xref: /netbsd-src/external/cddl/osnet/dist/uts/common/sys/dtrace.h (revision 63d4abf06d37aace2f9e41a494102a64fe3abddb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #ifndef _SYS_DTRACE_H
28 #define	_SYS_DTRACE_H
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #ifdef	__cplusplus
33 extern "C" {
34 #endif
35 
36 /*
37  * DTrace Dynamic Tracing Software: Kernel Interfaces
38  *
39  * Note: The contents of this file are private to the implementation of the
40  * Solaris system and DTrace subsystem and are subject to change at any time
41  * without notice.  Applications and drivers using these interfaces will fail
42  * to run on future releases.  These interfaces should not be used for any
43  * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
44  * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
45  */
46 
47 #ifndef _ASM
48 
49 #include <sys/types.h>
50 #include <sys/modctl.h>
51 #include <sys/processor.h>
52 #include <sys/proc.h>
53 #if defined(sun)
54 #include <sys/systm.h>
55 #else
56 #include <sys/param.h>
57 #include <sys/linker.h>
58 #include <sys/ioccom.h>
59 #include <sys/ucred.h>
60 typedef int model_t;
61 #endif
62 #include <sys/ctf_api.h>
63 #if 0
64 #include <sys/cyclic.h>
65 #endif
66 #if defined(sun)
67 #include <sys/int_limits.h>
68 #else
69 #include <sys/stdint.h>
70 #endif
71 
72 /*
73  * DTrace Universal Constants and Typedefs
74  */
75 #define	DTRACE_CPUALL		-1	/* all CPUs */
76 #define	DTRACE_IDNONE		0	/* invalid probe identifier */
77 #define	DTRACE_EPIDNONE		0	/* invalid enabled probe identifier */
78 #define	DTRACE_AGGIDNONE	0	/* invalid aggregation identifier */
79 #define	DTRACE_AGGVARIDNONE	0	/* invalid aggregation variable ID */
80 #define	DTRACE_CACHEIDNONE	0	/* invalid predicate cache */
81 #define	DTRACE_PROVNONE		0	/* invalid provider identifier */
82 #define	DTRACE_METAPROVNONE	0	/* invalid meta-provider identifier */
83 #define	DTRACE_ARGNONE		-1	/* invalid argument index */
84 
85 #define	DTRACE_PROVNAMELEN	64
86 #define	DTRACE_MODNAMELEN	64
87 #define	DTRACE_FUNCNAMELEN	128
88 #define	DTRACE_NAMELEN		64
89 #define	DTRACE_FULLNAMELEN	(DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
90 				DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
91 #define	DTRACE_ARGTYPELEN	128
92 
93 typedef uint32_t dtrace_id_t;		/* probe identifier */
94 typedef uint32_t dtrace_epid_t;		/* enabled probe identifier */
95 typedef uint32_t dtrace_aggid_t;	/* aggregation identifier */
96 typedef int64_t dtrace_aggvarid_t;	/* aggregation variable identifier */
97 typedef uint16_t dtrace_actkind_t;	/* action kind */
98 typedef int64_t dtrace_optval_t;	/* option value */
99 typedef uint32_t dtrace_cacheid_t;	/* predicate cache identifier */
100 
101 typedef enum dtrace_probespec {
102 	DTRACE_PROBESPEC_NONE = -1,
103 	DTRACE_PROBESPEC_PROVIDER = 0,
104 	DTRACE_PROBESPEC_MOD,
105 	DTRACE_PROBESPEC_FUNC,
106 	DTRACE_PROBESPEC_NAME
107 } dtrace_probespec_t;
108 
109 /*
110  * DTrace Intermediate Format (DIF)
111  *
112  * The following definitions describe the DTrace Intermediate Format (DIF), a
113  * a RISC-like instruction set and program encoding used to represent
114  * predicates and actions that can be bound to DTrace probes.  The constants
115  * below defining the number of available registers are suggested minimums; the
116  * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
117  * registers provided by the current DTrace implementation.
118  */
119 #define	DIF_VERSION_1	1		/* DIF version 1: Solaris 10 Beta */
120 #define	DIF_VERSION_2	2		/* DIF version 2: Solaris 10 FCS */
121 #define	DIF_VERSION	DIF_VERSION_2	/* latest DIF instruction set version */
122 #define	DIF_DIR_NREGS	8		/* number of DIF integer registers */
123 #define	DIF_DTR_NREGS	8		/* number of DIF tuple registers */
124 
125 #define	DIF_OP_OR	1		/* or	r1, r2, rd */
126 #define	DIF_OP_XOR	2		/* xor	r1, r2, rd */
127 #define	DIF_OP_AND	3		/* and	r1, r2, rd */
128 #define	DIF_OP_SLL	4		/* sll	r1, r2, rd */
129 #define	DIF_OP_SRL	5		/* srl	r1, r2, rd */
130 #define	DIF_OP_SUB	6		/* sub	r1, r2, rd */
131 #define	DIF_OP_ADD	7		/* add	r1, r2, rd */
132 #define	DIF_OP_MUL	8		/* mul	r1, r2, rd */
133 #define	DIF_OP_SDIV	9		/* sdiv	r1, r2, rd */
134 #define	DIF_OP_UDIV	10		/* udiv r1, r2, rd */
135 #define	DIF_OP_SREM	11		/* srem r1, r2, rd */
136 #define	DIF_OP_UREM	12		/* urem r1, r2, rd */
137 #define	DIF_OP_NOT	13		/* not	r1, rd */
138 #define	DIF_OP_MOV	14		/* mov	r1, rd */
139 #define	DIF_OP_CMP	15		/* cmp	r1, r2 */
140 #define	DIF_OP_TST	16		/* tst  r1 */
141 #define	DIF_OP_BA	17		/* ba	label */
142 #define	DIF_OP_BE	18		/* be	label */
143 #define	DIF_OP_BNE	19		/* bne	label */
144 #define	DIF_OP_BG	20		/* bg	label */
145 #define	DIF_OP_BGU	21		/* bgu	label */
146 #define	DIF_OP_BGE	22		/* bge	label */
147 #define	DIF_OP_BGEU	23		/* bgeu	label */
148 #define	DIF_OP_BL	24		/* bl	label */
149 #define	DIF_OP_BLU	25		/* blu	label */
150 #define	DIF_OP_BLE	26		/* ble	label */
151 #define	DIF_OP_BLEU	27		/* bleu	label */
152 #define	DIF_OP_LDSB	28		/* ldsb	[r1], rd */
153 #define	DIF_OP_LDSH	29		/* ldsh	[r1], rd */
154 #define	DIF_OP_LDSW	30		/* ldsw [r1], rd */
155 #define	DIF_OP_LDUB	31		/* ldub	[r1], rd */
156 #define	DIF_OP_LDUH	32		/* lduh	[r1], rd */
157 #define	DIF_OP_LDUW	33		/* lduw	[r1], rd */
158 #define	DIF_OP_LDX	34		/* ldx	[r1], rd */
159 #define	DIF_OP_RET	35		/* ret	rd */
160 #define	DIF_OP_NOP	36		/* nop */
161 #define	DIF_OP_SETX	37		/* setx	intindex, rd */
162 #define	DIF_OP_SETS	38		/* sets strindex, rd */
163 #define	DIF_OP_SCMP	39		/* scmp	r1, r2 */
164 #define	DIF_OP_LDGA	40		/* ldga	var, ri, rd */
165 #define	DIF_OP_LDGS	41		/* ldgs var, rd */
166 #define	DIF_OP_STGS	42		/* stgs var, rs */
167 #define	DIF_OP_LDTA	43		/* ldta var, ri, rd */
168 #define	DIF_OP_LDTS	44		/* ldts var, rd */
169 #define	DIF_OP_STTS	45		/* stts var, rs */
170 #define	DIF_OP_SRA	46		/* sra	r1, r2, rd */
171 #define	DIF_OP_CALL	47		/* call	subr, rd */
172 #define	DIF_OP_PUSHTR	48		/* pushtr type, rs, rr */
173 #define	DIF_OP_PUSHTV	49		/* pushtv type, rs, rv */
174 #define	DIF_OP_POPTS	50		/* popts */
175 #define	DIF_OP_FLUSHTS	51		/* flushts */
176 #define	DIF_OP_LDGAA	52		/* ldgaa var, rd */
177 #define	DIF_OP_LDTAA	53		/* ldtaa var, rd */
178 #define	DIF_OP_STGAA	54		/* stgaa var, rs */
179 #define	DIF_OP_STTAA	55		/* sttaa var, rs */
180 #define	DIF_OP_LDLS	56		/* ldls	var, rd */
181 #define	DIF_OP_STLS	57		/* stls	var, rs */
182 #define	DIF_OP_ALLOCS	58		/* allocs r1, rd */
183 #define	DIF_OP_COPYS	59		/* copys  r1, r2, rd */
184 #define	DIF_OP_STB	60		/* stb	r1, [rd] */
185 #define	DIF_OP_STH	61		/* sth	r1, [rd] */
186 #define	DIF_OP_STW	62		/* stw	r1, [rd] */
187 #define	DIF_OP_STX	63		/* stx	r1, [rd] */
188 #define	DIF_OP_ULDSB	64		/* uldsb [r1], rd */
189 #define	DIF_OP_ULDSH	65		/* uldsh [r1], rd */
190 #define	DIF_OP_ULDSW	66		/* uldsw [r1], rd */
191 #define	DIF_OP_ULDUB	67		/* uldub [r1], rd */
192 #define	DIF_OP_ULDUH	68		/* ulduh [r1], rd */
193 #define	DIF_OP_ULDUW	69		/* ulduw [r1], rd */
194 #define	DIF_OP_ULDX	70		/* uldx  [r1], rd */
195 #define	DIF_OP_RLDSB	71		/* rldsb [r1], rd */
196 #define	DIF_OP_RLDSH	72		/* rldsh [r1], rd */
197 #define	DIF_OP_RLDSW	73		/* rldsw [r1], rd */
198 #define	DIF_OP_RLDUB	74		/* rldub [r1], rd */
199 #define	DIF_OP_RLDUH	75		/* rlduh [r1], rd */
200 #define	DIF_OP_RLDUW	76		/* rlduw [r1], rd */
201 #define	DIF_OP_RLDX	77		/* rldx  [r1], rd */
202 #define	DIF_OP_XLATE	78		/* xlate xlrindex, rd */
203 #define	DIF_OP_XLARG	79		/* xlarg xlrindex, rd */
204 
205 #define	DIF_INTOFF_MAX		0xffff	/* highest integer table offset */
206 #define	DIF_STROFF_MAX		0xffff	/* highest string table offset */
207 #define	DIF_REGISTER_MAX	0xff	/* highest register number */
208 #define	DIF_VARIABLE_MAX	0xffff	/* highest variable identifier */
209 #define	DIF_SUBROUTINE_MAX	0xffff	/* highest subroutine code */
210 
211 #define	DIF_VAR_ARRAY_MIN	0x0000	/* lowest numbered array variable */
212 #define	DIF_VAR_ARRAY_UBASE	0x0080	/* lowest user-defined array */
213 #define	DIF_VAR_ARRAY_MAX	0x00ff	/* highest numbered array variable */
214 
215 #define	DIF_VAR_OTHER_MIN	0x0100	/* lowest numbered scalar or assc */
216 #define	DIF_VAR_OTHER_UBASE	0x0500	/* lowest user-defined scalar or assc */
217 #define	DIF_VAR_OTHER_MAX	0xffff	/* highest numbered scalar or assc */
218 
219 #define	DIF_VAR_ARGS		0x0000	/* arguments array */
220 #define	DIF_VAR_REGS		0x0001	/* registers array */
221 #define	DIF_VAR_UREGS		0x0002	/* user registers array */
222 #define	DIF_VAR_CURTHREAD	0x0100	/* thread pointer */
223 #define	DIF_VAR_TIMESTAMP	0x0101	/* timestamp */
224 #define	DIF_VAR_VTIMESTAMP	0x0102	/* virtual timestamp */
225 #define	DIF_VAR_IPL		0x0103	/* interrupt priority level */
226 #define	DIF_VAR_EPID		0x0104	/* enabled probe ID */
227 #define	DIF_VAR_ID		0x0105	/* probe ID */
228 #define	DIF_VAR_ARG0		0x0106	/* first argument */
229 #define	DIF_VAR_ARG1		0x0107	/* second argument */
230 #define	DIF_VAR_ARG2		0x0108	/* third argument */
231 #define	DIF_VAR_ARG3		0x0109	/* fourth argument */
232 #define	DIF_VAR_ARG4		0x010a	/* fifth argument */
233 #define	DIF_VAR_ARG5		0x010b	/* sixth argument */
234 #define	DIF_VAR_ARG6		0x010c	/* seventh argument */
235 #define	DIF_VAR_ARG7		0x010d	/* eighth argument */
236 #define	DIF_VAR_ARG8		0x010e	/* ninth argument */
237 #define	DIF_VAR_ARG9		0x010f	/* tenth argument */
238 #define	DIF_VAR_STACKDEPTH	0x0110	/* stack depth */
239 #define	DIF_VAR_CALLER		0x0111	/* caller */
240 #define	DIF_VAR_PROBEPROV	0x0112	/* probe provider */
241 #define	DIF_VAR_PROBEMOD	0x0113	/* probe module */
242 #define	DIF_VAR_PROBEFUNC	0x0114	/* probe function */
243 #define	DIF_VAR_PROBENAME	0x0115	/* probe name */
244 #define	DIF_VAR_PID		0x0116	/* process ID */
245 #define	DIF_VAR_TID		0x0117	/* (per-process) thread ID */
246 #define	DIF_VAR_EXECNAME	0x0118	/* name of executable */
247 #define	DIF_VAR_ZONENAME	0x0119	/* zone name associated with process */
248 #define	DIF_VAR_WALLTIMESTAMP	0x011a	/* wall-clock timestamp */
249 #define	DIF_VAR_USTACKDEPTH	0x011b	/* user-land stack depth */
250 #define	DIF_VAR_UCALLER		0x011c	/* user-level caller */
251 #define	DIF_VAR_PPID		0x011d	/* parent process ID */
252 #define	DIF_VAR_UID		0x011e	/* process user ID */
253 #define	DIF_VAR_GID		0x011f	/* process group ID */
254 #define	DIF_VAR_ERRNO		0x0120	/* thread errno */
255 #define	DIF_VAR_EXECARGS	0x0121	/* process arguments */
256 
257 #define	DIF_SUBR_RAND			0
258 #define	DIF_SUBR_MUTEX_OWNED		1
259 #define	DIF_SUBR_MUTEX_OWNER		2
260 #define	DIF_SUBR_MUTEX_TYPE_ADAPTIVE	3
261 #define	DIF_SUBR_MUTEX_TYPE_SPIN	4
262 #define	DIF_SUBR_RW_READ_HELD		5
263 #define	DIF_SUBR_RW_WRITE_HELD		6
264 #define	DIF_SUBR_RW_ISWRITER		7
265 #define	DIF_SUBR_COPYIN			8
266 #define	DIF_SUBR_COPYINSTR		9
267 #define	DIF_SUBR_SPECULATION		10
268 #define	DIF_SUBR_PROGENYOF		11
269 #define	DIF_SUBR_STRLEN			12
270 #define	DIF_SUBR_COPYOUT		13
271 #define	DIF_SUBR_COPYOUTSTR		14
272 #define	DIF_SUBR_ALLOCA			15
273 #define	DIF_SUBR_BCOPY			16
274 #define	DIF_SUBR_COPYINTO		17
275 #define	DIF_SUBR_MSGDSIZE		18
276 #define	DIF_SUBR_MSGSIZE		19
277 #define	DIF_SUBR_GETMAJOR		20
278 #define	DIF_SUBR_GETMINOR		21
279 #define	DIF_SUBR_DDI_PATHNAME		22
280 #define	DIF_SUBR_STRJOIN		23
281 #define	DIF_SUBR_LLTOSTR		24
282 #define	DIF_SUBR_BASENAME		25
283 #define	DIF_SUBR_DIRNAME		26
284 #define	DIF_SUBR_CLEANPATH		27
285 #define	DIF_SUBR_STRCHR			28
286 #define	DIF_SUBR_STRRCHR		29
287 #define	DIF_SUBR_STRSTR			30
288 #define	DIF_SUBR_STRTOK			31
289 #define	DIF_SUBR_SUBSTR			32
290 #define	DIF_SUBR_INDEX			33
291 #define	DIF_SUBR_RINDEX			34
292 #define	DIF_SUBR_HTONS			35
293 #define	DIF_SUBR_HTONL			36
294 #define	DIF_SUBR_HTONLL			37
295 #define	DIF_SUBR_NTOHS			38
296 #define	DIF_SUBR_NTOHL			39
297 #define	DIF_SUBR_NTOHLL			40
298 #define	DIF_SUBR_INET_NTOP		41
299 #define	DIF_SUBR_INET_NTOA		42
300 #define	DIF_SUBR_INET_NTOA6		43
301 #define	DIF_SUBR_MEMREF			44
302 #define	DIF_SUBR_TYPEREF		45
303 #define	DIF_SUBR_SX_SHARED_HELD		46
304 #define	DIF_SUBR_SX_EXCLUSIVE_HELD	47
305 #define	DIF_SUBR_SX_ISEXCLUSIVE		48
306 
307 #define	DIF_SUBR_MAX			48	/* max subroutine value */
308 
309 typedef uint32_t dif_instr_t;
310 
311 #define	DIF_INSTR_OP(i)			(((i) >> 24) & 0xff)
312 #define	DIF_INSTR_R1(i)			(((i) >> 16) & 0xff)
313 #define	DIF_INSTR_R2(i)			(((i) >>  8) & 0xff)
314 #define	DIF_INSTR_RD(i)			((i) & 0xff)
315 #define	DIF_INSTR_RS(i)			((i) & 0xff)
316 #define	DIF_INSTR_LABEL(i)		((i) & 0xffffff)
317 #define	DIF_INSTR_VAR(i)		(((i) >>  8) & 0xffff)
318 #define	DIF_INSTR_INTEGER(i)		(((i) >>  8) & 0xffff)
319 #define	DIF_INSTR_STRING(i)		(((i) >>  8) & 0xffff)
320 #define	DIF_INSTR_SUBR(i)		(((i) >>  8) & 0xffff)
321 #define	DIF_INSTR_TYPE(i)		(((i) >> 16) & 0xff)
322 #define	DIF_INSTR_XLREF(i)		(((i) >>  8) & 0xffff)
323 
324 #define	DIF_INSTR_FMT(op, r1, r2, d) \
325 	(((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
326 
327 #define	DIF_INSTR_NOT(r1, d)		(DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
328 #define	DIF_INSTR_MOV(r1, d)		(DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
329 #define	DIF_INSTR_CMP(op, r1, r2)	(DIF_INSTR_FMT(op, r1, r2, 0))
330 #define	DIF_INSTR_TST(r1)		(DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
331 #define	DIF_INSTR_BRANCH(op, label)	(((op) << 24) | (label))
332 #define	DIF_INSTR_LOAD(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
333 #define	DIF_INSTR_STORE(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
334 #define	DIF_INSTR_SETX(i, d)		((DIF_OP_SETX << 24) | ((i) << 8) | (d))
335 #define	DIF_INSTR_SETS(s, d)		((DIF_OP_SETS << 24) | ((s) << 8) | (d))
336 #define	DIF_INSTR_RET(d)		(DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
337 #define	DIF_INSTR_NOP			(DIF_OP_NOP << 24)
338 #define	DIF_INSTR_LDA(op, v, r, d)	(DIF_INSTR_FMT(op, v, r, d))
339 #define	DIF_INSTR_LDV(op, v, d)		(((op) << 24) | ((v) << 8) | (d))
340 #define	DIF_INSTR_STV(op, v, rs)	(((op) << 24) | ((v) << 8) | (rs))
341 #define	DIF_INSTR_CALL(s, d)		((DIF_OP_CALL << 24) | ((s) << 8) | (d))
342 #define	DIF_INSTR_PUSHTS(op, t, r2, rs)	(DIF_INSTR_FMT(op, t, r2, rs))
343 #define	DIF_INSTR_POPTS			(DIF_OP_POPTS << 24)
344 #define	DIF_INSTR_FLUSHTS		(DIF_OP_FLUSHTS << 24)
345 #define	DIF_INSTR_ALLOCS(r1, d)		(DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
346 #define	DIF_INSTR_COPYS(r1, r2, d)	(DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
347 #define	DIF_INSTR_XLATE(op, r, d)	(((op) << 24) | ((r) << 8) | (d))
348 
349 #define	DIF_REG_R0	0		/* %r0 is always set to zero */
350 
351 /*
352  * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
353  * of variables, function and associative array arguments, and the return type
354  * for each DIF object (shown below).  It contains a description of the type,
355  * its size in bytes, and a module identifier.
356  */
357 typedef struct dtrace_diftype {
358 	uint8_t dtdt_kind;		/* type kind (see below) */
359 	uint8_t dtdt_ckind;		/* type kind in CTF */
360 	uint8_t dtdt_flags;		/* type flags (see below) */
361 	uint8_t dtdt_pad;		/* reserved for future use */
362 	uint32_t dtdt_size;		/* type size in bytes (unless string) */
363 } dtrace_diftype_t;
364 
365 #define	DIF_TYPE_CTF		0	/* type is a CTF type */
366 #define	DIF_TYPE_STRING		1	/* type is a D string */
367 
368 #define	DIF_TF_BYREF		0x1	/* type is passed by reference */
369 
370 /*
371  * A DTrace Intermediate Format variable record is used to describe each of the
372  * variables referenced by a given DIF object.  It contains an integer variable
373  * identifier along with variable scope and properties, as shown below.  The
374  * size of this structure must be sizeof (int) aligned.
375  */
376 typedef struct dtrace_difv {
377 	uint32_t dtdv_name;		/* variable name index in dtdo_strtab */
378 	uint32_t dtdv_id;		/* variable reference identifier */
379 	uint8_t dtdv_kind;		/* variable kind (see below) */
380 	uint8_t dtdv_scope;		/* variable scope (see below) */
381 	uint16_t dtdv_flags;		/* variable flags (see below) */
382 	dtrace_diftype_t dtdv_type;	/* variable type (see above) */
383 } dtrace_difv_t;
384 
385 #define	DIFV_KIND_ARRAY		0	/* variable is an array of quantities */
386 #define	DIFV_KIND_SCALAR	1	/* variable is a scalar quantity */
387 
388 #define	DIFV_SCOPE_GLOBAL	0	/* variable has global scope */
389 #define	DIFV_SCOPE_THREAD	1	/* variable has thread scope */
390 #define	DIFV_SCOPE_LOCAL	2	/* variable has local scope */
391 
392 #define	DIFV_F_REF		0x1	/* variable is referenced by DIFO */
393 #define	DIFV_F_MOD		0x2	/* variable is written by DIFO */
394 
395 /*
396  * DTrace Actions
397  *
398  * The upper byte determines the class of the action; the low bytes determines
399  * the specific action within that class.  The classes of actions are as
400  * follows:
401  *
402  *   [ no class ]                  <= May record process- or kernel-related data
403  *   DTRACEACT_PROC                <= Only records process-related data
404  *   DTRACEACT_PROC_DESTRUCTIVE    <= Potentially destructive to processes
405  *   DTRACEACT_KERNEL              <= Only records kernel-related data
406  *   DTRACEACT_KERNEL_DESTRUCTIVE  <= Potentially destructive to the kernel
407  *   DTRACEACT_SPECULATIVE         <= Speculation-related action
408  *   DTRACEACT_AGGREGATION         <= Aggregating action
409  */
410 #define	DTRACEACT_NONE			0	/* no action */
411 #define	DTRACEACT_DIFEXPR		1	/* action is DIF expression */
412 #define	DTRACEACT_EXIT			2	/* exit() action */
413 #define	DTRACEACT_PRINTF		3	/* printf() action */
414 #define	DTRACEACT_PRINTA		4	/* printa() action */
415 #define	DTRACEACT_LIBACT		5	/* library-controlled action */
416 #define	DTRACEACT_PRINTM		6	/* printm() action */
417 #define	DTRACEACT_PRINTT		7	/* printt() action */
418 
419 #define	DTRACEACT_PROC			0x0100
420 #define	DTRACEACT_USTACK		(DTRACEACT_PROC + 1)
421 #define	DTRACEACT_JSTACK		(DTRACEACT_PROC + 2)
422 #define	DTRACEACT_USYM			(DTRACEACT_PROC + 3)
423 #define	DTRACEACT_UMOD			(DTRACEACT_PROC + 4)
424 #define	DTRACEACT_UADDR			(DTRACEACT_PROC + 5)
425 
426 #define	DTRACEACT_PROC_DESTRUCTIVE	0x0200
427 #define	DTRACEACT_STOP			(DTRACEACT_PROC_DESTRUCTIVE + 1)
428 #define	DTRACEACT_RAISE			(DTRACEACT_PROC_DESTRUCTIVE + 2)
429 #define	DTRACEACT_SYSTEM		(DTRACEACT_PROC_DESTRUCTIVE + 3)
430 #define	DTRACEACT_FREOPEN		(DTRACEACT_PROC_DESTRUCTIVE + 4)
431 
432 #define	DTRACEACT_PROC_CONTROL		0x0300
433 
434 #define	DTRACEACT_KERNEL		0x0400
435 #define	DTRACEACT_STACK			(DTRACEACT_KERNEL + 1)
436 #define	DTRACEACT_SYM			(DTRACEACT_KERNEL + 2)
437 #define	DTRACEACT_MOD			(DTRACEACT_KERNEL + 3)
438 
439 #define	DTRACEACT_KERNEL_DESTRUCTIVE	0x0500
440 #define	DTRACEACT_BREAKPOINT		(DTRACEACT_KERNEL_DESTRUCTIVE + 1)
441 #define	DTRACEACT_PANIC			(DTRACEACT_KERNEL_DESTRUCTIVE + 2)
442 #define	DTRACEACT_CHILL			(DTRACEACT_KERNEL_DESTRUCTIVE + 3)
443 
444 #define	DTRACEACT_SPECULATIVE		0x0600
445 #define	DTRACEACT_SPECULATE		(DTRACEACT_SPECULATIVE + 1)
446 #define	DTRACEACT_COMMIT		(DTRACEACT_SPECULATIVE + 2)
447 #define	DTRACEACT_DISCARD		(DTRACEACT_SPECULATIVE + 3)
448 
449 #define	DTRACEACT_CLASS(x)		((x) & 0xff00)
450 
451 #define	DTRACEACT_ISDESTRUCTIVE(x)	\
452 	(DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
453 	DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
454 
455 #define	DTRACEACT_ISSPECULATIVE(x)	\
456 	(DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
457 
458 #define	DTRACEACT_ISPRINTFLIKE(x)	\
459 	((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
460 	(x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
461 
462 /*
463  * DTrace Aggregating Actions
464  *
465  * These are functions f(x) for which the following is true:
466  *
467  *    f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
468  *
469  * where x_n is a set of arbitrary data.  Aggregating actions are in their own
470  * DTrace action class, DTTRACEACT_AGGREGATION.  The macros provided here allow
471  * for easier processing of the aggregation argument and data payload for a few
472  * aggregating actions (notably:  quantize(), lquantize(), and ustack()).
473  */
474 #define	DTRACEACT_AGGREGATION		0x0700
475 #define	DTRACEAGG_COUNT			(DTRACEACT_AGGREGATION + 1)
476 #define	DTRACEAGG_MIN			(DTRACEACT_AGGREGATION + 2)
477 #define	DTRACEAGG_MAX			(DTRACEACT_AGGREGATION + 3)
478 #define	DTRACEAGG_AVG			(DTRACEACT_AGGREGATION + 4)
479 #define	DTRACEAGG_SUM			(DTRACEACT_AGGREGATION + 5)
480 #define	DTRACEAGG_STDDEV		(DTRACEACT_AGGREGATION + 6)
481 #define	DTRACEAGG_QUANTIZE		(DTRACEACT_AGGREGATION + 7)
482 #define	DTRACEAGG_LQUANTIZE		(DTRACEACT_AGGREGATION + 8)
483 
484 #define	DTRACEACT_ISAGG(x)		\
485 	(DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
486 
487 #define	DTRACE_QUANTIZE_NBUCKETS	\
488 	(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
489 
490 #define	DTRACE_QUANTIZE_ZEROBUCKET	((sizeof (uint64_t) * NBBY) - 1)
491 
492 #define	DTRACE_QUANTIZE_BUCKETVAL(buck)					\
493 	(int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ?			\
494 	-(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) :		\
495 	(buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 :			\
496 	1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
497 
498 #define	DTRACE_LQUANTIZE_STEPSHIFT		48
499 #define	DTRACE_LQUANTIZE_STEPMASK		((uint64_t)UINT16_MAX << 48)
500 #define	DTRACE_LQUANTIZE_LEVELSHIFT		32
501 #define	DTRACE_LQUANTIZE_LEVELMASK		((uint64_t)UINT16_MAX << 32)
502 #define	DTRACE_LQUANTIZE_BASESHIFT		0
503 #define	DTRACE_LQUANTIZE_BASEMASK		UINT32_MAX
504 
505 #define	DTRACE_LQUANTIZE_STEP(x)		\
506 	(uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
507 	DTRACE_LQUANTIZE_STEPSHIFT)
508 
509 #define	DTRACE_LQUANTIZE_LEVELS(x)		\
510 	(uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
511 	DTRACE_LQUANTIZE_LEVELSHIFT)
512 
513 #define	DTRACE_LQUANTIZE_BASE(x)		\
514 	(int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
515 	DTRACE_LQUANTIZE_BASESHIFT)
516 
517 #define	DTRACE_USTACK_NFRAMES(x)	(uint32_t)((x) & UINT32_MAX)
518 #define	DTRACE_USTACK_STRSIZE(x)	(uint32_t)((x) >> 32)
519 #define	DTRACE_USTACK_ARG(x, y)		\
520 	((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
521 
522 #ifndef _LP64
523 #if BYTE_ORDER == _BIG_ENDIAN
524 #define	DTRACE_PTR(type, name)	uint32_t name##pad; type *name
525 #else
526 #define	DTRACE_PTR(type, name)	type *name; uint32_t name##pad
527 #endif
528 #else
529 #define	DTRACE_PTR(type, name)	type *name
530 #endif
531 
532 /*
533  * DTrace Object Format (DOF)
534  *
535  * DTrace programs can be persistently encoded in the DOF format so that they
536  * may be embedded in other programs (for example, in an ELF file) or in the
537  * dtrace driver configuration file for use in anonymous tracing.  The DOF
538  * format is versioned and extensible so that it can be revised and so that
539  * internal data structures can be modified or extended compatibly.  All DOF
540  * structures use fixed-size types, so the 32-bit and 64-bit representations
541  * are identical and consumers can use either data model transparently.
542  *
543  * The file layout is structured as follows:
544  *
545  * +---------------+-------------------+----- ... ----+---- ... ------+
546  * |   dof_hdr_t   |  dof_sec_t[ ... ] |   loadable   | non-loadable  |
547  * | (file header) | (section headers) | section data | section data  |
548  * +---------------+-------------------+----- ... ----+---- ... ------+
549  * |<------------ dof_hdr.dofh_loadsz --------------->|               |
550  * |<------------ dof_hdr.dofh_filesz ------------------------------->|
551  *
552  * The file header stores meta-data including a magic number, data model for
553  * the instrumentation, data encoding, and properties of the DIF code within.
554  * The header describes its own size and the size of the section headers.  By
555  * convention, an array of section headers follows the file header, and then
556  * the data for all loadable sections and unloadable sections.  This permits
557  * consumer code to easily download the headers and all loadable data into the
558  * DTrace driver in one contiguous chunk, omitting other extraneous sections.
559  *
560  * The section headers describe the size, offset, alignment, and section type
561  * for each section.  Sections are described using a set of #defines that tell
562  * the consumer what kind of data is expected.  Sections can contain links to
563  * other sections by storing a dof_secidx_t, an index into the section header
564  * array, inside of the section data structures.  The section header includes
565  * an entry size so that sections with data arrays can grow their structures.
566  *
567  * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
568  * are represented themselves as a collection of related DOF sections.  This
569  * permits us to change the set of sections associated with a DIFO over time,
570  * and also permits us to encode DIFOs that contain different sets of sections.
571  * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
572  * section of type DOF_SECT_DIFOHDR.  This section's data is then an array of
573  * dof_secidx_t's which in turn denote the sections associated with this DIFO.
574  *
575  * This loose coupling of the file structure (header and sections) to the
576  * structure of the DTrace program itself (ECB descriptions, action
577  * descriptions, and DIFOs) permits activities such as relocation processing
578  * to occur in a single pass without having to understand D program structure.
579  *
580  * Finally, strings are always stored in ELF-style string tables along with a
581  * string table section index and string table offset.  Therefore strings in
582  * DOF are always arbitrary-length and not bound to the current implementation.
583  */
584 
585 #define	DOF_ID_SIZE	16	/* total size of dofh_ident[] in bytes */
586 
587 typedef struct dof_hdr {
588 	uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
589 	uint32_t dofh_flags;		/* file attribute flags (if any) */
590 	uint32_t dofh_hdrsize;		/* size of file header in bytes */
591 	uint32_t dofh_secsize;		/* size of section header in bytes */
592 	uint32_t dofh_secnum;		/* number of section headers */
593 	uint64_t dofh_secoff;		/* file offset of section headers */
594 	uint64_t dofh_loadsz;		/* file size of loadable portion */
595 	uint64_t dofh_filesz;		/* file size of entire DOF file */
596 	uint64_t dofh_pad;		/* reserved for future use */
597 } dof_hdr_t;
598 
599 #define	DOF_ID_MAG0	0	/* first byte of magic number */
600 #define	DOF_ID_MAG1	1	/* second byte of magic number */
601 #define	DOF_ID_MAG2	2	/* third byte of magic number */
602 #define	DOF_ID_MAG3	3	/* fourth byte of magic number */
603 #define	DOF_ID_MODEL	4	/* DOF data model (see below) */
604 #define	DOF_ID_ENCODING	5	/* DOF data encoding (see below) */
605 #define	DOF_ID_VERSION	6	/* DOF file format major version (see below) */
606 #define	DOF_ID_DIFVERS	7	/* DIF instruction set version */
607 #define	DOF_ID_DIFIREG	8	/* DIF integer registers used by compiler */
608 #define	DOF_ID_DIFTREG	9	/* DIF tuple registers used by compiler */
609 #define	DOF_ID_PAD	10	/* start of padding bytes (all zeroes) */
610 
611 #define	DOF_MAG_MAG0	0x7F	/* DOF_ID_MAG[0-3] */
612 #define	DOF_MAG_MAG1	'D'
613 #define	DOF_MAG_MAG2	'O'
614 #define	DOF_MAG_MAG3	'F'
615 
616 #define	DOF_MAG_STRING	"\177DOF"
617 #define	DOF_MAG_STRLEN	4
618 
619 #define	DOF_MODEL_NONE	0	/* DOF_ID_MODEL */
620 #define	DOF_MODEL_ILP32	1
621 #define	DOF_MODEL_LP64	2
622 
623 #ifdef _LP64
624 #define	DOF_MODEL_NATIVE	DOF_MODEL_LP64
625 #else
626 #define	DOF_MODEL_NATIVE	DOF_MODEL_ILP32
627 #endif
628 
629 #define	DOF_ENCODE_NONE	0	/* DOF_ID_ENCODING */
630 #define	DOF_ENCODE_LSB	1
631 #define	DOF_ENCODE_MSB	2
632 
633 #if BYTE_ORDER == _BIG_ENDIAN
634 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_MSB
635 #else
636 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_LSB
637 #endif
638 
639 #define	DOF_VERSION_1	1	/* DOF version 1: Solaris 10 FCS */
640 #define	DOF_VERSION_2	2	/* DOF version 2: Solaris Express 6/06 */
641 #define	DOF_VERSION	DOF_VERSION_2	/* Latest DOF version */
642 
643 #define	DOF_FL_VALID	0	/* mask of all valid dofh_flags bits */
644 
645 typedef uint32_t dof_secidx_t;	/* section header table index type */
646 typedef uint32_t dof_stridx_t;	/* string table index type */
647 
648 #define	DOF_SECIDX_NONE	(-1U)	/* null value for section indices */
649 #define	DOF_STRIDX_NONE	(-1U)	/* null value for string indices */
650 
651 typedef struct dof_sec {
652 	uint32_t dofs_type;	/* section type (see below) */
653 	uint32_t dofs_align;	/* section data memory alignment */
654 	uint32_t dofs_flags;	/* section flags (if any) */
655 	uint32_t dofs_entsize;	/* size of section entry (if table) */
656 	uint64_t dofs_offset;	/* offset of section data within file */
657 	uint64_t dofs_size;	/* size of section data in bytes */
658 } dof_sec_t;
659 
660 #define	DOF_SECT_NONE		0	/* null section */
661 #define	DOF_SECT_COMMENTS	1	/* compiler comments */
662 #define	DOF_SECT_SOURCE		2	/* D program source code */
663 #define	DOF_SECT_ECBDESC	3	/* dof_ecbdesc_t */
664 #define	DOF_SECT_PROBEDESC	4	/* dof_probedesc_t */
665 #define	DOF_SECT_ACTDESC	5	/* dof_actdesc_t array */
666 #define	DOF_SECT_DIFOHDR	6	/* dof_difohdr_t (variable length) */
667 #define	DOF_SECT_DIF		7	/* uint32_t array of byte code */
668 #define	DOF_SECT_STRTAB		8	/* string table */
669 #define	DOF_SECT_VARTAB		9	/* dtrace_difv_t array */
670 #define	DOF_SECT_RELTAB		10	/* dof_relodesc_t array */
671 #define	DOF_SECT_TYPTAB		11	/* dtrace_diftype_t array */
672 #define	DOF_SECT_URELHDR	12	/* dof_relohdr_t (user relocations) */
673 #define	DOF_SECT_KRELHDR	13	/* dof_relohdr_t (kernel relocations) */
674 #define	DOF_SECT_OPTDESC	14	/* dof_optdesc_t array */
675 #define	DOF_SECT_PROVIDER	15	/* dof_provider_t */
676 #define	DOF_SECT_PROBES		16	/* dof_probe_t array */
677 #define	DOF_SECT_PRARGS		17	/* uint8_t array (probe arg mappings) */
678 #define	DOF_SECT_PROFFS		18	/* uint32_t array (probe arg offsets) */
679 #define	DOF_SECT_INTTAB		19	/* uint64_t array */
680 #define	DOF_SECT_UTSNAME	20	/* struct utsname */
681 #define	DOF_SECT_XLTAB		21	/* dof_xlref_t array */
682 #define	DOF_SECT_XLMEMBERS	22	/* dof_xlmember_t array */
683 #define	DOF_SECT_XLIMPORT	23	/* dof_xlator_t */
684 #define	DOF_SECT_XLEXPORT	24	/* dof_xlator_t */
685 #define	DOF_SECT_PREXPORT	25	/* dof_secidx_t array (exported objs) */
686 #define	DOF_SECT_PRENOFFS	26	/* uint32_t array (enabled offsets) */
687 
688 #define	DOF_SECF_LOAD		1	/* section should be loaded */
689 
690 typedef struct dof_ecbdesc {
691 	dof_secidx_t dofe_probes;	/* link to DOF_SECT_PROBEDESC */
692 	dof_secidx_t dofe_pred;		/* link to DOF_SECT_DIFOHDR */
693 	dof_secidx_t dofe_actions;	/* link to DOF_SECT_ACTDESC */
694 	uint32_t dofe_pad;		/* reserved for future use */
695 	uint64_t dofe_uarg;		/* user-supplied library argument */
696 } dof_ecbdesc_t;
697 
698 typedef struct dof_probedesc {
699 	dof_secidx_t dofp_strtab;	/* link to DOF_SECT_STRTAB section */
700 	dof_stridx_t dofp_provider;	/* provider string */
701 	dof_stridx_t dofp_mod;		/* module string */
702 	dof_stridx_t dofp_func;		/* function string */
703 	dof_stridx_t dofp_name;		/* name string */
704 	uint32_t dofp_id;		/* probe identifier (or zero) */
705 } dof_probedesc_t;
706 
707 typedef struct dof_actdesc {
708 	dof_secidx_t dofa_difo;		/* link to DOF_SECT_DIFOHDR */
709 	dof_secidx_t dofa_strtab;	/* link to DOF_SECT_STRTAB section */
710 	uint32_t dofa_kind;		/* action kind (DTRACEACT_* constant) */
711 	uint32_t dofa_ntuple;		/* number of subsequent tuple actions */
712 	uint64_t dofa_arg;		/* kind-specific argument */
713 	uint64_t dofa_uarg;		/* user-supplied argument */
714 } dof_actdesc_t;
715 
716 typedef struct dof_difohdr {
717 	dtrace_diftype_t dofd_rtype;	/* return type for this fragment */
718 	dof_secidx_t dofd_links[1];	/* variable length array of indices */
719 } dof_difohdr_t;
720 
721 typedef struct dof_relohdr {
722 	dof_secidx_t dofr_strtab;	/* link to DOF_SECT_STRTAB for names */
723 	dof_secidx_t dofr_relsec;	/* link to DOF_SECT_RELTAB for relos */
724 	dof_secidx_t dofr_tgtsec;	/* link to section we are relocating */
725 } dof_relohdr_t;
726 
727 typedef struct dof_relodesc {
728 	dof_stridx_t dofr_name;		/* string name of relocation symbol */
729 	uint32_t dofr_type;		/* relo type (DOF_RELO_* constant) */
730 	uint64_t dofr_offset;		/* byte offset for relocation */
731 	uint64_t dofr_data;		/* additional type-specific data */
732 } dof_relodesc_t;
733 
734 #define	DOF_RELO_NONE	0		/* empty relocation entry */
735 #define	DOF_RELO_SETX	1		/* relocate setx value */
736 
737 typedef struct dof_optdesc {
738 	uint32_t dofo_option;		/* option identifier */
739 	dof_secidx_t dofo_strtab;	/* string table, if string option */
740 	uint64_t dofo_value;		/* option value or string index */
741 } dof_optdesc_t;
742 
743 typedef uint32_t dof_attr_t;		/* encoded stability attributes */
744 
745 #define	DOF_ATTR(n, d, c)	(((n) << 24) | ((d) << 16) | ((c) << 8))
746 #define	DOF_ATTR_NAME(a)	(((a) >> 24) & 0xff)
747 #define	DOF_ATTR_DATA(a)	(((a) >> 16) & 0xff)
748 #define	DOF_ATTR_CLASS(a)	(((a) >>  8) & 0xff)
749 
750 typedef struct dof_provider {
751 	dof_secidx_t dofpv_strtab;	/* link to DOF_SECT_STRTAB section */
752 	dof_secidx_t dofpv_probes;	/* link to DOF_SECT_PROBES section */
753 	dof_secidx_t dofpv_prargs;	/* link to DOF_SECT_PRARGS section */
754 	dof_secidx_t dofpv_proffs;	/* link to DOF_SECT_PROFFS section */
755 	dof_stridx_t dofpv_name;	/* provider name string */
756 	dof_attr_t dofpv_provattr;	/* provider attributes */
757 	dof_attr_t dofpv_modattr;	/* module attributes */
758 	dof_attr_t dofpv_funcattr;	/* function attributes */
759 	dof_attr_t dofpv_nameattr;	/* name attributes */
760 	dof_attr_t dofpv_argsattr;	/* args attributes */
761 	dof_secidx_t dofpv_prenoffs;	/* link to DOF_SECT_PRENOFFS section */
762 } dof_provider_t;
763 
764 typedef struct dof_probe {
765 	uint64_t dofpr_addr;		/* probe base address or offset */
766 	dof_stridx_t dofpr_func;	/* probe function string */
767 	dof_stridx_t dofpr_name;	/* probe name string */
768 	dof_stridx_t dofpr_nargv;	/* native argument type strings */
769 	dof_stridx_t dofpr_xargv;	/* translated argument type strings */
770 	uint32_t dofpr_argidx;		/* index of first argument mapping */
771 	uint32_t dofpr_offidx;		/* index of first offset entry */
772 	uint8_t dofpr_nargc;		/* native argument count */
773 	uint8_t dofpr_xargc;		/* translated argument count */
774 	uint16_t dofpr_noffs;		/* number of offset entries for probe */
775 	uint32_t dofpr_enoffidx;	/* index of first is-enabled offset */
776 	uint16_t dofpr_nenoffs;		/* number of is-enabled offsets */
777 	uint16_t dofpr_pad1;		/* reserved for future use */
778 	uint32_t dofpr_pad2;		/* reserved for future use */
779 } dof_probe_t;
780 
781 typedef struct dof_xlator {
782 	dof_secidx_t dofxl_members;	/* link to DOF_SECT_XLMEMBERS section */
783 	dof_secidx_t dofxl_strtab;	/* link to DOF_SECT_STRTAB section */
784 	dof_stridx_t dofxl_argv;	/* input parameter type strings */
785 	uint32_t dofxl_argc;		/* input parameter list length */
786 	dof_stridx_t dofxl_type;	/* output type string name */
787 	dof_attr_t dofxl_attr;		/* output stability attributes */
788 } dof_xlator_t;
789 
790 typedef struct dof_xlmember {
791 	dof_secidx_t dofxm_difo;	/* member link to DOF_SECT_DIFOHDR */
792 	dof_stridx_t dofxm_name;	/* member name */
793 	dtrace_diftype_t dofxm_type;	/* member type */
794 } dof_xlmember_t;
795 
796 typedef struct dof_xlref {
797 	dof_secidx_t dofxr_xlator;	/* link to DOF_SECT_XLATORS section */
798 	uint32_t dofxr_member;		/* index of referenced dof_xlmember */
799 	uint32_t dofxr_argn;		/* index of argument for DIF_OP_XLARG */
800 } dof_xlref_t;
801 
802 /*
803  * DTrace Intermediate Format Object (DIFO)
804  *
805  * A DIFO is used to store the compiled DIF for a D expression, its return
806  * type, and its string and variable tables.  The string table is a single
807  * buffer of character data into which sets instructions and variable
808  * references can reference strings using a byte offset.  The variable table
809  * is an array of dtrace_difv_t structures that describe the name and type of
810  * each variable and the id used in the DIF code.  This structure is described
811  * above in the DIF section of this header file.  The DIFO is used at both
812  * user-level (in the library) and in the kernel, but the structure is never
813  * passed between the two: the DOF structures form the only interface.  As a
814  * result, the definition can change depending on the presence of _KERNEL.
815  */
816 typedef struct dtrace_difo {
817 	dif_instr_t *dtdo_buf;		/* instruction buffer */
818 	uint64_t *dtdo_inttab;		/* integer table (optional) */
819 	char *dtdo_strtab;		/* string table (optional) */
820 	dtrace_difv_t *dtdo_vartab;	/* variable table (optional) */
821 	uint_t dtdo_len;		/* length of instruction buffer */
822 	uint_t dtdo_intlen;		/* length of integer table */
823 	uint_t dtdo_strlen;		/* length of string table */
824 	uint_t dtdo_varlen;		/* length of variable table */
825 	dtrace_diftype_t dtdo_rtype;	/* return type */
826 	uint_t dtdo_refcnt;		/* owner reference count */
827 	uint_t dtdo_destructive;	/* invokes destructive subroutines */
828 #ifndef _KERNEL
829 	dof_relodesc_t *dtdo_kreltab;	/* kernel relocations */
830 	dof_relodesc_t *dtdo_ureltab;	/* user relocations */
831 	struct dt_node **dtdo_xlmtab;	/* translator references */
832 	uint_t dtdo_krelen;		/* length of krelo table */
833 	uint_t dtdo_urelen;		/* length of urelo table */
834 	uint_t dtdo_xlmlen;		/* length of translator table */
835 #endif
836 } dtrace_difo_t;
837 
838 /*
839  * DTrace Enabling Description Structures
840  *
841  * When DTrace is tracking the description of a DTrace enabling entity (probe,
842  * predicate, action, ECB, record, etc.), it does so in a description
843  * structure.  These structures all end in "desc", and are used at both
844  * user-level and in the kernel -- but (with the exception of
845  * dtrace_probedesc_t) they are never passed between them.  Typically,
846  * user-level will use the description structures when assembling an enabling.
847  * It will then distill those description structures into a DOF object (see
848  * above), and send it into the kernel.  The kernel will again use the
849  * description structures to create a description of the enabling as it reads
850  * the DOF.  When the description is complete, the enabling will be actually
851  * created -- turning it into the structures that represent the enabling
852  * instead of merely describing it.  Not surprisingly, the description
853  * structures bear a strong resemblance to the DOF structures that act as their
854  * conduit.
855  */
856 struct dtrace_predicate;
857 
858 typedef struct dtrace_probedesc {
859 	dtrace_id_t dtpd_id;			/* probe identifier */
860 	char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
861 	char dtpd_mod[DTRACE_MODNAMELEN];	/* probe module name */
862 	char dtpd_func[DTRACE_FUNCNAMELEN];	/* probe function name */
863 	char dtpd_name[DTRACE_NAMELEN];		/* probe name */
864 } dtrace_probedesc_t;
865 
866 typedef struct dtrace_repldesc {
867 	dtrace_probedesc_t dtrpd_match;		/* probe descr. to match */
868 	dtrace_probedesc_t dtrpd_create;	/* probe descr. to create */
869 } dtrace_repldesc_t;
870 
871 typedef struct dtrace_preddesc {
872 	dtrace_difo_t *dtpdd_difo;		/* pointer to DIF object */
873 	struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
874 } dtrace_preddesc_t;
875 
876 typedef struct dtrace_actdesc {
877 	dtrace_difo_t *dtad_difo;		/* pointer to DIF object */
878 	struct dtrace_actdesc *dtad_next;	/* next action */
879 	dtrace_actkind_t dtad_kind;		/* kind of action */
880 	uint32_t dtad_ntuple;			/* number in tuple */
881 	uint64_t dtad_arg;			/* action argument */
882 	uint64_t dtad_uarg;			/* user argument */
883 	int dtad_refcnt;			/* reference count */
884 } dtrace_actdesc_t;
885 
886 typedef struct dtrace_ecbdesc {
887 	dtrace_actdesc_t *dted_action;		/* action description(s) */
888 	dtrace_preddesc_t dted_pred;		/* predicate description */
889 	dtrace_probedesc_t dted_probe;		/* probe description */
890 	uint64_t dted_uarg;			/* library argument */
891 	int dted_refcnt;			/* reference count */
892 } dtrace_ecbdesc_t;
893 
894 /*
895  * DTrace Metadata Description Structures
896  *
897  * DTrace separates the trace data stream from the metadata stream.  The only
898  * metadata tokens placed in the data stream are enabled probe identifiers
899  * (EPIDs) or (in the case of aggregations) aggregation identifiers.  In order
900  * to determine the structure of the data, DTrace consumers pass the token to
901  * the kernel, and receive in return a corresponding description of the enabled
902  * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
903  * dtrace_aggdesc structure).  Both of these structures are expressed in terms
904  * of record descriptions (via the dtrace_recdesc structure) that describe the
905  * exact structure of the data.  Some record descriptions may also contain a
906  * format identifier; this additional bit of metadata can be retrieved from the
907  * kernel, for which a format description is returned via the dtrace_fmtdesc
908  * structure.  Note that all four of these structures must be bitness-neutral
909  * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
910  */
911 typedef struct dtrace_recdesc {
912 	dtrace_actkind_t dtrd_action;		/* kind of action */
913 	uint32_t dtrd_size;			/* size of record */
914 	uint32_t dtrd_offset;			/* offset in ECB's data */
915 	uint16_t dtrd_alignment;		/* required alignment */
916 	uint16_t dtrd_format;			/* format, if any */
917 	uint64_t dtrd_arg;			/* action argument */
918 	uint64_t dtrd_uarg;			/* user argument */
919 } dtrace_recdesc_t;
920 
921 typedef struct dtrace_eprobedesc {
922 	dtrace_epid_t dtepd_epid;		/* enabled probe ID */
923 	dtrace_id_t dtepd_probeid;		/* probe ID */
924 	uint64_t dtepd_uarg;			/* library argument */
925 	uint32_t dtepd_size;			/* total size */
926 	int dtepd_nrecs;			/* number of records */
927 	dtrace_recdesc_t dtepd_rec[1];		/* records themselves */
928 } dtrace_eprobedesc_t;
929 
930 typedef struct dtrace_aggdesc {
931 	DTRACE_PTR(char, dtagd_name);		/* not filled in by kernel */
932 	dtrace_aggvarid_t dtagd_varid;		/* not filled in by kernel */
933 	int dtagd_flags;			/* not filled in by kernel */
934 	dtrace_aggid_t dtagd_id;		/* aggregation ID */
935 	dtrace_epid_t dtagd_epid;		/* enabled probe ID */
936 	uint32_t dtagd_size;			/* size in bytes */
937 	int dtagd_nrecs;			/* number of records */
938 	uint32_t dtagd_pad;			/* explicit padding */
939 	dtrace_recdesc_t dtagd_rec[1];		/* record descriptions */
940 } dtrace_aggdesc_t;
941 
942 typedef struct dtrace_fmtdesc {
943 	DTRACE_PTR(char, dtfd_string);		/* format string */
944 	int dtfd_length;			/* length of format string */
945 	uint16_t dtfd_format;			/* format identifier */
946 } dtrace_fmtdesc_t;
947 
948 #define	DTRACE_SIZEOF_EPROBEDESC(desc)				\
949 	(sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ?	\
950 	(((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
951 
952 #define	DTRACE_SIZEOF_AGGDESC(desc)				\
953 	(sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ?	\
954 	(((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
955 
956 /*
957  * DTrace Option Interface
958  *
959  * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
960  * in a DOF image.  The dof_optdesc structure contains an option identifier and
961  * an option value.  The valid option identifiers are found below; the mapping
962  * between option identifiers and option identifying strings is maintained at
963  * user-level.  Note that the value of DTRACEOPT_UNSET is such that all of the
964  * following are potentially valid option values:  all positive integers, zero
965  * and negative one.  Some options (notably "bufpolicy" and "bufresize") take
966  * predefined tokens as their values; these are defined with
967  * DTRACEOPT_{option}_{token}.
968  */
969 #define	DTRACEOPT_BUFSIZE	0	/* buffer size */
970 #define	DTRACEOPT_BUFPOLICY	1	/* buffer policy */
971 #define	DTRACEOPT_DYNVARSIZE	2	/* dynamic variable size */
972 #define	DTRACEOPT_AGGSIZE	3	/* aggregation size */
973 #define	DTRACEOPT_SPECSIZE	4	/* speculation size */
974 #define	DTRACEOPT_NSPEC		5	/* number of speculations */
975 #define	DTRACEOPT_STRSIZE	6	/* string size */
976 #define	DTRACEOPT_CLEANRATE	7	/* dynvar cleaning rate */
977 #define	DTRACEOPT_CPU		8	/* CPU to trace */
978 #define	DTRACEOPT_BUFRESIZE	9	/* buffer resizing policy */
979 #define	DTRACEOPT_GRABANON	10	/* grab anonymous state, if any */
980 #define	DTRACEOPT_FLOWINDENT	11	/* indent function entry/return */
981 #define	DTRACEOPT_QUIET		12	/* only output explicitly traced data */
982 #define	DTRACEOPT_STACKFRAMES	13	/* number of stack frames */
983 #define	DTRACEOPT_USTACKFRAMES	14	/* number of user stack frames */
984 #define	DTRACEOPT_AGGRATE	15	/* aggregation snapshot rate */
985 #define	DTRACEOPT_SWITCHRATE	16	/* buffer switching rate */
986 #define	DTRACEOPT_STATUSRATE	17	/* status rate */
987 #define	DTRACEOPT_DESTRUCTIVE	18	/* destructive actions allowed */
988 #define	DTRACEOPT_STACKINDENT	19	/* output indent for stack traces */
989 #define	DTRACEOPT_RAWBYTES	20	/* always print bytes in raw form */
990 #define	DTRACEOPT_JSTACKFRAMES	21	/* number of jstack() frames */
991 #define	DTRACEOPT_JSTACKSTRSIZE	22	/* size of jstack() string table */
992 #define	DTRACEOPT_AGGSORTKEY	23	/* sort aggregations by key */
993 #define	DTRACEOPT_AGGSORTREV	24	/* reverse-sort aggregations */
994 #define	DTRACEOPT_AGGSORTPOS	25	/* agg. position to sort on */
995 #define	DTRACEOPT_AGGSORTKEYPOS	26	/* agg. key position to sort on */
996 #define	DTRACEOPT_MAX		27	/* number of options */
997 
998 #define	DTRACEOPT_UNSET		(dtrace_optval_t)-2	/* unset option */
999 
1000 #define	DTRACEOPT_BUFPOLICY_RING	0	/* ring buffer */
1001 #define	DTRACEOPT_BUFPOLICY_FILL	1	/* fill buffer, then stop */
1002 #define	DTRACEOPT_BUFPOLICY_SWITCH	2	/* switch buffers */
1003 
1004 #define	DTRACEOPT_BUFRESIZE_AUTO	0	/* automatic resizing */
1005 #define	DTRACEOPT_BUFRESIZE_MANUAL	1	/* manual resizing */
1006 
1007 /*
1008  * DTrace Buffer Interface
1009  *
1010  * In order to get a snapshot of the principal or aggregation buffer,
1011  * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1012  * structure.  This describes which CPU user-level is interested in, and
1013  * where user-level wishes the kernel to snapshot the buffer to (the
1014  * dtbd_data field).  The kernel uses the same structure to pass back some
1015  * information regarding the buffer:  the size of data actually copied out, the
1016  * number of drops, the number of errors, and the offset of the oldest record.
1017  * If the buffer policy is a "switch" policy, taking a snapshot of the
1018  * principal buffer has the additional effect of switching the active and
1019  * inactive buffers.  Taking a snapshot of the aggregation buffer _always_ has
1020  * the additional effect of switching the active and inactive buffers.
1021  */
1022 typedef struct dtrace_bufdesc {
1023 	uint64_t dtbd_size;			/* size of buffer */
1024 	uint32_t dtbd_cpu;			/* CPU or DTRACE_CPUALL */
1025 	uint32_t dtbd_errors;			/* number of errors */
1026 	uint64_t dtbd_drops;			/* number of drops */
1027 	DTRACE_PTR(char, dtbd_data);		/* data */
1028 	uint64_t dtbd_oldest;			/* offset of oldest record */
1029 } dtrace_bufdesc_t;
1030 
1031 /*
1032  * DTrace Status
1033  *
1034  * The status of DTrace is relayed via the dtrace_status structure.  This
1035  * structure contains members to count drops other than the capacity drops
1036  * available via the buffer interface (see above).  This consists of dynamic
1037  * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1038  * speculative drops (including capacity speculative drops, drops due to busy
1039  * speculative buffers and drops due to unavailable speculative buffers).
1040  * Additionally, the status structure contains a field to indicate the number
1041  * of "fill"-policy buffers have been filled and a boolean field to indicate
1042  * that exit() has been called.  If the dtst_exiting field is non-zero, no
1043  * further data will be generated until tracing is stopped (at which time any
1044  * enablings of the END action will be processed); if user-level sees that
1045  * this field is non-zero, tracing should be stopped as soon as possible.
1046  */
1047 typedef struct dtrace_status {
1048 	uint64_t dtst_dyndrops;			/* dynamic drops */
1049 	uint64_t dtst_dyndrops_rinsing;		/* dyn drops due to rinsing */
1050 	uint64_t dtst_dyndrops_dirty;		/* dyn drops due to dirty */
1051 	uint64_t dtst_specdrops;		/* speculative drops */
1052 	uint64_t dtst_specdrops_busy;		/* spec drops due to busy */
1053 	uint64_t dtst_specdrops_unavail;	/* spec drops due to unavail */
1054 	uint64_t dtst_errors;			/* total errors */
1055 	uint64_t dtst_filled;			/* number of filled bufs */
1056 	uint64_t dtst_stkstroverflows;		/* stack string tab overflows */
1057 	uint64_t dtst_dblerrors;		/* errors in ERROR probes */
1058 	char dtst_killed;			/* non-zero if killed */
1059 	char dtst_exiting;			/* non-zero if exit() called */
1060 	char dtst_pad[6];			/* pad out to 64-bit align */
1061 } dtrace_status_t;
1062 
1063 /*
1064  * DTrace Configuration
1065  *
1066  * User-level may need to understand some elements of the kernel DTrace
1067  * configuration in order to generate correct DIF.  This information is
1068  * conveyed via the dtrace_conf structure.
1069  */
1070 typedef struct dtrace_conf {
1071 	uint_t dtc_difversion;			/* supported DIF version */
1072 	uint_t dtc_difintregs;			/* # of DIF integer registers */
1073 	uint_t dtc_diftupregs;			/* # of DIF tuple registers */
1074 	uint_t dtc_ctfmodel;			/* CTF data model */
1075 	uint_t dtc_pad[8];			/* reserved for future use */
1076 } dtrace_conf_t;
1077 
1078 /*
1079  * DTrace Faults
1080  *
1081  * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1082  * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1083  * postprocessing at user-level.  Probe processing faults induce an ERROR
1084  * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1085  * the error condition using thse symbolic labels.
1086  */
1087 #define	DTRACEFLT_UNKNOWN		0	/* Unknown fault */
1088 #define	DTRACEFLT_BADADDR		1	/* Bad address */
1089 #define	DTRACEFLT_BADALIGN		2	/* Bad alignment */
1090 #define	DTRACEFLT_ILLOP			3	/* Illegal operation */
1091 #define	DTRACEFLT_DIVZERO		4	/* Divide-by-zero */
1092 #define	DTRACEFLT_NOSCRATCH		5	/* Out of scratch space */
1093 #define	DTRACEFLT_KPRIV			6	/* Illegal kernel access */
1094 #define	DTRACEFLT_UPRIV			7	/* Illegal user access */
1095 #define	DTRACEFLT_TUPOFLOW		8	/* Tuple stack overflow */
1096 #define	DTRACEFLT_BADSTACK		9	/* Bad stack */
1097 
1098 #define	DTRACEFLT_LIBRARY		1000	/* Library-level fault */
1099 
1100 /*
1101  * DTrace Argument Types
1102  *
1103  * Because it would waste both space and time, argument types do not reside
1104  * with the probe.  In order to determine argument types for args[X]
1105  * variables, the D compiler queries for argument types on a probe-by-probe
1106  * basis.  (This optimizes for the common case that arguments are either not
1107  * used or used in an untyped fashion.)  Typed arguments are specified with a
1108  * string of the type name in the dtragd_native member of the argument
1109  * description structure.  Typed arguments may be further translated to types
1110  * of greater stability; the provider indicates such a translated argument by
1111  * filling in the dtargd_xlate member with the string of the translated type.
1112  * Finally, the provider may indicate which argument value a given argument
1113  * maps to by setting the dtargd_mapping member -- allowing a single argument
1114  * to map to multiple args[X] variables.
1115  */
1116 typedef struct dtrace_argdesc {
1117 	dtrace_id_t dtargd_id;			/* probe identifier */
1118 	int dtargd_ndx;				/* arg number (-1 iff none) */
1119 	int dtargd_mapping;			/* value mapping */
1120 	char dtargd_native[DTRACE_ARGTYPELEN];	/* native type name */
1121 	char dtargd_xlate[DTRACE_ARGTYPELEN];	/* translated type name */
1122 } dtrace_argdesc_t;
1123 
1124 /*
1125  * DTrace Stability Attributes
1126  *
1127  * Each DTrace provider advertises the name and data stability of each of its
1128  * probe description components, as well as its architectural dependencies.
1129  * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1130  * order to compute the properties of an input program and report them.
1131  */
1132 typedef uint8_t dtrace_stability_t;	/* stability code (see attributes(5)) */
1133 typedef uint8_t dtrace_class_t;		/* architectural dependency class */
1134 
1135 #define	DTRACE_STABILITY_INTERNAL	0	/* private to DTrace itself */
1136 #define	DTRACE_STABILITY_PRIVATE	1	/* private to Sun (see docs) */
1137 #define	DTRACE_STABILITY_OBSOLETE	2	/* scheduled for removal */
1138 #define	DTRACE_STABILITY_EXTERNAL	3	/* not controlled by Sun */
1139 #define	DTRACE_STABILITY_UNSTABLE	4	/* new or rapidly changing */
1140 #define	DTRACE_STABILITY_EVOLVING	5	/* less rapidly changing */
1141 #define	DTRACE_STABILITY_STABLE		6	/* mature interface from Sun */
1142 #define	DTRACE_STABILITY_STANDARD	7	/* industry standard */
1143 #define	DTRACE_STABILITY_MAX		7	/* maximum valid stability */
1144 
1145 #define	DTRACE_CLASS_UNKNOWN	0	/* unknown architectural dependency */
1146 #define	DTRACE_CLASS_CPU	1	/* CPU-module-specific */
1147 #define	DTRACE_CLASS_PLATFORM	2	/* platform-specific (uname -i) */
1148 #define	DTRACE_CLASS_GROUP	3	/* hardware-group-specific (uname -m) */
1149 #define	DTRACE_CLASS_ISA	4	/* ISA-specific (uname -p) */
1150 #define	DTRACE_CLASS_COMMON	5	/* common to all systems */
1151 #define	DTRACE_CLASS_MAX	5	/* maximum valid class */
1152 
1153 #define	DTRACE_PRIV_NONE	0x0000
1154 #define	DTRACE_PRIV_KERNEL	0x0001
1155 #define	DTRACE_PRIV_USER	0x0002
1156 #define	DTRACE_PRIV_PROC	0x0004
1157 #define	DTRACE_PRIV_OWNER	0x0008
1158 #define	DTRACE_PRIV_ZONEOWNER	0x0010
1159 
1160 #define	DTRACE_PRIV_ALL	\
1161 	(DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1162 	DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1163 
1164 typedef struct dtrace_ppriv {
1165 	uint32_t dtpp_flags;			/* privilege flags */
1166 	uid_t dtpp_uid;				/* user ID */
1167 	zoneid_t dtpp_zoneid;			/* zone ID */
1168 } dtrace_ppriv_t;
1169 
1170 typedef struct dtrace_attribute {
1171 	dtrace_stability_t dtat_name;		/* entity name stability */
1172 	dtrace_stability_t dtat_data;		/* entity data stability */
1173 	dtrace_class_t dtat_class;		/* entity data dependency */
1174 } dtrace_attribute_t;
1175 
1176 typedef struct dtrace_pattr {
1177 	dtrace_attribute_t dtpa_provider;	/* provider attributes */
1178 	dtrace_attribute_t dtpa_mod;		/* module attributes */
1179 	dtrace_attribute_t dtpa_func;		/* function attributes */
1180 	dtrace_attribute_t dtpa_name;		/* name attributes */
1181 	dtrace_attribute_t dtpa_args;		/* args[] attributes */
1182 } dtrace_pattr_t;
1183 
1184 typedef struct dtrace_providerdesc {
1185 	char dtvd_name[DTRACE_PROVNAMELEN];	/* provider name */
1186 	dtrace_pattr_t dtvd_attr;		/* stability attributes */
1187 	dtrace_ppriv_t dtvd_priv;		/* privileges required */
1188 } dtrace_providerdesc_t;
1189 
1190 /*
1191  * DTrace Pseudodevice Interface
1192  *
1193  * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1194  * pseudodevice driver.  These ioctls comprise the user-kernel interface to
1195  * DTrace.
1196  */
1197 #if defined(sun)
1198 #define	DTRACEIOC		(('d' << 24) | ('t' << 16) | ('r' << 8))
1199 #define	DTRACEIOC_PROVIDER	(DTRACEIOC | 1)		/* provider query */
1200 #define	DTRACEIOC_PROBES	(DTRACEIOC | 2)		/* probe query */
1201 #define	DTRACEIOC_BUFSNAP	(DTRACEIOC | 4)		/* snapshot buffer */
1202 #define	DTRACEIOC_PROBEMATCH	(DTRACEIOC | 5)		/* match probes */
1203 #define	DTRACEIOC_ENABLE	(DTRACEIOC | 6)		/* enable probes */
1204 #define	DTRACEIOC_AGGSNAP	(DTRACEIOC | 7)		/* snapshot agg. */
1205 #define	DTRACEIOC_EPROBE	(DTRACEIOC | 8)		/* get eprobe desc. */
1206 #define	DTRACEIOC_PROBEARG	(DTRACEIOC | 9)		/* get probe arg */
1207 #define	DTRACEIOC_CONF		(DTRACEIOC | 10)	/* get config. */
1208 #define	DTRACEIOC_STATUS	(DTRACEIOC | 11)	/* get status */
1209 #define	DTRACEIOC_GO		(DTRACEIOC | 12)	/* start tracing */
1210 #define	DTRACEIOC_STOP		(DTRACEIOC | 13)	/* stop tracing */
1211 #define	DTRACEIOC_AGGDESC	(DTRACEIOC | 15)	/* get agg. desc. */
1212 #define	DTRACEIOC_FORMAT	(DTRACEIOC | 16)	/* get format str */
1213 #define	DTRACEIOC_DOFGET	(DTRACEIOC | 17)	/* get DOF */
1214 #define	DTRACEIOC_REPLICATE	(DTRACEIOC | 18)	/* replicate enab */
1215 #else
1216 #define	DTRACEIOC_PROVIDER	_IOWR('x',1,dtrace_providerdesc_t)
1217 							/* provider query */
1218 #define	DTRACEIOC_PROBES	_IOWR('x',2,dtrace_probedesc_t)
1219 							/* probe query */
1220 #define	DTRACEIOC_BUFSNAP	_IOW('x',4,dtrace_bufdesc_t *)
1221 							/* snapshot buffer */
1222 #define	DTRACEIOC_PROBEMATCH	_IOWR('x',5,dtrace_probedesc_t)
1223 							/* match probes */
1224 typedef struct {
1225 	void	*dof;		/* DOF userland address written to driver. */
1226 	int	n_matched;	/* # matches returned by driver. */
1227 } dtrace_enable_io_t;
1228 #define	DTRACEIOC_ENABLE	_IOWR('x',6,dtrace_enable_io_t)
1229 							/* enable probes */
1230 #define	DTRACEIOC_AGGSNAP	_IOW('x',7,dtrace_bufdesc_t *)
1231 							/* snapshot agg. */
1232 #define	DTRACEIOC_EPROBE	_IOW('x',8,dtrace_eprobedesc_t)
1233 							/* get eprobe desc. */
1234 #define	DTRACEIOC_PROBEARG	_IOWR('x',9,dtrace_argdesc_t)
1235 							/* get probe arg */
1236 #define	DTRACEIOC_CONF		_IOR('x',10,dtrace_conf_t)
1237 							/* get config. */
1238 #define	DTRACEIOC_STATUS	_IOR('x',11,dtrace_status_t)
1239 							/* get status */
1240 #define	DTRACEIOC_GO		_IOR('x',12,processorid_t)
1241 							/* start tracing */
1242 #define	DTRACEIOC_STOP		_IOWR('x',13,processorid_t)
1243 							/* stop tracing */
1244 #define	DTRACEIOC_AGGDESC	_IOW('x',15,dtrace_aggdesc_t *)
1245 							/* get agg. desc. */
1246 #define	DTRACEIOC_FORMAT	_IOWR('x',16,dtrace_fmtdesc_t)
1247 							/* get format str */
1248 #define	DTRACEIOC_DOFGET	_IOW('x',17,dof_hdr_t *)
1249 							/* get DOF */
1250 #define	DTRACEIOC_REPLICATE	_IOW('x',18,dtrace_repldesc_t)
1251 							/* replicate enab */
1252 #endif
1253 
1254 /*
1255  * DTrace Helpers
1256  *
1257  * In general, DTrace establishes probes in processes and takes actions on
1258  * processes without knowing their specific user-level structures.  Instead of
1259  * existing in the framework, process-specific knowledge is contained by the
1260  * enabling D program -- which can apply process-specific knowledge by making
1261  * appropriate use of DTrace primitives like copyin() and copyinstr() to
1262  * operate on user-level data.  However, there may exist some specific probes
1263  * of particular semantic relevance that the application developer may wish to
1264  * explicitly export.  For example, an application may wish to export a probe
1265  * at the point that it begins and ends certain well-defined transactions.  In
1266  * addition to providing probes, programs may wish to offer assistance for
1267  * certain actions.  For example, in highly dynamic environments (e.g., Java),
1268  * it may be difficult to obtain a stack trace in terms of meaningful symbol
1269  * names (the translation from instruction addresses to corresponding symbol
1270  * names may only be possible in situ); these environments may wish to define
1271  * a series of actions to be applied in situ to obtain a meaningful stack
1272  * trace.
1273  *
1274  * These two mechanisms -- user-level statically defined tracing and assisting
1275  * DTrace actions -- are provided via DTrace _helpers_.  Helpers are specified
1276  * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1277  * providers, probes and their arguments.  If a helper wishes to provide
1278  * action assistance, probe descriptions and corresponding DIF actions may be
1279  * specified in the helper DOF.  For such helper actions, however, the probe
1280  * description describes the specific helper:  all DTrace helpers have the
1281  * provider name "dtrace" and the module name "helper", and the name of the
1282  * helper is contained in the function name (for example, the ustack() helper
1283  * is named "ustack").  Any helper-specific name may be contained in the name
1284  * (for example, if a helper were to have a constructor, it might be named
1285  * "dtrace:helper:<helper>:init").  Helper actions are only called when the
1286  * action that they are helping is taken.  Helper actions may only return DIF
1287  * expressions, and may only call the following subroutines:
1288  *
1289  *    alloca()      <= Allocates memory out of the consumer's scratch space
1290  *    bcopy()       <= Copies memory to scratch space
1291  *    copyin()      <= Copies memory from user-level into consumer's scratch
1292  *    copyinto()    <= Copies memory into a specific location in scratch
1293  *    copyinstr()   <= Copies a string into a specific location in scratch
1294  *
1295  * Helper actions may only access the following built-in variables:
1296  *
1297  *    curthread     <= Current kthread_t pointer
1298  *    tid           <= Current thread identifier
1299  *    pid           <= Current process identifier
1300  *    ppid          <= Parent process identifier
1301  *    uid           <= Current user ID
1302  *    gid           <= Current group ID
1303  *    execname      <= Current executable name
1304  *    zonename      <= Current zone name
1305  *
1306  * Helper actions may not manipulate or allocate dynamic variables, but they
1307  * may have clause-local and statically-allocated global variables.  The
1308  * helper action variable state is specific to the helper action -- variables
1309  * used by the helper action may not be accessed outside of the helper
1310  * action, and the helper action may not access variables that like outside
1311  * of it.  Helper actions may not load from kernel memory at-large; they are
1312  * restricting to loading current user state (via copyin() and variants) and
1313  * scratch space.  As with probe enablings, helper actions are executed in
1314  * program order.  The result of the helper action is the result of the last
1315  * executing helper expression.
1316  *
1317  * Helpers -- composed of either providers/probes or probes/actions (or both)
1318  * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1319  * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1320  * encapsulates the name and base address of the user-level library or
1321  * executable publishing the helpers and probes as well as the DOF that
1322  * contains the definitions of those helpers and probes.
1323  *
1324  * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1325  * helpers and should no longer be used.  No other ioctls are valid on the
1326  * helper minor node.
1327  */
1328 #define	DTRACEHIOC		(('d' << 24) | ('t' << 16) | ('h' << 8))
1329 #define	DTRACEHIOC_ADD		(DTRACEHIOC | 1)	/* add helper */
1330 #define	DTRACEHIOC_REMOVE	(DTRACEHIOC | 2)	/* remove helper */
1331 #define	DTRACEHIOC_ADDDOF	(DTRACEHIOC | 3)	/* add helper DOF */
1332 
1333 typedef struct dof_helper {
1334 	char dofhp_mod[DTRACE_MODNAMELEN];	/* executable or library name */
1335 	uint64_t dofhp_addr;			/* base address of object */
1336 	uint64_t dofhp_dof;			/* address of helper DOF */
1337 } dof_helper_t;
1338 
1339 #define	DTRACEMNR_DTRACE	"dtrace"	/* node for DTrace ops */
1340 #define	DTRACEMNR_HELPER	"helper"	/* node for helpers */
1341 #define	DTRACEMNRN_DTRACE	0		/* minor for DTrace ops */
1342 #define	DTRACEMNRN_HELPER	1		/* minor for helpers */
1343 #define	DTRACEMNRN_CLONE	2		/* first clone minor */
1344 
1345 #ifdef _KERNEL
1346 
1347 /*
1348  * DTrace Provider API
1349  *
1350  * The following functions are implemented by the DTrace framework and are
1351  * used to implement separate in-kernel DTrace providers.  Common functions
1352  * are provided in uts/common/os/dtrace.c.  ISA-dependent subroutines are
1353  * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1354  *
1355  * The provider API has two halves:  the API that the providers consume from
1356  * DTrace, and the API that providers make available to DTrace.
1357  *
1358  * 1 Framework-to-Provider API
1359  *
1360  * 1.1  Overview
1361  *
1362  * The Framework-to-Provider API is represented by the dtrace_pops structure
1363  * that the provider passes to the framework when registering itself.  This
1364  * structure consists of the following members:
1365  *
1366  *   dtps_provide()          <-- Provide all probes, all modules
1367  *   dtps_provide_module()   <-- Provide all probes in specified module
1368  *   dtps_enable()           <-- Enable specified probe
1369  *   dtps_disable()          <-- Disable specified probe
1370  *   dtps_suspend()          <-- Suspend specified probe
1371  *   dtps_resume()           <-- Resume specified probe
1372  *   dtps_getargdesc()       <-- Get the argument description for args[X]
1373  *   dtps_getargval()        <-- Get the value for an argX or args[X] variable
1374  *   dtps_usermode()         <-- Find out if the probe was fired in user mode
1375  *   dtps_destroy()          <-- Destroy all state associated with this probe
1376  *
1377  * 1.2  void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1378  *
1379  * 1.2.1  Overview
1380  *
1381  *   Called to indicate that the provider should provide all probes.  If the
1382  *   specified description is non-NULL, dtps_provide() is being called because
1383  *   no probe matched a specified probe -- if the provider has the ability to
1384  *   create custom probes, it may wish to create a probe that matches the
1385  *   specified description.
1386  *
1387  * 1.2.2  Arguments and notes
1388  *
1389  *   The first argument is the cookie as passed to dtrace_register().  The
1390  *   second argument is a pointer to a probe description that the provider may
1391  *   wish to consider when creating custom probes.  The provider is expected to
1392  *   call back into the DTrace framework via dtrace_probe_create() to create
1393  *   any necessary probes.  dtps_provide() may be called even if the provider
1394  *   has made available all probes; the provider should check the return value
1395  *   of dtrace_probe_create() to handle this case.  Note that the provider need
1396  *   not implement both dtps_provide() and dtps_provide_module(); see
1397  *   "Arguments and Notes" for dtrace_register(), below.
1398  *
1399  * 1.2.3  Return value
1400  *
1401  *   None.
1402  *
1403  * 1.2.4  Caller's context
1404  *
1405  *   dtps_provide() is typically called from open() or ioctl() context, but may
1406  *   be called from other contexts as well.  The DTrace framework is locked in
1407  *   such a way that providers may not register or unregister.  This means that
1408  *   the provider may not call any DTrace API that affects its registration with
1409  *   the framework, including dtrace_register(), dtrace_unregister(),
1410  *   dtrace_invalidate(), and dtrace_condense().  However, the context is such
1411  *   that the provider may (and indeed, is expected to) call probe-related
1412  *   DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1413  *   and dtrace_probe_arg().
1414  *
1415  * 1.3  void dtps_provide_module(void *arg, modctl_t *mp)
1416  *
1417  * 1.3.1  Overview
1418  *
1419  *   Called to indicate that the provider should provide all probes in the
1420  *   specified module.
1421  *
1422  * 1.3.2  Arguments and notes
1423  *
1424  *   The first argument is the cookie as passed to dtrace_register().  The
1425  *   second argument is a pointer to a modctl structure that indicates the
1426  *   module for which probes should be created.
1427  *
1428  * 1.3.3  Return value
1429  *
1430  *   None.
1431  *
1432  * 1.3.4  Caller's context
1433  *
1434  *   dtps_provide_module() may be called from open() or ioctl() context, but
1435  *   may also be called from a module loading context.  mod_lock is held, and
1436  *   the DTrace framework is locked in such a way that providers may not
1437  *   register or unregister.  This means that the provider may not call any
1438  *   DTrace API that affects its registration with the framework, including
1439  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1440  *   dtrace_condense().  However, the context is such that the provider may (and
1441  *   indeed, is expected to) call probe-related DTrace routines, including
1442  *   dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg().  Note
1443  *   that the provider need not implement both dtps_provide() and
1444  *   dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1445  *   below.
1446  *
1447  * 1.4  void dtps_enable(void *arg, dtrace_id_t id, void *parg)
1448  *
1449  * 1.4.1  Overview
1450  *
1451  *   Called to enable the specified probe.
1452  *
1453  * 1.4.2  Arguments and notes
1454  *
1455  *   The first argument is the cookie as passed to dtrace_register().  The
1456  *   second argument is the identifier of the probe to be enabled.  The third
1457  *   argument is the probe argument as passed to dtrace_probe_create().
1458  *   dtps_enable() will be called when a probe transitions from not being
1459  *   enabled at all to having one or more ECB.  The number of ECBs associated
1460  *   with the probe may change without subsequent calls into the provider.
1461  *   When the number of ECBs drops to zero, the provider will be explicitly
1462  *   told to disable the probe via dtps_disable().  dtrace_probe() should never
1463  *   be called for a probe identifier that hasn't been explicitly enabled via
1464  *   dtps_enable().
1465  *
1466  * 1.4.3  Return value
1467  *
1468  *   None.
1469  *
1470  * 1.4.4  Caller's context
1471  *
1472  *   The DTrace framework is locked in such a way that it may not be called
1473  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1474  *   be acquired.
1475  *
1476  * 1.5  void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1477  *
1478  * 1.5.1  Overview
1479  *
1480  *   Called to disable the specified probe.
1481  *
1482  * 1.5.2  Arguments and notes
1483  *
1484  *   The first argument is the cookie as passed to dtrace_register().  The
1485  *   second argument is the identifier of the probe to be disabled.  The third
1486  *   argument is the probe argument as passed to dtrace_probe_create().
1487  *   dtps_disable() will be called when a probe transitions from being enabled
1488  *   to having zero ECBs.  dtrace_probe() should never be called for a probe
1489  *   identifier that has been explicitly enabled via dtps_disable().
1490  *
1491  * 1.5.3  Return value
1492  *
1493  *   None.
1494  *
1495  * 1.5.4  Caller's context
1496  *
1497  *   The DTrace framework is locked in such a way that it may not be called
1498  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1499  *   be acquired.
1500  *
1501  * 1.6  void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1502  *
1503  * 1.6.1  Overview
1504  *
1505  *   Called to suspend the specified enabled probe.  This entry point is for
1506  *   providers that may need to suspend some or all of their probes when CPUs
1507  *   are being powered on or when the boot monitor is being entered for a
1508  *   prolonged period of time.
1509  *
1510  * 1.6.2  Arguments and notes
1511  *
1512  *   The first argument is the cookie as passed to dtrace_register().  The
1513  *   second argument is the identifier of the probe to be suspended.  The
1514  *   third argument is the probe argument as passed to dtrace_probe_create().
1515  *   dtps_suspend will only be called on an enabled probe.  Providers that
1516  *   provide a dtps_suspend entry point will want to take roughly the action
1517  *   that it takes for dtps_disable.
1518  *
1519  * 1.6.3  Return value
1520  *
1521  *   None.
1522  *
1523  * 1.6.4  Caller's context
1524  *
1525  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1526  *   specified probe cannot be disabled or destroyed for the duration of
1527  *   dtps_suspend().  As interrupts are disabled, the provider is afforded
1528  *   little latitude; the provider is expected to do no more than a store to
1529  *   memory.
1530  *
1531  * 1.7  void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1532  *
1533  * 1.7.1  Overview
1534  *
1535  *   Called to resume the specified enabled probe.  This entry point is for
1536  *   providers that may need to resume some or all of their probes after the
1537  *   completion of an event that induced a call to dtps_suspend().
1538  *
1539  * 1.7.2  Arguments and notes
1540  *
1541  *   The first argument is the cookie as passed to dtrace_register().  The
1542  *   second argument is the identifier of the probe to be resumed.  The
1543  *   third argument is the probe argument as passed to dtrace_probe_create().
1544  *   dtps_resume will only be called on an enabled probe.  Providers that
1545  *   provide a dtps_resume entry point will want to take roughly the action
1546  *   that it takes for dtps_enable.
1547  *
1548  * 1.7.3  Return value
1549  *
1550  *   None.
1551  *
1552  * 1.7.4  Caller's context
1553  *
1554  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1555  *   specified probe cannot be disabled or destroyed for the duration of
1556  *   dtps_resume().  As interrupts are disabled, the provider is afforded
1557  *   little latitude; the provider is expected to do no more than a store to
1558  *   memory.
1559  *
1560  * 1.8  void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1561  *           dtrace_argdesc_t *desc)
1562  *
1563  * 1.8.1  Overview
1564  *
1565  *   Called to retrieve the argument description for an args[X] variable.
1566  *
1567  * 1.8.2  Arguments and notes
1568  *
1569  *   The first argument is the cookie as passed to dtrace_register(). The
1570  *   second argument is the identifier of the current probe. The third
1571  *   argument is the probe argument as passed to dtrace_probe_create(). The
1572  *   fourth argument is a pointer to the argument description.  This
1573  *   description is both an input and output parameter:  it contains the
1574  *   index of the desired argument in the dtargd_ndx field, and expects
1575  *   the other fields to be filled in upon return.  If there is no argument
1576  *   corresponding to the specified index, the dtargd_ndx field should be set
1577  *   to DTRACE_ARGNONE.
1578  *
1579  * 1.8.3  Return value
1580  *
1581  *   None.  The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1582  *   members of the dtrace_argdesc_t structure are all output values.
1583  *
1584  * 1.8.4  Caller's context
1585  *
1586  *   dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1587  *   the DTrace framework is locked in such a way that providers may not
1588  *   register or unregister.  This means that the provider may not call any
1589  *   DTrace API that affects its registration with the framework, including
1590  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1591  *   dtrace_condense().
1592  *
1593  * 1.9  uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1594  *               int argno, int aframes)
1595  *
1596  * 1.9.1  Overview
1597  *
1598  *   Called to retrieve a value for an argX or args[X] variable.
1599  *
1600  * 1.9.2  Arguments and notes
1601  *
1602  *   The first argument is the cookie as passed to dtrace_register(). The
1603  *   second argument is the identifier of the current probe. The third
1604  *   argument is the probe argument as passed to dtrace_probe_create(). The
1605  *   fourth argument is the number of the argument (the X in the example in
1606  *   1.9.1). The fifth argument is the number of stack frames that were used
1607  *   to get from the actual place in the code that fired the probe to
1608  *   dtrace_probe() itself, the so-called artificial frames. This argument may
1609  *   be used to descend an appropriate number of frames to find the correct
1610  *   values. If this entry point is left NULL, the dtrace_getarg() built-in
1611  *   function is used.
1612  *
1613  * 1.9.3  Return value
1614  *
1615  *   The value of the argument.
1616  *
1617  * 1.9.4  Caller's context
1618  *
1619  *   This is called from within dtrace_probe() meaning that interrupts
1620  *   are disabled. No locks should be taken within this entry point.
1621  *
1622  * 1.10  int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1623  *
1624  * 1.10.1  Overview
1625  *
1626  *   Called to determine if the probe was fired in a user context.
1627  *
1628  * 1.10.2  Arguments and notes
1629  *
1630  *   The first argument is the cookie as passed to dtrace_register(). The
1631  *   second argument is the identifier of the current probe. The third
1632  *   argument is the probe argument as passed to dtrace_probe_create().  This
1633  *   entry point must not be left NULL for providers whose probes allow for
1634  *   mixed mode tracing, that is to say those probes that can fire during
1635  *   kernel- _or_ user-mode execution
1636  *
1637  * 1.10.3  Return value
1638  *
1639  *   A boolean value.
1640  *
1641  * 1.10.4  Caller's context
1642  *
1643  *   This is called from within dtrace_probe() meaning that interrupts
1644  *   are disabled. No locks should be taken within this entry point.
1645  *
1646  * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1647  *
1648  * 1.11.1 Overview
1649  *
1650  *   Called to destroy the specified probe.
1651  *
1652  * 1.11.2 Arguments and notes
1653  *
1654  *   The first argument is the cookie as passed to dtrace_register().  The
1655  *   second argument is the identifier of the probe to be destroyed.  The third
1656  *   argument is the probe argument as passed to dtrace_probe_create().  The
1657  *   provider should free all state associated with the probe.  The framework
1658  *   guarantees that dtps_destroy() is only called for probes that have either
1659  *   been disabled via dtps_disable() or were never enabled via dtps_enable().
1660  *   Once dtps_disable() has been called for a probe, no further call will be
1661  *   made specifying the probe.
1662  *
1663  * 1.11.3 Return value
1664  *
1665  *   None.
1666  *
1667  * 1.11.4 Caller's context
1668  *
1669  *   The DTrace framework is locked in such a way that it may not be called
1670  *   back into at all.  mod_lock is held.  cpu_lock is not held, and may not be
1671  *   acquired.
1672  *
1673  *
1674  * 2 Provider-to-Framework API
1675  *
1676  * 2.1  Overview
1677  *
1678  * The Provider-to-Framework API provides the mechanism for the provider to
1679  * register itself with the DTrace framework, to create probes, to lookup
1680  * probes and (most importantly) to fire probes.  The Provider-to-Framework
1681  * consists of:
1682  *
1683  *   dtrace_register()       <-- Register a provider with the DTrace framework
1684  *   dtrace_unregister()     <-- Remove a provider's DTrace registration
1685  *   dtrace_invalidate()     <-- Invalidate the specified provider
1686  *   dtrace_condense()       <-- Remove a provider's unenabled probes
1687  *   dtrace_attached()       <-- Indicates whether or not DTrace has attached
1688  *   dtrace_probe_create()   <-- Create a DTrace probe
1689  *   dtrace_probe_lookup()   <-- Lookup a DTrace probe based on its name
1690  *   dtrace_probe_arg()      <-- Return the probe argument for a specific probe
1691  *   dtrace_probe()          <-- Fire the specified probe
1692  *
1693  * 2.2  int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1694  *          uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1695  *          dtrace_provider_id_t *idp)
1696  *
1697  * 2.2.1  Overview
1698  *
1699  *   dtrace_register() registers the calling provider with the DTrace
1700  *   framework.  It should generally be called by DTrace providers in their
1701  *   attach(9E) entry point.
1702  *
1703  * 2.2.2  Arguments and Notes
1704  *
1705  *   The first argument is the name of the provider.  The second argument is a
1706  *   pointer to the stability attributes for the provider.  The third argument
1707  *   is the privilege flags for the provider, and must be some combination of:
1708  *
1709  *     DTRACE_PRIV_NONE     <= All users may enable probes from this provider
1710  *
1711  *     DTRACE_PRIV_PROC     <= Any user with privilege of PRIV_DTRACE_PROC may
1712  *                             enable probes from this provider
1713  *
1714  *     DTRACE_PRIV_USER     <= Any user with privilege of PRIV_DTRACE_USER may
1715  *                             enable probes from this provider
1716  *
1717  *     DTRACE_PRIV_KERNEL   <= Any user with privilege of PRIV_DTRACE_KERNEL
1718  *                             may enable probes from this provider
1719  *
1720  *     DTRACE_PRIV_OWNER    <= This flag places an additional constraint on
1721  *                             the privilege requirements above. These probes
1722  *                             require either (a) a user ID matching the user
1723  *                             ID of the cred passed in the fourth argument
1724  *                             or (b) the PRIV_PROC_OWNER privilege.
1725  *
1726  *     DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1727  *                             the privilege requirements above. These probes
1728  *                             require either (a) a zone ID matching the zone
1729  *                             ID of the cred passed in the fourth argument
1730  *                             or (b) the PRIV_PROC_ZONE privilege.
1731  *
1732  *   Note that these flags designate the _visibility_ of the probes, not
1733  *   the conditions under which they may or may not fire.
1734  *
1735  *   The fourth argument is the credential that is associated with the
1736  *   provider.  This argument should be NULL if the privilege flags don't
1737  *   include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER.  If non-NULL, the
1738  *   framework stashes the uid and zoneid represented by this credential
1739  *   for use at probe-time, in implicit predicates.  These limit visibility
1740  *   of the probes to users and/or zones which have sufficient privilege to
1741  *   access them.
1742  *
1743  *   The fifth argument is a DTrace provider operations vector, which provides
1744  *   the implementation for the Framework-to-Provider API.  (See Section 1,
1745  *   above.)  This must be non-NULL, and each member must be non-NULL.  The
1746  *   exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1747  *   members (if the provider so desires, _one_ of these members may be left
1748  *   NULL -- denoting that the provider only implements the other) and (2)
1749  *   the dtps_suspend() and dtps_resume() members, which must either both be
1750  *   NULL or both be non-NULL.
1751  *
1752  *   The sixth argument is a cookie to be specified as the first argument for
1753  *   each function in the Framework-to-Provider API.  This argument may have
1754  *   any value.
1755  *
1756  *   The final argument is a pointer to dtrace_provider_id_t.  If
1757  *   dtrace_register() successfully completes, the provider identifier will be
1758  *   stored in the memory pointed to be this argument.  This argument must be
1759  *   non-NULL.
1760  *
1761  * 2.2.3  Return value
1762  *
1763  *   On success, dtrace_register() returns 0 and stores the new provider's
1764  *   identifier into the memory pointed to by the idp argument.  On failure,
1765  *   dtrace_register() returns an errno:
1766  *
1767  *     EINVAL   The arguments passed to dtrace_register() were somehow invalid.
1768  *              This may because a parameter that must be non-NULL was NULL,
1769  *              because the name was invalid (either empty or an illegal
1770  *              provider name) or because the attributes were invalid.
1771  *
1772  *   No other failure code is returned.
1773  *
1774  * 2.2.4  Caller's context
1775  *
1776  *   dtrace_register() may induce calls to dtrace_provide(); the provider must
1777  *   hold no locks across dtrace_register() that may also be acquired by
1778  *   dtrace_provide().  cpu_lock and mod_lock must not be held.
1779  *
1780  * 2.3  int dtrace_unregister(dtrace_provider_t id)
1781  *
1782  * 2.3.1  Overview
1783  *
1784  *   Unregisters the specified provider from the DTrace framework.  It should
1785  *   generally be called by DTrace providers in their detach(9E) entry point.
1786  *
1787  * 2.3.2  Arguments and Notes
1788  *
1789  *   The only argument is the provider identifier, as returned from a
1790  *   successful call to dtrace_register().  As a result of calling
1791  *   dtrace_unregister(), the DTrace framework will call back into the provider
1792  *   via the dtps_destroy() entry point.  Once dtrace_unregister() successfully
1793  *   completes, however, the DTrace framework will no longer make calls through
1794  *   the Framework-to-Provider API.
1795  *
1796  * 2.3.3  Return value
1797  *
1798  *   On success, dtrace_unregister returns 0.  On failure, dtrace_unregister()
1799  *   returns an errno:
1800  *
1801  *     EBUSY    There are currently processes that have the DTrace pseudodevice
1802  *              open, or there exists an anonymous enabling that hasn't yet
1803  *              been claimed.
1804  *
1805  *   No other failure code is returned.
1806  *
1807  * 2.3.4  Caller's context
1808  *
1809  *   Because a call to dtrace_unregister() may induce calls through the
1810  *   Framework-to-Provider API, the caller may not hold any lock across
1811  *   dtrace_register() that is also acquired in any of the Framework-to-
1812  *   Provider API functions.  Additionally, mod_lock may not be held.
1813  *
1814  * 2.4  void dtrace_invalidate(dtrace_provider_id_t id)
1815  *
1816  * 2.4.1  Overview
1817  *
1818  *   Invalidates the specified provider.  All subsequent probe lookups for the
1819  *   specified provider will fail, but its probes will not be removed.
1820  *
1821  * 2.4.2  Arguments and note
1822  *
1823  *   The only argument is the provider identifier, as returned from a
1824  *   successful call to dtrace_register().  In general, a provider's probes
1825  *   always remain valid; dtrace_invalidate() is a mechanism for invalidating
1826  *   an entire provider, regardless of whether or not probes are enabled or
1827  *   not.  Note that dtrace_invalidate() will _not_ prevent already enabled
1828  *   probes from firing -- it will merely prevent any new enablings of the
1829  *   provider's probes.
1830  *
1831  * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1832  *
1833  * 2.5.1  Overview
1834  *
1835  *   Removes all the unenabled probes for the given provider. This function is
1836  *   not unlike dtrace_unregister(), except that it doesn't remove the
1837  *   provider just as many of its associated probes as it can.
1838  *
1839  * 2.5.2  Arguments and Notes
1840  *
1841  *   As with dtrace_unregister(), the sole argument is the provider identifier
1842  *   as returned from a successful call to dtrace_register().  As a result of
1843  *   calling dtrace_condense(), the DTrace framework will call back into the
1844  *   given provider's dtps_destroy() entry point for each of the provider's
1845  *   unenabled probes.
1846  *
1847  * 2.5.3  Return value
1848  *
1849  *   Currently, dtrace_condense() always returns 0.  However, consumers of this
1850  *   function should check the return value as appropriate; its behavior may
1851  *   change in the future.
1852  *
1853  * 2.5.4  Caller's context
1854  *
1855  *   As with dtrace_unregister(), the caller may not hold any lock across
1856  *   dtrace_condense() that is also acquired in the provider's entry points.
1857  *   Also, mod_lock may not be held.
1858  *
1859  * 2.6 int dtrace_attached()
1860  *
1861  * 2.6.1  Overview
1862  *
1863  *   Indicates whether or not DTrace has attached.
1864  *
1865  * 2.6.2  Arguments and Notes
1866  *
1867  *   For most providers, DTrace makes initial contact beyond registration.
1868  *   That is, once a provider has registered with DTrace, it waits to hear
1869  *   from DTrace to create probes.  However, some providers may wish to
1870  *   proactively create probes without first being told by DTrace to do so.
1871  *   If providers wish to do this, they must first call dtrace_attached() to
1872  *   determine if DTrace itself has attached.  If dtrace_attached() returns 0,
1873  *   the provider must not make any other Provider-to-Framework API call.
1874  *
1875  * 2.6.3  Return value
1876  *
1877  *   dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1878  *
1879  * 2.7  int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1880  *	    const char *func, const char *name, int aframes, void *arg)
1881  *
1882  * 2.7.1  Overview
1883  *
1884  *   Creates a probe with specified module name, function name, and name.
1885  *
1886  * 2.7.2  Arguments and Notes
1887  *
1888  *   The first argument is the provider identifier, as returned from a
1889  *   successful call to dtrace_register().  The second, third, and fourth
1890  *   arguments are the module name, function name, and probe name,
1891  *   respectively.  Of these, module name and function name may both be NULL
1892  *   (in which case the probe is considered to be unanchored), or they may both
1893  *   be non-NULL.  The name must be non-NULL, and must point to a non-empty
1894  *   string.
1895  *
1896  *   The fifth argument is the number of artificial stack frames that will be
1897  *   found on the stack when dtrace_probe() is called for the new probe.  These
1898  *   artificial frames will be automatically be pruned should the stack() or
1899  *   stackdepth() functions be called as part of one of the probe's ECBs.  If
1900  *   the parameter doesn't add an artificial frame, this parameter should be
1901  *   zero.
1902  *
1903  *   The final argument is a probe argument that will be passed back to the
1904  *   provider when a probe-specific operation is called.  (e.g., via
1905  *   dtps_enable(), dtps_disable(), etc.)
1906  *
1907  *   Note that it is up to the provider to be sure that the probe that it
1908  *   creates does not already exist -- if the provider is unsure of the probe's
1909  *   existence, it should assure its absence with dtrace_probe_lookup() before
1910  *   calling dtrace_probe_create().
1911  *
1912  * 2.7.3  Return value
1913  *
1914  *   dtrace_probe_create() always succeeds, and always returns the identifier
1915  *   of the newly-created probe.
1916  *
1917  * 2.7.4  Caller's context
1918  *
1919  *   While dtrace_probe_create() is generally expected to be called from
1920  *   dtps_provide() and/or dtps_provide_module(), it may be called from other
1921  *   non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1922  *
1923  * 2.8  dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1924  *	    const char *func, const char *name)
1925  *
1926  * 2.8.1  Overview
1927  *
1928  *   Looks up a probe based on provdider and one or more of module name,
1929  *   function name and probe name.
1930  *
1931  * 2.8.2  Arguments and Notes
1932  *
1933  *   The first argument is the provider identifier, as returned from a
1934  *   successful call to dtrace_register().  The second, third, and fourth
1935  *   arguments are the module name, function name, and probe name,
1936  *   respectively.  Any of these may be NULL; dtrace_probe_lookup() will return
1937  *   the identifier of the first probe that is provided by the specified
1938  *   provider and matches all of the non-NULL matching criteria.
1939  *   dtrace_probe_lookup() is generally used by a provider to be check the
1940  *   existence of a probe before creating it with dtrace_probe_create().
1941  *
1942  * 2.8.3  Return value
1943  *
1944  *   If the probe exists, returns its identifier.  If the probe does not exist,
1945  *   return DTRACE_IDNONE.
1946  *
1947  * 2.8.4  Caller's context
1948  *
1949  *   While dtrace_probe_lookup() is generally expected to be called from
1950  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
1951  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1952  *
1953  * 2.9  void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1954  *
1955  * 2.9.1  Overview
1956  *
1957  *   Returns the probe argument associated with the specified probe.
1958  *
1959  * 2.9.2  Arguments and Notes
1960  *
1961  *   The first argument is the provider identifier, as returned from a
1962  *   successful call to dtrace_register().  The second argument is a probe
1963  *   identifier, as returned from dtrace_probe_lookup() or
1964  *   dtrace_probe_create().  This is useful if a probe has multiple
1965  *   provider-specific components to it:  the provider can create the probe
1966  *   once with provider-specific state, and then add to the state by looking
1967  *   up the probe based on probe identifier.
1968  *
1969  * 2.9.3  Return value
1970  *
1971  *   Returns the argument associated with the specified probe.  If the
1972  *   specified probe does not exist, or if the specified probe is not provided
1973  *   by the specified provider, NULL is returned.
1974  *
1975  * 2.9.4  Caller's context
1976  *
1977  *   While dtrace_probe_arg() is generally expected to be called from
1978  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
1979  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1980  *
1981  * 2.10  void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
1982  *		uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
1983  *
1984  * 2.10.1  Overview
1985  *
1986  *   The epicenter of DTrace:  fires the specified probes with the specified
1987  *   arguments.
1988  *
1989  * 2.10.2  Arguments and Notes
1990  *
1991  *   The first argument is a probe identifier as returned by
1992  *   dtrace_probe_create() or dtrace_probe_lookup().  The second through sixth
1993  *   arguments are the values to which the D variables "arg0" through "arg4"
1994  *   will be mapped.
1995  *
1996  *   dtrace_probe() should be called whenever the specified probe has fired --
1997  *   however the provider defines it.
1998  *
1999  * 2.10.3  Return value
2000  *
2001  *   None.
2002  *
2003  * 2.10.4  Caller's context
2004  *
2005  *   dtrace_probe() may be called in virtually any context:  kernel, user,
2006  *   interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2007  *   dispatcher locks held, with interrupts disabled, etc.  The only latitude
2008  *   that must be afforded to DTrace is the ability to make calls within
2009  *   itself (and to its in-kernel subroutines) and the ability to access
2010  *   arbitrary (but mapped) memory.  On some platforms, this constrains
2011  *   context.  For example, on UltraSPARC, dtrace_probe() cannot be called
2012  *   from any context in which TL is greater than zero.  dtrace_probe() may
2013  *   also not be called from any routine which may be called by dtrace_probe()
2014  *   -- which includes functions in the DTrace framework and some in-kernel
2015  *   DTrace subroutines.  All such functions "dtrace_"; providers that
2016  *   instrument the kernel arbitrarily should be sure to not instrument these
2017  *   routines.
2018  */
2019 
2020 typedef dtrace_modctl_t *mymodctl_p;
2021 
2022 typedef struct dtrace_pops {
2023 	void (*dtps_provide)(void *arg, dtrace_probedesc_t *spec);
2024 	void (*dtps_provide_module)(void *arg, dtrace_modctl_t *mp);
2025 	void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2026 	void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2027 	void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2028 	void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2029 	void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2030 	    dtrace_argdesc_t *desc);
2031 	uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2032 	    int argno, int aframes);
2033 	int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
2034 	void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2035 } dtrace_pops_t;
2036 
2037 typedef uintptr_t	dtrace_provider_id_t;
2038 
2039 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2040     cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2041 extern int dtrace_unregister(dtrace_provider_id_t);
2042 extern int dtrace_condense(dtrace_provider_id_t);
2043 extern void dtrace_invalidate(dtrace_provider_id_t);
2044 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, char *,
2045     char *, char *);
2046 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2047     const char *, const char *, int, void *);
2048 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2049 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2050     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2051 
2052 /*
2053  * DTrace Meta Provider API
2054  *
2055  * The following functions are implemented by the DTrace framework and are
2056  * used to implement meta providers. Meta providers plug into the DTrace
2057  * framework and are used to instantiate new providers on the fly. At
2058  * present, there is only one type of meta provider and only one meta
2059  * provider may be registered with the DTrace framework at a time. The
2060  * sole meta provider type provides user-land static tracing facilities
2061  * by taking meta probe descriptions and adding a corresponding provider
2062  * into the DTrace framework.
2063  *
2064  * 1 Framework-to-Provider
2065  *
2066  * 1.1 Overview
2067  *
2068  * The Framework-to-Provider API is represented by the dtrace_mops structure
2069  * that the meta provider passes to the framework when registering itself as
2070  * a meta provider. This structure consists of the following members:
2071  *
2072  *   dtms_create_probe()	<-- Add a new probe to a created provider
2073  *   dtms_provide_pid()		<-- Create a new provider for a given process
2074  *   dtms_remove_pid()		<-- Remove a previously created provider
2075  *
2076  * 1.2  void dtms_create_probe(void *arg, void *parg,
2077  *           dtrace_helper_probedesc_t *probedesc);
2078  *
2079  * 1.2.1  Overview
2080  *
2081  *   Called by the DTrace framework to create a new probe in a provider
2082  *   created by this meta provider.
2083  *
2084  * 1.2.2  Arguments and notes
2085  *
2086  *   The first argument is the cookie as passed to dtrace_meta_register().
2087  *   The second argument is the provider cookie for the associated provider;
2088  *   this is obtained from the return value of dtms_provide_pid(). The third
2089  *   argument is the helper probe description.
2090  *
2091  * 1.2.3  Return value
2092  *
2093  *   None
2094  *
2095  * 1.2.4  Caller's context
2096  *
2097  *   dtms_create_probe() is called from either ioctl() or module load context.
2098  *   The DTrace framework is locked in such a way that meta providers may not
2099  *   register or unregister. This means that the meta provider cannot call
2100  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2101  *   such that the provider may (and is expected to) call provider-related
2102  *   DTrace provider APIs including dtrace_probe_create().
2103  *
2104  * 1.3  void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2105  *	      pid_t pid)
2106  *
2107  * 1.3.1  Overview
2108  *
2109  *   Called by the DTrace framework to instantiate a new provider given the
2110  *   description of the provider and probes in the mprov argument. The
2111  *   meta provider should call dtrace_register() to insert the new provider
2112  *   into the DTrace framework.
2113  *
2114  * 1.3.2  Arguments and notes
2115  *
2116  *   The first argument is the cookie as passed to dtrace_meta_register().
2117  *   The second argument is a pointer to a structure describing the new
2118  *   helper provider. The third argument is the process identifier for
2119  *   process associated with this new provider. Note that the name of the
2120  *   provider as passed to dtrace_register() should be the contatenation of
2121  *   the dtmpb_provname member of the mprov argument and the processs
2122  *   identifier as a string.
2123  *
2124  * 1.3.3  Return value
2125  *
2126  *   The cookie for the provider that the meta provider creates. This is
2127  *   the same value that it passed to dtrace_register().
2128  *
2129  * 1.3.4  Caller's context
2130  *
2131  *   dtms_provide_pid() is called from either ioctl() or module load context.
2132  *   The DTrace framework is locked in such a way that meta providers may not
2133  *   register or unregister. This means that the meta provider cannot call
2134  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2135  *   is such that the provider may -- and is expected to --  call
2136  *   provider-related DTrace provider APIs including dtrace_register().
2137  *
2138  * 1.4  void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2139  *	     pid_t pid)
2140  *
2141  * 1.4.1  Overview
2142  *
2143  *   Called by the DTrace framework to remove a provider that had previously
2144  *   been instantiated via the dtms_provide_pid() entry point. The meta
2145  *   provider need not remove the provider immediately, but this entry
2146  *   point indicates that the provider should be removed as soon as possible
2147  *   using the dtrace_unregister() API.
2148  *
2149  * 1.4.2  Arguments and notes
2150  *
2151  *   The first argument is the cookie as passed to dtrace_meta_register().
2152  *   The second argument is a pointer to a structure describing the helper
2153  *   provider. The third argument is the process identifier for process
2154  *   associated with this new provider.
2155  *
2156  * 1.4.3  Return value
2157  *
2158  *   None
2159  *
2160  * 1.4.4  Caller's context
2161  *
2162  *   dtms_remove_pid() is called from either ioctl() or exit() context.
2163  *   The DTrace framework is locked in such a way that meta providers may not
2164  *   register or unregister. This means that the meta provider cannot call
2165  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2166  *   is such that the provider may -- and is expected to -- call
2167  *   provider-related DTrace provider APIs including dtrace_unregister().
2168  */
2169 typedef struct dtrace_helper_probedesc {
2170 	char *dthpb_mod;			/* probe module */
2171 	char *dthpb_func; 			/* probe function */
2172 	char *dthpb_name; 			/* probe name */
2173 	uint64_t dthpb_base;			/* base address */
2174 	uint32_t *dthpb_offs;			/* offsets array */
2175 	uint32_t *dthpb_enoffs;			/* is-enabled offsets array */
2176 	uint32_t dthpb_noffs;			/* offsets count */
2177 	uint32_t dthpb_nenoffs;			/* is-enabled offsets count */
2178 	uint8_t *dthpb_args;			/* argument mapping array */
2179 	uint8_t dthpb_xargc;			/* translated argument count */
2180 	uint8_t dthpb_nargc;			/* native argument count */
2181 	char *dthpb_xtypes;			/* translated types strings */
2182 	char *dthpb_ntypes;			/* native types strings */
2183 } dtrace_helper_probedesc_t;
2184 
2185 typedef struct dtrace_helper_provdesc {
2186 	char *dthpv_provname;			/* provider name */
2187 	dtrace_pattr_t dthpv_pattr;		/* stability attributes */
2188 } dtrace_helper_provdesc_t;
2189 
2190 typedef struct dtrace_mops {
2191 	void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2192 	void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2193 	void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2194 } dtrace_mops_t;
2195 
2196 typedef uintptr_t	dtrace_meta_provider_id_t;
2197 
2198 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2199     dtrace_meta_provider_id_t *);
2200 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2201 
2202 /*
2203  * DTrace Kernel Hooks
2204  *
2205  * The following functions are implemented by the base kernel and form a set of
2206  * hooks used by the DTrace framework.  DTrace hooks are implemented in either
2207  * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2208  * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2209  */
2210 
2211 typedef enum dtrace_vtime_state {
2212 	DTRACE_VTIME_INACTIVE = 0,	/* No DTrace, no TNF */
2213 	DTRACE_VTIME_ACTIVE,		/* DTrace virtual time, no TNF */
2214 	DTRACE_VTIME_INACTIVE_TNF,	/* No DTrace, TNF active */
2215 	DTRACE_VTIME_ACTIVE_TNF		/* DTrace virtual time _and_ TNF */
2216 } dtrace_vtime_state_t;
2217 
2218 #if defined(sun)
2219 extern dtrace_vtime_state_t dtrace_vtime_active;
2220 #endif
2221 extern void dtrace_vtime_switch(kthread_t *next);
2222 extern void dtrace_vtime_enable_tnf(void);
2223 extern void dtrace_vtime_disable_tnf(void);
2224 extern void dtrace_vtime_enable(void);
2225 extern void dtrace_vtime_disable(void);
2226 
2227 struct regs;
2228 
2229 #if defined(sun)
2230 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2231 extern int (*dtrace_return_probe_ptr)(struct regs *);
2232 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2233 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2234 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2235 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2236 #endif
2237 
2238 typedef uintptr_t dtrace_icookie_t;
2239 typedef void (*dtrace_xcall_t)(void *);
2240 
2241 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2242 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2243 
2244 extern void dtrace_membar_producer(void);
2245 extern void dtrace_membar_consumer(void);
2246 
2247 extern void (*dtrace_cpu_init)(processorid_t);
2248 extern void (*dtrace_modload)(dtrace_modctl_t *);
2249 extern void (*dtrace_modunload)(dtrace_modctl_t *);
2250 extern void (*dtrace_helpers_cleanup)(void);
2251 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2252 extern void (*dtrace_cpustart_init)(void);
2253 extern void (*dtrace_cpustart_fini)(void);
2254 
2255 extern void (*dtrace_debugger_init)(void);
2256 extern void (*dtrace_debugger_fini)(void);
2257 extern dtrace_cacheid_t dtrace_predcache_id;
2258 
2259 #if defined(sun)
2260 extern hrtime_t dtrace_gethrtime(void);
2261 #else
2262 void dtrace_debug_printf(const char *, ...);
2263 #endif
2264 extern void dtrace_sync(void);
2265 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2266 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2267 extern void dtrace_vpanic(const char *, _BSD_VA_LIST_);
2268 extern void dtrace_panic(const char *, ...);
2269 
2270 extern int dtrace_safe_defer_signal(void);
2271 extern void dtrace_safe_synchronous_signal(void);
2272 
2273 extern int dtrace_mach_aframes(void);
2274 
2275 #if defined(__i386) || defined(__amd64)
2276 extern int dtrace_instr_size(uchar_t *instr);
2277 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2278 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2279 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2280 extern void dtrace_invop_callsite(void);
2281 #endif
2282 
2283 #ifdef __sparc
2284 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2285 extern void dtrace_getfsr(uint64_t *);
2286 #endif
2287 
2288 #define	DTRACE_CPUFLAG_ISSET(flag) \
2289 	(cpu_core[curcpu_id].cpuc_dtrace_flags & (flag))
2290 
2291 #define	DTRACE_CPUFLAG_SET(flag) \
2292 	(cpu_core[curcpu_id].cpuc_dtrace_flags |= (flag))
2293 
2294 #define	DTRACE_CPUFLAG_CLEAR(flag) \
2295 	(cpu_core[curcpu_id].cpuc_dtrace_flags &= ~(flag))
2296 
2297 #endif /* _KERNEL */
2298 
2299 #endif	/* _ASM */
2300 
2301 #if defined(__i386) || defined(__amd64)
2302 
2303 #define	DTRACE_INVOP_PUSHL_EBP		1
2304 #define	DTRACE_INVOP_POPL_EBP		2
2305 #define	DTRACE_INVOP_LEAVE		3
2306 #define	DTRACE_INVOP_NOP		4
2307 #define	DTRACE_INVOP_RET		5
2308 
2309 #endif
2310 
2311 #ifdef	__cplusplus
2312 }
2313 #endif
2314 
2315 #endif	/* _SYS_DTRACE_H */
2316