1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/time.h> 29 #include <sys/systm.h> 30 #include <sys/sysmacros.h> 31 #include <sys/resource.h> 32 #include <sys/vfs.h> 33 #include <sys/vnode.h> 34 #include <sys/file.h> 35 #include <sys/mode.h> 36 #include <sys/kmem.h> 37 #include <sys/uio.h> 38 #include <sys/pathname.h> 39 #include <sys/cmn_err.h> 40 #include <sys/errno.h> 41 #include <sys/stat.h> 42 #include <sys/unistd.h> 43 #include <sys/sunddi.h> 44 #include <sys/random.h> 45 #include <sys/policy.h> 46 #include <sys/zfs_dir.h> 47 #include <sys/zfs_acl.h> 48 #include <sys/fs/zfs.h> 49 #include <sys/zap.h> 50 #include <sys/dmu.h> 51 #include <sys/atomic.h> 52 #include <sys/zfs_ctldir.h> 53 #include <sys/zfs_fuid.h> 54 #include <sys/dnlc.h> 55 #include <sys/extdirent.h> 56 57 /* 58 * zfs_match_find() is used by zfs_dirent_lock() to peform zap lookups 59 * of names after deciding which is the appropriate lookup interface. 60 */ 61 static int 62 zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, char *name, boolean_t exact, 63 boolean_t update, int *deflags, pathname_t *rpnp, uint64_t *zoid) 64 { 65 int error; 66 67 if (zfsvfs->z_norm) { 68 matchtype_t mt = MT_FIRST; 69 boolean_t conflict = B_FALSE; 70 size_t bufsz = 0; 71 char *buf = NULL; 72 73 if (rpnp) { 74 buf = rpnp->pn_buf; 75 bufsz = rpnp->pn_bufsize; 76 } 77 if (exact) 78 mt = MT_EXACT; 79 /* 80 * In the non-mixed case we only expect there would ever 81 * be one match, but we need to use the normalizing lookup. 82 */ 83 error = zap_lookup_norm(zfsvfs->z_os, dzp->z_id, name, 8, 1, 84 zoid, mt, buf, bufsz, &conflict); 85 if (!error && deflags) 86 *deflags = conflict ? ED_CASE_CONFLICT : 0; 87 } else { 88 error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid); 89 } 90 *zoid = ZFS_DIRENT_OBJ(*zoid); 91 92 if (error == ENOENT && update) 93 dnlc_update(ZTOV(dzp), name, DNLC_NO_VNODE); 94 95 return (error); 96 } 97 98 /* 99 * Reference counting for dirlocks. Solaris destroys the condvar as 100 * soon as it broadcasts, which works for them because cv_wait doesn't 101 * need to use the condvar after it is woken, but which is too fast and 102 * loose with the abstraction for us in NetBSD. 103 */ 104 105 static int 106 zfs_dirlock_hold(zfs_dirlock_t *dl) 107 { 108 109 KASSERT(mutex_owned(&dl->dl_dzp->z_lock)); 110 111 if (dl->dl_refcnt >= ULONG_MAX) /* XXX Name this constant. */ 112 return (ENFILE); /* XXX What to do? */ 113 114 dl->dl_refcnt++; 115 return (0); 116 } 117 118 static void 119 zfs_dirlock_rele(zfs_dirlock_t *dl) 120 { 121 122 KASSERT(mutex_owned(&dl->dl_dzp->z_lock)); 123 KASSERT(dl->dl_refcnt > 0); 124 125 if (--dl->dl_refcnt == 0) { 126 if (dl->dl_namesize != 0) 127 kmem_free(dl->dl_name, dl->dl_namesize); 128 cv_destroy(&dl->dl_cv); 129 kmem_free(dl, sizeof(*dl)); 130 } 131 } 132 133 /* 134 * Lock a directory entry. A dirlock on <dzp, name> protects that name 135 * in dzp's directory zap object. As long as you hold a dirlock, you can 136 * assume two things: (1) dzp cannot be reaped, and (2) no other thread 137 * can change the zap entry for (i.e. link or unlink) this name. 138 * 139 * Input arguments: 140 * dzp - znode for directory 141 * name - name of entry to lock 142 * flag - ZNEW: if the entry already exists, fail with EEXIST. 143 * ZEXISTS: if the entry does not exist, fail with ENOENT. 144 * ZSHARED: allow concurrent access with other ZSHARED callers. 145 * ZXATTR: we want dzp's xattr directory 146 * ZCILOOK: On a mixed sensitivity file system, 147 * this lookup should be case-insensitive. 148 * ZCIEXACT: On a purely case-insensitive file system, 149 * this lookup should be case-sensitive. 150 * ZRENAMING: we are locking for renaming, force narrow locks 151 * ZHAVELOCK: Don't grab the z_name_lock for this call. The 152 * current thread already holds it. 153 * 154 * Output arguments: 155 * zpp - pointer to the znode for the entry (NULL if there isn't one) 156 * dlpp - pointer to the dirlock for this entry (NULL on error) 157 * direntflags - (case-insensitive lookup only) 158 * flags if multiple case-sensitive matches exist in directory 159 * realpnp - (case-insensitive lookup only) 160 * actual name matched within the directory 161 * 162 * Return value: 0 on success or errno on failure. 163 * 164 * NOTE: Always checks for, and rejects, '.' and '..'. 165 * NOTE: For case-insensitive file systems we take wide locks (see below), 166 * but return znode pointers to a single match. 167 */ 168 int 169 zfs_dirent_lock(zfs_dirlock_t **dlpp, znode_t *dzp, char *name, znode_t **zpp, 170 int flag, int *direntflags, pathname_t *realpnp) 171 { 172 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 173 zfs_dirlock_t *dl; 174 boolean_t update; 175 boolean_t exact; 176 uint64_t zoid; 177 vnode_t *vp = NULL; 178 int error = 0; 179 int cmpflags; 180 181 *zpp = NULL; 182 *dlpp = NULL; 183 184 /* 185 * Verify that we are not trying to lock '.', '..', or '.zfs' 186 */ 187 if (name[0] == '.' && 188 (name[1] == '\0' || (name[1] == '.' && name[2] == '\0')) || 189 zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) 190 return (EEXIST); 191 192 /* 193 * Case sensitivity and normalization preferences are set when 194 * the file system is created. These are stored in the 195 * zfsvfs->z_case and zfsvfs->z_norm fields. These choices 196 * affect what vnodes can be cached in the DNLC, how we 197 * perform zap lookups, and the "width" of our dirlocks. 198 * 199 * A normal dirlock locks a single name. Note that with 200 * normalization a name can be composed multiple ways, but 201 * when normalized, these names all compare equal. A wide 202 * dirlock locks multiple names. We need these when the file 203 * system is supporting mixed-mode access. It is sometimes 204 * necessary to lock all case permutations of file name at 205 * once so that simultaneous case-insensitive/case-sensitive 206 * behaves as rationally as possible. 207 */ 208 209 /* 210 * Decide if exact matches should be requested when performing 211 * a zap lookup on file systems supporting case-insensitive 212 * access. 213 */ 214 exact = 215 ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE) && (flag & ZCIEXACT)) || 216 ((zfsvfs->z_case == ZFS_CASE_MIXED) && !(flag & ZCILOOK)); 217 218 /* 219 * Only look in or update the DNLC if we are looking for the 220 * name on a file system that does not require normalization 221 * or case folding. We can also look there if we happen to be 222 * on a non-normalizing, mixed sensitivity file system IF we 223 * are looking for the exact name. 224 * 225 * Maybe can add TO-UPPERed version of name to dnlc in ci-only 226 * case for performance improvement? 227 */ 228 update = !zfsvfs->z_norm || 229 ((zfsvfs->z_case == ZFS_CASE_MIXED) && 230 !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER) && !(flag & ZCILOOK)); 231 232 /* 233 * ZRENAMING indicates we are in a situation where we should 234 * take narrow locks regardless of the file system's 235 * preferences for normalizing and case folding. This will 236 * prevent us deadlocking trying to grab the same wide lock 237 * twice if the two names happen to be case-insensitive 238 * matches. 239 */ 240 if (flag & ZRENAMING) 241 cmpflags = 0; 242 else 243 cmpflags = zfsvfs->z_norm; 244 245 /* 246 * Wait until there are no locks on this name. 247 * 248 * Don't grab the the lock if it is already held. However, cannot 249 * have both ZSHARED and ZHAVELOCK together. 250 */ 251 ASSERT(!(flag & ZSHARED) || !(flag & ZHAVELOCK)); 252 if (!(flag & ZHAVELOCK)) 253 rw_enter(&dzp->z_name_lock, RW_READER); 254 255 mutex_enter(&dzp->z_lock); 256 for (;;) { 257 if (dzp->z_unlinked) { 258 mutex_exit(&dzp->z_lock); 259 if (!(flag & ZHAVELOCK)) 260 rw_exit(&dzp->z_name_lock); 261 return (ENOENT); 262 } 263 for (dl = dzp->z_dirlocks; dl != NULL; dl = dl->dl_next) { 264 if ((u8_strcmp(name, dl->dl_name, 0, cmpflags, 265 U8_UNICODE_LATEST, &error) == 0) || error != 0) 266 break; 267 } 268 if (error != 0) { 269 mutex_exit(&dzp->z_lock); 270 if (!(flag & ZHAVELOCK)) 271 rw_exit(&dzp->z_name_lock); 272 return (ENOENT); 273 } 274 if (dl == NULL) { 275 /* 276 * Allocate a new dirlock and add it to the list. 277 */ 278 dl = kmem_alloc(sizeof (zfs_dirlock_t), KM_SLEEP); 279 cv_init(&dl->dl_cv, NULL, CV_DEFAULT, NULL); 280 dl->dl_name = name; 281 dl->dl_sharecnt = 0; 282 dl->dl_namelock = 0; 283 dl->dl_namesize = 0; 284 dl->dl_refcnt = 1; 285 dl->dl_dzp = dzp; 286 dl->dl_next = dzp->z_dirlocks; 287 dzp->z_dirlocks = dl; 288 break; 289 } 290 if ((flag & ZSHARED) && dl->dl_sharecnt != 0) 291 break; 292 error = zfs_dirlock_hold(dl); 293 if (error) { 294 mutex_exit(&dzp->z_lock); 295 if (!(flag & ZHAVELOCK)) 296 rw_exit(&dzp->z_name_lock); 297 return (error); 298 } 299 cv_wait(&dl->dl_cv, &dzp->z_lock); 300 zfs_dirlock_rele(dl); 301 } 302 303 /* 304 * If the z_name_lock was NOT held for this dirlock record it. 305 */ 306 if (flag & ZHAVELOCK) 307 dl->dl_namelock = 1; 308 309 if ((flag & ZSHARED) && ++dl->dl_sharecnt > 1 && dl->dl_namesize == 0) { 310 /* 311 * We're the second shared reference to dl. Make a copy of 312 * dl_name in case the first thread goes away before we do. 313 * Note that we initialize the new name before storing its 314 * pointer into dl_name, because the first thread may load 315 * dl->dl_name at any time. He'll either see the old value, 316 * which is his, or the new shared copy; either is OK. 317 */ 318 dl->dl_namesize = strlen(dl->dl_name) + 1; 319 name = kmem_alloc(dl->dl_namesize, KM_SLEEP); 320 bcopy(dl->dl_name, name, dl->dl_namesize); 321 dl->dl_name = name; 322 } 323 324 mutex_exit(&dzp->z_lock); 325 326 /* 327 * We have a dirlock on the name. (Note that it is the dirlock, 328 * not the dzp's z_lock, that protects the name in the zap object.) 329 * See if there's an object by this name; if so, put a hold on it. 330 */ 331 if (flag & ZXATTR) { 332 zoid = dzp->z_phys->zp_xattr; 333 error = (zoid == 0 ? ENOENT : 0); 334 } else { 335 if (update) 336 vp = dnlc_lookup(ZTOV(dzp), name); 337 if (vp == DNLC_NO_VNODE) { 338 VN_RELE(vp); 339 error = ENOENT; 340 } else if (vp) { 341 if (flag & ZNEW) { 342 zfs_dirent_unlock(dl); 343 VN_RELE(vp); 344 return (EEXIST); 345 } 346 *dlpp = dl; 347 *zpp = VTOZ(vp); 348 return (0); 349 } else { 350 error = zfs_match_find(zfsvfs, dzp, name, exact, 351 update, direntflags, realpnp, &zoid); 352 } 353 } 354 if (error) { 355 if (error != ENOENT || (flag & ZEXISTS)) { 356 zfs_dirent_unlock(dl); 357 return (error); 358 } 359 } else { 360 if (flag & ZNEW) { 361 zfs_dirent_unlock(dl); 362 return (EEXIST); 363 } 364 error = zfs_zget(zfsvfs, zoid, zpp); 365 if (error) { 366 zfs_dirent_unlock(dl); 367 return (error); 368 } 369 if (!(flag & ZXATTR) && update) 370 dnlc_update(ZTOV(dzp), name, ZTOV(*zpp)); 371 } 372 373 *dlpp = dl; 374 375 return (0); 376 } 377 378 /* 379 * Unlock this directory entry and wake anyone who was waiting for it. 380 */ 381 void 382 zfs_dirent_unlock(zfs_dirlock_t *dl) 383 { 384 znode_t *dzp = dl->dl_dzp; 385 zfs_dirlock_t **prev_dl, *cur_dl; 386 387 mutex_enter(&dzp->z_lock); 388 389 if (!dl->dl_namelock) 390 rw_exit(&dzp->z_name_lock); 391 392 if (dl->dl_sharecnt > 1) { 393 dl->dl_sharecnt--; 394 mutex_exit(&dzp->z_lock); 395 return; 396 } 397 prev_dl = &dzp->z_dirlocks; 398 while ((cur_dl = *prev_dl) != dl) 399 prev_dl = &cur_dl->dl_next; 400 *prev_dl = dl->dl_next; 401 cv_broadcast(&dl->dl_cv); 402 zfs_dirlock_rele(dl); 403 mutex_exit(&dzp->z_lock); 404 } 405 406 /* 407 * Look up an entry in a directory. 408 * 409 * NOTE: '.' and '..' are handled as special cases because 410 * no directory entries are actually stored for them. If this is 411 * the root of a filesystem, then '.zfs' is also treated as a 412 * special pseudo-directory. 413 */ 414 int 415 zfs_dirlook(znode_t *dzp, char *name, vnode_t **vpp, int flags, 416 int *deflg, pathname_t *rpnp) 417 { 418 zfs_dirlock_t *dl; 419 znode_t *zp; 420 int error = 0; 421 422 if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) { 423 *vpp = ZTOV(dzp); 424 VN_HOLD(*vpp); 425 } else if (name[0] == '.' && name[1] == '.' && name[2] == 0) { 426 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 427 /* 428 * If we are a snapshot mounted under .zfs, return 429 * the vp for the snapshot directory. 430 */ 431 if (dzp->z_phys->zp_parent == dzp->z_id && 432 zfsvfs->z_parent != zfsvfs) { 433 error = zfsctl_root_lookup(zfsvfs->z_parent->z_ctldir, 434 "snapshot", vpp, NULL, 0, NULL, kcred, 435 NULL, NULL, NULL); 436 return (error); 437 } 438 rw_enter(&dzp->z_parent_lock, RW_READER); 439 mutex_enter(&dzp->z_lock); 440 if (dzp->z_phys->zp_links == 0) { 441 /* Directory has been rmdir'd. */ 442 error = ENOENT; 443 } else { 444 error = zfs_zget(zfsvfs, dzp->z_phys->zp_parent, &zp); 445 if (error == 0) 446 *vpp = ZTOV(zp); 447 } 448 mutex_exit(&dzp->z_lock); 449 rw_exit(&dzp->z_parent_lock); 450 } else if (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) { 451 *vpp = zfsctl_root(dzp); 452 } else { 453 int zf; 454 455 zf = ZEXISTS | ZSHARED; 456 if (flags & FIGNORECASE) 457 zf |= ZCILOOK; 458 459 error = zfs_dirent_lock(&dl, dzp, name, &zp, zf, deflg, rpnp); 460 if (error == 0) { 461 *vpp = ZTOV(zp); 462 zfs_dirent_unlock(dl); 463 dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */ 464 } 465 rpnp = NULL; 466 } 467 468 if ((flags & FIGNORECASE) && rpnp && !error) 469 (void) strlcpy(rpnp->pn_buf, name, rpnp->pn_bufsize); 470 471 return (error); 472 } 473 474 /* 475 * unlinked Set (formerly known as the "delete queue") Error Handling 476 * 477 * When dealing with the unlinked set, we dmu_tx_hold_zap(), but we 478 * don't specify the name of the entry that we will be manipulating. We 479 * also fib and say that we won't be adding any new entries to the 480 * unlinked set, even though we might (this is to lower the minimum file 481 * size that can be deleted in a full filesystem). So on the small 482 * chance that the nlink list is using a fat zap (ie. has more than 483 * 2000 entries), we *may* not pre-read a block that's needed. 484 * Therefore it is remotely possible for some of the assertions 485 * regarding the unlinked set below to fail due to i/o error. On a 486 * nondebug system, this will result in the space being leaked. 487 */ 488 void 489 zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx) 490 { 491 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 492 493 ASSERT(zp->z_unlinked); 494 ASSERT3U(zp->z_phys->zp_links, ==, 0); 495 496 VERIFY3U(0, ==, 497 zap_add_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx)); 498 } 499 500 /* 501 * Clean up any znodes that had no links when we either crashed or 502 * (force) umounted the file system. 503 */ 504 void 505 zfs_unlinked_drain(zfsvfs_t *zfsvfs) 506 { 507 zap_cursor_t zc; 508 zap_attribute_t zap; 509 dmu_object_info_t doi; 510 znode_t *zp; 511 int error; 512 513 /* 514 * Interate over the contents of the unlinked set. 515 */ 516 for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_unlinkedobj); 517 zap_cursor_retrieve(&zc, &zap) == 0; 518 zap_cursor_advance(&zc)) { 519 520 /* 521 * See what kind of object we have in list 522 */ 523 524 error = dmu_object_info(zfsvfs->z_os, 525 zap.za_first_integer, &doi); 526 if (error != 0) 527 continue; 528 529 ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) || 530 (doi.doi_type == DMU_OT_DIRECTORY_CONTENTS)); 531 /* 532 * We need to re-mark these list entries for deletion, 533 * so we pull them back into core and set zp->z_unlinked. 534 */ 535 error = zfs_zget(zfsvfs, zap.za_first_integer, &zp); 536 537 /* 538 * We may pick up znodes that are already marked for deletion. 539 * This could happen during the purge of an extended attribute 540 * directory. All we need to do is skip over them, since they 541 * are already in the system marked z_unlinked. 542 */ 543 if (error != 0) 544 continue; 545 546 zp->z_unlinked = B_TRUE; 547 VN_RELE(ZTOV(zp)); 548 } 549 zap_cursor_fini(&zc); 550 } 551 552 /* 553 * Delete the entire contents of a directory. Return a count 554 * of the number of entries that could not be deleted. If we encounter 555 * an error, return a count of at least one so that the directory stays 556 * in the unlinked set. 557 * 558 * NOTE: this function assumes that the directory is inactive, 559 * so there is no need to lock its entries before deletion. 560 * Also, it assumes the directory contents is *only* regular 561 * files. 562 */ 563 static int 564 zfs_purgedir(znode_t *dzp) 565 { 566 zap_cursor_t zc; 567 zap_attribute_t zap; 568 znode_t *xzp; 569 dmu_tx_t *tx; 570 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 571 zfs_dirlock_t dl; 572 int skipped = 0; 573 int error; 574 575 for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id); 576 (error = zap_cursor_retrieve(&zc, &zap)) == 0; 577 zap_cursor_advance(&zc)) { 578 error = zfs_zget(zfsvfs, 579 ZFS_DIRENT_OBJ(zap.za_first_integer), &xzp); 580 if (error) { 581 skipped += 1; 582 continue; 583 } 584 585 ASSERT((ZTOV(xzp)->v_type == VREG) || 586 (ZTOV(xzp)->v_type == VLNK)); 587 588 tx = dmu_tx_create(zfsvfs->z_os); 589 dmu_tx_hold_bonus(tx, dzp->z_id); 590 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, zap.za_name); 591 dmu_tx_hold_bonus(tx, xzp->z_id); 592 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 593 error = dmu_tx_assign(tx, TXG_WAIT); 594 if (error) { 595 dmu_tx_abort(tx); 596 VN_RELE(ZTOV(xzp)); 597 skipped += 1; 598 continue; 599 } 600 bzero(&dl, sizeof (dl)); 601 dl.dl_dzp = dzp; 602 dl.dl_name = zap.za_name; 603 604 error = zfs_link_destroy(&dl, xzp, tx, 0, NULL); 605 if (error) 606 skipped += 1; 607 dmu_tx_commit(tx); 608 609 VN_RELE(ZTOV(xzp)); 610 } 611 zap_cursor_fini(&zc); 612 if (error != ENOENT) 613 skipped += 1; 614 return (skipped); 615 } 616 617 void 618 zfs_rmnode(znode_t *zp) 619 { 620 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 621 objset_t *os = zfsvfs->z_os; 622 znode_t *xzp = NULL; 623 dmu_tx_t *tx; 624 uint64_t acl_obj; 625 int error; 626 627 ASSERT(ZTOV(zp)->v_count == 0); 628 ASSERT(zp->z_phys->zp_links == 0); 629 630 /* 631 * If this is an attribute directory, purge its contents. 632 */ 633 if (ZTOV(zp)->v_type == VDIR && (zp->z_phys->zp_flags & ZFS_XATTR)) { 634 if (zfs_purgedir(zp) != 0) { 635 /* 636 * Not enough space to delete some xattrs. 637 * Leave it in the unlinked set. 638 */ 639 zfs_znode_dmu_fini(zp); 640 zfs_znode_free(zp); 641 return; 642 } 643 } 644 645 /* 646 * Free up all the data in the file. 647 */ 648 error = dmu_free_long_range(os, zp->z_id, 0, DMU_OBJECT_END); 649 if (error) { 650 /* 651 * Not enough space. Leave the file in the unlinked set. 652 */ 653 zfs_znode_dmu_fini(zp); 654 zfs_znode_free(zp); 655 return; 656 } 657 658 /* 659 * If the file has extended attributes, we're going to unlink 660 * the xattr dir. 661 */ 662 if (zp->z_phys->zp_xattr) { 663 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 664 ASSERT(error == 0); 665 } 666 667 acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj; 668 669 /* 670 * Set up the final transaction. 671 */ 672 tx = dmu_tx_create(os); 673 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 674 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 675 if (xzp) { 676 dmu_tx_hold_bonus(tx, xzp->z_id); 677 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, TRUE, NULL); 678 } 679 if (acl_obj) 680 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 681 error = dmu_tx_assign(tx, TXG_WAIT); 682 if (error) { 683 /* 684 * Not enough space to delete the file. Leave it in the 685 * unlinked set, leaking it until the fs is remounted (at 686 * which point we'll call zfs_unlinked_drain() to process it). 687 */ 688 dmu_tx_abort(tx); 689 zfs_znode_dmu_fini(zp); 690 zfs_znode_free(zp); 691 goto out; 692 } 693 694 if (xzp) { 695 dmu_buf_will_dirty(xzp->z_dbuf, tx); 696 mutex_enter(&xzp->z_lock); 697 xzp->z_unlinked = B_TRUE; /* mark xzp for deletion */ 698 xzp->z_phys->zp_links = 0; /* no more links to it */ 699 mutex_exit(&xzp->z_lock); 700 zfs_unlinked_add(xzp, tx); 701 } 702 703 /* Remove this znode from the unlinked set */ 704 VERIFY3U(0, ==, 705 zap_remove_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx)); 706 707 zfs_znode_delete(zp, tx); 708 709 dmu_tx_commit(tx); 710 out: 711 if (xzp) 712 VN_RELE(ZTOV(xzp)); 713 } 714 715 static uint64_t 716 zfs_dirent(znode_t *zp) 717 { 718 uint64_t de = zp->z_id; 719 if (zp->z_zfsvfs->z_version >= ZPL_VERSION_DIRENT_TYPE) 720 de |= IFTODT((zp)->z_phys->zp_mode) << 60; 721 return (de); 722 } 723 724 /* 725 * Link zp into dl. Can only fail if zp has been unlinked. 726 */ 727 int 728 zfs_link_create(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag) 729 { 730 znode_t *dzp = dl->dl_dzp; 731 vnode_t *vp = ZTOV(zp); 732 uint64_t value; 733 int zp_is_dir = (vp->v_type == VDIR); 734 int error; 735 736 dmu_buf_will_dirty(zp->z_dbuf, tx); 737 mutex_enter(&zp->z_lock); 738 739 if (!(flag & ZRENAMING)) { 740 if (zp->z_unlinked) { /* no new links to unlinked zp */ 741 ASSERT(!(flag & (ZNEW | ZEXISTS))); 742 mutex_exit(&zp->z_lock); 743 return (ENOENT); 744 } 745 zp->z_phys->zp_links++; 746 } 747 zp->z_phys->zp_parent = dzp->z_id; /* dzp is now zp's parent */ 748 749 if (!(flag & ZNEW)) 750 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 751 mutex_exit(&zp->z_lock); 752 753 dmu_buf_will_dirty(dzp->z_dbuf, tx); 754 mutex_enter(&dzp->z_lock); 755 dzp->z_phys->zp_size++; /* one dirent added */ 756 dzp->z_phys->zp_links += zp_is_dir; /* ".." link from zp */ 757 zfs_time_stamper_locked(dzp, CONTENT_MODIFIED, tx); 758 mutex_exit(&dzp->z_lock); 759 760 value = zfs_dirent(zp); 761 error = zap_add(zp->z_zfsvfs->z_os, dzp->z_id, dl->dl_name, 762 8, 1, &value, tx); 763 ASSERT(error == 0); 764 765 dnlc_update(ZTOV(dzp), dl->dl_name, vp); 766 767 return (0); 768 } 769 770 /* 771 * Unlink zp from dl, and mark zp for deletion if this was the last link. 772 * Can fail if zp is a mount point (EBUSY) or a non-empty directory (EEXIST). 773 * If 'unlinkedp' is NULL, we put unlinked znodes on the unlinked list. 774 * If it's non-NULL, we use it to indicate whether the znode needs deletion, 775 * and it's the caller's job to do it. 776 */ 777 int 778 zfs_link_destroy(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag, 779 boolean_t *unlinkedp) 780 { 781 znode_t *dzp = dl->dl_dzp; 782 vnode_t *vp = ZTOV(zp); 783 int zp_is_dir = (vp->v_type == VDIR); 784 boolean_t unlinked = B_FALSE; 785 int error; 786 787 dnlc_remove(ZTOV(dzp), dl->dl_name); 788 789 if (!(flag & ZRENAMING)) { 790 dmu_buf_will_dirty(zp->z_dbuf, tx); 791 792 if (vn_vfswlock(vp)) /* prevent new mounts on zp */ 793 return (EBUSY); 794 795 if (vn_ismntpt(vp)) { /* don't remove mount point */ 796 vn_vfsunlock(vp); 797 return (EBUSY); 798 } 799 800 mutex_enter(&zp->z_lock); 801 if (zp_is_dir && !zfs_dirempty(zp)) { /* dir not empty */ 802 mutex_exit(&zp->z_lock); 803 vn_vfsunlock(vp); 804 return (ENOTEMPTY); 805 } 806 if (zp->z_phys->zp_links <= zp_is_dir) { 807 zfs_panic_recover("zfs: link count on vnode %p is %u, " 808 "should be at least %u", 809 zp->z_vnode, (int)zp->z_phys->zp_links, 810 zp_is_dir + 1); 811 zp->z_phys->zp_links = zp_is_dir + 1; 812 } 813 if (--zp->z_phys->zp_links == zp_is_dir) { 814 zp->z_unlinked = B_TRUE; 815 zp->z_phys->zp_links = 0; 816 unlinked = B_TRUE; 817 } else { 818 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 819 } 820 mutex_exit(&zp->z_lock); 821 vn_vfsunlock(vp); 822 } 823 824 dmu_buf_will_dirty(dzp->z_dbuf, tx); 825 mutex_enter(&dzp->z_lock); 826 dzp->z_phys->zp_size--; /* one dirent removed */ 827 dzp->z_phys->zp_links -= zp_is_dir; /* ".." link from zp */ 828 zfs_time_stamper_locked(dzp, CONTENT_MODIFIED, tx); 829 mutex_exit(&dzp->z_lock); 830 831 if (zp->z_zfsvfs->z_norm) { 832 if (((zp->z_zfsvfs->z_case == ZFS_CASE_INSENSITIVE) && 833 (flag & ZCIEXACT)) || 834 ((zp->z_zfsvfs->z_case == ZFS_CASE_MIXED) && 835 !(flag & ZCILOOK))) 836 error = zap_remove_norm(zp->z_zfsvfs->z_os, 837 dzp->z_id, dl->dl_name, MT_EXACT, tx); 838 else 839 error = zap_remove_norm(zp->z_zfsvfs->z_os, 840 dzp->z_id, dl->dl_name, MT_FIRST, tx); 841 } else { 842 error = zap_remove(zp->z_zfsvfs->z_os, 843 dzp->z_id, dl->dl_name, tx); 844 } 845 ASSERT(error == 0); 846 847 if (unlinkedp != NULL) 848 *unlinkedp = unlinked; 849 else if (unlinked) 850 zfs_unlinked_add(zp, tx); 851 852 return (0); 853 } 854 855 /* 856 * Indicate whether the directory is empty. Works with or without z_lock 857 * held, but can only be consider a hint in the latter case. Returns true 858 * if only "." and ".." remain and there's no work in progress. 859 */ 860 boolean_t 861 zfs_dirempty(znode_t *dzp) 862 { 863 return (dzp->z_phys->zp_size == 2 && dzp->z_dirlocks == 0); 864 } 865 866 int 867 zfs_make_xattrdir(znode_t *zp, vattr_t *vap, vnode_t **xvpp, cred_t *cr) 868 { 869 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 870 znode_t *xzp; 871 dmu_tx_t *tx; 872 int error; 873 zfs_acl_ids_t acl_ids; 874 boolean_t fuid_dirtied; 875 876 *xvpp = NULL; 877 878 if (error = zfs_zaccess(zp, ACE_WRITE_NAMED_ATTRS, 0, B_FALSE, cr)) 879 return (error); 880 881 if ((error = zfs_acl_ids_create(zp, IS_XATTR, vap, cr, NULL, 882 &acl_ids)) != 0) 883 return (error); 884 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 885 zfs_acl_ids_free(&acl_ids); 886 return (EDQUOT); 887 } 888 889 tx = dmu_tx_create(zfsvfs->z_os); 890 dmu_tx_hold_bonus(tx, zp->z_id); 891 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 892 fuid_dirtied = zfsvfs->z_fuid_dirty; 893 if (fuid_dirtied) 894 zfs_fuid_txhold(zfsvfs, tx); 895 error = dmu_tx_assign(tx, TXG_NOWAIT); 896 if (error) { 897 zfs_acl_ids_free(&acl_ids); 898 if (error == ERESTART) 899 dmu_tx_wait(tx); 900 dmu_tx_abort(tx); 901 return (error); 902 } 903 zfs_mknode(zp, vap, tx, cr, IS_XATTR, &xzp, 0, &acl_ids); 904 905 if (fuid_dirtied) 906 zfs_fuid_sync(zfsvfs, tx); 907 908 ASSERT(xzp->z_phys->zp_parent == zp->z_id); 909 dmu_buf_will_dirty(zp->z_dbuf, tx); 910 zp->z_phys->zp_xattr = xzp->z_id; 911 912 (void) zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp, 913 xzp, "", NULL, acl_ids.z_fuidp, vap); 914 915 zfs_acl_ids_free(&acl_ids); 916 dmu_tx_commit(tx); 917 918 *xvpp = ZTOV(xzp); 919 920 return (0); 921 } 922 923 /* 924 * Return a znode for the extended attribute directory for zp. 925 * ** If the directory does not already exist, it is created ** 926 * 927 * IN: zp - znode to obtain attribute directory from 928 * cr - credentials of caller 929 * flags - flags from the VOP_LOOKUP call 930 * 931 * OUT: xzpp - pointer to extended attribute znode 932 * 933 * RETURN: 0 on success 934 * error number on failure 935 */ 936 int 937 zfs_get_xattrdir(znode_t *zp, vnode_t **xvpp, cred_t *cr, int flags) 938 { 939 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 940 znode_t *xzp; 941 zfs_dirlock_t *dl; 942 vattr_t va; 943 int error; 944 top: 945 error = zfs_dirent_lock(&dl, zp, "", &xzp, ZXATTR, NULL, NULL); 946 if (error) 947 return (error); 948 949 if (xzp != NULL) { 950 *xvpp = ZTOV(xzp); 951 zfs_dirent_unlock(dl); 952 return (0); 953 } 954 955 ASSERT(zp->z_phys->zp_xattr == 0); 956 957 if (!(flags & CREATE_XATTR_DIR)) { 958 zfs_dirent_unlock(dl); 959 return (ENOENT); 960 } 961 962 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 963 zfs_dirent_unlock(dl); 964 return (EROFS); 965 } 966 967 /* 968 * The ability to 'create' files in an attribute 969 * directory comes from the write_xattr permission on the base file. 970 * 971 * The ability to 'search' an attribute directory requires 972 * read_xattr permission on the base file. 973 * 974 * Once in a directory the ability to read/write attributes 975 * is controlled by the permissions on the attribute file. 976 */ 977 va.va_mask = AT_TYPE | AT_MODE | AT_UID | AT_GID; 978 va.va_type = VDIR; 979 va.va_mode = S_IFDIR | S_ISVTX | 0777; 980 zfs_fuid_map_ids(zp, cr, &va.va_uid, &va.va_gid); 981 982 error = zfs_make_xattrdir(zp, &va, xvpp, cr); 983 zfs_dirent_unlock(dl); 984 985 if (error == ERESTART) { 986 /* NB: we already did dmu_tx_wait() if necessary */ 987 goto top; 988 } 989 990 return (error); 991 } 992 993 /* 994 * Decide whether it is okay to remove within a sticky directory. 995 * 996 * In sticky directories, write access is not sufficient; 997 * you can remove entries from a directory only if: 998 * 999 * you own the directory, 1000 * you own the entry, 1001 * the entry is a plain file and you have write access, 1002 * or you are privileged (checked in secpolicy...). 1003 * 1004 * The function returns 0 if remove access is granted. 1005 */ 1006 int 1007 zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr) 1008 { 1009 uid_t uid; 1010 uid_t downer; 1011 uid_t fowner; 1012 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1013 1014 if (zdp->z_zfsvfs->z_replay) 1015 return (0); 1016 1017 if ((zdp->z_phys->zp_mode & S_ISVTX) == 0) 1018 return (0); 1019 1020 downer = zfs_fuid_map_id(zfsvfs, zdp->z_phys->zp_uid, cr, ZFS_OWNER); 1021 fowner = zfs_fuid_map_id(zfsvfs, zp->z_phys->zp_uid, cr, ZFS_OWNER); 1022 1023 if ((uid = crgetuid(cr)) == downer || uid == fowner || 1024 (ZTOV(zp)->v_type == VREG && 1025 zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr) == 0)) 1026 return (0); 1027 else 1028 return (secpolicy_vnode_remove(cr)); 1029 } 1030