xref: /netbsd-src/external/cddl/osnet/dist/uts/common/sys/dtrace_impl.h (revision 413d532bcc3f62d122e56d92e13ac64825a40baf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD: src/sys/cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h,v 1.3.4.1 2009/08/03 08:13:06 kensmith Exp $
22  */
23 
24 /*
25  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 #ifndef _SYS_DTRACE_IMPL_H
30 #define	_SYS_DTRACE_IMPL_H
31 
32 /* #pragma ident	"%Z%%M%	%I%	%E% SMI" */
33 
34 #ifdef	__cplusplus
35 extern "C" {
36 #endif
37 
38 /*
39  * DTrace Dynamic Tracing Software: Kernel Implementation Interfaces
40  *
41  * Note: The contents of this file are private to the implementation of the
42  * Solaris system and DTrace subsystem and are subject to change at any time
43  * without notice.  Applications and drivers using these interfaces will fail
44  * to run on future releases.  These interfaces should not be used for any
45  * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
46  * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
47  */
48 
49 #include <sys/dtrace.h>
50 #if !defined(sun)
51 #ifdef __sparcv9
52 typedef uint32_t		pc_t;
53 #else
54 typedef uintptr_t		pc_t;
55 #endif
56 typedef	u_long			greg_t;
57 #endif
58 
59 /*
60  * DTrace Implementation Constants and Typedefs
61  */
62 #define	DTRACE_MAXPROPLEN		128
63 #define	DTRACE_DYNVAR_CHUNKSIZE		256
64 
65 struct dtrace_probe;
66 struct dtrace_ecb;
67 struct dtrace_predicate;
68 struct dtrace_action;
69 struct dtrace_provider;
70 struct dtrace_state;
71 
72 typedef struct dtrace_probe dtrace_probe_t;
73 typedef struct dtrace_ecb dtrace_ecb_t;
74 typedef struct dtrace_predicate dtrace_predicate_t;
75 typedef struct dtrace_action dtrace_action_t;
76 typedef struct dtrace_provider dtrace_provider_t;
77 typedef struct dtrace_meta dtrace_meta_t;
78 typedef struct dtrace_state dtrace_state_t;
79 typedef uint32_t dtrace_optid_t;
80 typedef uint32_t dtrace_specid_t;
81 typedef uint64_t dtrace_genid_t;
82 
83 /*
84  * DTrace Probes
85  *
86  * The probe is the fundamental unit of the DTrace architecture.  Probes are
87  * created by DTrace providers, and managed by the DTrace framework.  A probe
88  * is identified by a unique <provider, module, function, name> tuple, and has
89  * a unique probe identifier assigned to it.  (Some probes are not associated
90  * with a specific point in text; these are called _unanchored probes_ and have
91  * no module or function associated with them.)  Probes are represented as a
92  * dtrace_probe structure.  To allow quick lookups based on each element of the
93  * probe tuple, probes are hashed by each of provider, module, function and
94  * name.  (If a lookup is performed based on a regular expression, a
95  * dtrace_probekey is prepared, and a linear search is performed.) Each probe
96  * is additionally pointed to by a linear array indexed by its identifier.  The
97  * identifier is the provider's mechanism for indicating to the DTrace
98  * framework that a probe has fired:  the identifier is passed as the first
99  * argument to dtrace_probe(), where it is then mapped into the corresponding
100  * dtrace_probe structure.  From the dtrace_probe structure, dtrace_probe() can
101  * iterate over the probe's list of enabling control blocks; see "DTrace
102  * Enabling Control Blocks", below.)
103  */
104 struct dtrace_probe {
105 	dtrace_id_t dtpr_id;			/* probe identifier */
106 	dtrace_ecb_t *dtpr_ecb;			/* ECB list; see below */
107 	dtrace_ecb_t *dtpr_ecb_last;		/* last ECB in list */
108 	void *dtpr_arg;				/* provider argument */
109 	dtrace_cacheid_t dtpr_predcache;	/* predicate cache ID */
110 	int dtpr_aframes;			/* artificial frames */
111 	dtrace_provider_t *dtpr_provider;	/* pointer to provider */
112 	char *dtpr_mod;				/* probe's module name */
113 	char *dtpr_func;			/* probe's function name */
114 	char *dtpr_name;			/* probe's name */
115 	dtrace_probe_t *dtpr_nextmod;		/* next in module hash */
116 	dtrace_probe_t *dtpr_prevmod;		/* previous in module hash */
117 	dtrace_probe_t *dtpr_nextfunc;		/* next in function hash */
118 	dtrace_probe_t *dtpr_prevfunc;		/* previous in function hash */
119 	dtrace_probe_t *dtpr_nextname;		/* next in name hash */
120 	dtrace_probe_t *dtpr_prevname;		/* previous in name hash */
121 	dtrace_genid_t dtpr_gen;		/* probe generation ID */
122 };
123 
124 typedef int dtrace_probekey_f(const char *, const char *, int);
125 
126 typedef struct dtrace_probekey {
127 	char *dtpk_prov;			/* provider name to match */
128 	dtrace_probekey_f *dtpk_pmatch;		/* provider matching function */
129 	char *dtpk_mod;				/* module name to match */
130 	dtrace_probekey_f *dtpk_mmatch;		/* module matching function */
131 	char *dtpk_func;			/* func name to match */
132 	dtrace_probekey_f *dtpk_fmatch;		/* func matching function */
133 	char *dtpk_name;			/* name to match */
134 	dtrace_probekey_f *dtpk_nmatch;		/* name matching function */
135 	dtrace_id_t dtpk_id;			/* identifier to match */
136 } dtrace_probekey_t;
137 
138 typedef struct dtrace_hashbucket {
139 	struct dtrace_hashbucket *dthb_next;	/* next on hash chain */
140 	dtrace_probe_t *dthb_chain;		/* chain of probes */
141 	int dthb_len;				/* number of probes here */
142 } dtrace_hashbucket_t;
143 
144 typedef struct dtrace_hash {
145 	dtrace_hashbucket_t **dth_tab;		/* hash table */
146 	int dth_size;				/* size of hash table */
147 	int dth_mask;				/* mask to index into table */
148 	int dth_nbuckets;			/* total number of buckets */
149 	uintptr_t dth_nextoffs;			/* offset of next in probe */
150 	uintptr_t dth_prevoffs;			/* offset of prev in probe */
151 	uintptr_t dth_stroffs;			/* offset of str in probe */
152 } dtrace_hash_t;
153 
154 /*
155  * DTrace Enabling Control Blocks
156  *
157  * When a provider wishes to fire a probe, it calls into dtrace_probe(),
158  * passing the probe identifier as the first argument.  As described above,
159  * dtrace_probe() maps the identifier into a pointer to a dtrace_probe_t
160  * structure.  This structure contains information about the probe, and a
161  * pointer to the list of Enabling Control Blocks (ECBs).  Each ECB points to
162  * DTrace consumer state, and contains an optional predicate, and a list of
163  * actions.  (Shown schematically below.)  The ECB abstraction allows a single
164  * probe to be multiplexed across disjoint consumers, or across disjoint
165  * enablings of a single probe within one consumer.
166  *
167  *   Enabling Control Block
168  *        dtrace_ecb_t
169  * +------------------------+
170  * | dtrace_epid_t ---------+--------------> Enabled Probe ID (EPID)
171  * | dtrace_state_t * ------+--------------> State associated with this ECB
172  * | dtrace_predicate_t * --+---------+
173  * | dtrace_action_t * -----+----+    |
174  * | dtrace_ecb_t * ---+    |    |    |       Predicate (if any)
175  * +-------------------+----+    |    |       dtrace_predicate_t
176  *                     |         |    +---> +--------------------+
177  *                     |         |          | dtrace_difo_t * ---+----> DIFO
178  *                     |         |          +--------------------+
179  *                     |         |
180  *            Next ECB |         |           Action
181  *            (if any) |         |       dtrace_action_t
182  *                     :         +--> +-------------------+
183  *                     :              | dtrace_actkind_t -+------> kind
184  *                     v              | dtrace_difo_t * --+------> DIFO (if any)
185  *                                    | dtrace_recdesc_t -+------> record descr.
186  *                                    | dtrace_action_t * +------+
187  *                                    +-------------------+      |
188  *                                                               | Next action
189  *                               +-------------------------------+  (if any)
190  *                               |
191  *                               |           Action
192  *                               |       dtrace_action_t
193  *                               +--> +-------------------+
194  *                                    | dtrace_actkind_t -+------> kind
195  *                                    | dtrace_difo_t * --+------> DIFO (if any)
196  *                                    | dtrace_action_t * +------+
197  *                                    +-------------------+      |
198  *                                                               | Next action
199  *                               +-------------------------------+  (if any)
200  *                               |
201  *                               :
202  *                               v
203  *
204  *
205  * dtrace_probe() iterates over the ECB list.  If the ECB needs less space
206  * than is available in the principal buffer, the ECB is processed:  if the
207  * predicate is non-NULL, the DIF object is executed.  If the result is
208  * non-zero, the action list is processed, with each action being executed
209  * accordingly.  When the action list has been completely executed, processing
210  * advances to the next ECB.  processing advances to the next ECB.  If the
211  * result is non-zero; For each ECB, it first determines the The ECB
212  * abstraction allows disjoint consumers to multiplex on single probes.
213  */
214 struct dtrace_ecb {
215 	dtrace_epid_t dte_epid;			/* enabled probe ID */
216 	uint32_t dte_alignment;			/* required alignment */
217 	size_t dte_needed;			/* bytes needed */
218 	size_t dte_size;			/* total size of payload */
219 	dtrace_predicate_t *dte_predicate;	/* predicate, if any */
220 	dtrace_action_t *dte_action;		/* actions, if any */
221 	dtrace_ecb_t *dte_next;			/* next ECB on probe */
222 	dtrace_state_t *dte_state;		/* pointer to state */
223 	uint32_t dte_cond;			/* security condition */
224 	dtrace_probe_t *dte_probe;		/* pointer to probe */
225 	dtrace_action_t *dte_action_last;	/* last action on ECB */
226 	uint64_t dte_uarg;			/* library argument */
227 };
228 
229 struct dtrace_predicate {
230 	dtrace_difo_t *dtp_difo;		/* DIF object */
231 	dtrace_cacheid_t dtp_cacheid;		/* cache identifier */
232 	int dtp_refcnt;				/* reference count */
233 };
234 
235 struct dtrace_action {
236 	dtrace_actkind_t dta_kind;		/* kind of action */
237 	uint16_t dta_intuple;			/* boolean:  in aggregation */
238 	uint32_t dta_refcnt;			/* reference count */
239 	dtrace_difo_t *dta_difo;		/* pointer to DIFO */
240 	dtrace_recdesc_t dta_rec;		/* record description */
241 	dtrace_action_t *dta_prev;		/* previous action */
242 	dtrace_action_t *dta_next;		/* next action */
243 };
244 
245 typedef struct dtrace_aggregation {
246 	dtrace_action_t dtag_action;		/* action; must be first */
247 	dtrace_aggid_t dtag_id;			/* identifier */
248 	dtrace_ecb_t *dtag_ecb;			/* corresponding ECB */
249 	dtrace_action_t *dtag_first;		/* first action in tuple */
250 	uint32_t dtag_base;			/* base of aggregation */
251 	uint8_t dtag_hasarg;			/* boolean:  has argument */
252 	uint64_t dtag_initial;			/* initial value */
253 	void (*dtag_aggregate)(uint64_t *, uint64_t, uint64_t);
254 } dtrace_aggregation_t;
255 
256 /*
257  * DTrace Buffers
258  *
259  * Principal buffers, aggregation buffers, and speculative buffers are all
260  * managed with the dtrace_buffer structure.  By default, this structure
261  * includes twin data buffers -- dtb_tomax and dtb_xamot -- that serve as the
262  * active and passive buffers, respectively.  For speculative buffers,
263  * dtb_xamot will be NULL; for "ring" and "fill" buffers, dtb_xamot will point
264  * to a scratch buffer.  For all buffer types, the dtrace_buffer structure is
265  * always allocated on a per-CPU basis; a single dtrace_buffer structure is
266  * never shared among CPUs.  (That is, there is never true sharing of the
267  * dtrace_buffer structure; to prevent false sharing of the structure, it must
268  * always be aligned to the coherence granularity -- generally 64 bytes.)
269  *
270  * One of the critical design decisions of DTrace is that a given ECB always
271  * stores the same quantity and type of data.  This is done to assure that the
272  * only metadata required for an ECB's traced data is the EPID.  That is, from
273  * the EPID, the consumer can determine the data layout.  (The data buffer
274  * layout is shown schematically below.)  By assuring that one can determine
275  * data layout from the EPID, the metadata stream can be separated from the
276  * data stream -- simplifying the data stream enormously.
277  *
278  *      base of data buffer --->  +------+--------------------+------+
279  *                                | EPID | data               | EPID |
280  *                                +------+--------+------+----+------+
281  *                                | data          | EPID | data      |
282  *                                +---------------+------+-----------+
283  *                                | data, cont.                      |
284  *                                +------+--------------------+------+
285  *                                | EPID | data               |      |
286  *                                +------+--------------------+      |
287  *                                |                ||                |
288  *                                |                ||                |
289  *                                |                \/                |
290  *                                :                                  :
291  *                                .                                  .
292  *                                .                                  .
293  *                                .                                  .
294  *                                :                                  :
295  *                                |                                  |
296  *     limit of data buffer --->  +----------------------------------+
297  *
298  * When evaluating an ECB, dtrace_probe() determines if the ECB's needs of the
299  * principal buffer (both scratch and payload) exceed the available space.  If
300  * the ECB's needs exceed available space (and if the principal buffer policy
301  * is the default "switch" policy), the ECB is dropped, the buffer's drop count
302  * is incremented, and processing advances to the next ECB.  If the ECB's needs
303  * can be met with the available space, the ECB is processed, but the offset in
304  * the principal buffer is only advanced if the ECB completes processing
305  * without error.
306  *
307  * When a buffer is to be switched (either because the buffer is the principal
308  * buffer with a "switch" policy or because it is an aggregation buffer), a
309  * cross call is issued to the CPU associated with the buffer.  In the cross
310  * call context, interrupts are disabled, and the active and the inactive
311  * buffers are atomically switched.  This involves switching the data pointers,
312  * copying the various state fields (offset, drops, errors, etc.) into their
313  * inactive equivalents, and clearing the state fields.  Because interrupts are
314  * disabled during this procedure, the switch is guaranteed to appear atomic to
315  * dtrace_probe().
316  *
317  * DTrace Ring Buffering
318  *
319  * To process a ring buffer correctly, one must know the oldest valid record.
320  * Processing starts at the oldest record in the buffer and continues until
321  * the end of the buffer is reached.  Processing then resumes starting with
322  * the record stored at offset 0 in the buffer, and continues until the
323  * youngest record is processed.  If trace records are of a fixed-length,
324  * determining the oldest record is trivial:
325  *
326  *   - If the ring buffer has not wrapped, the oldest record is the record
327  *     stored at offset 0.
328  *
329  *   - If the ring buffer has wrapped, the oldest record is the record stored
330  *     at the current offset.
331  *
332  * With variable length records, however, just knowing the current offset
333  * doesn't suffice for determining the oldest valid record:  assuming that one
334  * allows for arbitrary data, one has no way of searching forward from the
335  * current offset to find the oldest valid record.  (That is, one has no way
336  * of separating data from metadata.) It would be possible to simply refuse to
337  * process any data in the ring buffer between the current offset and the
338  * limit, but this leaves (potentially) an enormous amount of otherwise valid
339  * data unprocessed.
340  *
341  * To effect ring buffering, we track two offsets in the buffer:  the current
342  * offset and the _wrapped_ offset.  If a request is made to reserve some
343  * amount of data, and the buffer has wrapped, the wrapped offset is
344  * incremented until the wrapped offset minus the current offset is greater
345  * than or equal to the reserve request.  This is done by repeatedly looking
346  * up the ECB corresponding to the EPID at the current wrapped offset, and
347  * incrementing the wrapped offset by the size of the data payload
348  * corresponding to that ECB.  If this offset is greater than or equal to the
349  * limit of the data buffer, the wrapped offset is set to 0.  Thus, the
350  * current offset effectively "chases" the wrapped offset around the buffer.
351  * Schematically:
352  *
353  *      base of data buffer --->  +------+--------------------+------+
354  *                                | EPID | data               | EPID |
355  *                                +------+--------+------+----+------+
356  *                                | data          | EPID | data      |
357  *                                +---------------+------+-----------+
358  *                                | data, cont.                      |
359  *                                +------+---------------------------+
360  *                                | EPID | data                      |
361  *           current offset --->  +------+---------------------------+
362  *                                | invalid data                     |
363  *           wrapped offset --->  +------+--------------------+------+
364  *                                | EPID | data               | EPID |
365  *                                +------+--------+------+----+------+
366  *                                | data          | EPID | data      |
367  *                                +---------------+------+-----------+
368  *                                :                                  :
369  *                                .                                  .
370  *                                .        ... valid data ...        .
371  *                                .                                  .
372  *                                :                                  :
373  *                                +------+-------------+------+------+
374  *                                | EPID | data        | EPID | data |
375  *                                +------+------------++------+------+
376  *                                | data, cont.       | leftover     |
377  *     limit of data buffer --->  +-------------------+--------------+
378  *
379  * If the amount of requested buffer space exceeds the amount of space
380  * available between the current offset and the end of the buffer:
381  *
382  *  (1)  all words in the data buffer between the current offset and the limit
383  *       of the data buffer (marked "leftover", above) are set to
384  *       DTRACE_EPIDNONE
385  *
386  *  (2)  the wrapped offset is set to zero
387  *
388  *  (3)  the iteration process described above occurs until the wrapped offset
389  *       is greater than the amount of desired space.
390  *
391  * The wrapped offset is implemented by (re-)using the inactive offset.
392  * In a "switch" buffer policy, the inactive offset stores the offset in
393  * the inactive buffer; in a "ring" buffer policy, it stores the wrapped
394  * offset.
395  *
396  * DTrace Scratch Buffering
397  *
398  * Some ECBs may wish to allocate dynamically-sized temporary scratch memory.
399  * To accommodate such requests easily, scratch memory may be allocated in
400  * the buffer beyond the current offset plus the needed memory of the current
401  * ECB.  If there isn't sufficient room in the buffer for the requested amount
402  * of scratch space, the allocation fails and an error is generated.  Scratch
403  * memory is tracked in the dtrace_mstate_t and is automatically freed when
404  * the ECB ceases processing.  Note that ring buffers cannot allocate their
405  * scratch from the principal buffer -- lest they needlessly overwrite older,
406  * valid data.  Ring buffers therefore have their own dedicated scratch buffer
407  * from which scratch is allocated.
408  */
409 #define	DTRACEBUF_RING		0x0001		/* bufpolicy set to "ring" */
410 #define	DTRACEBUF_FILL		0x0002		/* bufpolicy set to "fill" */
411 #define	DTRACEBUF_NOSWITCH	0x0004		/* do not switch buffer */
412 #define	DTRACEBUF_WRAPPED	0x0008		/* ring buffer has wrapped */
413 #define	DTRACEBUF_DROPPED	0x0010		/* drops occurred */
414 #define	DTRACEBUF_ERROR		0x0020		/* errors occurred */
415 #define	DTRACEBUF_FULL		0x0040		/* "fill" buffer is full */
416 #define	DTRACEBUF_CONSUMED	0x0080		/* buffer has been consumed */
417 #define	DTRACEBUF_INACTIVE	0x0100		/* buffer is not yet active */
418 
419 typedef struct dtrace_buffer {
420 	uint64_t dtb_offset;			/* current offset in buffer */
421 	uint64_t dtb_size;			/* size of buffer */
422 	uint32_t dtb_flags;			/* flags */
423 	uint32_t dtb_drops;			/* number of drops */
424 	caddr_t dtb_tomax;			/* active buffer */
425 	caddr_t dtb_xamot;			/* inactive buffer */
426 	uint32_t dtb_xamot_flags;		/* inactive flags */
427 	uint32_t dtb_xamot_drops;		/* drops in inactive buffer */
428 	uint64_t dtb_xamot_offset;		/* offset in inactive buffer */
429 	uint32_t dtb_errors;			/* number of errors */
430 	uint32_t dtb_xamot_errors;		/* errors in inactive buffer */
431 #ifndef _LP64
432 	uint64_t dtb_pad1;
433 #endif
434 } dtrace_buffer_t;
435 
436 /*
437  * DTrace Aggregation Buffers
438  *
439  * Aggregation buffers use much of the same mechanism as described above
440  * ("DTrace Buffers").  However, because an aggregation is fundamentally a
441  * hash, there exists dynamic metadata associated with an aggregation buffer
442  * that is not associated with other kinds of buffers.  This aggregation
443  * metadata is _only_ relevant for the in-kernel implementation of
444  * aggregations; it is not actually relevant to user-level consumers.  To do
445  * this, we allocate dynamic aggregation data (hash keys and hash buckets)
446  * starting below the _limit_ of the buffer, and we allocate data from the
447  * _base_ of the buffer.  When the aggregation buffer is copied out, _only_ the
448  * data is copied out; the metadata is simply discarded.  Schematically,
449  * aggregation buffers look like:
450  *
451  *      base of data buffer --->  +-------+------+-----------+-------+
452  *                                | aggid | key  | value     | aggid |
453  *                                +-------+------+-----------+-------+
454  *                                | key                              |
455  *                                +-------+-------+-----+------------+
456  *                                | value | aggid | key | value      |
457  *                                +-------+------++-----+------+-----+
458  *                                | aggid | key  | value       |     |
459  *                                +-------+------+-------------+     |
460  *                                |                ||                |
461  *                                |                ||                |
462  *                                |                \/                |
463  *                                :                                  :
464  *                                .                                  .
465  *                                .                                  .
466  *                                .                                  .
467  *                                :                                  :
468  *                                |                /\                |
469  *                                |                ||   +------------+
470  *                                |                ||   |            |
471  *                                +---------------------+            |
472  *                                | hash keys                        |
473  *                                | (dtrace_aggkey structures)       |
474  *                                |                                  |
475  *                                +----------------------------------+
476  *                                | hash buckets                     |
477  *                                | (dtrace_aggbuffer structure)     |
478  *                                |                                  |
479  *     limit of data buffer --->  +----------------------------------+
480  *
481  *
482  * As implied above, just as we assure that ECBs always store a constant
483  * amount of data, we assure that a given aggregation -- identified by its
484  * aggregation ID -- always stores data of a constant quantity and type.
485  * As with EPIDs, this allows the aggregation ID to serve as the metadata for a
486  * given record.
487  *
488  * Note that the size of the dtrace_aggkey structure must be sizeof (uintptr_t)
489  * aligned.  (If this the structure changes such that this becomes false, an
490  * assertion will fail in dtrace_aggregate().)
491  */
492 typedef struct dtrace_aggkey {
493 	uint32_t dtak_hashval;			/* hash value */
494 	uint32_t dtak_action:4;			/* action -- 4 bits */
495 	uint32_t dtak_size:28;			/* size -- 28 bits */
496 	caddr_t dtak_data;			/* data pointer */
497 	struct dtrace_aggkey *dtak_next;	/* next in hash chain */
498 } dtrace_aggkey_t;
499 
500 typedef struct dtrace_aggbuffer {
501 	uintptr_t dtagb_hashsize;		/* number of buckets */
502 	uintptr_t dtagb_free;			/* free list of keys */
503 	dtrace_aggkey_t **dtagb_hash;		/* hash table */
504 } dtrace_aggbuffer_t;
505 
506 /*
507  * DTrace Speculations
508  *
509  * Speculations have a per-CPU buffer and a global state.  Once a speculation
510  * buffer has been comitted or discarded, it cannot be reused until all CPUs
511  * have taken the same action (commit or discard) on their respective
512  * speculative buffer.  However, because DTrace probes may execute in arbitrary
513  * context, other CPUs cannot simply be cross-called at probe firing time to
514  * perform the necessary commit or discard.  The speculation states thus
515  * optimize for the case that a speculative buffer is only active on one CPU at
516  * the time of a commit() or discard() -- for if this is the case, other CPUs
517  * need not take action, and the speculation is immediately available for
518  * reuse.  If the speculation is active on multiple CPUs, it must be
519  * asynchronously cleaned -- potentially leading to a higher rate of dirty
520  * speculative drops.  The speculation states are as follows:
521  *
522  *  DTRACESPEC_INACTIVE       <= Initial state; inactive speculation
523  *  DTRACESPEC_ACTIVE         <= Allocated, but not yet speculatively traced to
524  *  DTRACESPEC_ACTIVEONE      <= Speculatively traced to on one CPU
525  *  DTRACESPEC_ACTIVEMANY     <= Speculatively traced to on more than one CPU
526  *  DTRACESPEC_COMMITTING     <= Currently being commited on one CPU
527  *  DTRACESPEC_COMMITTINGMANY <= Currently being commited on many CPUs
528  *  DTRACESPEC_DISCARDING     <= Currently being discarded on many CPUs
529  *
530  * The state transition diagram is as follows:
531  *
532  *     +----------------------------------------------------------+
533  *     |                                                          |
534  *     |                      +------------+                      |
535  *     |  +-------------------| COMMITTING |<-----------------+   |
536  *     |  |                   +------------+                  |   |
537  *     |  | copied spec.            ^             commit() on |   | discard() on
538  *     |  | into principal          |              active CPU |   | active CPU
539  *     |  |                         | commit()                |   |
540  *     V  V                         |                         |   |
541  * +----------+                 +--------+                +-----------+
542  * | INACTIVE |---------------->| ACTIVE |--------------->| ACTIVEONE |
543  * +----------+  speculation()  +--------+  speculate()   +-----------+
544  *     ^  ^                         |                         |   |
545  *     |  |                         | discard()               |   |
546  *     |  | asynchronously          |            discard() on |   | speculate()
547  *     |  | cleaned                 V            inactive CPU |   | on inactive
548  *     |  |                   +------------+                  |   | CPU
549  *     |  +-------------------| DISCARDING |<-----------------+   |
550  *     |                      +------------+                      |
551  *     | asynchronously             ^                             |
552  *     | copied spec.               |       discard()             |
553  *     | into principal             +------------------------+    |
554  *     |                                                     |    V
555  *  +----------------+             commit()              +------------+
556  *  | COMMITTINGMANY |<----------------------------------| ACTIVEMANY |
557  *  +----------------+                                   +------------+
558  */
559 typedef enum dtrace_speculation_state {
560 	DTRACESPEC_INACTIVE = 0,
561 	DTRACESPEC_ACTIVE,
562 	DTRACESPEC_ACTIVEONE,
563 	DTRACESPEC_ACTIVEMANY,
564 	DTRACESPEC_COMMITTING,
565 	DTRACESPEC_COMMITTINGMANY,
566 	DTRACESPEC_DISCARDING
567 } dtrace_speculation_state_t;
568 
569 typedef struct dtrace_speculation {
570 	dtrace_speculation_state_t dtsp_state;	/* current speculation state */
571 	int dtsp_cleaning;			/* non-zero if being cleaned */
572 	dtrace_buffer_t *dtsp_buffer;		/* speculative buffer */
573 } dtrace_speculation_t;
574 
575 /*
576  * DTrace Dynamic Variables
577  *
578  * The dynamic variable problem is obviously decomposed into two subproblems:
579  * allocating new dynamic storage, and freeing old dynamic storage.  The
580  * presence of the second problem makes the first much more complicated -- or
581  * rather, the absence of the second renders the first trivial.  This is the
582  * case with aggregations, for which there is effectively no deallocation of
583  * dynamic storage.  (Or more accurately, all dynamic storage is deallocated
584  * when a snapshot is taken of the aggregation.)  As DTrace dynamic variables
585  * allow for both dynamic allocation and dynamic deallocation, the
586  * implementation of dynamic variables is quite a bit more complicated than
587  * that of their aggregation kin.
588  *
589  * We observe that allocating new dynamic storage is tricky only because the
590  * size can vary -- the allocation problem is much easier if allocation sizes
591  * are uniform.  We further observe that in D, the size of dynamic variables is
592  * actually _not_ dynamic -- dynamic variable sizes may be determined by static
593  * analysis of DIF text.  (This is true even of putatively dynamically-sized
594  * objects like strings and stacks, the sizes of which are dictated by the
595  * "stringsize" and "stackframes" variables, respectively.)  We exploit this by
596  * performing this analysis on all DIF before enabling any probes.  For each
597  * dynamic load or store, we calculate the dynamically-allocated size plus the
598  * size of the dtrace_dynvar structure plus the storage required to key the
599  * data.  For all DIF, we take the largest value and dub it the _chunksize_.
600  * We then divide dynamic memory into two parts:  a hash table that is wide
601  * enough to have every chunk in its own bucket, and a larger region of equal
602  * chunksize units.  Whenever we wish to dynamically allocate a variable, we
603  * always allocate a single chunk of memory.  Depending on the uniformity of
604  * allocation, this will waste some amount of memory -- but it eliminates the
605  * non-determinism inherent in traditional heap fragmentation.
606  *
607  * Dynamic objects are allocated by storing a non-zero value to them; they are
608  * deallocated by storing a zero value to them.  Dynamic variables are
609  * complicated enormously by being shared between CPUs.  In particular,
610  * consider the following scenario:
611  *
612  *                 CPU A                                 CPU B
613  *  +---------------------------------+   +---------------------------------+
614  *  |                                 |   |                                 |
615  *  | allocates dynamic object a[123] |   |                                 |
616  *  | by storing the value 345 to it  |   |                                 |
617  *  |                               --------->                              |
618  *  |                                 |   | wishing to load from object     |
619  *  |                                 |   | a[123], performs lookup in      |
620  *  |                                 |   | dynamic variable space          |
621  *  |                               <---------                              |
622  *  | deallocates object a[123] by    |   |                                 |
623  *  | storing 0 to it                 |   |                                 |
624  *  |                                 |   |                                 |
625  *  | allocates dynamic object b[567] |   | performs load from a[123]       |
626  *  | by storing the value 789 to it  |   |                                 |
627  *  :                                 :   :                                 :
628  *  .                                 .   .                                 .
629  *
630  * This is obviously a race in the D program, but there are nonetheless only
631  * two valid values for CPU B's load from a[123]:  345 or 0.  Most importantly,
632  * CPU B may _not_ see the value 789 for a[123].
633  *
634  * There are essentially two ways to deal with this:
635  *
636  *  (1)  Explicitly spin-lock variables.  That is, if CPU B wishes to load
637  *       from a[123], it needs to lock a[123] and hold the lock for the
638  *       duration that it wishes to manipulate it.
639  *
640  *  (2)  Avoid reusing freed chunks until it is known that no CPU is referring
641  *       to them.
642  *
643  * The implementation of (1) is rife with complexity, because it requires the
644  * user of a dynamic variable to explicitly decree when they are done using it.
645  * Were all variables by value, this perhaps wouldn't be debilitating -- but
646  * dynamic variables of non-scalar types are tracked by reference.  That is, if
647  * a dynamic variable is, say, a string, and that variable is to be traced to,
648  * say, the principal buffer, the DIF emulation code returns to the main
649  * dtrace_probe() loop a pointer to the underlying storage, not the contents of
650  * the storage.  Further, code calling on DIF emulation would have to be aware
651  * that the DIF emulation has returned a reference to a dynamic variable that
652  * has been potentially locked.  The variable would have to be unlocked after
653  * the main dtrace_probe() loop is finished with the variable, and the main
654  * dtrace_probe() loop would have to be careful to not call any further DIF
655  * emulation while the variable is locked to avoid deadlock.  More generally,
656  * if one were to implement (1), DIF emulation code dealing with dynamic
657  * variables could only deal with one dynamic variable at a time (lest deadlock
658  * result).  To sum, (1) exports too much subtlety to the users of dynamic
659  * variables -- increasing maintenance burden and imposing serious constraints
660  * on future DTrace development.
661  *
662  * The implementation of (2) is also complex, but the complexity is more
663  * manageable.  We need to be sure that when a variable is deallocated, it is
664  * not placed on a traditional free list, but rather on a _dirty_ list.  Once a
665  * variable is on a dirty list, it cannot be found by CPUs performing a
666  * subsequent lookup of the variable -- but it may still be in use by other
667  * CPUs.  To assure that all CPUs that may be seeing the old variable have
668  * cleared out of probe context, a dtrace_sync() can be issued.  Once the
669  * dtrace_sync() has completed, it can be known that all CPUs are done
670  * manipulating the dynamic variable -- the dirty list can be atomically
671  * appended to the free list.  Unfortunately, there's a slight hiccup in this
672  * mechanism:  dtrace_sync() may not be issued from probe context.  The
673  * dtrace_sync() must be therefore issued asynchronously from non-probe
674  * context.  For this we rely on the DTrace cleaner, a cyclic that runs at the
675  * "cleanrate" frequency.  To ease this implementation, we define several chunk
676  * lists:
677  *
678  *   - Dirty.  Deallocated chunks, not yet cleaned.  Not available.
679  *
680  *   - Rinsing.  Formerly dirty chunks that are currently being asynchronously
681  *     cleaned.  Not available, but will be shortly.  Dynamic variable
682  *     allocation may not spin or block for availability, however.
683  *
684  *   - Clean.  Clean chunks, ready for allocation -- but not on the free list.
685  *
686  *   - Free.  Available for allocation.
687  *
688  * Moreover, to avoid absurd contention, _each_ of these lists is implemented
689  * on a per-CPU basis.  This is only for performance, not correctness; chunks
690  * may be allocated from another CPU's free list.  The algorithm for allocation
691  * then is this:
692  *
693  *   (1)  Attempt to atomically allocate from current CPU's free list.  If list
694  *        is non-empty and allocation is successful, allocation is complete.
695  *
696  *   (2)  If the clean list is non-empty, atomically move it to the free list,
697  *        and reattempt (1).
698  *
699  *   (3)  If the dynamic variable space is in the CLEAN state, look for free
700  *        and clean lists on other CPUs by setting the current CPU to the next
701  *        CPU, and reattempting (1).  If the next CPU is the current CPU (that
702  *        is, if all CPUs have been checked), atomically switch the state of
703  *        the dynamic variable space based on the following:
704  *
705  *        - If no free chunks were found and no dirty chunks were found,
706  *          atomically set the state to EMPTY.
707  *
708  *        - If dirty chunks were found, atomically set the state to DIRTY.
709  *
710  *        - If rinsing chunks were found, atomically set the state to RINSING.
711  *
712  *   (4)  Based on state of dynamic variable space state, increment appropriate
713  *        counter to indicate dynamic drops (if in EMPTY state) vs. dynamic
714  *        dirty drops (if in DIRTY state) vs. dynamic rinsing drops (if in
715  *        RINSING state).  Fail the allocation.
716  *
717  * The cleaning cyclic operates with the following algorithm:  for all CPUs
718  * with a non-empty dirty list, atomically move the dirty list to the rinsing
719  * list.  Perform a dtrace_sync().  For all CPUs with a non-empty rinsing list,
720  * atomically move the rinsing list to the clean list.  Perform another
721  * dtrace_sync().  By this point, all CPUs have seen the new clean list; the
722  * state of the dynamic variable space can be restored to CLEAN.
723  *
724  * There exist two final races that merit explanation.  The first is a simple
725  * allocation race:
726  *
727  *                 CPU A                                 CPU B
728  *  +---------------------------------+   +---------------------------------+
729  *  |                                 |   |                                 |
730  *  | allocates dynamic object a[123] |   | allocates dynamic object a[123] |
731  *  | by storing the value 345 to it  |   | by storing the value 567 to it  |
732  *  |                                 |   |                                 |
733  *  :                                 :   :                                 :
734  *  .                                 .   .                                 .
735  *
736  * Again, this is a race in the D program.  It can be resolved by having a[123]
737  * hold the value 345 or a[123] hold the value 567 -- but it must be true that
738  * a[123] have only _one_ of these values.  (That is, the racing CPUs may not
739  * put the same element twice on the same hash chain.)  This is resolved
740  * simply:  before the allocation is undertaken, the start of the new chunk's
741  * hash chain is noted.  Later, after the allocation is complete, the hash
742  * chain is atomically switched to point to the new element.  If this fails
743  * (because of either concurrent allocations or an allocation concurrent with a
744  * deletion), the newly allocated chunk is deallocated to the dirty list, and
745  * the whole process of looking up (and potentially allocating) the dynamic
746  * variable is reattempted.
747  *
748  * The final race is a simple deallocation race:
749  *
750  *                 CPU A                                 CPU B
751  *  +---------------------------------+   +---------------------------------+
752  *  |                                 |   |                                 |
753  *  | deallocates dynamic object      |   | deallocates dynamic object      |
754  *  | a[123] by storing the value 0   |   | a[123] by storing the value 0   |
755  *  | to it                           |   | to it                           |
756  *  |                                 |   |                                 |
757  *  :                                 :   :                                 :
758  *  .                                 .   .                                 .
759  *
760  * Once again, this is a race in the D program, but it is one that we must
761  * handle without corrupting the underlying data structures.  Because
762  * deallocations require the deletion of a chunk from the middle of a hash
763  * chain, we cannot use a single-word atomic operation to remove it.  For this,
764  * we add a spin lock to the hash buckets that is _only_ used for deallocations
765  * (allocation races are handled as above).  Further, this spin lock is _only_
766  * held for the duration of the delete; before control is returned to the DIF
767  * emulation code, the hash bucket is unlocked.
768  */
769 typedef struct dtrace_key {
770 	uint64_t dttk_value;			/* data value or data pointer */
771 	uint64_t dttk_size;			/* 0 if by-val, >0 if by-ref */
772 } dtrace_key_t;
773 
774 typedef struct dtrace_tuple {
775 	uint32_t dtt_nkeys;			/* number of keys in tuple */
776 	uint32_t dtt_pad;			/* padding */
777 	dtrace_key_t dtt_key[1];		/* array of tuple keys */
778 } dtrace_tuple_t;
779 
780 typedef struct dtrace_dynvar {
781 	uint64_t dtdv_hashval;			/* hash value -- 0 if free */
782 	struct dtrace_dynvar *dtdv_next;	/* next on list or hash chain */
783 	void *dtdv_data;			/* pointer to data */
784 	dtrace_tuple_t dtdv_tuple;		/* tuple key */
785 } dtrace_dynvar_t;
786 
787 typedef enum dtrace_dynvar_op {
788 	DTRACE_DYNVAR_ALLOC,
789 	DTRACE_DYNVAR_NOALLOC,
790 	DTRACE_DYNVAR_DEALLOC
791 } dtrace_dynvar_op_t;
792 
793 typedef struct dtrace_dynhash {
794 	dtrace_dynvar_t *dtdh_chain;		/* hash chain for this bucket */
795 	uintptr_t dtdh_lock;			/* deallocation lock */
796 #ifdef _LP64
797 	uintptr_t dtdh_pad[6];			/* pad to avoid false sharing */
798 #else
799 	uintptr_t dtdh_pad[14];			/* pad to avoid false sharing */
800 #endif
801 } dtrace_dynhash_t;
802 
803 typedef struct dtrace_dstate_percpu {
804 	dtrace_dynvar_t *dtdsc_free;		/* free list for this CPU */
805 	dtrace_dynvar_t *dtdsc_dirty;		/* dirty list for this CPU */
806 	dtrace_dynvar_t *dtdsc_rinsing;		/* rinsing list for this CPU */
807 	dtrace_dynvar_t *dtdsc_clean;		/* clean list for this CPU */
808 	uint64_t dtdsc_drops;			/* number of capacity drops */
809 	uint64_t dtdsc_dirty_drops;		/* number of dirty drops */
810 	uint64_t dtdsc_rinsing_drops;		/* number of rinsing drops */
811 #ifdef _LP64
812 	uint64_t dtdsc_pad;			/* pad to avoid false sharing */
813 #else
814 	uint64_t dtdsc_pad[2];			/* pad to avoid false sharing */
815 #endif
816 } dtrace_dstate_percpu_t;
817 
818 typedef enum dtrace_dstate_state {
819 	DTRACE_DSTATE_CLEAN = 0,
820 	DTRACE_DSTATE_EMPTY,
821 	DTRACE_DSTATE_DIRTY,
822 	DTRACE_DSTATE_RINSING
823 } dtrace_dstate_state_t;
824 
825 typedef struct dtrace_dstate {
826 	void *dtds_base;			/* base of dynamic var. space */
827 	size_t dtds_size;			/* size of dynamic var. space */
828 	size_t dtds_hashsize;			/* number of buckets in hash */
829 	size_t dtds_chunksize;			/* size of each chunk */
830 	dtrace_dynhash_t *dtds_hash;		/* pointer to hash table */
831 	dtrace_dstate_state_t dtds_state;	/* current dynamic var. state */
832 	dtrace_dstate_percpu_t *dtds_percpu;	/* per-CPU dyn. var. state */
833 } dtrace_dstate_t;
834 
835 /*
836  * DTrace Variable State
837  *
838  * The DTrace variable state tracks user-defined variables in its dtrace_vstate
839  * structure.  Each DTrace consumer has exactly one dtrace_vstate structure,
840  * but some dtrace_vstate structures may exist without a corresponding DTrace
841  * consumer (see "DTrace Helpers", below).  As described in <sys/dtrace.h>,
842  * user-defined variables can have one of three scopes:
843  *
844  *  DIFV_SCOPE_GLOBAL  =>  global scope
845  *  DIFV_SCOPE_THREAD  =>  thread-local scope (i.e. "self->" variables)
846  *  DIFV_SCOPE_LOCAL   =>  clause-local scope (i.e. "this->" variables)
847  *
848  * The variable state tracks variables by both their scope and their allocation
849  * type:
850  *
851  *  - The dtvs_globals and dtvs_locals members each point to an array of
852  *    dtrace_statvar structures.  These structures contain both the variable
853  *    metadata (dtrace_difv structures) and the underlying storage for all
854  *    statically allocated variables, including statically allocated
855  *    DIFV_SCOPE_GLOBAL variables and all DIFV_SCOPE_LOCAL variables.
856  *
857  *  - The dtvs_tlocals member points to an array of dtrace_difv structures for
858  *    DIFV_SCOPE_THREAD variables.  As such, this array tracks _only_ the
859  *    variable metadata for DIFV_SCOPE_THREAD variables; the underlying storage
860  *    is allocated out of the dynamic variable space.
861  *
862  *  - The dtvs_dynvars member is the dynamic variable state associated with the
863  *    variable state.  The dynamic variable state (described in "DTrace Dynamic
864  *    Variables", above) tracks all DIFV_SCOPE_THREAD variables and all
865  *    dynamically-allocated DIFV_SCOPE_GLOBAL variables.
866  */
867 typedef struct dtrace_statvar {
868 	uint64_t dtsv_data;			/* data or pointer to it */
869 	size_t dtsv_size;			/* size of pointed-to data */
870 	int dtsv_refcnt;			/* reference count */
871 	dtrace_difv_t dtsv_var;			/* variable metadata */
872 } dtrace_statvar_t;
873 
874 typedef struct dtrace_vstate {
875 	dtrace_state_t *dtvs_state;		/* back pointer to state */
876 	dtrace_statvar_t **dtvs_globals;	/* statically-allocated glbls */
877 	int dtvs_nglobals;			/* number of globals */
878 	dtrace_difv_t *dtvs_tlocals;		/* thread-local metadata */
879 	int dtvs_ntlocals;			/* number of thread-locals */
880 	dtrace_statvar_t **dtvs_locals;		/* clause-local data */
881 	int dtvs_nlocals;			/* number of clause-locals */
882 	dtrace_dstate_t dtvs_dynvars;		/* dynamic variable state */
883 } dtrace_vstate_t;
884 
885 /*
886  * DTrace Machine State
887  *
888  * In the process of processing a fired probe, DTrace needs to track and/or
889  * cache some per-CPU state associated with that particular firing.  This is
890  * state that is always discarded after the probe firing has completed, and
891  * much of it is not specific to any DTrace consumer, remaining valid across
892  * all ECBs.  This state is tracked in the dtrace_mstate structure.
893  */
894 #define	DTRACE_MSTATE_ARGS		0x00000001
895 #define	DTRACE_MSTATE_PROBE		0x00000002
896 #define	DTRACE_MSTATE_EPID		0x00000004
897 #define	DTRACE_MSTATE_TIMESTAMP		0x00000008
898 #define	DTRACE_MSTATE_STACKDEPTH	0x00000010
899 #define	DTRACE_MSTATE_CALLER		0x00000020
900 #define	DTRACE_MSTATE_IPL		0x00000040
901 #define	DTRACE_MSTATE_FLTOFFS		0x00000080
902 #define	DTRACE_MSTATE_WALLTIMESTAMP	0x00000100
903 #define	DTRACE_MSTATE_USTACKDEPTH	0x00000200
904 #define	DTRACE_MSTATE_UCALLER		0x00000400
905 
906 typedef struct dtrace_mstate {
907 	uintptr_t dtms_scratch_base;		/* base of scratch space */
908 	uintptr_t dtms_scratch_ptr;		/* current scratch pointer */
909 	size_t dtms_scratch_size;		/* scratch size */
910 	uint32_t dtms_present;			/* variables that are present */
911 	uint64_t dtms_arg[5];			/* cached arguments */
912 	dtrace_epid_t dtms_epid;		/* current EPID */
913 	uint64_t dtms_timestamp;		/* cached timestamp */
914 	hrtime_t dtms_walltimestamp;		/* cached wall timestamp */
915 	int dtms_stackdepth;			/* cached stackdepth */
916 	int dtms_ustackdepth;			/* cached ustackdepth */
917 	struct dtrace_probe *dtms_probe;	/* current probe */
918 	uintptr_t dtms_caller;			/* cached caller */
919 	uint64_t dtms_ucaller;			/* cached user-level caller */
920 	int dtms_ipl;				/* cached interrupt pri lev */
921 	int dtms_fltoffs;			/* faulting DIFO offset */
922 	uintptr_t dtms_strtok;			/* saved strtok() pointer */
923 	uint32_t dtms_access;			/* memory access rights */
924 	dtrace_difo_t *dtms_difo;		/* current dif object */
925 } dtrace_mstate_t;
926 
927 #define	DTRACE_COND_OWNER	0x1
928 #define	DTRACE_COND_USERMODE	0x2
929 #define	DTRACE_COND_ZONEOWNER	0x4
930 
931 #define	DTRACE_PROBEKEY_MAXDEPTH	8	/* max glob recursion depth */
932 
933 /*
934  * Access flag used by dtrace_mstate.dtms_access.
935  */
936 #define	DTRACE_ACCESS_KERNEL	0x1		/* the priv to read kmem */
937 
938 
939 /*
940  * DTrace Activity
941  *
942  * Each DTrace consumer is in one of several states, which (for purposes of
943  * avoiding yet-another overloading of the noun "state") we call the current
944  * _activity_.  The activity transitions on dtrace_go() (from DTRACIOCGO), on
945  * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action.  Activities may
946  * only transition in one direction; the activity transition diagram is a
947  * directed acyclic graph.  The activity transition diagram is as follows:
948  *
949  *
950  * +----------+                   +--------+                   +--------+
951  * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE |
952  * +----------+   dtrace_go(),    +--------+   dtrace_go(),    +--------+
953  *                before BEGIN        |        after BEGIN       |  |  |
954  *                                    |                          |  |  |
955  *                      exit() action |                          |  |  |
956  *                     from BEGIN ECB |                          |  |  |
957  *                                    |                          |  |  |
958  *                                    v                          |  |  |
959  *                               +----------+     exit() action  |  |  |
960  * +-----------------------------| DRAINING |<-------------------+  |  |
961  * |                             +----------+                       |  |
962  * |                                  |                             |  |
963  * |                   dtrace_stop(), |                             |  |
964  * |                     before END   |                             |  |
965  * |                                  |                             |  |
966  * |                                  v                             |  |
967  * | +---------+                 +----------+                       |  |
968  * | | STOPPED |<----------------| COOLDOWN |<----------------------+  |
969  * | +---------+  dtrace_stop(), +----------+     dtrace_stop(),       |
970  * |                after END                       before END         |
971  * |                                                                   |
972  * |                              +--------+                           |
973  * +----------------------------->| KILLED |<--------------------------+
974  *       deadman timeout or       +--------+     deadman timeout or
975  *        killed consumer                         killed consumer
976  *
977  * Note that once a DTrace consumer has stopped tracing, there is no way to
978  * restart it; if a DTrace consumer wishes to restart tracing, it must reopen
979  * the DTrace pseudodevice.
980  */
981 typedef enum dtrace_activity {
982 	DTRACE_ACTIVITY_INACTIVE = 0,		/* not yet running */
983 	DTRACE_ACTIVITY_WARMUP,			/* while starting */
984 	DTRACE_ACTIVITY_ACTIVE,			/* running */
985 	DTRACE_ACTIVITY_DRAINING,		/* before stopping */
986 	DTRACE_ACTIVITY_COOLDOWN,		/* while stopping */
987 	DTRACE_ACTIVITY_STOPPED,		/* after stopping */
988 	DTRACE_ACTIVITY_KILLED			/* killed */
989 } dtrace_activity_t;
990 
991 /*
992  * DTrace Helper Implementation
993  *
994  * A description of the helper architecture may be found in <sys/dtrace.h>.
995  * Each process contains a pointer to its helpers in its p_dtrace_helpers
996  * member.  This is a pointer to a dtrace_helpers structure, which contains an
997  * array of pointers to dtrace_helper structures, helper variable state (shared
998  * among a process's helpers) and a generation count.  (The generation count is
999  * used to provide an identifier when a helper is added so that it may be
1000  * subsequently removed.)  The dtrace_helper structure is self-explanatory,
1001  * containing pointers to the objects needed to execute the helper.  Note that
1002  * helpers are _duplicated_ across fork(2), and destroyed on exec(2).  No more
1003  * than dtrace_helpers_max are allowed per-process.
1004  */
1005 #define	DTRACE_HELPER_ACTION_USTACK	0
1006 #define	DTRACE_NHELPER_ACTIONS		1
1007 
1008 typedef struct dtrace_helper_action {
1009 	int dtha_generation;			/* helper action generation */
1010 	int dtha_nactions;			/* number of actions */
1011 	dtrace_difo_t *dtha_predicate;		/* helper action predicate */
1012 	dtrace_difo_t **dtha_actions;		/* array of actions */
1013 	struct dtrace_helper_action *dtha_next;	/* next helper action */
1014 } dtrace_helper_action_t;
1015 
1016 typedef struct dtrace_helper_provider {
1017 	int dthp_generation;			/* helper provider generation */
1018 	uint32_t dthp_ref;			/* reference count */
1019 	dof_helper_t dthp_prov;			/* DOF w/ provider and probes */
1020 } dtrace_helper_provider_t;
1021 
1022 typedef struct dtrace_helpers {
1023 	dtrace_helper_action_t **dthps_actions;	/* array of helper actions */
1024 	dtrace_vstate_t dthps_vstate;		/* helper action var. state */
1025 	dtrace_helper_provider_t **dthps_provs;	/* array of providers */
1026 	uint_t dthps_nprovs;			/* count of providers */
1027 	uint_t dthps_maxprovs;			/* provider array size */
1028 	int dthps_generation;			/* current generation */
1029 	pid_t dthps_pid;			/* pid of associated proc */
1030 	int dthps_deferred;			/* helper in deferred list */
1031 	struct dtrace_helpers *dthps_next;	/* next pointer */
1032 	struct dtrace_helpers *dthps_prev;	/* prev pointer */
1033 } dtrace_helpers_t;
1034 
1035 /*
1036  * DTrace Helper Action Tracing
1037  *
1038  * Debugging helper actions can be arduous.  To ease the development and
1039  * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing-
1040  * framework: helper tracing.  If dtrace_helptrace_enabled is non-zero (which
1041  * it is by default on DEBUG kernels), all helper activity will be traced to a
1042  * global, in-kernel ring buffer.  Each entry includes a pointer to the specific
1043  * helper, the location within the helper, and a trace of all local variables.
1044  * The ring buffer may be displayed in a human-readable format with the
1045  * ::dtrace_helptrace mdb(1) dcmd.
1046  */
1047 #define	DTRACE_HELPTRACE_NEXT	(-1)
1048 #define	DTRACE_HELPTRACE_DONE	(-2)
1049 #define	DTRACE_HELPTRACE_ERR	(-3)
1050 
1051 typedef struct dtrace_helptrace {
1052 	dtrace_helper_action_t	*dtht_helper;	/* helper action */
1053 	int dtht_where;				/* where in helper action */
1054 	int dtht_nlocals;			/* number of locals */
1055 	int dtht_fault;				/* type of fault (if any) */
1056 	int dtht_fltoffs;			/* DIF offset */
1057 	uint64_t dtht_illval;			/* faulting value */
1058 	uint64_t dtht_locals[1];		/* local variables */
1059 } dtrace_helptrace_t;
1060 
1061 /*
1062  * DTrace Credentials
1063  *
1064  * In probe context, we have limited flexibility to examine the credentials
1065  * of the DTrace consumer that created a particular enabling.  We use
1066  * the Least Privilege interfaces to cache the consumer's cred pointer and
1067  * some facts about that credential in a dtrace_cred_t structure. These
1068  * can limit the consumer's breadth of visibility and what actions the
1069  * consumer may take.
1070  */
1071 #define	DTRACE_CRV_ALLPROC		0x01
1072 #define	DTRACE_CRV_KERNEL		0x02
1073 #define	DTRACE_CRV_ALLZONE		0x04
1074 
1075 #define	DTRACE_CRV_ALL		(DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \
1076 	DTRACE_CRV_ALLZONE)
1077 
1078 #define	DTRACE_CRA_PROC				0x0001
1079 #define	DTRACE_CRA_PROC_CONTROL			0x0002
1080 #define	DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER	0x0004
1081 #define	DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE	0x0008
1082 #define	DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG	0x0010
1083 #define	DTRACE_CRA_KERNEL			0x0020
1084 #define	DTRACE_CRA_KERNEL_DESTRUCTIVE		0x0040
1085 
1086 #define	DTRACE_CRA_ALL		(DTRACE_CRA_PROC | \
1087 	DTRACE_CRA_PROC_CONTROL | \
1088 	DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \
1089 	DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \
1090 	DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \
1091 	DTRACE_CRA_KERNEL | \
1092 	DTRACE_CRA_KERNEL_DESTRUCTIVE)
1093 
1094 typedef struct dtrace_cred {
1095 	cred_t			*dcr_cred;
1096 	uint8_t			dcr_destructive;
1097 	uint8_t			dcr_visible;
1098 	uint16_t		dcr_action;
1099 } dtrace_cred_t;
1100 
1101 /*
1102  * DTrace Consumer State
1103  *
1104  * Each DTrace consumer has an associated dtrace_state structure that contains
1105  * its in-kernel DTrace state -- including options, credentials, statistics and
1106  * pointers to ECBs, buffers, speculations and formats.  A dtrace_state
1107  * structure is also allocated for anonymous enablings.  When anonymous state
1108  * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed
1109  * dtrace_state structure.
1110  */
1111 struct dtrace_state {
1112 	dev_t dts_dev;				/* device */
1113 	int dts_necbs;				/* total number of ECBs */
1114 	dtrace_ecb_t **dts_ecbs;		/* array of ECBs */
1115 	dtrace_epid_t dts_epid;			/* next EPID to allocate */
1116 	size_t dts_needed;			/* greatest needed space */
1117 	struct dtrace_state *dts_anon;		/* anon. state, if grabbed */
1118 	dtrace_activity_t dts_activity;		/* current activity */
1119 	dtrace_vstate_t dts_vstate;		/* variable state */
1120 	dtrace_buffer_t *dts_buffer;		/* principal buffer */
1121 	dtrace_buffer_t *dts_aggbuffer;		/* aggregation buffer */
1122 	dtrace_speculation_t *dts_speculations;	/* speculation array */
1123 	int dts_nspeculations;			/* number of speculations */
1124 	int dts_naggregations;			/* number of aggregations */
1125 	dtrace_aggregation_t **dts_aggregations; /* aggregation array */
1126 	vmem_t *dts_aggid_arena;		/* arena for aggregation IDs */
1127 	uint64_t dts_errors;			/* total number of errors */
1128 	uint32_t dts_speculations_busy;		/* number of spec. busy */
1129 	uint32_t dts_speculations_unavail;	/* number of spec unavail */
1130 	uint32_t dts_stkstroverflows;		/* stack string tab overflows */
1131 	uint32_t dts_dblerrors;			/* errors in ERROR probes */
1132 	uint32_t dts_reserve;			/* space reserved for END */
1133 	hrtime_t dts_laststatus;		/* time of last status */
1134 #if defined(sun)
1135 	cyclic_id_t dts_cleaner;		/* cleaning cyclic */
1136 	cyclic_id_t dts_deadman;		/* deadman cyclic */
1137 #else
1138 	struct dtrace_state_worker *dts_cleaner;/* cleaning cyclic */
1139 	struct dtrace_state_worker *dts_deadman;/* deadman cyclic */
1140 #endif
1141 	hrtime_t dts_alive;			/* time last alive */
1142 	char dts_speculates;			/* boolean: has speculations */
1143 	char dts_destructive;			/* boolean: has dest. actions */
1144 	int dts_nformats;			/* number of formats */
1145 	char **dts_formats;			/* format string array */
1146 	dtrace_optval_t dts_options[DTRACEOPT_MAX]; /* options */
1147 	dtrace_cred_t dts_cred;			/* credentials */
1148 	size_t dts_nretained;			/* number of retained enabs */
1149 };
1150 
1151 struct dtrace_provider {
1152 	dtrace_pattr_t dtpv_attr;		/* provider attributes */
1153 	dtrace_ppriv_t dtpv_priv;		/* provider privileges */
1154 	dtrace_pops_t dtpv_pops;		/* provider operations */
1155 	char *dtpv_name;			/* provider name */
1156 	void *dtpv_arg;				/* provider argument */
1157 	uint_t dtpv_defunct;			/* boolean: defunct provider */
1158 	struct dtrace_provider *dtpv_next;	/* next provider */
1159 };
1160 
1161 struct dtrace_meta {
1162 	dtrace_mops_t dtm_mops;			/* meta provider operations */
1163 	char *dtm_name;				/* meta provider name */
1164 	void *dtm_arg;				/* meta provider user arg */
1165 	uint64_t dtm_count;			/* no. of associated provs. */
1166 };
1167 
1168 /*
1169  * DTrace Enablings
1170  *
1171  * A dtrace_enabling structure is used to track a collection of ECB
1172  * descriptions -- before they have been turned into actual ECBs.  This is
1173  * created as a result of DOF processing, and is generally used to generate
1174  * ECBs immediately thereafter.  However, enablings are also generally
1175  * retained should the probes they describe be created at a later time; as
1176  * each new module or provider registers with the framework, the retained
1177  * enablings are reevaluated, with any new match resulting in new ECBs.  To
1178  * prevent probes from being matched more than once, the enabling tracks the
1179  * last probe generation matched, and only matches probes from subsequent
1180  * generations.
1181  */
1182 typedef struct dtrace_enabling {
1183 	dtrace_ecbdesc_t **dten_desc;		/* all ECB descriptions */
1184 	int dten_ndesc;				/* number of ECB descriptions */
1185 	int dten_maxdesc;			/* size of ECB array */
1186 	dtrace_vstate_t *dten_vstate;		/* associated variable state */
1187 	dtrace_genid_t dten_probegen;		/* matched probe generation */
1188 	dtrace_ecbdesc_t *dten_current;		/* current ECB description */
1189 	int dten_error;				/* current error value */
1190 	int dten_primed;			/* boolean: set if primed */
1191 	struct dtrace_enabling *dten_prev;	/* previous enabling */
1192 	struct dtrace_enabling *dten_next;	/* next enabling */
1193 } dtrace_enabling_t;
1194 
1195 /*
1196  * DTrace Anonymous Enablings
1197  *
1198  * Anonymous enablings are DTrace enablings that are not associated with a
1199  * controlling process, but rather derive their enabling from DOF stored as
1200  * properties in the dtrace.conf file.  If there is an anonymous enabling, a
1201  * DTrace consumer state and enabling are created on attach.  The state may be
1202  * subsequently grabbed by the first consumer specifying the "grabanon"
1203  * option.  As long as an anonymous DTrace enabling exists, dtrace(7D) will
1204  * refuse to unload.
1205  */
1206 typedef struct dtrace_anon {
1207 	dtrace_state_t *dta_state;		/* DTrace consumer state */
1208 	dtrace_enabling_t *dta_enabling;	/* pointer to enabling */
1209 	processorid_t dta_beganon;		/* which CPU BEGIN ran on */
1210 } dtrace_anon_t;
1211 
1212 /*
1213  * DTrace Error Debugging
1214  */
1215 #ifdef DEBUG
1216 #define	DTRACE_ERRDEBUG
1217 #endif
1218 
1219 #ifdef DTRACE_ERRDEBUG
1220 
1221 typedef struct dtrace_errhash {
1222 	const char	*dter_msg;	/* error message */
1223 	int		dter_count;	/* number of times seen */
1224 } dtrace_errhash_t;
1225 
1226 #define	DTRACE_ERRHASHSZ	256	/* must be > number of err msgs */
1227 
1228 #endif	/* DTRACE_ERRDEBUG */
1229 
1230 /*
1231  * DTrace Toxic Ranges
1232  *
1233  * DTrace supports safe loads from probe context; if the address turns out to
1234  * be invalid, a bit will be set by the kernel indicating that DTrace
1235  * encountered a memory error, and DTrace will propagate the error to the user
1236  * accordingly.  However, there may exist some regions of memory in which an
1237  * arbitrary load can change system state, and from which it is impossible to
1238  * recover from such a load after it has been attempted.  Examples of this may
1239  * include memory in which programmable I/O registers are mapped (for which a
1240  * read may have some implications for the device) or (in the specific case of
1241  * UltraSPARC-I and -II) the virtual address hole.  The platform is required
1242  * to make DTrace aware of these toxic ranges; DTrace will then check that
1243  * target addresses are not in a toxic range before attempting to issue a
1244  * safe load.
1245  */
1246 typedef struct dtrace_toxrange {
1247 	uintptr_t	dtt_base;		/* base of toxic range */
1248 	uintptr_t	dtt_limit;		/* limit of toxic range */
1249 } dtrace_toxrange_t;
1250 
1251 extern uint64_t dtrace_getarg(int, int);
1252 extern greg_t dtrace_getfp(void);
1253 extern int dtrace_getipl(void);
1254 extern uintptr_t dtrace_caller(int);
1255 extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t);
1256 extern void *dtrace_casptr(volatile void *, volatile void *, volatile void *);
1257 extern void dtrace_copyin(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1258 extern void dtrace_copyinstr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1259 extern void dtrace_copyout(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1260 extern void dtrace_copyoutstr(uintptr_t, uintptr_t, size_t,
1261     volatile uint16_t *);
1262 extern void dtrace_getpcstack(pc_t *, int, int, uint32_t *);
1263 extern ulong_t dtrace_getreg(struct regs *, uint_t);
1264 extern int dtrace_getstackdepth(int);
1265 extern void dtrace_getupcstack(uint64_t *, int);
1266 extern void dtrace_getufpstack(uint64_t *, uint64_t *, int);
1267 extern int dtrace_getustackdepth(void);
1268 extern uintptr_t dtrace_fulword(void *);
1269 extern uint8_t dtrace_fuword8(void *);
1270 extern uint16_t dtrace_fuword16(void *);
1271 extern uint32_t dtrace_fuword32(void *);
1272 extern uint64_t dtrace_fuword64(void *);
1273 extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int,
1274     int, uintptr_t);
1275 extern int dtrace_assfail(const char *, const char *, int);
1276 extern int dtrace_attached(void);
1277 #if defined(sun)
1278 extern hrtime_t dtrace_gethrestime(void);
1279 #endif
1280 
1281 #ifdef __sparc
1282 extern void dtrace_flush_windows(void);
1283 extern void dtrace_flush_user_windows(void);
1284 extern uint_t dtrace_getotherwin(void);
1285 extern uint_t dtrace_getfprs(void);
1286 #else
1287 extern void dtrace_copy(uintptr_t, uintptr_t, size_t);
1288 extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1289 #endif
1290 
1291 /*
1292  * DTrace Assertions
1293  *
1294  * DTrace calls ASSERT from probe context.  To assure that a failed ASSERT
1295  * does not induce a markedly more catastrophic failure (e.g., one from which
1296  * a dump cannot be gleaned), DTrace must define its own ASSERT to be one that
1297  * may safely be called from probe context.  This header file must thus be
1298  * included by any DTrace component that calls ASSERT from probe context, and
1299  * _only_ by those components.  (The only exception to this is kernel
1300  * debugging infrastructure at user-level that doesn't depend on calling
1301  * ASSERT.)
1302  */
1303 #undef ASSERT
1304 #ifdef DEBUG
1305 #define	ASSERT(EX)	((void)((EX) || \
1306 			dtrace_assfail(#EX, __FILE__, __LINE__)))
1307 #else
1308 #define	ASSERT(X)	((void)0)
1309 #endif
1310 
1311 #ifdef	__cplusplus
1312 }
1313 #endif
1314 
1315 #endif /* _SYS_DTRACE_IMPL_H */
1316