1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/spa.h> 28 #include <sys/spa_impl.h> 29 #include <sys/nvpair.h> 30 #include <sys/uio.h> 31 #include <sys/fs/zfs.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/zfs_ioctl.h> 34 #include <sys/utsname.h> 35 #include <sys/systeminfo.h> 36 #include <sys/sunddi.h> 37 #ifdef _KERNEL 38 #include <sys/kobj.h> 39 #include <sys/zone.h> 40 #endif 41 42 /* 43 * Pool configuration repository. 44 * 45 * Pool configuration is stored as a packed nvlist on the filesystem. By 46 * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot 47 * (when the ZFS module is loaded). Pools can also have the 'cachefile' 48 * property set that allows them to be stored in an alternate location until 49 * the control of external software. 50 * 51 * For each cache file, we have a single nvlist which holds all the 52 * configuration information. When the module loads, we read this information 53 * from /etc/zfs/zpool.cache and populate the SPA namespace. This namespace is 54 * maintained independently in spa.c. Whenever the namespace is modified, or 55 * the configuration of a pool is changed, we call spa_config_sync(), which 56 * walks through all the active pools and writes the configuration to disk. 57 */ 58 59 static uint64_t spa_config_generation = 1; 60 61 /* 62 * This can be overridden in userland to preserve an alternate namespace for 63 * userland pools when doing testing. 64 */ 65 const char *spa_config_path = ZPOOL_CACHE; 66 67 /* 68 * Called when the module is first loaded, this routine loads the configuration 69 * file into the SPA namespace. It does not actually open or load the pools; it 70 * only populates the namespace. 71 */ 72 void 73 spa_config_load(void) 74 { 75 void *buf = NULL; 76 nvlist_t *nvlist, *child; 77 nvpair_t *nvpair; 78 char *pathname; 79 struct _buf *file; 80 uint64_t fsize; 81 82 /* 83 * Open the configuration file. 84 */ 85 pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 86 (void) snprintf(pathname, MAXPATHLEN, "%s", spa_config_path); 87 88 file = kobj_open_file(pathname); 89 90 kmem_free(pathname, MAXPATHLEN); 91 92 if (file == (struct _buf *)-1) 93 return; 94 95 if (kobj_get_filesize(file, &fsize) != 0) 96 goto out; 97 98 buf = kmem_alloc(fsize, KM_SLEEP); 99 100 /* 101 * Read the nvlist from the file. 102 */ 103 if (kobj_read_file(file, buf, fsize, 0) < 0) 104 goto out; 105 106 /* 107 * Unpack the nvlist. 108 */ 109 if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0) 110 goto out; 111 112 /* 113 * Iterate over all elements in the nvlist, creating a new spa_t for 114 * each one with the specified configuration. 115 */ 116 mutex_enter(&spa_namespace_lock); 117 nvpair = NULL; 118 while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) { 119 if (nvpair_type(nvpair) != DATA_TYPE_NVLIST) 120 continue; 121 122 VERIFY(nvpair_value_nvlist(nvpair, &child) == 0); 123 124 if (spa_lookup(nvpair_name(nvpair)) != NULL) 125 continue; 126 (void) spa_add(nvpair_name(nvpair), child, NULL); 127 } 128 mutex_exit(&spa_namespace_lock); 129 130 nvlist_free(nvlist); 131 132 out: 133 if (buf != NULL) 134 kmem_free(buf, fsize); 135 136 kobj_close_file(file); 137 } 138 139 static void 140 spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl) 141 { 142 size_t buflen; 143 char *buf; 144 vnode_t *vp; 145 int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX; 146 char *temp; 147 /* 148 * If the nvlist is empty (NULL), then remove the old cachefile. 149 */ 150 if (nvl == NULL) { 151 (void) vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE); 152 return; 153 } 154 155 /* 156 * Pack the configuration into a buffer. 157 */ 158 VERIFY(nvlist_size(nvl, &buflen, NV_ENCODE_XDR) == 0); 159 160 buf = kmem_alloc(buflen, KM_SLEEP); 161 temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 162 163 VERIFY(nvlist_pack(nvl, &buf, &buflen, NV_ENCODE_XDR, 164 KM_SLEEP) == 0); 165 166 /* 167 * Write the configuration to disk. We need to do the traditional 168 * 'write to temporary file, sync, move over original' to make sure we 169 * always have a consistent view of the data. 170 */ 171 (void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path); 172 173 if (vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0) == 0) { 174 if (vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE, 175 0, RLIM64_INFINITY, kcred, NULL) == 0 && 176 VOP_FSYNC(vp, FSYNC, kcred, NULL) == 0) { 177 (void) vn_rename(temp, dp->scd_path, UIO_SYSSPACE); 178 } 179 (void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL); 180 VN_RELE(vp); 181 } 182 183 (void) vn_remove(temp, UIO_SYSSPACE, RMFILE); 184 185 kmem_free(buf, buflen); 186 kmem_free(temp, MAXPATHLEN); 187 } 188 189 /* 190 * Synchronize pool configuration to disk. This must be called with the 191 * namespace lock held. 192 */ 193 void 194 spa_config_sync(spa_t *target, boolean_t removing, boolean_t postsysevent) 195 { 196 spa_config_dirent_t *dp, *tdp; 197 nvlist_t *nvl; 198 199 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 200 201 if (rootdir == NULL || !(spa_mode_global & FWRITE)) 202 return; 203 204 /* 205 * Iterate over all cachefiles for the pool, past or present. When the 206 * cachefile is changed, the new one is pushed onto this list, allowing 207 * us to update previous cachefiles that no longer contain this pool. 208 */ 209 for (dp = list_head(&target->spa_config_list); dp != NULL; 210 dp = list_next(&target->spa_config_list, dp)) { 211 spa_t *spa = NULL; 212 if (dp->scd_path == NULL) 213 continue; 214 215 /* 216 * Iterate over all pools, adding any matching pools to 'nvl'. 217 */ 218 nvl = NULL; 219 while ((spa = spa_next(spa)) != NULL) { 220 if (spa == target && removing) 221 continue; 222 mutex_enter(&spa->spa_props_lock); 223 tdp = list_head(&spa->spa_config_list); 224 if (spa->spa_config == NULL || 225 tdp->scd_path == NULL || 226 strcmp(tdp->scd_path, dp->scd_path) != 0) { 227 mutex_exit(&spa->spa_props_lock); 228 continue; 229 } 230 231 if (nvl == NULL) 232 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, 233 KM_SLEEP) == 0); 234 235 VERIFY(nvlist_add_nvlist(nvl, spa->spa_name, 236 spa->spa_config) == 0); 237 mutex_exit(&spa->spa_props_lock); 238 } 239 240 spa_config_write(dp, nvl); 241 nvlist_free(nvl); 242 } 243 244 /* 245 * Remove any config entries older than the current one. 246 */ 247 dp = list_head(&target->spa_config_list); 248 while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) { 249 list_remove(&target->spa_config_list, tdp); 250 if (tdp->scd_path != NULL) 251 spa_strfree(tdp->scd_path); 252 kmem_free(tdp, sizeof (spa_config_dirent_t)); 253 } 254 255 spa_config_generation++; 256 257 if (postsysevent) 258 spa_event_notify(target, NULL, ESC_ZFS_CONFIG_SYNC); 259 } 260 261 /* 262 * Sigh. Inside a local zone, we don't have access to /etc/zfs/zpool.cache, 263 * and we don't want to allow the local zone to see all the pools anyway. 264 * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration 265 * information for all pool visible within the zone. 266 */ 267 nvlist_t * 268 spa_all_configs(uint64_t *generation) 269 { 270 nvlist_t *pools; 271 spa_t *spa = NULL; 272 273 if (*generation == spa_config_generation) 274 return (NULL); 275 276 VERIFY(nvlist_alloc(&pools, NV_UNIQUE_NAME, KM_SLEEP) == 0); 277 278 mutex_enter(&spa_namespace_lock); 279 while ((spa = spa_next(spa)) != NULL) { 280 if (INGLOBALZONE(curproc) || 281 zone_dataset_visible(spa_name(spa), NULL)) { 282 mutex_enter(&spa->spa_props_lock); 283 VERIFY(nvlist_add_nvlist(pools, spa_name(spa), 284 spa->spa_config) == 0); 285 mutex_exit(&spa->spa_props_lock); 286 } 287 } 288 *generation = spa_config_generation; 289 mutex_exit(&spa_namespace_lock); 290 291 return (pools); 292 } 293 294 void 295 spa_config_set(spa_t *spa, nvlist_t *config) 296 { 297 mutex_enter(&spa->spa_props_lock); 298 if (spa->spa_config != NULL) 299 nvlist_free(spa->spa_config); 300 spa->spa_config = config; 301 mutex_exit(&spa->spa_props_lock); 302 } 303 304 /* Add discovered rewind info, if any to the provided nvlist */ 305 void 306 spa_rewind_data_to_nvlist(spa_t *spa, nvlist_t *tonvl) 307 { 308 int64_t loss = 0; 309 310 if (tonvl == NULL || spa->spa_load_txg == 0) 311 return; 312 313 VERIFY(nvlist_add_uint64(tonvl, ZPOOL_CONFIG_LOAD_TIME, 314 spa->spa_load_txg_ts) == 0); 315 if (spa->spa_last_ubsync_txg) 316 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 317 VERIFY(nvlist_add_int64(tonvl, ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 318 VERIFY(nvlist_add_uint64(tonvl, ZPOOL_CONFIG_LOAD_DATA_ERRORS, 319 spa->spa_load_data_errors) == 0); 320 } 321 322 /* 323 * Generate the pool's configuration based on the current in-core state. 324 * We infer whether to generate a complete config or just one top-level config 325 * based on whether vd is the root vdev. 326 */ 327 nvlist_t * 328 spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats) 329 { 330 nvlist_t *config, *nvroot; 331 vdev_t *rvd = spa->spa_root_vdev; 332 unsigned long hostid = 0; 333 boolean_t locked = B_FALSE; 334 uint64_t split_guid; 335 336 if (vd == NULL) { 337 vd = rvd; 338 locked = B_TRUE; 339 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 340 } 341 342 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) == 343 (SCL_CONFIG | SCL_STATE)); 344 345 /* 346 * If txg is -1, report the current value of spa->spa_config_txg. 347 */ 348 if (txg == -1ULL) 349 txg = spa->spa_config_txg; 350 351 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0); 352 353 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 354 spa_version(spa)) == 0); 355 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 356 spa_name(spa)) == 0); 357 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 358 spa_state(spa)) == 0); 359 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 360 txg) == 0); 361 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 362 spa_guid(spa)) == 0); 363 #ifdef _KERNEL 364 hostid = zone_get_hostid(NULL); 365 #else /* _KERNEL */ 366 /* 367 * We're emulating the system's hostid in userland, so we can't use 368 * zone_get_hostid(). 369 */ 370 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 371 #endif /* _KERNEL */ 372 if (hostid != 0) { 373 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 374 hostid) == 0); 375 } 376 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 377 utsname.nodename) == 0); 378 379 if (vd != rvd) { 380 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID, 381 vd->vdev_top->vdev_guid) == 0); 382 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID, 383 vd->vdev_guid) == 0); 384 if (vd->vdev_isspare) 385 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE, 386 1ULL) == 0); 387 if (vd->vdev_islog) 388 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG, 389 1ULL) == 0); 390 vd = vd->vdev_top; /* label contains top config */ 391 } else { 392 /* 393 * Only add the (potentially large) split information 394 * in the mos config, and not in the vdev labels 395 */ 396 if (spa->spa_config_splitting != NULL) 397 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT, 398 spa->spa_config_splitting) == 0); 399 } 400 401 /* 402 * Add the top-level config. We even add this on pools which 403 * don't support holes in the namespace as older pools will 404 * just ignore it. 405 */ 406 vdev_top_config_generate(spa, config); 407 408 /* 409 * If we're splitting, record the original pool's guid. 410 */ 411 if (spa->spa_config_splitting != NULL && 412 nvlist_lookup_uint64(spa->spa_config_splitting, 413 ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) { 414 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID, 415 split_guid) == 0); 416 } 417 418 nvroot = vdev_config_generate(spa, vd, getstats, B_FALSE, B_FALSE); 419 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 420 nvlist_free(nvroot); 421 422 if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) { 423 ddt_histogram_t *ddh; 424 ddt_stat_t *dds; 425 ddt_object_t *ddo; 426 427 ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP); 428 ddt_get_dedup_histogram(spa, ddh); 429 VERIFY(nvlist_add_uint64_array(config, 430 ZPOOL_CONFIG_DDT_HISTOGRAM, 431 (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0); 432 kmem_free(ddh, sizeof (ddt_histogram_t)); 433 434 ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP); 435 ddt_get_dedup_object_stats(spa, ddo); 436 VERIFY(nvlist_add_uint64_array(config, 437 ZPOOL_CONFIG_DDT_OBJ_STATS, 438 (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)) == 0); 439 kmem_free(ddo, sizeof (ddt_object_t)); 440 441 dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP); 442 ddt_get_dedup_stats(spa, dds); 443 VERIFY(nvlist_add_uint64_array(config, 444 ZPOOL_CONFIG_DDT_STATS, 445 (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)) == 0); 446 kmem_free(dds, sizeof (ddt_stat_t)); 447 } 448 449 spa_rewind_data_to_nvlist(spa, config); 450 451 if (locked) 452 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 453 454 return (config); 455 } 456 457 /* 458 * Update all disk labels, generate a fresh config based on the current 459 * in-core state, and sync the global config cache (do not sync the config 460 * cache if this is a booting rootpool). 461 */ 462 void 463 spa_config_update(spa_t *spa, int what) 464 { 465 vdev_t *rvd = spa->spa_root_vdev; 466 uint64_t txg; 467 int c; 468 469 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 470 471 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 472 txg = spa_last_synced_txg(spa) + 1; 473 if (what == SPA_CONFIG_UPDATE_POOL) { 474 vdev_config_dirty(rvd); 475 } else { 476 /* 477 * If we have top-level vdevs that were added but have 478 * not yet been prepared for allocation, do that now. 479 * (It's safe now because the config cache is up to date, 480 * so it will be able to translate the new DVAs.) 481 * See comments in spa_vdev_add() for full details. 482 */ 483 for (c = 0; c < rvd->vdev_children; c++) { 484 vdev_t *tvd = rvd->vdev_child[c]; 485 if (tvd->vdev_ms_array == 0) 486 vdev_metaslab_set_size(tvd); 487 vdev_expand(tvd, txg); 488 } 489 } 490 spa_config_exit(spa, SCL_ALL, FTAG); 491 492 /* 493 * Wait for the mosconfig to be regenerated and synced. 494 */ 495 txg_wait_synced(spa->spa_dsl_pool, txg); 496 497 /* 498 * Update the global config cache to reflect the new mosconfig. 499 */ 500 if (!spa->spa_is_root) 501 spa_config_sync(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL); 502 503 if (what == SPA_CONFIG_UPDATE_POOL) 504 spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS); 505 } 506