xref: /netbsd-src/external/cddl/osnet/dist/uts/common/fs/zfs/spa_misc.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
33 #include <sys/spa_boot.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/txg.h>
45 #include <sys/avl.h>
46 #include <sys/unique.h>
47 #include <sys/dsl_pool.h>
48 #include <sys/dsl_dir.h>
49 #include <sys/dsl_prop.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/metaslab_impl.h>
53 #include <sys/arc.h>
54 #include <sys/ddt.h>
55 #include "zfs_prop.h"
56 #include <sys/zfeature.h>
57 
58 #if defined(__FreeBSD__) && defined(_KERNEL)
59 #include <sys/types.h>
60 #include <sys/sysctl.h>
61 #endif
62 
63 /*
64  * SPA locking
65  *
66  * There are four basic locks for managing spa_t structures:
67  *
68  * spa_namespace_lock (global mutex)
69  *
70  *	This lock must be acquired to do any of the following:
71  *
72  *		- Lookup a spa_t by name
73  *		- Add or remove a spa_t from the namespace
74  *		- Increase spa_refcount from non-zero
75  *		- Check if spa_refcount is zero
76  *		- Rename a spa_t
77  *		- add/remove/attach/detach devices
78  *		- Held for the duration of create/destroy/import/export
79  *
80  *	It does not need to handle recursion.  A create or destroy may
81  *	reference objects (files or zvols) in other pools, but by
82  *	definition they must have an existing reference, and will never need
83  *	to lookup a spa_t by name.
84  *
85  * spa_refcount (per-spa refcount_t protected by mutex)
86  *
87  *	This reference count keep track of any active users of the spa_t.  The
88  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
89  *	the refcount is never really 'zero' - opening a pool implicitly keeps
90  *	some references in the DMU.  Internally we check against spa_minref, but
91  *	present the image of a zero/non-zero value to consumers.
92  *
93  * spa_config_lock[] (per-spa array of rwlocks)
94  *
95  *	This protects the spa_t from config changes, and must be held in
96  *	the following circumstances:
97  *
98  *		- RW_READER to perform I/O to the spa
99  *		- RW_WRITER to change the vdev config
100  *
101  * The locking order is fairly straightforward:
102  *
103  *		spa_namespace_lock	->	spa_refcount
104  *
105  *	The namespace lock must be acquired to increase the refcount from 0
106  *	or to check if it is zero.
107  *
108  *		spa_refcount		->	spa_config_lock[]
109  *
110  *	There must be at least one valid reference on the spa_t to acquire
111  *	the config lock.
112  *
113  *		spa_namespace_lock	->	spa_config_lock[]
114  *
115  *	The namespace lock must always be taken before the config lock.
116  *
117  *
118  * The spa_namespace_lock can be acquired directly and is globally visible.
119  *
120  * The namespace is manipulated using the following functions, all of which
121  * require the spa_namespace_lock to be held.
122  *
123  *	spa_lookup()		Lookup a spa_t by name.
124  *
125  *	spa_add()		Create a new spa_t in the namespace.
126  *
127  *	spa_remove()		Remove a spa_t from the namespace.  This also
128  *				frees up any memory associated with the spa_t.
129  *
130  *	spa_next()		Returns the next spa_t in the system, or the
131  *				first if NULL is passed.
132  *
133  *	spa_evict_all()		Shutdown and remove all spa_t structures in
134  *				the system.
135  *
136  *	spa_guid_exists()	Determine whether a pool/device guid exists.
137  *
138  * The spa_refcount is manipulated using the following functions:
139  *
140  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
141  *				called with spa_namespace_lock held if the
142  *				refcount is currently zero.
143  *
144  *	spa_close()		Remove a reference from the spa_t.  This will
145  *				not free the spa_t or remove it from the
146  *				namespace.  No locking is required.
147  *
148  *	spa_refcount_zero()	Returns true if the refcount is currently
149  *				zero.  Must be called with spa_namespace_lock
150  *				held.
151  *
152  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
153  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
154  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
155  *
156  * To read the configuration, it suffices to hold one of these locks as reader.
157  * To modify the configuration, you must hold all locks as writer.  To modify
158  * vdev state without altering the vdev tree's topology (e.g. online/offline),
159  * you must hold SCL_STATE and SCL_ZIO as writer.
160  *
161  * We use these distinct config locks to avoid recursive lock entry.
162  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
163  * block allocations (SCL_ALLOC), which may require reading space maps
164  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
165  *
166  * The spa config locks cannot be normal rwlocks because we need the
167  * ability to hand off ownership.  For example, SCL_ZIO is acquired
168  * by the issuing thread and later released by an interrupt thread.
169  * They do, however, obey the usual write-wanted semantics to prevent
170  * writer (i.e. system administrator) starvation.
171  *
172  * The lock acquisition rules are as follows:
173  *
174  * SCL_CONFIG
175  *	Protects changes to the vdev tree topology, such as vdev
176  *	add/remove/attach/detach.  Protects the dirty config list
177  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
178  *
179  * SCL_STATE
180  *	Protects changes to pool state and vdev state, such as vdev
181  *	online/offline/fault/degrade/clear.  Protects the dirty state list
182  *	(spa_state_dirty_list) and global pool state (spa_state).
183  *
184  * SCL_ALLOC
185  *	Protects changes to metaslab groups and classes.
186  *	Held as reader by metaslab_alloc() and metaslab_claim().
187  *
188  * SCL_ZIO
189  *	Held by bp-level zios (those which have no io_vd upon entry)
190  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
191  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
192  *
193  * SCL_FREE
194  *	Protects changes to metaslab groups and classes.
195  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
196  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
197  *	blocks in zio_done() while another i/o that holds either
198  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
199  *
200  * SCL_VDEV
201  *	Held as reader to prevent changes to the vdev tree during trivial
202  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
203  *	other locks, and lower than all of them, to ensure that it's safe
204  *	to acquire regardless of caller context.
205  *
206  * In addition, the following rules apply:
207  *
208  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
209  *	The lock ordering is SCL_CONFIG > spa_props_lock.
210  *
211  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
212  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
213  *	or zio_write_phys() -- the caller must ensure that the config cannot
214  *	cannot change in the interim, and that the vdev cannot be reopened.
215  *	SCL_STATE as reader suffices for both.
216  *
217  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
218  *
219  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
220  *				for writing.
221  *
222  *	spa_vdev_exit()		Release the config lock, wait for all I/O
223  *				to complete, sync the updated configs to the
224  *				cache, and release the namespace lock.
225  *
226  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
227  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
228  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
229  *
230  * spa_rename() is also implemented within this file since it requires
231  * manipulation of the namespace.
232  */
233 
234 static avl_tree_t spa_namespace_avl;
235 kmutex_t spa_namespace_lock;
236 static kcondvar_t spa_namespace_cv;
237 static int spa_active_count;
238 int spa_max_replication_override = SPA_DVAS_PER_BP;
239 
240 static kmutex_t spa_spare_lock;
241 static avl_tree_t spa_spare_avl;
242 static kmutex_t spa_l2cache_lock;
243 static avl_tree_t spa_l2cache_avl;
244 
245 kmem_cache_t *spa_buffer_pool;
246 int spa_mode_global;
247 
248 #ifdef ZFS_DEBUG
249 /* Everything except dprintf and spa is on by default in debug builds */
250 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
251 #else
252 int zfs_flags = 0;
253 #endif
254 
255 /*
256  * zfs_recover can be set to nonzero to attempt to recover from
257  * otherwise-fatal errors, typically caused by on-disk corruption.  When
258  * set, calls to zfs_panic_recover() will turn into warning messages.
259  * This should only be used as a last resort, as it typically results
260  * in leaked space, or worse.
261  */
262 boolean_t zfs_recover = B_FALSE;
263 
264 /*
265  * If destroy encounters an EIO while reading metadata (e.g. indirect
266  * blocks), space referenced by the missing metadata can not be freed.
267  * Normally this causes the background destroy to become "stalled", as
268  * it is unable to make forward progress.  While in this stalled state,
269  * all remaining space to free from the error-encountering filesystem is
270  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
271  * permanently leak the space from indirect blocks that can not be read,
272  * and continue to free everything else that it can.
273  *
274  * The default, "stalling" behavior is useful if the storage partially
275  * fails (i.e. some but not all i/os fail), and then later recovers.  In
276  * this case, we will be able to continue pool operations while it is
277  * partially failed, and when it recovers, we can continue to free the
278  * space, with no leaks.  However, note that this case is actually
279  * fairly rare.
280  *
281  * Typically pools either (a) fail completely (but perhaps temporarily,
282  * e.g. a top-level vdev going offline), or (b) have localized,
283  * permanent errors (e.g. disk returns the wrong data due to bit flip or
284  * firmware bug).  In case (a), this setting does not matter because the
285  * pool will be suspended and the sync thread will not be able to make
286  * forward progress regardless.  In case (b), because the error is
287  * permanent, the best we can do is leak the minimum amount of space,
288  * which is what setting this flag will do.  Therefore, it is reasonable
289  * for this flag to normally be set, but we chose the more conservative
290  * approach of not setting it, so that there is no possibility of
291  * leaking space in the "partial temporary" failure case.
292  */
293 boolean_t zfs_free_leak_on_eio = B_FALSE;
294 
295 /*
296  * Expiration time in milliseconds. This value has two meanings. First it is
297  * used to determine when the spa_deadman() logic should fire. By default the
298  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
299  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
300  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
301  * in a system panic.
302  */
303 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
304 
305 /*
306  * Check time in milliseconds. This defines the frequency at which we check
307  * for hung I/O.
308  */
309 uint64_t zfs_deadman_checktime_ms = 5000ULL;
310 
311 /*
312  * Default value of -1 for zfs_deadman_enabled is resolved in
313  * zfs_deadman_init()
314  */
315 int zfs_deadman_enabled = -1;
316 
317 /*
318  * The worst case is single-sector max-parity RAID-Z blocks, in which
319  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
320  * times the size; so just assume that.  Add to this the fact that
321  * we can have up to 3 DVAs per bp, and one more factor of 2 because
322  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
323  * the worst case is:
324  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
325  */
326 int spa_asize_inflation = 24;
327 
328 #if defined(__FreeBSD__) && defined(_KERNEL)
329 SYSCTL_DECL(_vfs_zfs);
330 SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RWTUN, &zfs_recover, 0,
331     "Try to recover from otherwise-fatal errors.");
332 
333 static int
334 sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS)
335 {
336 	int err, val;
337 
338 	val = zfs_flags;
339 	err = sysctl_handle_int(oidp, &val, 0, req);
340 	if (err != 0 || req->newptr == NULL)
341 		return (err);
342 
343 	/*
344 	 * ZFS_DEBUG_MODIFY must be enabled prior to boot so all
345 	 * arc buffers in the system have the necessary additional
346 	 * checksum data.  However, it is safe to disable at any
347 	 * time.
348 	 */
349 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
350 		val &= ~ZFS_DEBUG_MODIFY;
351 	zfs_flags = val;
352 
353 	return (0);
354 }
355 
356 SYSCTL_PROC(_vfs_zfs, OID_AUTO, debug_flags,
357     CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
358     sysctl_vfs_zfs_debug_flags, "IU", "Debug flags for ZFS testing.");
359 
360 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
361     &zfs_deadman_synctime_ms, 0,
362     "Stalled ZFS I/O expiration time in milliseconds");
363 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
364     &zfs_deadman_checktime_ms, 0,
365     "Period of checks for stalled ZFS I/O in milliseconds");
366 SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
367     &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
368 SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
369     &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
370 #endif
371 
372 
373 #ifdef __FreeBSD__
374 #ifdef _KERNEL
375 static void
376 zfs_deadman_init(void)
377 {
378 	/*
379 	 * If we are not i386 or amd64 or in a virtual machine,
380 	 * disable ZFS deadman thread by default
381 	 */
382 	if (zfs_deadman_enabled == -1) {
383 #if defined(__amd64__) || defined(__i386__)
384 		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
385 #else
386 		zfs_deadman_enabled = 0;
387 #endif
388 	}
389 }
390 #endif	/* _KERNEL */
391 #endif	/* __FreeBSD__ */
392 
393 #ifdef __NetBSD__
394 #ifdef _HARDKERNEL
395 static struct workqueue *spa_workqueue;
396 
397 static void spa_deadman(void *arg);
398 
399 static void
400 spa_deadman_wq(struct work *wk, void *arg)
401 {
402 	spa_t *spa = container_of(wk, struct spa, spa_deadman_work);
403 
404 	spa_deadman(spa);
405 }
406 
407 static void
408 zfs_deadman_init(void)
409 {
410 	int error;
411 
412 	error = workqueue_create(&spa_workqueue, "spa_deadman",
413 	    spa_deadman_wq, NULL, PRI_NONE, IPL_NONE, WQ_MPSAFE);
414 	VERIFY0(error);
415 }
416 
417 static void
418 zfs_deadman_fini(void)
419 {
420 	workqueue_destroy(spa_workqueue);
421 	spa_workqueue = NULL;
422 }
423 #else /* !_HARDKERNEL */
424 #define zfs_deadman_init() /* nothing */
425 #define zfs_deadman_fini() /* nothing */
426 #endif /* !_HARDKERNEL */
427 #endif /* __NetBSD__ */
428 
429 /*
430  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
431  * the pool to be consumed.  This ensures that we don't run the pool
432  * completely out of space, due to unaccounted changes (e.g. to the MOS).
433  * It also limits the worst-case time to allocate space.  If we have
434  * less than this amount of free space, most ZPL operations (e.g. write,
435  * create) will return ENOSPC.
436  *
437  * Certain operations (e.g. file removal, most administrative actions) can
438  * use half the slop space.  They will only return ENOSPC if less than half
439  * the slop space is free.  Typically, once the pool has less than the slop
440  * space free, the user will use these operations to free up space in the pool.
441  * These are the operations that call dsl_pool_adjustedsize() with the netfree
442  * argument set to TRUE.
443  *
444  * A very restricted set of operations are always permitted, regardless of
445  * the amount of free space.  These are the operations that call
446  * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
447  * operations result in a net increase in the amount of space used,
448  * it is possible to run the pool completely out of space, causing it to
449  * be permanently read-only.
450  *
451  * Note that on very small pools, the slop space will be larger than
452  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
453  * but we never allow it to be more than half the pool size.
454  *
455  * See also the comments in zfs_space_check_t.
456  */
457 int spa_slop_shift = 5;
458 SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_slop_shift, CTLFLAG_RWTUN,
459     &spa_slop_shift, 0,
460     "Shift value of reserved space (1/(2^spa_slop_shift)).");
461 uint64_t spa_min_slop = 128 * 1024 * 1024;
462 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, spa_min_slop, CTLFLAG_RWTUN,
463     &spa_min_slop, 0,
464     "Minimal value of reserved space");
465 
466 /*
467  * ==========================================================================
468  * SPA config locking
469  * ==========================================================================
470  */
471 static void
472 spa_config_lock_init(spa_t *spa)
473 {
474 	for (int i = 0; i < SCL_LOCKS; i++) {
475 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
476 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
477 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
478 		refcount_create_untracked(&scl->scl_count);
479 		scl->scl_writer = NULL;
480 		scl->scl_write_wanted = 0;
481 	}
482 }
483 
484 static void
485 spa_config_lock_destroy(spa_t *spa)
486 {
487 	for (int i = 0; i < SCL_LOCKS; i++) {
488 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
489 		mutex_destroy(&scl->scl_lock);
490 		cv_destroy(&scl->scl_cv);
491 		refcount_destroy(&scl->scl_count);
492 		ASSERT(scl->scl_writer == NULL);
493 		ASSERT(scl->scl_write_wanted == 0);
494 	}
495 }
496 
497 int
498 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
499 {
500 	for (int i = 0; i < SCL_LOCKS; i++) {
501 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
502 		if (!(locks & (1 << i)))
503 			continue;
504 		mutex_enter(&scl->scl_lock);
505 		if (rw == RW_READER) {
506 			if (scl->scl_writer || scl->scl_write_wanted) {
507 				mutex_exit(&scl->scl_lock);
508 				spa_config_exit(spa, locks & ((1 << i) - 1),
509 				    tag);
510 				return (0);
511 			}
512 		} else {
513 			ASSERT(scl->scl_writer != curthread);
514 			if (!refcount_is_zero(&scl->scl_count)) {
515 				mutex_exit(&scl->scl_lock);
516 				spa_config_exit(spa, locks & ((1 << i) - 1),
517 				    tag);
518 				return (0);
519 			}
520 			scl->scl_writer = curthread;
521 		}
522 		(void) refcount_add(&scl->scl_count, tag);
523 		mutex_exit(&scl->scl_lock);
524 	}
525 	return (1);
526 }
527 
528 void
529 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
530 {
531 	int wlocks_held = 0;
532 
533 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
534 
535 	for (int i = 0; i < SCL_LOCKS; i++) {
536 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
537 		if (scl->scl_writer == curthread)
538 			wlocks_held |= (1 << i);
539 		if (!(locks & (1 << i)))
540 			continue;
541 		mutex_enter(&scl->scl_lock);
542 		if (rw == RW_READER) {
543 			while (scl->scl_writer || scl->scl_write_wanted) {
544 				cv_wait(&scl->scl_cv, &scl->scl_lock);
545 			}
546 		} else {
547 			ASSERT(scl->scl_writer != curthread);
548 			while (!refcount_is_zero(&scl->scl_count)) {
549 				scl->scl_write_wanted++;
550 				cv_wait(&scl->scl_cv, &scl->scl_lock);
551 				scl->scl_write_wanted--;
552 			}
553 			scl->scl_writer = curthread;
554 		}
555 		(void) refcount_add(&scl->scl_count, tag);
556 		mutex_exit(&scl->scl_lock);
557 	}
558 	ASSERT(wlocks_held <= locks);
559 }
560 
561 void
562 spa_config_exit(spa_t *spa, int locks, void *tag)
563 {
564 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
565 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
566 		if (!(locks & (1 << i)))
567 			continue;
568 		mutex_enter(&scl->scl_lock);
569 		ASSERT(!refcount_is_zero(&scl->scl_count));
570 		if (refcount_remove(&scl->scl_count, tag) == 0) {
571 			ASSERT(scl->scl_writer == NULL ||
572 			    scl->scl_writer == curthread);
573 			scl->scl_writer = NULL;	/* OK in either case */
574 			cv_broadcast(&scl->scl_cv);
575 		}
576 		mutex_exit(&scl->scl_lock);
577 	}
578 }
579 
580 int
581 spa_config_held(spa_t *spa, int locks, krw_t rw)
582 {
583 	int locks_held = 0;
584 
585 	for (int i = 0; i < SCL_LOCKS; i++) {
586 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
587 		if (!(locks & (1 << i)))
588 			continue;
589 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
590 		    (rw == RW_WRITER && scl->scl_writer == curthread))
591 			locks_held |= 1 << i;
592 	}
593 
594 	return (locks_held);
595 }
596 
597 /*
598  * ==========================================================================
599  * SPA namespace functions
600  * ==========================================================================
601  */
602 
603 /*
604  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
605  * Returns NULL if no matching spa_t is found.
606  */
607 spa_t *
608 spa_lookup(const char *name)
609 {
610 	static spa_t search;	/* spa_t is large; don't allocate on stack */
611 	spa_t *spa;
612 	avl_index_t where;
613 	char *cp;
614 
615 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
616 
617 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
618 
619 	/*
620 	 * If it's a full dataset name, figure out the pool name and
621 	 * just use that.
622 	 */
623 	cp = strpbrk(search.spa_name, "/@#");
624 	if (cp != NULL)
625 		*cp = '\0';
626 
627 	spa = avl_find(&spa_namespace_avl, &search, &where);
628 
629 	return (spa);
630 }
631 
632 /*
633  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
634  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
635  * looking for potentially hung I/Os.
636  */
637 static void
638 spa_deadman(void *arg)
639 {
640 	spa_t *spa = arg;
641 
642 	/*
643 	 * Disable the deadman timer if the pool is suspended.
644 	 */
645 	if (spa_suspended(spa)) {
646 #ifdef illumos
647 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
648 #else
649 		/* Nothing.  just don't schedule any future callouts. */
650 #endif
651 		return;
652 	}
653 
654 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
655 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
656 	    ++spa->spa_deadman_calls);
657 	if (zfs_deadman_enabled)
658 		vdev_deadman(spa->spa_root_vdev);
659 #ifndef illumos
660 #ifdef _KERNEL
661 	callout_schedule(&spa->spa_deadman_cycid,
662 	    hz * zfs_deadman_checktime_ms / MILLISEC);
663 #endif
664 #endif
665 }
666 
667 #ifdef _HARDKERNEL
668 static void
669 spa_deadman_timeout(void *arg)
670 {
671 	spa_t *spa = arg;
672 
673 #ifdef __FreeBSD__
674 	taskqueue_enqueue(taskqueue_thread, &spa->spa_deadman_task);
675 #endif
676 #ifdef __NetBSD__
677 	workqueue_enqueue(spa_workqueue, &spa->spa_deadman_work, NULL);
678 #endif
679 }
680 #endif /* _KERNEL */
681 
682 /*
683  * Create an uninitialized spa_t with the given name.  Requires
684  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
685  * exist by calling spa_lookup() first.
686  */
687 spa_t *
688 spa_add(const char *name, nvlist_t *config, const char *altroot)
689 {
690 	spa_t *spa;
691 	spa_config_dirent_t *dp;
692 #ifndef __FreeBSD__
693 	cyc_handler_t hdlr;
694 	cyc_time_t when;
695 #endif
696 
697 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
698 
699 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
700 
701 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
702 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
703 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
704 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
705 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
706 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
707 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
708 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
709 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
710 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
711 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
712 	mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
713 
714 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
715 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
716 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
717 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
718 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
719 
720 	for (int t = 0; t < TXG_SIZE; t++)
721 		bplist_create(&spa->spa_free_bplist[t]);
722 
723 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
724 	spa->spa_state = POOL_STATE_UNINITIALIZED;
725 	spa->spa_freeze_txg = UINT64_MAX;
726 	spa->spa_final_txg = UINT64_MAX;
727 	spa->spa_load_max_txg = UINT64_MAX;
728 	spa->spa_proc = &p0;
729 	spa->spa_proc_state = SPA_PROC_NONE;
730 
731 #ifndef __FreeBSD__
732 	hdlr.cyh_func = spa_deadman;
733 	hdlr.cyh_arg = spa;
734 	hdlr.cyh_level = CY_LOW_LEVEL;
735 #endif
736 
737 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
738 
739 #ifdef illumos
740 	/*
741 	 * This determines how often we need to check for hung I/Os after
742 	 * the cyclic has already fired. Since checking for hung I/Os is
743 	 * an expensive operation we don't want to check too frequently.
744 	 * Instead wait for 5 seconds before checking again.
745 	 */
746 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
747 	when.cyt_when = CY_INFINITY;
748 	mutex_enter(&cpu_lock);
749 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
750 	mutex_exit(&cpu_lock);
751 #endif
752 #ifdef __FreeBSD__
753 #ifdef _KERNEL
754 	/*
755 	 * callout(9) does not provide a way to initialize a callout with
756 	 * a function and an argument, so we use callout_reset() to schedule
757 	 * the callout in the very distant future.  Even if that event ever
758 	 * fires, it should be okayas we won't have any active zio-s.
759 	 * But normally spa_sync() will reschedule the callout with a proper
760 	 * timeout.
761 	 * callout(9) does not allow the callback function to sleep but
762 	 * vdev_deadman() needs to acquire vq_lock and illumos mutexes are
763 	 * emulated using sx(9).  For this reason spa_deadman_timeout()
764 	 * will schedule spa_deadman() as task on a taskqueue that allows
765 	 * sleeping.
766 	 */
767 	TASK_INIT(&spa->spa_deadman_task, 0, spa_deadman, spa);
768 	callout_init(&spa->spa_deadman_cycid, 1);
769 	callout_reset_sbt(&spa->spa_deadman_cycid, SBT_MAX, 0,
770 	    spa_deadman_timeout, spa, 0);
771 #endif
772 #endif
773 #ifdef __NetBSD__
774 #ifdef _HARDKERNEL
775 	callout_init(&spa->spa_deadman_cycid, 0);
776 	callout_setfunc(&spa->spa_deadman_cycid, spa_deadman_timeout, spa);
777 #endif
778 #endif
779 
780 	refcount_create(&spa->spa_refcount);
781 	spa_config_lock_init(spa);
782 
783 	avl_add(&spa_namespace_avl, spa);
784 
785 	/*
786 	 * Set the alternate root, if there is one.
787 	 */
788 	if (altroot) {
789 		spa->spa_root = spa_strdup(altroot);
790 		spa_active_count++;
791 	}
792 
793 	avl_create(&spa->spa_alloc_tree, zio_timestamp_compare,
794 	    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
795 
796 	/*
797 	 * Every pool starts with the default cachefile
798 	 */
799 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
800 	    offsetof(spa_config_dirent_t, scd_link));
801 
802 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
803 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
804 	list_insert_head(&spa->spa_config_list, dp);
805 
806 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
807 	    KM_SLEEP) == 0);
808 
809 	if (config != NULL) {
810 		nvlist_t *features;
811 
812 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
813 		    &features) == 0) {
814 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
815 			    0) == 0);
816 		}
817 
818 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
819 	}
820 
821 	if (spa->spa_label_features == NULL) {
822 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
823 		    KM_SLEEP) == 0);
824 	}
825 
826 	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
827 
828 	spa->spa_min_ashift = INT_MAX;
829 	spa->spa_max_ashift = 0;
830 
831 	/*
832 	 * As a pool is being created, treat all features as disabled by
833 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
834 	 * refcount cache.
835 	 */
836 	for (int i = 0; i < SPA_FEATURES; i++) {
837 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
838 	}
839 
840 	return (spa);
841 }
842 
843 /*
844  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
845  * spa_namespace_lock.  This is called only after the spa_t has been closed and
846  * deactivated.
847  */
848 void
849 spa_remove(spa_t *spa)
850 {
851 	spa_config_dirent_t *dp;
852 
853 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
854 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
855 	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
856 
857 	nvlist_free(spa->spa_config_splitting);
858 
859 	avl_remove(&spa_namespace_avl, spa);
860 	cv_broadcast(&spa_namespace_cv);
861 
862 	if (spa->spa_root) {
863 		spa_strfree(spa->spa_root);
864 		spa_active_count--;
865 	}
866 
867 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
868 		list_remove(&spa->spa_config_list, dp);
869 		if (dp->scd_path != NULL)
870 			spa_strfree(dp->scd_path);
871 		kmem_free(dp, sizeof (spa_config_dirent_t));
872 	}
873 
874 	avl_destroy(&spa->spa_alloc_tree);
875 	list_destroy(&spa->spa_config_list);
876 
877 	nvlist_free(spa->spa_label_features);
878 	nvlist_free(spa->spa_load_info);
879 	spa_config_set(spa, NULL);
880 
881 #ifdef illumos
882 	mutex_enter(&cpu_lock);
883 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
884 		cyclic_remove(spa->spa_deadman_cycid);
885 	mutex_exit(&cpu_lock);
886 	spa->spa_deadman_cycid = CYCLIC_NONE;
887 #endif /* !illumos */
888 #ifdef __FreeBSD__
889 #ifdef _KERNEL
890 	callout_drain(&spa->spa_deadman_cycid);
891 	taskqueue_drain(taskqueue_thread, &spa->spa_deadman_task);
892 #endif
893 #endif
894 #ifdef __NetBSD__
895 #ifdef _HARDKERNEL
896 	callout_drain(&spa->spa_deadman_cycid);
897 #endif
898 #endif
899 
900 	refcount_destroy(&spa->spa_refcount);
901 
902 	spa_config_lock_destroy(spa);
903 
904 	for (int t = 0; t < TXG_SIZE; t++)
905 		bplist_destroy(&spa->spa_free_bplist[t]);
906 
907 	zio_checksum_templates_free(spa);
908 
909 	cv_destroy(&spa->spa_async_cv);
910 	cv_destroy(&spa->spa_evicting_os_cv);
911 	cv_destroy(&spa->spa_proc_cv);
912 	cv_destroy(&spa->spa_scrub_io_cv);
913 	cv_destroy(&spa->spa_suspend_cv);
914 
915 	mutex_destroy(&spa->spa_alloc_lock);
916 	mutex_destroy(&spa->spa_async_lock);
917 	mutex_destroy(&spa->spa_errlist_lock);
918 	mutex_destroy(&spa->spa_errlog_lock);
919 	mutex_destroy(&spa->spa_evicting_os_lock);
920 	mutex_destroy(&spa->spa_history_lock);
921 	mutex_destroy(&spa->spa_proc_lock);
922 	mutex_destroy(&spa->spa_props_lock);
923 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
924 	mutex_destroy(&spa->spa_scrub_lock);
925 	mutex_destroy(&spa->spa_suspend_lock);
926 	mutex_destroy(&spa->spa_vdev_top_lock);
927 
928 	kmem_free(spa, sizeof (spa_t));
929 }
930 
931 /*
932  * Given a pool, return the next pool in the namespace, or NULL if there is
933  * none.  If 'prev' is NULL, return the first pool.
934  */
935 spa_t *
936 spa_next(spa_t *prev)
937 {
938 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
939 
940 	if (prev)
941 		return (AVL_NEXT(&spa_namespace_avl, prev));
942 	else
943 		return (avl_first(&spa_namespace_avl));
944 }
945 
946 /*
947  * ==========================================================================
948  * SPA refcount functions
949  * ==========================================================================
950  */
951 
952 /*
953  * Add a reference to the given spa_t.  Must have at least one reference, or
954  * have the namespace lock held.
955  */
956 void
957 spa_open_ref(spa_t *spa, void *tag)
958 {
959 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
960 	    MUTEX_HELD(&spa_namespace_lock));
961 	(void) refcount_add(&spa->spa_refcount, tag);
962 }
963 
964 /*
965  * Remove a reference to the given spa_t.  Must have at least one reference, or
966  * have the namespace lock held.
967  */
968 void
969 spa_close(spa_t *spa, void *tag)
970 {
971 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
972 	    MUTEX_HELD(&spa_namespace_lock));
973 	(void) refcount_remove(&spa->spa_refcount, tag);
974 }
975 
976 /*
977  * Remove a reference to the given spa_t held by a dsl dir that is
978  * being asynchronously released.  Async releases occur from a taskq
979  * performing eviction of dsl datasets and dirs.  The namespace lock
980  * isn't held and the hold by the object being evicted may contribute to
981  * spa_minref (e.g. dataset or directory released during pool export),
982  * so the asserts in spa_close() do not apply.
983  */
984 void
985 spa_async_close(spa_t *spa, void *tag)
986 {
987 	(void) refcount_remove(&spa->spa_refcount, tag);
988 }
989 
990 /*
991  * Check to see if the spa refcount is zero.  Must be called with
992  * spa_namespace_lock held.  We really compare against spa_minref, which is the
993  * number of references acquired when opening a pool
994  */
995 boolean_t
996 spa_refcount_zero(spa_t *spa)
997 {
998 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
999 
1000 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
1001 }
1002 
1003 /*
1004  * ==========================================================================
1005  * SPA spare and l2cache tracking
1006  * ==========================================================================
1007  */
1008 
1009 /*
1010  * Hot spares and cache devices are tracked using the same code below,
1011  * for 'auxiliary' devices.
1012  */
1013 
1014 typedef struct spa_aux {
1015 	uint64_t	aux_guid;
1016 	uint64_t	aux_pool;
1017 	avl_node_t	aux_avl;
1018 	int		aux_count;
1019 } spa_aux_t;
1020 
1021 static int
1022 spa_aux_compare(const void *a, const void *b)
1023 {
1024 	const spa_aux_t *sa = a;
1025 	const spa_aux_t *sb = b;
1026 
1027 	if (sa->aux_guid < sb->aux_guid)
1028 		return (-1);
1029 	else if (sa->aux_guid > sb->aux_guid)
1030 		return (1);
1031 	else
1032 		return (0);
1033 }
1034 
1035 void
1036 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
1037 {
1038 	avl_index_t where;
1039 	spa_aux_t search;
1040 	spa_aux_t *aux;
1041 
1042 	search.aux_guid = vd->vdev_guid;
1043 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
1044 		aux->aux_count++;
1045 	} else {
1046 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
1047 		aux->aux_guid = vd->vdev_guid;
1048 		aux->aux_count = 1;
1049 		avl_insert(avl, aux, where);
1050 	}
1051 }
1052 
1053 void
1054 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1055 {
1056 	spa_aux_t search;
1057 	spa_aux_t *aux;
1058 	avl_index_t where;
1059 
1060 	search.aux_guid = vd->vdev_guid;
1061 	aux = avl_find(avl, &search, &where);
1062 
1063 	ASSERT(aux != NULL);
1064 
1065 	if (--aux->aux_count == 0) {
1066 		avl_remove(avl, aux);
1067 		kmem_free(aux, sizeof (spa_aux_t));
1068 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1069 		aux->aux_pool = 0ULL;
1070 	}
1071 }
1072 
1073 boolean_t
1074 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1075 {
1076 	spa_aux_t search, *found;
1077 
1078 	search.aux_guid = guid;
1079 	found = avl_find(avl, &search, NULL);
1080 
1081 	if (pool) {
1082 		if (found)
1083 			*pool = found->aux_pool;
1084 		else
1085 			*pool = 0ULL;
1086 	}
1087 
1088 	if (refcnt) {
1089 		if (found)
1090 			*refcnt = found->aux_count;
1091 		else
1092 			*refcnt = 0;
1093 	}
1094 
1095 	return (found != NULL);
1096 }
1097 
1098 void
1099 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1100 {
1101 	spa_aux_t search, *found;
1102 	avl_index_t where;
1103 
1104 	search.aux_guid = vd->vdev_guid;
1105 	found = avl_find(avl, &search, &where);
1106 	ASSERT(found != NULL);
1107 	ASSERT(found->aux_pool == 0ULL);
1108 
1109 	found->aux_pool = spa_guid(vd->vdev_spa);
1110 }
1111 
1112 /*
1113  * Spares are tracked globally due to the following constraints:
1114  *
1115  * 	- A spare may be part of multiple pools.
1116  * 	- A spare may be added to a pool even if it's actively in use within
1117  *	  another pool.
1118  * 	- A spare in use in any pool can only be the source of a replacement if
1119  *	  the target is a spare in the same pool.
1120  *
1121  * We keep track of all spares on the system through the use of a reference
1122  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1123  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1124  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1125  * inactive).  When a spare is made active (used to replace a device in the
1126  * pool), we also keep track of which pool its been made a part of.
1127  *
1128  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1129  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1130  * separate spare lock exists for the status query path, which does not need to
1131  * be completely consistent with respect to other vdev configuration changes.
1132  */
1133 
1134 static int
1135 spa_spare_compare(const void *a, const void *b)
1136 {
1137 	return (spa_aux_compare(a, b));
1138 }
1139 
1140 void
1141 spa_spare_add(vdev_t *vd)
1142 {
1143 	mutex_enter(&spa_spare_lock);
1144 	ASSERT(!vd->vdev_isspare);
1145 	spa_aux_add(vd, &spa_spare_avl);
1146 	vd->vdev_isspare = B_TRUE;
1147 	mutex_exit(&spa_spare_lock);
1148 }
1149 
1150 void
1151 spa_spare_remove(vdev_t *vd)
1152 {
1153 	mutex_enter(&spa_spare_lock);
1154 	ASSERT(vd->vdev_isspare);
1155 	spa_aux_remove(vd, &spa_spare_avl);
1156 	vd->vdev_isspare = B_FALSE;
1157 	mutex_exit(&spa_spare_lock);
1158 }
1159 
1160 boolean_t
1161 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1162 {
1163 	boolean_t found;
1164 
1165 	mutex_enter(&spa_spare_lock);
1166 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1167 	mutex_exit(&spa_spare_lock);
1168 
1169 	return (found);
1170 }
1171 
1172 void
1173 spa_spare_activate(vdev_t *vd)
1174 {
1175 	mutex_enter(&spa_spare_lock);
1176 	ASSERT(vd->vdev_isspare);
1177 	spa_aux_activate(vd, &spa_spare_avl);
1178 	mutex_exit(&spa_spare_lock);
1179 }
1180 
1181 /*
1182  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1183  * Cache devices currently only support one pool per cache device, and so
1184  * for these devices the aux reference count is currently unused beyond 1.
1185  */
1186 
1187 static int
1188 spa_l2cache_compare(const void *a, const void *b)
1189 {
1190 	return (spa_aux_compare(a, b));
1191 }
1192 
1193 void
1194 spa_l2cache_add(vdev_t *vd)
1195 {
1196 	mutex_enter(&spa_l2cache_lock);
1197 	ASSERT(!vd->vdev_isl2cache);
1198 	spa_aux_add(vd, &spa_l2cache_avl);
1199 	vd->vdev_isl2cache = B_TRUE;
1200 	mutex_exit(&spa_l2cache_lock);
1201 }
1202 
1203 void
1204 spa_l2cache_remove(vdev_t *vd)
1205 {
1206 	mutex_enter(&spa_l2cache_lock);
1207 	ASSERT(vd->vdev_isl2cache);
1208 	spa_aux_remove(vd, &spa_l2cache_avl);
1209 	vd->vdev_isl2cache = B_FALSE;
1210 	mutex_exit(&spa_l2cache_lock);
1211 }
1212 
1213 boolean_t
1214 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1215 {
1216 	boolean_t found;
1217 
1218 	mutex_enter(&spa_l2cache_lock);
1219 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1220 	mutex_exit(&spa_l2cache_lock);
1221 
1222 	return (found);
1223 }
1224 
1225 void
1226 spa_l2cache_activate(vdev_t *vd)
1227 {
1228 	mutex_enter(&spa_l2cache_lock);
1229 	ASSERT(vd->vdev_isl2cache);
1230 	spa_aux_activate(vd, &spa_l2cache_avl);
1231 	mutex_exit(&spa_l2cache_lock);
1232 }
1233 
1234 /*
1235  * ==========================================================================
1236  * SPA vdev locking
1237  * ==========================================================================
1238  */
1239 
1240 /*
1241  * Lock the given spa_t for the purpose of adding or removing a vdev.
1242  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1243  * It returns the next transaction group for the spa_t.
1244  */
1245 uint64_t
1246 spa_vdev_enter(spa_t *spa)
1247 {
1248 	mutex_enter(&spa->spa_vdev_top_lock);
1249 	mutex_enter(&spa_namespace_lock);
1250 	return (spa_vdev_config_enter(spa));
1251 }
1252 
1253 /*
1254  * Internal implementation for spa_vdev_enter().  Used when a vdev
1255  * operation requires multiple syncs (i.e. removing a device) while
1256  * keeping the spa_namespace_lock held.
1257  */
1258 uint64_t
1259 spa_vdev_config_enter(spa_t *spa)
1260 {
1261 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1262 
1263 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1264 
1265 	return (spa_last_synced_txg(spa) + 1);
1266 }
1267 
1268 /*
1269  * Used in combination with spa_vdev_config_enter() to allow the syncing
1270  * of multiple transactions without releasing the spa_namespace_lock.
1271  */
1272 void
1273 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1274 {
1275 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1276 
1277 	int config_changed = B_FALSE;
1278 
1279 	ASSERT(txg > spa_last_synced_txg(spa));
1280 
1281 	spa->spa_pending_vdev = NULL;
1282 
1283 	/*
1284 	 * Reassess the DTLs.
1285 	 */
1286 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1287 
1288 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1289 		config_changed = B_TRUE;
1290 		spa->spa_config_generation++;
1291 	}
1292 
1293 	/*
1294 	 * Verify the metaslab classes.
1295 	 */
1296 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1297 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1298 
1299 	spa_config_exit(spa, SCL_ALL, spa);
1300 
1301 	/*
1302 	 * Panic the system if the specified tag requires it.  This
1303 	 * is useful for ensuring that configurations are updated
1304 	 * transactionally.
1305 	 */
1306 	if (zio_injection_enabled)
1307 		zio_handle_panic_injection(spa, tag, 0);
1308 
1309 	/*
1310 	 * Note: this txg_wait_synced() is important because it ensures
1311 	 * that there won't be more than one config change per txg.
1312 	 * This allows us to use the txg as the generation number.
1313 	 */
1314 	if (error == 0)
1315 		txg_wait_synced(spa->spa_dsl_pool, txg);
1316 
1317 	if (vd != NULL) {
1318 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1319 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1320 		vdev_free(vd);
1321 		spa_config_exit(spa, SCL_ALL, spa);
1322 	}
1323 
1324 	/*
1325 	 * If the config changed, update the config cache.
1326 	 */
1327 	if (config_changed)
1328 		spa_config_sync(spa, B_FALSE, B_TRUE);
1329 }
1330 
1331 /*
1332  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1333  * locking of spa_vdev_enter(), we also want make sure the transactions have
1334  * synced to disk, and then update the global configuration cache with the new
1335  * information.
1336  */
1337 int
1338 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1339 {
1340 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1341 	mutex_exit(&spa_namespace_lock);
1342 	mutex_exit(&spa->spa_vdev_top_lock);
1343 
1344 	return (error);
1345 }
1346 
1347 /*
1348  * Lock the given spa_t for the purpose of changing vdev state.
1349  */
1350 void
1351 spa_vdev_state_enter(spa_t *spa, int oplocks)
1352 {
1353 	int locks = SCL_STATE_ALL | oplocks;
1354 
1355 	/*
1356 	 * Root pools may need to read of the underlying devfs filesystem
1357 	 * when opening up a vdev.  Unfortunately if we're holding the
1358 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1359 	 * the read from the root filesystem.  Instead we "prefetch"
1360 	 * the associated vnodes that we need prior to opening the
1361 	 * underlying devices and cache them so that we can prevent
1362 	 * any I/O when we are doing the actual open.
1363 	 */
1364 	if (spa_is_root(spa)) {
1365 		int low = locks & ~(SCL_ZIO - 1);
1366 		int high = locks & ~low;
1367 
1368 		spa_config_enter(spa, high, spa, RW_WRITER);
1369 		vdev_hold(spa->spa_root_vdev);
1370 		spa_config_enter(spa, low, spa, RW_WRITER);
1371 	} else {
1372 		spa_config_enter(spa, locks, spa, RW_WRITER);
1373 	}
1374 	spa->spa_vdev_locks = locks;
1375 }
1376 
1377 int
1378 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1379 {
1380 	boolean_t config_changed = B_FALSE;
1381 
1382 	if (vd != NULL || error == 0)
1383 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1384 		    0, 0, B_FALSE);
1385 
1386 	if (vd != NULL) {
1387 		vdev_state_dirty(vd->vdev_top);
1388 		config_changed = B_TRUE;
1389 		spa->spa_config_generation++;
1390 	}
1391 
1392 	if (spa_is_root(spa))
1393 		vdev_rele(spa->spa_root_vdev);
1394 
1395 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1396 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1397 
1398 	/*
1399 	 * If anything changed, wait for it to sync.  This ensures that,
1400 	 * from the system administrator's perspective, zpool(1M) commands
1401 	 * are synchronous.  This is important for things like zpool offline:
1402 	 * when the command completes, you expect no further I/O from ZFS.
1403 	 */
1404 	if (vd != NULL)
1405 		txg_wait_synced(spa->spa_dsl_pool, 0);
1406 
1407 	/*
1408 	 * If the config changed, update the config cache.
1409 	 */
1410 	if (config_changed) {
1411 		mutex_enter(&spa_namespace_lock);
1412 		spa_config_sync(spa, B_FALSE, B_TRUE);
1413 		mutex_exit(&spa_namespace_lock);
1414 	}
1415 
1416 	return (error);
1417 }
1418 
1419 /*
1420  * ==========================================================================
1421  * Miscellaneous functions
1422  * ==========================================================================
1423  */
1424 
1425 void
1426 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1427 {
1428 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1429 		fnvlist_add_boolean(spa->spa_label_features, feature);
1430 		/*
1431 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1432 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1433 		 * Thankfully, in this case we don't need to dirty the config
1434 		 * because it will be written out anyway when we finish
1435 		 * creating the pool.
1436 		 */
1437 		if (tx->tx_txg != TXG_INITIAL)
1438 			vdev_config_dirty(spa->spa_root_vdev);
1439 	}
1440 }
1441 
1442 void
1443 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1444 {
1445 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1446 		vdev_config_dirty(spa->spa_root_vdev);
1447 }
1448 
1449 /*
1450  * Rename a spa_t.
1451  */
1452 int
1453 spa_rename(const char *name, const char *newname)
1454 {
1455 	spa_t *spa;
1456 	int err;
1457 
1458 	/*
1459 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1460 	 * actually open the pool so that we can sync out the necessary labels.
1461 	 * It's OK to call spa_open() with the namespace lock held because we
1462 	 * allow recursive calls for other reasons.
1463 	 */
1464 	mutex_enter(&spa_namespace_lock);
1465 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1466 		mutex_exit(&spa_namespace_lock);
1467 		return (err);
1468 	}
1469 
1470 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1471 
1472 	avl_remove(&spa_namespace_avl, spa);
1473 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1474 	avl_add(&spa_namespace_avl, spa);
1475 
1476 	/*
1477 	 * Sync all labels to disk with the new names by marking the root vdev
1478 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1479 	 * during the sync.
1480 	 */
1481 	vdev_config_dirty(spa->spa_root_vdev);
1482 
1483 	spa_config_exit(spa, SCL_ALL, FTAG);
1484 
1485 	txg_wait_synced(spa->spa_dsl_pool, 0);
1486 
1487 	/*
1488 	 * Sync the updated config cache.
1489 	 */
1490 	spa_config_sync(spa, B_FALSE, B_TRUE);
1491 
1492 	spa_close(spa, FTAG);
1493 
1494 	mutex_exit(&spa_namespace_lock);
1495 
1496 	return (0);
1497 }
1498 
1499 /*
1500  * Return the spa_t associated with given pool_guid, if it exists.  If
1501  * device_guid is non-zero, determine whether the pool exists *and* contains
1502  * a device with the specified device_guid.
1503  */
1504 spa_t *
1505 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1506 {
1507 	spa_t *spa;
1508 	avl_tree_t *t = &spa_namespace_avl;
1509 
1510 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1511 
1512 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1513 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1514 			continue;
1515 		if (spa->spa_root_vdev == NULL)
1516 			continue;
1517 		if (spa_guid(spa) == pool_guid) {
1518 			if (device_guid == 0)
1519 				break;
1520 
1521 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1522 			    device_guid) != NULL)
1523 				break;
1524 
1525 			/*
1526 			 * Check any devices we may be in the process of adding.
1527 			 */
1528 			if (spa->spa_pending_vdev) {
1529 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1530 				    device_guid) != NULL)
1531 					break;
1532 			}
1533 		}
1534 	}
1535 
1536 	return (spa);
1537 }
1538 
1539 /*
1540  * Determine whether a pool with the given pool_guid exists.
1541  */
1542 boolean_t
1543 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1544 {
1545 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1546 }
1547 
1548 char *
1549 spa_strdup(const char *s)
1550 {
1551 	size_t len;
1552 	char *new;
1553 
1554 	len = strlen(s);
1555 	new = kmem_alloc(len + 1, KM_SLEEP);
1556 	bcopy(s, new, len);
1557 	new[len] = '\0';
1558 
1559 	return (new);
1560 }
1561 
1562 void
1563 spa_strfree(char *s)
1564 {
1565 	kmem_free(s, strlen(s) + 1);
1566 }
1567 
1568 uint64_t
1569 spa_get_random(uint64_t range)
1570 {
1571 	uint64_t r;
1572 
1573 	ASSERT(range != 0);
1574 
1575 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1576 
1577 	return (r % range);
1578 }
1579 
1580 uint64_t
1581 spa_generate_guid(spa_t *spa)
1582 {
1583 	uint64_t guid = spa_get_random(-1ULL);
1584 
1585 	if (spa != NULL) {
1586 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1587 			guid = spa_get_random(-1ULL);
1588 	} else {
1589 		while (guid == 0 || spa_guid_exists(guid, 0))
1590 			guid = spa_get_random(-1ULL);
1591 	}
1592 
1593 	return (guid);
1594 }
1595 
1596 void
1597 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1598 {
1599 	char type[256];
1600 	char *checksum = NULL;
1601 	char *compress = NULL;
1602 
1603 	if (bp != NULL) {
1604 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1605 			dmu_object_byteswap_t bswap =
1606 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1607 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1608 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1609 			    "metadata" : "data",
1610 			    dmu_ot_byteswap[bswap].ob_name);
1611 		} else {
1612 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1613 			    sizeof (type));
1614 		}
1615 		if (!BP_IS_EMBEDDED(bp)) {
1616 			checksum =
1617 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1618 		}
1619 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1620 	}
1621 
1622 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1623 	    compress);
1624 }
1625 
1626 void
1627 spa_freeze(spa_t *spa)
1628 {
1629 	uint64_t freeze_txg = 0;
1630 
1631 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1632 	if (spa->spa_freeze_txg == UINT64_MAX) {
1633 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1634 		spa->spa_freeze_txg = freeze_txg;
1635 	}
1636 	spa_config_exit(spa, SCL_ALL, FTAG);
1637 	if (freeze_txg != 0)
1638 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1639 }
1640 
1641 void
1642 zfs_panic_recover(const char *fmt, ...)
1643 {
1644 	va_list adx;
1645 
1646 	va_start(adx, fmt);
1647 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1648 	va_end(adx);
1649 }
1650 
1651 /*
1652  * This is a stripped-down version of strtoull, suitable only for converting
1653  * lowercase hexadecimal numbers that don't overflow.
1654  */
1655 uint64_t
1656 zfs_strtonum(const char *str, char **nptr)
1657 {
1658 	uint64_t val = 0;
1659 	char c;
1660 	int digit;
1661 
1662 	while ((c = *str) != '\0') {
1663 		if (c >= '0' && c <= '9')
1664 			digit = c - '0';
1665 		else if (c >= 'a' && c <= 'f')
1666 			digit = 10 + c - 'a';
1667 		else
1668 			break;
1669 
1670 		val *= 16;
1671 		val += digit;
1672 
1673 		str++;
1674 	}
1675 
1676 	if (nptr)
1677 		*nptr = (char *)str;
1678 
1679 	return (val);
1680 }
1681 
1682 /*
1683  * ==========================================================================
1684  * Accessor functions
1685  * ==========================================================================
1686  */
1687 
1688 boolean_t
1689 spa_shutting_down(spa_t *spa)
1690 {
1691 	return (spa->spa_async_suspended);
1692 }
1693 
1694 dsl_pool_t *
1695 spa_get_dsl(spa_t *spa)
1696 {
1697 	return (spa->spa_dsl_pool);
1698 }
1699 
1700 boolean_t
1701 spa_is_initializing(spa_t *spa)
1702 {
1703 	return (spa->spa_is_initializing);
1704 }
1705 
1706 blkptr_t *
1707 spa_get_rootblkptr(spa_t *spa)
1708 {
1709 	return (&spa->spa_ubsync.ub_rootbp);
1710 }
1711 
1712 void
1713 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1714 {
1715 	spa->spa_uberblock.ub_rootbp = *bp;
1716 }
1717 
1718 void
1719 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1720 {
1721 	if (spa->spa_root == NULL)
1722 		buf[0] = '\0';
1723 	else
1724 		(void) strncpy(buf, spa->spa_root, buflen);
1725 }
1726 
1727 int
1728 spa_sync_pass(spa_t *spa)
1729 {
1730 	return (spa->spa_sync_pass);
1731 }
1732 
1733 char *
1734 spa_name(spa_t *spa)
1735 {
1736 	return (spa->spa_name);
1737 }
1738 
1739 uint64_t
1740 spa_guid(spa_t *spa)
1741 {
1742 	dsl_pool_t *dp = spa_get_dsl(spa);
1743 	uint64_t guid;
1744 
1745 	/*
1746 	 * If we fail to parse the config during spa_load(), we can go through
1747 	 * the error path (which posts an ereport) and end up here with no root
1748 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1749 	 * this case.
1750 	 */
1751 	if (spa->spa_root_vdev == NULL)
1752 		return (spa->spa_config_guid);
1753 
1754 	guid = spa->spa_last_synced_guid != 0 ?
1755 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1756 
1757 	/*
1758 	 * Return the most recently synced out guid unless we're
1759 	 * in syncing context.
1760 	 */
1761 	if (dp && dsl_pool_sync_context(dp))
1762 		return (spa->spa_root_vdev->vdev_guid);
1763 	else
1764 		return (guid);
1765 }
1766 
1767 uint64_t
1768 spa_load_guid(spa_t *spa)
1769 {
1770 	/*
1771 	 * This is a GUID that exists solely as a reference for the
1772 	 * purposes of the arc.  It is generated at load time, and
1773 	 * is never written to persistent storage.
1774 	 */
1775 	return (spa->spa_load_guid);
1776 }
1777 
1778 uint64_t
1779 spa_last_synced_txg(spa_t *spa)
1780 {
1781 	return (spa->spa_ubsync.ub_txg);
1782 }
1783 
1784 uint64_t
1785 spa_first_txg(spa_t *spa)
1786 {
1787 	return (spa->spa_first_txg);
1788 }
1789 
1790 uint64_t
1791 spa_syncing_txg(spa_t *spa)
1792 {
1793 	return (spa->spa_syncing_txg);
1794 }
1795 
1796 pool_state_t
1797 spa_state(spa_t *spa)
1798 {
1799 	return (spa->spa_state);
1800 }
1801 
1802 spa_load_state_t
1803 spa_load_state(spa_t *spa)
1804 {
1805 	return (spa->spa_load_state);
1806 }
1807 
1808 uint64_t
1809 spa_freeze_txg(spa_t *spa)
1810 {
1811 	return (spa->spa_freeze_txg);
1812 }
1813 
1814 /* ARGSUSED */
1815 uint64_t
1816 spa_get_asize(spa_t *spa, uint64_t lsize)
1817 {
1818 	return (lsize * spa_asize_inflation);
1819 }
1820 
1821 /*
1822  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1823  * or at least 128MB, unless that would cause it to be more than half the
1824  * pool size.
1825  *
1826  * See the comment above spa_slop_shift for details.
1827  */
1828 uint64_t
1829 spa_get_slop_space(spa_t *spa)
1830 {
1831 	uint64_t space = spa_get_dspace(spa);
1832 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1833 }
1834 
1835 uint64_t
1836 spa_get_dspace(spa_t *spa)
1837 {
1838 	return (spa->spa_dspace);
1839 }
1840 
1841 void
1842 spa_update_dspace(spa_t *spa)
1843 {
1844 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1845 	    ddt_get_dedup_dspace(spa);
1846 }
1847 
1848 /*
1849  * Return the failure mode that has been set to this pool. The default
1850  * behavior will be to block all I/Os when a complete failure occurs.
1851  */
1852 uint8_t
1853 spa_get_failmode(spa_t *spa)
1854 {
1855 	return (spa->spa_failmode);
1856 }
1857 
1858 boolean_t
1859 spa_suspended(spa_t *spa)
1860 {
1861 	return (spa->spa_suspended);
1862 }
1863 
1864 uint64_t
1865 spa_version(spa_t *spa)
1866 {
1867 	return (spa->spa_ubsync.ub_version);
1868 }
1869 
1870 boolean_t
1871 spa_deflate(spa_t *spa)
1872 {
1873 	return (spa->spa_deflate);
1874 }
1875 
1876 metaslab_class_t *
1877 spa_normal_class(spa_t *spa)
1878 {
1879 	return (spa->spa_normal_class);
1880 }
1881 
1882 metaslab_class_t *
1883 spa_log_class(spa_t *spa)
1884 {
1885 	return (spa->spa_log_class);
1886 }
1887 
1888 void
1889 spa_evicting_os_register(spa_t *spa, objset_t *os)
1890 {
1891 	mutex_enter(&spa->spa_evicting_os_lock);
1892 	list_insert_head(&spa->spa_evicting_os_list, os);
1893 	mutex_exit(&spa->spa_evicting_os_lock);
1894 }
1895 
1896 void
1897 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1898 {
1899 	mutex_enter(&spa->spa_evicting_os_lock);
1900 	list_remove(&spa->spa_evicting_os_list, os);
1901 	cv_broadcast(&spa->spa_evicting_os_cv);
1902 	mutex_exit(&spa->spa_evicting_os_lock);
1903 }
1904 
1905 void
1906 spa_evicting_os_wait(spa_t *spa)
1907 {
1908 	mutex_enter(&spa->spa_evicting_os_lock);
1909 	while (!list_is_empty(&spa->spa_evicting_os_list))
1910 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1911 	mutex_exit(&spa->spa_evicting_os_lock);
1912 
1913 	dmu_buf_user_evict_wait();
1914 }
1915 
1916 int
1917 spa_max_replication(spa_t *spa)
1918 {
1919 	/*
1920 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1921 	 * handle BPs with more than one DVA allocated.  Set our max
1922 	 * replication level accordingly.
1923 	 */
1924 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1925 		return (1);
1926 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1927 }
1928 
1929 int
1930 spa_prev_software_version(spa_t *spa)
1931 {
1932 	return (spa->spa_prev_software_version);
1933 }
1934 
1935 uint64_t
1936 spa_deadman_synctime(spa_t *spa)
1937 {
1938 	return (spa->spa_deadman_synctime);
1939 }
1940 
1941 uint64_t
1942 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1943 {
1944 	uint64_t asize = DVA_GET_ASIZE(dva);
1945 	uint64_t dsize = asize;
1946 
1947 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1948 
1949 	if (asize != 0 && spa->spa_deflate) {
1950 		uint64_t vdev = DVA_GET_VDEV(dva);
1951 		vdev_t *vd = vdev_lookup_top(spa, vdev);
1952 		if (vd == NULL) {
1953 			panic(
1954 			    "dva_get_dsize_sync(): bad DVA %llu:%llu",
1955 			    (u_longlong_t)vdev, (u_longlong_t)asize);
1956 		}
1957 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1958 	}
1959 
1960 	return (dsize);
1961 }
1962 
1963 uint64_t
1964 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1965 {
1966 	uint64_t dsize = 0;
1967 
1968 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1969 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1970 
1971 	return (dsize);
1972 }
1973 
1974 uint64_t
1975 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1976 {
1977 	uint64_t dsize = 0;
1978 
1979 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1980 
1981 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1982 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1983 
1984 	spa_config_exit(spa, SCL_VDEV, FTAG);
1985 
1986 	return (dsize);
1987 }
1988 
1989 /*
1990  * ==========================================================================
1991  * Initialization and Termination
1992  * ==========================================================================
1993  */
1994 
1995 static int
1996 spa_name_compare(const void *a1, const void *a2)
1997 {
1998 	const spa_t *s1 = a1;
1999 	const spa_t *s2 = a2;
2000 	int s;
2001 
2002 	s = strcmp(s1->spa_name, s2->spa_name);
2003 	if (s > 0)
2004 		return (1);
2005 	if (s < 0)
2006 		return (-1);
2007 	return (0);
2008 }
2009 
2010 int
2011 spa_busy(void)
2012 {
2013 	return (spa_active_count);
2014 }
2015 
2016 void
2017 spa_boot_init()
2018 {
2019 	spa_config_load();
2020 }
2021 
2022 #ifdef __FreeBSD__
2023 #ifdef _KERNEL
2024 EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
2025 #endif
2026 #endif
2027 
2028 void
2029 spa_init(int mode)
2030 {
2031 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2032 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2033 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2034 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2035 
2036 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2037 	    offsetof(spa_t, spa_avl));
2038 
2039 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2040 	    offsetof(spa_aux_t, aux_avl));
2041 
2042 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2043 	    offsetof(spa_aux_t, aux_avl));
2044 
2045 	spa_mode_global = mode;
2046 
2047 #ifdef illumos
2048 #ifdef _KERNEL
2049 	spa_arch_init();
2050 #else
2051 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
2052 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
2053 		if (arc_procfd == -1) {
2054 			perror("could not enable watchpoints: "
2055 			    "opening /proc/self/ctl failed: ");
2056 		} else {
2057 			arc_watch = B_TRUE;
2058 		}
2059 	}
2060 #endif
2061 #endif /* illumos */
2062 	refcount_sysinit();
2063 	unique_init();
2064 	range_tree_init();
2065 	metaslab_alloc_trace_init();
2066 	zio_init();
2067 	lz4_init();
2068 	dmu_init();
2069 	zil_init();
2070 	vdev_cache_stat_init();
2071 	zfs_prop_init();
2072 	zpool_prop_init();
2073 	zpool_feature_init();
2074 	spa_config_load();
2075 	l2arc_start();
2076 #ifdef __FreeBSD__
2077 #ifdef _KERNEL
2078 	zfs_deadman_init();
2079 #endif
2080 #endif	/* __FreeBSD__ */
2081 #ifdef __NetBSD__
2082 	zfs_deadman_init();
2083 #endif
2084 }
2085 
2086 void
2087 spa_fini(void)
2088 {
2089 #ifdef __NetBSD__
2090 	zfs_deadman_fini();
2091 #endif
2092 	l2arc_stop();
2093 
2094 	spa_evict_all();
2095 
2096 	vdev_cache_stat_fini();
2097 	zil_fini();
2098 	dmu_fini();
2099 	lz4_fini();
2100 	zio_fini();
2101 	metaslab_alloc_trace_fini();
2102 	range_tree_fini();
2103 	unique_fini();
2104 	refcount_fini();
2105 
2106 	avl_destroy(&spa_namespace_avl);
2107 	avl_destroy(&spa_spare_avl);
2108 	avl_destroy(&spa_l2cache_avl);
2109 
2110 	cv_destroy(&spa_namespace_cv);
2111 	mutex_destroy(&spa_namespace_lock);
2112 	mutex_destroy(&spa_spare_lock);
2113 	mutex_destroy(&spa_l2cache_lock);
2114 }
2115 
2116 /*
2117  * Return whether this pool has slogs. No locking needed.
2118  * It's not a problem if the wrong answer is returned as it's only for
2119  * performance and not correctness
2120  */
2121 boolean_t
2122 spa_has_slogs(spa_t *spa)
2123 {
2124 	return (spa->spa_log_class->mc_rotor != NULL);
2125 }
2126 
2127 spa_log_state_t
2128 spa_get_log_state(spa_t *spa)
2129 {
2130 	return (spa->spa_log_state);
2131 }
2132 
2133 void
2134 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2135 {
2136 	spa->spa_log_state = state;
2137 }
2138 
2139 boolean_t
2140 spa_is_root(spa_t *spa)
2141 {
2142 	return (spa->spa_is_root);
2143 }
2144 
2145 boolean_t
2146 spa_writeable(spa_t *spa)
2147 {
2148 	return (!!(spa->spa_mode & FWRITE));
2149 }
2150 
2151 /*
2152  * Returns true if there is a pending sync task in any of the current
2153  * syncing txg, the current quiescing txg, or the current open txg.
2154  */
2155 boolean_t
2156 spa_has_pending_synctask(spa_t *spa)
2157 {
2158 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2159 }
2160 
2161 int
2162 spa_mode(spa_t *spa)
2163 {
2164 	return (spa->spa_mode);
2165 }
2166 
2167 uint64_t
2168 spa_bootfs(spa_t *spa)
2169 {
2170 	return (spa->spa_bootfs);
2171 }
2172 
2173 uint64_t
2174 spa_delegation(spa_t *spa)
2175 {
2176 	return (spa->spa_delegation);
2177 }
2178 
2179 objset_t *
2180 spa_meta_objset(spa_t *spa)
2181 {
2182 	return (spa->spa_meta_objset);
2183 }
2184 
2185 enum zio_checksum
2186 spa_dedup_checksum(spa_t *spa)
2187 {
2188 	return (spa->spa_dedup_checksum);
2189 }
2190 
2191 /*
2192  * Reset pool scan stat per scan pass (or reboot).
2193  */
2194 void
2195 spa_scan_stat_init(spa_t *spa)
2196 {
2197 	/* data not stored on disk */
2198 	spa->spa_scan_pass_start = gethrestime_sec();
2199 	spa->spa_scan_pass_exam = 0;
2200 	vdev_scan_stat_init(spa->spa_root_vdev);
2201 }
2202 
2203 /*
2204  * Get scan stats for zpool status reports
2205  */
2206 int
2207 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2208 {
2209 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2210 
2211 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2212 		return (SET_ERROR(ENOENT));
2213 	bzero(ps, sizeof (pool_scan_stat_t));
2214 
2215 	/* data stored on disk */
2216 	ps->pss_func = scn->scn_phys.scn_func;
2217 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2218 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2219 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2220 	ps->pss_examined = scn->scn_phys.scn_examined;
2221 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2222 	ps->pss_processed = scn->scn_phys.scn_processed;
2223 	ps->pss_errors = scn->scn_phys.scn_errors;
2224 	ps->pss_state = scn->scn_phys.scn_state;
2225 
2226 	/* data not stored on disk */
2227 	ps->pss_pass_start = spa->spa_scan_pass_start;
2228 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2229 
2230 	return (0);
2231 }
2232 
2233 boolean_t
2234 spa_debug_enabled(spa_t *spa)
2235 {
2236 	return (spa->spa_debug);
2237 }
2238 
2239 int
2240 spa_maxblocksize(spa_t *spa)
2241 {
2242 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2243 		return (SPA_MAXBLOCKSIZE);
2244 	else
2245 		return (SPA_OLD_MAXBLOCKSIZE);
2246 }
2247