xref: /netbsd-src/external/cddl/osnet/dist/uts/common/fs/zfs/zfs_rlock.c (revision 82ad575716605df31379cf04a2f3efbc97b8a6f5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * This file contains the code to implement file range locking in
28  * ZFS, although there isn't much specific to ZFS (all that comes to mind
29  * support for growing the blocksize).
30  *
31  * Interface
32  * ---------
33  * Defined in zfs_rlock.h but essentially:
34  *	rl = zfs_range_lock(zp, off, len, lock_type);
35  *	zfs_range_unlock(rl);
36  *	zfs_range_reduce(rl, off, len);
37  *
38  * AVL tree
39  * --------
40  * An AVL tree is used to maintain the state of the existing ranges
41  * that are locked for exclusive (writer) or shared (reader) use.
42  * The starting range offset is used for searching and sorting the tree.
43  *
44  * Common case
45  * -----------
46  * The (hopefully) usual case is of no overlaps or contention for
47  * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree
48  * searched that finds no overlap, and *this* rl_t is placed in the tree.
49  *
50  * Overlaps/Reference counting/Proxy locks
51  * ---------------------------------------
52  * The avl code only allows one node at a particular offset. Also it's very
53  * inefficient to search through all previous entries looking for overlaps
54  * (because the very 1st in the ordered list might be at offset 0 but
55  * cover the whole file).
56  * So this implementation uses reference counts and proxy range locks.
57  * Firstly, only reader locks use reference counts and proxy locks,
58  * because writer locks are exclusive.
59  * When a reader lock overlaps with another then a proxy lock is created
60  * for that range and replaces the original lock. If the overlap
61  * is exact then the reference count of the proxy is simply incremented.
62  * Otherwise, the proxy lock is split into smaller lock ranges and
63  * new proxy locks created for non overlapping ranges.
64  * The reference counts are adjusted accordingly.
65  * Meanwhile, the orginal lock is kept around (this is the callers handle)
66  * and its offset and length are used when releasing the lock.
67  *
68  * Thread coordination
69  * -------------------
70  * In order to make wakeups efficient and to ensure multiple continuous
71  * readers on a range don't starve a writer for the same range lock,
72  * two condition variables are allocated in each rl_t.
73  * If a writer (or reader) can't get a range it initialises the writer
74  * (or reader) cv; sets a flag saying there's a writer (or reader) waiting;
75  * and waits on that cv. When a thread unlocks that range it wakes up all
76  * writers then all readers before destroying the lock.
77  *
78  * Append mode writes
79  * ------------------
80  * Append mode writes need to lock a range at the end of a file.
81  * The offset of the end of the file is determined under the
82  * range locking mutex, and the lock type converted from RL_APPEND to
83  * RL_WRITER and the range locked.
84  *
85  * Grow block handling
86  * -------------------
87  * ZFS supports multiple block sizes currently upto 128K. The smallest
88  * block size is used for the file which is grown as needed. During this
89  * growth all other writers and readers must be excluded.
90  * So if the block size needs to be grown then the whole file is
91  * exclusively locked, then later the caller will reduce the lock
92  * range to just the range to be written using zfs_reduce_range.
93  */
94 
95 #include <sys/zfs_rlock.h>
96 
97 static int
98 zfs_range_lock_hold(rl_t *rl)
99 {
100 
101 	KASSERT(mutex_owned(&rl->r_zp->z_range_lock));
102 
103 	if (rl->r_refcnt >= ULONG_MAX)
104 		return (ENFILE); /* XXX What to do?  */
105 
106 	rl->r_refcnt++;
107 	return (0);
108 }
109 
110 static void
111 zfs_range_lock_rele(rl_t *rl)
112 {
113 
114 	KASSERT(mutex_owned(&rl->r_zp->z_range_lock));
115 	KASSERT(rl->r_refcnt > 0);
116 
117 	if (--rl->r_refcnt == 0) {
118 		cv_destroy(&rl->r_wr_cv);
119 		cv_destroy(&rl->r_rd_cv);
120 		kmem_free(rl, sizeof (rl_t));
121 	}
122 }
123 
124 /*
125  * Check if a write lock can be grabbed, or wait and recheck until available.
126  */
127 static void
128 zfs_range_lock_writer(znode_t *zp, rl_t *new)
129 {
130 	avl_tree_t *tree = &zp->z_range_avl;
131 	rl_t *rl;
132 	avl_index_t where;
133 	uint64_t end_size;
134 	uint64_t off = new->r_off;
135 	uint64_t len = new->r_len;
136 
137 	for (;;) {
138 		/*
139 		 * Range locking is also used by zvol and uses a
140 		 * dummied up znode. However, for zvol, we don't need to
141 		 * append or grow blocksize, and besides we don't have
142 		 * a z_phys or z_zfsvfs - so skip that processing.
143 		 *
144 		 * Yes, this is ugly, and would be solved by not handling
145 		 * grow or append in range lock code. If that was done then
146 		 * we could make the range locking code generically available
147 		 * to other non-zfs consumers.
148 		 */
149 		if (zp->z_vnode) { /* caller is ZPL */
150 			/*
151 			 * If in append mode pick up the current end of file.
152 			 * This is done under z_range_lock to avoid races.
153 			 */
154 			if (new->r_type == RL_APPEND)
155 				new->r_off = zp->z_phys->zp_size;
156 
157 			/*
158 			 * If we need to grow the block size then grab the whole
159 			 * file range. This is also done under z_range_lock to
160 			 * avoid races.
161 			 */
162 			end_size = MAX(zp->z_phys->zp_size, new->r_off + len);
163 			if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
164 			    zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) {
165 				new->r_off = 0;
166 				new->r_len = UINT64_MAX;
167 			}
168 		}
169 
170 		/*
171 		 * First check for the usual case of no locks
172 		 */
173 		if (avl_numnodes(tree) == 0) {
174 			new->r_type = RL_WRITER; /* convert to writer */
175 			avl_add(tree, new);
176 			return;
177 		}
178 
179 		/*
180 		 * Look for any locks in the range.
181 		 */
182 		rl = avl_find(tree, new, &where);
183 		if (rl)
184 			goto wait; /* already locked at same offset */
185 
186 		rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
187 		if (rl && (rl->r_off < new->r_off + new->r_len))
188 			goto wait;
189 
190 		rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
191 		if (rl && rl->r_off + rl->r_len > new->r_off)
192 			goto wait;
193 
194 		new->r_type = RL_WRITER; /* convert possible RL_APPEND */
195 		avl_insert(tree, new, where);
196 		return;
197 wait:
198 		if (!rl->r_write_wanted) {
199 			rl->r_write_wanted = B_TRUE;
200 		}
201 		if (zfs_range_lock_hold(rl) != 0)
202 			panic("too many waiters on zfs range lock %p", rl);
203 		cv_wait(&rl->r_wr_cv, &zp->z_range_lock);
204 		zfs_range_lock_rele(rl);
205 
206 		/* reset to original */
207 		new->r_off = off;
208 		new->r_len = len;
209 	}
210 }
211 
212 /*
213  * If this is an original (non-proxy) lock then replace it by
214  * a proxy and return the proxy.
215  */
216 static rl_t *
217 zfs_range_proxify(avl_tree_t *tree, rl_t *rl)
218 {
219 	rl_t *proxy;
220 
221 	if (rl->r_proxy)
222 		return (rl); /* already a proxy */
223 
224 	ASSERT3U(rl->r_cnt, ==, 1);
225 	ASSERT(rl->r_write_wanted == B_FALSE);
226 	ASSERT(rl->r_read_wanted == B_FALSE);
227 	avl_remove(tree, rl);
228 	rl->r_cnt = 0;
229 
230 	/* create a proxy range lock */
231 	proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP);
232 	proxy->r_off = rl->r_off;
233 	proxy->r_len = rl->r_len;
234 	proxy->r_cnt = 1;
235 	proxy->r_type = RL_READER;
236 	proxy->r_proxy = B_TRUE;
237 	cv_init(&proxy->r_wr_cv, NULL, CV_DEFAULT, NULL);
238 	cv_init(&proxy->r_rd_cv, NULL, CV_DEFAULT, NULL);
239 	proxy->r_write_wanted = B_FALSE;
240 	proxy->r_read_wanted = B_FALSE;
241 	proxy->r_refcnt = 1;
242 	avl_add(tree, proxy);
243 
244 	return (proxy);
245 }
246 
247 /*
248  * Split the range lock at the supplied offset
249  * returning the *front* proxy.
250  */
251 static rl_t *
252 zfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off)
253 {
254 	rl_t *front, *rear;
255 
256 	ASSERT3U(rl->r_len, >, 1);
257 	ASSERT3U(off, >, rl->r_off);
258 	ASSERT3U(off, <, rl->r_off + rl->r_len);
259 	ASSERT(rl->r_write_wanted == B_FALSE);
260 	ASSERT(rl->r_read_wanted == B_FALSE);
261 
262 	/* create the rear proxy range lock */
263 	rear = kmem_alloc(sizeof (rl_t), KM_SLEEP);
264 	rear->r_off = off;
265 	rear->r_len = rl->r_off + rl->r_len - off;
266 	rear->r_cnt = rl->r_cnt;
267 	rear->r_type = RL_READER;
268 	rear->r_proxy = B_TRUE;
269 	cv_init(&rear->r_wr_cv, NULL, CV_DEFAULT, NULL);
270 	cv_init(&rear->r_rd_cv, NULL, CV_DEFAULT, NULL);
271 	rear->r_refcnt = 1;
272 	rear->r_write_wanted = B_FALSE;
273 	rear->r_read_wanted = B_FALSE;
274 
275 	front = zfs_range_proxify(tree, rl);
276 	front->r_len = off - rl->r_off;
277 
278 	avl_insert_here(tree, rear, front, AVL_AFTER);
279 	return (front);
280 }
281 
282 /*
283  * Create and add a new proxy range lock for the supplied range.
284  */
285 static void
286 zfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len)
287 {
288 	rl_t *rl;
289 
290 	ASSERT(len);
291 	rl = kmem_alloc(sizeof (rl_t), KM_SLEEP);
292 	rl->r_off = off;
293 	rl->r_len = len;
294 	rl->r_cnt = 1;
295 	rl->r_type = RL_READER;
296 	rl->r_proxy = B_TRUE;
297 	cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL);
298 	cv_init(&rl->r_rd_cv, NULL, CV_DEFAULT, NULL);
299 	rl->r_write_wanted = B_FALSE;
300 	rl->r_read_wanted = B_FALSE;
301 	rl->r_refcnt = 1;
302 	avl_add(tree, rl);
303 }
304 
305 static void
306 zfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where)
307 {
308 	rl_t *next;
309 	uint64_t off = new->r_off;
310 	uint64_t len = new->r_len;
311 
312 	/*
313 	 * prev arrives either:
314 	 * - pointing to an entry at the same offset
315 	 * - pointing to the entry with the closest previous offset whose
316 	 *   range may overlap with the new range
317 	 * - null, if there were no ranges starting before the new one
318 	 */
319 	if (prev) {
320 		if (prev->r_off + prev->r_len <= off) {
321 			prev = NULL;
322 		} else if (prev->r_off != off) {
323 			/*
324 			 * convert to proxy if needed then
325 			 * split this entry and bump ref count
326 			 */
327 			prev = zfs_range_split(tree, prev, off);
328 			prev = AVL_NEXT(tree, prev); /* move to rear range */
329 		}
330 	}
331 	ASSERT((prev == NULL) || (prev->r_off == off));
332 
333 	if (prev)
334 		next = prev;
335 	else
336 		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
337 
338 	if (next == NULL || off + len <= next->r_off) {
339 		/* no overlaps, use the original new rl_t in the tree */
340 		avl_insert(tree, new, where);
341 		return;
342 	}
343 
344 	if (off < next->r_off) {
345 		/* Add a proxy for initial range before the overlap */
346 		zfs_range_new_proxy(tree, off, next->r_off - off);
347 	}
348 
349 	new->r_cnt = 0; /* will use proxies in tree */
350 	/*
351 	 * We now search forward through the ranges, until we go past the end
352 	 * of the new range. For each entry we make it a proxy if it
353 	 * isn't already, then bump its reference count. If there's any
354 	 * gaps between the ranges then we create a new proxy range.
355 	 */
356 	for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) {
357 		if (off + len <= next->r_off)
358 			break;
359 		if (prev && prev->r_off + prev->r_len < next->r_off) {
360 			/* there's a gap */
361 			ASSERT3U(next->r_off, >, prev->r_off + prev->r_len);
362 			zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
363 			    next->r_off - (prev->r_off + prev->r_len));
364 		}
365 		if (off + len == next->r_off + next->r_len) {
366 			/* exact overlap with end */
367 			next = zfs_range_proxify(tree, next);
368 			next->r_cnt++;
369 			return;
370 		}
371 		if (off + len < next->r_off + next->r_len) {
372 			/* new range ends in the middle of this block */
373 			next = zfs_range_split(tree, next, off + len);
374 			next->r_cnt++;
375 			return;
376 		}
377 		ASSERT3U(off + len, >, next->r_off + next->r_len);
378 		next = zfs_range_proxify(tree, next);
379 		next->r_cnt++;
380 	}
381 
382 	/* Add the remaining end range. */
383 	zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
384 	    (off + len) - (prev->r_off + prev->r_len));
385 }
386 
387 /*
388  * Check if a reader lock can be grabbed, or wait and recheck until available.
389  */
390 static void
391 zfs_range_lock_reader(znode_t *zp, rl_t *new)
392 {
393 	avl_tree_t *tree = &zp->z_range_avl;
394 	rl_t *prev, *next;
395 	avl_index_t where;
396 	uint64_t off = new->r_off;
397 	uint64_t len = new->r_len;
398 
399 	/*
400 	 * Look for any writer locks in the range.
401 	 */
402 retry:
403 	prev = avl_find(tree, new, &where);
404 	if (prev == NULL)
405 		prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
406 
407 	/*
408 	 * Check the previous range for a writer lock overlap.
409 	 */
410 	if (prev && (off < prev->r_off + prev->r_len)) {
411 		if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) {
412 			if (!prev->r_read_wanted) {
413 				prev->r_read_wanted = B_TRUE;
414 			}
415 			if (zfs_range_lock_hold(prev) != 0)
416 				panic("too many waiters on zfs range lock %p",
417 				    prev);
418 			cv_wait(&prev->r_rd_cv, &zp->z_range_lock);
419 			zfs_range_lock_rele(prev);
420 			goto retry;
421 		}
422 		if (off + len < prev->r_off + prev->r_len)
423 			goto got_lock;
424 	}
425 
426 	/*
427 	 * Search through the following ranges to see if there's
428 	 * write lock any overlap.
429 	 */
430 	if (prev)
431 		next = AVL_NEXT(tree, prev);
432 	else
433 		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
434 	for (; next; next = AVL_NEXT(tree, next)) {
435 		if (off + len <= next->r_off)
436 			goto got_lock;
437 		if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) {
438 			if (!next->r_read_wanted) {
439 				next->r_read_wanted = B_TRUE;
440 			}
441 			if (zfs_range_lock_hold(next) != 0)
442 				panic("too many waiters on zfs range lock %p",
443 				    next);
444 			cv_wait(&next->r_rd_cv, &zp->z_range_lock);
445 			zfs_range_lock_rele(next);
446 			goto retry;
447 		}
448 		if (off + len <= next->r_off + next->r_len)
449 			goto got_lock;
450 	}
451 
452 got_lock:
453 	/*
454 	 * Add the read lock, which may involve splitting existing
455 	 * locks and bumping ref counts (r_cnt).
456 	 */
457 	zfs_range_add_reader(tree, new, prev, where);
458 }
459 
460 /*
461  * Lock a range (offset, length) as either shared (RL_READER)
462  * or exclusive (RL_WRITER). Returns the range lock structure
463  * for later unlocking or reduce range (if entire file
464  * previously locked as RL_WRITER).
465  */
466 rl_t *
467 zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type)
468 {
469 	rl_t *new;
470 
471 	ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND);
472 
473 	new = kmem_alloc(sizeof (rl_t), KM_SLEEP);
474 	new->r_zp = zp;
475 	new->r_off = off;
476 	if (len + off < off)	/* overflow */
477 		len = UINT64_MAX - off;
478 	new->r_len = len;
479 	new->r_cnt = 1; /* assume it's going to be in the tree */
480 	new->r_type = type;
481 	new->r_proxy = B_FALSE;
482 	cv_init(&new->r_wr_cv, NULL, CV_DEFAULT, NULL);
483 	cv_init(&new->r_rd_cv, NULL, CV_DEFAULT, NULL);
484 	new->r_write_wanted = B_FALSE;
485 	new->r_read_wanted = B_FALSE;
486 	new->r_refcnt = 1;
487 
488 	mutex_enter(&zp->z_range_lock);
489 	if (type == RL_READER) {
490 		/*
491 		 * First check for the usual case of no locks
492 		 */
493 		if (avl_numnodes(&zp->z_range_avl) == 0) {
494 			avl_add(&zp->z_range_avl, new);
495 		} else {
496 			zfs_range_lock_reader(zp, new);
497 		}
498 	} else {
499 		zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */
500 	}
501 	mutex_exit(&zp->z_range_lock);
502 	return (new);
503 }
504 
505 /*
506  * Unlock a reader lock
507  */
508 static void
509 zfs_range_unlock_reader(znode_t *zp, rl_t *remove)
510 {
511 	avl_tree_t *tree = &zp->z_range_avl;
512 	rl_t *rl, *next;
513 	uint64_t len;
514 
515 	/*
516 	 * The common case is when the remove entry is in the tree
517 	 * (cnt == 1) meaning there's been no other reader locks overlapping
518 	 * with this one. Otherwise the remove entry will have been
519 	 * removed from the tree and replaced by proxies (one or
520 	 * more ranges mapping to the entire range).
521 	 */
522 	if (remove->r_cnt == 1) {
523 		avl_remove(tree, remove);
524 		if (remove->r_write_wanted) {
525 			cv_broadcast(&remove->r_wr_cv);
526 		}
527 		if (remove->r_read_wanted) {
528 			cv_broadcast(&remove->r_rd_cv);
529 		}
530 	} else {
531 		ASSERT3U(remove->r_cnt, ==, 0);
532 		ASSERT3U(remove->r_write_wanted, ==, 0);
533 		ASSERT3U(remove->r_read_wanted, ==, 0);
534 		/*
535 		 * Find start proxy representing this reader lock,
536 		 * then decrement ref count on all proxies
537 		 * that make up this range, freeing them as needed.
538 		 */
539 		rl = avl_find(tree, remove, NULL);
540 		ASSERT(rl);
541 		ASSERT(rl->r_cnt);
542 		ASSERT(rl->r_type == RL_READER);
543 		for (len = remove->r_len; len != 0; rl = next) {
544 			len -= rl->r_len;
545 			if (len) {
546 				next = AVL_NEXT(tree, rl);
547 				ASSERT(next);
548 				ASSERT(rl->r_off + rl->r_len == next->r_off);
549 				ASSERT(next->r_cnt);
550 				ASSERT(next->r_type == RL_READER);
551 			}
552 			rl->r_cnt--;
553 			if (rl->r_cnt == 0) {
554 				avl_remove(tree, rl);
555 				if (rl->r_write_wanted) {
556 					cv_broadcast(&rl->r_wr_cv);
557 				}
558 				if (rl->r_read_wanted) {
559 					cv_broadcast(&rl->r_rd_cv);
560 				}
561 				zfs_range_lock_rele(rl);
562 			}
563 		}
564 	}
565 	zfs_range_lock_rele(remove);
566 }
567 
568 /*
569  * Unlock range and destroy range lock structure.
570  */
571 void
572 zfs_range_unlock(rl_t *rl)
573 {
574 	znode_t *zp = rl->r_zp;
575 
576 	ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER);
577 	ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0);
578 	ASSERT(!rl->r_proxy);
579 
580 	mutex_enter(&zp->z_range_lock);
581 	if (rl->r_type == RL_WRITER) {
582 		/* writer locks can't be shared or split */
583 		avl_remove(&zp->z_range_avl, rl);
584 		if (rl->r_write_wanted) {
585 			cv_broadcast(&rl->r_wr_cv);
586 		}
587 		if (rl->r_read_wanted) {
588 			cv_broadcast(&rl->r_rd_cv);
589 		}
590 		zfs_range_lock_rele(rl);
591 		mutex_exit(&zp->z_range_lock);
592 	} else {
593 		/*
594 		 * lock may be shared, let zfs_range_unlock_reader()
595 		 * release the lock and free the rl_t
596 		 */
597 		zfs_range_unlock_reader(zp, rl);
598 		mutex_exit(&zp->z_range_lock);
599 	}
600 }
601 
602 /*
603  * Reduce range locked as RL_WRITER from whole file to specified range.
604  * Asserts the whole file is exclusivly locked and so there's only one
605  * entry in the tree.
606  */
607 void
608 zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len)
609 {
610 	znode_t *zp = rl->r_zp;
611 
612 	/* Ensure there are no other locks */
613 	ASSERT(avl_numnodes(&zp->z_range_avl) == 1);
614 	ASSERT(rl->r_off == 0);
615 	ASSERT(rl->r_type == RL_WRITER);
616 	ASSERT(!rl->r_proxy);
617 	ASSERT3U(rl->r_len, ==, UINT64_MAX);
618 	ASSERT3U(rl->r_cnt, ==, 1);
619 
620 	mutex_enter(&zp->z_range_lock);
621 	rl->r_off = off;
622 	rl->r_len = len;
623 	if (rl->r_write_wanted)
624 		cv_broadcast(&rl->r_wr_cv);
625 	if (rl->r_read_wanted)
626 		cv_broadcast(&rl->r_rd_cv);
627 	mutex_exit(&zp->z_range_lock);
628 }
629 
630 /*
631  * AVL comparison function used to order range locks
632  * Locks are ordered on the start offset of the range.
633  */
634 int
635 zfs_range_compare(const void *arg1, const void *arg2)
636 {
637 	const rl_t *rl1 = arg1;
638 	const rl_t *rl2 = arg2;
639 
640 	if (rl1->r_off > rl2->r_off)
641 		return (1);
642 	if (rl1->r_off < rl2->r_off)
643 		return (-1);
644 	return (0);
645 }
646