1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved. 27 * Copyright (c) 2014 Integros [integros.com] 28 * Copyright 2016 Toomas Soome <tsoome@me.com> 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/fm/fs/zfs.h> 33 #include <sys/spa.h> 34 #include <sys/spa_impl.h> 35 #include <sys/dmu.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/uberblock_impl.h> 39 #include <sys/metaslab.h> 40 #include <sys/metaslab_impl.h> 41 #include <sys/space_map.h> 42 #include <sys/space_reftree.h> 43 #include <sys/zio.h> 44 #include <sys/zap.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/arc.h> 47 #include <sys/zil.h> 48 #include <sys/dsl_scan.h> 49 #include <sys/trim_map.h> 50 51 SYSCTL_DECL(_vfs_zfs); 52 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV"); 53 54 /* 55 * Virtual device management. 56 */ 57 58 /* 59 * The limit for ZFS to automatically increase a top-level vdev's ashift 60 * from logical ashift to physical ashift. 61 * 62 * Example: one or more 512B emulation child vdevs 63 * child->vdev_ashift = 9 (512 bytes) 64 * child->vdev_physical_ashift = 12 (4096 bytes) 65 * zfs_max_auto_ashift = 11 (2048 bytes) 66 * zfs_min_auto_ashift = 9 (512 bytes) 67 * 68 * On pool creation or the addition of a new top-level vdev, ZFS will 69 * increase the ashift of the top-level vdev to 2048 as limited by 70 * zfs_max_auto_ashift. 71 * 72 * Example: one or more 512B emulation child vdevs 73 * child->vdev_ashift = 9 (512 bytes) 74 * child->vdev_physical_ashift = 12 (4096 bytes) 75 * zfs_max_auto_ashift = 13 (8192 bytes) 76 * zfs_min_auto_ashift = 9 (512 bytes) 77 * 78 * On pool creation or the addition of a new top-level vdev, ZFS will 79 * increase the ashift of the top-level vdev to 4096 to match the 80 * max vdev_physical_ashift. 81 * 82 * Example: one or more 512B emulation child vdevs 83 * child->vdev_ashift = 9 (512 bytes) 84 * child->vdev_physical_ashift = 9 (512 bytes) 85 * zfs_max_auto_ashift = 13 (8192 bytes) 86 * zfs_min_auto_ashift = 12 (4096 bytes) 87 * 88 * On pool creation or the addition of a new top-level vdev, ZFS will 89 * increase the ashift of the top-level vdev to 4096 to match the 90 * zfs_min_auto_ashift. 91 */ 92 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT; 93 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT; 94 95 #ifdef __FreeBSD__ 96 static int 97 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS) 98 { 99 uint64_t val; 100 int err; 101 102 val = zfs_max_auto_ashift; 103 err = sysctl_handle_64(oidp, &val, 0, req); 104 if (err != 0 || req->newptr == NULL) 105 return (err); 106 107 if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift) 108 return (EINVAL); 109 110 zfs_max_auto_ashift = val; 111 112 return (0); 113 } 114 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift, 115 CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t), 116 sysctl_vfs_zfs_max_auto_ashift, "QU", 117 "Max ashift used when optimising for logical -> physical sectors size on " 118 "new top-level vdevs."); 119 120 static int 121 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS) 122 { 123 uint64_t val; 124 int err; 125 126 val = zfs_min_auto_ashift; 127 err = sysctl_handle_64(oidp, &val, 0, req); 128 if (err != 0 || req->newptr == NULL) 129 return (err); 130 131 if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift) 132 return (EINVAL); 133 134 zfs_min_auto_ashift = val; 135 136 return (0); 137 } 138 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift, 139 CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t), 140 sysctl_vfs_zfs_min_auto_ashift, "QU", 141 "Min ashift used when creating new top-level vdevs."); 142 #endif 143 144 static vdev_ops_t *vdev_ops_table[] = { 145 &vdev_root_ops, 146 &vdev_raidz_ops, 147 &vdev_mirror_ops, 148 &vdev_replacing_ops, 149 &vdev_spare_ops, 150 #if defined(__FreeBSD__) && defined(_KERNEL) 151 &vdev_geom_ops, 152 #else 153 &vdev_disk_ops, 154 #endif 155 &vdev_file_ops, 156 &vdev_missing_ops, 157 &vdev_hole_ops, 158 NULL 159 }; 160 161 162 /* 163 * When a vdev is added, it will be divided into approximately (but no 164 * more than) this number of metaslabs. 165 */ 166 int metaslabs_per_vdev = 200; 167 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN, 168 &metaslabs_per_vdev, 0, 169 "When a vdev is added, how many metaslabs the vdev should be divided into"); 170 171 /* 172 * Given a vdev type, return the appropriate ops vector. 173 */ 174 static vdev_ops_t * 175 vdev_getops(const char *type) 176 { 177 vdev_ops_t *ops, **opspp; 178 179 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 180 if (strcmp(ops->vdev_op_type, type) == 0) 181 break; 182 183 return (ops); 184 } 185 186 /* 187 * Default asize function: return the MAX of psize with the asize of 188 * all children. This is what's used by anything other than RAID-Z. 189 */ 190 uint64_t 191 vdev_default_asize(vdev_t *vd, uint64_t psize) 192 { 193 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 194 uint64_t csize; 195 196 for (int c = 0; c < vd->vdev_children; c++) { 197 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 198 asize = MAX(asize, csize); 199 } 200 201 return (asize); 202 } 203 204 /* 205 * Get the minimum allocatable size. We define the allocatable size as 206 * the vdev's asize rounded to the nearest metaslab. This allows us to 207 * replace or attach devices which don't have the same physical size but 208 * can still satisfy the same number of allocations. 209 */ 210 uint64_t 211 vdev_get_min_asize(vdev_t *vd) 212 { 213 vdev_t *pvd = vd->vdev_parent; 214 215 /* 216 * If our parent is NULL (inactive spare or cache) or is the root, 217 * just return our own asize. 218 */ 219 if (pvd == NULL) 220 return (vd->vdev_asize); 221 222 /* 223 * The top-level vdev just returns the allocatable size rounded 224 * to the nearest metaslab. 225 */ 226 if (vd == vd->vdev_top) 227 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 228 229 /* 230 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 231 * so each child must provide at least 1/Nth of its asize. 232 */ 233 if (pvd->vdev_ops == &vdev_raidz_ops) 234 return (pvd->vdev_min_asize / pvd->vdev_children); 235 236 return (pvd->vdev_min_asize); 237 } 238 239 void 240 vdev_set_min_asize(vdev_t *vd) 241 { 242 vd->vdev_min_asize = vdev_get_min_asize(vd); 243 244 for (int c = 0; c < vd->vdev_children; c++) 245 vdev_set_min_asize(vd->vdev_child[c]); 246 } 247 248 vdev_t * 249 vdev_lookup_top(spa_t *spa, uint64_t vdev) 250 { 251 vdev_t *rvd = spa->spa_root_vdev; 252 253 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 254 255 if (vdev < rvd->vdev_children) { 256 ASSERT(rvd->vdev_child[vdev] != NULL); 257 return (rvd->vdev_child[vdev]); 258 } 259 260 return (NULL); 261 } 262 263 vdev_t * 264 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 265 { 266 vdev_t *mvd; 267 268 if (vd->vdev_guid == guid) 269 return (vd); 270 271 for (int c = 0; c < vd->vdev_children; c++) 272 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 273 NULL) 274 return (mvd); 275 276 return (NULL); 277 } 278 279 static int 280 vdev_count_leaves_impl(vdev_t *vd) 281 { 282 int n = 0; 283 284 if (vd->vdev_ops->vdev_op_leaf) 285 return (1); 286 287 for (int c = 0; c < vd->vdev_children; c++) 288 n += vdev_count_leaves_impl(vd->vdev_child[c]); 289 290 return (n); 291 } 292 293 int 294 vdev_count_leaves(spa_t *spa) 295 { 296 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 297 } 298 299 void 300 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 301 { 302 size_t oldsize, newsize; 303 uint64_t id = cvd->vdev_id; 304 vdev_t **newchild; 305 spa_t *spa = cvd->vdev_spa; 306 307 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 308 ASSERT(cvd->vdev_parent == NULL); 309 310 cvd->vdev_parent = pvd; 311 312 if (pvd == NULL) 313 return; 314 315 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 316 317 oldsize = pvd->vdev_children * sizeof (vdev_t *); 318 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 319 newsize = pvd->vdev_children * sizeof (vdev_t *); 320 321 newchild = kmem_zalloc(newsize, KM_SLEEP); 322 if (pvd->vdev_child != NULL) { 323 bcopy(pvd->vdev_child, newchild, oldsize); 324 kmem_free(pvd->vdev_child, oldsize); 325 } 326 327 pvd->vdev_child = newchild; 328 pvd->vdev_child[id] = cvd; 329 330 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 331 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 332 333 /* 334 * Walk up all ancestors to update guid sum. 335 */ 336 for (; pvd != NULL; pvd = pvd->vdev_parent) 337 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 338 } 339 340 void 341 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 342 { 343 int c; 344 uint_t id = cvd->vdev_id; 345 346 ASSERT(cvd->vdev_parent == pvd); 347 348 if (pvd == NULL) 349 return; 350 351 ASSERT(id < pvd->vdev_children); 352 ASSERT(pvd->vdev_child[id] == cvd); 353 354 pvd->vdev_child[id] = NULL; 355 cvd->vdev_parent = NULL; 356 357 for (c = 0; c < pvd->vdev_children; c++) 358 if (pvd->vdev_child[c]) 359 break; 360 361 if (c == pvd->vdev_children) { 362 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 363 pvd->vdev_child = NULL; 364 pvd->vdev_children = 0; 365 } 366 367 /* 368 * Walk up all ancestors to update guid sum. 369 */ 370 for (; pvd != NULL; pvd = pvd->vdev_parent) 371 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 372 } 373 374 /* 375 * Remove any holes in the child array. 376 */ 377 void 378 vdev_compact_children(vdev_t *pvd) 379 { 380 vdev_t **newchild, *cvd; 381 int oldc = pvd->vdev_children; 382 int newc; 383 384 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 385 386 for (int c = newc = 0; c < oldc; c++) 387 if (pvd->vdev_child[c]) 388 newc++; 389 390 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 391 392 for (int c = newc = 0; c < oldc; c++) { 393 if ((cvd = pvd->vdev_child[c]) != NULL) { 394 newchild[newc] = cvd; 395 cvd->vdev_id = newc++; 396 } 397 } 398 399 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 400 pvd->vdev_child = newchild; 401 pvd->vdev_children = newc; 402 } 403 404 /* 405 * Allocate and minimally initialize a vdev_t. 406 */ 407 vdev_t * 408 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 409 { 410 vdev_t *vd; 411 412 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 413 414 if (spa->spa_root_vdev == NULL) { 415 ASSERT(ops == &vdev_root_ops); 416 spa->spa_root_vdev = vd; 417 spa->spa_load_guid = spa_generate_guid(NULL); 418 } 419 420 if (guid == 0 && ops != &vdev_hole_ops) { 421 if (spa->spa_root_vdev == vd) { 422 /* 423 * The root vdev's guid will also be the pool guid, 424 * which must be unique among all pools. 425 */ 426 guid = spa_generate_guid(NULL); 427 } else { 428 /* 429 * Any other vdev's guid must be unique within the pool. 430 */ 431 guid = spa_generate_guid(spa); 432 } 433 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 434 } 435 436 vd->vdev_spa = spa; 437 vd->vdev_id = id; 438 vd->vdev_guid = guid; 439 vd->vdev_guid_sum = guid; 440 vd->vdev_ops = ops; 441 vd->vdev_state = VDEV_STATE_CLOSED; 442 vd->vdev_ishole = (ops == &vdev_hole_ops); 443 444 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 445 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 446 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 447 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL); 448 for (int t = 0; t < DTL_TYPES; t++) { 449 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 450 &vd->vdev_dtl_lock); 451 } 452 txg_list_create(&vd->vdev_ms_list, 453 offsetof(struct metaslab, ms_txg_node)); 454 txg_list_create(&vd->vdev_dtl_list, 455 offsetof(struct vdev, vdev_dtl_node)); 456 vd->vdev_stat.vs_timestamp = gethrtime(); 457 vdev_queue_init(vd); 458 vdev_cache_init(vd); 459 460 return (vd); 461 } 462 463 /* 464 * Allocate a new vdev. The 'alloctype' is used to control whether we are 465 * creating a new vdev or loading an existing one - the behavior is slightly 466 * different for each case. 467 */ 468 int 469 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 470 int alloctype) 471 { 472 vdev_ops_t *ops; 473 char *type; 474 uint64_t guid = 0, islog, nparity; 475 vdev_t *vd; 476 477 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 478 479 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 480 return (SET_ERROR(EINVAL)); 481 482 if ((ops = vdev_getops(type)) == NULL) 483 return (SET_ERROR(EINVAL)); 484 485 /* 486 * If this is a load, get the vdev guid from the nvlist. 487 * Otherwise, vdev_alloc_common() will generate one for us. 488 */ 489 if (alloctype == VDEV_ALLOC_LOAD) { 490 uint64_t label_id; 491 492 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 493 label_id != id) 494 return (SET_ERROR(EINVAL)); 495 496 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 497 return (SET_ERROR(EINVAL)); 498 } else if (alloctype == VDEV_ALLOC_SPARE) { 499 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 500 return (SET_ERROR(EINVAL)); 501 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 502 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 503 return (SET_ERROR(EINVAL)); 504 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 505 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 506 return (SET_ERROR(EINVAL)); 507 } 508 509 /* 510 * The first allocated vdev must be of type 'root'. 511 */ 512 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 513 return (SET_ERROR(EINVAL)); 514 515 /* 516 * Determine whether we're a log vdev. 517 */ 518 islog = 0; 519 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 520 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 521 return (SET_ERROR(ENOTSUP)); 522 523 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 524 return (SET_ERROR(ENOTSUP)); 525 526 /* 527 * Set the nparity property for RAID-Z vdevs. 528 */ 529 nparity = -1ULL; 530 if (ops == &vdev_raidz_ops) { 531 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 532 &nparity) == 0) { 533 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 534 return (SET_ERROR(EINVAL)); 535 /* 536 * Previous versions could only support 1 or 2 parity 537 * device. 538 */ 539 if (nparity > 1 && 540 spa_version(spa) < SPA_VERSION_RAIDZ2) 541 return (SET_ERROR(ENOTSUP)); 542 if (nparity > 2 && 543 spa_version(spa) < SPA_VERSION_RAIDZ3) 544 return (SET_ERROR(ENOTSUP)); 545 } else { 546 /* 547 * We require the parity to be specified for SPAs that 548 * support multiple parity levels. 549 */ 550 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 551 return (SET_ERROR(EINVAL)); 552 /* 553 * Otherwise, we default to 1 parity device for RAID-Z. 554 */ 555 nparity = 1; 556 } 557 } else { 558 nparity = 0; 559 } 560 ASSERT(nparity != -1ULL); 561 562 vd = vdev_alloc_common(spa, id, guid, ops); 563 564 vd->vdev_islog = islog; 565 vd->vdev_nparity = nparity; 566 567 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 568 vd->vdev_path = spa_strdup(vd->vdev_path); 569 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 570 vd->vdev_devid = spa_strdup(vd->vdev_devid); 571 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 572 &vd->vdev_physpath) == 0) 573 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 574 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 575 vd->vdev_fru = spa_strdup(vd->vdev_fru); 576 577 /* 578 * Set the whole_disk property. If it's not specified, leave the value 579 * as -1. 580 */ 581 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 582 &vd->vdev_wholedisk) != 0) 583 vd->vdev_wholedisk = -1ULL; 584 585 /* 586 * Look for the 'not present' flag. This will only be set if the device 587 * was not present at the time of import. 588 */ 589 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 590 &vd->vdev_not_present); 591 592 /* 593 * Get the alignment requirement. 594 */ 595 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 596 597 /* 598 * Retrieve the vdev creation time. 599 */ 600 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 601 &vd->vdev_crtxg); 602 603 /* 604 * If we're a top-level vdev, try to load the allocation parameters. 605 */ 606 if (parent && !parent->vdev_parent && 607 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 608 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 609 &vd->vdev_ms_array); 610 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 611 &vd->vdev_ms_shift); 612 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 613 &vd->vdev_asize); 614 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 615 &vd->vdev_removing); 616 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 617 &vd->vdev_top_zap); 618 } else { 619 ASSERT0(vd->vdev_top_zap); 620 } 621 622 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 623 ASSERT(alloctype == VDEV_ALLOC_LOAD || 624 alloctype == VDEV_ALLOC_ADD || 625 alloctype == VDEV_ALLOC_SPLIT || 626 alloctype == VDEV_ALLOC_ROOTPOOL); 627 vd->vdev_mg = metaslab_group_create(islog ? 628 spa_log_class(spa) : spa_normal_class(spa), vd); 629 } 630 631 if (vd->vdev_ops->vdev_op_leaf && 632 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 633 (void) nvlist_lookup_uint64(nv, 634 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 635 } else { 636 ASSERT0(vd->vdev_leaf_zap); 637 } 638 639 /* 640 * If we're a leaf vdev, try to load the DTL object and other state. 641 */ 642 643 if (vd->vdev_ops->vdev_op_leaf && 644 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 645 alloctype == VDEV_ALLOC_ROOTPOOL)) { 646 if (alloctype == VDEV_ALLOC_LOAD) { 647 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 648 &vd->vdev_dtl_object); 649 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 650 &vd->vdev_unspare); 651 } 652 653 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 654 uint64_t spare = 0; 655 656 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 657 &spare) == 0 && spare) 658 spa_spare_add(vd); 659 } 660 661 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 662 &vd->vdev_offline); 663 664 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 665 &vd->vdev_resilver_txg); 666 667 /* 668 * When importing a pool, we want to ignore the persistent fault 669 * state, as the diagnosis made on another system may not be 670 * valid in the current context. Local vdevs will 671 * remain in the faulted state. 672 */ 673 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 674 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 675 &vd->vdev_faulted); 676 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 677 &vd->vdev_degraded); 678 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 679 &vd->vdev_removed); 680 681 if (vd->vdev_faulted || vd->vdev_degraded) { 682 char *aux; 683 684 vd->vdev_label_aux = 685 VDEV_AUX_ERR_EXCEEDED; 686 if (nvlist_lookup_string(nv, 687 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 688 strcmp(aux, "external") == 0) 689 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 690 } 691 } 692 } 693 694 /* 695 * Add ourselves to the parent's list of children. 696 */ 697 vdev_add_child(parent, vd); 698 699 *vdp = vd; 700 701 return (0); 702 } 703 704 void 705 vdev_free(vdev_t *vd) 706 { 707 spa_t *spa = vd->vdev_spa; 708 709 /* 710 * vdev_free() implies closing the vdev first. This is simpler than 711 * trying to ensure complicated semantics for all callers. 712 */ 713 vdev_close(vd); 714 715 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 716 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 717 718 /* 719 * Free all children. 720 */ 721 for (int c = 0; c < vd->vdev_children; c++) 722 vdev_free(vd->vdev_child[c]); 723 724 ASSERT(vd->vdev_child == NULL); 725 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 726 727 /* 728 * Discard allocation state. 729 */ 730 if (vd->vdev_mg != NULL) { 731 vdev_metaslab_fini(vd); 732 metaslab_group_destroy(vd->vdev_mg); 733 } 734 735 ASSERT0(vd->vdev_stat.vs_space); 736 ASSERT0(vd->vdev_stat.vs_dspace); 737 ASSERT0(vd->vdev_stat.vs_alloc); 738 739 /* 740 * Remove this vdev from its parent's child list. 741 */ 742 vdev_remove_child(vd->vdev_parent, vd); 743 744 ASSERT(vd->vdev_parent == NULL); 745 746 /* 747 * Clean up vdev structure. 748 */ 749 vdev_queue_fini(vd); 750 vdev_cache_fini(vd); 751 752 if (vd->vdev_path) 753 spa_strfree(vd->vdev_path); 754 if (vd->vdev_devid) 755 spa_strfree(vd->vdev_devid); 756 if (vd->vdev_physpath) 757 spa_strfree(vd->vdev_physpath); 758 if (vd->vdev_fru) 759 spa_strfree(vd->vdev_fru); 760 761 if (vd->vdev_isspare) 762 spa_spare_remove(vd); 763 if (vd->vdev_isl2cache) 764 spa_l2cache_remove(vd); 765 766 txg_list_destroy(&vd->vdev_ms_list); 767 txg_list_destroy(&vd->vdev_dtl_list); 768 769 mutex_enter(&vd->vdev_dtl_lock); 770 space_map_close(vd->vdev_dtl_sm); 771 for (int t = 0; t < DTL_TYPES; t++) { 772 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 773 range_tree_destroy(vd->vdev_dtl[t]); 774 } 775 mutex_exit(&vd->vdev_dtl_lock); 776 777 mutex_destroy(&vd->vdev_queue_lock); 778 mutex_destroy(&vd->vdev_dtl_lock); 779 mutex_destroy(&vd->vdev_stat_lock); 780 mutex_destroy(&vd->vdev_probe_lock); 781 782 if (vd == spa->spa_root_vdev) 783 spa->spa_root_vdev = NULL; 784 785 kmem_free(vd, sizeof (vdev_t)); 786 } 787 788 /* 789 * Transfer top-level vdev state from svd to tvd. 790 */ 791 static void 792 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 793 { 794 spa_t *spa = svd->vdev_spa; 795 metaslab_t *msp; 796 vdev_t *vd; 797 int t; 798 799 ASSERT(tvd == tvd->vdev_top); 800 801 tvd->vdev_ms_array = svd->vdev_ms_array; 802 tvd->vdev_ms_shift = svd->vdev_ms_shift; 803 tvd->vdev_ms_count = svd->vdev_ms_count; 804 tvd->vdev_top_zap = svd->vdev_top_zap; 805 806 svd->vdev_ms_array = 0; 807 svd->vdev_ms_shift = 0; 808 svd->vdev_ms_count = 0; 809 svd->vdev_top_zap = 0; 810 811 if (tvd->vdev_mg) 812 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 813 tvd->vdev_mg = svd->vdev_mg; 814 tvd->vdev_ms = svd->vdev_ms; 815 816 svd->vdev_mg = NULL; 817 svd->vdev_ms = NULL; 818 819 if (tvd->vdev_mg != NULL) 820 tvd->vdev_mg->mg_vd = tvd; 821 822 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 823 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 824 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 825 826 svd->vdev_stat.vs_alloc = 0; 827 svd->vdev_stat.vs_space = 0; 828 svd->vdev_stat.vs_dspace = 0; 829 830 for (t = 0; t < TXG_SIZE; t++) { 831 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 832 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 833 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 834 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 835 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 836 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 837 } 838 839 if (list_link_active(&svd->vdev_config_dirty_node)) { 840 vdev_config_clean(svd); 841 vdev_config_dirty(tvd); 842 } 843 844 if (list_link_active(&svd->vdev_state_dirty_node)) { 845 vdev_state_clean(svd); 846 vdev_state_dirty(tvd); 847 } 848 849 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 850 svd->vdev_deflate_ratio = 0; 851 852 tvd->vdev_islog = svd->vdev_islog; 853 svd->vdev_islog = 0; 854 } 855 856 static void 857 vdev_top_update(vdev_t *tvd, vdev_t *vd) 858 { 859 if (vd == NULL) 860 return; 861 862 vd->vdev_top = tvd; 863 864 for (int c = 0; c < vd->vdev_children; c++) 865 vdev_top_update(tvd, vd->vdev_child[c]); 866 } 867 868 /* 869 * Add a mirror/replacing vdev above an existing vdev. 870 */ 871 vdev_t * 872 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 873 { 874 spa_t *spa = cvd->vdev_spa; 875 vdev_t *pvd = cvd->vdev_parent; 876 vdev_t *mvd; 877 878 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 879 880 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 881 882 mvd->vdev_asize = cvd->vdev_asize; 883 mvd->vdev_min_asize = cvd->vdev_min_asize; 884 mvd->vdev_max_asize = cvd->vdev_max_asize; 885 mvd->vdev_ashift = cvd->vdev_ashift; 886 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 887 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 888 mvd->vdev_state = cvd->vdev_state; 889 mvd->vdev_crtxg = cvd->vdev_crtxg; 890 891 vdev_remove_child(pvd, cvd); 892 vdev_add_child(pvd, mvd); 893 cvd->vdev_id = mvd->vdev_children; 894 vdev_add_child(mvd, cvd); 895 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 896 897 if (mvd == mvd->vdev_top) 898 vdev_top_transfer(cvd, mvd); 899 900 return (mvd); 901 } 902 903 /* 904 * Remove a 1-way mirror/replacing vdev from the tree. 905 */ 906 void 907 vdev_remove_parent(vdev_t *cvd) 908 { 909 vdev_t *mvd = cvd->vdev_parent; 910 vdev_t *pvd = mvd->vdev_parent; 911 912 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 913 914 ASSERT(mvd->vdev_children == 1); 915 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 916 mvd->vdev_ops == &vdev_replacing_ops || 917 mvd->vdev_ops == &vdev_spare_ops); 918 cvd->vdev_ashift = mvd->vdev_ashift; 919 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 920 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 921 922 vdev_remove_child(mvd, cvd); 923 vdev_remove_child(pvd, mvd); 924 925 /* 926 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 927 * Otherwise, we could have detached an offline device, and when we 928 * go to import the pool we'll think we have two top-level vdevs, 929 * instead of a different version of the same top-level vdev. 930 */ 931 if (mvd->vdev_top == mvd) { 932 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 933 cvd->vdev_orig_guid = cvd->vdev_guid; 934 cvd->vdev_guid += guid_delta; 935 cvd->vdev_guid_sum += guid_delta; 936 } 937 cvd->vdev_id = mvd->vdev_id; 938 vdev_add_child(pvd, cvd); 939 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 940 941 if (cvd == cvd->vdev_top) 942 vdev_top_transfer(mvd, cvd); 943 944 ASSERT(mvd->vdev_children == 0); 945 vdev_free(mvd); 946 } 947 948 int 949 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 950 { 951 spa_t *spa = vd->vdev_spa; 952 objset_t *mos = spa->spa_meta_objset; 953 uint64_t m; 954 uint64_t oldc = vd->vdev_ms_count; 955 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 956 metaslab_t **mspp; 957 int error; 958 959 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 960 961 /* 962 * This vdev is not being allocated from yet or is a hole. 963 */ 964 if (vd->vdev_ms_shift == 0) 965 return (0); 966 967 ASSERT(!vd->vdev_ishole); 968 969 /* 970 * Compute the raidz-deflation ratio. Note, we hard-code 971 * in 128k (1 << 17) because it is the "typical" blocksize. 972 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 973 * otherwise it would inconsistently account for existing bp's. 974 */ 975 vd->vdev_deflate_ratio = (1 << 17) / 976 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 977 978 ASSERT(oldc <= newc); 979 980 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 981 982 if (oldc != 0) { 983 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 984 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 985 } 986 987 vd->vdev_ms = mspp; 988 vd->vdev_ms_count = newc; 989 990 for (m = oldc; m < newc; m++) { 991 uint64_t object = 0; 992 993 if (txg == 0) { 994 error = dmu_read(mos, vd->vdev_ms_array, 995 m * sizeof (uint64_t), sizeof (uint64_t), &object, 996 DMU_READ_PREFETCH); 997 if (error) 998 return (error); 999 } 1000 1001 error = metaslab_init(vd->vdev_mg, m, object, txg, 1002 &(vd->vdev_ms[m])); 1003 if (error) 1004 return (error); 1005 } 1006 1007 if (txg == 0) 1008 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1009 1010 /* 1011 * If the vdev is being removed we don't activate 1012 * the metaslabs since we want to ensure that no new 1013 * allocations are performed on this device. 1014 */ 1015 if (oldc == 0 && !vd->vdev_removing) 1016 metaslab_group_activate(vd->vdev_mg); 1017 1018 if (txg == 0) 1019 spa_config_exit(spa, SCL_ALLOC, FTAG); 1020 1021 return (0); 1022 } 1023 1024 void 1025 vdev_metaslab_fini(vdev_t *vd) 1026 { 1027 uint64_t m; 1028 uint64_t count = vd->vdev_ms_count; 1029 1030 if (vd->vdev_ms != NULL) { 1031 metaslab_group_passivate(vd->vdev_mg); 1032 for (m = 0; m < count; m++) { 1033 metaslab_t *msp = vd->vdev_ms[m]; 1034 1035 if (msp != NULL) 1036 metaslab_fini(msp); 1037 } 1038 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1039 vd->vdev_ms = NULL; 1040 } 1041 } 1042 1043 typedef struct vdev_probe_stats { 1044 boolean_t vps_readable; 1045 boolean_t vps_writeable; 1046 int vps_flags; 1047 } vdev_probe_stats_t; 1048 1049 static void 1050 vdev_probe_done(zio_t *zio) 1051 { 1052 spa_t *spa = zio->io_spa; 1053 vdev_t *vd = zio->io_vd; 1054 vdev_probe_stats_t *vps = zio->io_private; 1055 1056 ASSERT(vd->vdev_probe_zio != NULL); 1057 1058 if (zio->io_type == ZIO_TYPE_READ) { 1059 if (zio->io_error == 0) 1060 vps->vps_readable = 1; 1061 if (zio->io_error == 0 && spa_writeable(spa)) { 1062 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1063 zio->io_offset, zio->io_size, zio->io_data, 1064 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1065 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1066 } else { 1067 zio_buf_free(zio->io_data, zio->io_size); 1068 } 1069 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1070 if (zio->io_error == 0) 1071 vps->vps_writeable = 1; 1072 zio_buf_free(zio->io_data, zio->io_size); 1073 } else if (zio->io_type == ZIO_TYPE_NULL) { 1074 zio_t *pio; 1075 1076 vd->vdev_cant_read |= !vps->vps_readable; 1077 vd->vdev_cant_write |= !vps->vps_writeable; 1078 1079 if (vdev_readable(vd) && 1080 (vdev_writeable(vd) || !spa_writeable(spa))) { 1081 zio->io_error = 0; 1082 } else { 1083 ASSERT(zio->io_error != 0); 1084 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1085 spa, vd, NULL, 0, 0); 1086 zio->io_error = SET_ERROR(ENXIO); 1087 } 1088 1089 mutex_enter(&vd->vdev_probe_lock); 1090 ASSERT(vd->vdev_probe_zio == zio); 1091 vd->vdev_probe_zio = NULL; 1092 mutex_exit(&vd->vdev_probe_lock); 1093 1094 zio_link_t *zl = NULL; 1095 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1096 if (!vdev_accessible(vd, pio)) 1097 pio->io_error = SET_ERROR(ENXIO); 1098 1099 kmem_free(vps, sizeof (*vps)); 1100 } 1101 } 1102 1103 /* 1104 * Determine whether this device is accessible. 1105 * 1106 * Read and write to several known locations: the pad regions of each 1107 * vdev label but the first, which we leave alone in case it contains 1108 * a VTOC. 1109 */ 1110 zio_t * 1111 vdev_probe(vdev_t *vd, zio_t *zio) 1112 { 1113 spa_t *spa = vd->vdev_spa; 1114 vdev_probe_stats_t *vps = NULL; 1115 zio_t *pio; 1116 1117 ASSERT(vd->vdev_ops->vdev_op_leaf); 1118 1119 /* 1120 * Don't probe the probe. 1121 */ 1122 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1123 return (NULL); 1124 1125 /* 1126 * To prevent 'probe storms' when a device fails, we create 1127 * just one probe i/o at a time. All zios that want to probe 1128 * this vdev will become parents of the probe io. 1129 */ 1130 mutex_enter(&vd->vdev_probe_lock); 1131 1132 if ((pio = vd->vdev_probe_zio) == NULL) { 1133 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1134 1135 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1136 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1137 ZIO_FLAG_TRYHARD; 1138 1139 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1140 /* 1141 * vdev_cant_read and vdev_cant_write can only 1142 * transition from TRUE to FALSE when we have the 1143 * SCL_ZIO lock as writer; otherwise they can only 1144 * transition from FALSE to TRUE. This ensures that 1145 * any zio looking at these values can assume that 1146 * failures persist for the life of the I/O. That's 1147 * important because when a device has intermittent 1148 * connectivity problems, we want to ensure that 1149 * they're ascribed to the device (ENXIO) and not 1150 * the zio (EIO). 1151 * 1152 * Since we hold SCL_ZIO as writer here, clear both 1153 * values so the probe can reevaluate from first 1154 * principles. 1155 */ 1156 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1157 vd->vdev_cant_read = B_FALSE; 1158 vd->vdev_cant_write = B_FALSE; 1159 } 1160 1161 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1162 vdev_probe_done, vps, 1163 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1164 1165 /* 1166 * We can't change the vdev state in this context, so we 1167 * kick off an async task to do it on our behalf. 1168 */ 1169 if (zio != NULL) { 1170 vd->vdev_probe_wanted = B_TRUE; 1171 spa_async_request(spa, SPA_ASYNC_PROBE); 1172 } 1173 } 1174 1175 if (zio != NULL) 1176 zio_add_child(zio, pio); 1177 1178 mutex_exit(&vd->vdev_probe_lock); 1179 1180 if (vps == NULL) { 1181 ASSERT(zio != NULL); 1182 return (NULL); 1183 } 1184 1185 for (int l = 1; l < VDEV_LABELS; l++) { 1186 zio_nowait(zio_read_phys(pio, vd, 1187 vdev_label_offset(vd->vdev_psize, l, 1188 offsetof(vdev_label_t, vl_pad2)), 1189 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1190 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1191 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1192 } 1193 1194 if (zio == NULL) 1195 return (pio); 1196 1197 zio_nowait(pio); 1198 return (NULL); 1199 } 1200 1201 static void 1202 vdev_open_child(void *arg) 1203 { 1204 vdev_t *vd = arg; 1205 1206 vd->vdev_open_thread = curthread; 1207 vd->vdev_open_error = vdev_open(vd); 1208 vd->vdev_open_thread = NULL; 1209 } 1210 1211 boolean_t 1212 vdev_uses_zvols(vdev_t *vd) 1213 { 1214 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1215 strlen(ZVOL_DIR)) == 0) 1216 return (B_TRUE); 1217 for (int c = 0; c < vd->vdev_children; c++) 1218 if (vdev_uses_zvols(vd->vdev_child[c])) 1219 return (B_TRUE); 1220 return (B_FALSE); 1221 } 1222 1223 void 1224 vdev_open_children(vdev_t *vd) 1225 { 1226 taskq_t *tq; 1227 int children = vd->vdev_children; 1228 1229 /* 1230 * in order to handle pools on top of zvols, do the opens 1231 * in a single thread so that the same thread holds the 1232 * spa_namespace_lock 1233 */ 1234 if (B_TRUE || vdev_uses_zvols(vd)) { 1235 for (int c = 0; c < children; c++) 1236 vd->vdev_child[c]->vdev_open_error = 1237 vdev_open(vd->vdev_child[c]); 1238 return; 1239 } 1240 tq = taskq_create("vdev_open", children, minclsyspri, 1241 children, children, TASKQ_PREPOPULATE); 1242 1243 for (int c = 0; c < children; c++) 1244 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1245 TQ_SLEEP) != 0); 1246 1247 taskq_destroy(tq); 1248 } 1249 1250 /* 1251 * Prepare a virtual device for access. 1252 */ 1253 int 1254 vdev_open(vdev_t *vd) 1255 { 1256 spa_t *spa = vd->vdev_spa; 1257 int error; 1258 uint64_t osize = 0; 1259 uint64_t max_osize = 0; 1260 uint64_t asize, max_asize, psize; 1261 uint64_t logical_ashift = 0; 1262 uint64_t physical_ashift = 0; 1263 1264 ASSERT(vd->vdev_open_thread == curthread || 1265 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1266 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1267 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1268 vd->vdev_state == VDEV_STATE_OFFLINE); 1269 1270 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1271 vd->vdev_cant_read = B_FALSE; 1272 vd->vdev_cant_write = B_FALSE; 1273 vd->vdev_notrim = B_FALSE; 1274 vd->vdev_min_asize = vdev_get_min_asize(vd); 1275 1276 /* 1277 * If this vdev is not removed, check its fault status. If it's 1278 * faulted, bail out of the open. 1279 */ 1280 if (!vd->vdev_removed && vd->vdev_faulted) { 1281 ASSERT(vd->vdev_children == 0); 1282 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1283 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1284 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1285 vd->vdev_label_aux); 1286 return (SET_ERROR(ENXIO)); 1287 } else if (vd->vdev_offline) { 1288 ASSERT(vd->vdev_children == 0); 1289 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1290 return (SET_ERROR(ENXIO)); 1291 } 1292 1293 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 1294 &logical_ashift, &physical_ashift); 1295 1296 /* 1297 * Reset the vdev_reopening flag so that we actually close 1298 * the vdev on error. 1299 */ 1300 vd->vdev_reopening = B_FALSE; 1301 if (zio_injection_enabled && error == 0) 1302 error = zio_handle_device_injection(vd, NULL, ENXIO); 1303 1304 if (error) { 1305 if (vd->vdev_removed && 1306 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1307 vd->vdev_removed = B_FALSE; 1308 1309 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1310 vd->vdev_stat.vs_aux); 1311 return (error); 1312 } 1313 1314 vd->vdev_removed = B_FALSE; 1315 1316 /* 1317 * Recheck the faulted flag now that we have confirmed that 1318 * the vdev is accessible. If we're faulted, bail. 1319 */ 1320 if (vd->vdev_faulted) { 1321 ASSERT(vd->vdev_children == 0); 1322 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1323 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1324 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1325 vd->vdev_label_aux); 1326 return (SET_ERROR(ENXIO)); 1327 } 1328 1329 if (vd->vdev_degraded) { 1330 ASSERT(vd->vdev_children == 0); 1331 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1332 VDEV_AUX_ERR_EXCEEDED); 1333 } else { 1334 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1335 } 1336 1337 /* 1338 * For hole or missing vdevs we just return success. 1339 */ 1340 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1341 return (0); 1342 1343 if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf) 1344 trim_map_create(vd); 1345 1346 for (int c = 0; c < vd->vdev_children; c++) { 1347 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1348 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1349 VDEV_AUX_NONE); 1350 break; 1351 } 1352 } 1353 1354 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1355 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1356 1357 if (vd->vdev_children == 0) { 1358 if (osize < SPA_MINDEVSIZE) { 1359 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1360 VDEV_AUX_TOO_SMALL); 1361 return (SET_ERROR(EOVERFLOW)); 1362 } 1363 psize = osize; 1364 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1365 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1366 VDEV_LABEL_END_SIZE); 1367 } else { 1368 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1369 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1370 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1371 VDEV_AUX_TOO_SMALL); 1372 return (SET_ERROR(EOVERFLOW)); 1373 } 1374 psize = 0; 1375 asize = osize; 1376 max_asize = max_osize; 1377 } 1378 1379 vd->vdev_psize = psize; 1380 1381 /* 1382 * Make sure the allocatable size hasn't shrunk. 1383 */ 1384 if (asize < vd->vdev_min_asize) { 1385 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1386 VDEV_AUX_BAD_LABEL); 1387 return (SET_ERROR(EINVAL)); 1388 } 1389 1390 vd->vdev_physical_ashift = 1391 MAX(physical_ashift, vd->vdev_physical_ashift); 1392 vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift); 1393 vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift); 1394 1395 if (vd->vdev_logical_ashift > SPA_MAXASHIFT) { 1396 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1397 VDEV_AUX_ASHIFT_TOO_BIG); 1398 return (EINVAL); 1399 } 1400 1401 if (vd->vdev_asize == 0) { 1402 /* 1403 * This is the first-ever open, so use the computed values. 1404 * For testing purposes, a higher ashift can be requested. 1405 */ 1406 vd->vdev_asize = asize; 1407 vd->vdev_max_asize = max_asize; 1408 } else { 1409 /* 1410 * Make sure the alignment requirement hasn't increased. 1411 */ 1412 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 1413 vd->vdev_ops->vdev_op_leaf) { 1414 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1415 VDEV_AUX_BAD_LABEL); 1416 return (EINVAL); 1417 } 1418 vd->vdev_max_asize = max_asize; 1419 } 1420 1421 /* 1422 * If all children are healthy and the asize has increased, 1423 * then we've experienced dynamic LUN growth. If automatic 1424 * expansion is enabled then use the additional space. 1425 */ 1426 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1427 (vd->vdev_expanding || spa->spa_autoexpand)) 1428 vd->vdev_asize = asize; 1429 1430 vdev_set_min_asize(vd); 1431 1432 /* 1433 * Ensure we can issue some IO before declaring the 1434 * vdev open for business. 1435 */ 1436 if (vd->vdev_ops->vdev_op_leaf && 1437 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1438 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1439 VDEV_AUX_ERR_EXCEEDED); 1440 return (error); 1441 } 1442 1443 /* 1444 * Track the min and max ashift values for normal data devices. 1445 */ 1446 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1447 !vd->vdev_islog && vd->vdev_aux == NULL) { 1448 if (vd->vdev_ashift > spa->spa_max_ashift) 1449 spa->spa_max_ashift = vd->vdev_ashift; 1450 if (vd->vdev_ashift < spa->spa_min_ashift) 1451 spa->spa_min_ashift = vd->vdev_ashift; 1452 } 1453 1454 /* 1455 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1456 * resilver. But don't do this if we are doing a reopen for a scrub, 1457 * since this would just restart the scrub we are already doing. 1458 */ 1459 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1460 vdev_resilver_needed(vd, NULL, NULL)) 1461 spa_async_request(spa, SPA_ASYNC_RESILVER); 1462 1463 return (0); 1464 } 1465 1466 /* 1467 * Called once the vdevs are all opened, this routine validates the label 1468 * contents. This needs to be done before vdev_load() so that we don't 1469 * inadvertently do repair I/Os to the wrong device. 1470 * 1471 * If 'strict' is false ignore the spa guid check. This is necessary because 1472 * if the machine crashed during a re-guid the new guid might have been written 1473 * to all of the vdev labels, but not the cached config. The strict check 1474 * will be performed when the pool is opened again using the mos config. 1475 * 1476 * This function will only return failure if one of the vdevs indicates that it 1477 * has since been destroyed or exported. This is only possible if 1478 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1479 * will be updated but the function will return 0. 1480 */ 1481 int 1482 vdev_validate(vdev_t *vd, boolean_t strict) 1483 { 1484 spa_t *spa = vd->vdev_spa; 1485 nvlist_t *label; 1486 uint64_t guid = 0, top_guid; 1487 uint64_t state; 1488 1489 for (int c = 0; c < vd->vdev_children; c++) 1490 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1491 return (SET_ERROR(EBADF)); 1492 1493 /* 1494 * If the device has already failed, or was marked offline, don't do 1495 * any further validation. Otherwise, label I/O will fail and we will 1496 * overwrite the previous state. 1497 */ 1498 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1499 uint64_t aux_guid = 0; 1500 nvlist_t *nvl; 1501 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1502 spa_last_synced_txg(spa) : -1ULL; 1503 1504 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1505 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1506 VDEV_AUX_BAD_LABEL); 1507 return (0); 1508 } 1509 1510 /* 1511 * Determine if this vdev has been split off into another 1512 * pool. If so, then refuse to open it. 1513 */ 1514 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1515 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1516 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1517 VDEV_AUX_SPLIT_POOL); 1518 nvlist_free(label); 1519 return (0); 1520 } 1521 1522 if (strict && (nvlist_lookup_uint64(label, 1523 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1524 guid != spa_guid(spa))) { 1525 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1526 VDEV_AUX_CORRUPT_DATA); 1527 nvlist_free(label); 1528 return (0); 1529 } 1530 1531 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1532 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1533 &aux_guid) != 0) 1534 aux_guid = 0; 1535 1536 /* 1537 * If this vdev just became a top-level vdev because its 1538 * sibling was detached, it will have adopted the parent's 1539 * vdev guid -- but the label may or may not be on disk yet. 1540 * Fortunately, either version of the label will have the 1541 * same top guid, so if we're a top-level vdev, we can 1542 * safely compare to that instead. 1543 * 1544 * If we split this vdev off instead, then we also check the 1545 * original pool's guid. We don't want to consider the vdev 1546 * corrupt if it is partway through a split operation. 1547 */ 1548 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1549 &guid) != 0 || 1550 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1551 &top_guid) != 0 || 1552 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1553 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1554 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1555 VDEV_AUX_CORRUPT_DATA); 1556 nvlist_free(label); 1557 return (0); 1558 } 1559 1560 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1561 &state) != 0) { 1562 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1563 VDEV_AUX_CORRUPT_DATA); 1564 nvlist_free(label); 1565 return (0); 1566 } 1567 1568 nvlist_free(label); 1569 1570 /* 1571 * If this is a verbatim import, no need to check the 1572 * state of the pool. 1573 */ 1574 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1575 spa_load_state(spa) == SPA_LOAD_OPEN && 1576 state != POOL_STATE_ACTIVE) 1577 return (SET_ERROR(EBADF)); 1578 1579 /* 1580 * If we were able to open and validate a vdev that was 1581 * previously marked permanently unavailable, clear that state 1582 * now. 1583 */ 1584 if (vd->vdev_not_present) 1585 vd->vdev_not_present = 0; 1586 } 1587 1588 return (0); 1589 } 1590 1591 /* 1592 * Close a virtual device. 1593 */ 1594 void 1595 vdev_close(vdev_t *vd) 1596 { 1597 spa_t *spa = vd->vdev_spa; 1598 vdev_t *pvd = vd->vdev_parent; 1599 1600 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1601 1602 /* 1603 * If our parent is reopening, then we are as well, unless we are 1604 * going offline. 1605 */ 1606 if (pvd != NULL && pvd->vdev_reopening) 1607 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1608 1609 vd->vdev_ops->vdev_op_close(vd); 1610 1611 vdev_cache_purge(vd); 1612 1613 if (vd->vdev_ops->vdev_op_leaf) 1614 trim_map_destroy(vd); 1615 1616 /* 1617 * We record the previous state before we close it, so that if we are 1618 * doing a reopen(), we don't generate FMA ereports if we notice that 1619 * it's still faulted. 1620 */ 1621 vd->vdev_prevstate = vd->vdev_state; 1622 1623 if (vd->vdev_offline) 1624 vd->vdev_state = VDEV_STATE_OFFLINE; 1625 else 1626 vd->vdev_state = VDEV_STATE_CLOSED; 1627 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1628 } 1629 1630 void 1631 vdev_hold(vdev_t *vd) 1632 { 1633 spa_t *spa = vd->vdev_spa; 1634 1635 ASSERT(spa_is_root(spa)); 1636 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1637 return; 1638 1639 for (int c = 0; c < vd->vdev_children; c++) 1640 vdev_hold(vd->vdev_child[c]); 1641 1642 if (vd->vdev_ops->vdev_op_leaf) 1643 vd->vdev_ops->vdev_op_hold(vd); 1644 } 1645 1646 void 1647 vdev_rele(vdev_t *vd) 1648 { 1649 spa_t *spa = vd->vdev_spa; 1650 1651 ASSERT(spa_is_root(spa)); 1652 for (int c = 0; c < vd->vdev_children; c++) 1653 vdev_rele(vd->vdev_child[c]); 1654 1655 if (vd->vdev_ops->vdev_op_leaf) 1656 vd->vdev_ops->vdev_op_rele(vd); 1657 } 1658 1659 /* 1660 * Reopen all interior vdevs and any unopened leaves. We don't actually 1661 * reopen leaf vdevs which had previously been opened as they might deadlock 1662 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1663 * If the leaf has never been opened then open it, as usual. 1664 */ 1665 void 1666 vdev_reopen(vdev_t *vd) 1667 { 1668 spa_t *spa = vd->vdev_spa; 1669 1670 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1671 1672 /* set the reopening flag unless we're taking the vdev offline */ 1673 vd->vdev_reopening = !vd->vdev_offline; 1674 vdev_close(vd); 1675 (void) vdev_open(vd); 1676 1677 /* 1678 * Call vdev_validate() here to make sure we have the same device. 1679 * Otherwise, a device with an invalid label could be successfully 1680 * opened in response to vdev_reopen(). 1681 */ 1682 if (vd->vdev_aux) { 1683 (void) vdev_validate_aux(vd); 1684 if (vdev_readable(vd) && vdev_writeable(vd) && 1685 vd->vdev_aux == &spa->spa_l2cache && 1686 !l2arc_vdev_present(vd)) 1687 l2arc_add_vdev(spa, vd); 1688 } else { 1689 (void) vdev_validate(vd, B_TRUE); 1690 } 1691 1692 /* 1693 * Reassess parent vdev's health. 1694 */ 1695 vdev_propagate_state(vd); 1696 } 1697 1698 int 1699 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1700 { 1701 int error; 1702 1703 /* 1704 * Normally, partial opens (e.g. of a mirror) are allowed. 1705 * For a create, however, we want to fail the request if 1706 * there are any components we can't open. 1707 */ 1708 error = vdev_open(vd); 1709 1710 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1711 vdev_close(vd); 1712 return (error ? error : ENXIO); 1713 } 1714 1715 /* 1716 * Recursively load DTLs and initialize all labels. 1717 */ 1718 if ((error = vdev_dtl_load(vd)) != 0 || 1719 (error = vdev_label_init(vd, txg, isreplacing ? 1720 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1721 vdev_close(vd); 1722 return (error); 1723 } 1724 1725 return (0); 1726 } 1727 1728 void 1729 vdev_metaslab_set_size(vdev_t *vd) 1730 { 1731 /* 1732 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1733 */ 1734 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1735 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1736 } 1737 1738 /* 1739 * Maximize performance by inflating the configured ashift for top level 1740 * vdevs to be as close to the physical ashift as possible while maintaining 1741 * administrator defined limits and ensuring it doesn't go below the 1742 * logical ashift. 1743 */ 1744 void 1745 vdev_ashift_optimize(vdev_t *vd) 1746 { 1747 if (vd == vd->vdev_top) { 1748 if (vd->vdev_ashift < vd->vdev_physical_ashift) { 1749 vd->vdev_ashift = MIN( 1750 MAX(zfs_max_auto_ashift, vd->vdev_ashift), 1751 MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift)); 1752 } else { 1753 /* 1754 * Unusual case where logical ashift > physical ashift 1755 * so we can't cap the calculated ashift based on max 1756 * ashift as that would cause failures. 1757 * We still check if we need to increase it to match 1758 * the min ashift. 1759 */ 1760 vd->vdev_ashift = MAX(zfs_min_auto_ashift, 1761 vd->vdev_ashift); 1762 } 1763 } 1764 } 1765 1766 void 1767 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1768 { 1769 ASSERT(vd == vd->vdev_top); 1770 ASSERT(!vd->vdev_ishole); 1771 ASSERT(ISP2(flags)); 1772 ASSERT(spa_writeable(vd->vdev_spa)); 1773 1774 if (flags & VDD_METASLAB) 1775 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1776 1777 if (flags & VDD_DTL) 1778 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1779 1780 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1781 } 1782 1783 void 1784 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1785 { 1786 for (int c = 0; c < vd->vdev_children; c++) 1787 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1788 1789 if (vd->vdev_ops->vdev_op_leaf) 1790 vdev_dirty(vd->vdev_top, flags, vd, txg); 1791 } 1792 1793 /* 1794 * DTLs. 1795 * 1796 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1797 * the vdev has less than perfect replication. There are four kinds of DTL: 1798 * 1799 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1800 * 1801 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1802 * 1803 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1804 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1805 * txgs that was scrubbed. 1806 * 1807 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1808 * persistent errors or just some device being offline. 1809 * Unlike the other three, the DTL_OUTAGE map is not generally 1810 * maintained; it's only computed when needed, typically to 1811 * determine whether a device can be detached. 1812 * 1813 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1814 * either has the data or it doesn't. 1815 * 1816 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1817 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1818 * if any child is less than fully replicated, then so is its parent. 1819 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1820 * comprising only those txgs which appear in 'maxfaults' or more children; 1821 * those are the txgs we don't have enough replication to read. For example, 1822 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1823 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1824 * two child DTL_MISSING maps. 1825 * 1826 * It should be clear from the above that to compute the DTLs and outage maps 1827 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1828 * Therefore, that is all we keep on disk. When loading the pool, or after 1829 * a configuration change, we generate all other DTLs from first principles. 1830 */ 1831 void 1832 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1833 { 1834 range_tree_t *rt = vd->vdev_dtl[t]; 1835 1836 ASSERT(t < DTL_TYPES); 1837 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1838 ASSERT(spa_writeable(vd->vdev_spa)); 1839 1840 mutex_enter(rt->rt_lock); 1841 if (!range_tree_contains(rt, txg, size)) 1842 range_tree_add(rt, txg, size); 1843 mutex_exit(rt->rt_lock); 1844 } 1845 1846 boolean_t 1847 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1848 { 1849 range_tree_t *rt = vd->vdev_dtl[t]; 1850 boolean_t dirty = B_FALSE; 1851 1852 ASSERT(t < DTL_TYPES); 1853 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1854 1855 mutex_enter(rt->rt_lock); 1856 if (range_tree_space(rt) != 0) 1857 dirty = range_tree_contains(rt, txg, size); 1858 mutex_exit(rt->rt_lock); 1859 1860 return (dirty); 1861 } 1862 1863 boolean_t 1864 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1865 { 1866 range_tree_t *rt = vd->vdev_dtl[t]; 1867 boolean_t empty; 1868 1869 mutex_enter(rt->rt_lock); 1870 empty = (range_tree_space(rt) == 0); 1871 mutex_exit(rt->rt_lock); 1872 1873 return (empty); 1874 } 1875 1876 /* 1877 * Returns the lowest txg in the DTL range. 1878 */ 1879 static uint64_t 1880 vdev_dtl_min(vdev_t *vd) 1881 { 1882 range_seg_t *rs; 1883 1884 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1885 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1886 ASSERT0(vd->vdev_children); 1887 1888 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1889 return (rs->rs_start - 1); 1890 } 1891 1892 /* 1893 * Returns the highest txg in the DTL. 1894 */ 1895 static uint64_t 1896 vdev_dtl_max(vdev_t *vd) 1897 { 1898 range_seg_t *rs; 1899 1900 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1901 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1902 ASSERT0(vd->vdev_children); 1903 1904 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1905 return (rs->rs_end); 1906 } 1907 1908 /* 1909 * Determine if a resilvering vdev should remove any DTL entries from 1910 * its range. If the vdev was resilvering for the entire duration of the 1911 * scan then it should excise that range from its DTLs. Otherwise, this 1912 * vdev is considered partially resilvered and should leave its DTL 1913 * entries intact. The comment in vdev_dtl_reassess() describes how we 1914 * excise the DTLs. 1915 */ 1916 static boolean_t 1917 vdev_dtl_should_excise(vdev_t *vd) 1918 { 1919 spa_t *spa = vd->vdev_spa; 1920 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1921 1922 ASSERT0(scn->scn_phys.scn_errors); 1923 ASSERT0(vd->vdev_children); 1924 1925 if (vd->vdev_resilver_txg == 0 || 1926 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1927 return (B_TRUE); 1928 1929 /* 1930 * When a resilver is initiated the scan will assign the scn_max_txg 1931 * value to the highest txg value that exists in all DTLs. If this 1932 * device's max DTL is not part of this scan (i.e. it is not in 1933 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1934 * for excision. 1935 */ 1936 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1937 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1938 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1939 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1940 return (B_TRUE); 1941 } 1942 return (B_FALSE); 1943 } 1944 1945 /* 1946 * Reassess DTLs after a config change or scrub completion. 1947 */ 1948 void 1949 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1950 { 1951 spa_t *spa = vd->vdev_spa; 1952 avl_tree_t reftree; 1953 int minref; 1954 1955 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1956 1957 for (int c = 0; c < vd->vdev_children; c++) 1958 vdev_dtl_reassess(vd->vdev_child[c], txg, 1959 scrub_txg, scrub_done); 1960 1961 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1962 return; 1963 1964 if (vd->vdev_ops->vdev_op_leaf) { 1965 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1966 1967 mutex_enter(&vd->vdev_dtl_lock); 1968 1969 /* 1970 * If we've completed a scan cleanly then determine 1971 * if this vdev should remove any DTLs. We only want to 1972 * excise regions on vdevs that were available during 1973 * the entire duration of this scan. 1974 */ 1975 if (scrub_txg != 0 && 1976 (spa->spa_scrub_started || 1977 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1978 vdev_dtl_should_excise(vd)) { 1979 /* 1980 * We completed a scrub up to scrub_txg. If we 1981 * did it without rebooting, then the scrub dtl 1982 * will be valid, so excise the old region and 1983 * fold in the scrub dtl. Otherwise, leave the 1984 * dtl as-is if there was an error. 1985 * 1986 * There's little trick here: to excise the beginning 1987 * of the DTL_MISSING map, we put it into a reference 1988 * tree and then add a segment with refcnt -1 that 1989 * covers the range [0, scrub_txg). This means 1990 * that each txg in that range has refcnt -1 or 0. 1991 * We then add DTL_SCRUB with a refcnt of 2, so that 1992 * entries in the range [0, scrub_txg) will have a 1993 * positive refcnt -- either 1 or 2. We then convert 1994 * the reference tree into the new DTL_MISSING map. 1995 */ 1996 space_reftree_create(&reftree); 1997 space_reftree_add_map(&reftree, 1998 vd->vdev_dtl[DTL_MISSING], 1); 1999 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 2000 space_reftree_add_map(&reftree, 2001 vd->vdev_dtl[DTL_SCRUB], 2); 2002 space_reftree_generate_map(&reftree, 2003 vd->vdev_dtl[DTL_MISSING], 1); 2004 space_reftree_destroy(&reftree); 2005 } 2006 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 2007 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2008 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 2009 if (scrub_done) 2010 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 2011 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 2012 if (!vdev_readable(vd)) 2013 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 2014 else 2015 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2016 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 2017 2018 /* 2019 * If the vdev was resilvering and no longer has any 2020 * DTLs then reset its resilvering flag and dirty 2021 * the top level so that we persist the change. 2022 */ 2023 if (vd->vdev_resilver_txg != 0 && 2024 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 2025 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) { 2026 vd->vdev_resilver_txg = 0; 2027 vdev_config_dirty(vd->vdev_top); 2028 } 2029 2030 mutex_exit(&vd->vdev_dtl_lock); 2031 2032 if (txg != 0) 2033 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 2034 return; 2035 } 2036 2037 mutex_enter(&vd->vdev_dtl_lock); 2038 for (int t = 0; t < DTL_TYPES; t++) { 2039 /* account for child's outage in parent's missing map */ 2040 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 2041 if (t == DTL_SCRUB) 2042 continue; /* leaf vdevs only */ 2043 if (t == DTL_PARTIAL) 2044 minref = 1; /* i.e. non-zero */ 2045 else if (vd->vdev_nparity != 0) 2046 minref = vd->vdev_nparity + 1; /* RAID-Z */ 2047 else 2048 minref = vd->vdev_children; /* any kind of mirror */ 2049 space_reftree_create(&reftree); 2050 for (int c = 0; c < vd->vdev_children; c++) { 2051 vdev_t *cvd = vd->vdev_child[c]; 2052 mutex_enter(&cvd->vdev_dtl_lock); 2053 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 2054 mutex_exit(&cvd->vdev_dtl_lock); 2055 } 2056 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 2057 space_reftree_destroy(&reftree); 2058 } 2059 mutex_exit(&vd->vdev_dtl_lock); 2060 } 2061 2062 int 2063 vdev_dtl_load(vdev_t *vd) 2064 { 2065 spa_t *spa = vd->vdev_spa; 2066 objset_t *mos = spa->spa_meta_objset; 2067 int error = 0; 2068 2069 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 2070 ASSERT(!vd->vdev_ishole); 2071 2072 error = space_map_open(&vd->vdev_dtl_sm, mos, 2073 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 2074 if (error) 2075 return (error); 2076 ASSERT(vd->vdev_dtl_sm != NULL); 2077 2078 mutex_enter(&vd->vdev_dtl_lock); 2079 2080 /* 2081 * Now that we've opened the space_map we need to update 2082 * the in-core DTL. 2083 */ 2084 space_map_update(vd->vdev_dtl_sm); 2085 2086 error = space_map_load(vd->vdev_dtl_sm, 2087 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 2088 mutex_exit(&vd->vdev_dtl_lock); 2089 2090 return (error); 2091 } 2092 2093 for (int c = 0; c < vd->vdev_children; c++) { 2094 error = vdev_dtl_load(vd->vdev_child[c]); 2095 if (error != 0) 2096 break; 2097 } 2098 2099 return (error); 2100 } 2101 2102 void 2103 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 2104 { 2105 spa_t *spa = vd->vdev_spa; 2106 2107 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 2108 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2109 zapobj, tx)); 2110 } 2111 2112 uint64_t 2113 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 2114 { 2115 spa_t *spa = vd->vdev_spa; 2116 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 2117 DMU_OT_NONE, 0, tx); 2118 2119 ASSERT(zap != 0); 2120 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2121 zap, tx)); 2122 2123 return (zap); 2124 } 2125 2126 void 2127 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 2128 { 2129 if (vd->vdev_ops != &vdev_hole_ops && 2130 vd->vdev_ops != &vdev_missing_ops && 2131 vd->vdev_ops != &vdev_root_ops && 2132 !vd->vdev_top->vdev_removing) { 2133 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 2134 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 2135 } 2136 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 2137 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 2138 } 2139 } 2140 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2141 vdev_construct_zaps(vd->vdev_child[i], tx); 2142 } 2143 } 2144 2145 void 2146 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2147 { 2148 spa_t *spa = vd->vdev_spa; 2149 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2150 objset_t *mos = spa->spa_meta_objset; 2151 range_tree_t *rtsync; 2152 kmutex_t rtlock; 2153 dmu_tx_t *tx; 2154 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2155 2156 ASSERT(!vd->vdev_ishole); 2157 ASSERT(vd->vdev_ops->vdev_op_leaf); 2158 2159 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2160 2161 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2162 mutex_enter(&vd->vdev_dtl_lock); 2163 space_map_free(vd->vdev_dtl_sm, tx); 2164 space_map_close(vd->vdev_dtl_sm); 2165 vd->vdev_dtl_sm = NULL; 2166 mutex_exit(&vd->vdev_dtl_lock); 2167 2168 /* 2169 * We only destroy the leaf ZAP for detached leaves or for 2170 * removed log devices. Removed data devices handle leaf ZAP 2171 * cleanup later, once cancellation is no longer possible. 2172 */ 2173 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2174 vd->vdev_top->vdev_islog)) { 2175 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2176 vd->vdev_leaf_zap = 0; 2177 } 2178 2179 dmu_tx_commit(tx); 2180 return; 2181 } 2182 2183 if (vd->vdev_dtl_sm == NULL) { 2184 uint64_t new_object; 2185 2186 new_object = space_map_alloc(mos, tx); 2187 VERIFY3U(new_object, !=, 0); 2188 2189 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2190 0, -1ULL, 0, &vd->vdev_dtl_lock)); 2191 ASSERT(vd->vdev_dtl_sm != NULL); 2192 } 2193 2194 bzero(&rtlock, sizeof(rtlock)); 2195 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 2196 2197 rtsync = range_tree_create(NULL, NULL, &rtlock); 2198 2199 mutex_enter(&rtlock); 2200 2201 mutex_enter(&vd->vdev_dtl_lock); 2202 range_tree_walk(rt, range_tree_add, rtsync); 2203 mutex_exit(&vd->vdev_dtl_lock); 2204 2205 space_map_truncate(vd->vdev_dtl_sm, tx); 2206 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 2207 range_tree_vacate(rtsync, NULL, NULL); 2208 2209 range_tree_destroy(rtsync); 2210 2211 mutex_exit(&rtlock); 2212 mutex_destroy(&rtlock); 2213 2214 /* 2215 * If the object for the space map has changed then dirty 2216 * the top level so that we update the config. 2217 */ 2218 if (object != space_map_object(vd->vdev_dtl_sm)) { 2219 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 2220 "new object %llu", txg, spa_name(spa), object, 2221 space_map_object(vd->vdev_dtl_sm)); 2222 vdev_config_dirty(vd->vdev_top); 2223 } 2224 2225 dmu_tx_commit(tx); 2226 2227 mutex_enter(&vd->vdev_dtl_lock); 2228 space_map_update(vd->vdev_dtl_sm); 2229 mutex_exit(&vd->vdev_dtl_lock); 2230 } 2231 2232 /* 2233 * Determine whether the specified vdev can be offlined/detached/removed 2234 * without losing data. 2235 */ 2236 boolean_t 2237 vdev_dtl_required(vdev_t *vd) 2238 { 2239 spa_t *spa = vd->vdev_spa; 2240 vdev_t *tvd = vd->vdev_top; 2241 uint8_t cant_read = vd->vdev_cant_read; 2242 boolean_t required; 2243 2244 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2245 2246 if (vd == spa->spa_root_vdev || vd == tvd) 2247 return (B_TRUE); 2248 2249 /* 2250 * Temporarily mark the device as unreadable, and then determine 2251 * whether this results in any DTL outages in the top-level vdev. 2252 * If not, we can safely offline/detach/remove the device. 2253 */ 2254 vd->vdev_cant_read = B_TRUE; 2255 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2256 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2257 vd->vdev_cant_read = cant_read; 2258 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2259 2260 if (!required && zio_injection_enabled) 2261 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2262 2263 return (required); 2264 } 2265 2266 /* 2267 * Determine if resilver is needed, and if so the txg range. 2268 */ 2269 boolean_t 2270 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2271 { 2272 boolean_t needed = B_FALSE; 2273 uint64_t thismin = UINT64_MAX; 2274 uint64_t thismax = 0; 2275 2276 if (vd->vdev_children == 0) { 2277 mutex_enter(&vd->vdev_dtl_lock); 2278 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2279 vdev_writeable(vd)) { 2280 2281 thismin = vdev_dtl_min(vd); 2282 thismax = vdev_dtl_max(vd); 2283 needed = B_TRUE; 2284 } 2285 mutex_exit(&vd->vdev_dtl_lock); 2286 } else { 2287 for (int c = 0; c < vd->vdev_children; c++) { 2288 vdev_t *cvd = vd->vdev_child[c]; 2289 uint64_t cmin, cmax; 2290 2291 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2292 thismin = MIN(thismin, cmin); 2293 thismax = MAX(thismax, cmax); 2294 needed = B_TRUE; 2295 } 2296 } 2297 } 2298 2299 if (needed && minp) { 2300 *minp = thismin; 2301 *maxp = thismax; 2302 } 2303 return (needed); 2304 } 2305 2306 void 2307 vdev_load(vdev_t *vd) 2308 { 2309 /* 2310 * Recursively load all children. 2311 */ 2312 for (int c = 0; c < vd->vdev_children; c++) 2313 vdev_load(vd->vdev_child[c]); 2314 2315 /* 2316 * If this is a top-level vdev, initialize its metaslabs. 2317 */ 2318 if (vd == vd->vdev_top && !vd->vdev_ishole && 2319 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2320 vdev_metaslab_init(vd, 0) != 0)) 2321 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2322 VDEV_AUX_CORRUPT_DATA); 2323 2324 /* 2325 * If this is a leaf vdev, load its DTL. 2326 */ 2327 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2328 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2329 VDEV_AUX_CORRUPT_DATA); 2330 } 2331 2332 /* 2333 * The special vdev case is used for hot spares and l2cache devices. Its 2334 * sole purpose it to set the vdev state for the associated vdev. To do this, 2335 * we make sure that we can open the underlying device, then try to read the 2336 * label, and make sure that the label is sane and that it hasn't been 2337 * repurposed to another pool. 2338 */ 2339 int 2340 vdev_validate_aux(vdev_t *vd) 2341 { 2342 nvlist_t *label; 2343 uint64_t guid, version; 2344 uint64_t state; 2345 2346 if (!vdev_readable(vd)) 2347 return (0); 2348 2349 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2350 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2351 VDEV_AUX_CORRUPT_DATA); 2352 return (-1); 2353 } 2354 2355 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2356 !SPA_VERSION_IS_SUPPORTED(version) || 2357 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2358 guid != vd->vdev_guid || 2359 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2360 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2361 VDEV_AUX_CORRUPT_DATA); 2362 nvlist_free(label); 2363 return (-1); 2364 } 2365 2366 /* 2367 * We don't actually check the pool state here. If it's in fact in 2368 * use by another pool, we update this fact on the fly when requested. 2369 */ 2370 nvlist_free(label); 2371 return (0); 2372 } 2373 2374 void 2375 vdev_remove(vdev_t *vd, uint64_t txg) 2376 { 2377 spa_t *spa = vd->vdev_spa; 2378 objset_t *mos = spa->spa_meta_objset; 2379 dmu_tx_t *tx; 2380 2381 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2382 ASSERT(vd == vd->vdev_top); 2383 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 2384 2385 if (vd->vdev_ms != NULL) { 2386 metaslab_group_t *mg = vd->vdev_mg; 2387 2388 metaslab_group_histogram_verify(mg); 2389 metaslab_class_histogram_verify(mg->mg_class); 2390 2391 for (int m = 0; m < vd->vdev_ms_count; m++) { 2392 metaslab_t *msp = vd->vdev_ms[m]; 2393 2394 if (msp == NULL || msp->ms_sm == NULL) 2395 continue; 2396 2397 mutex_enter(&msp->ms_lock); 2398 /* 2399 * If the metaslab was not loaded when the vdev 2400 * was removed then the histogram accounting may 2401 * not be accurate. Update the histogram information 2402 * here so that we ensure that the metaslab group 2403 * and metaslab class are up-to-date. 2404 */ 2405 metaslab_group_histogram_remove(mg, msp); 2406 2407 VERIFY0(space_map_allocated(msp->ms_sm)); 2408 space_map_free(msp->ms_sm, tx); 2409 space_map_close(msp->ms_sm); 2410 msp->ms_sm = NULL; 2411 mutex_exit(&msp->ms_lock); 2412 } 2413 2414 metaslab_group_histogram_verify(mg); 2415 metaslab_class_histogram_verify(mg->mg_class); 2416 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2417 ASSERT0(mg->mg_histogram[i]); 2418 2419 } 2420 2421 if (vd->vdev_ms_array) { 2422 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2423 vd->vdev_ms_array = 0; 2424 } 2425 2426 if (vd->vdev_islog && vd->vdev_top_zap != 0) { 2427 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 2428 vd->vdev_top_zap = 0; 2429 } 2430 dmu_tx_commit(tx); 2431 } 2432 2433 void 2434 vdev_sync_done(vdev_t *vd, uint64_t txg) 2435 { 2436 metaslab_t *msp; 2437 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2438 2439 ASSERT(!vd->vdev_ishole); 2440 2441 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2442 metaslab_sync_done(msp, txg); 2443 2444 if (reassess) 2445 metaslab_sync_reassess(vd->vdev_mg); 2446 } 2447 2448 void 2449 vdev_sync(vdev_t *vd, uint64_t txg) 2450 { 2451 spa_t *spa = vd->vdev_spa; 2452 vdev_t *lvd; 2453 metaslab_t *msp; 2454 dmu_tx_t *tx; 2455 2456 ASSERT(!vd->vdev_ishole); 2457 2458 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2459 ASSERT(vd == vd->vdev_top); 2460 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2461 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2462 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2463 ASSERT(vd->vdev_ms_array != 0); 2464 vdev_config_dirty(vd); 2465 dmu_tx_commit(tx); 2466 } 2467 2468 /* 2469 * Remove the metadata associated with this vdev once it's empty. 2470 */ 2471 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2472 vdev_remove(vd, txg); 2473 2474 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2475 metaslab_sync(msp, txg); 2476 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2477 } 2478 2479 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2480 vdev_dtl_sync(lvd, txg); 2481 2482 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2483 } 2484 2485 uint64_t 2486 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2487 { 2488 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2489 } 2490 2491 /* 2492 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2493 * not be opened, and no I/O is attempted. 2494 */ 2495 int 2496 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2497 { 2498 vdev_t *vd, *tvd; 2499 2500 spa_vdev_state_enter(spa, SCL_NONE); 2501 2502 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2503 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2504 2505 if (!vd->vdev_ops->vdev_op_leaf) 2506 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2507 2508 tvd = vd->vdev_top; 2509 2510 /* 2511 * We don't directly use the aux state here, but if we do a 2512 * vdev_reopen(), we need this value to be present to remember why we 2513 * were faulted. 2514 */ 2515 vd->vdev_label_aux = aux; 2516 2517 /* 2518 * Faulted state takes precedence over degraded. 2519 */ 2520 vd->vdev_delayed_close = B_FALSE; 2521 vd->vdev_faulted = 1ULL; 2522 vd->vdev_degraded = 0ULL; 2523 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2524 2525 /* 2526 * If this device has the only valid copy of the data, then 2527 * back off and simply mark the vdev as degraded instead. 2528 */ 2529 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2530 vd->vdev_degraded = 1ULL; 2531 vd->vdev_faulted = 0ULL; 2532 2533 /* 2534 * If we reopen the device and it's not dead, only then do we 2535 * mark it degraded. 2536 */ 2537 vdev_reopen(tvd); 2538 2539 if (vdev_readable(vd)) 2540 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2541 } 2542 2543 return (spa_vdev_state_exit(spa, vd, 0)); 2544 } 2545 2546 /* 2547 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2548 * user that something is wrong. The vdev continues to operate as normal as far 2549 * as I/O is concerned. 2550 */ 2551 int 2552 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2553 { 2554 vdev_t *vd; 2555 2556 spa_vdev_state_enter(spa, SCL_NONE); 2557 2558 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2559 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2560 2561 if (!vd->vdev_ops->vdev_op_leaf) 2562 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2563 2564 /* 2565 * If the vdev is already faulted, then don't do anything. 2566 */ 2567 if (vd->vdev_faulted || vd->vdev_degraded) 2568 return (spa_vdev_state_exit(spa, NULL, 0)); 2569 2570 vd->vdev_degraded = 1ULL; 2571 if (!vdev_is_dead(vd)) 2572 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2573 aux); 2574 2575 return (spa_vdev_state_exit(spa, vd, 0)); 2576 } 2577 2578 /* 2579 * Online the given vdev. 2580 * 2581 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2582 * spare device should be detached when the device finishes resilvering. 2583 * Second, the online should be treated like a 'test' online case, so no FMA 2584 * events are generated if the device fails to open. 2585 */ 2586 int 2587 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2588 { 2589 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2590 boolean_t postevent = B_FALSE; 2591 2592 spa_vdev_state_enter(spa, SCL_NONE); 2593 2594 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2595 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2596 2597 if (!vd->vdev_ops->vdev_op_leaf) 2598 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2599 2600 postevent = 2601 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ? 2602 B_TRUE : B_FALSE; 2603 2604 tvd = vd->vdev_top; 2605 vd->vdev_offline = B_FALSE; 2606 vd->vdev_tmpoffline = B_FALSE; 2607 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2608 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2609 2610 /* XXX - L2ARC 1.0 does not support expansion */ 2611 if (!vd->vdev_aux) { 2612 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2613 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2614 } 2615 2616 vdev_reopen(tvd); 2617 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2618 2619 if (!vd->vdev_aux) { 2620 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2621 pvd->vdev_expanding = B_FALSE; 2622 } 2623 2624 if (newstate) 2625 *newstate = vd->vdev_state; 2626 if ((flags & ZFS_ONLINE_UNSPARE) && 2627 !vdev_is_dead(vd) && vd->vdev_parent && 2628 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2629 vd->vdev_parent->vdev_child[0] == vd) 2630 vd->vdev_unspare = B_TRUE; 2631 2632 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2633 2634 /* XXX - L2ARC 1.0 does not support expansion */ 2635 if (vd->vdev_aux) 2636 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2637 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2638 } 2639 2640 if (postevent) 2641 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE); 2642 2643 return (spa_vdev_state_exit(spa, vd, 0)); 2644 } 2645 2646 static int 2647 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2648 { 2649 vdev_t *vd, *tvd; 2650 int error = 0; 2651 uint64_t generation; 2652 metaslab_group_t *mg; 2653 2654 top: 2655 spa_vdev_state_enter(spa, SCL_ALLOC); 2656 2657 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2658 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2659 2660 if (!vd->vdev_ops->vdev_op_leaf) 2661 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2662 2663 tvd = vd->vdev_top; 2664 mg = tvd->vdev_mg; 2665 generation = spa->spa_config_generation + 1; 2666 2667 /* 2668 * If the device isn't already offline, try to offline it. 2669 */ 2670 if (!vd->vdev_offline) { 2671 /* 2672 * If this device has the only valid copy of some data, 2673 * don't allow it to be offlined. Log devices are always 2674 * expendable. 2675 */ 2676 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2677 vdev_dtl_required(vd)) 2678 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2679 2680 /* 2681 * If the top-level is a slog and it has had allocations 2682 * then proceed. We check that the vdev's metaslab group 2683 * is not NULL since it's possible that we may have just 2684 * added this vdev but not yet initialized its metaslabs. 2685 */ 2686 if (tvd->vdev_islog && mg != NULL) { 2687 /* 2688 * Prevent any future allocations. 2689 */ 2690 metaslab_group_passivate(mg); 2691 (void) spa_vdev_state_exit(spa, vd, 0); 2692 2693 error = spa_offline_log(spa); 2694 2695 spa_vdev_state_enter(spa, SCL_ALLOC); 2696 2697 /* 2698 * Check to see if the config has changed. 2699 */ 2700 if (error || generation != spa->spa_config_generation) { 2701 metaslab_group_activate(mg); 2702 if (error) 2703 return (spa_vdev_state_exit(spa, 2704 vd, error)); 2705 (void) spa_vdev_state_exit(spa, vd, 0); 2706 goto top; 2707 } 2708 ASSERT0(tvd->vdev_stat.vs_alloc); 2709 } 2710 2711 /* 2712 * Offline this device and reopen its top-level vdev. 2713 * If the top-level vdev is a log device then just offline 2714 * it. Otherwise, if this action results in the top-level 2715 * vdev becoming unusable, undo it and fail the request. 2716 */ 2717 vd->vdev_offline = B_TRUE; 2718 vdev_reopen(tvd); 2719 2720 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2721 vdev_is_dead(tvd)) { 2722 vd->vdev_offline = B_FALSE; 2723 vdev_reopen(tvd); 2724 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2725 } 2726 2727 /* 2728 * Add the device back into the metaslab rotor so that 2729 * once we online the device it's open for business. 2730 */ 2731 if (tvd->vdev_islog && mg != NULL) 2732 metaslab_group_activate(mg); 2733 } 2734 2735 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2736 2737 return (spa_vdev_state_exit(spa, vd, 0)); 2738 } 2739 2740 int 2741 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2742 { 2743 int error; 2744 2745 mutex_enter(&spa->spa_vdev_top_lock); 2746 error = vdev_offline_locked(spa, guid, flags); 2747 mutex_exit(&spa->spa_vdev_top_lock); 2748 2749 return (error); 2750 } 2751 2752 /* 2753 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2754 * vdev_offline(), we assume the spa config is locked. We also clear all 2755 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2756 */ 2757 void 2758 vdev_clear(spa_t *spa, vdev_t *vd) 2759 { 2760 vdev_t *rvd = spa->spa_root_vdev; 2761 2762 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2763 2764 if (vd == NULL) 2765 vd = rvd; 2766 2767 vd->vdev_stat.vs_read_errors = 0; 2768 vd->vdev_stat.vs_write_errors = 0; 2769 vd->vdev_stat.vs_checksum_errors = 0; 2770 2771 for (int c = 0; c < vd->vdev_children; c++) 2772 vdev_clear(spa, vd->vdev_child[c]); 2773 2774 if (vd == rvd) { 2775 for (int c = 0; c < spa->spa_l2cache.sav_count; c++) 2776 vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]); 2777 2778 for (int c = 0; c < spa->spa_spares.sav_count; c++) 2779 vdev_clear(spa, spa->spa_spares.sav_vdevs[c]); 2780 } 2781 2782 /* 2783 * If we're in the FAULTED state or have experienced failed I/O, then 2784 * clear the persistent state and attempt to reopen the device. We 2785 * also mark the vdev config dirty, so that the new faulted state is 2786 * written out to disk. 2787 */ 2788 if (vd->vdev_faulted || vd->vdev_degraded || 2789 !vdev_readable(vd) || !vdev_writeable(vd)) { 2790 2791 /* 2792 * When reopening in reponse to a clear event, it may be due to 2793 * a fmadm repair request. In this case, if the device is 2794 * still broken, we want to still post the ereport again. 2795 */ 2796 vd->vdev_forcefault = B_TRUE; 2797 2798 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2799 vd->vdev_cant_read = B_FALSE; 2800 vd->vdev_cant_write = B_FALSE; 2801 2802 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2803 2804 vd->vdev_forcefault = B_FALSE; 2805 2806 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2807 vdev_state_dirty(vd->vdev_top); 2808 2809 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2810 spa_async_request(spa, SPA_ASYNC_RESILVER); 2811 2812 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2813 } 2814 2815 /* 2816 * When clearing a FMA-diagnosed fault, we always want to 2817 * unspare the device, as we assume that the original spare was 2818 * done in response to the FMA fault. 2819 */ 2820 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2821 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2822 vd->vdev_parent->vdev_child[0] == vd) 2823 vd->vdev_unspare = B_TRUE; 2824 } 2825 2826 boolean_t 2827 vdev_is_dead(vdev_t *vd) 2828 { 2829 /* 2830 * Holes and missing devices are always considered "dead". 2831 * This simplifies the code since we don't have to check for 2832 * these types of devices in the various code paths. 2833 * Instead we rely on the fact that we skip over dead devices 2834 * before issuing I/O to them. 2835 */ 2836 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2837 vd->vdev_ops == &vdev_missing_ops); 2838 } 2839 2840 boolean_t 2841 vdev_readable(vdev_t *vd) 2842 { 2843 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2844 } 2845 2846 boolean_t 2847 vdev_writeable(vdev_t *vd) 2848 { 2849 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2850 } 2851 2852 boolean_t 2853 vdev_allocatable(vdev_t *vd) 2854 { 2855 uint64_t state = vd->vdev_state; 2856 2857 /* 2858 * We currently allow allocations from vdevs which may be in the 2859 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2860 * fails to reopen then we'll catch it later when we're holding 2861 * the proper locks. Note that we have to get the vdev state 2862 * in a local variable because although it changes atomically, 2863 * we're asking two separate questions about it. 2864 */ 2865 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2866 !vd->vdev_cant_write && !vd->vdev_ishole && 2867 vd->vdev_mg->mg_initialized); 2868 } 2869 2870 boolean_t 2871 vdev_accessible(vdev_t *vd, zio_t *zio) 2872 { 2873 ASSERT(zio->io_vd == vd); 2874 2875 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2876 return (B_FALSE); 2877 2878 if (zio->io_type == ZIO_TYPE_READ) 2879 return (!vd->vdev_cant_read); 2880 2881 if (zio->io_type == ZIO_TYPE_WRITE) 2882 return (!vd->vdev_cant_write); 2883 2884 return (B_TRUE); 2885 } 2886 2887 /* 2888 * Get statistics for the given vdev. 2889 */ 2890 void 2891 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2892 { 2893 spa_t *spa = vd->vdev_spa; 2894 vdev_t *rvd = spa->spa_root_vdev; 2895 vdev_t *tvd = vd->vdev_top; 2896 2897 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2898 2899 mutex_enter(&vd->vdev_stat_lock); 2900 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2901 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2902 vs->vs_state = vd->vdev_state; 2903 vs->vs_rsize = vdev_get_min_asize(vd); 2904 if (vd->vdev_ops->vdev_op_leaf) 2905 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2906 /* 2907 * Report expandable space on top-level, non-auxillary devices only. 2908 * The expandable space is reported in terms of metaslab sized units 2909 * since that determines how much space the pool can expand. 2910 */ 2911 if (vd->vdev_aux == NULL && tvd != NULL && vd->vdev_max_asize != 0) { 2912 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize, 2913 1ULL << tvd->vdev_ms_shift); 2914 } 2915 vs->vs_configured_ashift = vd->vdev_top != NULL 2916 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 2917 vs->vs_logical_ashift = vd->vdev_logical_ashift; 2918 vs->vs_physical_ashift = vd->vdev_physical_ashift; 2919 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2920 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2921 } 2922 2923 /* 2924 * If we're getting stats on the root vdev, aggregate the I/O counts 2925 * over all top-level vdevs (i.e. the direct children of the root). 2926 */ 2927 if (vd == rvd) { 2928 for (int c = 0; c < rvd->vdev_children; c++) { 2929 vdev_t *cvd = rvd->vdev_child[c]; 2930 vdev_stat_t *cvs = &cvd->vdev_stat; 2931 2932 for (int t = 0; t < ZIO_TYPES; t++) { 2933 vs->vs_ops[t] += cvs->vs_ops[t]; 2934 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2935 } 2936 cvs->vs_scan_removing = cvd->vdev_removing; 2937 } 2938 } 2939 mutex_exit(&vd->vdev_stat_lock); 2940 } 2941 2942 void 2943 vdev_clear_stats(vdev_t *vd) 2944 { 2945 mutex_enter(&vd->vdev_stat_lock); 2946 vd->vdev_stat.vs_space = 0; 2947 vd->vdev_stat.vs_dspace = 0; 2948 vd->vdev_stat.vs_alloc = 0; 2949 mutex_exit(&vd->vdev_stat_lock); 2950 } 2951 2952 void 2953 vdev_scan_stat_init(vdev_t *vd) 2954 { 2955 vdev_stat_t *vs = &vd->vdev_stat; 2956 2957 for (int c = 0; c < vd->vdev_children; c++) 2958 vdev_scan_stat_init(vd->vdev_child[c]); 2959 2960 mutex_enter(&vd->vdev_stat_lock); 2961 vs->vs_scan_processed = 0; 2962 mutex_exit(&vd->vdev_stat_lock); 2963 } 2964 2965 void 2966 vdev_stat_update(zio_t *zio, uint64_t psize) 2967 { 2968 spa_t *spa = zio->io_spa; 2969 vdev_t *rvd = spa->spa_root_vdev; 2970 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2971 vdev_t *pvd; 2972 uint64_t txg = zio->io_txg; 2973 vdev_stat_t *vs = &vd->vdev_stat; 2974 zio_type_t type = zio->io_type; 2975 int flags = zio->io_flags; 2976 2977 /* 2978 * If this i/o is a gang leader, it didn't do any actual work. 2979 */ 2980 if (zio->io_gang_tree) 2981 return; 2982 2983 if (zio->io_error == 0) { 2984 /* 2985 * If this is a root i/o, don't count it -- we've already 2986 * counted the top-level vdevs, and vdev_get_stats() will 2987 * aggregate them when asked. This reduces contention on 2988 * the root vdev_stat_lock and implicitly handles blocks 2989 * that compress away to holes, for which there is no i/o. 2990 * (Holes never create vdev children, so all the counters 2991 * remain zero, which is what we want.) 2992 * 2993 * Note: this only applies to successful i/o (io_error == 0) 2994 * because unlike i/o counts, errors are not additive. 2995 * When reading a ditto block, for example, failure of 2996 * one top-level vdev does not imply a root-level error. 2997 */ 2998 if (vd == rvd) 2999 return; 3000 3001 ASSERT(vd == zio->io_vd); 3002 3003 if (flags & ZIO_FLAG_IO_BYPASS) 3004 return; 3005 3006 mutex_enter(&vd->vdev_stat_lock); 3007 3008 if (flags & ZIO_FLAG_IO_REPAIR) { 3009 if (flags & ZIO_FLAG_SCAN_THREAD) { 3010 dsl_scan_phys_t *scn_phys = 3011 &spa->spa_dsl_pool->dp_scan->scn_phys; 3012 uint64_t *processed = &scn_phys->scn_processed; 3013 3014 /* XXX cleanup? */ 3015 if (vd->vdev_ops->vdev_op_leaf) 3016 atomic_add_64(processed, psize); 3017 vs->vs_scan_processed += psize; 3018 } 3019 3020 if (flags & ZIO_FLAG_SELF_HEAL) 3021 vs->vs_self_healed += psize; 3022 } 3023 3024 vs->vs_ops[type]++; 3025 vs->vs_bytes[type] += psize; 3026 3027 mutex_exit(&vd->vdev_stat_lock); 3028 return; 3029 } 3030 3031 if (flags & ZIO_FLAG_SPECULATIVE) 3032 return; 3033 3034 /* 3035 * If this is an I/O error that is going to be retried, then ignore the 3036 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 3037 * hard errors, when in reality they can happen for any number of 3038 * innocuous reasons (bus resets, MPxIO link failure, etc). 3039 */ 3040 if (zio->io_error == EIO && 3041 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 3042 return; 3043 3044 /* 3045 * Intent logs writes won't propagate their error to the root 3046 * I/O so don't mark these types of failures as pool-level 3047 * errors. 3048 */ 3049 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 3050 return; 3051 3052 mutex_enter(&vd->vdev_stat_lock); 3053 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 3054 if (zio->io_error == ECKSUM) 3055 vs->vs_checksum_errors++; 3056 else 3057 vs->vs_read_errors++; 3058 } 3059 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 3060 vs->vs_write_errors++; 3061 mutex_exit(&vd->vdev_stat_lock); 3062 3063 if (type == ZIO_TYPE_WRITE && txg != 0 && 3064 (!(flags & ZIO_FLAG_IO_REPAIR) || 3065 (flags & ZIO_FLAG_SCAN_THREAD) || 3066 spa->spa_claiming)) { 3067 /* 3068 * This is either a normal write (not a repair), or it's 3069 * a repair induced by the scrub thread, or it's a repair 3070 * made by zil_claim() during spa_load() in the first txg. 3071 * In the normal case, we commit the DTL change in the same 3072 * txg as the block was born. In the scrub-induced repair 3073 * case, we know that scrubs run in first-pass syncing context, 3074 * so we commit the DTL change in spa_syncing_txg(spa). 3075 * In the zil_claim() case, we commit in spa_first_txg(spa). 3076 * 3077 * We currently do not make DTL entries for failed spontaneous 3078 * self-healing writes triggered by normal (non-scrubbing) 3079 * reads, because we have no transactional context in which to 3080 * do so -- and it's not clear that it'd be desirable anyway. 3081 */ 3082 if (vd->vdev_ops->vdev_op_leaf) { 3083 uint64_t commit_txg = txg; 3084 if (flags & ZIO_FLAG_SCAN_THREAD) { 3085 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 3086 ASSERT(spa_sync_pass(spa) == 1); 3087 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 3088 commit_txg = spa_syncing_txg(spa); 3089 } else if (spa->spa_claiming) { 3090 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 3091 commit_txg = spa_first_txg(spa); 3092 } 3093 ASSERT(commit_txg >= spa_syncing_txg(spa)); 3094 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 3095 return; 3096 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3097 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 3098 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 3099 } 3100 if (vd != rvd) 3101 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 3102 } 3103 } 3104 3105 /* 3106 * Update the in-core space usage stats for this vdev, its metaslab class, 3107 * and the root vdev. 3108 */ 3109 void 3110 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 3111 int64_t space_delta) 3112 { 3113 int64_t dspace_delta = space_delta; 3114 spa_t *spa = vd->vdev_spa; 3115 vdev_t *rvd = spa->spa_root_vdev; 3116 metaslab_group_t *mg = vd->vdev_mg; 3117 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 3118 3119 ASSERT(vd == vd->vdev_top); 3120 3121 /* 3122 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 3123 * factor. We must calculate this here and not at the root vdev 3124 * because the root vdev's psize-to-asize is simply the max of its 3125 * childrens', thus not accurate enough for us. 3126 */ 3127 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 3128 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 3129 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 3130 vd->vdev_deflate_ratio; 3131 3132 mutex_enter(&vd->vdev_stat_lock); 3133 vd->vdev_stat.vs_alloc += alloc_delta; 3134 vd->vdev_stat.vs_space += space_delta; 3135 vd->vdev_stat.vs_dspace += dspace_delta; 3136 mutex_exit(&vd->vdev_stat_lock); 3137 3138 if (mc == spa_normal_class(spa)) { 3139 mutex_enter(&rvd->vdev_stat_lock); 3140 rvd->vdev_stat.vs_alloc += alloc_delta; 3141 rvd->vdev_stat.vs_space += space_delta; 3142 rvd->vdev_stat.vs_dspace += dspace_delta; 3143 mutex_exit(&rvd->vdev_stat_lock); 3144 } 3145 3146 if (mc != NULL) { 3147 ASSERT(rvd == vd->vdev_parent); 3148 ASSERT(vd->vdev_ms_count != 0); 3149 3150 metaslab_class_space_update(mc, 3151 alloc_delta, defer_delta, space_delta, dspace_delta); 3152 } 3153 } 3154 3155 /* 3156 * Mark a top-level vdev's config as dirty, placing it on the dirty list 3157 * so that it will be written out next time the vdev configuration is synced. 3158 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 3159 */ 3160 void 3161 vdev_config_dirty(vdev_t *vd) 3162 { 3163 spa_t *spa = vd->vdev_spa; 3164 vdev_t *rvd = spa->spa_root_vdev; 3165 int c; 3166 3167 ASSERT(spa_writeable(spa)); 3168 3169 /* 3170 * If this is an aux vdev (as with l2cache and spare devices), then we 3171 * update the vdev config manually and set the sync flag. 3172 */ 3173 if (vd->vdev_aux != NULL) { 3174 spa_aux_vdev_t *sav = vd->vdev_aux; 3175 nvlist_t **aux; 3176 uint_t naux; 3177 3178 for (c = 0; c < sav->sav_count; c++) { 3179 if (sav->sav_vdevs[c] == vd) 3180 break; 3181 } 3182 3183 if (c == sav->sav_count) { 3184 /* 3185 * We're being removed. There's nothing more to do. 3186 */ 3187 ASSERT(sav->sav_sync == B_TRUE); 3188 return; 3189 } 3190 3191 sav->sav_sync = B_TRUE; 3192 3193 if (nvlist_lookup_nvlist_array(sav->sav_config, 3194 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 3195 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 3196 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 3197 } 3198 3199 ASSERT(c < naux); 3200 3201 /* 3202 * Setting the nvlist in the middle if the array is a little 3203 * sketchy, but it will work. 3204 */ 3205 nvlist_free(aux[c]); 3206 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 3207 3208 return; 3209 } 3210 3211 /* 3212 * The dirty list is protected by the SCL_CONFIG lock. The caller 3213 * must either hold SCL_CONFIG as writer, or must be the sync thread 3214 * (which holds SCL_CONFIG as reader). There's only one sync thread, 3215 * so this is sufficient to ensure mutual exclusion. 3216 */ 3217 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3218 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3219 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3220 3221 if (vd == rvd) { 3222 for (c = 0; c < rvd->vdev_children; c++) 3223 vdev_config_dirty(rvd->vdev_child[c]); 3224 } else { 3225 ASSERT(vd == vd->vdev_top); 3226 3227 if (!list_link_active(&vd->vdev_config_dirty_node) && 3228 !vd->vdev_ishole) 3229 list_insert_head(&spa->spa_config_dirty_list, vd); 3230 } 3231 } 3232 3233 void 3234 vdev_config_clean(vdev_t *vd) 3235 { 3236 spa_t *spa = vd->vdev_spa; 3237 3238 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3239 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3240 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3241 3242 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 3243 list_remove(&spa->spa_config_dirty_list, vd); 3244 } 3245 3246 /* 3247 * Mark a top-level vdev's state as dirty, so that the next pass of 3248 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 3249 * the state changes from larger config changes because they require 3250 * much less locking, and are often needed for administrative actions. 3251 */ 3252 void 3253 vdev_state_dirty(vdev_t *vd) 3254 { 3255 spa_t *spa = vd->vdev_spa; 3256 3257 ASSERT(spa_writeable(spa)); 3258 ASSERT(vd == vd->vdev_top); 3259 3260 /* 3261 * The state list is protected by the SCL_STATE lock. The caller 3262 * must either hold SCL_STATE as writer, or must be the sync thread 3263 * (which holds SCL_STATE as reader). There's only one sync thread, 3264 * so this is sufficient to ensure mutual exclusion. 3265 */ 3266 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3267 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3268 spa_config_held(spa, SCL_STATE, RW_READER))); 3269 3270 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 3271 list_insert_head(&spa->spa_state_dirty_list, vd); 3272 } 3273 3274 void 3275 vdev_state_clean(vdev_t *vd) 3276 { 3277 spa_t *spa = vd->vdev_spa; 3278 3279 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3280 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3281 spa_config_held(spa, SCL_STATE, RW_READER))); 3282 3283 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3284 list_remove(&spa->spa_state_dirty_list, vd); 3285 } 3286 3287 /* 3288 * Propagate vdev state up from children to parent. 3289 */ 3290 void 3291 vdev_propagate_state(vdev_t *vd) 3292 { 3293 spa_t *spa = vd->vdev_spa; 3294 vdev_t *rvd = spa->spa_root_vdev; 3295 int degraded = 0, faulted = 0; 3296 int corrupted = 0; 3297 vdev_t *child; 3298 3299 if (vd->vdev_children > 0) { 3300 for (int c = 0; c < vd->vdev_children; c++) { 3301 child = vd->vdev_child[c]; 3302 3303 /* 3304 * Don't factor holes into the decision. 3305 */ 3306 if (child->vdev_ishole) 3307 continue; 3308 3309 if (!vdev_readable(child) || 3310 (!vdev_writeable(child) && spa_writeable(spa))) { 3311 /* 3312 * Root special: if there is a top-level log 3313 * device, treat the root vdev as if it were 3314 * degraded. 3315 */ 3316 if (child->vdev_islog && vd == rvd) 3317 degraded++; 3318 else 3319 faulted++; 3320 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3321 degraded++; 3322 } 3323 3324 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3325 corrupted++; 3326 } 3327 3328 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3329 3330 /* 3331 * Root special: if there is a top-level vdev that cannot be 3332 * opened due to corrupted metadata, then propagate the root 3333 * vdev's aux state as 'corrupt' rather than 'insufficient 3334 * replicas'. 3335 */ 3336 if (corrupted && vd == rvd && 3337 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3338 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3339 VDEV_AUX_CORRUPT_DATA); 3340 } 3341 3342 if (vd->vdev_parent) 3343 vdev_propagate_state(vd->vdev_parent); 3344 } 3345 3346 /* 3347 * Set a vdev's state. If this is during an open, we don't update the parent 3348 * state, because we're in the process of opening children depth-first. 3349 * Otherwise, we propagate the change to the parent. 3350 * 3351 * If this routine places a device in a faulted state, an appropriate ereport is 3352 * generated. 3353 */ 3354 void 3355 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3356 { 3357 uint64_t save_state; 3358 spa_t *spa = vd->vdev_spa; 3359 3360 if (state == vd->vdev_state) { 3361 vd->vdev_stat.vs_aux = aux; 3362 return; 3363 } 3364 3365 save_state = vd->vdev_state; 3366 3367 vd->vdev_state = state; 3368 vd->vdev_stat.vs_aux = aux; 3369 3370 /* 3371 * If we are setting the vdev state to anything but an open state, then 3372 * always close the underlying device unless the device has requested 3373 * a delayed close (i.e. we're about to remove or fault the device). 3374 * Otherwise, we keep accessible but invalid devices open forever. 3375 * We don't call vdev_close() itself, because that implies some extra 3376 * checks (offline, etc) that we don't want here. This is limited to 3377 * leaf devices, because otherwise closing the device will affect other 3378 * children. 3379 */ 3380 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3381 vd->vdev_ops->vdev_op_leaf) 3382 vd->vdev_ops->vdev_op_close(vd); 3383 3384 if (vd->vdev_removed && 3385 state == VDEV_STATE_CANT_OPEN && 3386 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3387 /* 3388 * If the previous state is set to VDEV_STATE_REMOVED, then this 3389 * device was previously marked removed and someone attempted to 3390 * reopen it. If this failed due to a nonexistent device, then 3391 * keep the device in the REMOVED state. We also let this be if 3392 * it is one of our special test online cases, which is only 3393 * attempting to online the device and shouldn't generate an FMA 3394 * fault. 3395 */ 3396 vd->vdev_state = VDEV_STATE_REMOVED; 3397 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3398 } else if (state == VDEV_STATE_REMOVED) { 3399 vd->vdev_removed = B_TRUE; 3400 } else if (state == VDEV_STATE_CANT_OPEN) { 3401 /* 3402 * If we fail to open a vdev during an import or recovery, we 3403 * mark it as "not available", which signifies that it was 3404 * never there to begin with. Failure to open such a device 3405 * is not considered an error. 3406 */ 3407 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3408 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3409 vd->vdev_ops->vdev_op_leaf) 3410 vd->vdev_not_present = 1; 3411 3412 /* 3413 * Post the appropriate ereport. If the 'prevstate' field is 3414 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3415 * that this is part of a vdev_reopen(). In this case, we don't 3416 * want to post the ereport if the device was already in the 3417 * CANT_OPEN state beforehand. 3418 * 3419 * If the 'checkremove' flag is set, then this is an attempt to 3420 * online the device in response to an insertion event. If we 3421 * hit this case, then we have detected an insertion event for a 3422 * faulted or offline device that wasn't in the removed state. 3423 * In this scenario, we don't post an ereport because we are 3424 * about to replace the device, or attempt an online with 3425 * vdev_forcefault, which will generate the fault for us. 3426 */ 3427 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3428 !vd->vdev_not_present && !vd->vdev_checkremove && 3429 vd != spa->spa_root_vdev) { 3430 const char *class; 3431 3432 switch (aux) { 3433 case VDEV_AUX_OPEN_FAILED: 3434 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3435 break; 3436 case VDEV_AUX_CORRUPT_DATA: 3437 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3438 break; 3439 case VDEV_AUX_NO_REPLICAS: 3440 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3441 break; 3442 case VDEV_AUX_BAD_GUID_SUM: 3443 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3444 break; 3445 case VDEV_AUX_TOO_SMALL: 3446 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3447 break; 3448 case VDEV_AUX_BAD_LABEL: 3449 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3450 break; 3451 default: 3452 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3453 } 3454 3455 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3456 } 3457 3458 /* Erase any notion of persistent removed state */ 3459 vd->vdev_removed = B_FALSE; 3460 } else { 3461 vd->vdev_removed = B_FALSE; 3462 } 3463 3464 /* 3465 * Notify the fmd of the state change. Be verbose and post 3466 * notifications even for stuff that's not important; the fmd agent can 3467 * sort it out. Don't emit state change events for non-leaf vdevs since 3468 * they can't change state on their own. The FMD can check their state 3469 * if it wants to when it sees that a leaf vdev had a state change. 3470 */ 3471 if (vd->vdev_ops->vdev_op_leaf) 3472 zfs_post_state_change(spa, vd); 3473 3474 if (!isopen && vd->vdev_parent) 3475 vdev_propagate_state(vd->vdev_parent); 3476 } 3477 3478 /* 3479 * Check the vdev configuration to ensure that it's capable of supporting 3480 * a root pool. We do not support partial configuration. 3481 * In addition, only a single top-level vdev is allowed. 3482 * 3483 * FreeBSD does not have above limitations. 3484 */ 3485 boolean_t 3486 vdev_is_bootable(vdev_t *vd) 3487 { 3488 #ifdef illumos 3489 if (!vd->vdev_ops->vdev_op_leaf) { 3490 char *vdev_type = vd->vdev_ops->vdev_op_type; 3491 3492 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3493 vd->vdev_children > 1) { 3494 return (B_FALSE); 3495 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3496 return (B_FALSE); 3497 } 3498 } 3499 3500 for (int c = 0; c < vd->vdev_children; c++) { 3501 if (!vdev_is_bootable(vd->vdev_child[c])) 3502 return (B_FALSE); 3503 } 3504 #endif /* illumos */ 3505 return (B_TRUE); 3506 } 3507 3508 /* 3509 * Load the state from the original vdev tree (ovd) which 3510 * we've retrieved from the MOS config object. If the original 3511 * vdev was offline or faulted then we transfer that state to the 3512 * device in the current vdev tree (nvd). 3513 */ 3514 void 3515 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3516 { 3517 spa_t *spa = nvd->vdev_spa; 3518 3519 ASSERT(nvd->vdev_top->vdev_islog); 3520 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3521 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3522 3523 for (int c = 0; c < nvd->vdev_children; c++) 3524 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3525 3526 if (nvd->vdev_ops->vdev_op_leaf) { 3527 /* 3528 * Restore the persistent vdev state 3529 */ 3530 nvd->vdev_offline = ovd->vdev_offline; 3531 nvd->vdev_faulted = ovd->vdev_faulted; 3532 nvd->vdev_degraded = ovd->vdev_degraded; 3533 nvd->vdev_removed = ovd->vdev_removed; 3534 } 3535 } 3536 3537 /* 3538 * Determine if a log device has valid content. If the vdev was 3539 * removed or faulted in the MOS config then we know that 3540 * the content on the log device has already been written to the pool. 3541 */ 3542 boolean_t 3543 vdev_log_state_valid(vdev_t *vd) 3544 { 3545 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3546 !vd->vdev_removed) 3547 return (B_TRUE); 3548 3549 for (int c = 0; c < vd->vdev_children; c++) 3550 if (vdev_log_state_valid(vd->vdev_child[c])) 3551 return (B_TRUE); 3552 3553 return (B_FALSE); 3554 } 3555 3556 /* 3557 * Expand a vdev if possible. 3558 */ 3559 void 3560 vdev_expand(vdev_t *vd, uint64_t txg) 3561 { 3562 ASSERT(vd->vdev_top == vd); 3563 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3564 3565 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3566 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3567 vdev_config_dirty(vd); 3568 } 3569 } 3570 3571 /* 3572 * Split a vdev. 3573 */ 3574 void 3575 vdev_split(vdev_t *vd) 3576 { 3577 vdev_t *cvd, *pvd = vd->vdev_parent; 3578 3579 vdev_remove_child(pvd, vd); 3580 vdev_compact_children(pvd); 3581 3582 cvd = pvd->vdev_child[0]; 3583 if (pvd->vdev_children == 1) { 3584 vdev_remove_parent(cvd); 3585 cvd->vdev_splitting = B_TRUE; 3586 } 3587 vdev_propagate_state(cvd); 3588 } 3589 3590 void 3591 vdev_deadman(vdev_t *vd) 3592 { 3593 for (int c = 0; c < vd->vdev_children; c++) { 3594 vdev_t *cvd = vd->vdev_child[c]; 3595 3596 vdev_deadman(cvd); 3597 } 3598 3599 if (vd->vdev_ops->vdev_op_leaf) { 3600 vdev_queue_t *vq = &vd->vdev_queue; 3601 3602 mutex_enter(&vq->vq_lock); 3603 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3604 spa_t *spa = vd->vdev_spa; 3605 zio_t *fio; 3606 uint64_t delta; 3607 3608 /* 3609 * Look at the head of all the pending queues, 3610 * if any I/O has been outstanding for longer than 3611 * the spa_deadman_synctime we panic the system. 3612 */ 3613 fio = avl_first(&vq->vq_active_tree); 3614 delta = gethrtime() - fio->io_timestamp; 3615 if (delta > spa_deadman_synctime(spa)) { 3616 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3617 "delta %"PRIu64"ns, last io %lluns", 3618 fio->io_timestamp, delta, 3619 vq->vq_io_complete_ts); 3620 3621 printf("SLOW IO: zio timestamp %lluns, " 3622 "delta %"PRIu64"ns, last io %lluns\n", 3623 fio->io_timestamp, delta, 3624 vq->vq_io_complete_ts); 3625 3626 fm_panic("I/O to pool '%s' appears to be " 3627 "hung on vdev guid %llu at '%s'.", 3628 spa_name(spa), 3629 (long long unsigned int) vd->vdev_guid, 3630 vd->vdev_path); 3631 } 3632 } 3633 mutex_exit(&vq->vq_lock); 3634 } 3635 } 3636