1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * This file contains the code to implement file range locking in 28 * ZFS, although there isn't much specific to ZFS (all that comes to mind 29 * support for growing the blocksize). 30 * 31 * Interface 32 * --------- 33 * Defined in zfs_rlock.h but essentially: 34 * rl = zfs_range_lock(zp, off, len, lock_type); 35 * zfs_range_unlock(rl); 36 * zfs_range_reduce(rl, off, len); 37 * 38 * AVL tree 39 * -------- 40 * An AVL tree is used to maintain the state of the existing ranges 41 * that are locked for exclusive (writer) or shared (reader) use. 42 * The starting range offset is used for searching and sorting the tree. 43 * 44 * Common case 45 * ----------- 46 * The (hopefully) usual case is of no overlaps or contention for 47 * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree 48 * searched that finds no overlap, and *this* rl_t is placed in the tree. 49 * 50 * Overlaps/Reference counting/Proxy locks 51 * --------------------------------------- 52 * The avl code only allows one node at a particular offset. Also it's very 53 * inefficient to search through all previous entries looking for overlaps 54 * (because the very 1st in the ordered list might be at offset 0 but 55 * cover the whole file). 56 * So this implementation uses reference counts and proxy range locks. 57 * Firstly, only reader locks use reference counts and proxy locks, 58 * because writer locks are exclusive. 59 * When a reader lock overlaps with another then a proxy lock is created 60 * for that range and replaces the original lock. If the overlap 61 * is exact then the reference count of the proxy is simply incremented. 62 * Otherwise, the proxy lock is split into smaller lock ranges and 63 * new proxy locks created for non overlapping ranges. 64 * The reference counts are adjusted accordingly. 65 * Meanwhile, the orginal lock is kept around (this is the callers handle) 66 * and its offset and length are used when releasing the lock. 67 * 68 * Thread coordination 69 * ------------------- 70 * In order to make wakeups efficient and to ensure multiple continuous 71 * readers on a range don't starve a writer for the same range lock, 72 * two condition variables are allocated in each rl_t. 73 * If a writer (or reader) can't get a range it initialises the writer 74 * (or reader) cv; sets a flag saying there's a writer (or reader) waiting; 75 * and waits on that cv. When a thread unlocks that range it wakes up all 76 * writers then all readers before destroying the lock. 77 * 78 * Append mode writes 79 * ------------------ 80 * Append mode writes need to lock a range at the end of a file. 81 * The offset of the end of the file is determined under the 82 * range locking mutex, and the lock type converted from RL_APPEND to 83 * RL_WRITER and the range locked. 84 * 85 * Grow block handling 86 * ------------------- 87 * ZFS supports multiple block sizes currently upto 128K. The smallest 88 * block size is used for the file which is grown as needed. During this 89 * growth all other writers and readers must be excluded. 90 * So if the block size needs to be grown then the whole file is 91 * exclusively locked, then later the caller will reduce the lock 92 * range to just the range to be written using zfs_reduce_range. 93 */ 94 95 #include <sys/zfs_rlock.h> 96 97 static int 98 zfs_range_lock_hold(rl_t *rl) 99 { 100 101 KASSERT(mutex_owned(&rl->r_zp->z_range_lock)); 102 103 if (rl->r_refcnt >= ULONG_MAX) 104 return (ENFILE); /* XXX What to do? */ 105 106 rl->r_refcnt++; 107 return (0); 108 } 109 110 static void 111 zfs_range_lock_rele(rl_t *rl) 112 { 113 114 KASSERT(mutex_owned(&rl->r_zp->z_range_lock)); 115 KASSERT(rl->r_refcnt > 0); 116 117 if (--rl->r_refcnt == 0) { 118 cv_destroy(&rl->r_wr_cv); 119 cv_destroy(&rl->r_rd_cv); 120 kmem_free(rl, sizeof (rl_t)); 121 } 122 } 123 124 /* 125 * Check if a write lock can be grabbed, or wait and recheck until available. 126 */ 127 static void 128 zfs_range_lock_writer(znode_t *zp, rl_t *new) 129 { 130 avl_tree_t *tree = &zp->z_range_avl; 131 rl_t *rl; 132 avl_index_t where; 133 uint64_t end_size; 134 uint64_t off = new->r_off; 135 uint64_t len = new->r_len; 136 137 for (;;) { 138 /* 139 * Range locking is also used by zvol and uses a 140 * dummied up znode. However, for zvol, we don't need to 141 * append or grow blocksize, and besides we don't have 142 * a z_phys or z_zfsvfs - so skip that processing. 143 * 144 * Yes, this is ugly, and would be solved by not handling 145 * grow or append in range lock code. If that was done then 146 * we could make the range locking code generically available 147 * to other non-zfs consumers. 148 */ 149 if (zp->z_vnode) { /* caller is ZPL */ 150 /* 151 * If in append mode pick up the current end of file. 152 * This is done under z_range_lock to avoid races. 153 */ 154 if (new->r_type == RL_APPEND) 155 new->r_off = zp->z_phys->zp_size; 156 157 /* 158 * If we need to grow the block size then grab the whole 159 * file range. This is also done under z_range_lock to 160 * avoid races. 161 */ 162 end_size = MAX(zp->z_phys->zp_size, new->r_off + len); 163 if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) || 164 zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) { 165 new->r_off = 0; 166 new->r_len = UINT64_MAX; 167 } 168 } 169 170 /* 171 * First check for the usual case of no locks 172 */ 173 if (avl_numnodes(tree) == 0) { 174 new->r_type = RL_WRITER; /* convert to writer */ 175 avl_add(tree, new); 176 return; 177 } 178 179 /* 180 * Look for any locks in the range. 181 */ 182 rl = avl_find(tree, new, &where); 183 if (rl) 184 goto wait; /* already locked at same offset */ 185 186 rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER); 187 if (rl && (rl->r_off < new->r_off + new->r_len)) 188 goto wait; 189 190 rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE); 191 if (rl && rl->r_off + rl->r_len > new->r_off) 192 goto wait; 193 194 new->r_type = RL_WRITER; /* convert possible RL_APPEND */ 195 avl_insert(tree, new, where); 196 return; 197 wait: 198 if (!rl->r_write_wanted) { 199 rl->r_write_wanted = B_TRUE; 200 } 201 if (zfs_range_lock_hold(rl) != 0) 202 panic("too many waiters on zfs range lock %p", rl); 203 cv_wait(&rl->r_wr_cv, &zp->z_range_lock); 204 zfs_range_lock_rele(rl); 205 206 /* reset to original */ 207 new->r_off = off; 208 new->r_len = len; 209 } 210 } 211 212 /* 213 * If this is an original (non-proxy) lock then replace it by 214 * a proxy and return the proxy. 215 */ 216 static rl_t * 217 zfs_range_proxify(avl_tree_t *tree, rl_t *rl) 218 { 219 rl_t *proxy; 220 221 if (rl->r_proxy) 222 return (rl); /* already a proxy */ 223 224 ASSERT3U(rl->r_cnt, ==, 1); 225 ASSERT(rl->r_write_wanted == B_FALSE); 226 ASSERT(rl->r_read_wanted == B_FALSE); 227 avl_remove(tree, rl); 228 rl->r_cnt = 0; 229 230 /* create a proxy range lock */ 231 proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP); 232 proxy->r_off = rl->r_off; 233 proxy->r_len = rl->r_len; 234 proxy->r_cnt = 1; 235 proxy->r_type = RL_READER; 236 proxy->r_proxy = B_TRUE; 237 cv_init(&proxy->r_wr_cv, NULL, CV_DEFAULT, NULL); 238 cv_init(&proxy->r_rd_cv, NULL, CV_DEFAULT, NULL); 239 proxy->r_write_wanted = B_FALSE; 240 proxy->r_read_wanted = B_FALSE; 241 proxy->r_refcnt = 1; 242 avl_add(tree, proxy); 243 244 return (proxy); 245 } 246 247 /* 248 * Split the range lock at the supplied offset 249 * returning the *front* proxy. 250 */ 251 static rl_t * 252 zfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off) 253 { 254 rl_t *front, *rear; 255 256 ASSERT3U(rl->r_len, >, 1); 257 ASSERT3U(off, >, rl->r_off); 258 ASSERT3U(off, <, rl->r_off + rl->r_len); 259 ASSERT(rl->r_write_wanted == B_FALSE); 260 ASSERT(rl->r_read_wanted == B_FALSE); 261 262 /* create the rear proxy range lock */ 263 rear = kmem_alloc(sizeof (rl_t), KM_SLEEP); 264 rear->r_off = off; 265 rear->r_len = rl->r_off + rl->r_len - off; 266 rear->r_cnt = rl->r_cnt; 267 rear->r_type = RL_READER; 268 rear->r_proxy = B_TRUE; 269 cv_init(&rear->r_wr_cv, NULL, CV_DEFAULT, NULL); 270 cv_init(&rear->r_rd_cv, NULL, CV_DEFAULT, NULL); 271 rear->r_refcnt = 1; 272 rear->r_write_wanted = B_FALSE; 273 rear->r_read_wanted = B_FALSE; 274 275 front = zfs_range_proxify(tree, rl); 276 front->r_len = off - rl->r_off; 277 278 avl_insert_here(tree, rear, front, AVL_AFTER); 279 return (front); 280 } 281 282 /* 283 * Create and add a new proxy range lock for the supplied range. 284 */ 285 static void 286 zfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len) 287 { 288 rl_t *rl; 289 290 ASSERT(len); 291 rl = kmem_alloc(sizeof (rl_t), KM_SLEEP); 292 rl->r_off = off; 293 rl->r_len = len; 294 rl->r_cnt = 1; 295 rl->r_type = RL_READER; 296 rl->r_proxy = B_TRUE; 297 cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL); 298 cv_init(&rl->r_rd_cv, NULL, CV_DEFAULT, NULL); 299 rl->r_write_wanted = B_FALSE; 300 rl->r_read_wanted = B_FALSE; 301 rl->r_refcnt = 1; 302 avl_add(tree, rl); 303 } 304 305 static void 306 zfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where) 307 { 308 rl_t *next; 309 uint64_t off = new->r_off; 310 uint64_t len = new->r_len; 311 312 /* 313 * prev arrives either: 314 * - pointing to an entry at the same offset 315 * - pointing to the entry with the closest previous offset whose 316 * range may overlap with the new range 317 * - null, if there were no ranges starting before the new one 318 */ 319 if (prev) { 320 if (prev->r_off + prev->r_len <= off) { 321 prev = NULL; 322 } else if (prev->r_off != off) { 323 /* 324 * convert to proxy if needed then 325 * split this entry and bump ref count 326 */ 327 prev = zfs_range_split(tree, prev, off); 328 prev = AVL_NEXT(tree, prev); /* move to rear range */ 329 } 330 } 331 ASSERT((prev == NULL) || (prev->r_off == off)); 332 333 if (prev) 334 next = prev; 335 else 336 next = (rl_t *)avl_nearest(tree, where, AVL_AFTER); 337 338 if (next == NULL || off + len <= next->r_off) { 339 /* no overlaps, use the original new rl_t in the tree */ 340 avl_insert(tree, new, where); 341 return; 342 } 343 344 if (off < next->r_off) { 345 /* Add a proxy for initial range before the overlap */ 346 zfs_range_new_proxy(tree, off, next->r_off - off); 347 } 348 349 new->r_cnt = 0; /* will use proxies in tree */ 350 /* 351 * We now search forward through the ranges, until we go past the end 352 * of the new range. For each entry we make it a proxy if it 353 * isn't already, then bump its reference count. If there's any 354 * gaps between the ranges then we create a new proxy range. 355 */ 356 for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) { 357 if (off + len <= next->r_off) 358 break; 359 if (prev && prev->r_off + prev->r_len < next->r_off) { 360 /* there's a gap */ 361 ASSERT3U(next->r_off, >, prev->r_off + prev->r_len); 362 zfs_range_new_proxy(tree, prev->r_off + prev->r_len, 363 next->r_off - (prev->r_off + prev->r_len)); 364 } 365 if (off + len == next->r_off + next->r_len) { 366 /* exact overlap with end */ 367 next = zfs_range_proxify(tree, next); 368 next->r_cnt++; 369 return; 370 } 371 if (off + len < next->r_off + next->r_len) { 372 /* new range ends in the middle of this block */ 373 next = zfs_range_split(tree, next, off + len); 374 next->r_cnt++; 375 return; 376 } 377 ASSERT3U(off + len, >, next->r_off + next->r_len); 378 next = zfs_range_proxify(tree, next); 379 next->r_cnt++; 380 } 381 382 /* Add the remaining end range. */ 383 zfs_range_new_proxy(tree, prev->r_off + prev->r_len, 384 (off + len) - (prev->r_off + prev->r_len)); 385 } 386 387 /* 388 * Check if a reader lock can be grabbed, or wait and recheck until available. 389 */ 390 static void 391 zfs_range_lock_reader(znode_t *zp, rl_t *new) 392 { 393 avl_tree_t *tree = &zp->z_range_avl; 394 rl_t *prev, *next; 395 avl_index_t where; 396 uint64_t off = new->r_off; 397 uint64_t len = new->r_len; 398 399 /* 400 * Look for any writer locks in the range. 401 */ 402 retry: 403 prev = avl_find(tree, new, &where); 404 if (prev == NULL) 405 prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE); 406 407 /* 408 * Check the previous range for a writer lock overlap. 409 */ 410 if (prev && (off < prev->r_off + prev->r_len)) { 411 if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) { 412 if (!prev->r_read_wanted) { 413 prev->r_read_wanted = B_TRUE; 414 } 415 if (zfs_range_lock_hold(prev) != 0) 416 panic("too many waiters on zfs range lock %p", 417 prev); 418 cv_wait(&prev->r_rd_cv, &zp->z_range_lock); 419 zfs_range_lock_rele(prev); 420 goto retry; 421 } 422 if (off + len < prev->r_off + prev->r_len) 423 goto got_lock; 424 } 425 426 /* 427 * Search through the following ranges to see if there's 428 * write lock any overlap. 429 */ 430 if (prev) 431 next = AVL_NEXT(tree, prev); 432 else 433 next = (rl_t *)avl_nearest(tree, where, AVL_AFTER); 434 for (; next; next = AVL_NEXT(tree, next)) { 435 if (off + len <= next->r_off) 436 goto got_lock; 437 if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) { 438 if (!next->r_read_wanted) { 439 next->r_read_wanted = B_TRUE; 440 } 441 if (zfs_range_lock_hold(next) != 0) 442 panic("too many waiters on zfs range lock %p", 443 next); 444 cv_wait(&next->r_rd_cv, &zp->z_range_lock); 445 zfs_range_lock_rele(next); 446 goto retry; 447 } 448 if (off + len <= next->r_off + next->r_len) 449 goto got_lock; 450 } 451 452 got_lock: 453 /* 454 * Add the read lock, which may involve splitting existing 455 * locks and bumping ref counts (r_cnt). 456 */ 457 zfs_range_add_reader(tree, new, prev, where); 458 } 459 460 /* 461 * Lock a range (offset, length) as either shared (RL_READER) 462 * or exclusive (RL_WRITER). Returns the range lock structure 463 * for later unlocking or reduce range (if entire file 464 * previously locked as RL_WRITER). 465 */ 466 rl_t * 467 zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type) 468 { 469 rl_t *new; 470 471 ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND); 472 473 new = kmem_alloc(sizeof (rl_t), KM_SLEEP); 474 new->r_zp = zp; 475 new->r_off = off; 476 if (len + off < off) /* overflow */ 477 len = UINT64_MAX - off; 478 new->r_len = len; 479 new->r_cnt = 1; /* assume it's going to be in the tree */ 480 new->r_type = type; 481 new->r_proxy = B_FALSE; 482 cv_init(&new->r_wr_cv, NULL, CV_DEFAULT, NULL); 483 cv_init(&new->r_rd_cv, NULL, CV_DEFAULT, NULL); 484 new->r_write_wanted = B_FALSE; 485 new->r_read_wanted = B_FALSE; 486 new->r_refcnt = 1; 487 488 mutex_enter(&zp->z_range_lock); 489 if (type == RL_READER) { 490 /* 491 * First check for the usual case of no locks 492 */ 493 if (avl_numnodes(&zp->z_range_avl) == 0) { 494 avl_add(&zp->z_range_avl, new); 495 } else { 496 zfs_range_lock_reader(zp, new); 497 } 498 } else { 499 zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */ 500 } 501 mutex_exit(&zp->z_range_lock); 502 return (new); 503 } 504 505 /* 506 * Unlock a reader lock 507 */ 508 static void 509 zfs_range_unlock_reader(znode_t *zp, rl_t *remove) 510 { 511 avl_tree_t *tree = &zp->z_range_avl; 512 rl_t *rl, *next; 513 uint64_t len; 514 515 /* 516 * The common case is when the remove entry is in the tree 517 * (cnt == 1) meaning there's been no other reader locks overlapping 518 * with this one. Otherwise the remove entry will have been 519 * removed from the tree and replaced by proxies (one or 520 * more ranges mapping to the entire range). 521 */ 522 if (remove->r_cnt == 1) { 523 avl_remove(tree, remove); 524 if (remove->r_write_wanted) { 525 cv_broadcast(&remove->r_wr_cv); 526 } 527 if (remove->r_read_wanted) { 528 cv_broadcast(&remove->r_rd_cv); 529 } 530 } else { 531 ASSERT3U(remove->r_cnt, ==, 0); 532 ASSERT3U(remove->r_write_wanted, ==, 0); 533 ASSERT3U(remove->r_read_wanted, ==, 0); 534 /* 535 * Find start proxy representing this reader lock, 536 * then decrement ref count on all proxies 537 * that make up this range, freeing them as needed. 538 */ 539 rl = avl_find(tree, remove, NULL); 540 ASSERT(rl); 541 ASSERT(rl->r_cnt); 542 ASSERT(rl->r_type == RL_READER); 543 for (len = remove->r_len; len != 0; rl = next) { 544 len -= rl->r_len; 545 if (len) { 546 next = AVL_NEXT(tree, rl); 547 ASSERT(next); 548 ASSERT(rl->r_off + rl->r_len == next->r_off); 549 ASSERT(next->r_cnt); 550 ASSERT(next->r_type == RL_READER); 551 } 552 rl->r_cnt--; 553 if (rl->r_cnt == 0) { 554 avl_remove(tree, rl); 555 if (rl->r_write_wanted) { 556 cv_broadcast(&rl->r_wr_cv); 557 } 558 if (rl->r_read_wanted) { 559 cv_broadcast(&rl->r_rd_cv); 560 } 561 zfs_range_lock_rele(rl); 562 } 563 } 564 } 565 zfs_range_lock_rele(remove); 566 } 567 568 /* 569 * Unlock range and destroy range lock structure. 570 */ 571 void 572 zfs_range_unlock(rl_t *rl) 573 { 574 znode_t *zp = rl->r_zp; 575 576 ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER); 577 ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0); 578 ASSERT(!rl->r_proxy); 579 580 mutex_enter(&zp->z_range_lock); 581 if (rl->r_type == RL_WRITER) { 582 /* writer locks can't be shared or split */ 583 avl_remove(&zp->z_range_avl, rl); 584 if (rl->r_write_wanted) { 585 cv_broadcast(&rl->r_wr_cv); 586 } 587 if (rl->r_read_wanted) { 588 cv_broadcast(&rl->r_rd_cv); 589 } 590 zfs_range_lock_rele(rl); 591 mutex_exit(&zp->z_range_lock); 592 } else { 593 /* 594 * lock may be shared, let zfs_range_unlock_reader() 595 * release the lock and free the rl_t 596 */ 597 zfs_range_unlock_reader(zp, rl); 598 mutex_exit(&zp->z_range_lock); 599 } 600 } 601 602 /* 603 * Reduce range locked as RL_WRITER from whole file to specified range. 604 * Asserts the whole file is exclusivly locked and so there's only one 605 * entry in the tree. 606 */ 607 void 608 zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len) 609 { 610 znode_t *zp = rl->r_zp; 611 612 /* Ensure there are no other locks */ 613 ASSERT(avl_numnodes(&zp->z_range_avl) == 1); 614 ASSERT(rl->r_off == 0); 615 ASSERT(rl->r_type == RL_WRITER); 616 ASSERT(!rl->r_proxy); 617 ASSERT3U(rl->r_len, ==, UINT64_MAX); 618 ASSERT3U(rl->r_cnt, ==, 1); 619 620 mutex_enter(&zp->z_range_lock); 621 rl->r_off = off; 622 rl->r_len = len; 623 if (rl->r_write_wanted) 624 cv_broadcast(&rl->r_wr_cv); 625 if (rl->r_read_wanted) 626 cv_broadcast(&rl->r_rd_cv); 627 mutex_exit(&zp->z_range_lock); 628 } 629 630 /* 631 * AVL comparison function used to order range locks 632 * Locks are ordered on the start offset of the range. 633 */ 634 int 635 zfs_range_compare(const void *arg1, const void *arg2) 636 { 637 const rl_t *rl1 = arg1; 638 const rl_t *rl2 = arg2; 639 640 if (rl1->r_off > rl2->r_off) 641 return (1); 642 if (rl1->r_off < rl2->r_off) 643 return (-1); 644 return (0); 645 } 646