETS1 | USESSP }, /* movt rn */ 1651 { 0x002a, SETS1 | USESSP }, /* sts pr,rn */ 1652 { 0x005a, SETS1 | USESSP }, /* sts fpul,rn */ 1653 { 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */ 1654 { 0x0083, LOAD | USES1 }, /* pref @rn */ 1655 { 0x007a, SETS1 | USESSP }, /* sts a0,rn */ 1656 { 0x008a, SETS1 | USESSP }, /* sts x0,rn */ 1657 { 0x009a, SETS1 | USESSP }, /* sts x1,rn */ 1658 { 0x00aa, SETS1 | USESSP }, /* sts y0,rn */ 1659 { 0x00ba, SETS1 | USESSP } /* sts y1,rn */ 1660 }; 1661 1662 static const struct sh_opcode sh_opcode02[] = 1663 { 1664 { 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */ 1665 { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */ 1666 { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */ 1667 { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */ 1668 { 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */ 1669 { 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */ 1670 { 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */ 1671 { 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */ 1672 { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */ 1673 }; 1674 1675 static const struct sh_minor_opcode sh_opcode0[] = 1676 { 1677 { MAP (sh_opcode00), 0xffff }, 1678 { MAP (sh_opcode01), 0xf0ff }, 1679 { MAP (sh_opcode02), 0xf00f } 1680 }; 1681 1682 static const struct sh_opcode sh_opcode10[] = 1683 { 1684 { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */ 1685 }; 1686 1687 static const struct sh_minor_opcode sh_opcode1[] = 1688 { 1689 { MAP (sh_opcode10), 0xf000 } 1690 }; 1691 1692 static const struct sh_opcode sh_opcode20[] = 1693 { 1694 { 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */ 1695 { 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */ 1696 { 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */ 1697 { 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */ 1698 { 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */ 1699 { 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */ 1700 { 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */ 1701 { 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */ 1702 { 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */ 1703 { 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */ 1704 { 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */ 1705 { 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */ 1706 { 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */ 1707 { 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */ 1708 { 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */ 1709 }; 1710 1711 static const struct sh_minor_opcode sh_opcode2[] = 1712 { 1713 { MAP (sh_opcode20), 0xf00f } 1714 }; 1715 1716 static const struct sh_opcode sh_opcode30[] = 1717 { 1718 { 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */ 1719 { 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */ 1720 { 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */ 1721 { 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */ 1722 { 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */ 1723 { 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */ 1724 { 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */ 1725 { 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */ 1726 { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */ 1727 { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */ 1728 { 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */ 1729 { 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */ 1730 { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */ 1731 { 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */ 1732 }; 1733 1734 static const struct sh_minor_opcode sh_opcode3[] = 1735 { 1736 { MAP (sh_opcode30), 0xf00f } 1737 }; 1738 1739 static const struct sh_opcode sh_opcode40[] = 1740 { 1741 { 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */ 1742 { 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */ 1743 { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */ 1744 { 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */ 1745 { 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */ 1746 { 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */ 1747 { 0x4008, SETS1 | USES1 }, /* shll2 rn */ 1748 { 0x4009, SETS1 | USES1 }, /* shlr2 rn */ 1749 { 0x400a, SETSSP | USES1 }, /* lds rm,mach */ 1750 { 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */ 1751 { 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */ 1752 { 0x4011, SETSSP | USES1 }, /* cmp/pz rn */ 1753 { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */ 1754 { 0x4014, SETSSP | USES1 }, /* setrc rm */ 1755 { 0x4015, SETSSP | USES1 }, /* cmp/pl rn */ 1756 { 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */ 1757 { 0x4018, SETS1 | USES1 }, /* shll8 rn */ 1758 { 0x4019, SETS1 | USES1 }, /* shlr8 rn */ 1759 { 0x401a, SETSSP | USES1 }, /* lds rm,macl */ 1760 { 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */ 1761 { 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */ 1762 { 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */ 1763 { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */ 1764 { 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */ 1765 { 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */ 1766 { 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */ 1767 { 0x4028, SETS1 | USES1 }, /* shll16 rn */ 1768 { 0x4029, SETS1 | USES1 }, /* shlr16 rn */ 1769 { 0x402a, SETSSP | USES1 }, /* lds rm,pr */ 1770 { 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */ 1771 { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */ 1772 { 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */ 1773 { 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */ 1774 { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */ 1775 { 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */ 1776 { 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */ 1777 { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */ 1778 { 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */ 1779 { 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */ 1780 { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */ 1781 { 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */ 1782 { 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */ 1783 { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */ 1784 { 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */ 1785 { 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */ 1786 { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */ 1787 { 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */ 1788 { 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */ 1789 { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */ 1790 { 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */ 1791 { 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */ 1792 }; 1793 1794 static const struct sh_opcode sh_opcode41[] = 1795 { 1796 { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */ 1797 { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */ 1798 { 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */ 1799 { 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */ 1800 { 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */ 1801 { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */ 1802 }; 1803 1804 static const struct sh_minor_opcode sh_opcode4[] = 1805 { 1806 { MAP (sh_opcode40), 0xf0ff }, 1807 { MAP (sh_opcode41), 0xf00f } 1808 }; 1809 1810 static const struct sh_opcode sh_opcode50[] = 1811 { 1812 { 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */ 1813 }; 1814 1815 static const struct sh_minor_opcode sh_opcode5[] = 1816 { 1817 { MAP (sh_opcode50), 0xf000 } 1818 }; 1819 1820 static const struct sh_opcode sh_opcode60[] = 1821 { 1822 { 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */ 1823 { 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */ 1824 { 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */ 1825 { 0x6003, SETS1 | USES2 }, /* mov rm,rn */ 1826 { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */ 1827 { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */ 1828 { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */ 1829 { 0x6007, SETS1 | USES2 }, /* not rm,rn */ 1830 { 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */ 1831 { 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */ 1832 { 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */ 1833 { 0x600b, SETS1 | USES2 }, /* neg rm,rn */ 1834 { 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */ 1835 { 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */ 1836 { 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */ 1837 { 0x600f, SETS1 | USES2 } /* exts.w rm,rn */ 1838 }; 1839 1840 static const struct sh_minor_opcode sh_opcode6[] = 1841 { 1842 { MAP (sh_opcode60), 0xf00f } 1843 }; 1844 1845 static const struct sh_opcode sh_opcode70[] = 1846 { 1847 { 0x7000, SETS1 | USES1 } /* add #imm,rn */ 1848 }; 1849 1850 static const struct sh_minor_opcode sh_opcode7[] = 1851 { 1852 { MAP (sh_opcode70), 0xf000 } 1853 }; 1854 1855 static const struct sh_opcode sh_opcode80[] = 1856 { 1857 { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */ 1858 { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */ 1859 { 0x8200, SETSSP }, /* setrc #imm */ 1860 { 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */ 1861 { 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */ 1862 { 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */ 1863 { 0x8900, BRANCH | USESSP }, /* bt label */ 1864 { 0x8b00, BRANCH | USESSP }, /* bf label */ 1865 { 0x8c00, SETSSP }, /* ldrs @(disp,pc) */ 1866 { 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */ 1867 { 0x8e00, SETSSP }, /* ldre @(disp,pc) */ 1868 { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */ 1869 }; 1870 1871 static const struct sh_minor_opcode sh_opcode8[] = 1872 { 1873 { MAP (sh_opcode80), 0xff00 } 1874 }; 1875 1876 static const struct sh_opcode sh_opcode90[] = 1877 { 1878 { 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */ 1879 }; 1880 1881 static const struct sh_minor_opcode sh_opcode9[] = 1882 { 1883 { MAP (sh_opcode90), 0xf000 } 1884 }; 1885 1886 static const struct sh_opcode sh_opcodea0[] = 1887 { 1888 { 0xa000, BRANCH | DELAY } /* bra label */ 1889 }; 1890 1891 static const struct sh_minor_opcode sh_opcodea[] = 1892 { 1893 { MAP (sh_opcodea0), 0xf000 } 1894 }; 1895 1896 static const struct sh_opcode sh_opcodeb0[] = 1897 { 1898 { 0xb000, BRANCH | DELAY } /* bsr label */ 1899 }; 1900 1901 static const struct sh_minor_opcode sh_opcodeb[] = 1902 { 1903 { MAP (sh_opcodeb0), 0xf000 } 1904 }; 1905 1906 static const struct sh_opcode sh_opcodec0[] = 1907 { 1908 { 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */ 1909 { 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */ 1910 { 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */ 1911 { 0xc300, BRANCH | USESSP }, /* trapa #imm */ 1912 { 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */ 1913 { 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */ 1914 { 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */ 1915 { 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */ 1916 { 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */ 1917 { 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */ 1918 { 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */ 1919 { 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */ 1920 { 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */ 1921 { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */ 1922 { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */ 1923 { 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */ 1924 }; 1925 1926 static const struct sh_minor_opcode sh_opcodec[] = 1927 { 1928 { MAP (sh_opcodec0), 0xff00 } 1929 }; 1930 1931 static const struct sh_opcode sh_opcoded0[] = 1932 { 1933 { 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */ 1934 }; 1935 1936 static const struct sh_minor_opcode sh_opcoded[] = 1937 { 1938 { MAP (sh_opcoded0), 0xf000 } 1939 }; 1940 1941 static const struct sh_opcode sh_opcodee0[] = 1942 { 1943 { 0xe000, SETS1 } /* mov #imm,rn */ 1944 }; 1945 1946 static const struct sh_minor_opcode sh_opcodee[] = 1947 { 1948 { MAP (sh_opcodee0), 0xf000 } 1949 }; 1950 1951 static const struct sh_opcode sh_opcodef0[] = 1952 { 1953 { 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */ 1954 { 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */ 1955 { 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */ 1956 { 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */ 1957 { 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */ 1958 { 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */ 1959 { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */ 1960 { 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */ 1961 { 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */ 1962 { 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */ 1963 { 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */ 1964 { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */ 1965 { 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */ 1966 { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */ 1967 }; 1968 1969 static const struct sh_opcode sh_opcodef1[] = 1970 { 1971 { 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */ 1972 { 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */ 1973 { 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */ 1974 { 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */ 1975 { 0xf04d, SETSF1 | USESF1 }, /* fneg fn */ 1976 { 0xf05d, SETSF1 | USESF1 }, /* fabs fn */ 1977 { 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */ 1978 { 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */ 1979 { 0xf08d, SETSF1 }, /* fldi0 fn */ 1980 { 0xf09d, SETSF1 } /* fldi1 fn */ 1981 }; 1982 1983 static const struct sh_minor_opcode sh_opcodef[] = 1984 { 1985 { MAP (sh_opcodef0), 0xf00f }, 1986 { MAP (sh_opcodef1), 0xf0ff } 1987 }; 1988 1989 static struct sh_major_opcode sh_opcodes[] = 1990 { 1991 { MAP (sh_opcode0) }, 1992 { MAP (sh_opcode1) }, 1993 { MAP (sh_opcode2) }, 1994 { MAP (sh_opcode3) }, 1995 { MAP (sh_opcode4) }, 1996 { MAP (sh_opcode5) }, 1997 { MAP (sh_opcode6) }, 1998 { MAP (sh_opcode7) }, 1999 { MAP (sh_opcode8) }, 2000 { MAP (sh_opcode9) }, 2001 { MAP (sh_opcodea) }, 2002 { MAP (sh_opcodeb) }, 2003 { MAP (sh_opcodec) }, 2004 { MAP (sh_opcoded) }, 2005 { MAP (sh_opcodee) }, 2006 { MAP (sh_opcodef) } 2007 }; 2008 2009 /* The double data transfer / parallel processing insns are not 2010 described here. This will cause sh_align_load_span to leave them alone. */ 2011 2012 static const struct sh_opcode sh_dsp_opcodef0[] = 2013 { 2014 { 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */ 2015 { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */ 2016 { 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */ 2017 { 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */ 2018 { 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */ 2019 { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */ 2020 { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */ 2021 { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */ 2022 }; 2023 2024 static const struct sh_minor_opcode sh_dsp_opcodef[] = 2025 { 2026 { MAP (sh_dsp_opcodef0), 0xfc0d } 2027 }; 2028 2029 /* Given an instruction, return a pointer to the corresponding 2030 sh_opcode structure. Return NULL if the instruction is not 2031 recognized. */ 2032 2033 static const struct sh_opcode * 2034 sh_insn_info (unsigned int insn) 2035 { 2036 const struct sh_major_opcode *maj; 2037 const struct sh_minor_opcode *min, *minend; 2038 2039 maj = &sh_opcodes[(insn & 0xf000) >> 12]; 2040 min = maj->minor_opcodes; 2041 minend = min + maj->count; 2042 for (; min < minend; min++) 2043 { 2044 unsigned int l; 2045 const struct sh_opcode *op, *opend; 2046 2047 l = insn & min->mask; 2048 op = min->opcodes; 2049 opend = op + min->count; 2050 2051 /* Since the opcodes tables are sorted, we could use a binary 2052 search here if the count were above some cutoff value. */ 2053 for (; op < opend; op++) 2054 if (op->opcode == l) 2055 return op; 2056 } 2057 2058 return NULL; 2059 } 2060 2061 /* See whether an instruction uses a general purpose register. */ 2062 2063 static bfd_boolean 2064 sh_insn_uses_reg (unsigned int insn, 2065 const struct sh_opcode *op, 2066 unsigned int reg) 2067 { 2068 unsigned int f; 2069 2070 f = op->flags; 2071 2072 if ((f & USES1) != 0 2073 && USES1_REG (insn) == reg) 2074 return TRUE; 2075 if ((f & USES2) != 0 2076 && USES2_REG (insn) == reg) 2077 return TRUE; 2078 if ((f & USESR0) != 0 2079 && reg == 0) 2080 return TRUE; 2081 if ((f & USESAS) && reg == USESAS_REG (insn)) 2082 return TRUE; 2083 if ((f & USESR8) && reg == 8) 2084 return TRUE; 2085 2086 return FALSE; 2087 } 2088 2089 /* See whether an instruction sets a general purpose register. */ 2090 2091 static bfd_boolean 2092 sh_insn_sets_reg (unsigned int insn, 2093 const struct sh_opcode *op, 2094 unsigned int reg) 2095 { 2096 unsigned int f; 2097 2098 f = op->flags; 2099 2100 if ((f & SETS1) != 0 2101 && SETS1_REG (insn) == reg) 2102 return TRUE; 2103 if ((f & SETS2) != 0 2104 && SETS2_REG (insn) == reg) 2105 return TRUE; 2106 if ((f & SETSR0) != 0 2107 && reg == 0) 2108 return TRUE; 2109 if ((f & SETSAS) && reg == SETSAS_REG (insn)) 2110 return TRUE; 2111 2112 return FALSE; 2113 } 2114 2115 /* See whether an instruction uses or sets a general purpose register */ 2116 2117 static bfd_boolean 2118 sh_insn_uses_or_sets_reg (unsigned int insn, 2119 const struct sh_opcode *op, 2120 unsigned int reg) 2121 { 2122 if (sh_insn_uses_reg (insn, op, reg)) 2123 return TRUE; 2124 2125 return sh_insn_sets_reg (insn, op, reg); 2126 } 2127 2128 /* See whether an instruction uses a floating point register. */ 2129 2130 static bfd_boolean 2131 sh_insn_uses_freg (unsigned int insn, 2132 const struct sh_opcode *op, 2133 unsigned int freg) 2134 { 2135 unsigned int f; 2136 2137 f = op->flags; 2138 2139 /* We can't tell if this is a double-precision insn, so just play safe 2140 and assume that it might be. So not only have we test FREG against 2141 itself, but also even FREG against FREG+1 - if the using insn uses 2142 just the low part of a double precision value - but also an odd 2143 FREG against FREG-1 - if the setting insn sets just the low part 2144 of a double precision value. 2145 So what this all boils down to is that we have to ignore the lowest 2146 bit of the register number. */ 2147 2148 if ((f & USESF1) != 0 2149 && (USESF1_REG (insn) & 0xe) == (freg & 0xe)) 2150 return TRUE; 2151 if ((f & USESF2) != 0 2152 && (USESF2_REG (insn) & 0xe) == (freg & 0xe)) 2153 return TRUE; 2154 if ((f & USESF0) != 0 2155 && freg == 0) 2156 return TRUE; 2157 2158 return FALSE; 2159 } 2160 2161 /* See whether an instruction sets a floating point register. */ 2162 2163 static bfd_boolean 2164 sh_insn_sets_freg (unsigned int insn, 2165 const struct sh_opcode *op, 2166 unsigned int freg) 2167 { 2168 unsigned int f; 2169 2170 f = op->flags; 2171 2172 /* We can't tell if this is a double-precision insn, so just play safe 2173 and assume that it might be. So not only have we test FREG against 2174 itself, but also even FREG against FREG+1 - if the using insn uses 2175 just the low part of a double precision value - but also an odd 2176 FREG against FREG-1 - if the setting insn sets just the low part 2177 of a double precision value. 2178 So what this all boils down to is that we have to ignore the lowest 2179 bit of the register number. */ 2180 2181 if ((f & SETSF1) != 0 2182 && (SETSF1_REG (insn) & 0xe) == (freg & 0xe)) 2183 return TRUE; 2184 2185 return FALSE; 2186 } 2187 2188 /* See whether an instruction uses or sets a floating point register */ 2189 2190 static bfd_boolean 2191 sh_insn_uses_or_sets_freg (unsigned int insn, 2192 const struct sh_opcode *op, 2193 unsigned int reg) 2194 { 2195 if (sh_insn_uses_freg (insn, op, reg)) 2196 return TRUE; 2197 2198 return sh_insn_sets_freg (insn, op, reg); 2199 } 2200 2201 /* See whether instructions I1 and I2 conflict, assuming I1 comes 2202 before I2. OP1 and OP2 are the corresponding sh_opcode structures. 2203 This should return TRUE if there is a conflict, or FALSE if the 2204 instructions can be swapped safely. */ 2205 2206 static bfd_boolean 2207 sh_insns_conflict (unsigned int i1, 2208 const struct sh_opcode *op1, 2209 unsigned int i2, 2210 const struct sh_opcode *op2) 2211 { 2212 unsigned int f1, f2; 2213 2214 f1 = op1->flags; 2215 f2 = op2->flags; 2216 2217 /* Load of fpscr conflicts with floating point operations. 2218 FIXME: shouldn't test raw opcodes here. */ 2219 if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000) 2220 || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000)) 2221 return TRUE; 2222 2223 if ((f1 & (BRANCH | DELAY)) != 0 2224 || (f2 & (BRANCH | DELAY)) != 0) 2225 return TRUE; 2226 2227 if (((f1 | f2) & SETSSP) 2228 && (f1 & (SETSSP | USESSP)) 2229 && (f2 & (SETSSP | USESSP))) 2230 return TRUE; 2231 2232 if ((f1 & SETS1) != 0 2233 && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1))) 2234 return TRUE; 2235 if ((f1 & SETS2) != 0 2236 && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1))) 2237 return TRUE; 2238 if ((f1 & SETSR0) != 0 2239 && sh_insn_uses_or_sets_reg (i2, op2, 0)) 2240 return TRUE; 2241 if ((f1 & SETSAS) 2242 && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1))) 2243 return TRUE; 2244 if ((f1 & SETSF1) != 0 2245 && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1))) 2246 return TRUE; 2247 2248 if ((f2 & SETS1) != 0 2249 && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2))) 2250 return TRUE; 2251 if ((f2 & SETS2) != 0 2252 && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2))) 2253 return TRUE; 2254 if ((f2 & SETSR0) != 0 2255 && sh_insn_uses_or_sets_reg (i1, op1, 0)) 2256 return TRUE; 2257 if ((f2 & SETSAS) 2258 && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2))) 2259 return TRUE; 2260 if ((f2 & SETSF1) != 0 2261 && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2))) 2262 return TRUE; 2263 2264 /* The instructions do not conflict. */ 2265 return FALSE; 2266 } 2267 2268 /* I1 is a load instruction, and I2 is some other instruction. Return 2269 TRUE if I1 loads a register which I2 uses. */ 2270 2271 static bfd_boolean 2272 sh_load_use (unsigned int i1, 2273 const struct sh_opcode *op1, 2274 unsigned int i2, 2275 const struct sh_opcode *op2) 2276 { 2277 unsigned int f1; 2278 2279 f1 = op1->flags; 2280 2281 if ((f1 & LOAD) == 0) 2282 return FALSE; 2283 2284 /* If both SETS1 and SETSSP are set, that means a load to a special 2285 register using postincrement addressing mode, which we don't care 2286 about here. */ 2287 if ((f1 & SETS1) != 0 2288 && (f1 & SETSSP) == 0 2289 && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8)) 2290 return TRUE; 2291 2292 if ((f1 & SETSR0) != 0 2293 && sh_insn_uses_reg (i2, op2, 0)) 2294 return TRUE; 2295 2296 if ((f1 & SETSF1) != 0 2297 && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8)) 2298 return TRUE; 2299 2300 return FALSE; 2301 } 2302 2303 /* Try to align loads and stores within a span of memory. This is 2304 called by both the ELF and the COFF sh targets. ABFD and SEC are 2305 the BFD and section we are examining. CONTENTS is the contents of 2306 the section. SWAP is the routine to call to swap two instructions. 2307 RELOCS is a pointer to the internal relocation information, to be 2308 passed to SWAP. PLABEL is a pointer to the current label in a 2309 sorted list of labels; LABEL_END is the end of the list. START and 2310 STOP are the range of memory to examine. If a swap is made, 2311 *PSWAPPED is set to TRUE. */ 2312 2313 #ifdef COFF_WITH_PE 2314 static 2315 #endif 2316 bfd_boolean 2317 _bfd_sh_align_load_span (bfd *abfd, 2318 asection *sec, 2319 bfd_byte *contents, 2320 bfd_boolean (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma), 2321 void * relocs, 2322 bfd_vma **plabel, 2323 bfd_vma *label_end, 2324 bfd_vma start, 2325 bfd_vma stop, 2326 bfd_boolean *pswapped) 2327 { 2328 int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp 2329 || abfd->arch_info->mach == bfd_mach_sh3_dsp); 2330 bfd_vma i; 2331 2332 /* The SH4 has a Harvard architecture, hence aligning loads is not 2333 desirable. In fact, it is counter-productive, since it interferes 2334 with the schedules generated by the compiler. */ 2335 if (abfd->arch_info->mach == bfd_mach_sh4) 2336 return TRUE; 2337 2338 /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP 2339 instructions. */ 2340 if (dsp) 2341 { 2342 sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef; 2343 sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef [0]; 2344 } 2345 2346 /* Instructions should be aligned on 2 byte boundaries. */ 2347 if ((start & 1) == 1) 2348 ++start; 2349 2350 /* Now look through the unaligned addresses. */ 2351 i = start; 2352 if ((i & 2) == 0) 2353 i += 2; 2354 for (; i < stop; i += 4) 2355 { 2356 unsigned int insn; 2357 const struct sh_opcode *op; 2358 unsigned int prev_insn = 0; 2359 const struct sh_opcode *prev_op = NULL; 2360 2361 insn = bfd_get_16 (abfd, contents + i); 2362 op = sh_insn_info (insn); 2363 if (op == NULL 2364 || (op->flags & (LOAD | STORE)) == 0) 2365 continue; 2366 2367 /* This is a load or store which is not on a four byte boundary. */ 2368 2369 while (*plabel < label_end && **plabel < i) 2370 ++*plabel; 2371 2372 if (i > start) 2373 { 2374 prev_insn = bfd_get_16 (abfd, contents + i - 2); 2375 /* If INSN is the field b of a parallel processing insn, it is not 2376 a load / store after all. Note that the test here might mistake 2377 the field_b of a pcopy insn for the starting code of a parallel 2378 processing insn; this might miss a swapping opportunity, but at 2379 least we're on the safe side. */ 2380 if (dsp && (prev_insn & 0xfc00) == 0xf800) 2381 continue; 2382 2383 /* Check if prev_insn is actually the field b of a parallel 2384 processing insn. Again, this can give a spurious match 2385 after a pcopy. */ 2386 if (dsp && i - 2 > start) 2387 { 2388 unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4); 2389 2390 if ((pprev_insn & 0xfc00) == 0xf800) 2391 prev_op = NULL; 2392 else 2393 prev_op = sh_insn_info (prev_insn); 2394 } 2395 else 2396 prev_op = sh_insn_info (prev_insn); 2397 2398 /* If the load/store instruction is in a delay slot, we 2399 can't swap. */ 2400 if (prev_op == NULL 2401 || (prev_op->flags & DELAY) != 0) 2402 continue; 2403 } 2404 if (i > start 2405 && (*plabel >= label_end || **plabel != i) 2406 && prev_op != NULL 2407 && (prev_op->flags & (LOAD | STORE)) == 0 2408 && ! sh_insns_conflict (prev_insn, prev_op, insn, op)) 2409 { 2410 bfd_boolean ok; 2411 2412 /* The load/store instruction does not have a label, and 2413 there is a previous instruction; PREV_INSN is not 2414 itself a load/store instruction, and PREV_INSN and 2415 INSN do not conflict. */ 2416 2417 ok = TRUE; 2418 2419 if (i >= start + 4) 2420 { 2421 unsigned int prev2_insn; 2422 const struct sh_opcode *prev2_op; 2423 2424 prev2_insn = bfd_get_16 (abfd, contents + i - 4); 2425 prev2_op = sh_insn_info (prev2_insn); 2426 2427 /* If the instruction before PREV_INSN has a delay 2428 slot--that is, PREV_INSN is in a delay slot--we 2429 can not swap. */ 2430 if (prev2_op == NULL 2431 || (prev2_op->flags & DELAY) != 0) 2432 ok = FALSE; 2433 2434 /* If the instruction before PREV_INSN is a load, 2435 and it sets a register which INSN uses, then 2436 putting INSN immediately after PREV_INSN will 2437 cause a pipeline bubble, so there is no point to 2438 making the swap. */ 2439 if (ok 2440 && (prev2_op->flags & LOAD) != 0 2441 && sh_load_use (prev2_insn, prev2_op, insn, op)) 2442 ok = FALSE; 2443 } 2444 2445 if (ok) 2446 { 2447 if (! (*swap) (abfd, sec, relocs, contents, i - 2)) 2448 return FALSE; 2449 *pswapped = TRUE; 2450 continue; 2451 } 2452 } 2453 2454 while (*plabel < label_end && **plabel < i + 2) 2455 ++*plabel; 2456 2457 if (i + 2 < stop 2458 && (*plabel >= label_end || **plabel != i + 2)) 2459 { 2460 unsigned int next_insn; 2461 const struct sh_opcode *next_op; 2462 2463 /* There is an instruction after the load/store 2464 instruction, and it does not have a label. */ 2465 next_insn = bfd_get_16 (abfd, contents + i + 2); 2466 next_op = sh_insn_info (next_insn); 2467 if (next_op != NULL 2468 && (next_op->flags & (LOAD | STORE)) == 0 2469 && ! sh_insns_conflict (insn, op, next_insn, next_op)) 2470 { 2471 bfd_boolean ok; 2472 2473 /* NEXT_INSN is not itself a load/store instruction, 2474 and it does not conflict with INSN. */ 2475 2476 ok = TRUE; 2477 2478 /* If PREV_INSN is a load, and it sets a register 2479 which NEXT_INSN uses, then putting NEXT_INSN 2480 immediately after PREV_INSN will cause a pipeline 2481 bubble, so there is no reason to make this swap. */ 2482 if (prev_op != NULL 2483 && (prev_op->flags & LOAD) != 0 2484 && sh_load_use (prev_insn, prev_op, next_insn, next_op)) 2485 ok = FALSE; 2486 2487 /* If INSN is a load, and it sets a register which 2488 the insn after NEXT_INSN uses, then doing the 2489 swap will cause a pipeline bubble, so there is no 2490 reason to make the swap. However, if the insn 2491 after NEXT_INSN is itself a load or store 2492 instruction, then it is misaligned, so 2493 optimistically hope that it will be swapped 2494 itself, and just live with the pipeline bubble if 2495 it isn't. */ 2496 if (ok 2497 && i + 4 < stop 2498 && (op->flags & LOAD) != 0) 2499 { 2500 unsigned int next2_insn; 2501 const struct sh_opcode *next2_op; 2502 2503 next2_insn = bfd_get_16 (abfd, contents + i + 4); 2504 next2_op = sh_insn_info (next2_insn); 2505 if (next2_op == NULL 2506 || ((next2_op->flags & (LOAD | STORE)) == 0 2507 && sh_load_use (insn, op, next2_insn, next2_op))) 2508 ok = FALSE; 2509 } 2510 2511 if (ok) 2512 { 2513 if (! (*swap) (abfd, sec, relocs, contents, i)) 2514 return FALSE; 2515 *pswapped = TRUE; 2516 continue; 2517 } 2518 } 2519 } 2520 } 2521 2522 return TRUE; 2523 } 2524 #endif /* not COFF_IMAGE_WITH_PE */ 2525 2526 /* Swap two SH instructions. */ 2527 2528 static bfd_boolean 2529 sh_swap_insns (bfd * abfd, 2530 asection * sec, 2531 void * relocs, 2532 bfd_byte * contents, 2533 bfd_vma addr) 2534 { 2535 struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs; 2536 unsigned short i1, i2; 2537 struct internal_reloc *irel, *irelend; 2538 2539 /* Swap the instructions themselves. */ 2540 i1 = bfd_get_16 (abfd, contents + addr); 2541 i2 = bfd_get_16 (abfd, contents + addr + 2); 2542 bfd_put_16 (abfd, (bfd_vma) i2, contents + addr); 2543 bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2); 2544 2545 /* Adjust all reloc addresses. */ 2546 irelend = internal_relocs + sec->reloc_count; 2547 for (irel = internal_relocs; irel < irelend; irel++) 2548 { 2549 int type, add; 2550 2551 /* There are a few special types of relocs that we don't want to 2552 adjust. These relocs do not apply to the instruction itself, 2553 but are only associated with the address. */ 2554 type = irel->r_type; 2555 if (type == R_SH_ALIGN 2556 || type == R_SH_CODE 2557 || type == R_SH_DATA 2558 || type == R_SH_LABEL) 2559 continue; 2560 2561 /* If an R_SH_USES reloc points to one of the addresses being 2562 swapped, we must adjust it. It would be incorrect to do this 2563 for a jump, though, since we want to execute both 2564 instructions after the jump. (We have avoided swapping 2565 around a label, so the jump will not wind up executing an 2566 instruction it shouldn't). */ 2567 if (type == R_SH_USES) 2568 { 2569 bfd_vma off; 2570 2571 off = irel->r_vaddr - sec->vma + 4 + irel->r_offset; 2572 if (off == addr) 2573 irel->r_offset += 2; 2574 else if (off == addr + 2) 2575 irel->r_offset -= 2; 2576 } 2577 2578 if (irel->r_vaddr - sec->vma == addr) 2579 { 2580 irel->r_vaddr += 2; 2581 add = -2; 2582 } 2583 else if (irel->r_vaddr - sec->vma == addr + 2) 2584 { 2585 irel->r_vaddr -= 2; 2586 add = 2; 2587 } 2588 else 2589 add = 0; 2590 2591 if (add != 0) 2592 { 2593 bfd_byte *loc; 2594 unsigned short insn, oinsn; 2595 bfd_boolean overflow; 2596 2597 loc = contents + irel->r_vaddr - sec->vma; 2598 overflow = FALSE; 2599 switch (type) 2600 { 2601 default: 2602 break; 2603 2604 case R_SH_PCDISP8BY2: 2605 case R_SH_PCRELIMM8BY2: 2606 insn = bfd_get_16 (abfd, loc); 2607 oinsn = insn; 2608 insn += add / 2; 2609 if ((oinsn & 0xff00) != (insn & 0xff00)) 2610 overflow = TRUE; 2611 bfd_put_16 (abfd, (bfd_vma) insn, loc); 2612 break; 2613 2614 case R_SH_PCDISP: 2615 insn = bfd_get_16 (abfd, loc); 2616 oinsn = insn; 2617 insn += add / 2; 2618 if ((oinsn & 0xf000) != (insn & 0xf000)) 2619 overflow = TRUE; 2620 bfd_put_16 (abfd, (bfd_vma) insn, loc); 2621 break; 2622 2623 case R_SH_PCRELIMM8BY4: 2624 /* This reloc ignores the least significant 3 bits of 2625 the program counter before adding in the offset. 2626 This means that if ADDR is at an even address, the 2627 swap will not affect the offset. If ADDR is an at an 2628 odd address, then the instruction will be crossing a 2629 four byte boundary, and must be adjusted. */ 2630 if ((addr & 3) != 0) 2631 { 2632 insn = bfd_get_16 (abfd, loc); 2633 oinsn = insn; 2634 insn += add / 2; 2635 if ((oinsn & 0xff00) != (insn & 0xff00)) 2636 overflow = TRUE; 2637 bfd_put_16 (abfd, (bfd_vma) insn, loc); 2638 } 2639 2640 break; 2641 } 2642 2643 if (overflow) 2644 { 2645 _bfd_error_handler 2646 /* xgettext: c-format */ 2647 (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"), 2648 abfd, (uint64_t) irel->r_vaddr); 2649 bfd_set_error (bfd_error_bad_value); 2650 return FALSE; 2651 } 2652 } 2653 } 2654 2655 return TRUE; 2656 } 2657 2658 /* Look for loads and stores which we can align to four byte 2659 boundaries. See the longer comment above sh_relax_section for why 2660 this is desirable. This sets *PSWAPPED if some instruction was 2661 swapped. */ 2662 2663 static bfd_boolean 2664 sh_align_loads (bfd *abfd, 2665 asection *sec, 2666 struct internal_reloc *internal_relocs, 2667 bfd_byte *contents, 2668 bfd_boolean *pswapped) 2669 { 2670 struct internal_reloc *irel, *irelend; 2671 bfd_vma *labels = NULL; 2672 bfd_vma *label, *label_end; 2673 bfd_size_type amt; 2674 2675 *pswapped = FALSE; 2676 2677 irelend = internal_relocs + sec->reloc_count; 2678 2679 /* Get all the addresses with labels on them. */ 2680 amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma); 2681 labels = (bfd_vma *) bfd_malloc (amt); 2682 if (labels == NULL) 2683 goto error_return; 2684 label_end = labels; 2685 for (irel = internal_relocs; irel < irelend; irel++) 2686 { 2687 if (irel->r_type == R_SH_LABEL) 2688 { 2689 *label_end = irel->r_vaddr - sec->vma; 2690 ++label_end; 2691 } 2692 } 2693 2694 /* Note that the assembler currently always outputs relocs in 2695 address order. If that ever changes, this code will need to sort 2696 the label values and the relocs. */ 2697 2698 label = labels; 2699 2700 for (irel = internal_relocs; irel < irelend; irel++) 2701 { 2702 bfd_vma start, stop; 2703 2704 if (irel->r_type != R_SH_CODE) 2705 continue; 2706 2707 start = irel->r_vaddr - sec->vma; 2708 2709 for (irel++; irel < irelend; irel++) 2710 if (irel->r_type == R_SH_DATA) 2711 break; 2712 if (irel < irelend) 2713 stop = irel->r_vaddr - sec->vma; 2714 else 2715 stop = sec->size; 2716 2717 if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns, 2718 internal_relocs, &label, 2719 label_end, start, stop, pswapped)) 2720 goto error_return; 2721 } 2722 2723 free (labels); 2724 2725 return TRUE; 2726 2727 error_return: 2728 if (labels != NULL) 2729 free (labels); 2730 return FALSE; 2731 } 2732 2733 /* This is a modification of _bfd_coff_generic_relocate_section, which 2734 will handle SH relaxing. */ 2735 2736 static bfd_boolean 2737 sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, 2738 struct bfd_link_info *info, 2739 bfd *input_bfd, 2740 asection *input_section, 2741 bfd_byte *contents, 2742 struct internal_reloc *relocs, 2743 struct internal_syment *syms, 2744 asection **sections) 2745 { 2746 struct internal_reloc *rel; 2747 struct internal_reloc *relend; 2748 2749 rel = relocs; 2750 relend = rel + input_section->reloc_count; 2751 for (; rel < relend; rel++) 2752 { 2753 long symndx; 2754 struct coff_link_hash_entry *h; 2755 struct internal_syment *sym; 2756 bfd_vma addend; 2757 bfd_vma val; 2758 reloc_howto_type *howto; 2759 bfd_reloc_status_type rstat; 2760 2761 /* Almost all relocs have to do with relaxing. If any work must 2762 be done for them, it has been done in sh_relax_section. */ 2763 if (rel->r_type != R_SH_IMM32 2764 #ifdef COFF_WITH_PE 2765 && rel->r_type != R_SH_IMM32CE 2766 && rel->r_type != R_SH_IMAGEBASE 2767 #endif 2768 && rel->r_type != R_SH_PCDISP) 2769 continue; 2770 2771 symndx = rel->r_symndx; 2772 2773 if (symndx == -1) 2774 { 2775 h = NULL; 2776 sym = NULL; 2777 } 2778 else 2779 { 2780 if (symndx < 0 2781 || (unsigned long) symndx >= obj_raw_syment_count (input_bfd)) 2782 { 2783 _bfd_error_handler 2784 /* xgettext: c-format */ 2785 (_("%pB: illegal symbol index %ld in relocs"), 2786 input_bfd, symndx); 2787 bfd_set_error (bfd_error_bad_value); 2788 return FALSE; 2789 } 2790 h = obj_coff_sym_hashes (input_bfd)[symndx]; 2791 sym = syms + symndx; 2792 } 2793 2794 if (sym != NULL && sym->n_scnum != 0) 2795 addend = - sym->n_value; 2796 else 2797 addend = 0; 2798 2799 if (rel->r_type == R_SH_PCDISP) 2800 addend -= 4; 2801 2802 if (rel->r_type >= SH_COFF_HOWTO_COUNT) 2803 howto = NULL; 2804 else 2805 howto = &sh_coff_howtos[rel->r_type]; 2806 2807 if (howto == NULL) 2808 { 2809 bfd_set_error (bfd_error_bad_value); 2810 return FALSE; 2811 } 2812 2813 #ifdef COFF_WITH_PE 2814 if (rel->r_type == R_SH_IMAGEBASE) 2815 addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; 2816 #endif 2817 2818 val = 0; 2819 2820 if (h == NULL) 2821 { 2822 asection *sec; 2823 2824 /* There is nothing to do for an internal PCDISP reloc. */ 2825 if (rel->r_type == R_SH_PCDISP) 2826 continue; 2827 2828 if (symndx == -1) 2829 { 2830 sec = bfd_abs_section_ptr; 2831 val = 0; 2832 } 2833 else 2834 { 2835 sec = sections[symndx]; 2836 val = (sec->output_section->vma 2837 + sec->output_offset 2838 + sym->n_value 2839 - sec->vma); 2840 } 2841 } 2842 else 2843 { 2844 if (h->root.type == bfd_link_hash_defined 2845 || h->root.type == bfd_link_hash_defweak) 2846 { 2847 asection *sec; 2848 2849 sec = h->root.u.def.section; 2850 val = (h->root.u.def.value 2851 + sec->output_section->vma 2852 + sec->output_offset); 2853 } 2854 else if (! bfd_link_relocatable (info)) 2855 (*info->callbacks->undefined_symbol) 2856 (info, h->root.root.string, input_bfd, input_section, 2857 rel->r_vaddr - input_section->vma, TRUE); 2858 } 2859 2860 rstat = _bfd_final_link_relocate (howto, input_bfd, input_section, 2861 contents, 2862 rel->r_vaddr - input_section->vma, 2863 val, addend); 2864 2865 switch (rstat) 2866 { 2867 default: 2868 abort (); 2869 case bfd_reloc_ok: 2870 break; 2871 case bfd_reloc_overflow: 2872 { 2873 const char *name; 2874 char buf[SYMNMLEN + 1]; 2875 2876 if (symndx == -1) 2877 name = "*ABS*"; 2878 else if (h != NULL) 2879 name = NULL; 2880 else if (sym->_n._n_n._n_zeroes == 0 2881 && sym->_n._n_n._n_offset != 0) 2882 name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset; 2883 else 2884 { 2885 strncpy (buf, sym->_n._n_name, SYMNMLEN); 2886 buf[SYMNMLEN] = '\0'; 2887 name = buf; 2888 } 2889 2890 (*info->callbacks->reloc_overflow) 2891 (info, (h ? &h->root : NULL), name, howto->name, 2892 (bfd_vma) 0, input_bfd, input_section, 2893 rel->r_vaddr - input_section->vma); 2894 } 2895 } 2896 } 2897 2898 return TRUE; 2899 } 2900 2901 /* This is a version of bfd_generic_get_relocated_section_contents 2902 which uses sh_relocate_section. */ 2903 2904 static bfd_byte * 2905 sh_coff_get_relocated_section_contents (bfd *output_bfd, 2906 struct bfd_link_info *link_info, 2907 struct bfd_link_order *link_order, 2908 bfd_byte *data, 2909 bfd_boolean relocatable, 2910 asymbol **symbols) 2911 { 2912 asection *input_section = link_order->u.indirect.section; 2913 bfd *input_bfd = input_section->owner; 2914 asection **sections = NULL; 2915 struct internal_reloc *internal_relocs = NULL; 2916 struct internal_syment *internal_syms = NULL; 2917 2918 /* We only need to handle the case of relaxing, or of having a 2919 particular set of section contents, specially. */ 2920 if (relocatable 2921 || coff_section_data (input_bfd, input_section) == NULL 2922 || coff_section_data (input_bfd, input_section)->contents == NULL) 2923 return bfd_generic_get_relocated_section_contents (output_bfd, link_info, 2924 link_order, data, 2925 relocatable, 2926 symbols); 2927 2928 memcpy (data, coff_section_data (input_bfd, input_section)->contents, 2929 (size_t) input_section->size); 2930 2931 if ((input_section->flags & SEC_RELOC) != 0 2932 && input_section->reloc_count > 0) 2933 { 2934 bfd_size_type symesz = bfd_coff_symesz (input_bfd); 2935 bfd_byte *esym, *esymend; 2936 struct internal_syment *isymp; 2937 asection **secpp; 2938 bfd_size_type amt; 2939 2940 if (! _bfd_coff_get_external_symbols (input_bfd)) 2941 goto error_return; 2942 2943 internal_relocs = (_bfd_coff_read_internal_relocs 2944 (input_bfd, input_section, FALSE, (bfd_byte *) NULL, 2945 FALSE, (struct internal_reloc *) NULL)); 2946 if (internal_relocs == NULL) 2947 goto error_return; 2948 2949 amt = obj_raw_syment_count (input_bfd); 2950 amt *= sizeof (struct internal_syment); 2951 internal_syms = (struct internal_syment *) bfd_malloc (amt); 2952 if (internal_syms == NULL) 2953 goto error_return; 2954 2955 amt = obj_raw_syment_count (input_bfd); 2956 amt *= sizeof (asection *); 2957 sections = (asection **) bfd_malloc (amt); 2958 if (sections == NULL) 2959 goto error_return; 2960 2961 isymp = internal_syms; 2962 secpp = sections; 2963 esym = (bfd_byte *) obj_coff_external_syms (input_bfd); 2964 esymend = esym + obj_raw_syment_count (input_bfd) * symesz; 2965 while (esym < esymend) 2966 { 2967 bfd_coff_swap_sym_in (input_bfd, esym, isymp); 2968 2969 if (isymp->n_scnum != 0) 2970 *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum); 2971 else 2972 { 2973 if (isymp->n_value == 0) 2974 *secpp = bfd_und_section_ptr; 2975 else 2976 *secpp = bfd_com_section_ptr; 2977 } 2978 2979 esym += (isymp->n_numaux + 1) * symesz; 2980 secpp += isymp->n_numaux + 1; 2981 isymp += isymp->n_numaux + 1; 2982 } 2983 2984 if (! sh_relocate_section (output_bfd, link_info, input_bfd, 2985 input_section, data, internal_relocs, 2986 internal_syms, sections)) 2987 goto error_return; 2988 2989 free (sections); 2990 sections = NULL; 2991 free (internal_syms); 2992 internal_syms = NULL; 2993 free (internal_relocs); 2994 internal_relocs = NULL; 2995 } 2996 2997 return data; 2998 2999 error_return: 3000 if (internal_relocs != NULL) 3001 free (internal_relocs); 3002 if (internal_syms != NULL) 3003 free (internal_syms); 3004 if (sections != NULL) 3005 free (sections); 3006 return NULL; 3007 } 3008 3009 /* The target vectors. */ 3010 3011 #ifndef TARGET_SHL_SYM 3012 CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE) 3013 #endif 3014 3015 #ifdef TARGET_SHL_SYM 3016 #define TARGET_SYM TARGET_SHL_SYM 3017 #else 3018 #define TARGET_SYM sh_coff_le_vec 3019 #endif 3020 3021 #ifndef TARGET_SHL_NAME 3022 #define TARGET_SHL_NAME "coff-shl" 3023 #endif 3024 3025 #ifdef COFF_WITH_PE 3026 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE, 3027 SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE); 3028 #else 3029 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE, 3030 0, '_', NULL, COFF_SWAP_TABLE) 3031 #endif 3032 3033 #ifndef TARGET_SHL_SYM 3034 3035 /* Some people want versions of the SH COFF target which do not align 3036 to 16 byte boundaries. We implement that by adding a couple of new 3037 target vectors. These are just like the ones above, but they 3038 change the default section alignment. To generate them in the 3039 assembler, use -small. To use them in the linker, use -b 3040 coff-sh{l}-small and -oformat coff-sh{l}-small. 3041 3042 Yes, this is a horrible hack. A general solution for setting 3043 section alignment in COFF is rather complex. ELF handles this 3044 correctly. */ 3045 3046 /* Only recognize the small versions if the target was not defaulted. 3047 Otherwise we won't recognize the non default endianness. */ 3048 3049 static const bfd_target * 3050 coff_small_object_p (bfd *abfd) 3051 { 3052 if (abfd->target_defaulted) 3053 { 3054 bfd_set_error (bfd_error_wrong_format); 3055 return NULL; 3056 } 3057 return coff_object_p (abfd); 3058 } 3059 3060 /* Set the section alignment for the small versions. */ 3061 3062 static bfd_boolean 3063 coff_small_new_section_hook (bfd *abfd, asection *section) 3064 { 3065 if (! coff_new_section_hook (abfd, section)) 3066 return FALSE; 3067 3068 /* We must align to at least a four byte boundary, because longword 3069 accesses must be on a four byte boundary. */ 3070 if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER) 3071 section->alignment_power = 2; 3072 3073 return TRUE; 3074 } 3075 3076 /* This is copied from bfd_coff_std_swap_table so that we can change 3077 the default section alignment power. */ 3078 3079 static bfd_coff_backend_data bfd_coff_small_swap_table = 3080 { 3081 coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in, 3082 coff_swap_aux_out, coff_swap_sym_out, 3083 coff_swap_lineno_out, coff_swap_reloc_out, 3084 coff_swap_filehdr_out, coff_swap_aouthdr_out, 3085 coff_swap_scnhdr_out, 3086 FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN, 3087 #ifdef COFF_LONG_FILENAMES 3088 TRUE, 3089 #else 3090 FALSE, 3091 #endif 3092 COFF_DEFAULT_LONG_SECTION_NAMES, 3093 2, 3094 #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS 3095 TRUE, 3096 #else 3097 FALSE, 3098 #endif 3099 #ifdef COFF_DEBUG_STRING_WIDE_PREFIX 3100 4, 3101 #else 3102 2, 3103 #endif 3104 32768, 3105 coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in, 3106 coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook, 3107 coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook, 3108 coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook, 3109 coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate, 3110 coff_classify_symbol, coff_compute_section_file_positions, 3111 coff_start_final_link, coff_relocate_section, coff_rtype_to_howto, 3112 coff_adjust_symndx, coff_link_add_one_symbol, 3113 coff_link_output_has_begun, coff_final_link_postscript, 3114 bfd_pe_print_pdata 3115 }; 3116 3117 #define coff_small_close_and_cleanup \ 3118 coff_close_and_cleanup 3119 #define coff_small_bfd_free_cached_info \ 3120 coff_bfd_free_cached_info 3121 #define coff_small_get_section_contents \ 3122 coff_get_section_contents 3123 #define coff_small_get_section_contents_in_window \ 3124 coff_get_section_contents_in_window 3125 3126 extern const bfd_target sh_coff_small_le_vec; 3127 3128 const bfd_target sh_coff_small_vec = 3129 { 3130 "coff-sh-small", /* name */ 3131 bfd_target_coff_flavour, 3132 BFD_ENDIAN_BIG, /* data byte order is big */ 3133 BFD_ENDIAN_BIG, /* header byte order is big */ 3134 3135 (HAS_RELOC | EXEC_P /* object flags */ 3136 | HAS_LINENO | HAS_DEBUG 3137 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE), 3138 3139 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), 3140 '_', /* leading symbol underscore */ 3141 '/', /* ar_pad_char */ 3142 15, /* ar_max_namelen */ 3143 0, /* match priority. */ 3144 bfd_getb64, bfd_getb_signed_64, bfd_putb64, 3145 bfd_getb32, bfd_getb_signed_32, bfd_putb32, 3146 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */ 3147 bfd_getb64, bfd_getb_signed_64, bfd_putb64, 3148 bfd_getb32, bfd_getb_signed_32, bfd_putb32, 3149 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */ 3150 3151 { /* bfd_check_format */ 3152 _bfd_dummy_target, 3153 coff_small_object_p, 3154 bfd_generic_archive_p, 3155 _bfd_dummy_target 3156 }, 3157 { /* bfd_set_format */ 3158 _bfd_bool_bfd_false_error, 3159 coff_mkobject, 3160 _bfd_generic_mkarchive, 3161 _bfd_bool_bfd_false_error 3162 }, 3163 { /* bfd_write_contents */ 3164 _bfd_bool_bfd_false_error, 3165 coff_write_object_contents, 3166 _bfd_write_archive_contents, 3167 _bfd_bool_bfd_false_error 3168 }, 3169 3170 BFD_JUMP_TABLE_GENERIC (coff_small), 3171 BFD_JUMP_TABLE_COPY (coff), 3172 BFD_JUMP_TABLE_CORE (_bfd_nocore), 3173 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff), 3174 BFD_JUMP_TABLE_SYMBOLS (coff), 3175 BFD_JUMP_TABLE_RELOCS (coff), 3176 BFD_JUMP_TABLE_WRITE (coff), 3177 BFD_JUMP_TABLE_LINK (coff), 3178 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), 3179 3180 &sh_coff_small_le_vec, 3181 3182 &bfd_coff_small_swap_table 3183 }; 3184 3185 const bfd_target sh_coff_small_le_vec = 3186 { 3187 "coff-shl-small", /* name */ 3188 bfd_target_coff_flavour, 3189 BFD_ENDIAN_LITTLE, /* data byte order is little */ 3190 BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/ 3191 3192 (HAS_RELOC | EXEC_P /* object flags */ 3193 | HAS_LINENO | HAS_DEBUG 3194 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE), 3195 3196 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), 3197 '_', /* leading symbol underscore */ 3198 '/', /* ar_pad_char */ 3199 15, /* ar_max_namelen */ 3200 0, /* match priority. */ 3201 bfd_getl64, bfd_getl_signed_64, bfd_putl64, 3202 bfd_getl32, bfd_getl_signed_32, bfd_putl32, 3203 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */ 3204 bfd_getl64, bfd_getl_signed_64, bfd_putl64, 3205 bfd_getl32, bfd_getl_signed_32, bfd_putl32, 3206 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */ 3207 3208 { /* bfd_check_format */ 3209 _bfd_dummy_target, 3210 coff_small_object_p, 3211 bfd_generic_archive_p, 3212 _bfd_dummy_target 3213 }, 3214 { /* bfd_set_format */ 3215 _bfd_bool_bfd_false_error, 3216 coff_mkobject, 3217 _bfd_generic_mkarchive, 3218 _bfd_bool_bfd_false_error 3219 }, 3220 { /* bfd_write_contents */ 3221 _bfd_bool_bfd_false_error, 3222 coff_write_object_contents, 3223 _bfd_write_archive_contents, 3224 _bfd_bool_bfd_false_error 3225 }, 3226 3227 BFD_JUMP_TABLE_GENERIC (coff_small), 3228 BFD_JUMP_TABLE_COPY (coff), 3229 BFD_JUMP_TABLE_CORE (_bfd_nocore), 3230 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff), 3231 BFD_JUMP_TABLE_SYMBOLS (coff), 3232 BFD_JUMP_TABLE_RELOCS (coff), 3233 BFD_JUMP_TABLE_WRITE (coff), 3234 BFD_JUMP_TABLE_LINK (coff), 3235 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), 3236 3237 &sh_coff_small_vec, 3238 3239 &bfd_coff_small_swap_table 3240 }; 3241 #endif 3242