xref: /netbsd-src/external/cddl/osnet/dist/uts/common/fs/zfs/zfs_vfsops.c (revision a5847cc334d9a7029f6352b847e9e8d71a0f9e0c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/sysmacros.h>
30 #include <sys/kmem.h>
31 #include <sys/pathname.h>
32 #include <sys/vnode.h>
33 #include <sys/vfs.h>
34 #include <sys/vfs_opreg.h>
35 #include <sys/mntent.h>
36 #include <sys/mount.h>
37 #include <sys/cmn_err.h>
38 #include <sys/zfs_znode.h>
39 #include <sys/zfs_dir.h>
40 #include <sys/zil.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/dmu.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_deleg.h>
46 #include <sys/spa.h>
47 #include <sys/zap.h>
48 #include <sys/varargs.h>
49 #include <sys/policy.h>
50 #include <sys/atomic.h>
51 #include <sys/mkdev.h>
52 #include <sys/modctl.h>
53 #include <sys/zfs_ioctl.h>
54 #include <sys/zfs_ctldir.h>
55 #include <sys/zfs_fuid.h>
56 #include <sys/sunddi.h>
57 #include <sys/dnlc.h>
58 #include <sys/dmu_objset.h>
59 #include <sys/spa_boot.h>
60 
61 #ifdef __NetBSD__
62 /* include ddi_name_to_major function is there better place for it ?*/
63 #include <sys/ddi.h>
64 #include <sys/systm.h>
65 #endif
66 
67 int zfsfstype;
68 vfsops_t *zfs_vfsops = NULL;
69 static major_t zfs_major;
70 static minor_t zfs_minor;
71 static kmutex_t	zfs_dev_mtx;
72 
73 int zfs_debug_level;
74 kmutex_t zfs_debug_mtx;
75 
76 /* XXX NetBSD static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);*/
77 static int zfs_mount(vfs_t *vfsp, const char *path, void *data, size_t *data_len);
78 static int zfs_umount(vfs_t *vfsp, int fflag);
79 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
80 static int zfs_statvfs(vfs_t *vfsp, struct statvfs *statp);
81 static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, vnode_t **vpp);
82 static int zfs_vget(vfs_t *vfsp, ino_t ino, vnode_t **vpp);
83 static int zfs_start(vfs_t *vfsp, int flags);
84 static void zfs_freevfs(vfs_t *vfsp);
85 
86 void zfs_init(void);
87 void zfs_fini(void);
88 
89 
90 extern const struct vnodeopv_desc zfs_vnodeop_opv_desc;
91 
92 static const struct vnodeopv_desc * const zfs_vnodeop_descs[] = {
93 	&zfs_vnodeop_opv_desc,
94 	NULL,
95 };
96 
97 static struct vfsops zfs_vfsops_template = {
98 	.vfs_name = MOUNT_ZFS,
99 	.vfs_min_mount_data = sizeof(struct zfs_args),
100 	.vfs_opv_descs = zfs_vnodeop_descs,
101 	.vfs_mount = zfs_mount,
102 	.vfs_unmount = zfs_umount,
103 	.vfs_root = zfs_root,
104 	.vfs_statvfs = zfs_statvfs,
105 	.vfs_sync = zfs_sync,
106 	.vfs_vget = zfs_vget,
107 	.vfs_fhtovp = zfs_fhtovp,
108 	.vfs_init = zfs_init,
109 	.vfs_done = zfs_fini,
110 	.vfs_start = zfs_start,
111 	.vfs_renamelock_enter = (void*)nullop,
112 	.vfs_renamelock_exit = (void*)nullop,
113 	.vfs_reinit = (void *)nullop,
114 	.vfs_vptofh = (void *)eopnotsupp,
115 	.vfs_fhtovp = (void *)eopnotsupp,
116 	.vfs_quotactl = (void *)eopnotsupp,
117 	.vfs_extattrctl = (void *)eopnotsupp,
118 	.vfs_snapshot = (void *)eopnotsupp,
119 	.vfs_fsync = (void *)eopnotsupp,
120 };
121 
122 /*
123  * We need to keep a count of active fs's.
124  * This is necessary to prevent our module
125  * from being unloaded after a umount -f
126  */
127 static uint32_t	zfs_active_fs_count = 0;
128 
129 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
130 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
131 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
132 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
133 
134 /*
135  * MO_DEFAULT is not used since the default value is determined
136  * by the equivalent property.
137  */
138 static mntopt_t mntopts[] = {
139 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
140 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
141 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
142 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
143 };
144 
145 static mntopts_t zfs_mntopts = {
146 	sizeof (mntopts) / sizeof (mntopt_t),
147 	mntopts
148 };
149 
150 /*ARGSUSED*/
151 int
152 zfs_sync(vfs_t *vfsp, int flag, cred_t *cr)
153 {
154 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
155 	znode_t *zp;
156 	vnode_t *vp, *nvp, *mvp;
157 	dmu_tx_t *tx;
158 	int error;
159 
160 
161 	error = 0;
162 
163         /*
164 	 * Data integrity is job one.  We don't want a compromised kernel
165 	 * writing to the storage pool, so we never sync during panic.
166 	 */
167 	if (panicstr)
168 		return (0);
169 
170 	/* Allocate a marker vnode. */
171 	mvp = vnalloc(vfsp);
172 
173 	/*
174 	 * On NetBSD, we need to push out atime updates.  Solaris does
175 	 * this during VOP_INACTIVE, but that does not work well with the
176 	 * BSD VFS, so we do it in batch here.
177 	 */
178 	mutex_enter(&mntvnode_lock);
179 loop:
180 	for (vp = TAILQ_FIRST(&vfsp->mnt_vnodelist); vp; vp = nvp) {
181 		nvp = TAILQ_NEXT(vp, v_mntvnodes);
182 		/*
183 		 * If the vnode that we are about to sync is no
184 		 * longer associated with this mount point, start
185 		 * over.
186 		 */
187 		if (vp->v_mount != vfsp)
188 			goto loop;
189 		/*
190 		 * Don't interfere with concurrent scans of this FS.
191 		 */
192 		if (vismarker(vp))
193 			continue;
194 		/*
195 		 * Skip the vnode/inode if inaccessible, or if the
196 		 * atime is clean.
197 		 */
198 		mutex_enter(&vp->v_interlock);
199 		zp = VTOZ(vp);
200 		if (zp == NULL || vp->v_type == VNON ||
201 		   (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0 ||
202 		   zp->z_atime_dirty == 0 || zp->z_unlinked) {
203 			mutex_exit(&vp->v_interlock);
204 			continue;
205 		}
206 		vmark(mvp, vp);
207 		mutex_exit(&mntvnode_lock);
208 		error = vget(vp, LK_EXCLUSIVE);
209 		if (error) {
210 			mutex_enter(&mntvnode_lock);
211 			nvp = vunmark(mvp);
212 			if (error == ENOENT) {
213 				goto loop;
214 			}
215 			continue;
216 		}
217 		tx = dmu_tx_create(zfsvfs->z_os);
218 		dmu_tx_hold_bonus(tx, zp->z_id);
219 		error = dmu_tx_assign(tx, TXG_WAIT);
220 		if (error) {
221 			dmu_tx_abort(tx);
222 		} else {
223 			dmu_buf_will_dirty(zp->z_dbuf, tx);
224 			mutex_enter(&zp->z_lock);
225 			zp->z_atime_dirty = 0;
226 			mutex_exit(&zp->z_lock);
227 			dmu_tx_commit(tx);
228 		}
229 		vput(vp);
230 		mutex_enter(&mntvnode_lock);
231 		nvp = vunmark(mvp);
232 	}
233 	mutex_exit(&mntvnode_lock);
234 
235 	/*
236 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
237 	 * to sync metadata, which they would otherwise cache indefinitely.
238 	 * Semantically, the only requirement is that the sync be initiated.
239 	 * The DMU syncs out txgs frequently, so there's nothing to do.
240 	 */
241 	if ((flag & MNT_LAZY) != 0)
242 		return (0);
243 
244 	if (vfsp != NULL) {
245 		/*
246 		 * Sync a specific filesystem.
247 		 */
248 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
249 		dsl_pool_t *dp;
250 
251 		ZFS_ENTER(zfsvfs);
252 		dp = dmu_objset_pool(zfsvfs->z_os);
253 
254 		/*
255 		 * If the system is shutting down, then skip any
256 		 * filesystems which may exist on a suspended pool.
257 		 */
258 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
259 			ZFS_EXIT(zfsvfs);
260 			return (0);
261 		}
262 
263 		if (zfsvfs->z_log != NULL)
264 			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
265 		else
266 			txg_wait_synced(dp, 0);
267 		ZFS_EXIT(zfsvfs);
268 	} else {
269 		/*
270 		 * Sync all ZFS filesystems.  This is what happens when you
271 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
272 		 * request by waiting for all pools to commit all dirty data.
273 		 */
274 		spa_sync_allpools();
275 	}
276 
277 	vnfree(nvp);
278 
279 	return (0);
280 }
281 
282 static int
283 zfs_create_unique_device(dev_t *dev)
284 {
285 	major_t new_major;
286 
287 	do {
288 		ASSERT3U(zfs_minor, <=, MAXMIN);
289 		minor_t start = zfs_minor;
290 		do {
291 			mutex_enter(&zfs_dev_mtx);
292 			if (zfs_minor >= MAXMIN) {
293 				/*
294 				 * If we're still using the real major
295 				 * keep out of /dev/zfs and /dev/zvol minor
296 				 * number space.  If we're using a getudev()'ed
297 				 * major number, we can use all of its minors.
298 				 */
299 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
300 					zfs_minor = ZFS_MIN_MINOR;
301 				else
302 					zfs_minor = 0;
303 			} else {
304 				zfs_minor++;
305 			}
306 			*dev = makedevice(zfs_major, zfs_minor);
307 			mutex_exit(&zfs_dev_mtx);
308 		} while (vfs_devismounted(*dev) && zfs_minor != start);
309 		break;
310 #ifndef __NetBSD__
311 		if (zfs_minor == start) {
312 			/*
313 			 * We are using all ~262,000 minor numbers for the
314 			 * current major number.  Create a new major number.
315 			 */
316 			if ((new_major = getudev()) == (major_t)-1) {
317 				cmn_err(CE_WARN,
318 				    "zfs_mount: Can't get unique major "
319 				    "device number.");
320 				return (-1);
321 			}
322 			mutex_enter(&zfs_dev_mtx);
323 			zfs_major = new_major;
324 			zfs_minor = 0;
325 
326 			mutex_exit(&zfs_dev_mtx);
327 		} else {
328 			break;
329 		}
330 		/* CONSTANTCONDITION */
331 #endif
332 	} while (1);
333 
334 	return (0);
335 }
336 
337 static void
338 atime_changed_cb(void *arg, uint64_t newval)
339 {
340 	zfsvfs_t *zfsvfs = arg;
341 
342 	if (newval == TRUE) {
343 		zfsvfs->z_atime = TRUE;
344 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
345 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
346 	} else {
347 		zfsvfs->z_atime = FALSE;
348 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
349 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
350 	}
351 }
352 
353 static void
354 xattr_changed_cb(void *arg, uint64_t newval)
355 {
356 	zfsvfs_t *zfsvfs = arg;
357 
358 	if (newval == TRUE) {
359 		/* XXX locking on vfs_flag? */
360 #ifdef TODO
361 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
362 #endif
363 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
364 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
365 	} else {
366 		/* XXX locking on vfs_flag? */
367 #ifdef TODO
368 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
369 #endif
370 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
371 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
372 	}
373 }
374 
375 static void
376 blksz_changed_cb(void *arg, uint64_t newval)
377 {
378 	zfsvfs_t *zfsvfs = arg;
379 
380 	if (newval < SPA_MINBLOCKSIZE ||
381 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
382 		newval = SPA_MAXBLOCKSIZE;
383 
384 	zfsvfs->z_max_blksz = newval;
385 	zfsvfs->z_vfs->vfs_bsize = newval;
386 }
387 
388 static void
389 readonly_changed_cb(void *arg, uint64_t newval)
390 {
391 	zfsvfs_t *zfsvfs = arg;
392 
393 	if (newval) {
394 		/* XXX locking on vfs_flag? */
395 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
396 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
397 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
398 	} else {
399 		/* XXX locking on vfs_flag? */
400 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
401 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
402 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
403 	}
404 }
405 
406 static void
407 devices_changed_cb(void *arg, uint64_t newval)
408 {
409 	zfsvfs_t *zfsvfs = arg;
410 
411 	if (newval == FALSE) {
412 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
413 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
414 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
415 	} else {
416 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
417 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
418 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
419 	}
420 }
421 
422 static void
423 setuid_changed_cb(void *arg, uint64_t newval)
424 {
425 	zfsvfs_t *zfsvfs = arg;
426 
427 	if (newval == FALSE) {
428 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
429 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
430 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
431 	} else {
432 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
433 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
434 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
435 	}
436 }
437 
438 static void
439 exec_changed_cb(void *arg, uint64_t newval)
440 {
441 	zfsvfs_t *zfsvfs = arg;
442 
443 	if (newval == FALSE) {
444 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
445 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
446 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
447 	} else {
448 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
449 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
450 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
451 	}
452 }
453 
454 /*
455  * The nbmand mount option can be changed at mount time.
456  * We can't allow it to be toggled on live file systems or incorrect
457  * behavior may be seen from cifs clients
458  *
459  * This property isn't registered via dsl_prop_register(), but this callback
460  * will be called when a file system is first mounted
461  */
462 static void
463 nbmand_changed_cb(void *arg, uint64_t newval)
464 {
465 	zfsvfs_t *zfsvfs = arg;
466 	if (newval == FALSE) {
467 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
468 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
469 	} else {
470 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
471 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
472 	}
473 }
474 
475 static void
476 snapdir_changed_cb(void *arg, uint64_t newval)
477 {
478 	zfsvfs_t *zfsvfs = arg;
479 
480 	zfsvfs->z_show_ctldir = newval;
481 }
482 
483 static void
484 vscan_changed_cb(void *arg, uint64_t newval)
485 {
486 	zfsvfs_t *zfsvfs = arg;
487 
488 	zfsvfs->z_vscan = newval;
489 }
490 
491 static void
492 acl_mode_changed_cb(void *arg, uint64_t newval)
493 {
494 	zfsvfs_t *zfsvfs = arg;
495 
496 	zfsvfs->z_acl_mode = newval;
497 }
498 
499 static void
500 acl_inherit_changed_cb(void *arg, uint64_t newval)
501 {
502 	zfsvfs_t *zfsvfs = arg;
503 
504 	zfsvfs->z_acl_inherit = newval;
505 }
506 
507 static int
508 zfs_register_callbacks(vfs_t *vfsp)
509 {
510 	struct dsl_dataset *ds = NULL;
511 	objset_t *os = NULL;
512 	zfsvfs_t *zfsvfs = NULL;
513 	uint64_t nbmand;
514 	int readonly, do_readonly = B_FALSE;
515 	int setuid, do_setuid = B_FALSE;
516 	int exec, do_exec = B_FALSE;
517 	int devices, do_devices = B_FALSE;
518 	int xattr, do_xattr = B_FALSE;
519 	int atime, do_atime = B_FALSE;
520 	int error = 0;
521 
522 	ASSERT(vfsp);
523 	zfsvfs = vfsp->vfs_data;
524 	ASSERT(zfsvfs);
525 	os = zfsvfs->z_os;
526 
527 	/*
528 	 * The act of registering our callbacks will destroy any mount
529 	 * options we may have.  In order to enable temporary overrides
530 	 * of mount options, we stash away the current values and
531 	 * restore them after we register the callbacks.
532 	 */
533 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
534 		readonly = B_TRUE;
535 		do_readonly = B_TRUE;
536 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
537 		readonly = B_FALSE;
538 		do_readonly = B_TRUE;
539 	}
540 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
541 		devices = B_FALSE;
542 		setuid = B_FALSE;
543 		do_devices = B_TRUE;
544 		do_setuid = B_TRUE;
545 	} else {
546 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
547 			devices = B_FALSE;
548 			do_devices = B_TRUE;
549 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
550 			devices = B_TRUE;
551 			do_devices = B_TRUE;
552 		}
553 
554 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
555 			setuid = B_FALSE;
556 			do_setuid = B_TRUE;
557 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
558 			setuid = B_TRUE;
559 			do_setuid = B_TRUE;
560 		}
561 	}
562 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
563 		exec = B_FALSE;
564 		do_exec = B_TRUE;
565 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
566 		exec = B_TRUE;
567 		do_exec = B_TRUE;
568 	}
569 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
570 		xattr = B_FALSE;
571 		do_xattr = B_TRUE;
572 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
573 		xattr = B_TRUE;
574 		do_xattr = B_TRUE;
575 	}
576 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
577 		atime = B_FALSE;
578 		do_atime = B_TRUE;
579 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
580 		atime = B_TRUE;
581 		do_atime = B_TRUE;
582 	}
583 
584 	/*
585 	 * nbmand is a special property.  It can only be changed at
586 	 * mount time.
587 	 *
588 	 * This is weird, but it is documented to only be changeable
589 	 * at mount time.
590 	 */
591 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
592 		nbmand = B_FALSE;
593 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
594 		nbmand = B_TRUE;
595 	} else {
596 		char osname[MAXNAMELEN];
597 
598 		dmu_objset_name(os, osname);
599 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
600 		    NULL)) {
601 			return (error);
602 		}
603 	}
604 
605 	/*
606 	 * Register property callbacks.
607 	 *
608 	 * It would probably be fine to just check for i/o error from
609 	 * the first prop_register(), but I guess I like to go
610 	 * overboard...
611 	 */
612 	ds = dmu_objset_ds(os);
613 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
614 	error = error ? error : dsl_prop_register(ds,
615 	    "xattr", xattr_changed_cb, zfsvfs);
616 	error = error ? error : dsl_prop_register(ds,
617 	    "recordsize", blksz_changed_cb, zfsvfs);
618 	error = error ? error : dsl_prop_register(ds,
619 	    "readonly", readonly_changed_cb, zfsvfs);
620 	error = error ? error : dsl_prop_register(ds,
621 	    "devices", devices_changed_cb, zfsvfs);
622 	error = error ? error : dsl_prop_register(ds,
623 	    "setuid", setuid_changed_cb, zfsvfs);
624 	error = error ? error : dsl_prop_register(ds,
625 	    "exec", exec_changed_cb, zfsvfs);
626 	error = error ? error : dsl_prop_register(ds,
627 	    "snapdir", snapdir_changed_cb, zfsvfs);
628 	error = error ? error : dsl_prop_register(ds,
629 	    "aclmode", acl_mode_changed_cb, zfsvfs);
630 	error = error ? error : dsl_prop_register(ds,
631 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
632 	error = error ? error : dsl_prop_register(ds,
633 	    "vscan", vscan_changed_cb, zfsvfs);
634 	if (error)
635 		goto unregister;
636 
637 	/*
638 	 * Invoke our callbacks to restore temporary mount options.
639 	 */
640 	if (do_readonly)
641 		readonly_changed_cb(zfsvfs, readonly);
642 	if (do_setuid)
643 		setuid_changed_cb(zfsvfs, setuid);
644 	if (do_exec)
645 		exec_changed_cb(zfsvfs, exec);
646 	if (do_devices)
647 		devices_changed_cb(zfsvfs, devices);
648 	if (do_xattr)
649 		xattr_changed_cb(zfsvfs, xattr);
650 	if (do_atime)
651 		atime_changed_cb(zfsvfs, atime);
652 
653 	nbmand_changed_cb(zfsvfs, nbmand);
654 
655 	return (0);
656 
657 unregister:
658 	/*
659 	 * We may attempt to unregister some callbacks that are not
660 	 * registered, but this is OK; it will simply return ENOMSG,
661 	 * which we will ignore.
662 	 */
663 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
664 	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
665 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
666 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
667 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
668 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
669 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
670 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
671 	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
672 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
673 	    zfsvfs);
674 	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
675 	return (error);
676 
677 }
678 
679 static void
680 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid,
681     int64_t delta, dmu_tx_t *tx)
682 {
683 	uint64_t used = 0;
684 	char buf[32];
685 	int err;
686 	uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
687 
688 	if (delta == 0)
689 		return;
690 
691 	(void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid);
692 	err = zap_lookup(os, obj, buf, 8, 1, &used);
693 	ASSERT(err == 0 || err == ENOENT);
694 	/* no underflow/overflow */
695 	ASSERT(delta > 0 || used >= -delta);
696 	ASSERT(delta < 0 || used + delta > used);
697 	used += delta;
698 	if (used == 0)
699 		err = zap_remove(os, obj, buf, tx);
700 	else
701 		err = zap_update(os, obj, buf, 8, 1, &used, tx);
702 	ASSERT(err == 0);
703 }
704 
705 static int
706 zfs_space_delta_cb(dmu_object_type_t bonustype, void *bonus,
707     uint64_t *userp, uint64_t *groupp)
708 {
709 	znode_phys_t *znp = bonus;
710 
711 	if (bonustype != DMU_OT_ZNODE)
712 		return (ENOENT);
713 
714 	*userp = znp->zp_uid;
715 	*groupp = znp->zp_gid;
716 	return (0);
717 }
718 
719 static void
720 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
721     char *domainbuf, int buflen, uid_t *ridp)
722 {
723 	uint64_t fuid;
724 	const char *domain;
725 
726 	fuid = strtonum(fuidstr, NULL);
727 
728 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
729 	if (domain)
730 		(void) strlcpy(domainbuf, domain, buflen);
731 	else
732 		domainbuf[0] = '\0';
733 	*ridp = FUID_RID(fuid);
734 }
735 
736 static uint64_t
737 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
738 {
739 	switch (type) {
740 	case ZFS_PROP_USERUSED:
741 		return (DMU_USERUSED_OBJECT);
742 	case ZFS_PROP_GROUPUSED:
743 		return (DMU_GROUPUSED_OBJECT);
744 	case ZFS_PROP_USERQUOTA:
745 		return (zfsvfs->z_userquota_obj);
746 	case ZFS_PROP_GROUPQUOTA:
747 		return (zfsvfs->z_groupquota_obj);
748 	}
749 	return (0);
750 }
751 
752 int
753 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
754     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
755 {
756 	int error;
757 	zap_cursor_t zc;
758 	zap_attribute_t za;
759 	zfs_useracct_t *buf = vbuf;
760 	uint64_t obj;
761 
762 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
763 		return (ENOTSUP);
764 
765 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
766 	if (obj == 0) {
767 		*bufsizep = 0;
768 		return (0);
769 	}
770 
771 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
772 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
773 	    zap_cursor_advance(&zc)) {
774 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
775 		    *bufsizep)
776 			break;
777 
778 		fuidstr_to_sid(zfsvfs, za.za_name,
779 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
780 
781 		buf->zu_space = za.za_first_integer;
782 		buf++;
783 	}
784 	if (error == ENOENT)
785 		error = 0;
786 
787 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
788 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
789 	*cookiep = zap_cursor_serialize(&zc);
790 	zap_cursor_fini(&zc);
791 	return (error);
792 }
793 
794 /*
795  * buf must be big enough (eg, 32 bytes)
796  */
797 static int
798 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
799     char *buf, boolean_t addok)
800 {
801 	uint64_t fuid;
802 	int domainid = 0;
803 
804 	if (domain && domain[0]) {
805 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
806 		if (domainid == -1)
807 			return (ENOENT);
808 	}
809 	fuid = FUID_ENCODE(domainid, rid);
810 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
811 	return (0);
812 }
813 
814 int
815 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
816     const char *domain, uint64_t rid, uint64_t *valp)
817 {
818 	char buf[32];
819 	int err;
820 	uint64_t obj;
821 
822 	*valp = 0;
823 
824 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
825 		return (ENOTSUP);
826 
827 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
828 	if (obj == 0)
829 		return (0);
830 
831 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
832 	if (err)
833 		return (err);
834 
835 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
836 	if (err == ENOENT)
837 		err = 0;
838 	return (err);
839 }
840 
841 int
842 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
843     const char *domain, uint64_t rid, uint64_t quota)
844 {
845 	char buf[32];
846 	int err;
847 	dmu_tx_t *tx;
848 	uint64_t *objp;
849 	boolean_t fuid_dirtied;
850 
851 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
852 		return (EINVAL);
853 
854 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
855 		return (ENOTSUP);
856 
857 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
858 	    &zfsvfs->z_groupquota_obj;
859 
860 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
861 	if (err)
862 		return (err);
863 	fuid_dirtied = zfsvfs->z_fuid_dirty;
864 
865 	tx = dmu_tx_create(zfsvfs->z_os);
866 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
867 	if (*objp == 0) {
868 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
869 		    zfs_userquota_prop_prefixes[type]);
870 	}
871 	if (fuid_dirtied)
872 		zfs_fuid_txhold(zfsvfs, tx);
873 	err = dmu_tx_assign(tx, TXG_WAIT);
874 	if (err) {
875 		dmu_tx_abort(tx);
876 		return (err);
877 	}
878 
879 	mutex_enter(&zfsvfs->z_lock);
880 	if (*objp == 0) {
881 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
882 		    DMU_OT_NONE, 0, tx);
883 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
884 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
885 	}
886 	mutex_exit(&zfsvfs->z_lock);
887 
888 	if (quota == 0) {
889 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
890 		if (err == ENOENT)
891 			err = 0;
892 	} else {
893 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
894 	}
895 	ASSERT(err == 0);
896 	if (fuid_dirtied)
897 		zfs_fuid_sync(zfsvfs, tx);
898 	dmu_tx_commit(tx);
899 	return (err);
900 }
901 
902 boolean_t
903 zfs_usergroup_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
904 {
905 	char buf[32];
906 	uint64_t used, quota, usedobj, quotaobj;
907 	int err;
908 
909 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
910 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
911 
912 	if (quotaobj == 0 || zfsvfs->z_replay)
913 		return (B_FALSE);
914 
915 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
916 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
917 	if (err != 0)
918 		return (B_FALSE);
919 
920 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
921 	if (err != 0)
922 		return (B_FALSE);
923 	return (used >= quota);
924 }
925 
926 int
927 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
928 {
929 	objset_t *os;
930 	zfsvfs_t *zfsvfs;
931 	uint64_t zval;
932 	int i, error;
933 
934 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
935 
936 	/*
937 	 * We claim to always be readonly so we can open snapshots;
938 	 * other ZPL code will prevent us from writing to snapshots.
939 	 */
940 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
941 	if (error) {
942 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
943 		return (error);
944 	}
945 
946 	/*
947 	 * Initialize the zfs-specific filesystem structure.
948 	 * Should probably make this a kmem cache, shuffle fields,
949 	 * and just bzero up to z_hold_mtx[].
950 	 */
951 	zfsvfs->z_vfs = NULL;
952 	zfsvfs->z_parent = zfsvfs;
953 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
954 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
955 	zfsvfs->z_os = os;
956 
957 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
958 	if (error) {
959 		goto out;
960 	} else if (zfsvfs->z_version > ZPL_VERSION) {
961 		(void) printf("Mismatched versions:  File system "
962 		    "is version %llu on-disk format, which is "
963 		    "incompatible with this software version %lld!",
964 		    (u_longlong_t)zfsvfs->z_version, ZPL_VERSION);
965 		error = ENOTSUP;
966 		goto out;
967 	}
968 
969 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
970 		goto out;
971 	zfsvfs->z_norm = (int)zval;
972 
973 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
974 		goto out;
975 	zfsvfs->z_utf8 = (zval != 0);
976 
977 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
978 		goto out;
979 	zfsvfs->z_case = (uint_t)zval;
980 
981 	/*
982 	 * Fold case on file systems that are always or sometimes case
983 	 * insensitive.
984 	 */
985 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
986 	    zfsvfs->z_case == ZFS_CASE_MIXED)
987 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
988 
989 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
990 
991 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
992 	    &zfsvfs->z_root);
993 	if (error)
994 		goto out;
995 	ASSERT(zfsvfs->z_root != 0);
996 
997 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
998 	    &zfsvfs->z_unlinkedobj);
999 	if (error)
1000 		goto out;
1001 
1002 	error = zap_lookup(os, MASTER_NODE_OBJ,
1003 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
1004 	    8, 1, &zfsvfs->z_userquota_obj);
1005 	if (error && error != ENOENT)
1006 		goto out;
1007 
1008 	error = zap_lookup(os, MASTER_NODE_OBJ,
1009 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
1010 	    8, 1, &zfsvfs->z_groupquota_obj);
1011 	if (error && error != ENOENT)
1012 		goto out;
1013 
1014 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
1015 	    &zfsvfs->z_fuid_obj);
1016 	if (error && error != ENOENT)
1017 		goto out;
1018 
1019 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
1020 	    &zfsvfs->z_shares_dir);
1021 	if (error && error != ENOENT)
1022 		goto out;
1023 
1024 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1025 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
1026 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1027 	    offsetof(znode_t, z_link_node));
1028 	rrw_init(&zfsvfs->z_teardown_lock);
1029 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
1030 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1031 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1032 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1033 
1034 	*zfvp = zfsvfs;
1035 	return (0);
1036 
1037 out:
1038 	dmu_objset_disown(os, zfsvfs);
1039 	*zfvp = NULL;
1040 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1041 	return (error);
1042 }
1043 
1044 static int
1045 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1046 {
1047 	int error;
1048 
1049 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1050 	if (error)
1051 		return (error);
1052 
1053 	/*
1054 	 * Set the objset user_ptr to track its zfsvfs.
1055 	 */
1056 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1057 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1058 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1059 
1060 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1061 	if (zil_disable) {
1062 		zil_destroy(zfsvfs->z_log, B_FALSE);
1063 		zfsvfs->z_log = NULL;
1064 	}
1065 
1066 	/*
1067 	 * If we are not mounting (ie: online recv), then we don't
1068 	 * have to worry about replaying the log as we blocked all
1069 	 * operations out since we closed the ZIL.
1070 	 */
1071 	if (mounting) {
1072 		boolean_t readonly;
1073 
1074 		/*
1075 		 * During replay we remove the read only flag to
1076 		 * allow replays to succeed.
1077 		 */
1078 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1079 		if (readonly != 0)
1080 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1081 		else
1082 			zfs_unlinked_drain(zfsvfs);
1083 
1084 		if (zfsvfs->z_log) {
1085 			/*
1086 			 * Parse and replay the intent log.
1087 			 *
1088 			 * Because of ziltest, this must be done after
1089 			 * zfs_unlinked_drain().  (Further note: ziltest
1090 			 * doesn't use readonly mounts, where
1091 			 * zfs_unlinked_drain() isn't called.)  This is because
1092 			 * ziltest causes spa_sync() to think it's committed,
1093 			 * but actually it is not, so the intent log contains
1094 			 * many txg's worth of changes.
1095 			 *
1096 			 * In particular, if object N is in the unlinked set in
1097 			 * the last txg to actually sync, then it could be
1098 			 * actually freed in a later txg and then reallocated
1099 			 * in a yet later txg.  This would write a "create
1100 			 * object N" record to the intent log.  Normally, this
1101 			 * would be fine because the spa_sync() would have
1102 			 * written out the fact that object N is free, before
1103 			 * we could write the "create object N" intent log
1104 			 * record.
1105 			 *
1106 			 * But when we are in ziltest mode, we advance the "open
1107 			 * txg" without actually spa_sync()-ing the changes to
1108 			 * disk.  So we would see that object N is still
1109 			 * allocated and in the unlinked set, and there is an
1110 			 * intent log record saying to allocate it.
1111 			 */
1112 			zfsvfs->z_replay = B_TRUE;
1113 			zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector);
1114 			zfsvfs->z_replay = B_FALSE;
1115 		}
1116 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1117 	}
1118 
1119 	return (0);
1120 }
1121 
1122 void
1123 zfsvfs_free(zfsvfs_t *zfsvfs)
1124 {
1125 	int i;
1126 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1127 
1128 	/*
1129 	 * This is a barrier to prevent the filesystem from going away in
1130 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1131 	 * not unmounted. We consider the filesystem valid before the barrier
1132 	 * and invalid after the barrier.
1133 	 */
1134 	rw_enter(&zfsvfs_lock, RW_READER);
1135 	rw_exit(&zfsvfs_lock);
1136 
1137 	zfs_fuid_destroy(zfsvfs);
1138 	mutex_destroy(&zfsvfs->z_znodes_lock);
1139 	mutex_destroy(&zfsvfs->z_lock);
1140 	list_destroy(&zfsvfs->z_all_znodes);
1141 	rrw_destroy(&zfsvfs->z_teardown_lock);
1142 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1143 	rw_destroy(&zfsvfs->z_fuid_lock);
1144 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1145 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1146 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1147 }
1148 
1149 static void
1150 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1151 {
1152 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1153 	if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
1154 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1155 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1156 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1157 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1158 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1159 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1160 	}
1161 }
1162 
1163 static int
1164 zfs_domount(vfs_t *vfsp, char *osname)
1165 {
1166 	dev_t mount_dev;
1167 	uint64_t recordsize, fsid_guid;
1168 	int error = 0;
1169 	zfsvfs_t *zfsvfs;
1170 
1171 	ASSERT(vfsp);
1172 	ASSERT(osname);
1173 
1174 	error = zfsvfs_create(osname, &zfsvfs);
1175 	if (error)
1176 		return (error);
1177 	zfsvfs->z_vfs = vfsp;
1178 	zfsvfs->z_parent = zfsvfs;
1179 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
1180 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
1181 
1182 	/* Initialize the generic filesystem structure. */
1183 	vfsp->vfs_data = NULL;
1184 
1185 	if (zfs_create_unique_device(&mount_dev) == -1) {
1186 		error = ENODEV;
1187 		goto out;
1188 	}
1189 	ASSERT(vfs_devismounted(mount_dev) == 0);
1190 
1191 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1192 	    NULL))
1193 	    goto out;
1194 
1195 	vfsp->vfs_bsize = DEV_BSIZE;
1196 	vfsp->vfs_flag |= VFS_NOTRUNC;
1197 	vfsp->vfs_data = zfsvfs;
1198 
1199 	/*
1200 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1201 	 * separates our fsid from any other filesystem types, and a
1202 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1203 	 * all objsets open on this system, provided by unique_create().
1204 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1205 	 * because that's where other Solaris filesystems put it.
1206 	 */
1207 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1208 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1209 	vfsp->mnt_stat.f_fsidx.__fsid_val[0] = fsid_guid;
1210 	vfsp->mnt_stat.f_fsidx.__fsid_val[1] = ((fsid_guid>>32) << 8) |
1211 	    zfsfstype & 0xFF;
1212 
1213 	dprintf("zfs_domount vrele after vfsp->vfs_count %d\n", vfsp->vfs_count);
1214 	/*
1215 	 * Set features for file system.
1216 	 */
1217 	zfs_set_fuid_feature(zfsvfs);
1218 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1219 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1220 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1221 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1222 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1223 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1224 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1225 	}
1226 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1227 
1228 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1229 		uint64_t pval;
1230 
1231 		atime_changed_cb(zfsvfs, B_FALSE);
1232 		readonly_changed_cb(zfsvfs, B_TRUE);
1233 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1234 			goto out;
1235 		xattr_changed_cb(zfsvfs, pval);
1236 		zfsvfs->z_issnap = B_TRUE;
1237 
1238 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1239 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1240 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1241 	} else {
1242 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1243 	}
1244 
1245 	dprintf("zfs_vfsops.c zfs_domount called\n");
1246 	dprintf("vfsp->vfs_count %d\n", vfsp->vfs_count);
1247 
1248 	if (!zfsvfs->z_issnap)
1249 		zfsctl_create(zfsvfs);
1250 out:
1251 	if (error) {
1252 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1253 		zfsvfs_free(zfsvfs);
1254 	} else {
1255 		atomic_add_32(&zfs_active_fs_count, 1);
1256 	}
1257 	return (error);
1258 }
1259 
1260 void
1261 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1262 {
1263 	objset_t *os = zfsvfs->z_os;
1264 	struct dsl_dataset *ds;
1265 
1266 	/*
1267 	 * Unregister properties.
1268 	 */
1269 	if (!dmu_objset_is_snapshot(os)) {
1270 		ds = dmu_objset_ds(os);
1271 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1272 		    zfsvfs) == 0);
1273 
1274 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1275 		    zfsvfs) == 0);
1276 
1277 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1278 		    zfsvfs) == 0);
1279 
1280 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1281 		    zfsvfs) == 0);
1282 
1283 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1284 		    zfsvfs) == 0);
1285 
1286 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1287 		    zfsvfs) == 0);
1288 
1289 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1290 		    zfsvfs) == 0);
1291 
1292 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1293 		    zfsvfs) == 0);
1294 
1295 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1296 		    zfsvfs) == 0);
1297 
1298 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1299 		    acl_inherit_changed_cb, zfsvfs) == 0);
1300 
1301 		VERIFY(dsl_prop_unregister(ds, "vscan",
1302 		    vscan_changed_cb, zfsvfs) == 0);
1303 	}
1304 }
1305 
1306 /*
1307  * Convert a decimal digit string to a uint64_t integer.
1308  */
1309 static int
1310 str_to_uint64(char *str, uint64_t *objnum)
1311 {
1312 	uint64_t num = 0;
1313 
1314 	while (*str) {
1315 		if (*str < '0' || *str > '9')
1316 			return (EINVAL);
1317 
1318 		num = num*10 + *str++ - '0';
1319 	}
1320 
1321 	*objnum = num;
1322 	return (0);
1323 }
1324 
1325 /*
1326  * The boot path passed from the boot loader is in the form of
1327  * "rootpool-name/root-filesystem-object-number'. Convert this
1328  * string to a dataset name: "rootpool-name/root-filesystem-name".
1329  */
1330 static int
1331 zfs_parse_bootfs(char *bpath, char *outpath)
1332 {
1333 	char *slashp;
1334 	uint64_t objnum;
1335 	int error;
1336 
1337 	if (*bpath == 0 || *bpath == '/')
1338 		return (EINVAL);
1339 
1340 	(void) strcpy(outpath, bpath);
1341 
1342 	slashp = strchr(bpath, '/');
1343 
1344 	/* if no '/', just return the pool name */
1345 	if (slashp == NULL) {
1346 		return (0);
1347 	}
1348 
1349 	/* if not a number, just return the root dataset name */
1350 	if (str_to_uint64(slashp+1, &objnum)) {
1351 		return (0);
1352 	}
1353 
1354 	*slashp = '\0';
1355 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1356 	*slashp = '/';
1357 
1358 	return (error);
1359 }
1360 
1361 
1362 /*
1363  * zfs_check_global_label:
1364  *	Check that the hex label string is appropriate for the dataset
1365  *	being mounted into the global_zone proper.
1366  *
1367  *	Return an error if the hex label string is not default or
1368  *	admin_low/admin_high.  For admin_low labels, the corresponding
1369  *	dataset must be readonly.
1370  */
1371 int
1372 zfs_check_global_label(const char *dsname, const char *hexsl)
1373 {
1374 #ifdef PORT_SOLARIS
1375 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1376 		return (0);
1377 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1378 		return (0);
1379 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1380 		/* must be readonly */
1381 		uint64_t rdonly;
1382 
1383 		if (dsl_prop_get_integer(dsname,
1384 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1385 			return (EACCES);
1386 		return (rdonly ? 0 : EACCES);
1387 	}
1388 	return (EACCES);
1389 #else
1390 	return 0;
1391 #endif
1392 }
1393 
1394 /*
1395  * zfs_mount_label_policy:
1396  *	Determine whether the mount is allowed according to MAC check.
1397  *	by comparing (where appropriate) label of the dataset against
1398  *	the label of the zone being mounted into.  If the dataset has
1399  *	no label, create one.
1400  *
1401  *	Returns:
1402  *		 0 :	access allowed
1403  *		>0 :	error code, such as EACCES
1404  */
1405 static int
1406 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1407 {
1408 #ifdef PORT_SOLARIS
1409 	int		error, retv;
1410 	zone_t		*mntzone = NULL;
1411 	ts_label_t	*mnt_tsl;
1412 	bslabel_t	*mnt_sl;
1413 	bslabel_t	ds_sl;
1414 	char		ds_hexsl[MAXNAMELEN];
1415 
1416 	retv = EACCES;				/* assume the worst */
1417 
1418 	/*
1419 	 * Start by getting the dataset label if it exists.
1420 	 */
1421 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1422 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1423 	if (error)
1424 		return (EACCES);
1425 
1426 	/*
1427 	 * If labeling is NOT enabled, then disallow the mount of datasets
1428 	 * which have a non-default label already.  No other label checks
1429 	 * are needed.
1430 	 */
1431 	if (!is_system_labeled()) {
1432 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1433 			return (0);
1434 		return (EACCES);
1435 	}
1436 
1437 	/*
1438 	 * Get the label of the mountpoint.  If mounting into the global
1439 	 * zone (i.e. mountpoint is not within an active zone and the
1440 	 * zoned property is off), the label must be default or
1441 	 * admin_low/admin_high only; no other checks are needed.
1442 	 */
1443 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1444 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1445 		uint64_t zoned;
1446 
1447 		zone_rele(mntzone);
1448 
1449 		if (dsl_prop_get_integer(osname,
1450 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1451 			return (EACCES);
1452 		if (!zoned)
1453 			return (zfs_check_global_label(osname, ds_hexsl));
1454 		else
1455 			/*
1456 			 * This is the case of a zone dataset being mounted
1457 			 * initially, before the zone has been fully created;
1458 			 * allow this mount into global zone.
1459 			 */
1460 			return (0);
1461 	}
1462 
1463 	mnt_tsl = mntzone->zone_slabel;
1464 	ASSERT(mnt_tsl != NULL);
1465 	label_hold(mnt_tsl);
1466 	mnt_sl = label2bslabel(mnt_tsl);
1467 
1468 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1469 		/*
1470 		 * The dataset doesn't have a real label, so fabricate one.
1471 		 */
1472 		char *str = NULL;
1473 
1474 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1475 		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1476 		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1477 			retv = 0;
1478 		if (str != NULL)
1479 			kmem_free(str, strlen(str) + 1);
1480 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1481 		/*
1482 		 * Now compare labels to complete the MAC check.  If the
1483 		 * labels are equal then allow access.  If the mountpoint
1484 		 * label dominates the dataset label, allow readonly access.
1485 		 * Otherwise, access is denied.
1486 		 */
1487 		if (blequal(mnt_sl, &ds_sl))
1488 			retv = 0;
1489 		else if (bldominates(mnt_sl, &ds_sl)) {
1490 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1491 			retv = 0;
1492 		}
1493 	}
1494 
1495 	label_rele(mnt_tsl);
1496 	zone_rele(mntzone);
1497 	return (retv);
1498 #else   /* PORT_SOLARIS */
1499 	return (0);
1500 #endif
1501 }
1502 
1503 #ifndef __NetBSD__
1504 static int
1505 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1506 {
1507 	int error = 0;
1508 	static int zfsrootdone = 0;
1509 	zfsvfs_t *zfsvfs = NULL;
1510 	znode_t *zp = NULL;
1511 	vnode_t *vp = NULL;
1512 	char *zfs_bootfs;
1513 	char *zfs_devid;
1514 
1515 	ASSERT(vfsp);
1516 
1517 	/*
1518 	 * The filesystem that we mount as root is defined in the
1519 	 * boot property "zfs-bootfs" with a format of
1520 	 * "poolname/root-dataset-objnum".
1521 	 */
1522 	if (why == ROOT_INIT) {
1523 		if (zfsrootdone++)
1524 			return (EBUSY);
1525 		/*
1526 		 * the process of doing a spa_load will require the
1527 		 * clock to be set before we could (for example) do
1528 		 * something better by looking at the timestamp on
1529 		 * an uberblock, so just set it to -1.
1530 		 */
1531 		clkset(-1);
1532 
1533 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1534 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1535 			    "bootfs name");
1536 			return (EINVAL);
1537 		}
1538 		zfs_devid = spa_get_bootprop("diskdevid");
1539 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1540 		if (zfs_devid)
1541 			spa_free_bootprop(zfs_devid);
1542 		if (error) {
1543 			spa_free_bootprop(zfs_bootfs);
1544 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1545 			    error);
1546 			return (error);
1547 		}
1548 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1549 			spa_free_bootprop(zfs_bootfs);
1550 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1551 			    error);
1552 			return (error);
1553 		}
1554 
1555 		spa_free_bootprop(zfs_bootfs);
1556 
1557 		if (error = vfs_lock(vfsp))
1558 			return (error);
1559 
1560 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1561 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1562 			goto out;
1563 		}
1564 
1565 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1566 		ASSERT(zfsvfs);
1567 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1568 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1569 			goto out;
1570 		}
1571 
1572 		vp = ZTOV(zp);
1573 		mutex_enter(&vp->v_lock);
1574 		vp->v_flag |= VROOT;
1575 		mutex_exit(&vp->v_lock);
1576 		rootvp = vp;
1577 
1578 		/*
1579 		 * Leave rootvp held.  The root file system is never unmounted.
1580 		 */
1581 
1582 		vfs_add((struct vnode *)0, vfsp,
1583 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1584 out:
1585 		vfs_unlock(vfsp);
1586 		return (error);
1587 	} else if (why == ROOT_REMOUNT) {
1588 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1589 		vfsp->vfs_flag |= VFS_REMOUNT;
1590 
1591 		/* refresh mount options */
1592 		zfs_unregister_callbacks(vfsp->vfs_data);
1593 		return (zfs_register_callbacks(vfsp));
1594 
1595 	} else if (why == ROOT_UNMOUNT) {
1596 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1597 		(void) zfs_sync(vfsp, 0, 0);
1598 		return (0);
1599 	}
1600 
1601 	/*
1602 	 * if "why" is equal to anything else other than ROOT_INIT,
1603 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1604 	 */
1605 	return (ENOTSUP);
1606 }
1607 #endif /*__NetBSD__ */
1608 
1609 /*ARGSUSED*/
1610 static int
1611 zfs_mount(vfs_t *vfsp, const char *path, void *data, size_t *data_len)
1612 {
1613 	char		*osname;
1614 	pathname_t	spn;
1615 	vnode_t         *mvp = vfsp->mnt_vnodecovered;
1616 	struct mounta   *uap = data;
1617 	int		error = 0;
1618 	int		canwrite;
1619 	cred_t          *cr;
1620 
1621 	crget(cr);
1622 	dprintf("zfs_vfsops.c zfs_mount called\n");
1623 	dprintf("vfsp->vfs_count %d\n", vfsp->vfs_count);
1624 	if (mvp->v_type != VDIR)
1625 		return (ENOTDIR);
1626 
1627 	mutex_enter(&mvp->v_interlock);
1628 	if ((uap->flags & MS_REMOUNT) == 0 &&
1629 	    (uap->flags & MS_OVERLAY) == 0 &&
1630 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1631 		mutex_exit(&mvp->v_interlock);
1632 		return (EBUSY);
1633 	}
1634 	mutex_exit(&mvp->v_interlock);
1635 
1636 	/*
1637 	 * ZFS does not support passing unparsed data in via MS_DATA.
1638 	 * Users should use the MS_OPTIONSTR interface; this means
1639 	 * that all option parsing is already done and the options struct
1640 	 * can be interrogated.
1641 	 */
1642 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1643 		return (EINVAL);
1644 
1645 	osname = PNBUF_GET();
1646 
1647 	strlcpy(osname, uap->fspec, strlen(uap->fspec) + 1);
1648 
1649 	/*
1650 	 * Check for mount privilege?
1651 	 *
1652 	 * If we don't have privilege then see if
1653 	 * we have local permission to allow it
1654 	 */
1655 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1656 	if (error) {
1657 		error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr);
1658 		if (error == 0) {
1659 			vattr_t		vattr;
1660 
1661 			/*
1662 			 * Make sure user is the owner of the mount point
1663 			 * or has sufficient privileges.
1664 			 */
1665 
1666 			vattr.va_mask = AT_UID;
1667 
1668 			if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1669 				goto out;
1670 			}
1671 
1672 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1673 			    VOP_ACCESS(mvp, VWRITE, cr) != 0) {
1674 				error = EPERM;
1675 				goto out;
1676 			}
1677 
1678 /* XXX NetBSD			secpolicy_fs_mount_clearopts(cr, vfsp);*/
1679 		} else {
1680 			goto out;
1681 		}
1682 	}
1683 
1684 	/*
1685 	 * Refuse to mount a filesystem if we are in a local zone and the
1686 	 * dataset is not visible.
1687 	 */
1688 	if (!INGLOBALZONE(curproc) &&
1689 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1690 		error = EPERM;
1691 		goto out;
1692 	}
1693 
1694 	error = zfs_mount_label_policy(vfsp, osname);
1695 	if (error)
1696 		goto out;
1697 
1698 	/*
1699 	 * When doing a remount, we simply refresh our temporary properties
1700 	 * according to those options set in the current VFS options.
1701 	 */
1702 	if (uap->flags & MS_REMOUNT) {
1703 		/* refresh mount options */
1704 		zfs_unregister_callbacks(vfsp->vfs_data);
1705 		error = zfs_register_callbacks(vfsp);
1706 		goto out;
1707 	}
1708 
1709 	/* Mark ZFS as MP SAFE */
1710 	vfsp->mnt_iflag |= IMNT_MPSAFE;
1711 
1712 	error = zfs_domount(vfsp, osname);
1713 
1714 	vfs_getnewfsid(vfsp);
1715 
1716 	/* setup zfs mount info */
1717 	strlcpy(vfsp->mnt_stat.f_mntfromname, osname,
1718 	    sizeof(vfsp->mnt_stat.f_mntfromname));
1719 	set_statvfs_info(path, UIO_USERSPACE, vfsp->mnt_stat.f_mntfromname,
1720 	    UIO_SYSSPACE, vfsp->mnt_op->vfs_name, vfsp, curlwp);
1721 
1722 	/*
1723 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1724 	 * disappear due to a forced unmount.
1725 	 */
1726 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1727 		VFS_HOLD(mvp->v_vfsp);
1728 
1729 out:
1730 	PNBUF_PUT(osname);
1731 	return (error);
1732 }
1733 
1734 static int
1735 zfs_statvfs(vfs_t *vfsp, struct statvfs *statp)
1736 {
1737 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1738 	dev_t dev;
1739 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1740 
1741 	ZFS_ENTER(zfsvfs);
1742 
1743 	dmu_objset_space(zfsvfs->z_os,
1744 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1745 
1746 	/*
1747 	 * The underlying storage pool actually uses multiple block sizes.
1748 	 * We report the fragsize as the smallest block size we support,
1749 	 * and we report our blocksize as the filesystem's maximum blocksize.
1750 	 */
1751 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1752 	statp->f_bsize = zfsvfs->z_max_blksz;
1753 
1754 	/*
1755 	 * The following report "total" blocks of various kinds in the
1756 	 * file system, but reported in terms of f_frsize - the
1757 	 * "fragment" size.
1758 	 */
1759 
1760 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1761 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1762 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1763 
1764 	/*
1765 	 * statvfs() should really be called statufs(), because it assumes
1766 	 * static metadata.  ZFS doesn't preallocate files, so the best
1767 	 * we can do is report the max that could possibly fit in f_files,
1768 	 * and that minus the number actually used in f_ffree.
1769 	 * For f_ffree, report the smaller of the number of object available
1770 	 * and the number of blocks (each object will take at least a block).
1771 	 */
1772 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1773 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1774 	statp->f_files = statp->f_ffree + usedobjs;
1775 
1776 	statp->f_fsid = vfsp->mnt_stat.f_fsidx.__fsid_val[0];
1777 
1778 	/*
1779 	 * We're a zfs filesystem.
1780 	 */
1781 	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1782 	(void) strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1783 	    sizeof(statp->f_mntfromname));
1784 	(void) strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1785 	    sizeof(statp->f_mntonname));
1786 
1787 	statp->f_namemax = ZFS_MAXNAMELEN;
1788 
1789 	/*
1790 	 * We have all of 32 characters to stuff a string here.
1791 	 * Is there anything useful we could/should provide?
1792 	 */
1793 #ifndef __NetBSD__
1794 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1795 #endif
1796 	ZFS_EXIT(zfsvfs);
1797 	return (0);
1798 }
1799 
1800 static int
1801 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1802 {
1803 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1804 	znode_t *rootzp;
1805 	int error;
1806 
1807 	ZFS_ENTER(zfsvfs);
1808 	dprintf("zfs_root called\n");
1809 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1810 	if (error == 0)
1811 		*vpp = ZTOV(rootzp);
1812 	dprintf("vpp -> %d, error %d -- %p\n", (*vpp)->v_type, error, *vpp);
1813 	ZFS_EXIT(zfsvfs);
1814 	return (error);
1815 }
1816 
1817 /*
1818  * Teardown the zfsvfs::z_os.
1819  *
1820  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1821  * and 'z_teardown_inactive_lock' held.
1822  */
1823 static int
1824 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1825 {
1826 	znode_t	*zp;
1827 
1828 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1829 
1830 	if (!unmounting) {
1831 		/*
1832 		 * We purge the parent filesystem's vfsp as the parent
1833 		 * filesystem and all of its snapshots have their vnode's
1834 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1835 		 * 'z_parent' is self referential for non-snapshots.
1836 		 */
1837 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1838 	}
1839 
1840 	/*
1841 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1842 	 * threads are blocked as zil_close can call zfs_inactive.
1843 	 */
1844 	if (zfsvfs->z_log) {
1845 		zil_close(zfsvfs->z_log);
1846 		zfsvfs->z_log = NULL;
1847 	}
1848 
1849 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1850 
1851 	/*
1852 	 * If we are not unmounting (ie: online recv) and someone already
1853 	 * unmounted this file system while we were doing the switcheroo,
1854 	 * or a reopen of z_os failed then just bail out now.
1855 	 */
1856 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1857 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1858 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1859 		return (EIO);
1860 	}
1861 
1862 	/*
1863 	 * At this point there are no vops active, and any new vops will
1864 	 * fail with EIO since we have z_teardown_lock for writer (only
1865 	 * relavent for forced unmount).
1866 	 *
1867 	 * Release all holds on dbufs.
1868 	 */
1869 	mutex_enter(&zfsvfs->z_znodes_lock);
1870 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1871 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1872 		if (zp->z_dbuf) {
1873 			ASSERT(ZTOV(zp)->v_count > 0);
1874 			zfs_znode_dmu_fini(zp);
1875 		}
1876 	mutex_exit(&zfsvfs->z_znodes_lock);
1877 
1878 	/*
1879 	 * If we are unmounting, set the unmounted flag and let new vops
1880 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1881 	 * other vops will fail with EIO.
1882 	 */
1883 	if (unmounting) {
1884 		zfsvfs->z_unmounted = B_TRUE;
1885 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1886 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1887 	}
1888 
1889 	/*
1890 	 * z_os will be NULL if there was an error in attempting to reopen
1891 	 * zfsvfs, so just return as the properties had already been
1892 	 * unregistered and cached data had been evicted before.
1893 	 */
1894 	if (zfsvfs->z_os == NULL)
1895 		return (0);
1896 
1897 	/*
1898 	 * Unregister properties.
1899 	 */
1900 	zfs_unregister_callbacks(zfsvfs);
1901 
1902 	/*
1903 	 * Evict cached data
1904 	 */
1905 	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
1906 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1907 		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1908 	}
1909 
1910 	return (0);
1911 }
1912 
1913 /*ARGSUSED*/
1914 static int
1915 zfs_umount(vfs_t *vfsp, int fflag)
1916 {
1917 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1918 	objset_t *os;
1919 	int ret, flags = 0;
1920 	cred_t *cr;
1921 
1922 	vnode_t *vpp;
1923 	int counter;
1924 
1925 	counter = 0;
1926 
1927 	dprintf("ZFS_UMOUNT called\n");
1928 
1929 	/*TAILQ_FOREACH(vpp, &vfsp->mnt_vnodelist, v_mntvnodes) {
1930 		printf("vnode list vnode number %d -- vnode address %p\n", counter, vpp);
1931 		vprint("ZFS vfsp vnode list", vpp);
1932 		counter++;
1933 		} */
1934 
1935 	crget(cr);
1936 #ifdef TODO
1937 	ret = secpolicy_fs_unmount(cr, vfsp);
1938 	if (ret) {
1939 		ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1940 		    ZFS_DELEG_PERM_MOUNT, cr);
1941 		if (ret)
1942 			return (ret);
1943 	}
1944 #endif
1945 	/*
1946 	 * We purge the parent filesystem's vfsp as the parent filesystem
1947 	 * and all of its snapshots have their vnode's v_vfsp set to the
1948 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1949 	 * referential for non-snapshots.
1950 	 */
1951 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1952 
1953 	/*
1954 	 * Unmount any snapshots mounted under .zfs before unmounting the
1955 	 * dataset itself.
1956 	 */
1957 	if (zfsvfs->z_ctldir != NULL &&
1958 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1959 		return (ret);
1960 	}
1961 
1962 #if 0
1963 	if (!(fflag & MS_FORCE)) {
1964 		/*
1965 		 * Check the number of active vnodes in the file system.
1966 		 * Our count is maintained in the vfs structure, but the
1967 		 * number is off by 1 to indicate a hold on the vfs
1968 		 * structure itself.
1969 		 *
1970 		 * The '.zfs' directory maintains a reference of its
1971 		 * own, and any active references underneath are
1972 		 * reflected in the vnode count.
1973 		 */
1974 		if (zfsvfs->z_ctldir == NULL) {
1975 			if (vfsp->vfs_count > 1){
1976 				return (EBUSY);
1977 			}
1978 		} else {
1979 			if (vfsp->vfs_count > 2 ||
1980 			    zfsvfs->z_ctldir->v_count > 1) {
1981 				return (EBUSY);
1982 			}
1983 		}
1984 	}
1985 #endif
1986 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1987 
1988 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1989 	os = zfsvfs->z_os;
1990 
1991 	/*
1992 	 * z_os will be NULL if there was an error in
1993 	 * attempting to reopen zfsvfs.
1994 	 */
1995 	if (os != NULL) {
1996 		/*
1997 		 * Unset the objset user_ptr.
1998 		 */
1999 		mutex_enter(&os->os_user_ptr_lock);
2000 		dmu_objset_set_user(os, NULL);
2001 		mutex_exit(&os->os_user_ptr_lock);
2002 
2003 		/*
2004 		 * Finally release the objset
2005 		 */
2006 		dmu_objset_disown(os, zfsvfs);
2007 	}
2008 
2009 	/*
2010 	 * We can now safely destroy the '.zfs' directory node.
2011 	 */
2012 	if (zfsvfs->z_ctldir != NULL)
2013 		zfsctl_destroy(zfsvfs);
2014 
2015 	if (fflag & MS_FORCE)
2016 		flags |= FORCECLOSE;
2017 
2018 	ret = vflush(vfsp, NULL, 0);
2019 	if (ret != 0)
2020 		return ret;
2021 
2022 	return (0);
2023 }
2024 
2025 static int
2026 zfs_vget(vfs_t *vfsp, ino_t ino, vnode_t **vpp)
2027 {
2028 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2029 	znode_t *zp;
2030 	int err;
2031 
2032 	dprintf("zfs_vget called\n");
2033 	dprintf("vfsp->vfs_count %d\n", vfsp->vfs_count);
2034 
2035 	ZFS_ENTER(zfsvfs);
2036 	err = zfs_zget(zfsvfs, ino, &zp);
2037 	if (err == 0 && zp->z_unlinked) {
2038 		VN_RELE(ZTOV(zp));
2039 		err = EINVAL;
2040 	}
2041 	if (err != 0)
2042 		*vpp = NULL;
2043 	else {
2044 		*vpp = ZTOV(zp);
2045 		/* XXX NetBSD how to get flags for vn_lock ? */
2046 		vn_lock(*vpp, 0);
2047 	}
2048 	ZFS_EXIT(zfsvfs);
2049 	return (err);
2050 }
2051 
2052 static int
2053 zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, vnode_t **vpp)
2054 {
2055 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2056 	znode_t *zp;
2057 	uint64_t object = 0;
2058 	uint64_t fid_gen = 0;
2059 	uint64_t gen_mask;
2060 	uint64_t zp_gen;
2061 	int i, err;
2062 
2063 	*vpp = NULL;
2064 
2065 	dprintf("zfs_fhtovp called\n");
2066 	dprintf("vfsp->vfs_count %d\n", vfsp->vfs_count);
2067 
2068 	ZFS_ENTER(zfsvfs);
2069 
2070 	if (fidp->fid_len == LONG_FID_LEN) {
2071 		zfid_long_t *zlfid = (zfid_long_t *)fidp;
2072 		uint64_t objsetid = 0;
2073 		uint64_t setgen = 0;
2074 
2075 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2076 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2077 
2078 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2079 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2080 
2081 		ZFS_EXIT(zfsvfs);
2082 
2083 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2084 		if (err)
2085 			return (EINVAL);
2086 		ZFS_ENTER(zfsvfs);
2087 	}
2088 
2089 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2090 		zfid_short_t *zfid = (zfid_short_t *)fidp;
2091 
2092 		for (i = 0; i < sizeof (zfid->zf_object); i++)
2093 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2094 
2095 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2096 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2097 	} else {
2098 		ZFS_EXIT(zfsvfs);
2099 		return (EINVAL);
2100 	}
2101 
2102 	/* A zero fid_gen means we are in the .zfs control directories */
2103 	if (fid_gen == 0 &&
2104 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
2105 		*vpp = zfsvfs->z_ctldir;
2106 		ASSERT(*vpp != NULL);
2107 		if (object == ZFSCTL_INO_SNAPDIR) {
2108 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2109 				0, NULL, NULL, NULL, NULL, NULL) == 0);
2110 		} else {
2111 			VN_HOLD(*vpp);
2112 		}
2113 		ZFS_EXIT(zfsvfs);
2114 		/* XXX: LK_RETRY? */
2115 		vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
2116 		return (0);
2117 	}
2118 
2119 	gen_mask = -1ULL >> (64 - 8 * i);
2120 
2121 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2122 	if (err = zfs_zget(zfsvfs, object, &zp)) {
2123 		ZFS_EXIT(zfsvfs);
2124 		return (err);
2125 	}
2126 	zp_gen = zp->z_phys->zp_gen & gen_mask;
2127 	if (zp_gen == 0)
2128 		zp_gen = 1;
2129 	if (zp->z_unlinked || zp_gen != fid_gen) {
2130 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2131 		VN_RELE(ZTOV(zp));
2132 		ZFS_EXIT(zfsvfs);
2133 		return (EINVAL);
2134 	}
2135 
2136 	*vpp = ZTOV(zp);
2137 	/* XXX: LK_RETRY? */
2138 	vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
2139 	ZFS_EXIT(zfsvfs);
2140 	return (0);
2141 }
2142 
2143 /*
2144  * Block out VOPs and close zfsvfs_t::z_os
2145  *
2146  * Note, if successful, then we return with the 'z_teardown_lock' and
2147  * 'z_teardown_inactive_lock' write held.
2148  */
2149 int
2150 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2151 {
2152 	int error;
2153 
2154 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2155 		return (error);
2156 	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2157 
2158 	return (0);
2159 }
2160 
2161 /*
2162  * Reopen zfsvfs_t::z_os and release VOPs.
2163  */
2164 int
2165 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2166 {
2167 	int err;
2168 
2169 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2170 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2171 
2172 	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2173 	    &zfsvfs->z_os);
2174 	if (err) {
2175 		zfsvfs->z_os = NULL;
2176 	} else {
2177 		znode_t *zp;
2178 
2179 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2180 
2181 		/*
2182 		 * Attempt to re-establish all the active znodes with
2183 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
2184 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2185 		 * when they try to use their znode.
2186 		 */
2187 		mutex_enter(&zfsvfs->z_znodes_lock);
2188 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2189 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2190 			(void) zfs_rezget(zp);
2191 		}
2192 		mutex_exit(&zfsvfs->z_znodes_lock);
2193 
2194 	}
2195 
2196 	/* release the VOPs */
2197 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2198 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2199 
2200 	if (err) {
2201 		/*
2202 		 * Since we couldn't reopen zfsvfs::z_os, force
2203 		 * unmount this file system.
2204 		 */
2205 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2206 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curlwp);
2207 	}
2208 	return (err);
2209 }
2210 
2211 static void
2212 zfs_freevfs(vfs_t *vfsp)
2213 {
2214 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2215 
2216 	/*
2217 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2218 	 * from zfs_mount().  Release it here.
2219 	 */
2220 	if (zfsvfs->z_issnap)
2221 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2222 
2223 	zfsvfs_free(zfsvfs);
2224 
2225 	atomic_add_32(&zfs_active_fs_count, -1);
2226 }
2227 
2228 /*
2229  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2230  * so we can't safely do any non-idempotent initialization here.
2231  * Leave that to zfs_init() and zfs_fini(), which are called
2232  * from the module's _init() and _fini() entry points.
2233  */
2234 /*ARGSUSED*/
2235 int
2236 zfs_vfsinit(int fstype, char *name)
2237 {
2238 	int error;
2239 
2240 	zfsfstype = fstype;
2241 
2242 	/*
2243 	 * Setup vfsops and vnodeops tables.
2244 	 */
2245 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2246 
2247 	error = zfs_create_op_tables();
2248 	if (error) {
2249 		zfs_remove_op_tables();
2250 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2251 		vfs_freevfsops_by_type(zfsfstype);
2252 		return (error);
2253 	}
2254 
2255 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2256 	mutex_init(&zfs_debug_mtx, NULL, MUTEX_DEFAULT, NULL);
2257 
2258 	/*
2259 	 * Unique major number for all zfs mounts.
2260 	 * If we run out of 32-bit minors, we'll getudev() another major.
2261 	 */
2262 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2263 	zfs_minor = ZFS_MIN_MINOR;
2264 
2265 	return (0);
2266 }
2267 
2268 int
2269 zfs_vfsfini(void)
2270 {
2271 	int err;
2272 
2273 	err = vfs_detach(&zfs_vfsops_template);
2274 	if (err != 0)
2275 		return err;
2276 
2277 	mutex_destroy(&zfs_debug_mtx);
2278 	mutex_destroy(&zfs_dev_mtx);
2279 
2280 	return 0;
2281 }
2282 
2283 void
2284 zfs_init(void)
2285 {
2286 	/*
2287 	 * Initialize .zfs directory structures
2288 	 */
2289 	zfsctl_init();
2290 
2291 	/*
2292 	 * Initialize znode cache, vnode ops, etc...
2293 	 */
2294 	zfs_znode_init();
2295 
2296 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2297 }
2298 
2299 void
2300 zfs_fini(void)
2301 {
2302 	zfsctl_fini();
2303 	zfs_znode_fini();
2304 }
2305 
2306 int
2307 zfs_busy(void)
2308 {
2309 	return (zfs_active_fs_count != 0);
2310 }
2311 
2312 int
2313 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2314 {
2315 	int error;
2316 	objset_t *os = zfsvfs->z_os;
2317 	dmu_tx_t *tx;
2318 
2319 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2320 		return (EINVAL);
2321 
2322 	if (newvers < zfsvfs->z_version)
2323 		return (EINVAL);
2324 
2325 	tx = dmu_tx_create(os);
2326 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2327 	error = dmu_tx_assign(tx, TXG_WAIT);
2328 	if (error) {
2329 		dmu_tx_abort(tx);
2330 		return (error);
2331 	}
2332 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2333 	    8, 1, &newvers, tx);
2334 
2335 	if (error) {
2336 		dmu_tx_commit(tx);
2337 		return (error);
2338 	}
2339 
2340 	spa_history_internal_log(LOG_DS_UPGRADE,
2341 	    dmu_objset_spa(os), tx, CRED(),
2342 	    "oldver=%llu newver=%llu dataset = %llu",
2343 	    zfsvfs->z_version, newvers, dmu_objset_id(os));
2344 
2345 	dmu_tx_commit(tx);
2346 
2347 	zfsvfs->z_version = newvers;
2348 
2349 	if (zfsvfs->z_version >= ZPL_VERSION_FUID)
2350 		zfs_set_fuid_feature(zfsvfs);
2351 
2352 	return (0);
2353 }
2354 
2355 /*
2356  * Read a property stored within the master node.
2357  */
2358 int
2359 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2360 {
2361 	const char *pname;
2362 	int error = ENOENT;
2363 
2364 	/*
2365 	 * Look up the file system's value for the property.  For the
2366 	 * version property, we look up a slightly different string.
2367 	 */
2368 	if (prop == ZFS_PROP_VERSION)
2369 		pname = ZPL_VERSION_STR;
2370 	else
2371 		pname = zfs_prop_to_name(prop);
2372 
2373 	if (os != NULL)
2374 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2375 
2376 	if (error == ENOENT) {
2377 		/* No value set, use the default value */
2378 		switch (prop) {
2379 		case ZFS_PROP_VERSION:
2380 			*value = ZPL_VERSION;
2381 			break;
2382 		case ZFS_PROP_NORMALIZE:
2383 		case ZFS_PROP_UTF8ONLY:
2384 			*value = 0;
2385 			break;
2386 		case ZFS_PROP_CASE:
2387 			*value = ZFS_CASE_SENSITIVE;
2388 			break;
2389 		default:
2390 			return (error);
2391 		}
2392 		error = 0;
2393 	}
2394 	return (error);
2395 }
2396 
2397 static int
2398 zfs_start(vfs_t *vfsp, int flags)
2399 {
2400 
2401 	return (0);
2402 }
2403 
2404 
2405 #ifdef TODO
2406 static vfsdef_t vfw = {
2407 	VFSDEF_VERSION,
2408 	MNTTYPE_ZFS,
2409 	zfs_vfsinit,
2410 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2411 	    VSW_XID,
2412 	&zfs_mntopts
2413 };
2414 
2415 struct modlfs zfs_modlfs = {
2416 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2417 };
2418 #endif
2419