1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright 2013 Saso Kiselkov. All rights reserved. 29 * Copyright (c) 2014 Integros [integros.com] 30 * Copyright 2016 Toomas Soome <tsoome@me.com> 31 */ 32 33 /* 34 * SPA: Storage Pool Allocator 35 * 36 * This file contains all the routines used when modifying on-disk SPA state. 37 * This includes opening, importing, destroying, exporting a pool, and syncing a 38 * pool. 39 */ 40 41 #include <sys/zfs_context.h> 42 #include <sys/fm/fs/zfs.h> 43 #include <sys/spa_impl.h> 44 #include <sys/zio.h> 45 #include <sys/zio_checksum.h> 46 #include <sys/dmu.h> 47 #include <sys/dmu_tx.h> 48 #include <sys/zap.h> 49 #include <sys/zil.h> 50 #include <sys/ddt.h> 51 #include <sys/vdev_impl.h> 52 #include <sys/metaslab.h> 53 #include <sys/metaslab_impl.h> 54 #include <sys/uberblock_impl.h> 55 #include <sys/txg.h> 56 #include <sys/avl.h> 57 #include <sys/dmu_traverse.h> 58 #include <sys/dmu_objset.h> 59 #include <sys/unique.h> 60 #include <sys/dsl_pool.h> 61 #include <sys/dsl_dataset.h> 62 #include <sys/dsl_dir.h> 63 #include <sys/dsl_prop.h> 64 #include <sys/dsl_synctask.h> 65 #include <sys/fs/zfs.h> 66 #include <sys/arc.h> 67 #include <sys/callb.h> 68 #include <sys/spa_boot.h> 69 #include <sys/zfs_ioctl.h> 70 #include <sys/dsl_scan.h> 71 #include <sys/dmu_send.h> 72 #include <sys/dsl_destroy.h> 73 #include <sys/dsl_userhold.h> 74 #include <sys/zfeature.h> 75 #include <sys/zvol.h> 76 #include <sys/trim_map.h> 77 78 #ifdef _KERNEL 79 #include <sys/callb.h> 80 #include <sys/cpupart.h> 81 #include <sys/zone.h> 82 #endif /* _KERNEL */ 83 84 #include "zfs_prop.h" 85 #include "zfs_comutil.h" 86 87 /* Check hostid on import? */ 88 static int check_hostid = 1; 89 90 /* 91 * The interval, in seconds, at which failed configuration cache file writes 92 * should be retried. 93 */ 94 static int zfs_ccw_retry_interval = 300; 95 96 SYSCTL_DECL(_vfs_zfs); 97 SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0, 98 "Check hostid on import?"); 99 TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval); 100 SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW, 101 &zfs_ccw_retry_interval, 0, 102 "Configuration cache file write, retry after failure, interval (seconds)"); 103 104 typedef enum zti_modes { 105 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 106 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 107 ZTI_MODE_NULL, /* don't create a taskq */ 108 ZTI_NMODES 109 } zti_modes_t; 110 111 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 112 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 113 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 114 115 #define ZTI_N(n) ZTI_P(n, 1) 116 #define ZTI_ONE ZTI_N(1) 117 118 typedef struct zio_taskq_info { 119 zti_modes_t zti_mode; 120 uint_t zti_value; 121 uint_t zti_count; 122 } zio_taskq_info_t; 123 124 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 125 "issue", "issue_high", "intr", "intr_high" 126 }; 127 128 /* 129 * This table defines the taskq settings for each ZFS I/O type. When 130 * initializing a pool, we use this table to create an appropriately sized 131 * taskq. Some operations are low volume and therefore have a small, static 132 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 133 * macros. Other operations process a large amount of data; the ZTI_BATCH 134 * macro causes us to create a taskq oriented for throughput. Some operations 135 * are so high frequency and short-lived that the taskq itself can become a a 136 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 137 * additional degree of parallelism specified by the number of threads per- 138 * taskq and the number of taskqs; when dispatching an event in this case, the 139 * particular taskq is chosen at random. 140 * 141 * The different taskq priorities are to handle the different contexts (issue 142 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 143 * need to be handled with minimum delay. 144 */ 145 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 146 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 147 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 148 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 149 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 150 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 151 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 152 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 153 }; 154 155 static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, const char *name); 156 static void spa_event_post(sysevent_t *ev); 157 static void spa_sync_version(void *arg, dmu_tx_t *tx); 158 static void spa_sync_props(void *arg, dmu_tx_t *tx); 159 static boolean_t spa_has_active_shared_spare(spa_t *spa); 160 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 161 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 162 char **ereport); 163 static void spa_vdev_resilver_done(spa_t *spa); 164 165 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 166 #ifdef PSRSET_BIND 167 id_t zio_taskq_psrset_bind = PS_NONE; 168 #endif 169 #ifdef SYSDC 170 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 171 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 172 #endif 173 174 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 175 extern int zfs_sync_pass_deferred_free; 176 177 /* 178 * This (illegal) pool name is used when temporarily importing a spa_t in order 179 * to get the vdev stats associated with the imported devices. 180 */ 181 #define TRYIMPORT_NAME "$import" 182 183 /* 184 * ========================================================================== 185 * SPA properties routines 186 * ========================================================================== 187 */ 188 189 /* 190 * Add a (source=src, propname=propval) list to an nvlist. 191 */ 192 static void 193 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 194 uint64_t intval, zprop_source_t src) 195 { 196 const char *propname = zpool_prop_to_name(prop); 197 nvlist_t *propval; 198 199 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 200 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 201 202 if (strval != NULL) 203 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 204 else 205 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 206 207 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 208 nvlist_free(propval); 209 } 210 211 /* 212 * Get property values from the spa configuration. 213 */ 214 static void 215 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 216 { 217 vdev_t *rvd = spa->spa_root_vdev; 218 dsl_pool_t *pool = spa->spa_dsl_pool; 219 uint64_t size, alloc, cap, version; 220 zprop_source_t src = ZPROP_SRC_NONE; 221 spa_config_dirent_t *dp; 222 metaslab_class_t *mc = spa_normal_class(spa); 223 224 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 225 226 if (rvd != NULL) { 227 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 228 size = metaslab_class_get_space(spa_normal_class(spa)); 229 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 230 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 231 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 232 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 233 size - alloc, src); 234 235 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 236 metaslab_class_fragmentation(mc), src); 237 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 238 metaslab_class_expandable_space(mc), src); 239 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 240 (spa_mode(spa) == FREAD), src); 241 242 cap = (size == 0) ? 0 : (alloc * 100 / size); 243 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 244 245 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 246 ddt_get_pool_dedup_ratio(spa), src); 247 248 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 249 rvd->vdev_state, src); 250 251 version = spa_version(spa); 252 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 253 src = ZPROP_SRC_DEFAULT; 254 else 255 src = ZPROP_SRC_LOCAL; 256 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 257 } 258 259 if (pool != NULL) { 260 /* 261 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 262 * when opening pools before this version freedir will be NULL. 263 */ 264 if (pool->dp_free_dir != NULL) { 265 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 266 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 267 src); 268 } else { 269 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 270 NULL, 0, src); 271 } 272 273 if (pool->dp_leak_dir != NULL) { 274 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 275 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 276 src); 277 } else { 278 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 279 NULL, 0, src); 280 } 281 } 282 283 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 284 285 if (spa->spa_comment != NULL) { 286 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 287 0, ZPROP_SRC_LOCAL); 288 } 289 290 if (spa->spa_root != NULL) 291 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 292 0, ZPROP_SRC_LOCAL); 293 294 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 295 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 296 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 297 } else { 298 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 299 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 300 } 301 302 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 303 if (dp->scd_path == NULL) { 304 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 305 "none", 0, ZPROP_SRC_LOCAL); 306 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 307 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 308 dp->scd_path, 0, ZPROP_SRC_LOCAL); 309 } 310 } 311 } 312 313 /* 314 * Get zpool property values. 315 */ 316 int 317 spa_prop_get(spa_t *spa, nvlist_t **nvp) 318 { 319 objset_t *mos = spa->spa_meta_objset; 320 zap_cursor_t zc; 321 zap_attribute_t za; 322 int err; 323 324 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 325 326 mutex_enter(&spa->spa_props_lock); 327 328 /* 329 * Get properties from the spa config. 330 */ 331 spa_prop_get_config(spa, nvp); 332 333 /* If no pool property object, no more prop to get. */ 334 if (mos == NULL || spa->spa_pool_props_object == 0) { 335 mutex_exit(&spa->spa_props_lock); 336 return (0); 337 } 338 339 /* 340 * Get properties from the MOS pool property object. 341 */ 342 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 343 (err = zap_cursor_retrieve(&zc, &za)) == 0; 344 zap_cursor_advance(&zc)) { 345 uint64_t intval = 0; 346 char *strval = NULL; 347 zprop_source_t src = ZPROP_SRC_DEFAULT; 348 zpool_prop_t prop; 349 350 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 351 continue; 352 353 switch (za.za_integer_length) { 354 case 8: 355 /* integer property */ 356 if (za.za_first_integer != 357 zpool_prop_default_numeric(prop)) 358 src = ZPROP_SRC_LOCAL; 359 360 if (prop == ZPOOL_PROP_BOOTFS) { 361 dsl_pool_t *dp; 362 dsl_dataset_t *ds = NULL; 363 364 dp = spa_get_dsl(spa); 365 dsl_pool_config_enter(dp, FTAG); 366 if (err = dsl_dataset_hold_obj(dp, 367 za.za_first_integer, FTAG, &ds)) { 368 dsl_pool_config_exit(dp, FTAG); 369 break; 370 } 371 372 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 373 KM_SLEEP); 374 dsl_dataset_name(ds, strval); 375 dsl_dataset_rele(ds, FTAG); 376 dsl_pool_config_exit(dp, FTAG); 377 } else { 378 strval = NULL; 379 intval = za.za_first_integer; 380 } 381 382 spa_prop_add_list(*nvp, prop, strval, intval, src); 383 384 if (strval != NULL) 385 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 386 387 break; 388 389 case 1: 390 /* string property */ 391 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 392 err = zap_lookup(mos, spa->spa_pool_props_object, 393 za.za_name, 1, za.za_num_integers, strval); 394 if (err) { 395 kmem_free(strval, za.za_num_integers); 396 break; 397 } 398 spa_prop_add_list(*nvp, prop, strval, 0, src); 399 kmem_free(strval, za.za_num_integers); 400 break; 401 402 default: 403 break; 404 } 405 } 406 zap_cursor_fini(&zc); 407 mutex_exit(&spa->spa_props_lock); 408 out: 409 if (err && err != ENOENT) { 410 nvlist_free(*nvp); 411 *nvp = NULL; 412 return (err); 413 } 414 415 return (0); 416 } 417 418 /* 419 * Validate the given pool properties nvlist and modify the list 420 * for the property values to be set. 421 */ 422 static int 423 spa_prop_validate(spa_t *spa, nvlist_t *props) 424 { 425 nvpair_t *elem; 426 int error = 0, reset_bootfs = 0; 427 uint64_t objnum = 0; 428 boolean_t has_feature = B_FALSE; 429 430 elem = NULL; 431 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 432 uint64_t intval; 433 char *strval, *slash, *check, *fname; 434 const char *propname = nvpair_name(elem); 435 zpool_prop_t prop = zpool_name_to_prop(propname); 436 437 switch (prop) { 438 case ZPROP_INVAL: 439 if (!zpool_prop_feature(propname)) { 440 error = SET_ERROR(EINVAL); 441 break; 442 } 443 444 /* 445 * Sanitize the input. 446 */ 447 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 448 error = SET_ERROR(EINVAL); 449 break; 450 } 451 452 if (nvpair_value_uint64(elem, &intval) != 0) { 453 error = SET_ERROR(EINVAL); 454 break; 455 } 456 457 if (intval != 0) { 458 error = SET_ERROR(EINVAL); 459 break; 460 } 461 462 fname = strchr(propname, '@') + 1; 463 if (zfeature_lookup_name(fname, NULL) != 0) { 464 error = SET_ERROR(EINVAL); 465 break; 466 } 467 468 has_feature = B_TRUE; 469 break; 470 471 case ZPOOL_PROP_VERSION: 472 error = nvpair_value_uint64(elem, &intval); 473 if (!error && 474 (intval < spa_version(spa) || 475 intval > SPA_VERSION_BEFORE_FEATURES || 476 has_feature)) 477 error = SET_ERROR(EINVAL); 478 break; 479 480 case ZPOOL_PROP_DELEGATION: 481 case ZPOOL_PROP_AUTOREPLACE: 482 case ZPOOL_PROP_LISTSNAPS: 483 case ZPOOL_PROP_AUTOEXPAND: 484 error = nvpair_value_uint64(elem, &intval); 485 if (!error && intval > 1) 486 error = SET_ERROR(EINVAL); 487 break; 488 489 case ZPOOL_PROP_BOOTFS: 490 /* 491 * If the pool version is less than SPA_VERSION_BOOTFS, 492 * or the pool is still being created (version == 0), 493 * the bootfs property cannot be set. 494 */ 495 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 496 error = SET_ERROR(ENOTSUP); 497 break; 498 } 499 500 /* 501 * Make sure the vdev config is bootable 502 */ 503 if (!vdev_is_bootable(spa->spa_root_vdev)) { 504 error = SET_ERROR(ENOTSUP); 505 break; 506 } 507 508 reset_bootfs = 1; 509 510 error = nvpair_value_string(elem, &strval); 511 512 if (!error) { 513 objset_t *os; 514 uint64_t propval; 515 516 if (strval == NULL || strval[0] == '\0') { 517 objnum = zpool_prop_default_numeric( 518 ZPOOL_PROP_BOOTFS); 519 break; 520 } 521 522 if (error = dmu_objset_hold(strval, FTAG, &os)) 523 break; 524 525 /* 526 * Must be ZPL, and its property settings 527 * must be supported by GRUB (compression 528 * is not gzip, and large blocks are not used). 529 */ 530 531 if (dmu_objset_type(os) != DMU_OST_ZFS) { 532 error = SET_ERROR(ENOTSUP); 533 } else if ((error = 534 dsl_prop_get_int_ds(dmu_objset_ds(os), 535 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 536 &propval)) == 0 && 537 !BOOTFS_COMPRESS_VALID(propval)) { 538 error = SET_ERROR(ENOTSUP); 539 } else { 540 objnum = dmu_objset_id(os); 541 } 542 dmu_objset_rele(os, FTAG); 543 } 544 break; 545 546 case ZPOOL_PROP_FAILUREMODE: 547 error = nvpair_value_uint64(elem, &intval); 548 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 549 intval > ZIO_FAILURE_MODE_PANIC)) 550 error = SET_ERROR(EINVAL); 551 552 /* 553 * This is a special case which only occurs when 554 * the pool has completely failed. This allows 555 * the user to change the in-core failmode property 556 * without syncing it out to disk (I/Os might 557 * currently be blocked). We do this by returning 558 * EIO to the caller (spa_prop_set) to trick it 559 * into thinking we encountered a property validation 560 * error. 561 */ 562 if (!error && spa_suspended(spa)) { 563 spa->spa_failmode = intval; 564 error = SET_ERROR(EIO); 565 } 566 break; 567 568 case ZPOOL_PROP_CACHEFILE: 569 if ((error = nvpair_value_string(elem, &strval)) != 0) 570 break; 571 572 if (strval[0] == '\0') 573 break; 574 575 if (strcmp(strval, "none") == 0) 576 break; 577 578 if (strval[0] != '/') { 579 error = SET_ERROR(EINVAL); 580 break; 581 } 582 583 slash = strrchr(strval, '/'); 584 ASSERT(slash != NULL); 585 586 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 587 strcmp(slash, "/..") == 0) 588 error = SET_ERROR(EINVAL); 589 break; 590 591 case ZPOOL_PROP_COMMENT: 592 if ((error = nvpair_value_string(elem, &strval)) != 0) 593 break; 594 for (check = strval; *check != '\0'; check++) { 595 /* 596 * The kernel doesn't have an easy isprint() 597 * check. For this kernel check, we merely 598 * check ASCII apart from DEL. Fix this if 599 * there is an easy-to-use kernel isprint(). 600 */ 601 if (*check >= 0x7f) { 602 error = SET_ERROR(EINVAL); 603 break; 604 } 605 } 606 if (strlen(strval) > ZPROP_MAX_COMMENT) 607 error = E2BIG; 608 break; 609 610 case ZPOOL_PROP_DEDUPDITTO: 611 if (spa_version(spa) < SPA_VERSION_DEDUP) 612 error = SET_ERROR(ENOTSUP); 613 else 614 error = nvpair_value_uint64(elem, &intval); 615 if (error == 0 && 616 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 617 error = SET_ERROR(EINVAL); 618 break; 619 } 620 621 if (error) 622 break; 623 } 624 625 if (!error && reset_bootfs) { 626 error = nvlist_remove(props, 627 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 628 629 if (!error) { 630 error = nvlist_add_uint64(props, 631 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 632 } 633 } 634 635 return (error); 636 } 637 638 void 639 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 640 { 641 char *cachefile; 642 spa_config_dirent_t *dp; 643 644 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 645 &cachefile) != 0) 646 return; 647 648 dp = kmem_alloc(sizeof (spa_config_dirent_t), 649 KM_SLEEP); 650 651 if (cachefile[0] == '\0') 652 dp->scd_path = spa_strdup(spa_config_path); 653 else if (strcmp(cachefile, "none") == 0) 654 dp->scd_path = NULL; 655 else 656 dp->scd_path = spa_strdup(cachefile); 657 658 list_insert_head(&spa->spa_config_list, dp); 659 if (need_sync) 660 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 661 } 662 663 int 664 spa_prop_set(spa_t *spa, nvlist_t *nvp) 665 { 666 int error; 667 nvpair_t *elem = NULL; 668 boolean_t need_sync = B_FALSE; 669 670 if ((error = spa_prop_validate(spa, nvp)) != 0) 671 return (error); 672 673 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 674 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 675 676 if (prop == ZPOOL_PROP_CACHEFILE || 677 prop == ZPOOL_PROP_ALTROOT || 678 prop == ZPOOL_PROP_READONLY) 679 continue; 680 681 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 682 uint64_t ver; 683 684 if (prop == ZPOOL_PROP_VERSION) { 685 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 686 } else { 687 ASSERT(zpool_prop_feature(nvpair_name(elem))); 688 ver = SPA_VERSION_FEATURES; 689 need_sync = B_TRUE; 690 } 691 692 /* Save time if the version is already set. */ 693 if (ver == spa_version(spa)) 694 continue; 695 696 /* 697 * In addition to the pool directory object, we might 698 * create the pool properties object, the features for 699 * read object, the features for write object, or the 700 * feature descriptions object. 701 */ 702 error = dsl_sync_task(spa->spa_name, NULL, 703 spa_sync_version, &ver, 704 6, ZFS_SPACE_CHECK_RESERVED); 705 if (error) 706 return (error); 707 continue; 708 } 709 710 need_sync = B_TRUE; 711 break; 712 } 713 714 if (need_sync) { 715 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 716 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 717 } 718 719 return (0); 720 } 721 722 /* 723 * If the bootfs property value is dsobj, clear it. 724 */ 725 void 726 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 727 { 728 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 729 VERIFY(zap_remove(spa->spa_meta_objset, 730 spa->spa_pool_props_object, 731 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 732 spa->spa_bootfs = 0; 733 } 734 } 735 736 /*ARGSUSED*/ 737 static int 738 spa_change_guid_check(void *arg, dmu_tx_t *tx) 739 { 740 uint64_t *newguid = arg; 741 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 742 vdev_t *rvd = spa->spa_root_vdev; 743 uint64_t vdev_state; 744 745 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 746 vdev_state = rvd->vdev_state; 747 spa_config_exit(spa, SCL_STATE, FTAG); 748 749 if (vdev_state != VDEV_STATE_HEALTHY) 750 return (SET_ERROR(ENXIO)); 751 752 ASSERT3U(spa_guid(spa), !=, *newguid); 753 754 return (0); 755 } 756 757 static void 758 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 759 { 760 uint64_t *newguid = arg; 761 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 762 uint64_t oldguid; 763 vdev_t *rvd = spa->spa_root_vdev; 764 765 oldguid = spa_guid(spa); 766 767 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 768 rvd->vdev_guid = *newguid; 769 rvd->vdev_guid_sum += (*newguid - oldguid); 770 vdev_config_dirty(rvd); 771 spa_config_exit(spa, SCL_STATE, FTAG); 772 773 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 774 oldguid, *newguid); 775 } 776 777 /* 778 * Change the GUID for the pool. This is done so that we can later 779 * re-import a pool built from a clone of our own vdevs. We will modify 780 * the root vdev's guid, our own pool guid, and then mark all of our 781 * vdevs dirty. Note that we must make sure that all our vdevs are 782 * online when we do this, or else any vdevs that weren't present 783 * would be orphaned from our pool. We are also going to issue a 784 * sysevent to update any watchers. 785 */ 786 int 787 spa_change_guid(spa_t *spa) 788 { 789 int error; 790 uint64_t guid; 791 792 mutex_enter(&spa->spa_vdev_top_lock); 793 mutex_enter(&spa_namespace_lock); 794 guid = spa_generate_guid(NULL); 795 796 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 797 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 798 799 if (error == 0) { 800 spa_config_sync(spa, B_FALSE, B_TRUE); 801 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 802 } 803 804 mutex_exit(&spa_namespace_lock); 805 mutex_exit(&spa->spa_vdev_top_lock); 806 807 return (error); 808 } 809 810 /* 811 * ========================================================================== 812 * SPA state manipulation (open/create/destroy/import/export) 813 * ========================================================================== 814 */ 815 816 static int 817 spa_error_entry_compare(const void *a, const void *b) 818 { 819 spa_error_entry_t *sa = (spa_error_entry_t *)a; 820 spa_error_entry_t *sb = (spa_error_entry_t *)b; 821 int ret; 822 823 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 824 sizeof (zbookmark_phys_t)); 825 826 if (ret < 0) 827 return (-1); 828 else if (ret > 0) 829 return (1); 830 else 831 return (0); 832 } 833 834 /* 835 * Utility function which retrieves copies of the current logs and 836 * re-initializes them in the process. 837 */ 838 void 839 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 840 { 841 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 842 843 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 844 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 845 846 avl_create(&spa->spa_errlist_scrub, 847 spa_error_entry_compare, sizeof (spa_error_entry_t), 848 offsetof(spa_error_entry_t, se_avl)); 849 avl_create(&spa->spa_errlist_last, 850 spa_error_entry_compare, sizeof (spa_error_entry_t), 851 offsetof(spa_error_entry_t, se_avl)); 852 } 853 854 static void 855 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 856 { 857 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 858 enum zti_modes mode = ztip->zti_mode; 859 uint_t value = ztip->zti_value; 860 uint_t count = ztip->zti_count; 861 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 862 char name[32]; 863 uint_t flags = 0; 864 boolean_t batch = B_FALSE; 865 866 if (mode == ZTI_MODE_NULL) { 867 tqs->stqs_count = 0; 868 tqs->stqs_taskq = NULL; 869 return; 870 } 871 872 ASSERT3U(count, >, 0); 873 874 tqs->stqs_count = count; 875 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 876 877 switch (mode) { 878 case ZTI_MODE_FIXED: 879 ASSERT3U(value, >=, 1); 880 value = MAX(value, 1); 881 break; 882 883 case ZTI_MODE_BATCH: 884 batch = B_TRUE; 885 flags |= TASKQ_THREADS_CPU_PCT; 886 value = zio_taskq_batch_pct; 887 break; 888 889 default: 890 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 891 "spa_activate()", 892 zio_type_name[t], zio_taskq_types[q], mode, value); 893 break; 894 } 895 896 for (uint_t i = 0; i < count; i++) { 897 taskq_t *tq; 898 899 if (count > 1) { 900 (void) snprintf(name, sizeof (name), "%s_%s_%u", 901 zio_type_name[t], zio_taskq_types[q], i); 902 } else { 903 (void) snprintf(name, sizeof (name), "%s_%s", 904 zio_type_name[t], zio_taskq_types[q]); 905 } 906 907 #ifdef SYSDC 908 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 909 if (batch) 910 flags |= TASKQ_DC_BATCH; 911 912 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 913 spa->spa_proc, zio_taskq_basedc, flags); 914 } else { 915 #endif 916 pri_t pri = maxclsyspri; 917 /* 918 * The write issue taskq can be extremely CPU 919 * intensive. Run it at slightly lower priority 920 * than the other taskqs. 921 * FreeBSD notes: 922 * - numerically higher priorities are lower priorities; 923 * - if priorities divided by four (RQ_PPQ) are equal 924 * then a difference between them is insignificant. 925 */ 926 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 927 #ifdef illumos 928 pri--; 929 #else 930 pri += 4; 931 #endif 932 933 tq = taskq_create_proc(name, value, pri, 50, 934 INT_MAX, spa->spa_proc, flags); 935 #ifdef SYSDC 936 } 937 #endif 938 939 tqs->stqs_taskq[i] = tq; 940 } 941 } 942 943 static void 944 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 945 { 946 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 947 948 if (tqs->stqs_taskq == NULL) { 949 ASSERT0(tqs->stqs_count); 950 return; 951 } 952 953 for (uint_t i = 0; i < tqs->stqs_count; i++) { 954 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 955 taskq_destroy(tqs->stqs_taskq[i]); 956 } 957 958 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 959 tqs->stqs_taskq = NULL; 960 } 961 962 /* 963 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 964 * Note that a type may have multiple discrete taskqs to avoid lock contention 965 * on the taskq itself. In that case we choose which taskq at random by using 966 * the low bits of gethrtime(). 967 */ 968 void 969 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 970 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 971 { 972 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 973 taskq_t *tq; 974 975 ASSERT3P(tqs->stqs_taskq, !=, NULL); 976 ASSERT3U(tqs->stqs_count, !=, 0); 977 978 if (tqs->stqs_count == 1) { 979 tq = tqs->stqs_taskq[0]; 980 } else { 981 #if defined(__FreeBSD__) && defined(_KERNEL) 982 tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count]; 983 #else 984 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 985 #endif 986 } 987 988 taskq_dispatch_ent(tq, func, arg, flags, ent); 989 } 990 991 static void 992 spa_create_zio_taskqs(spa_t *spa) 993 { 994 for (int t = 0; t < ZIO_TYPES; t++) { 995 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 996 spa_taskqs_init(spa, t, q); 997 } 998 } 999 } 1000 1001 #ifdef _KERNEL 1002 #ifdef SPA_PROCESS 1003 static void 1004 spa_thread(void *arg) 1005 { 1006 callb_cpr_t cprinfo; 1007 1008 spa_t *spa = arg; 1009 user_t *pu = PTOU(curproc); 1010 1011 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1012 spa->spa_name); 1013 1014 ASSERT(curproc != &p0); 1015 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1016 "zpool-%s", spa->spa_name); 1017 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1018 1019 #ifdef PSRSET_BIND 1020 /* bind this thread to the requested psrset */ 1021 if (zio_taskq_psrset_bind != PS_NONE) { 1022 pool_lock(); 1023 mutex_enter(&cpu_lock); 1024 mutex_enter(&pidlock); 1025 mutex_enter(&curproc->p_lock); 1026 1027 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1028 0, NULL, NULL) == 0) { 1029 curthread->t_bind_pset = zio_taskq_psrset_bind; 1030 } else { 1031 cmn_err(CE_WARN, 1032 "Couldn't bind process for zfs pool \"%s\" to " 1033 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1034 } 1035 1036 mutex_exit(&curproc->p_lock); 1037 mutex_exit(&pidlock); 1038 mutex_exit(&cpu_lock); 1039 pool_unlock(); 1040 } 1041 #endif 1042 1043 #ifdef SYSDC 1044 if (zio_taskq_sysdc) { 1045 sysdc_thread_enter(curthread, 100, 0); 1046 } 1047 #endif 1048 1049 spa->spa_proc = curproc; 1050 spa->spa_did = curthread->t_did; 1051 1052 spa_create_zio_taskqs(spa); 1053 1054 mutex_enter(&spa->spa_proc_lock); 1055 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1056 1057 spa->spa_proc_state = SPA_PROC_ACTIVE; 1058 cv_broadcast(&spa->spa_proc_cv); 1059 1060 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1061 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1062 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1063 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1064 1065 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1066 spa->spa_proc_state = SPA_PROC_GONE; 1067 spa->spa_proc = &p0; 1068 cv_broadcast(&spa->spa_proc_cv); 1069 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1070 1071 mutex_enter(&curproc->p_lock); 1072 lwp_exit(); 1073 } 1074 #endif /* SPA_PROCESS */ 1075 #endif 1076 1077 /* 1078 * Activate an uninitialized pool. 1079 */ 1080 static void 1081 spa_activate(spa_t *spa, int mode) 1082 { 1083 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1084 1085 spa->spa_state = POOL_STATE_ACTIVE; 1086 spa->spa_mode = mode; 1087 1088 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1089 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1090 1091 /* Try to create a covering process */ 1092 mutex_enter(&spa->spa_proc_lock); 1093 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1094 ASSERT(spa->spa_proc == &p0); 1095 spa->spa_did = 0; 1096 1097 #ifdef SPA_PROCESS 1098 /* Only create a process if we're going to be around a while. */ 1099 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1100 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1101 NULL, 0) == 0) { 1102 spa->spa_proc_state = SPA_PROC_CREATED; 1103 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1104 cv_wait(&spa->spa_proc_cv, 1105 &spa->spa_proc_lock); 1106 } 1107 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1108 ASSERT(spa->spa_proc != &p0); 1109 ASSERT(spa->spa_did != 0); 1110 } else { 1111 #ifdef _KERNEL 1112 cmn_err(CE_WARN, 1113 "Couldn't create process for zfs pool \"%s\"\n", 1114 spa->spa_name); 1115 #endif 1116 } 1117 } 1118 #endif /* SPA_PROCESS */ 1119 mutex_exit(&spa->spa_proc_lock); 1120 1121 /* If we didn't create a process, we need to create our taskqs. */ 1122 ASSERT(spa->spa_proc == &p0); 1123 if (spa->spa_proc == &p0) { 1124 spa_create_zio_taskqs(spa); 1125 } 1126 1127 /* 1128 * Start TRIM thread. 1129 */ 1130 trim_thread_create(spa); 1131 1132 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1133 offsetof(vdev_t, vdev_config_dirty_node)); 1134 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1135 offsetof(objset_t, os_evicting_node)); 1136 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1137 offsetof(vdev_t, vdev_state_dirty_node)); 1138 1139 txg_list_create(&spa->spa_vdev_txg_list, 1140 offsetof(struct vdev, vdev_txg_node)); 1141 1142 avl_create(&spa->spa_errlist_scrub, 1143 spa_error_entry_compare, sizeof (spa_error_entry_t), 1144 offsetof(spa_error_entry_t, se_avl)); 1145 avl_create(&spa->spa_errlist_last, 1146 spa_error_entry_compare, sizeof (spa_error_entry_t), 1147 offsetof(spa_error_entry_t, se_avl)); 1148 } 1149 1150 /* 1151 * Opposite of spa_activate(). 1152 */ 1153 static void 1154 spa_deactivate(spa_t *spa) 1155 { 1156 ASSERT(spa->spa_sync_on == B_FALSE); 1157 ASSERT(spa->spa_dsl_pool == NULL); 1158 ASSERT(spa->spa_root_vdev == NULL); 1159 ASSERT(spa->spa_async_zio_root == NULL); 1160 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1161 1162 /* 1163 * Stop TRIM thread in case spa_unload() wasn't called directly 1164 * before spa_deactivate(). 1165 */ 1166 trim_thread_destroy(spa); 1167 1168 spa_evicting_os_wait(spa); 1169 1170 txg_list_destroy(&spa->spa_vdev_txg_list); 1171 1172 list_destroy(&spa->spa_config_dirty_list); 1173 list_destroy(&spa->spa_evicting_os_list); 1174 list_destroy(&spa->spa_state_dirty_list); 1175 1176 for (int t = 0; t < ZIO_TYPES; t++) { 1177 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1178 spa_taskqs_fini(spa, t, q); 1179 } 1180 } 1181 1182 metaslab_class_destroy(spa->spa_normal_class); 1183 spa->spa_normal_class = NULL; 1184 1185 metaslab_class_destroy(spa->spa_log_class); 1186 spa->spa_log_class = NULL; 1187 1188 /* 1189 * If this was part of an import or the open otherwise failed, we may 1190 * still have errors left in the queues. Empty them just in case. 1191 */ 1192 spa_errlog_drain(spa); 1193 1194 avl_destroy(&spa->spa_errlist_scrub); 1195 avl_destroy(&spa->spa_errlist_last); 1196 1197 spa->spa_state = POOL_STATE_UNINITIALIZED; 1198 1199 mutex_enter(&spa->spa_proc_lock); 1200 if (spa->spa_proc_state != SPA_PROC_NONE) { 1201 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1202 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1203 cv_broadcast(&spa->spa_proc_cv); 1204 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1205 ASSERT(spa->spa_proc != &p0); 1206 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1207 } 1208 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1209 spa->spa_proc_state = SPA_PROC_NONE; 1210 } 1211 ASSERT(spa->spa_proc == &p0); 1212 mutex_exit(&spa->spa_proc_lock); 1213 1214 #ifdef SPA_PROCESS 1215 /* 1216 * We want to make sure spa_thread() has actually exited the ZFS 1217 * module, so that the module can't be unloaded out from underneath 1218 * it. 1219 */ 1220 if (spa->spa_did != 0) { 1221 thread_join(spa->spa_did); 1222 spa->spa_did = 0; 1223 } 1224 #endif /* SPA_PROCESS */ 1225 } 1226 1227 /* 1228 * Verify a pool configuration, and construct the vdev tree appropriately. This 1229 * will create all the necessary vdevs in the appropriate layout, with each vdev 1230 * in the CLOSED state. This will prep the pool before open/creation/import. 1231 * All vdev validation is done by the vdev_alloc() routine. 1232 */ 1233 static int 1234 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1235 uint_t id, int atype) 1236 { 1237 nvlist_t **child; 1238 uint_t children; 1239 int error; 1240 1241 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1242 return (error); 1243 1244 if ((*vdp)->vdev_ops->vdev_op_leaf) 1245 return (0); 1246 1247 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1248 &child, &children); 1249 1250 if (error == ENOENT) 1251 return (0); 1252 1253 if (error) { 1254 vdev_free(*vdp); 1255 *vdp = NULL; 1256 return (SET_ERROR(EINVAL)); 1257 } 1258 1259 for (int c = 0; c < children; c++) { 1260 vdev_t *vd; 1261 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1262 atype)) != 0) { 1263 vdev_free(*vdp); 1264 *vdp = NULL; 1265 return (error); 1266 } 1267 } 1268 1269 ASSERT(*vdp != NULL); 1270 1271 return (0); 1272 } 1273 1274 /* 1275 * Opposite of spa_load(). 1276 */ 1277 static void 1278 spa_unload(spa_t *spa) 1279 { 1280 int i; 1281 1282 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1283 1284 /* 1285 * Stop TRIM thread. 1286 */ 1287 trim_thread_destroy(spa); 1288 1289 /* 1290 * Stop async tasks. 1291 */ 1292 spa_async_suspend(spa); 1293 1294 /* 1295 * Stop syncing. 1296 */ 1297 if (spa->spa_sync_on) { 1298 txg_sync_stop(spa->spa_dsl_pool); 1299 spa->spa_sync_on = B_FALSE; 1300 } 1301 1302 /* 1303 * Even though vdev_free() also calls vdev_metaslab_fini, we need 1304 * to call it earlier, before we wait for async i/o to complete. 1305 * This ensures that there is no async metaslab prefetching, by 1306 * calling taskq_wait(mg_taskq). 1307 */ 1308 if (spa->spa_root_vdev != NULL) { 1309 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1310 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) 1311 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]); 1312 spa_config_exit(spa, SCL_ALL, FTAG); 1313 } 1314 1315 /* 1316 * Wait for any outstanding async I/O to complete. 1317 */ 1318 if (spa->spa_async_zio_root != NULL) { 1319 for (int i = 0; i < max_ncpus; i++) 1320 (void) zio_wait(spa->spa_async_zio_root[i]); 1321 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1322 spa->spa_async_zio_root = NULL; 1323 } 1324 1325 bpobj_close(&spa->spa_deferred_bpobj); 1326 1327 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1328 1329 /* 1330 * Close all vdevs. 1331 */ 1332 if (spa->spa_root_vdev) 1333 vdev_free(spa->spa_root_vdev); 1334 ASSERT(spa->spa_root_vdev == NULL); 1335 1336 /* 1337 * Close the dsl pool. 1338 */ 1339 if (spa->spa_dsl_pool) { 1340 dsl_pool_close(spa->spa_dsl_pool); 1341 spa->spa_dsl_pool = NULL; 1342 spa->spa_meta_objset = NULL; 1343 } 1344 1345 ddt_unload(spa); 1346 1347 /* 1348 * Drop and purge level 2 cache 1349 */ 1350 spa_l2cache_drop(spa); 1351 1352 for (i = 0; i < spa->spa_spares.sav_count; i++) 1353 vdev_free(spa->spa_spares.sav_vdevs[i]); 1354 if (spa->spa_spares.sav_vdevs) { 1355 kmem_free(spa->spa_spares.sav_vdevs, 1356 spa->spa_spares.sav_count * sizeof (void *)); 1357 spa->spa_spares.sav_vdevs = NULL; 1358 } 1359 if (spa->spa_spares.sav_config) { 1360 nvlist_free(spa->spa_spares.sav_config); 1361 spa->spa_spares.sav_config = NULL; 1362 } 1363 spa->spa_spares.sav_count = 0; 1364 1365 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1366 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1367 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1368 } 1369 if (spa->spa_l2cache.sav_vdevs) { 1370 kmem_free(spa->spa_l2cache.sav_vdevs, 1371 spa->spa_l2cache.sav_count * sizeof (void *)); 1372 spa->spa_l2cache.sav_vdevs = NULL; 1373 } 1374 if (spa->spa_l2cache.sav_config) { 1375 nvlist_free(spa->spa_l2cache.sav_config); 1376 spa->spa_l2cache.sav_config = NULL; 1377 } 1378 spa->spa_l2cache.sav_count = 0; 1379 1380 spa->spa_async_suspended = 0; 1381 1382 if (spa->spa_comment != NULL) { 1383 spa_strfree(spa->spa_comment); 1384 spa->spa_comment = NULL; 1385 } 1386 1387 spa_config_exit(spa, SCL_ALL, FTAG); 1388 } 1389 1390 /* 1391 * Load (or re-load) the current list of vdevs describing the active spares for 1392 * this pool. When this is called, we have some form of basic information in 1393 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1394 * then re-generate a more complete list including status information. 1395 */ 1396 static void 1397 spa_load_spares(spa_t *spa) 1398 { 1399 nvlist_t **spares; 1400 uint_t nspares; 1401 int i; 1402 vdev_t *vd, *tvd; 1403 1404 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1405 1406 /* 1407 * First, close and free any existing spare vdevs. 1408 */ 1409 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1410 vd = spa->spa_spares.sav_vdevs[i]; 1411 1412 /* Undo the call to spa_activate() below */ 1413 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1414 B_FALSE)) != NULL && tvd->vdev_isspare) 1415 spa_spare_remove(tvd); 1416 vdev_close(vd); 1417 vdev_free(vd); 1418 } 1419 1420 if (spa->spa_spares.sav_vdevs) 1421 kmem_free(spa->spa_spares.sav_vdevs, 1422 spa->spa_spares.sav_count * sizeof (void *)); 1423 1424 if (spa->spa_spares.sav_config == NULL) 1425 nspares = 0; 1426 else 1427 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1428 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1429 1430 spa->spa_spares.sav_count = (int)nspares; 1431 spa->spa_spares.sav_vdevs = NULL; 1432 1433 if (nspares == 0) 1434 return; 1435 1436 /* 1437 * Construct the array of vdevs, opening them to get status in the 1438 * process. For each spare, there is potentially two different vdev_t 1439 * structures associated with it: one in the list of spares (used only 1440 * for basic validation purposes) and one in the active vdev 1441 * configuration (if it's spared in). During this phase we open and 1442 * validate each vdev on the spare list. If the vdev also exists in the 1443 * active configuration, then we also mark this vdev as an active spare. 1444 */ 1445 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1446 KM_SLEEP); 1447 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1448 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1449 VDEV_ALLOC_SPARE) == 0); 1450 ASSERT(vd != NULL); 1451 1452 spa->spa_spares.sav_vdevs[i] = vd; 1453 1454 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1455 B_FALSE)) != NULL) { 1456 if (!tvd->vdev_isspare) 1457 spa_spare_add(tvd); 1458 1459 /* 1460 * We only mark the spare active if we were successfully 1461 * able to load the vdev. Otherwise, importing a pool 1462 * with a bad active spare would result in strange 1463 * behavior, because multiple pool would think the spare 1464 * is actively in use. 1465 * 1466 * There is a vulnerability here to an equally bizarre 1467 * circumstance, where a dead active spare is later 1468 * brought back to life (onlined or otherwise). Given 1469 * the rarity of this scenario, and the extra complexity 1470 * it adds, we ignore the possibility. 1471 */ 1472 if (!vdev_is_dead(tvd)) 1473 spa_spare_activate(tvd); 1474 } 1475 1476 vd->vdev_top = vd; 1477 vd->vdev_aux = &spa->spa_spares; 1478 1479 if (vdev_open(vd) != 0) 1480 continue; 1481 1482 if (vdev_validate_aux(vd) == 0) 1483 spa_spare_add(vd); 1484 } 1485 1486 /* 1487 * Recompute the stashed list of spares, with status information 1488 * this time. 1489 */ 1490 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1491 DATA_TYPE_NVLIST_ARRAY) == 0); 1492 1493 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1494 KM_SLEEP); 1495 for (i = 0; i < spa->spa_spares.sav_count; i++) 1496 spares[i] = vdev_config_generate(spa, 1497 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1498 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1499 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1500 for (i = 0; i < spa->spa_spares.sav_count; i++) 1501 nvlist_free(spares[i]); 1502 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1503 } 1504 1505 /* 1506 * Load (or re-load) the current list of vdevs describing the active l2cache for 1507 * this pool. When this is called, we have some form of basic information in 1508 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1509 * then re-generate a more complete list including status information. 1510 * Devices which are already active have their details maintained, and are 1511 * not re-opened. 1512 */ 1513 static void 1514 spa_load_l2cache(spa_t *spa) 1515 { 1516 nvlist_t **l2cache; 1517 uint_t nl2cache; 1518 int i, j, oldnvdevs; 1519 uint64_t guid; 1520 vdev_t *vd, **oldvdevs, **newvdevs; 1521 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1522 1523 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1524 1525 if (sav->sav_config != NULL) { 1526 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1527 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1528 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1529 } else { 1530 nl2cache = 0; 1531 newvdevs = NULL; 1532 } 1533 1534 oldvdevs = sav->sav_vdevs; 1535 oldnvdevs = sav->sav_count; 1536 sav->sav_vdevs = NULL; 1537 sav->sav_count = 0; 1538 1539 /* 1540 * Process new nvlist of vdevs. 1541 */ 1542 for (i = 0; i < nl2cache; i++) { 1543 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1544 &guid) == 0); 1545 1546 newvdevs[i] = NULL; 1547 for (j = 0; j < oldnvdevs; j++) { 1548 vd = oldvdevs[j]; 1549 if (vd != NULL && guid == vd->vdev_guid) { 1550 /* 1551 * Retain previous vdev for add/remove ops. 1552 */ 1553 newvdevs[i] = vd; 1554 oldvdevs[j] = NULL; 1555 break; 1556 } 1557 } 1558 1559 if (newvdevs[i] == NULL) { 1560 /* 1561 * Create new vdev 1562 */ 1563 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1564 VDEV_ALLOC_L2CACHE) == 0); 1565 ASSERT(vd != NULL); 1566 newvdevs[i] = vd; 1567 1568 /* 1569 * Commit this vdev as an l2cache device, 1570 * even if it fails to open. 1571 */ 1572 spa_l2cache_add(vd); 1573 1574 vd->vdev_top = vd; 1575 vd->vdev_aux = sav; 1576 1577 spa_l2cache_activate(vd); 1578 1579 if (vdev_open(vd) != 0) 1580 continue; 1581 1582 (void) vdev_validate_aux(vd); 1583 1584 if (!vdev_is_dead(vd)) 1585 l2arc_add_vdev(spa, vd); 1586 } 1587 } 1588 1589 /* 1590 * Purge vdevs that were dropped 1591 */ 1592 for (i = 0; i < oldnvdevs; i++) { 1593 uint64_t pool; 1594 1595 vd = oldvdevs[i]; 1596 if (vd != NULL) { 1597 ASSERT(vd->vdev_isl2cache); 1598 1599 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1600 pool != 0ULL && l2arc_vdev_present(vd)) 1601 l2arc_remove_vdev(vd); 1602 vdev_clear_stats(vd); 1603 vdev_free(vd); 1604 } 1605 } 1606 1607 if (oldvdevs) 1608 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1609 1610 if (sav->sav_config == NULL) 1611 goto out; 1612 1613 sav->sav_vdevs = newvdevs; 1614 sav->sav_count = (int)nl2cache; 1615 1616 /* 1617 * Recompute the stashed list of l2cache devices, with status 1618 * information this time. 1619 */ 1620 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1621 DATA_TYPE_NVLIST_ARRAY) == 0); 1622 1623 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1624 for (i = 0; i < sav->sav_count; i++) 1625 l2cache[i] = vdev_config_generate(spa, 1626 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1627 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1628 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1629 out: 1630 for (i = 0; i < sav->sav_count; i++) 1631 nvlist_free(l2cache[i]); 1632 if (sav->sav_count) 1633 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1634 } 1635 1636 static int 1637 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1638 { 1639 dmu_buf_t *db; 1640 char *packed = NULL; 1641 size_t nvsize = 0; 1642 int error; 1643 *value = NULL; 1644 1645 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1646 if (error != 0) 1647 return (error); 1648 1649 nvsize = *(uint64_t *)db->db_data; 1650 dmu_buf_rele(db, FTAG); 1651 1652 packed = kmem_alloc(nvsize, KM_SLEEP); 1653 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1654 DMU_READ_PREFETCH); 1655 if (error == 0) 1656 error = nvlist_unpack(packed, nvsize, value, 0); 1657 kmem_free(packed, nvsize); 1658 1659 return (error); 1660 } 1661 1662 /* 1663 * Checks to see if the given vdev could not be opened, in which case we post a 1664 * sysevent to notify the autoreplace code that the device has been removed. 1665 */ 1666 static void 1667 spa_check_removed(vdev_t *vd) 1668 { 1669 for (int c = 0; c < vd->vdev_children; c++) 1670 spa_check_removed(vd->vdev_child[c]); 1671 1672 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1673 !vd->vdev_ishole) { 1674 zfs_post_autoreplace(vd->vdev_spa, vd); 1675 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1676 } 1677 } 1678 1679 static void 1680 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd) 1681 { 1682 ASSERT3U(vd->vdev_children, ==, mvd->vdev_children); 1683 1684 vd->vdev_top_zap = mvd->vdev_top_zap; 1685 vd->vdev_leaf_zap = mvd->vdev_leaf_zap; 1686 1687 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1688 spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]); 1689 } 1690 } 1691 1692 /* 1693 * Validate the current config against the MOS config 1694 */ 1695 static boolean_t 1696 spa_config_valid(spa_t *spa, nvlist_t *config) 1697 { 1698 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1699 nvlist_t *nv; 1700 1701 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1702 1703 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1704 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1705 1706 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1707 1708 /* 1709 * If we're doing a normal import, then build up any additional 1710 * diagnostic information about missing devices in this config. 1711 * We'll pass this up to the user for further processing. 1712 */ 1713 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1714 nvlist_t **child, *nv; 1715 uint64_t idx = 0; 1716 1717 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1718 KM_SLEEP); 1719 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1720 1721 for (int c = 0; c < rvd->vdev_children; c++) { 1722 vdev_t *tvd = rvd->vdev_child[c]; 1723 vdev_t *mtvd = mrvd->vdev_child[c]; 1724 1725 if (tvd->vdev_ops == &vdev_missing_ops && 1726 mtvd->vdev_ops != &vdev_missing_ops && 1727 mtvd->vdev_islog) 1728 child[idx++] = vdev_config_generate(spa, mtvd, 1729 B_FALSE, 0); 1730 } 1731 1732 if (idx) { 1733 VERIFY(nvlist_add_nvlist_array(nv, 1734 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1735 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1736 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1737 1738 for (int i = 0; i < idx; i++) 1739 nvlist_free(child[i]); 1740 } 1741 nvlist_free(nv); 1742 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1743 } 1744 1745 /* 1746 * Compare the root vdev tree with the information we have 1747 * from the MOS config (mrvd). Check each top-level vdev 1748 * with the corresponding MOS config top-level (mtvd). 1749 */ 1750 for (int c = 0; c < rvd->vdev_children; c++) { 1751 vdev_t *tvd = rvd->vdev_child[c]; 1752 vdev_t *mtvd = mrvd->vdev_child[c]; 1753 1754 /* 1755 * Resolve any "missing" vdevs in the current configuration. 1756 * If we find that the MOS config has more accurate information 1757 * about the top-level vdev then use that vdev instead. 1758 */ 1759 if (tvd->vdev_ops == &vdev_missing_ops && 1760 mtvd->vdev_ops != &vdev_missing_ops) { 1761 1762 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1763 continue; 1764 1765 /* 1766 * Device specific actions. 1767 */ 1768 if (mtvd->vdev_islog) { 1769 spa_set_log_state(spa, SPA_LOG_CLEAR); 1770 } else { 1771 /* 1772 * XXX - once we have 'readonly' pool 1773 * support we should be able to handle 1774 * missing data devices by transitioning 1775 * the pool to readonly. 1776 */ 1777 continue; 1778 } 1779 1780 /* 1781 * Swap the missing vdev with the data we were 1782 * able to obtain from the MOS config. 1783 */ 1784 vdev_remove_child(rvd, tvd); 1785 vdev_remove_child(mrvd, mtvd); 1786 1787 vdev_add_child(rvd, mtvd); 1788 vdev_add_child(mrvd, tvd); 1789 1790 spa_config_exit(spa, SCL_ALL, FTAG); 1791 vdev_load(mtvd); 1792 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1793 1794 vdev_reopen(rvd); 1795 } else { 1796 if (mtvd->vdev_islog) { 1797 /* 1798 * Load the slog device's state from the MOS 1799 * config since it's possible that the label 1800 * does not contain the most up-to-date 1801 * information. 1802 */ 1803 vdev_load_log_state(tvd, mtvd); 1804 vdev_reopen(tvd); 1805 } 1806 1807 /* 1808 * Per-vdev ZAP info is stored exclusively in the MOS. 1809 */ 1810 spa_config_valid_zaps(tvd, mtvd); 1811 } 1812 } 1813 1814 vdev_free(mrvd); 1815 spa_config_exit(spa, SCL_ALL, FTAG); 1816 1817 /* 1818 * Ensure we were able to validate the config. 1819 */ 1820 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1821 } 1822 1823 /* 1824 * Check for missing log devices 1825 */ 1826 static boolean_t 1827 spa_check_logs(spa_t *spa) 1828 { 1829 boolean_t rv = B_FALSE; 1830 dsl_pool_t *dp = spa_get_dsl(spa); 1831 1832 switch (spa->spa_log_state) { 1833 case SPA_LOG_MISSING: 1834 /* need to recheck in case slog has been restored */ 1835 case SPA_LOG_UNKNOWN: 1836 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1837 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1838 if (rv) 1839 spa_set_log_state(spa, SPA_LOG_MISSING); 1840 break; 1841 } 1842 return (rv); 1843 } 1844 1845 static boolean_t 1846 spa_passivate_log(spa_t *spa) 1847 { 1848 vdev_t *rvd = spa->spa_root_vdev; 1849 boolean_t slog_found = B_FALSE; 1850 1851 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1852 1853 if (!spa_has_slogs(spa)) 1854 return (B_FALSE); 1855 1856 for (int c = 0; c < rvd->vdev_children; c++) { 1857 vdev_t *tvd = rvd->vdev_child[c]; 1858 metaslab_group_t *mg = tvd->vdev_mg; 1859 1860 if (tvd->vdev_islog) { 1861 metaslab_group_passivate(mg); 1862 slog_found = B_TRUE; 1863 } 1864 } 1865 1866 return (slog_found); 1867 } 1868 1869 static void 1870 spa_activate_log(spa_t *spa) 1871 { 1872 vdev_t *rvd = spa->spa_root_vdev; 1873 1874 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1875 1876 for (int c = 0; c < rvd->vdev_children; c++) { 1877 vdev_t *tvd = rvd->vdev_child[c]; 1878 metaslab_group_t *mg = tvd->vdev_mg; 1879 1880 if (tvd->vdev_islog) 1881 metaslab_group_activate(mg); 1882 } 1883 } 1884 1885 int 1886 spa_offline_log(spa_t *spa) 1887 { 1888 int error; 1889 1890 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1891 NULL, DS_FIND_CHILDREN); 1892 if (error == 0) { 1893 /* 1894 * We successfully offlined the log device, sync out the 1895 * current txg so that the "stubby" block can be removed 1896 * by zil_sync(). 1897 */ 1898 txg_wait_synced(spa->spa_dsl_pool, 0); 1899 } 1900 return (error); 1901 } 1902 1903 static void 1904 spa_aux_check_removed(spa_aux_vdev_t *sav) 1905 { 1906 int i; 1907 1908 for (i = 0; i < sav->sav_count; i++) 1909 spa_check_removed(sav->sav_vdevs[i]); 1910 } 1911 1912 void 1913 spa_claim_notify(zio_t *zio) 1914 { 1915 spa_t *spa = zio->io_spa; 1916 1917 if (zio->io_error) 1918 return; 1919 1920 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1921 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1922 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1923 mutex_exit(&spa->spa_props_lock); 1924 } 1925 1926 typedef struct spa_load_error { 1927 uint64_t sle_meta_count; 1928 uint64_t sle_data_count; 1929 } spa_load_error_t; 1930 1931 static void 1932 spa_load_verify_done(zio_t *zio) 1933 { 1934 blkptr_t *bp = zio->io_bp; 1935 spa_load_error_t *sle = zio->io_private; 1936 dmu_object_type_t type = BP_GET_TYPE(bp); 1937 int error = zio->io_error; 1938 spa_t *spa = zio->io_spa; 1939 1940 if (error) { 1941 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1942 type != DMU_OT_INTENT_LOG) 1943 atomic_inc_64(&sle->sle_meta_count); 1944 else 1945 atomic_inc_64(&sle->sle_data_count); 1946 } 1947 zio_data_buf_free(zio->io_data, zio->io_size); 1948 1949 mutex_enter(&spa->spa_scrub_lock); 1950 spa->spa_scrub_inflight--; 1951 cv_broadcast(&spa->spa_scrub_io_cv); 1952 mutex_exit(&spa->spa_scrub_lock); 1953 } 1954 1955 /* 1956 * Maximum number of concurrent scrub i/os to create while verifying 1957 * a pool while importing it. 1958 */ 1959 int spa_load_verify_maxinflight = 10000; 1960 boolean_t spa_load_verify_metadata = B_TRUE; 1961 boolean_t spa_load_verify_data = B_TRUE; 1962 1963 SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN, 1964 &spa_load_verify_maxinflight, 0, 1965 "Maximum number of concurrent scrub I/Os to create while verifying a " 1966 "pool while importing it"); 1967 1968 SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN, 1969 &spa_load_verify_metadata, 0, 1970 "Check metadata on import?"); 1971 1972 SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN, 1973 &spa_load_verify_data, 0, 1974 "Check user data on import?"); 1975 1976 /*ARGSUSED*/ 1977 static int 1978 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1979 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1980 { 1981 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1982 return (0); 1983 /* 1984 * Note: normally this routine will not be called if 1985 * spa_load_verify_metadata is not set. However, it may be useful 1986 * to manually set the flag after the traversal has begun. 1987 */ 1988 if (!spa_load_verify_metadata) 1989 return (0); 1990 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) 1991 return (0); 1992 1993 zio_t *rio = arg; 1994 size_t size = BP_GET_PSIZE(bp); 1995 void *data = zio_data_buf_alloc(size); 1996 1997 mutex_enter(&spa->spa_scrub_lock); 1998 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1999 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2000 spa->spa_scrub_inflight++; 2001 mutex_exit(&spa->spa_scrub_lock); 2002 2003 zio_nowait(zio_read(rio, spa, bp, data, size, 2004 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2005 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2006 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2007 return (0); 2008 } 2009 2010 /* ARGSUSED */ 2011 int 2012 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2013 { 2014 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2015 return (SET_ERROR(ENAMETOOLONG)); 2016 2017 return (0); 2018 } 2019 2020 static int 2021 spa_load_verify(spa_t *spa) 2022 { 2023 zio_t *rio; 2024 spa_load_error_t sle = { 0 }; 2025 zpool_rewind_policy_t policy; 2026 boolean_t verify_ok = B_FALSE; 2027 int error = 0; 2028 2029 zpool_get_rewind_policy(spa->spa_config, &policy); 2030 2031 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 2032 return (0); 2033 2034 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2035 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2036 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2037 DS_FIND_CHILDREN); 2038 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2039 if (error != 0) 2040 return (error); 2041 2042 rio = zio_root(spa, NULL, &sle, 2043 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2044 2045 if (spa_load_verify_metadata) { 2046 error = traverse_pool(spa, spa->spa_verify_min_txg, 2047 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 2048 spa_load_verify_cb, rio); 2049 } 2050 2051 (void) zio_wait(rio); 2052 2053 spa->spa_load_meta_errors = sle.sle_meta_count; 2054 spa->spa_load_data_errors = sle.sle_data_count; 2055 2056 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 2057 sle.sle_data_count <= policy.zrp_maxdata) { 2058 int64_t loss = 0; 2059 2060 verify_ok = B_TRUE; 2061 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2062 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2063 2064 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2065 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2066 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 2067 VERIFY(nvlist_add_int64(spa->spa_load_info, 2068 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 2069 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2070 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 2071 } else { 2072 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2073 } 2074 2075 if (error) { 2076 if (error != ENXIO && error != EIO) 2077 error = SET_ERROR(EIO); 2078 return (error); 2079 } 2080 2081 return (verify_ok ? 0 : EIO); 2082 } 2083 2084 /* 2085 * Find a value in the pool props object. 2086 */ 2087 static void 2088 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2089 { 2090 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2091 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2092 } 2093 2094 /* 2095 * Find a value in the pool directory object. 2096 */ 2097 static int 2098 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 2099 { 2100 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2101 name, sizeof (uint64_t), 1, val)); 2102 } 2103 2104 static int 2105 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2106 { 2107 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2108 return (err); 2109 } 2110 2111 /* 2112 * Fix up config after a partly-completed split. This is done with the 2113 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2114 * pool have that entry in their config, but only the splitting one contains 2115 * a list of all the guids of the vdevs that are being split off. 2116 * 2117 * This function determines what to do with that list: either rejoin 2118 * all the disks to the pool, or complete the splitting process. To attempt 2119 * the rejoin, each disk that is offlined is marked online again, and 2120 * we do a reopen() call. If the vdev label for every disk that was 2121 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2122 * then we call vdev_split() on each disk, and complete the split. 2123 * 2124 * Otherwise we leave the config alone, with all the vdevs in place in 2125 * the original pool. 2126 */ 2127 static void 2128 spa_try_repair(spa_t *spa, nvlist_t *config) 2129 { 2130 uint_t extracted; 2131 uint64_t *glist; 2132 uint_t i, gcount; 2133 nvlist_t *nvl; 2134 vdev_t **vd; 2135 boolean_t attempt_reopen; 2136 2137 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2138 return; 2139 2140 /* check that the config is complete */ 2141 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2142 &glist, &gcount) != 0) 2143 return; 2144 2145 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2146 2147 /* attempt to online all the vdevs & validate */ 2148 attempt_reopen = B_TRUE; 2149 for (i = 0; i < gcount; i++) { 2150 if (glist[i] == 0) /* vdev is hole */ 2151 continue; 2152 2153 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2154 if (vd[i] == NULL) { 2155 /* 2156 * Don't bother attempting to reopen the disks; 2157 * just do the split. 2158 */ 2159 attempt_reopen = B_FALSE; 2160 } else { 2161 /* attempt to re-online it */ 2162 vd[i]->vdev_offline = B_FALSE; 2163 } 2164 } 2165 2166 if (attempt_reopen) { 2167 vdev_reopen(spa->spa_root_vdev); 2168 2169 /* check each device to see what state it's in */ 2170 for (extracted = 0, i = 0; i < gcount; i++) { 2171 if (vd[i] != NULL && 2172 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2173 break; 2174 ++extracted; 2175 } 2176 } 2177 2178 /* 2179 * If every disk has been moved to the new pool, or if we never 2180 * even attempted to look at them, then we split them off for 2181 * good. 2182 */ 2183 if (!attempt_reopen || gcount == extracted) { 2184 for (i = 0; i < gcount; i++) 2185 if (vd[i] != NULL) 2186 vdev_split(vd[i]); 2187 vdev_reopen(spa->spa_root_vdev); 2188 } 2189 2190 kmem_free(vd, gcount * sizeof (vdev_t *)); 2191 } 2192 2193 static int 2194 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2195 boolean_t mosconfig) 2196 { 2197 nvlist_t *config = spa->spa_config; 2198 char *ereport = FM_EREPORT_ZFS_POOL; 2199 char *comment; 2200 int error; 2201 uint64_t pool_guid; 2202 nvlist_t *nvl; 2203 2204 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2205 return (SET_ERROR(EINVAL)); 2206 2207 ASSERT(spa->spa_comment == NULL); 2208 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2209 spa->spa_comment = spa_strdup(comment); 2210 2211 /* 2212 * Versioning wasn't explicitly added to the label until later, so if 2213 * it's not present treat it as the initial version. 2214 */ 2215 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2216 &spa->spa_ubsync.ub_version) != 0) 2217 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2218 2219 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2220 &spa->spa_config_txg); 2221 2222 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2223 spa_guid_exists(pool_guid, 0)) { 2224 error = SET_ERROR(EEXIST); 2225 } else { 2226 spa->spa_config_guid = pool_guid; 2227 2228 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2229 &nvl) == 0) { 2230 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2231 KM_SLEEP) == 0); 2232 } 2233 2234 nvlist_free(spa->spa_load_info); 2235 spa->spa_load_info = fnvlist_alloc(); 2236 2237 gethrestime(&spa->spa_loaded_ts); 2238 error = spa_load_impl(spa, pool_guid, config, state, type, 2239 mosconfig, &ereport); 2240 } 2241 2242 /* 2243 * Don't count references from objsets that are already closed 2244 * and are making their way through the eviction process. 2245 */ 2246 spa_evicting_os_wait(spa); 2247 spa->spa_minref = refcount_count(&spa->spa_refcount); 2248 if (error) { 2249 if (error != EEXIST) { 2250 spa->spa_loaded_ts.tv_sec = 0; 2251 spa->spa_loaded_ts.tv_nsec = 0; 2252 } 2253 if (error != EBADF) { 2254 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2255 } 2256 } 2257 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2258 spa->spa_ena = 0; 2259 2260 return (error); 2261 } 2262 2263 /* 2264 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 2265 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 2266 * spa's per-vdev ZAP list. 2267 */ 2268 static uint64_t 2269 vdev_count_verify_zaps(vdev_t *vd) 2270 { 2271 spa_t *spa = vd->vdev_spa; 2272 uint64_t total = 0; 2273 if (vd->vdev_top_zap != 0) { 2274 total++; 2275 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2276 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 2277 } 2278 if (vd->vdev_leaf_zap != 0) { 2279 total++; 2280 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2281 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 2282 } 2283 2284 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2285 total += vdev_count_verify_zaps(vd->vdev_child[i]); 2286 } 2287 2288 return (total); 2289 } 2290 2291 /* 2292 * Load an existing storage pool, using the pool's builtin spa_config as a 2293 * source of configuration information. 2294 */ 2295 static int 2296 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2297 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2298 char **ereport) 2299 { 2300 int error = 0; 2301 nvlist_t *nvroot = NULL; 2302 nvlist_t *label; 2303 vdev_t *rvd; 2304 uberblock_t *ub = &spa->spa_uberblock; 2305 uint64_t children, config_cache_txg = spa->spa_config_txg; 2306 int orig_mode = spa->spa_mode; 2307 int parse; 2308 uint64_t obj; 2309 boolean_t missing_feat_write = B_FALSE; 2310 2311 /* 2312 * If this is an untrusted config, access the pool in read-only mode. 2313 * This prevents things like resilvering recently removed devices. 2314 */ 2315 if (!mosconfig) 2316 spa->spa_mode = FREAD; 2317 2318 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2319 2320 spa->spa_load_state = state; 2321 2322 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2323 return (SET_ERROR(EINVAL)); 2324 2325 parse = (type == SPA_IMPORT_EXISTING ? 2326 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2327 2328 /* 2329 * Create "The Godfather" zio to hold all async IOs 2330 */ 2331 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2332 KM_SLEEP); 2333 for (int i = 0; i < max_ncpus; i++) { 2334 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2335 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2336 ZIO_FLAG_GODFATHER); 2337 } 2338 2339 /* 2340 * Parse the configuration into a vdev tree. We explicitly set the 2341 * value that will be returned by spa_version() since parsing the 2342 * configuration requires knowing the version number. 2343 */ 2344 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2345 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2346 spa_config_exit(spa, SCL_ALL, FTAG); 2347 2348 if (error != 0) 2349 return (error); 2350 2351 ASSERT(spa->spa_root_vdev == rvd); 2352 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2353 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2354 2355 if (type != SPA_IMPORT_ASSEMBLE) { 2356 ASSERT(spa_guid(spa) == pool_guid); 2357 } 2358 2359 /* 2360 * Try to open all vdevs, loading each label in the process. 2361 */ 2362 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2363 error = vdev_open(rvd); 2364 spa_config_exit(spa, SCL_ALL, FTAG); 2365 if (error != 0) 2366 return (error); 2367 2368 /* 2369 * We need to validate the vdev labels against the configuration that 2370 * we have in hand, which is dependent on the setting of mosconfig. If 2371 * mosconfig is true then we're validating the vdev labels based on 2372 * that config. Otherwise, we're validating against the cached config 2373 * (zpool.cache) that was read when we loaded the zfs module, and then 2374 * later we will recursively call spa_load() and validate against 2375 * the vdev config. 2376 * 2377 * If we're assembling a new pool that's been split off from an 2378 * existing pool, the labels haven't yet been updated so we skip 2379 * validation for now. 2380 */ 2381 if (type != SPA_IMPORT_ASSEMBLE) { 2382 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2383 error = vdev_validate(rvd, mosconfig); 2384 spa_config_exit(spa, SCL_ALL, FTAG); 2385 2386 if (error != 0) 2387 return (error); 2388 2389 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2390 return (SET_ERROR(ENXIO)); 2391 } 2392 2393 /* 2394 * Find the best uberblock. 2395 */ 2396 vdev_uberblock_load(rvd, ub, &label); 2397 2398 /* 2399 * If we weren't able to find a single valid uberblock, return failure. 2400 */ 2401 if (ub->ub_txg == 0) { 2402 nvlist_free(label); 2403 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2404 } 2405 2406 /* 2407 * If the pool has an unsupported version we can't open it. 2408 */ 2409 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2410 nvlist_free(label); 2411 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2412 } 2413 2414 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2415 nvlist_t *features; 2416 2417 /* 2418 * If we weren't able to find what's necessary for reading the 2419 * MOS in the label, return failure. 2420 */ 2421 if (label == NULL || nvlist_lookup_nvlist(label, 2422 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2423 nvlist_free(label); 2424 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2425 ENXIO)); 2426 } 2427 2428 /* 2429 * Update our in-core representation with the definitive values 2430 * from the label. 2431 */ 2432 nvlist_free(spa->spa_label_features); 2433 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2434 } 2435 2436 nvlist_free(label); 2437 2438 /* 2439 * Look through entries in the label nvlist's features_for_read. If 2440 * there is a feature listed there which we don't understand then we 2441 * cannot open a pool. 2442 */ 2443 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2444 nvlist_t *unsup_feat; 2445 2446 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2447 0); 2448 2449 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2450 NULL); nvp != NULL; 2451 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2452 if (!zfeature_is_supported(nvpair_name(nvp))) { 2453 VERIFY(nvlist_add_string(unsup_feat, 2454 nvpair_name(nvp), "") == 0); 2455 } 2456 } 2457 2458 if (!nvlist_empty(unsup_feat)) { 2459 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2460 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2461 nvlist_free(unsup_feat); 2462 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2463 ENOTSUP)); 2464 } 2465 2466 nvlist_free(unsup_feat); 2467 } 2468 2469 /* 2470 * If the vdev guid sum doesn't match the uberblock, we have an 2471 * incomplete configuration. We first check to see if the pool 2472 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2473 * If it is, defer the vdev_guid_sum check till later so we 2474 * can handle missing vdevs. 2475 */ 2476 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2477 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2478 rvd->vdev_guid_sum != ub->ub_guid_sum) 2479 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2480 2481 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2482 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2483 spa_try_repair(spa, config); 2484 spa_config_exit(spa, SCL_ALL, FTAG); 2485 nvlist_free(spa->spa_config_splitting); 2486 spa->spa_config_splitting = NULL; 2487 } 2488 2489 /* 2490 * Initialize internal SPA structures. 2491 */ 2492 spa->spa_state = POOL_STATE_ACTIVE; 2493 spa->spa_ubsync = spa->spa_uberblock; 2494 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2495 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2496 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2497 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2498 spa->spa_claim_max_txg = spa->spa_first_txg; 2499 spa->spa_prev_software_version = ub->ub_software_version; 2500 2501 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2502 if (error) 2503 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2504 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2505 2506 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2507 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2508 2509 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2510 boolean_t missing_feat_read = B_FALSE; 2511 nvlist_t *unsup_feat, *enabled_feat; 2512 2513 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2514 &spa->spa_feat_for_read_obj) != 0) { 2515 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2516 } 2517 2518 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2519 &spa->spa_feat_for_write_obj) != 0) { 2520 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2521 } 2522 2523 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2524 &spa->spa_feat_desc_obj) != 0) { 2525 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2526 } 2527 2528 enabled_feat = fnvlist_alloc(); 2529 unsup_feat = fnvlist_alloc(); 2530 2531 if (!spa_features_check(spa, B_FALSE, 2532 unsup_feat, enabled_feat)) 2533 missing_feat_read = B_TRUE; 2534 2535 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2536 if (!spa_features_check(spa, B_TRUE, 2537 unsup_feat, enabled_feat)) { 2538 missing_feat_write = B_TRUE; 2539 } 2540 } 2541 2542 fnvlist_add_nvlist(spa->spa_load_info, 2543 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2544 2545 if (!nvlist_empty(unsup_feat)) { 2546 fnvlist_add_nvlist(spa->spa_load_info, 2547 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2548 } 2549 2550 fnvlist_free(enabled_feat); 2551 fnvlist_free(unsup_feat); 2552 2553 if (!missing_feat_read) { 2554 fnvlist_add_boolean(spa->spa_load_info, 2555 ZPOOL_CONFIG_CAN_RDONLY); 2556 } 2557 2558 /* 2559 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2560 * twofold: to determine whether the pool is available for 2561 * import in read-write mode and (if it is not) whether the 2562 * pool is available for import in read-only mode. If the pool 2563 * is available for import in read-write mode, it is displayed 2564 * as available in userland; if it is not available for import 2565 * in read-only mode, it is displayed as unavailable in 2566 * userland. If the pool is available for import in read-only 2567 * mode but not read-write mode, it is displayed as unavailable 2568 * in userland with a special note that the pool is actually 2569 * available for open in read-only mode. 2570 * 2571 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2572 * missing a feature for write, we must first determine whether 2573 * the pool can be opened read-only before returning to 2574 * userland in order to know whether to display the 2575 * abovementioned note. 2576 */ 2577 if (missing_feat_read || (missing_feat_write && 2578 spa_writeable(spa))) { 2579 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2580 ENOTSUP)); 2581 } 2582 2583 /* 2584 * Load refcounts for ZFS features from disk into an in-memory 2585 * cache during SPA initialization. 2586 */ 2587 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2588 uint64_t refcount; 2589 2590 error = feature_get_refcount_from_disk(spa, 2591 &spa_feature_table[i], &refcount); 2592 if (error == 0) { 2593 spa->spa_feat_refcount_cache[i] = refcount; 2594 } else if (error == ENOTSUP) { 2595 spa->spa_feat_refcount_cache[i] = 2596 SPA_FEATURE_DISABLED; 2597 } else { 2598 return (spa_vdev_err(rvd, 2599 VDEV_AUX_CORRUPT_DATA, EIO)); 2600 } 2601 } 2602 } 2603 2604 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2605 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2606 &spa->spa_feat_enabled_txg_obj) != 0) 2607 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2608 } 2609 2610 spa->spa_is_initializing = B_TRUE; 2611 error = dsl_pool_open(spa->spa_dsl_pool); 2612 spa->spa_is_initializing = B_FALSE; 2613 if (error != 0) 2614 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2615 2616 if (!mosconfig) { 2617 uint64_t hostid; 2618 nvlist_t *policy = NULL, *nvconfig; 2619 2620 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2621 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2622 2623 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2624 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2625 char *hostname; 2626 unsigned long myhostid = 0; 2627 2628 VERIFY(nvlist_lookup_string(nvconfig, 2629 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2630 2631 #ifdef _KERNEL 2632 myhostid = zone_get_hostid(NULL); 2633 #else /* _KERNEL */ 2634 /* 2635 * We're emulating the system's hostid in userland, so 2636 * we can't use zone_get_hostid(). 2637 */ 2638 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2639 #endif /* _KERNEL */ 2640 if (check_hostid && hostid != 0 && myhostid != 0 && 2641 hostid != myhostid) { 2642 nvlist_free(nvconfig); 2643 cmn_err(CE_WARN, "pool '%s' could not be " 2644 "loaded as it was last accessed by " 2645 "another system (host: %s hostid: 0x%lx). " 2646 "See: http://illumos.org/msg/ZFS-8000-EY", 2647 spa_name(spa), hostname, 2648 (unsigned long)hostid); 2649 return (SET_ERROR(EBADF)); 2650 } 2651 } 2652 if (nvlist_lookup_nvlist(spa->spa_config, 2653 ZPOOL_REWIND_POLICY, &policy) == 0) 2654 VERIFY(nvlist_add_nvlist(nvconfig, 2655 ZPOOL_REWIND_POLICY, policy) == 0); 2656 2657 spa_config_set(spa, nvconfig); 2658 spa_unload(spa); 2659 spa_deactivate(spa); 2660 spa_activate(spa, orig_mode); 2661 2662 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2663 } 2664 2665 /* Grab the secret checksum salt from the MOS. */ 2666 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2667 DMU_POOL_CHECKSUM_SALT, 1, 2668 sizeof (spa->spa_cksum_salt.zcs_bytes), 2669 spa->spa_cksum_salt.zcs_bytes); 2670 if (error == ENOENT) { 2671 /* Generate a new salt for subsequent use */ 2672 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 2673 sizeof (spa->spa_cksum_salt.zcs_bytes)); 2674 } else if (error != 0) { 2675 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2676 } 2677 2678 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2679 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2680 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2681 if (error != 0) 2682 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2683 2684 /* 2685 * Load the bit that tells us to use the new accounting function 2686 * (raid-z deflation). If we have an older pool, this will not 2687 * be present. 2688 */ 2689 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2690 if (error != 0 && error != ENOENT) 2691 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2692 2693 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2694 &spa->spa_creation_version); 2695 if (error != 0 && error != ENOENT) 2696 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2697 2698 /* 2699 * Load the persistent error log. If we have an older pool, this will 2700 * not be present. 2701 */ 2702 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2703 if (error != 0 && error != ENOENT) 2704 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2705 2706 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2707 &spa->spa_errlog_scrub); 2708 if (error != 0 && error != ENOENT) 2709 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2710 2711 /* 2712 * Load the history object. If we have an older pool, this 2713 * will not be present. 2714 */ 2715 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2716 if (error != 0 && error != ENOENT) 2717 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2718 2719 /* 2720 * Load the per-vdev ZAP map. If we have an older pool, this will not 2721 * be present; in this case, defer its creation to a later time to 2722 * avoid dirtying the MOS this early / out of sync context. See 2723 * spa_sync_config_object. 2724 */ 2725 2726 /* The sentinel is only available in the MOS config. */ 2727 nvlist_t *mos_config; 2728 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) 2729 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2730 2731 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 2732 &spa->spa_all_vdev_zaps); 2733 2734 if (error != ENOENT && error != 0) { 2735 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2736 } else if (error == 0 && !nvlist_exists(mos_config, 2737 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 2738 /* 2739 * An older version of ZFS overwrote the sentinel value, so 2740 * we have orphaned per-vdev ZAPs in the MOS. Defer their 2741 * destruction to later; see spa_sync_config_object. 2742 */ 2743 spa->spa_avz_action = AVZ_ACTION_DESTROY; 2744 /* 2745 * We're assuming that no vdevs have had their ZAPs created 2746 * before this. Better be sure of it. 2747 */ 2748 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 2749 } 2750 nvlist_free(mos_config); 2751 2752 /* 2753 * If we're assembling the pool from the split-off vdevs of 2754 * an existing pool, we don't want to attach the spares & cache 2755 * devices. 2756 */ 2757 2758 /* 2759 * Load any hot spares for this pool. 2760 */ 2761 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2762 if (error != 0 && error != ENOENT) 2763 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2764 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2765 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2766 if (load_nvlist(spa, spa->spa_spares.sav_object, 2767 &spa->spa_spares.sav_config) != 0) 2768 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2769 2770 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2771 spa_load_spares(spa); 2772 spa_config_exit(spa, SCL_ALL, FTAG); 2773 } else if (error == 0) { 2774 spa->spa_spares.sav_sync = B_TRUE; 2775 } 2776 2777 /* 2778 * Load any level 2 ARC devices for this pool. 2779 */ 2780 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2781 &spa->spa_l2cache.sav_object); 2782 if (error != 0 && error != ENOENT) 2783 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2784 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2785 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2786 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2787 &spa->spa_l2cache.sav_config) != 0) 2788 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2789 2790 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2791 spa_load_l2cache(spa); 2792 spa_config_exit(spa, SCL_ALL, FTAG); 2793 } else if (error == 0) { 2794 spa->spa_l2cache.sav_sync = B_TRUE; 2795 } 2796 2797 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2798 2799 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2800 if (error && error != ENOENT) 2801 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2802 2803 if (error == 0) { 2804 uint64_t autoreplace; 2805 2806 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2807 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2808 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2809 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2810 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2811 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2812 &spa->spa_dedup_ditto); 2813 2814 spa->spa_autoreplace = (autoreplace != 0); 2815 } 2816 2817 /* 2818 * If the 'autoreplace' property is set, then post a resource notifying 2819 * the ZFS DE that it should not issue any faults for unopenable 2820 * devices. We also iterate over the vdevs, and post a sysevent for any 2821 * unopenable vdevs so that the normal autoreplace handler can take 2822 * over. 2823 */ 2824 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2825 spa_check_removed(spa->spa_root_vdev); 2826 /* 2827 * For the import case, this is done in spa_import(), because 2828 * at this point we're using the spare definitions from 2829 * the MOS config, not necessarily from the userland config. 2830 */ 2831 if (state != SPA_LOAD_IMPORT) { 2832 spa_aux_check_removed(&spa->spa_spares); 2833 spa_aux_check_removed(&spa->spa_l2cache); 2834 } 2835 } 2836 2837 /* 2838 * Load the vdev state for all toplevel vdevs. 2839 */ 2840 vdev_load(rvd); 2841 2842 /* 2843 * Propagate the leaf DTLs we just loaded all the way up the tree. 2844 */ 2845 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2846 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2847 spa_config_exit(spa, SCL_ALL, FTAG); 2848 2849 /* 2850 * Load the DDTs (dedup tables). 2851 */ 2852 error = ddt_load(spa); 2853 if (error != 0) 2854 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2855 2856 spa_update_dspace(spa); 2857 2858 /* 2859 * Validate the config, using the MOS config to fill in any 2860 * information which might be missing. If we fail to validate 2861 * the config then declare the pool unfit for use. If we're 2862 * assembling a pool from a split, the log is not transferred 2863 * over. 2864 */ 2865 if (type != SPA_IMPORT_ASSEMBLE) { 2866 nvlist_t *nvconfig; 2867 2868 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2869 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2870 2871 if (!spa_config_valid(spa, nvconfig)) { 2872 nvlist_free(nvconfig); 2873 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2874 ENXIO)); 2875 } 2876 nvlist_free(nvconfig); 2877 2878 /* 2879 * Now that we've validated the config, check the state of the 2880 * root vdev. If it can't be opened, it indicates one or 2881 * more toplevel vdevs are faulted. 2882 */ 2883 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2884 return (SET_ERROR(ENXIO)); 2885 2886 if (spa_writeable(spa) && spa_check_logs(spa)) { 2887 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2888 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2889 } 2890 } 2891 2892 if (missing_feat_write) { 2893 ASSERT(state == SPA_LOAD_TRYIMPORT); 2894 2895 /* 2896 * At this point, we know that we can open the pool in 2897 * read-only mode but not read-write mode. We now have enough 2898 * information and can return to userland. 2899 */ 2900 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2901 } 2902 2903 /* 2904 * We've successfully opened the pool, verify that we're ready 2905 * to start pushing transactions. 2906 */ 2907 if (state != SPA_LOAD_TRYIMPORT) { 2908 if (error = spa_load_verify(spa)) 2909 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2910 error)); 2911 } 2912 2913 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2914 spa->spa_load_max_txg == UINT64_MAX)) { 2915 dmu_tx_t *tx; 2916 int need_update = B_FALSE; 2917 dsl_pool_t *dp = spa_get_dsl(spa); 2918 2919 ASSERT(state != SPA_LOAD_TRYIMPORT); 2920 2921 /* 2922 * Claim log blocks that haven't been committed yet. 2923 * This must all happen in a single txg. 2924 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2925 * invoked from zil_claim_log_block()'s i/o done callback. 2926 * Price of rollback is that we abandon the log. 2927 */ 2928 spa->spa_claiming = B_TRUE; 2929 2930 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 2931 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2932 zil_claim, tx, DS_FIND_CHILDREN); 2933 dmu_tx_commit(tx); 2934 2935 spa->spa_claiming = B_FALSE; 2936 2937 spa_set_log_state(spa, SPA_LOG_GOOD); 2938 spa->spa_sync_on = B_TRUE; 2939 txg_sync_start(spa->spa_dsl_pool); 2940 2941 /* 2942 * Wait for all claims to sync. We sync up to the highest 2943 * claimed log block birth time so that claimed log blocks 2944 * don't appear to be from the future. spa_claim_max_txg 2945 * will have been set for us by either zil_check_log_chain() 2946 * (invoked from spa_check_logs()) or zil_claim() above. 2947 */ 2948 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2949 2950 /* 2951 * If the config cache is stale, or we have uninitialized 2952 * metaslabs (see spa_vdev_add()), then update the config. 2953 * 2954 * If this is a verbatim import, trust the current 2955 * in-core spa_config and update the disk labels. 2956 */ 2957 if (config_cache_txg != spa->spa_config_txg || 2958 state == SPA_LOAD_IMPORT || 2959 state == SPA_LOAD_RECOVER || 2960 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2961 need_update = B_TRUE; 2962 2963 for (int c = 0; c < rvd->vdev_children; c++) 2964 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2965 need_update = B_TRUE; 2966 2967 /* 2968 * Update the config cache asychronously in case we're the 2969 * root pool, in which case the config cache isn't writable yet. 2970 */ 2971 if (need_update) 2972 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2973 2974 /* 2975 * Check all DTLs to see if anything needs resilvering. 2976 */ 2977 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2978 vdev_resilver_needed(rvd, NULL, NULL)) 2979 spa_async_request(spa, SPA_ASYNC_RESILVER); 2980 2981 /* 2982 * Log the fact that we booted up (so that we can detect if 2983 * we rebooted in the middle of an operation). 2984 */ 2985 spa_history_log_version(spa, "open"); 2986 2987 /* 2988 * Delete any inconsistent datasets. 2989 */ 2990 (void) dmu_objset_find(spa_name(spa), 2991 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2992 2993 /* 2994 * Clean up any stale temporary dataset userrefs. 2995 */ 2996 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2997 } 2998 2999 return (0); 3000 } 3001 3002 static int 3003 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 3004 { 3005 int mode = spa->spa_mode; 3006 3007 spa_unload(spa); 3008 spa_deactivate(spa); 3009 3010 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 3011 3012 spa_activate(spa, mode); 3013 spa_async_suspend(spa); 3014 3015 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 3016 } 3017 3018 /* 3019 * If spa_load() fails this function will try loading prior txg's. If 3020 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 3021 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 3022 * function will not rewind the pool and will return the same error as 3023 * spa_load(). 3024 */ 3025 static int 3026 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 3027 uint64_t max_request, int rewind_flags) 3028 { 3029 nvlist_t *loadinfo = NULL; 3030 nvlist_t *config = NULL; 3031 int load_error, rewind_error; 3032 uint64_t safe_rewind_txg; 3033 uint64_t min_txg; 3034 3035 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 3036 spa->spa_load_max_txg = spa->spa_load_txg; 3037 spa_set_log_state(spa, SPA_LOG_CLEAR); 3038 } else { 3039 spa->spa_load_max_txg = max_request; 3040 if (max_request != UINT64_MAX) 3041 spa->spa_extreme_rewind = B_TRUE; 3042 } 3043 3044 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 3045 mosconfig); 3046 if (load_error == 0) 3047 return (0); 3048 3049 if (spa->spa_root_vdev != NULL) 3050 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3051 3052 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 3053 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 3054 3055 if (rewind_flags & ZPOOL_NEVER_REWIND) { 3056 nvlist_free(config); 3057 return (load_error); 3058 } 3059 3060 if (state == SPA_LOAD_RECOVER) { 3061 /* Price of rolling back is discarding txgs, including log */ 3062 spa_set_log_state(spa, SPA_LOG_CLEAR); 3063 } else { 3064 /* 3065 * If we aren't rolling back save the load info from our first 3066 * import attempt so that we can restore it after attempting 3067 * to rewind. 3068 */ 3069 loadinfo = spa->spa_load_info; 3070 spa->spa_load_info = fnvlist_alloc(); 3071 } 3072 3073 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 3074 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 3075 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 3076 TXG_INITIAL : safe_rewind_txg; 3077 3078 /* 3079 * Continue as long as we're finding errors, we're still within 3080 * the acceptable rewind range, and we're still finding uberblocks 3081 */ 3082 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 3083 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 3084 if (spa->spa_load_max_txg < safe_rewind_txg) 3085 spa->spa_extreme_rewind = B_TRUE; 3086 rewind_error = spa_load_retry(spa, state, mosconfig); 3087 } 3088 3089 spa->spa_extreme_rewind = B_FALSE; 3090 spa->spa_load_max_txg = UINT64_MAX; 3091 3092 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 3093 spa_config_set(spa, config); 3094 3095 if (state == SPA_LOAD_RECOVER) { 3096 ASSERT3P(loadinfo, ==, NULL); 3097 return (rewind_error); 3098 } else { 3099 /* Store the rewind info as part of the initial load info */ 3100 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 3101 spa->spa_load_info); 3102 3103 /* Restore the initial load info */ 3104 fnvlist_free(spa->spa_load_info); 3105 spa->spa_load_info = loadinfo; 3106 3107 return (load_error); 3108 } 3109 } 3110 3111 /* 3112 * Pool Open/Import 3113 * 3114 * The import case is identical to an open except that the configuration is sent 3115 * down from userland, instead of grabbed from the configuration cache. For the 3116 * case of an open, the pool configuration will exist in the 3117 * POOL_STATE_UNINITIALIZED state. 3118 * 3119 * The stats information (gen/count/ustats) is used to gather vdev statistics at 3120 * the same time open the pool, without having to keep around the spa_t in some 3121 * ambiguous state. 3122 */ 3123 static int 3124 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 3125 nvlist_t **config) 3126 { 3127 spa_t *spa; 3128 spa_load_state_t state = SPA_LOAD_OPEN; 3129 int error; 3130 int locked = B_FALSE; 3131 int firstopen = B_FALSE; 3132 3133 *spapp = NULL; 3134 3135 /* 3136 * As disgusting as this is, we need to support recursive calls to this 3137 * function because dsl_dir_open() is called during spa_load(), and ends 3138 * up calling spa_open() again. The real fix is to figure out how to 3139 * avoid dsl_dir_open() calling this in the first place. 3140 */ 3141 if (mutex_owner(&spa_namespace_lock) != curthread) { 3142 mutex_enter(&spa_namespace_lock); 3143 locked = B_TRUE; 3144 } 3145 3146 if ((spa = spa_lookup(pool)) == NULL) { 3147 if (locked) 3148 mutex_exit(&spa_namespace_lock); 3149 return (SET_ERROR(ENOENT)); 3150 } 3151 3152 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 3153 zpool_rewind_policy_t policy; 3154 3155 firstopen = B_TRUE; 3156 3157 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 3158 &policy); 3159 if (policy.zrp_request & ZPOOL_DO_REWIND) 3160 state = SPA_LOAD_RECOVER; 3161 3162 spa_activate(spa, spa_mode_global); 3163 3164 if (state != SPA_LOAD_RECOVER) 3165 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3166 3167 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 3168 policy.zrp_request); 3169 3170 if (error == EBADF) { 3171 /* 3172 * If vdev_validate() returns failure (indicated by 3173 * EBADF), it indicates that one of the vdevs indicates 3174 * that the pool has been exported or destroyed. If 3175 * this is the case, the config cache is out of sync and 3176 * we should remove the pool from the namespace. 3177 */ 3178 spa_unload(spa); 3179 spa_deactivate(spa); 3180 spa_config_sync(spa, B_TRUE, B_TRUE); 3181 spa_remove(spa); 3182 if (locked) 3183 mutex_exit(&spa_namespace_lock); 3184 return (SET_ERROR(ENOENT)); 3185 } 3186 3187 if (error) { 3188 /* 3189 * We can't open the pool, but we still have useful 3190 * information: the state of each vdev after the 3191 * attempted vdev_open(). Return this to the user. 3192 */ 3193 if (config != NULL && spa->spa_config) { 3194 VERIFY(nvlist_dup(spa->spa_config, config, 3195 KM_SLEEP) == 0); 3196 VERIFY(nvlist_add_nvlist(*config, 3197 ZPOOL_CONFIG_LOAD_INFO, 3198 spa->spa_load_info) == 0); 3199 } 3200 spa_unload(spa); 3201 spa_deactivate(spa); 3202 spa->spa_last_open_failed = error; 3203 if (locked) 3204 mutex_exit(&spa_namespace_lock); 3205 *spapp = NULL; 3206 return (error); 3207 } 3208 } 3209 3210 spa_open_ref(spa, tag); 3211 3212 if (config != NULL) 3213 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3214 3215 /* 3216 * If we've recovered the pool, pass back any information we 3217 * gathered while doing the load. 3218 */ 3219 if (state == SPA_LOAD_RECOVER) { 3220 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3221 spa->spa_load_info) == 0); 3222 } 3223 3224 if (locked) { 3225 spa->spa_last_open_failed = 0; 3226 spa->spa_last_ubsync_txg = 0; 3227 spa->spa_load_txg = 0; 3228 mutex_exit(&spa_namespace_lock); 3229 #ifdef __FreeBSD__ 3230 #ifdef _KERNEL 3231 if (firstopen) 3232 zvol_create_minors(spa->spa_name); 3233 #endif 3234 #endif 3235 } 3236 3237 *spapp = spa; 3238 3239 return (0); 3240 } 3241 3242 int 3243 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3244 nvlist_t **config) 3245 { 3246 return (spa_open_common(name, spapp, tag, policy, config)); 3247 } 3248 3249 int 3250 spa_open(const char *name, spa_t **spapp, void *tag) 3251 { 3252 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3253 } 3254 3255 /* 3256 * Lookup the given spa_t, incrementing the inject count in the process, 3257 * preventing it from being exported or destroyed. 3258 */ 3259 spa_t * 3260 spa_inject_addref(char *name) 3261 { 3262 spa_t *spa; 3263 3264 mutex_enter(&spa_namespace_lock); 3265 if ((spa = spa_lookup(name)) == NULL) { 3266 mutex_exit(&spa_namespace_lock); 3267 return (NULL); 3268 } 3269 spa->spa_inject_ref++; 3270 mutex_exit(&spa_namespace_lock); 3271 3272 return (spa); 3273 } 3274 3275 void 3276 spa_inject_delref(spa_t *spa) 3277 { 3278 mutex_enter(&spa_namespace_lock); 3279 spa->spa_inject_ref--; 3280 mutex_exit(&spa_namespace_lock); 3281 } 3282 3283 /* 3284 * Add spares device information to the nvlist. 3285 */ 3286 static void 3287 spa_add_spares(spa_t *spa, nvlist_t *config) 3288 { 3289 nvlist_t **spares; 3290 uint_t i, nspares; 3291 nvlist_t *nvroot; 3292 uint64_t guid; 3293 vdev_stat_t *vs; 3294 uint_t vsc; 3295 uint64_t pool; 3296 3297 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3298 3299 if (spa->spa_spares.sav_count == 0) 3300 return; 3301 3302 VERIFY(nvlist_lookup_nvlist(config, 3303 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3304 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3305 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3306 if (nspares != 0) { 3307 VERIFY(nvlist_add_nvlist_array(nvroot, 3308 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3309 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3310 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3311 3312 /* 3313 * Go through and find any spares which have since been 3314 * repurposed as an active spare. If this is the case, update 3315 * their status appropriately. 3316 */ 3317 for (i = 0; i < nspares; i++) { 3318 VERIFY(nvlist_lookup_uint64(spares[i], 3319 ZPOOL_CONFIG_GUID, &guid) == 0); 3320 if (spa_spare_exists(guid, &pool, NULL) && 3321 pool != 0ULL) { 3322 VERIFY(nvlist_lookup_uint64_array( 3323 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3324 (uint64_t **)&vs, &vsc) == 0); 3325 vs->vs_state = VDEV_STATE_CANT_OPEN; 3326 vs->vs_aux = VDEV_AUX_SPARED; 3327 } 3328 } 3329 } 3330 } 3331 3332 /* 3333 * Add l2cache device information to the nvlist, including vdev stats. 3334 */ 3335 static void 3336 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3337 { 3338 nvlist_t **l2cache; 3339 uint_t i, j, nl2cache; 3340 nvlist_t *nvroot; 3341 uint64_t guid; 3342 vdev_t *vd; 3343 vdev_stat_t *vs; 3344 uint_t vsc; 3345 3346 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3347 3348 if (spa->spa_l2cache.sav_count == 0) 3349 return; 3350 3351 VERIFY(nvlist_lookup_nvlist(config, 3352 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3353 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3354 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3355 if (nl2cache != 0) { 3356 VERIFY(nvlist_add_nvlist_array(nvroot, 3357 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3358 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3359 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3360 3361 /* 3362 * Update level 2 cache device stats. 3363 */ 3364 3365 for (i = 0; i < nl2cache; i++) { 3366 VERIFY(nvlist_lookup_uint64(l2cache[i], 3367 ZPOOL_CONFIG_GUID, &guid) == 0); 3368 3369 vd = NULL; 3370 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3371 if (guid == 3372 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3373 vd = spa->spa_l2cache.sav_vdevs[j]; 3374 break; 3375 } 3376 } 3377 ASSERT(vd != NULL); 3378 3379 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3380 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3381 == 0); 3382 vdev_get_stats(vd, vs); 3383 } 3384 } 3385 } 3386 3387 static void 3388 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3389 { 3390 nvlist_t *features; 3391 zap_cursor_t zc; 3392 zap_attribute_t za; 3393 3394 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3395 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3396 3397 /* We may be unable to read features if pool is suspended. */ 3398 if (spa_suspended(spa)) 3399 goto out; 3400 3401 if (spa->spa_feat_for_read_obj != 0) { 3402 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3403 spa->spa_feat_for_read_obj); 3404 zap_cursor_retrieve(&zc, &za) == 0; 3405 zap_cursor_advance(&zc)) { 3406 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3407 za.za_num_integers == 1); 3408 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3409 za.za_first_integer)); 3410 } 3411 zap_cursor_fini(&zc); 3412 } 3413 3414 if (spa->spa_feat_for_write_obj != 0) { 3415 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3416 spa->spa_feat_for_write_obj); 3417 zap_cursor_retrieve(&zc, &za) == 0; 3418 zap_cursor_advance(&zc)) { 3419 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3420 za.za_num_integers == 1); 3421 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3422 za.za_first_integer)); 3423 } 3424 zap_cursor_fini(&zc); 3425 } 3426 3427 out: 3428 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3429 features) == 0); 3430 nvlist_free(features); 3431 } 3432 3433 int 3434 spa_get_stats(const char *name, nvlist_t **config, 3435 char *altroot, size_t buflen) 3436 { 3437 int error; 3438 spa_t *spa; 3439 3440 *config = NULL; 3441 error = spa_open_common(name, &spa, FTAG, NULL, config); 3442 3443 if (spa != NULL) { 3444 /* 3445 * This still leaves a window of inconsistency where the spares 3446 * or l2cache devices could change and the config would be 3447 * self-inconsistent. 3448 */ 3449 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3450 3451 if (*config != NULL) { 3452 uint64_t loadtimes[2]; 3453 3454 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3455 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3456 VERIFY(nvlist_add_uint64_array(*config, 3457 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3458 3459 VERIFY(nvlist_add_uint64(*config, 3460 ZPOOL_CONFIG_ERRCOUNT, 3461 spa_get_errlog_size(spa)) == 0); 3462 3463 if (spa_suspended(spa)) 3464 VERIFY(nvlist_add_uint64(*config, 3465 ZPOOL_CONFIG_SUSPENDED, 3466 spa->spa_failmode) == 0); 3467 3468 spa_add_spares(spa, *config); 3469 spa_add_l2cache(spa, *config); 3470 spa_add_feature_stats(spa, *config); 3471 } 3472 } 3473 3474 /* 3475 * We want to get the alternate root even for faulted pools, so we cheat 3476 * and call spa_lookup() directly. 3477 */ 3478 if (altroot) { 3479 if (spa == NULL) { 3480 mutex_enter(&spa_namespace_lock); 3481 spa = spa_lookup(name); 3482 if (spa) 3483 spa_altroot(spa, altroot, buflen); 3484 else 3485 altroot[0] = '\0'; 3486 spa = NULL; 3487 mutex_exit(&spa_namespace_lock); 3488 } else { 3489 spa_altroot(spa, altroot, buflen); 3490 } 3491 } 3492 3493 if (spa != NULL) { 3494 spa_config_exit(spa, SCL_CONFIG, FTAG); 3495 spa_close(spa, FTAG); 3496 } 3497 3498 return (error); 3499 } 3500 3501 /* 3502 * Validate that the auxiliary device array is well formed. We must have an 3503 * array of nvlists, each which describes a valid leaf vdev. If this is an 3504 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3505 * specified, as long as they are well-formed. 3506 */ 3507 static int 3508 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3509 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3510 vdev_labeltype_t label) 3511 { 3512 nvlist_t **dev; 3513 uint_t i, ndev; 3514 vdev_t *vd; 3515 int error; 3516 3517 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3518 3519 /* 3520 * It's acceptable to have no devs specified. 3521 */ 3522 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3523 return (0); 3524 3525 if (ndev == 0) 3526 return (SET_ERROR(EINVAL)); 3527 3528 /* 3529 * Make sure the pool is formatted with a version that supports this 3530 * device type. 3531 */ 3532 if (spa_version(spa) < version) 3533 return (SET_ERROR(ENOTSUP)); 3534 3535 /* 3536 * Set the pending device list so we correctly handle device in-use 3537 * checking. 3538 */ 3539 sav->sav_pending = dev; 3540 sav->sav_npending = ndev; 3541 3542 for (i = 0; i < ndev; i++) { 3543 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3544 mode)) != 0) 3545 goto out; 3546 3547 if (!vd->vdev_ops->vdev_op_leaf) { 3548 vdev_free(vd); 3549 error = SET_ERROR(EINVAL); 3550 goto out; 3551 } 3552 3553 /* 3554 * The L2ARC currently only supports disk devices in 3555 * kernel context. For user-level testing, we allow it. 3556 */ 3557 #ifdef _KERNEL 3558 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3559 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3560 error = SET_ERROR(ENOTBLK); 3561 vdev_free(vd); 3562 goto out; 3563 } 3564 #endif 3565 vd->vdev_top = vd; 3566 3567 if ((error = vdev_open(vd)) == 0 && 3568 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3569 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3570 vd->vdev_guid) == 0); 3571 } 3572 3573 vdev_free(vd); 3574 3575 if (error && 3576 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3577 goto out; 3578 else 3579 error = 0; 3580 } 3581 3582 out: 3583 sav->sav_pending = NULL; 3584 sav->sav_npending = 0; 3585 return (error); 3586 } 3587 3588 static int 3589 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3590 { 3591 int error; 3592 3593 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3594 3595 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3596 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3597 VDEV_LABEL_SPARE)) != 0) { 3598 return (error); 3599 } 3600 3601 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3602 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3603 VDEV_LABEL_L2CACHE)); 3604 } 3605 3606 static void 3607 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3608 const char *config) 3609 { 3610 int i; 3611 3612 if (sav->sav_config != NULL) { 3613 nvlist_t **olddevs; 3614 uint_t oldndevs; 3615 nvlist_t **newdevs; 3616 3617 /* 3618 * Generate new dev list by concatentating with the 3619 * current dev list. 3620 */ 3621 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3622 &olddevs, &oldndevs) == 0); 3623 3624 newdevs = kmem_alloc(sizeof (void *) * 3625 (ndevs + oldndevs), KM_SLEEP); 3626 for (i = 0; i < oldndevs; i++) 3627 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3628 KM_SLEEP) == 0); 3629 for (i = 0; i < ndevs; i++) 3630 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3631 KM_SLEEP) == 0); 3632 3633 VERIFY(nvlist_remove(sav->sav_config, config, 3634 DATA_TYPE_NVLIST_ARRAY) == 0); 3635 3636 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3637 config, newdevs, ndevs + oldndevs) == 0); 3638 for (i = 0; i < oldndevs + ndevs; i++) 3639 nvlist_free(newdevs[i]); 3640 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3641 } else { 3642 /* 3643 * Generate a new dev list. 3644 */ 3645 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3646 KM_SLEEP) == 0); 3647 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3648 devs, ndevs) == 0); 3649 } 3650 } 3651 3652 /* 3653 * Stop and drop level 2 ARC devices 3654 */ 3655 void 3656 spa_l2cache_drop(spa_t *spa) 3657 { 3658 vdev_t *vd; 3659 int i; 3660 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3661 3662 for (i = 0; i < sav->sav_count; i++) { 3663 uint64_t pool; 3664 3665 vd = sav->sav_vdevs[i]; 3666 ASSERT(vd != NULL); 3667 3668 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3669 pool != 0ULL && l2arc_vdev_present(vd)) 3670 l2arc_remove_vdev(vd); 3671 } 3672 } 3673 3674 /* 3675 * Pool Creation 3676 */ 3677 int 3678 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3679 nvlist_t *zplprops) 3680 { 3681 spa_t *spa; 3682 char *altroot = NULL; 3683 vdev_t *rvd; 3684 dsl_pool_t *dp; 3685 dmu_tx_t *tx; 3686 int error = 0; 3687 uint64_t txg = TXG_INITIAL; 3688 nvlist_t **spares, **l2cache; 3689 uint_t nspares, nl2cache; 3690 uint64_t version, obj; 3691 boolean_t has_features; 3692 3693 /* 3694 * If this pool already exists, return failure. 3695 */ 3696 mutex_enter(&spa_namespace_lock); 3697 if (spa_lookup(pool) != NULL) { 3698 mutex_exit(&spa_namespace_lock); 3699 return (SET_ERROR(EEXIST)); 3700 } 3701 3702 /* 3703 * Allocate a new spa_t structure. 3704 */ 3705 (void) nvlist_lookup_string(props, 3706 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3707 spa = spa_add(pool, NULL, altroot); 3708 spa_activate(spa, spa_mode_global); 3709 3710 if (props && (error = spa_prop_validate(spa, props))) { 3711 spa_deactivate(spa); 3712 spa_remove(spa); 3713 mutex_exit(&spa_namespace_lock); 3714 return (error); 3715 } 3716 3717 has_features = B_FALSE; 3718 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3719 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3720 if (zpool_prop_feature(nvpair_name(elem))) 3721 has_features = B_TRUE; 3722 } 3723 3724 if (has_features || nvlist_lookup_uint64(props, 3725 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3726 version = SPA_VERSION; 3727 } 3728 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3729 3730 spa->spa_first_txg = txg; 3731 spa->spa_uberblock.ub_txg = txg - 1; 3732 spa->spa_uberblock.ub_version = version; 3733 spa->spa_ubsync = spa->spa_uberblock; 3734 spa->spa_load_state = SPA_LOAD_CREATE; 3735 3736 /* 3737 * Create "The Godfather" zio to hold all async IOs 3738 */ 3739 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3740 KM_SLEEP); 3741 for (int i = 0; i < max_ncpus; i++) { 3742 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3743 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3744 ZIO_FLAG_GODFATHER); 3745 } 3746 3747 /* 3748 * Create the root vdev. 3749 */ 3750 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3751 3752 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3753 3754 ASSERT(error != 0 || rvd != NULL); 3755 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3756 3757 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3758 error = SET_ERROR(EINVAL); 3759 3760 if (error == 0 && 3761 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3762 (error = spa_validate_aux(spa, nvroot, txg, 3763 VDEV_ALLOC_ADD)) == 0) { 3764 for (int c = 0; c < rvd->vdev_children; c++) { 3765 vdev_ashift_optimize(rvd->vdev_child[c]); 3766 vdev_metaslab_set_size(rvd->vdev_child[c]); 3767 vdev_expand(rvd->vdev_child[c], txg); 3768 } 3769 } 3770 3771 spa_config_exit(spa, SCL_ALL, FTAG); 3772 3773 if (error != 0) { 3774 spa_unload(spa); 3775 spa_deactivate(spa); 3776 spa_remove(spa); 3777 mutex_exit(&spa_namespace_lock); 3778 return (error); 3779 } 3780 3781 /* 3782 * Get the list of spares, if specified. 3783 */ 3784 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3785 &spares, &nspares) == 0) { 3786 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3787 KM_SLEEP) == 0); 3788 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3789 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3790 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3791 spa_load_spares(spa); 3792 spa_config_exit(spa, SCL_ALL, FTAG); 3793 spa->spa_spares.sav_sync = B_TRUE; 3794 } 3795 3796 /* 3797 * Get the list of level 2 cache devices, if specified. 3798 */ 3799 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3800 &l2cache, &nl2cache) == 0) { 3801 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3802 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3803 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3804 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3805 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3806 spa_load_l2cache(spa); 3807 spa_config_exit(spa, SCL_ALL, FTAG); 3808 spa->spa_l2cache.sav_sync = B_TRUE; 3809 } 3810 3811 spa->spa_is_initializing = B_TRUE; 3812 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3813 spa->spa_meta_objset = dp->dp_meta_objset; 3814 spa->spa_is_initializing = B_FALSE; 3815 3816 /* 3817 * Create DDTs (dedup tables). 3818 */ 3819 ddt_create(spa); 3820 3821 spa_update_dspace(spa); 3822 3823 tx = dmu_tx_create_assigned(dp, txg); 3824 3825 /* 3826 * Create the pool config object. 3827 */ 3828 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3829 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3830 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3831 3832 if (zap_add(spa->spa_meta_objset, 3833 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3834 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3835 cmn_err(CE_PANIC, "failed to add pool config"); 3836 } 3837 3838 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3839 spa_feature_create_zap_objects(spa, tx); 3840 3841 if (zap_add(spa->spa_meta_objset, 3842 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3843 sizeof (uint64_t), 1, &version, tx) != 0) { 3844 cmn_err(CE_PANIC, "failed to add pool version"); 3845 } 3846 3847 /* Newly created pools with the right version are always deflated. */ 3848 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3849 spa->spa_deflate = TRUE; 3850 if (zap_add(spa->spa_meta_objset, 3851 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3852 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3853 cmn_err(CE_PANIC, "failed to add deflate"); 3854 } 3855 } 3856 3857 /* 3858 * Create the deferred-free bpobj. Turn off compression 3859 * because sync-to-convergence takes longer if the blocksize 3860 * keeps changing. 3861 */ 3862 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3863 dmu_object_set_compress(spa->spa_meta_objset, obj, 3864 ZIO_COMPRESS_OFF, tx); 3865 if (zap_add(spa->spa_meta_objset, 3866 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3867 sizeof (uint64_t), 1, &obj, tx) != 0) { 3868 cmn_err(CE_PANIC, "failed to add bpobj"); 3869 } 3870 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3871 spa->spa_meta_objset, obj)); 3872 3873 /* 3874 * Create the pool's history object. 3875 */ 3876 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3877 spa_history_create_obj(spa, tx); 3878 3879 /* 3880 * Generate some random noise for salted checksums to operate on. 3881 */ 3882 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3883 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3884 3885 /* 3886 * Set pool properties. 3887 */ 3888 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3889 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3890 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3891 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3892 3893 if (props != NULL) { 3894 spa_configfile_set(spa, props, B_FALSE); 3895 spa_sync_props(props, tx); 3896 } 3897 3898 dmu_tx_commit(tx); 3899 3900 spa->spa_sync_on = B_TRUE; 3901 txg_sync_start(spa->spa_dsl_pool); 3902 3903 /* 3904 * We explicitly wait for the first transaction to complete so that our 3905 * bean counters are appropriately updated. 3906 */ 3907 txg_wait_synced(spa->spa_dsl_pool, txg); 3908 3909 spa_config_sync(spa, B_FALSE, B_TRUE); 3910 spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE); 3911 3912 spa_history_log_version(spa, "create"); 3913 3914 /* 3915 * Don't count references from objsets that are already closed 3916 * and are making their way through the eviction process. 3917 */ 3918 spa_evicting_os_wait(spa); 3919 spa->spa_minref = refcount_count(&spa->spa_refcount); 3920 spa->spa_load_state = SPA_LOAD_NONE; 3921 3922 mutex_exit(&spa_namespace_lock); 3923 3924 return (0); 3925 } 3926 3927 #ifndef __NetBSD__ 3928 #ifdef _KERNEL 3929 #ifdef illumos 3930 /* 3931 * Get the root pool information from the root disk, then import the root pool 3932 * during the system boot up time. 3933 */ 3934 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3935 3936 static nvlist_t * 3937 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3938 { 3939 nvlist_t *config; 3940 nvlist_t *nvtop, *nvroot; 3941 uint64_t pgid; 3942 3943 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3944 return (NULL); 3945 3946 /* 3947 * Add this top-level vdev to the child array. 3948 */ 3949 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3950 &nvtop) == 0); 3951 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3952 &pgid) == 0); 3953 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3954 3955 /* 3956 * Put this pool's top-level vdevs into a root vdev. 3957 */ 3958 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3959 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3960 VDEV_TYPE_ROOT) == 0); 3961 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3962 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3963 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3964 &nvtop, 1) == 0); 3965 3966 /* 3967 * Replace the existing vdev_tree with the new root vdev in 3968 * this pool's configuration (remove the old, add the new). 3969 */ 3970 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3971 nvlist_free(nvroot); 3972 return (config); 3973 } 3974 3975 /* 3976 * Walk the vdev tree and see if we can find a device with "better" 3977 * configuration. A configuration is "better" if the label on that 3978 * device has a more recent txg. 3979 */ 3980 static void 3981 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3982 { 3983 for (int c = 0; c < vd->vdev_children; c++) 3984 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3985 3986 if (vd->vdev_ops->vdev_op_leaf) { 3987 nvlist_t *label; 3988 uint64_t label_txg; 3989 3990 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3991 &label) != 0) 3992 return; 3993 3994 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3995 &label_txg) == 0); 3996 3997 /* 3998 * Do we have a better boot device? 3999 */ 4000 if (label_txg > *txg) { 4001 *txg = label_txg; 4002 *avd = vd; 4003 } 4004 nvlist_free(label); 4005 } 4006 } 4007 4008 /* 4009 * Import a root pool. 4010 * 4011 * For x86. devpath_list will consist of devid and/or physpath name of 4012 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 4013 * The GRUB "findroot" command will return the vdev we should boot. 4014 * 4015 * For Sparc, devpath_list consists the physpath name of the booting device 4016 * no matter the rootpool is a single device pool or a mirrored pool. 4017 * e.g. 4018 * "/pci@1f,0/ide@d/disk@0,0:a" 4019 */ 4020 int 4021 spa_import_rootpool(char *devpath, char *devid) 4022 { 4023 spa_t *spa; 4024 vdev_t *rvd, *bvd, *avd = NULL; 4025 nvlist_t *config, *nvtop; 4026 uint64_t guid, txg; 4027 char *pname; 4028 int error; 4029 4030 /* 4031 * Read the label from the boot device and generate a configuration. 4032 */ 4033 config = spa_generate_rootconf(devpath, devid, &guid); 4034 #if defined(_OBP) && defined(_KERNEL) 4035 if (config == NULL) { 4036 if (strstr(devpath, "/iscsi/ssd") != NULL) { 4037 /* iscsi boot */ 4038 get_iscsi_bootpath_phy(devpath); 4039 config = spa_generate_rootconf(devpath, devid, &guid); 4040 } 4041 } 4042 #endif 4043 if (config == NULL) { 4044 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 4045 devpath); 4046 return (SET_ERROR(EIO)); 4047 } 4048 4049 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 4050 &pname) == 0); 4051 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 4052 4053 mutex_enter(&spa_namespace_lock); 4054 if ((spa = spa_lookup(pname)) != NULL) { 4055 /* 4056 * Remove the existing root pool from the namespace so that we 4057 * can replace it with the correct config we just read in. 4058 */ 4059 spa_remove(spa); 4060 } 4061 4062 spa = spa_add(pname, config, NULL); 4063 spa->spa_is_root = B_TRUE; 4064 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 4065 4066 /* 4067 * Build up a vdev tree based on the boot device's label config. 4068 */ 4069 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4070 &nvtop) == 0); 4071 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4072 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 4073 VDEV_ALLOC_ROOTPOOL); 4074 spa_config_exit(spa, SCL_ALL, FTAG); 4075 if (error) { 4076 mutex_exit(&spa_namespace_lock); 4077 nvlist_free(config); 4078 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 4079 pname); 4080 return (error); 4081 } 4082 4083 /* 4084 * Get the boot vdev. 4085 */ 4086 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 4087 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 4088 (u_longlong_t)guid); 4089 error = SET_ERROR(ENOENT); 4090 goto out; 4091 } 4092 4093 /* 4094 * Determine if there is a better boot device. 4095 */ 4096 avd = bvd; 4097 spa_alt_rootvdev(rvd, &avd, &txg); 4098 if (avd != bvd) { 4099 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 4100 "try booting from '%s'", avd->vdev_path); 4101 error = SET_ERROR(EINVAL); 4102 goto out; 4103 } 4104 4105 /* 4106 * If the boot device is part of a spare vdev then ensure that 4107 * we're booting off the active spare. 4108 */ 4109 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 4110 !bvd->vdev_isspare) { 4111 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 4112 "try booting from '%s'", 4113 bvd->vdev_parent-> 4114 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 4115 error = SET_ERROR(EINVAL); 4116 goto out; 4117 } 4118 4119 error = 0; 4120 out: 4121 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4122 vdev_free(rvd); 4123 spa_config_exit(spa, SCL_ALL, FTAG); 4124 mutex_exit(&spa_namespace_lock); 4125 4126 nvlist_free(config); 4127 return (error); 4128 } 4129 4130 #else /* !illumos */ 4131 4132 extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs, 4133 uint64_t *count); 4134 4135 static nvlist_t * 4136 spa_generate_rootconf(const char *name) 4137 { 4138 nvlist_t **configs, **tops; 4139 nvlist_t *config; 4140 nvlist_t *best_cfg, *nvtop, *nvroot; 4141 uint64_t *holes; 4142 uint64_t best_txg; 4143 uint64_t nchildren; 4144 uint64_t pgid; 4145 uint64_t count; 4146 uint64_t i; 4147 uint_t nholes; 4148 4149 if (vdev_geom_read_pool_label(name, &configs, &count) != 0) 4150 return (NULL); 4151 4152 ASSERT3U(count, !=, 0); 4153 best_txg = 0; 4154 for (i = 0; i < count; i++) { 4155 uint64_t txg; 4156 4157 VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG, 4158 &txg) == 0); 4159 if (txg > best_txg) { 4160 best_txg = txg; 4161 best_cfg = configs[i]; 4162 } 4163 } 4164 4165 nchildren = 1; 4166 nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren); 4167 holes = NULL; 4168 nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY, 4169 &holes, &nholes); 4170 4171 tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP); 4172 for (i = 0; i < nchildren; i++) { 4173 if (i >= count) 4174 break; 4175 if (configs[i] == NULL) 4176 continue; 4177 VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE, 4178 &nvtop) == 0); 4179 nvlist_dup(nvtop, &tops[i], KM_SLEEP); 4180 } 4181 for (i = 0; holes != NULL && i < nholes; i++) { 4182 if (i >= nchildren) 4183 continue; 4184 if (tops[holes[i]] != NULL) 4185 continue; 4186 nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP); 4187 VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE, 4188 VDEV_TYPE_HOLE) == 0); 4189 VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID, 4190 holes[i]) == 0); 4191 VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID, 4192 0) == 0); 4193 } 4194 for (i = 0; i < nchildren; i++) { 4195 if (tops[i] != NULL) 4196 continue; 4197 nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP); 4198 VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE, 4199 VDEV_TYPE_MISSING) == 0); 4200 VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID, 4201 i) == 0); 4202 VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID, 4203 0) == 0); 4204 } 4205 4206 /* 4207 * Create pool config based on the best vdev config. 4208 */ 4209 nvlist_dup(best_cfg, &config, KM_SLEEP); 4210 4211 /* 4212 * Put this pool's top-level vdevs into a root vdev. 4213 */ 4214 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4215 &pgid) == 0); 4216 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4217 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 4218 VDEV_TYPE_ROOT) == 0); 4219 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 4220 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 4221 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 4222 tops, nchildren) == 0); 4223 4224 /* 4225 * Replace the existing vdev_tree with the new root vdev in 4226 * this pool's configuration (remove the old, add the new). 4227 */ 4228 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 4229 4230 /* 4231 * Drop vdev config elements that should not be present at pool level. 4232 */ 4233 nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64); 4234 nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64); 4235 4236 for (i = 0; i < count; i++) 4237 nvlist_free(configs[i]); 4238 kmem_free(configs, count * sizeof(void *)); 4239 for (i = 0; i < nchildren; i++) 4240 nvlist_free(tops[i]); 4241 kmem_free(tops, nchildren * sizeof(void *)); 4242 nvlist_free(nvroot); 4243 return (config); 4244 } 4245 4246 int 4247 spa_import_rootpool(const char *name) 4248 { 4249 spa_t *spa; 4250 vdev_t *rvd, *bvd, *avd = NULL; 4251 nvlist_t *config, *nvtop; 4252 uint64_t txg; 4253 char *pname; 4254 int error; 4255 4256 /* 4257 * Read the label from the boot device and generate a configuration. 4258 */ 4259 config = spa_generate_rootconf(name); 4260 4261 mutex_enter(&spa_namespace_lock); 4262 if (config != NULL) { 4263 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 4264 &pname) == 0 && strcmp(name, pname) == 0); 4265 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) 4266 == 0); 4267 4268 if ((spa = spa_lookup(pname)) != NULL) { 4269 /* 4270 * Remove the existing root pool from the namespace so 4271 * that we can replace it with the correct config 4272 * we just read in. 4273 */ 4274 spa_remove(spa); 4275 } 4276 spa = spa_add(pname, config, NULL); 4277 4278 /* 4279 * Set spa_ubsync.ub_version as it can be used in vdev_alloc() 4280 * via spa_version(). 4281 */ 4282 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 4283 &spa->spa_ubsync.ub_version) != 0) 4284 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 4285 } else if ((spa = spa_lookup(name)) == NULL) { 4286 mutex_exit(&spa_namespace_lock); 4287 nvlist_free(config); 4288 cmn_err(CE_NOTE, "Cannot find the pool label for '%s'", 4289 name); 4290 return (EIO); 4291 } else { 4292 VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0); 4293 } 4294 spa->spa_is_root = B_TRUE; 4295 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 4296 4297 /* 4298 * Build up a vdev tree based on the boot device's label config. 4299 */ 4300 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4301 &nvtop) == 0); 4302 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4303 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 4304 VDEV_ALLOC_ROOTPOOL); 4305 spa_config_exit(spa, SCL_ALL, FTAG); 4306 if (error) { 4307 mutex_exit(&spa_namespace_lock); 4308 nvlist_free(config); 4309 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 4310 pname); 4311 return (error); 4312 } 4313 4314 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4315 vdev_free(rvd); 4316 spa_config_exit(spa, SCL_ALL, FTAG); 4317 mutex_exit(&spa_namespace_lock); 4318 4319 nvlist_free(config); 4320 return (0); 4321 } 4322 4323 #endif /* illumos */ 4324 #endif /* _KERNEL */ 4325 #endif /* !__NetBSD__ */ 4326 4327 /* 4328 * Import a non-root pool into the system. 4329 */ 4330 int 4331 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 4332 { 4333 spa_t *spa; 4334 char *altroot = NULL; 4335 spa_load_state_t state = SPA_LOAD_IMPORT; 4336 zpool_rewind_policy_t policy; 4337 uint64_t mode = spa_mode_global; 4338 uint64_t readonly = B_FALSE; 4339 int error; 4340 nvlist_t *nvroot; 4341 nvlist_t **spares, **l2cache; 4342 uint_t nspares, nl2cache; 4343 4344 /* 4345 * If a pool with this name exists, return failure. 4346 */ 4347 mutex_enter(&spa_namespace_lock); 4348 if (spa_lookup(pool) != NULL) { 4349 mutex_exit(&spa_namespace_lock); 4350 return (SET_ERROR(EEXIST)); 4351 } 4352 4353 /* 4354 * Create and initialize the spa structure. 4355 */ 4356 (void) nvlist_lookup_string(props, 4357 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4358 (void) nvlist_lookup_uint64(props, 4359 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 4360 if (readonly) 4361 mode = FREAD; 4362 spa = spa_add(pool, config, altroot); 4363 spa->spa_import_flags = flags; 4364 4365 /* 4366 * Verbatim import - Take a pool and insert it into the namespace 4367 * as if it had been loaded at boot. 4368 */ 4369 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 4370 if (props != NULL) 4371 spa_configfile_set(spa, props, B_FALSE); 4372 4373 spa_config_sync(spa, B_FALSE, B_TRUE); 4374 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 4375 4376 mutex_exit(&spa_namespace_lock); 4377 return (0); 4378 } 4379 4380 spa_activate(spa, mode); 4381 4382 /* 4383 * Don't start async tasks until we know everything is healthy. 4384 */ 4385 spa_async_suspend(spa); 4386 4387 zpool_get_rewind_policy(config, &policy); 4388 if (policy.zrp_request & ZPOOL_DO_REWIND) 4389 state = SPA_LOAD_RECOVER; 4390 4391 /* 4392 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 4393 * because the user-supplied config is actually the one to trust when 4394 * doing an import. 4395 */ 4396 if (state != SPA_LOAD_RECOVER) 4397 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 4398 4399 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 4400 policy.zrp_request); 4401 4402 /* 4403 * Propagate anything learned while loading the pool and pass it 4404 * back to caller (i.e. rewind info, missing devices, etc). 4405 */ 4406 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4407 spa->spa_load_info) == 0); 4408 4409 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4410 /* 4411 * Toss any existing sparelist, as it doesn't have any validity 4412 * anymore, and conflicts with spa_has_spare(). 4413 */ 4414 if (spa->spa_spares.sav_config) { 4415 nvlist_free(spa->spa_spares.sav_config); 4416 spa->spa_spares.sav_config = NULL; 4417 spa_load_spares(spa); 4418 } 4419 if (spa->spa_l2cache.sav_config) { 4420 nvlist_free(spa->spa_l2cache.sav_config); 4421 spa->spa_l2cache.sav_config = NULL; 4422 spa_load_l2cache(spa); 4423 } 4424 4425 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4426 &nvroot) == 0); 4427 if (error == 0) 4428 error = spa_validate_aux(spa, nvroot, -1ULL, 4429 VDEV_ALLOC_SPARE); 4430 if (error == 0) 4431 error = spa_validate_aux(spa, nvroot, -1ULL, 4432 VDEV_ALLOC_L2CACHE); 4433 spa_config_exit(spa, SCL_ALL, FTAG); 4434 4435 if (props != NULL) 4436 spa_configfile_set(spa, props, B_FALSE); 4437 4438 if (error != 0 || (props && spa_writeable(spa) && 4439 (error = spa_prop_set(spa, props)))) { 4440 spa_unload(spa); 4441 spa_deactivate(spa); 4442 spa_remove(spa); 4443 mutex_exit(&spa_namespace_lock); 4444 return (error); 4445 } 4446 4447 spa_async_resume(spa); 4448 4449 /* 4450 * Override any spares and level 2 cache devices as specified by 4451 * the user, as these may have correct device names/devids, etc. 4452 */ 4453 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4454 &spares, &nspares) == 0) { 4455 if (spa->spa_spares.sav_config) 4456 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4457 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4458 else 4459 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4460 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4461 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4462 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4463 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4464 spa_load_spares(spa); 4465 spa_config_exit(spa, SCL_ALL, FTAG); 4466 spa->spa_spares.sav_sync = B_TRUE; 4467 } 4468 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4469 &l2cache, &nl2cache) == 0) { 4470 if (spa->spa_l2cache.sav_config) 4471 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4472 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4473 else 4474 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4475 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4476 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4477 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4478 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4479 spa_load_l2cache(spa); 4480 spa_config_exit(spa, SCL_ALL, FTAG); 4481 spa->spa_l2cache.sav_sync = B_TRUE; 4482 } 4483 4484 /* 4485 * Check for any removed devices. 4486 */ 4487 if (spa->spa_autoreplace) { 4488 spa_aux_check_removed(&spa->spa_spares); 4489 spa_aux_check_removed(&spa->spa_l2cache); 4490 } 4491 4492 if (spa_writeable(spa)) { 4493 /* 4494 * Update the config cache to include the newly-imported pool. 4495 */ 4496 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4497 } 4498 4499 /* 4500 * It's possible that the pool was expanded while it was exported. 4501 * We kick off an async task to handle this for us. 4502 */ 4503 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4504 4505 spa_history_log_version(spa, "import"); 4506 4507 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 4508 4509 mutex_exit(&spa_namespace_lock); 4510 4511 #ifdef __FreeBSD__ 4512 #ifdef _KERNEL 4513 zvol_create_minors(pool); 4514 #endif 4515 #endif 4516 return (0); 4517 } 4518 4519 nvlist_t * 4520 spa_tryimport(nvlist_t *tryconfig) 4521 { 4522 nvlist_t *config = NULL; 4523 char *poolname; 4524 spa_t *spa; 4525 uint64_t state; 4526 int error; 4527 4528 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4529 return (NULL); 4530 4531 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4532 return (NULL); 4533 4534 /* 4535 * Create and initialize the spa structure. 4536 */ 4537 mutex_enter(&spa_namespace_lock); 4538 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4539 spa_activate(spa, FREAD); 4540 4541 /* 4542 * Pass off the heavy lifting to spa_load(). 4543 * Pass TRUE for mosconfig because the user-supplied config 4544 * is actually the one to trust when doing an import. 4545 */ 4546 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4547 4548 /* 4549 * If 'tryconfig' was at least parsable, return the current config. 4550 */ 4551 if (spa->spa_root_vdev != NULL) { 4552 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4553 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4554 poolname) == 0); 4555 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4556 state) == 0); 4557 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4558 spa->spa_uberblock.ub_timestamp) == 0); 4559 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4560 spa->spa_load_info) == 0); 4561 4562 /* 4563 * If the bootfs property exists on this pool then we 4564 * copy it out so that external consumers can tell which 4565 * pools are bootable. 4566 */ 4567 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4568 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4569 4570 /* 4571 * We have to play games with the name since the 4572 * pool was opened as TRYIMPORT_NAME. 4573 */ 4574 if (dsl_dsobj_to_dsname(spa_name(spa), 4575 spa->spa_bootfs, tmpname) == 0) { 4576 char *cp; 4577 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4578 4579 cp = strchr(tmpname, '/'); 4580 if (cp == NULL) { 4581 (void) strlcpy(dsname, tmpname, 4582 MAXPATHLEN); 4583 } else { 4584 (void) snprintf(dsname, MAXPATHLEN, 4585 "%s/%s", poolname, ++cp); 4586 } 4587 VERIFY(nvlist_add_string(config, 4588 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4589 kmem_free(dsname, MAXPATHLEN); 4590 } 4591 kmem_free(tmpname, MAXPATHLEN); 4592 } 4593 4594 /* 4595 * Add the list of hot spares and level 2 cache devices. 4596 */ 4597 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4598 spa_add_spares(spa, config); 4599 spa_add_l2cache(spa, config); 4600 spa_config_exit(spa, SCL_CONFIG, FTAG); 4601 } 4602 4603 spa_unload(spa); 4604 spa_deactivate(spa); 4605 spa_remove(spa); 4606 mutex_exit(&spa_namespace_lock); 4607 4608 return (config); 4609 } 4610 4611 /* 4612 * Pool export/destroy 4613 * 4614 * The act of destroying or exporting a pool is very simple. We make sure there 4615 * is no more pending I/O and any references to the pool are gone. Then, we 4616 * update the pool state and sync all the labels to disk, removing the 4617 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4618 * we don't sync the labels or remove the configuration cache. 4619 */ 4620 static int 4621 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4622 boolean_t force, boolean_t hardforce) 4623 { 4624 spa_t *spa; 4625 4626 if (oldconfig) 4627 *oldconfig = NULL; 4628 4629 if (!(spa_mode_global & FWRITE)) 4630 return (SET_ERROR(EROFS)); 4631 4632 mutex_enter(&spa_namespace_lock); 4633 if ((spa = spa_lookup(pool)) == NULL) { 4634 mutex_exit(&spa_namespace_lock); 4635 return (SET_ERROR(ENOENT)); 4636 } 4637 4638 /* 4639 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4640 * reacquire the namespace lock, and see if we can export. 4641 */ 4642 spa_open_ref(spa, FTAG); 4643 mutex_exit(&spa_namespace_lock); 4644 spa_async_suspend(spa); 4645 mutex_enter(&spa_namespace_lock); 4646 spa_close(spa, FTAG); 4647 4648 /* 4649 * The pool will be in core if it's openable, 4650 * in which case we can modify its state. 4651 */ 4652 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4653 /* 4654 * Objsets may be open only because they're dirty, so we 4655 * have to force it to sync before checking spa_refcnt. 4656 */ 4657 txg_wait_synced(spa->spa_dsl_pool, 0); 4658 spa_evicting_os_wait(spa); 4659 4660 /* 4661 * A pool cannot be exported or destroyed if there are active 4662 * references. If we are resetting a pool, allow references by 4663 * fault injection handlers. 4664 */ 4665 if (!spa_refcount_zero(spa) || 4666 (spa->spa_inject_ref != 0 && 4667 new_state != POOL_STATE_UNINITIALIZED)) { 4668 spa_async_resume(spa); 4669 mutex_exit(&spa_namespace_lock); 4670 return (SET_ERROR(EBUSY)); 4671 } 4672 4673 /* 4674 * A pool cannot be exported if it has an active shared spare. 4675 * This is to prevent other pools stealing the active spare 4676 * from an exported pool. At user's own will, such pool can 4677 * be forcedly exported. 4678 */ 4679 if (!force && new_state == POOL_STATE_EXPORTED && 4680 spa_has_active_shared_spare(spa)) { 4681 spa_async_resume(spa); 4682 mutex_exit(&spa_namespace_lock); 4683 return (SET_ERROR(EXDEV)); 4684 } 4685 4686 /* 4687 * We want this to be reflected on every label, 4688 * so mark them all dirty. spa_unload() will do the 4689 * final sync that pushes these changes out. 4690 */ 4691 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4692 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4693 spa->spa_state = new_state; 4694 spa->spa_final_txg = spa_last_synced_txg(spa) + 4695 TXG_DEFER_SIZE + 1; 4696 vdev_config_dirty(spa->spa_root_vdev); 4697 spa_config_exit(spa, SCL_ALL, FTAG); 4698 } 4699 } 4700 4701 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4702 4703 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4704 spa_unload(spa); 4705 spa_deactivate(spa); 4706 } 4707 4708 if (oldconfig && spa->spa_config) 4709 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4710 4711 if (new_state != POOL_STATE_UNINITIALIZED) { 4712 if (!hardforce) 4713 spa_config_sync(spa, B_TRUE, B_TRUE); 4714 spa_remove(spa); 4715 } 4716 mutex_exit(&spa_namespace_lock); 4717 4718 return (0); 4719 } 4720 4721 /* 4722 * Destroy a storage pool. 4723 */ 4724 int 4725 spa_destroy(char *pool) 4726 { 4727 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4728 B_FALSE, B_FALSE)); 4729 } 4730 4731 /* 4732 * Export a storage pool. 4733 */ 4734 int 4735 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4736 boolean_t hardforce) 4737 { 4738 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4739 force, hardforce)); 4740 } 4741 4742 /* 4743 * Similar to spa_export(), this unloads the spa_t without actually removing it 4744 * from the namespace in any way. 4745 */ 4746 int 4747 spa_reset(char *pool) 4748 { 4749 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4750 B_FALSE, B_FALSE)); 4751 } 4752 4753 /* 4754 * ========================================================================== 4755 * Device manipulation 4756 * ========================================================================== 4757 */ 4758 4759 /* 4760 * Add a device to a storage pool. 4761 */ 4762 int 4763 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4764 { 4765 uint64_t txg, id; 4766 int error; 4767 vdev_t *rvd = spa->spa_root_vdev; 4768 vdev_t *vd, *tvd; 4769 nvlist_t **spares, **l2cache; 4770 uint_t nspares, nl2cache; 4771 4772 ASSERT(spa_writeable(spa)); 4773 4774 txg = spa_vdev_enter(spa); 4775 4776 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4777 VDEV_ALLOC_ADD)) != 0) 4778 return (spa_vdev_exit(spa, NULL, txg, error)); 4779 4780 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4781 4782 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4783 &nspares) != 0) 4784 nspares = 0; 4785 4786 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4787 &nl2cache) != 0) 4788 nl2cache = 0; 4789 4790 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4791 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4792 4793 if (vd->vdev_children != 0 && 4794 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4795 return (spa_vdev_exit(spa, vd, txg, error)); 4796 4797 /* 4798 * We must validate the spares and l2cache devices after checking the 4799 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4800 */ 4801 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4802 return (spa_vdev_exit(spa, vd, txg, error)); 4803 4804 /* 4805 * Transfer each new top-level vdev from vd to rvd. 4806 */ 4807 for (int c = 0; c < vd->vdev_children; c++) { 4808 4809 /* 4810 * Set the vdev id to the first hole, if one exists. 4811 */ 4812 for (id = 0; id < rvd->vdev_children; id++) { 4813 if (rvd->vdev_child[id]->vdev_ishole) { 4814 vdev_free(rvd->vdev_child[id]); 4815 break; 4816 } 4817 } 4818 tvd = vd->vdev_child[c]; 4819 vdev_remove_child(vd, tvd); 4820 tvd->vdev_id = id; 4821 vdev_add_child(rvd, tvd); 4822 vdev_config_dirty(tvd); 4823 } 4824 4825 if (nspares != 0) { 4826 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4827 ZPOOL_CONFIG_SPARES); 4828 spa_load_spares(spa); 4829 spa->spa_spares.sav_sync = B_TRUE; 4830 } 4831 4832 if (nl2cache != 0) { 4833 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4834 ZPOOL_CONFIG_L2CACHE); 4835 spa_load_l2cache(spa); 4836 spa->spa_l2cache.sav_sync = B_TRUE; 4837 } 4838 4839 /* 4840 * We have to be careful when adding new vdevs to an existing pool. 4841 * If other threads start allocating from these vdevs before we 4842 * sync the config cache, and we lose power, then upon reboot we may 4843 * fail to open the pool because there are DVAs that the config cache 4844 * can't translate. Therefore, we first add the vdevs without 4845 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4846 * and then let spa_config_update() initialize the new metaslabs. 4847 * 4848 * spa_load() checks for added-but-not-initialized vdevs, so that 4849 * if we lose power at any point in this sequence, the remaining 4850 * steps will be completed the next time we load the pool. 4851 */ 4852 (void) spa_vdev_exit(spa, vd, txg, 0); 4853 4854 mutex_enter(&spa_namespace_lock); 4855 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4856 spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD); 4857 mutex_exit(&spa_namespace_lock); 4858 4859 return (0); 4860 } 4861 4862 /* 4863 * Attach a device to a mirror. The arguments are the path to any device 4864 * in the mirror, and the nvroot for the new device. If the path specifies 4865 * a device that is not mirrored, we automatically insert the mirror vdev. 4866 * 4867 * If 'replacing' is specified, the new device is intended to replace the 4868 * existing device; in this case the two devices are made into their own 4869 * mirror using the 'replacing' vdev, which is functionally identical to 4870 * the mirror vdev (it actually reuses all the same ops) but has a few 4871 * extra rules: you can't attach to it after it's been created, and upon 4872 * completion of resilvering, the first disk (the one being replaced) 4873 * is automatically detached. 4874 */ 4875 int 4876 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4877 { 4878 uint64_t txg, dtl_max_txg; 4879 vdev_t *rvd = spa->spa_root_vdev; 4880 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4881 vdev_ops_t *pvops; 4882 char *oldvdpath, *newvdpath; 4883 int newvd_isspare; 4884 int error; 4885 4886 ASSERT(spa_writeable(spa)); 4887 4888 txg = spa_vdev_enter(spa); 4889 4890 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4891 4892 if (oldvd == NULL) 4893 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4894 4895 if (!oldvd->vdev_ops->vdev_op_leaf) 4896 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4897 4898 pvd = oldvd->vdev_parent; 4899 4900 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4901 VDEV_ALLOC_ATTACH)) != 0) 4902 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4903 4904 if (newrootvd->vdev_children != 1) 4905 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4906 4907 newvd = newrootvd->vdev_child[0]; 4908 4909 if (!newvd->vdev_ops->vdev_op_leaf) 4910 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4911 4912 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4913 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4914 4915 /* 4916 * Spares can't replace logs 4917 */ 4918 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4919 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4920 4921 if (!replacing) { 4922 /* 4923 * For attach, the only allowable parent is a mirror or the root 4924 * vdev. 4925 */ 4926 if (pvd->vdev_ops != &vdev_mirror_ops && 4927 pvd->vdev_ops != &vdev_root_ops) 4928 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4929 4930 pvops = &vdev_mirror_ops; 4931 } else { 4932 /* 4933 * Active hot spares can only be replaced by inactive hot 4934 * spares. 4935 */ 4936 if (pvd->vdev_ops == &vdev_spare_ops && 4937 oldvd->vdev_isspare && 4938 !spa_has_spare(spa, newvd->vdev_guid)) 4939 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4940 4941 /* 4942 * If the source is a hot spare, and the parent isn't already a 4943 * spare, then we want to create a new hot spare. Otherwise, we 4944 * want to create a replacing vdev. The user is not allowed to 4945 * attach to a spared vdev child unless the 'isspare' state is 4946 * the same (spare replaces spare, non-spare replaces 4947 * non-spare). 4948 */ 4949 if (pvd->vdev_ops == &vdev_replacing_ops && 4950 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4951 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4952 } else if (pvd->vdev_ops == &vdev_spare_ops && 4953 newvd->vdev_isspare != oldvd->vdev_isspare) { 4954 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4955 } 4956 4957 if (newvd->vdev_isspare) 4958 pvops = &vdev_spare_ops; 4959 else 4960 pvops = &vdev_replacing_ops; 4961 } 4962 4963 /* 4964 * Make sure the new device is big enough. 4965 */ 4966 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4967 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4968 4969 /* 4970 * The new device cannot have a higher alignment requirement 4971 * than the top-level vdev. 4972 */ 4973 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4974 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4975 4976 /* 4977 * If this is an in-place replacement, update oldvd's path and devid 4978 * to make it distinguishable from newvd, and unopenable from now on. 4979 */ 4980 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4981 spa_strfree(oldvd->vdev_path); 4982 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4983 KM_SLEEP); 4984 (void) sprintf(oldvd->vdev_path, "%s/%s", 4985 newvd->vdev_path, "old"); 4986 if (oldvd->vdev_devid != NULL) { 4987 spa_strfree(oldvd->vdev_devid); 4988 oldvd->vdev_devid = NULL; 4989 } 4990 } 4991 4992 /* mark the device being resilvered */ 4993 newvd->vdev_resilver_txg = txg; 4994 4995 /* 4996 * If the parent is not a mirror, or if we're replacing, insert the new 4997 * mirror/replacing/spare vdev above oldvd. 4998 */ 4999 if (pvd->vdev_ops != pvops) 5000 pvd = vdev_add_parent(oldvd, pvops); 5001 5002 ASSERT(pvd->vdev_top->vdev_parent == rvd); 5003 ASSERT(pvd->vdev_ops == pvops); 5004 ASSERT(oldvd->vdev_parent == pvd); 5005 5006 /* 5007 * Extract the new device from its root and add it to pvd. 5008 */ 5009 vdev_remove_child(newrootvd, newvd); 5010 newvd->vdev_id = pvd->vdev_children; 5011 newvd->vdev_crtxg = oldvd->vdev_crtxg; 5012 vdev_add_child(pvd, newvd); 5013 5014 tvd = newvd->vdev_top; 5015 ASSERT(pvd->vdev_top == tvd); 5016 ASSERT(tvd->vdev_parent == rvd); 5017 5018 vdev_config_dirty(tvd); 5019 5020 /* 5021 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 5022 * for any dmu_sync-ed blocks. It will propagate upward when 5023 * spa_vdev_exit() calls vdev_dtl_reassess(). 5024 */ 5025 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 5026 5027 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 5028 dtl_max_txg - TXG_INITIAL); 5029 5030 if (newvd->vdev_isspare) { 5031 spa_spare_activate(newvd); 5032 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 5033 } 5034 5035 oldvdpath = spa_strdup(oldvd->vdev_path); 5036 newvdpath = spa_strdup(newvd->vdev_path); 5037 newvd_isspare = newvd->vdev_isspare; 5038 5039 /* 5040 * Mark newvd's DTL dirty in this txg. 5041 */ 5042 vdev_dirty(tvd, VDD_DTL, newvd, txg); 5043 5044 /* 5045 * Schedule the resilver to restart in the future. We do this to 5046 * ensure that dmu_sync-ed blocks have been stitched into the 5047 * respective datasets. 5048 */ 5049 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 5050 5051 if (spa->spa_bootfs) 5052 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 5053 5054 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH); 5055 5056 /* 5057 * Commit the config 5058 */ 5059 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 5060 5061 spa_history_log_internal(spa, "vdev attach", NULL, 5062 "%s vdev=%s %s vdev=%s", 5063 replacing && newvd_isspare ? "spare in" : 5064 replacing ? "replace" : "attach", newvdpath, 5065 replacing ? "for" : "to", oldvdpath); 5066 5067 spa_strfree(oldvdpath); 5068 spa_strfree(newvdpath); 5069 5070 return (0); 5071 } 5072 5073 /* 5074 * Detach a device from a mirror or replacing vdev. 5075 * 5076 * If 'replace_done' is specified, only detach if the parent 5077 * is a replacing vdev. 5078 */ 5079 int 5080 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 5081 { 5082 uint64_t txg; 5083 int error; 5084 vdev_t *rvd = spa->spa_root_vdev; 5085 vdev_t *vd, *pvd, *cvd, *tvd; 5086 boolean_t unspare = B_FALSE; 5087 uint64_t unspare_guid = 0; 5088 char *vdpath; 5089 5090 ASSERT(spa_writeable(spa)); 5091 5092 txg = spa_vdev_enter(spa); 5093 5094 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5095 5096 if (vd == NULL) 5097 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 5098 5099 if (!vd->vdev_ops->vdev_op_leaf) 5100 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5101 5102 pvd = vd->vdev_parent; 5103 5104 /* 5105 * If the parent/child relationship is not as expected, don't do it. 5106 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 5107 * vdev that's replacing B with C. The user's intent in replacing 5108 * is to go from M(A,B) to M(A,C). If the user decides to cancel 5109 * the replace by detaching C, the expected behavior is to end up 5110 * M(A,B). But suppose that right after deciding to detach C, 5111 * the replacement of B completes. We would have M(A,C), and then 5112 * ask to detach C, which would leave us with just A -- not what 5113 * the user wanted. To prevent this, we make sure that the 5114 * parent/child relationship hasn't changed -- in this example, 5115 * that C's parent is still the replacing vdev R. 5116 */ 5117 if (pvd->vdev_guid != pguid && pguid != 0) 5118 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 5119 5120 /* 5121 * Only 'replacing' or 'spare' vdevs can be replaced. 5122 */ 5123 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 5124 pvd->vdev_ops != &vdev_spare_ops) 5125 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5126 5127 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 5128 spa_version(spa) >= SPA_VERSION_SPARES); 5129 5130 /* 5131 * Only mirror, replacing, and spare vdevs support detach. 5132 */ 5133 if (pvd->vdev_ops != &vdev_replacing_ops && 5134 pvd->vdev_ops != &vdev_mirror_ops && 5135 pvd->vdev_ops != &vdev_spare_ops) 5136 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5137 5138 /* 5139 * If this device has the only valid copy of some data, 5140 * we cannot safely detach it. 5141 */ 5142 if (vdev_dtl_required(vd)) 5143 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 5144 5145 ASSERT(pvd->vdev_children >= 2); 5146 5147 /* 5148 * If we are detaching the second disk from a replacing vdev, then 5149 * check to see if we changed the original vdev's path to have "/old" 5150 * at the end in spa_vdev_attach(). If so, undo that change now. 5151 */ 5152 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 5153 vd->vdev_path != NULL) { 5154 size_t len = strlen(vd->vdev_path); 5155 5156 for (int c = 0; c < pvd->vdev_children; c++) { 5157 cvd = pvd->vdev_child[c]; 5158 5159 if (cvd == vd || cvd->vdev_path == NULL) 5160 continue; 5161 5162 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 5163 strcmp(cvd->vdev_path + len, "/old") == 0) { 5164 spa_strfree(cvd->vdev_path); 5165 cvd->vdev_path = spa_strdup(vd->vdev_path); 5166 break; 5167 } 5168 } 5169 } 5170 5171 /* 5172 * If we are detaching the original disk from a spare, then it implies 5173 * that the spare should become a real disk, and be removed from the 5174 * active spare list for the pool. 5175 */ 5176 if (pvd->vdev_ops == &vdev_spare_ops && 5177 vd->vdev_id == 0 && 5178 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 5179 unspare = B_TRUE; 5180 5181 /* 5182 * Erase the disk labels so the disk can be used for other things. 5183 * This must be done after all other error cases are handled, 5184 * but before we disembowel vd (so we can still do I/O to it). 5185 * But if we can't do it, don't treat the error as fatal -- 5186 * it may be that the unwritability of the disk is the reason 5187 * it's being detached! 5188 */ 5189 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5190 5191 /* 5192 * Remove vd from its parent and compact the parent's children. 5193 */ 5194 vdev_remove_child(pvd, vd); 5195 vdev_compact_children(pvd); 5196 5197 /* 5198 * Remember one of the remaining children so we can get tvd below. 5199 */ 5200 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 5201 5202 /* 5203 * If we need to remove the remaining child from the list of hot spares, 5204 * do it now, marking the vdev as no longer a spare in the process. 5205 * We must do this before vdev_remove_parent(), because that can 5206 * change the GUID if it creates a new toplevel GUID. For a similar 5207 * reason, we must remove the spare now, in the same txg as the detach; 5208 * otherwise someone could attach a new sibling, change the GUID, and 5209 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 5210 */ 5211 if (unspare) { 5212 ASSERT(cvd->vdev_isspare); 5213 spa_spare_remove(cvd); 5214 unspare_guid = cvd->vdev_guid; 5215 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 5216 cvd->vdev_unspare = B_TRUE; 5217 } 5218 5219 /* 5220 * If the parent mirror/replacing vdev only has one child, 5221 * the parent is no longer needed. Remove it from the tree. 5222 */ 5223 if (pvd->vdev_children == 1) { 5224 if (pvd->vdev_ops == &vdev_spare_ops) 5225 cvd->vdev_unspare = B_FALSE; 5226 vdev_remove_parent(cvd); 5227 } 5228 5229 5230 /* 5231 * We don't set tvd until now because the parent we just removed 5232 * may have been the previous top-level vdev. 5233 */ 5234 tvd = cvd->vdev_top; 5235 ASSERT(tvd->vdev_parent == rvd); 5236 5237 /* 5238 * Reevaluate the parent vdev state. 5239 */ 5240 vdev_propagate_state(cvd); 5241 5242 /* 5243 * If the 'autoexpand' property is set on the pool then automatically 5244 * try to expand the size of the pool. For example if the device we 5245 * just detached was smaller than the others, it may be possible to 5246 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 5247 * first so that we can obtain the updated sizes of the leaf vdevs. 5248 */ 5249 if (spa->spa_autoexpand) { 5250 vdev_reopen(tvd); 5251 vdev_expand(tvd, txg); 5252 } 5253 5254 vdev_config_dirty(tvd); 5255 5256 /* 5257 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 5258 * vd->vdev_detached is set and free vd's DTL object in syncing context. 5259 * But first make sure we're not on any *other* txg's DTL list, to 5260 * prevent vd from being accessed after it's freed. 5261 */ 5262 vdpath = spa_strdup(vd->vdev_path); 5263 for (int t = 0; t < TXG_SIZE; t++) 5264 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 5265 vd->vdev_detached = B_TRUE; 5266 vdev_dirty(tvd, VDD_DTL, vd, txg); 5267 5268 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 5269 5270 /* hang on to the spa before we release the lock */ 5271 spa_open_ref(spa, FTAG); 5272 5273 error = spa_vdev_exit(spa, vd, txg, 0); 5274 5275 spa_history_log_internal(spa, "detach", NULL, 5276 "vdev=%s", vdpath); 5277 spa_strfree(vdpath); 5278 5279 /* 5280 * If this was the removal of the original device in a hot spare vdev, 5281 * then we want to go through and remove the device from the hot spare 5282 * list of every other pool. 5283 */ 5284 if (unspare) { 5285 spa_t *altspa = NULL; 5286 5287 mutex_enter(&spa_namespace_lock); 5288 while ((altspa = spa_next(altspa)) != NULL) { 5289 if (altspa->spa_state != POOL_STATE_ACTIVE || 5290 altspa == spa) 5291 continue; 5292 5293 spa_open_ref(altspa, FTAG); 5294 mutex_exit(&spa_namespace_lock); 5295 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 5296 mutex_enter(&spa_namespace_lock); 5297 spa_close(altspa, FTAG); 5298 } 5299 mutex_exit(&spa_namespace_lock); 5300 5301 /* search the rest of the vdevs for spares to remove */ 5302 spa_vdev_resilver_done(spa); 5303 } 5304 5305 /* all done with the spa; OK to release */ 5306 mutex_enter(&spa_namespace_lock); 5307 spa_close(spa, FTAG); 5308 mutex_exit(&spa_namespace_lock); 5309 5310 return (error); 5311 } 5312 5313 /* 5314 * Split a set of devices from their mirrors, and create a new pool from them. 5315 */ 5316 int 5317 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 5318 nvlist_t *props, boolean_t exp) 5319 { 5320 int error = 0; 5321 uint64_t txg, *glist; 5322 spa_t *newspa; 5323 uint_t c, children, lastlog; 5324 nvlist_t **child, *nvl, *tmp; 5325 dmu_tx_t *tx; 5326 char *altroot = NULL; 5327 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 5328 boolean_t activate_slog; 5329 5330 ASSERT(spa_writeable(spa)); 5331 5332 txg = spa_vdev_enter(spa); 5333 5334 /* clear the log and flush everything up to now */ 5335 activate_slog = spa_passivate_log(spa); 5336 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5337 error = spa_offline_log(spa); 5338 txg = spa_vdev_config_enter(spa); 5339 5340 if (activate_slog) 5341 spa_activate_log(spa); 5342 5343 if (error != 0) 5344 return (spa_vdev_exit(spa, NULL, txg, error)); 5345 5346 /* check new spa name before going any further */ 5347 if (spa_lookup(newname) != NULL) 5348 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 5349 5350 /* 5351 * scan through all the children to ensure they're all mirrors 5352 */ 5353 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 5354 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 5355 &children) != 0) 5356 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5357 5358 /* first, check to ensure we've got the right child count */ 5359 rvd = spa->spa_root_vdev; 5360 lastlog = 0; 5361 for (c = 0; c < rvd->vdev_children; c++) { 5362 vdev_t *vd = rvd->vdev_child[c]; 5363 5364 /* don't count the holes & logs as children */ 5365 if (vd->vdev_islog || vd->vdev_ishole) { 5366 if (lastlog == 0) 5367 lastlog = c; 5368 continue; 5369 } 5370 5371 lastlog = 0; 5372 } 5373 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 5374 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5375 5376 /* next, ensure no spare or cache devices are part of the split */ 5377 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 5378 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 5379 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5380 5381 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 5382 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 5383 5384 /* then, loop over each vdev and validate it */ 5385 for (c = 0; c < children; c++) { 5386 uint64_t is_hole = 0; 5387 5388 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 5389 &is_hole); 5390 5391 if (is_hole != 0) { 5392 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 5393 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 5394 continue; 5395 } else { 5396 error = SET_ERROR(EINVAL); 5397 break; 5398 } 5399 } 5400 5401 /* which disk is going to be split? */ 5402 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 5403 &glist[c]) != 0) { 5404 error = SET_ERROR(EINVAL); 5405 break; 5406 } 5407 5408 /* look it up in the spa */ 5409 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 5410 if (vml[c] == NULL) { 5411 error = SET_ERROR(ENODEV); 5412 break; 5413 } 5414 5415 /* make sure there's nothing stopping the split */ 5416 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 5417 vml[c]->vdev_islog || 5418 vml[c]->vdev_ishole || 5419 vml[c]->vdev_isspare || 5420 vml[c]->vdev_isl2cache || 5421 !vdev_writeable(vml[c]) || 5422 vml[c]->vdev_children != 0 || 5423 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 5424 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 5425 error = SET_ERROR(EINVAL); 5426 break; 5427 } 5428 5429 if (vdev_dtl_required(vml[c])) { 5430 error = SET_ERROR(EBUSY); 5431 break; 5432 } 5433 5434 /* we need certain info from the top level */ 5435 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 5436 vml[c]->vdev_top->vdev_ms_array) == 0); 5437 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 5438 vml[c]->vdev_top->vdev_ms_shift) == 0); 5439 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 5440 vml[c]->vdev_top->vdev_asize) == 0); 5441 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 5442 vml[c]->vdev_top->vdev_ashift) == 0); 5443 5444 /* transfer per-vdev ZAPs */ 5445 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 5446 VERIFY0(nvlist_add_uint64(child[c], 5447 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 5448 5449 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 5450 VERIFY0(nvlist_add_uint64(child[c], 5451 ZPOOL_CONFIG_VDEV_TOP_ZAP, 5452 vml[c]->vdev_parent->vdev_top_zap)); 5453 } 5454 5455 if (error != 0) { 5456 kmem_free(vml, children * sizeof (vdev_t *)); 5457 kmem_free(glist, children * sizeof (uint64_t)); 5458 return (spa_vdev_exit(spa, NULL, txg, error)); 5459 } 5460 5461 /* stop writers from using the disks */ 5462 for (c = 0; c < children; c++) { 5463 if (vml[c] != NULL) 5464 vml[c]->vdev_offline = B_TRUE; 5465 } 5466 vdev_reopen(spa->spa_root_vdev); 5467 5468 /* 5469 * Temporarily record the splitting vdevs in the spa config. This 5470 * will disappear once the config is regenerated. 5471 */ 5472 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5473 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5474 glist, children) == 0); 5475 kmem_free(glist, children * sizeof (uint64_t)); 5476 5477 mutex_enter(&spa->spa_props_lock); 5478 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5479 nvl) == 0); 5480 mutex_exit(&spa->spa_props_lock); 5481 spa->spa_config_splitting = nvl; 5482 vdev_config_dirty(spa->spa_root_vdev); 5483 5484 /* configure and create the new pool */ 5485 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5486 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5487 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5488 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5489 spa_version(spa)) == 0); 5490 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5491 spa->spa_config_txg) == 0); 5492 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5493 spa_generate_guid(NULL)) == 0); 5494 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 5495 (void) nvlist_lookup_string(props, 5496 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5497 5498 /* add the new pool to the namespace */ 5499 newspa = spa_add(newname, config, altroot); 5500 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 5501 newspa->spa_config_txg = spa->spa_config_txg; 5502 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5503 5504 /* release the spa config lock, retaining the namespace lock */ 5505 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5506 5507 if (zio_injection_enabled) 5508 zio_handle_panic_injection(spa, FTAG, 1); 5509 5510 spa_activate(newspa, spa_mode_global); 5511 spa_async_suspend(newspa); 5512 5513 #ifndef illumos 5514 /* mark that we are creating new spa by splitting */ 5515 newspa->spa_splitting_newspa = B_TRUE; 5516 #endif 5517 /* create the new pool from the disks of the original pool */ 5518 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5519 #ifndef illumos 5520 newspa->spa_splitting_newspa = B_FALSE; 5521 #endif 5522 if (error) 5523 goto out; 5524 5525 /* if that worked, generate a real config for the new pool */ 5526 if (newspa->spa_root_vdev != NULL) { 5527 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5528 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5529 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5530 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5531 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5532 B_TRUE)); 5533 } 5534 5535 /* set the props */ 5536 if (props != NULL) { 5537 spa_configfile_set(newspa, props, B_FALSE); 5538 error = spa_prop_set(newspa, props); 5539 if (error) 5540 goto out; 5541 } 5542 5543 /* flush everything */ 5544 txg = spa_vdev_config_enter(newspa); 5545 vdev_config_dirty(newspa->spa_root_vdev); 5546 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5547 5548 if (zio_injection_enabled) 5549 zio_handle_panic_injection(spa, FTAG, 2); 5550 5551 spa_async_resume(newspa); 5552 5553 /* finally, update the original pool's config */ 5554 txg = spa_vdev_config_enter(spa); 5555 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5556 error = dmu_tx_assign(tx, TXG_WAIT); 5557 if (error != 0) 5558 dmu_tx_abort(tx); 5559 for (c = 0; c < children; c++) { 5560 if (vml[c] != NULL) { 5561 vdev_split(vml[c]); 5562 if (error == 0) 5563 spa_history_log_internal(spa, "detach", tx, 5564 "vdev=%s", vml[c]->vdev_path); 5565 5566 vdev_free(vml[c]); 5567 } 5568 } 5569 spa->spa_avz_action = AVZ_ACTION_REBUILD; 5570 vdev_config_dirty(spa->spa_root_vdev); 5571 spa->spa_config_splitting = NULL; 5572 nvlist_free(nvl); 5573 if (error == 0) 5574 dmu_tx_commit(tx); 5575 (void) spa_vdev_exit(spa, NULL, txg, 0); 5576 5577 if (zio_injection_enabled) 5578 zio_handle_panic_injection(spa, FTAG, 3); 5579 5580 /* split is complete; log a history record */ 5581 spa_history_log_internal(newspa, "split", NULL, 5582 "from pool %s", spa_name(spa)); 5583 5584 kmem_free(vml, children * sizeof (vdev_t *)); 5585 5586 /* if we're not going to mount the filesystems in userland, export */ 5587 if (exp) 5588 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5589 B_FALSE, B_FALSE); 5590 5591 return (error); 5592 5593 out: 5594 spa_unload(newspa); 5595 spa_deactivate(newspa); 5596 spa_remove(newspa); 5597 5598 txg = spa_vdev_config_enter(spa); 5599 5600 /* re-online all offlined disks */ 5601 for (c = 0; c < children; c++) { 5602 if (vml[c] != NULL) 5603 vml[c]->vdev_offline = B_FALSE; 5604 } 5605 vdev_reopen(spa->spa_root_vdev); 5606 5607 nvlist_free(spa->spa_config_splitting); 5608 spa->spa_config_splitting = NULL; 5609 (void) spa_vdev_exit(spa, NULL, txg, error); 5610 5611 kmem_free(vml, children * sizeof (vdev_t *)); 5612 return (error); 5613 } 5614 5615 static nvlist_t * 5616 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5617 { 5618 for (int i = 0; i < count; i++) { 5619 uint64_t guid; 5620 5621 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5622 &guid) == 0); 5623 5624 if (guid == target_guid) 5625 return (nvpp[i]); 5626 } 5627 5628 return (NULL); 5629 } 5630 5631 static void 5632 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5633 nvlist_t *dev_to_remove) 5634 { 5635 nvlist_t **newdev = NULL; 5636 5637 if (count > 1) 5638 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5639 5640 for (int i = 0, j = 0; i < count; i++) { 5641 if (dev[i] == dev_to_remove) 5642 continue; 5643 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5644 } 5645 5646 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5647 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5648 5649 for (int i = 0; i < count - 1; i++) 5650 nvlist_free(newdev[i]); 5651 5652 if (count > 1) 5653 kmem_free(newdev, (count - 1) * sizeof (void *)); 5654 } 5655 5656 /* 5657 * Evacuate the device. 5658 */ 5659 static int 5660 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5661 { 5662 uint64_t txg; 5663 int error = 0; 5664 5665 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5666 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5667 ASSERT(vd == vd->vdev_top); 5668 5669 /* 5670 * Evacuate the device. We don't hold the config lock as writer 5671 * since we need to do I/O but we do keep the 5672 * spa_namespace_lock held. Once this completes the device 5673 * should no longer have any blocks allocated on it. 5674 */ 5675 if (vd->vdev_islog) { 5676 if (vd->vdev_stat.vs_alloc != 0) 5677 error = spa_offline_log(spa); 5678 } else { 5679 error = SET_ERROR(ENOTSUP); 5680 } 5681 5682 if (error) 5683 return (error); 5684 5685 /* 5686 * The evacuation succeeded. Remove any remaining MOS metadata 5687 * associated with this vdev, and wait for these changes to sync. 5688 */ 5689 ASSERT0(vd->vdev_stat.vs_alloc); 5690 txg = spa_vdev_config_enter(spa); 5691 vd->vdev_removing = B_TRUE; 5692 vdev_dirty_leaves(vd, VDD_DTL, txg); 5693 vdev_config_dirty(vd); 5694 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5695 5696 return (0); 5697 } 5698 5699 /* 5700 * Complete the removal by cleaning up the namespace. 5701 */ 5702 static void 5703 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5704 { 5705 vdev_t *rvd = spa->spa_root_vdev; 5706 uint64_t id = vd->vdev_id; 5707 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5708 5709 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5710 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5711 ASSERT(vd == vd->vdev_top); 5712 5713 /* 5714 * Only remove any devices which are empty. 5715 */ 5716 if (vd->vdev_stat.vs_alloc != 0) 5717 return; 5718 5719 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5720 5721 if (list_link_active(&vd->vdev_state_dirty_node)) 5722 vdev_state_clean(vd); 5723 if (list_link_active(&vd->vdev_config_dirty_node)) 5724 vdev_config_clean(vd); 5725 5726 vdev_free(vd); 5727 5728 if (last_vdev) { 5729 vdev_compact_children(rvd); 5730 } else { 5731 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5732 vdev_add_child(rvd, vd); 5733 } 5734 vdev_config_dirty(rvd); 5735 5736 /* 5737 * Reassess the health of our root vdev. 5738 */ 5739 vdev_reopen(rvd); 5740 } 5741 5742 /* 5743 * Remove a device from the pool - 5744 * 5745 * Removing a device from the vdev namespace requires several steps 5746 * and can take a significant amount of time. As a result we use 5747 * the spa_vdev_config_[enter/exit] functions which allow us to 5748 * grab and release the spa_config_lock while still holding the namespace 5749 * lock. During each step the configuration is synced out. 5750 * 5751 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5752 * devices. 5753 */ 5754 int 5755 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5756 { 5757 vdev_t *vd; 5758 sysevent_t *ev = NULL; 5759 metaslab_group_t *mg; 5760 nvlist_t **spares, **l2cache, *nv; 5761 uint64_t txg = 0; 5762 uint_t nspares, nl2cache; 5763 int error = 0; 5764 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5765 5766 ASSERT(spa_writeable(spa)); 5767 5768 if (!locked) 5769 txg = spa_vdev_enter(spa); 5770 5771 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5772 5773 if (spa->spa_spares.sav_vdevs != NULL && 5774 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5775 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5776 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5777 /* 5778 * Only remove the hot spare if it's not currently in use 5779 * in this pool. 5780 */ 5781 if (vd == NULL || unspare) { 5782 if (vd == NULL) 5783 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 5784 ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX); 5785 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5786 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5787 spa_load_spares(spa); 5788 spa->spa_spares.sav_sync = B_TRUE; 5789 } else { 5790 error = SET_ERROR(EBUSY); 5791 } 5792 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5793 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5794 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5795 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5796 /* 5797 * Cache devices can always be removed. 5798 */ 5799 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 5800 ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX); 5801 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5802 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5803 spa_load_l2cache(spa); 5804 spa->spa_l2cache.sav_sync = B_TRUE; 5805 } else if (vd != NULL && vd->vdev_islog) { 5806 ASSERT(!locked); 5807 ASSERT(vd == vd->vdev_top); 5808 5809 mg = vd->vdev_mg; 5810 5811 /* 5812 * Stop allocating from this vdev. 5813 */ 5814 metaslab_group_passivate(mg); 5815 5816 /* 5817 * Wait for the youngest allocations and frees to sync, 5818 * and then wait for the deferral of those frees to finish. 5819 */ 5820 spa_vdev_config_exit(spa, NULL, 5821 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5822 5823 /* 5824 * Attempt to evacuate the vdev. 5825 */ 5826 error = spa_vdev_remove_evacuate(spa, vd); 5827 5828 txg = spa_vdev_config_enter(spa); 5829 5830 /* 5831 * If we couldn't evacuate the vdev, unwind. 5832 */ 5833 if (error) { 5834 metaslab_group_activate(mg); 5835 return (spa_vdev_exit(spa, NULL, txg, error)); 5836 } 5837 5838 /* 5839 * Clean up the vdev namespace. 5840 */ 5841 ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV); 5842 spa_vdev_remove_from_namespace(spa, vd); 5843 5844 } else if (vd != NULL) { 5845 /* 5846 * Normal vdevs cannot be removed (yet). 5847 */ 5848 error = SET_ERROR(ENOTSUP); 5849 } else { 5850 /* 5851 * There is no vdev of any kind with the specified guid. 5852 */ 5853 error = SET_ERROR(ENOENT); 5854 } 5855 5856 if (!locked) 5857 error = spa_vdev_exit(spa, NULL, txg, error); 5858 5859 if (ev) 5860 spa_event_post(ev); 5861 5862 return (error); 5863 } 5864 5865 /* 5866 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5867 * currently spared, so we can detach it. 5868 */ 5869 static vdev_t * 5870 spa_vdev_resilver_done_hunt(vdev_t *vd) 5871 { 5872 vdev_t *newvd, *oldvd; 5873 5874 for (int c = 0; c < vd->vdev_children; c++) { 5875 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5876 if (oldvd != NULL) 5877 return (oldvd); 5878 } 5879 5880 /* 5881 * Check for a completed replacement. We always consider the first 5882 * vdev in the list to be the oldest vdev, and the last one to be 5883 * the newest (see spa_vdev_attach() for how that works). In 5884 * the case where the newest vdev is faulted, we will not automatically 5885 * remove it after a resilver completes. This is OK as it will require 5886 * user intervention to determine which disk the admin wishes to keep. 5887 */ 5888 if (vd->vdev_ops == &vdev_replacing_ops) { 5889 ASSERT(vd->vdev_children > 1); 5890 5891 newvd = vd->vdev_child[vd->vdev_children - 1]; 5892 oldvd = vd->vdev_child[0]; 5893 5894 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5895 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5896 !vdev_dtl_required(oldvd)) 5897 return (oldvd); 5898 } 5899 5900 /* 5901 * Check for a completed resilver with the 'unspare' flag set. 5902 */ 5903 if (vd->vdev_ops == &vdev_spare_ops) { 5904 vdev_t *first = vd->vdev_child[0]; 5905 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5906 5907 if (last->vdev_unspare) { 5908 oldvd = first; 5909 newvd = last; 5910 } else if (first->vdev_unspare) { 5911 oldvd = last; 5912 newvd = first; 5913 } else { 5914 oldvd = NULL; 5915 } 5916 5917 if (oldvd != NULL && 5918 vdev_dtl_empty(newvd, DTL_MISSING) && 5919 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5920 !vdev_dtl_required(oldvd)) 5921 return (oldvd); 5922 5923 /* 5924 * If there are more than two spares attached to a disk, 5925 * and those spares are not required, then we want to 5926 * attempt to free them up now so that they can be used 5927 * by other pools. Once we're back down to a single 5928 * disk+spare, we stop removing them. 5929 */ 5930 if (vd->vdev_children > 2) { 5931 newvd = vd->vdev_child[1]; 5932 5933 if (newvd->vdev_isspare && last->vdev_isspare && 5934 vdev_dtl_empty(last, DTL_MISSING) && 5935 vdev_dtl_empty(last, DTL_OUTAGE) && 5936 !vdev_dtl_required(newvd)) 5937 return (newvd); 5938 } 5939 } 5940 5941 return (NULL); 5942 } 5943 5944 static void 5945 spa_vdev_resilver_done(spa_t *spa) 5946 { 5947 vdev_t *vd, *pvd, *ppvd; 5948 uint64_t guid, sguid, pguid, ppguid; 5949 5950 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5951 5952 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5953 pvd = vd->vdev_parent; 5954 ppvd = pvd->vdev_parent; 5955 guid = vd->vdev_guid; 5956 pguid = pvd->vdev_guid; 5957 ppguid = ppvd->vdev_guid; 5958 sguid = 0; 5959 /* 5960 * If we have just finished replacing a hot spared device, then 5961 * we need to detach the parent's first child (the original hot 5962 * spare) as well. 5963 */ 5964 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5965 ppvd->vdev_children == 2) { 5966 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5967 sguid = ppvd->vdev_child[1]->vdev_guid; 5968 } 5969 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5970 5971 spa_config_exit(spa, SCL_ALL, FTAG); 5972 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5973 return; 5974 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5975 return; 5976 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5977 } 5978 5979 spa_config_exit(spa, SCL_ALL, FTAG); 5980 } 5981 5982 /* 5983 * Update the stored path or FRU for this vdev. 5984 */ 5985 int 5986 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5987 boolean_t ispath) 5988 { 5989 vdev_t *vd; 5990 boolean_t sync = B_FALSE; 5991 5992 ASSERT(spa_writeable(spa)); 5993 5994 spa_vdev_state_enter(spa, SCL_ALL); 5995 5996 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5997 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5998 5999 if (!vd->vdev_ops->vdev_op_leaf) 6000 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 6001 6002 if (ispath) { 6003 if (strcmp(value, vd->vdev_path) != 0) { 6004 spa_strfree(vd->vdev_path); 6005 vd->vdev_path = spa_strdup(value); 6006 sync = B_TRUE; 6007 } 6008 } else { 6009 if (vd->vdev_fru == NULL) { 6010 vd->vdev_fru = spa_strdup(value); 6011 sync = B_TRUE; 6012 } else if (strcmp(value, vd->vdev_fru) != 0) { 6013 spa_strfree(vd->vdev_fru); 6014 vd->vdev_fru = spa_strdup(value); 6015 sync = B_TRUE; 6016 } 6017 } 6018 6019 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 6020 } 6021 6022 int 6023 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 6024 { 6025 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 6026 } 6027 6028 int 6029 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 6030 { 6031 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 6032 } 6033 6034 /* 6035 * ========================================================================== 6036 * SPA Scanning 6037 * ========================================================================== 6038 */ 6039 6040 int 6041 spa_scan_stop(spa_t *spa) 6042 { 6043 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 6044 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 6045 return (SET_ERROR(EBUSY)); 6046 return (dsl_scan_cancel(spa->spa_dsl_pool)); 6047 } 6048 6049 int 6050 spa_scan(spa_t *spa, pool_scan_func_t func) 6051 { 6052 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 6053 6054 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 6055 return (SET_ERROR(ENOTSUP)); 6056 6057 /* 6058 * If a resilver was requested, but there is no DTL on a 6059 * writeable leaf device, we have nothing to do. 6060 */ 6061 if (func == POOL_SCAN_RESILVER && 6062 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 6063 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 6064 return (0); 6065 } 6066 6067 return (dsl_scan(spa->spa_dsl_pool, func)); 6068 } 6069 6070 /* 6071 * ========================================================================== 6072 * SPA async task processing 6073 * ========================================================================== 6074 */ 6075 6076 static void 6077 spa_async_remove(spa_t *spa, vdev_t *vd) 6078 { 6079 if (vd->vdev_remove_wanted) { 6080 vd->vdev_remove_wanted = B_FALSE; 6081 vd->vdev_delayed_close = B_FALSE; 6082 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 6083 6084 /* 6085 * We want to clear the stats, but we don't want to do a full 6086 * vdev_clear() as that will cause us to throw away 6087 * degraded/faulted state as well as attempt to reopen the 6088 * device, all of which is a waste. 6089 */ 6090 vd->vdev_stat.vs_read_errors = 0; 6091 vd->vdev_stat.vs_write_errors = 0; 6092 vd->vdev_stat.vs_checksum_errors = 0; 6093 6094 vdev_state_dirty(vd->vdev_top); 6095 /* Tell userspace that the vdev is gone. */ 6096 zfs_post_remove(spa, vd); 6097 } 6098 6099 for (int c = 0; c < vd->vdev_children; c++) 6100 spa_async_remove(spa, vd->vdev_child[c]); 6101 } 6102 6103 static void 6104 spa_async_probe(spa_t *spa, vdev_t *vd) 6105 { 6106 if (vd->vdev_probe_wanted) { 6107 vd->vdev_probe_wanted = B_FALSE; 6108 vdev_reopen(vd); /* vdev_open() does the actual probe */ 6109 } 6110 6111 for (int c = 0; c < vd->vdev_children; c++) 6112 spa_async_probe(spa, vd->vdev_child[c]); 6113 } 6114 6115 static void 6116 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 6117 { 6118 sysevent_id_t eid; 6119 nvlist_t *attr; 6120 char *physpath; 6121 6122 if (!spa->spa_autoexpand) 6123 return; 6124 6125 for (int c = 0; c < vd->vdev_children; c++) { 6126 vdev_t *cvd = vd->vdev_child[c]; 6127 spa_async_autoexpand(spa, cvd); 6128 } 6129 6130 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 6131 return; 6132 6133 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 6134 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 6135 6136 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 6137 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 6138 6139 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 6140 ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP); 6141 6142 nvlist_free(attr); 6143 kmem_free(physpath, MAXPATHLEN); 6144 } 6145 6146 static void 6147 spa_async_thread(void *arg) 6148 { 6149 spa_t *spa = arg; 6150 int tasks; 6151 6152 ASSERT(spa->spa_sync_on); 6153 6154 mutex_enter(&spa->spa_async_lock); 6155 tasks = spa->spa_async_tasks; 6156 spa->spa_async_tasks &= SPA_ASYNC_REMOVE; 6157 mutex_exit(&spa->spa_async_lock); 6158 6159 /* 6160 * See if the config needs to be updated. 6161 */ 6162 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 6163 uint64_t old_space, new_space; 6164 6165 mutex_enter(&spa_namespace_lock); 6166 old_space = metaslab_class_get_space(spa_normal_class(spa)); 6167 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6168 new_space = metaslab_class_get_space(spa_normal_class(spa)); 6169 mutex_exit(&spa_namespace_lock); 6170 6171 /* 6172 * If the pool grew as a result of the config update, 6173 * then log an internal history event. 6174 */ 6175 if (new_space != old_space) { 6176 spa_history_log_internal(spa, "vdev online", NULL, 6177 "pool '%s' size: %llu(+%llu)", 6178 spa_name(spa), new_space, new_space - old_space); 6179 } 6180 } 6181 6182 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 6183 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6184 spa_async_autoexpand(spa, spa->spa_root_vdev); 6185 spa_config_exit(spa, SCL_CONFIG, FTAG); 6186 } 6187 6188 /* 6189 * See if any devices need to be probed. 6190 */ 6191 if (tasks & SPA_ASYNC_PROBE) { 6192 spa_vdev_state_enter(spa, SCL_NONE); 6193 spa_async_probe(spa, spa->spa_root_vdev); 6194 (void) spa_vdev_state_exit(spa, NULL, 0); 6195 } 6196 6197 /* 6198 * If any devices are done replacing, detach them. 6199 */ 6200 if (tasks & SPA_ASYNC_RESILVER_DONE) 6201 spa_vdev_resilver_done(spa); 6202 6203 /* 6204 * Kick off a resilver. 6205 */ 6206 if (tasks & SPA_ASYNC_RESILVER) 6207 dsl_resilver_restart(spa->spa_dsl_pool, 0); 6208 6209 /* 6210 * Let the world know that we're done. 6211 */ 6212 mutex_enter(&spa->spa_async_lock); 6213 spa->spa_async_thread = NULL; 6214 cv_broadcast(&spa->spa_async_cv); 6215 mutex_exit(&spa->spa_async_lock); 6216 thread_exit(); 6217 } 6218 6219 static void 6220 spa_async_thread_vd(void *arg) 6221 { 6222 spa_t *spa = arg; 6223 int tasks; 6224 6225 ASSERT(spa->spa_sync_on); 6226 6227 mutex_enter(&spa->spa_async_lock); 6228 tasks = spa->spa_async_tasks; 6229 retry: 6230 spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE; 6231 mutex_exit(&spa->spa_async_lock); 6232 6233 /* 6234 * See if any devices need to be marked REMOVED. 6235 */ 6236 if (tasks & SPA_ASYNC_REMOVE) { 6237 spa_vdev_state_enter(spa, SCL_NONE); 6238 spa_async_remove(spa, spa->spa_root_vdev); 6239 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 6240 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 6241 for (int i = 0; i < spa->spa_spares.sav_count; i++) 6242 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 6243 (void) spa_vdev_state_exit(spa, NULL, 0); 6244 } 6245 6246 /* 6247 * Let the world know that we're done. 6248 */ 6249 mutex_enter(&spa->spa_async_lock); 6250 tasks = spa->spa_async_tasks; 6251 if ((tasks & SPA_ASYNC_REMOVE) != 0) 6252 goto retry; 6253 spa->spa_async_thread_vd = NULL; 6254 cv_broadcast(&spa->spa_async_cv); 6255 mutex_exit(&spa->spa_async_lock); 6256 thread_exit(); 6257 } 6258 6259 void 6260 spa_async_suspend(spa_t *spa) 6261 { 6262 mutex_enter(&spa->spa_async_lock); 6263 spa->spa_async_suspended++; 6264 while (spa->spa_async_thread != NULL && 6265 spa->spa_async_thread_vd != NULL) 6266 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 6267 mutex_exit(&spa->spa_async_lock); 6268 } 6269 6270 void 6271 spa_async_resume(spa_t *spa) 6272 { 6273 mutex_enter(&spa->spa_async_lock); 6274 ASSERT(spa->spa_async_suspended != 0); 6275 spa->spa_async_suspended--; 6276 mutex_exit(&spa->spa_async_lock); 6277 } 6278 6279 static boolean_t 6280 spa_async_tasks_pending(spa_t *spa) 6281 { 6282 uint_t non_config_tasks; 6283 uint_t config_task; 6284 boolean_t config_task_suspended; 6285 6286 non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE | 6287 SPA_ASYNC_REMOVE); 6288 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 6289 if (spa->spa_ccw_fail_time == 0) { 6290 config_task_suspended = B_FALSE; 6291 } else { 6292 config_task_suspended = 6293 (gethrtime() - spa->spa_ccw_fail_time) < 6294 (zfs_ccw_retry_interval * NANOSEC); 6295 } 6296 6297 return (non_config_tasks || (config_task && !config_task_suspended)); 6298 } 6299 6300 static void 6301 spa_async_dispatch(spa_t *spa) 6302 { 6303 mutex_enter(&spa->spa_async_lock); 6304 if (spa_async_tasks_pending(spa) && 6305 !spa->spa_async_suspended && 6306 spa->spa_async_thread == NULL && 6307 rootdir != NULL) 6308 spa->spa_async_thread = thread_create(NULL, 0, 6309 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 6310 mutex_exit(&spa->spa_async_lock); 6311 } 6312 6313 static void 6314 spa_async_dispatch_vd(spa_t *spa) 6315 { 6316 mutex_enter(&spa->spa_async_lock); 6317 if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 && 6318 !spa->spa_async_suspended && 6319 spa->spa_async_thread_vd == NULL && 6320 rootdir != NULL) 6321 spa->spa_async_thread_vd = thread_create(NULL, 0, 6322 spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri); 6323 mutex_exit(&spa->spa_async_lock); 6324 } 6325 6326 void 6327 spa_async_request(spa_t *spa, int task) 6328 { 6329 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 6330 mutex_enter(&spa->spa_async_lock); 6331 spa->spa_async_tasks |= task; 6332 mutex_exit(&spa->spa_async_lock); 6333 spa_async_dispatch_vd(spa); 6334 } 6335 6336 /* 6337 * ========================================================================== 6338 * SPA syncing routines 6339 * ========================================================================== 6340 */ 6341 6342 static int 6343 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6344 { 6345 bpobj_t *bpo = arg; 6346 bpobj_enqueue(bpo, bp, tx); 6347 return (0); 6348 } 6349 6350 static int 6351 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6352 { 6353 zio_t *zio = arg; 6354 6355 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 6356 BP_GET_PSIZE(bp), zio->io_flags)); 6357 return (0); 6358 } 6359 6360 /* 6361 * Note: this simple function is not inlined to make it easier to dtrace the 6362 * amount of time spent syncing frees. 6363 */ 6364 static void 6365 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 6366 { 6367 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6368 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 6369 VERIFY(zio_wait(zio) == 0); 6370 } 6371 6372 /* 6373 * Note: this simple function is not inlined to make it easier to dtrace the 6374 * amount of time spent syncing deferred frees. 6375 */ 6376 static void 6377 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 6378 { 6379 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6380 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 6381 spa_free_sync_cb, zio, tx), ==, 0); 6382 VERIFY0(zio_wait(zio)); 6383 } 6384 6385 6386 static void 6387 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 6388 { 6389 char *packed = NULL; 6390 size_t bufsize; 6391 size_t nvsize = 0; 6392 dmu_buf_t *db; 6393 6394 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 6395 6396 /* 6397 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 6398 * information. This avoids the dmu_buf_will_dirty() path and 6399 * saves us a pre-read to get data we don't actually care about. 6400 */ 6401 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 6402 packed = kmem_alloc(bufsize, KM_SLEEP); 6403 6404 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 6405 KM_SLEEP) == 0); 6406 bzero(packed + nvsize, bufsize - nvsize); 6407 6408 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 6409 6410 kmem_free(packed, bufsize); 6411 6412 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 6413 dmu_buf_will_dirty(db, tx); 6414 *(uint64_t *)db->db_data = nvsize; 6415 dmu_buf_rele(db, FTAG); 6416 } 6417 6418 static void 6419 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 6420 const char *config, const char *entry) 6421 { 6422 nvlist_t *nvroot; 6423 nvlist_t **list; 6424 int i; 6425 6426 if (!sav->sav_sync) 6427 return; 6428 6429 /* 6430 * Update the MOS nvlist describing the list of available devices. 6431 * spa_validate_aux() will have already made sure this nvlist is 6432 * valid and the vdevs are labeled appropriately. 6433 */ 6434 if (sav->sav_object == 0) { 6435 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 6436 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 6437 sizeof (uint64_t), tx); 6438 VERIFY(zap_update(spa->spa_meta_objset, 6439 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 6440 &sav->sav_object, tx) == 0); 6441 } 6442 6443 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 6444 if (sav->sav_count == 0) { 6445 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 6446 } else { 6447 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 6448 for (i = 0; i < sav->sav_count; i++) 6449 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 6450 B_FALSE, VDEV_CONFIG_L2CACHE); 6451 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 6452 sav->sav_count) == 0); 6453 for (i = 0; i < sav->sav_count; i++) 6454 nvlist_free(list[i]); 6455 kmem_free(list, sav->sav_count * sizeof (void *)); 6456 } 6457 6458 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 6459 nvlist_free(nvroot); 6460 6461 sav->sav_sync = B_FALSE; 6462 } 6463 6464 /* 6465 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 6466 * The all-vdev ZAP must be empty. 6467 */ 6468 static void 6469 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 6470 { 6471 spa_t *spa = vd->vdev_spa; 6472 if (vd->vdev_top_zap != 0) { 6473 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 6474 vd->vdev_top_zap, tx)); 6475 } 6476 if (vd->vdev_leaf_zap != 0) { 6477 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 6478 vd->vdev_leaf_zap, tx)); 6479 } 6480 for (uint64_t i = 0; i < vd->vdev_children; i++) { 6481 spa_avz_build(vd->vdev_child[i], avz, tx); 6482 } 6483 } 6484 6485 static void 6486 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 6487 { 6488 nvlist_t *config; 6489 6490 /* 6491 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 6492 * its config may not be dirty but we still need to build per-vdev ZAPs. 6493 * Similarly, if the pool is being assembled (e.g. after a split), we 6494 * need to rebuild the AVZ although the config may not be dirty. 6495 */ 6496 if (list_is_empty(&spa->spa_config_dirty_list) && 6497 spa->spa_avz_action == AVZ_ACTION_NONE) 6498 return; 6499 6500 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6501 6502 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 6503 spa->spa_all_vdev_zaps != 0); 6504 6505 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 6506 /* Make and build the new AVZ */ 6507 uint64_t new_avz = zap_create(spa->spa_meta_objset, 6508 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 6509 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 6510 6511 /* Diff old AVZ with new one */ 6512 zap_cursor_t zc; 6513 zap_attribute_t za; 6514 6515 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6516 spa->spa_all_vdev_zaps); 6517 zap_cursor_retrieve(&zc, &za) == 0; 6518 zap_cursor_advance(&zc)) { 6519 uint64_t vdzap = za.za_first_integer; 6520 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 6521 vdzap) == ENOENT) { 6522 /* 6523 * ZAP is listed in old AVZ but not in new one; 6524 * destroy it 6525 */ 6526 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 6527 tx)); 6528 } 6529 } 6530 6531 zap_cursor_fini(&zc); 6532 6533 /* Destroy the old AVZ */ 6534 VERIFY0(zap_destroy(spa->spa_meta_objset, 6535 spa->spa_all_vdev_zaps, tx)); 6536 6537 /* Replace the old AVZ in the dir obj with the new one */ 6538 VERIFY0(zap_update(spa->spa_meta_objset, 6539 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 6540 sizeof (new_avz), 1, &new_avz, tx)); 6541 6542 spa->spa_all_vdev_zaps = new_avz; 6543 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 6544 zap_cursor_t zc; 6545 zap_attribute_t za; 6546 6547 /* Walk through the AVZ and destroy all listed ZAPs */ 6548 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6549 spa->spa_all_vdev_zaps); 6550 zap_cursor_retrieve(&zc, &za) == 0; 6551 zap_cursor_advance(&zc)) { 6552 uint64_t zap = za.za_first_integer; 6553 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 6554 } 6555 6556 zap_cursor_fini(&zc); 6557 6558 /* Destroy and unlink the AVZ itself */ 6559 VERIFY0(zap_destroy(spa->spa_meta_objset, 6560 spa->spa_all_vdev_zaps, tx)); 6561 VERIFY0(zap_remove(spa->spa_meta_objset, 6562 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 6563 spa->spa_all_vdev_zaps = 0; 6564 } 6565 6566 if (spa->spa_all_vdev_zaps == 0) { 6567 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 6568 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 6569 DMU_POOL_VDEV_ZAP_MAP, tx); 6570 } 6571 spa->spa_avz_action = AVZ_ACTION_NONE; 6572 6573 /* Create ZAPs for vdevs that don't have them. */ 6574 vdev_construct_zaps(spa->spa_root_vdev, tx); 6575 6576 config = spa_config_generate(spa, spa->spa_root_vdev, 6577 dmu_tx_get_txg(tx), B_FALSE); 6578 6579 /* 6580 * If we're upgrading the spa version then make sure that 6581 * the config object gets updated with the correct version. 6582 */ 6583 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 6584 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 6585 spa->spa_uberblock.ub_version); 6586 6587 spa_config_exit(spa, SCL_STATE, FTAG); 6588 6589 nvlist_free(spa->spa_config_syncing); 6590 spa->spa_config_syncing = config; 6591 6592 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 6593 } 6594 6595 static void 6596 spa_sync_version(void *arg, dmu_tx_t *tx) 6597 { 6598 uint64_t *versionp = arg; 6599 uint64_t version = *versionp; 6600 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6601 6602 /* 6603 * Setting the version is special cased when first creating the pool. 6604 */ 6605 ASSERT(tx->tx_txg != TXG_INITIAL); 6606 6607 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6608 ASSERT(version >= spa_version(spa)); 6609 6610 spa->spa_uberblock.ub_version = version; 6611 vdev_config_dirty(spa->spa_root_vdev); 6612 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 6613 } 6614 6615 /* 6616 * Set zpool properties. 6617 */ 6618 static void 6619 spa_sync_props(void *arg, dmu_tx_t *tx) 6620 { 6621 nvlist_t *nvp = arg; 6622 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6623 objset_t *mos = spa->spa_meta_objset; 6624 nvpair_t *elem = NULL; 6625 6626 mutex_enter(&spa->spa_props_lock); 6627 6628 while ((elem = nvlist_next_nvpair(nvp, elem))) { 6629 uint64_t intval; 6630 char *strval, *fname; 6631 zpool_prop_t prop; 6632 const char *propname; 6633 zprop_type_t proptype; 6634 spa_feature_t fid; 6635 6636 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6637 case ZPROP_INVAL: 6638 /* 6639 * We checked this earlier in spa_prop_validate(). 6640 */ 6641 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6642 6643 fname = strchr(nvpair_name(elem), '@') + 1; 6644 VERIFY0(zfeature_lookup_name(fname, &fid)); 6645 6646 spa_feature_enable(spa, fid, tx); 6647 spa_history_log_internal(spa, "set", tx, 6648 "%s=enabled", nvpair_name(elem)); 6649 break; 6650 6651 case ZPOOL_PROP_VERSION: 6652 intval = fnvpair_value_uint64(elem); 6653 /* 6654 * The version is synced seperatly before other 6655 * properties and should be correct by now. 6656 */ 6657 ASSERT3U(spa_version(spa), >=, intval); 6658 break; 6659 6660 case ZPOOL_PROP_ALTROOT: 6661 /* 6662 * 'altroot' is a non-persistent property. It should 6663 * have been set temporarily at creation or import time. 6664 */ 6665 ASSERT(spa->spa_root != NULL); 6666 break; 6667 6668 case ZPOOL_PROP_READONLY: 6669 case ZPOOL_PROP_CACHEFILE: 6670 /* 6671 * 'readonly' and 'cachefile' are also non-persisitent 6672 * properties. 6673 */ 6674 break; 6675 case ZPOOL_PROP_COMMENT: 6676 strval = fnvpair_value_string(elem); 6677 if (spa->spa_comment != NULL) 6678 spa_strfree(spa->spa_comment); 6679 spa->spa_comment = spa_strdup(strval); 6680 /* 6681 * We need to dirty the configuration on all the vdevs 6682 * so that their labels get updated. It's unnecessary 6683 * to do this for pool creation since the vdev's 6684 * configuratoin has already been dirtied. 6685 */ 6686 if (tx->tx_txg != TXG_INITIAL) 6687 vdev_config_dirty(spa->spa_root_vdev); 6688 spa_history_log_internal(spa, "set", tx, 6689 "%s=%s", nvpair_name(elem), strval); 6690 break; 6691 default: 6692 /* 6693 * Set pool property values in the poolprops mos object. 6694 */ 6695 if (spa->spa_pool_props_object == 0) { 6696 spa->spa_pool_props_object = 6697 zap_create_link(mos, DMU_OT_POOL_PROPS, 6698 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6699 tx); 6700 } 6701 6702 /* normalize the property name */ 6703 propname = zpool_prop_to_name(prop); 6704 proptype = zpool_prop_get_type(prop); 6705 6706 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6707 ASSERT(proptype == PROP_TYPE_STRING); 6708 strval = fnvpair_value_string(elem); 6709 VERIFY0(zap_update(mos, 6710 spa->spa_pool_props_object, propname, 6711 1, strlen(strval) + 1, strval, tx)); 6712 spa_history_log_internal(spa, "set", tx, 6713 "%s=%s", nvpair_name(elem), strval); 6714 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6715 intval = fnvpair_value_uint64(elem); 6716 6717 if (proptype == PROP_TYPE_INDEX) { 6718 const char *unused; 6719 VERIFY0(zpool_prop_index_to_string( 6720 prop, intval, &unused)); 6721 } 6722 VERIFY0(zap_update(mos, 6723 spa->spa_pool_props_object, propname, 6724 8, 1, &intval, tx)); 6725 spa_history_log_internal(spa, "set", tx, 6726 "%s=%lld", nvpair_name(elem), intval); 6727 } else { 6728 ASSERT(0); /* not allowed */ 6729 } 6730 6731 switch (prop) { 6732 case ZPOOL_PROP_DELEGATION: 6733 spa->spa_delegation = intval; 6734 break; 6735 case ZPOOL_PROP_BOOTFS: 6736 spa->spa_bootfs = intval; 6737 break; 6738 case ZPOOL_PROP_FAILUREMODE: 6739 spa->spa_failmode = intval; 6740 break; 6741 case ZPOOL_PROP_AUTOEXPAND: 6742 spa->spa_autoexpand = intval; 6743 if (tx->tx_txg != TXG_INITIAL) 6744 spa_async_request(spa, 6745 SPA_ASYNC_AUTOEXPAND); 6746 break; 6747 case ZPOOL_PROP_DEDUPDITTO: 6748 spa->spa_dedup_ditto = intval; 6749 break; 6750 default: 6751 break; 6752 } 6753 } 6754 6755 } 6756 6757 mutex_exit(&spa->spa_props_lock); 6758 } 6759 6760 /* 6761 * Perform one-time upgrade on-disk changes. spa_version() does not 6762 * reflect the new version this txg, so there must be no changes this 6763 * txg to anything that the upgrade code depends on after it executes. 6764 * Therefore this must be called after dsl_pool_sync() does the sync 6765 * tasks. 6766 */ 6767 static void 6768 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6769 { 6770 dsl_pool_t *dp = spa->spa_dsl_pool; 6771 6772 ASSERT(spa->spa_sync_pass == 1); 6773 6774 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6775 6776 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6777 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6778 dsl_pool_create_origin(dp, tx); 6779 6780 /* Keeping the origin open increases spa_minref */ 6781 spa->spa_minref += 3; 6782 } 6783 6784 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6785 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6786 dsl_pool_upgrade_clones(dp, tx); 6787 } 6788 6789 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6790 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6791 dsl_pool_upgrade_dir_clones(dp, tx); 6792 6793 /* Keeping the freedir open increases spa_minref */ 6794 spa->spa_minref += 3; 6795 } 6796 6797 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6798 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6799 spa_feature_create_zap_objects(spa, tx); 6800 } 6801 6802 /* 6803 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6804 * when possibility to use lz4 compression for metadata was added 6805 * Old pools that have this feature enabled must be upgraded to have 6806 * this feature active 6807 */ 6808 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6809 boolean_t lz4_en = spa_feature_is_enabled(spa, 6810 SPA_FEATURE_LZ4_COMPRESS); 6811 boolean_t lz4_ac = spa_feature_is_active(spa, 6812 SPA_FEATURE_LZ4_COMPRESS); 6813 6814 if (lz4_en && !lz4_ac) 6815 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6816 } 6817 6818 /* 6819 * If we haven't written the salt, do so now. Note that the 6820 * feature may not be activated yet, but that's fine since 6821 * the presence of this ZAP entry is backwards compatible. 6822 */ 6823 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 6824 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 6825 VERIFY0(zap_add(spa->spa_meta_objset, 6826 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 6827 sizeof (spa->spa_cksum_salt.zcs_bytes), 6828 spa->spa_cksum_salt.zcs_bytes, tx)); 6829 } 6830 6831 rrw_exit(&dp->dp_config_rwlock, FTAG); 6832 } 6833 6834 /* 6835 * Sync the specified transaction group. New blocks may be dirtied as 6836 * part of the process, so we iterate until it converges. 6837 */ 6838 6839 void 6840 spa_sync(spa_t *spa, uint64_t txg) 6841 { 6842 dsl_pool_t *dp = spa->spa_dsl_pool; 6843 objset_t *mos = spa->spa_meta_objset; 6844 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6845 vdev_t *rvd = spa->spa_root_vdev; 6846 vdev_t *vd; 6847 dmu_tx_t *tx; 6848 int error; 6849 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 6850 zfs_vdev_queue_depth_pct / 100; 6851 6852 VERIFY(spa_writeable(spa)); 6853 6854 /* 6855 * Lock out configuration changes. 6856 */ 6857 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6858 6859 spa->spa_syncing_txg = txg; 6860 spa->spa_sync_pass = 0; 6861 6862 mutex_enter(&spa->spa_alloc_lock); 6863 VERIFY0(avl_numnodes(&spa->spa_alloc_tree)); 6864 mutex_exit(&spa->spa_alloc_lock); 6865 6866 /* 6867 * If there are any pending vdev state changes, convert them 6868 * into config changes that go out with this transaction group. 6869 */ 6870 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6871 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6872 /* 6873 * We need the write lock here because, for aux vdevs, 6874 * calling vdev_config_dirty() modifies sav_config. 6875 * This is ugly and will become unnecessary when we 6876 * eliminate the aux vdev wart by integrating all vdevs 6877 * into the root vdev tree. 6878 */ 6879 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6880 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6881 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6882 vdev_state_clean(vd); 6883 vdev_config_dirty(vd); 6884 } 6885 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6886 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6887 } 6888 spa_config_exit(spa, SCL_STATE, FTAG); 6889 6890 tx = dmu_tx_create_assigned(dp, txg); 6891 6892 spa->spa_sync_starttime = gethrtime(); 6893 #ifdef illumos 6894 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6895 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6896 #endif /* illumos */ 6897 #ifdef __FreeBSD__ 6898 #ifdef _KERNEL 6899 callout_schedule(&spa->spa_deadman_cycid, 6900 hz * spa->spa_deadman_synctime / NANOSEC); 6901 #endif 6902 #endif /* __FreeBSD__ */ 6903 #ifdef __NetBSD__ 6904 #ifdef _KERNEL 6905 callout_schedule(&spa->spa_deadman_cycid, 6906 hz * spa->spa_deadman_synctime / NANOSEC); 6907 #endif 6908 #endif 6909 6910 /* 6911 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6912 * set spa_deflate if we have no raid-z vdevs. 6913 */ 6914 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6915 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6916 int i; 6917 6918 for (i = 0; i < rvd->vdev_children; i++) { 6919 vd = rvd->vdev_child[i]; 6920 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6921 break; 6922 } 6923 if (i == rvd->vdev_children) { 6924 spa->spa_deflate = TRUE; 6925 VERIFY(0 == zap_add(spa->spa_meta_objset, 6926 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6927 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6928 } 6929 } 6930 6931 /* 6932 * Set the top-level vdev's max queue depth. Evaluate each 6933 * top-level's async write queue depth in case it changed. 6934 * The max queue depth will not change in the middle of syncing 6935 * out this txg. 6936 */ 6937 uint64_t queue_depth_total = 0; 6938 for (int c = 0; c < rvd->vdev_children; c++) { 6939 vdev_t *tvd = rvd->vdev_child[c]; 6940 metaslab_group_t *mg = tvd->vdev_mg; 6941 6942 if (mg == NULL || mg->mg_class != spa_normal_class(spa) || 6943 !metaslab_group_initialized(mg)) 6944 continue; 6945 6946 /* 6947 * It is safe to do a lock-free check here because only async 6948 * allocations look at mg_max_alloc_queue_depth, and async 6949 * allocations all happen from spa_sync(). 6950 */ 6951 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth)); 6952 mg->mg_max_alloc_queue_depth = max_queue_depth; 6953 queue_depth_total += mg->mg_max_alloc_queue_depth; 6954 } 6955 metaslab_class_t *mc = spa_normal_class(spa); 6956 ASSERT0(refcount_count(&mc->mc_alloc_slots)); 6957 mc->mc_alloc_max_slots = queue_depth_total; 6958 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 6959 6960 ASSERT3U(mc->mc_alloc_max_slots, <=, 6961 max_queue_depth * rvd->vdev_children); 6962 6963 /* 6964 * Iterate to convergence. 6965 */ 6966 do { 6967 int pass = ++spa->spa_sync_pass; 6968 6969 spa_sync_config_object(spa, tx); 6970 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6971 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6972 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6973 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6974 spa_errlog_sync(spa, txg); 6975 dsl_pool_sync(dp, txg); 6976 6977 if (pass < zfs_sync_pass_deferred_free) { 6978 spa_sync_frees(spa, free_bpl, tx); 6979 } else { 6980 /* 6981 * We can not defer frees in pass 1, because 6982 * we sync the deferred frees later in pass 1. 6983 */ 6984 ASSERT3U(pass, >, 1); 6985 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6986 &spa->spa_deferred_bpobj, tx); 6987 } 6988 6989 ddt_sync(spa, txg); 6990 dsl_scan_sync(dp, tx); 6991 6992 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6993 vdev_sync(vd, txg); 6994 6995 if (pass == 1) { 6996 spa_sync_upgrades(spa, tx); 6997 ASSERT3U(txg, >=, 6998 spa->spa_uberblock.ub_rootbp.blk_birth); 6999 /* 7000 * Note: We need to check if the MOS is dirty 7001 * because we could have marked the MOS dirty 7002 * without updating the uberblock (e.g. if we 7003 * have sync tasks but no dirty user data). We 7004 * need to check the uberblock's rootbp because 7005 * it is updated if we have synced out dirty 7006 * data (though in this case the MOS will most 7007 * likely also be dirty due to second order 7008 * effects, we don't want to rely on that here). 7009 */ 7010 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 7011 !dmu_objset_is_dirty(mos, txg)) { 7012 /* 7013 * Nothing changed on the first pass, 7014 * therefore this TXG is a no-op. Avoid 7015 * syncing deferred frees, so that we 7016 * can keep this TXG as a no-op. 7017 */ 7018 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 7019 txg)); 7020 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 7021 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 7022 break; 7023 } 7024 spa_sync_deferred_frees(spa, tx); 7025 } 7026 7027 } while (dmu_objset_is_dirty(mos, txg)); 7028 7029 if (!list_is_empty(&spa->spa_config_dirty_list)) { 7030 /* 7031 * Make sure that the number of ZAPs for all the vdevs matches 7032 * the number of ZAPs in the per-vdev ZAP list. This only gets 7033 * called if the config is dirty; otherwise there may be 7034 * outstanding AVZ operations that weren't completed in 7035 * spa_sync_config_object. 7036 */ 7037 uint64_t all_vdev_zap_entry_count; 7038 ASSERT0(zap_count(spa->spa_meta_objset, 7039 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 7040 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 7041 all_vdev_zap_entry_count); 7042 } 7043 7044 /* 7045 * Rewrite the vdev configuration (which includes the uberblock) 7046 * to commit the transaction group. 7047 * 7048 * If there are no dirty vdevs, we sync the uberblock to a few 7049 * random top-level vdevs that are known to be visible in the 7050 * config cache (see spa_vdev_add() for a complete description). 7051 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 7052 */ 7053 for (;;) { 7054 /* 7055 * We hold SCL_STATE to prevent vdev open/close/etc. 7056 * while we're attempting to write the vdev labels. 7057 */ 7058 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 7059 7060 if (list_is_empty(&spa->spa_config_dirty_list)) { 7061 vdev_t *svd[SPA_DVAS_PER_BP]; 7062 int svdcount = 0; 7063 int children = rvd->vdev_children; 7064 int c0 = spa_get_random(children); 7065 7066 for (int c = 0; c < children; c++) { 7067 vd = rvd->vdev_child[(c0 + c) % children]; 7068 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 7069 continue; 7070 svd[svdcount++] = vd; 7071 if (svdcount == SPA_DVAS_PER_BP) 7072 break; 7073 } 7074 error = vdev_config_sync(svd, svdcount, txg); 7075 } else { 7076 error = vdev_config_sync(rvd->vdev_child, 7077 rvd->vdev_children, txg); 7078 } 7079 7080 if (error == 0) 7081 spa->spa_last_synced_guid = rvd->vdev_guid; 7082 7083 spa_config_exit(spa, SCL_STATE, FTAG); 7084 7085 if (error == 0) 7086 break; 7087 zio_suspend(spa, NULL); 7088 zio_resume_wait(spa); 7089 } 7090 dmu_tx_commit(tx); 7091 7092 #ifdef illumos 7093 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 7094 #endif /* illumos */ 7095 #ifdef __FreeBSD__ 7096 #ifdef _KERNEL 7097 callout_drain(&spa->spa_deadman_cycid); 7098 #endif 7099 #endif /* __FreeBSD__ */ 7100 #ifdef __NetBSD__ 7101 #ifdef _KERNEL 7102 callout_drain(&spa->spa_deadman_cycid); 7103 #endif 7104 #endif /* __NetBSD__ */ 7105 7106 /* 7107 * Clear the dirty config list. 7108 */ 7109 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 7110 vdev_config_clean(vd); 7111 7112 /* 7113 * Now that the new config has synced transactionally, 7114 * let it become visible to the config cache. 7115 */ 7116 if (spa->spa_config_syncing != NULL) { 7117 spa_config_set(spa, spa->spa_config_syncing); 7118 spa->spa_config_txg = txg; 7119 spa->spa_config_syncing = NULL; 7120 } 7121 7122 dsl_pool_sync_done(dp, txg); 7123 7124 mutex_enter(&spa->spa_alloc_lock); 7125 VERIFY0(avl_numnodes(&spa->spa_alloc_tree)); 7126 mutex_exit(&spa->spa_alloc_lock); 7127 7128 /* 7129 * Update usable space statistics. 7130 */ 7131 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 7132 vdev_sync_done(vd, txg); 7133 7134 spa_update_dspace(spa); 7135 7136 /* 7137 * It had better be the case that we didn't dirty anything 7138 * since vdev_config_sync(). 7139 */ 7140 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 7141 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 7142 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 7143 7144 spa->spa_sync_pass = 0; 7145 7146 /* 7147 * Update the last synced uberblock here. We want to do this at 7148 * the end of spa_sync() so that consumers of spa_last_synced_txg() 7149 * will be guaranteed that all the processing associated with 7150 * that txg has been completed. 7151 */ 7152 spa->spa_ubsync = spa->spa_uberblock; 7153 spa_config_exit(spa, SCL_CONFIG, FTAG); 7154 7155 spa_handle_ignored_writes(spa); 7156 7157 /* 7158 * If any async tasks have been requested, kick them off. 7159 */ 7160 spa_async_dispatch(spa); 7161 spa_async_dispatch_vd(spa); 7162 } 7163 7164 /* 7165 * Sync all pools. We don't want to hold the namespace lock across these 7166 * operations, so we take a reference on the spa_t and drop the lock during the 7167 * sync. 7168 */ 7169 void 7170 spa_sync_allpools(void) 7171 { 7172 spa_t *spa = NULL; 7173 mutex_enter(&spa_namespace_lock); 7174 while ((spa = spa_next(spa)) != NULL) { 7175 if (spa_state(spa) != POOL_STATE_ACTIVE || 7176 !spa_writeable(spa) || spa_suspended(spa)) 7177 continue; 7178 spa_open_ref(spa, FTAG); 7179 mutex_exit(&spa_namespace_lock); 7180 txg_wait_synced(spa_get_dsl(spa), 0); 7181 mutex_enter(&spa_namespace_lock); 7182 spa_close(spa, FTAG); 7183 } 7184 mutex_exit(&spa_namespace_lock); 7185 } 7186 7187 /* 7188 * ========================================================================== 7189 * Miscellaneous routines 7190 * ========================================================================== 7191 */ 7192 7193 /* 7194 * Remove all pools in the system. 7195 */ 7196 void 7197 spa_evict_all(void) 7198 { 7199 spa_t *spa; 7200 7201 /* 7202 * Remove all cached state. All pools should be closed now, 7203 * so every spa in the AVL tree should be unreferenced. 7204 */ 7205 mutex_enter(&spa_namespace_lock); 7206 while ((spa = spa_next(NULL)) != NULL) { 7207 /* 7208 * Stop async tasks. The async thread may need to detach 7209 * a device that's been replaced, which requires grabbing 7210 * spa_namespace_lock, so we must drop it here. 7211 */ 7212 spa_open_ref(spa, FTAG); 7213 mutex_exit(&spa_namespace_lock); 7214 spa_async_suspend(spa); 7215 mutex_enter(&spa_namespace_lock); 7216 spa_close(spa, FTAG); 7217 7218 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 7219 spa_unload(spa); 7220 spa_deactivate(spa); 7221 } 7222 spa_remove(spa); 7223 } 7224 mutex_exit(&spa_namespace_lock); 7225 } 7226 7227 vdev_t * 7228 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 7229 { 7230 vdev_t *vd; 7231 int i; 7232 7233 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 7234 return (vd); 7235 7236 if (aux) { 7237 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 7238 vd = spa->spa_l2cache.sav_vdevs[i]; 7239 if (vd->vdev_guid == guid) 7240 return (vd); 7241 } 7242 7243 for (i = 0; i < spa->spa_spares.sav_count; i++) { 7244 vd = spa->spa_spares.sav_vdevs[i]; 7245 if (vd->vdev_guid == guid) 7246 return (vd); 7247 } 7248 } 7249 7250 return (NULL); 7251 } 7252 7253 void 7254 spa_upgrade(spa_t *spa, uint64_t version) 7255 { 7256 ASSERT(spa_writeable(spa)); 7257 7258 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7259 7260 /* 7261 * This should only be called for a non-faulted pool, and since a 7262 * future version would result in an unopenable pool, this shouldn't be 7263 * possible. 7264 */ 7265 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 7266 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 7267 7268 spa->spa_uberblock.ub_version = version; 7269 vdev_config_dirty(spa->spa_root_vdev); 7270 7271 spa_config_exit(spa, SCL_ALL, FTAG); 7272 7273 txg_wait_synced(spa_get_dsl(spa), 0); 7274 } 7275 7276 boolean_t 7277 spa_has_spare(spa_t *spa, uint64_t guid) 7278 { 7279 int i; 7280 uint64_t spareguid; 7281 spa_aux_vdev_t *sav = &spa->spa_spares; 7282 7283 for (i = 0; i < sav->sav_count; i++) 7284 if (sav->sav_vdevs[i]->vdev_guid == guid) 7285 return (B_TRUE); 7286 7287 for (i = 0; i < sav->sav_npending; i++) { 7288 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 7289 &spareguid) == 0 && spareguid == guid) 7290 return (B_TRUE); 7291 } 7292 7293 return (B_FALSE); 7294 } 7295 7296 /* 7297 * Check if a pool has an active shared spare device. 7298 * Note: reference count of an active spare is 2, as a spare and as a replace 7299 */ 7300 static boolean_t 7301 spa_has_active_shared_spare(spa_t *spa) 7302 { 7303 int i, refcnt; 7304 uint64_t pool; 7305 spa_aux_vdev_t *sav = &spa->spa_spares; 7306 7307 for (i = 0; i < sav->sav_count; i++) { 7308 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 7309 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 7310 refcnt > 2) 7311 return (B_TRUE); 7312 } 7313 7314 return (B_FALSE); 7315 } 7316 7317 static sysevent_t * 7318 spa_event_create(spa_t *spa, vdev_t *vd, const char *name) 7319 { 7320 sysevent_t *ev = NULL; 7321 #ifdef _KERNEL 7322 sysevent_attr_list_t *attr = NULL; 7323 sysevent_value_t value; 7324 7325 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 7326 SE_SLEEP); 7327 ASSERT(ev != NULL); 7328 7329 value.value_type = SE_DATA_TYPE_STRING; 7330 value.value.sv_string = spa_name(spa); 7331 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 7332 goto done; 7333 7334 value.value_type = SE_DATA_TYPE_UINT64; 7335 value.value.sv_uint64 = spa_guid(spa); 7336 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 7337 goto done; 7338 7339 if (vd) { 7340 value.value_type = SE_DATA_TYPE_UINT64; 7341 value.value.sv_uint64 = vd->vdev_guid; 7342 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 7343 SE_SLEEP) != 0) 7344 goto done; 7345 7346 if (vd->vdev_path) { 7347 value.value_type = SE_DATA_TYPE_STRING; 7348 value.value.sv_string = vd->vdev_path; 7349 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 7350 &value, SE_SLEEP) != 0) 7351 goto done; 7352 } 7353 } 7354 7355 if (sysevent_attach_attributes(ev, attr) != 0) 7356 goto done; 7357 attr = NULL; 7358 7359 done: 7360 if (attr) 7361 sysevent_free_attr(attr); 7362 7363 #endif 7364 return (ev); 7365 } 7366 7367 static void 7368 spa_event_post(sysevent_t *ev) 7369 { 7370 #ifdef _KERNEL 7371 sysevent_id_t eid; 7372 7373 (void) log_sysevent(ev, SE_SLEEP, &eid); 7374 sysevent_free(ev); 7375 #endif 7376 } 7377 7378 /* 7379 * Post a sysevent corresponding to the given event. The 'name' must be one of 7380 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 7381 * filled in from the spa and (optionally) the vdev. This doesn't do anything 7382 * in the userland libzpool, as we don't want consumers to misinterpret ztest 7383 * or zdb as real changes. 7384 */ 7385 void 7386 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 7387 { 7388 spa_event_post(spa_event_create(spa, vd, name)); 7389 } 7390