xref: /netbsd-src/external/cddl/osnet/dist/uts/common/fs/zfs/zfs_vfsops.c (revision 75219f3a016dfaad1cb304eb017f9787b1de8292)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/sysmacros.h>
30 #include <sys/kmem.h>
31 #include <sys/pathname.h>
32 #include <sys/vnode.h>
33 #include <sys/vfs.h>
34 #include <sys/vfs_opreg.h>
35 #include <sys/mntent.h>
36 #include <sys/mount.h>
37 #include <sys/cmn_err.h>
38 #include <sys/zfs_znode.h>
39 #include <sys/zfs_dir.h>
40 #include <sys/zil.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/dmu.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_deleg.h>
46 #include <sys/spa.h>
47 #include <sys/zap.h>
48 #include <sys/varargs.h>
49 #include <sys/policy.h>
50 #include <sys/atomic.h>
51 #include <sys/mkdev.h>
52 #include <sys/modctl.h>
53 #include <sys/zfs_ioctl.h>
54 #include <sys/zfs_ctldir.h>
55 #include <sys/zfs_fuid.h>
56 #include <sys/sunddi.h>
57 #include <sys/dnlc.h>
58 #include <sys/dmu_objset.h>
59 #include <sys/spa_boot.h>
60 
61 #ifdef __NetBSD__
62 /* include ddi_name_to_major function is there better place for it ?*/
63 #include <sys/ddi.h>
64 #include <sys/systm.h>
65 #endif
66 
67 int zfsfstype;
68 vfsops_t *zfs_vfsops = NULL;
69 static major_t zfs_major;
70 static minor_t zfs_minor;
71 static kmutex_t	zfs_dev_mtx;
72 
73 int zfs_debug_level;
74 kmutex_t zfs_debug_mtx;
75 
76 /* XXX NetBSD static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);*/
77 static int zfs_mount(vfs_t *vfsp, const char *path, void *data, size_t *data_len);
78 static int zfs_umount(vfs_t *vfsp, int fflag);
79 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
80 static int zfs_statvfs(vfs_t *vfsp, struct statvfs *statp);
81 static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, vnode_t **vpp);
82 static int zfs_vget(vfs_t *vfsp, ino_t ino, vnode_t **vpp);
83 static int zfs_start(vfs_t *vfsp, int flags);
84 static void zfs_freevfs(vfs_t *vfsp);
85 
86 void zfs_init(void);
87 void zfs_fini(void);
88 
89 
90 extern const struct vnodeopv_desc zfs_vnodeop_opv_desc;
91 
92 static const struct vnodeopv_desc * const zfs_vnodeop_descs[] = {
93 	&zfs_vnodeop_opv_desc,
94 	NULL,
95 };
96 
97 static struct vfsops zfs_vfsops_template = {
98 	.vfs_name = MOUNT_ZFS,
99 	.vfs_min_mount_data = sizeof(struct zfs_args),
100 	.vfs_opv_descs = zfs_vnodeop_descs,
101 	.vfs_mount = zfs_mount,
102 	.vfs_unmount = zfs_umount,
103 	.vfs_root = zfs_root,
104 	.vfs_statvfs = zfs_statvfs,
105 	.vfs_sync = zfs_sync,
106 	.vfs_vget = zfs_vget,
107 	.vfs_fhtovp = zfs_fhtovp,
108 	.vfs_init = zfs_init,
109 	.vfs_done = zfs_fini,
110 	.vfs_start = zfs_start,
111 	.vfs_renamelock_enter = (void*)nullop,
112 	.vfs_renamelock_exit = (void*)nullop,
113 	.vfs_reinit = (void *)nullop,
114 	.vfs_vptofh = (void *)eopnotsupp,
115 	.vfs_fhtovp = (void *)eopnotsupp,
116 	.vfs_quotactl = (void *)eopnotsupp,
117 	.vfs_extattrctl = (void *)eopnotsupp,
118 	.vfs_snapshot = (void *)eopnotsupp,
119 	.vfs_fsync = (void *)eopnotsupp,
120 };
121 
122 /*
123  * We need to keep a count of active fs's.
124  * This is necessary to prevent our module
125  * from being unloaded after a umount -f
126  */
127 static uint32_t	zfs_active_fs_count = 0;
128 
129 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
130 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
131 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
132 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
133 
134 /*
135  * MO_DEFAULT is not used since the default value is determined
136  * by the equivalent property.
137  */
138 static mntopt_t mntopts[] = {
139 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
140 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
141 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
142 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
143 };
144 
145 static mntopts_t zfs_mntopts = {
146 	sizeof (mntopts) / sizeof (mntopt_t),
147 	mntopts
148 };
149 
150 /*ARGSUSED*/
151 int
152 zfs_sync(vfs_t *vfsp, int flag, cred_t *cr)
153 {
154 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
155 	znode_t *zp;
156 	vnode_t *vp, *nvp, *mvp;
157 	dmu_tx_t *tx;
158 	int error;
159 
160 
161 	error = 0;
162 
163         /*
164 	 * Data integrity is job one.  We don't want a compromised kernel
165 	 * writing to the storage pool, so we never sync during panic.
166 	 */
167 	if (panicstr)
168 		return (0);
169 
170 	/* Allocate a marker vnode. */
171 	mvp = vnalloc(vfsp);
172 
173 	/*
174 	 * On NetBSD, we need to push out atime updates.  Solaris does
175 	 * this during VOP_INACTIVE, but that does not work well with the
176 	 * BSD VFS, so we do it in batch here.
177 	 */
178 	mutex_enter(&mntvnode_lock);
179 loop:
180 	for (vp = TAILQ_FIRST(&vfsp->mnt_vnodelist); vp; vp = nvp) {
181 		nvp = TAILQ_NEXT(vp, v_mntvnodes);
182 		/*
183 		 * If the vnode that we are about to sync is no
184 		 * longer associated with this mount point, start
185 		 * over.
186 		 */
187 		if (vp->v_mount != vfsp)
188 			goto loop;
189 		/*
190 		 * Don't interfere with concurrent scans of this FS.
191 		 */
192 		if (vismarker(vp))
193 			continue;
194 		/*
195 		 * Skip the vnode/inode if inaccessible, or if the
196 		 * atime is clean.
197 		 */
198 		mutex_enter(vp->v_interlock);
199 		zp = VTOZ(vp);
200 		if (zp == NULL || vp->v_type == VNON ||
201 		   (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0 ||
202 		   zp->z_atime_dirty == 0 || zp->z_unlinked) {
203 			mutex_exit(vp->v_interlock);
204 			continue;
205 		}
206 		vmark(mvp, vp);
207 		mutex_exit(&mntvnode_lock);
208 		error = vget(vp, LK_EXCLUSIVE);
209 		if (error) {
210 			mutex_enter(&mntvnode_lock);
211 			nvp = vunmark(mvp);
212 			if (error == ENOENT) {
213 				goto loop;
214 			}
215 			continue;
216 		}
217 		tx = dmu_tx_create(zfsvfs->z_os);
218 		dmu_tx_hold_bonus(tx, zp->z_id);
219 		error = dmu_tx_assign(tx, TXG_WAIT);
220 		if (error) {
221 			dmu_tx_abort(tx);
222 		} else {
223 			dmu_buf_will_dirty(zp->z_dbuf, tx);
224 			mutex_enter(&zp->z_lock);
225 			zp->z_atime_dirty = 0;
226 			mutex_exit(&zp->z_lock);
227 			dmu_tx_commit(tx);
228 		}
229 		vput(vp);
230 		mutex_enter(&mntvnode_lock);
231 		nvp = vunmark(mvp);
232 	}
233 	mutex_exit(&mntvnode_lock);
234 
235 	/*
236 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
237 	 * to sync metadata, which they would otherwise cache indefinitely.
238 	 * Semantically, the only requirement is that the sync be initiated.
239 	 * The DMU syncs out txgs frequently, so there's nothing to do.
240 	 */
241 	if ((flag & MNT_LAZY) != 0)
242 		return (0);
243 
244 	if (vfsp != NULL) {
245 		/*
246 		 * Sync a specific filesystem.
247 		 */
248 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
249 		dsl_pool_t *dp;
250 
251 		ZFS_ENTER(zfsvfs);
252 		dp = dmu_objset_pool(zfsvfs->z_os);
253 
254 		/*
255 		 * If the system is shutting down, then skip any
256 		 * filesystems which may exist on a suspended pool.
257 		 */
258 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
259 			ZFS_EXIT(zfsvfs);
260 			return (0);
261 		}
262 
263 		if (zfsvfs->z_log != NULL)
264 			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
265 		else
266 			txg_wait_synced(dp, 0);
267 		ZFS_EXIT(zfsvfs);
268 	} else {
269 		/*
270 		 * Sync all ZFS filesystems.  This is what happens when you
271 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
272 		 * request by waiting for all pools to commit all dirty data.
273 		 */
274 		spa_sync_allpools();
275 	}
276 
277 	vnfree(nvp);
278 
279 	return (0);
280 }
281 
282 static int
283 zfs_create_unique_device(dev_t *dev)
284 {
285 	major_t new_major;
286 
287 	do {
288 		ASSERT3U(zfs_minor, <=, MAXMIN);
289 		minor_t start = zfs_minor;
290 		do {
291 			mutex_enter(&zfs_dev_mtx);
292 			if (zfs_minor >= MAXMIN) {
293 				/*
294 				 * If we're still using the real major
295 				 * keep out of /dev/zfs and /dev/zvol minor
296 				 * number space.  If we're using a getudev()'ed
297 				 * major number, we can use all of its minors.
298 				 */
299 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
300 					zfs_minor = ZFS_MIN_MINOR;
301 				else
302 					zfs_minor = 0;
303 			} else {
304 				zfs_minor++;
305 			}
306 			*dev = makedevice(zfs_major, zfs_minor);
307 			mutex_exit(&zfs_dev_mtx);
308 		} while (vfs_devismounted(*dev) && zfs_minor != start);
309 		break;
310 #ifndef __NetBSD__
311 		if (zfs_minor == start) {
312 			/*
313 			 * We are using all ~262,000 minor numbers for the
314 			 * current major number.  Create a new major number.
315 			 */
316 			if ((new_major = getudev()) == (major_t)-1) {
317 				cmn_err(CE_WARN,
318 				    "zfs_mount: Can't get unique major "
319 				    "device number.");
320 				return (-1);
321 			}
322 			mutex_enter(&zfs_dev_mtx);
323 			zfs_major = new_major;
324 			zfs_minor = 0;
325 
326 			mutex_exit(&zfs_dev_mtx);
327 		} else {
328 			break;
329 		}
330 		/* CONSTANTCONDITION */
331 #endif
332 	} while (1);
333 
334 	return (0);
335 }
336 
337 static void
338 atime_changed_cb(void *arg, uint64_t newval)
339 {
340 	zfsvfs_t *zfsvfs = arg;
341 
342 	if (newval == TRUE) {
343 		zfsvfs->z_atime = TRUE;
344 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
345 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
346 	} else {
347 		zfsvfs->z_atime = FALSE;
348 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
349 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
350 	}
351 }
352 
353 static void
354 xattr_changed_cb(void *arg, uint64_t newval)
355 {
356 	zfsvfs_t *zfsvfs = arg;
357 
358 	if (newval == TRUE) {
359 		/* XXX locking on vfs_flag? */
360 #ifdef TODO
361 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
362 #endif
363 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
364 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
365 	} else {
366 		/* XXX locking on vfs_flag? */
367 #ifdef TODO
368 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
369 #endif
370 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
371 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
372 	}
373 }
374 
375 static void
376 blksz_changed_cb(void *arg, uint64_t newval)
377 {
378 	zfsvfs_t *zfsvfs = arg;
379 
380 	if (newval < SPA_MINBLOCKSIZE ||
381 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
382 		newval = SPA_MAXBLOCKSIZE;
383 
384 	zfsvfs->z_max_blksz = newval;
385 	zfsvfs->z_vfs->vfs_bsize = newval;
386 }
387 
388 static void
389 readonly_changed_cb(void *arg, uint64_t newval)
390 {
391 	zfsvfs_t *zfsvfs = arg;
392 
393 	if (newval) {
394 		/* XXX locking on vfs_flag? */
395 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
396 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
397 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
398 	} else {
399 		/* XXX locking on vfs_flag? */
400 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
401 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
402 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
403 	}
404 }
405 
406 static void
407 devices_changed_cb(void *arg, uint64_t newval)
408 {
409 	zfsvfs_t *zfsvfs = arg;
410 
411 	if (newval == FALSE) {
412 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
413 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
414 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
415 	} else {
416 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
417 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
418 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
419 	}
420 }
421 
422 static void
423 setuid_changed_cb(void *arg, uint64_t newval)
424 {
425 	zfsvfs_t *zfsvfs = arg;
426 
427 	if (newval == FALSE) {
428 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
429 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
430 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
431 	} else {
432 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
433 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
434 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
435 	}
436 }
437 
438 static void
439 exec_changed_cb(void *arg, uint64_t newval)
440 {
441 	zfsvfs_t *zfsvfs = arg;
442 
443 	if (newval == FALSE) {
444 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
445 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
446 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
447 	} else {
448 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
449 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
450 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
451 	}
452 }
453 
454 /*
455  * The nbmand mount option can be changed at mount time.
456  * We can't allow it to be toggled on live file systems or incorrect
457  * behavior may be seen from cifs clients
458  *
459  * This property isn't registered via dsl_prop_register(), but this callback
460  * will be called when a file system is first mounted
461  */
462 static void
463 nbmand_changed_cb(void *arg, uint64_t newval)
464 {
465 	zfsvfs_t *zfsvfs = arg;
466 	if (newval == FALSE) {
467 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
468 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
469 	} else {
470 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
471 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
472 	}
473 }
474 
475 static void
476 snapdir_changed_cb(void *arg, uint64_t newval)
477 {
478 	zfsvfs_t *zfsvfs = arg;
479 
480 	zfsvfs->z_show_ctldir = newval;
481 }
482 
483 static void
484 vscan_changed_cb(void *arg, uint64_t newval)
485 {
486 	zfsvfs_t *zfsvfs = arg;
487 
488 	zfsvfs->z_vscan = newval;
489 }
490 
491 static void
492 acl_mode_changed_cb(void *arg, uint64_t newval)
493 {
494 	zfsvfs_t *zfsvfs = arg;
495 
496 	zfsvfs->z_acl_mode = newval;
497 }
498 
499 static void
500 acl_inherit_changed_cb(void *arg, uint64_t newval)
501 {
502 	zfsvfs_t *zfsvfs = arg;
503 
504 	zfsvfs->z_acl_inherit = newval;
505 }
506 
507 static int
508 zfs_register_callbacks(vfs_t *vfsp)
509 {
510 	struct dsl_dataset *ds = NULL;
511 	objset_t *os = NULL;
512 	zfsvfs_t *zfsvfs = NULL;
513 	uint64_t nbmand;
514 	int readonly, do_readonly = B_FALSE;
515 	int setuid, do_setuid = B_FALSE;
516 	int exec, do_exec = B_FALSE;
517 	int devices, do_devices = B_FALSE;
518 	int xattr, do_xattr = B_FALSE;
519 	int atime, do_atime = B_FALSE;
520 	int error = 0;
521 
522 	ASSERT(vfsp);
523 	zfsvfs = vfsp->vfs_data;
524 	ASSERT(zfsvfs);
525 	os = zfsvfs->z_os;
526 
527 	/*
528 	 * The act of registering our callbacks will destroy any mount
529 	 * options we may have.  In order to enable temporary overrides
530 	 * of mount options, we stash away the current values and
531 	 * restore them after we register the callbacks.
532 	 */
533 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
534 		readonly = B_TRUE;
535 		do_readonly = B_TRUE;
536 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
537 		readonly = B_FALSE;
538 		do_readonly = B_TRUE;
539 	}
540 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
541 		devices = B_FALSE;
542 		setuid = B_FALSE;
543 		do_devices = B_TRUE;
544 		do_setuid = B_TRUE;
545 	} else {
546 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
547 			devices = B_FALSE;
548 			do_devices = B_TRUE;
549 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
550 			devices = B_TRUE;
551 			do_devices = B_TRUE;
552 		}
553 
554 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
555 			setuid = B_FALSE;
556 			do_setuid = B_TRUE;
557 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
558 			setuid = B_TRUE;
559 			do_setuid = B_TRUE;
560 		}
561 	}
562 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
563 		exec = B_FALSE;
564 		do_exec = B_TRUE;
565 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
566 		exec = B_TRUE;
567 		do_exec = B_TRUE;
568 	}
569 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
570 		xattr = B_FALSE;
571 		do_xattr = B_TRUE;
572 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
573 		xattr = B_TRUE;
574 		do_xattr = B_TRUE;
575 	}
576 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
577 		atime = B_FALSE;
578 		do_atime = B_TRUE;
579 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
580 		atime = B_TRUE;
581 		do_atime = B_TRUE;
582 	}
583 
584 	/*
585 	 * nbmand is a special property.  It can only be changed at
586 	 * mount time.
587 	 *
588 	 * This is weird, but it is documented to only be changeable
589 	 * at mount time.
590 	 */
591 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
592 		nbmand = B_FALSE;
593 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
594 		nbmand = B_TRUE;
595 	} else {
596 		char osname[MAXNAMELEN];
597 
598 		dmu_objset_name(os, osname);
599 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
600 		    NULL)) {
601 			return (error);
602 		}
603 	}
604 
605 	/*
606 	 * Register property callbacks.
607 	 *
608 	 * It would probably be fine to just check for i/o error from
609 	 * the first prop_register(), but I guess I like to go
610 	 * overboard...
611 	 */
612 	ds = dmu_objset_ds(os);
613 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
614 	error = error ? error : dsl_prop_register(ds,
615 	    "xattr", xattr_changed_cb, zfsvfs);
616 	error = error ? error : dsl_prop_register(ds,
617 	    "recordsize", blksz_changed_cb, zfsvfs);
618 	error = error ? error : dsl_prop_register(ds,
619 	    "readonly", readonly_changed_cb, zfsvfs);
620 	error = error ? error : dsl_prop_register(ds,
621 	    "devices", devices_changed_cb, zfsvfs);
622 	error = error ? error : dsl_prop_register(ds,
623 	    "setuid", setuid_changed_cb, zfsvfs);
624 	error = error ? error : dsl_prop_register(ds,
625 	    "exec", exec_changed_cb, zfsvfs);
626 	error = error ? error : dsl_prop_register(ds,
627 	    "snapdir", snapdir_changed_cb, zfsvfs);
628 	error = error ? error : dsl_prop_register(ds,
629 	    "aclmode", acl_mode_changed_cb, zfsvfs);
630 	error = error ? error : dsl_prop_register(ds,
631 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
632 	error = error ? error : dsl_prop_register(ds,
633 	    "vscan", vscan_changed_cb, zfsvfs);
634 	if (error)
635 		goto unregister;
636 
637 	/*
638 	 * Invoke our callbacks to restore temporary mount options.
639 	 */
640 	if (do_readonly)
641 		readonly_changed_cb(zfsvfs, readonly);
642 	if (do_setuid)
643 		setuid_changed_cb(zfsvfs, setuid);
644 	if (do_exec)
645 		exec_changed_cb(zfsvfs, exec);
646 	if (do_devices)
647 		devices_changed_cb(zfsvfs, devices);
648 	if (do_xattr)
649 		xattr_changed_cb(zfsvfs, xattr);
650 	if (do_atime)
651 		atime_changed_cb(zfsvfs, atime);
652 
653 	nbmand_changed_cb(zfsvfs, nbmand);
654 
655 	return (0);
656 
657 unregister:
658 	/*
659 	 * We may attempt to unregister some callbacks that are not
660 	 * registered, but this is OK; it will simply return ENOMSG,
661 	 * which we will ignore.
662 	 */
663 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
664 	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
665 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
666 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
667 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
668 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
669 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
670 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
671 	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
672 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
673 	    zfsvfs);
674 	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
675 	return (error);
676 
677 }
678 
679 static void
680 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid,
681     int64_t delta, dmu_tx_t *tx)
682 {
683 	uint64_t used = 0;
684 	char buf[32];
685 	int err;
686 	uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
687 
688 	if (delta == 0)
689 		return;
690 
691 	(void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid);
692 	err = zap_lookup(os, obj, buf, 8, 1, &used);
693 	ASSERT(err == 0 || err == ENOENT);
694 	/* no underflow/overflow */
695 	ASSERT(delta > 0 || used >= -delta);
696 	ASSERT(delta < 0 || used + delta > used);
697 	used += delta;
698 	if (used == 0)
699 		err = zap_remove(os, obj, buf, tx);
700 	else
701 		err = zap_update(os, obj, buf, 8, 1, &used, tx);
702 	ASSERT(err == 0);
703 }
704 
705 static int
706 zfs_space_delta_cb(dmu_object_type_t bonustype, void *bonus,
707     uint64_t *userp, uint64_t *groupp)
708 {
709 	znode_phys_t *znp = bonus;
710 
711 	if (bonustype != DMU_OT_ZNODE)
712 		return (ENOENT);
713 
714 	*userp = znp->zp_uid;
715 	*groupp = znp->zp_gid;
716 	return (0);
717 }
718 
719 static void
720 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
721     char *domainbuf, int buflen, uid_t *ridp)
722 {
723 	uint64_t fuid;
724 	const char *domain;
725 
726 	fuid = strtonum(fuidstr, NULL);
727 
728 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
729 	if (domain)
730 		(void) strlcpy(domainbuf, domain, buflen);
731 	else
732 		domainbuf[0] = '\0';
733 	*ridp = FUID_RID(fuid);
734 }
735 
736 static uint64_t
737 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
738 {
739 	switch (type) {
740 	case ZFS_PROP_USERUSED:
741 		return (DMU_USERUSED_OBJECT);
742 	case ZFS_PROP_GROUPUSED:
743 		return (DMU_GROUPUSED_OBJECT);
744 	case ZFS_PROP_USERQUOTA:
745 		return (zfsvfs->z_userquota_obj);
746 	case ZFS_PROP_GROUPQUOTA:
747 		return (zfsvfs->z_groupquota_obj);
748 	}
749 	return (0);
750 }
751 
752 int
753 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
754     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
755 {
756 	int error;
757 	zap_cursor_t zc;
758 	zap_attribute_t za;
759 	zfs_useracct_t *buf = vbuf;
760 	uint64_t obj;
761 
762 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
763 		return (ENOTSUP);
764 
765 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
766 	if (obj == 0) {
767 		*bufsizep = 0;
768 		return (0);
769 	}
770 
771 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
772 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
773 	    zap_cursor_advance(&zc)) {
774 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
775 		    *bufsizep)
776 			break;
777 
778 		fuidstr_to_sid(zfsvfs, za.za_name,
779 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
780 
781 		buf->zu_space = za.za_first_integer;
782 		buf++;
783 	}
784 	if (error == ENOENT)
785 		error = 0;
786 
787 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
788 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
789 	*cookiep = zap_cursor_serialize(&zc);
790 	zap_cursor_fini(&zc);
791 	return (error);
792 }
793 
794 /*
795  * buf must be big enough (eg, 32 bytes)
796  */
797 static int
798 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
799     char *buf, boolean_t addok)
800 {
801 	uint64_t fuid;
802 	int domainid = 0;
803 
804 	if (domain && domain[0]) {
805 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
806 		if (domainid == -1)
807 			return (ENOENT);
808 	}
809 	fuid = FUID_ENCODE(domainid, rid);
810 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
811 	return (0);
812 }
813 
814 int
815 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
816     const char *domain, uint64_t rid, uint64_t *valp)
817 {
818 	char buf[32];
819 	int err;
820 	uint64_t obj;
821 
822 	*valp = 0;
823 
824 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
825 		return (ENOTSUP);
826 
827 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
828 	if (obj == 0)
829 		return (0);
830 
831 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
832 	if (err)
833 		return (err);
834 
835 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
836 	if (err == ENOENT)
837 		err = 0;
838 	return (err);
839 }
840 
841 int
842 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
843     const char *domain, uint64_t rid, uint64_t quota)
844 {
845 	char buf[32];
846 	int err;
847 	dmu_tx_t *tx;
848 	uint64_t *objp;
849 	boolean_t fuid_dirtied;
850 
851 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
852 		return (EINVAL);
853 
854 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
855 		return (ENOTSUP);
856 
857 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
858 	    &zfsvfs->z_groupquota_obj;
859 
860 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
861 	if (err)
862 		return (err);
863 	fuid_dirtied = zfsvfs->z_fuid_dirty;
864 
865 	tx = dmu_tx_create(zfsvfs->z_os);
866 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
867 	if (*objp == 0) {
868 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
869 		    zfs_userquota_prop_prefixes[type]);
870 	}
871 	if (fuid_dirtied)
872 		zfs_fuid_txhold(zfsvfs, tx);
873 	err = dmu_tx_assign(tx, TXG_WAIT);
874 	if (err) {
875 		dmu_tx_abort(tx);
876 		return (err);
877 	}
878 
879 	mutex_enter(&zfsvfs->z_lock);
880 	if (*objp == 0) {
881 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
882 		    DMU_OT_NONE, 0, tx);
883 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
884 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
885 	}
886 	mutex_exit(&zfsvfs->z_lock);
887 
888 	if (quota == 0) {
889 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
890 		if (err == ENOENT)
891 			err = 0;
892 	} else {
893 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
894 	}
895 	ASSERT(err == 0);
896 	if (fuid_dirtied)
897 		zfs_fuid_sync(zfsvfs, tx);
898 	dmu_tx_commit(tx);
899 	return (err);
900 }
901 
902 boolean_t
903 zfs_usergroup_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
904 {
905 	char buf[32];
906 	uint64_t used, quota, usedobj, quotaobj;
907 	int err;
908 
909 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
910 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
911 
912 	if (quotaobj == 0 || zfsvfs->z_replay)
913 		return (B_FALSE);
914 
915 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
916 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
917 	if (err != 0)
918 		return (B_FALSE);
919 
920 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
921 	if (err != 0)
922 		return (B_FALSE);
923 	return (used >= quota);
924 }
925 
926 int
927 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
928 {
929 	objset_t *os;
930 	zfsvfs_t *zfsvfs;
931 	uint64_t zval;
932 	int i, error;
933 
934 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
935 
936 	/*
937 	 * We claim to always be readonly so we can open snapshots;
938 	 * other ZPL code will prevent us from writing to snapshots.
939 	 */
940 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
941 	if (error) {
942 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
943 		return (error);
944 	}
945 
946 	/*
947 	 * Initialize the zfs-specific filesystem structure.
948 	 * Should probably make this a kmem cache, shuffle fields,
949 	 * and just bzero up to z_hold_mtx[].
950 	 */
951 	zfsvfs->z_vfs = NULL;
952 	zfsvfs->z_parent = zfsvfs;
953 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
954 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
955 	zfsvfs->z_os = os;
956 
957 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
958 	if (error) {
959 		goto out;
960 	} else if (zfsvfs->z_version > ZPL_VERSION) {
961 		(void) printf("Mismatched versions:  File system "
962 		    "is version %llu on-disk format, which is "
963 		    "incompatible with this software version %lld!",
964 		    (u_longlong_t)zfsvfs->z_version, ZPL_VERSION);
965 		error = ENOTSUP;
966 		goto out;
967 	}
968 
969 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
970 		goto out;
971 	zfsvfs->z_norm = (int)zval;
972 
973 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
974 		goto out;
975 	zfsvfs->z_utf8 = (zval != 0);
976 
977 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
978 		goto out;
979 	zfsvfs->z_case = (uint_t)zval;
980 
981 	/*
982 	 * Fold case on file systems that are always or sometimes case
983 	 * insensitive.
984 	 */
985 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
986 	    zfsvfs->z_case == ZFS_CASE_MIXED)
987 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
988 
989 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
990 
991 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
992 	    &zfsvfs->z_root);
993 	if (error)
994 		goto out;
995 	ASSERT(zfsvfs->z_root != 0);
996 
997 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
998 	    &zfsvfs->z_unlinkedobj);
999 	if (error)
1000 		goto out;
1001 
1002 	error = zap_lookup(os, MASTER_NODE_OBJ,
1003 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
1004 	    8, 1, &zfsvfs->z_userquota_obj);
1005 	if (error && error != ENOENT)
1006 		goto out;
1007 
1008 	error = zap_lookup(os, MASTER_NODE_OBJ,
1009 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
1010 	    8, 1, &zfsvfs->z_groupquota_obj);
1011 	if (error && error != ENOENT)
1012 		goto out;
1013 
1014 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
1015 	    &zfsvfs->z_fuid_obj);
1016 	if (error && error != ENOENT)
1017 		goto out;
1018 
1019 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
1020 	    &zfsvfs->z_shares_dir);
1021 	if (error && error != ENOENT)
1022 		goto out;
1023 
1024 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1025 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
1026 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1027 	    offsetof(znode_t, z_link_node));
1028 	rrw_init(&zfsvfs->z_teardown_lock);
1029 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
1030 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1031 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1032 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1033 
1034 	*zfvp = zfsvfs;
1035 	return (0);
1036 
1037 out:
1038 	dmu_objset_disown(os, zfsvfs);
1039 	*zfvp = NULL;
1040 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1041 	return (error);
1042 }
1043 
1044 static int
1045 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1046 {
1047 	int error;
1048 
1049 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1050 	if (error)
1051 		return (error);
1052 
1053 	/*
1054 	 * Set the objset user_ptr to track its zfsvfs.
1055 	 */
1056 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1057 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1058 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1059 
1060 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1061 	if (zil_disable) {
1062 		zil_destroy(zfsvfs->z_log, B_FALSE);
1063 		zfsvfs->z_log = NULL;
1064 	}
1065 
1066 	/*
1067 	 * If we are not mounting (ie: online recv), then we don't
1068 	 * have to worry about replaying the log as we blocked all
1069 	 * operations out since we closed the ZIL.
1070 	 */
1071 	if (mounting) {
1072 		boolean_t readonly;
1073 
1074 		/*
1075 		 * During replay we remove the read only flag to
1076 		 * allow replays to succeed.
1077 		 */
1078 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1079 		if (readonly != 0)
1080 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1081 		else
1082 			zfs_unlinked_drain(zfsvfs);
1083 
1084 		if (zfsvfs->z_log) {
1085 			/*
1086 			 * Parse and replay the intent log.
1087 			 *
1088 			 * Because of ziltest, this must be done after
1089 			 * zfs_unlinked_drain().  (Further note: ziltest
1090 			 * doesn't use readonly mounts, where
1091 			 * zfs_unlinked_drain() isn't called.)  This is because
1092 			 * ziltest causes spa_sync() to think it's committed,
1093 			 * but actually it is not, so the intent log contains
1094 			 * many txg's worth of changes.
1095 			 *
1096 			 * In particular, if object N is in the unlinked set in
1097 			 * the last txg to actually sync, then it could be
1098 			 * actually freed in a later txg and then reallocated
1099 			 * in a yet later txg.  This would write a "create
1100 			 * object N" record to the intent log.  Normally, this
1101 			 * would be fine because the spa_sync() would have
1102 			 * written out the fact that object N is free, before
1103 			 * we could write the "create object N" intent log
1104 			 * record.
1105 			 *
1106 			 * But when we are in ziltest mode, we advance the "open
1107 			 * txg" without actually spa_sync()-ing the changes to
1108 			 * disk.  So we would see that object N is still
1109 			 * allocated and in the unlinked set, and there is an
1110 			 * intent log record saying to allocate it.
1111 			 */
1112 			zfsvfs->z_replay = B_TRUE;
1113 			zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector);
1114 			zfsvfs->z_replay = B_FALSE;
1115 		}
1116 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1117 	}
1118 
1119 	return (0);
1120 }
1121 
1122 void
1123 zfsvfs_free(zfsvfs_t *zfsvfs)
1124 {
1125 	int i;
1126 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1127 
1128 	/*
1129 	 * This is a barrier to prevent the filesystem from going away in
1130 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1131 	 * not unmounted. We consider the filesystem valid before the barrier
1132 	 * and invalid after the barrier.
1133 	 */
1134 	rw_enter(&zfsvfs_lock, RW_READER);
1135 	rw_exit(&zfsvfs_lock);
1136 
1137 	zfs_fuid_destroy(zfsvfs);
1138 	mutex_destroy(&zfsvfs->z_znodes_lock);
1139 	mutex_destroy(&zfsvfs->z_lock);
1140 	list_destroy(&zfsvfs->z_all_znodes);
1141 	rrw_destroy(&zfsvfs->z_teardown_lock);
1142 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1143 	rw_destroy(&zfsvfs->z_fuid_lock);
1144 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1145 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1146 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1147 }
1148 
1149 static void
1150 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1151 {
1152 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1153 	if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
1154 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1155 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1156 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1157 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1158 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1159 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1160 	}
1161 }
1162 
1163 static int
1164 zfs_domount(vfs_t *vfsp, char *osname)
1165 {
1166 	dev_t mount_dev;
1167 	uint64_t recordsize, fsid_guid;
1168 	int error = 0;
1169 	zfsvfs_t *zfsvfs;
1170 
1171 	ASSERT(vfsp);
1172 	ASSERT(osname);
1173 
1174 	error = zfsvfs_create(osname, &zfsvfs);
1175 	if (error)
1176 		return (error);
1177 	zfsvfs->z_vfs = vfsp;
1178 	zfsvfs->z_parent = zfsvfs;
1179 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
1180 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
1181 
1182 	/* Initialize the generic filesystem structure. */
1183 	vfsp->vfs_data = NULL;
1184 
1185 	if (zfs_create_unique_device(&mount_dev) == -1) {
1186 		error = ENODEV;
1187 		goto out;
1188 	}
1189 	ASSERT(vfs_devismounted(mount_dev) == 0);
1190 
1191 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1192 	    NULL))
1193 	    goto out;
1194 
1195 	vfsp->vfs_bsize = DEV_BSIZE;
1196 	vfsp->vfs_flag |= VFS_NOTRUNC;
1197 	vfsp->vfs_data = zfsvfs;
1198 
1199 	/*
1200 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1201 	 * separates our fsid from any other filesystem types, and a
1202 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1203 	 * all objsets open on this system, provided by unique_create().
1204 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1205 	 * because that's where other Solaris filesystems put it.
1206 	 */
1207 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1208 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1209 	vfsp->mnt_stat.f_fsidx.__fsid_val[0] = fsid_guid;
1210 	vfsp->mnt_stat.f_fsidx.__fsid_val[1] = ((fsid_guid>>32) << 8) |
1211 	    zfsfstype & 0xFF;
1212 
1213 	dprintf("zfs_domount vrele after vfsp->vfs_count %d\n", vfsp->vfs_count);
1214 	/*
1215 	 * Set features for file system.
1216 	 */
1217 	zfs_set_fuid_feature(zfsvfs);
1218 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1219 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1220 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1221 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1222 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1223 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1224 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1225 	}
1226 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1227 
1228 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1229 		uint64_t pval;
1230 
1231 		atime_changed_cb(zfsvfs, B_FALSE);
1232 		readonly_changed_cb(zfsvfs, B_TRUE);
1233 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1234 			goto out;
1235 		xattr_changed_cb(zfsvfs, pval);
1236 		zfsvfs->z_issnap = B_TRUE;
1237 
1238 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1239 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1240 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1241 	} else {
1242 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1243 	}
1244 
1245 	dprintf("zfs_vfsops.c zfs_domount called\n");
1246 	dprintf("vfsp->vfs_count %d\n", vfsp->vfs_count);
1247 
1248 	if (!zfsvfs->z_issnap)
1249 		zfsctl_create(zfsvfs);
1250 out:
1251 	if (error) {
1252 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1253 		zfsvfs_free(zfsvfs);
1254 	} else {
1255 		atomic_add_32(&zfs_active_fs_count, 1);
1256 	}
1257 	return (error);
1258 }
1259 
1260 void
1261 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1262 {
1263 	objset_t *os = zfsvfs->z_os;
1264 	struct dsl_dataset *ds;
1265 
1266 	/*
1267 	 * Unregister properties.
1268 	 */
1269 	if (!dmu_objset_is_snapshot(os)) {
1270 		ds = dmu_objset_ds(os);
1271 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1272 		    zfsvfs) == 0);
1273 
1274 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1275 		    zfsvfs) == 0);
1276 
1277 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1278 		    zfsvfs) == 0);
1279 
1280 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1281 		    zfsvfs) == 0);
1282 
1283 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1284 		    zfsvfs) == 0);
1285 
1286 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1287 		    zfsvfs) == 0);
1288 
1289 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1290 		    zfsvfs) == 0);
1291 
1292 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1293 		    zfsvfs) == 0);
1294 
1295 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1296 		    zfsvfs) == 0);
1297 
1298 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1299 		    acl_inherit_changed_cb, zfsvfs) == 0);
1300 
1301 		VERIFY(dsl_prop_unregister(ds, "vscan",
1302 		    vscan_changed_cb, zfsvfs) == 0);
1303 	}
1304 }
1305 
1306 /*
1307  * Convert a decimal digit string to a uint64_t integer.
1308  */
1309 static int
1310 str_to_uint64(char *str, uint64_t *objnum)
1311 {
1312 	uint64_t num = 0;
1313 
1314 	while (*str) {
1315 		if (*str < '0' || *str > '9')
1316 			return (EINVAL);
1317 
1318 		num = num*10 + *str++ - '0';
1319 	}
1320 
1321 	*objnum = num;
1322 	return (0);
1323 }
1324 
1325 /*
1326  * The boot path passed from the boot loader is in the form of
1327  * "rootpool-name/root-filesystem-object-number'. Convert this
1328  * string to a dataset name: "rootpool-name/root-filesystem-name".
1329  */
1330 static int
1331 zfs_parse_bootfs(char *bpath, char *outpath)
1332 {
1333 	char *slashp;
1334 	uint64_t objnum;
1335 	int error;
1336 
1337 	if (*bpath == 0 || *bpath == '/')
1338 		return (EINVAL);
1339 
1340 	(void) strcpy(outpath, bpath);
1341 
1342 	slashp = strchr(bpath, '/');
1343 
1344 	/* if no '/', just return the pool name */
1345 	if (slashp == NULL) {
1346 		return (0);
1347 	}
1348 
1349 	/* if not a number, just return the root dataset name */
1350 	if (str_to_uint64(slashp+1, &objnum)) {
1351 		return (0);
1352 	}
1353 
1354 	*slashp = '\0';
1355 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1356 	*slashp = '/';
1357 
1358 	return (error);
1359 }
1360 
1361 
1362 /*
1363  * zfs_check_global_label:
1364  *	Check that the hex label string is appropriate for the dataset
1365  *	being mounted into the global_zone proper.
1366  *
1367  *	Return an error if the hex label string is not default or
1368  *	admin_low/admin_high.  For admin_low labels, the corresponding
1369  *	dataset must be readonly.
1370  */
1371 int
1372 zfs_check_global_label(const char *dsname, const char *hexsl)
1373 {
1374 #ifdef PORT_SOLARIS
1375 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1376 		return (0);
1377 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1378 		return (0);
1379 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1380 		/* must be readonly */
1381 		uint64_t rdonly;
1382 
1383 		if (dsl_prop_get_integer(dsname,
1384 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1385 			return (EACCES);
1386 		return (rdonly ? 0 : EACCES);
1387 	}
1388 	return (EACCES);
1389 #else
1390 	return 0;
1391 #endif
1392 }
1393 
1394 /*
1395  * zfs_mount_label_policy:
1396  *	Determine whether the mount is allowed according to MAC check.
1397  *	by comparing (where appropriate) label of the dataset against
1398  *	the label of the zone being mounted into.  If the dataset has
1399  *	no label, create one.
1400  *
1401  *	Returns:
1402  *		 0 :	access allowed
1403  *		>0 :	error code, such as EACCES
1404  */
1405 static int
1406 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1407 {
1408 #ifdef PORT_SOLARIS
1409 	int		error, retv;
1410 	zone_t		*mntzone = NULL;
1411 	ts_label_t	*mnt_tsl;
1412 	bslabel_t	*mnt_sl;
1413 	bslabel_t	ds_sl;
1414 	char		ds_hexsl[MAXNAMELEN];
1415 
1416 	retv = EACCES;				/* assume the worst */
1417 
1418 	/*
1419 	 * Start by getting the dataset label if it exists.
1420 	 */
1421 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1422 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1423 	if (error)
1424 		return (EACCES);
1425 
1426 	/*
1427 	 * If labeling is NOT enabled, then disallow the mount of datasets
1428 	 * which have a non-default label already.  No other label checks
1429 	 * are needed.
1430 	 */
1431 	if (!is_system_labeled()) {
1432 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1433 			return (0);
1434 		return (EACCES);
1435 	}
1436 
1437 	/*
1438 	 * Get the label of the mountpoint.  If mounting into the global
1439 	 * zone (i.e. mountpoint is not within an active zone and the
1440 	 * zoned property is off), the label must be default or
1441 	 * admin_low/admin_high only; no other checks are needed.
1442 	 */
1443 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1444 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1445 		uint64_t zoned;
1446 
1447 		zone_rele(mntzone);
1448 
1449 		if (dsl_prop_get_integer(osname,
1450 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1451 			return (EACCES);
1452 		if (!zoned)
1453 			return (zfs_check_global_label(osname, ds_hexsl));
1454 		else
1455 			/*
1456 			 * This is the case of a zone dataset being mounted
1457 			 * initially, before the zone has been fully created;
1458 			 * allow this mount into global zone.
1459 			 */
1460 			return (0);
1461 	}
1462 
1463 	mnt_tsl = mntzone->zone_slabel;
1464 	ASSERT(mnt_tsl != NULL);
1465 	label_hold(mnt_tsl);
1466 	mnt_sl = label2bslabel(mnt_tsl);
1467 
1468 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1469 		/*
1470 		 * The dataset doesn't have a real label, so fabricate one.
1471 		 */
1472 		char *str = NULL;
1473 
1474 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1475 		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1476 		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1477 			retv = 0;
1478 		if (str != NULL)
1479 			kmem_free(str, strlen(str) + 1);
1480 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1481 		/*
1482 		 * Now compare labels to complete the MAC check.  If the
1483 		 * labels are equal then allow access.  If the mountpoint
1484 		 * label dominates the dataset label, allow readonly access.
1485 		 * Otherwise, access is denied.
1486 		 */
1487 		if (blequal(mnt_sl, &ds_sl))
1488 			retv = 0;
1489 		else if (bldominates(mnt_sl, &ds_sl)) {
1490 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1491 			retv = 0;
1492 		}
1493 	}
1494 
1495 	label_rele(mnt_tsl);
1496 	zone_rele(mntzone);
1497 	return (retv);
1498 #else   /* PORT_SOLARIS */
1499 	return (0);
1500 #endif
1501 }
1502 
1503 #ifndef __NetBSD__
1504 static int
1505 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1506 {
1507 	int error = 0;
1508 	static int zfsrootdone = 0;
1509 	zfsvfs_t *zfsvfs = NULL;
1510 	znode_t *zp = NULL;
1511 	vnode_t *vp = NULL;
1512 	char *zfs_bootfs;
1513 	char *zfs_devid;
1514 
1515 	ASSERT(vfsp);
1516 
1517 	/*
1518 	 * The filesystem that we mount as root is defined in the
1519 	 * boot property "zfs-bootfs" with a format of
1520 	 * "poolname/root-dataset-objnum".
1521 	 */
1522 	if (why == ROOT_INIT) {
1523 		if (zfsrootdone++)
1524 			return (EBUSY);
1525 		/*
1526 		 * the process of doing a spa_load will require the
1527 		 * clock to be set before we could (for example) do
1528 		 * something better by looking at the timestamp on
1529 		 * an uberblock, so just set it to -1.
1530 		 */
1531 		clkset(-1);
1532 
1533 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1534 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1535 			    "bootfs name");
1536 			return (EINVAL);
1537 		}
1538 		zfs_devid = spa_get_bootprop("diskdevid");
1539 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1540 		if (zfs_devid)
1541 			spa_free_bootprop(zfs_devid);
1542 		if (error) {
1543 			spa_free_bootprop(zfs_bootfs);
1544 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1545 			    error);
1546 			return (error);
1547 		}
1548 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1549 			spa_free_bootprop(zfs_bootfs);
1550 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1551 			    error);
1552 			return (error);
1553 		}
1554 
1555 		spa_free_bootprop(zfs_bootfs);
1556 
1557 		if (error = vfs_lock(vfsp))
1558 			return (error);
1559 
1560 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1561 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1562 			goto out;
1563 		}
1564 
1565 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1566 		ASSERT(zfsvfs);
1567 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1568 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1569 			goto out;
1570 		}
1571 
1572 		vp = ZTOV(zp);
1573 		mutex_enter(&vp->v_lock);
1574 		vp->v_flag |= VROOT;
1575 		mutex_exit(&vp->v_lock);
1576 		rootvp = vp;
1577 
1578 		/*
1579 		 * Leave rootvp held.  The root file system is never unmounted.
1580 		 */
1581 
1582 		vfs_add((struct vnode *)0, vfsp,
1583 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1584 out:
1585 		vfs_unlock(vfsp);
1586 		return (error);
1587 	} else if (why == ROOT_REMOUNT) {
1588 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1589 		vfsp->vfs_flag |= VFS_REMOUNT;
1590 
1591 		/* refresh mount options */
1592 		zfs_unregister_callbacks(vfsp->vfs_data);
1593 		return (zfs_register_callbacks(vfsp));
1594 
1595 	} else if (why == ROOT_UNMOUNT) {
1596 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1597 		(void) zfs_sync(vfsp, 0, 0);
1598 		return (0);
1599 	}
1600 
1601 	/*
1602 	 * if "why" is equal to anything else other than ROOT_INIT,
1603 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1604 	 */
1605 	return (ENOTSUP);
1606 }
1607 #endif /*__NetBSD__ */
1608 
1609 /*ARGSUSED*/
1610 static int
1611 zfs_mount(vfs_t *vfsp, const char *path, void *data, size_t *data_len)
1612 {
1613 	char		*osname;
1614 	pathname_t	spn;
1615 	vnode_t         *mvp = vfsp->mnt_vnodecovered;
1616 	struct mounta   *uap = data;
1617 	int		error = 0;
1618 	int		canwrite;
1619 	cred_t          *cr;
1620 
1621 	crget(cr);
1622 	dprintf("zfs_vfsops.c zfs_mount called\n");
1623 	dprintf("vfsp->vfs_count %d\n", vfsp->vfs_count);
1624 	if (mvp->v_type != VDIR)
1625 		return (ENOTDIR);
1626 
1627 	mutex_enter(mvp->v_interlock);
1628 	if ((uap->flags & MS_REMOUNT) == 0 &&
1629 	    (uap->flags & MS_OVERLAY) == 0 &&
1630 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1631 		mutex_exit(mvp->v_interlock);
1632 		return (EBUSY);
1633 	}
1634 	mutex_exit(mvp->v_interlock);
1635 
1636 	/*
1637 	 * ZFS does not support passing unparsed data in via MS_DATA.
1638 	 * Users should use the MS_OPTIONSTR interface; this means
1639 	 * that all option parsing is already done and the options struct
1640 	 * can be interrogated.
1641 	 */
1642 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1643 		return (EINVAL);
1644 
1645 	osname = PNBUF_GET();
1646 
1647 	strlcpy(osname, uap->fspec, strlen(uap->fspec) + 1);
1648 
1649 	/*
1650 	 * Check for mount privilege?
1651 	 *
1652 	 * If we don't have privilege then see if
1653 	 * we have local permission to allow it
1654 	 */
1655 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1656 	if (error) {
1657 		error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr);
1658 		if (error == 0) {
1659 			vattr_t		vattr;
1660 
1661 			/*
1662 			 * Make sure user is the owner of the mount point
1663 			 * or has sufficient privileges.
1664 			 */
1665 
1666 			vattr.va_mask = AT_UID;
1667 
1668 			if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1669 				goto out;
1670 			}
1671 
1672 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1673 			    VOP_ACCESS(mvp, VWRITE, cr) != 0) {
1674 				error = EPERM;
1675 				goto out;
1676 			}
1677 
1678 /* XXX NetBSD			secpolicy_fs_mount_clearopts(cr, vfsp);*/
1679 		} else {
1680 			goto out;
1681 		}
1682 	}
1683 
1684 	/*
1685 	 * Refuse to mount a filesystem if we are in a local zone and the
1686 	 * dataset is not visible.
1687 	 */
1688 	if (!INGLOBALZONE(curproc) &&
1689 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1690 		error = EPERM;
1691 		goto out;
1692 	}
1693 
1694 	error = zfs_mount_label_policy(vfsp, osname);
1695 	if (error)
1696 		goto out;
1697 
1698 	/*
1699 	 * When doing a remount, we simply refresh our temporary properties
1700 	 * according to those options set in the current VFS options.
1701 	 */
1702 	if (uap->flags & MS_REMOUNT) {
1703 		/* refresh mount options */
1704 		zfs_unregister_callbacks(vfsp->vfs_data);
1705 		error = zfs_register_callbacks(vfsp);
1706 		goto out;
1707 	}
1708 
1709 	/* Mark ZFS as MP SAFE */
1710 	vfsp->mnt_iflag |= IMNT_MPSAFE;
1711 
1712 	error = zfs_domount(vfsp, osname);
1713 
1714 	vfs_getnewfsid(vfsp);
1715 
1716 	/* setup zfs mount info */
1717 	strlcpy(vfsp->mnt_stat.f_mntfromname, osname,
1718 	    sizeof(vfsp->mnt_stat.f_mntfromname));
1719 	set_statvfs_info(path, UIO_USERSPACE, vfsp->mnt_stat.f_mntfromname,
1720 	    UIO_SYSSPACE, vfsp->mnt_op->vfs_name, vfsp, curlwp);
1721 
1722 	/*
1723 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1724 	 * disappear due to a forced unmount.
1725 	 */
1726 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1727 		VFS_HOLD(mvp->v_vfsp);
1728 
1729 out:
1730 	PNBUF_PUT(osname);
1731 	return (error);
1732 }
1733 
1734 static int
1735 zfs_statvfs(vfs_t *vfsp, struct statvfs *statp)
1736 {
1737 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1738 	dev_t dev;
1739 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1740 
1741 	ZFS_ENTER(zfsvfs);
1742 
1743 	dmu_objset_space(zfsvfs->z_os,
1744 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1745 
1746 	/*
1747 	 * The underlying storage pool actually uses multiple block sizes.
1748 	 * We report the fragsize as the smallest block size we support,
1749 	 * and we report our blocksize as the filesystem's maximum blocksize.
1750 	 */
1751 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1752 	statp->f_bsize = zfsvfs->z_max_blksz;
1753 
1754 	/*
1755 	 * The following report "total" blocks of various kinds in the
1756 	 * file system, but reported in terms of f_frsize - the
1757 	 * "fragment" size.
1758 	 */
1759 
1760 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1761 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1762 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1763 
1764 	/*
1765 	 * statvfs() should really be called statufs(), because it assumes
1766 	 * static metadata.  ZFS doesn't preallocate files, so the best
1767 	 * we can do is report the max that could possibly fit in f_files,
1768 	 * and that minus the number actually used in f_ffree.
1769 	 * For f_ffree, report the smaller of the number of object available
1770 	 * and the number of blocks (each object will take at least a block).
1771 	 */
1772 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1773 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1774 	statp->f_files = statp->f_ffree + usedobjs;
1775 
1776 	statp->f_fsid = vfsp->mnt_stat.f_fsidx.__fsid_val[0];
1777 
1778 	/*
1779 	 * We're a zfs filesystem.
1780 	 */
1781 	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1782 	(void) strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1783 	    sizeof(statp->f_mntfromname));
1784 	(void) strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1785 	    sizeof(statp->f_mntonname));
1786 
1787 	statp->f_namemax = ZFS_MAXNAMELEN;
1788 
1789 	/*
1790 	 * We have all of 32 characters to stuff a string here.
1791 	 * Is there anything useful we could/should provide?
1792 	 */
1793 #ifndef __NetBSD__
1794 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1795 #endif
1796 	ZFS_EXIT(zfsvfs);
1797 	return (0);
1798 }
1799 
1800 static int
1801 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1802 {
1803 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1804 	znode_t *rootzp;
1805 	int error;
1806 
1807 	ZFS_ENTER(zfsvfs);
1808 	dprintf("zfs_root called\n");
1809 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1810 	if (error == 0)
1811 		*vpp = ZTOV(rootzp);
1812 	dprintf("vpp -> %d, error %d -- %p\n", (*vpp)->v_type, error, *vpp);
1813 	ZFS_EXIT(zfsvfs);
1814 	if (error == 0)
1815 		vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
1816 	KASSERT((error != 0) || (*vpp != NULL));
1817 	KASSERT((error != 0) || (VOP_ISLOCKED(*vpp) == LK_EXCLUSIVE));
1818 	return (error);
1819 }
1820 
1821 /*
1822  * Teardown the zfsvfs::z_os.
1823  *
1824  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1825  * and 'z_teardown_inactive_lock' held.
1826  */
1827 static int
1828 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1829 {
1830 	znode_t	*zp;
1831 
1832 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1833 
1834 	if (!unmounting) {
1835 		/*
1836 		 * We purge the parent filesystem's vfsp as the parent
1837 		 * filesystem and all of its snapshots have their vnode's
1838 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1839 		 * 'z_parent' is self referential for non-snapshots.
1840 		 */
1841 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1842 	}
1843 
1844 	/*
1845 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1846 	 * threads are blocked as zil_close can call zfs_inactive.
1847 	 */
1848 	if (zfsvfs->z_log) {
1849 		zil_close(zfsvfs->z_log);
1850 		zfsvfs->z_log = NULL;
1851 	}
1852 
1853 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1854 
1855 	/*
1856 	 * If we are not unmounting (ie: online recv) and someone already
1857 	 * unmounted this file system while we were doing the switcheroo,
1858 	 * or a reopen of z_os failed then just bail out now.
1859 	 */
1860 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1861 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1862 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1863 		return (EIO);
1864 	}
1865 
1866 	/*
1867 	 * At this point there are no vops active, and any new vops will
1868 	 * fail with EIO since we have z_teardown_lock for writer (only
1869 	 * relavent for forced unmount).
1870 	 *
1871 	 * Release all holds on dbufs.
1872 	 */
1873 	mutex_enter(&zfsvfs->z_znodes_lock);
1874 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1875 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1876 		if (zp->z_dbuf) {
1877 			ASSERT(ZTOV(zp)->v_count > 0);
1878 			zfs_znode_dmu_fini(zp);
1879 		}
1880 	mutex_exit(&zfsvfs->z_znodes_lock);
1881 
1882 	/*
1883 	 * If we are unmounting, set the unmounted flag and let new vops
1884 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1885 	 * other vops will fail with EIO.
1886 	 */
1887 	if (unmounting) {
1888 		zfsvfs->z_unmounted = B_TRUE;
1889 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1890 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1891 	}
1892 
1893 	/*
1894 	 * z_os will be NULL if there was an error in attempting to reopen
1895 	 * zfsvfs, so just return as the properties had already been
1896 	 * unregistered and cached data had been evicted before.
1897 	 */
1898 	if (zfsvfs->z_os == NULL)
1899 		return (0);
1900 
1901 	/*
1902 	 * Unregister properties.
1903 	 */
1904 	zfs_unregister_callbacks(zfsvfs);
1905 
1906 	/*
1907 	 * Evict cached data
1908 	 */
1909 	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
1910 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1911 		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1912 	}
1913 
1914 	return (0);
1915 }
1916 
1917 /*ARGSUSED*/
1918 static int
1919 zfs_umount(vfs_t *vfsp, int fflag)
1920 {
1921 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1922 	objset_t *os;
1923 	int ret, flags = 0;
1924 	cred_t *cr;
1925 
1926 	vnode_t *vpp;
1927 	int counter;
1928 
1929 	counter = 0;
1930 
1931 	dprintf("ZFS_UMOUNT called\n");
1932 
1933 	/*TAILQ_FOREACH(vpp, &vfsp->mnt_vnodelist, v_mntvnodes) {
1934 		printf("vnode list vnode number %d -- vnode address %p\n", counter, vpp);
1935 		vprint("ZFS vfsp vnode list", vpp);
1936 		counter++;
1937 		} */
1938 
1939 	crget(cr);
1940 #ifdef TODO
1941 	ret = secpolicy_fs_unmount(cr, vfsp);
1942 	if (ret) {
1943 		ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1944 		    ZFS_DELEG_PERM_MOUNT, cr);
1945 		if (ret)
1946 			return (ret);
1947 	}
1948 #endif
1949 	/*
1950 	 * We purge the parent filesystem's vfsp as the parent filesystem
1951 	 * and all of its snapshots have their vnode's v_vfsp set to the
1952 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1953 	 * referential for non-snapshots.
1954 	 */
1955 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1956 
1957 	/*
1958 	 * Unmount any snapshots mounted under .zfs before unmounting the
1959 	 * dataset itself.
1960 	 */
1961 	if (zfsvfs->z_ctldir != NULL &&
1962 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1963 		return (ret);
1964 	}
1965 
1966 #if 0
1967 	if (!(fflag & MS_FORCE)) {
1968 		/*
1969 		 * Check the number of active vnodes in the file system.
1970 		 * Our count is maintained in the vfs structure, but the
1971 		 * number is off by 1 to indicate a hold on the vfs
1972 		 * structure itself.
1973 		 *
1974 		 * The '.zfs' directory maintains a reference of its
1975 		 * own, and any active references underneath are
1976 		 * reflected in the vnode count.
1977 		 */
1978 		if (zfsvfs->z_ctldir == NULL) {
1979 			if (vfsp->vfs_count > 1){
1980 				return (EBUSY);
1981 			}
1982 		} else {
1983 			if (vfsp->vfs_count > 2 ||
1984 			    zfsvfs->z_ctldir->v_count > 1) {
1985 				return (EBUSY);
1986 			}
1987 		}
1988 	}
1989 #endif
1990 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1991 
1992 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1993 	os = zfsvfs->z_os;
1994 
1995 	/*
1996 	 * z_os will be NULL if there was an error in
1997 	 * attempting to reopen zfsvfs.
1998 	 */
1999 	if (os != NULL) {
2000 		/*
2001 		 * Unset the objset user_ptr.
2002 		 */
2003 		mutex_enter(&os->os_user_ptr_lock);
2004 		dmu_objset_set_user(os, NULL);
2005 		mutex_exit(&os->os_user_ptr_lock);
2006 
2007 		/*
2008 		 * Finally release the objset
2009 		 */
2010 		dmu_objset_disown(os, zfsvfs);
2011 	}
2012 
2013 	/*
2014 	 * We can now safely destroy the '.zfs' directory node.
2015 	 */
2016 	if (zfsvfs->z_ctldir != NULL)
2017 		zfsctl_destroy(zfsvfs);
2018 
2019 	if (fflag & MS_FORCE)
2020 		flags |= FORCECLOSE;
2021 
2022 	ret = vflush(vfsp, NULL, 0);
2023 	if (ret != 0)
2024 		return ret;
2025 
2026 	return (0);
2027 }
2028 
2029 static int
2030 zfs_vget(vfs_t *vfsp, ino_t ino, vnode_t **vpp)
2031 {
2032 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2033 	znode_t *zp;
2034 	int err;
2035 
2036 	dprintf("zfs_vget called\n");
2037 	dprintf("vfsp->vfs_count %d\n", vfsp->vfs_count);
2038 
2039 	ZFS_ENTER(zfsvfs);
2040 	err = zfs_zget(zfsvfs, ino, &zp);
2041 	if (err == 0 && zp->z_unlinked) {
2042 		VN_RELE(ZTOV(zp));
2043 		err = EINVAL;
2044 	}
2045 	if (err != 0)
2046 		*vpp = NULL;
2047 	else {
2048 		*vpp = ZTOV(zp);
2049 		/* XXX NetBSD how to get flags for vn_lock ? */
2050 		vn_lock(*vpp, 0);
2051 	}
2052 	ZFS_EXIT(zfsvfs);
2053 	return (err);
2054 }
2055 
2056 static int
2057 zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, vnode_t **vpp)
2058 {
2059 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2060 	znode_t *zp;
2061 	uint64_t object = 0;
2062 	uint64_t fid_gen = 0;
2063 	uint64_t gen_mask;
2064 	uint64_t zp_gen;
2065 	int i, err;
2066 
2067 	*vpp = NULL;
2068 
2069 	dprintf("zfs_fhtovp called\n");
2070 	dprintf("vfsp->vfs_count %d\n", vfsp->vfs_count);
2071 
2072 	ZFS_ENTER(zfsvfs);
2073 
2074 	if (fidp->fid_len == LONG_FID_LEN) {
2075 		zfid_long_t *zlfid = (zfid_long_t *)fidp;
2076 		uint64_t objsetid = 0;
2077 		uint64_t setgen = 0;
2078 
2079 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2080 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2081 
2082 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2083 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2084 
2085 		ZFS_EXIT(zfsvfs);
2086 
2087 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2088 		if (err)
2089 			return (EINVAL);
2090 		ZFS_ENTER(zfsvfs);
2091 	}
2092 
2093 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2094 		zfid_short_t *zfid = (zfid_short_t *)fidp;
2095 
2096 		for (i = 0; i < sizeof (zfid->zf_object); i++)
2097 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2098 
2099 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2100 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2101 	} else {
2102 		ZFS_EXIT(zfsvfs);
2103 		return (EINVAL);
2104 	}
2105 
2106 	/* A zero fid_gen means we are in the .zfs control directories */
2107 	if (fid_gen == 0 &&
2108 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
2109 		*vpp = zfsvfs->z_ctldir;
2110 		ASSERT(*vpp != NULL);
2111 		if (object == ZFSCTL_INO_SNAPDIR) {
2112 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2113 				0, NULL, NULL, NULL, NULL, NULL) == 0);
2114 		} else {
2115 			VN_HOLD(*vpp);
2116 		}
2117 		ZFS_EXIT(zfsvfs);
2118 		/* XXX: LK_RETRY? */
2119 		vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
2120 		return (0);
2121 	}
2122 
2123 	gen_mask = -1ULL >> (64 - 8 * i);
2124 
2125 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2126 	if (err = zfs_zget(zfsvfs, object, &zp)) {
2127 		ZFS_EXIT(zfsvfs);
2128 		return (err);
2129 	}
2130 	zp_gen = zp->z_phys->zp_gen & gen_mask;
2131 	if (zp_gen == 0)
2132 		zp_gen = 1;
2133 	if (zp->z_unlinked || zp_gen != fid_gen) {
2134 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2135 		VN_RELE(ZTOV(zp));
2136 		ZFS_EXIT(zfsvfs);
2137 		return (EINVAL);
2138 	}
2139 
2140 	*vpp = ZTOV(zp);
2141 	/* XXX: LK_RETRY? */
2142 	vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
2143 	ZFS_EXIT(zfsvfs);
2144 	return (0);
2145 }
2146 
2147 /*
2148  * Block out VOPs and close zfsvfs_t::z_os
2149  *
2150  * Note, if successful, then we return with the 'z_teardown_lock' and
2151  * 'z_teardown_inactive_lock' write held.
2152  */
2153 int
2154 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2155 {
2156 	int error;
2157 
2158 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2159 		return (error);
2160 	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2161 
2162 	return (0);
2163 }
2164 
2165 /*
2166  * Reopen zfsvfs_t::z_os and release VOPs.
2167  */
2168 int
2169 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2170 {
2171 	int err;
2172 
2173 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2174 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2175 
2176 	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2177 	    &zfsvfs->z_os);
2178 	if (err) {
2179 		zfsvfs->z_os = NULL;
2180 	} else {
2181 		znode_t *zp;
2182 
2183 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2184 
2185 		/*
2186 		 * Attempt to re-establish all the active znodes with
2187 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
2188 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2189 		 * when they try to use their znode.
2190 		 */
2191 		mutex_enter(&zfsvfs->z_znodes_lock);
2192 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2193 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2194 			(void) zfs_rezget(zp);
2195 		}
2196 		mutex_exit(&zfsvfs->z_znodes_lock);
2197 
2198 	}
2199 
2200 	/* release the VOPs */
2201 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2202 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2203 
2204 	if (err) {
2205 		/*
2206 		 * Since we couldn't reopen zfsvfs::z_os, force
2207 		 * unmount this file system.
2208 		 */
2209 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2210 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curlwp);
2211 	}
2212 	return (err);
2213 }
2214 
2215 static void
2216 zfs_freevfs(vfs_t *vfsp)
2217 {
2218 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2219 
2220 	/*
2221 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2222 	 * from zfs_mount().  Release it here.
2223 	 */
2224 	if (zfsvfs->z_issnap)
2225 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2226 
2227 	zfsvfs_free(zfsvfs);
2228 
2229 	atomic_add_32(&zfs_active_fs_count, -1);
2230 }
2231 
2232 /*
2233  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2234  * so we can't safely do any non-idempotent initialization here.
2235  * Leave that to zfs_init() and zfs_fini(), which are called
2236  * from the module's _init() and _fini() entry points.
2237  */
2238 /*ARGSUSED*/
2239 int
2240 zfs_vfsinit(int fstype, char *name)
2241 {
2242 	int error;
2243 
2244 	zfsfstype = fstype;
2245 
2246 	/*
2247 	 * Setup vfsops and vnodeops tables.
2248 	 */
2249 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2250 
2251 	error = zfs_create_op_tables();
2252 	if (error) {
2253 		zfs_remove_op_tables();
2254 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2255 		vfs_freevfsops_by_type(zfsfstype);
2256 		return (error);
2257 	}
2258 
2259 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2260 	mutex_init(&zfs_debug_mtx, NULL, MUTEX_DEFAULT, NULL);
2261 
2262 	/*
2263 	 * Unique major number for all zfs mounts.
2264 	 * If we run out of 32-bit minors, we'll getudev() another major.
2265 	 */
2266 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2267 	zfs_minor = ZFS_MIN_MINOR;
2268 
2269 	return (0);
2270 }
2271 
2272 int
2273 zfs_vfsfini(void)
2274 {
2275 	int err;
2276 
2277 	err = vfs_detach(&zfs_vfsops_template);
2278 	if (err != 0)
2279 		return err;
2280 
2281 	mutex_destroy(&zfs_debug_mtx);
2282 	mutex_destroy(&zfs_dev_mtx);
2283 
2284 	return 0;
2285 }
2286 
2287 void
2288 zfs_init(void)
2289 {
2290 	/*
2291 	 * Initialize .zfs directory structures
2292 	 */
2293 	zfsctl_init();
2294 
2295 	/*
2296 	 * Initialize znode cache, vnode ops, etc...
2297 	 */
2298 	zfs_znode_init();
2299 
2300 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2301 }
2302 
2303 void
2304 zfs_fini(void)
2305 {
2306 	zfsctl_fini();
2307 	zfs_znode_fini();
2308 }
2309 
2310 int
2311 zfs_busy(void)
2312 {
2313 	return (zfs_active_fs_count != 0);
2314 }
2315 
2316 int
2317 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2318 {
2319 	int error;
2320 	objset_t *os = zfsvfs->z_os;
2321 	dmu_tx_t *tx;
2322 
2323 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2324 		return (EINVAL);
2325 
2326 	if (newvers < zfsvfs->z_version)
2327 		return (EINVAL);
2328 
2329 	tx = dmu_tx_create(os);
2330 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2331 	error = dmu_tx_assign(tx, TXG_WAIT);
2332 	if (error) {
2333 		dmu_tx_abort(tx);
2334 		return (error);
2335 	}
2336 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2337 	    8, 1, &newvers, tx);
2338 
2339 	if (error) {
2340 		dmu_tx_commit(tx);
2341 		return (error);
2342 	}
2343 
2344 	spa_history_internal_log(LOG_DS_UPGRADE,
2345 	    dmu_objset_spa(os), tx, CRED(),
2346 	    "oldver=%llu newver=%llu dataset = %llu",
2347 	    zfsvfs->z_version, newvers, dmu_objset_id(os));
2348 
2349 	dmu_tx_commit(tx);
2350 
2351 	zfsvfs->z_version = newvers;
2352 
2353 	if (zfsvfs->z_version >= ZPL_VERSION_FUID)
2354 		zfs_set_fuid_feature(zfsvfs);
2355 
2356 	return (0);
2357 }
2358 
2359 /*
2360  * Read a property stored within the master node.
2361  */
2362 int
2363 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2364 {
2365 	const char *pname;
2366 	int error = ENOENT;
2367 
2368 	/*
2369 	 * Look up the file system's value for the property.  For the
2370 	 * version property, we look up a slightly different string.
2371 	 */
2372 	if (prop == ZFS_PROP_VERSION)
2373 		pname = ZPL_VERSION_STR;
2374 	else
2375 		pname = zfs_prop_to_name(prop);
2376 
2377 	if (os != NULL)
2378 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2379 
2380 	if (error == ENOENT) {
2381 		/* No value set, use the default value */
2382 		switch (prop) {
2383 		case ZFS_PROP_VERSION:
2384 			*value = ZPL_VERSION;
2385 			break;
2386 		case ZFS_PROP_NORMALIZE:
2387 		case ZFS_PROP_UTF8ONLY:
2388 			*value = 0;
2389 			break;
2390 		case ZFS_PROP_CASE:
2391 			*value = ZFS_CASE_SENSITIVE;
2392 			break;
2393 		default:
2394 			return (error);
2395 		}
2396 		error = 0;
2397 	}
2398 	return (error);
2399 }
2400 
2401 static int
2402 zfs_start(vfs_t *vfsp, int flags)
2403 {
2404 
2405 	return (0);
2406 }
2407 
2408 
2409 #ifdef TODO
2410 static vfsdef_t vfw = {
2411 	VFSDEF_VERSION,
2412 	MNTTYPE_ZFS,
2413 	zfs_vfsinit,
2414 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2415 	    VSW_XID,
2416 	&zfs_mntopts
2417 };
2418 
2419 struct modlfs zfs_modlfs = {
2420 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2421 };
2422 #endif
2423