xref: /netbsd-src/external/cddl/osnet/dist/uts/common/fs/zfs/zfs_vfsops.c (revision 413d532bcc3f62d122e56d92e13ac64825a40baf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/sysmacros.h>
30 #include <sys/kmem.h>
31 #include <sys/pathname.h>
32 #include <sys/vnode.h>
33 #include <sys/vfs.h>
34 #include <sys/vfs_opreg.h>
35 #include <sys/mntent.h>
36 #include <sys/mount.h>
37 #include <sys/cmn_err.h>
38 #include <sys/zfs_znode.h>
39 #include <sys/zfs_dir.h>
40 #include <sys/zil.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/dmu.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_deleg.h>
46 #include <sys/spa.h>
47 #include <sys/zap.h>
48 #include <sys/varargs.h>
49 #include <sys/policy.h>
50 #include <sys/atomic.h>
51 #include <sys/mkdev.h>
52 #include <sys/modctl.h>
53 #include <sys/zfs_ioctl.h>
54 #include <sys/zfs_ctldir.h>
55 #include <sys/zfs_fuid.h>
56 #include <sys/sunddi.h>
57 #include <sys/dnlc.h>
58 #include <sys/dmu_objset.h>
59 #include <sys/spa_boot.h>
60 
61 #ifdef __NetBSD__
62 /* include ddi_name_to_major function is there better place for it ?*/
63 #include <sys/ddi.h>
64 #include <sys/systm.h>
65 #endif
66 
67 int zfsfstype;
68 vfsops_t *zfs_vfsops = NULL;
69 static major_t zfs_major;
70 static minor_t zfs_minor;
71 static kmutex_t	zfs_dev_mtx;
72 
73 int zfs_debug_level;
74 kmutex_t zfs_debug_mtx;
75 
76 /* XXX NetBSD static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);*/
77 static int zfs_mount(vfs_t *vfsp, const char *path, void *data, size_t *data_len);
78 static int zfs_umount(vfs_t *vfsp, int fflag);
79 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
80 static int zfs_statvfs(vfs_t *vfsp, struct statvfs *statp);
81 static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, vnode_t **vpp);
82 static int zfs_vget(vfs_t *vfsp, ino_t ino, vnode_t **vpp);
83 static int zfs_start(vfs_t *vfsp, int flags);
84 static void zfs_freevfs(vfs_t *vfsp);
85 
86 void zfs_init(void);
87 void zfs_fini(void);
88 
89 
90 extern const struct vnodeopv_desc zfs_vnodeop_opv_desc;
91 
92 static const struct vnodeopv_desc * const zfs_vnodeop_descs[] = {
93 	&zfs_vnodeop_opv_desc,
94 	NULL,
95 };
96 
97 static struct vfsops zfs_vfsops_template = {
98 	.vfs_name = MOUNT_ZFS,
99 	.vfs_min_mount_data = sizeof(struct zfs_args),
100 	.vfs_opv_descs = zfs_vnodeop_descs,
101 	.vfs_mount = zfs_mount,
102 	.vfs_unmount = zfs_umount,
103 	.vfs_root = zfs_root,
104 	.vfs_statvfs = zfs_statvfs,
105 	.vfs_sync = zfs_sync,
106 	.vfs_vget = zfs_vget,
107 	.vfs_fhtovp = zfs_fhtovp,
108 	.vfs_init = zfs_init,
109 	.vfs_done = zfs_fini,
110 	.vfs_start = zfs_start,
111 	.vfs_renamelock_enter = (void*)nullop,
112 	.vfs_renamelock_exit = (void*)nullop,
113 	.vfs_reinit = (void *)nullop,
114 	.vfs_vptofh = (void *)eopnotsupp,
115 	.vfs_fhtovp = (void *)eopnotsupp,
116 	.vfs_quotactl = (void *)eopnotsupp,
117 	.vfs_extattrctl = (void *)eopnotsupp,
118 	.vfs_snapshot = (void *)eopnotsupp,
119 	.vfs_fsync = (void *)eopnotsupp,
120 };
121 
122 /*
123  * We need to keep a count of active fs's.
124  * This is necessary to prevent our module
125  * from being unloaded after a umount -f
126  */
127 static uint32_t	zfs_active_fs_count = 0;
128 
129 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
130 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
131 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
132 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
133 
134 /*
135  * MO_DEFAULT is not used since the default value is determined
136  * by the equivalent property.
137  */
138 static mntopt_t mntopts[] = {
139 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
140 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
141 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
142 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
143 };
144 
145 static mntopts_t zfs_mntopts = {
146 	sizeof (mntopts) / sizeof (mntopt_t),
147 	mntopts
148 };
149 
150 /*ARGSUSED*/
151 int
152 zfs_sync(vfs_t *vfsp, int flag, cred_t *cr)
153 {
154 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
155 	znode_t *zp;
156 	vnode_t *vp;
157 	struct vnode_iterator *marker;
158 	dmu_tx_t *tx;
159 	int error;
160 
161 
162 	error = 0;
163 
164         /*
165 	 * Data integrity is job one.  We don't want a compromised kernel
166 	 * writing to the storage pool, so we never sync during panic.
167 	 */
168 	if (panicstr)
169 		return (0);
170 
171 	/*
172 	 * On NetBSD, we need to push out atime updates.  Solaris does
173 	 * this during VOP_INACTIVE, but that does not work well with the
174 	 * BSD VFS, so we do it in batch here.
175 	 */
176 	vfs_vnode_iterator_init(vfsp, &marker);
177 	while (vfs_vnode_iterator_next(marker, &vp)) {
178 		error = vn_lock(vp, LK_EXCLUSIVE);
179 		if (error) {
180 			vrele(vp);
181 			continue;
182 		}
183 		/*
184 		 * Skip the vnode/inode if inaccessible, or if the
185 		 * atime is clean.
186 		 */
187 		zp = VTOZ(vp);
188 		if (zp == NULL || vp->v_type == VNON ||
189 		   zp->z_atime_dirty == 0 || zp->z_unlinked) {
190 			vput(vp);
191 			continue;
192 		}
193 		tx = dmu_tx_create(zfsvfs->z_os);
194 		dmu_tx_hold_bonus(tx, zp->z_id);
195 		error = dmu_tx_assign(tx, TXG_WAIT);
196 		if (error) {
197 			dmu_tx_abort(tx);
198 		} else {
199 			dmu_buf_will_dirty(zp->z_dbuf, tx);
200 			mutex_enter(&zp->z_lock);
201 			zp->z_atime_dirty = 0;
202 			mutex_exit(&zp->z_lock);
203 			dmu_tx_commit(tx);
204 		}
205 		vput(vp);
206 	}
207 	vfs_vnode_iterator_destroy(marker);
208 
209 	/*
210 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
211 	 * to sync metadata, which they would otherwise cache indefinitely.
212 	 * Semantically, the only requirement is that the sync be initiated.
213 	 * The DMU syncs out txgs frequently, so there's nothing to do.
214 	 */
215 	if ((flag & MNT_LAZY) != 0)
216 		return (0);
217 
218 	if (vfsp != NULL) {
219 		/*
220 		 * Sync a specific filesystem.
221 		 */
222 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
223 		dsl_pool_t *dp;
224 
225 		ZFS_ENTER(zfsvfs);
226 		dp = dmu_objset_pool(zfsvfs->z_os);
227 
228 		/*
229 		 * If the system is shutting down, then skip any
230 		 * filesystems which may exist on a suspended pool.
231 		 */
232 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
233 			ZFS_EXIT(zfsvfs);
234 			return (0);
235 		}
236 
237 		if (zfsvfs->z_log != NULL)
238 			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
239 		else
240 			txg_wait_synced(dp, 0);
241 		ZFS_EXIT(zfsvfs);
242 	} else {
243 		/*
244 		 * Sync all ZFS filesystems.  This is what happens when you
245 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
246 		 * request by waiting for all pools to commit all dirty data.
247 		 */
248 		spa_sync_allpools();
249 	}
250 
251 	return (0);
252 }
253 
254 static int
255 zfs_create_unique_device(dev_t *dev)
256 {
257 	major_t new_major;
258 
259 	do {
260 		ASSERT3U(zfs_minor, <=, MAXMIN);
261 		minor_t start = zfs_minor;
262 		do {
263 			mutex_enter(&zfs_dev_mtx);
264 			if (zfs_minor >= MAXMIN) {
265 				/*
266 				 * If we're still using the real major
267 				 * keep out of /dev/zfs and /dev/zvol minor
268 				 * number space.  If we're using a getudev()'ed
269 				 * major number, we can use all of its minors.
270 				 */
271 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
272 					zfs_minor = ZFS_MIN_MINOR;
273 				else
274 					zfs_minor = 0;
275 			} else {
276 				zfs_minor++;
277 			}
278 			*dev = makedevice(zfs_major, zfs_minor);
279 			mutex_exit(&zfs_dev_mtx);
280 		} while (vfs_devismounted(*dev) && zfs_minor != start);
281 		break;
282 #ifndef __NetBSD__
283 		if (zfs_minor == start) {
284 			/*
285 			 * We are using all ~262,000 minor numbers for the
286 			 * current major number.  Create a new major number.
287 			 */
288 			if ((new_major = getudev()) == (major_t)-1) {
289 				cmn_err(CE_WARN,
290 				    "zfs_mount: Can't get unique major "
291 				    "device number.");
292 				return (-1);
293 			}
294 			mutex_enter(&zfs_dev_mtx);
295 			zfs_major = new_major;
296 			zfs_minor = 0;
297 
298 			mutex_exit(&zfs_dev_mtx);
299 		} else {
300 			break;
301 		}
302 		/* CONSTANTCONDITION */
303 #endif
304 	} while (1);
305 
306 	return (0);
307 }
308 
309 static void
310 atime_changed_cb(void *arg, uint64_t newval)
311 {
312 	zfsvfs_t *zfsvfs = arg;
313 
314 	if (newval == TRUE) {
315 		zfsvfs->z_atime = TRUE;
316 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
317 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
318 	} else {
319 		zfsvfs->z_atime = FALSE;
320 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
321 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
322 	}
323 }
324 
325 static void
326 xattr_changed_cb(void *arg, uint64_t newval)
327 {
328 	zfsvfs_t *zfsvfs = arg;
329 
330 	if (newval == TRUE) {
331 		/* XXX locking on vfs_flag? */
332 #ifdef TODO
333 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
334 #endif
335 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
336 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
337 	} else {
338 		/* XXX locking on vfs_flag? */
339 #ifdef TODO
340 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
341 #endif
342 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
343 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
344 	}
345 }
346 
347 static void
348 blksz_changed_cb(void *arg, uint64_t newval)
349 {
350 	zfsvfs_t *zfsvfs = arg;
351 
352 	if (newval < SPA_MINBLOCKSIZE ||
353 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
354 		newval = SPA_MAXBLOCKSIZE;
355 
356 	zfsvfs->z_max_blksz = newval;
357 	zfsvfs->z_vfs->vfs_bsize = newval;
358 }
359 
360 static void
361 readonly_changed_cb(void *arg, uint64_t newval)
362 {
363 	zfsvfs_t *zfsvfs = arg;
364 
365 	if (newval) {
366 		/* XXX locking on vfs_flag? */
367 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
368 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
369 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
370 	} else {
371 		/* XXX locking on vfs_flag? */
372 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
373 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
374 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
375 	}
376 }
377 
378 static void
379 devices_changed_cb(void *arg, uint64_t newval)
380 {
381 	zfsvfs_t *zfsvfs = arg;
382 
383 	if (newval == FALSE) {
384 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
385 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
386 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
387 	} else {
388 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
389 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
390 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
391 	}
392 }
393 
394 static void
395 setuid_changed_cb(void *arg, uint64_t newval)
396 {
397 	zfsvfs_t *zfsvfs = arg;
398 
399 	if (newval == FALSE) {
400 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
401 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
402 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
403 	} else {
404 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
405 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
406 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
407 	}
408 }
409 
410 static void
411 exec_changed_cb(void *arg, uint64_t newval)
412 {
413 	zfsvfs_t *zfsvfs = arg;
414 
415 	if (newval == FALSE) {
416 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
417 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
418 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
419 	} else {
420 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
421 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
422 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
423 	}
424 }
425 
426 /*
427  * The nbmand mount option can be changed at mount time.
428  * We can't allow it to be toggled on live file systems or incorrect
429  * behavior may be seen from cifs clients
430  *
431  * This property isn't registered via dsl_prop_register(), but this callback
432  * will be called when a file system is first mounted
433  */
434 static void
435 nbmand_changed_cb(void *arg, uint64_t newval)
436 {
437 	zfsvfs_t *zfsvfs = arg;
438 	if (newval == FALSE) {
439 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
440 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
441 	} else {
442 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
443 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
444 	}
445 }
446 
447 static void
448 snapdir_changed_cb(void *arg, uint64_t newval)
449 {
450 	zfsvfs_t *zfsvfs = arg;
451 
452 	zfsvfs->z_show_ctldir = newval;
453 }
454 
455 static void
456 vscan_changed_cb(void *arg, uint64_t newval)
457 {
458 	zfsvfs_t *zfsvfs = arg;
459 
460 	zfsvfs->z_vscan = newval;
461 }
462 
463 static void
464 acl_mode_changed_cb(void *arg, uint64_t newval)
465 {
466 	zfsvfs_t *zfsvfs = arg;
467 
468 	zfsvfs->z_acl_mode = newval;
469 }
470 
471 static void
472 acl_inherit_changed_cb(void *arg, uint64_t newval)
473 {
474 	zfsvfs_t *zfsvfs = arg;
475 
476 	zfsvfs->z_acl_inherit = newval;
477 }
478 
479 static int
480 zfs_register_callbacks(vfs_t *vfsp)
481 {
482 	struct dsl_dataset *ds = NULL;
483 	objset_t *os = NULL;
484 	zfsvfs_t *zfsvfs = NULL;
485 	uint64_t nbmand;
486 	int readonly, do_readonly = B_FALSE;
487 	int setuid, do_setuid = B_FALSE;
488 	int exec, do_exec = B_FALSE;
489 	int devices, do_devices = B_FALSE;
490 	int xattr, do_xattr = B_FALSE;
491 	int atime, do_atime = B_FALSE;
492 	int error = 0;
493 
494 	ASSERT(vfsp);
495 	zfsvfs = vfsp->vfs_data;
496 	ASSERT(zfsvfs);
497 	os = zfsvfs->z_os;
498 
499 	/*
500 	 * The act of registering our callbacks will destroy any mount
501 	 * options we may have.  In order to enable temporary overrides
502 	 * of mount options, we stash away the current values and
503 	 * restore them after we register the callbacks.
504 	 */
505 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
506 		readonly = B_TRUE;
507 		do_readonly = B_TRUE;
508 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
509 		readonly = B_FALSE;
510 		do_readonly = B_TRUE;
511 	}
512 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
513 		devices = B_FALSE;
514 		setuid = B_FALSE;
515 		do_devices = B_TRUE;
516 		do_setuid = B_TRUE;
517 	} else {
518 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
519 			devices = B_FALSE;
520 			do_devices = B_TRUE;
521 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
522 			devices = B_TRUE;
523 			do_devices = B_TRUE;
524 		}
525 
526 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
527 			setuid = B_FALSE;
528 			do_setuid = B_TRUE;
529 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
530 			setuid = B_TRUE;
531 			do_setuid = B_TRUE;
532 		}
533 	}
534 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
535 		exec = B_FALSE;
536 		do_exec = B_TRUE;
537 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
538 		exec = B_TRUE;
539 		do_exec = B_TRUE;
540 	}
541 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
542 		xattr = B_FALSE;
543 		do_xattr = B_TRUE;
544 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
545 		xattr = B_TRUE;
546 		do_xattr = B_TRUE;
547 	}
548 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
549 		atime = B_FALSE;
550 		do_atime = B_TRUE;
551 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
552 		atime = B_TRUE;
553 		do_atime = B_TRUE;
554 	}
555 
556 	/*
557 	 * nbmand is a special property.  It can only be changed at
558 	 * mount time.
559 	 *
560 	 * This is weird, but it is documented to only be changeable
561 	 * at mount time.
562 	 */
563 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
564 		nbmand = B_FALSE;
565 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
566 		nbmand = B_TRUE;
567 	} else {
568 		char osname[MAXNAMELEN];
569 
570 		dmu_objset_name(os, osname);
571 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
572 		    NULL)) {
573 			return (error);
574 		}
575 	}
576 
577 	/*
578 	 * Register property callbacks.
579 	 *
580 	 * It would probably be fine to just check for i/o error from
581 	 * the first prop_register(), but I guess I like to go
582 	 * overboard...
583 	 */
584 	ds = dmu_objset_ds(os);
585 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
586 	error = error ? error : dsl_prop_register(ds,
587 	    "xattr", xattr_changed_cb, zfsvfs);
588 	error = error ? error : dsl_prop_register(ds,
589 	    "recordsize", blksz_changed_cb, zfsvfs);
590 	error = error ? error : dsl_prop_register(ds,
591 	    "readonly", readonly_changed_cb, zfsvfs);
592 	error = error ? error : dsl_prop_register(ds,
593 	    "devices", devices_changed_cb, zfsvfs);
594 	error = error ? error : dsl_prop_register(ds,
595 	    "setuid", setuid_changed_cb, zfsvfs);
596 	error = error ? error : dsl_prop_register(ds,
597 	    "exec", exec_changed_cb, zfsvfs);
598 	error = error ? error : dsl_prop_register(ds,
599 	    "snapdir", snapdir_changed_cb, zfsvfs);
600 	error = error ? error : dsl_prop_register(ds,
601 	    "aclmode", acl_mode_changed_cb, zfsvfs);
602 	error = error ? error : dsl_prop_register(ds,
603 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
604 	error = error ? error : dsl_prop_register(ds,
605 	    "vscan", vscan_changed_cb, zfsvfs);
606 	if (error)
607 		goto unregister;
608 
609 	/*
610 	 * Invoke our callbacks to restore temporary mount options.
611 	 */
612 	if (do_readonly)
613 		readonly_changed_cb(zfsvfs, readonly);
614 	if (do_setuid)
615 		setuid_changed_cb(zfsvfs, setuid);
616 	if (do_exec)
617 		exec_changed_cb(zfsvfs, exec);
618 	if (do_devices)
619 		devices_changed_cb(zfsvfs, devices);
620 	if (do_xattr)
621 		xattr_changed_cb(zfsvfs, xattr);
622 	if (do_atime)
623 		atime_changed_cb(zfsvfs, atime);
624 
625 	nbmand_changed_cb(zfsvfs, nbmand);
626 
627 	return (0);
628 
629 unregister:
630 	/*
631 	 * We may attempt to unregister some callbacks that are not
632 	 * registered, but this is OK; it will simply return ENOMSG,
633 	 * which we will ignore.
634 	 */
635 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
636 	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
637 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
638 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
639 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
640 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
641 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
642 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
643 	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
644 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
645 	    zfsvfs);
646 	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
647 	return (error);
648 
649 }
650 
651 static void
652 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid,
653     int64_t delta, dmu_tx_t *tx)
654 {
655 	uint64_t used = 0;
656 	char buf[32];
657 	int err;
658 	uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
659 
660 	if (delta == 0)
661 		return;
662 
663 	(void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid);
664 	err = zap_lookup(os, obj, buf, 8, 1, &used);
665 	ASSERT(err == 0 || err == ENOENT);
666 	/* no underflow/overflow */
667 	ASSERT(delta > 0 || used >= -delta);
668 	ASSERT(delta < 0 || used + delta > used);
669 	used += delta;
670 	if (used == 0)
671 		err = zap_remove(os, obj, buf, tx);
672 	else
673 		err = zap_update(os, obj, buf, 8, 1, &used, tx);
674 	ASSERT(err == 0);
675 }
676 
677 static int
678 zfs_space_delta_cb(dmu_object_type_t bonustype, void *bonus,
679     uint64_t *userp, uint64_t *groupp)
680 {
681 	znode_phys_t *znp = bonus;
682 
683 	if (bonustype != DMU_OT_ZNODE)
684 		return (ENOENT);
685 
686 	*userp = znp->zp_uid;
687 	*groupp = znp->zp_gid;
688 	return (0);
689 }
690 
691 static void
692 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
693     char *domainbuf, int buflen, uid_t *ridp)
694 {
695 	uint64_t fuid;
696 	const char *domain;
697 
698 	fuid = strtonum(fuidstr, NULL);
699 
700 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
701 	if (domain)
702 		(void) strlcpy(domainbuf, domain, buflen);
703 	else
704 		domainbuf[0] = '\0';
705 	*ridp = FUID_RID(fuid);
706 }
707 
708 static uint64_t
709 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
710 {
711 	switch (type) {
712 	case ZFS_PROP_USERUSED:
713 		return (DMU_USERUSED_OBJECT);
714 	case ZFS_PROP_GROUPUSED:
715 		return (DMU_GROUPUSED_OBJECT);
716 	case ZFS_PROP_USERQUOTA:
717 		return (zfsvfs->z_userquota_obj);
718 	case ZFS_PROP_GROUPQUOTA:
719 		return (zfsvfs->z_groupquota_obj);
720 	}
721 	return (0);
722 }
723 
724 int
725 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
726     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
727 {
728 	int error;
729 	zap_cursor_t zc;
730 	zap_attribute_t za;
731 	zfs_useracct_t *buf = vbuf;
732 	uint64_t obj;
733 
734 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
735 		return (ENOTSUP);
736 
737 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
738 	if (obj == 0) {
739 		*bufsizep = 0;
740 		return (0);
741 	}
742 
743 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
744 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
745 	    zap_cursor_advance(&zc)) {
746 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
747 		    *bufsizep)
748 			break;
749 
750 		fuidstr_to_sid(zfsvfs, za.za_name,
751 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
752 
753 		buf->zu_space = za.za_first_integer;
754 		buf++;
755 	}
756 	if (error == ENOENT)
757 		error = 0;
758 
759 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
760 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
761 	*cookiep = zap_cursor_serialize(&zc);
762 	zap_cursor_fini(&zc);
763 	return (error);
764 }
765 
766 /*
767  * buf must be big enough (eg, 32 bytes)
768  */
769 static int
770 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
771     char *buf, size_t buflen, boolean_t addok)
772 {
773 	uint64_t fuid;
774 	int domainid = 0;
775 
776 	if (domain && domain[0]) {
777 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
778 		if (domainid == -1)
779 			return (ENOENT);
780 	}
781 	fuid = FUID_ENCODE(domainid, rid);
782 	(void) snprintf(buf, buflen, "%llx", (longlong_t)fuid);
783 	return (0);
784 }
785 
786 int
787 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
788     const char *domain, uint64_t rid, uint64_t *valp)
789 {
790 	char buf[32];
791 	int err;
792 	uint64_t obj;
793 
794 	*valp = 0;
795 
796 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
797 		return (ENOTSUP);
798 
799 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
800 	if (obj == 0)
801 		return (0);
802 
803 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, sizeof(buf), FALSE);
804 	if (err)
805 		return (err);
806 
807 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
808 	if (err == ENOENT)
809 		err = 0;
810 	return (err);
811 }
812 
813 int
814 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
815     const char *domain, uint64_t rid, uint64_t quota)
816 {
817 	char buf[32];
818 	int err;
819 	dmu_tx_t *tx;
820 	uint64_t *objp;
821 	boolean_t fuid_dirtied;
822 
823 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
824 		return (EINVAL);
825 
826 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
827 		return (ENOTSUP);
828 
829 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
830 	    &zfsvfs->z_groupquota_obj;
831 
832 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, sizeof(buf), B_TRUE);
833 	if (err)
834 		return (err);
835 	fuid_dirtied = zfsvfs->z_fuid_dirty;
836 
837 	tx = dmu_tx_create(zfsvfs->z_os);
838 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
839 	if (*objp == 0) {
840 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
841 		    zfs_userquota_prop_prefixes[type]);
842 	}
843 	if (fuid_dirtied)
844 		zfs_fuid_txhold(zfsvfs, tx);
845 	err = dmu_tx_assign(tx, TXG_WAIT);
846 	if (err) {
847 		dmu_tx_abort(tx);
848 		return (err);
849 	}
850 
851 	mutex_enter(&zfsvfs->z_lock);
852 	if (*objp == 0) {
853 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
854 		    DMU_OT_NONE, 0, tx);
855 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
856 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
857 	}
858 	mutex_exit(&zfsvfs->z_lock);
859 
860 	if (quota == 0) {
861 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
862 		if (err == ENOENT)
863 			err = 0;
864 	} else {
865 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
866 	}
867 	ASSERT(err == 0);
868 	if (fuid_dirtied)
869 		zfs_fuid_sync(zfsvfs, tx);
870 	dmu_tx_commit(tx);
871 	return (err);
872 }
873 
874 boolean_t
875 zfs_usergroup_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
876 {
877 	char buf[32];
878 	uint64_t used, quota, usedobj, quotaobj;
879 	int err;
880 
881 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
882 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
883 
884 	if (quotaobj == 0 || zfsvfs->z_replay)
885 		return (B_FALSE);
886 
887 	(void) snprintf(buf, sizeof(buf), "%llx", (longlong_t)fuid);
888 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
889 	if (err != 0)
890 		return (B_FALSE);
891 
892 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
893 	if (err != 0)
894 		return (B_FALSE);
895 	return (used >= quota);
896 }
897 
898 int
899 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
900 {
901 	objset_t *os;
902 	zfsvfs_t *zfsvfs;
903 	uint64_t zval;
904 	int i, error;
905 
906 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
907 
908 	/*
909 	 * We claim to always be readonly so we can open snapshots;
910 	 * other ZPL code will prevent us from writing to snapshots.
911 	 */
912 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
913 	if (error) {
914 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
915 		return (error);
916 	}
917 
918 	/*
919 	 * Initialize the zfs-specific filesystem structure.
920 	 * Should probably make this a kmem cache, shuffle fields,
921 	 * and just bzero up to z_hold_mtx[].
922 	 */
923 	zfsvfs->z_vfs = NULL;
924 	zfsvfs->z_parent = zfsvfs;
925 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
926 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
927 	zfsvfs->z_os = os;
928 
929 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
930 	if (error) {
931 		goto out;
932 	} else if (zfsvfs->z_version > ZPL_VERSION) {
933 		(void) printf("Mismatched versions:  File system "
934 		    "is version %llu on-disk format, which is "
935 		    "incompatible with this software version %lld!",
936 		    (u_longlong_t)zfsvfs->z_version, ZPL_VERSION);
937 		error = ENOTSUP;
938 		goto out;
939 	}
940 
941 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
942 		goto out;
943 	zfsvfs->z_norm = (int)zval;
944 
945 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
946 		goto out;
947 	zfsvfs->z_utf8 = (zval != 0);
948 
949 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
950 		goto out;
951 	zfsvfs->z_case = (uint_t)zval;
952 
953 	/*
954 	 * Fold case on file systems that are always or sometimes case
955 	 * insensitive.
956 	 */
957 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
958 	    zfsvfs->z_case == ZFS_CASE_MIXED)
959 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
960 
961 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
962 
963 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
964 	    &zfsvfs->z_root);
965 	if (error)
966 		goto out;
967 	ASSERT(zfsvfs->z_root != 0);
968 
969 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
970 	    &zfsvfs->z_unlinkedobj);
971 	if (error)
972 		goto out;
973 
974 	error = zap_lookup(os, MASTER_NODE_OBJ,
975 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
976 	    8, 1, &zfsvfs->z_userquota_obj);
977 	if (error && error != ENOENT)
978 		goto out;
979 
980 	error = zap_lookup(os, MASTER_NODE_OBJ,
981 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
982 	    8, 1, &zfsvfs->z_groupquota_obj);
983 	if (error && error != ENOENT)
984 		goto out;
985 
986 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
987 	    &zfsvfs->z_fuid_obj);
988 	if (error && error != ENOENT)
989 		goto out;
990 
991 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
992 	    &zfsvfs->z_shares_dir);
993 	if (error && error != ENOENT)
994 		goto out;
995 
996 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
997 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
998 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
999 	    offsetof(znode_t, z_link_node));
1000 	rrw_init(&zfsvfs->z_teardown_lock);
1001 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
1002 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1003 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1004 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1005 
1006 	*zfvp = zfsvfs;
1007 	return (0);
1008 
1009 out:
1010 	dmu_objset_disown(os, zfsvfs);
1011 	*zfvp = NULL;
1012 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1013 	return (error);
1014 }
1015 
1016 static int
1017 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1018 {
1019 	int error;
1020 
1021 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1022 	if (error)
1023 		return (error);
1024 
1025 	/*
1026 	 * Set the objset user_ptr to track its zfsvfs.
1027 	 */
1028 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1029 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1030 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1031 
1032 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1033 	if (zil_disable) {
1034 		zil_destroy(zfsvfs->z_log, B_FALSE);
1035 		zfsvfs->z_log = NULL;
1036 	}
1037 
1038 	/*
1039 	 * If we are not mounting (ie: online recv), then we don't
1040 	 * have to worry about replaying the log as we blocked all
1041 	 * operations out since we closed the ZIL.
1042 	 */
1043 	if (mounting) {
1044 		boolean_t readonly;
1045 
1046 		/*
1047 		 * During replay we remove the read only flag to
1048 		 * allow replays to succeed.
1049 		 */
1050 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1051 		if (readonly != 0)
1052 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1053 		else
1054 			zfs_unlinked_drain(zfsvfs);
1055 
1056 		if (zfsvfs->z_log) {
1057 			/*
1058 			 * Parse and replay the intent log.
1059 			 *
1060 			 * Because of ziltest, this must be done after
1061 			 * zfs_unlinked_drain().  (Further note: ziltest
1062 			 * doesn't use readonly mounts, where
1063 			 * zfs_unlinked_drain() isn't called.)  This is because
1064 			 * ziltest causes spa_sync() to think it's committed,
1065 			 * but actually it is not, so the intent log contains
1066 			 * many txg's worth of changes.
1067 			 *
1068 			 * In particular, if object N is in the unlinked set in
1069 			 * the last txg to actually sync, then it could be
1070 			 * actually freed in a later txg and then reallocated
1071 			 * in a yet later txg.  This would write a "create
1072 			 * object N" record to the intent log.  Normally, this
1073 			 * would be fine because the spa_sync() would have
1074 			 * written out the fact that object N is free, before
1075 			 * we could write the "create object N" intent log
1076 			 * record.
1077 			 *
1078 			 * But when we are in ziltest mode, we advance the "open
1079 			 * txg" without actually spa_sync()-ing the changes to
1080 			 * disk.  So we would see that object N is still
1081 			 * allocated and in the unlinked set, and there is an
1082 			 * intent log record saying to allocate it.
1083 			 */
1084 			zfsvfs->z_replay = B_TRUE;
1085 			zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector);
1086 			zfsvfs->z_replay = B_FALSE;
1087 		}
1088 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1089 	}
1090 
1091 	return (0);
1092 }
1093 
1094 void
1095 zfsvfs_free(zfsvfs_t *zfsvfs)
1096 {
1097 	int i;
1098 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1099 
1100 	/*
1101 	 * This is a barrier to prevent the filesystem from going away in
1102 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1103 	 * not unmounted. We consider the filesystem valid before the barrier
1104 	 * and invalid after the barrier.
1105 	 */
1106 	rw_enter(&zfsvfs_lock, RW_READER);
1107 	rw_exit(&zfsvfs_lock);
1108 
1109 	zfs_fuid_destroy(zfsvfs);
1110 	mutex_destroy(&zfsvfs->z_znodes_lock);
1111 	mutex_destroy(&zfsvfs->z_lock);
1112 	list_destroy(&zfsvfs->z_all_znodes);
1113 	rrw_destroy(&zfsvfs->z_teardown_lock);
1114 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1115 	rw_destroy(&zfsvfs->z_fuid_lock);
1116 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1117 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1118 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1119 }
1120 
1121 static void
1122 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1123 {
1124 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1125 	if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
1126 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1127 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1128 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1129 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1130 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1131 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1132 	}
1133 }
1134 
1135 static int
1136 zfs_domount(vfs_t *vfsp, char *osname)
1137 {
1138 	dev_t mount_dev;
1139 	uint64_t recordsize, fsid_guid;
1140 	int error = 0;
1141 	zfsvfs_t *zfsvfs;
1142 
1143 	ASSERT(vfsp);
1144 	ASSERT(osname);
1145 
1146 	error = zfsvfs_create(osname, &zfsvfs);
1147 	if (error)
1148 		return (error);
1149 	zfsvfs->z_vfs = vfsp;
1150 	zfsvfs->z_parent = zfsvfs;
1151 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
1152 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
1153 
1154 	/* Initialize the generic filesystem structure. */
1155 	vfsp->vfs_data = NULL;
1156 
1157 	if (zfs_create_unique_device(&mount_dev) == -1) {
1158 		error = ENODEV;
1159 		goto out;
1160 	}
1161 	ASSERT(vfs_devismounted(mount_dev) == 0);
1162 
1163 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1164 	    NULL))
1165 	    goto out;
1166 
1167 	vfsp->vfs_bsize = DEV_BSIZE;
1168 	vfsp->vfs_flag |= VFS_NOTRUNC;
1169 	vfsp->vfs_data = zfsvfs;
1170 
1171 	/*
1172 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1173 	 * separates our fsid from any other filesystem types, and a
1174 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1175 	 * all objsets open on this system, provided by unique_create().
1176 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1177 	 * because that's where other Solaris filesystems put it.
1178 	 */
1179 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1180 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1181 	vfsp->mnt_stat.f_fsidx.__fsid_val[0] = fsid_guid;
1182 	vfsp->mnt_stat.f_fsidx.__fsid_val[1] = ((fsid_guid>>32) << 8) |
1183 	    zfsfstype & 0xFF;
1184 
1185 	dprintf("zfs_domount vrele after vfsp->vfs_count %d\n", vfsp->vfs_count);
1186 	/*
1187 	 * Set features for file system.
1188 	 */
1189 	zfs_set_fuid_feature(zfsvfs);
1190 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1191 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1192 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1193 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1194 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1195 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1196 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1197 	}
1198 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1199 
1200 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1201 		uint64_t pval;
1202 
1203 		atime_changed_cb(zfsvfs, B_FALSE);
1204 		readonly_changed_cb(zfsvfs, B_TRUE);
1205 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1206 			goto out;
1207 		xattr_changed_cb(zfsvfs, pval);
1208 		zfsvfs->z_issnap = B_TRUE;
1209 
1210 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1211 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1212 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1213 	} else {
1214 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1215 	}
1216 
1217 	dprintf("zfs_vfsops.c zfs_domount called\n");
1218 	dprintf("vfsp->vfs_count %d\n", vfsp->vfs_count);
1219 
1220 	if (!zfsvfs->z_issnap)
1221 		zfsctl_create(zfsvfs);
1222 out:
1223 	if (error) {
1224 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1225 		zfsvfs_free(zfsvfs);
1226 	} else {
1227 		atomic_add_32(&zfs_active_fs_count, 1);
1228 	}
1229 	return (error);
1230 }
1231 
1232 void
1233 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1234 {
1235 	objset_t *os = zfsvfs->z_os;
1236 	struct dsl_dataset *ds;
1237 
1238 	/*
1239 	 * Unregister properties.
1240 	 */
1241 	if (!dmu_objset_is_snapshot(os)) {
1242 		ds = dmu_objset_ds(os);
1243 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1244 		    zfsvfs) == 0);
1245 
1246 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1247 		    zfsvfs) == 0);
1248 
1249 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1250 		    zfsvfs) == 0);
1251 
1252 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1253 		    zfsvfs) == 0);
1254 
1255 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1256 		    zfsvfs) == 0);
1257 
1258 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1259 		    zfsvfs) == 0);
1260 
1261 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1262 		    zfsvfs) == 0);
1263 
1264 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1265 		    zfsvfs) == 0);
1266 
1267 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1268 		    zfsvfs) == 0);
1269 
1270 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1271 		    acl_inherit_changed_cb, zfsvfs) == 0);
1272 
1273 		VERIFY(dsl_prop_unregister(ds, "vscan",
1274 		    vscan_changed_cb, zfsvfs) == 0);
1275 	}
1276 }
1277 
1278 /*
1279  * Convert a decimal digit string to a uint64_t integer.
1280  */
1281 static int
1282 str_to_uint64(char *str, uint64_t *objnum)
1283 {
1284 	uint64_t num = 0;
1285 
1286 	while (*str) {
1287 		if (*str < '0' || *str > '9')
1288 			return (EINVAL);
1289 
1290 		num = num*10 + *str++ - '0';
1291 	}
1292 
1293 	*objnum = num;
1294 	return (0);
1295 }
1296 
1297 /*
1298  * The boot path passed from the boot loader is in the form of
1299  * "rootpool-name/root-filesystem-object-number'. Convert this
1300  * string to a dataset name: "rootpool-name/root-filesystem-name".
1301  */
1302 static int
1303 zfs_parse_bootfs(char *bpath, char *outpath)
1304 {
1305 	char *slashp;
1306 	uint64_t objnum;
1307 	int error;
1308 
1309 	if (*bpath == 0 || *bpath == '/')
1310 		return (EINVAL);
1311 
1312 	(void) strcpy(outpath, bpath);
1313 
1314 	slashp = strchr(bpath, '/');
1315 
1316 	/* if no '/', just return the pool name */
1317 	if (slashp == NULL) {
1318 		return (0);
1319 	}
1320 
1321 	/* if not a number, just return the root dataset name */
1322 	if (str_to_uint64(slashp+1, &objnum)) {
1323 		return (0);
1324 	}
1325 
1326 	*slashp = '\0';
1327 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1328 	*slashp = '/';
1329 
1330 	return (error);
1331 }
1332 
1333 
1334 /*
1335  * zfs_check_global_label:
1336  *	Check that the hex label string is appropriate for the dataset
1337  *	being mounted into the global_zone proper.
1338  *
1339  *	Return an error if the hex label string is not default or
1340  *	admin_low/admin_high.  For admin_low labels, the corresponding
1341  *	dataset must be readonly.
1342  */
1343 int
1344 zfs_check_global_label(const char *dsname, const char *hexsl)
1345 {
1346 #ifdef PORT_SOLARIS
1347 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1348 		return (0);
1349 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1350 		return (0);
1351 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1352 		/* must be readonly */
1353 		uint64_t rdonly;
1354 
1355 		if (dsl_prop_get_integer(dsname,
1356 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1357 			return (EACCES);
1358 		return (rdonly ? 0 : EACCES);
1359 	}
1360 	return (EACCES);
1361 #else
1362 	return 0;
1363 #endif
1364 }
1365 
1366 /*
1367  * zfs_mount_label_policy:
1368  *	Determine whether the mount is allowed according to MAC check.
1369  *	by comparing (where appropriate) label of the dataset against
1370  *	the label of the zone being mounted into.  If the dataset has
1371  *	no label, create one.
1372  *
1373  *	Returns:
1374  *		 0 :	access allowed
1375  *		>0 :	error code, such as EACCES
1376  */
1377 static int
1378 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1379 {
1380 #ifdef PORT_SOLARIS
1381 	int		error, retv;
1382 	zone_t		*mntzone = NULL;
1383 	ts_label_t	*mnt_tsl;
1384 	bslabel_t	*mnt_sl;
1385 	bslabel_t	ds_sl;
1386 	char		ds_hexsl[MAXNAMELEN];
1387 
1388 	retv = EACCES;				/* assume the worst */
1389 
1390 	/*
1391 	 * Start by getting the dataset label if it exists.
1392 	 */
1393 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1394 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1395 	if (error)
1396 		return (EACCES);
1397 
1398 	/*
1399 	 * If labeling is NOT enabled, then disallow the mount of datasets
1400 	 * which have a non-default label already.  No other label checks
1401 	 * are needed.
1402 	 */
1403 	if (!is_system_labeled()) {
1404 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1405 			return (0);
1406 		return (EACCES);
1407 	}
1408 
1409 	/*
1410 	 * Get the label of the mountpoint.  If mounting into the global
1411 	 * zone (i.e. mountpoint is not within an active zone and the
1412 	 * zoned property is off), the label must be default or
1413 	 * admin_low/admin_high only; no other checks are needed.
1414 	 */
1415 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1416 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1417 		uint64_t zoned;
1418 
1419 		zone_rele(mntzone);
1420 
1421 		if (dsl_prop_get_integer(osname,
1422 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1423 			return (EACCES);
1424 		if (!zoned)
1425 			return (zfs_check_global_label(osname, ds_hexsl));
1426 		else
1427 			/*
1428 			 * This is the case of a zone dataset being mounted
1429 			 * initially, before the zone has been fully created;
1430 			 * allow this mount into global zone.
1431 			 */
1432 			return (0);
1433 	}
1434 
1435 	mnt_tsl = mntzone->zone_slabel;
1436 	ASSERT(mnt_tsl != NULL);
1437 	label_hold(mnt_tsl);
1438 	mnt_sl = label2bslabel(mnt_tsl);
1439 
1440 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1441 		/*
1442 		 * The dataset doesn't have a real label, so fabricate one.
1443 		 */
1444 		char *str = NULL;
1445 
1446 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1447 		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1448 		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1449 			retv = 0;
1450 		if (str != NULL)
1451 			kmem_free(str, strlen(str) + 1);
1452 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1453 		/*
1454 		 * Now compare labels to complete the MAC check.  If the
1455 		 * labels are equal then allow access.  If the mountpoint
1456 		 * label dominates the dataset label, allow readonly access.
1457 		 * Otherwise, access is denied.
1458 		 */
1459 		if (blequal(mnt_sl, &ds_sl))
1460 			retv = 0;
1461 		else if (bldominates(mnt_sl, &ds_sl)) {
1462 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1463 			retv = 0;
1464 		}
1465 	}
1466 
1467 	label_rele(mnt_tsl);
1468 	zone_rele(mntzone);
1469 	return (retv);
1470 #else   /* PORT_SOLARIS */
1471 	return (0);
1472 #endif
1473 }
1474 
1475 #ifndef __NetBSD__
1476 static int
1477 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1478 {
1479 	int error = 0;
1480 	static int zfsrootdone = 0;
1481 	zfsvfs_t *zfsvfs = NULL;
1482 	znode_t *zp = NULL;
1483 	vnode_t *vp = NULL;
1484 	char *zfs_bootfs;
1485 	char *zfs_devid;
1486 
1487 	ASSERT(vfsp);
1488 
1489 	/*
1490 	 * The filesystem that we mount as root is defined in the
1491 	 * boot property "zfs-bootfs" with a format of
1492 	 * "poolname/root-dataset-objnum".
1493 	 */
1494 	if (why == ROOT_INIT) {
1495 		if (zfsrootdone++)
1496 			return (EBUSY);
1497 		/*
1498 		 * the process of doing a spa_load will require the
1499 		 * clock to be set before we could (for example) do
1500 		 * something better by looking at the timestamp on
1501 		 * an uberblock, so just set it to -1.
1502 		 */
1503 		clkset(-1);
1504 
1505 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1506 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1507 			    "bootfs name");
1508 			return (EINVAL);
1509 		}
1510 		zfs_devid = spa_get_bootprop("diskdevid");
1511 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1512 		if (zfs_devid)
1513 			spa_free_bootprop(zfs_devid);
1514 		if (error) {
1515 			spa_free_bootprop(zfs_bootfs);
1516 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1517 			    error);
1518 			return (error);
1519 		}
1520 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1521 			spa_free_bootprop(zfs_bootfs);
1522 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1523 			    error);
1524 			return (error);
1525 		}
1526 
1527 		spa_free_bootprop(zfs_bootfs);
1528 
1529 		if (error = vfs_lock(vfsp))
1530 			return (error);
1531 
1532 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1533 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1534 			goto out;
1535 		}
1536 
1537 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1538 		ASSERT(zfsvfs);
1539 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1540 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1541 			goto out;
1542 		}
1543 
1544 		vp = ZTOV(zp);
1545 		mutex_enter(&vp->v_lock);
1546 		vp->v_flag |= VROOT;
1547 		mutex_exit(&vp->v_lock);
1548 		rootvp = vp;
1549 
1550 		/*
1551 		 * Leave rootvp held.  The root file system is never unmounted.
1552 		 */
1553 
1554 		vfs_add((struct vnode *)0, vfsp,
1555 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1556 out:
1557 		vfs_unlock(vfsp);
1558 		return (error);
1559 	} else if (why == ROOT_REMOUNT) {
1560 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1561 		vfsp->vfs_flag |= VFS_REMOUNT;
1562 
1563 		/* refresh mount options */
1564 		zfs_unregister_callbacks(vfsp->vfs_data);
1565 		return (zfs_register_callbacks(vfsp));
1566 
1567 	} else if (why == ROOT_UNMOUNT) {
1568 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1569 		(void) zfs_sync(vfsp, 0, 0);
1570 		return (0);
1571 	}
1572 
1573 	/*
1574 	 * if "why" is equal to anything else other than ROOT_INIT,
1575 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1576 	 */
1577 	return (ENOTSUP);
1578 }
1579 #endif /*__NetBSD__ */
1580 
1581 /*ARGSUSED*/
1582 static int
1583 zfs_mount(vfs_t *vfsp, const char *path, void *data, size_t *data_len)
1584 {
1585 	char		*osname;
1586 	pathname_t	spn;
1587 	vnode_t         *mvp = vfsp->mnt_vnodecovered;
1588 	struct mounta   *uap = data;
1589 	int		error = 0;
1590 	int		canwrite;
1591 	cred_t          *cr;
1592 
1593 	crget(cr);
1594 	dprintf("zfs_vfsops.c zfs_mount called\n");
1595 	dprintf("vfsp->vfs_count %d\n", vfsp->vfs_count);
1596 	if (mvp->v_type != VDIR)
1597 		return (ENOTDIR);
1598 
1599 	if (uap == NULL)
1600 		return (EINVAL);
1601 
1602 	mutex_enter(mvp->v_interlock);
1603 	if ((uap->flags & MS_REMOUNT) == 0 &&
1604 	    (uap->flags & MS_OVERLAY) == 0 &&
1605 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1606 		mutex_exit(mvp->v_interlock);
1607 		return (EBUSY);
1608 	}
1609 	mutex_exit(mvp->v_interlock);
1610 
1611 	/*
1612 	 * ZFS does not support passing unparsed data in via MS_DATA.
1613 	 * Users should use the MS_OPTIONSTR interface; this means
1614 	 * that all option parsing is already done and the options struct
1615 	 * can be interrogated.
1616 	 */
1617 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1618 		return (EINVAL);
1619 
1620 	osname = PNBUF_GET();
1621 
1622 	strlcpy(osname, uap->fspec, strlen(uap->fspec) + 1);
1623 
1624 	/*
1625 	 * Check for mount privilege?
1626 	 *
1627 	 * If we don't have privilege then see if
1628 	 * we have local permission to allow it
1629 	 */
1630 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1631 	if (error) {
1632 		error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr);
1633 		if (error == 0) {
1634 			vattr_t		vattr;
1635 
1636 			/*
1637 			 * Make sure user is the owner of the mount point
1638 			 * or has sufficient privileges.
1639 			 */
1640 
1641 			vattr.va_mask = AT_UID;
1642 
1643 			if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1644 				goto out;
1645 			}
1646 
1647 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1648 			    VOP_ACCESS(mvp, VWRITE, cr) != 0) {
1649 				error = EPERM;
1650 				goto out;
1651 			}
1652 
1653 /* XXX NetBSD			secpolicy_fs_mount_clearopts(cr, vfsp);*/
1654 		} else {
1655 			goto out;
1656 		}
1657 	}
1658 
1659 	/*
1660 	 * Refuse to mount a filesystem if we are in a local zone and the
1661 	 * dataset is not visible.
1662 	 */
1663 	if (!INGLOBALZONE(curproc) &&
1664 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1665 		error = EPERM;
1666 		goto out;
1667 	}
1668 
1669 	error = zfs_mount_label_policy(vfsp, osname);
1670 	if (error)
1671 		goto out;
1672 
1673 	/*
1674 	 * When doing a remount, we simply refresh our temporary properties
1675 	 * according to those options set in the current VFS options.
1676 	 */
1677 	if (uap->flags & MS_REMOUNT) {
1678 		/* refresh mount options */
1679 		zfs_unregister_callbacks(vfsp->vfs_data);
1680 		error = zfs_register_callbacks(vfsp);
1681 		goto out;
1682 	}
1683 
1684 	/* Mark ZFS as MP SAFE */
1685 	vfsp->mnt_iflag |= IMNT_MPSAFE;
1686 
1687 	error = zfs_domount(vfsp, osname);
1688 
1689 	vfs_getnewfsid(vfsp);
1690 
1691 	/* setup zfs mount info */
1692 	strlcpy(vfsp->mnt_stat.f_mntfromname, osname,
1693 	    sizeof(vfsp->mnt_stat.f_mntfromname));
1694 	set_statvfs_info(path, UIO_USERSPACE, vfsp->mnt_stat.f_mntfromname,
1695 	    UIO_SYSSPACE, vfsp->mnt_op->vfs_name, vfsp, curlwp);
1696 
1697 	/*
1698 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1699 	 * disappear due to a forced unmount.
1700 	 */
1701 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1702 		VFS_HOLD(mvp->v_vfsp);
1703 
1704 out:
1705 	PNBUF_PUT(osname);
1706 	return (error);
1707 }
1708 
1709 static int
1710 zfs_statvfs(vfs_t *vfsp, struct statvfs *statp)
1711 {
1712 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1713 	dev_t dev;
1714 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1715 
1716 	ZFS_ENTER(zfsvfs);
1717 
1718 	dmu_objset_space(zfsvfs->z_os,
1719 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1720 
1721 	/*
1722 	 * The underlying storage pool actually uses multiple block sizes.
1723 	 * We report the fragsize as the smallest block size we support,
1724 	 * and we report our blocksize as the filesystem's maximum blocksize.
1725 	 */
1726 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1727 	statp->f_bsize = zfsvfs->z_max_blksz;
1728 
1729 	/*
1730 	 * The following report "total" blocks of various kinds in the
1731 	 * file system, but reported in terms of f_frsize - the
1732 	 * "fragment" size.
1733 	 */
1734 
1735 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1736 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1737 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1738 
1739 	/*
1740 	 * statvfs() should really be called statufs(), because it assumes
1741 	 * static metadata.  ZFS doesn't preallocate files, so the best
1742 	 * we can do is report the max that could possibly fit in f_files,
1743 	 * and that minus the number actually used in f_ffree.
1744 	 * For f_ffree, report the smaller of the number of object available
1745 	 * and the number of blocks (each object will take at least a block).
1746 	 */
1747 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1748 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1749 	statp->f_files = statp->f_ffree + usedobjs;
1750 
1751 	statp->f_fsid = vfsp->mnt_stat.f_fsidx.__fsid_val[0];
1752 
1753 	/*
1754 	 * We're a zfs filesystem.
1755 	 */
1756 	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1757 	(void) strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1758 	    sizeof(statp->f_mntfromname));
1759 	(void) strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1760 	    sizeof(statp->f_mntonname));
1761 
1762 	statp->f_namemax = ZFS_MAXNAMELEN;
1763 
1764 	/*
1765 	 * We have all of 32 characters to stuff a string here.
1766 	 * Is there anything useful we could/should provide?
1767 	 */
1768 #ifndef __NetBSD__
1769 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1770 #endif
1771 	ZFS_EXIT(zfsvfs);
1772 	return (0);
1773 }
1774 
1775 static int
1776 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1777 {
1778 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1779 	znode_t *rootzp;
1780 	int error;
1781 
1782 	ZFS_ENTER(zfsvfs);
1783 	dprintf("zfs_root called\n");
1784 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1785 	if (error == 0)
1786 		*vpp = ZTOV(rootzp);
1787 	dprintf("vpp -> %d, error %d -- %p\n", (*vpp)->v_type, error, *vpp);
1788 	ZFS_EXIT(zfsvfs);
1789 	if (error == 0)
1790 		vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
1791 	KASSERT((error != 0) || (*vpp != NULL));
1792 	KASSERT((error != 0) || (VOP_ISLOCKED(*vpp) == LK_EXCLUSIVE));
1793 	return (error);
1794 }
1795 
1796 /*
1797  * Teardown the zfsvfs::z_os.
1798  *
1799  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1800  * and 'z_teardown_inactive_lock' held.
1801  */
1802 static int
1803 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1804 {
1805 	znode_t	*zp;
1806 
1807 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1808 
1809 	if (!unmounting) {
1810 		/*
1811 		 * We purge the parent filesystem's vfsp as the parent
1812 		 * filesystem and all of its snapshots have their vnode's
1813 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1814 		 * 'z_parent' is self referential for non-snapshots.
1815 		 */
1816 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1817 	}
1818 
1819 	/*
1820 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1821 	 * threads are blocked as zil_close can call zfs_inactive.
1822 	 */
1823 	if (zfsvfs->z_log) {
1824 		zil_close(zfsvfs->z_log);
1825 		zfsvfs->z_log = NULL;
1826 	}
1827 
1828 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1829 
1830 	/*
1831 	 * If we are not unmounting (ie: online recv) and someone already
1832 	 * unmounted this file system while we were doing the switcheroo,
1833 	 * or a reopen of z_os failed then just bail out now.
1834 	 */
1835 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1836 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1837 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1838 		return (EIO);
1839 	}
1840 
1841 	/*
1842 	 * At this point there are no vops active, and any new vops will
1843 	 * fail with EIO since we have z_teardown_lock for writer (only
1844 	 * relavent for forced unmount).
1845 	 *
1846 	 * Release all holds on dbufs.
1847 	 */
1848 	mutex_enter(&zfsvfs->z_znodes_lock);
1849 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1850 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1851 		if (zp->z_dbuf) {
1852 			ASSERT(ZTOV(zp)->v_count > 0);
1853 			zfs_znode_dmu_fini(zp);
1854 		}
1855 	mutex_exit(&zfsvfs->z_znodes_lock);
1856 
1857 	/*
1858 	 * If we are unmounting, set the unmounted flag and let new vops
1859 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1860 	 * other vops will fail with EIO.
1861 	 */
1862 	if (unmounting) {
1863 		zfsvfs->z_unmounted = B_TRUE;
1864 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1865 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1866 	}
1867 
1868 	/*
1869 	 * z_os will be NULL if there was an error in attempting to reopen
1870 	 * zfsvfs, so just return as the properties had already been
1871 	 * unregistered and cached data had been evicted before.
1872 	 */
1873 	if (zfsvfs->z_os == NULL)
1874 		return (0);
1875 
1876 	/*
1877 	 * Unregister properties.
1878 	 */
1879 	zfs_unregister_callbacks(zfsvfs);
1880 
1881 	/*
1882 	 * Evict cached data
1883 	 */
1884 	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
1885 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1886 		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1887 	}
1888 
1889 	return (0);
1890 }
1891 
1892 /*ARGSUSED*/
1893 static int
1894 zfs_umount(vfs_t *vfsp, int fflag)
1895 {
1896 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1897 	objset_t *os;
1898 	int ret, flags = 0;
1899 	cred_t *cr;
1900 
1901 	vnode_t *vpp;
1902 	int counter;
1903 
1904 	counter = 0;
1905 
1906 	dprintf("ZFS_UMOUNT called\n");
1907 
1908 	/*TAILQ_FOREACH(vpp, &vfsp->mnt_vnodelist, v_mntvnodes) {
1909 		printf("vnode list vnode number %d -- vnode address %p\n", counter, vpp);
1910 		vprint("ZFS vfsp vnode list", vpp);
1911 		counter++;
1912 		} */
1913 
1914 	crget(cr);
1915 #ifdef TODO
1916 	ret = secpolicy_fs_unmount(cr, vfsp);
1917 	if (ret) {
1918 		ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1919 		    ZFS_DELEG_PERM_MOUNT, cr);
1920 		if (ret)
1921 			return (ret);
1922 	}
1923 #endif
1924 	/*
1925 	 * We purge the parent filesystem's vfsp as the parent filesystem
1926 	 * and all of its snapshots have their vnode's v_vfsp set to the
1927 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1928 	 * referential for non-snapshots.
1929 	 */
1930 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1931 
1932 	/*
1933 	 * Unmount any snapshots mounted under .zfs before unmounting the
1934 	 * dataset itself.
1935 	 */
1936 	if (zfsvfs->z_ctldir != NULL &&
1937 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1938 		return (ret);
1939 	}
1940 
1941 #if 0
1942 	if (!(fflag & MS_FORCE)) {
1943 		/*
1944 		 * Check the number of active vnodes in the file system.
1945 		 * Our count is maintained in the vfs structure, but the
1946 		 * number is off by 1 to indicate a hold on the vfs
1947 		 * structure itself.
1948 		 *
1949 		 * The '.zfs' directory maintains a reference of its
1950 		 * own, and any active references underneath are
1951 		 * reflected in the vnode count.
1952 		 */
1953 		if (zfsvfs->z_ctldir == NULL) {
1954 			if (vfsp->vfs_count > 1){
1955 				return (EBUSY);
1956 			}
1957 		} else {
1958 			if (vfsp->vfs_count > 2 ||
1959 			    zfsvfs->z_ctldir->v_count > 1) {
1960 				return (EBUSY);
1961 			}
1962 		}
1963 	}
1964 #endif
1965 	ret = vflush(vfsp, NULL, (ISSET(fflag, MS_FORCE)? FORCECLOSE : 0));
1966 	if (ret != 0)
1967 		return ret;
1968 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1969 
1970 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1971 	os = zfsvfs->z_os;
1972 
1973 	/*
1974 	 * z_os will be NULL if there was an error in
1975 	 * attempting to reopen zfsvfs.
1976 	 */
1977 	if (os != NULL) {
1978 		/*
1979 		 * Unset the objset user_ptr.
1980 		 */
1981 		mutex_enter(&os->os_user_ptr_lock);
1982 		dmu_objset_set_user(os, NULL);
1983 		mutex_exit(&os->os_user_ptr_lock);
1984 
1985 		/*
1986 		 * Finally release the objset
1987 		 */
1988 		dmu_objset_disown(os, zfsvfs);
1989 	}
1990 
1991 	/*
1992 	 * We can now safely destroy the '.zfs' directory node.
1993 	 */
1994 	if (zfsvfs->z_ctldir != NULL)
1995 		zfsctl_destroy(zfsvfs);
1996 
1997 	return (0);
1998 }
1999 
2000 static int
2001 zfs_vget(vfs_t *vfsp, ino_t ino, vnode_t **vpp)
2002 {
2003 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2004 	znode_t *zp;
2005 	int err;
2006 
2007 	dprintf("zfs_vget called\n");
2008 	dprintf("vfsp->vfs_count %d\n", vfsp->vfs_count);
2009 
2010 	ZFS_ENTER(zfsvfs);
2011 	err = zfs_zget(zfsvfs, ino, &zp);
2012 	if (err == 0 && zp->z_unlinked) {
2013 		VN_RELE(ZTOV(zp));
2014 		err = EINVAL;
2015 	}
2016 	if (err != 0)
2017 		*vpp = NULL;
2018 	else {
2019 		*vpp = ZTOV(zp);
2020 		/* XXX NetBSD how to get flags for vn_lock ? */
2021 		vn_lock(*vpp, 0);
2022 	}
2023 	ZFS_EXIT(zfsvfs);
2024 	return (err);
2025 }
2026 
2027 static int
2028 zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, vnode_t **vpp)
2029 {
2030 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2031 	znode_t *zp;
2032 	uint64_t object = 0;
2033 	uint64_t fid_gen = 0;
2034 	uint64_t gen_mask;
2035 	uint64_t zp_gen;
2036 	int i, err;
2037 
2038 	*vpp = NULL;
2039 
2040 	dprintf("zfs_fhtovp called\n");
2041 	dprintf("vfsp->vfs_count %d\n", vfsp->vfs_count);
2042 
2043 	ZFS_ENTER(zfsvfs);
2044 
2045 	if (fidp->fid_len == LONG_FID_LEN) {
2046 		zfid_long_t *zlfid = (zfid_long_t *)fidp;
2047 		uint64_t objsetid = 0;
2048 		uint64_t setgen = 0;
2049 
2050 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2051 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2052 
2053 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2054 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2055 
2056 		ZFS_EXIT(zfsvfs);
2057 
2058 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2059 		if (err)
2060 			return (EINVAL);
2061 		ZFS_ENTER(zfsvfs);
2062 	}
2063 
2064 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2065 		zfid_short_t *zfid = (zfid_short_t *)fidp;
2066 
2067 		for (i = 0; i < sizeof (zfid->zf_object); i++)
2068 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2069 
2070 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2071 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2072 	} else {
2073 		ZFS_EXIT(zfsvfs);
2074 		return (EINVAL);
2075 	}
2076 
2077 	/* A zero fid_gen means we are in the .zfs control directories */
2078 	if (fid_gen == 0 &&
2079 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
2080 		*vpp = zfsvfs->z_ctldir;
2081 		ASSERT(*vpp != NULL);
2082 		if (object == ZFSCTL_INO_SNAPDIR) {
2083 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2084 				0, NULL, NULL, NULL, NULL, NULL) == 0);
2085 		} else {
2086 			VN_HOLD(*vpp);
2087 		}
2088 		ZFS_EXIT(zfsvfs);
2089 		/* XXX: LK_RETRY? */
2090 		vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
2091 		return (0);
2092 	}
2093 
2094 	gen_mask = -1ULL >> (64 - 8 * i);
2095 
2096 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2097 	if (err = zfs_zget(zfsvfs, object, &zp)) {
2098 		ZFS_EXIT(zfsvfs);
2099 		return (err);
2100 	}
2101 	zp_gen = zp->z_phys->zp_gen & gen_mask;
2102 	if (zp_gen == 0)
2103 		zp_gen = 1;
2104 	if (zp->z_unlinked || zp_gen != fid_gen) {
2105 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2106 		VN_RELE(ZTOV(zp));
2107 		ZFS_EXIT(zfsvfs);
2108 		return (EINVAL);
2109 	}
2110 
2111 	*vpp = ZTOV(zp);
2112 	/* XXX: LK_RETRY? */
2113 	vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
2114 	ZFS_EXIT(zfsvfs);
2115 	return (0);
2116 }
2117 
2118 /*
2119  * Block out VOPs and close zfsvfs_t::z_os
2120  *
2121  * Note, if successful, then we return with the 'z_teardown_lock' and
2122  * 'z_teardown_inactive_lock' write held.
2123  */
2124 int
2125 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2126 {
2127 	int error;
2128 
2129 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2130 		return (error);
2131 	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2132 
2133 	return (0);
2134 }
2135 
2136 /*
2137  * Reopen zfsvfs_t::z_os and release VOPs.
2138  */
2139 int
2140 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2141 {
2142 	int err;
2143 
2144 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2145 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2146 
2147 	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2148 	    &zfsvfs->z_os);
2149 	if (err) {
2150 		zfsvfs->z_os = NULL;
2151 	} else {
2152 		znode_t *zp;
2153 
2154 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2155 
2156 		/*
2157 		 * Attempt to re-establish all the active znodes with
2158 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
2159 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2160 		 * when they try to use their znode.
2161 		 */
2162 		mutex_enter(&zfsvfs->z_znodes_lock);
2163 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2164 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2165 			(void) zfs_rezget(zp);
2166 		}
2167 		mutex_exit(&zfsvfs->z_znodes_lock);
2168 
2169 	}
2170 
2171 	/* release the VOPs */
2172 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2173 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2174 
2175 	if (err) {
2176 		/*
2177 		 * Since we couldn't reopen zfsvfs::z_os, force
2178 		 * unmount this file system.
2179 		 */
2180 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2181 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curlwp);
2182 	}
2183 	return (err);
2184 }
2185 
2186 static void
2187 zfs_freevfs(vfs_t *vfsp)
2188 {
2189 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2190 
2191 	/*
2192 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2193 	 * from zfs_mount().  Release it here.
2194 	 */
2195 	if (zfsvfs->z_issnap)
2196 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2197 
2198 	zfsvfs_free(zfsvfs);
2199 
2200 	atomic_add_32(&zfs_active_fs_count, -1);
2201 }
2202 
2203 /*
2204  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2205  * so we can't safely do any non-idempotent initialization here.
2206  * Leave that to zfs_init() and zfs_fini(), which are called
2207  * from the module's _init() and _fini() entry points.
2208  */
2209 /*ARGSUSED*/
2210 int
2211 zfs_vfsinit(int fstype, char *name)
2212 {
2213 	int error;
2214 
2215 	zfsfstype = fstype;
2216 
2217 	/*
2218 	 * Setup vfsops and vnodeops tables.
2219 	 */
2220 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2221 
2222 	error = zfs_create_op_tables();
2223 	if (error) {
2224 		zfs_remove_op_tables();
2225 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2226 		vfs_freevfsops_by_type(zfsfstype);
2227 		return (error);
2228 	}
2229 
2230 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2231 	mutex_init(&zfs_debug_mtx, NULL, MUTEX_DEFAULT, NULL);
2232 
2233 	/*
2234 	 * Unique major number for all zfs mounts.
2235 	 * If we run out of 32-bit minors, we'll getudev() another major.
2236 	 */
2237 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2238 	zfs_minor = ZFS_MIN_MINOR;
2239 
2240 	return (0);
2241 }
2242 
2243 int
2244 zfs_vfsfini(void)
2245 {
2246 	int err;
2247 
2248 	err = vfs_detach(&zfs_vfsops_template);
2249 	if (err != 0)
2250 		return err;
2251 
2252 	mutex_destroy(&zfs_debug_mtx);
2253 	mutex_destroy(&zfs_dev_mtx);
2254 
2255 	return 0;
2256 }
2257 
2258 void
2259 zfs_init(void)
2260 {
2261 	/*
2262 	 * Initialize .zfs directory structures
2263 	 */
2264 	zfsctl_init();
2265 
2266 	/*
2267 	 * Initialize znode cache, vnode ops, etc...
2268 	 */
2269 	zfs_znode_init();
2270 
2271 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2272 }
2273 
2274 void
2275 zfs_fini(void)
2276 {
2277 	zfsctl_fini();
2278 	zfs_znode_fini();
2279 }
2280 
2281 int
2282 zfs_busy(void)
2283 {
2284 	return (zfs_active_fs_count != 0);
2285 }
2286 
2287 int
2288 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2289 {
2290 	int error;
2291 	objset_t *os = zfsvfs->z_os;
2292 	dmu_tx_t *tx;
2293 
2294 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2295 		return (EINVAL);
2296 
2297 	if (newvers < zfsvfs->z_version)
2298 		return (EINVAL);
2299 
2300 	tx = dmu_tx_create(os);
2301 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2302 	error = dmu_tx_assign(tx, TXG_WAIT);
2303 	if (error) {
2304 		dmu_tx_abort(tx);
2305 		return (error);
2306 	}
2307 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2308 	    8, 1, &newvers, tx);
2309 
2310 	if (error) {
2311 		dmu_tx_commit(tx);
2312 		return (error);
2313 	}
2314 
2315 	spa_history_internal_log(LOG_DS_UPGRADE,
2316 	    dmu_objset_spa(os), tx, CRED(),
2317 	    "oldver=%llu newver=%llu dataset = %llu",
2318 	    zfsvfs->z_version, newvers, dmu_objset_id(os));
2319 
2320 	dmu_tx_commit(tx);
2321 
2322 	zfsvfs->z_version = newvers;
2323 
2324 	if (zfsvfs->z_version >= ZPL_VERSION_FUID)
2325 		zfs_set_fuid_feature(zfsvfs);
2326 
2327 	return (0);
2328 }
2329 
2330 /*
2331  * Read a property stored within the master node.
2332  */
2333 int
2334 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2335 {
2336 	const char *pname;
2337 	int error = ENOENT;
2338 
2339 	/*
2340 	 * Look up the file system's value for the property.  For the
2341 	 * version property, we look up a slightly different string.
2342 	 */
2343 	if (prop == ZFS_PROP_VERSION)
2344 		pname = ZPL_VERSION_STR;
2345 	else
2346 		pname = zfs_prop_to_name(prop);
2347 
2348 	if (os != NULL)
2349 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2350 
2351 	if (error == ENOENT) {
2352 		/* No value set, use the default value */
2353 		switch (prop) {
2354 		case ZFS_PROP_VERSION:
2355 			*value = ZPL_VERSION;
2356 			break;
2357 		case ZFS_PROP_NORMALIZE:
2358 		case ZFS_PROP_UTF8ONLY:
2359 			*value = 0;
2360 			break;
2361 		case ZFS_PROP_CASE:
2362 			*value = ZFS_CASE_SENSITIVE;
2363 			break;
2364 		default:
2365 			return (error);
2366 		}
2367 		error = 0;
2368 	}
2369 	return (error);
2370 }
2371 
2372 static int
2373 zfs_start(vfs_t *vfsp, int flags)
2374 {
2375 
2376 	return (0);
2377 }
2378 
2379 
2380 #ifdef TODO
2381 static vfsdef_t vfw = {
2382 	VFSDEF_VERSION,
2383 	MNTTYPE_ZFS,
2384 	zfs_vfsinit,
2385 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2386 	    VSW_XID,
2387 	&zfs_mntopts
2388 };
2389 
2390 struct modlfs zfs_modlfs = {
2391 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2392 };
2393 #endif
2394