xref: /netbsd-src/external/cddl/osnet/dist/uts/common/fs/zfs/zfs_znode.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Portions Copyright 2007 Jeremy Teo */
27 
28 #ifdef _KERNEL
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/resource.h>
35 #include <sys/mntent.h>
36 #include <sys/u8_textprep.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vfs.h>
39 #include <sys/vnode.h>
40 #include <sys/file.h>
41 #include <sys/kmem.h>
42 #include <sys/errno.h>
43 #include <sys/unistd.h>
44 #include <sys/atomic.h>
45 #include <sys/zfs_dir.h>
46 #include <sys/zfs_acl.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zfs_rlock.h>
49 #include <sys/zfs_fuid.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/kidmap.h>
52 #endif /* _KERNEL */
53 
54 #include <sys/dmu.h>
55 #include <sys/refcount.h>
56 #include <sys/stat.h>
57 #include <sys/zap.h>
58 #include <sys/zfs_znode.h>
59 
60 #include "zfs_prop.h"
61 
62 #if defined(_KERNEL) && defined(__NetBSD__)
63 #include <miscfs/specfs/specdev.h>
64 static const struct genfs_ops zfs_genfsops = {
65 	.gop_write = genfs_compat_gop_write,
66 };
67 
68 #endif
69 
70 extern int (**zfs_vnodeop_p)(void *);
71 extern int (**zfs_fifoop_p)(void *);
72 extern int (**zfs_specop_p)(void *);
73 
74 /*
75  * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
76  * turned on when DEBUG is also defined.
77  */
78 #ifdef	DEBUG
79 #define	ZNODE_STATS
80 #endif	/* DEBUG */
81 
82 #ifdef	ZNODE_STATS
83 #define	ZNODE_STAT_ADD(stat)			((stat)++)
84 #else
85 #define	ZNODE_STAT_ADD(stat)			/* nothing */
86 #endif	/* ZNODE_STATS */
87 
88 #define	POINTER_IS_VALID(p)	(!((uintptr_t)(p) & 0x3))
89 #define	POINTER_INVALIDATE(pp)	(*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1))
90 
91 /*
92  * Functions needed for userland (ie: libzpool) are not put under
93  * #ifdef_KERNEL; the rest of the functions have dependencies
94  * (such as VFS logic) that will not compile easily in userland.
95  */
96 #ifdef _KERNEL
97 /*
98  * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
99  * be freed before it can be safely accessed.
100  */
101 krwlock_t zfsvfs_lock;
102 
103 static kmem_cache_t *znode_cache = NULL;
104 
105 /*ARGSUSED*/
106 static void
107 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
108 {
109 	/*
110 	 * We should never drop all dbuf refs without first clearing
111 	 * the eviction callback.
112 	 */
113 	panic("evicting znode %p\n", user_ptr);
114 }
115 
116 /*ARGSUSED*/
117 static int
118 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
119 {
120 	znode_t *zp = arg;
121 
122 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
123 
124 	list_link_init(&zp->z_link_node);
125 
126 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
127 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
128 	rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
129 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
130 
131 	mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
132 	avl_create(&zp->z_range_avl, zfs_range_compare,
133 	    sizeof (rl_t), offsetof(rl_t, r_node));
134 
135 	zp->z_dbuf = NULL;
136 	zp->z_dirlocks = NULL;
137 	zp->z_acl_cached = NULL;
138 	return (0);
139 }
140 
141 /*ARGSUSED*/
142 static void
143 zfs_znode_cache_destructor(void *buf, void *arg)
144 {
145 	znode_t *zp = arg;
146 
147 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
148 	ASSERT(ZTOV(zp) == NULL);
149 
150 	ASSERT(!list_link_active(&zp->z_link_node));
151 	mutex_destroy(&zp->z_lock);
152 	rw_destroy(&zp->z_parent_lock);
153 	rw_destroy(&zp->z_name_lock);
154 	mutex_destroy(&zp->z_acl_lock);
155 	avl_destroy(&zp->z_range_avl);
156 	mutex_destroy(&zp->z_range_lock);
157 
158 	ASSERT(zp->z_dbuf == NULL);
159 	ASSERT(zp->z_dirlocks == NULL);
160 	ASSERT(zp->z_acl_cached == NULL);
161 }
162 
163 #ifdef	ZNODE_STATS
164 static struct {
165 	uint64_t zms_zfsvfs_invalid;
166 	uint64_t zms_zfsvfs_recheck1;
167 	uint64_t zms_zfsvfs_unmounted;
168 	uint64_t zms_zfsvfs_recheck2;
169 	uint64_t zms_obj_held;
170 	uint64_t zms_vnode_locked;
171 	uint64_t zms_not_only_dnlc;
172 } znode_move_stats;
173 #endif	/* ZNODE_STATS */
174 
175 static void
176 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
177 {
178 	vnode_t *vp;
179 
180 	/* Copy fields. */
181 	nzp->z_zfsvfs = ozp->z_zfsvfs;
182 
183 	/* Swap vnodes. */
184 	vp = nzp->z_vnode;
185 	nzp->z_vnode = ozp->z_vnode;
186 	ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
187 	ZTOV(ozp)->v_data = ozp;
188 	ZTOV(nzp)->v_data = nzp;
189 
190 	nzp->z_id = ozp->z_id;
191 	ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
192 	ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
193 	nzp->z_unlinked = ozp->z_unlinked;
194 	nzp->z_atime_dirty = ozp->z_atime_dirty;
195 	nzp->z_zn_prefetch = ozp->z_zn_prefetch;
196 	nzp->z_blksz = ozp->z_blksz;
197 	nzp->z_seq = ozp->z_seq;
198 	nzp->z_mapcnt = ozp->z_mapcnt;
199 	nzp->z_last_itx = ozp->z_last_itx;
200 	nzp->z_gen = ozp->z_gen;
201 	nzp->z_sync_cnt = ozp->z_sync_cnt;
202 	nzp->z_phys = ozp->z_phys;
203 	nzp->z_dbuf = ozp->z_dbuf;
204 
205 	/*
206 	 * Since this is just an idle znode and kmem is already dealing with
207 	 * memory pressure, release any cached ACL.
208 	 */
209 	if (ozp->z_acl_cached) {
210 		zfs_acl_free(ozp->z_acl_cached);
211 		ozp->z_acl_cached = NULL;
212 	}
213 
214 	/* Update back pointers. */
215 	(void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys,
216 	    znode_evict_error);
217 
218 	/*
219 	 * Invalidate the original znode by clearing fields that provide a
220 	 * pointer back to the znode. Set the low bit of the vfs pointer to
221 	 * ensure that zfs_znode_move() recognizes the znode as invalid in any
222 	 * subsequent callback.
223 	 */
224 	ozp->z_dbuf = NULL;
225 	POINTER_INVALIDATE(&ozp->z_zfsvfs);
226 }
227 
228 #ifndef __NetBSD__
229 /*ARGSUSED*/
230 static kmem_cbrc_t
231 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
232 {
233 	znode_t *ozp = buf, *nzp = newbuf;
234 	zfsvfs_t *zfsvfs;
235 	vnode_t *vp;
236 
237 	/*
238 	 * The znode is on the file system's list of known znodes if the vfs
239 	 * pointer is valid. We set the low bit of the vfs pointer when freeing
240 	 * the znode to invalidate it, and the memory patterns written by kmem
241 	 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
242 	 * created znode sets the vfs pointer last of all to indicate that the
243 	 * znode is known and in a valid state to be moved by this function.
244 	 */
245 	zfsvfs = ozp->z_zfsvfs;
246 	if (!POINTER_IS_VALID(zfsvfs)) {
247 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
248 		return (KMEM_CBRC_DONT_KNOW);
249 	}
250 
251 	/*
252 	 * Close a small window in which it's possible that the filesystem could
253 	 * be unmounted and freed, and zfsvfs, though valid in the previous
254 	 * statement, could point to unrelated memory by the time we try to
255 	 * prevent the filesystem from being unmounted.
256 	 */
257 	rw_enter(&zfsvfs_lock, RW_WRITER);
258 	if (zfsvfs != ozp->z_zfsvfs) {
259 		rw_exit(&zfsvfs_lock);
260 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
261 		return (KMEM_CBRC_DONT_KNOW);
262 	}
263 
264 	/*
265 	 * If the znode is still valid, then so is the file system. We know that
266 	 * no valid file system can be freed while we hold zfsvfs_lock, so we
267 	 * can safely ensure that the filesystem is not and will not be
268 	 * unmounted. The next statement is equivalent to ZFS_ENTER().
269 	 */
270 	rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
271 	if (zfsvfs->z_unmounted) {
272 		ZFS_EXIT(zfsvfs);
273 		rw_exit(&zfsvfs_lock);
274 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
275 		return (KMEM_CBRC_DONT_KNOW);
276 	}
277 	rw_exit(&zfsvfs_lock);
278 
279 	mutex_enter(&zfsvfs->z_znodes_lock);
280 	/*
281 	 * Recheck the vfs pointer in case the znode was removed just before
282 	 * acquiring the lock.
283 	 */
284 	if (zfsvfs != ozp->z_zfsvfs) {
285 		mutex_exit(&zfsvfs->z_znodes_lock);
286 		ZFS_EXIT(zfsvfs);
287 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
288 		return (KMEM_CBRC_DONT_KNOW);
289 	}
290 
291 	/*
292 	 * At this point we know that as long as we hold z_znodes_lock, the
293 	 * znode cannot be freed and fields within the znode can be safely
294 	 * accessed. Now, prevent a race with zfs_zget().
295 	 */
296 	if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
297 		mutex_exit(&zfsvfs->z_znodes_lock);
298 		ZFS_EXIT(zfsvfs);
299 		ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
300 		return (KMEM_CBRC_LATER);
301 	}
302 
303 	vp = ZTOV(ozp);
304 	if (mutex_tryenter(&vp->v_lock) == 0) {
305 		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
306 		mutex_exit(&zfsvfs->z_znodes_lock);
307 		ZFS_EXIT(zfsvfs);
308 		ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
309 		return (KMEM_CBRC_LATER);
310 	}
311 
312 	/* Only move znodes that are referenced _only_ by the DNLC. */
313 	if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
314 		mutex_exit(&vp->v_lock);
315 		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
316 		mutex_exit(&zfsvfs->z_znodes_lock);
317 		ZFS_EXIT(zfsvfs);
318 		ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
319 		return (KMEM_CBRC_LATER);
320 	}
321 
322 	/*
323 	 * The znode is known and in a valid state to move. We're holding the
324 	 * locks needed to execute the critical section.
325 	 */
326 	zfs_znode_move_impl(ozp, nzp);
327 	mutex_exit(&vp->v_lock);
328 	ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
329 
330 	list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
331 	mutex_exit(&zfsvfs->z_znodes_lock);
332 	ZFS_EXIT(zfsvfs);
333 
334 	return (KMEM_CBRC_YES);
335 }
336 #endif	/* !__NetBSD__ */
337 
338 void
339 zfs_znode_init(void)
340 {
341 	/*
342 	 * Initialize zcache
343 	 */
344 	rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
345 	ASSERT(znode_cache == NULL);
346 	znode_cache = kmem_cache_create("zfs_znode_cache",
347 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
348 	    zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
349 }
350 
351 void
352 zfs_znode_fini(void)
353 {
354 
355 	/*
356 	 * Cleanup zcache
357 	 */
358 	if (znode_cache)
359 		kmem_cache_destroy(znode_cache);
360 	znode_cache = NULL;
361 	rw_destroy(&zfsvfs_lock);
362 }
363 
364 #ifndef __NetBSD__
365 struct vnodeops *zfs_dvnodeops;
366 struct vnodeops *zfs_fvnodeops;
367 struct vnodeops *zfs_symvnodeops;
368 struct vnodeops *zfs_xdvnodeops;
369 struct vnodeops *zfs_evnodeops;
370 struct vnodeops *zfs_sharevnodeops;
371 #endif
372 
373 void
374 zfs_remove_op_tables()
375 {
376 #ifndef __NetBSD__
377 	/*
378 	 * Remove vfs ops
379 	 */
380 	ASSERT(zfsfstype);
381 	(void) vfs_freevfsops_by_type(zfsfstype);
382 	zfsfstype = 0;
383 
384 	/*
385 	 * Remove vnode ops
386 	 */
387 	if (zfs_dvnodeops)
388 		vn_freevnodeops(zfs_dvnodeops);
389 	if (zfs_fvnodeops)
390 		vn_freevnodeops(zfs_fvnodeops);
391 	if (zfs_symvnodeops)
392 		vn_freevnodeops(zfs_symvnodeops);
393 	if (zfs_xdvnodeops)
394 		vn_freevnodeops(zfs_xdvnodeops);
395 	if (zfs_evnodeops)
396 		vn_freevnodeops(zfs_evnodeops);
397 	if (zfs_sharevnodeops)
398 		vn_freevnodeops(zfs_sharevnodeops);
399 
400 	zfs_dvnodeops = NULL;
401 	zfs_fvnodeops = NULL;
402 	zfs_symvnodeops = NULL;
403 	zfs_xdvnodeops = NULL;
404 	zfs_evnodeops = NULL;
405 	zfs_sharevnodeops = NULL;
406 #endif
407 }
408 
409 #ifndef __NetBSD__
410 extern const fs_operation_def_t zfs_dvnodeops_template[];
411 extern const fs_operation_def_t zfs_fvnodeops_template[];
412 extern const fs_operation_def_t zfs_xdvnodeops_template[];
413 extern const fs_operation_def_t zfs_symvnodeops_template[];
414 extern const fs_operation_def_t zfs_evnodeops_template[];
415 extern const fs_operation_def_t zfs_sharevnodeops_template[];
416 #endif
417 
418 int
419 zfs_create_op_tables()
420 {
421 #ifndef __NetBSD__
422 	int error;
423 
424 	/*
425 	 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
426 	 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
427 	 * In this case we just return as the ops vectors are already set up.
428 	 */
429 	if (zfs_dvnodeops)
430 		return (0);
431 
432 	error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
433 	    &zfs_dvnodeops);
434 	if (error)
435 		return (error);
436 
437 	error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
438 	    &zfs_fvnodeops);
439 	if (error)
440 		return (error);
441 
442 	error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
443 	    &zfs_symvnodeops);
444 	if (error)
445 		return (error);
446 
447 	error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
448 	    &zfs_xdvnodeops);
449 	if (error)
450 		return (error);
451 
452 	error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
453 	    &zfs_evnodeops);
454 	if (error)
455 		return (error);
456 
457 	error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template,
458 	    &zfs_sharevnodeops);
459 
460 	return (error);
461 #endif
462 	return 0;
463 }
464 
465 int
466 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
467 {
468 	zfs_acl_ids_t acl_ids;
469 	vattr_t vattr;
470 	znode_t *sharezp;
471 	vnode_t *vp;
472 	znode_t *zp;
473 	int error;
474 
475 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
476 	vattr.va_type = VDIR;
477 	vattr.va_mode = S_IFDIR|0555;
478 	vattr.va_uid = crgetuid(kcred);
479 	vattr.va_gid = crgetgid(kcred);
480 
481 	sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
482 	sharezp->z_unlinked = 0;
483 	sharezp->z_atime_dirty = 0;
484 	sharezp->z_zfsvfs = zfsvfs;
485 
486 	vp = ZTOV(sharezp);
487 	error = getnewvnode(VT_ZFS, zfsvfs->z_parent->z_vfs,
488 	    zfs_vnodeop_p, NULL, &sharezp->z_vnode);
489 	if (error) {
490 		kmem_cache_free(znode_cache, sharezp);
491 		return error;
492 	}
493 	vp->v_type = VDIR;
494 
495 	VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
496 	    kcred, NULL, &acl_ids));
497 	zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE,
498 	    &zp, 0, &acl_ids);
499 	ASSERT3P(zp, ==, sharezp);
500 #ifndef __NetBSD__
501 	ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
502 #endif
503 	POINTER_INVALIDATE(&sharezp->z_zfsvfs);
504 	error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
505 	    ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
506 	zfsvfs->z_shares_dir = sharezp->z_id;
507 
508 	zfs_acl_ids_free(&acl_ids);
509 	ZTOV(sharezp)->v_count = 0;
510 	dmu_buf_rele(sharezp->z_dbuf, NULL);
511 	sharezp->z_dbuf = NULL;
512 	kmem_cache_free(znode_cache, sharezp);
513 
514 	return (error);
515 }
516 
517 /*
518  * define a couple of values we need available
519  * for both 64 and 32 bit environments.
520  */
521 #ifndef NBITSMINOR64
522 #define	NBITSMINOR64	32
523 #endif
524 #ifndef MAXMAJ64
525 #define	MAXMAJ64	0xffffffffUL
526 #endif
527 #ifndef	MAXMIN64
528 #define	MAXMIN64	0xffffffffUL
529 #endif
530 
531 /*
532  * Create special expldev for ZFS private use.
533  * Can't use standard expldev since it doesn't do
534  * what we want.  The standard expldev() takes a
535  * dev32_t in LP64 and expands it to a long dev_t.
536  * We need an interface that takes a dev32_t in ILP32
537  * and expands it to a long dev_t.
538  */
539 static uint64_t
540 zfs_expldev(dev_t dev)
541 {
542 	return ((uint64_t)major(dev) << NBITSMINOR64) |
543 	    (minor_t)minor(dev);
544 }
545 
546 /*
547  * Special cmpldev for ZFS private use.
548  * Can't use standard cmpldev since it takes
549  * a long dev_t and compresses it to dev32_t in
550  * LP64.  We need to do a compaction of a long dev_t
551  * to a dev32_t in ILP32.
552  */
553 dev_t
554 zfs_cmpldev(uint64_t dev)
555 {
556 	minor_t minor = (minor_t)dev & MAXMIN64;
557 	major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
558 
559 	return makedev(minor, major);
560 }
561 
562 static void
563 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db)
564 {
565 	znode_t		*nzp;
566 
567 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
568 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
569 
570 	mutex_enter(&zp->z_lock);
571 
572 	ASSERT(zp->z_dbuf == NULL);
573 	ASSERT(zp->z_acl_cached == NULL);
574 	zp->z_dbuf = db;
575 	nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error);
576 
577 	/*
578 	 * there should be no
579 	 * concurrent zgets on this object.
580 	 */
581 	if (nzp != NULL)
582 		panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db);
583 
584 	/*
585 	 * Slap on VROOT if we are the root znode
586 	 */
587 	if (zp->z_id == zfsvfs->z_root)
588 		ZTOV(zp)->v_flag |= VROOT;
589 
590 	mutex_exit(&zp->z_lock);
591 	vn_exists(ZTOV(zp));
592 }
593 
594 void
595 zfs_znode_dmu_fini(znode_t *zp)
596 {
597 	dmu_buf_t *db = zp->z_dbuf;
598 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
599 	    zp->z_unlinked ||
600 	    RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
601 	ASSERT(zp->z_dbuf != NULL);
602 	zp->z_dbuf = NULL;
603 	VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL));
604 	dmu_buf_rele(db, NULL);
605 }
606 
607 /*
608  * Construct a new znode/vnode and intialize.
609  *
610  * This does not do a call to dmu_set_user() that is
611  * up to the caller to do, in case you don't want to
612  * return the znode
613  */
614 
615 static znode_t *
616 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz)
617 {
618 	znode_t	*zp;
619 	vnode_t *vp;
620 	int error;
621 
622 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
623 
624 	for (;;) {
625 		error = getnewvnode(VT_ZFS, zfsvfs->z_parent->z_vfs,
626 		    zfs_vnodeop_p, NULL, &zp->z_vnode);
627 		if (__predict_true(error == 0))
628 			break;
629 		printf("WARNING: zfs_znode_alloc: unable to get vnode, "
630 		    "error=%d\n", error);
631 		(void)kpause("zfsnewvn", false, hz, NULL);
632 	}
633 
634 	ASSERT(zp->z_dirlocks == NULL);
635 	ASSERT(zp->z_dbuf == NULL);
636 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
637 
638 	/*
639 	 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
640 	 * the zfs_znode_move() callback.
641 	 */
642 	zp->z_phys = NULL;
643 	zp->z_unlinked = 0;
644 	zp->z_atime_dirty = 0;
645 	zp->z_mapcnt = 0;
646 	zp->z_last_itx = 0;
647 	zp->z_id = db->db_object;
648 	zp->z_blksz = blksz;
649 	zp->z_seq = 0x7A4653;
650 	zp->z_sync_cnt = 0;
651 
652 	vp = ZTOV(zp);
653 
654 	zfs_znode_dmu_init(zfsvfs, zp, db);
655 
656 	zp->z_gen = zp->z_phys->zp_gen;
657 
658 	vp->v_vfsp = zfsvfs->z_parent->z_vfs;
659 	vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
660 	vp->v_data = zp;
661 	genfs_node_init(vp, &zfs_genfsops);
662 	switch (vp->v_type) {
663 	case VDIR:
664 		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
665 		break;
666 	case VBLK:
667 	case VCHR:
668 	/* XXX NetBSD	vp->v_op = zfs_specop_p; */
669 		spec_node_init(vp, zfs_cmpldev(zp->z_phys->zp_rdev));
670 		break;
671 	case VFIFO:
672 		/* XXX NetBSD vp->v_op = zfs_fifoop_p; */
673 		break;
674 	}
675 
676 	dprintf("zfs_znode_alloc znode %p -- vnode %p\n", zp, vp);
677 	dprintf("zfs_znode_alloc z_id %ld\n", zp->z_id);
678 	//cpu_Debugger();
679 
680 	uvm_vnp_setsize(vp, zp->z_phys->zp_size);
681 
682 	mutex_enter(&zfsvfs->z_znodes_lock);
683 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
684 	membar_producer();
685 	/*
686 	 * Everything else must be valid before assigning z_zfsvfs makes the
687 	 * znode eligible for zfs_znode_move().
688 	 */
689 	zp->z_zfsvfs = zfsvfs;
690 	mutex_exit(&zfsvfs->z_znodes_lock);
691 
692 	VFS_HOLD(zfsvfs->z_vfs);
693 	return (zp);
694 }
695 
696 /*
697  * Create a new DMU object to hold a zfs znode.
698  *
699  *	IN:	dzp	- parent directory for new znode
700  *		vap	- file attributes for new znode
701  *		tx	- dmu transaction id for zap operations
702  *		cr	- credentials of caller
703  *		flag	- flags:
704  *			  IS_ROOT_NODE	- new object will be root
705  *			  IS_XATTR	- new object is an attribute
706  *		bonuslen - length of bonus buffer
707  *		setaclp  - File/Dir initial ACL
708  *		fuidp	 - Tracks fuid allocation.
709  *
710  *	OUT:	zpp	- allocated znode
711  *
712  */
713 void
714 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
715     uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_ids_t *acl_ids)
716 {
717 	dmu_buf_t	*db;
718 	znode_phys_t	*pzp;
719 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
720 	timestruc_t	now;
721 	uint64_t	gen, obj;
722 	int		err;
723 
724 	ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
725 
726 	if (zfsvfs->z_replay) {
727 		obj = vap->va_nodeid;
728 		now = vap->va_ctime;		/* see zfs_replay_create() */
729 		gen = vap->va_nblocks;		/* ditto */
730 	} else {
731 		obj = 0;
732 		gethrestime(&now);
733 		gen = dmu_tx_get_txg(tx);
734 	}
735 
736 	/*
737 	 * Create a new DMU object.
738 	 */
739 	/*
740 	 * There's currently no mechanism for pre-reading the blocks that will
741 	 * be to needed allocate a new object, so we accept the small chance
742 	 * that there will be an i/o error and we will fail one of the
743 	 * assertions below.
744 	 */
745 	if (vap->va_type == VDIR) {
746 		if (zfsvfs->z_replay) {
747 			err = zap_create_claim_norm(zfsvfs->z_os, obj,
748 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
749 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
750 			ASSERT3U(err, ==, 0);
751 		} else {
752 			obj = zap_create_norm(zfsvfs->z_os,
753 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
754 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
755 		}
756 	} else {
757 		if (zfsvfs->z_replay) {
758 			err = dmu_object_claim(zfsvfs->z_os, obj,
759 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
760 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
761 			ASSERT3U(err, ==, 0);
762 		} else {
763 			obj = dmu_object_alloc(zfsvfs->z_os,
764 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
765 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
766 		}
767 	}
768 
769 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
770 	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db));
771 	dmu_buf_will_dirty(db, tx);
772 
773 	/*
774 	 * Initialize the znode physical data to zero.
775 	 */
776 	ASSERT(db->db_size >= sizeof (znode_phys_t));
777 	bzero(db->db_data, db->db_size);
778 	pzp = db->db_data;
779 
780 	/*
781 	 * If this is the root, fix up the half-initialized parent pointer
782 	 * to reference the just-allocated physical data area.
783 	 */
784 	if (flag & IS_ROOT_NODE) {
785 		dzp->z_dbuf = db;
786 		dzp->z_phys = pzp;
787 		dzp->z_id = obj;
788 	}
789 
790 	/*
791 	 * If parent is an xattr, so am I.
792 	 */
793 	if (dzp->z_phys->zp_flags & ZFS_XATTR)
794 		flag |= IS_XATTR;
795 
796 	if (vap->va_type == VBLK || vap->va_type == VCHR) {
797 		pzp->zp_rdev = zfs_expldev(vap->va_rdev);
798 	}
799 
800 	if (zfsvfs->z_use_fuids)
801 		pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
802 
803 	if (vap->va_type == VDIR) {
804 		pzp->zp_size = 2;		/* contents ("." and "..") */
805 		pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
806 	}
807 
808 	pzp->zp_parent = dzp->z_id;
809 	if (flag & IS_XATTR)
810 		pzp->zp_flags |= ZFS_XATTR;
811 
812 	pzp->zp_gen = gen;
813 
814 	ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
815 	ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
816 
817 	if (vap->va_mask & AT_ATIME) {
818 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
819 	} else {
820 		ZFS_TIME_ENCODE(&now, pzp->zp_atime);
821 	}
822 
823 	if (vap->va_mask & AT_MTIME) {
824 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
825 	} else {
826 		ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
827 	}
828 	pzp->zp_uid = acl_ids->z_fuid;
829 	pzp->zp_gid = acl_ids->z_fgid;
830 	pzp->zp_mode = acl_ids->z_mode;
831 	if (!(flag & IS_ROOT_NODE)) {
832 		*zpp = zfs_znode_alloc(zfsvfs, db, 0);
833 	} else {
834 		/*
835 		 * If we are creating the root node, the "parent" we
836 		 * passed in is the znode for the root.
837 		 */
838 		*zpp = dzp;
839 	}
840 	VERIFY(0 == zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
841 	if (vap->va_mask & AT_XVATTR)
842 		zfs_xvattr_set(*zpp, (xvattr_t *)vap);
843 
844 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
845 }
846 
847 void
848 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap)
849 {
850 	xoptattr_t *xoap;
851 
852 	xoap = xva_getxoptattr(xvap);
853 	ASSERT(xoap);
854 
855 	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
856 		ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime);
857 		XVA_SET_RTN(xvap, XAT_CREATETIME);
858 	}
859 	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
860 		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly);
861 		XVA_SET_RTN(xvap, XAT_READONLY);
862 	}
863 	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
864 		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden);
865 		XVA_SET_RTN(xvap, XAT_HIDDEN);
866 	}
867 	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
868 		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system);
869 		XVA_SET_RTN(xvap, XAT_SYSTEM);
870 	}
871 	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
872 		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive);
873 		XVA_SET_RTN(xvap, XAT_ARCHIVE);
874 	}
875 	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
876 		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable);
877 		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
878 	}
879 	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
880 		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink);
881 		XVA_SET_RTN(xvap, XAT_NOUNLINK);
882 	}
883 	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
884 		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly);
885 		XVA_SET_RTN(xvap, XAT_APPENDONLY);
886 	}
887 	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
888 		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump);
889 		XVA_SET_RTN(xvap, XAT_NODUMP);
890 	}
891 	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
892 		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque);
893 		XVA_SET_RTN(xvap, XAT_OPAQUE);
894 	}
895 	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
896 		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
897 		    xoap->xoa_av_quarantined);
898 		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
899 	}
900 	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
901 		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified);
902 		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
903 	}
904 	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
905 		(void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp,
906 		    sizeof (xoap->xoa_av_scanstamp));
907 		zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP;
908 		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
909 	}
910 	if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
911 		ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse);
912 		XVA_SET_RTN(xvap, XAT_REPARSE);
913 	}
914 }
915 
916 int
917 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
918 {
919 	dmu_object_info_t doi;
920 	dmu_buf_t   *db;
921 	znode_t     *zp;
922 	vnode_t     *vp;
923 	int err, first = 1;
924 
925 	*zpp = NULL;
926 again:
927 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
928 
929 	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
930 	if (err) {
931 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
932 		return (err);
933 	}
934 
935 	dmu_object_info_from_db(db, &doi);
936 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
937 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
938 		dmu_buf_rele(db, NULL);
939 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
940 		return (EINVAL);
941 	}
942 
943 	zp = dmu_buf_get_user(db);
944 	if (zp != NULL) {
945 		mutex_enter(&zp->z_lock);
946 
947 		/*
948 		 * Since we do immediate eviction of the z_dbuf, we
949 		 * should never find a dbuf with a znode that doesn't
950 		 * know about the dbuf.
951 		 */
952 		ASSERT3P(zp->z_dbuf, ==, db);
953 		ASSERT3U(zp->z_id, ==, obj_num);
954 		if (zp->z_unlinked) {
955 			err = ENOENT;
956 		} else {
957 			if ((vp = ZTOV(zp)) != NULL) {
958 				mutex_enter(vp->v_interlock);
959 				mutex_exit(&zp->z_lock);
960 				if (vget(vp, 0) != 0) {
961 					dmu_buf_rele(db, NULL);
962 					mutex_exit(vp->v_interlock);
963 					goto again;
964 				}
965 				mutex_enter(&zp->z_lock);
966 			} else {
967 				if (first) {
968 					ZFS_LOG(1, "dying znode detected (zp=%p)", zp);
969 					first = 0;
970 				}
971 				/*
972 				 * znode is dying so we can't reuse it, we must
973 				 * wait until destruction is completed.
974 				 */
975 				dmu_buf_rele(db, NULL);
976 				mutex_exit(&zp->z_lock);
977 				ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
978 				kpause("zcollide", 0, 1, NULL);
979 				goto again;
980 			}
981 			*zpp = zp;
982 			err = 0;
983 		}
984 
985 		dmu_buf_rele(db, NULL);
986 		mutex_exit(&zp->z_lock);
987 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
988 		return (err);
989 	}
990 
991 	/*
992 	 * Not found create new znode/vnode
993 	 * but only if file exists.
994 	 *
995 	 * There is a small window where zfs_vget() could
996 	 * find this object while a file create is still in
997 	 * progress.  Since a gen number can never be zero
998 	 * we will check that to determine if its an allocated
999 	 * file.
1000 	 */
1001 
1002 	if (((znode_phys_t *)db->db_data)->zp_gen != 0) {
1003 		zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size);
1004 		*zpp = zp;
1005 		err = 0;
1006 	} else {
1007 		dmu_buf_rele(db, NULL);
1008 		err = ENOENT;
1009 	}
1010 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1011 	return (err);
1012 }
1013 
1014 int
1015 zfs_rezget(znode_t *zp)
1016 {
1017 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1018 	dmu_object_info_t doi;
1019 	dmu_buf_t *db;
1020 	uint64_t obj_num = zp->z_id;
1021 	int err;
1022 
1023 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1024 
1025 	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
1026 	if (err) {
1027 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1028 		return (err);
1029 	}
1030 
1031 	dmu_object_info_from_db(db, &doi);
1032 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
1033 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
1034 		dmu_buf_rele(db, NULL);
1035 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1036 		return (EINVAL);
1037 	}
1038 
1039 	if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) {
1040 		dmu_buf_rele(db, NULL);
1041 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1042 		return (EIO);
1043 	}
1044 
1045 	mutex_enter(&zp->z_acl_lock);
1046 	if (zp->z_acl_cached) {
1047 		zfs_acl_free(zp->z_acl_cached);
1048 		zp->z_acl_cached = NULL;
1049 	}
1050 	mutex_exit(&zp->z_acl_lock);
1051 
1052 	zfs_znode_dmu_init(zfsvfs, zp, db);
1053 	zp->z_unlinked = (zp->z_phys->zp_links == 0);
1054 	zp->z_blksz = doi.doi_data_block_size;
1055 
1056 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1057 
1058 	return (0);
1059 }
1060 
1061 void
1062 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1063 {
1064 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1065 	objset_t *os = zfsvfs->z_os;
1066 	uint64_t obj = zp->z_id;
1067 	uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj;
1068 
1069 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1070 	if (acl_obj)
1071 		VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1072 	VERIFY(0 == dmu_object_free(os, obj, tx));
1073 	zfs_znode_dmu_fini(zp);
1074 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1075 	zfs_znode_free(zp);
1076 }
1077 
1078 void
1079 zfs_zinactive(znode_t *zp)
1080 {
1081 	vnode_t	*vp = ZTOV(zp);
1082 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1083 	uint64_t z_id = zp->z_id;
1084 
1085 	ASSERT(zp->z_dbuf && zp->z_phys);
1086 
1087 	/*
1088 	 * Don't allow a zfs_zget() while were trying to release this znode
1089 	 */
1090 	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1091 
1092 	mutex_enter(&zp->z_lock);
1093 	/*
1094 	 * If this was the last reference to a file with no links,
1095 	 * remove the file from the file system.
1096 	 */
1097 	if (zp->z_unlinked) {
1098 		mutex_exit(&zp->z_lock);
1099 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1100 		zfs_rmnode(zp);
1101 		return;
1102 	}
1103 
1104 	mutex_exit(&zp->z_lock);
1105 	zfs_znode_dmu_fini(zp);
1106 	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1107 	zfs_znode_free(zp);
1108 }
1109 
1110 void
1111 zfs_znode_free(znode_t *zp)
1112 {
1113 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1114 	struct vnode *vp = ZTOV(zp);
1115 
1116 	/* XXX Not all callers are from VOP_RECLAIM.  What to do?  */
1117 	KASSERT(vp != NULL);
1118 	mutex_enter(vp->v_interlock); /* XXX Necessary?  */
1119 	genfs_node_destroy(vp);
1120 	vp->v_data = NULL;
1121 	mutex_exit(vp->v_interlock);
1122 
1123 	dprintf("destroying znode %p\n", zp);
1124 	//cpu_Debugger();
1125 	mutex_enter(&zfsvfs->z_znodes_lock);
1126 	POINTER_INVALIDATE(&zp->z_zfsvfs);
1127 	list_remove(&zfsvfs->z_all_znodes, zp);
1128 	mutex_exit(&zfsvfs->z_znodes_lock);
1129 
1130 	if (zp->z_acl_cached) {
1131 		zfs_acl_free(zp->z_acl_cached);
1132 		zp->z_acl_cached = NULL;
1133 	}
1134 
1135 	kmem_cache_free(znode_cache, zp);
1136 
1137 	VFS_RELE(zfsvfs->z_vfs);
1138 }
1139 
1140 void
1141 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1142 {
1143 	timestruc_t	now;
1144 
1145 	ASSERT(MUTEX_HELD(&zp->z_lock));
1146 
1147 	gethrestime(&now);
1148 
1149 	if (tx) {
1150 		dmu_buf_will_dirty(zp->z_dbuf, tx);
1151 		zp->z_atime_dirty = 0;
1152 		zp->z_seq++;
1153 	} else {
1154 		zp->z_atime_dirty = 1;
1155 	}
1156 
1157 	if (flag & AT_ATIME)
1158 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
1159 
1160 	if (flag & AT_MTIME) {
1161 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
1162 		if (zp->z_zfsvfs->z_use_fuids)
1163 			zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED);
1164 	}
1165 
1166 	if (flag & AT_CTIME) {
1167 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
1168 		if (zp->z_zfsvfs->z_use_fuids)
1169 			zp->z_phys->zp_flags |= ZFS_ARCHIVE;
1170 	}
1171 }
1172 
1173 /*
1174  * Update the requested znode timestamps with the current time.
1175  * If we are in a transaction, then go ahead and mark the znode
1176  * dirty in the transaction so the timestamps will go to disk.
1177  * Otherwise, we will get pushed next time the znode is updated
1178  * in a transaction, or when this znode eventually goes inactive.
1179  *
1180  * Why is this OK?
1181  *  1 - Only the ACCESS time is ever updated outside of a transaction.
1182  *  2 - Multiple consecutive updates will be collapsed into a single
1183  *	znode update by the transaction grouping semantics of the DMU.
1184  */
1185 void
1186 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1187 {
1188 	mutex_enter(&zp->z_lock);
1189 	zfs_time_stamper_locked(zp, flag, tx);
1190 	mutex_exit(&zp->z_lock);
1191 }
1192 
1193 /*
1194  * Grow the block size for a file.
1195  *
1196  *	IN:	zp	- znode of file to free data in.
1197  *		size	- requested block size
1198  *		tx	- open transaction.
1199  *
1200  * NOTE: this function assumes that the znode is write locked.
1201  */
1202 void
1203 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1204 {
1205 	int		error;
1206 	u_longlong_t	dummy;
1207 
1208 	if (size <= zp->z_blksz)
1209 		return;
1210 	/*
1211 	 * If the file size is already greater than the current blocksize,
1212 	 * we will not grow.  If there is more than one block in a file,
1213 	 * the blocksize cannot change.
1214 	 */
1215 	if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
1216 		return;
1217 
1218 	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1219 	    size, 0, tx);
1220 	if (error == ENOTSUP)
1221 		return;
1222 	ASSERT3U(error, ==, 0);
1223 
1224 	/* What blocksize did we actually get? */
1225 	dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
1226 }
1227 
1228 /*
1229  * Increase the file length
1230  *
1231  *	IN:	zp	- znode of file to free data in.
1232  *		end	- new end-of-file
1233  *
1234  * 	RETURN:	0 if success
1235  *		error code if failure
1236  */
1237 static int
1238 zfs_extend(znode_t *zp, uint64_t end)
1239 {
1240 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1241 	dmu_tx_t *tx;
1242 	rl_t *rl;
1243 	uint64_t newblksz;
1244 	int error;
1245 
1246 	/*
1247 	 * We will change zp_size, lock the whole file.
1248 	 */
1249 	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1250 
1251 	/*
1252 	 * Nothing to do if file already at desired length.
1253 	 */
1254 	if (end <= zp->z_phys->zp_size) {
1255 		zfs_range_unlock(rl);
1256 		return (0);
1257 	}
1258 top:
1259 	tx = dmu_tx_create(zfsvfs->z_os);
1260 	dmu_tx_hold_bonus(tx, zp->z_id);
1261 	if (end > zp->z_blksz &&
1262 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1263 		/*
1264 		 * We are growing the file past the current block size.
1265 		 */
1266 		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1267 			ASSERT(!ISP2(zp->z_blksz));
1268 			newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1269 		} else {
1270 			newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1271 		}
1272 		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1273 	} else {
1274 		newblksz = 0;
1275 	}
1276 
1277 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1278 	if (error) {
1279 		if (error == ERESTART) {
1280 			dmu_tx_wait(tx);
1281 			dmu_tx_abort(tx);
1282 			goto top;
1283 		}
1284 		dmu_tx_abort(tx);
1285 		zfs_range_unlock(rl);
1286 		return (error);
1287 	}
1288 	dmu_buf_will_dirty(zp->z_dbuf, tx);
1289 
1290 	if (newblksz)
1291 		zfs_grow_blocksize(zp, newblksz, tx);
1292 
1293 	zp->z_phys->zp_size = end;
1294 
1295 	zfs_range_unlock(rl);
1296 
1297 	dmu_tx_commit(tx);
1298 
1299 	uvm_vnp_setsize(ZTOV(zp), end);
1300 
1301 	return (0);
1302 }
1303 
1304 /*
1305  * Free space in a file.
1306  *
1307  *	IN:	zp	- znode of file to free data in.
1308  *		off	- start of section to free.
1309  *		len	- length of section to free.
1310  *
1311  * 	RETURN:	0 if success
1312  *		error code if failure
1313  */
1314 static int
1315 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1316 {
1317 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1318 	rl_t *rl;
1319 	int error;
1320 
1321 	/*
1322 	 * Lock the range being freed.
1323 	 */
1324 	rl = zfs_range_lock(zp, off, len, RL_WRITER);
1325 
1326 	/*
1327 	 * Nothing to do if file already at desired length.
1328 	 */
1329 	if (off >= zp->z_phys->zp_size) {
1330 		zfs_range_unlock(rl);
1331 		return (0);
1332 	}
1333 
1334 	if (off + len > zp->z_phys->zp_size)
1335 		len = zp->z_phys->zp_size - off;
1336 
1337 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1338 
1339 	if (error == 0) {
1340 		/*
1341 		 * In NetBSD we cannot free block in the middle of a file,
1342 		 * but only at the end of a file.
1343 		 */
1344 		uvm_vnp_setsize(ZTOV(zp), off);
1345 	}
1346 
1347 	zfs_range_unlock(rl);
1348 
1349 	return (error);
1350 }
1351 
1352 /*
1353  * Truncate a file
1354  *
1355  *	IN:	zp	- znode of file to free data in.
1356  *		end	- new end-of-file.
1357  *
1358  * 	RETURN:	0 if success
1359  *		error code if failure
1360  */
1361 static int
1362 zfs_trunc(znode_t *zp, uint64_t end)
1363 {
1364 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1365 	vnode_t *vp = ZTOV(zp);
1366 	dmu_tx_t *tx;
1367 	rl_t *rl;
1368 	int error;
1369 
1370 	/*
1371 	 * We will change zp_size, lock the whole file.
1372 	 */
1373 	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1374 
1375 	/*
1376 	 * Nothing to do if file already at desired length.
1377 	 */
1378 	if (end >= zp->z_phys->zp_size) {
1379 		zfs_range_unlock(rl);
1380 		return (0);
1381 	}
1382 
1383 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,  -1);
1384 	if (error) {
1385 		zfs_range_unlock(rl);
1386 		return (error);
1387 	}
1388 top:
1389 	tx = dmu_tx_create(zfsvfs->z_os);
1390 	dmu_tx_hold_bonus(tx, zp->z_id);
1391 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1392 	if (error) {
1393 		if (error == ERESTART) {
1394 			dmu_tx_wait(tx);
1395 			dmu_tx_abort(tx);
1396 			goto top;
1397 		}
1398 		dmu_tx_abort(tx);
1399 		zfs_range_unlock(rl);
1400 		return (error);
1401 	}
1402 	dmu_buf_will_dirty(zp->z_dbuf, tx);
1403 
1404 	zp->z_phys->zp_size = end;
1405 
1406 	dmu_tx_commit(tx);
1407 
1408 	zfs_range_unlock(rl);
1409 
1410 	/*
1411 	 * Clear any mapped pages in the truncated region.  This has to
1412 	 * happen outside of the transaction to avoid the possibility of
1413 	 * a deadlock with someone trying to push a page that we are
1414 	 * about to invalidate.
1415 	 */
1416 
1417 	uvm_vnp_setsize(vp, end);
1418 
1419 	return (0);
1420 }
1421 
1422 /*
1423  * Free space in a file
1424  *
1425  *	IN:	zp	- znode of file to free data in.
1426  *		off	- start of range
1427  *		len	- end of range (0 => EOF)
1428  *		flag	- current file open mode flags.
1429  *		log	- TRUE if this action should be logged
1430  *
1431  * 	RETURN:	0 if success
1432  *		error code if failure
1433  */
1434 int
1435 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1436 {
1437 	vnode_t *vp = ZTOV(zp);
1438 	dmu_tx_t *tx;
1439 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1440 	zilog_t *zilog = zfsvfs->z_log;
1441 	int error;
1442 
1443 	if (off > zp->z_phys->zp_size) {
1444 		error =  zfs_extend(zp, off+len);
1445 		if (error == 0 && log)
1446 			goto log;
1447 		else
1448 			return (error);
1449 	}
1450 
1451 	if (len == 0) {
1452 		error = zfs_trunc(zp, off);
1453 	} else {
1454 		if ((error = zfs_free_range(zp, off, len)) == 0 &&
1455 		    off + len > zp->z_phys->zp_size)
1456 			error = zfs_extend(zp, off+len);
1457 	}
1458 	if (error || !log)
1459 		return (error);
1460 log:
1461 	tx = dmu_tx_create(zfsvfs->z_os);
1462 	dmu_tx_hold_bonus(tx, zp->z_id);
1463 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1464 	if (error) {
1465 		if (error == ERESTART) {
1466 			dmu_tx_wait(tx);
1467 			dmu_tx_abort(tx);
1468 			goto log;
1469 		}
1470 		dmu_tx_abort(tx);
1471 		return (error);
1472 	}
1473 
1474 	zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
1475 	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1476 
1477 	dmu_tx_commit(tx);
1478 	return (0);
1479 }
1480 
1481 void
1482 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1483 {
1484 	zfsvfs_t	zfsvfs;
1485 	uint64_t	moid, obj, version;
1486 	uint64_t	sense = ZFS_CASE_SENSITIVE;
1487 	uint64_t	norm = 0;
1488 	nvpair_t	*elem;
1489 	int		error;
1490 	int		i;
1491 	znode_t		*rootzp = NULL;
1492 	vnode_t		*vp;
1493 	vattr_t		vattr;
1494 	znode_t		*zp;
1495 	zfs_acl_ids_t	acl_ids;
1496 
1497 	/*
1498 	 * First attempt to create master node.
1499 	 */
1500 	/*
1501 	 * In an empty objset, there are no blocks to read and thus
1502 	 * there can be no i/o errors (which we assert below).
1503 	 */
1504 	moid = MASTER_NODE_OBJ;
1505 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1506 	    DMU_OT_NONE, 0, tx);
1507 	ASSERT(error == 0);
1508 
1509 	/*
1510 	 * Set starting attributes.
1511 	 */
1512 	if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_USERSPACE)
1513 		version = ZPL_VERSION;
1514 	else if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID)
1515 		version = ZPL_VERSION_USERSPACE - 1;
1516 	else
1517 		version = ZPL_VERSION_FUID - 1;
1518 	elem = NULL;
1519 	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1520 		/* For the moment we expect all zpl props to be uint64_ts */
1521 		uint64_t val;
1522 		char *name;
1523 
1524 		ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1525 		VERIFY(nvpair_value_uint64(elem, &val) == 0);
1526 		name = nvpair_name(elem);
1527 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1528 			if (val < version)
1529 				version = val;
1530 		} else {
1531 			error = zap_update(os, moid, name, 8, 1, &val, tx);
1532 		}
1533 		ASSERT(error == 0);
1534 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1535 			norm = val;
1536 		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1537 			sense = val;
1538 	}
1539 	ASSERT(version != 0);
1540 	error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1541 
1542 	/*
1543 	 * Create a delete queue.
1544 	 */
1545 	obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1546 
1547 	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1548 	ASSERT(error == 0);
1549 
1550 	/*
1551 	 * Create root znode.  Create minimal znode/vnode/zfsvfs
1552 	 * to allow zfs_mknode to work.
1553 	 */
1554 	vattr_null(&vattr);
1555 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1556 	vattr.va_type = VDIR;
1557 	vattr.va_mode = S_IFDIR|0755;
1558 	vattr.va_uid = crgetuid(cr);
1559 	vattr.va_gid = crgetgid(cr);
1560 
1561 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1562 	rootzp->z_unlinked = 0;
1563 	rootzp->z_atime_dirty = 0;
1564 
1565 	for (;;) {
1566 		error = getnewvnode(VT_ZFS, NULL, zfs_vnodeop_p,
1567 		    NULL, &rootzp->z_vnode);
1568 		if (error == 0)
1569 			break;
1570 		printf("WARNING: zfs_create_fs: unable to get vnode, "
1571 		    "error=%d\n", error);
1572 		kpause("zfsvn", false, hz, NULL);
1573 	}
1574 
1575 	vp = ZTOV(rootzp);
1576 	vp->v_type = VDIR;
1577 
1578 	bzero(&zfsvfs, sizeof (zfsvfs_t));
1579 
1580 	zfsvfs.z_os = os;
1581 	zfsvfs.z_parent = &zfsvfs;
1582 	zfsvfs.z_version = version;
1583 	zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1584 	zfsvfs.z_norm = norm;
1585 	/*
1586 	 * Fold case on file systems that are always or sometimes case
1587 	 * insensitive.
1588 	 */
1589 	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1590 		zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1591 
1592 	mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1593 	list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1594 	    offsetof(znode_t, z_link_node));
1595 
1596 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1597 		mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1598 
1599 	ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1600 	rootzp->z_zfsvfs = &zfsvfs;
1601 	VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1602 	    cr, NULL, &acl_ids));
1603 	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, &acl_ids);
1604 	ASSERT3P(zp, ==, rootzp);
1605 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1606 	ASSERT(error == 0);
1607 	zfs_acl_ids_free(&acl_ids);
1608 	POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1609 
1610 	dmu_buf_rele(rootzp->z_dbuf, NULL);
1611 	rootzp->z_dbuf = NULL;
1612 	ungetnewvnode(vp);
1613 	kmem_cache_free(znode_cache, rootzp);
1614 
1615 	/*
1616 	 * Create shares directory
1617 	 */
1618 
1619 	error = zfs_create_share_dir(&zfsvfs, tx);
1620 
1621 	ASSERT(error == 0);
1622 
1623 	mutex_destroy(&zfsvfs.z_znodes_lock);
1624 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1625 		mutex_destroy(&zfsvfs.z_hold_mtx[i]);
1626 }
1627 
1628 #endif /* _KERNEL */
1629 /*
1630  * Given an object number, return its parent object number and whether
1631  * or not the object is an extended attribute directory.
1632  */
1633 static int
1634 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir)
1635 {
1636 	dmu_buf_t *db;
1637 	dmu_object_info_t doi;
1638 	znode_phys_t *zp;
1639 	int error;
1640 
1641 	if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0)
1642 		return (error);
1643 
1644 	dmu_object_info_from_db(db, &doi);
1645 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
1646 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
1647 		dmu_buf_rele(db, FTAG);
1648 		return (EINVAL);
1649 	}
1650 
1651 	zp = db->db_data;
1652 	*pobjp = zp->zp_parent;
1653 	*is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) &&
1654 	    S_ISDIR(zp->zp_mode);
1655 	dmu_buf_rele(db, FTAG);
1656 
1657 	return (0);
1658 }
1659 
1660 int
1661 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
1662 {
1663 	char *path = buf + len - 1;
1664 	int error;
1665 
1666 	*path = '\0';
1667 
1668 	for (;;) {
1669 		uint64_t pobj;
1670 		char component[MAXNAMELEN + 2];
1671 		size_t complen;
1672 		int is_xattrdir;
1673 
1674 		if ((error = zfs_obj_to_pobj(osp, obj, &pobj,
1675 		    &is_xattrdir)) != 0)
1676 			break;
1677 
1678 		if (pobj == obj) {
1679 			if (path[0] != '/')
1680 				*--path = '/';
1681 			break;
1682 		}
1683 
1684 		component[0] = '/';
1685 		if (is_xattrdir) {
1686 			(void) sprintf(component + 1, "<xattrdir>");
1687 		} else {
1688 			error = zap_value_search(osp, pobj, obj,
1689 			    ZFS_DIRENT_OBJ(-1ULL), component + 1);
1690 			if (error != 0)
1691 				break;
1692 		}
1693 
1694 		complen = strlen(component);
1695 		path -= complen;
1696 		ASSERT(path >= buf);
1697 		bcopy(component, path, complen);
1698 		obj = pobj;
1699 	}
1700 
1701 	if (error == 0)
1702 		(void) memmove(buf, path, buf + len - path);
1703 	return (error);
1704 }
1705