1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vnode.h> 36 #include <sys/file.h> 37 #include <sys/stat.h> 38 #include <sys/kmem.h> 39 #include <sys/taskq.h> 40 #include <sys/uio.h> 41 #include <sys/atomic.h> 42 #include <sys/namei.h> 43 #include <sys/mman.h> 44 #include <sys/cmn_err.h> 45 #include <sys/errno.h> 46 #include <sys/unistd.h> 47 #include <sys/zfs_dir.h> 48 #include <sys/zfs_ioctl.h> 49 #include <sys/fs/zfs.h> 50 #include <sys/dmu.h> 51 #include <sys/spa.h> 52 #include <sys/txg.h> 53 #include <sys/dbuf.h> 54 #include <sys/zap.h> 55 #include <sys/dirent.h> 56 #include <sys/policy.h> 57 #include <sys/sunddi.h> 58 #include <sys/filio.h> 59 #include <sys/zfs_ctldir.h> 60 #include <sys/zfs_fuid.h> 61 #include <sys/zfs_vfsops.h> 62 #include <sys/dnlc.h> 63 #include <sys/zfs_rlock.h> 64 #include <sys/extdirent.h> 65 #include <sys/kidmap.h> 66 #include <sys/buf.h> 67 #include <sys/sched.h> 68 #include <sys/acl.h> 69 #include <sys/extattr.h> 70 71 #ifdef __NetBSD__ 72 #include <miscfs/genfs/genfs.h> 73 #endif 74 75 /* 76 * Programming rules. 77 * 78 * Each vnode op performs some logical unit of work. To do this, the ZPL must 79 * properly lock its in-core state, create a DMU transaction, do the work, 80 * record this work in the intent log (ZIL), commit the DMU transaction, 81 * and wait for the intent log to commit if it is a synchronous operation. 82 * Moreover, the vnode ops must work in both normal and log replay context. 83 * The ordering of events is important to avoid deadlocks and references 84 * to freed memory. The example below illustrates the following Big Rules: 85 * 86 * (1) A check must be made in each zfs thread for a mounted file system. 87 * This is done avoiding races using ZFS_ENTER(zfsvfs). 88 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 89 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 90 * can return EIO from the calling function. 91 * 92 * (2) VN_RELE() should always be the last thing except for zil_commit() 93 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 94 * First, if it's the last reference, the vnode/znode 95 * can be freed, so the zp may point to freed memory. Second, the last 96 * reference will call zfs_zinactive(), which may induce a lot of work -- 97 * pushing cached pages (which acquires range locks) and syncing out 98 * cached atime changes. Third, zfs_zinactive() may require a new tx, 99 * which could deadlock the system if you were already holding one. 100 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 101 * 102 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 103 * as they can span dmu_tx_assign() calls. 104 * 105 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 106 * This is critical because we don't want to block while holding locks. 107 * Note, in particular, that if a lock is sometimes acquired before 108 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 109 * use a non-blocking assign can deadlock the system. The scenario: 110 * 111 * Thread A has grabbed a lock before calling dmu_tx_assign(). 112 * Thread B is in an already-assigned tx, and blocks for this lock. 113 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 114 * forever, because the previous txg can't quiesce until B's tx commits. 115 * 116 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 117 * then drop all locks, call dmu_tx_wait(), and try again. 118 * 119 * (5) If the operation succeeded, generate the intent log entry for it 120 * before dropping locks. This ensures that the ordering of events 121 * in the intent log matches the order in which they actually occurred. 122 * During ZIL replay the zfs_log_* functions will update the sequence 123 * number to indicate the zil transaction has replayed. 124 * 125 * (6) At the end of each vnode op, the DMU tx must always commit, 126 * regardless of whether there were any errors. 127 * 128 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 129 * to ensure that synchronous semantics are provided when necessary. 130 * 131 * In general, this is how things should be ordered in each vnode op: 132 * 133 * ZFS_ENTER(zfsvfs); // exit if unmounted 134 * top: 135 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 136 * rw_enter(...); // grab any other locks you need 137 * tx = dmu_tx_create(...); // get DMU tx 138 * dmu_tx_hold_*(); // hold each object you might modify 139 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 140 * if (error) { 141 * rw_exit(...); // drop locks 142 * zfs_dirent_unlock(...); // unlock directory entry 143 * VN_RELE(...); // release held vnodes 144 * if (error == ERESTART) { 145 * dmu_tx_wait(tx); 146 * dmu_tx_abort(tx); 147 * goto top; 148 * } 149 * dmu_tx_abort(tx); // abort DMU tx 150 * ZFS_EXIT(zfsvfs); // finished in zfs 151 * return (error); // really out of space 152 * } 153 * error = do_real_work(); // do whatever this VOP does 154 * if (error == 0) 155 * zfs_log_*(...); // on success, make ZIL entry 156 * dmu_tx_commit(tx); // commit DMU tx -- error or not 157 * rw_exit(...); // drop locks 158 * zfs_dirent_unlock(dl, 0); // unlock directory entry 159 * VN_RELE(...); // release held vnodes 160 * zil_commit(zilog, seq, foid); // synchronous when necessary 161 * ZFS_EXIT(zfsvfs); // finished in zfs 162 * return (error); // done, report error 163 */ 164 165 /* ARGSUSED */ 166 static int 167 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 168 { 169 znode_t *zp = VTOZ(*vpp); 170 171 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 172 ((flag & FAPPEND) == 0)) { 173 return (EPERM); 174 } 175 176 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 177 ZTOV(zp)->v_type == VREG && 178 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 179 zp->z_phys->zp_size > 0) 180 if (fs_vscan(*vpp, cr, 0) != 0) 181 return (EACCES); 182 183 /* Keep a count of the synchronous opens in the znode */ 184 if (flag & (FSYNC | FDSYNC)) 185 atomic_inc_32(&zp->z_sync_cnt); 186 187 return (0); 188 } 189 190 /* ARGSUSED */ 191 static int 192 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 193 caller_context_t *ct) 194 { 195 znode_t *zp = VTOZ(vp); 196 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 197 198 /* 199 * Clean up any locks held by this process on the vp. 200 */ 201 cleanlocks(vp, ddi_get_pid(), 0); 202 cleanshares(vp, ddi_get_pid()); 203 204 ZFS_ENTER(zfsvfs); 205 ZFS_VERIFY_ZP(zp); 206 207 dprintf("zfs_close called \n"); 208 /* Decrement the synchronous opens in the znode */ 209 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 210 atomic_dec_32(&zp->z_sync_cnt); 211 212 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 213 ZTOV(zp)->v_type == VREG && 214 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 215 zp->z_phys->zp_size > 0) 216 VERIFY(fs_vscan(vp, cr, 1) == 0); 217 218 ZFS_EXIT(zfsvfs); 219 return (0); 220 } 221 222 #ifdef PORT_NETBSD 223 /* 224 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 225 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 226 */ 227 static int 228 zfs_holey(vnode_t *vp, u_long cmd, offset_t *off) 229 { 230 znode_t *zp = VTOZ(vp); 231 uint64_t noff = (uint64_t)*off; /* new offset */ 232 uint64_t file_sz; 233 int error; 234 boolean_t hole; 235 236 file_sz = zp->z_phys->zp_size; 237 if (noff >= file_sz) { 238 return (ENXIO); 239 } 240 241 if (cmd == _FIO_SEEK_HOLE) 242 hole = B_TRUE; 243 else 244 hole = B_FALSE; 245 246 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 247 248 /* end of file? */ 249 if ((error == ESRCH) || (noff > file_sz)) { 250 /* 251 * Handle the virtual hole at the end of file. 252 */ 253 if (hole) { 254 *off = file_sz; 255 return (0); 256 } 257 return (ENXIO); 258 } 259 260 if (noff < *off) 261 return (error); 262 *off = noff; 263 return (error); 264 } 265 #endif /* PORT_NETBSD */ 266 267 static int 268 zfs_ioctl(vnode_t *vp, u_long com, intptr_t data, int flag, cred_t *cred, 269 int *rvalp, caller_context_t *ct) 270 { 271 offset_t off; 272 int error; 273 zfsvfs_t *zfsvfs; 274 znode_t *zp; 275 276 switch (com) { 277 case _FIOFFS: 278 return (0); 279 280 /* 281 * The following two ioctls are used by bfu. Faking out, 282 * necessary to avoid bfu errors. 283 */ 284 case _FIOGDIO: 285 case _FIOSDIO: 286 return (0); 287 #ifdef PORT_NETBSD /* XXX NetBSD Do we support holes in files ? */ 288 case _FIO_SEEK_DATA: 289 case _FIO_SEEK_HOLE: 290 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 291 return (EFAULT); 292 293 zp = VTOZ(vp); 294 zfsvfs = zp->z_zfsvfs; 295 ZFS_ENTER(zfsvfs); 296 ZFS_VERIFY_ZP(zp); 297 298 /* offset parameter is in/out */ 299 error = zfs_holey(vp, com, &off); 300 ZFS_EXIT(zfsvfs); 301 if (error) 302 return (error); 303 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 304 return (EFAULT); 305 return (0); 306 #endif 307 } 308 309 return (ENOTTY); 310 } 311 312 #ifdef PORT_NETBSD 313 /* 314 * When a file is memory mapped, we must keep the IO data synchronized 315 * between the DMU cache and the memory mapped pages. What this means: 316 * 317 * On Write: If we find a memory mapped page, we write to *both* 318 * the page and the dmu buffer. 319 */ 320 static void 321 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 322 { 323 int64_t off; 324 325 off = start & PAGEOFFSET; 326 dirbytes = 0; 327 VM_OBJECT_LOCK(obj); 328 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 329 page_t *pp; 330 uint64_t nbytes = MIN(PAGESIZE - off, len); 331 332 if (pp = page_lookup(vp, start, SE_SHARED)) { 333 caddr_t va; 334 335 va = zfs_map_page(pp, S_WRITE); 336 (void) dmu_read(os, oid, start+off, nbytes, va+off, 337 DMU_READ_PREFETCH); 338 zfs_unmap_page(pp, va); 339 page_unlock(pp); 340 } 341 len -= nbytes; 342 off = 0; 343 } 344 345 VM_OBJECT_UNLOCK(obj); 346 if (error == 0 && dirbytes > 0) 347 error = dmu_write_uio(os, zp->z_id, uio, dirbytes, tx); 348 return (error); 349 } 350 351 /* 352 * When a file is memory mapped, we must keep the IO data synchronized 353 * between the DMU cache and the memory mapped pages. What this means: 354 * 355 * On Read: We "read" preferentially from memory mapped pages, 356 * else we default from the dmu buffer. 357 * 358 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 359 * the file is memory mapped. 360 */ 361 static int 362 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 363 { 364 znode_t *zp = VTOZ(vp); 365 objset_t *os = zp->z_zfsvfs->z_os; 366 vm_object_t obj; 367 vm_page_t m; 368 struct sf_buf *sf; 369 int64_t start, off; 370 caddr_t va; 371 int len = nbytes; 372 int error = 0; 373 uint64_t dirbytes; 374 375 ASSERT(vp->v_mount != NULL); 376 obj = vp->v_object; 377 ASSERT(obj != NULL); 378 379 start = uio->uio_loffset; 380 off = start & PAGEOFFSET; 381 dirbytes = 0; 382 VM_OBJECT_LOCK(obj); 383 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 384 uint64_t bytes = MIN(PAGESIZE - off, len); 385 386 again: 387 if ((m = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL && 388 vm_page_is_valid(m, (vm_offset_t)off, bytes)) { 389 if (vm_page_sleep_if_busy(m, FALSE, "zfsmrb")) 390 goto again; 391 vm_page_busy(m); 392 VM_OBJECT_UNLOCK(obj); 393 if (dirbytes > 0) { 394 error = dmu_read_uio(os, zp->z_id, uio, 395 dirbytes); 396 dirbytes = 0; 397 } 398 if (error == 0) { 399 sched_pin(); 400 sf = sf_buf_alloc(m, SFB_CPUPRIVATE); 401 va = (caddr_t)sf_buf_kva(sf); 402 error = uiomove(va + off, bytes, UIO_READ, uio); 403 sf_buf_free(sf); 404 sched_unpin(); 405 } 406 VM_OBJECT_LOCK(obj); 407 vm_page_wakeup(m); 408 } else if (m != NULL && uio->uio_segflg == UIO_NOCOPY) { 409 /* 410 * The code below is here to make sendfile(2) work 411 * correctly with ZFS. As pointed out by ups@ 412 * sendfile(2) should be changed to use VOP_GETPAGES(), 413 * but it pessimize performance of sendfile/UFS, that's 414 * why I handle this special case in ZFS code. 415 */ 416 if (vm_page_sleep_if_busy(m, FALSE, "zfsmrb")) 417 goto again; 418 vm_page_busy(m); 419 VM_OBJECT_UNLOCK(obj); 420 if (dirbytes > 0) { 421 error = dmu_read_uio(os, zp->z_id, uio, 422 dirbytes); 423 dirbytes = 0; 424 } 425 if (error == 0) { 426 sched_pin(); 427 sf = sf_buf_alloc(m, SFB_CPUPRIVATE); 428 va = (caddr_t)sf_buf_kva(sf); 429 error = dmu_read(os, zp->z_id, start + off, 430 bytes, (void *)(va + off)); 431 sf_buf_free(sf); 432 sched_unpin(); 433 } 434 VM_OBJECT_LOCK(obj); 435 vm_page_wakeup(m); 436 if (error == 0) 437 uio->uio_resid -= bytes; 438 } else { 439 dirbytes += bytes; 440 } 441 len -= bytes; 442 off = 0; 443 if (error) 444 break; 445 } 446 VM_OBJECT_UNLOCK(obj); 447 if (error == 0 && dirbytes > 0) 448 error = dmu_read_uio(os, zp->z_id, uio, dirbytes); 449 return (error); 450 } 451 #endif /* PORT_NETBSD */ 452 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 453 454 /* 455 * Read bytes from specified file into supplied buffer. 456 * 457 * IN: vp - vnode of file to be read from. 458 * uio - structure supplying read location, range info, 459 * and return buffer. 460 * ioflag - SYNC flags; used to provide FRSYNC semantics. 461 * cr - credentials of caller. 462 * ct - caller context 463 * 464 * OUT: uio - updated offset and range, buffer filled. 465 * 466 * RETURN: 0 if success 467 * error code if failure 468 * 469 * Side Effects: 470 * vp - atime updated if byte count > 0 471 */ 472 /* ARGSUSED */ 473 static int 474 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 475 { 476 znode_t *zp = VTOZ(vp); 477 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 478 objset_t *os; 479 ssize_t n, nbytes; 480 int error; 481 rl_t *rl; 482 xuio_t *xuio = NULL; 483 484 dprintf("zfs_read called\n"); 485 486 ZFS_ENTER(zfsvfs); 487 ZFS_VERIFY_ZP(zp); 488 os = zfsvfs->z_os; 489 490 if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) { 491 ZFS_EXIT(zfsvfs); 492 return (EACCES); 493 } 494 495 /* 496 * Validate file offset 497 */ 498 if (uio->uio_loffset < (offset_t)0) { 499 ZFS_EXIT(zfsvfs); 500 return (EINVAL); 501 } 502 503 /* 504 * Fasttrack empty reads 505 */ 506 if (uio->uio_resid == 0) { 507 ZFS_EXIT(zfsvfs); 508 return (0); 509 } 510 511 /* 512 * Check for mandatory locks 513 */ 514 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 515 if (error = chklock(vp, FREAD, 516 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 517 ZFS_EXIT(zfsvfs); 518 return (error); 519 } 520 } 521 522 /* 523 * If we're in FRSYNC mode, sync out this znode before reading it. 524 */ 525 if (ioflag & FRSYNC) 526 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 527 528 /* 529 * Lock the range against changes. 530 */ 531 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 532 533 /* 534 * If we are reading past end-of-file we can skip 535 * to the end; but we might still need to set atime. 536 */ 537 if (uio->uio_loffset >= zp->z_phys->zp_size) { 538 error = 0; 539 goto out; 540 } 541 542 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 543 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 544 #ifdef PORT_SOLARIS 545 if ((uio->uio_extflg == UIO_XUIO) && 546 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 547 int nblk; 548 int blksz = zp->z_blksz; 549 uint64_t offset = uio->uio_loffset; 550 551 xuio = (xuio_t *)uio; 552 if ((ISP2(blksz))) { 553 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 554 blksz)) / blksz; 555 } else { 556 ASSERT(offset + n <= blksz); 557 nblk = 1; 558 } 559 (void) dmu_xuio_init(xuio, nblk); 560 561 if (vn_has_cached_data(vp)) { 562 /* 563 * For simplicity, we always allocate a full buffer 564 * even if we only expect to read a portion of a block. 565 */ 566 while (--nblk >= 0) { 567 (void) dmu_xuio_add(xuio, 568 dmu_request_arcbuf(zp->z_dbuf, blksz), 569 0, blksz); 570 } 571 } 572 } 573 #endif 574 while (n > 0) { 575 nbytes = MIN(n, zfs_read_chunk_size - 576 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 577 578 // if (vn_has_cached_data(vp)) 579 // error = mappedread(vp, nbytes, uio); 580 // else 581 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 582 if (error) { 583 /* convert checksum errors into IO errors */ 584 if (error == ECKSUM) 585 error = EIO; 586 break; 587 } 588 589 n -= nbytes; 590 } 591 out: 592 zfs_range_unlock(rl); 593 594 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 595 ZFS_EXIT(zfsvfs); 596 return (error); 597 } 598 599 /* 600 * Fault in the pages of the first n bytes specified by the uio structure. 601 * 1 byte in each page is touched and the uio struct is unmodified. 602 * Any error will exit this routine as this is only a best 603 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 604 */ 605 static void 606 zfs_prefault_write(ssize_t n, struct uio *uio) 607 { 608 struct iovec *iov; 609 ulong_t cnt, incr; 610 caddr_t p; 611 612 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 613 return; 614 615 iov = uio->uio_iov; 616 617 while (n) { 618 cnt = MIN(iov->iov_len, n); 619 if (cnt == 0) { 620 /* empty iov entry */ 621 iov++; 622 continue; 623 } 624 n -= cnt; 625 /* 626 * touch each page in this segment. 627 */ 628 p = iov->iov_base; 629 while (cnt) { 630 if (fubyte(p) == -1) 631 return; 632 incr = MIN(cnt, PAGESIZE); 633 p += incr; 634 cnt -= incr; 635 } 636 /* 637 * touch the last byte in case it straddles a page. 638 */ 639 p--; 640 if (fubyte(p) == -1) 641 return; 642 iov++; 643 } 644 } 645 646 /* 647 * Write the bytes to a file. 648 * 649 * IN: vp - vnode of file to be written to. 650 * uio - structure supplying write location, range info, 651 * and data buffer. 652 * ioflag - IO_APPEND flag set if in append mode. 653 * cr - credentials of caller. 654 * ct - caller context (NFS/CIFS fem monitor only) 655 * 656 * OUT: uio - updated offset and range. 657 * 658 * RETURN: 0 if success 659 * error code if failure 660 * 661 * Timestamps: 662 * vp - ctime|mtime updated if byte count > 0 663 */ 664 /* ARGSUSED */ 665 static int 666 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 667 { 668 znode_t *zp = VTOZ(vp); 669 rlim64_t limit = MAXOFFSET_T; 670 ssize_t start_resid = uio->uio_resid; 671 ssize_t tx_bytes; 672 uint64_t end_size; 673 dmu_tx_t *tx; 674 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 675 zilog_t *zilog; 676 offset_t woff; 677 ssize_t n, nbytes; 678 rl_t *rl; 679 int max_blksz = zfsvfs->z_max_blksz; 680 uint64_t pflags; 681 int error; 682 arc_buf_t *abuf; 683 iovec_t *aiov; 684 xuio_t *xuio = NULL; 685 int i_iov = 0; 686 int iovcnt = uio->uio_iovcnt; 687 iovec_t *iovp = uio->uio_iov; 688 int write_eof; 689 690 dprintf("zfs_write called\n"); 691 692 /* 693 * Fasttrack empty write 694 */ 695 n = start_resid; 696 if (n == 0) 697 return (0); 698 699 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 700 limit = MAXOFFSET_T; 701 702 ZFS_ENTER(zfsvfs); 703 ZFS_VERIFY_ZP(zp); 704 705 /* 706 * If immutable or not appending then return EPERM 707 */ 708 pflags = zp->z_phys->zp_flags; 709 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 710 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 711 (uio->uio_loffset < zp->z_phys->zp_size))) { 712 ZFS_EXIT(zfsvfs); 713 return (EPERM); 714 } 715 716 zilog = zfsvfs->z_log; 717 718 /* 719 * Validate file offset 720 */ 721 woff = ioflag & FAPPEND ? zp->z_phys->zp_size : uio->uio_loffset; 722 if (woff < 0) { 723 ZFS_EXIT(zfsvfs); 724 return (EINVAL); 725 } 726 727 /* 728 * Check for mandatory locks before calling zfs_range_lock() 729 * in order to prevent a deadlock with locks set via fcntl(). 730 */ 731 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 732 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 733 ZFS_EXIT(zfsvfs); 734 return (error); 735 } 736 737 /* 738 * Pre-fault the pages to ensure slow (eg NFS) pages 739 * don't hold up txg. 740 * Skip this if uio contains loaned arc_buf. 741 */ 742 zfs_prefault_write(n, uio); 743 744 /* 745 * If in append mode, set the io offset pointer to eof. 746 */ 747 if (ioflag & IO_APPEND) { 748 /* 749 * Obtain an appending range lock to guarantee file append 750 * semantics. We reset the write offset once we have the lock. 751 */ 752 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 753 woff = rl->r_off; 754 if (rl->r_len == UINT64_MAX) { 755 /* 756 * We overlocked the file because this write will cause 757 * the file block size to increase. 758 * Note that zp_size cannot change with this lock held. 759 */ 760 woff = zp->z_phys->zp_size; 761 } 762 uio->uio_loffset = woff; 763 } else { 764 /* 765 * Note that if the file block size will change as a result of 766 * this write, then this range lock will lock the entire file 767 * so that we can re-write the block safely. 768 */ 769 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 770 } 771 772 if (woff >= limit) { 773 zfs_range_unlock(rl); 774 ZFS_EXIT(zfsvfs); 775 return (EFBIG); 776 } 777 778 if ((woff + n) > limit || woff > (limit - n)) 779 n = limit - woff; 780 781 /* Will this write extend the file length? */ 782 write_eof = (woff + n > zp->z_phys->zp_size); 783 784 end_size = MAX(zp->z_phys->zp_size, woff + n); 785 786 /* 787 * Write the file in reasonable size chunks. Each chunk is written 788 * in a separate transaction; this keeps the intent log records small 789 * and allows us to do more fine-grained space accounting. 790 */ 791 while (n > 0) { 792 abuf = NULL; 793 woff = uio->uio_loffset; 794 again: 795 if (zfs_usergroup_overquota(zfsvfs, 796 B_FALSE, zp->z_phys->zp_uid) || 797 zfs_usergroup_overquota(zfsvfs, 798 B_TRUE, zp->z_phys->zp_gid)) { 799 if (abuf != NULL) 800 dmu_return_arcbuf(abuf); 801 error = EDQUOT; 802 break; 803 } 804 805 if (xuio && abuf == NULL) { 806 ASSERT(i_iov < iovcnt); 807 aiov = &iovp[i_iov]; 808 abuf = dmu_xuio_arcbuf(xuio, i_iov); 809 dmu_xuio_clear(xuio, i_iov); 810 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 811 iovec_t *, aiov, arc_buf_t *, abuf); 812 ASSERT((aiov->iov_base == abuf->b_data) || 813 ((char *)aiov->iov_base - (char *)abuf->b_data + 814 aiov->iov_len == arc_buf_size(abuf))); 815 i_iov++; 816 } else if (abuf == NULL && n >= max_blksz && 817 woff >= zp->z_phys->zp_size && 818 P2PHASE(woff, max_blksz) == 0 && 819 zp->z_blksz == max_blksz) { 820 /* 821 * This write covers a full block. "Borrow" a buffer 822 * from the dmu so that we can fill it before we enter 823 * a transaction. This avoids the possibility of 824 * holding up the transaction if the data copy hangs 825 * up on a pagefault (e.g., from an NFS server mapping). 826 */ 827 size_t cbytes; 828 829 abuf = dmu_request_arcbuf(zp->z_dbuf, max_blksz); 830 ASSERT(abuf != NULL); 831 ASSERT(arc_buf_size(abuf) == max_blksz); 832 if (error = uiocopy(abuf->b_data, max_blksz, 833 UIO_WRITE, uio, &cbytes)) { 834 dmu_return_arcbuf(abuf); 835 break; 836 } 837 ASSERT(cbytes == max_blksz); 838 } 839 840 /* 841 * Start a transaction. 842 */ 843 tx = dmu_tx_create(zfsvfs->z_os); 844 dmu_tx_hold_bonus(tx, zp->z_id); 845 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 846 error = dmu_tx_assign(tx, TXG_NOWAIT); 847 if (error) { 848 if (error == ERESTART) { 849 dmu_tx_wait(tx); 850 dmu_tx_abort(tx); 851 goto again; 852 } 853 dmu_tx_abort(tx); 854 if (abuf != NULL) 855 dmu_return_arcbuf(abuf); 856 break; 857 } 858 859 /* 860 * If zfs_range_lock() over-locked we grow the blocksize 861 * and then reduce the lock range. This will only happen 862 * on the first iteration since zfs_range_reduce() will 863 * shrink down r_len to the appropriate size. 864 */ 865 if (rl->r_len == UINT64_MAX) { 866 uint64_t new_blksz; 867 868 if (zp->z_blksz > max_blksz) { 869 ASSERT(!ISP2(zp->z_blksz)); 870 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 871 } else { 872 new_blksz = MIN(end_size, max_blksz); 873 } 874 zfs_grow_blocksize(zp, new_blksz, tx); 875 zfs_range_reduce(rl, woff, n); 876 } 877 878 /* 879 * XXX - should we really limit each write to z_max_blksz? 880 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 881 */ 882 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 883 884 if (abuf == NULL) { 885 tx_bytes = uio->uio_resid; 886 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, uio, 887 nbytes, tx); 888 tx_bytes -= uio->uio_resid; 889 } else { 890 tx_bytes = nbytes; 891 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 892 /* 893 * If this is not a full block write, but we are 894 * extending the file past EOF and this data starts 895 * block-aligned, use assign_arcbuf(). Otherwise, 896 * write via dmu_write(). 897 */ 898 if (tx_bytes < max_blksz && (!write_eof || 899 aiov->iov_base != abuf->b_data)) { 900 ASSERT(xuio); 901 dmu_write(zfsvfs->z_os, zp->z_id, woff, 902 aiov->iov_len, aiov->iov_base, tx); 903 dmu_return_arcbuf(abuf); 904 xuio_stat_wbuf_copied(); 905 } else { 906 ASSERT(xuio || tx_bytes == max_blksz); 907 dmu_assign_arcbuf(zp->z_dbuf, woff, abuf, tx); 908 } 909 ASSERT(tx_bytes <= uio->uio_resid); 910 uioskip(uio, tx_bytes); 911 } 912 #ifdef PORT_SOLARIS 913 if (tx_bytes && vn_has_cached_data(vp)) { 914 update_pages(vp, woff, 915 tx_bytes, zfsvfs->z_os, zp->z_id); 916 } 917 #endif 918 /* 919 * If we made no progress, we're done. If we made even 920 * partial progress, update the znode and ZIL accordingly. 921 */ 922 if (tx_bytes == 0) { 923 dmu_tx_commit(tx); 924 ASSERT(error != 0); 925 break; 926 } 927 928 /* 929 * Clear Set-UID/Set-GID bits on successful write if not 930 * privileged and at least one of the excute bits is set. 931 * 932 * It would be nice to to this after all writes have 933 * been done, but that would still expose the ISUID/ISGID 934 * to another app after the partial write is committed. 935 * 936 * Note: we don't call zfs_fuid_map_id() here because 937 * user 0 is not an ephemeral uid. 938 */ 939 mutex_enter(&zp->z_acl_lock); 940 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 941 (S_IXUSR >> 6))) != 0 && 942 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 943 secpolicy_vnode_setid_retain(cr, (zp->z_phys->zp_mode & S_ISUID) != 0 && zp->z_phys->zp_uid == 0) != 0) { 944 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 945 } 946 mutex_exit(&zp->z_acl_lock); 947 948 /* 949 * Update time stamp. NOTE: This marks the bonus buffer as 950 * dirty, so we don't have to do it again for zp_size. 951 */ 952 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 953 954 /* 955 * Update the file size (zp_size) if it has changed; 956 * account for possible concurrent updates. 957 */ 958 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 959 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 960 uio->uio_loffset); 961 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 962 dmu_tx_commit(tx); 963 964 if (error != 0) 965 break; 966 ASSERT(tx_bytes == nbytes); 967 n -= nbytes; 968 } 969 970 zfs_range_unlock(rl); 971 972 /* 973 * If we're in replay mode, or we made no progress, return error. 974 * Otherwise, it's at least a partial write, so it's successful. 975 */ 976 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 977 ZFS_EXIT(zfsvfs); 978 return (error); 979 } 980 981 if (ioflag & (FSYNC | FDSYNC)) 982 zil_commit(zilog, zp->z_last_itx, zp->z_id); 983 984 ZFS_EXIT(zfsvfs); 985 986 return (0); 987 } 988 989 void 990 zfs_get_done(zgd_t *zgd, int error) 991 { 992 znode_t *zp = zgd->zgd_private; 993 objset_t *os = zp->z_zfsvfs->z_os; 994 995 if (zgd->zgd_db) 996 dmu_buf_rele(zgd->zgd_db, zgd); 997 998 zfs_range_unlock(zgd->zgd_rl); 999 1000 /* 1001 * Release the vnode asynchronously as we currently have the 1002 * txg stopped from syncing. 1003 */ 1004 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1005 1006 if (error == 0 && zgd->zgd_bp) 1007 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1008 1009 kmem_free(zgd, sizeof (zgd_t)); 1010 } 1011 1012 #ifdef DEBUG 1013 static int zil_fault_io = 0; 1014 #endif 1015 1016 /* 1017 * Get data to generate a TX_WRITE intent log record. 1018 */ 1019 int 1020 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1021 { 1022 zfsvfs_t *zfsvfs = arg; 1023 objset_t *os = zfsvfs->z_os; 1024 znode_t *zp; 1025 uint64_t object = lr->lr_foid; 1026 uint64_t offset = lr->lr_offset; 1027 uint64_t size = lr->lr_length; 1028 blkptr_t *bp = &lr->lr_blkptr; 1029 dmu_buf_t *db; 1030 zgd_t *zgd; 1031 int error = 0; 1032 1033 ASSERT(zio != NULL); 1034 ASSERT(size != 0); 1035 1036 /* 1037 * Nothing to do if the file has been removed 1038 */ 1039 if (zfs_zget(zfsvfs, object, &zp) != 0) 1040 return (ENOENT); 1041 if (zp->z_unlinked) { 1042 /* 1043 * Release the vnode asynchronously as we currently have the 1044 * txg stopped from syncing. 1045 */ 1046 VN_RELE_ASYNC(ZTOV(zp), 1047 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1048 return (ENOENT); 1049 } 1050 1051 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1052 zgd->zgd_zilog = zfsvfs->z_log; 1053 zgd->zgd_private = zp; 1054 1055 /* 1056 * Write records come in two flavors: immediate and indirect. 1057 * For small writes it's cheaper to store the data with the 1058 * log record (immediate); for large writes it's cheaper to 1059 * sync the data and get a pointer to it (indirect) so that 1060 * we don't have to write the data twice. 1061 */ 1062 if (buf != NULL) { /* immediate write */ 1063 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1064 /* test for truncation needs to be done while range locked */ 1065 if (offset >= zp->z_phys->zp_size) { 1066 error = ENOENT; 1067 } else { 1068 error = dmu_read(os, object, offset, size, buf, 1069 DMU_READ_NO_PREFETCH); 1070 } 1071 ASSERT(error == 0 || error == ENOENT); 1072 } else { /* indirect write */ 1073 /* 1074 * Have to lock the whole block to ensure when it's 1075 * written out and it's checksum is being calculated 1076 * that no one can change the data. We need to re-check 1077 * blocksize after we get the lock in case it's changed! 1078 */ 1079 for (;;) { 1080 uint64_t blkoff; 1081 size = zp->z_blksz; 1082 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1083 offset -= blkoff; 1084 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1085 RL_READER); 1086 if (zp->z_blksz == size) 1087 break; 1088 offset += blkoff; 1089 zfs_range_unlock(zgd->zgd_rl); 1090 } 1091 /* test for truncation needs to be done while range locked */ 1092 if (lr->lr_offset >= zp->z_phys->zp_size) 1093 error = ENOENT; 1094 #ifdef DEBUG 1095 if (zil_fault_io) { 1096 error = EIO; 1097 zil_fault_io = 0; 1098 } 1099 #endif 1100 if (error == 0) 1101 error = dmu_buf_hold(os, object, offset, zgd, &db); 1102 1103 if (error == 0) { 1104 zgd->zgd_db = db; 1105 zgd->zgd_bp = bp; 1106 1107 ASSERT(db->db_offset == offset); 1108 ASSERT(db->db_size == size); 1109 1110 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1111 zfs_get_done, zgd); 1112 ASSERT(error || lr->lr_length <= zp->z_blksz); 1113 1114 /* 1115 * On success, we need to wait for the write I/O 1116 * initiated by dmu_sync() to complete before we can 1117 * release this dbuf. We will finish everything up 1118 * in the zfs_get_done() callback. 1119 */ 1120 if (error == 0) 1121 return (0); 1122 1123 if (error == EALREADY) { 1124 lr->lr_common.lrc_txtype = TX_WRITE2; 1125 error = 0; 1126 } 1127 } 1128 } 1129 1130 zfs_get_done(zgd, error); 1131 1132 return (error); 1133 } 1134 1135 /*ARGSUSED*/ 1136 static int 1137 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1138 caller_context_t *ct) 1139 { 1140 znode_t *zp = VTOZ(vp); 1141 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1142 int error; 1143 1144 ZFS_ENTER(zfsvfs); 1145 ZFS_VERIFY_ZP(zp); 1146 1147 if (flag & V_ACE_MASK) 1148 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1149 else 1150 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1151 1152 ZFS_EXIT(zfsvfs); 1153 return (error); 1154 } 1155 1156 /* 1157 * If vnode is for a device return a specfs vnode instead. 1158 */ 1159 static int 1160 specvp_check(vnode_t **vpp, cred_t *cr) 1161 { 1162 int error = 0; 1163 1164 if (IS_DEVVP(*vpp)) { 1165 struct vnode *svp; 1166 1167 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1168 VN_RELE(*vpp); 1169 if (svp == NULL) 1170 error = ENOSYS; 1171 *vpp = svp; 1172 } 1173 return (error); 1174 } 1175 1176 1177 /* 1178 * Lookup an entry in a directory, or an extended attribute directory. 1179 * If it exists, return a held vnode reference for it. 1180 * 1181 * IN: dvp - vnode of directory to search. 1182 * nm - name of entry to lookup. 1183 * pnp - full pathname to lookup [UNUSED]. 1184 * flags - LOOKUP_XATTR set if looking for an attribute. 1185 * rdir - root directory vnode [UNUSED]. 1186 * cr - credentials of caller. 1187 * ct - caller context 1188 * direntflags - directory lookup flags 1189 * realpnp - returned pathname. 1190 * 1191 * OUT: vpp - vnode of located entry, NULL if not found. 1192 * 1193 * RETURN: 0 if success 1194 * error code if failure 1195 * 1196 * Timestamps: 1197 * NA 1198 */ 1199 /* ARGSUSED */ 1200 static int 1201 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1202 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1203 int *direntflags, pathname_t *realpnp) 1204 { 1205 znode_t *zdp = VTOZ(dvp); 1206 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1207 int error = 0; 1208 1209 /* fast path */ 1210 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1211 1212 if (dvp->v_type != VDIR) { 1213 return (ENOTDIR); 1214 } else if (zdp->z_dbuf == NULL) { 1215 return (EIO); 1216 } 1217 1218 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1219 error = zfs_fastaccesschk_execute(zdp, cr); 1220 if (!error) { 1221 *vpp = dvp; 1222 VN_HOLD(*vpp); 1223 return (0); 1224 } 1225 return (error); 1226 } else { 1227 vnode_t *tvp = dnlc_lookup(dvp, nm); 1228 1229 if (tvp) { 1230 error = zfs_fastaccesschk_execute(zdp, cr); 1231 if (error) { 1232 VN_RELE(tvp); 1233 return (error); 1234 } 1235 if (tvp == DNLC_NO_VNODE) { 1236 VN_RELE(tvp); 1237 return (ENOENT); 1238 } else { 1239 *vpp = tvp; 1240 return (specvp_check(vpp, cr)); 1241 } 1242 } 1243 } 1244 } 1245 1246 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1247 1248 ZFS_ENTER(zfsvfs); 1249 ZFS_VERIFY_ZP(zdp); 1250 1251 *vpp = NULL; 1252 1253 if (flags & LOOKUP_XATTR) { 1254 #ifdef TODO 1255 /* 1256 * If the xattr property is off, refuse the lookup request. 1257 */ 1258 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1259 ZFS_EXIT(zfsvfs); 1260 return (EINVAL); 1261 } 1262 #endif 1263 1264 /* 1265 * We don't allow recursive attributes.. 1266 * Maybe someday we will. 1267 */ 1268 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1269 ZFS_EXIT(zfsvfs); 1270 return (EINVAL); 1271 } 1272 1273 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1274 ZFS_EXIT(zfsvfs); 1275 return (error); 1276 } 1277 1278 /* 1279 * Do we have permission to get into attribute directory? 1280 */ 1281 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1282 B_FALSE, cr)) { 1283 VN_RELE(*vpp); 1284 *vpp = NULL; 1285 } 1286 1287 ZFS_EXIT(zfsvfs); 1288 return (error); 1289 } 1290 1291 if (dvp->v_type != VDIR) { 1292 ZFS_EXIT(zfsvfs); 1293 return (ENOTDIR); 1294 } 1295 1296 /* 1297 * Check accessibility of directory. 1298 */ 1299 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1300 ZFS_EXIT(zfsvfs); 1301 return (error); 1302 } 1303 1304 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1305 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1306 ZFS_EXIT(zfsvfs); 1307 return (EILSEQ); 1308 } 1309 1310 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1311 if (error == 0) 1312 error = specvp_check(vpp, cr); 1313 1314 ZFS_EXIT(zfsvfs); 1315 return (error); 1316 } 1317 1318 /* 1319 * Attempt to create a new entry in a directory. If the entry 1320 * already exists, truncate the file if permissible, else return 1321 * an error. Return the vp of the created or trunc'd file. 1322 * 1323 * IN: dvp - vnode of directory to put new file entry in. 1324 * name - name of new file entry. 1325 * vap - attributes of new file. 1326 * excl - flag indicating exclusive or non-exclusive mode. 1327 * mode - mode to open file with. 1328 * cr - credentials of caller. 1329 * flag - large file flag [UNUSED]. 1330 * ct - caller context 1331 * vsecp - ACL to be set 1332 * 1333 * OUT: vpp - vnode of created or trunc'd entry. 1334 * 1335 * RETURN: 0 if success 1336 * error code if failure 1337 * 1338 * Timestamps: 1339 * dvp - ctime|mtime updated if new entry created 1340 * vp - ctime|mtime always, atime if new 1341 */ 1342 1343 /* ARGSUSED */ 1344 static int 1345 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, int excl, int mode, 1346 vnode_t **vpp, cred_t *cr) 1347 { 1348 znode_t *zp, *dzp = VTOZ(dvp); 1349 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1350 zilog_t *zilog; 1351 objset_t *os; 1352 zfs_dirlock_t *dl; 1353 dmu_tx_t *tx; 1354 int error; 1355 void *vsecp = NULL; 1356 int flag = 0; 1357 zfs_acl_ids_t acl_ids; 1358 boolean_t fuid_dirtied; 1359 1360 dprintf("zfs_create called\n"); 1361 /* 1362 * If we have an ephemeral id, ACL, or XVATTR then 1363 * make sure file system is at proper version 1364 */ 1365 1366 if (zfsvfs->z_use_fuids == B_FALSE && 1367 (vsecp || (vap->va_mask & AT_XVATTR) || 1368 IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr)))) 1369 return (EINVAL); 1370 1371 ZFS_ENTER(zfsvfs); 1372 ZFS_VERIFY_ZP(dzp); 1373 os = zfsvfs->z_os; 1374 zilog = zfsvfs->z_log; 1375 1376 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1377 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1378 ZFS_EXIT(zfsvfs); 1379 return (EILSEQ); 1380 } 1381 1382 if (vap->va_mask & AT_XVATTR) { 1383 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1384 crgetuid(cr), cr, vap->va_type)) != 0) { 1385 ZFS_EXIT(zfsvfs); 1386 return (error); 1387 } 1388 } 1389 top: 1390 *vpp = NULL; 1391 1392 if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr)) 1393 vap->va_mode &= ~S_ISVTX; 1394 1395 if (*name == '\0') { 1396 /* 1397 * Null component name refers to the directory itself. 1398 */ 1399 VN_HOLD(dvp); 1400 zp = dzp; 1401 dl = NULL; 1402 error = 0; 1403 } else { 1404 /* possible VN_HOLD(zp) */ 1405 int zflg = 0; 1406 1407 if (flag & FIGNORECASE) 1408 zflg |= ZCILOOK; 1409 1410 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1411 NULL, NULL); 1412 if (error) { 1413 if (strcmp(name, "..") == 0) 1414 error = EISDIR; 1415 ZFS_EXIT(zfsvfs); 1416 return (error); 1417 } 1418 } 1419 if (zp == NULL) { 1420 uint64_t txtype; 1421 1422 /* 1423 * Create a new file object and update the directory 1424 * to reference it. 1425 */ 1426 error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr); 1427 if (error) { 1428 goto out; 1429 } 1430 1431 /* 1432 * We only support the creation of regular files in 1433 * extended attribute directories. 1434 */ 1435 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1436 (vap->va_type != VREG)) { 1437 error = EINVAL; 1438 goto out; 1439 } 1440 1441 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1442 &acl_ids)) != 0) 1443 goto out; 1444 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1445 zfs_acl_ids_free(&acl_ids); 1446 error = EDQUOT; 1447 goto out; 1448 } 1449 1450 tx = dmu_tx_create(os); 1451 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1452 fuid_dirtied = zfsvfs->z_fuid_dirty; 1453 if (fuid_dirtied) 1454 zfs_fuid_txhold(zfsvfs, tx); 1455 dmu_tx_hold_bonus(tx, dzp->z_id); 1456 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1457 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1458 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1459 0, SPA_MAXBLOCKSIZE); 1460 } 1461 error = dmu_tx_assign(tx, TXG_NOWAIT); 1462 if (error) { 1463 zfs_acl_ids_free(&acl_ids); 1464 zfs_dirent_unlock(dl); 1465 if (error == ERESTART) { 1466 dmu_tx_wait(tx); 1467 dmu_tx_abort(tx); 1468 goto top; 1469 } 1470 dmu_tx_abort(tx); 1471 ZFS_EXIT(zfsvfs); 1472 return (error); 1473 } 1474 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1475 1476 if (fuid_dirtied) 1477 zfs_fuid_sync(zfsvfs, tx); 1478 1479 (void) zfs_link_create(dl, zp, tx, ZNEW); 1480 1481 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1482 if (flag & FIGNORECASE) 1483 txtype |= TX_CI; 1484 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1485 vsecp, acl_ids.z_fuidp, vap); 1486 zfs_acl_ids_free(&acl_ids); 1487 dmu_tx_commit(tx); 1488 } else { 1489 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1490 1491 /* 1492 * A directory entry already exists for this name. 1493 */ 1494 /* 1495 * Can't truncate an existing file if in exclusive mode. 1496 */ 1497 if (excl == EXCL) { 1498 error = EEXIST; 1499 goto out; 1500 } 1501 /* 1502 * Can't open a directory for writing. 1503 */ 1504 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1505 error = EISDIR; 1506 goto out; 1507 } 1508 /* 1509 * Verify requested access to file. 1510 */ 1511 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1512 goto out; 1513 } 1514 1515 mutex_enter(&dzp->z_lock); 1516 dzp->z_seq++; 1517 mutex_exit(&dzp->z_lock); 1518 1519 /* 1520 * Truncate regular files if requested. 1521 */ 1522 if ((ZTOV(zp)->v_type == VREG) && 1523 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1524 /* we can't hold any locks when calling zfs_freesp() */ 1525 zfs_dirent_unlock(dl); 1526 dl = NULL; 1527 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1528 if (error == 0) { 1529 vnevent_create(ZTOV(zp), NULL); 1530 } 1531 } 1532 } 1533 out: 1534 if (dl) 1535 zfs_dirent_unlock(dl); 1536 1537 if (error) { 1538 if (zp) 1539 VN_RELE(ZTOV(zp)); 1540 } else { 1541 *vpp = ZTOV(zp); 1542 error = specvp_check(vpp, cr); 1543 } 1544 1545 ZFS_EXIT(zfsvfs); 1546 return (error); 1547 } 1548 1549 /* 1550 * Remove an entry from a directory. 1551 * 1552 * IN: dvp - vnode of directory to remove entry from. 1553 * name - name of entry to remove. 1554 * cr - credentials of caller. 1555 * ct - caller context 1556 * flags - case flags 1557 * 1558 * RETURN: 0 if success 1559 * error code if failure 1560 * 1561 * Timestamps: 1562 * dvp - ctime|mtime 1563 * vp - ctime (if nlink > 0) 1564 */ 1565 /*ARGSUSED*/ 1566 static int 1567 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1568 int flags) 1569 { 1570 znode_t *zp, *dzp = VTOZ(dvp); 1571 znode_t *xzp = NULL; 1572 vnode_t *vp; 1573 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1574 zilog_t *zilog; 1575 uint64_t acl_obj, xattr_obj; 1576 zfs_dirlock_t *dl; 1577 dmu_tx_t *tx; 1578 boolean_t may_delete_now, delete_now = FALSE; 1579 boolean_t unlinked, toobig = FALSE; 1580 uint64_t txtype; 1581 pathname_t *realnmp = NULL; 1582 pathname_t realnm; 1583 int error; 1584 int zflg = ZEXISTS; 1585 1586 dprintf("zfs_remove called\n"); 1587 1588 ZFS_ENTER(zfsvfs); 1589 ZFS_VERIFY_ZP(dzp); 1590 zilog = zfsvfs->z_log; 1591 1592 if (flags & FIGNORECASE) { 1593 zflg |= ZCILOOK; 1594 pn_alloc(&realnm); 1595 realnmp = &realnm; 1596 } 1597 1598 top: 1599 /* 1600 * Attempt to lock directory; fail if entry doesn't exist. 1601 */ 1602 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1603 NULL, realnmp)) { 1604 if (realnmp) 1605 pn_free(realnmp); 1606 ZFS_EXIT(zfsvfs); 1607 return (error); 1608 } 1609 1610 vp = ZTOV(zp); 1611 1612 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1613 goto out; 1614 } 1615 1616 /* 1617 * Need to use rmdir for removing directories. 1618 */ 1619 if (vp->v_type == VDIR) { 1620 error = EPERM; 1621 goto out; 1622 } 1623 1624 vnevent_remove(vp, dvp, name, ct); 1625 1626 if (realnmp) 1627 dnlc_remove(dvp, realnmp->pn_buf); 1628 else 1629 dnlc_remove(dvp, name); 1630 1631 may_delete_now = FALSE; 1632 1633 /* 1634 * We may delete the znode now, or we may put it in the unlinked set; 1635 * it depends on whether we're the last link, and on whether there are 1636 * other holds on the vnode. So we dmu_tx_hold() the right things to 1637 * allow for either case. 1638 */ 1639 tx = dmu_tx_create(zfsvfs->z_os); 1640 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1641 dmu_tx_hold_bonus(tx, zp->z_id); 1642 if (may_delete_now) { 1643 toobig = 1644 zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1645 /* if the file is too big, only hold_free a token amount */ 1646 dmu_tx_hold_free(tx, zp->z_id, 0, 1647 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1648 } 1649 1650 /* are there any extended attributes? */ 1651 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1652 /* XXX - do we need this if we are deleting? */ 1653 dmu_tx_hold_bonus(tx, xattr_obj); 1654 } 1655 1656 /* are there any additional acls */ 1657 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1658 may_delete_now) 1659 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1660 1661 /* charge as an update -- would be nice not to charge at all */ 1662 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1663 1664 error = dmu_tx_assign(tx, TXG_NOWAIT); 1665 if (error) { 1666 zfs_dirent_unlock(dl); 1667 VN_RELE(vp); 1668 if (error == ERESTART) { 1669 dmu_tx_wait(tx); 1670 dmu_tx_abort(tx); 1671 goto top; 1672 } 1673 if (realnmp) 1674 pn_free(realnmp); 1675 dmu_tx_abort(tx); 1676 ZFS_EXIT(zfsvfs); 1677 return (error); 1678 } 1679 1680 /* 1681 * Remove the directory entry. 1682 */ 1683 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1684 1685 if (error) { 1686 dmu_tx_commit(tx); 1687 goto out; 1688 } 1689 1690 if (0 && unlinked) { 1691 KASSERT(0); /* NetBSD: must now happen now */ 1692 VI_LOCK(vp); 1693 delete_now = may_delete_now && !toobig && 1694 vp->v_count == 1 && !vn_has_cached_data(vp) && 1695 zp->z_phys->zp_xattr == xattr_obj && 1696 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1697 VI_UNLOCK(vp); 1698 } 1699 1700 if (delete_now) { 1701 KASSERT(0); /* NetBSD: must now happen now */ 1702 if (zp->z_phys->zp_xattr) { 1703 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1704 ASSERT3U(error, ==, 0); 1705 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1706 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1707 mutex_enter(&xzp->z_lock); 1708 xzp->z_unlinked = 1; 1709 xzp->z_phys->zp_links = 0; 1710 mutex_exit(&xzp->z_lock); 1711 zfs_unlinked_add(xzp, tx); 1712 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1713 } 1714 mutex_enter(&zp->z_lock); 1715 VI_LOCK(vp); 1716 vp->v_count--; 1717 ASSERT3U(vp->v_count, ==, 0); 1718 VI_UNLOCK(vp); 1719 mutex_exit(&zp->z_lock); 1720 zfs_znode_delete(zp, tx); 1721 } else if (unlinked) { 1722 zfs_unlinked_add(zp, tx); 1723 } 1724 1725 txtype = TX_REMOVE; 1726 if (flags & FIGNORECASE) 1727 txtype |= TX_CI; 1728 zfs_log_remove(zilog, tx, txtype, dzp, name); 1729 1730 dmu_tx_commit(tx); 1731 out: 1732 if (realnmp) 1733 pn_free(realnmp); 1734 1735 zfs_dirent_unlock(dl); 1736 1737 if (!delete_now) { 1738 VN_RELE(vp); 1739 } else if (xzp) { 1740 /* this rele is delayed to prevent nesting transactions */ 1741 VN_RELE(ZTOV(xzp)); 1742 } 1743 1744 ZFS_EXIT(zfsvfs); 1745 return (error); 1746 } 1747 1748 /* 1749 * Create a new directory and insert it into dvp using the name 1750 * provided. Return a pointer to the inserted directory. 1751 * 1752 * IN: dvp - vnode of directory to add subdir to. 1753 * dirname - name of new directory. 1754 * vap - attributes of new directory. 1755 * cr - credentials of caller. 1756 * ct - caller context 1757 * vsecp - ACL to be set 1758 * 1759 * OUT: vpp - vnode of created directory. 1760 * 1761 * RETURN: 0 if success 1762 * error code if failure 1763 * 1764 * Timestamps: 1765 * dvp - ctime|mtime updated 1766 * vp - ctime|mtime|atime updated 1767 */ 1768 /*ARGSUSED*/ 1769 static int 1770 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1771 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1772 { 1773 znode_t *zp, *dzp = VTOZ(dvp); 1774 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1775 zilog_t *zilog; 1776 zfs_dirlock_t *dl; 1777 uint64_t txtype; 1778 dmu_tx_t *tx; 1779 int error; 1780 int zf = ZNEW; 1781 zfs_acl_ids_t acl_ids; 1782 boolean_t fuid_dirtied; 1783 1784 ASSERT(vap->va_type == VDIR); 1785 1786 /* 1787 * If we have an ephemeral id, ACL, or XVATTR then 1788 * make sure file system is at proper version 1789 */ 1790 1791 if (zfsvfs->z_use_fuids == B_FALSE && 1792 (vsecp || (vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(crgetuid(cr))|| 1793 IS_EPHEMERAL(crgetgid(cr)))) 1794 return (EINVAL); 1795 1796 ZFS_ENTER(zfsvfs); 1797 ZFS_VERIFY_ZP(dzp); 1798 zilog = zfsvfs->z_log; 1799 1800 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1801 ZFS_EXIT(zfsvfs); 1802 return (EINVAL); 1803 } 1804 1805 if (zfsvfs->z_utf8 && u8_validate(dirname, 1806 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1807 ZFS_EXIT(zfsvfs); 1808 return (EILSEQ); 1809 } 1810 if (flags & FIGNORECASE) 1811 zf |= ZCILOOK; 1812 1813 if (vap->va_mask & AT_XVATTR) 1814 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1815 crgetuid(cr), cr, vap->va_type)) != 0) { 1816 ZFS_EXIT(zfsvfs); 1817 return (error); 1818 } 1819 1820 /* 1821 * First make sure the new directory doesn't exist. 1822 */ 1823 top: 1824 *vpp = NULL; 1825 1826 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1827 NULL, NULL)) { 1828 ZFS_EXIT(zfsvfs); 1829 return (error); 1830 } 1831 1832 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1833 zfs_dirent_unlock(dl); 1834 ZFS_EXIT(zfsvfs); 1835 return (error); 1836 } 1837 1838 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1839 &acl_ids)) != 0) { 1840 zfs_dirent_unlock(dl); 1841 ZFS_EXIT(zfsvfs); 1842 return (error); 1843 } 1844 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1845 zfs_acl_ids_free(&acl_ids); 1846 zfs_dirent_unlock(dl); 1847 ZFS_EXIT(zfsvfs); 1848 return (EDQUOT); 1849 } 1850 1851 /* 1852 * Add a new entry to the directory. 1853 */ 1854 tx = dmu_tx_create(zfsvfs->z_os); 1855 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1856 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1857 fuid_dirtied = zfsvfs->z_fuid_dirty; 1858 if (fuid_dirtied) 1859 zfs_fuid_txhold(zfsvfs, tx); 1860 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 1861 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1862 0, SPA_MAXBLOCKSIZE); 1863 error = dmu_tx_assign(tx, TXG_NOWAIT); 1864 if (error) { 1865 zfs_acl_ids_free(&acl_ids); 1866 zfs_dirent_unlock(dl); 1867 if (error == ERESTART) { 1868 dmu_tx_wait(tx); 1869 dmu_tx_abort(tx); 1870 goto top; 1871 } 1872 dmu_tx_abort(tx); 1873 ZFS_EXIT(zfsvfs); 1874 return (error); 1875 } 1876 1877 /* 1878 * Create new node. 1879 */ 1880 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1881 1882 if (fuid_dirtied) 1883 zfs_fuid_sync(zfsvfs, tx); 1884 /* 1885 * Now put new name in parent dir. 1886 */ 1887 (void) zfs_link_create(dl, zp, tx, ZNEW); 1888 1889 *vpp = ZTOV(zp); 1890 1891 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1892 if (flags & FIGNORECASE) 1893 txtype |= TX_CI; 1894 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1895 acl_ids.z_fuidp, vap); 1896 1897 zfs_acl_ids_free(&acl_ids); 1898 dmu_tx_commit(tx); 1899 1900 zfs_dirent_unlock(dl); 1901 1902 ZFS_EXIT(zfsvfs); 1903 return (0); 1904 } 1905 1906 /* 1907 * Remove a directory subdir entry. If the current working 1908 * directory is the same as the subdir to be removed, the 1909 * remove will fail. 1910 * 1911 * IN: dvp - vnode of directory to remove from. 1912 * name - name of directory to be removed. 1913 * cwd - vnode of current working directory. 1914 * cr - credentials of caller. 1915 * ct - caller context 1916 * flags - case flags 1917 * 1918 * RETURN: 0 if success 1919 * error code if failure 1920 * 1921 * Timestamps: 1922 * dvp - ctime|mtime updated 1923 */ 1924 /*ARGSUSED*/ 1925 static int 1926 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1927 caller_context_t *ct, int flags) 1928 { 1929 znode_t *dzp = VTOZ(dvp); 1930 znode_t *zp; 1931 vnode_t *vp; 1932 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1933 zilog_t *zilog; 1934 zfs_dirlock_t *dl; 1935 dmu_tx_t *tx; 1936 int error; 1937 int zflg = ZEXISTS; 1938 1939 ZFS_ENTER(zfsvfs); 1940 ZFS_VERIFY_ZP(dzp); 1941 zilog = zfsvfs->z_log; 1942 1943 if (flags & FIGNORECASE) 1944 zflg |= ZCILOOK; 1945 top: 1946 zp = NULL; 1947 1948 /* 1949 * Attempt to lock directory; fail if entry doesn't exist. 1950 */ 1951 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1952 NULL, NULL)) { 1953 ZFS_EXIT(zfsvfs); 1954 return (error); 1955 } 1956 1957 vp = ZTOV(zp); 1958 1959 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1960 goto out; 1961 } 1962 1963 if (vp->v_type != VDIR) { 1964 error = ENOTDIR; 1965 goto out; 1966 } 1967 1968 if (vp == cwd) { 1969 error = EINVAL; 1970 goto out; 1971 } 1972 1973 vnevent_rmdir(vp, dvp, name, ct); 1974 1975 /* 1976 * Grab a lock on the directory to make sure that noone is 1977 * trying to add (or lookup) entries while we are removing it. 1978 */ 1979 rw_enter(&zp->z_name_lock, RW_WRITER); 1980 1981 /* 1982 * Grab a lock on the parent pointer to make sure we play well 1983 * with the treewalk and directory rename code. 1984 */ 1985 rw_enter(&zp->z_parent_lock, RW_WRITER); 1986 1987 tx = dmu_tx_create(zfsvfs->z_os); 1988 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1989 dmu_tx_hold_bonus(tx, zp->z_id); 1990 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1991 error = dmu_tx_assign(tx, TXG_NOWAIT); 1992 if (error) { 1993 rw_exit(&zp->z_parent_lock); 1994 rw_exit(&zp->z_name_lock); 1995 zfs_dirent_unlock(dl); 1996 VN_RELE(vp); 1997 if (error == ERESTART) { 1998 dmu_tx_wait(tx); 1999 dmu_tx_abort(tx); 2000 goto top; 2001 } 2002 dmu_tx_abort(tx); 2003 ZFS_EXIT(zfsvfs); 2004 return (error); 2005 } 2006 2007 /* Purge cache entries, while still holding locks. */ 2008 cache_purge(dvp); 2009 cache_purge(vp); 2010 2011 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2012 2013 if (error == 0) { 2014 uint64_t txtype = TX_RMDIR; 2015 if (flags & FIGNORECASE) 2016 txtype |= TX_CI; 2017 zfs_log_remove(zilog, tx, txtype, dzp, name); 2018 } 2019 2020 dmu_tx_commit(tx); 2021 2022 rw_exit(&zp->z_parent_lock); 2023 rw_exit(&zp->z_name_lock); 2024 out: 2025 zfs_dirent_unlock(dl); 2026 2027 VN_RELE(vp); 2028 2029 ZFS_EXIT(zfsvfs); 2030 return (error); 2031 } 2032 2033 /* 2034 * Read as many directory entries as will fit into the provided 2035 * buffer from the given directory cursor position (specified in 2036 * the uio structure. 2037 * 2038 * IN: vp - vnode of directory to read. 2039 * uio - structure supplying read location, range info, 2040 * and return buffer. 2041 * cr - credentials of caller. 2042 * ct - caller context 2043 * flags - case flags 2044 * 2045 * OUT: uio - updated offset and range, buffer filled. 2046 * eofp - set to true if end-of-file detected. 2047 * 2048 * RETURN: 0 if success 2049 * error code if failure 2050 * 2051 * Timestamps: 2052 * vp - atime updated 2053 * 2054 * Note that the low 4 bits of the cookie returned by zap is always zero. 2055 * This allows us to use the low range for "special" directory entries: 2056 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2057 * we use the offset 2 for the '.zfs' directory. 2058 */ 2059 /* ARGSUSED */ 2060 static int 2061 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, int *ncookies, u_long **cookies) 2062 { 2063 znode_t *zp = VTOZ(vp); 2064 iovec_t *iovp; 2065 edirent_t *eodp; 2066 dirent64_t *odp; 2067 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2068 objset_t *os; 2069 caddr_t outbuf; 2070 size_t bufsize; 2071 zap_cursor_t zc; 2072 zap_attribute_t zap; 2073 uint_t bytes_wanted; 2074 uint64_t offset; /* must be unsigned; checks for < 1 */ 2075 int local_eof; 2076 int outcount; 2077 int error; 2078 uint8_t prefetch; 2079 boolean_t check_sysattrs; 2080 uint8_t type; 2081 int ncooks; 2082 u_long *cooks = NULL; 2083 int flags = 0; 2084 2085 dprintf("zfs_readdir called\n"); 2086 2087 ZFS_ENTER(zfsvfs); 2088 ZFS_VERIFY_ZP(zp); 2089 2090 /* 2091 * If we are not given an eof variable, 2092 * use a local one. 2093 */ 2094 if (eofp == NULL) 2095 eofp = &local_eof; 2096 2097 /* 2098 * Check for valid iov_len. 2099 */ 2100 if (uio->uio_iov->iov_len <= 0) { 2101 ZFS_EXIT(zfsvfs); 2102 return (EINVAL); 2103 } 2104 2105 /* 2106 * Quit if directory has been removed (posix) 2107 */ 2108 if ((*eofp = zp->z_unlinked) != 0) { 2109 ZFS_EXIT(zfsvfs); 2110 return (0); 2111 } 2112 2113 error = 0; 2114 os = zfsvfs->z_os; 2115 offset = uio->uio_loffset; 2116 prefetch = zp->z_zn_prefetch; 2117 2118 /* 2119 * Initialize the iterator cursor. 2120 */ 2121 if (offset <= 3) { 2122 /* 2123 * Start iteration from the beginning of the directory. 2124 */ 2125 zap_cursor_init(&zc, os, zp->z_id); 2126 } else { 2127 /* 2128 * The offset is a serialized cursor. 2129 */ 2130 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2131 } 2132 2133 /* 2134 * Get space to change directory entries into fs independent format. 2135 */ 2136 iovp = uio->uio_iov; 2137 bytes_wanted = iovp->iov_len; 2138 if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace) || uio->uio_iovcnt != 1) { 2139 bufsize = bytes_wanted; 2140 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2141 memset(outbuf, 0, bufsize); 2142 odp = (struct dirent64 *)outbuf; 2143 } else { 2144 bufsize = bytes_wanted; 2145 odp = (struct dirent64 *)iovp->iov_base; 2146 } 2147 eodp = (struct edirent *)odp; 2148 2149 if (ncookies != NULL) { 2150 /* 2151 * Minimum entry size is dirent size and 1 byte for a file name. 2152 */ 2153 ncooks = uio->uio_resid / _DIRENT_MINSIZE(odp); 2154 // sizeof(struct dirent) - sizeof(((struct dirent *)NULL)->d_name) + 1); 2155 cooks = kmem_alloc(ncooks * sizeof(u_long), KM_SLEEP); 2156 2157 memset(cooks, 0, ncooks * sizeof(u_long)); 2158 *cookies = cooks; 2159 *ncookies = ncooks; 2160 } 2161 2162 /* 2163 * If this VFS supports the system attribute view interface; and 2164 * we're looking at an extended attribute directory; and we care 2165 * about normalization conflicts on this vfs; then we must check 2166 * for normalization conflicts with the sysattr name space. 2167 */ 2168 #ifdef TODO 2169 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2170 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2171 (flags & V_RDDIR_ENTFLAGS); 2172 #else 2173 check_sysattrs = 0; 2174 #endif 2175 2176 /* 2177 * Transform to file-system independent format 2178 */ 2179 outcount = 0; 2180 while (outcount < bytes_wanted) { 2181 ino64_t objnum; 2182 ushort_t reclen; 2183 off64_t *next; 2184 2185 /* 2186 * Special case `.', `..', and `.zfs'. 2187 */ 2188 if (offset == 0) { 2189 (void) strcpy(zap.za_name, "."); 2190 zap.za_normalization_conflict = 0; 2191 objnum = zp->z_id; 2192 type = DT_DIR; 2193 } else if (offset == 1) { 2194 (void) strcpy(zap.za_name, ".."); 2195 zap.za_normalization_conflict = 0; 2196 objnum = zp->z_phys->zp_parent; 2197 type = DT_DIR; 2198 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2199 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2200 zap.za_normalization_conflict = 0; 2201 objnum = ZFSCTL_INO_ROOT; 2202 type = DT_DIR; 2203 } else { 2204 /* 2205 * Grab next entry. 2206 */ 2207 if (error = zap_cursor_retrieve(&zc, &zap)) { 2208 if ((*eofp = (error == ENOENT)) != 0) 2209 break; 2210 else 2211 goto update; 2212 } 2213 2214 if (zap.za_integer_length != 8 || 2215 zap.za_num_integers != 1) { 2216 cmn_err(CE_WARN, "zap_readdir: bad directory " 2217 "entry, obj = %lld, offset = %lld\n", 2218 (u_longlong_t)zp->z_id, 2219 (u_longlong_t)offset); 2220 error = ENXIO; 2221 goto update; 2222 } 2223 2224 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2225 /* 2226 * MacOS X can extract the object type here such as: 2227 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2228 */ 2229 type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2230 2231 if (check_sysattrs && !zap.za_normalization_conflict) { 2232 #ifdef TODO 2233 zap.za_normalization_conflict = 2234 xattr_sysattr_casechk(zap.za_name); 2235 #else 2236 panic("%s:%u: TODO", __func__, __LINE__); 2237 #endif 2238 } 2239 } 2240 2241 if (flags & V_RDDIR_ACCFILTER) { 2242 /* 2243 * If we have no access at all, don't include 2244 * this entry in the returned information 2245 */ 2246 znode_t *ezp; 2247 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2248 goto skip_entry; 2249 if (!zfs_has_access(ezp, cr)) { 2250 VN_RELE(ZTOV(ezp)); 2251 goto skip_entry; 2252 } 2253 VN_RELE(ZTOV(ezp)); 2254 } 2255 2256 if (flags & V_RDDIR_ENTFLAGS) 2257 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2258 else 2259 reclen = _DIRENT_RECLEN(odp, strlen(zap.za_name)); 2260 2261 /* 2262 * Will this entry fit in the buffer? 2263 */ 2264 if (outcount + reclen > bufsize) { 2265 /* 2266 * Did we manage to fit anything in the buffer? 2267 */ 2268 if (!outcount) { 2269 error = EINVAL; 2270 goto update; 2271 } 2272 break; 2273 } 2274 if (flags & V_RDDIR_ENTFLAGS) { 2275 /* 2276 * Add extended flag entry: 2277 */ 2278 eodp->ed_ino = objnum; 2279 eodp->ed_reclen = reclen; 2280 /* NOTE: ed_off is the offset for the *next* entry */ 2281 next = &(eodp->ed_off); 2282 eodp->ed_eflags = zap.za_normalization_conflict ? 2283 ED_CASE_CONFLICT : 0; 2284 (void) strncpy(eodp->ed_name, zap.za_name, 2285 EDIRENT_NAMELEN(reclen)); 2286 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2287 } else { 2288 /* 2289 * Add normal entry: 2290 */ 2291 odp->d_ino = objnum; 2292 odp->d_reclen = reclen; 2293 odp->d_namlen = strlen(zap.za_name); 2294 (void) strlcpy(odp->d_name, zap.za_name, odp->d_namlen + 1); 2295 odp->d_type = type; 2296 odp = (dirent64_t *)((intptr_t)odp + reclen); 2297 } 2298 outcount += reclen; 2299 2300 KASSERT(outcount <= bufsize); 2301 2302 /* Prefetch znode */ 2303 if (prefetch) 2304 dmu_prefetch(os, objnum, 0, 0); 2305 2306 skip_entry: 2307 /* 2308 * Move to the next entry, fill in the previous offset. 2309 */ 2310 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2311 zap_cursor_advance(&zc); 2312 offset = zap_cursor_serialize(&zc); 2313 } else { 2314 offset += 1; 2315 } 2316 2317 if (cooks != NULL) { 2318 *cooks++ = offset; 2319 ncooks--; 2320 KASSERT(ncooks >= 0); 2321 } 2322 } 2323 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2324 2325 /* Subtract unused cookies */ 2326 if (ncookies != NULL) 2327 *ncookies -= ncooks; 2328 2329 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace) && uio->uio_iovcnt == 1) { 2330 iovp->iov_base += outcount; 2331 iovp->iov_len -= outcount; 2332 uio->uio_resid -= outcount; 2333 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2334 /* 2335 * Reset the pointer. 2336 */ 2337 offset = uio->uio_loffset; 2338 } 2339 2340 update: 2341 zap_cursor_fini(&zc); 2342 if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace) || uio->uio_iovcnt != 1) 2343 kmem_free(outbuf, bufsize); 2344 2345 if (error == ENOENT) 2346 error = 0; 2347 2348 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2349 2350 uio->uio_loffset = offset; 2351 ZFS_EXIT(zfsvfs); 2352 if (error != 0 && cookies != NULL) { 2353 kmem_free(*cookies, ncooks * sizeof(u_long)); 2354 *cookies = NULL; 2355 *ncookies = 0; 2356 } 2357 return (error); 2358 } 2359 2360 ulong_t zfs_fsync_sync_cnt = 4; 2361 2362 static int 2363 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2364 { 2365 znode_t *zp = VTOZ(vp); 2366 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2367 int error; 2368 2369 error = 0; 2370 2371 dprintf("zfs_fsync called vp %p -- zfsvfs %p\n", vp, zfsvfs); 2372 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2373 2374 ZFS_ENTER(zfsvfs); 2375 ZFS_VERIFY_ZP(zp); 2376 /* 2377 * NetBSD: if the sync is from reclaim or from ioflush, 2378 * push dirty atime now. No need to lock: in the reclaim 2379 * case, everything is single threaded and for ioflush this 2380 * is a lazy writeback. 2381 * 2382 * XXXNETBSD: in the ioflush case, we don't want to push anything 2383 * to disk immediately. We just want to queue the update so it 2384 * will happen "soon". Check this is the case otherwise zfs will 2385 * perform poorly. 2386 */ 2387 if (zp->z_atime_dirty && zp->z_unlinked == 0 && 2388 (syncflag & (FSYNC_RECLAIM | FSYNC_LAZY)) != 0) { 2389 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 2390 2391 dmu_tx_hold_bonus(tx, zp->z_id); 2392 error = dmu_tx_assign(tx, TXG_WAIT); 2393 if (error) { 2394 dmu_tx_abort(tx); 2395 } else { 2396 dmu_buf_will_dirty(zp->z_dbuf, tx); 2397 mutex_enter(&zp->z_lock); 2398 zp->z_atime_dirty = 0; 2399 mutex_exit(&zp->z_lock); 2400 dmu_tx_commit(tx); 2401 } 2402 } 2403 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2404 ZFS_EXIT(zfsvfs); 2405 return (0); 2406 } 2407 2408 2409 /* 2410 * Get the requested file attributes and place them in the provided 2411 * vattr structure. 2412 * 2413 * IN: vp - vnode of file. 2414 * vap - va_mask identifies requested attributes. 2415 * If AT_XVATTR set, then optional attrs are requested 2416 * flags - ATTR_NOACLCHECK (CIFS server context) 2417 * cr - credentials of caller. 2418 * ct - caller context 2419 * 2420 * OUT: vap - attribute values. 2421 * 2422 * RETURN: 0 (always succeeds) 2423 */ 2424 /* ARGSUSED */ 2425 static int 2426 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2427 caller_context_t *ct) 2428 { 2429 znode_t *zp = VTOZ(vp); 2430 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2431 znode_phys_t *pzp; 2432 int error = 0; 2433 uint32_t blksize; 2434 u_longlong_t nblocks; 2435 uint64_t links; 2436 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2437 xoptattr_t *xoap = NULL; 2438 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2439 2440 dprintf("zfs_getattr called\n"); 2441 2442 ZFS_ENTER(zfsvfs); 2443 ZFS_VERIFY_ZP(zp); 2444 pzp = zp->z_phys; 2445 2446 /* 2447 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2448 * Also, if we are the owner don't bother, since owner should 2449 * always be allowed to read basic attributes of file. 2450 */ 2451 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2452 (pzp->zp_uid != crgetuid(cr))) { 2453 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2454 skipaclchk, cr)) { 2455 ZFS_EXIT(zfsvfs); 2456 return (error); 2457 } 2458 } 2459 2460 /* 2461 * Return all attributes. It's cheaper to provide the answer 2462 * than to determine whether we were asked the question. 2463 */ 2464 mutex_enter(&zp->z_lock); 2465 vap->va_type = IFTOVT(pzp->zp_mode); 2466 vap->va_mode = pzp->zp_mode & ~S_IFMT; 2467 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2468 vap->va_nodeid = zp->z_id; 2469 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2470 links = pzp->zp_links + 1; 2471 else 2472 links = pzp->zp_links; 2473 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2474 vap->va_size = pzp->zp_size; 2475 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0]; 2476 // vap->va_fsid = 0; 2477 vap->va_rdev = zfs_cmpldev(pzp->zp_rdev); 2478 vap->va_seq = zp->z_seq; 2479 vap->va_flags = 0; /* FreeBSD: Reset chflags(2) flags. */ 2480 2481 /* 2482 * Add in any requested optional attributes and the create time. 2483 * Also set the corresponding bits in the returned attribute bitmap. 2484 */ 2485 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2486 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2487 xoap->xoa_archive = 2488 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2489 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2490 } 2491 2492 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2493 xoap->xoa_readonly = 2494 ((pzp->zp_flags & ZFS_READONLY) != 0); 2495 XVA_SET_RTN(xvap, XAT_READONLY); 2496 } 2497 2498 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2499 xoap->xoa_system = 2500 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2501 XVA_SET_RTN(xvap, XAT_SYSTEM); 2502 } 2503 2504 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2505 xoap->xoa_hidden = 2506 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2507 XVA_SET_RTN(xvap, XAT_HIDDEN); 2508 } 2509 2510 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2511 xoap->xoa_nounlink = 2512 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2513 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2514 } 2515 2516 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2517 xoap->xoa_immutable = 2518 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2519 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2520 } 2521 2522 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2523 xoap->xoa_appendonly = 2524 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2525 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2526 } 2527 2528 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2529 xoap->xoa_nodump = 2530 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2531 XVA_SET_RTN(xvap, XAT_NODUMP); 2532 } 2533 2534 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2535 xoap->xoa_opaque = 2536 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2537 XVA_SET_RTN(xvap, XAT_OPAQUE); 2538 } 2539 2540 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2541 xoap->xoa_av_quarantined = 2542 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2543 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2544 } 2545 2546 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2547 xoap->xoa_av_modified = 2548 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2549 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2550 } 2551 2552 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2553 vp->v_type == VREG && 2554 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2555 size_t len; 2556 dmu_object_info_t doi; 2557 2558 /* 2559 * Only VREG files have anti-virus scanstamps, so we 2560 * won't conflict with symlinks in the bonus buffer. 2561 */ 2562 dmu_object_info_from_db(zp->z_dbuf, &doi); 2563 len = sizeof (xoap->xoa_av_scanstamp) + 2564 sizeof (znode_phys_t); 2565 if (len <= doi.doi_bonus_size) { 2566 /* 2567 * pzp points to the start of the 2568 * znode_phys_t. pzp + 1 points to the 2569 * first byte after the znode_phys_t. 2570 */ 2571 (void) memcpy(xoap->xoa_av_scanstamp, 2572 pzp + 1, 2573 sizeof (xoap->xoa_av_scanstamp)); 2574 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2575 } 2576 } 2577 2578 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2579 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2580 XVA_SET_RTN(xvap, XAT_CREATETIME); 2581 } 2582 2583 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2584 xoap->xoa_reparse = 2585 ((pzp->zp_flags & ZFS_REPARSE) != 0); 2586 XVA_SET_RTN(xvap, XAT_REPARSE); 2587 } 2588 } 2589 2590 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2591 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2592 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2593 ZFS_TIME_DECODE(&vap->va_birthtime, pzp->zp_crtime); 2594 2595 mutex_exit(&zp->z_lock); 2596 2597 dmu_object_size_from_db(zp->z_dbuf, &blksize, &nblocks); 2598 vap->va_blksize = blksize; 2599 vap->va_bytes = nblocks << 9; /* nblocks * 512 */ 2600 2601 if (zp->z_blksz == 0) { 2602 /* 2603 * Block size hasn't been set; suggest maximal I/O transfers. 2604 */ 2605 vap->va_blksize = zfsvfs->z_max_blksz; 2606 } 2607 2608 ZFS_EXIT(zfsvfs); 2609 return (0); 2610 } 2611 2612 /* 2613 * Set the file attributes to the values contained in the 2614 * vattr structure. 2615 * 2616 * IN: vp - vnode of file to be modified. 2617 * vap - new attribute values. 2618 * If AT_XVATTR set, then optional attrs are being set 2619 * flags - ATTR_UTIME set if non-default time values provided. 2620 * - ATTR_NOACLCHECK (CIFS context only). 2621 * cr - credentials of caller. 2622 * ct - caller context 2623 * 2624 * RETURN: 0 if success 2625 * error code if failure 2626 * 2627 * Timestamps: 2628 * vp - ctime updated, mtime updated if size changed. 2629 */ 2630 /* ARGSUSED */ 2631 static int 2632 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2633 caller_context_t *ct) 2634 { 2635 znode_t *zp = VTOZ(vp); 2636 znode_phys_t *pzp; 2637 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2638 zilog_t *zilog; 2639 dmu_tx_t *tx; 2640 vattr_t oldva; 2641 xvattr_t tmpxvattr; 2642 uint_t mask = vap->va_mask; 2643 uint_t saved_mask; 2644 int trim_mask = 0; 2645 uint64_t new_mode; 2646 uint64_t new_uid, new_gid; 2647 znode_t *attrzp; 2648 int need_policy = FALSE; 2649 int err; 2650 zfs_fuid_info_t *fuidp = NULL; 2651 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2652 xoptattr_t *xoap; 2653 zfs_acl_t *aclp = NULL; 2654 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2655 boolean_t fuid_dirtied = B_FALSE; 2656 2657 dprintf("zfs_setattr called\n"); 2658 2659 if (mask == 0) 2660 return (0); 2661 2662 if (mask & AT_NOSET) 2663 return (EINVAL); 2664 2665 ZFS_ENTER(zfsvfs); 2666 ZFS_VERIFY_ZP(zp); 2667 2668 pzp = zp->z_phys; 2669 zilog = zfsvfs->z_log; 2670 2671 /* 2672 * Make sure that if we have ephemeral uid/gid or xvattr specified 2673 * that file system is at proper version level 2674 */ 2675 2676 if (zfsvfs->z_use_fuids == B_FALSE && 2677 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2678 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2679 (mask & AT_XVATTR))) { 2680 ZFS_EXIT(zfsvfs); 2681 return (EINVAL); 2682 } 2683 2684 if (mask & AT_SIZE && vp->v_type == VDIR) { 2685 ZFS_EXIT(zfsvfs); 2686 return (EISDIR); 2687 } 2688 2689 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2690 ZFS_EXIT(zfsvfs); 2691 return (EINVAL); 2692 } 2693 2694 /* 2695 * If this is an xvattr_t, then get a pointer to the structure of 2696 * optional attributes. If this is NULL, then we have a vattr_t. 2697 */ 2698 xoap = xva_getxoptattr(xvap); 2699 2700 xva_init(&tmpxvattr); 2701 2702 /* 2703 * Immutable files can only alter immutable bit and atime 2704 */ 2705 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2706 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2707 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2708 ZFS_EXIT(zfsvfs); 2709 return (EPERM); 2710 } 2711 2712 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2713 ZFS_EXIT(zfsvfs); 2714 return (EPERM); 2715 } 2716 2717 /* 2718 * Verify timestamps doesn't overflow 32 bits. 2719 * ZFS can handle large timestamps, but 32bit syscalls can't 2720 * handle times greater than 2039. This check should be removed 2721 * once large timestamps are fully supported. 2722 */ 2723 if (mask & (AT_ATIME | AT_MTIME)) { 2724 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2725 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2726 ZFS_EXIT(zfsvfs); 2727 return (EOVERFLOW); 2728 } 2729 } 2730 2731 top: 2732 attrzp = NULL; 2733 2734 /* Can this be moved to before the top label? */ 2735 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2736 ZFS_EXIT(zfsvfs); 2737 return (EROFS); 2738 } 2739 2740 /* 2741 * First validate permissions 2742 */ 2743 if (mask & AT_SIZE) { 2744 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2745 if (err) { 2746 ZFS_EXIT(zfsvfs); 2747 return (err); 2748 } 2749 /* 2750 * XXX - Note, we are not providing any open 2751 * mode flags here (like FNDELAY), so we may 2752 * block if there are locks present... this 2753 * should be addressed in openat(). 2754 */ 2755 /* XXX - would it be OK to generate a log record here? */ 2756 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2757 if (err) { 2758 ZFS_EXIT(zfsvfs); 2759 return (err); 2760 } 2761 } 2762 2763 if (mask & (AT_ATIME|AT_MTIME) || 2764 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2765 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2766 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2767 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2768 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2769 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2770 skipaclchk, cr); 2771 2772 if (mask & (AT_UID|AT_GID)) { 2773 int idmask = (mask & (AT_UID|AT_GID)); 2774 int take_owner; 2775 int take_group; 2776 2777 /* 2778 * NOTE: even if a new mode is being set, 2779 * we may clear S_ISUID/S_ISGID bits. 2780 */ 2781 2782 if (!(mask & AT_MODE)) 2783 vap->va_mode = pzp->zp_mode; 2784 2785 /* 2786 * Take ownership or chgrp to group we are a member of 2787 */ 2788 2789 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2790 take_group = (mask & AT_GID) && 2791 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2792 2793 /* 2794 * If both AT_UID and AT_GID are set then take_owner and 2795 * take_group must both be set in order to allow taking 2796 * ownership. 2797 * 2798 * Otherwise, send the check through secpolicy_vnode_setattr() 2799 * 2800 */ 2801 2802 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2803 ((idmask == AT_UID) && take_owner) || 2804 ((idmask == AT_GID) && take_group)) { 2805 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2806 skipaclchk, cr) == 0) { 2807 /* 2808 * Remove setuid/setgid for non-privileged users 2809 */ 2810 secpolicy_setid_clear(vap, cr); 2811 trim_mask = (mask & (AT_UID|AT_GID)); 2812 } else { 2813 need_policy = TRUE; 2814 } 2815 } else { 2816 need_policy = TRUE; 2817 } 2818 } 2819 2820 mutex_enter(&zp->z_lock); 2821 oldva.va_mode = pzp->zp_mode; 2822 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2823 if (mask & AT_XVATTR) { 2824 /* 2825 * Update xvattr mask to include only those attributes 2826 * that are actually changing. 2827 * 2828 * the bits will be restored prior to actually setting 2829 * the attributes so the caller thinks they were set. 2830 */ 2831 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2832 if (xoap->xoa_appendonly != 2833 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) { 2834 need_policy = TRUE; 2835 } else { 2836 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2837 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2838 } 2839 } 2840 2841 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2842 if (xoap->xoa_nounlink != 2843 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) { 2844 need_policy = TRUE; 2845 } else { 2846 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2847 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2848 } 2849 } 2850 2851 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2852 if (xoap->xoa_immutable != 2853 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) { 2854 need_policy = TRUE; 2855 } else { 2856 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2857 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2858 } 2859 } 2860 2861 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2862 if (xoap->xoa_nodump != 2863 ((pzp->zp_flags & ZFS_NODUMP) != 0)) { 2864 need_policy = TRUE; 2865 } else { 2866 XVA_CLR_REQ(xvap, XAT_NODUMP); 2867 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2868 } 2869 } 2870 2871 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2872 if (xoap->xoa_av_modified != 2873 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) { 2874 need_policy = TRUE; 2875 } else { 2876 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2877 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2878 } 2879 } 2880 2881 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2882 if ((vp->v_type != VREG && 2883 xoap->xoa_av_quarantined) || 2884 xoap->xoa_av_quarantined != 2885 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)) { 2886 need_policy = TRUE; 2887 } else { 2888 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2889 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2890 } 2891 } 2892 2893 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2894 mutex_exit(&zp->z_lock); 2895 ZFS_EXIT(zfsvfs); 2896 return (EPERM); 2897 } 2898 2899 if (need_policy == FALSE && 2900 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2901 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2902 need_policy = TRUE; 2903 } 2904 } 2905 2906 mutex_exit(&zp->z_lock); 2907 2908 if (mask & AT_MODE) { 2909 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2910 err = secpolicy_setid_setsticky_clear(vp, vap, 2911 &oldva, cr); 2912 if (err) { 2913 ZFS_EXIT(zfsvfs); 2914 return (err); 2915 } 2916 trim_mask |= AT_MODE; 2917 } else { 2918 need_policy = TRUE; 2919 } 2920 } 2921 2922 if (need_policy) { 2923 /* 2924 * If trim_mask is set then take ownership 2925 * has been granted or write_acl is present and user 2926 * has the ability to modify mode. In that case remove 2927 * UID|GID and or MODE from mask so that 2928 * secpolicy_vnode_setattr() doesn't revoke it. 2929 */ 2930 2931 if (trim_mask) { 2932 saved_mask = vap->va_mask; 2933 vap->va_mask &= ~trim_mask; 2934 } 2935 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2936 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2937 if (err) { 2938 ZFS_EXIT(zfsvfs); 2939 return (err); 2940 } 2941 2942 if (trim_mask) 2943 vap->va_mask |= saved_mask; 2944 } 2945 /* 2946 * secpolicy_vnode_setattr, or take ownership may have 2947 * changed va_mask 2948 */ 2949 mask = vap->va_mask; 2950 2951 tx = dmu_tx_create(zfsvfs->z_os); 2952 dmu_tx_hold_bonus(tx, zp->z_id); 2953 2954 if (mask & AT_MODE) { 2955 uint64_t pmode = pzp->zp_mode; 2956 2957 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2958 2959 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2960 goto out; 2961 if (pzp->zp_acl.z_acl_extern_obj) { 2962 /* Are we upgrading ACL from old V0 format to new V1 */ 2963 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2964 pzp->zp_acl.z_acl_version == 2965 ZFS_ACL_VERSION_INITIAL) { 2966 dmu_tx_hold_free(tx, 2967 pzp->zp_acl.z_acl_extern_obj, 0, 2968 DMU_OBJECT_END); 2969 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2970 0, aclp->z_acl_bytes); 2971 } else { 2972 dmu_tx_hold_write(tx, 2973 pzp->zp_acl.z_acl_extern_obj, 0, 2974 aclp->z_acl_bytes); 2975 } 2976 } else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2977 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2978 0, aclp->z_acl_bytes); 2979 } 2980 } 2981 2982 if (mask & (AT_UID | AT_GID)) { 2983 if (pzp->zp_xattr) { 2984 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2985 if (err) 2986 goto out; 2987 dmu_tx_hold_bonus(tx, attrzp->z_id); 2988 } 2989 if (mask & AT_UID) { 2990 new_uid = zfs_fuid_create(zfsvfs, 2991 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2992 if (new_uid != pzp->zp_uid && 2993 zfs_usergroup_overquota(zfsvfs, B_FALSE, new_uid)) { 2994 err = EDQUOT; 2995 goto out; 2996 } 2997 } 2998 2999 if (mask & AT_GID) { 3000 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3001 cr, ZFS_GROUP, &fuidp); 3002 if (new_gid != pzp->zp_gid && 3003 zfs_usergroup_overquota(zfsvfs, B_TRUE, new_gid)) { 3004 err = EDQUOT; 3005 goto out; 3006 } 3007 } 3008 fuid_dirtied = zfsvfs->z_fuid_dirty; 3009 if (fuid_dirtied) { 3010 if (zfsvfs->z_fuid_obj == 0) { 3011 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 3012 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3013 FUID_SIZE_ESTIMATE(zfsvfs)); 3014 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 3015 FALSE, NULL); 3016 } else { 3017 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 3018 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 3019 FUID_SIZE_ESTIMATE(zfsvfs)); 3020 } 3021 } 3022 } 3023 3024 err = dmu_tx_assign(tx, TXG_NOWAIT); 3025 if (err) { 3026 if (err == ERESTART) 3027 dmu_tx_wait(tx); 3028 goto out; 3029 } 3030 3031 dmu_buf_will_dirty(zp->z_dbuf, tx); 3032 3033 /* 3034 * Set each attribute requested. 3035 * We group settings according to the locks they need to acquire. 3036 * 3037 * Note: you cannot set ctime directly, although it will be 3038 * updated as a side-effect of calling this function. 3039 */ 3040 3041 mutex_enter(&zp->z_lock); 3042 3043 if (mask & AT_MODE) { 3044 mutex_enter(&zp->z_acl_lock); 3045 zp->z_phys->zp_mode = new_mode; 3046 err = zfs_aclset_common(zp, aclp, cr, tx); 3047 ASSERT3U(err, ==, 0); 3048 zp->z_acl_cached = aclp; 3049 aclp = NULL; 3050 mutex_exit(&zp->z_acl_lock); 3051 } 3052 3053 if (attrzp) 3054 mutex_enter(&attrzp->z_lock); 3055 3056 if (mask & AT_UID) { 3057 pzp->zp_uid = new_uid; 3058 if (attrzp) 3059 attrzp->z_phys->zp_uid = new_uid; 3060 } 3061 3062 if (mask & AT_GID) { 3063 pzp->zp_gid = new_gid; 3064 if (attrzp) 3065 attrzp->z_phys->zp_gid = new_gid; 3066 } 3067 3068 if (attrzp) 3069 mutex_exit(&attrzp->z_lock); 3070 3071 if (mask & AT_ATIME) 3072 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 3073 3074 if (mask & AT_MTIME) 3075 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 3076 3077 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3078 if (mask & AT_SIZE) 3079 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 3080 else if (mask != 0) 3081 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 3082 /* 3083 * Do this after setting timestamps to prevent timestamp 3084 * update from toggling bit 3085 */ 3086 3087 if (xoap && (mask & AT_XVATTR)) { 3088 3089 /* 3090 * restore trimmed off masks 3091 * so that return masks can be set for caller. 3092 */ 3093 3094 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3095 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3096 } 3097 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3098 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3099 } 3100 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3101 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3102 } 3103 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3104 XVA_SET_REQ(xvap, XAT_NODUMP); 3105 } 3106 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3107 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3108 } 3109 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3110 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3111 } 3112 3113 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 3114 size_t len; 3115 dmu_object_info_t doi; 3116 3117 ASSERT(vp->v_type == VREG); 3118 3119 /* Grow the bonus buffer if necessary. */ 3120 dmu_object_info_from_db(zp->z_dbuf, &doi); 3121 len = sizeof (xoap->xoa_av_scanstamp) + 3122 sizeof (znode_phys_t); 3123 if (len > doi.doi_bonus_size) 3124 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 3125 } 3126 zfs_xvattr_set(zp, xvap); 3127 } 3128 3129 if (fuid_dirtied) 3130 zfs_fuid_sync(zfsvfs, tx); 3131 3132 if (mask != 0) 3133 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3134 3135 mutex_exit(&zp->z_lock); 3136 3137 out: 3138 if (attrzp) 3139 VN_RELE(ZTOV(attrzp)); 3140 3141 if (aclp) 3142 zfs_acl_free(aclp); 3143 3144 if (fuidp) { 3145 zfs_fuid_info_free(fuidp); 3146 fuidp = NULL; 3147 } 3148 3149 if (err) 3150 dmu_tx_abort(tx); 3151 else 3152 dmu_tx_commit(tx); 3153 3154 if (err == ERESTART) 3155 goto top; 3156 3157 ZFS_EXIT(zfsvfs); 3158 return (err); 3159 } 3160 3161 typedef struct zfs_zlock { 3162 krwlock_t *zl_rwlock; /* lock we acquired */ 3163 znode_t *zl_znode; /* znode we held */ 3164 struct zfs_zlock *zl_next; /* next in list */ 3165 } zfs_zlock_t; 3166 3167 /* 3168 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3169 */ 3170 static void 3171 zfs_rename_unlock(zfs_zlock_t **zlpp) 3172 { 3173 zfs_zlock_t *zl; 3174 3175 while ((zl = *zlpp) != NULL) { 3176 if (zl->zl_znode != NULL) 3177 VN_RELE(ZTOV(zl->zl_znode)); 3178 rw_exit(zl->zl_rwlock); 3179 *zlpp = zl->zl_next; 3180 kmem_free(zl, sizeof (*zl)); 3181 } 3182 } 3183 3184 /* 3185 * Search back through the directory tree, using the ".." entries. 3186 * Lock each directory in the chain to prevent concurrent renames. 3187 * Fail any attempt to move a directory into one of its own descendants. 3188 * XXX - z_parent_lock can overlap with map or grow locks 3189 */ 3190 static int 3191 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3192 { 3193 zfs_zlock_t *zl; 3194 znode_t *zp = tdzp; 3195 uint64_t rootid = zp->z_zfsvfs->z_root; 3196 uint64_t *oidp = &zp->z_id; 3197 krwlock_t *rwlp = &szp->z_parent_lock; 3198 krw_t rw = RW_WRITER; 3199 3200 /* 3201 * First pass write-locks szp and compares to zp->z_id. 3202 * Later passes read-lock zp and compare to zp->z_parent. 3203 */ 3204 do { 3205 if (!rw_tryenter(rwlp, rw)) { 3206 /* 3207 * Another thread is renaming in this path. 3208 * Note that if we are a WRITER, we don't have any 3209 * parent_locks held yet. 3210 */ 3211 if (rw == RW_READER && zp->z_id > szp->z_id) { 3212 /* 3213 * Drop our locks and restart 3214 */ 3215 zfs_rename_unlock(&zl); 3216 *zlpp = NULL; 3217 zp = tdzp; 3218 oidp = &zp->z_id; 3219 rwlp = &szp->z_parent_lock; 3220 rw = RW_WRITER; 3221 continue; 3222 } else { 3223 /* 3224 * Wait for other thread to drop its locks 3225 */ 3226 rw_enter(rwlp, rw); 3227 } 3228 } 3229 3230 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3231 zl->zl_rwlock = rwlp; 3232 zl->zl_znode = NULL; 3233 zl->zl_next = *zlpp; 3234 *zlpp = zl; 3235 3236 if (*oidp == szp->z_id) /* We're a descendant of szp */ 3237 return (EINVAL); 3238 3239 if (*oidp == rootid) /* We've hit the top */ 3240 return (0); 3241 3242 if (rw == RW_READER) { /* i.e. not the first pass */ 3243 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 3244 if (error) 3245 return (error); 3246 zl->zl_znode = zp; 3247 } 3248 oidp = &zp->z_phys->zp_parent; 3249 rwlp = &zp->z_parent_lock; 3250 rw = RW_READER; 3251 3252 } while (zp->z_id != sdzp->z_id); 3253 3254 return (0); 3255 } 3256 3257 /* 3258 * Move an entry from the provided source directory to the target 3259 * directory. Change the entry name as indicated. 3260 * 3261 * IN: sdvp - Source directory containing the "old entry". 3262 * snm - Old entry name. 3263 * tdvp - Target directory to contain the "new entry". 3264 * tnm - New entry name. 3265 * cr - credentials of caller. 3266 * ct - caller context 3267 * flags - case flags 3268 * 3269 * RETURN: 0 if success 3270 * error code if failure 3271 * 3272 * Timestamps: 3273 * sdvp,tdvp - ctime|mtime updated 3274 */ 3275 /* XXX NetBSD There is significant problem with dirent locking during rename 3276 * of files which are in a same dir. zfs_dirent_lock is then called twice on 3277 * same lock which panics LOCKDEBUG kernel. Locking twice is not needed. 3278 * Proper solution for this is add new flag to zfs_dirent_lock which will 3279 * disable rw_enter in it. Renaming of files in same dir is considered as broken 3280 * on LOCKDEBUG kernels on NetBSD for now. 3281 */ 3282 /*ARGSUSED*/ 3283 static int 3284 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3285 caller_context_t *ct, int flags) 3286 { 3287 znode_t *tdzp, *szp, *tzp; 3288 znode_t *sdzp = VTOZ(sdvp); 3289 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3290 zilog_t *zilog; 3291 vnode_t *realvp; 3292 zfs_dirlock_t *sdl, *tdl; 3293 dmu_tx_t *tx; 3294 zfs_zlock_t *zl; 3295 int cmp, serr, terr; 3296 int error = 0; 3297 int zflg = 0; 3298 int samedir = 0; 3299 3300 tdl = NULL; 3301 sdl = NULL; 3302 3303 dprintf("zfs_rename called\n"); 3304 3305 ZFS_ENTER(zfsvfs); 3306 ZFS_VERIFY_ZP(sdzp); 3307 zilog = zfsvfs->z_log; 3308 3309 /* 3310 * Make sure we have the real vp for the target directory. 3311 */ 3312 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3313 tdvp = realvp; 3314 3315 if (tdvp->v_vfsp != sdvp->v_vfsp) { 3316 ZFS_EXIT(zfsvfs); 3317 return (EXDEV); 3318 } 3319 3320 tdzp = VTOZ(tdvp); 3321 ZFS_VERIFY_ZP(tdzp); 3322 if (zfsvfs->z_utf8 && u8_validate(tnm, 3323 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3324 ZFS_EXIT(zfsvfs); 3325 return (EILSEQ); 3326 } 3327 3328 if (flags & FIGNORECASE) 3329 zflg |= ZCILOOK; 3330 3331 top: 3332 szp = NULL; 3333 tzp = NULL; 3334 zl = NULL; 3335 3336 /* 3337 * This is to prevent the creation of links into attribute space 3338 * by renaming a linked file into/outof an attribute directory. 3339 * See the comment in zfs_link() for why this is considered bad. 3340 */ 3341 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 3342 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 3343 ZFS_EXIT(zfsvfs); 3344 return (EINVAL); 3345 } 3346 3347 /* 3348 * Lock source and target directory entries. To prevent deadlock, 3349 * a lock ordering must be defined. We lock the directory with 3350 * the smallest object id first, or if it's a tie, the one with 3351 * the lexically first name. 3352 */ 3353 if (sdzp->z_id < tdzp->z_id) { 3354 cmp = -1; 3355 } else if (sdzp->z_id > tdzp->z_id) { 3356 cmp = 1; 3357 } else { 3358 /* 3359 * First compare the two name arguments without 3360 * considering any case folding. 3361 */ 3362 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3363 3364 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3365 ASSERT(error == 0 || !zfsvfs->z_utf8); 3366 if (cmp == 0) { 3367 /* 3368 * POSIX: "If the old argument and the new argument 3369 * both refer to links to the same existing file, 3370 * the rename() function shall return successfully 3371 * and perform no other action." 3372 */ 3373 ZFS_EXIT(zfsvfs); 3374 return (0); 3375 } 3376 /* 3377 * If the file system is case-folding, then we may 3378 * have some more checking to do. A case-folding file 3379 * system is either supporting mixed case sensitivity 3380 * access or is completely case-insensitive. Note 3381 * that the file system is always case preserving. 3382 * 3383 * In mixed sensitivity mode case sensitive behavior 3384 * is the default. FIGNORECASE must be used to 3385 * explicitly request case insensitive behavior. 3386 * 3387 * If the source and target names provided differ only 3388 * by case (e.g., a request to rename 'tim' to 'Tim'), 3389 * we will treat this as a special case in the 3390 * case-insensitive mode: as long as the source name 3391 * is an exact match, we will allow this to proceed as 3392 * a name-change request. 3393 */ 3394 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3395 (zfsvfs->z_case == ZFS_CASE_MIXED && 3396 flags & FIGNORECASE)) && 3397 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3398 &error) == 0) { 3399 /* 3400 * case preserving rename request, require exact 3401 * name matches 3402 */ 3403 zflg |= ZCIEXACT; 3404 zflg &= ~ZCILOOK; 3405 } 3406 } 3407 3408 /* 3409 * If the source and destination directories are the same, we should 3410 * grab the z_name_lock of that directory only once. 3411 */ 3412 if (sdzp == tdzp) { 3413 zflg |= ZHAVELOCK; 3414 rw_enter(&sdzp->z_name_lock, RW_READER); 3415 } 3416 3417 if (cmp < 0) { 3418 3419 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3420 ZEXISTS | zflg, NULL, NULL); 3421 if ((serr == 0) && (sdzp == tdzp)) { 3422 /* 3423 * If renaming within the one directory we must 3424 * be careful not to recursively acquire locks. 3425 */ 3426 zflg |= ZHAVELOCK; 3427 } 3428 terr = zfs_dirent_lock(&tdl, 3429 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3430 } else { 3431 terr = zfs_dirent_lock(&tdl, 3432 tdzp, tnm, &tzp, zflg, NULL, NULL); 3433 3434 if ((terr == 0) && (sdzp == tdzp)) { 3435 /* 3436 * If renaming within the one directory we must 3437 * be careful not to recursively acquire locks. 3438 */ 3439 zflg |= ZHAVELOCK; 3440 } 3441 serr = zfs_dirent_lock(&sdl, 3442 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3443 NULL, NULL); 3444 } 3445 3446 if (serr) { 3447 /* 3448 * Source entry invalid or not there. 3449 */ 3450 if (!terr) { 3451 zfs_dirent_unlock(tdl); 3452 if (tzp) 3453 VN_RELE(ZTOV(tzp)); 3454 } 3455 3456 if (sdzp == tdzp) 3457 rw_exit(&sdzp->z_name_lock); 3458 3459 if (strcmp(snm, "..") == 0) 3460 serr = EINVAL; 3461 ZFS_EXIT(zfsvfs); 3462 return (serr); 3463 } 3464 if (terr) { 3465 if (sdl != NULL) 3466 zfs_dirent_unlock(sdl); 3467 VN_RELE(ZTOV(szp)); 3468 3469 if (sdzp == tdzp) 3470 rw_exit(&sdzp->z_name_lock); 3471 3472 if (strcmp(tnm, "..") == 0) 3473 terr = EINVAL; 3474 ZFS_EXIT(zfsvfs); 3475 return (terr); 3476 } 3477 3478 /* 3479 * Must have write access at the source to remove the old entry 3480 * and write access at the target to create the new entry. 3481 * Note that if target and source are the same, this can be 3482 * done in a single check. 3483 */ 3484 3485 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3486 goto out; 3487 3488 if (ZTOV(szp)->v_type == VDIR) { 3489 /* 3490 * Check to make sure rename is valid. 3491 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3492 */ 3493 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3494 goto out; 3495 } 3496 3497 /* 3498 * Does target exist? 3499 */ 3500 if (tzp) { 3501 /* 3502 * Source and target must be the same type. 3503 */ 3504 if (ZTOV(szp)->v_type == VDIR) { 3505 if (ZTOV(tzp)->v_type != VDIR) { 3506 error = ENOTDIR; 3507 goto out; 3508 } 3509 } else { 3510 if (ZTOV(tzp)->v_type == VDIR) { 3511 error = EISDIR; 3512 goto out; 3513 } 3514 } 3515 /* 3516 * POSIX dictates that when the source and target 3517 * entries refer to the same file object, rename 3518 * must do nothing and exit without error. 3519 */ 3520 #ifndef __NetBSD__ 3521 /* 3522 * But on NetBSD we have a different system call to do 3523 * this, posix_rename, which sorta kinda handles this 3524 * case (modulo races), and our tests expect BSD 3525 * semantics for rename, so we'll do that until we can 3526 * push the choice between BSD and POSIX semantics into 3527 * the VOP_RENAME protocol as a flag. 3528 */ 3529 if (szp->z_id == tzp->z_id) { 3530 error = 0; 3531 goto out; 3532 } 3533 #endif 3534 } 3535 3536 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3537 if (tzp) 3538 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3539 3540 /* 3541 * notify the target directory if it is not the same 3542 * as source directory. 3543 */ 3544 if (tdvp != sdvp) { 3545 vnevent_rename_dest_dir(tdvp, ct); 3546 } 3547 3548 tx = dmu_tx_create(zfsvfs->z_os); 3549 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3550 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3551 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3552 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3553 if (sdzp != tdzp) 3554 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3555 if (tzp) 3556 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3557 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3558 error = dmu_tx_assign(tx, TXG_NOWAIT); 3559 if (error) { 3560 if (zl != NULL) 3561 zfs_rename_unlock(&zl); 3562 3563 zfs_dirent_unlock(sdl); 3564 zfs_dirent_unlock(tdl); 3565 3566 if (sdzp == tdzp) 3567 rw_exit(&sdzp->z_name_lock); 3568 3569 VN_RELE(ZTOV(szp)); 3570 if (tzp) 3571 VN_RELE(ZTOV(tzp)); 3572 if (error == ERESTART) { 3573 dmu_tx_wait(tx); 3574 dmu_tx_abort(tx); 3575 goto top; 3576 } 3577 dmu_tx_abort(tx); 3578 ZFS_EXIT(zfsvfs); 3579 return (error); 3580 } 3581 3582 if (tzp && (tzp->z_id != szp->z_id)) 3583 /* Attempt to remove the existing target */ 3584 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3585 3586 if (error == 0) { 3587 if (!tzp || (tzp->z_id != szp->z_id)) 3588 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3589 if (error == 0) { 3590 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3591 3592 error = zfs_link_destroy(sdl, szp, tx, 3593 /* Kludge for BSD rename semantics. */ 3594 ((tzp && (tzp->z_id == szp->z_id)) ? 3595 zflg : ZRENAMING), NULL); 3596 ASSERT(error == 0); 3597 3598 zfs_log_rename(zilog, tx, 3599 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3600 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3601 3602 /* Update path information for the target vnode */ 3603 vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm)); 3604 } 3605 if (error == 0) { 3606 /* Purge cache entries, while still holding locks. */ 3607 cache_purge(sdvp); 3608 cache_purge(tdvp); 3609 } 3610 } 3611 3612 dmu_tx_commit(tx); 3613 out: 3614 if (zl != NULL) 3615 zfs_rename_unlock(&zl); 3616 3617 zfs_dirent_unlock(sdl); 3618 zfs_dirent_unlock(tdl); 3619 3620 if (sdzp == tdzp) 3621 rw_exit(&sdzp->z_name_lock); 3622 3623 3624 VN_RELE(ZTOV(szp)); 3625 if (tzp) 3626 VN_RELE(ZTOV(tzp)); 3627 3628 ZFS_EXIT(zfsvfs); 3629 3630 return (error); 3631 } 3632 3633 /* 3634 * Insert the indicated symbolic reference entry into the directory. 3635 * 3636 * IN: dvp - Directory to contain new symbolic link. 3637 * link - Name for new symlink entry. 3638 * vap - Attributes of new entry. 3639 * target - Target path of new symlink. 3640 * cr - credentials of caller. 3641 * ct - caller context 3642 * flags - case flags 3643 * 3644 * RETURN: 0 if success 3645 * error code if failure 3646 * 3647 * Timestamps: 3648 * dvp - ctime|mtime updated 3649 */ 3650 /*ARGSUSED*/ 3651 static int 3652 zfs_symlink(vnode_t *dvp, vnode_t **vpp, char *name, vattr_t *vap, char *link, 3653 cred_t *cr, int flags) 3654 { 3655 znode_t *zp, *dzp = VTOZ(dvp); 3656 zfs_dirlock_t *dl; 3657 dmu_tx_t *tx; 3658 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3659 zilog_t *zilog; 3660 int len = strlen(link); 3661 int error; 3662 int zflg = ZNEW; 3663 zfs_acl_ids_t acl_ids; 3664 boolean_t fuid_dirtied; 3665 3666 ASSERT(vap->va_type == VLNK); 3667 3668 ZFS_ENTER(zfsvfs); 3669 ZFS_VERIFY_ZP(dzp); 3670 zilog = zfsvfs->z_log; 3671 3672 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3673 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3674 ZFS_EXIT(zfsvfs); 3675 return (EILSEQ); 3676 } 3677 if (flags & FIGNORECASE) 3678 zflg |= ZCILOOK; 3679 top: 3680 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3681 ZFS_EXIT(zfsvfs); 3682 return (error); 3683 } 3684 3685 if (len > MAXPATHLEN) { 3686 ZFS_EXIT(zfsvfs); 3687 return (ENAMETOOLONG); 3688 } 3689 3690 /* 3691 * Attempt to lock directory; fail if entry already exists. 3692 */ 3693 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3694 if (error) { 3695 ZFS_EXIT(zfsvfs); 3696 return (error); 3697 } 3698 3699 VERIFY(0 == zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids)); 3700 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3701 zfs_acl_ids_free(&acl_ids); 3702 zfs_dirent_unlock(dl); 3703 ZFS_EXIT(zfsvfs); 3704 return (EDQUOT); 3705 } 3706 tx = dmu_tx_create(zfsvfs->z_os); 3707 fuid_dirtied = zfsvfs->z_fuid_dirty; 3708 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3709 dmu_tx_hold_bonus(tx, dzp->z_id); 3710 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3711 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 3712 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3713 if (fuid_dirtied) 3714 zfs_fuid_txhold(zfsvfs, tx); 3715 error = dmu_tx_assign(tx, TXG_NOWAIT); 3716 if (error) { 3717 zfs_acl_ids_free(&acl_ids); 3718 zfs_dirent_unlock(dl); 3719 if (error == ERESTART) { 3720 dmu_tx_wait(tx); 3721 dmu_tx_abort(tx); 3722 goto top; 3723 } 3724 dmu_tx_abort(tx); 3725 ZFS_EXIT(zfsvfs); 3726 return (error); 3727 } 3728 3729 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3730 3731 /* 3732 * Create a new object for the symlink. 3733 * Put the link content into bonus buffer if it will fit; 3734 * otherwise, store it just like any other file data. 3735 */ 3736 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3737 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, &acl_ids); 3738 if (len != 0) 3739 bcopy(link, zp->z_phys + 1, len); 3740 } else { 3741 dmu_buf_t *dbp; 3742 3743 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 3744 3745 if (fuid_dirtied) 3746 zfs_fuid_sync(zfsvfs, tx); 3747 /* 3748 * Nothing can access the znode yet so no locking needed 3749 * for growing the znode's blocksize. 3750 */ 3751 zfs_grow_blocksize(zp, len, tx); 3752 3753 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3754 zp->z_id, 0, FTAG, &dbp)); 3755 dmu_buf_will_dirty(dbp, tx); 3756 3757 ASSERT3U(len, <=, dbp->db_size); 3758 bcopy(link, dbp->db_data, len); 3759 dmu_buf_rele(dbp, FTAG); 3760 } 3761 zp->z_phys->zp_size = len; 3762 3763 /* 3764 * Insert the new object into the directory. 3765 */ 3766 (void) zfs_link_create(dl, zp, tx, ZNEW); 3767 if (error == 0) { 3768 uint64_t txtype = TX_SYMLINK; 3769 if (flags & FIGNORECASE) 3770 txtype |= TX_CI; 3771 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3772 *vpp = ZTOV(zp); 3773 } 3774 3775 zfs_acl_ids_free(&acl_ids); 3776 3777 dmu_tx_commit(tx); 3778 3779 zfs_dirent_unlock(dl); 3780 3781 ZFS_EXIT(zfsvfs); 3782 return (error); 3783 } 3784 3785 /* 3786 * Return, in the buffer contained in the provided uio structure, 3787 * the symbolic path referred to by vp. 3788 * 3789 * IN: vp - vnode of symbolic link. 3790 * uoip - structure to contain the link path. 3791 * cr - credentials of caller. 3792 * ct - caller context 3793 * 3794 * OUT: uio - structure to contain the link path. 3795 * 3796 * RETURN: 0 if success 3797 * error code if failure 3798 * 3799 * Timestamps: 3800 * vp - atime updated 3801 */ 3802 /* ARGSUSED */ 3803 static int 3804 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3805 { 3806 znode_t *zp = VTOZ(vp); 3807 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3808 size_t bufsz; 3809 int error; 3810 3811 ZFS_ENTER(zfsvfs); 3812 ZFS_VERIFY_ZP(zp); 3813 3814 bufsz = (size_t)zp->z_phys->zp_size; 3815 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3816 error = uiomove(zp->z_phys + 1, 3817 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3818 } else { 3819 dmu_buf_t *dbp; 3820 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3821 if (error) { 3822 ZFS_EXIT(zfsvfs); 3823 return (error); 3824 } 3825 error = uiomove(dbp->db_data, 3826 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3827 dmu_buf_rele(dbp, FTAG); 3828 } 3829 3830 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3831 ZFS_EXIT(zfsvfs); 3832 return (error); 3833 } 3834 3835 /* 3836 * Insert a new entry into directory tdvp referencing svp. 3837 * 3838 * IN: tdvp - Directory to contain new entry. 3839 * svp - vnode of new entry. 3840 * name - name of new entry. 3841 * cr - credentials of caller. 3842 * ct - caller context 3843 * 3844 * RETURN: 0 if success 3845 * error code if failure 3846 * 3847 * Timestamps: 3848 * tdvp - ctime|mtime updated 3849 * svp - ctime updated 3850 */ 3851 /* ARGSUSED */ 3852 static int 3853 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3854 caller_context_t *ct, int flags) 3855 { 3856 znode_t *dzp = VTOZ(tdvp); 3857 znode_t *tzp, *szp; 3858 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3859 zilog_t *zilog; 3860 zfs_dirlock_t *dl; 3861 dmu_tx_t *tx; 3862 vnode_t *realvp; 3863 int error; 3864 int zf = ZNEW; 3865 uid_t owner; 3866 3867 ASSERT(tdvp->v_type == VDIR); 3868 3869 ZFS_ENTER(zfsvfs); 3870 ZFS_VERIFY_ZP(dzp); 3871 zilog = zfsvfs->z_log; 3872 3873 if (VOP_REALVP(svp, &realvp, ct) == 0) 3874 svp = realvp; 3875 3876 if (svp->v_vfsp != tdvp->v_vfsp) { 3877 ZFS_EXIT(zfsvfs); 3878 return (EXDEV); 3879 } 3880 szp = VTOZ(svp); 3881 ZFS_VERIFY_ZP(szp); 3882 3883 if (zfsvfs->z_utf8 && u8_validate(name, 3884 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3885 ZFS_EXIT(zfsvfs); 3886 return (EILSEQ); 3887 } 3888 if (flags & FIGNORECASE) 3889 zf |= ZCILOOK; 3890 3891 top: 3892 /* 3893 * We do not support links between attributes and non-attributes 3894 * because of the potential security risk of creating links 3895 * into "normal" file space in order to circumvent restrictions 3896 * imposed in attribute space. 3897 */ 3898 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3899 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3900 ZFS_EXIT(zfsvfs); 3901 return (EINVAL); 3902 } 3903 3904 /* 3905 * POSIX dictates that we return EPERM here. 3906 * Better choices include ENOTSUP or EISDIR. 3907 */ 3908 if (svp->v_type == VDIR) { 3909 ZFS_EXIT(zfsvfs); 3910 return (EPERM); 3911 } 3912 3913 owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER); 3914 if (owner != crgetuid(cr) && 3915 secpolicy_basic_link(cr) != 0) { 3916 ZFS_EXIT(zfsvfs); 3917 return (EPERM); 3918 } 3919 3920 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3921 ZFS_EXIT(zfsvfs); 3922 return (error); 3923 } 3924 3925 /* 3926 * Attempt to lock directory; fail if entry already exists. 3927 */ 3928 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3929 if (error) { 3930 ZFS_EXIT(zfsvfs); 3931 return (error); 3932 } 3933 3934 tx = dmu_tx_create(zfsvfs->z_os); 3935 dmu_tx_hold_bonus(tx, szp->z_id); 3936 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3937 error = dmu_tx_assign(tx, TXG_NOWAIT); 3938 if (error) { 3939 zfs_dirent_unlock(dl); 3940 if (error == ERESTART) { 3941 dmu_tx_wait(tx); 3942 dmu_tx_abort(tx); 3943 goto top; 3944 } 3945 dmu_tx_abort(tx); 3946 ZFS_EXIT(zfsvfs); 3947 return (error); 3948 } 3949 3950 error = zfs_link_create(dl, szp, tx, 0); 3951 3952 if (error == 0) { 3953 uint64_t txtype = TX_LINK; 3954 if (flags & FIGNORECASE) 3955 txtype |= TX_CI; 3956 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3957 } 3958 3959 dmu_tx_commit(tx); 3960 3961 zfs_dirent_unlock(dl); 3962 3963 if (error == 0) { 3964 vnevent_link(svp, ct); 3965 } 3966 3967 ZFS_EXIT(zfsvfs); 3968 return (error); 3969 } 3970 3971 /*ARGSUSED*/ 3972 3973 /* CTASSERT(sizeof(struct zfid_short) <= sizeof(struct fid)); */ 3974 /* CTASSERT(sizeof(struct zfid_long) <= sizeof(struct fid)); */ 3975 3976 /*ARGSUSED*/ 3977 static int 3978 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 3979 { 3980 /* XXX This should bre reviewed maybe Opensolaris version of zfs_fid can 3981 be used for NetBSD */ 3982 znode_t *zp = VTOZ(vp); 3983 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3984 uint32_t gen; 3985 uint64_t object = zp->z_id; 3986 zfid_short_t *zfid; 3987 int size, i; 3988 3989 ZFS_ENTER(zfsvfs); 3990 ZFS_VERIFY_ZP(zp); 3991 gen = (uint32_t)zp->z_gen; 3992 3993 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 3994 fidp->fid_len = size; 3995 3996 zfid = (zfid_short_t *)fidp; 3997 3998 zfid->zf_len = size; 3999 4000 for (i = 0; i < sizeof (zfid->zf_object); i++) 4001 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4002 4003 /* Must have a non-zero generation number to distinguish from .zfs */ 4004 if (gen == 0) 4005 gen = 1; 4006 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4007 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4008 4009 if (size == LONG_FID_LEN) { 4010 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4011 zfid_long_t *zlfid; 4012 4013 zlfid = (zfid_long_t *)fidp; 4014 4015 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4016 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4017 4018 /* XXX - this should be the generation number for the objset */ 4019 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4020 zlfid->zf_setgen[i] = 0; 4021 } 4022 4023 ZFS_EXIT(zfsvfs); 4024 return (0); 4025 } 4026 4027 /* 4028 * Copy the portion of the file indicated from pages into the file. 4029 * The pages are stored in a page list attached to the files vnode. 4030 * 4031 * IN: vp - vnode of file to push page data to. 4032 * off - position in file to put data. 4033 * len - amount of data to write. 4034 * flags - flags to control the operation. 4035 * cr - credentials of caller. 4036 * ct - caller context. 4037 * 4038 * RETURN: 0 if success 4039 * error code if failure 4040 * 4041 * Timestamps: 4042 * vp - ctime|mtime updated 4043 */ 4044 /*ARGSUSED*/ 4045 #ifdef PORT_SOLARIS 4046 static int 4047 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4048 caller_context_t *ct) 4049 { 4050 znode_t *zp = VTOZ(vp); 4051 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4052 page_t *pp; 4053 size_t io_len; 4054 u_offset_t io_off; 4055 uint_t blksz; 4056 rl_t *rl; 4057 int error = 0; 4058 4059 ZFS_ENTER(zfsvfs); 4060 ZFS_VERIFY_ZP(zp); 4061 4062 /* 4063 * Align this request to the file block size in case we kluster. 4064 * XXX - this can result in pretty aggresive locking, which can 4065 * impact simultanious read/write access. One option might be 4066 * to break up long requests (len == 0) into block-by-block 4067 * operations to get narrower locking. 4068 */ 4069 blksz = zp->z_blksz; 4070 if (ISP2(blksz)) 4071 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4072 else 4073 io_off = 0; 4074 if (len > 0 && ISP2(blksz)) 4075 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4076 else 4077 io_len = 0; 4078 4079 if (io_len == 0) { 4080 /* 4081 * Search the entire vp list for pages >= io_off. 4082 */ 4083 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4084 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4085 goto out; 4086 } 4087 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4088 4089 if (off > zp->z_phys->zp_size) { 4090 /* past end of file */ 4091 zfs_range_unlock(rl); 4092 ZFS_EXIT(zfsvfs); 4093 return (0); 4094 } 4095 4096 len = MIN(io_len, P2ROUNDUP(zp->z_phys->zp_size, PAGESIZE) - io_off); 4097 4098 for (off = io_off; io_off < off + len; io_off += io_len) { 4099 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4100 pp = page_lookup(vp, io_off, 4101 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4102 } else { 4103 pp = page_lookup_nowait(vp, io_off, 4104 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4105 } 4106 4107 if (pp != NULL && pvn_getdirty(pp, flags)) { 4108 int err; 4109 4110 /* 4111 * Found a dirty page to push 4112 */ 4113 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4114 if (err) 4115 error = err; 4116 } else { 4117 io_len = PAGESIZE; 4118 } 4119 } 4120 out: 4121 zfs_range_unlock(rl); 4122 if ((flags & B_ASYNC) == 0) 4123 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 4124 ZFS_EXIT(zfsvfs); 4125 return (error); 4126 } 4127 4128 /*ARGSUSED*/ 4129 void 4130 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4131 { 4132 znode_t *zp = VTOZ(vp); 4133 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4134 int error; 4135 4136 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4137 if (zp->z_dbuf == NULL) { 4138 /* 4139 * The fs has been unmounted, or we did a 4140 * suspend/resume and this file no longer exists. 4141 */ 4142 if (vn_has_cached_data(vp)) { 4143 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4144 B_INVAL, cr); 4145 } 4146 4147 mutex_enter(&zp->z_lock); 4148 mutex_enter(&vp->v_lock); 4149 ASSERT(vp->v_count == 1); 4150 vp->v_count = 0; 4151 mutex_exit(&vp->v_lock); 4152 mutex_exit(&zp->z_lock); 4153 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4154 zfs_znode_free(zp); 4155 return; 4156 } 4157 4158 /* 4159 * Attempt to push any data in the page cache. If this fails 4160 * we will get kicked out later in zfs_zinactive(). 4161 */ 4162 if (vn_has_cached_data(vp)) { 4163 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4164 cr); 4165 } 4166 4167 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4168 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4169 4170 dmu_tx_hold_bonus(tx, zp->z_id); 4171 error = dmu_tx_assign(tx, TXG_WAIT); 4172 if (error) { 4173 dmu_tx_abort(tx); 4174 } else { 4175 dmu_buf_will_dirty(zp->z_dbuf, tx); 4176 mutex_enter(&zp->z_lock); 4177 zp->z_atime_dirty = 0; 4178 mutex_exit(&zp->z_lock); 4179 dmu_tx_commit(tx); 4180 } 4181 } 4182 4183 zfs_zinactive(zp); 4184 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4185 } 4186 #endif /* PORT_SOLARIS */ 4187 4188 /* 4189 * Bounds-check the seek operation. 4190 * 4191 * IN: vp - vnode seeking within 4192 * ooff - old file offset 4193 * noffp - pointer to new file offset 4194 * ct - caller context 4195 * 4196 * RETURN: 0 if success 4197 * EINVAL if new offset invalid 4198 */ 4199 /* ARGSUSED */ 4200 static int 4201 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4202 caller_context_t *ct) 4203 { 4204 if (vp->v_type == VDIR) 4205 return (0); 4206 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4207 } 4208 4209 #ifdef PORT_SOLARIS 4210 /* 4211 * Pre-filter the generic locking function to trap attempts to place 4212 * a mandatory lock on a memory mapped file. 4213 */ 4214 static int 4215 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4216 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4217 { 4218 znode_t *zp = VTOZ(vp); 4219 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4220 4221 ZFS_ENTER(zfsvfs); 4222 ZFS_VERIFY_ZP(zp); 4223 4224 /* 4225 * We are following the UFS semantics with respect to mapcnt 4226 * here: If we see that the file is mapped already, then we will 4227 * return an error, but we don't worry about races between this 4228 * function and zfs_map(). 4229 */ 4230 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 4231 ZFS_EXIT(zfsvfs); 4232 return (EAGAIN); 4233 } 4234 ZFS_EXIT(zfsvfs); 4235 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4236 } 4237 4238 4239 /* 4240 * If we can't find a page in the cache, we will create a new page 4241 * and fill it with file data. For efficiency, we may try to fill 4242 * multiple pages at once (klustering) to fill up the supplied page 4243 * list. Note that the pages to be filled are held with an exclusive 4244 * lock to prevent access by other threads while they are being filled. 4245 */ 4246 static int 4247 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4248 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4249 { 4250 znode_t *zp = VTOZ(vp); 4251 page_t *pp, *cur_pp; 4252 objset_t *os = zp->z_zfsvfs->z_os; 4253 u_offset_t io_off, total; 4254 size_t io_len; 4255 int err; 4256 4257 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4258 /* 4259 * We only have a single page, don't bother klustering 4260 */ 4261 io_off = off; 4262 io_len = PAGESIZE; 4263 pp = page_create_va(vp, io_off, io_len, 4264 PG_EXCL | PG_WAIT, seg, addr); 4265 } else { 4266 /* 4267 * Try to find enough pages to fill the page list 4268 */ 4269 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4270 &io_len, off, plsz, 0); 4271 } 4272 if (pp == NULL) { 4273 /* 4274 * The page already exists, nothing to do here. 4275 */ 4276 *pl = NULL; 4277 return (0); 4278 } 4279 4280 /* 4281 * Fill the pages in the kluster. 4282 */ 4283 cur_pp = pp; 4284 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4285 caddr_t va; 4286 4287 ASSERT3U(io_off, ==, cur_pp->p_offset); 4288 va = zfs_map_page(cur_pp, S_WRITE); 4289 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4290 DMU_READ_PREFETCH); 4291 zfs_unmap_page(cur_pp, va); 4292 if (err) { 4293 /* On error, toss the entire kluster */ 4294 pvn_read_done(pp, B_ERROR); 4295 /* convert checksum errors into IO errors */ 4296 if (err == ECKSUM) 4297 err = EIO; 4298 return (err); 4299 } 4300 cur_pp = cur_pp->p_next; 4301 } 4302 4303 /* 4304 * Fill in the page list array from the kluster starting 4305 * from the desired offset `off'. 4306 * NOTE: the page list will always be null terminated. 4307 */ 4308 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4309 ASSERT(pl == NULL || (*pl)->p_offset == off); 4310 4311 return (0); 4312 } 4313 4314 /* 4315 * Return pointers to the pages for the file region [off, off + len] 4316 * in the pl array. If plsz is greater than len, this function may 4317 * also return page pointers from after the specified region 4318 * (i.e. the region [off, off + plsz]). These additional pages are 4319 * only returned if they are already in the cache, or were created as 4320 * part of a klustered read. 4321 * 4322 * IN: vp - vnode of file to get data from. 4323 * off - position in file to get data from. 4324 * len - amount of data to retrieve. 4325 * plsz - length of provided page list. 4326 * seg - segment to obtain pages for. 4327 * addr - virtual address of fault. 4328 * rw - mode of created pages. 4329 * cr - credentials of caller. 4330 * ct - caller context. 4331 * 4332 * OUT: protp - protection mode of created pages. 4333 * pl - list of pages created. 4334 * 4335 * RETURN: 0 if success 4336 * error code if failure 4337 * 4338 * Timestamps: 4339 * vp - atime updated 4340 */ 4341 /* ARGSUSED */ 4342 static int 4343 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4344 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4345 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4346 { 4347 znode_t *zp = VTOZ(vp); 4348 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4349 page_t **pl0 = pl; 4350 int err = 0; 4351 4352 /* we do our own caching, faultahead is unnecessary */ 4353 if (pl == NULL) 4354 return (0); 4355 else if (len > plsz) 4356 len = plsz; 4357 else 4358 len = P2ROUNDUP(len, PAGESIZE); 4359 ASSERT(plsz >= len); 4360 4361 ZFS_ENTER(zfsvfs); 4362 ZFS_VERIFY_ZP(zp); 4363 4364 if (protp) 4365 *protp = PROT_ALL; 4366 4367 /* 4368 * Loop through the requested range [off, off + len) looking 4369 * for pages. If we don't find a page, we will need to create 4370 * a new page and fill it with data from the file. 4371 */ 4372 while (len > 0) { 4373 if (*pl = page_lookup(vp, off, SE_SHARED)) 4374 *(pl+1) = NULL; 4375 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4376 goto out; 4377 while (*pl) { 4378 ASSERT3U((*pl)->p_offset, ==, off); 4379 off += PAGESIZE; 4380 addr += PAGESIZE; 4381 if (len > 0) { 4382 ASSERT3U(len, >=, PAGESIZE); 4383 len -= PAGESIZE; 4384 } 4385 ASSERT3U(plsz, >=, PAGESIZE); 4386 plsz -= PAGESIZE; 4387 pl++; 4388 } 4389 } 4390 4391 /* 4392 * Fill out the page array with any pages already in the cache. 4393 */ 4394 while (plsz > 0 && 4395 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4396 off += PAGESIZE; 4397 plsz -= PAGESIZE; 4398 } 4399 out: 4400 if (err) { 4401 /* 4402 * Release any pages we have previously locked. 4403 */ 4404 while (pl > pl0) 4405 page_unlock(*--pl); 4406 } else { 4407 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4408 } 4409 4410 *pl = NULL; 4411 4412 ZFS_EXIT(zfsvfs); 4413 return (err); 4414 } 4415 4416 /* 4417 * Request a memory map for a section of a file. This code interacts 4418 * with common code and the VM system as follows: 4419 * 4420 * common code calls mmap(), which ends up in smmap_common() 4421 * 4422 * this calls VOP_MAP(), which takes you into (say) zfs 4423 * 4424 * zfs_map() calls as_map(), passing segvn_create() as the callback 4425 * 4426 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4427 * 4428 * zfs_addmap() updates z_mapcnt 4429 */ 4430 /*ARGSUSED*/ 4431 static int 4432 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4433 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4434 caller_context_t *ct) 4435 { 4436 znode_t *zp = VTOZ(vp); 4437 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4438 segvn_crargs_t vn_a; 4439 int error; 4440 4441 ZFS_ENTER(zfsvfs); 4442 ZFS_VERIFY_ZP(zp); 4443 4444 if ((prot & PROT_WRITE) && 4445 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4446 ZFS_APPENDONLY))) { 4447 ZFS_EXIT(zfsvfs); 4448 return (EPERM); 4449 } 4450 4451 if ((prot & (PROT_READ | PROT_EXEC)) && 4452 (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) { 4453 ZFS_EXIT(zfsvfs); 4454 return (EACCES); 4455 } 4456 4457 if (vp->v_flag & VNOMAP) { 4458 ZFS_EXIT(zfsvfs); 4459 return (ENOSYS); 4460 } 4461 4462 if (off < 0 || len > MAXOFFSET_T - off) { 4463 ZFS_EXIT(zfsvfs); 4464 return (ENXIO); 4465 } 4466 4467 if (vp->v_type != VREG) { 4468 ZFS_EXIT(zfsvfs); 4469 return (ENODEV); 4470 } 4471 4472 /* 4473 * If file is locked, disallow mapping. 4474 */ 4475 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4476 ZFS_EXIT(zfsvfs); 4477 return (EAGAIN); 4478 } 4479 4480 as_rangelock(as); 4481 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4482 if (error != 0) { 4483 as_rangeunlock(as); 4484 ZFS_EXIT(zfsvfs); 4485 return (error); 4486 } 4487 4488 vn_a.vp = vp; 4489 vn_a.offset = (u_offset_t)off; 4490 vn_a.type = flags & MAP_TYPE; 4491 vn_a.prot = prot; 4492 vn_a.maxprot = maxprot; 4493 vn_a.cred = cr; 4494 vn_a.amp = NULL; 4495 vn_a.flags = flags & ~MAP_TYPE; 4496 vn_a.szc = 0; 4497 vn_a.lgrp_mem_policy_flags = 0; 4498 4499 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4500 4501 as_rangeunlock(as); 4502 ZFS_EXIT(zfsvfs); 4503 return (error); 4504 } 4505 4506 /* ARGSUSED */ 4507 static int 4508 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4509 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4510 caller_context_t *ct) 4511 { 4512 uint64_t pages = btopr(len); 4513 4514 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4515 return (0); 4516 } 4517 4518 /* 4519 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4520 * more accurate mtime for the associated file. Since we don't have a way of 4521 * detecting when the data was actually modified, we have to resort to 4522 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4523 * last page is pushed. The problem occurs when the msync() call is omitted, 4524 * which by far the most common case: 4525 * 4526 * open() 4527 * mmap() 4528 * <modify memory> 4529 * munmap() 4530 * close() 4531 * <time lapse> 4532 * putpage() via fsflush 4533 * 4534 * If we wait until fsflush to come along, we can have a modification time that 4535 * is some arbitrary point in the future. In order to prevent this in the 4536 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4537 * torn down. 4538 */ 4539 /* ARGSUSED */ 4540 static int 4541 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4542 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4543 caller_context_t *ct) 4544 { 4545 uint64_t pages = btopr(len); 4546 4547 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4548 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4549 4550 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4551 vn_has_cached_data(vp)) 4552 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4553 4554 return (0); 4555 } 4556 4557 /* 4558 * Free or allocate space in a file. Currently, this function only 4559 * supports the `F_FREESP' command. However, this command is somewhat 4560 * misnamed, as its functionality includes the ability to allocate as 4561 * well as free space. 4562 * 4563 * IN: vp - vnode of file to free data in. 4564 * cmd - action to take (only F_FREESP supported). 4565 * bfp - section of file to free/alloc. 4566 * flag - current file open mode flags. 4567 * offset - current file offset. 4568 * cr - credentials of caller [UNUSED]. 4569 * ct - caller context. 4570 * 4571 * RETURN: 0 if success 4572 * error code if failure 4573 * 4574 * Timestamps: 4575 * vp - ctime|mtime updated 4576 */ 4577 /* ARGSUSED */ 4578 static int 4579 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4580 offset_t offset, cred_t *cr, caller_context_t *ct) 4581 { 4582 znode_t *zp = VTOZ(vp); 4583 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4584 uint64_t off, len; 4585 int error; 4586 4587 ZFS_ENTER(zfsvfs); 4588 ZFS_VERIFY_ZP(zp); 4589 4590 if (cmd != F_FREESP) { 4591 ZFS_EXIT(zfsvfs); 4592 return (EINVAL); 4593 } 4594 4595 if (error = convoff(vp, bfp, 0, offset)) { 4596 ZFS_EXIT(zfsvfs); 4597 return (error); 4598 } 4599 4600 if (bfp->l_len < 0) { 4601 ZFS_EXIT(zfsvfs); 4602 return (EINVAL); 4603 } 4604 4605 off = bfp->l_start; 4606 len = bfp->l_len; /* 0 means from off to end of file */ 4607 4608 error = zfs_freesp(zp, off, len, flag, TRUE); 4609 4610 ZFS_EXIT(zfsvfs); 4611 return (error); 4612 } 4613 4614 /*ARGSUSED*/ 4615 static int 4616 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4617 { 4618 znode_t *zp = VTOZ(vp); 4619 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4620 uint32_t gen; 4621 uint64_t object = zp->z_id; 4622 zfid_short_t *zfid; 4623 int size, i; 4624 4625 ZFS_ENTER(zfsvfs); 4626 ZFS_VERIFY_ZP(zp); 4627 gen = (uint32_t)zp->z_gen; 4628 4629 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4630 if (fidp->fid_len < size) { 4631 fidp->fid_len = size; 4632 ZFS_EXIT(zfsvfs); 4633 return (ENOSPC); 4634 } 4635 4636 zfid = (zfid_short_t *)fidp; 4637 4638 zfid->zf_len = size; 4639 4640 for (i = 0; i < sizeof (zfid->zf_object); i++) 4641 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4642 4643 /* Must have a non-zero generation number to distinguish from .zfs */ 4644 if (gen == 0) 4645 gen = 1; 4646 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4647 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4648 4649 if (size == LONG_FID_LEN) { 4650 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4651 zfid_long_t *zlfid; 4652 4653 zlfid = (zfid_long_t *)fidp; 4654 4655 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4656 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4657 4658 /* XXX - this should be the generation number for the objset */ 4659 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4660 zlfid->zf_setgen[i] = 0; 4661 } 4662 4663 ZFS_EXIT(zfsvfs); 4664 return (0); 4665 } 4666 #endif /* PORT_SOLARIS */ 4667 4668 static int 4669 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4670 caller_context_t *ct) 4671 { 4672 znode_t *zp, *xzp; 4673 zfsvfs_t *zfsvfs; 4674 zfs_dirlock_t *dl; 4675 int error; 4676 4677 switch (cmd) { 4678 case _PC_LINK_MAX: 4679 *valp = INT_MAX; 4680 return (0); 4681 4682 case _PC_FILESIZEBITS: 4683 *valp = 64; 4684 return (0); 4685 4686 #if 0 4687 case _PC_XATTR_EXISTS: 4688 zp = VTOZ(vp); 4689 zfsvfs = zp->z_zfsvfs; 4690 ZFS_ENTER(zfsvfs); 4691 ZFS_VERIFY_ZP(zp); 4692 *valp = 0; 4693 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4694 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4695 if (error == 0) { 4696 zfs_dirent_unlock(dl); 4697 if (!zfs_dirempty(xzp)) 4698 *valp = 1; 4699 VN_RELE(ZTOV(xzp)); 4700 } else if (error == ENOENT) { 4701 /* 4702 * If there aren't extended attributes, it's the 4703 * same as having zero of them. 4704 */ 4705 error = 0; 4706 } 4707 ZFS_EXIT(zfsvfs); 4708 return (error); 4709 #endif 4710 case _PC_SATTR_ENABLED: 4711 case _PC_SATTR_EXISTS: 4712 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4713 (vp->v_type == VREG || vp->v_type == VDIR); 4714 return (0); 4715 4716 case _PC_ACCESS_FILTERING: 4717 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4718 vp->v_type == VDIR; 4719 return (0); 4720 4721 case _PC_ACL_ENABLED: 4722 *valp = _ACL_ACE_ENABLED; 4723 return (0); 4724 4725 case _PC_MIN_HOLE_SIZE: 4726 *valp = (int)SPA_MINBLOCKSIZE; 4727 return (0); 4728 4729 case _PC_TIMESTAMP_RESOLUTION: 4730 /* nanosecond timestamp resolution */ 4731 *valp = 1L; 4732 return (0); 4733 4734 default: 4735 return (EOPNOTSUPP); 4736 } 4737 } 4738 4739 static int 4740 zfs_netbsd_open(void *v) 4741 { 4742 struct vop_open_args *ap = v; 4743 4744 return (zfs_open(&ap->a_vp, ap->a_mode, ap->a_cred, NULL)); 4745 } 4746 4747 static int 4748 zfs_netbsd_close(void *v) 4749 { 4750 struct vop_close_args *ap = v; 4751 4752 return (zfs_close(ap->a_vp, ap->a_fflag, 0, 0, ap->a_cred, NULL)); 4753 } 4754 4755 static int 4756 zfs_netbsd_ioctl(void *v) 4757 { 4758 struct vop_ioctl_args *ap = v; 4759 4760 return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data, 4761 ap->a_fflag, ap->a_cred, NULL, NULL)); 4762 } 4763 4764 4765 static int 4766 zfs_netbsd_read(void *v) 4767 { 4768 struct vop_read_args *ap = v; 4769 4770 return (zfs_read(ap->a_vp, ap->a_uio, ap->a_ioflag, ap->a_cred, NULL)); 4771 } 4772 4773 static int 4774 zfs_netbsd_write(void *v) 4775 { 4776 struct vop_write_args *ap = v; 4777 4778 return (zfs_write(ap->a_vp, ap->a_uio, ap->a_ioflag, ap->a_cred, NULL)); 4779 } 4780 4781 static int 4782 zfs_netbsd_access(void *v) 4783 { 4784 struct vop_access_args /* { 4785 struct vnode *a_vp; 4786 int a_mode; 4787 kauth_cred_t a_cred; 4788 } */ *ap = v; 4789 struct vnode *vp = ap->a_vp; 4790 int mode = ap->a_mode; 4791 mode_t zfs_mode = 0; 4792 kauth_cred_t cred = ap->a_cred; 4793 int error; 4794 4795 /* 4796 * XXX This is really random, especially the left shift by six, 4797 * and it exists only because of randomness in zfs_unix_to_v4 4798 * and zfs_zaccess_rwx in zfs_acl.c. 4799 */ 4800 if (mode & VREAD) 4801 zfs_mode |= S_IROTH; 4802 if (mode & VWRITE) 4803 zfs_mode |= S_IWOTH; 4804 if (mode & VEXEC) 4805 zfs_mode |= S_IXOTH; 4806 zfs_mode <<= 6; 4807 4808 KASSERT(VOP_ISLOCKED(vp)); 4809 error = zfs_access(vp, zfs_mode, 0, cred, NULL); 4810 4811 return (error); 4812 } 4813 4814 static int 4815 zfs_netbsd_lookup(void *v) 4816 { 4817 struct vop_lookup_v2_args /* { 4818 struct vnode *a_dvp; 4819 struct vnode **a_vpp; 4820 struct componentname *a_cnp; 4821 } */ *ap = v; 4822 struct vnode *dvp = ap->a_dvp; 4823 struct vnode **vpp = ap->a_vpp; 4824 struct componentname *cnp = ap->a_cnp; 4825 char nm[NAME_MAX + 1]; 4826 int error; 4827 4828 KASSERT(dvp != NULL); 4829 KASSERT(vpp != NULL); 4830 KASSERT(cnp != NULL); 4831 KASSERT(cnp->cn_nameptr != NULL); 4832 KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); 4833 KASSERT(cnp->cn_namelen < sizeof nm); 4834 4835 #if 0 /* Namecache too scary to contemplate. */ 4836 *vpp = NULL; 4837 4838 /* 4839 * Do an access check before the cache lookup. zfs_lookup does 4840 * an access check too, but it's too scary to contemplate 4841 * injecting our namecache stuff into zfs internals. 4842 * 4843 * XXX Is this the correct access check? 4844 */ 4845 if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred)) != 0) 4846 goto out; 4847 4848 /* 4849 * Check the namecache before entering zfs_lookup. 4850 * cache_lookup does the locking dance for us. 4851 */ 4852 if ((error = cache_lookup(dvp, vpp, cnp)) >= 0) 4853 goto out; 4854 #endif 4855 4856 /* 4857 * zfs_lookup wants a null-terminated component name, but namei 4858 * gives us a pointer into the full pathname. 4859 */ 4860 (void)strlcpy(nm, cnp->cn_nameptr, cnp->cn_namelen + 1); 4861 4862 error = zfs_lookup(dvp, nm, vpp, NULL, 0, NULL, cnp->cn_cred, NULL, 4863 NULL, NULL); 4864 4865 /* 4866 * Translate errors to match our namei insanity. Also, if the 4867 * caller wants to create an entry here, it's apparently our 4868 * responsibility as lookup to make sure that's permissible. 4869 * Go figure. 4870 */ 4871 if (cnp->cn_flags & ISLASTCN) { 4872 switch (cnp->cn_nameiop) { 4873 case CREATE: 4874 case RENAME: 4875 if (error == ENOENT) { 4876 error = VOP_ACCESS(dvp, VWRITE, cnp->cn_cred); 4877 if (error) 4878 break; 4879 error = EJUSTRETURN; 4880 break; 4881 } 4882 /* FALLTHROUGH */ 4883 case DELETE: 4884 break; 4885 } 4886 } 4887 4888 if (error) { 4889 KASSERT(*vpp == NULL); 4890 goto out; 4891 } 4892 KASSERT(*vpp != NULL); /* XXX Correct? */ 4893 4894 if ((cnp->cn_namelen == 1) && (cnp->cn_nameptr[0] == '.')) { 4895 KASSERT(!(cnp->cn_flags & ISDOTDOT)); 4896 KASSERT(dvp == *vpp); 4897 } else if ((cnp->cn_namelen == 2) && 4898 (cnp->cn_nameptr[0] == '.') && 4899 (cnp->cn_nameptr[1] == '.')) { 4900 KASSERT(cnp->cn_flags & ISDOTDOT); 4901 } else { 4902 KASSERT(!(cnp->cn_flags & ISDOTDOT)); 4903 } 4904 4905 out: 4906 KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); 4907 4908 #if 0 /* Namecache too scary to contemplate. */ 4909 /* 4910 * Insert name into cache if appropriate. 4911 * 4912 * XXX This seems like a lot of code. Is it all necessary? 4913 * Can we just do a single cache_enter call? 4914 */ 4915 #if 0 4916 cache_enter(dvp, *vpp, cnp); 4917 #endif 4918 4919 if ((cnp->cn_flags & MAKEENTRY) == 0) 4920 return (error); 4921 4922 switch (error) { 4923 case 0: 4924 cache_enter(dvp, *vpp, cnp); 4925 break; 4926 case ENOENT: 4927 KASSERT(*vpp == NULL); 4928 if (cnp->cn_nameiop != CREATE) 4929 cache_enter(dvp, NULL, cnp); 4930 break; 4931 default: 4932 break; 4933 } 4934 #endif 4935 4936 return (error); 4937 } 4938 4939 static int 4940 zfs_netbsd_create(void *v) 4941 { 4942 struct vop_create_v3_args /* { 4943 struct vnode *a_dvp; 4944 struct vnode **a_vpp; 4945 struct componentname *a_cnp; 4946 struct vattr *a_vap; 4947 } */ *ap = v; 4948 struct vnode *dvp = ap->a_dvp; 4949 struct vnode **vpp = ap->a_vpp; 4950 struct componentname *cnp = ap->a_cnp; 4951 struct vattr *vap = ap->a_vap; 4952 int mode; 4953 int error; 4954 4955 KASSERT(dvp != NULL); 4956 KASSERT(vpp != NULL); 4957 KASSERT(cnp != NULL); 4958 KASSERT(vap != NULL); 4959 KASSERT(cnp->cn_nameptr != NULL); 4960 KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); 4961 4962 #if 0 4963 /* 4964 * ZFS doesn't require dvp to be BSD-locked, and the caller 4965 * expects us to drop this lock anyway, so we might as well 4966 * drop it early to encourage concurrency. 4967 */ 4968 VOP_UNLOCK(dvp); 4969 #endif 4970 4971 vattr_init_mask(vap); 4972 mode = vap->va_mode & ALLPERMS; 4973 4974 /* XXX !EXCL is wrong here... */ 4975 error = zfs_create(dvp, __UNCONST(cnp->cn_nameptr), vap, !EXCL, mode, 4976 vpp, cnp->cn_cred); 4977 4978 KASSERT((error == 0) == (*vpp != NULL)); 4979 KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); 4980 4981 return (error); 4982 } 4983 4984 static int 4985 zfs_netbsd_remove(void *v) 4986 { 4987 struct vop_remove_args /* { 4988 struct vnode *a_dvp; 4989 struct vnode *a_vp; 4990 struct componentname *a_cnp; 4991 } */ *ap = v; 4992 struct vnode *dvp = ap->a_dvp; 4993 struct vnode *vp = ap->a_vp; 4994 struct componentname *cnp = ap->a_cnp; 4995 int error; 4996 4997 KASSERT(dvp != NULL); 4998 KASSERT(vp != NULL); 4999 KASSERT(cnp != NULL); 5000 KASSERT(cnp->cn_nameptr != NULL); 5001 KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); 5002 KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE); 5003 5004 #if 0 5005 /* 5006 * ZFS doesn't require dvp to be BSD-locked, and the caller 5007 * expects us to drop this lock anyway, so we might as well 5008 * drop it early to encourage concurrency. 5009 */ 5010 VOP_UNLOCK(dvp); 5011 #endif 5012 5013 /* 5014 * zfs_remove will look up the entry again itself, so discard vp. 5015 */ 5016 VOP_UNLOCK(vp); 5017 VN_RELE(vp); 5018 5019 error = zfs_remove(dvp, __UNCONST(cnp->cn_nameptr), cnp->cn_cred, NULL, 5020 0); 5021 5022 KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); 5023 5024 /* 5025 * Unlock and release dvp because the VOP_REMOVE protocol is insane. 5026 */ 5027 VOP_UNLOCK(dvp); 5028 VN_RELE(dvp); 5029 5030 return (error); 5031 } 5032 5033 static int 5034 zfs_netbsd_mkdir(void *v) 5035 { 5036 struct vop_mkdir_v3_args /* { 5037 struct vnode *a_dvp; 5038 struct vnode **a_vpp; 5039 struct componentname *a_cnp; 5040 struct vattr *a_vap; 5041 } */ *ap = v; 5042 struct vnode *dvp = ap->a_dvp; 5043 struct vnode **vpp = ap->a_vpp; 5044 struct componentname *cnp = ap->a_cnp; 5045 struct vattr *vap = ap->a_vap; 5046 int error; 5047 5048 KASSERT(dvp != NULL); 5049 KASSERT(vpp != NULL); 5050 KASSERT(cnp != NULL); 5051 KASSERT(vap != NULL); 5052 KASSERT(cnp->cn_nameptr != NULL); 5053 KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); 5054 5055 #if 0 5056 /* 5057 * ZFS doesn't require dvp to be BSD-locked, and the caller 5058 * expects us to drop this lock anyway, so we might as well 5059 * drop it early to encourage concurrency. 5060 */ 5061 VOP_UNLOCK(dvp); 5062 #endif 5063 5064 vattr_init_mask(vap); 5065 5066 error = zfs_mkdir(dvp, __UNCONST(cnp->cn_nameptr), vap, vpp, 5067 cnp->cn_cred, NULL, 0, NULL); 5068 5069 KASSERT((error == 0) == (*vpp != NULL)); 5070 KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); 5071 5072 return (error); 5073 } 5074 5075 static int 5076 zfs_netbsd_rmdir(void *v) 5077 { 5078 struct vop_rmdir_args /* { 5079 struct vnode *a_dvp; 5080 struct vnode *a_vp; 5081 struct componentname *a_cnp; 5082 } */ *ap = v; 5083 struct vnode *dvp = ap->a_dvp; 5084 struct vnode *vp = ap->a_vp; 5085 struct componentname *cnp = ap->a_cnp; 5086 int error; 5087 5088 KASSERT(dvp != NULL); 5089 KASSERT(vp != NULL); 5090 KASSERT(cnp != NULL); 5091 KASSERT(cnp->cn_nameptr != NULL); 5092 KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); 5093 KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE); 5094 5095 #if 0 5096 /* 5097 * ZFS doesn't require dvp to be BSD-locked, and the caller 5098 * expects us to drop this lock anyway, so we might as well 5099 * drop it early to encourage concurrency. 5100 */ 5101 VOP_UNLOCK(dvp); 5102 #endif 5103 5104 /* 5105 * zfs_rmdir will look up the entry again itself, so discard vp. 5106 */ 5107 VOP_UNLOCK(vp); 5108 VN_RELE(vp); 5109 5110 error = zfs_rmdir(dvp, __UNCONST(cnp->cn_nameptr), NULL, cnp->cn_cred, 5111 NULL, 0); 5112 5113 KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); 5114 5115 /* 5116 * Unlock and release dvp because the VOP_RMDIR protocol is insane. 5117 */ 5118 VOP_UNLOCK(dvp); 5119 VN_RELE(dvp); 5120 return error; 5121 } 5122 5123 static int 5124 zfs_netbsd_readdir(void *v) 5125 { 5126 struct vop_readdir_args *ap = v; 5127 5128 return (zfs_readdir(ap->a_vp, ap->a_uio, ap->a_cred, ap->a_eofflag, 5129 ap->a_ncookies, (u_long **)ap->a_cookies)); 5130 } 5131 5132 static int 5133 zfs_netbsd_fsync(void *v) 5134 { 5135 struct vop_fsync_args *ap = v; 5136 5137 return (zfs_fsync(ap->a_vp, ap->a_flags, ap->a_cred, NULL)); 5138 } 5139 5140 static int 5141 zfs_netbsd_getattr(void *v) 5142 { 5143 struct vop_getattr_args *ap = v; 5144 vattr_t *vap = ap->a_vap; 5145 xvattr_t xvap; 5146 u_long fflags = 0; 5147 int error; 5148 5149 xva_init(&xvap); 5150 xvap.xva_vattr = *vap; 5151 xvap.xva_vattr.va_mask |= AT_XVATTR; 5152 5153 /* Convert chflags into ZFS-type flags. */ 5154 /* XXX: what about SF_SETTABLE?. */ 5155 XVA_SET_REQ(&xvap, XAT_IMMUTABLE); 5156 XVA_SET_REQ(&xvap, XAT_APPENDONLY); 5157 XVA_SET_REQ(&xvap, XAT_NOUNLINK); 5158 XVA_SET_REQ(&xvap, XAT_NODUMP); 5159 error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred, NULL); 5160 if (error != 0) 5161 return (error); 5162 5163 /* Convert ZFS xattr into chflags. */ 5164 #define FLAG_CHECK(fflag, xflag, xfield) do { \ 5165 if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0) \ 5166 fflags |= (fflag); \ 5167 } while (0) 5168 FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE, 5169 xvap.xva_xoptattrs.xoa_immutable); 5170 FLAG_CHECK(SF_APPEND, XAT_APPENDONLY, 5171 xvap.xva_xoptattrs.xoa_appendonly); 5172 FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK, 5173 xvap.xva_xoptattrs.xoa_nounlink); 5174 FLAG_CHECK(UF_NODUMP, XAT_NODUMP, 5175 xvap.xva_xoptattrs.xoa_nodump); 5176 #undef FLAG_CHECK 5177 *vap = xvap.xva_vattr; 5178 vap->va_flags = fflags; 5179 return (0); 5180 } 5181 5182 static int 5183 zfs_netbsd_setattr(void *v) 5184 { 5185 struct vop_setattr_args *ap = v; 5186 vnode_t *vp = ap->a_vp; 5187 vattr_t *vap = ap->a_vap; 5188 cred_t *cred = ap->a_cred; 5189 xvattr_t xvap; 5190 u_long fflags; 5191 uint64_t zflags; 5192 5193 vattr_init_mask(vap); 5194 vap->va_mask &= ~AT_NOSET; 5195 5196 xva_init(&xvap); 5197 xvap.xva_vattr = *vap; 5198 5199 zflags = VTOZ(vp)->z_phys->zp_flags; 5200 5201 if (vap->va_flags != VNOVAL) { 5202 int error; 5203 5204 fflags = vap->va_flags; 5205 if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_NODUMP)) != 0) 5206 return (EOPNOTSUPP); 5207 /* 5208 * Callers may only modify the file flags on objects they 5209 * have VADMIN rights for. 5210 */ 5211 if ((error = VOP_ACCESS(vp, VWRITE, cred)) != 0) 5212 return (error); 5213 /* 5214 * Unprivileged processes are not permitted to unset system 5215 * flags, or modify flags if any system flags are set. 5216 * Privileged non-jail processes may not modify system flags 5217 * if securelevel > 0 and any existing system flags are set. 5218 * Privileged jail processes behave like privileged non-jail 5219 * processes if the security.jail.chflags_allowed sysctl is 5220 * is non-zero; otherwise, they behave like unprivileged 5221 * processes. 5222 */ 5223 if (kauth_authorize_system(cred, KAUTH_SYSTEM_CHSYSFLAGS, 0, 5224 NULL, NULL, NULL) != 0) { 5225 5226 if (zflags & 5227 (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) { 5228 return (EPERM); 5229 } 5230 if (fflags & 5231 (SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) { 5232 return (EPERM); 5233 } 5234 } 5235 5236 #define FLAG_CHANGE(fflag, zflag, xflag, xfield) do { \ 5237 if (((fflags & (fflag)) && !(zflags & (zflag))) || \ 5238 ((zflags & (zflag)) && !(fflags & (fflag)))) { \ 5239 XVA_SET_REQ(&xvap, (xflag)); \ 5240 (xfield) = ((fflags & (fflag)) != 0); \ 5241 } \ 5242 } while (0) 5243 /* Convert chflags into ZFS-type flags. */ 5244 /* XXX: what about SF_SETTABLE?. */ 5245 FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE, 5246 xvap.xva_xoptattrs.xoa_immutable); 5247 FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY, 5248 xvap.xva_xoptattrs.xoa_appendonly); 5249 FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK, 5250 xvap.xva_xoptattrs.xoa_nounlink); 5251 FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP, 5252 xvap.xva_xoptattrs.xoa_nodump); 5253 #undef FLAG_CHANGE 5254 } 5255 return (zfs_setattr(vp, (vattr_t *)&xvap, 0, cred, NULL)); 5256 } 5257 5258 static int 5259 zfs_netbsd_rename(void *v) 5260 { 5261 struct vop_rename_args /* { 5262 struct vnode *a_fdvp; 5263 struct vnode *a_fvp; 5264 struct componentname *a_fcnp; 5265 struct vnode *a_tdvp; 5266 struct vnode *a_tvp; 5267 struct componentname *a_tcnp; 5268 } */ *ap = v; 5269 vnode_t *fdvp = ap->a_fdvp; 5270 vnode_t *fvp = ap->a_fvp; 5271 struct componentname *fcnp = ap->a_fcnp; 5272 vnode_t *tdvp = ap->a_tdvp; 5273 vnode_t *tvp = ap->a_tvp; 5274 struct componentname *tcnp = ap->a_tcnp; 5275 kauth_cred_t cred; 5276 int error; 5277 5278 KASSERT(fdvp != NULL); 5279 KASSERT(fvp != NULL); 5280 KASSERT(fcnp != NULL); 5281 KASSERT(fcnp->cn_nameptr != NULL); 5282 KASSERT(tdvp != NULL); 5283 KASSERT(tcnp != NULL); 5284 KASSERT(fcnp->cn_nameptr != NULL); 5285 /* KASSERT(VOP_ISLOCKED(fdvp) != LK_EXCLUSIVE); */ 5286 /* KASSERT(VOP_ISLOCKED(fvp) != LK_EXCLUSIVE); */ 5287 KASSERT(VOP_ISLOCKED(tdvp) == LK_EXCLUSIVE); 5288 KASSERT((tvp == NULL) || (VOP_ISLOCKED(tvp) == LK_EXCLUSIVE)); 5289 KASSERT(fdvp->v_type == VDIR); 5290 KASSERT(tdvp->v_type == VDIR); 5291 5292 cred = fcnp->cn_cred; 5293 5294 /* 5295 * XXX Want a better equality test. `tcnp->cn_cred == cred' 5296 * hoses p2k because puffs transmits the creds separately and 5297 * allocates distinct but equivalent structures for them. 5298 */ 5299 KASSERT(kauth_cred_uidmatch(cred, tcnp->cn_cred)); 5300 5301 /* 5302 * Drop the insane locks. 5303 */ 5304 VOP_UNLOCK(tdvp); 5305 if ((tvp != NULL) && (tvp != tdvp)) 5306 VOP_UNLOCK(tvp); 5307 5308 /* 5309 * Release the source and target nodes; zfs_rename will look 5310 * them up again once the locking situation is sane. 5311 */ 5312 VN_RELE(fvp); 5313 if (tvp != NULL) 5314 VN_RELE(tvp); 5315 5316 /* 5317 * Do the rename ZFSly. 5318 */ 5319 error = zfs_rename(fdvp, __UNCONST(fcnp->cn_nameptr), tdvp, 5320 __UNCONST(tcnp->cn_nameptr), cred, NULL, 0); 5321 5322 /* 5323 * Release the directories now too, because the VOP_RENAME 5324 * protocol is insane. 5325 */ 5326 VN_RELE(fdvp); 5327 VN_RELE(tdvp); 5328 5329 return (error); 5330 } 5331 5332 static int 5333 zfs_netbsd_symlink(void *v) 5334 { 5335 struct vop_symlink_v3_args /* { 5336 struct vnode *a_dvp; 5337 struct vnode **a_vpp; 5338 struct componentname *a_cnp; 5339 struct vattr *a_vap; 5340 char *a_target; 5341 } */ *ap = v; 5342 struct vnode *dvp = ap->a_dvp; 5343 struct vnode **vpp = ap->a_vpp; 5344 struct componentname *cnp = ap->a_cnp; 5345 struct vattr *vap = ap->a_vap; 5346 char *target = ap->a_target; 5347 int error; 5348 5349 KASSERT(dvp != NULL); 5350 KASSERT(vpp != NULL); 5351 KASSERT(cnp != NULL); 5352 KASSERT(vap != NULL); 5353 KASSERT(target != NULL); 5354 KASSERT(cnp->cn_nameptr != NULL); 5355 KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); 5356 5357 #if 0 5358 /* 5359 * ZFS doesn't require dvp to be BSD-locked, and the caller 5360 * expects us to drop this lock anyway, so we might as well 5361 * drop it early to encourage concurrency. 5362 */ 5363 VOP_UNLOCK(dvp); 5364 #endif 5365 5366 vap->va_type = VLNK; /* Netbsd: Syscall only sets va_mode. */ 5367 vattr_init_mask(vap); 5368 5369 error = zfs_symlink(dvp, vpp, __UNCONST(cnp->cn_nameptr), vap, target, 5370 cnp->cn_cred, 0); 5371 5372 KASSERT((error == 0) == (*vpp != NULL)); 5373 KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); 5374 5375 return (error); 5376 } 5377 5378 #ifdef PORT_SOLARIS 5379 /* 5380 * Tunable, both must be a power of 2. 5381 * 5382 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf 5383 * zcr_blksz_max: if set to less than the file block size, allow loaning out of 5384 * an arcbuf for a partial block read 5385 */ 5386 int zcr_blksz_min = (1 << 10); /* 1K */ 5387 int zcr_blksz_max = (1 << 17); /* 128K */ 5388 5389 /*ARGSUSED*/ 5390 static int 5391 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5392 caller_context_t *ct) 5393 { 5394 znode_t *zp = VTOZ(vp); 5395 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5396 int max_blksz = zfsvfs->z_max_blksz; 5397 uio_t *uio = &xuio->xu_uio; 5398 ssize_t size = uio->uio_resid; 5399 offset_t offset = uio->uio_loffset; 5400 int blksz; 5401 int fullblk, i; 5402 arc_buf_t *abuf; 5403 ssize_t maxsize; 5404 int preamble, postamble; 5405 5406 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5407 return (EINVAL); 5408 5409 ZFS_ENTER(zfsvfs); 5410 ZFS_VERIFY_ZP(zp); 5411 switch (ioflag) { 5412 case UIO_WRITE: 5413 /* 5414 * Loan out an arc_buf for write if write size is bigger than 5415 * max_blksz, and the file's block size is also max_blksz. 5416 */ 5417 blksz = max_blksz; 5418 if (size < blksz || zp->z_blksz != blksz) { 5419 ZFS_EXIT(zfsvfs); 5420 return (EINVAL); 5421 } 5422 /* 5423 * Caller requests buffers for write before knowing where the 5424 * write offset might be (e.g. NFS TCP write). 5425 */ 5426 if (offset == -1) { 5427 preamble = 0; 5428 } else { 5429 preamble = P2PHASE(offset, blksz); 5430 if (preamble) { 5431 preamble = blksz - preamble; 5432 size -= preamble; 5433 } 5434 } 5435 5436 postamble = P2PHASE(size, blksz); 5437 size -= postamble; 5438 5439 fullblk = size / blksz; 5440 (void) dmu_xuio_init(xuio, 5441 (preamble != 0) + fullblk + (postamble != 0)); 5442 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5443 int, postamble, int, 5444 (preamble != 0) + fullblk + (postamble != 0)); 5445 5446 /* 5447 * Have to fix iov base/len for partial buffers. They 5448 * currently represent full arc_buf's. 5449 */ 5450 if (preamble) { 5451 /* data begins in the middle of the arc_buf */ 5452 abuf = dmu_request_arcbuf(zp->z_dbuf, blksz); 5453 ASSERT(abuf); 5454 (void) dmu_xuio_add(xuio, abuf, 5455 blksz - preamble, preamble); 5456 } 5457 5458 for (i = 0; i < fullblk; i++) { 5459 abuf = dmu_request_arcbuf(zp->z_dbuf, blksz); 5460 ASSERT(abuf); 5461 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5462 } 5463 5464 if (postamble) { 5465 /* data ends in the middle of the arc_buf */ 5466 abuf = dmu_request_arcbuf(zp->z_dbuf, blksz); 5467 ASSERT(abuf); 5468 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5469 } 5470 break; 5471 case UIO_READ: 5472 /* 5473 * Loan out an arc_buf for read if the read size is larger than 5474 * the current file block size. Block alignment is not 5475 * considered. Partial arc_buf will be loaned out for read. 5476 */ 5477 blksz = zp->z_blksz; 5478 if (blksz < zcr_blksz_min) 5479 blksz = zcr_blksz_min; 5480 if (blksz > zcr_blksz_max) 5481 blksz = zcr_blksz_max; 5482 /* avoid potential complexity of dealing with it */ 5483 if (blksz > max_blksz) { 5484 ZFS_EXIT(zfsvfs); 5485 return (EINVAL); 5486 } 5487 5488 maxsize = zp->z_phys->zp_size - uio->uio_loffset; 5489 if (size > maxsize) 5490 size = maxsize; 5491 5492 if (size < blksz || vn_has_cached_data(vp)) { 5493 ZFS_EXIT(zfsvfs); 5494 return (EINVAL); 5495 } 5496 break; 5497 default: 5498 ZFS_EXIT(zfsvfs); 5499 return (EINVAL); 5500 } 5501 5502 uio->uio_extflg = UIO_XUIO; 5503 XUIO_XUZC_RW(xuio) = ioflag; 5504 ZFS_EXIT(zfsvfs); 5505 return (0); 5506 } 5507 5508 /*ARGSUSED*/ 5509 static int 5510 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5511 { 5512 int i; 5513 arc_buf_t *abuf; 5514 int ioflag = XUIO_XUZC_RW(xuio); 5515 5516 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5517 5518 i = dmu_xuio_cnt(xuio); 5519 while (i-- > 0) { 5520 abuf = dmu_xuio_arcbuf(xuio, i); 5521 /* 5522 * if abuf == NULL, it must be a write buffer 5523 * that has been returned in zfs_write(). 5524 */ 5525 if (abuf) 5526 dmu_return_arcbuf(abuf); 5527 ASSERT(abuf || ioflag == UIO_WRITE); 5528 } 5529 5530 dmu_xuio_fini(xuio); 5531 return (0); 5532 } 5533 5534 /* 5535 * Predeclare these here so that the compiler assumes that 5536 * this is an "old style" function declaration that does 5537 * not include arguments => we won't get type mismatch errors 5538 * in the initializations that follow. 5539 */ 5540 static int zfs_inval(); 5541 static int zfs_isdir(); 5542 #endif 5543 5544 static int 5545 zfs_netbsd_readlink(void *v) 5546 { 5547 struct vop_readlink_args *ap = v; 5548 5549 return (zfs_readlink(ap->a_vp, ap->a_uio, ap->a_cred, NULL)); 5550 } 5551 5552 static int 5553 zfs_netbsd_link(void *v) 5554 { 5555 struct vop_link_args /* { 5556 struct vnode *a_dvp; 5557 struct vnode *a_vp; 5558 struct componentname *a_cnp; 5559 } */ *ap = v; 5560 struct vnode *dvp = ap->a_dvp; 5561 struct vnode *vp = ap->a_vp; 5562 struct componentname *cnp = ap->a_cnp; 5563 int error; 5564 5565 KASSERT(dvp != NULL); 5566 KASSERT(vp != NULL); 5567 KASSERT(cnp != NULL); 5568 KASSERT(cnp->cn_nameptr != NULL); 5569 KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); 5570 5571 #if 0 5572 /* 5573 * ZFS doesn't require dvp to be BSD-locked, and the caller 5574 * expects us to drop this lock anyway, so we might as well 5575 * drop it early to encourage concurrency. 5576 */ 5577 VOP_UNLOCK(dvp); 5578 #endif 5579 5580 error = zfs_link(dvp, vp, __UNCONST(cnp->cn_nameptr), cnp->cn_cred, 5581 NULL, 0); 5582 5583 /* 5584 * Unlock and release dvp because the VOP_LINK protocol is insane. 5585 */ 5586 VOP_UNLOCK(dvp); 5587 VN_RELE(dvp); 5588 5589 return (error); 5590 } 5591 5592 static int 5593 zfs_netbsd_inactive(void *v) 5594 { 5595 struct vop_inactive_args *ap = v; 5596 vnode_t *vp = ap->a_vp; 5597 znode_t *zp = VTOZ(vp); 5598 5599 /* 5600 * NetBSD: nothing to do here, other than indicate if the 5601 * vnode should be reclaimed. No need to lock, if we race 5602 * vrele() will call us again. 5603 */ 5604 *ap->a_recycle = (zp->z_unlinked != 0); 5605 VOP_UNLOCK(vp); 5606 return (0); 5607 } 5608 5609 static int 5610 zfs_netbsd_reclaim(void *v) 5611 { 5612 struct vop_reclaim_args /* { 5613 struct vnode *a_vp; 5614 } */ *ap = v; 5615 struct vnode *vp = ap->a_vp; 5616 znode_t *zp; 5617 zfsvfs_t *zfsvfs; 5618 int error; 5619 5620 KASSERT(vp != NULL); 5621 zp = VTOZ(vp); 5622 KASSERT(zp != NULL); 5623 zfsvfs = zp->z_zfsvfs; 5624 KASSERT(zfsvfs != NULL); 5625 5626 /* Not until we get uvm and zfs talking to one another. */ 5627 KASSERT(!vn_has_cached_data(vp)); 5628 5629 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 5630 if (zp->z_dbuf == NULL) { 5631 /* 5632 * The fs has been unmounted, or we did a 5633 * suspend/resume and this file no longer exists. 5634 */ 5635 if (vn_has_cached_data(vp)) 5636 /* zfs and uvm are hosed. Should not happen. */ 5637 panic("zfs vnode has cached data (0): %p", vp); 5638 rw_exit(&zfsvfs->z_teardown_inactive_lock); 5639 zfs_znode_free(zp); 5640 return (0); 5641 } 5642 5643 /* 5644 * Attempt to push any data in the page cache. If this fails 5645 * we will get kicked out later in zfs_zinactive(). 5646 */ 5647 if (vn_has_cached_data(vp)) 5648 /* zfs and uvm are hosed. Should not happen. */ 5649 panic("zfs vnode has cached data (1): %p", vp); 5650 5651 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 5652 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 5653 5654 dmu_tx_hold_bonus(tx, zp->z_id); 5655 error = dmu_tx_assign(tx, TXG_WAIT); 5656 if (error) { 5657 dmu_tx_abort(tx); 5658 } else { 5659 dmu_buf_will_dirty(zp->z_dbuf, tx); 5660 mutex_enter(&zp->z_lock); 5661 zp->z_atime_dirty = 0; 5662 mutex_exit(&zp->z_lock); 5663 dmu_tx_commit(tx); 5664 } 5665 } 5666 5667 zfs_zinactive(zp); 5668 rw_exit(&zfsvfs->z_teardown_inactive_lock); 5669 return 0; 5670 } 5671 5672 static int 5673 zfs_netbsd_fid(void *v) 5674 { 5675 struct vop_fid_args *ap = v; 5676 5677 return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL)); 5678 } 5679 5680 static int 5681 zfs_netbsd_pathconf(void *v) 5682 { 5683 struct vop_pathconf_args *ap = v; 5684 ulong_t val; 5685 int error; 5686 5687 error = zfs_pathconf(ap->a_vp, ap->a_name, &val, curthread->l_cred, NULL); 5688 if (error == 0) 5689 *ap->a_retval = val; 5690 else if (error == EOPNOTSUPP) { 5691 switch (ap->a_name) { 5692 case _PC_NAME_MAX: 5693 *ap->a_retval = NAME_MAX; 5694 return (0); 5695 case _PC_PATH_MAX: 5696 *ap->a_retval = PATH_MAX; 5697 return (0); 5698 case _PC_LINK_MAX: 5699 *ap->a_retval = LINK_MAX; 5700 return (0); 5701 case _PC_MAX_CANON: 5702 *ap->a_retval = MAX_CANON; 5703 return (0); 5704 case _PC_MAX_INPUT: 5705 *ap->a_retval = MAX_INPUT; 5706 return (0); 5707 case _PC_PIPE_BUF: 5708 *ap->a_retval = PIPE_BUF; 5709 return (0); 5710 case _PC_CHOWN_RESTRICTED: 5711 *ap->a_retval = 1; 5712 return (0); 5713 case _PC_NO_TRUNC: 5714 *ap->a_retval = 1; 5715 return (0); 5716 case _PC_VDISABLE: 5717 *ap->a_retval = _POSIX_VDISABLE; 5718 return (0); 5719 default: 5720 return (EINVAL); 5721 } 5722 /* NOTREACHED */ 5723 } 5724 return (error); 5725 } 5726 5727 #if 1 5728 # define zfs_netbsd_lock genfs_lock 5729 # define zfs_netbsd_unlock genfs_unlock 5730 # define zfs_netbsd_islocked genfs_islocked 5731 #else 5732 int 5733 zfs_netbsd_lock(void *v) 5734 { 5735 struct vop_lock_args *ap = v; 5736 5737 return 0; 5738 } 5739 5740 int 5741 zfs_netbsd_unlock(void *v) 5742 { 5743 5744 return 0; 5745 } 5746 5747 static int 5748 zfs_netbsd_islocked(void *v) 5749 { 5750 5751 return LK_EXCLUSIVE; 5752 } 5753 #endif 5754 5755 /* 5756 int 5757 zfs_netbsd_getpages(void *v) 5758 { 5759 struct vnode *vp = ((struct vop_getpages_args *)v)->a_vp; 5760 voff_t offset = ((struct vop_getpages_args *)v)->a_offset; 5761 struct vm_page **m = ((struct vop_getpages_args *)v)->a_m; 5762 int *count = ((struct vop_getpages_args *)v)->a_count; 5763 int centeridx = ((struct vop_getpages_args *)v)->a_centeridx; 5764 vm_prot_t access_type = ((struct vop_getpages_args *)v)->a_access_type; 5765 int advice = ((struct vop_getpages_args *)v)->a_advice; 5766 int flags = ((struct vop_getpages_args *)v)->a_flags; 5767 5768 int error; 5769 5770 error = 0; 5771 5772 KASSERT(!vn_has_cached_data(vp)); 5773 mutex_exit(&vp->v_interlock); 5774 5775 return error; 5776 } 5777 */ 5778 5779 int 5780 zfs_netbsd_putpages(void *v) 5781 { 5782 struct vnode *vp = ((struct vop_putpages_args *)v)->a_vp; 5783 voff_t offlo = ((struct vop_putpages_args *)v)->a_offlo; 5784 voff_t offhi = ((struct vop_putpages_args *)v)->a_offhi; 5785 int flags = ((struct vop_putpages_args *)v)->a_flags; 5786 znode_t *zp = VTOZ(vp); 5787 5788 int error; 5789 5790 dprintf("putpages entry %p -- zfsvfs %p\n", vp, zp->z_zfsvfs); 5791 error = genfs_putpages(v); 5792 dprintf("putpages exit %p -- zfsvfs %p\n", vp, zp->z_zfsvfs); 5793 5794 return error; 5795 } 5796 5797 #define zfs_netbsd_seek genfs_seek 5798 #define zfs_netbsd_mmap genfs_mmap 5799 #define zfs_netbsd_getpages genfs_compat_getpages 5800 //#define zfs_netbsd_putpages genfs_putpages 5801 5802 int (**zfs_vnodeop_p)(void *); 5803 const struct vnodeopv_entry_desc zfs_vnodeop_entries[] = { 5804 { &vop_default_desc, vn_default_error }, 5805 { &vop_lookup_desc, zfs_netbsd_lookup }, 5806 { &vop_create_desc, zfs_netbsd_create }, 5807 { &vop_open_desc, zfs_netbsd_open }, 5808 { &vop_close_desc, zfs_netbsd_close }, 5809 { &vop_access_desc, zfs_netbsd_access }, 5810 { &vop_getattr_desc, zfs_netbsd_getattr }, 5811 { &vop_setattr_desc, zfs_netbsd_setattr }, 5812 { &vop_read_desc, zfs_netbsd_read }, 5813 { &vop_write_desc, zfs_netbsd_write }, 5814 { &vop_ioctl_desc, zfs_netbsd_ioctl }, 5815 { &vop_fsync_desc, zfs_netbsd_fsync }, 5816 { &vop_remove_desc, zfs_netbsd_remove }, 5817 { &vop_link_desc, zfs_netbsd_link }, 5818 { &vop_lock_desc, zfs_netbsd_lock }, 5819 { &vop_unlock_desc, zfs_netbsd_unlock }, 5820 { &vop_rename_desc, zfs_netbsd_rename }, 5821 { &vop_mkdir_desc, zfs_netbsd_mkdir }, 5822 { &vop_rmdir_desc, zfs_netbsd_rmdir }, 5823 { &vop_symlink_desc, zfs_netbsd_symlink }, 5824 { &vop_readdir_desc, zfs_netbsd_readdir }, 5825 { &vop_readlink_desc, zfs_netbsd_readlink }, 5826 { &vop_inactive_desc, zfs_netbsd_inactive }, 5827 { &vop_reclaim_desc, zfs_netbsd_reclaim }, 5828 { &vop_pathconf_desc, zfs_netbsd_pathconf }, 5829 { &vop_seek_desc, zfs_netbsd_seek }, 5830 { &vop_getpages_desc, zfs_netbsd_getpages }, 5831 { &vop_putpages_desc, zfs_netbsd_putpages }, 5832 { &vop_mmap_desc, zfs_netbsd_mmap }, 5833 { &vop_islocked_desc, zfs_netbsd_islocked }, 5834 #ifdef notyet 5835 { &vop_advlock_desc, zfs_netbsd_advlock }, 5836 { &vop_fcntl_desc, zfs_netbsd_fcntl }, 5837 { &vop_bmap_desc, zfs_netbsd_bmap }, 5838 { &vop_strategy_desc, zfs_netbsd_strategy }, 5839 { &vop_print_desc, zfs_netbsd_print }, 5840 { &vop_bwrite_desc, zfs_netbsd_bwrite }, 5841 #endif 5842 { NULL, NULL } 5843 }; 5844 5845 const struct vnodeopv_desc zfs_vnodeop_opv_desc = 5846 { &zfs_vnodeop_p, zfs_vnodeop_entries }; 5847