1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _SYS_DTRACE_H 28 #define _SYS_DTRACE_H 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #ifdef __cplusplus 33 extern "C" { 34 #endif 35 36 /* 37 * DTrace Dynamic Tracing Software: Kernel Interfaces 38 * 39 * Note: The contents of this file are private to the implementation of the 40 * Solaris system and DTrace subsystem and are subject to change at any time 41 * without notice. Applications and drivers using these interfaces will fail 42 * to run on future releases. These interfaces should not be used for any 43 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). 44 * Please refer to the "Solaris Dynamic Tracing Guide" for more information. 45 */ 46 47 #ifndef _ASM 48 49 #include <sys/types.h> 50 #include <sys/modctl.h> 51 #include <sys/processor.h> 52 #include <sys/proc.h> 53 #if defined(sun) 54 #include <sys/systm.h> 55 #else 56 #include <sys/param.h> 57 #include <sys/linker.h> 58 #include <sys/ioccom.h> 59 #include <sys/ucred.h> 60 typedef int model_t; 61 #endif 62 #include <sys/ctf_api.h> 63 #if 0 64 #include <sys/cyclic.h> 65 #endif 66 #if defined(sun) 67 #include <sys/int_limits.h> 68 #else 69 #include <sys/stdint.h> 70 #endif 71 72 /* 73 * DTrace Universal Constants and Typedefs 74 */ 75 #define DTRACE_CPUALL -1 /* all CPUs */ 76 #define DTRACE_IDNONE 0 /* invalid probe identifier */ 77 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ 78 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ 79 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */ 80 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ 81 #define DTRACE_PROVNONE 0 /* invalid provider identifier */ 82 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ 83 #define DTRACE_ARGNONE -1 /* invalid argument index */ 84 85 #define DTRACE_PROVNAMELEN 64 86 #define DTRACE_MODNAMELEN 64 87 #define DTRACE_FUNCNAMELEN 128 88 #define DTRACE_NAMELEN 64 89 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ 90 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) 91 #define DTRACE_ARGTYPELEN 128 92 93 typedef uint32_t dtrace_id_t; /* probe identifier */ 94 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ 95 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ 96 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */ 97 typedef uint16_t dtrace_actkind_t; /* action kind */ 98 typedef int64_t dtrace_optval_t; /* option value */ 99 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ 100 101 typedef enum dtrace_probespec { 102 DTRACE_PROBESPEC_NONE = -1, 103 DTRACE_PROBESPEC_PROVIDER = 0, 104 DTRACE_PROBESPEC_MOD, 105 DTRACE_PROBESPEC_FUNC, 106 DTRACE_PROBESPEC_NAME 107 } dtrace_probespec_t; 108 109 /* 110 * DTrace Intermediate Format (DIF) 111 * 112 * The following definitions describe the DTrace Intermediate Format (DIF), a 113 * a RISC-like instruction set and program encoding used to represent 114 * predicates and actions that can be bound to DTrace probes. The constants 115 * below defining the number of available registers are suggested minimums; the 116 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of 117 * registers provided by the current DTrace implementation. 118 */ 119 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ 120 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ 121 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ 122 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */ 123 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ 124 125 #define DIF_OP_OR 1 /* or r1, r2, rd */ 126 #define DIF_OP_XOR 2 /* xor r1, r2, rd */ 127 #define DIF_OP_AND 3 /* and r1, r2, rd */ 128 #define DIF_OP_SLL 4 /* sll r1, r2, rd */ 129 #define DIF_OP_SRL 5 /* srl r1, r2, rd */ 130 #define DIF_OP_SUB 6 /* sub r1, r2, rd */ 131 #define DIF_OP_ADD 7 /* add r1, r2, rd */ 132 #define DIF_OP_MUL 8 /* mul r1, r2, rd */ 133 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ 134 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ 135 #define DIF_OP_SREM 11 /* srem r1, r2, rd */ 136 #define DIF_OP_UREM 12 /* urem r1, r2, rd */ 137 #define DIF_OP_NOT 13 /* not r1, rd */ 138 #define DIF_OP_MOV 14 /* mov r1, rd */ 139 #define DIF_OP_CMP 15 /* cmp r1, r2 */ 140 #define DIF_OP_TST 16 /* tst r1 */ 141 #define DIF_OP_BA 17 /* ba label */ 142 #define DIF_OP_BE 18 /* be label */ 143 #define DIF_OP_BNE 19 /* bne label */ 144 #define DIF_OP_BG 20 /* bg label */ 145 #define DIF_OP_BGU 21 /* bgu label */ 146 #define DIF_OP_BGE 22 /* bge label */ 147 #define DIF_OP_BGEU 23 /* bgeu label */ 148 #define DIF_OP_BL 24 /* bl label */ 149 #define DIF_OP_BLU 25 /* blu label */ 150 #define DIF_OP_BLE 26 /* ble label */ 151 #define DIF_OP_BLEU 27 /* bleu label */ 152 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */ 153 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */ 154 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */ 155 #define DIF_OP_LDUB 31 /* ldub [r1], rd */ 156 #define DIF_OP_LDUH 32 /* lduh [r1], rd */ 157 #define DIF_OP_LDUW 33 /* lduw [r1], rd */ 158 #define DIF_OP_LDX 34 /* ldx [r1], rd */ 159 #define DIF_OP_RET 35 /* ret rd */ 160 #define DIF_OP_NOP 36 /* nop */ 161 #define DIF_OP_SETX 37 /* setx intindex, rd */ 162 #define DIF_OP_SETS 38 /* sets strindex, rd */ 163 #define DIF_OP_SCMP 39 /* scmp r1, r2 */ 164 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */ 165 #define DIF_OP_LDGS 41 /* ldgs var, rd */ 166 #define DIF_OP_STGS 42 /* stgs var, rs */ 167 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */ 168 #define DIF_OP_LDTS 44 /* ldts var, rd */ 169 #define DIF_OP_STTS 45 /* stts var, rs */ 170 #define DIF_OP_SRA 46 /* sra r1, r2, rd */ 171 #define DIF_OP_CALL 47 /* call subr, rd */ 172 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ 173 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ 174 #define DIF_OP_POPTS 50 /* popts */ 175 #define DIF_OP_FLUSHTS 51 /* flushts */ 176 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */ 177 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */ 178 #define DIF_OP_STGAA 54 /* stgaa var, rs */ 179 #define DIF_OP_STTAA 55 /* sttaa var, rs */ 180 #define DIF_OP_LDLS 56 /* ldls var, rd */ 181 #define DIF_OP_STLS 57 /* stls var, rs */ 182 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */ 183 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */ 184 #define DIF_OP_STB 60 /* stb r1, [rd] */ 185 #define DIF_OP_STH 61 /* sth r1, [rd] */ 186 #define DIF_OP_STW 62 /* stw r1, [rd] */ 187 #define DIF_OP_STX 63 /* stx r1, [rd] */ 188 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ 189 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ 190 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ 191 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */ 192 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ 193 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ 194 #define DIF_OP_ULDX 70 /* uldx [r1], rd */ 195 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ 196 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ 197 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ 198 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */ 199 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ 200 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ 201 #define DIF_OP_RLDX 77 /* rldx [r1], rd */ 202 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */ 203 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */ 204 205 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ 206 #define DIF_STROFF_MAX 0xffff /* highest string table offset */ 207 #define DIF_REGISTER_MAX 0xff /* highest register number */ 208 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ 209 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ 210 211 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ 212 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ 213 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ 214 215 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ 216 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ 217 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ 218 219 #define DIF_VAR_ARGS 0x0000 /* arguments array */ 220 #define DIF_VAR_REGS 0x0001 /* registers array */ 221 #define DIF_VAR_UREGS 0x0002 /* user registers array */ 222 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ 223 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ 224 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ 225 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */ 226 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */ 227 #define DIF_VAR_ID 0x0105 /* probe ID */ 228 #define DIF_VAR_ARG0 0x0106 /* first argument */ 229 #define DIF_VAR_ARG1 0x0107 /* second argument */ 230 #define DIF_VAR_ARG2 0x0108 /* third argument */ 231 #define DIF_VAR_ARG3 0x0109 /* fourth argument */ 232 #define DIF_VAR_ARG4 0x010a /* fifth argument */ 233 #define DIF_VAR_ARG5 0x010b /* sixth argument */ 234 #define DIF_VAR_ARG6 0x010c /* seventh argument */ 235 #define DIF_VAR_ARG7 0x010d /* eighth argument */ 236 #define DIF_VAR_ARG8 0x010e /* ninth argument */ 237 #define DIF_VAR_ARG9 0x010f /* tenth argument */ 238 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ 239 #define DIF_VAR_CALLER 0x0111 /* caller */ 240 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ 241 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */ 242 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ 243 #define DIF_VAR_PROBENAME 0x0115 /* probe name */ 244 #define DIF_VAR_PID 0x0116 /* process ID */ 245 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ 246 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */ 247 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ 248 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ 249 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */ 250 #define DIF_VAR_UCALLER 0x011c /* user-level caller */ 251 #define DIF_VAR_PPID 0x011d /* parent process ID */ 252 #define DIF_VAR_UID 0x011e /* process user ID */ 253 #define DIF_VAR_GID 0x011f /* process group ID */ 254 #define DIF_VAR_ERRNO 0x0120 /* thread errno */ 255 #define DIF_VAR_EXECARGS 0x0121 /* process arguments */ 256 257 #define DIF_SUBR_RAND 0 258 #define DIF_SUBR_MUTEX_OWNED 1 259 #define DIF_SUBR_MUTEX_OWNER 2 260 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 261 #define DIF_SUBR_MUTEX_TYPE_SPIN 4 262 #define DIF_SUBR_RW_READ_HELD 5 263 #define DIF_SUBR_RW_WRITE_HELD 6 264 #define DIF_SUBR_RW_ISWRITER 7 265 #define DIF_SUBR_COPYIN 8 266 #define DIF_SUBR_COPYINSTR 9 267 #define DIF_SUBR_SPECULATION 10 268 #define DIF_SUBR_PROGENYOF 11 269 #define DIF_SUBR_STRLEN 12 270 #define DIF_SUBR_COPYOUT 13 271 #define DIF_SUBR_COPYOUTSTR 14 272 #define DIF_SUBR_ALLOCA 15 273 #define DIF_SUBR_BCOPY 16 274 #define DIF_SUBR_COPYINTO 17 275 #define DIF_SUBR_MSGDSIZE 18 276 #define DIF_SUBR_MSGSIZE 19 277 #define DIF_SUBR_GETMAJOR 20 278 #define DIF_SUBR_GETMINOR 21 279 #define DIF_SUBR_DDI_PATHNAME 22 280 #define DIF_SUBR_STRJOIN 23 281 #define DIF_SUBR_LLTOSTR 24 282 #define DIF_SUBR_BASENAME 25 283 #define DIF_SUBR_DIRNAME 26 284 #define DIF_SUBR_CLEANPATH 27 285 #define DIF_SUBR_STRCHR 28 286 #define DIF_SUBR_STRRCHR 29 287 #define DIF_SUBR_STRSTR 30 288 #define DIF_SUBR_STRTOK 31 289 #define DIF_SUBR_SUBSTR 32 290 #define DIF_SUBR_INDEX 33 291 #define DIF_SUBR_RINDEX 34 292 #define DIF_SUBR_HTONS 35 293 #define DIF_SUBR_HTONL 36 294 #define DIF_SUBR_HTONLL 37 295 #define DIF_SUBR_NTOHS 38 296 #define DIF_SUBR_NTOHL 39 297 #define DIF_SUBR_NTOHLL 40 298 #define DIF_SUBR_INET_NTOP 41 299 #define DIF_SUBR_INET_NTOA 42 300 #define DIF_SUBR_INET_NTOA6 43 301 #define DIF_SUBR_MEMREF 44 302 #define DIF_SUBR_TYPEREF 45 303 #define DIF_SUBR_SX_SHARED_HELD 46 304 #define DIF_SUBR_SX_EXCLUSIVE_HELD 47 305 #define DIF_SUBR_SX_ISEXCLUSIVE 48 306 307 #define DIF_SUBR_MAX 48 /* max subroutine value */ 308 309 typedef uint32_t dif_instr_t; 310 311 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) 312 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) 313 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) 314 #define DIF_INSTR_RD(i) ((i) & 0xff) 315 #define DIF_INSTR_RS(i) ((i) & 0xff) 316 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff) 317 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) 318 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) 319 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) 320 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) 321 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) 322 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff) 323 324 #define DIF_INSTR_FMT(op, r1, r2, d) \ 325 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) 326 327 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) 328 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) 329 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) 330 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) 331 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) 332 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 333 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 334 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) 335 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) 336 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) 337 #define DIF_INSTR_NOP (DIF_OP_NOP << 24) 338 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) 339 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) 340 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) 341 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) 342 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) 343 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) 344 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) 345 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) 346 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) 347 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d)) 348 349 #define DIF_REG_R0 0 /* %r0 is always set to zero */ 350 351 /* 352 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types 353 * of variables, function and associative array arguments, and the return type 354 * for each DIF object (shown below). It contains a description of the type, 355 * its size in bytes, and a module identifier. 356 */ 357 typedef struct dtrace_diftype { 358 uint8_t dtdt_kind; /* type kind (see below) */ 359 uint8_t dtdt_ckind; /* type kind in CTF */ 360 uint8_t dtdt_flags; /* type flags (see below) */ 361 uint8_t dtdt_pad; /* reserved for future use */ 362 uint32_t dtdt_size; /* type size in bytes (unless string) */ 363 } dtrace_diftype_t; 364 365 #define DIF_TYPE_CTF 0 /* type is a CTF type */ 366 #define DIF_TYPE_STRING 1 /* type is a D string */ 367 368 #define DIF_TF_BYREF 0x1 /* type is passed by reference */ 369 370 /* 371 * A DTrace Intermediate Format variable record is used to describe each of the 372 * variables referenced by a given DIF object. It contains an integer variable 373 * identifier along with variable scope and properties, as shown below. The 374 * size of this structure must be sizeof (int) aligned. 375 */ 376 typedef struct dtrace_difv { 377 uint32_t dtdv_name; /* variable name index in dtdo_strtab */ 378 uint32_t dtdv_id; /* variable reference identifier */ 379 uint8_t dtdv_kind; /* variable kind (see below) */ 380 uint8_t dtdv_scope; /* variable scope (see below) */ 381 uint16_t dtdv_flags; /* variable flags (see below) */ 382 dtrace_diftype_t dtdv_type; /* variable type (see above) */ 383 } dtrace_difv_t; 384 385 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ 386 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ 387 388 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ 389 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ 390 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ 391 392 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ 393 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */ 394 395 /* 396 * DTrace Actions 397 * 398 * The upper byte determines the class of the action; the low bytes determines 399 * the specific action within that class. The classes of actions are as 400 * follows: 401 * 402 * [ no class ] <= May record process- or kernel-related data 403 * DTRACEACT_PROC <= Only records process-related data 404 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes 405 * DTRACEACT_KERNEL <= Only records kernel-related data 406 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel 407 * DTRACEACT_SPECULATIVE <= Speculation-related action 408 * DTRACEACT_AGGREGATION <= Aggregating action 409 */ 410 #define DTRACEACT_NONE 0 /* no action */ 411 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ 412 #define DTRACEACT_EXIT 2 /* exit() action */ 413 #define DTRACEACT_PRINTF 3 /* printf() action */ 414 #define DTRACEACT_PRINTA 4 /* printa() action */ 415 #define DTRACEACT_LIBACT 5 /* library-controlled action */ 416 #define DTRACEACT_PRINTM 6 /* printm() action */ 417 #define DTRACEACT_PRINTT 7 /* printt() action */ 418 419 #define DTRACEACT_PROC 0x0100 420 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1) 421 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) 422 #define DTRACEACT_USYM (DTRACEACT_PROC + 3) 423 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4) 424 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5) 425 426 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200 427 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) 428 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) 429 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) 430 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) 431 432 #define DTRACEACT_PROC_CONTROL 0x0300 433 434 #define DTRACEACT_KERNEL 0x0400 435 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) 436 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) 437 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3) 438 439 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 440 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) 441 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) 442 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) 443 444 #define DTRACEACT_SPECULATIVE 0x0600 445 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) 446 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) 447 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) 448 449 #define DTRACEACT_CLASS(x) ((x) & 0xff00) 450 451 #define DTRACEACT_ISDESTRUCTIVE(x) \ 452 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ 453 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) 454 455 #define DTRACEACT_ISSPECULATIVE(x) \ 456 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) 457 458 #define DTRACEACT_ISPRINTFLIKE(x) \ 459 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ 460 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) 461 462 /* 463 * DTrace Aggregating Actions 464 * 465 * These are functions f(x) for which the following is true: 466 * 467 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) 468 * 469 * where x_n is a set of arbitrary data. Aggregating actions are in their own 470 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow 471 * for easier processing of the aggregation argument and data payload for a few 472 * aggregating actions (notably: quantize(), lquantize(), and ustack()). 473 */ 474 #define DTRACEACT_AGGREGATION 0x0700 475 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) 476 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) 477 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) 478 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) 479 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) 480 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) 481 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) 482 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) 483 484 #define DTRACEACT_ISAGG(x) \ 485 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) 486 487 #define DTRACE_QUANTIZE_NBUCKETS \ 488 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) 489 490 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) 491 492 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \ 493 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ 494 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ 495 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ 496 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) 497 498 #define DTRACE_LQUANTIZE_STEPSHIFT 48 499 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) 500 #define DTRACE_LQUANTIZE_LEVELSHIFT 32 501 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) 502 #define DTRACE_LQUANTIZE_BASESHIFT 0 503 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX 504 505 #define DTRACE_LQUANTIZE_STEP(x) \ 506 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ 507 DTRACE_LQUANTIZE_STEPSHIFT) 508 509 #define DTRACE_LQUANTIZE_LEVELS(x) \ 510 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ 511 DTRACE_LQUANTIZE_LEVELSHIFT) 512 513 #define DTRACE_LQUANTIZE_BASE(x) \ 514 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ 515 DTRACE_LQUANTIZE_BASESHIFT) 516 517 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) 518 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) 519 #define DTRACE_USTACK_ARG(x, y) \ 520 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) 521 522 #ifndef _LP64 523 #if BYTE_ORDER == _BIG_ENDIAN 524 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name 525 #else 526 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad 527 #endif 528 #else 529 #define DTRACE_PTR(type, name) type *name 530 #endif 531 532 /* 533 * DTrace Object Format (DOF) 534 * 535 * DTrace programs can be persistently encoded in the DOF format so that they 536 * may be embedded in other programs (for example, in an ELF file) or in the 537 * dtrace driver configuration file for use in anonymous tracing. The DOF 538 * format is versioned and extensible so that it can be revised and so that 539 * internal data structures can be modified or extended compatibly. All DOF 540 * structures use fixed-size types, so the 32-bit and 64-bit representations 541 * are identical and consumers can use either data model transparently. 542 * 543 * The file layout is structured as follows: 544 * 545 * +---------------+-------------------+----- ... ----+---- ... ------+ 546 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | 547 * | (file header) | (section headers) | section data | section data | 548 * +---------------+-------------------+----- ... ----+---- ... ------+ 549 * |<------------ dof_hdr.dofh_loadsz --------------->| | 550 * |<------------ dof_hdr.dofh_filesz ------------------------------->| 551 * 552 * The file header stores meta-data including a magic number, data model for 553 * the instrumentation, data encoding, and properties of the DIF code within. 554 * The header describes its own size and the size of the section headers. By 555 * convention, an array of section headers follows the file header, and then 556 * the data for all loadable sections and unloadable sections. This permits 557 * consumer code to easily download the headers and all loadable data into the 558 * DTrace driver in one contiguous chunk, omitting other extraneous sections. 559 * 560 * The section headers describe the size, offset, alignment, and section type 561 * for each section. Sections are described using a set of #defines that tell 562 * the consumer what kind of data is expected. Sections can contain links to 563 * other sections by storing a dof_secidx_t, an index into the section header 564 * array, inside of the section data structures. The section header includes 565 * an entry size so that sections with data arrays can grow their structures. 566 * 567 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which 568 * are represented themselves as a collection of related DOF sections. This 569 * permits us to change the set of sections associated with a DIFO over time, 570 * and also permits us to encode DIFOs that contain different sets of sections. 571 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a 572 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of 573 * dof_secidx_t's which in turn denote the sections associated with this DIFO. 574 * 575 * This loose coupling of the file structure (header and sections) to the 576 * structure of the DTrace program itself (ECB descriptions, action 577 * descriptions, and DIFOs) permits activities such as relocation processing 578 * to occur in a single pass without having to understand D program structure. 579 * 580 * Finally, strings are always stored in ELF-style string tables along with a 581 * string table section index and string table offset. Therefore strings in 582 * DOF are always arbitrary-length and not bound to the current implementation. 583 */ 584 585 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ 586 587 typedef struct dof_hdr { 588 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ 589 uint32_t dofh_flags; /* file attribute flags (if any) */ 590 uint32_t dofh_hdrsize; /* size of file header in bytes */ 591 uint32_t dofh_secsize; /* size of section header in bytes */ 592 uint32_t dofh_secnum; /* number of section headers */ 593 uint64_t dofh_secoff; /* file offset of section headers */ 594 uint64_t dofh_loadsz; /* file size of loadable portion */ 595 uint64_t dofh_filesz; /* file size of entire DOF file */ 596 uint64_t dofh_pad; /* reserved for future use */ 597 } dof_hdr_t; 598 599 #define DOF_ID_MAG0 0 /* first byte of magic number */ 600 #define DOF_ID_MAG1 1 /* second byte of magic number */ 601 #define DOF_ID_MAG2 2 /* third byte of magic number */ 602 #define DOF_ID_MAG3 3 /* fourth byte of magic number */ 603 #define DOF_ID_MODEL 4 /* DOF data model (see below) */ 604 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ 605 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ 606 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */ 607 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ 608 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ 609 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ 610 611 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ 612 #define DOF_MAG_MAG1 'D' 613 #define DOF_MAG_MAG2 'O' 614 #define DOF_MAG_MAG3 'F' 615 616 #define DOF_MAG_STRING "\177DOF" 617 #define DOF_MAG_STRLEN 4 618 619 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ 620 #define DOF_MODEL_ILP32 1 621 #define DOF_MODEL_LP64 2 622 623 #ifdef _LP64 624 #define DOF_MODEL_NATIVE DOF_MODEL_LP64 625 #else 626 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32 627 #endif 628 629 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ 630 #define DOF_ENCODE_LSB 1 631 #define DOF_ENCODE_MSB 2 632 633 #if BYTE_ORDER == _BIG_ENDIAN 634 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB 635 #else 636 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB 637 #endif 638 639 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */ 640 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */ 641 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */ 642 643 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ 644 645 typedef uint32_t dof_secidx_t; /* section header table index type */ 646 typedef uint32_t dof_stridx_t; /* string table index type */ 647 648 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */ 649 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */ 650 651 typedef struct dof_sec { 652 uint32_t dofs_type; /* section type (see below) */ 653 uint32_t dofs_align; /* section data memory alignment */ 654 uint32_t dofs_flags; /* section flags (if any) */ 655 uint32_t dofs_entsize; /* size of section entry (if table) */ 656 uint64_t dofs_offset; /* offset of section data within file */ 657 uint64_t dofs_size; /* size of section data in bytes */ 658 } dof_sec_t; 659 660 #define DOF_SECT_NONE 0 /* null section */ 661 #define DOF_SECT_COMMENTS 1 /* compiler comments */ 662 #define DOF_SECT_SOURCE 2 /* D program source code */ 663 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ 664 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ 665 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ 666 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ 667 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */ 668 #define DOF_SECT_STRTAB 8 /* string table */ 669 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ 670 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ 671 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ 672 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ 673 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ 674 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ 675 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */ 676 #define DOF_SECT_PROBES 16 /* dof_probe_t array */ 677 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ 678 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ 679 #define DOF_SECT_INTTAB 19 /* uint64_t array */ 680 #define DOF_SECT_UTSNAME 20 /* struct utsname */ 681 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */ 682 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */ 683 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */ 684 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */ 685 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */ 686 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */ 687 688 #define DOF_SECF_LOAD 1 /* section should be loaded */ 689 690 typedef struct dof_ecbdesc { 691 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ 692 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ 693 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ 694 uint32_t dofe_pad; /* reserved for future use */ 695 uint64_t dofe_uarg; /* user-supplied library argument */ 696 } dof_ecbdesc_t; 697 698 typedef struct dof_probedesc { 699 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ 700 dof_stridx_t dofp_provider; /* provider string */ 701 dof_stridx_t dofp_mod; /* module string */ 702 dof_stridx_t dofp_func; /* function string */ 703 dof_stridx_t dofp_name; /* name string */ 704 uint32_t dofp_id; /* probe identifier (or zero) */ 705 } dof_probedesc_t; 706 707 typedef struct dof_actdesc { 708 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ 709 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ 710 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ 711 uint32_t dofa_ntuple; /* number of subsequent tuple actions */ 712 uint64_t dofa_arg; /* kind-specific argument */ 713 uint64_t dofa_uarg; /* user-supplied argument */ 714 } dof_actdesc_t; 715 716 typedef struct dof_difohdr { 717 dtrace_diftype_t dofd_rtype; /* return type for this fragment */ 718 dof_secidx_t dofd_links[1]; /* variable length array of indices */ 719 } dof_difohdr_t; 720 721 typedef struct dof_relohdr { 722 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ 723 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ 724 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ 725 } dof_relohdr_t; 726 727 typedef struct dof_relodesc { 728 dof_stridx_t dofr_name; /* string name of relocation symbol */ 729 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ 730 uint64_t dofr_offset; /* byte offset for relocation */ 731 uint64_t dofr_data; /* additional type-specific data */ 732 } dof_relodesc_t; 733 734 #define DOF_RELO_NONE 0 /* empty relocation entry */ 735 #define DOF_RELO_SETX 1 /* relocate setx value */ 736 737 typedef struct dof_optdesc { 738 uint32_t dofo_option; /* option identifier */ 739 dof_secidx_t dofo_strtab; /* string table, if string option */ 740 uint64_t dofo_value; /* option value or string index */ 741 } dof_optdesc_t; 742 743 typedef uint32_t dof_attr_t; /* encoded stability attributes */ 744 745 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) 746 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) 747 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) 748 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) 749 750 typedef struct dof_provider { 751 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ 752 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ 753 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ 754 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ 755 dof_stridx_t dofpv_name; /* provider name string */ 756 dof_attr_t dofpv_provattr; /* provider attributes */ 757 dof_attr_t dofpv_modattr; /* module attributes */ 758 dof_attr_t dofpv_funcattr; /* function attributes */ 759 dof_attr_t dofpv_nameattr; /* name attributes */ 760 dof_attr_t dofpv_argsattr; /* args attributes */ 761 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */ 762 } dof_provider_t; 763 764 typedef struct dof_probe { 765 uint64_t dofpr_addr; /* probe base address or offset */ 766 dof_stridx_t dofpr_func; /* probe function string */ 767 dof_stridx_t dofpr_name; /* probe name string */ 768 dof_stridx_t dofpr_nargv; /* native argument type strings */ 769 dof_stridx_t dofpr_xargv; /* translated argument type strings */ 770 uint32_t dofpr_argidx; /* index of first argument mapping */ 771 uint32_t dofpr_offidx; /* index of first offset entry */ 772 uint8_t dofpr_nargc; /* native argument count */ 773 uint8_t dofpr_xargc; /* translated argument count */ 774 uint16_t dofpr_noffs; /* number of offset entries for probe */ 775 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */ 776 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */ 777 uint16_t dofpr_pad1; /* reserved for future use */ 778 uint32_t dofpr_pad2; /* reserved for future use */ 779 } dof_probe_t; 780 781 typedef struct dof_xlator { 782 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */ 783 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */ 784 dof_stridx_t dofxl_argv; /* input parameter type strings */ 785 uint32_t dofxl_argc; /* input parameter list length */ 786 dof_stridx_t dofxl_type; /* output type string name */ 787 dof_attr_t dofxl_attr; /* output stability attributes */ 788 } dof_xlator_t; 789 790 typedef struct dof_xlmember { 791 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */ 792 dof_stridx_t dofxm_name; /* member name */ 793 dtrace_diftype_t dofxm_type; /* member type */ 794 } dof_xlmember_t; 795 796 typedef struct dof_xlref { 797 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */ 798 uint32_t dofxr_member; /* index of referenced dof_xlmember */ 799 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */ 800 } dof_xlref_t; 801 802 /* 803 * DTrace Intermediate Format Object (DIFO) 804 * 805 * A DIFO is used to store the compiled DIF for a D expression, its return 806 * type, and its string and variable tables. The string table is a single 807 * buffer of character data into which sets instructions and variable 808 * references can reference strings using a byte offset. The variable table 809 * is an array of dtrace_difv_t structures that describe the name and type of 810 * each variable and the id used in the DIF code. This structure is described 811 * above in the DIF section of this header file. The DIFO is used at both 812 * user-level (in the library) and in the kernel, but the structure is never 813 * passed between the two: the DOF structures form the only interface. As a 814 * result, the definition can change depending on the presence of _KERNEL. 815 */ 816 typedef struct dtrace_difo { 817 dif_instr_t *dtdo_buf; /* instruction buffer */ 818 uint64_t *dtdo_inttab; /* integer table (optional) */ 819 char *dtdo_strtab; /* string table (optional) */ 820 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ 821 uint_t dtdo_len; /* length of instruction buffer */ 822 uint_t dtdo_intlen; /* length of integer table */ 823 uint_t dtdo_strlen; /* length of string table */ 824 uint_t dtdo_varlen; /* length of variable table */ 825 dtrace_diftype_t dtdo_rtype; /* return type */ 826 uint_t dtdo_refcnt; /* owner reference count */ 827 uint_t dtdo_destructive; /* invokes destructive subroutines */ 828 #ifndef _KERNEL 829 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ 830 dof_relodesc_t *dtdo_ureltab; /* user relocations */ 831 struct dt_node **dtdo_xlmtab; /* translator references */ 832 uint_t dtdo_krelen; /* length of krelo table */ 833 uint_t dtdo_urelen; /* length of urelo table */ 834 uint_t dtdo_xlmlen; /* length of translator table */ 835 #endif 836 } dtrace_difo_t; 837 838 /* 839 * DTrace Enabling Description Structures 840 * 841 * When DTrace is tracking the description of a DTrace enabling entity (probe, 842 * predicate, action, ECB, record, etc.), it does so in a description 843 * structure. These structures all end in "desc", and are used at both 844 * user-level and in the kernel -- but (with the exception of 845 * dtrace_probedesc_t) they are never passed between them. Typically, 846 * user-level will use the description structures when assembling an enabling. 847 * It will then distill those description structures into a DOF object (see 848 * above), and send it into the kernel. The kernel will again use the 849 * description structures to create a description of the enabling as it reads 850 * the DOF. When the description is complete, the enabling will be actually 851 * created -- turning it into the structures that represent the enabling 852 * instead of merely describing it. Not surprisingly, the description 853 * structures bear a strong resemblance to the DOF structures that act as their 854 * conduit. 855 */ 856 struct dtrace_predicate; 857 858 typedef struct dtrace_probedesc { 859 dtrace_id_t dtpd_id; /* probe identifier */ 860 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ 861 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ 862 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ 863 char dtpd_name[DTRACE_NAMELEN]; /* probe name */ 864 } dtrace_probedesc_t; 865 866 typedef struct dtrace_repldesc { 867 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ 868 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ 869 } dtrace_repldesc_t; 870 871 typedef struct dtrace_preddesc { 872 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ 873 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ 874 } dtrace_preddesc_t; 875 876 typedef struct dtrace_actdesc { 877 dtrace_difo_t *dtad_difo; /* pointer to DIF object */ 878 struct dtrace_actdesc *dtad_next; /* next action */ 879 dtrace_actkind_t dtad_kind; /* kind of action */ 880 uint32_t dtad_ntuple; /* number in tuple */ 881 uint64_t dtad_arg; /* action argument */ 882 uint64_t dtad_uarg; /* user argument */ 883 int dtad_refcnt; /* reference count */ 884 } dtrace_actdesc_t; 885 886 typedef struct dtrace_ecbdesc { 887 dtrace_actdesc_t *dted_action; /* action description(s) */ 888 dtrace_preddesc_t dted_pred; /* predicate description */ 889 dtrace_probedesc_t dted_probe; /* probe description */ 890 uint64_t dted_uarg; /* library argument */ 891 int dted_refcnt; /* reference count */ 892 } dtrace_ecbdesc_t; 893 894 /* 895 * DTrace Metadata Description Structures 896 * 897 * DTrace separates the trace data stream from the metadata stream. The only 898 * metadata tokens placed in the data stream are enabled probe identifiers 899 * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order 900 * to determine the structure of the data, DTrace consumers pass the token to 901 * the kernel, and receive in return a corresponding description of the enabled 902 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the 903 * dtrace_aggdesc structure). Both of these structures are expressed in terms 904 * of record descriptions (via the dtrace_recdesc structure) that describe the 905 * exact structure of the data. Some record descriptions may also contain a 906 * format identifier; this additional bit of metadata can be retrieved from the 907 * kernel, for which a format description is returned via the dtrace_fmtdesc 908 * structure. Note that all four of these structures must be bitness-neutral 909 * to allow for a 32-bit DTrace consumer on a 64-bit kernel. 910 */ 911 typedef struct dtrace_recdesc { 912 dtrace_actkind_t dtrd_action; /* kind of action */ 913 uint32_t dtrd_size; /* size of record */ 914 uint32_t dtrd_offset; /* offset in ECB's data */ 915 uint16_t dtrd_alignment; /* required alignment */ 916 uint16_t dtrd_format; /* format, if any */ 917 uint64_t dtrd_arg; /* action argument */ 918 uint64_t dtrd_uarg; /* user argument */ 919 } dtrace_recdesc_t; 920 921 typedef struct dtrace_eprobedesc { 922 dtrace_epid_t dtepd_epid; /* enabled probe ID */ 923 dtrace_id_t dtepd_probeid; /* probe ID */ 924 uint64_t dtepd_uarg; /* library argument */ 925 uint32_t dtepd_size; /* total size */ 926 int dtepd_nrecs; /* number of records */ 927 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ 928 } dtrace_eprobedesc_t; 929 930 typedef struct dtrace_aggdesc { 931 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ 932 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */ 933 int dtagd_flags; /* not filled in by kernel */ 934 dtrace_aggid_t dtagd_id; /* aggregation ID */ 935 dtrace_epid_t dtagd_epid; /* enabled probe ID */ 936 uint32_t dtagd_size; /* size in bytes */ 937 int dtagd_nrecs; /* number of records */ 938 uint32_t dtagd_pad; /* explicit padding */ 939 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ 940 } dtrace_aggdesc_t; 941 942 typedef struct dtrace_fmtdesc { 943 DTRACE_PTR(char, dtfd_string); /* format string */ 944 int dtfd_length; /* length of format string */ 945 uint16_t dtfd_format; /* format identifier */ 946 } dtrace_fmtdesc_t; 947 948 #define DTRACE_SIZEOF_EPROBEDESC(desc) \ 949 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ 950 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 951 952 #define DTRACE_SIZEOF_AGGDESC(desc) \ 953 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ 954 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 955 956 /* 957 * DTrace Option Interface 958 * 959 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections 960 * in a DOF image. The dof_optdesc structure contains an option identifier and 961 * an option value. The valid option identifiers are found below; the mapping 962 * between option identifiers and option identifying strings is maintained at 963 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the 964 * following are potentially valid option values: all positive integers, zero 965 * and negative one. Some options (notably "bufpolicy" and "bufresize") take 966 * predefined tokens as their values; these are defined with 967 * DTRACEOPT_{option}_{token}. 968 */ 969 #define DTRACEOPT_BUFSIZE 0 /* buffer size */ 970 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ 971 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ 972 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */ 973 #define DTRACEOPT_SPECSIZE 4 /* speculation size */ 974 #define DTRACEOPT_NSPEC 5 /* number of speculations */ 975 #define DTRACEOPT_STRSIZE 6 /* string size */ 976 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ 977 #define DTRACEOPT_CPU 8 /* CPU to trace */ 978 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ 979 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ 980 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ 981 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ 982 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ 983 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ 984 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ 985 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ 986 #define DTRACEOPT_STATUSRATE 17 /* status rate */ 987 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ 988 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ 989 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ 990 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ 991 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ 992 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */ 993 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */ 994 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */ 995 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */ 996 #define DTRACEOPT_MAX 27 /* number of options */ 997 998 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ 999 1000 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ 1001 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ 1002 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ 1003 1004 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ 1005 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ 1006 1007 /* 1008 * DTrace Buffer Interface 1009 * 1010 * In order to get a snapshot of the principal or aggregation buffer, 1011 * user-level passes a buffer description to the kernel with the dtrace_bufdesc 1012 * structure. This describes which CPU user-level is interested in, and 1013 * where user-level wishes the kernel to snapshot the buffer to (the 1014 * dtbd_data field). The kernel uses the same structure to pass back some 1015 * information regarding the buffer: the size of data actually copied out, the 1016 * number of drops, the number of errors, and the offset of the oldest record. 1017 * If the buffer policy is a "switch" policy, taking a snapshot of the 1018 * principal buffer has the additional effect of switching the active and 1019 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has 1020 * the additional effect of switching the active and inactive buffers. 1021 */ 1022 typedef struct dtrace_bufdesc { 1023 uint64_t dtbd_size; /* size of buffer */ 1024 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ 1025 uint32_t dtbd_errors; /* number of errors */ 1026 uint64_t dtbd_drops; /* number of drops */ 1027 DTRACE_PTR(char, dtbd_data); /* data */ 1028 uint64_t dtbd_oldest; /* offset of oldest record */ 1029 } dtrace_bufdesc_t; 1030 1031 /* 1032 * DTrace Status 1033 * 1034 * The status of DTrace is relayed via the dtrace_status structure. This 1035 * structure contains members to count drops other than the capacity drops 1036 * available via the buffer interface (see above). This consists of dynamic 1037 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and 1038 * speculative drops (including capacity speculative drops, drops due to busy 1039 * speculative buffers and drops due to unavailable speculative buffers). 1040 * Additionally, the status structure contains a field to indicate the number 1041 * of "fill"-policy buffers have been filled and a boolean field to indicate 1042 * that exit() has been called. If the dtst_exiting field is non-zero, no 1043 * further data will be generated until tracing is stopped (at which time any 1044 * enablings of the END action will be processed); if user-level sees that 1045 * this field is non-zero, tracing should be stopped as soon as possible. 1046 */ 1047 typedef struct dtrace_status { 1048 uint64_t dtst_dyndrops; /* dynamic drops */ 1049 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ 1050 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ 1051 uint64_t dtst_specdrops; /* speculative drops */ 1052 uint64_t dtst_specdrops_busy; /* spec drops due to busy */ 1053 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ 1054 uint64_t dtst_errors; /* total errors */ 1055 uint64_t dtst_filled; /* number of filled bufs */ 1056 uint64_t dtst_stkstroverflows; /* stack string tab overflows */ 1057 uint64_t dtst_dblerrors; /* errors in ERROR probes */ 1058 char dtst_killed; /* non-zero if killed */ 1059 char dtst_exiting; /* non-zero if exit() called */ 1060 char dtst_pad[6]; /* pad out to 64-bit align */ 1061 } dtrace_status_t; 1062 1063 /* 1064 * DTrace Configuration 1065 * 1066 * User-level may need to understand some elements of the kernel DTrace 1067 * configuration in order to generate correct DIF. This information is 1068 * conveyed via the dtrace_conf structure. 1069 */ 1070 typedef struct dtrace_conf { 1071 uint_t dtc_difversion; /* supported DIF version */ 1072 uint_t dtc_difintregs; /* # of DIF integer registers */ 1073 uint_t dtc_diftupregs; /* # of DIF tuple registers */ 1074 uint_t dtc_ctfmodel; /* CTF data model */ 1075 uint_t dtc_pad[8]; /* reserved for future use */ 1076 } dtrace_conf_t; 1077 1078 /* 1079 * DTrace Faults 1080 * 1081 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; 1082 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe 1083 * postprocessing at user-level. Probe processing faults induce an ERROR 1084 * probe and are replicated in unistd.d to allow users' ERROR probes to decode 1085 * the error condition using thse symbolic labels. 1086 */ 1087 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ 1088 #define DTRACEFLT_BADADDR 1 /* Bad address */ 1089 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */ 1090 #define DTRACEFLT_ILLOP 3 /* Illegal operation */ 1091 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ 1092 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ 1093 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ 1094 #define DTRACEFLT_UPRIV 7 /* Illegal user access */ 1095 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ 1096 #define DTRACEFLT_BADSTACK 9 /* Bad stack */ 1097 1098 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ 1099 1100 /* 1101 * DTrace Argument Types 1102 * 1103 * Because it would waste both space and time, argument types do not reside 1104 * with the probe. In order to determine argument types for args[X] 1105 * variables, the D compiler queries for argument types on a probe-by-probe 1106 * basis. (This optimizes for the common case that arguments are either not 1107 * used or used in an untyped fashion.) Typed arguments are specified with a 1108 * string of the type name in the dtragd_native member of the argument 1109 * description structure. Typed arguments may be further translated to types 1110 * of greater stability; the provider indicates such a translated argument by 1111 * filling in the dtargd_xlate member with the string of the translated type. 1112 * Finally, the provider may indicate which argument value a given argument 1113 * maps to by setting the dtargd_mapping member -- allowing a single argument 1114 * to map to multiple args[X] variables. 1115 */ 1116 typedef struct dtrace_argdesc { 1117 dtrace_id_t dtargd_id; /* probe identifier */ 1118 int dtargd_ndx; /* arg number (-1 iff none) */ 1119 int dtargd_mapping; /* value mapping */ 1120 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ 1121 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ 1122 } dtrace_argdesc_t; 1123 1124 /* 1125 * DTrace Stability Attributes 1126 * 1127 * Each DTrace provider advertises the name and data stability of each of its 1128 * probe description components, as well as its architectural dependencies. 1129 * The D compiler can query the provider attributes (dtrace_pattr_t below) in 1130 * order to compute the properties of an input program and report them. 1131 */ 1132 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ 1133 typedef uint8_t dtrace_class_t; /* architectural dependency class */ 1134 1135 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ 1136 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ 1137 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ 1138 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ 1139 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ 1140 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ 1141 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ 1142 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */ 1143 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ 1144 1145 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ 1146 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ 1147 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ 1148 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ 1149 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ 1150 #define DTRACE_CLASS_COMMON 5 /* common to all systems */ 1151 #define DTRACE_CLASS_MAX 5 /* maximum valid class */ 1152 1153 #define DTRACE_PRIV_NONE 0x0000 1154 #define DTRACE_PRIV_KERNEL 0x0001 1155 #define DTRACE_PRIV_USER 0x0002 1156 #define DTRACE_PRIV_PROC 0x0004 1157 #define DTRACE_PRIV_OWNER 0x0008 1158 #define DTRACE_PRIV_ZONEOWNER 0x0010 1159 1160 #define DTRACE_PRIV_ALL \ 1161 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ 1162 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER) 1163 1164 typedef struct dtrace_ppriv { 1165 uint32_t dtpp_flags; /* privilege flags */ 1166 uid_t dtpp_uid; /* user ID */ 1167 zoneid_t dtpp_zoneid; /* zone ID */ 1168 } dtrace_ppriv_t; 1169 1170 typedef struct dtrace_attribute { 1171 dtrace_stability_t dtat_name; /* entity name stability */ 1172 dtrace_stability_t dtat_data; /* entity data stability */ 1173 dtrace_class_t dtat_class; /* entity data dependency */ 1174 } dtrace_attribute_t; 1175 1176 typedef struct dtrace_pattr { 1177 dtrace_attribute_t dtpa_provider; /* provider attributes */ 1178 dtrace_attribute_t dtpa_mod; /* module attributes */ 1179 dtrace_attribute_t dtpa_func; /* function attributes */ 1180 dtrace_attribute_t dtpa_name; /* name attributes */ 1181 dtrace_attribute_t dtpa_args; /* args[] attributes */ 1182 } dtrace_pattr_t; 1183 1184 typedef struct dtrace_providerdesc { 1185 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ 1186 dtrace_pattr_t dtvd_attr; /* stability attributes */ 1187 dtrace_ppriv_t dtvd_priv; /* privileges required */ 1188 } dtrace_providerdesc_t; 1189 1190 /* 1191 * DTrace Pseudodevice Interface 1192 * 1193 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace 1194 * pseudodevice driver. These ioctls comprise the user-kernel interface to 1195 * DTrace. 1196 */ 1197 #if defined(sun) 1198 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) 1199 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ 1200 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ 1201 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ 1202 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ 1203 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ 1204 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ 1205 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ 1206 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ 1207 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ 1208 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ 1209 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ 1210 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ 1211 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ 1212 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ 1213 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ 1214 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ 1215 #else 1216 #define DTRACEIOC_PROVIDER _IOWR('x',1,dtrace_providerdesc_t) 1217 /* provider query */ 1218 #define DTRACEIOC_PROBES _IOWR('x',2,dtrace_probedesc_t) 1219 /* probe query */ 1220 #define DTRACEIOC_BUFSNAP _IOW('x',4,dtrace_bufdesc_t *) 1221 /* snapshot buffer */ 1222 #define DTRACEIOC_PROBEMATCH _IOWR('x',5,dtrace_probedesc_t) 1223 /* match probes */ 1224 typedef struct { 1225 void *dof; /* DOF userland address written to driver. */ 1226 int n_matched; /* # matches returned by driver. */ 1227 } dtrace_enable_io_t; 1228 #define DTRACEIOC_ENABLE _IOWR('x',6,dtrace_enable_io_t) 1229 /* enable probes */ 1230 #define DTRACEIOC_AGGSNAP _IOW('x',7,dtrace_bufdesc_t *) 1231 /* snapshot agg. */ 1232 #define DTRACEIOC_EPROBE _IOW('x',8,dtrace_eprobedesc_t) 1233 /* get eprobe desc. */ 1234 #define DTRACEIOC_PROBEARG _IOWR('x',9,dtrace_argdesc_t) 1235 /* get probe arg */ 1236 #define DTRACEIOC_CONF _IOR('x',10,dtrace_conf_t) 1237 /* get config. */ 1238 #define DTRACEIOC_STATUS _IOR('x',11,dtrace_status_t) 1239 /* get status */ 1240 #define DTRACEIOC_GO _IOR('x',12,processorid_t) 1241 /* start tracing */ 1242 #define DTRACEIOC_STOP _IOWR('x',13,processorid_t) 1243 /* stop tracing */ 1244 #define DTRACEIOC_AGGDESC _IOW('x',15,dtrace_aggdesc_t *) 1245 /* get agg. desc. */ 1246 #define DTRACEIOC_FORMAT _IOWR('x',16,dtrace_fmtdesc_t) 1247 /* get format str */ 1248 #define DTRACEIOC_DOFGET _IOW('x',17,dof_hdr_t *) 1249 /* get DOF */ 1250 #define DTRACEIOC_REPLICATE _IOW('x',18,dtrace_repldesc_t) 1251 /* replicate enab */ 1252 #endif 1253 1254 /* 1255 * DTrace Helpers 1256 * 1257 * In general, DTrace establishes probes in processes and takes actions on 1258 * processes without knowing their specific user-level structures. Instead of 1259 * existing in the framework, process-specific knowledge is contained by the 1260 * enabling D program -- which can apply process-specific knowledge by making 1261 * appropriate use of DTrace primitives like copyin() and copyinstr() to 1262 * operate on user-level data. However, there may exist some specific probes 1263 * of particular semantic relevance that the application developer may wish to 1264 * explicitly export. For example, an application may wish to export a probe 1265 * at the point that it begins and ends certain well-defined transactions. In 1266 * addition to providing probes, programs may wish to offer assistance for 1267 * certain actions. For example, in highly dynamic environments (e.g., Java), 1268 * it may be difficult to obtain a stack trace in terms of meaningful symbol 1269 * names (the translation from instruction addresses to corresponding symbol 1270 * names may only be possible in situ); these environments may wish to define 1271 * a series of actions to be applied in situ to obtain a meaningful stack 1272 * trace. 1273 * 1274 * These two mechanisms -- user-level statically defined tracing and assisting 1275 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified 1276 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of 1277 * providers, probes and their arguments. If a helper wishes to provide 1278 * action assistance, probe descriptions and corresponding DIF actions may be 1279 * specified in the helper DOF. For such helper actions, however, the probe 1280 * description describes the specific helper: all DTrace helpers have the 1281 * provider name "dtrace" and the module name "helper", and the name of the 1282 * helper is contained in the function name (for example, the ustack() helper 1283 * is named "ustack"). Any helper-specific name may be contained in the name 1284 * (for example, if a helper were to have a constructor, it might be named 1285 * "dtrace:helper:<helper>:init"). Helper actions are only called when the 1286 * action that they are helping is taken. Helper actions may only return DIF 1287 * expressions, and may only call the following subroutines: 1288 * 1289 * alloca() <= Allocates memory out of the consumer's scratch space 1290 * bcopy() <= Copies memory to scratch space 1291 * copyin() <= Copies memory from user-level into consumer's scratch 1292 * copyinto() <= Copies memory into a specific location in scratch 1293 * copyinstr() <= Copies a string into a specific location in scratch 1294 * 1295 * Helper actions may only access the following built-in variables: 1296 * 1297 * curthread <= Current kthread_t pointer 1298 * tid <= Current thread identifier 1299 * pid <= Current process identifier 1300 * ppid <= Parent process identifier 1301 * uid <= Current user ID 1302 * gid <= Current group ID 1303 * execname <= Current executable name 1304 * zonename <= Current zone name 1305 * 1306 * Helper actions may not manipulate or allocate dynamic variables, but they 1307 * may have clause-local and statically-allocated global variables. The 1308 * helper action variable state is specific to the helper action -- variables 1309 * used by the helper action may not be accessed outside of the helper 1310 * action, and the helper action may not access variables that like outside 1311 * of it. Helper actions may not load from kernel memory at-large; they are 1312 * restricting to loading current user state (via copyin() and variants) and 1313 * scratch space. As with probe enablings, helper actions are executed in 1314 * program order. The result of the helper action is the result of the last 1315 * executing helper expression. 1316 * 1317 * Helpers -- composed of either providers/probes or probes/actions (or both) 1318 * -- are added by opening the "helper" minor node, and issuing an ioctl(2) 1319 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This 1320 * encapsulates the name and base address of the user-level library or 1321 * executable publishing the helpers and probes as well as the DOF that 1322 * contains the definitions of those helpers and probes. 1323 * 1324 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy 1325 * helpers and should no longer be used. No other ioctls are valid on the 1326 * helper minor node. 1327 */ 1328 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) 1329 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ 1330 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ 1331 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ 1332 1333 typedef struct dof_helper { 1334 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ 1335 uint64_t dofhp_addr; /* base address of object */ 1336 uint64_t dofhp_dof; /* address of helper DOF */ 1337 } dof_helper_t; 1338 1339 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ 1340 #define DTRACEMNR_HELPER "helper" /* node for helpers */ 1341 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ 1342 #define DTRACEMNRN_HELPER 1 /* minor for helpers */ 1343 #define DTRACEMNRN_CLONE 2 /* first clone minor */ 1344 1345 #ifdef _KERNEL 1346 1347 /* 1348 * DTrace Provider API 1349 * 1350 * The following functions are implemented by the DTrace framework and are 1351 * used to implement separate in-kernel DTrace providers. Common functions 1352 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are 1353 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c. 1354 * 1355 * The provider API has two halves: the API that the providers consume from 1356 * DTrace, and the API that providers make available to DTrace. 1357 * 1358 * 1 Framework-to-Provider API 1359 * 1360 * 1.1 Overview 1361 * 1362 * The Framework-to-Provider API is represented by the dtrace_pops structure 1363 * that the provider passes to the framework when registering itself. This 1364 * structure consists of the following members: 1365 * 1366 * dtps_provide() <-- Provide all probes, all modules 1367 * dtps_provide_module() <-- Provide all probes in specified module 1368 * dtps_enable() <-- Enable specified probe 1369 * dtps_disable() <-- Disable specified probe 1370 * dtps_suspend() <-- Suspend specified probe 1371 * dtps_resume() <-- Resume specified probe 1372 * dtps_getargdesc() <-- Get the argument description for args[X] 1373 * dtps_getargval() <-- Get the value for an argX or args[X] variable 1374 * dtps_usermode() <-- Find out if the probe was fired in user mode 1375 * dtps_destroy() <-- Destroy all state associated with this probe 1376 * 1377 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) 1378 * 1379 * 1.2.1 Overview 1380 * 1381 * Called to indicate that the provider should provide all probes. If the 1382 * specified description is non-NULL, dtps_provide() is being called because 1383 * no probe matched a specified probe -- if the provider has the ability to 1384 * create custom probes, it may wish to create a probe that matches the 1385 * specified description. 1386 * 1387 * 1.2.2 Arguments and notes 1388 * 1389 * The first argument is the cookie as passed to dtrace_register(). The 1390 * second argument is a pointer to a probe description that the provider may 1391 * wish to consider when creating custom probes. The provider is expected to 1392 * call back into the DTrace framework via dtrace_probe_create() to create 1393 * any necessary probes. dtps_provide() may be called even if the provider 1394 * has made available all probes; the provider should check the return value 1395 * of dtrace_probe_create() to handle this case. Note that the provider need 1396 * not implement both dtps_provide() and dtps_provide_module(); see 1397 * "Arguments and Notes" for dtrace_register(), below. 1398 * 1399 * 1.2.3 Return value 1400 * 1401 * None. 1402 * 1403 * 1.2.4 Caller's context 1404 * 1405 * dtps_provide() is typically called from open() or ioctl() context, but may 1406 * be called from other contexts as well. The DTrace framework is locked in 1407 * such a way that providers may not register or unregister. This means that 1408 * the provider may not call any DTrace API that affects its registration with 1409 * the framework, including dtrace_register(), dtrace_unregister(), 1410 * dtrace_invalidate(), and dtrace_condense(). However, the context is such 1411 * that the provider may (and indeed, is expected to) call probe-related 1412 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), 1413 * and dtrace_probe_arg(). 1414 * 1415 * 1.3 void dtps_provide_module(void *arg, modctl_t *mp) 1416 * 1417 * 1.3.1 Overview 1418 * 1419 * Called to indicate that the provider should provide all probes in the 1420 * specified module. 1421 * 1422 * 1.3.2 Arguments and notes 1423 * 1424 * The first argument is the cookie as passed to dtrace_register(). The 1425 * second argument is a pointer to a modctl structure that indicates the 1426 * module for which probes should be created. 1427 * 1428 * 1.3.3 Return value 1429 * 1430 * None. 1431 * 1432 * 1.3.4 Caller's context 1433 * 1434 * dtps_provide_module() may be called from open() or ioctl() context, but 1435 * may also be called from a module loading context. mod_lock is held, and 1436 * the DTrace framework is locked in such a way that providers may not 1437 * register or unregister. This means that the provider may not call any 1438 * DTrace API that affects its registration with the framework, including 1439 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1440 * dtrace_condense(). However, the context is such that the provider may (and 1441 * indeed, is expected to) call probe-related DTrace routines, including 1442 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note 1443 * that the provider need not implement both dtps_provide() and 1444 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), 1445 * below. 1446 * 1447 * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg) 1448 * 1449 * 1.4.1 Overview 1450 * 1451 * Called to enable the specified probe. 1452 * 1453 * 1.4.2 Arguments and notes 1454 * 1455 * The first argument is the cookie as passed to dtrace_register(). The 1456 * second argument is the identifier of the probe to be enabled. The third 1457 * argument is the probe argument as passed to dtrace_probe_create(). 1458 * dtps_enable() will be called when a probe transitions from not being 1459 * enabled at all to having one or more ECB. The number of ECBs associated 1460 * with the probe may change without subsequent calls into the provider. 1461 * When the number of ECBs drops to zero, the provider will be explicitly 1462 * told to disable the probe via dtps_disable(). dtrace_probe() should never 1463 * be called for a probe identifier that hasn't been explicitly enabled via 1464 * dtps_enable(). 1465 * 1466 * 1.4.3 Return value 1467 * 1468 * None. 1469 * 1470 * 1.4.4 Caller's context 1471 * 1472 * The DTrace framework is locked in such a way that it may not be called 1473 * back into at all. cpu_lock is held. mod_lock is not held and may not 1474 * be acquired. 1475 * 1476 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) 1477 * 1478 * 1.5.1 Overview 1479 * 1480 * Called to disable the specified probe. 1481 * 1482 * 1.5.2 Arguments and notes 1483 * 1484 * The first argument is the cookie as passed to dtrace_register(). The 1485 * second argument is the identifier of the probe to be disabled. The third 1486 * argument is the probe argument as passed to dtrace_probe_create(). 1487 * dtps_disable() will be called when a probe transitions from being enabled 1488 * to having zero ECBs. dtrace_probe() should never be called for a probe 1489 * identifier that has been explicitly enabled via dtps_disable(). 1490 * 1491 * 1.5.3 Return value 1492 * 1493 * None. 1494 * 1495 * 1.5.4 Caller's context 1496 * 1497 * The DTrace framework is locked in such a way that it may not be called 1498 * back into at all. cpu_lock is held. mod_lock is not held and may not 1499 * be acquired. 1500 * 1501 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) 1502 * 1503 * 1.6.1 Overview 1504 * 1505 * Called to suspend the specified enabled probe. This entry point is for 1506 * providers that may need to suspend some or all of their probes when CPUs 1507 * are being powered on or when the boot monitor is being entered for a 1508 * prolonged period of time. 1509 * 1510 * 1.6.2 Arguments and notes 1511 * 1512 * The first argument is the cookie as passed to dtrace_register(). The 1513 * second argument is the identifier of the probe to be suspended. The 1514 * third argument is the probe argument as passed to dtrace_probe_create(). 1515 * dtps_suspend will only be called on an enabled probe. Providers that 1516 * provide a dtps_suspend entry point will want to take roughly the action 1517 * that it takes for dtps_disable. 1518 * 1519 * 1.6.3 Return value 1520 * 1521 * None. 1522 * 1523 * 1.6.4 Caller's context 1524 * 1525 * Interrupts are disabled. The DTrace framework is in a state such that the 1526 * specified probe cannot be disabled or destroyed for the duration of 1527 * dtps_suspend(). As interrupts are disabled, the provider is afforded 1528 * little latitude; the provider is expected to do no more than a store to 1529 * memory. 1530 * 1531 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) 1532 * 1533 * 1.7.1 Overview 1534 * 1535 * Called to resume the specified enabled probe. This entry point is for 1536 * providers that may need to resume some or all of their probes after the 1537 * completion of an event that induced a call to dtps_suspend(). 1538 * 1539 * 1.7.2 Arguments and notes 1540 * 1541 * The first argument is the cookie as passed to dtrace_register(). The 1542 * second argument is the identifier of the probe to be resumed. The 1543 * third argument is the probe argument as passed to dtrace_probe_create(). 1544 * dtps_resume will only be called on an enabled probe. Providers that 1545 * provide a dtps_resume entry point will want to take roughly the action 1546 * that it takes for dtps_enable. 1547 * 1548 * 1.7.3 Return value 1549 * 1550 * None. 1551 * 1552 * 1.7.4 Caller's context 1553 * 1554 * Interrupts are disabled. The DTrace framework is in a state such that the 1555 * specified probe cannot be disabled or destroyed for the duration of 1556 * dtps_resume(). As interrupts are disabled, the provider is afforded 1557 * little latitude; the provider is expected to do no more than a store to 1558 * memory. 1559 * 1560 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, 1561 * dtrace_argdesc_t *desc) 1562 * 1563 * 1.8.1 Overview 1564 * 1565 * Called to retrieve the argument description for an args[X] variable. 1566 * 1567 * 1.8.2 Arguments and notes 1568 * 1569 * The first argument is the cookie as passed to dtrace_register(). The 1570 * second argument is the identifier of the current probe. The third 1571 * argument is the probe argument as passed to dtrace_probe_create(). The 1572 * fourth argument is a pointer to the argument description. This 1573 * description is both an input and output parameter: it contains the 1574 * index of the desired argument in the dtargd_ndx field, and expects 1575 * the other fields to be filled in upon return. If there is no argument 1576 * corresponding to the specified index, the dtargd_ndx field should be set 1577 * to DTRACE_ARGNONE. 1578 * 1579 * 1.8.3 Return value 1580 * 1581 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping 1582 * members of the dtrace_argdesc_t structure are all output values. 1583 * 1584 * 1.8.4 Caller's context 1585 * 1586 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and 1587 * the DTrace framework is locked in such a way that providers may not 1588 * register or unregister. This means that the provider may not call any 1589 * DTrace API that affects its registration with the framework, including 1590 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1591 * dtrace_condense(). 1592 * 1593 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, 1594 * int argno, int aframes) 1595 * 1596 * 1.9.1 Overview 1597 * 1598 * Called to retrieve a value for an argX or args[X] variable. 1599 * 1600 * 1.9.2 Arguments and notes 1601 * 1602 * The first argument is the cookie as passed to dtrace_register(). The 1603 * second argument is the identifier of the current probe. The third 1604 * argument is the probe argument as passed to dtrace_probe_create(). The 1605 * fourth argument is the number of the argument (the X in the example in 1606 * 1.9.1). The fifth argument is the number of stack frames that were used 1607 * to get from the actual place in the code that fired the probe to 1608 * dtrace_probe() itself, the so-called artificial frames. This argument may 1609 * be used to descend an appropriate number of frames to find the correct 1610 * values. If this entry point is left NULL, the dtrace_getarg() built-in 1611 * function is used. 1612 * 1613 * 1.9.3 Return value 1614 * 1615 * The value of the argument. 1616 * 1617 * 1.9.4 Caller's context 1618 * 1619 * This is called from within dtrace_probe() meaning that interrupts 1620 * are disabled. No locks should be taken within this entry point. 1621 * 1622 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg) 1623 * 1624 * 1.10.1 Overview 1625 * 1626 * Called to determine if the probe was fired in a user context. 1627 * 1628 * 1.10.2 Arguments and notes 1629 * 1630 * The first argument is the cookie as passed to dtrace_register(). The 1631 * second argument is the identifier of the current probe. The third 1632 * argument is the probe argument as passed to dtrace_probe_create(). This 1633 * entry point must not be left NULL for providers whose probes allow for 1634 * mixed mode tracing, that is to say those probes that can fire during 1635 * kernel- _or_ user-mode execution 1636 * 1637 * 1.10.3 Return value 1638 * 1639 * A boolean value. 1640 * 1641 * 1.10.4 Caller's context 1642 * 1643 * This is called from within dtrace_probe() meaning that interrupts 1644 * are disabled. No locks should be taken within this entry point. 1645 * 1646 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) 1647 * 1648 * 1.11.1 Overview 1649 * 1650 * Called to destroy the specified probe. 1651 * 1652 * 1.11.2 Arguments and notes 1653 * 1654 * The first argument is the cookie as passed to dtrace_register(). The 1655 * second argument is the identifier of the probe to be destroyed. The third 1656 * argument is the probe argument as passed to dtrace_probe_create(). The 1657 * provider should free all state associated with the probe. The framework 1658 * guarantees that dtps_destroy() is only called for probes that have either 1659 * been disabled via dtps_disable() or were never enabled via dtps_enable(). 1660 * Once dtps_disable() has been called for a probe, no further call will be 1661 * made specifying the probe. 1662 * 1663 * 1.11.3 Return value 1664 * 1665 * None. 1666 * 1667 * 1.11.4 Caller's context 1668 * 1669 * The DTrace framework is locked in such a way that it may not be called 1670 * back into at all. mod_lock is held. cpu_lock is not held, and may not be 1671 * acquired. 1672 * 1673 * 1674 * 2 Provider-to-Framework API 1675 * 1676 * 2.1 Overview 1677 * 1678 * The Provider-to-Framework API provides the mechanism for the provider to 1679 * register itself with the DTrace framework, to create probes, to lookup 1680 * probes and (most importantly) to fire probes. The Provider-to-Framework 1681 * consists of: 1682 * 1683 * dtrace_register() <-- Register a provider with the DTrace framework 1684 * dtrace_unregister() <-- Remove a provider's DTrace registration 1685 * dtrace_invalidate() <-- Invalidate the specified provider 1686 * dtrace_condense() <-- Remove a provider's unenabled probes 1687 * dtrace_attached() <-- Indicates whether or not DTrace has attached 1688 * dtrace_probe_create() <-- Create a DTrace probe 1689 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name 1690 * dtrace_probe_arg() <-- Return the probe argument for a specific probe 1691 * dtrace_probe() <-- Fire the specified probe 1692 * 1693 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, 1694 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, 1695 * dtrace_provider_id_t *idp) 1696 * 1697 * 2.2.1 Overview 1698 * 1699 * dtrace_register() registers the calling provider with the DTrace 1700 * framework. It should generally be called by DTrace providers in their 1701 * attach(9E) entry point. 1702 * 1703 * 2.2.2 Arguments and Notes 1704 * 1705 * The first argument is the name of the provider. The second argument is a 1706 * pointer to the stability attributes for the provider. The third argument 1707 * is the privilege flags for the provider, and must be some combination of: 1708 * 1709 * DTRACE_PRIV_NONE <= All users may enable probes from this provider 1710 * 1711 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may 1712 * enable probes from this provider 1713 * 1714 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may 1715 * enable probes from this provider 1716 * 1717 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL 1718 * may enable probes from this provider 1719 * 1720 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on 1721 * the privilege requirements above. These probes 1722 * require either (a) a user ID matching the user 1723 * ID of the cred passed in the fourth argument 1724 * or (b) the PRIV_PROC_OWNER privilege. 1725 * 1726 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on 1727 * the privilege requirements above. These probes 1728 * require either (a) a zone ID matching the zone 1729 * ID of the cred passed in the fourth argument 1730 * or (b) the PRIV_PROC_ZONE privilege. 1731 * 1732 * Note that these flags designate the _visibility_ of the probes, not 1733 * the conditions under which they may or may not fire. 1734 * 1735 * The fourth argument is the credential that is associated with the 1736 * provider. This argument should be NULL if the privilege flags don't 1737 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the 1738 * framework stashes the uid and zoneid represented by this credential 1739 * for use at probe-time, in implicit predicates. These limit visibility 1740 * of the probes to users and/or zones which have sufficient privilege to 1741 * access them. 1742 * 1743 * The fifth argument is a DTrace provider operations vector, which provides 1744 * the implementation for the Framework-to-Provider API. (See Section 1, 1745 * above.) This must be non-NULL, and each member must be non-NULL. The 1746 * exceptions to this are (1) the dtps_provide() and dtps_provide_module() 1747 * members (if the provider so desires, _one_ of these members may be left 1748 * NULL -- denoting that the provider only implements the other) and (2) 1749 * the dtps_suspend() and dtps_resume() members, which must either both be 1750 * NULL or both be non-NULL. 1751 * 1752 * The sixth argument is a cookie to be specified as the first argument for 1753 * each function in the Framework-to-Provider API. This argument may have 1754 * any value. 1755 * 1756 * The final argument is a pointer to dtrace_provider_id_t. If 1757 * dtrace_register() successfully completes, the provider identifier will be 1758 * stored in the memory pointed to be this argument. This argument must be 1759 * non-NULL. 1760 * 1761 * 2.2.3 Return value 1762 * 1763 * On success, dtrace_register() returns 0 and stores the new provider's 1764 * identifier into the memory pointed to by the idp argument. On failure, 1765 * dtrace_register() returns an errno: 1766 * 1767 * EINVAL The arguments passed to dtrace_register() were somehow invalid. 1768 * This may because a parameter that must be non-NULL was NULL, 1769 * because the name was invalid (either empty or an illegal 1770 * provider name) or because the attributes were invalid. 1771 * 1772 * No other failure code is returned. 1773 * 1774 * 2.2.4 Caller's context 1775 * 1776 * dtrace_register() may induce calls to dtrace_provide(); the provider must 1777 * hold no locks across dtrace_register() that may also be acquired by 1778 * dtrace_provide(). cpu_lock and mod_lock must not be held. 1779 * 1780 * 2.3 int dtrace_unregister(dtrace_provider_t id) 1781 * 1782 * 2.3.1 Overview 1783 * 1784 * Unregisters the specified provider from the DTrace framework. It should 1785 * generally be called by DTrace providers in their detach(9E) entry point. 1786 * 1787 * 2.3.2 Arguments and Notes 1788 * 1789 * The only argument is the provider identifier, as returned from a 1790 * successful call to dtrace_register(). As a result of calling 1791 * dtrace_unregister(), the DTrace framework will call back into the provider 1792 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully 1793 * completes, however, the DTrace framework will no longer make calls through 1794 * the Framework-to-Provider API. 1795 * 1796 * 2.3.3 Return value 1797 * 1798 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() 1799 * returns an errno: 1800 * 1801 * EBUSY There are currently processes that have the DTrace pseudodevice 1802 * open, or there exists an anonymous enabling that hasn't yet 1803 * been claimed. 1804 * 1805 * No other failure code is returned. 1806 * 1807 * 2.3.4 Caller's context 1808 * 1809 * Because a call to dtrace_unregister() may induce calls through the 1810 * Framework-to-Provider API, the caller may not hold any lock across 1811 * dtrace_register() that is also acquired in any of the Framework-to- 1812 * Provider API functions. Additionally, mod_lock may not be held. 1813 * 1814 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) 1815 * 1816 * 2.4.1 Overview 1817 * 1818 * Invalidates the specified provider. All subsequent probe lookups for the 1819 * specified provider will fail, but its probes will not be removed. 1820 * 1821 * 2.4.2 Arguments and note 1822 * 1823 * The only argument is the provider identifier, as returned from a 1824 * successful call to dtrace_register(). In general, a provider's probes 1825 * always remain valid; dtrace_invalidate() is a mechanism for invalidating 1826 * an entire provider, regardless of whether or not probes are enabled or 1827 * not. Note that dtrace_invalidate() will _not_ prevent already enabled 1828 * probes from firing -- it will merely prevent any new enablings of the 1829 * provider's probes. 1830 * 1831 * 2.5 int dtrace_condense(dtrace_provider_id_t id) 1832 * 1833 * 2.5.1 Overview 1834 * 1835 * Removes all the unenabled probes for the given provider. This function is 1836 * not unlike dtrace_unregister(), except that it doesn't remove the 1837 * provider just as many of its associated probes as it can. 1838 * 1839 * 2.5.2 Arguments and Notes 1840 * 1841 * As with dtrace_unregister(), the sole argument is the provider identifier 1842 * as returned from a successful call to dtrace_register(). As a result of 1843 * calling dtrace_condense(), the DTrace framework will call back into the 1844 * given provider's dtps_destroy() entry point for each of the provider's 1845 * unenabled probes. 1846 * 1847 * 2.5.3 Return value 1848 * 1849 * Currently, dtrace_condense() always returns 0. However, consumers of this 1850 * function should check the return value as appropriate; its behavior may 1851 * change in the future. 1852 * 1853 * 2.5.4 Caller's context 1854 * 1855 * As with dtrace_unregister(), the caller may not hold any lock across 1856 * dtrace_condense() that is also acquired in the provider's entry points. 1857 * Also, mod_lock may not be held. 1858 * 1859 * 2.6 int dtrace_attached() 1860 * 1861 * 2.6.1 Overview 1862 * 1863 * Indicates whether or not DTrace has attached. 1864 * 1865 * 2.6.2 Arguments and Notes 1866 * 1867 * For most providers, DTrace makes initial contact beyond registration. 1868 * That is, once a provider has registered with DTrace, it waits to hear 1869 * from DTrace to create probes. However, some providers may wish to 1870 * proactively create probes without first being told by DTrace to do so. 1871 * If providers wish to do this, they must first call dtrace_attached() to 1872 * determine if DTrace itself has attached. If dtrace_attached() returns 0, 1873 * the provider must not make any other Provider-to-Framework API call. 1874 * 1875 * 2.6.3 Return value 1876 * 1877 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. 1878 * 1879 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, 1880 * const char *func, const char *name, int aframes, void *arg) 1881 * 1882 * 2.7.1 Overview 1883 * 1884 * Creates a probe with specified module name, function name, and name. 1885 * 1886 * 2.7.2 Arguments and Notes 1887 * 1888 * The first argument is the provider identifier, as returned from a 1889 * successful call to dtrace_register(). The second, third, and fourth 1890 * arguments are the module name, function name, and probe name, 1891 * respectively. Of these, module name and function name may both be NULL 1892 * (in which case the probe is considered to be unanchored), or they may both 1893 * be non-NULL. The name must be non-NULL, and must point to a non-empty 1894 * string. 1895 * 1896 * The fifth argument is the number of artificial stack frames that will be 1897 * found on the stack when dtrace_probe() is called for the new probe. These 1898 * artificial frames will be automatically be pruned should the stack() or 1899 * stackdepth() functions be called as part of one of the probe's ECBs. If 1900 * the parameter doesn't add an artificial frame, this parameter should be 1901 * zero. 1902 * 1903 * The final argument is a probe argument that will be passed back to the 1904 * provider when a probe-specific operation is called. (e.g., via 1905 * dtps_enable(), dtps_disable(), etc.) 1906 * 1907 * Note that it is up to the provider to be sure that the probe that it 1908 * creates does not already exist -- if the provider is unsure of the probe's 1909 * existence, it should assure its absence with dtrace_probe_lookup() before 1910 * calling dtrace_probe_create(). 1911 * 1912 * 2.7.3 Return value 1913 * 1914 * dtrace_probe_create() always succeeds, and always returns the identifier 1915 * of the newly-created probe. 1916 * 1917 * 2.7.4 Caller's context 1918 * 1919 * While dtrace_probe_create() is generally expected to be called from 1920 * dtps_provide() and/or dtps_provide_module(), it may be called from other 1921 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1922 * 1923 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, 1924 * const char *func, const char *name) 1925 * 1926 * 2.8.1 Overview 1927 * 1928 * Looks up a probe based on provdider and one or more of module name, 1929 * function name and probe name. 1930 * 1931 * 2.8.2 Arguments and Notes 1932 * 1933 * The first argument is the provider identifier, as returned from a 1934 * successful call to dtrace_register(). The second, third, and fourth 1935 * arguments are the module name, function name, and probe name, 1936 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return 1937 * the identifier of the first probe that is provided by the specified 1938 * provider and matches all of the non-NULL matching criteria. 1939 * dtrace_probe_lookup() is generally used by a provider to be check the 1940 * existence of a probe before creating it with dtrace_probe_create(). 1941 * 1942 * 2.8.3 Return value 1943 * 1944 * If the probe exists, returns its identifier. If the probe does not exist, 1945 * return DTRACE_IDNONE. 1946 * 1947 * 2.8.4 Caller's context 1948 * 1949 * While dtrace_probe_lookup() is generally expected to be called from 1950 * dtps_provide() and/or dtps_provide_module(), it may also be called from 1951 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1952 * 1953 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) 1954 * 1955 * 2.9.1 Overview 1956 * 1957 * Returns the probe argument associated with the specified probe. 1958 * 1959 * 2.9.2 Arguments and Notes 1960 * 1961 * The first argument is the provider identifier, as returned from a 1962 * successful call to dtrace_register(). The second argument is a probe 1963 * identifier, as returned from dtrace_probe_lookup() or 1964 * dtrace_probe_create(). This is useful if a probe has multiple 1965 * provider-specific components to it: the provider can create the probe 1966 * once with provider-specific state, and then add to the state by looking 1967 * up the probe based on probe identifier. 1968 * 1969 * 2.9.3 Return value 1970 * 1971 * Returns the argument associated with the specified probe. If the 1972 * specified probe does not exist, or if the specified probe is not provided 1973 * by the specified provider, NULL is returned. 1974 * 1975 * 2.9.4 Caller's context 1976 * 1977 * While dtrace_probe_arg() is generally expected to be called from 1978 * dtps_provide() and/or dtps_provide_module(), it may also be called from 1979 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1980 * 1981 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, 1982 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 1983 * 1984 * 2.10.1 Overview 1985 * 1986 * The epicenter of DTrace: fires the specified probes with the specified 1987 * arguments. 1988 * 1989 * 2.10.2 Arguments and Notes 1990 * 1991 * The first argument is a probe identifier as returned by 1992 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth 1993 * arguments are the values to which the D variables "arg0" through "arg4" 1994 * will be mapped. 1995 * 1996 * dtrace_probe() should be called whenever the specified probe has fired -- 1997 * however the provider defines it. 1998 * 1999 * 2.10.3 Return value 2000 * 2001 * None. 2002 * 2003 * 2.10.4 Caller's context 2004 * 2005 * dtrace_probe() may be called in virtually any context: kernel, user, 2006 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with 2007 * dispatcher locks held, with interrupts disabled, etc. The only latitude 2008 * that must be afforded to DTrace is the ability to make calls within 2009 * itself (and to its in-kernel subroutines) and the ability to access 2010 * arbitrary (but mapped) memory. On some platforms, this constrains 2011 * context. For example, on UltraSPARC, dtrace_probe() cannot be called 2012 * from any context in which TL is greater than zero. dtrace_probe() may 2013 * also not be called from any routine which may be called by dtrace_probe() 2014 * -- which includes functions in the DTrace framework and some in-kernel 2015 * DTrace subroutines. All such functions "dtrace_"; providers that 2016 * instrument the kernel arbitrarily should be sure to not instrument these 2017 * routines. 2018 */ 2019 2020 typedef dtrace_modctl_t *mymodctl_p; 2021 2022 typedef struct dtrace_pops { 2023 void (*dtps_provide)(void *arg, dtrace_probedesc_t *spec); 2024 void (*dtps_provide_module)(void *arg, dtrace_modctl_t *mp); 2025 void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); 2026 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); 2027 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); 2028 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); 2029 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, 2030 dtrace_argdesc_t *desc); 2031 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, 2032 int argno, int aframes); 2033 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg); 2034 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); 2035 } dtrace_pops_t; 2036 2037 typedef uintptr_t dtrace_provider_id_t; 2038 2039 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, 2040 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *); 2041 extern int dtrace_unregister(dtrace_provider_id_t); 2042 extern int dtrace_condense(dtrace_provider_id_t); 2043 extern void dtrace_invalidate(dtrace_provider_id_t); 2044 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, char *, 2045 char *, char *); 2046 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, 2047 const char *, const char *, int, void *); 2048 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); 2049 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, 2050 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); 2051 2052 /* 2053 * DTrace Meta Provider API 2054 * 2055 * The following functions are implemented by the DTrace framework and are 2056 * used to implement meta providers. Meta providers plug into the DTrace 2057 * framework and are used to instantiate new providers on the fly. At 2058 * present, there is only one type of meta provider and only one meta 2059 * provider may be registered with the DTrace framework at a time. The 2060 * sole meta provider type provides user-land static tracing facilities 2061 * by taking meta probe descriptions and adding a corresponding provider 2062 * into the DTrace framework. 2063 * 2064 * 1 Framework-to-Provider 2065 * 2066 * 1.1 Overview 2067 * 2068 * The Framework-to-Provider API is represented by the dtrace_mops structure 2069 * that the meta provider passes to the framework when registering itself as 2070 * a meta provider. This structure consists of the following members: 2071 * 2072 * dtms_create_probe() <-- Add a new probe to a created provider 2073 * dtms_provide_pid() <-- Create a new provider for a given process 2074 * dtms_remove_pid() <-- Remove a previously created provider 2075 * 2076 * 1.2 void dtms_create_probe(void *arg, void *parg, 2077 * dtrace_helper_probedesc_t *probedesc); 2078 * 2079 * 1.2.1 Overview 2080 * 2081 * Called by the DTrace framework to create a new probe in a provider 2082 * created by this meta provider. 2083 * 2084 * 1.2.2 Arguments and notes 2085 * 2086 * The first argument is the cookie as passed to dtrace_meta_register(). 2087 * The second argument is the provider cookie for the associated provider; 2088 * this is obtained from the return value of dtms_provide_pid(). The third 2089 * argument is the helper probe description. 2090 * 2091 * 1.2.3 Return value 2092 * 2093 * None 2094 * 2095 * 1.2.4 Caller's context 2096 * 2097 * dtms_create_probe() is called from either ioctl() or module load context. 2098 * The DTrace framework is locked in such a way that meta providers may not 2099 * register or unregister. This means that the meta provider cannot call 2100 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is 2101 * such that the provider may (and is expected to) call provider-related 2102 * DTrace provider APIs including dtrace_probe_create(). 2103 * 2104 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, 2105 * pid_t pid) 2106 * 2107 * 1.3.1 Overview 2108 * 2109 * Called by the DTrace framework to instantiate a new provider given the 2110 * description of the provider and probes in the mprov argument. The 2111 * meta provider should call dtrace_register() to insert the new provider 2112 * into the DTrace framework. 2113 * 2114 * 1.3.2 Arguments and notes 2115 * 2116 * The first argument is the cookie as passed to dtrace_meta_register(). 2117 * The second argument is a pointer to a structure describing the new 2118 * helper provider. The third argument is the process identifier for 2119 * process associated with this new provider. Note that the name of the 2120 * provider as passed to dtrace_register() should be the contatenation of 2121 * the dtmpb_provname member of the mprov argument and the processs 2122 * identifier as a string. 2123 * 2124 * 1.3.3 Return value 2125 * 2126 * The cookie for the provider that the meta provider creates. This is 2127 * the same value that it passed to dtrace_register(). 2128 * 2129 * 1.3.4 Caller's context 2130 * 2131 * dtms_provide_pid() is called from either ioctl() or module load context. 2132 * The DTrace framework is locked in such a way that meta providers may not 2133 * register or unregister. This means that the meta provider cannot call 2134 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2135 * is such that the provider may -- and is expected to -- call 2136 * provider-related DTrace provider APIs including dtrace_register(). 2137 * 2138 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, 2139 * pid_t pid) 2140 * 2141 * 1.4.1 Overview 2142 * 2143 * Called by the DTrace framework to remove a provider that had previously 2144 * been instantiated via the dtms_provide_pid() entry point. The meta 2145 * provider need not remove the provider immediately, but this entry 2146 * point indicates that the provider should be removed as soon as possible 2147 * using the dtrace_unregister() API. 2148 * 2149 * 1.4.2 Arguments and notes 2150 * 2151 * The first argument is the cookie as passed to dtrace_meta_register(). 2152 * The second argument is a pointer to a structure describing the helper 2153 * provider. The third argument is the process identifier for process 2154 * associated with this new provider. 2155 * 2156 * 1.4.3 Return value 2157 * 2158 * None 2159 * 2160 * 1.4.4 Caller's context 2161 * 2162 * dtms_remove_pid() is called from either ioctl() or exit() context. 2163 * The DTrace framework is locked in such a way that meta providers may not 2164 * register or unregister. This means that the meta provider cannot call 2165 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2166 * is such that the provider may -- and is expected to -- call 2167 * provider-related DTrace provider APIs including dtrace_unregister(). 2168 */ 2169 typedef struct dtrace_helper_probedesc { 2170 char *dthpb_mod; /* probe module */ 2171 char *dthpb_func; /* probe function */ 2172 char *dthpb_name; /* probe name */ 2173 uint64_t dthpb_base; /* base address */ 2174 uint32_t *dthpb_offs; /* offsets array */ 2175 uint32_t *dthpb_enoffs; /* is-enabled offsets array */ 2176 uint32_t dthpb_noffs; /* offsets count */ 2177 uint32_t dthpb_nenoffs; /* is-enabled offsets count */ 2178 uint8_t *dthpb_args; /* argument mapping array */ 2179 uint8_t dthpb_xargc; /* translated argument count */ 2180 uint8_t dthpb_nargc; /* native argument count */ 2181 char *dthpb_xtypes; /* translated types strings */ 2182 char *dthpb_ntypes; /* native types strings */ 2183 } dtrace_helper_probedesc_t; 2184 2185 typedef struct dtrace_helper_provdesc { 2186 char *dthpv_provname; /* provider name */ 2187 dtrace_pattr_t dthpv_pattr; /* stability attributes */ 2188 } dtrace_helper_provdesc_t; 2189 2190 typedef struct dtrace_mops { 2191 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); 2192 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2193 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2194 } dtrace_mops_t; 2195 2196 typedef uintptr_t dtrace_meta_provider_id_t; 2197 2198 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, 2199 dtrace_meta_provider_id_t *); 2200 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); 2201 2202 /* 2203 * DTrace Kernel Hooks 2204 * 2205 * The following functions are implemented by the base kernel and form a set of 2206 * hooks used by the DTrace framework. DTrace hooks are implemented in either 2207 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a 2208 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform. 2209 */ 2210 2211 typedef enum dtrace_vtime_state { 2212 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ 2213 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ 2214 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ 2215 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ 2216 } dtrace_vtime_state_t; 2217 2218 #if defined(sun) 2219 extern dtrace_vtime_state_t dtrace_vtime_active; 2220 #endif 2221 extern void dtrace_vtime_switch(kthread_t *next); 2222 extern void dtrace_vtime_enable_tnf(void); 2223 extern void dtrace_vtime_disable_tnf(void); 2224 extern void dtrace_vtime_enable(void); 2225 extern void dtrace_vtime_disable(void); 2226 2227 struct regs; 2228 2229 #if defined(sun) 2230 extern int (*dtrace_pid_probe_ptr)(struct regs *); 2231 extern int (*dtrace_return_probe_ptr)(struct regs *); 2232 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); 2233 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); 2234 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); 2235 extern void dtrace_fasttrap_fork(proc_t *, proc_t *); 2236 #endif 2237 2238 typedef uintptr_t dtrace_icookie_t; 2239 typedef void (*dtrace_xcall_t)(void *); 2240 2241 extern dtrace_icookie_t dtrace_interrupt_disable(void); 2242 extern void dtrace_interrupt_enable(dtrace_icookie_t); 2243 2244 extern void dtrace_membar_producer(void); 2245 extern void dtrace_membar_consumer(void); 2246 2247 extern void (*dtrace_cpu_init)(processorid_t); 2248 extern void (*dtrace_modload)(dtrace_modctl_t *); 2249 extern void (*dtrace_modunload)(dtrace_modctl_t *); 2250 extern void (*dtrace_helpers_cleanup)(void); 2251 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); 2252 extern void (*dtrace_cpustart_init)(void); 2253 extern void (*dtrace_cpustart_fini)(void); 2254 2255 extern void (*dtrace_debugger_init)(void); 2256 extern void (*dtrace_debugger_fini)(void); 2257 extern dtrace_cacheid_t dtrace_predcache_id; 2258 2259 #if defined(sun) 2260 extern hrtime_t dtrace_gethrtime(void); 2261 #else 2262 void dtrace_debug_printf(const char *, ...); 2263 #endif 2264 extern void dtrace_sync(void); 2265 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); 2266 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); 2267 extern void dtrace_vpanic(const char *, _BSD_VA_LIST_); 2268 extern void dtrace_panic(const char *, ...); 2269 2270 extern int dtrace_safe_defer_signal(void); 2271 extern void dtrace_safe_synchronous_signal(void); 2272 2273 extern int dtrace_mach_aframes(void); 2274 2275 #if defined(__i386) || defined(__amd64) 2276 extern int dtrace_instr_size(uchar_t *instr); 2277 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *); 2278 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2279 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2280 extern void dtrace_invop_callsite(void); 2281 #endif 2282 2283 #ifdef __sparc 2284 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); 2285 extern void dtrace_getfsr(uint64_t *); 2286 #endif 2287 2288 #define DTRACE_CPUFLAG_ISSET(flag) \ 2289 (cpu_core[curcpu_id].cpuc_dtrace_flags & (flag)) 2290 2291 #define DTRACE_CPUFLAG_SET(flag) \ 2292 (cpu_core[curcpu_id].cpuc_dtrace_flags |= (flag)) 2293 2294 #define DTRACE_CPUFLAG_CLEAR(flag) \ 2295 (cpu_core[curcpu_id].cpuc_dtrace_flags &= ~(flag)) 2296 2297 #endif /* _KERNEL */ 2298 2299 #endif /* _ASM */ 2300 2301 #if defined(__i386) || defined(__amd64) 2302 2303 #define DTRACE_INVOP_PUSHL_EBP 1 2304 #define DTRACE_INVOP_POPL_EBP 2 2305 #define DTRACE_INVOP_LEAVE 3 2306 #define DTRACE_INVOP_NOP 4 2307 #define DTRACE_INVOP_RET 5 2308 2309 #endif 2310 2311 #ifdef __cplusplus 2312 } 2313 #endif 2314 2315 #endif /* _SYS_DTRACE_H */ 2316