1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * Fault Management Architecture (FMA) Resource and Protocol Support 27 * 28 * The routines contained herein provide services to support kernel subsystems 29 * in publishing fault management telemetry (see PSARC 2002/412 and 2003/089). 30 * 31 * Name-Value Pair Lists 32 * 33 * The embodiment of an FMA protocol element (event, fmri or authority) is a 34 * name-value pair list (nvlist_t). FMA-specific nvlist construtor and 35 * destructor functions, fm_nvlist_create() and fm_nvlist_destroy(), are used 36 * to create an nvpair list using custom allocators. Callers may choose to 37 * allocate either from the kernel memory allocator, or from a preallocated 38 * buffer, useful in constrained contexts like high-level interrupt routines. 39 * 40 * Protocol Event and FMRI Construction 41 * 42 * Convenience routines are provided to construct nvlist events according to 43 * the FMA Event Protocol and Naming Schema specification for ereports and 44 * FMRIs for the dev, cpu, hc, mem, legacy hc and de schemes. 45 * 46 * ENA Manipulation 47 * 48 * Routines to generate ENA formats 0, 1 and 2 are available as well as 49 * routines to increment formats 1 and 2. Individual fields within the 50 * ENA are extractable via fm_ena_time_get(), fm_ena_id_get(), 51 * fm_ena_format_get() and fm_ena_gen_get(). 52 */ 53 54 #include <sys/types.h> 55 #include <sys/time.h> 56 #include <sys/sysevent.h> 57 #include <sys/nvpair.h> 58 #include <sys/cmn_err.h> 59 #include <sys/cpuvar.h> 60 #include <sys/sysmacros.h> 61 #include <sys/systm.h> 62 #include <sys/compress.h> 63 #include <sys/cpuvar.h> 64 #include <sys/kobj.h> 65 #include <sys/kstat.h> 66 #include <sys/processor.h> 67 #ifdef __NetBSD__ 68 #include <sys/atomic.h> 69 #include <sys/cpu.h> 70 #else 71 #include <sys/pcpu.h> 72 #endif 73 #include <sys/sunddi.h> 74 #include <sys/systeminfo.h> 75 #include <sys/sysevent/eventdefs.h> 76 #include <sys/fm/util.h> 77 #include <sys/fm/protocol.h> 78 79 /* 80 * URL and SUNW-MSG-ID value to display for fm_panic(), defined below. These 81 * values must be kept in sync with the FMA source code in usr/src/cmd/fm. 82 */ 83 static const char *fm_url = "http://www.sun.com/msg"; 84 static const char *fm_msgid = "SUNOS-8000-0G"; 85 static char *volatile fm_panicstr = NULL; 86 87 #ifdef illumos 88 errorq_t *ereport_errorq; 89 #endif 90 void *ereport_dumpbuf; 91 size_t ereport_dumplen; 92 93 static uint_t ereport_chanlen = ERPT_EVCH_MAX; 94 static evchan_t *ereport_chan = NULL; 95 static ulong_t ereport_qlen = 0; 96 static size_t ereport_size = 0; 97 static int ereport_cols = 80; 98 99 extern void fastreboot_disable_highpil(void); 100 101 /* 102 * Common fault management kstats to record ereport generation 103 * failures 104 */ 105 106 struct erpt_kstat { 107 kstat_named_t erpt_dropped; /* num erpts dropped on post */ 108 kstat_named_t erpt_set_failed; /* num erpt set failures */ 109 kstat_named_t fmri_set_failed; /* num fmri set failures */ 110 kstat_named_t payload_set_failed; /* num payload set failures */ 111 }; 112 113 static struct erpt_kstat erpt_kstat_data = { 114 { "erpt-dropped", KSTAT_DATA_UINT64 }, 115 { "erpt-set-failed", KSTAT_DATA_UINT64 }, 116 { "fmri-set-failed", KSTAT_DATA_UINT64 }, 117 { "payload-set-failed", KSTAT_DATA_UINT64 } 118 }; 119 120 #ifdef illumos 121 /*ARGSUSED*/ 122 static void 123 fm_drain(void *private, void *data, errorq_elem_t *eep) 124 { 125 nvlist_t *nvl = errorq_elem_nvl(ereport_errorq, eep); 126 127 if (!panicstr) 128 (void) fm_ereport_post(nvl, EVCH_TRYHARD); 129 else 130 fm_nvprint(nvl); 131 } 132 #endif 133 134 void 135 fm_init(void) 136 { 137 kstat_t *ksp; 138 139 #ifdef illumos 140 (void) sysevent_evc_bind(FM_ERROR_CHAN, 141 &ereport_chan, EVCH_CREAT | EVCH_HOLD_PEND); 142 143 (void) sysevent_evc_control(ereport_chan, 144 EVCH_SET_CHAN_LEN, &ereport_chanlen); 145 #endif 146 147 if (ereport_qlen == 0) 148 ereport_qlen = ERPT_MAX_ERRS * MAX(max_ncpus, 4); 149 150 if (ereport_size == 0) 151 ereport_size = ERPT_DATA_SZ; 152 153 #ifdef illumos 154 ereport_errorq = errorq_nvcreate("fm_ereport_queue", 155 (errorq_func_t)fm_drain, NULL, ereport_qlen, ereport_size, 156 FM_ERR_PIL, ERRORQ_VITAL); 157 if (ereport_errorq == NULL) 158 panic("failed to create required ereport error queue"); 159 #endif 160 161 ereport_dumpbuf = kmem_alloc(ereport_size, KM_SLEEP); 162 ereport_dumplen = ereport_size; 163 164 /* Initialize ereport allocation and generation kstats */ 165 ksp = kstat_create("unix", 0, "fm", "misc", KSTAT_TYPE_NAMED, 166 sizeof (struct erpt_kstat) / sizeof (kstat_named_t), 167 KSTAT_FLAG_VIRTUAL); 168 169 if (ksp != NULL) { 170 ksp->ks_data = &erpt_kstat_data; 171 kstat_install(ksp); 172 } else { 173 cmn_err(CE_NOTE, "failed to create fm/misc kstat\n"); 174 175 } 176 } 177 178 #ifdef illumos 179 /* 180 * Formatting utility function for fm_nvprintr. We attempt to wrap chunks of 181 * output so they aren't split across console lines, and return the end column. 182 */ 183 /*PRINTFLIKE4*/ 184 static int 185 fm_printf(int depth, int c, int cols, const char *format, ...) 186 { 187 va_list ap; 188 int width; 189 char c1; 190 191 va_start(ap, format); 192 width = vsnprintf(&c1, sizeof (c1), format, ap); 193 va_end(ap); 194 195 if (c + width >= cols) { 196 console_printf("\n\r"); 197 c = 0; 198 if (format[0] != ' ' && depth > 0) { 199 console_printf(" "); 200 c++; 201 } 202 } 203 204 va_start(ap, format); 205 console_vprintf(format, ap); 206 va_end(ap); 207 208 return ((c + width) % cols); 209 } 210 211 /* 212 * Recursively print a nvlist in the specified column width and return the 213 * column we end up in. This function is called recursively by fm_nvprint(), 214 * below. We generically format the entire nvpair using hexadecimal 215 * integers and strings, and elide any integer arrays. Arrays are basically 216 * used for cache dumps right now, so we suppress them so as not to overwhelm 217 * the amount of console output we produce at panic time. This can be further 218 * enhanced as FMA technology grows based upon the needs of consumers. All 219 * FMA telemetry is logged using the dump device transport, so the console 220 * output serves only as a fallback in case this procedure is unsuccessful. 221 */ 222 static int 223 fm_nvprintr(nvlist_t *nvl, int d, int c, int cols) 224 { 225 nvpair_t *nvp; 226 227 for (nvp = nvlist_next_nvpair(nvl, NULL); 228 nvp != NULL; nvp = nvlist_next_nvpair(nvl, nvp)) { 229 230 data_type_t type = nvpair_type(nvp); 231 const char *name = nvpair_name(nvp); 232 233 boolean_t b; 234 uint8_t i8; 235 uint16_t i16; 236 uint32_t i32; 237 uint64_t i64; 238 char *str; 239 nvlist_t *cnv; 240 241 if (strcmp(name, FM_CLASS) == 0) 242 continue; /* already printed by caller */ 243 244 c = fm_printf(d, c, cols, " %s=", name); 245 246 switch (type) { 247 case DATA_TYPE_BOOLEAN: 248 c = fm_printf(d + 1, c, cols, " 1"); 249 break; 250 251 case DATA_TYPE_BOOLEAN_VALUE: 252 (void) nvpair_value_boolean_value(nvp, &b); 253 c = fm_printf(d + 1, c, cols, b ? "1" : "0"); 254 break; 255 256 case DATA_TYPE_BYTE: 257 (void) nvpair_value_byte(nvp, &i8); 258 c = fm_printf(d + 1, c, cols, "%x", i8); 259 break; 260 261 case DATA_TYPE_INT8: 262 (void) nvpair_value_int8(nvp, (void *)&i8); 263 c = fm_printf(d + 1, c, cols, "%x", i8); 264 break; 265 266 case DATA_TYPE_UINT8: 267 (void) nvpair_value_uint8(nvp, &i8); 268 c = fm_printf(d + 1, c, cols, "%x", i8); 269 break; 270 271 case DATA_TYPE_INT16: 272 (void) nvpair_value_int16(nvp, (void *)&i16); 273 c = fm_printf(d + 1, c, cols, "%x", i16); 274 break; 275 276 case DATA_TYPE_UINT16: 277 (void) nvpair_value_uint16(nvp, &i16); 278 c = fm_printf(d + 1, c, cols, "%x", i16); 279 break; 280 281 case DATA_TYPE_INT32: 282 (void) nvpair_value_int32(nvp, (void *)&i32); 283 c = fm_printf(d + 1, c, cols, "%x", i32); 284 break; 285 286 case DATA_TYPE_UINT32: 287 (void) nvpair_value_uint32(nvp, &i32); 288 c = fm_printf(d + 1, c, cols, "%x", i32); 289 break; 290 291 case DATA_TYPE_INT64: 292 (void) nvpair_value_int64(nvp, (void *)&i64); 293 c = fm_printf(d + 1, c, cols, "%llx", 294 (u_longlong_t)i64); 295 break; 296 297 case DATA_TYPE_UINT64: 298 (void) nvpair_value_uint64(nvp, &i64); 299 c = fm_printf(d + 1, c, cols, "%llx", 300 (u_longlong_t)i64); 301 break; 302 303 case DATA_TYPE_HRTIME: 304 (void) nvpair_value_hrtime(nvp, (void *)&i64); 305 c = fm_printf(d + 1, c, cols, "%llx", 306 (u_longlong_t)i64); 307 break; 308 309 case DATA_TYPE_STRING: 310 (void) nvpair_value_string(nvp, &str); 311 c = fm_printf(d + 1, c, cols, "\"%s\"", 312 str ? str : "<NULL>"); 313 break; 314 315 case DATA_TYPE_NVLIST: 316 c = fm_printf(d + 1, c, cols, "["); 317 (void) nvpair_value_nvlist(nvp, &cnv); 318 c = fm_nvprintr(cnv, d + 1, c, cols); 319 c = fm_printf(d + 1, c, cols, " ]"); 320 break; 321 322 case DATA_TYPE_NVLIST_ARRAY: { 323 nvlist_t **val; 324 uint_t i, nelem; 325 326 c = fm_printf(d + 1, c, cols, "["); 327 (void) nvpair_value_nvlist_array(nvp, &val, &nelem); 328 for (i = 0; i < nelem; i++) { 329 c = fm_nvprintr(val[i], d + 1, c, cols); 330 } 331 c = fm_printf(d + 1, c, cols, " ]"); 332 } 333 break; 334 335 case DATA_TYPE_BOOLEAN_ARRAY: 336 case DATA_TYPE_BYTE_ARRAY: 337 case DATA_TYPE_INT8_ARRAY: 338 case DATA_TYPE_UINT8_ARRAY: 339 case DATA_TYPE_INT16_ARRAY: 340 case DATA_TYPE_UINT16_ARRAY: 341 case DATA_TYPE_INT32_ARRAY: 342 case DATA_TYPE_UINT32_ARRAY: 343 case DATA_TYPE_INT64_ARRAY: 344 case DATA_TYPE_UINT64_ARRAY: 345 case DATA_TYPE_STRING_ARRAY: 346 c = fm_printf(d + 1, c, cols, "[...]"); 347 break; 348 case DATA_TYPE_UNKNOWN: 349 c = fm_printf(d + 1, c, cols, "<unknown>"); 350 break; 351 } 352 } 353 354 return (c); 355 } 356 357 void 358 fm_nvprint(nvlist_t *nvl) 359 { 360 char *class; 361 int c = 0; 362 363 console_printf("\r"); 364 365 if (nvlist_lookup_string(nvl, FM_CLASS, &class) == 0) 366 c = fm_printf(0, c, ereport_cols, "%s", class); 367 368 if (fm_nvprintr(nvl, 0, c, ereport_cols) != 0) 369 console_printf("\n"); 370 371 console_printf("\n"); 372 } 373 374 /* 375 * Wrapper for panic() that first produces an FMA-style message for admins. 376 * Normally such messages are generated by fmd(1M)'s syslog-msgs agent: this 377 * is the one exception to that rule and the only error that gets messaged. 378 * This function is intended for use by subsystems that have detected a fatal 379 * error and enqueued appropriate ereports and wish to then force a panic. 380 */ 381 /*PRINTFLIKE1*/ 382 void 383 fm_panic(const char *format, ...) 384 { 385 va_list ap; 386 387 (void) atomic_cas_ptr((void *)&fm_panicstr, NULL, (void *)format); 388 #if defined(__i386) || defined(__amd64) 389 fastreboot_disable_highpil(); 390 #endif /* __i386 || __amd64 */ 391 va_start(ap, format); 392 vpanic(format, ap); 393 va_end(ap); 394 } 395 396 /* 397 * Simply tell the caller if fm_panicstr is set, ie. an fma event has 398 * caused the panic. If so, something other than the default panic 399 * diagnosis method will diagnose the cause of the panic. 400 */ 401 int 402 is_fm_panic() 403 { 404 if (fm_panicstr) 405 return (1); 406 else 407 return (0); 408 } 409 410 /* 411 * Print any appropriate FMA banner message before the panic message. This 412 * function is called by panicsys() and prints the message for fm_panic(). 413 * We print the message here so that it comes after the system is quiesced. 414 * A one-line summary is recorded in the log only (cmn_err(9F) with "!" prefix). 415 * The rest of the message is for the console only and not needed in the log, 416 * so it is printed using console_printf(). We break it up into multiple 417 * chunks so as to avoid overflowing any small legacy prom_printf() buffers. 418 */ 419 void 420 fm_banner(void) 421 { 422 timespec_t tod; 423 hrtime_t now; 424 425 if (!fm_panicstr) 426 return; /* panic was not initiated by fm_panic(); do nothing */ 427 428 if (panicstr) { 429 tod = panic_hrestime; 430 now = panic_hrtime; 431 } else { 432 gethrestime(&tod); 433 now = gethrtime_waitfree(); 434 } 435 436 cmn_err(CE_NOTE, "!SUNW-MSG-ID: %s, " 437 "TYPE: Error, VER: 1, SEVERITY: Major\n", fm_msgid); 438 439 console_printf( 440 "\n\rSUNW-MSG-ID: %s, TYPE: Error, VER: 1, SEVERITY: Major\n" 441 "EVENT-TIME: 0x%lx.0x%lx (0x%llx)\n", 442 fm_msgid, tod.tv_sec, tod.tv_nsec, (u_longlong_t)now); 443 444 console_printf( 445 "PLATFORM: %s, CSN: -, HOSTNAME: %s\n" 446 "SOURCE: %s, REV: %s %s\n", 447 platform, utsname.nodename, utsname.sysname, 448 utsname.release, utsname.version); 449 450 console_printf( 451 "DESC: Errors have been detected that require a reboot to ensure system\n" 452 "integrity. See %s/%s for more information.\n", 453 fm_url, fm_msgid); 454 455 console_printf( 456 "AUTO-RESPONSE: Solaris will attempt to save and diagnose the error telemetry\n" 457 "IMPACT: The system will sync files, save a crash dump if needed, and reboot\n" 458 "REC-ACTION: Save the error summary below in case telemetry cannot be saved\n"); 459 460 console_printf("\n"); 461 } 462 463 /* 464 * Utility function to write all of the pending ereports to the dump device. 465 * This function is called at either normal reboot or panic time, and simply 466 * iterates over the in-transit messages in the ereport sysevent channel. 467 */ 468 void 469 fm_ereport_dump(void) 470 { 471 evchanq_t *chq; 472 sysevent_t *sep; 473 erpt_dump_t ed; 474 475 timespec_t tod; 476 hrtime_t now; 477 char *buf; 478 size_t len; 479 480 if (panicstr) { 481 tod = panic_hrestime; 482 now = panic_hrtime; 483 } else { 484 if (ereport_errorq != NULL) 485 errorq_drain(ereport_errorq); 486 gethrestime(&tod); 487 now = gethrtime_waitfree(); 488 } 489 490 /* 491 * In the panic case, sysevent_evc_walk_init() will return NULL. 492 */ 493 if ((chq = sysevent_evc_walk_init(ereport_chan, NULL)) == NULL && 494 !panicstr) 495 return; /* event channel isn't initialized yet */ 496 497 while ((sep = sysevent_evc_walk_step(chq)) != NULL) { 498 if ((buf = sysevent_evc_event_attr(sep, &len)) == NULL) 499 break; 500 501 ed.ed_magic = ERPT_MAGIC; 502 ed.ed_chksum = checksum32(buf, len); 503 ed.ed_size = (uint32_t)len; 504 ed.ed_pad = 0; 505 ed.ed_hrt_nsec = SE_TIME(sep); 506 ed.ed_hrt_base = now; 507 ed.ed_tod_base.sec = tod.tv_sec; 508 ed.ed_tod_base.nsec = tod.tv_nsec; 509 510 dumpvp_write(&ed, sizeof (ed)); 511 dumpvp_write(buf, len); 512 } 513 514 sysevent_evc_walk_fini(chq); 515 } 516 #endif 517 518 /* 519 * Post an error report (ereport) to the sysevent error channel. The error 520 * channel must be established with a prior call to sysevent_evc_create() 521 * before publication may occur. 522 */ 523 void 524 fm_ereport_post(nvlist_t *ereport, int evc_flag) 525 { 526 size_t nvl_size = 0; 527 evchan_t *error_chan; 528 sysevent_id_t eid; 529 530 (void) nvlist_size(ereport, &nvl_size, NV_ENCODE_NATIVE); 531 if (nvl_size > ERPT_DATA_SZ || nvl_size == 0) { 532 atomic_inc_64(&erpt_kstat_data.erpt_dropped.value.ui64); 533 return; 534 } 535 536 #ifdef illumos 537 if (sysevent_evc_bind(FM_ERROR_CHAN, &error_chan, 538 EVCH_CREAT|EVCH_HOLD_PEND) != 0) { 539 atomic_inc_64(&erpt_kstat_data.erpt_dropped.value.ui64); 540 return; 541 } 542 543 if (sysevent_evc_publish(error_chan, EC_FM, ESC_FM_ERROR, 544 SUNW_VENDOR, FM_PUB, ereport, evc_flag) != 0) { 545 atomic_inc_64(&erpt_kstat_data.erpt_dropped.value.ui64); 546 (void) sysevent_evc_unbind(error_chan); 547 return; 548 } 549 (void) sysevent_evc_unbind(error_chan); 550 #else 551 (void) ddi_log_sysevent(NULL, SUNW_VENDOR, EC_DEV_STATUS, 552 ESC_DEV_DLE, ereport, &eid, DDI_SLEEP); 553 #endif 554 } 555 556 /* 557 * Wrapppers for FM nvlist allocators 558 */ 559 /* ARGSUSED */ 560 static void * 561 i_fm_alloc(nv_alloc_t *nva, size_t size) 562 { 563 return (kmem_zalloc(size, KM_SLEEP)); 564 } 565 566 /* ARGSUSED */ 567 static void 568 i_fm_free(nv_alloc_t *nva, void *buf, size_t size) 569 { 570 kmem_free(buf, size); 571 } 572 573 const nv_alloc_ops_t fm_mem_alloc_ops = { 574 NULL, 575 NULL, 576 i_fm_alloc, 577 i_fm_free, 578 NULL 579 }; 580 581 /* 582 * Create and initialize a new nv_alloc_t for a fixed buffer, buf. A pointer 583 * to the newly allocated nv_alloc_t structure is returned upon success or NULL 584 * is returned to indicate that the nv_alloc structure could not be created. 585 */ 586 nv_alloc_t * 587 fm_nva_xcreate(char *buf, size_t bufsz) 588 { 589 nv_alloc_t *nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP); 590 591 if (bufsz == 0 || nv_alloc_init(nvhdl, nv_fixed_ops, buf, bufsz) != 0) { 592 kmem_free(nvhdl, sizeof (nv_alloc_t)); 593 return (NULL); 594 } 595 596 return (nvhdl); 597 } 598 599 /* 600 * Destroy a previously allocated nv_alloc structure. The fixed buffer 601 * associated with nva must be freed by the caller. 602 */ 603 void 604 fm_nva_xdestroy(nv_alloc_t *nva) 605 { 606 nv_alloc_fini(nva); 607 kmem_free(nva, sizeof (nv_alloc_t)); 608 } 609 610 /* 611 * Create a new nv list. A pointer to a new nv list structure is returned 612 * upon success or NULL is returned to indicate that the structure could 613 * not be created. The newly created nv list is created and managed by the 614 * operations installed in nva. If nva is NULL, the default FMA nva 615 * operations are installed and used. 616 * 617 * When called from the kernel and nva == NULL, this function must be called 618 * from passive kernel context with no locks held that can prevent a 619 * sleeping memory allocation from occurring. Otherwise, this function may 620 * be called from other kernel contexts as long a valid nva created via 621 * fm_nva_create() is supplied. 622 */ 623 nvlist_t * 624 fm_nvlist_create(nv_alloc_t *nva) 625 { 626 int hdl_alloced = 0; 627 nvlist_t *nvl; 628 nv_alloc_t *nvhdl; 629 630 if (nva == NULL) { 631 nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP); 632 633 if (nv_alloc_init(nvhdl, &fm_mem_alloc_ops, NULL, 0) != 0) { 634 kmem_free(nvhdl, sizeof (nv_alloc_t)); 635 return (NULL); 636 } 637 hdl_alloced = 1; 638 } else { 639 nvhdl = nva; 640 } 641 642 if (nvlist_xalloc(&nvl, NV_UNIQUE_NAME, nvhdl) != 0) { 643 if (hdl_alloced) { 644 nv_alloc_fini(nvhdl); 645 kmem_free(nvhdl, sizeof (nv_alloc_t)); 646 } 647 return (NULL); 648 } 649 650 return (nvl); 651 } 652 653 /* 654 * Destroy a previously allocated nvlist structure. flag indicates whether 655 * or not the associated nva structure should be freed (FM_NVA_FREE) or 656 * retained (FM_NVA_RETAIN). Retaining the nv alloc structure allows 657 * it to be re-used for future nvlist creation operations. 658 */ 659 void 660 fm_nvlist_destroy(nvlist_t *nvl, int flag) 661 { 662 nv_alloc_t *nva = nvlist_lookup_nv_alloc(nvl); 663 664 nvlist_free(nvl); 665 666 if (nva != NULL) { 667 if (flag == FM_NVA_FREE) 668 fm_nva_xdestroy(nva); 669 } 670 } 671 672 int 673 i_fm_payload_set(nvlist_t *payload, const char *name, va_list ap) 674 { 675 int nelem, ret = 0; 676 data_type_t type; 677 678 while (ret == 0 && name != NULL) { 679 type = va_arg(ap, data_type_t); 680 switch (type) { 681 case DATA_TYPE_BYTE: 682 ret = nvlist_add_byte(payload, name, 683 va_arg(ap, uint_t)); 684 break; 685 case DATA_TYPE_BYTE_ARRAY: 686 nelem = va_arg(ap, int); 687 ret = nvlist_add_byte_array(payload, name, 688 va_arg(ap, uchar_t *), nelem); 689 break; 690 case DATA_TYPE_BOOLEAN_VALUE: 691 ret = nvlist_add_boolean_value(payload, name, 692 va_arg(ap, boolean_t)); 693 break; 694 case DATA_TYPE_BOOLEAN_ARRAY: 695 nelem = va_arg(ap, int); 696 ret = nvlist_add_boolean_array(payload, name, 697 va_arg(ap, boolean_t *), nelem); 698 break; 699 case DATA_TYPE_INT8: 700 ret = nvlist_add_int8(payload, name, 701 va_arg(ap, int)); 702 break; 703 case DATA_TYPE_INT8_ARRAY: 704 nelem = va_arg(ap, int); 705 ret = nvlist_add_int8_array(payload, name, 706 va_arg(ap, int8_t *), nelem); 707 break; 708 case DATA_TYPE_UINT8: 709 ret = nvlist_add_uint8(payload, name, 710 va_arg(ap, uint_t)); 711 break; 712 case DATA_TYPE_UINT8_ARRAY: 713 nelem = va_arg(ap, int); 714 ret = nvlist_add_uint8_array(payload, name, 715 va_arg(ap, uint8_t *), nelem); 716 break; 717 case DATA_TYPE_INT16: 718 ret = nvlist_add_int16(payload, name, 719 va_arg(ap, int)); 720 break; 721 case DATA_TYPE_INT16_ARRAY: 722 nelem = va_arg(ap, int); 723 ret = nvlist_add_int16_array(payload, name, 724 va_arg(ap, int16_t *), nelem); 725 break; 726 case DATA_TYPE_UINT16: 727 ret = nvlist_add_uint16(payload, name, 728 va_arg(ap, uint_t)); 729 break; 730 case DATA_TYPE_UINT16_ARRAY: 731 nelem = va_arg(ap, int); 732 ret = nvlist_add_uint16_array(payload, name, 733 va_arg(ap, uint16_t *), nelem); 734 break; 735 case DATA_TYPE_INT32: 736 ret = nvlist_add_int32(payload, name, 737 va_arg(ap, int32_t)); 738 break; 739 case DATA_TYPE_INT32_ARRAY: 740 nelem = va_arg(ap, int); 741 ret = nvlist_add_int32_array(payload, name, 742 va_arg(ap, int32_t *), nelem); 743 break; 744 case DATA_TYPE_UINT32: 745 ret = nvlist_add_uint32(payload, name, 746 va_arg(ap, uint32_t)); 747 break; 748 case DATA_TYPE_UINT32_ARRAY: 749 nelem = va_arg(ap, int); 750 ret = nvlist_add_uint32_array(payload, name, 751 va_arg(ap, uint32_t *), nelem); 752 break; 753 case DATA_TYPE_INT64: 754 ret = nvlist_add_int64(payload, name, 755 va_arg(ap, int64_t)); 756 break; 757 case DATA_TYPE_INT64_ARRAY: 758 nelem = va_arg(ap, int); 759 ret = nvlist_add_int64_array(payload, name, 760 va_arg(ap, int64_t *), nelem); 761 break; 762 case DATA_TYPE_UINT64: 763 ret = nvlist_add_uint64(payload, name, 764 va_arg(ap, uint64_t)); 765 break; 766 case DATA_TYPE_UINT64_ARRAY: 767 nelem = va_arg(ap, int); 768 ret = nvlist_add_uint64_array(payload, name, 769 va_arg(ap, uint64_t *), nelem); 770 break; 771 case DATA_TYPE_STRING: 772 ret = nvlist_add_string(payload, name, 773 va_arg(ap, char *)); 774 break; 775 case DATA_TYPE_STRING_ARRAY: 776 nelem = va_arg(ap, int); 777 ret = nvlist_add_string_array(payload, name, 778 va_arg(ap, char **), nelem); 779 break; 780 case DATA_TYPE_NVLIST: 781 ret = nvlist_add_nvlist(payload, name, 782 va_arg(ap, nvlist_t *)); 783 break; 784 case DATA_TYPE_NVLIST_ARRAY: 785 nelem = va_arg(ap, int); 786 ret = nvlist_add_nvlist_array(payload, name, 787 va_arg(ap, nvlist_t **), nelem); 788 break; 789 default: 790 ret = EINVAL; 791 } 792 793 name = va_arg(ap, char *); 794 } 795 return (ret); 796 } 797 798 void 799 fm_payload_set(nvlist_t *payload, ...) 800 { 801 int ret; 802 const char *name; 803 va_list ap; 804 805 va_start(ap, payload); 806 name = va_arg(ap, char *); 807 ret = i_fm_payload_set(payload, name, ap); 808 va_end(ap); 809 810 if (ret) 811 atomic_inc_64(&erpt_kstat_data.payload_set_failed.value.ui64); 812 } 813 814 /* 815 * Set-up and validate the members of an ereport event according to: 816 * 817 * Member name Type Value 818 * ==================================================== 819 * class string ereport 820 * version uint8_t 0 821 * ena uint64_t <ena> 822 * detector nvlist_t <detector> 823 * ereport-payload nvlist_t <var args> 824 * 825 * We don't actually add a 'version' member to the payload. Really, 826 * the version quoted to us by our caller is that of the category 1 827 * "ereport" event class (and we require FM_EREPORT_VERS0) but 828 * the payload version of the actual leaf class event under construction 829 * may be something else. Callers should supply a version in the varargs, 830 * or (better) we could take two version arguments - one for the 831 * ereport category 1 classification (expect FM_EREPORT_VERS0) and one 832 * for the leaf class. 833 */ 834 void 835 fm_ereport_set(nvlist_t *ereport, int version, const char *erpt_class, 836 uint64_t ena, const nvlist_t *detector, ...) 837 { 838 char ereport_class[FM_MAX_CLASS]; 839 const char *name; 840 va_list ap; 841 int ret; 842 843 if (version != FM_EREPORT_VERS0) { 844 atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64); 845 return; 846 } 847 848 (void) snprintf(ereport_class, FM_MAX_CLASS, "%s.%s", 849 FM_EREPORT_CLASS, erpt_class); 850 if (nvlist_add_string(ereport, FM_CLASS, ereport_class) != 0) { 851 atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64); 852 return; 853 } 854 855 if (nvlist_add_uint64(ereport, FM_EREPORT_ENA, ena)) { 856 atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64); 857 } 858 859 if (nvlist_add_nvlist(ereport, FM_EREPORT_DETECTOR, 860 (nvlist_t *)detector) != 0) { 861 atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64); 862 } 863 864 va_start(ap, detector); 865 name = va_arg(ap, const char *); 866 ret = i_fm_payload_set(ereport, name, ap); 867 va_end(ap); 868 869 if (ret) 870 atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64); 871 } 872 873 /* 874 * Set-up and validate the members of an hc fmri according to; 875 * 876 * Member name Type Value 877 * =================================================== 878 * version uint8_t 0 879 * auth nvlist_t <auth> 880 * hc-name string <name> 881 * hc-id string <id> 882 * 883 * Note that auth and hc-id are optional members. 884 */ 885 886 #define HC_MAXPAIRS 20 887 #define HC_MAXNAMELEN 50 888 889 static int 890 fm_fmri_hc_set_common(nvlist_t *fmri, int version, const nvlist_t *auth) 891 { 892 if (version != FM_HC_SCHEME_VERSION) { 893 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 894 return (0); 895 } 896 897 if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0 || 898 nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_HC) != 0) { 899 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 900 return (0); 901 } 902 903 if (auth != NULL && nvlist_add_nvlist(fmri, FM_FMRI_AUTHORITY, 904 (nvlist_t *)auth) != 0) { 905 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 906 return (0); 907 } 908 909 return (1); 910 } 911 912 void 913 fm_fmri_hc_set(nvlist_t *fmri, int version, const nvlist_t *auth, 914 nvlist_t *snvl, int npairs, ...) 915 { 916 nv_alloc_t *nva = nvlist_lookup_nv_alloc(fmri); 917 nvlist_t *pairs[HC_MAXPAIRS]; 918 va_list ap; 919 int i; 920 921 if (!fm_fmri_hc_set_common(fmri, version, auth)) 922 return; 923 924 npairs = MIN(npairs, HC_MAXPAIRS); 925 926 va_start(ap, npairs); 927 for (i = 0; i < npairs; i++) { 928 const char *name = va_arg(ap, const char *); 929 uint32_t id = va_arg(ap, uint32_t); 930 char idstr[11]; 931 932 (void) snprintf(idstr, sizeof (idstr), "%u", id); 933 934 pairs[i] = fm_nvlist_create(nva); 935 if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, name) != 0 || 936 nvlist_add_string(pairs[i], FM_FMRI_HC_ID, idstr) != 0) { 937 atomic_inc_64( 938 &erpt_kstat_data.fmri_set_failed.value.ui64); 939 } 940 } 941 va_end(ap); 942 943 if (nvlist_add_nvlist_array(fmri, FM_FMRI_HC_LIST, pairs, npairs) != 0) 944 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 945 946 for (i = 0; i < npairs; i++) 947 fm_nvlist_destroy(pairs[i], FM_NVA_RETAIN); 948 949 if (snvl != NULL) { 950 if (nvlist_add_nvlist(fmri, FM_FMRI_HC_SPECIFIC, snvl) != 0) { 951 atomic_inc_64( 952 &erpt_kstat_data.fmri_set_failed.value.ui64); 953 } 954 } 955 } 956 957 /* 958 * Set-up and validate the members of an dev fmri according to: 959 * 960 * Member name Type Value 961 * ==================================================== 962 * version uint8_t 0 963 * auth nvlist_t <auth> 964 * devpath string <devpath> 965 * [devid] string <devid> 966 * [target-port-l0id] string <target-port-lun0-id> 967 * 968 * Note that auth and devid are optional members. 969 */ 970 void 971 fm_fmri_dev_set(nvlist_t *fmri_dev, int version, const nvlist_t *auth, 972 const char *devpath, const char *devid, const char *tpl0) 973 { 974 int err = 0; 975 976 if (version != DEV_SCHEME_VERSION0) { 977 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 978 return; 979 } 980 981 err |= nvlist_add_uint8(fmri_dev, FM_VERSION, version); 982 err |= nvlist_add_string(fmri_dev, FM_FMRI_SCHEME, FM_FMRI_SCHEME_DEV); 983 984 if (auth != NULL) { 985 err |= nvlist_add_nvlist(fmri_dev, FM_FMRI_AUTHORITY, 986 (nvlist_t *)auth); 987 } 988 989 err |= nvlist_add_string(fmri_dev, FM_FMRI_DEV_PATH, devpath); 990 991 if (devid != NULL) 992 err |= nvlist_add_string(fmri_dev, FM_FMRI_DEV_ID, devid); 993 994 if (tpl0 != NULL) 995 err |= nvlist_add_string(fmri_dev, FM_FMRI_DEV_TGTPTLUN0, tpl0); 996 997 if (err) 998 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 999 1000 } 1001 1002 /* 1003 * Set-up and validate the members of an cpu fmri according to: 1004 * 1005 * Member name Type Value 1006 * ==================================================== 1007 * version uint8_t 0 1008 * auth nvlist_t <auth> 1009 * cpuid uint32_t <cpu_id> 1010 * cpumask uint8_t <cpu_mask> 1011 * serial uint64_t <serial_id> 1012 * 1013 * Note that auth, cpumask, serial are optional members. 1014 * 1015 */ 1016 void 1017 fm_fmri_cpu_set(nvlist_t *fmri_cpu, int version, const nvlist_t *auth, 1018 uint32_t cpu_id, uint8_t *cpu_maskp, const char *serial_idp) 1019 { 1020 uint64_t *failedp = &erpt_kstat_data.fmri_set_failed.value.ui64; 1021 1022 if (version < CPU_SCHEME_VERSION1) { 1023 atomic_inc_64(failedp); 1024 return; 1025 } 1026 1027 if (nvlist_add_uint8(fmri_cpu, FM_VERSION, version) != 0) { 1028 atomic_inc_64(failedp); 1029 return; 1030 } 1031 1032 if (nvlist_add_string(fmri_cpu, FM_FMRI_SCHEME, 1033 FM_FMRI_SCHEME_CPU) != 0) { 1034 atomic_inc_64(failedp); 1035 return; 1036 } 1037 1038 if (auth != NULL && nvlist_add_nvlist(fmri_cpu, FM_FMRI_AUTHORITY, 1039 (nvlist_t *)auth) != 0) 1040 atomic_inc_64(failedp); 1041 1042 if (nvlist_add_uint32(fmri_cpu, FM_FMRI_CPU_ID, cpu_id) != 0) 1043 atomic_inc_64(failedp); 1044 1045 if (cpu_maskp != NULL && nvlist_add_uint8(fmri_cpu, FM_FMRI_CPU_MASK, 1046 *cpu_maskp) != 0) 1047 atomic_inc_64(failedp); 1048 1049 if (serial_idp == NULL || nvlist_add_string(fmri_cpu, 1050 FM_FMRI_CPU_SERIAL_ID, (char *)serial_idp) != 0) 1051 atomic_inc_64(failedp); 1052 } 1053 1054 /* 1055 * Set-up and validate the members of a mem according to: 1056 * 1057 * Member name Type Value 1058 * ==================================================== 1059 * version uint8_t 0 1060 * auth nvlist_t <auth> [optional] 1061 * unum string <unum> 1062 * serial string <serial> [optional*] 1063 * offset uint64_t <offset> [optional] 1064 * 1065 * * serial is required if offset is present 1066 */ 1067 void 1068 fm_fmri_mem_set(nvlist_t *fmri, int version, const nvlist_t *auth, 1069 const char *unum, const char *serial, uint64_t offset) 1070 { 1071 if (version != MEM_SCHEME_VERSION0) { 1072 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 1073 return; 1074 } 1075 1076 if (!serial && (offset != (uint64_t)-1)) { 1077 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 1078 return; 1079 } 1080 1081 if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0) { 1082 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 1083 return; 1084 } 1085 1086 if (nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_MEM) != 0) { 1087 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 1088 return; 1089 } 1090 1091 if (auth != NULL) { 1092 if (nvlist_add_nvlist(fmri, FM_FMRI_AUTHORITY, 1093 (nvlist_t *)auth) != 0) { 1094 atomic_inc_64( 1095 &erpt_kstat_data.fmri_set_failed.value.ui64); 1096 } 1097 } 1098 1099 if (nvlist_add_string(fmri, FM_FMRI_MEM_UNUM, unum) != 0) { 1100 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 1101 } 1102 1103 if (serial != NULL) { 1104 if (nvlist_add_string_array(fmri, FM_FMRI_MEM_SERIAL_ID, 1105 (char **)&serial, 1) != 0) { 1106 atomic_inc_64( 1107 &erpt_kstat_data.fmri_set_failed.value.ui64); 1108 } 1109 if (offset != (uint64_t)-1 && nvlist_add_uint64(fmri, 1110 FM_FMRI_MEM_OFFSET, offset) != 0) { 1111 atomic_inc_64( 1112 &erpt_kstat_data.fmri_set_failed.value.ui64); 1113 } 1114 } 1115 } 1116 1117 void 1118 fm_fmri_zfs_set(nvlist_t *fmri, int version, uint64_t pool_guid, 1119 uint64_t vdev_guid) 1120 { 1121 if (version != ZFS_SCHEME_VERSION0) { 1122 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 1123 return; 1124 } 1125 1126 if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0) { 1127 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 1128 return; 1129 } 1130 1131 if (nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS) != 0) { 1132 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 1133 return; 1134 } 1135 1136 if (nvlist_add_uint64(fmri, FM_FMRI_ZFS_POOL, pool_guid) != 0) { 1137 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 1138 } 1139 1140 if (vdev_guid != 0) { 1141 if (nvlist_add_uint64(fmri, FM_FMRI_ZFS_VDEV, vdev_guid) != 0) { 1142 atomic_inc_64( 1143 &erpt_kstat_data.fmri_set_failed.value.ui64); 1144 } 1145 } 1146 } 1147 1148 uint64_t 1149 fm_ena_increment(uint64_t ena) 1150 { 1151 uint64_t new_ena; 1152 1153 switch (ENA_FORMAT(ena)) { 1154 case FM_ENA_FMT1: 1155 new_ena = ena + (1 << ENA_FMT1_GEN_SHFT); 1156 break; 1157 case FM_ENA_FMT2: 1158 new_ena = ena + (1 << ENA_FMT2_GEN_SHFT); 1159 break; 1160 default: 1161 new_ena = 0; 1162 } 1163 1164 return (new_ena); 1165 } 1166 1167 uint64_t 1168 fm_ena_generate_cpu(uint64_t timestamp, processorid_t cpuid, uchar_t format) 1169 { 1170 uint64_t ena = 0; 1171 1172 switch (format) { 1173 case FM_ENA_FMT1: 1174 if (timestamp) { 1175 ena = (uint64_t)((format & ENA_FORMAT_MASK) | 1176 ((cpuid << ENA_FMT1_CPUID_SHFT) & 1177 ENA_FMT1_CPUID_MASK) | 1178 ((timestamp << ENA_FMT1_TIME_SHFT) & 1179 ENA_FMT1_TIME_MASK)); 1180 } else { 1181 ena = (uint64_t)((format & ENA_FORMAT_MASK) | 1182 ((cpuid << ENA_FMT1_CPUID_SHFT) & 1183 ENA_FMT1_CPUID_MASK) | 1184 ((gethrtime_waitfree() << ENA_FMT1_TIME_SHFT) & 1185 ENA_FMT1_TIME_MASK)); 1186 } 1187 break; 1188 case FM_ENA_FMT2: 1189 ena = (uint64_t)((format & ENA_FORMAT_MASK) | 1190 ((timestamp << ENA_FMT2_TIME_SHFT) & ENA_FMT2_TIME_MASK)); 1191 break; 1192 default: 1193 break; 1194 } 1195 1196 return (ena); 1197 } 1198 1199 uint64_t 1200 fm_ena_generate(uint64_t timestamp, uchar_t format) 1201 { 1202 #ifdef __NetBSD__ 1203 return (fm_ena_generate_cpu(timestamp, cpu_index(curcpu()), format)); 1204 #else 1205 return (fm_ena_generate_cpu(timestamp, PCPU_GET(cpuid), format)); 1206 #endif 1207 } 1208 1209 uint64_t 1210 fm_ena_generation_get(uint64_t ena) 1211 { 1212 uint64_t gen; 1213 1214 switch (ENA_FORMAT(ena)) { 1215 case FM_ENA_FMT1: 1216 gen = (ena & ENA_FMT1_GEN_MASK) >> ENA_FMT1_GEN_SHFT; 1217 break; 1218 case FM_ENA_FMT2: 1219 gen = (ena & ENA_FMT2_GEN_MASK) >> ENA_FMT2_GEN_SHFT; 1220 break; 1221 default: 1222 gen = 0; 1223 break; 1224 } 1225 1226 return (gen); 1227 } 1228 1229 uchar_t 1230 fm_ena_format_get(uint64_t ena) 1231 { 1232 1233 return (ENA_FORMAT(ena)); 1234 } 1235 1236 uint64_t 1237 fm_ena_id_get(uint64_t ena) 1238 { 1239 uint64_t id; 1240 1241 switch (ENA_FORMAT(ena)) { 1242 case FM_ENA_FMT1: 1243 id = (ena & ENA_FMT1_ID_MASK) >> ENA_FMT1_ID_SHFT; 1244 break; 1245 case FM_ENA_FMT2: 1246 id = (ena & ENA_FMT2_ID_MASK) >> ENA_FMT2_ID_SHFT; 1247 break; 1248 default: 1249 id = 0; 1250 } 1251 1252 return (id); 1253 } 1254 1255 uint64_t 1256 fm_ena_time_get(uint64_t ena) 1257 { 1258 uint64_t time; 1259 1260 switch (ENA_FORMAT(ena)) { 1261 case FM_ENA_FMT1: 1262 time = (ena & ENA_FMT1_TIME_MASK) >> ENA_FMT1_TIME_SHFT; 1263 break; 1264 case FM_ENA_FMT2: 1265 time = (ena & ENA_FMT2_TIME_MASK) >> ENA_FMT2_TIME_SHFT; 1266 break; 1267 default: 1268 time = 0; 1269 } 1270 1271 return (time); 1272 } 1273 1274 #ifdef illumos 1275 /* 1276 * Convert a getpcstack() trace to symbolic name+offset, and add the resulting 1277 * string array to a Fault Management ereport as FM_EREPORT_PAYLOAD_NAME_STACK. 1278 */ 1279 void 1280 fm_payload_stack_add(nvlist_t *payload, const pc_t *stack, int depth) 1281 { 1282 int i; 1283 char *sym; 1284 ulong_t off; 1285 char *stkpp[FM_STK_DEPTH]; 1286 char buf[FM_STK_DEPTH * FM_SYM_SZ]; 1287 char *stkp = buf; 1288 1289 for (i = 0; i < depth && i != FM_STK_DEPTH; i++, stkp += FM_SYM_SZ) { 1290 if ((sym = kobj_getsymname(stack[i], &off)) != NULL) 1291 (void) snprintf(stkp, FM_SYM_SZ, "%s+%lx", sym, off); 1292 else 1293 (void) snprintf(stkp, FM_SYM_SZ, "%lx", (long)stack[i]); 1294 stkpp[i] = stkp; 1295 } 1296 1297 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_STACK, 1298 DATA_TYPE_STRING_ARRAY, depth, stkpp, NULL); 1299 } 1300 #endif 1301 1302 #ifdef illumos 1303 void 1304 print_msg_hwerr(ctid_t ct_id, proc_t *p) 1305 { 1306 uprintf("Killed process %d (%s) in contract id %d " 1307 "due to hardware error\n", p->p_pid, p->p_user.u_comm, ct_id); 1308 } 1309 #endif 1310 1311 void 1312 fm_fmri_hc_create(nvlist_t *fmri, int version, const nvlist_t *auth, 1313 nvlist_t *snvl, nvlist_t *bboard, int npairs, ...) 1314 { 1315 nv_alloc_t *nva = nvlist_lookup_nv_alloc(fmri); 1316 nvlist_t *pairs[HC_MAXPAIRS]; 1317 nvlist_t **hcl; 1318 uint_t n; 1319 int i, j; 1320 va_list ap; 1321 char *hcname, *hcid; 1322 1323 if (!fm_fmri_hc_set_common(fmri, version, auth)) 1324 return; 1325 1326 /* 1327 * copy the bboard nvpairs to the pairs array 1328 */ 1329 if (nvlist_lookup_nvlist_array(bboard, FM_FMRI_HC_LIST, &hcl, &n) 1330 != 0) { 1331 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 1332 return; 1333 } 1334 1335 for (i = 0; i < n; i++) { 1336 if (nvlist_lookup_string(hcl[i], FM_FMRI_HC_NAME, 1337 &hcname) != 0) { 1338 atomic_inc_64( 1339 &erpt_kstat_data.fmri_set_failed.value.ui64); 1340 return; 1341 } 1342 if (nvlist_lookup_string(hcl[i], FM_FMRI_HC_ID, &hcid) != 0) { 1343 atomic_inc_64( 1344 &erpt_kstat_data.fmri_set_failed.value.ui64); 1345 return; 1346 } 1347 1348 pairs[i] = fm_nvlist_create(nva); 1349 if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, hcname) != 0 || 1350 nvlist_add_string(pairs[i], FM_FMRI_HC_ID, hcid) != 0) { 1351 for (j = 0; j <= i; j++) { 1352 if (pairs[j] != NULL) 1353 fm_nvlist_destroy(pairs[j], 1354 FM_NVA_RETAIN); 1355 } 1356 atomic_inc_64( 1357 &erpt_kstat_data.fmri_set_failed.value.ui64); 1358 return; 1359 } 1360 } 1361 1362 /* 1363 * create the pairs from passed in pairs 1364 */ 1365 npairs = MIN(npairs, HC_MAXPAIRS); 1366 1367 va_start(ap, npairs); 1368 for (i = n; i < npairs + n; i++) { 1369 const char *name = va_arg(ap, const char *); 1370 uint32_t id = va_arg(ap, uint32_t); 1371 char idstr[11]; 1372 (void) snprintf(idstr, sizeof (idstr), "%u", id); 1373 pairs[i] = fm_nvlist_create(nva); 1374 if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, name) != 0 || 1375 nvlist_add_string(pairs[i], FM_FMRI_HC_ID, idstr) != 0) { 1376 for (j = 0; j <= i; j++) { 1377 if (pairs[j] != NULL) 1378 fm_nvlist_destroy(pairs[j], 1379 FM_NVA_RETAIN); 1380 } 1381 atomic_inc_64( 1382 &erpt_kstat_data.fmri_set_failed.value.ui64); 1383 return; 1384 } 1385 } 1386 va_end(ap); 1387 1388 /* 1389 * Create the fmri hc list 1390 */ 1391 if (nvlist_add_nvlist_array(fmri, FM_FMRI_HC_LIST, pairs, 1392 npairs + n) != 0) { 1393 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64); 1394 return; 1395 } 1396 1397 for (i = 0; i < npairs + n; i++) { 1398 fm_nvlist_destroy(pairs[i], FM_NVA_RETAIN); 1399 } 1400 1401 if (snvl != NULL) { 1402 if (nvlist_add_nvlist(fmri, FM_FMRI_HC_SPECIFIC, snvl) != 0) { 1403 atomic_inc_64( 1404 &erpt_kstat_data.fmri_set_failed.value.ui64); 1405 return; 1406 } 1407 } 1408 } 1409