1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/u8_textprep.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vfs.h> 39 #include <sys/vnode.h> 40 #include <sys/file.h> 41 #include <sys/kmem.h> 42 #include <sys/errno.h> 43 #include <sys/unistd.h> 44 #include <sys/atomic.h> 45 #include <sys/zfs_dir.h> 46 #include <sys/zfs_acl.h> 47 #include <sys/zfs_ioctl.h> 48 #include <sys/zfs_rlock.h> 49 #include <sys/zfs_fuid.h> 50 #include <sys/fs/zfs.h> 51 #include <sys/kidmap.h> 52 #endif /* _KERNEL */ 53 54 #include <sys/dmu.h> 55 #include <sys/refcount.h> 56 #include <sys/stat.h> 57 #include <sys/zap.h> 58 #include <sys/zfs_znode.h> 59 60 #include "zfs_prop.h" 61 62 #if defined(_KERNEL) && defined(__NetBSD__) 63 #include <miscfs/specfs/specdev.h> 64 static const struct genfs_ops zfs_genfsops = { 65 .gop_write = genfs_compat_gop_write, 66 }; 67 68 #endif 69 70 extern int (**zfs_vnodeop_p)(void *); 71 extern int (**zfs_fifoop_p)(void *); 72 extern int (**zfs_specop_p)(void *); 73 74 /* 75 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 76 * turned on when DEBUG is also defined. 77 */ 78 #ifdef DEBUG 79 #define ZNODE_STATS 80 #endif /* DEBUG */ 81 82 #ifdef ZNODE_STATS 83 #define ZNODE_STAT_ADD(stat) ((stat)++) 84 #else 85 #define ZNODE_STAT_ADD(stat) /* nothing */ 86 #endif /* ZNODE_STATS */ 87 88 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) 89 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) 90 91 /* 92 * Functions needed for userland (ie: libzpool) are not put under 93 * #ifdef_KERNEL; the rest of the functions have dependencies 94 * (such as VFS logic) that will not compile easily in userland. 95 */ 96 #ifdef _KERNEL 97 /* 98 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 99 * be freed before it can be safely accessed. 100 */ 101 krwlock_t zfsvfs_lock; 102 103 static kmem_cache_t *znode_cache = NULL; 104 105 /*ARGSUSED*/ 106 static void 107 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 108 { 109 /* 110 * We should never drop all dbuf refs without first clearing 111 * the eviction callback. 112 */ 113 panic("evicting znode %p\n", user_ptr); 114 } 115 116 /*ARGSUSED*/ 117 static int 118 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 119 { 120 znode_t *zp = arg; 121 122 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 123 124 list_link_init(&zp->z_link_node); 125 126 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 127 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 128 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 129 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 130 131 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 132 avl_create(&zp->z_range_avl, zfs_range_compare, 133 sizeof (rl_t), offsetof(rl_t, r_node)); 134 135 zp->z_dbuf = NULL; 136 zp->z_dirlocks = NULL; 137 zp->z_acl_cached = NULL; 138 return (0); 139 } 140 141 /*ARGSUSED*/ 142 static void 143 zfs_znode_cache_destructor(void *buf, void *arg) 144 { 145 znode_t *zp = arg; 146 147 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 148 ASSERT(ZTOV(zp) == NULL); 149 150 ASSERT(!list_link_active(&zp->z_link_node)); 151 mutex_destroy(&zp->z_lock); 152 rw_destroy(&zp->z_parent_lock); 153 rw_destroy(&zp->z_name_lock); 154 mutex_destroy(&zp->z_acl_lock); 155 avl_destroy(&zp->z_range_avl); 156 mutex_destroy(&zp->z_range_lock); 157 158 ASSERT(zp->z_dbuf == NULL); 159 ASSERT(zp->z_dirlocks == NULL); 160 ASSERT(zp->z_acl_cached == NULL); 161 } 162 163 #ifdef ZNODE_STATS 164 static struct { 165 uint64_t zms_zfsvfs_invalid; 166 uint64_t zms_zfsvfs_recheck1; 167 uint64_t zms_zfsvfs_unmounted; 168 uint64_t zms_zfsvfs_recheck2; 169 uint64_t zms_obj_held; 170 uint64_t zms_vnode_locked; 171 uint64_t zms_not_only_dnlc; 172 } znode_move_stats; 173 #endif /* ZNODE_STATS */ 174 175 static void 176 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 177 { 178 vnode_t *vp; 179 180 /* Copy fields. */ 181 nzp->z_zfsvfs = ozp->z_zfsvfs; 182 183 /* Swap vnodes. */ 184 vp = nzp->z_vnode; 185 nzp->z_vnode = ozp->z_vnode; 186 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 187 ZTOV(ozp)->v_data = ozp; 188 ZTOV(nzp)->v_data = nzp; 189 190 nzp->z_id = ozp->z_id; 191 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 192 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 193 nzp->z_unlinked = ozp->z_unlinked; 194 nzp->z_atime_dirty = ozp->z_atime_dirty; 195 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 196 nzp->z_blksz = ozp->z_blksz; 197 nzp->z_seq = ozp->z_seq; 198 nzp->z_mapcnt = ozp->z_mapcnt; 199 nzp->z_last_itx = ozp->z_last_itx; 200 nzp->z_gen = ozp->z_gen; 201 nzp->z_sync_cnt = ozp->z_sync_cnt; 202 nzp->z_phys = ozp->z_phys; 203 nzp->z_dbuf = ozp->z_dbuf; 204 205 /* 206 * Since this is just an idle znode and kmem is already dealing with 207 * memory pressure, release any cached ACL. 208 */ 209 if (ozp->z_acl_cached) { 210 zfs_acl_free(ozp->z_acl_cached); 211 ozp->z_acl_cached = NULL; 212 } 213 214 /* Update back pointers. */ 215 (void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys, 216 znode_evict_error); 217 218 /* 219 * Invalidate the original znode by clearing fields that provide a 220 * pointer back to the znode. Set the low bit of the vfs pointer to 221 * ensure that zfs_znode_move() recognizes the znode as invalid in any 222 * subsequent callback. 223 */ 224 ozp->z_dbuf = NULL; 225 POINTER_INVALIDATE(&ozp->z_zfsvfs); 226 } 227 228 #ifndef __NetBSD__ 229 /*ARGSUSED*/ 230 static kmem_cbrc_t 231 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 232 { 233 znode_t *ozp = buf, *nzp = newbuf; 234 zfsvfs_t *zfsvfs; 235 vnode_t *vp; 236 237 /* 238 * The znode is on the file system's list of known znodes if the vfs 239 * pointer is valid. We set the low bit of the vfs pointer when freeing 240 * the znode to invalidate it, and the memory patterns written by kmem 241 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 242 * created znode sets the vfs pointer last of all to indicate that the 243 * znode is known and in a valid state to be moved by this function. 244 */ 245 zfsvfs = ozp->z_zfsvfs; 246 if (!POINTER_IS_VALID(zfsvfs)) { 247 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 248 return (KMEM_CBRC_DONT_KNOW); 249 } 250 251 /* 252 * Close a small window in which it's possible that the filesystem could 253 * be unmounted and freed, and zfsvfs, though valid in the previous 254 * statement, could point to unrelated memory by the time we try to 255 * prevent the filesystem from being unmounted. 256 */ 257 rw_enter(&zfsvfs_lock, RW_WRITER); 258 if (zfsvfs != ozp->z_zfsvfs) { 259 rw_exit(&zfsvfs_lock); 260 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 261 return (KMEM_CBRC_DONT_KNOW); 262 } 263 264 /* 265 * If the znode is still valid, then so is the file system. We know that 266 * no valid file system can be freed while we hold zfsvfs_lock, so we 267 * can safely ensure that the filesystem is not and will not be 268 * unmounted. The next statement is equivalent to ZFS_ENTER(). 269 */ 270 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 271 if (zfsvfs->z_unmounted) { 272 ZFS_EXIT(zfsvfs); 273 rw_exit(&zfsvfs_lock); 274 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 275 return (KMEM_CBRC_DONT_KNOW); 276 } 277 rw_exit(&zfsvfs_lock); 278 279 mutex_enter(&zfsvfs->z_znodes_lock); 280 /* 281 * Recheck the vfs pointer in case the znode was removed just before 282 * acquiring the lock. 283 */ 284 if (zfsvfs != ozp->z_zfsvfs) { 285 mutex_exit(&zfsvfs->z_znodes_lock); 286 ZFS_EXIT(zfsvfs); 287 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 288 return (KMEM_CBRC_DONT_KNOW); 289 } 290 291 /* 292 * At this point we know that as long as we hold z_znodes_lock, the 293 * znode cannot be freed and fields within the znode can be safely 294 * accessed. Now, prevent a race with zfs_zget(). 295 */ 296 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 297 mutex_exit(&zfsvfs->z_znodes_lock); 298 ZFS_EXIT(zfsvfs); 299 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 300 return (KMEM_CBRC_LATER); 301 } 302 303 vp = ZTOV(ozp); 304 if (mutex_tryenter(&vp->v_lock) == 0) { 305 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 306 mutex_exit(&zfsvfs->z_znodes_lock); 307 ZFS_EXIT(zfsvfs); 308 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 309 return (KMEM_CBRC_LATER); 310 } 311 312 /* Only move znodes that are referenced _only_ by the DNLC. */ 313 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 314 mutex_exit(&vp->v_lock); 315 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 316 mutex_exit(&zfsvfs->z_znodes_lock); 317 ZFS_EXIT(zfsvfs); 318 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 319 return (KMEM_CBRC_LATER); 320 } 321 322 /* 323 * The znode is known and in a valid state to move. We're holding the 324 * locks needed to execute the critical section. 325 */ 326 zfs_znode_move_impl(ozp, nzp); 327 mutex_exit(&vp->v_lock); 328 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 329 330 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 331 mutex_exit(&zfsvfs->z_znodes_lock); 332 ZFS_EXIT(zfsvfs); 333 334 return (KMEM_CBRC_YES); 335 } 336 #endif /* !__NetBSD__ */ 337 338 void 339 zfs_znode_init(void) 340 { 341 /* 342 * Initialize zcache 343 */ 344 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 345 ASSERT(znode_cache == NULL); 346 znode_cache = kmem_cache_create("zfs_znode_cache", 347 sizeof (znode_t), 0, zfs_znode_cache_constructor, 348 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 349 } 350 351 void 352 zfs_znode_fini(void) 353 { 354 355 /* 356 * Cleanup zcache 357 */ 358 if (znode_cache) 359 kmem_cache_destroy(znode_cache); 360 znode_cache = NULL; 361 rw_destroy(&zfsvfs_lock); 362 } 363 364 #ifndef __NetBSD__ 365 struct vnodeops *zfs_dvnodeops; 366 struct vnodeops *zfs_fvnodeops; 367 struct vnodeops *zfs_symvnodeops; 368 struct vnodeops *zfs_xdvnodeops; 369 struct vnodeops *zfs_evnodeops; 370 struct vnodeops *zfs_sharevnodeops; 371 #endif 372 373 void 374 zfs_remove_op_tables() 375 { 376 #ifndef __NetBSD__ 377 /* 378 * Remove vfs ops 379 */ 380 ASSERT(zfsfstype); 381 (void) vfs_freevfsops_by_type(zfsfstype); 382 zfsfstype = 0; 383 384 /* 385 * Remove vnode ops 386 */ 387 if (zfs_dvnodeops) 388 vn_freevnodeops(zfs_dvnodeops); 389 if (zfs_fvnodeops) 390 vn_freevnodeops(zfs_fvnodeops); 391 if (zfs_symvnodeops) 392 vn_freevnodeops(zfs_symvnodeops); 393 if (zfs_xdvnodeops) 394 vn_freevnodeops(zfs_xdvnodeops); 395 if (zfs_evnodeops) 396 vn_freevnodeops(zfs_evnodeops); 397 if (zfs_sharevnodeops) 398 vn_freevnodeops(zfs_sharevnodeops); 399 400 zfs_dvnodeops = NULL; 401 zfs_fvnodeops = NULL; 402 zfs_symvnodeops = NULL; 403 zfs_xdvnodeops = NULL; 404 zfs_evnodeops = NULL; 405 zfs_sharevnodeops = NULL; 406 #endif 407 } 408 409 #ifndef __NetBSD__ 410 extern const fs_operation_def_t zfs_dvnodeops_template[]; 411 extern const fs_operation_def_t zfs_fvnodeops_template[]; 412 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 413 extern const fs_operation_def_t zfs_symvnodeops_template[]; 414 extern const fs_operation_def_t zfs_evnodeops_template[]; 415 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 416 #endif 417 418 int 419 zfs_create_op_tables() 420 { 421 #ifndef __NetBSD__ 422 int error; 423 424 /* 425 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 426 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 427 * In this case we just return as the ops vectors are already set up. 428 */ 429 if (zfs_dvnodeops) 430 return (0); 431 432 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 433 &zfs_dvnodeops); 434 if (error) 435 return (error); 436 437 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 438 &zfs_fvnodeops); 439 if (error) 440 return (error); 441 442 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 443 &zfs_symvnodeops); 444 if (error) 445 return (error); 446 447 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 448 &zfs_xdvnodeops); 449 if (error) 450 return (error); 451 452 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 453 &zfs_evnodeops); 454 if (error) 455 return (error); 456 457 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 458 &zfs_sharevnodeops); 459 460 return (error); 461 #endif 462 return 0; 463 } 464 465 int 466 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 467 { 468 zfs_acl_ids_t acl_ids; 469 vattr_t vattr; 470 znode_t *sharezp; 471 vnode_t *vp; 472 znode_t *zp; 473 int error; 474 475 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 476 vattr.va_type = VDIR; 477 vattr.va_mode = S_IFDIR|0555; 478 vattr.va_uid = crgetuid(kcred); 479 vattr.va_gid = crgetgid(kcred); 480 481 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 482 sharezp->z_unlinked = 0; 483 sharezp->z_atime_dirty = 0; 484 sharezp->z_zfsvfs = zfsvfs; 485 486 vp = ZTOV(sharezp); 487 error = getnewvnode(VT_ZFS, zfsvfs->z_parent->z_vfs, 488 zfs_vnodeop_p, NULL, &sharezp->z_vnode); 489 if (error) { 490 kmem_cache_free(znode_cache, sharezp); 491 return error; 492 } 493 vp->v_type = VDIR; 494 495 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 496 kcred, NULL, &acl_ids)); 497 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, 498 &zp, 0, &acl_ids); 499 ASSERT3P(zp, ==, sharezp); 500 #ifndef __NetBSD__ 501 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 502 #endif 503 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 504 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 505 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 506 zfsvfs->z_shares_dir = sharezp->z_id; 507 508 zfs_acl_ids_free(&acl_ids); 509 ZTOV(sharezp)->v_count = 0; 510 dmu_buf_rele(sharezp->z_dbuf, NULL); 511 sharezp->z_dbuf = NULL; 512 kmem_cache_free(znode_cache, sharezp); 513 514 return (error); 515 } 516 517 /* 518 * define a couple of values we need available 519 * for both 64 and 32 bit environments. 520 */ 521 #ifndef NBITSMINOR64 522 #define NBITSMINOR64 32 523 #endif 524 #ifndef MAXMAJ64 525 #define MAXMAJ64 0xffffffffUL 526 #endif 527 #ifndef MAXMIN64 528 #define MAXMIN64 0xffffffffUL 529 #endif 530 531 /* 532 * Create special expldev for ZFS private use. 533 * Can't use standard expldev since it doesn't do 534 * what we want. The standard expldev() takes a 535 * dev32_t in LP64 and expands it to a long dev_t. 536 * We need an interface that takes a dev32_t in ILP32 537 * and expands it to a long dev_t. 538 */ 539 static uint64_t 540 zfs_expldev(dev_t dev) 541 { 542 return ((uint64_t)major(dev) << NBITSMINOR64) | 543 (minor_t)minor(dev); 544 } 545 546 /* 547 * Special cmpldev for ZFS private use. 548 * Can't use standard cmpldev since it takes 549 * a long dev_t and compresses it to dev32_t in 550 * LP64. We need to do a compaction of a long dev_t 551 * to a dev32_t in ILP32. 552 */ 553 dev_t 554 zfs_cmpldev(uint64_t dev) 555 { 556 minor_t minor = (minor_t)dev & MAXMIN64; 557 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 558 559 return makedev(minor, major); 560 } 561 562 static void 563 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db) 564 { 565 znode_t *nzp; 566 567 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 568 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 569 570 mutex_enter(&zp->z_lock); 571 572 ASSERT(zp->z_dbuf == NULL); 573 ASSERT(zp->z_acl_cached == NULL); 574 zp->z_dbuf = db; 575 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error); 576 577 /* 578 * there should be no 579 * concurrent zgets on this object. 580 */ 581 if (nzp != NULL) 582 panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db); 583 584 /* 585 * Slap on VROOT if we are the root znode 586 */ 587 if (zp->z_id == zfsvfs->z_root) 588 ZTOV(zp)->v_flag |= VROOT; 589 590 mutex_exit(&zp->z_lock); 591 vn_exists(ZTOV(zp)); 592 } 593 594 void 595 zfs_znode_dmu_fini(znode_t *zp) 596 { 597 dmu_buf_t *db = zp->z_dbuf; 598 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 599 zp->z_unlinked || 600 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 601 ASSERT(zp->z_dbuf != NULL); 602 zp->z_dbuf = NULL; 603 VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL)); 604 dmu_buf_rele(db, NULL); 605 } 606 607 /* 608 * Construct a new znode/vnode and intialize. 609 * 610 * This does not do a call to dmu_set_user() that is 611 * up to the caller to do, in case you don't want to 612 * return the znode 613 */ 614 615 static znode_t * 616 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz) 617 { 618 znode_t *zp; 619 vnode_t *vp; 620 int error; 621 622 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 623 624 for (;;) { 625 error = getnewvnode(VT_ZFS, zfsvfs->z_parent->z_vfs, 626 zfs_vnodeop_p, NULL, &zp->z_vnode); 627 if (__predict_true(error == 0)) 628 break; 629 printf("WARNING: zfs_znode_alloc: unable to get vnode, " 630 "error=%d\n", error); 631 (void)kpause("zfsnewvn", false, hz, NULL); 632 } 633 634 ASSERT(zp->z_dirlocks == NULL); 635 ASSERT(zp->z_dbuf == NULL); 636 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 637 638 /* 639 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 640 * the zfs_znode_move() callback. 641 */ 642 zp->z_phys = NULL; 643 zp->z_unlinked = 0; 644 zp->z_atime_dirty = 0; 645 zp->z_mapcnt = 0; 646 zp->z_last_itx = 0; 647 zp->z_id = db->db_object; 648 zp->z_blksz = blksz; 649 zp->z_seq = 0x7A4653; 650 zp->z_sync_cnt = 0; 651 652 vp = ZTOV(zp); 653 654 zfs_znode_dmu_init(zfsvfs, zp, db); 655 656 zp->z_gen = zp->z_phys->zp_gen; 657 658 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 659 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 660 vp->v_data = zp; 661 genfs_node_init(vp, &zfs_genfsops); 662 switch (vp->v_type) { 663 case VDIR: 664 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 665 break; 666 case VBLK: 667 case VCHR: 668 /* XXX NetBSD vp->v_op = zfs_specop_p; */ 669 spec_node_init(vp, zfs_cmpldev(zp->z_phys->zp_rdev)); 670 break; 671 case VFIFO: 672 /* XXX NetBSD vp->v_op = zfs_fifoop_p; */ 673 break; 674 } 675 676 dprintf("zfs_znode_alloc znode %p -- vnode %p\n", zp, vp); 677 dprintf("zfs_znode_alloc z_id %ld\n", zp->z_id); 678 //cpu_Debugger(); 679 680 uvm_vnp_setsize(vp, zp->z_phys->zp_size); 681 682 mutex_enter(&zfsvfs->z_znodes_lock); 683 list_insert_tail(&zfsvfs->z_all_znodes, zp); 684 membar_producer(); 685 /* 686 * Everything else must be valid before assigning z_zfsvfs makes the 687 * znode eligible for zfs_znode_move(). 688 */ 689 zp->z_zfsvfs = zfsvfs; 690 mutex_exit(&zfsvfs->z_znodes_lock); 691 692 VFS_HOLD(zfsvfs->z_vfs); 693 return (zp); 694 } 695 696 /* 697 * Create a new DMU object to hold a zfs znode. 698 * 699 * IN: dzp - parent directory for new znode 700 * vap - file attributes for new znode 701 * tx - dmu transaction id for zap operations 702 * cr - credentials of caller 703 * flag - flags: 704 * IS_ROOT_NODE - new object will be root 705 * IS_XATTR - new object is an attribute 706 * bonuslen - length of bonus buffer 707 * setaclp - File/Dir initial ACL 708 * fuidp - Tracks fuid allocation. 709 * 710 * OUT: zpp - allocated znode 711 * 712 */ 713 void 714 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 715 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_ids_t *acl_ids) 716 { 717 dmu_buf_t *db; 718 znode_phys_t *pzp; 719 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 720 timestruc_t now; 721 uint64_t gen, obj; 722 int err; 723 724 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 725 726 if (zfsvfs->z_replay) { 727 obj = vap->va_nodeid; 728 now = vap->va_ctime; /* see zfs_replay_create() */ 729 gen = vap->va_nblocks; /* ditto */ 730 } else { 731 obj = 0; 732 gethrestime(&now); 733 gen = dmu_tx_get_txg(tx); 734 } 735 736 /* 737 * Create a new DMU object. 738 */ 739 /* 740 * There's currently no mechanism for pre-reading the blocks that will 741 * be to needed allocate a new object, so we accept the small chance 742 * that there will be an i/o error and we will fail one of the 743 * assertions below. 744 */ 745 if (vap->va_type == VDIR) { 746 if (zfsvfs->z_replay) { 747 err = zap_create_claim_norm(zfsvfs->z_os, obj, 748 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 749 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 750 ASSERT3U(err, ==, 0); 751 } else { 752 obj = zap_create_norm(zfsvfs->z_os, 753 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 754 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 755 } 756 } else { 757 if (zfsvfs->z_replay) { 758 err = dmu_object_claim(zfsvfs->z_os, obj, 759 DMU_OT_PLAIN_FILE_CONTENTS, 0, 760 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 761 ASSERT3U(err, ==, 0); 762 } else { 763 obj = dmu_object_alloc(zfsvfs->z_os, 764 DMU_OT_PLAIN_FILE_CONTENTS, 0, 765 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 766 } 767 } 768 769 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 770 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db)); 771 dmu_buf_will_dirty(db, tx); 772 773 /* 774 * Initialize the znode physical data to zero. 775 */ 776 ASSERT(db->db_size >= sizeof (znode_phys_t)); 777 bzero(db->db_data, db->db_size); 778 pzp = db->db_data; 779 780 /* 781 * If this is the root, fix up the half-initialized parent pointer 782 * to reference the just-allocated physical data area. 783 */ 784 if (flag & IS_ROOT_NODE) { 785 dzp->z_dbuf = db; 786 dzp->z_phys = pzp; 787 dzp->z_id = obj; 788 } 789 790 /* 791 * If parent is an xattr, so am I. 792 */ 793 if (dzp->z_phys->zp_flags & ZFS_XATTR) 794 flag |= IS_XATTR; 795 796 if (vap->va_type == VBLK || vap->va_type == VCHR) { 797 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 798 } 799 800 if (zfsvfs->z_use_fuids) 801 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 802 803 if (vap->va_type == VDIR) { 804 pzp->zp_size = 2; /* contents ("." and "..") */ 805 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 806 } 807 808 pzp->zp_parent = dzp->z_id; 809 if (flag & IS_XATTR) 810 pzp->zp_flags |= ZFS_XATTR; 811 812 pzp->zp_gen = gen; 813 814 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 815 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 816 817 if (vap->va_mask & AT_ATIME) { 818 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 819 } else { 820 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 821 } 822 823 if (vap->va_mask & AT_MTIME) { 824 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 825 } else { 826 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 827 } 828 pzp->zp_uid = acl_ids->z_fuid; 829 pzp->zp_gid = acl_ids->z_fgid; 830 pzp->zp_mode = acl_ids->z_mode; 831 if (!(flag & IS_ROOT_NODE)) { 832 *zpp = zfs_znode_alloc(zfsvfs, db, 0); 833 } else { 834 /* 835 * If we are creating the root node, the "parent" we 836 * passed in is the znode for the root. 837 */ 838 *zpp = dzp; 839 } 840 VERIFY(0 == zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); 841 if (vap->va_mask & AT_XVATTR) 842 zfs_xvattr_set(*zpp, (xvattr_t *)vap); 843 844 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 845 } 846 847 void 848 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap) 849 { 850 xoptattr_t *xoap; 851 852 xoap = xva_getxoptattr(xvap); 853 ASSERT(xoap); 854 855 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 856 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime); 857 XVA_SET_RTN(xvap, XAT_CREATETIME); 858 } 859 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 860 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly); 861 XVA_SET_RTN(xvap, XAT_READONLY); 862 } 863 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 864 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden); 865 XVA_SET_RTN(xvap, XAT_HIDDEN); 866 } 867 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 868 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system); 869 XVA_SET_RTN(xvap, XAT_SYSTEM); 870 } 871 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 872 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive); 873 XVA_SET_RTN(xvap, XAT_ARCHIVE); 874 } 875 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 876 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable); 877 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 878 } 879 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 880 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink); 881 XVA_SET_RTN(xvap, XAT_NOUNLINK); 882 } 883 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 884 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly); 885 XVA_SET_RTN(xvap, XAT_APPENDONLY); 886 } 887 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 888 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump); 889 XVA_SET_RTN(xvap, XAT_NODUMP); 890 } 891 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 892 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque); 893 XVA_SET_RTN(xvap, XAT_OPAQUE); 894 } 895 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 896 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 897 xoap->xoa_av_quarantined); 898 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 899 } 900 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 901 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified); 902 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 903 } 904 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 905 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp, 906 sizeof (xoap->xoa_av_scanstamp)); 907 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP; 908 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 909 } 910 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 911 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse); 912 XVA_SET_RTN(xvap, XAT_REPARSE); 913 } 914 } 915 916 int 917 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 918 { 919 dmu_object_info_t doi; 920 dmu_buf_t *db; 921 znode_t *zp; 922 vnode_t *vp; 923 int err, first = 1; 924 925 *zpp = NULL; 926 again: 927 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 928 929 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 930 if (err) { 931 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 932 return (err); 933 } 934 935 dmu_object_info_from_db(db, &doi); 936 if (doi.doi_bonus_type != DMU_OT_ZNODE || 937 doi.doi_bonus_size < sizeof (znode_phys_t)) { 938 dmu_buf_rele(db, NULL); 939 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 940 return (EINVAL); 941 } 942 943 zp = dmu_buf_get_user(db); 944 if (zp != NULL) { 945 mutex_enter(&zp->z_lock); 946 947 /* 948 * Since we do immediate eviction of the z_dbuf, we 949 * should never find a dbuf with a znode that doesn't 950 * know about the dbuf. 951 */ 952 ASSERT3P(zp->z_dbuf, ==, db); 953 ASSERT3U(zp->z_id, ==, obj_num); 954 if (zp->z_unlinked) { 955 err = ENOENT; 956 } else { 957 if ((vp = ZTOV(zp)) != NULL) { 958 mutex_enter(vp->v_interlock); 959 mutex_exit(&zp->z_lock); 960 if (vget(vp, 0) != 0) { 961 dmu_buf_rele(db, NULL); 962 mutex_exit(vp->v_interlock); 963 goto again; 964 } 965 mutex_enter(&zp->z_lock); 966 } else { 967 if (first) { 968 ZFS_LOG(1, "dying znode detected (zp=%p)", zp); 969 first = 0; 970 } 971 /* 972 * znode is dying so we can't reuse it, we must 973 * wait until destruction is completed. 974 */ 975 dmu_buf_rele(db, NULL); 976 mutex_exit(&zp->z_lock); 977 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 978 kpause("zcollide", 0, 1, NULL); 979 goto again; 980 } 981 *zpp = zp; 982 err = 0; 983 } 984 985 dmu_buf_rele(db, NULL); 986 mutex_exit(&zp->z_lock); 987 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 988 return (err); 989 } 990 991 /* 992 * Not found create new znode/vnode 993 * but only if file exists. 994 * 995 * There is a small window where zfs_vget() could 996 * find this object while a file create is still in 997 * progress. Since a gen number can never be zero 998 * we will check that to determine if its an allocated 999 * file. 1000 */ 1001 1002 if (((znode_phys_t *)db->db_data)->zp_gen != 0) { 1003 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size); 1004 *zpp = zp; 1005 err = 0; 1006 } else { 1007 dmu_buf_rele(db, NULL); 1008 err = ENOENT; 1009 } 1010 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1011 return (err); 1012 } 1013 1014 int 1015 zfs_rezget(znode_t *zp) 1016 { 1017 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1018 dmu_object_info_t doi; 1019 dmu_buf_t *db; 1020 uint64_t obj_num = zp->z_id; 1021 int err; 1022 1023 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1024 1025 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 1026 if (err) { 1027 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1028 return (err); 1029 } 1030 1031 dmu_object_info_from_db(db, &doi); 1032 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1033 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1034 dmu_buf_rele(db, NULL); 1035 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1036 return (EINVAL); 1037 } 1038 1039 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) { 1040 dmu_buf_rele(db, NULL); 1041 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1042 return (EIO); 1043 } 1044 1045 mutex_enter(&zp->z_acl_lock); 1046 if (zp->z_acl_cached) { 1047 zfs_acl_free(zp->z_acl_cached); 1048 zp->z_acl_cached = NULL; 1049 } 1050 mutex_exit(&zp->z_acl_lock); 1051 1052 zfs_znode_dmu_init(zfsvfs, zp, db); 1053 zp->z_unlinked = (zp->z_phys->zp_links == 0); 1054 zp->z_blksz = doi.doi_data_block_size; 1055 1056 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1057 1058 return (0); 1059 } 1060 1061 void 1062 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1063 { 1064 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1065 objset_t *os = zfsvfs->z_os; 1066 uint64_t obj = zp->z_id; 1067 uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj; 1068 1069 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1070 if (acl_obj) 1071 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1072 VERIFY(0 == dmu_object_free(os, obj, tx)); 1073 zfs_znode_dmu_fini(zp); 1074 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1075 zfs_znode_free(zp); 1076 } 1077 1078 void 1079 zfs_zinactive(znode_t *zp) 1080 { 1081 vnode_t *vp = ZTOV(zp); 1082 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1083 uint64_t z_id = zp->z_id; 1084 1085 ASSERT(zp->z_dbuf && zp->z_phys); 1086 1087 /* 1088 * Don't allow a zfs_zget() while were trying to release this znode 1089 */ 1090 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1091 1092 mutex_enter(&zp->z_lock); 1093 /* 1094 * If this was the last reference to a file with no links, 1095 * remove the file from the file system. 1096 */ 1097 if (zp->z_unlinked) { 1098 mutex_exit(&zp->z_lock); 1099 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1100 zfs_rmnode(zp); 1101 return; 1102 } 1103 1104 mutex_exit(&zp->z_lock); 1105 zfs_znode_dmu_fini(zp); 1106 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1107 zfs_znode_free(zp); 1108 } 1109 1110 void 1111 zfs_znode_free(znode_t *zp) 1112 { 1113 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1114 struct vnode *vp = ZTOV(zp); 1115 1116 /* XXX Not all callers are from VOP_RECLAIM. What to do? */ 1117 KASSERT(vp != NULL); 1118 mutex_enter(vp->v_interlock); /* XXX Necessary? */ 1119 genfs_node_destroy(vp); 1120 vp->v_data = NULL; 1121 mutex_exit(vp->v_interlock); 1122 1123 dprintf("destroying znode %p\n", zp); 1124 //cpu_Debugger(); 1125 mutex_enter(&zfsvfs->z_znodes_lock); 1126 POINTER_INVALIDATE(&zp->z_zfsvfs); 1127 list_remove(&zfsvfs->z_all_znodes, zp); 1128 mutex_exit(&zfsvfs->z_znodes_lock); 1129 1130 if (zp->z_acl_cached) { 1131 zfs_acl_free(zp->z_acl_cached); 1132 zp->z_acl_cached = NULL; 1133 } 1134 1135 kmem_cache_free(znode_cache, zp); 1136 1137 VFS_RELE(zfsvfs->z_vfs); 1138 } 1139 1140 void 1141 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1142 { 1143 timestruc_t now; 1144 1145 ASSERT(MUTEX_HELD(&zp->z_lock)); 1146 1147 gethrestime(&now); 1148 1149 if (tx) { 1150 dmu_buf_will_dirty(zp->z_dbuf, tx); 1151 zp->z_atime_dirty = 0; 1152 zp->z_seq++; 1153 } else { 1154 zp->z_atime_dirty = 1; 1155 } 1156 1157 if (flag & AT_ATIME) 1158 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 1159 1160 if (flag & AT_MTIME) { 1161 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 1162 if (zp->z_zfsvfs->z_use_fuids) 1163 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); 1164 } 1165 1166 if (flag & AT_CTIME) { 1167 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 1168 if (zp->z_zfsvfs->z_use_fuids) 1169 zp->z_phys->zp_flags |= ZFS_ARCHIVE; 1170 } 1171 } 1172 1173 /* 1174 * Update the requested znode timestamps with the current time. 1175 * If we are in a transaction, then go ahead and mark the znode 1176 * dirty in the transaction so the timestamps will go to disk. 1177 * Otherwise, we will get pushed next time the znode is updated 1178 * in a transaction, or when this znode eventually goes inactive. 1179 * 1180 * Why is this OK? 1181 * 1 - Only the ACCESS time is ever updated outside of a transaction. 1182 * 2 - Multiple consecutive updates will be collapsed into a single 1183 * znode update by the transaction grouping semantics of the DMU. 1184 */ 1185 void 1186 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1187 { 1188 mutex_enter(&zp->z_lock); 1189 zfs_time_stamper_locked(zp, flag, tx); 1190 mutex_exit(&zp->z_lock); 1191 } 1192 1193 /* 1194 * Grow the block size for a file. 1195 * 1196 * IN: zp - znode of file to free data in. 1197 * size - requested block size 1198 * tx - open transaction. 1199 * 1200 * NOTE: this function assumes that the znode is write locked. 1201 */ 1202 void 1203 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1204 { 1205 int error; 1206 u_longlong_t dummy; 1207 1208 if (size <= zp->z_blksz) 1209 return; 1210 /* 1211 * If the file size is already greater than the current blocksize, 1212 * we will not grow. If there is more than one block in a file, 1213 * the blocksize cannot change. 1214 */ 1215 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 1216 return; 1217 1218 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1219 size, 0, tx); 1220 if (error == ENOTSUP) 1221 return; 1222 ASSERT3U(error, ==, 0); 1223 1224 /* What blocksize did we actually get? */ 1225 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 1226 } 1227 1228 /* 1229 * Increase the file length 1230 * 1231 * IN: zp - znode of file to free data in. 1232 * end - new end-of-file 1233 * 1234 * RETURN: 0 if success 1235 * error code if failure 1236 */ 1237 static int 1238 zfs_extend(znode_t *zp, uint64_t end) 1239 { 1240 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1241 dmu_tx_t *tx; 1242 rl_t *rl; 1243 uint64_t newblksz; 1244 int error; 1245 1246 /* 1247 * We will change zp_size, lock the whole file. 1248 */ 1249 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1250 1251 /* 1252 * Nothing to do if file already at desired length. 1253 */ 1254 if (end <= zp->z_phys->zp_size) { 1255 zfs_range_unlock(rl); 1256 return (0); 1257 } 1258 top: 1259 tx = dmu_tx_create(zfsvfs->z_os); 1260 dmu_tx_hold_bonus(tx, zp->z_id); 1261 if (end > zp->z_blksz && 1262 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1263 /* 1264 * We are growing the file past the current block size. 1265 */ 1266 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1267 ASSERT(!ISP2(zp->z_blksz)); 1268 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1269 } else { 1270 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1271 } 1272 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1273 } else { 1274 newblksz = 0; 1275 } 1276 1277 error = dmu_tx_assign(tx, TXG_NOWAIT); 1278 if (error) { 1279 if (error == ERESTART) { 1280 dmu_tx_wait(tx); 1281 dmu_tx_abort(tx); 1282 goto top; 1283 } 1284 dmu_tx_abort(tx); 1285 zfs_range_unlock(rl); 1286 return (error); 1287 } 1288 dmu_buf_will_dirty(zp->z_dbuf, tx); 1289 1290 if (newblksz) 1291 zfs_grow_blocksize(zp, newblksz, tx); 1292 1293 zp->z_phys->zp_size = end; 1294 1295 zfs_range_unlock(rl); 1296 1297 dmu_tx_commit(tx); 1298 1299 uvm_vnp_setsize(ZTOV(zp), end); 1300 1301 return (0); 1302 } 1303 1304 /* 1305 * Free space in a file. 1306 * 1307 * IN: zp - znode of file to free data in. 1308 * off - start of section to free. 1309 * len - length of section to free. 1310 * 1311 * RETURN: 0 if success 1312 * error code if failure 1313 */ 1314 static int 1315 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1316 { 1317 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1318 rl_t *rl; 1319 int error; 1320 1321 /* 1322 * Lock the range being freed. 1323 */ 1324 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1325 1326 /* 1327 * Nothing to do if file already at desired length. 1328 */ 1329 if (off >= zp->z_phys->zp_size) { 1330 zfs_range_unlock(rl); 1331 return (0); 1332 } 1333 1334 if (off + len > zp->z_phys->zp_size) 1335 len = zp->z_phys->zp_size - off; 1336 1337 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1338 1339 if (error == 0) { 1340 /* 1341 * In NetBSD we cannot free block in the middle of a file, 1342 * but only at the end of a file. 1343 */ 1344 uvm_vnp_setsize(ZTOV(zp), off); 1345 } 1346 1347 zfs_range_unlock(rl); 1348 1349 return (error); 1350 } 1351 1352 /* 1353 * Truncate a file 1354 * 1355 * IN: zp - znode of file to free data in. 1356 * end - new end-of-file. 1357 * 1358 * RETURN: 0 if success 1359 * error code if failure 1360 */ 1361 static int 1362 zfs_trunc(znode_t *zp, uint64_t end) 1363 { 1364 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1365 vnode_t *vp = ZTOV(zp); 1366 dmu_tx_t *tx; 1367 rl_t *rl; 1368 int error; 1369 1370 /* 1371 * We will change zp_size, lock the whole file. 1372 */ 1373 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1374 1375 /* 1376 * Nothing to do if file already at desired length. 1377 */ 1378 if (end >= zp->z_phys->zp_size) { 1379 zfs_range_unlock(rl); 1380 return (0); 1381 } 1382 1383 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1384 if (error) { 1385 zfs_range_unlock(rl); 1386 return (error); 1387 } 1388 top: 1389 tx = dmu_tx_create(zfsvfs->z_os); 1390 dmu_tx_hold_bonus(tx, zp->z_id); 1391 error = dmu_tx_assign(tx, TXG_NOWAIT); 1392 if (error) { 1393 if (error == ERESTART) { 1394 dmu_tx_wait(tx); 1395 dmu_tx_abort(tx); 1396 goto top; 1397 } 1398 dmu_tx_abort(tx); 1399 zfs_range_unlock(rl); 1400 return (error); 1401 } 1402 dmu_buf_will_dirty(zp->z_dbuf, tx); 1403 1404 zp->z_phys->zp_size = end; 1405 1406 dmu_tx_commit(tx); 1407 1408 zfs_range_unlock(rl); 1409 1410 /* 1411 * Clear any mapped pages in the truncated region. This has to 1412 * happen outside of the transaction to avoid the possibility of 1413 * a deadlock with someone trying to push a page that we are 1414 * about to invalidate. 1415 */ 1416 1417 uvm_vnp_setsize(vp, end); 1418 1419 return (0); 1420 } 1421 1422 /* 1423 * Free space in a file 1424 * 1425 * IN: zp - znode of file to free data in. 1426 * off - start of range 1427 * len - end of range (0 => EOF) 1428 * flag - current file open mode flags. 1429 * log - TRUE if this action should be logged 1430 * 1431 * RETURN: 0 if success 1432 * error code if failure 1433 */ 1434 int 1435 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1436 { 1437 vnode_t *vp = ZTOV(zp); 1438 dmu_tx_t *tx; 1439 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1440 zilog_t *zilog = zfsvfs->z_log; 1441 int error; 1442 1443 if (off > zp->z_phys->zp_size) { 1444 error = zfs_extend(zp, off+len); 1445 if (error == 0 && log) 1446 goto log; 1447 else 1448 return (error); 1449 } 1450 1451 if (len == 0) { 1452 error = zfs_trunc(zp, off); 1453 } else { 1454 if ((error = zfs_free_range(zp, off, len)) == 0 && 1455 off + len > zp->z_phys->zp_size) 1456 error = zfs_extend(zp, off+len); 1457 } 1458 if (error || !log) 1459 return (error); 1460 log: 1461 tx = dmu_tx_create(zfsvfs->z_os); 1462 dmu_tx_hold_bonus(tx, zp->z_id); 1463 error = dmu_tx_assign(tx, TXG_NOWAIT); 1464 if (error) { 1465 if (error == ERESTART) { 1466 dmu_tx_wait(tx); 1467 dmu_tx_abort(tx); 1468 goto log; 1469 } 1470 dmu_tx_abort(tx); 1471 return (error); 1472 } 1473 1474 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1475 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1476 1477 dmu_tx_commit(tx); 1478 return (0); 1479 } 1480 1481 void 1482 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1483 { 1484 zfsvfs_t zfsvfs; 1485 uint64_t moid, obj, version; 1486 uint64_t sense = ZFS_CASE_SENSITIVE; 1487 uint64_t norm = 0; 1488 nvpair_t *elem; 1489 int error; 1490 int i; 1491 znode_t *rootzp = NULL; 1492 vnode_t *vp; 1493 vattr_t vattr; 1494 znode_t *zp; 1495 zfs_acl_ids_t acl_ids; 1496 1497 /* 1498 * First attempt to create master node. 1499 */ 1500 /* 1501 * In an empty objset, there are no blocks to read and thus 1502 * there can be no i/o errors (which we assert below). 1503 */ 1504 moid = MASTER_NODE_OBJ; 1505 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1506 DMU_OT_NONE, 0, tx); 1507 ASSERT(error == 0); 1508 1509 /* 1510 * Set starting attributes. 1511 */ 1512 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_USERSPACE) 1513 version = ZPL_VERSION; 1514 else if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) 1515 version = ZPL_VERSION_USERSPACE - 1; 1516 else 1517 version = ZPL_VERSION_FUID - 1; 1518 elem = NULL; 1519 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1520 /* For the moment we expect all zpl props to be uint64_ts */ 1521 uint64_t val; 1522 char *name; 1523 1524 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1525 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1526 name = nvpair_name(elem); 1527 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1528 if (val < version) 1529 version = val; 1530 } else { 1531 error = zap_update(os, moid, name, 8, 1, &val, tx); 1532 } 1533 ASSERT(error == 0); 1534 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1535 norm = val; 1536 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1537 sense = val; 1538 } 1539 ASSERT(version != 0); 1540 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1541 1542 /* 1543 * Create a delete queue. 1544 */ 1545 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1546 1547 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1548 ASSERT(error == 0); 1549 1550 /* 1551 * Create root znode. Create minimal znode/vnode/zfsvfs 1552 * to allow zfs_mknode to work. 1553 */ 1554 vattr_null(&vattr); 1555 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1556 vattr.va_type = VDIR; 1557 vattr.va_mode = S_IFDIR|0755; 1558 vattr.va_uid = crgetuid(cr); 1559 vattr.va_gid = crgetgid(cr); 1560 1561 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1562 rootzp->z_unlinked = 0; 1563 rootzp->z_atime_dirty = 0; 1564 1565 for (;;) { 1566 error = getnewvnode(VT_ZFS, NULL, zfs_vnodeop_p, 1567 NULL, &rootzp->z_vnode); 1568 if (error == 0) 1569 break; 1570 printf("WARNING: zfs_create_fs: unable to get vnode, " 1571 "error=%d\n", error); 1572 kpause("zfsvn", false, hz, NULL); 1573 } 1574 1575 vp = ZTOV(rootzp); 1576 vp->v_type = VDIR; 1577 1578 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1579 1580 zfsvfs.z_os = os; 1581 zfsvfs.z_parent = &zfsvfs; 1582 zfsvfs.z_version = version; 1583 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1584 zfsvfs.z_norm = norm; 1585 /* 1586 * Fold case on file systems that are always or sometimes case 1587 * insensitive. 1588 */ 1589 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1590 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1591 1592 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1593 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1594 offsetof(znode_t, z_link_node)); 1595 1596 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1597 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1598 1599 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1600 rootzp->z_zfsvfs = &zfsvfs; 1601 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1602 cr, NULL, &acl_ids)); 1603 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, &acl_ids); 1604 ASSERT3P(zp, ==, rootzp); 1605 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1606 ASSERT(error == 0); 1607 zfs_acl_ids_free(&acl_ids); 1608 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1609 1610 dmu_buf_rele(rootzp->z_dbuf, NULL); 1611 rootzp->z_dbuf = NULL; 1612 ungetnewvnode(vp); 1613 kmem_cache_free(znode_cache, rootzp); 1614 1615 /* 1616 * Create shares directory 1617 */ 1618 1619 error = zfs_create_share_dir(&zfsvfs, tx); 1620 1621 ASSERT(error == 0); 1622 1623 mutex_destroy(&zfsvfs.z_znodes_lock); 1624 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1625 mutex_destroy(&zfsvfs.z_hold_mtx[i]); 1626 } 1627 1628 #endif /* _KERNEL */ 1629 /* 1630 * Given an object number, return its parent object number and whether 1631 * or not the object is an extended attribute directory. 1632 */ 1633 static int 1634 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1635 { 1636 dmu_buf_t *db; 1637 dmu_object_info_t doi; 1638 znode_phys_t *zp; 1639 int error; 1640 1641 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1642 return (error); 1643 1644 dmu_object_info_from_db(db, &doi); 1645 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1646 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1647 dmu_buf_rele(db, FTAG); 1648 return (EINVAL); 1649 } 1650 1651 zp = db->db_data; 1652 *pobjp = zp->zp_parent; 1653 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1654 S_ISDIR(zp->zp_mode); 1655 dmu_buf_rele(db, FTAG); 1656 1657 return (0); 1658 } 1659 1660 int 1661 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1662 { 1663 char *path = buf + len - 1; 1664 int error; 1665 1666 *path = '\0'; 1667 1668 for (;;) { 1669 uint64_t pobj; 1670 char component[MAXNAMELEN + 2]; 1671 size_t complen; 1672 int is_xattrdir; 1673 1674 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1675 &is_xattrdir)) != 0) 1676 break; 1677 1678 if (pobj == obj) { 1679 if (path[0] != '/') 1680 *--path = '/'; 1681 break; 1682 } 1683 1684 component[0] = '/'; 1685 if (is_xattrdir) { 1686 (void) sprintf(component + 1, "<xattrdir>"); 1687 } else { 1688 error = zap_value_search(osp, pobj, obj, 1689 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1690 if (error != 0) 1691 break; 1692 } 1693 1694 complen = strlen(component); 1695 path -= complen; 1696 ASSERT(path >= buf); 1697 bcopy(component, path, complen); 1698 obj = pobj; 1699 } 1700 1701 if (error == 0) 1702 (void) memmove(buf, path, buf + len - path); 1703 return (error); 1704 } 1705