xref: /netbsd-src/external/cddl/osnet/dist/uts/common/fs/zfs/spa.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright 2013 Saso Kiselkov. All rights reserved.
29  * Copyright (c) 2014 Integros [integros.com]
30  * Copyright 2016 Toomas Soome <tsoome@me.com>
31  */
32 
33 /*
34  * SPA: Storage Pool Allocator
35  *
36  * This file contains all the routines used when modifying on-disk SPA state.
37  * This includes opening, importing, destroying, exporting a pool, and syncing a
38  * pool.
39  */
40 
41 #include <sys/zfs_context.h>
42 #include <sys/fm/fs/zfs.h>
43 #include <sys/spa_impl.h>
44 #include <sys/zio.h>
45 #include <sys/zio_checksum.h>
46 #include <sys/dmu.h>
47 #include <sys/dmu_tx.h>
48 #include <sys/zap.h>
49 #include <sys/zil.h>
50 #include <sys/ddt.h>
51 #include <sys/vdev_impl.h>
52 #include <sys/metaslab.h>
53 #include <sys/metaslab_impl.h>
54 #include <sys/uberblock_impl.h>
55 #include <sys/txg.h>
56 #include <sys/avl.h>
57 #include <sys/dmu_traverse.h>
58 #include <sys/dmu_objset.h>
59 #include <sys/unique.h>
60 #include <sys/dsl_pool.h>
61 #include <sys/dsl_dataset.h>
62 #include <sys/dsl_dir.h>
63 #include <sys/dsl_prop.h>
64 #include <sys/dsl_synctask.h>
65 #include <sys/fs/zfs.h>
66 #include <sys/arc.h>
67 #include <sys/callb.h>
68 #include <sys/spa_boot.h>
69 #include <sys/zfs_ioctl.h>
70 #include <sys/dsl_scan.h>
71 #include <sys/dmu_send.h>
72 #include <sys/dsl_destroy.h>
73 #include <sys/dsl_userhold.h>
74 #include <sys/zfeature.h>
75 #include <sys/zvol.h>
76 #include <sys/trim_map.h>
77 
78 #ifdef	_KERNEL
79 #include <sys/callb.h>
80 #include <sys/cpupart.h>
81 #include <sys/zone.h>
82 #endif	/* _KERNEL */
83 
84 #include "zfs_prop.h"
85 #include "zfs_comutil.h"
86 
87 /* Check hostid on import? */
88 static int check_hostid = 1;
89 
90 /*
91  * The interval, in seconds, at which failed configuration cache file writes
92  * should be retried.
93  */
94 static int zfs_ccw_retry_interval = 300;
95 
96 SYSCTL_DECL(_vfs_zfs);
97 SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
98     "Check hostid on import?");
99 TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
100 SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
101     &zfs_ccw_retry_interval, 0,
102     "Configuration cache file write, retry after failure, interval (seconds)");
103 
104 typedef enum zti_modes {
105 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
106 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
107 	ZTI_MODE_NULL,			/* don't create a taskq */
108 	ZTI_NMODES
109 } zti_modes_t;
110 
111 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
112 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
113 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
114 
115 #define	ZTI_N(n)	ZTI_P(n, 1)
116 #define	ZTI_ONE		ZTI_N(1)
117 
118 typedef struct zio_taskq_info {
119 	zti_modes_t zti_mode;
120 	uint_t zti_value;
121 	uint_t zti_count;
122 } zio_taskq_info_t;
123 
124 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
125 	"issue", "issue_high", "intr", "intr_high"
126 };
127 
128 /*
129  * This table defines the taskq settings for each ZFS I/O type. When
130  * initializing a pool, we use this table to create an appropriately sized
131  * taskq. Some operations are low volume and therefore have a small, static
132  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
133  * macros. Other operations process a large amount of data; the ZTI_BATCH
134  * macro causes us to create a taskq oriented for throughput. Some operations
135  * are so high frequency and short-lived that the taskq itself can become a a
136  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
137  * additional degree of parallelism specified by the number of threads per-
138  * taskq and the number of taskqs; when dispatching an event in this case, the
139  * particular taskq is chosen at random.
140  *
141  * The different taskq priorities are to handle the different contexts (issue
142  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
143  * need to be handled with minimum delay.
144  */
145 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
146 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
147 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
148 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
149 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
150 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
151 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
152 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
153 };
154 
155 static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, const char *name);
156 static void spa_event_post(sysevent_t *ev);
157 static void spa_sync_version(void *arg, dmu_tx_t *tx);
158 static void spa_sync_props(void *arg, dmu_tx_t *tx);
159 static boolean_t spa_has_active_shared_spare(spa_t *spa);
160 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
161     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
162     char **ereport);
163 static void spa_vdev_resilver_done(spa_t *spa);
164 
165 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
166 #ifdef PSRSET_BIND
167 id_t		zio_taskq_psrset_bind = PS_NONE;
168 #endif
169 #ifdef SYSDC
170 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
171 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
172 #endif
173 
174 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
175 extern int	zfs_sync_pass_deferred_free;
176 
177 /*
178  * This (illegal) pool name is used when temporarily importing a spa_t in order
179  * to get the vdev stats associated with the imported devices.
180  */
181 #define	TRYIMPORT_NAME	"$import"
182 
183 /*
184  * ==========================================================================
185  * SPA properties routines
186  * ==========================================================================
187  */
188 
189 /*
190  * Add a (source=src, propname=propval) list to an nvlist.
191  */
192 static void
193 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
194     uint64_t intval, zprop_source_t src)
195 {
196 	const char *propname = zpool_prop_to_name(prop);
197 	nvlist_t *propval;
198 
199 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
200 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
201 
202 	if (strval != NULL)
203 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
204 	else
205 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
206 
207 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
208 	nvlist_free(propval);
209 }
210 
211 /*
212  * Get property values from the spa configuration.
213  */
214 static void
215 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
216 {
217 	vdev_t *rvd = spa->spa_root_vdev;
218 	dsl_pool_t *pool = spa->spa_dsl_pool;
219 	uint64_t size, alloc, cap, version;
220 	zprop_source_t src = ZPROP_SRC_NONE;
221 	spa_config_dirent_t *dp;
222 	metaslab_class_t *mc = spa_normal_class(spa);
223 
224 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
225 
226 	if (rvd != NULL) {
227 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
228 		size = metaslab_class_get_space(spa_normal_class(spa));
229 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
230 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
231 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
232 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
233 		    size - alloc, src);
234 
235 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
236 		    metaslab_class_fragmentation(mc), src);
237 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
238 		    metaslab_class_expandable_space(mc), src);
239 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
240 		    (spa_mode(spa) == FREAD), src);
241 
242 		cap = (size == 0) ? 0 : (alloc * 100 / size);
243 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
244 
245 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
246 		    ddt_get_pool_dedup_ratio(spa), src);
247 
248 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
249 		    rvd->vdev_state, src);
250 
251 		version = spa_version(spa);
252 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
253 			src = ZPROP_SRC_DEFAULT;
254 		else
255 			src = ZPROP_SRC_LOCAL;
256 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
257 	}
258 
259 	if (pool != NULL) {
260 		/*
261 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
262 		 * when opening pools before this version freedir will be NULL.
263 		 */
264 		if (pool->dp_free_dir != NULL) {
265 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
266 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
267 			    src);
268 		} else {
269 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
270 			    NULL, 0, src);
271 		}
272 
273 		if (pool->dp_leak_dir != NULL) {
274 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
275 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
276 			    src);
277 		} else {
278 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
279 			    NULL, 0, src);
280 		}
281 	}
282 
283 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
284 
285 	if (spa->spa_comment != NULL) {
286 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
287 		    0, ZPROP_SRC_LOCAL);
288 	}
289 
290 	if (spa->spa_root != NULL)
291 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
292 		    0, ZPROP_SRC_LOCAL);
293 
294 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
295 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
296 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
297 	} else {
298 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
299 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
300 	}
301 
302 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
303 		if (dp->scd_path == NULL) {
304 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
305 			    "none", 0, ZPROP_SRC_LOCAL);
306 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
307 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
308 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
309 		}
310 	}
311 }
312 
313 /*
314  * Get zpool property values.
315  */
316 int
317 spa_prop_get(spa_t *spa, nvlist_t **nvp)
318 {
319 	objset_t *mos = spa->spa_meta_objset;
320 	zap_cursor_t zc;
321 	zap_attribute_t za;
322 	int err;
323 
324 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
325 
326 	mutex_enter(&spa->spa_props_lock);
327 
328 	/*
329 	 * Get properties from the spa config.
330 	 */
331 	spa_prop_get_config(spa, nvp);
332 
333 	/* If no pool property object, no more prop to get. */
334 	if (mos == NULL || spa->spa_pool_props_object == 0) {
335 		mutex_exit(&spa->spa_props_lock);
336 		return (0);
337 	}
338 
339 	/*
340 	 * Get properties from the MOS pool property object.
341 	 */
342 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
343 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
344 	    zap_cursor_advance(&zc)) {
345 		uint64_t intval = 0;
346 		char *strval = NULL;
347 		zprop_source_t src = ZPROP_SRC_DEFAULT;
348 		zpool_prop_t prop;
349 
350 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
351 			continue;
352 
353 		switch (za.za_integer_length) {
354 		case 8:
355 			/* integer property */
356 			if (za.za_first_integer !=
357 			    zpool_prop_default_numeric(prop))
358 				src = ZPROP_SRC_LOCAL;
359 
360 			if (prop == ZPOOL_PROP_BOOTFS) {
361 				dsl_pool_t *dp;
362 				dsl_dataset_t *ds = NULL;
363 
364 				dp = spa_get_dsl(spa);
365 				dsl_pool_config_enter(dp, FTAG);
366 				if (err = dsl_dataset_hold_obj(dp,
367 				    za.za_first_integer, FTAG, &ds)) {
368 					dsl_pool_config_exit(dp, FTAG);
369 					break;
370 				}
371 
372 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
373 				    KM_SLEEP);
374 				dsl_dataset_name(ds, strval);
375 				dsl_dataset_rele(ds, FTAG);
376 				dsl_pool_config_exit(dp, FTAG);
377 			} else {
378 				strval = NULL;
379 				intval = za.za_first_integer;
380 			}
381 
382 			spa_prop_add_list(*nvp, prop, strval, intval, src);
383 
384 			if (strval != NULL)
385 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
386 
387 			break;
388 
389 		case 1:
390 			/* string property */
391 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
392 			err = zap_lookup(mos, spa->spa_pool_props_object,
393 			    za.za_name, 1, za.za_num_integers, strval);
394 			if (err) {
395 				kmem_free(strval, za.za_num_integers);
396 				break;
397 			}
398 			spa_prop_add_list(*nvp, prop, strval, 0, src);
399 			kmem_free(strval, za.za_num_integers);
400 			break;
401 
402 		default:
403 			break;
404 		}
405 	}
406 	zap_cursor_fini(&zc);
407 	mutex_exit(&spa->spa_props_lock);
408 out:
409 	if (err && err != ENOENT) {
410 		nvlist_free(*nvp);
411 		*nvp = NULL;
412 		return (err);
413 	}
414 
415 	return (0);
416 }
417 
418 /*
419  * Validate the given pool properties nvlist and modify the list
420  * for the property values to be set.
421  */
422 static int
423 spa_prop_validate(spa_t *spa, nvlist_t *props)
424 {
425 	nvpair_t *elem;
426 	int error = 0, reset_bootfs = 0;
427 	uint64_t objnum = 0;
428 	boolean_t has_feature = B_FALSE;
429 
430 	elem = NULL;
431 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
432 		uint64_t intval;
433 		char *strval, *slash, *check, *fname;
434 		const char *propname = nvpair_name(elem);
435 		zpool_prop_t prop = zpool_name_to_prop(propname);
436 
437 		switch (prop) {
438 		case ZPROP_INVAL:
439 			if (!zpool_prop_feature(propname)) {
440 				error = SET_ERROR(EINVAL);
441 				break;
442 			}
443 
444 			/*
445 			 * Sanitize the input.
446 			 */
447 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
448 				error = SET_ERROR(EINVAL);
449 				break;
450 			}
451 
452 			if (nvpair_value_uint64(elem, &intval) != 0) {
453 				error = SET_ERROR(EINVAL);
454 				break;
455 			}
456 
457 			if (intval != 0) {
458 				error = SET_ERROR(EINVAL);
459 				break;
460 			}
461 
462 			fname = strchr(propname, '@') + 1;
463 			if (zfeature_lookup_name(fname, NULL) != 0) {
464 				error = SET_ERROR(EINVAL);
465 				break;
466 			}
467 
468 			has_feature = B_TRUE;
469 			break;
470 
471 		case ZPOOL_PROP_VERSION:
472 			error = nvpair_value_uint64(elem, &intval);
473 			if (!error &&
474 			    (intval < spa_version(spa) ||
475 			    intval > SPA_VERSION_BEFORE_FEATURES ||
476 			    has_feature))
477 				error = SET_ERROR(EINVAL);
478 			break;
479 
480 		case ZPOOL_PROP_DELEGATION:
481 		case ZPOOL_PROP_AUTOREPLACE:
482 		case ZPOOL_PROP_LISTSNAPS:
483 		case ZPOOL_PROP_AUTOEXPAND:
484 			error = nvpair_value_uint64(elem, &intval);
485 			if (!error && intval > 1)
486 				error = SET_ERROR(EINVAL);
487 			break;
488 
489 		case ZPOOL_PROP_BOOTFS:
490 			/*
491 			 * If the pool version is less than SPA_VERSION_BOOTFS,
492 			 * or the pool is still being created (version == 0),
493 			 * the bootfs property cannot be set.
494 			 */
495 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
496 				error = SET_ERROR(ENOTSUP);
497 				break;
498 			}
499 
500 			/*
501 			 * Make sure the vdev config is bootable
502 			 */
503 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
504 				error = SET_ERROR(ENOTSUP);
505 				break;
506 			}
507 
508 			reset_bootfs = 1;
509 
510 			error = nvpair_value_string(elem, &strval);
511 
512 			if (!error) {
513 				objset_t *os;
514 				uint64_t propval;
515 
516 				if (strval == NULL || strval[0] == '\0') {
517 					objnum = zpool_prop_default_numeric(
518 					    ZPOOL_PROP_BOOTFS);
519 					break;
520 				}
521 
522 				if (error = dmu_objset_hold(strval, FTAG, &os))
523 					break;
524 
525 				/*
526 				 * Must be ZPL, and its property settings
527 				 * must be supported by GRUB (compression
528 				 * is not gzip, and large blocks are not used).
529 				 */
530 
531 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
532 					error = SET_ERROR(ENOTSUP);
533 				} else if ((error =
534 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
535 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
536 				    &propval)) == 0 &&
537 				    !BOOTFS_COMPRESS_VALID(propval)) {
538 					error = SET_ERROR(ENOTSUP);
539 				} else {
540 					objnum = dmu_objset_id(os);
541 				}
542 				dmu_objset_rele(os, FTAG);
543 			}
544 			break;
545 
546 		case ZPOOL_PROP_FAILUREMODE:
547 			error = nvpair_value_uint64(elem, &intval);
548 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
549 			    intval > ZIO_FAILURE_MODE_PANIC))
550 				error = SET_ERROR(EINVAL);
551 
552 			/*
553 			 * This is a special case which only occurs when
554 			 * the pool has completely failed. This allows
555 			 * the user to change the in-core failmode property
556 			 * without syncing it out to disk (I/Os might
557 			 * currently be blocked). We do this by returning
558 			 * EIO to the caller (spa_prop_set) to trick it
559 			 * into thinking we encountered a property validation
560 			 * error.
561 			 */
562 			if (!error && spa_suspended(spa)) {
563 				spa->spa_failmode = intval;
564 				error = SET_ERROR(EIO);
565 			}
566 			break;
567 
568 		case ZPOOL_PROP_CACHEFILE:
569 			if ((error = nvpair_value_string(elem, &strval)) != 0)
570 				break;
571 
572 			if (strval[0] == '\0')
573 				break;
574 
575 			if (strcmp(strval, "none") == 0)
576 				break;
577 
578 			if (strval[0] != '/') {
579 				error = SET_ERROR(EINVAL);
580 				break;
581 			}
582 
583 			slash = strrchr(strval, '/');
584 			ASSERT(slash != NULL);
585 
586 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
587 			    strcmp(slash, "/..") == 0)
588 				error = SET_ERROR(EINVAL);
589 			break;
590 
591 		case ZPOOL_PROP_COMMENT:
592 			if ((error = nvpair_value_string(elem, &strval)) != 0)
593 				break;
594 			for (check = strval; *check != '\0'; check++) {
595 				/*
596 				 * The kernel doesn't have an easy isprint()
597 				 * check.  For this kernel check, we merely
598 				 * check ASCII apart from DEL.  Fix this if
599 				 * there is an easy-to-use kernel isprint().
600 				 */
601 				if (*check >= 0x7f) {
602 					error = SET_ERROR(EINVAL);
603 					break;
604 				}
605 			}
606 			if (strlen(strval) > ZPROP_MAX_COMMENT)
607 				error = E2BIG;
608 			break;
609 
610 		case ZPOOL_PROP_DEDUPDITTO:
611 			if (spa_version(spa) < SPA_VERSION_DEDUP)
612 				error = SET_ERROR(ENOTSUP);
613 			else
614 				error = nvpair_value_uint64(elem, &intval);
615 			if (error == 0 &&
616 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
617 				error = SET_ERROR(EINVAL);
618 			break;
619 		}
620 
621 		if (error)
622 			break;
623 	}
624 
625 	if (!error && reset_bootfs) {
626 		error = nvlist_remove(props,
627 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
628 
629 		if (!error) {
630 			error = nvlist_add_uint64(props,
631 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
632 		}
633 	}
634 
635 	return (error);
636 }
637 
638 void
639 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
640 {
641 	char *cachefile;
642 	spa_config_dirent_t *dp;
643 
644 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
645 	    &cachefile) != 0)
646 		return;
647 
648 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
649 	    KM_SLEEP);
650 
651 	if (cachefile[0] == '\0')
652 		dp->scd_path = spa_strdup(spa_config_path);
653 	else if (strcmp(cachefile, "none") == 0)
654 		dp->scd_path = NULL;
655 	else
656 		dp->scd_path = spa_strdup(cachefile);
657 
658 	list_insert_head(&spa->spa_config_list, dp);
659 	if (need_sync)
660 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
661 }
662 
663 int
664 spa_prop_set(spa_t *spa, nvlist_t *nvp)
665 {
666 	int error;
667 	nvpair_t *elem = NULL;
668 	boolean_t need_sync = B_FALSE;
669 
670 	if ((error = spa_prop_validate(spa, nvp)) != 0)
671 		return (error);
672 
673 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
674 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
675 
676 		if (prop == ZPOOL_PROP_CACHEFILE ||
677 		    prop == ZPOOL_PROP_ALTROOT ||
678 		    prop == ZPOOL_PROP_READONLY)
679 			continue;
680 
681 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
682 			uint64_t ver;
683 
684 			if (prop == ZPOOL_PROP_VERSION) {
685 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
686 			} else {
687 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
688 				ver = SPA_VERSION_FEATURES;
689 				need_sync = B_TRUE;
690 			}
691 
692 			/* Save time if the version is already set. */
693 			if (ver == spa_version(spa))
694 				continue;
695 
696 			/*
697 			 * In addition to the pool directory object, we might
698 			 * create the pool properties object, the features for
699 			 * read object, the features for write object, or the
700 			 * feature descriptions object.
701 			 */
702 			error = dsl_sync_task(spa->spa_name, NULL,
703 			    spa_sync_version, &ver,
704 			    6, ZFS_SPACE_CHECK_RESERVED);
705 			if (error)
706 				return (error);
707 			continue;
708 		}
709 
710 		need_sync = B_TRUE;
711 		break;
712 	}
713 
714 	if (need_sync) {
715 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
716 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
717 	}
718 
719 	return (0);
720 }
721 
722 /*
723  * If the bootfs property value is dsobj, clear it.
724  */
725 void
726 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
727 {
728 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
729 		VERIFY(zap_remove(spa->spa_meta_objset,
730 		    spa->spa_pool_props_object,
731 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
732 		spa->spa_bootfs = 0;
733 	}
734 }
735 
736 /*ARGSUSED*/
737 static int
738 spa_change_guid_check(void *arg, dmu_tx_t *tx)
739 {
740 	uint64_t *newguid = arg;
741 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
742 	vdev_t *rvd = spa->spa_root_vdev;
743 	uint64_t vdev_state;
744 
745 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
746 	vdev_state = rvd->vdev_state;
747 	spa_config_exit(spa, SCL_STATE, FTAG);
748 
749 	if (vdev_state != VDEV_STATE_HEALTHY)
750 		return (SET_ERROR(ENXIO));
751 
752 	ASSERT3U(spa_guid(spa), !=, *newguid);
753 
754 	return (0);
755 }
756 
757 static void
758 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
759 {
760 	uint64_t *newguid = arg;
761 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
762 	uint64_t oldguid;
763 	vdev_t *rvd = spa->spa_root_vdev;
764 
765 	oldguid = spa_guid(spa);
766 
767 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
768 	rvd->vdev_guid = *newguid;
769 	rvd->vdev_guid_sum += (*newguid - oldguid);
770 	vdev_config_dirty(rvd);
771 	spa_config_exit(spa, SCL_STATE, FTAG);
772 
773 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
774 	    oldguid, *newguid);
775 }
776 
777 /*
778  * Change the GUID for the pool.  This is done so that we can later
779  * re-import a pool built from a clone of our own vdevs.  We will modify
780  * the root vdev's guid, our own pool guid, and then mark all of our
781  * vdevs dirty.  Note that we must make sure that all our vdevs are
782  * online when we do this, or else any vdevs that weren't present
783  * would be orphaned from our pool.  We are also going to issue a
784  * sysevent to update any watchers.
785  */
786 int
787 spa_change_guid(spa_t *spa)
788 {
789 	int error;
790 	uint64_t guid;
791 
792 	mutex_enter(&spa->spa_vdev_top_lock);
793 	mutex_enter(&spa_namespace_lock);
794 	guid = spa_generate_guid(NULL);
795 
796 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
797 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
798 
799 	if (error == 0) {
800 		spa_config_sync(spa, B_FALSE, B_TRUE);
801 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
802 	}
803 
804 	mutex_exit(&spa_namespace_lock);
805 	mutex_exit(&spa->spa_vdev_top_lock);
806 
807 	return (error);
808 }
809 
810 /*
811  * ==========================================================================
812  * SPA state manipulation (open/create/destroy/import/export)
813  * ==========================================================================
814  */
815 
816 static int
817 spa_error_entry_compare(const void *a, const void *b)
818 {
819 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
820 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
821 	int ret;
822 
823 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
824 	    sizeof (zbookmark_phys_t));
825 
826 	if (ret < 0)
827 		return (-1);
828 	else if (ret > 0)
829 		return (1);
830 	else
831 		return (0);
832 }
833 
834 /*
835  * Utility function which retrieves copies of the current logs and
836  * re-initializes them in the process.
837  */
838 void
839 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
840 {
841 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
842 
843 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
844 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
845 
846 	avl_create(&spa->spa_errlist_scrub,
847 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
848 	    offsetof(spa_error_entry_t, se_avl));
849 	avl_create(&spa->spa_errlist_last,
850 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
851 	    offsetof(spa_error_entry_t, se_avl));
852 }
853 
854 static void
855 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
856 {
857 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
858 	enum zti_modes mode = ztip->zti_mode;
859 	uint_t value = ztip->zti_value;
860 	uint_t count = ztip->zti_count;
861 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
862 	char name[32];
863 	uint_t flags = 0;
864 	boolean_t batch = B_FALSE;
865 
866 	if (mode == ZTI_MODE_NULL) {
867 		tqs->stqs_count = 0;
868 		tqs->stqs_taskq = NULL;
869 		return;
870 	}
871 
872 	ASSERT3U(count, >, 0);
873 
874 	tqs->stqs_count = count;
875 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
876 
877 	switch (mode) {
878 	case ZTI_MODE_FIXED:
879 		ASSERT3U(value, >=, 1);
880 		value = MAX(value, 1);
881 		break;
882 
883 	case ZTI_MODE_BATCH:
884 		batch = B_TRUE;
885 		flags |= TASKQ_THREADS_CPU_PCT;
886 		value = zio_taskq_batch_pct;
887 		break;
888 
889 	default:
890 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
891 		    "spa_activate()",
892 		    zio_type_name[t], zio_taskq_types[q], mode, value);
893 		break;
894 	}
895 
896 	for (uint_t i = 0; i < count; i++) {
897 		taskq_t *tq;
898 
899 		if (count > 1) {
900 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
901 			    zio_type_name[t], zio_taskq_types[q], i);
902 		} else {
903 			(void) snprintf(name, sizeof (name), "%s_%s",
904 			    zio_type_name[t], zio_taskq_types[q]);
905 		}
906 
907 #ifdef SYSDC
908 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
909 			if (batch)
910 				flags |= TASKQ_DC_BATCH;
911 
912 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
913 			    spa->spa_proc, zio_taskq_basedc, flags);
914 		} else {
915 #endif
916 			pri_t pri = maxclsyspri;
917 			/*
918 			 * The write issue taskq can be extremely CPU
919 			 * intensive.  Run it at slightly lower priority
920 			 * than the other taskqs.
921 			 * FreeBSD notes:
922 			 * - numerically higher priorities are lower priorities;
923 			 * - if priorities divided by four (RQ_PPQ) are equal
924 			 *   then a difference between them is insignificant.
925 			 */
926 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
927 #ifdef illumos
928 				pri--;
929 #else
930 				pri += 4;
931 #endif
932 
933 			tq = taskq_create_proc(name, value, pri, 50,
934 			    INT_MAX, spa->spa_proc, flags);
935 #ifdef SYSDC
936 		}
937 #endif
938 
939 		tqs->stqs_taskq[i] = tq;
940 	}
941 }
942 
943 static void
944 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
945 {
946 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
947 
948 	if (tqs->stqs_taskq == NULL) {
949 		ASSERT0(tqs->stqs_count);
950 		return;
951 	}
952 
953 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
954 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
955 		taskq_destroy(tqs->stqs_taskq[i]);
956 	}
957 
958 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
959 	tqs->stqs_taskq = NULL;
960 }
961 
962 /*
963  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
964  * Note that a type may have multiple discrete taskqs to avoid lock contention
965  * on the taskq itself. In that case we choose which taskq at random by using
966  * the low bits of gethrtime().
967  */
968 void
969 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
970     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
971 {
972 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
973 	taskq_t *tq;
974 
975 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
976 	ASSERT3U(tqs->stqs_count, !=, 0);
977 
978 	if (tqs->stqs_count == 1) {
979 		tq = tqs->stqs_taskq[0];
980 	} else {
981 #if defined(__FreeBSD__) && defined(_KERNEL)
982 		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
983 #else
984 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
985 #endif
986 	}
987 
988 	taskq_dispatch_ent(tq, func, arg, flags, ent);
989 }
990 
991 static void
992 spa_create_zio_taskqs(spa_t *spa)
993 {
994 	for (int t = 0; t < ZIO_TYPES; t++) {
995 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
996 			spa_taskqs_init(spa, t, q);
997 		}
998 	}
999 }
1000 
1001 #ifdef _KERNEL
1002 #ifdef SPA_PROCESS
1003 static void
1004 spa_thread(void *arg)
1005 {
1006 	callb_cpr_t cprinfo;
1007 
1008 	spa_t *spa = arg;
1009 	user_t *pu = PTOU(curproc);
1010 
1011 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1012 	    spa->spa_name);
1013 
1014 	ASSERT(curproc != &p0);
1015 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1016 	    "zpool-%s", spa->spa_name);
1017 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1018 
1019 #ifdef PSRSET_BIND
1020 	/* bind this thread to the requested psrset */
1021 	if (zio_taskq_psrset_bind != PS_NONE) {
1022 		pool_lock();
1023 		mutex_enter(&cpu_lock);
1024 		mutex_enter(&pidlock);
1025 		mutex_enter(&curproc->p_lock);
1026 
1027 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1028 		    0, NULL, NULL) == 0)  {
1029 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1030 		} else {
1031 			cmn_err(CE_WARN,
1032 			    "Couldn't bind process for zfs pool \"%s\" to "
1033 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1034 		}
1035 
1036 		mutex_exit(&curproc->p_lock);
1037 		mutex_exit(&pidlock);
1038 		mutex_exit(&cpu_lock);
1039 		pool_unlock();
1040 	}
1041 #endif
1042 
1043 #ifdef SYSDC
1044 	if (zio_taskq_sysdc) {
1045 		sysdc_thread_enter(curthread, 100, 0);
1046 	}
1047 #endif
1048 
1049 	spa->spa_proc = curproc;
1050 	spa->spa_did = curthread->t_did;
1051 
1052 	spa_create_zio_taskqs(spa);
1053 
1054 	mutex_enter(&spa->spa_proc_lock);
1055 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1056 
1057 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1058 	cv_broadcast(&spa->spa_proc_cv);
1059 
1060 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1061 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1062 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1063 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1064 
1065 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1066 	spa->spa_proc_state = SPA_PROC_GONE;
1067 	spa->spa_proc = &p0;
1068 	cv_broadcast(&spa->spa_proc_cv);
1069 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1070 
1071 	mutex_enter(&curproc->p_lock);
1072 	lwp_exit();
1073 }
1074 #endif	/* SPA_PROCESS */
1075 #endif
1076 
1077 /*
1078  * Activate an uninitialized pool.
1079  */
1080 static void
1081 spa_activate(spa_t *spa, int mode)
1082 {
1083 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1084 
1085 	spa->spa_state = POOL_STATE_ACTIVE;
1086 	spa->spa_mode = mode;
1087 
1088 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1089 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1090 
1091 	/* Try to create a covering process */
1092 	mutex_enter(&spa->spa_proc_lock);
1093 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1094 	ASSERT(spa->spa_proc == &p0);
1095 	spa->spa_did = 0;
1096 
1097 #ifdef SPA_PROCESS
1098 	/* Only create a process if we're going to be around a while. */
1099 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1100 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1101 		    NULL, 0) == 0) {
1102 			spa->spa_proc_state = SPA_PROC_CREATED;
1103 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1104 				cv_wait(&spa->spa_proc_cv,
1105 				    &spa->spa_proc_lock);
1106 			}
1107 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1108 			ASSERT(spa->spa_proc != &p0);
1109 			ASSERT(spa->spa_did != 0);
1110 		} else {
1111 #ifdef _KERNEL
1112 			cmn_err(CE_WARN,
1113 			    "Couldn't create process for zfs pool \"%s\"\n",
1114 			    spa->spa_name);
1115 #endif
1116 		}
1117 	}
1118 #endif	/* SPA_PROCESS */
1119 	mutex_exit(&spa->spa_proc_lock);
1120 
1121 	/* If we didn't create a process, we need to create our taskqs. */
1122 	ASSERT(spa->spa_proc == &p0);
1123 	if (spa->spa_proc == &p0) {
1124 		spa_create_zio_taskqs(spa);
1125 	}
1126 
1127 	/*
1128 	 * Start TRIM thread.
1129 	 */
1130 	trim_thread_create(spa);
1131 
1132 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1133 	    offsetof(vdev_t, vdev_config_dirty_node));
1134 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1135 	    offsetof(objset_t, os_evicting_node));
1136 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1137 	    offsetof(vdev_t, vdev_state_dirty_node));
1138 
1139 	txg_list_create(&spa->spa_vdev_txg_list,
1140 	    offsetof(struct vdev, vdev_txg_node));
1141 
1142 	avl_create(&spa->spa_errlist_scrub,
1143 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1144 	    offsetof(spa_error_entry_t, se_avl));
1145 	avl_create(&spa->spa_errlist_last,
1146 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1147 	    offsetof(spa_error_entry_t, se_avl));
1148 }
1149 
1150 /*
1151  * Opposite of spa_activate().
1152  */
1153 static void
1154 spa_deactivate(spa_t *spa)
1155 {
1156 	ASSERT(spa->spa_sync_on == B_FALSE);
1157 	ASSERT(spa->spa_dsl_pool == NULL);
1158 	ASSERT(spa->spa_root_vdev == NULL);
1159 	ASSERT(spa->spa_async_zio_root == NULL);
1160 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1161 
1162 	/*
1163 	 * Stop TRIM thread in case spa_unload() wasn't called directly
1164 	 * before spa_deactivate().
1165 	 */
1166 	trim_thread_destroy(spa);
1167 
1168 	spa_evicting_os_wait(spa);
1169 
1170 	txg_list_destroy(&spa->spa_vdev_txg_list);
1171 
1172 	list_destroy(&spa->spa_config_dirty_list);
1173 	list_destroy(&spa->spa_evicting_os_list);
1174 	list_destroy(&spa->spa_state_dirty_list);
1175 
1176 	for (int t = 0; t < ZIO_TYPES; t++) {
1177 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1178 			spa_taskqs_fini(spa, t, q);
1179 		}
1180 	}
1181 
1182 	metaslab_class_destroy(spa->spa_normal_class);
1183 	spa->spa_normal_class = NULL;
1184 
1185 	metaslab_class_destroy(spa->spa_log_class);
1186 	spa->spa_log_class = NULL;
1187 
1188 	/*
1189 	 * If this was part of an import or the open otherwise failed, we may
1190 	 * still have errors left in the queues.  Empty them just in case.
1191 	 */
1192 	spa_errlog_drain(spa);
1193 
1194 	avl_destroy(&spa->spa_errlist_scrub);
1195 	avl_destroy(&spa->spa_errlist_last);
1196 
1197 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1198 
1199 	mutex_enter(&spa->spa_proc_lock);
1200 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1201 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1202 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1203 		cv_broadcast(&spa->spa_proc_cv);
1204 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1205 			ASSERT(spa->spa_proc != &p0);
1206 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1207 		}
1208 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1209 		spa->spa_proc_state = SPA_PROC_NONE;
1210 	}
1211 	ASSERT(spa->spa_proc == &p0);
1212 	mutex_exit(&spa->spa_proc_lock);
1213 
1214 #ifdef SPA_PROCESS
1215 	/*
1216 	 * We want to make sure spa_thread() has actually exited the ZFS
1217 	 * module, so that the module can't be unloaded out from underneath
1218 	 * it.
1219 	 */
1220 	if (spa->spa_did != 0) {
1221 		thread_join(spa->spa_did);
1222 		spa->spa_did = 0;
1223 	}
1224 #endif	/* SPA_PROCESS */
1225 }
1226 
1227 /*
1228  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1229  * will create all the necessary vdevs in the appropriate layout, with each vdev
1230  * in the CLOSED state.  This will prep the pool before open/creation/import.
1231  * All vdev validation is done by the vdev_alloc() routine.
1232  */
1233 static int
1234 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1235     uint_t id, int atype)
1236 {
1237 	nvlist_t **child;
1238 	uint_t children;
1239 	int error;
1240 
1241 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1242 		return (error);
1243 
1244 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1245 		return (0);
1246 
1247 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1248 	    &child, &children);
1249 
1250 	if (error == ENOENT)
1251 		return (0);
1252 
1253 	if (error) {
1254 		vdev_free(*vdp);
1255 		*vdp = NULL;
1256 		return (SET_ERROR(EINVAL));
1257 	}
1258 
1259 	for (int c = 0; c < children; c++) {
1260 		vdev_t *vd;
1261 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1262 		    atype)) != 0) {
1263 			vdev_free(*vdp);
1264 			*vdp = NULL;
1265 			return (error);
1266 		}
1267 	}
1268 
1269 	ASSERT(*vdp != NULL);
1270 
1271 	return (0);
1272 }
1273 
1274 /*
1275  * Opposite of spa_load().
1276  */
1277 static void
1278 spa_unload(spa_t *spa)
1279 {
1280 	int i;
1281 
1282 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1283 
1284 	/*
1285 	 * Stop TRIM thread.
1286 	 */
1287 	trim_thread_destroy(spa);
1288 
1289 	/*
1290 	 * Stop async tasks.
1291 	 */
1292 	spa_async_suspend(spa);
1293 
1294 	/*
1295 	 * Stop syncing.
1296 	 */
1297 	if (spa->spa_sync_on) {
1298 		txg_sync_stop(spa->spa_dsl_pool);
1299 		spa->spa_sync_on = B_FALSE;
1300 	}
1301 
1302 	/*
1303 	 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1304 	 * to call it earlier, before we wait for async i/o to complete.
1305 	 * This ensures that there is no async metaslab prefetching, by
1306 	 * calling taskq_wait(mg_taskq).
1307 	 */
1308 	if (spa->spa_root_vdev != NULL) {
1309 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1310 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1311 			vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1312 		spa_config_exit(spa, SCL_ALL, FTAG);
1313 	}
1314 
1315 	/*
1316 	 * Wait for any outstanding async I/O to complete.
1317 	 */
1318 	if (spa->spa_async_zio_root != NULL) {
1319 		for (int i = 0; i < max_ncpus; i++)
1320 			(void) zio_wait(spa->spa_async_zio_root[i]);
1321 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1322 		spa->spa_async_zio_root = NULL;
1323 	}
1324 
1325 	bpobj_close(&spa->spa_deferred_bpobj);
1326 
1327 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1328 
1329 	/*
1330 	 * Close all vdevs.
1331 	 */
1332 	if (spa->spa_root_vdev)
1333 		vdev_free(spa->spa_root_vdev);
1334 	ASSERT(spa->spa_root_vdev == NULL);
1335 
1336 	/*
1337 	 * Close the dsl pool.
1338 	 */
1339 	if (spa->spa_dsl_pool) {
1340 		dsl_pool_close(spa->spa_dsl_pool);
1341 		spa->spa_dsl_pool = NULL;
1342 		spa->spa_meta_objset = NULL;
1343 	}
1344 
1345 	ddt_unload(spa);
1346 
1347 	/*
1348 	 * Drop and purge level 2 cache
1349 	 */
1350 	spa_l2cache_drop(spa);
1351 
1352 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1353 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1354 	if (spa->spa_spares.sav_vdevs) {
1355 		kmem_free(spa->spa_spares.sav_vdevs,
1356 		    spa->spa_spares.sav_count * sizeof (void *));
1357 		spa->spa_spares.sav_vdevs = NULL;
1358 	}
1359 	if (spa->spa_spares.sav_config) {
1360 		nvlist_free(spa->spa_spares.sav_config);
1361 		spa->spa_spares.sav_config = NULL;
1362 	}
1363 	spa->spa_spares.sav_count = 0;
1364 
1365 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1366 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1367 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1368 	}
1369 	if (spa->spa_l2cache.sav_vdevs) {
1370 		kmem_free(spa->spa_l2cache.sav_vdevs,
1371 		    spa->spa_l2cache.sav_count * sizeof (void *));
1372 		spa->spa_l2cache.sav_vdevs = NULL;
1373 	}
1374 	if (spa->spa_l2cache.sav_config) {
1375 		nvlist_free(spa->spa_l2cache.sav_config);
1376 		spa->spa_l2cache.sav_config = NULL;
1377 	}
1378 	spa->spa_l2cache.sav_count = 0;
1379 
1380 	spa->spa_async_suspended = 0;
1381 
1382 	if (spa->spa_comment != NULL) {
1383 		spa_strfree(spa->spa_comment);
1384 		spa->spa_comment = NULL;
1385 	}
1386 
1387 	spa_config_exit(spa, SCL_ALL, FTAG);
1388 }
1389 
1390 /*
1391  * Load (or re-load) the current list of vdevs describing the active spares for
1392  * this pool.  When this is called, we have some form of basic information in
1393  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1394  * then re-generate a more complete list including status information.
1395  */
1396 static void
1397 spa_load_spares(spa_t *spa)
1398 {
1399 	nvlist_t **spares;
1400 	uint_t nspares;
1401 	int i;
1402 	vdev_t *vd, *tvd;
1403 
1404 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1405 
1406 	/*
1407 	 * First, close and free any existing spare vdevs.
1408 	 */
1409 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1410 		vd = spa->spa_spares.sav_vdevs[i];
1411 
1412 		/* Undo the call to spa_activate() below */
1413 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1414 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1415 			spa_spare_remove(tvd);
1416 		vdev_close(vd);
1417 		vdev_free(vd);
1418 	}
1419 
1420 	if (spa->spa_spares.sav_vdevs)
1421 		kmem_free(spa->spa_spares.sav_vdevs,
1422 		    spa->spa_spares.sav_count * sizeof (void *));
1423 
1424 	if (spa->spa_spares.sav_config == NULL)
1425 		nspares = 0;
1426 	else
1427 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1428 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1429 
1430 	spa->spa_spares.sav_count = (int)nspares;
1431 	spa->spa_spares.sav_vdevs = NULL;
1432 
1433 	if (nspares == 0)
1434 		return;
1435 
1436 	/*
1437 	 * Construct the array of vdevs, opening them to get status in the
1438 	 * process.   For each spare, there is potentially two different vdev_t
1439 	 * structures associated with it: one in the list of spares (used only
1440 	 * for basic validation purposes) and one in the active vdev
1441 	 * configuration (if it's spared in).  During this phase we open and
1442 	 * validate each vdev on the spare list.  If the vdev also exists in the
1443 	 * active configuration, then we also mark this vdev as an active spare.
1444 	 */
1445 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1446 	    KM_SLEEP);
1447 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1448 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1449 		    VDEV_ALLOC_SPARE) == 0);
1450 		ASSERT(vd != NULL);
1451 
1452 		spa->spa_spares.sav_vdevs[i] = vd;
1453 
1454 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1455 		    B_FALSE)) != NULL) {
1456 			if (!tvd->vdev_isspare)
1457 				spa_spare_add(tvd);
1458 
1459 			/*
1460 			 * We only mark the spare active if we were successfully
1461 			 * able to load the vdev.  Otherwise, importing a pool
1462 			 * with a bad active spare would result in strange
1463 			 * behavior, because multiple pool would think the spare
1464 			 * is actively in use.
1465 			 *
1466 			 * There is a vulnerability here to an equally bizarre
1467 			 * circumstance, where a dead active spare is later
1468 			 * brought back to life (onlined or otherwise).  Given
1469 			 * the rarity of this scenario, and the extra complexity
1470 			 * it adds, we ignore the possibility.
1471 			 */
1472 			if (!vdev_is_dead(tvd))
1473 				spa_spare_activate(tvd);
1474 		}
1475 
1476 		vd->vdev_top = vd;
1477 		vd->vdev_aux = &spa->spa_spares;
1478 
1479 		if (vdev_open(vd) != 0)
1480 			continue;
1481 
1482 		if (vdev_validate_aux(vd) == 0)
1483 			spa_spare_add(vd);
1484 	}
1485 
1486 	/*
1487 	 * Recompute the stashed list of spares, with status information
1488 	 * this time.
1489 	 */
1490 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1491 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1492 
1493 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1494 	    KM_SLEEP);
1495 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1496 		spares[i] = vdev_config_generate(spa,
1497 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1498 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1499 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1500 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1501 		nvlist_free(spares[i]);
1502 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1503 }
1504 
1505 /*
1506  * Load (or re-load) the current list of vdevs describing the active l2cache for
1507  * this pool.  When this is called, we have some form of basic information in
1508  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1509  * then re-generate a more complete list including status information.
1510  * Devices which are already active have their details maintained, and are
1511  * not re-opened.
1512  */
1513 static void
1514 spa_load_l2cache(spa_t *spa)
1515 {
1516 	nvlist_t **l2cache;
1517 	uint_t nl2cache;
1518 	int i, j, oldnvdevs;
1519 	uint64_t guid;
1520 	vdev_t *vd, **oldvdevs, **newvdevs;
1521 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1522 
1523 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1524 
1525 	if (sav->sav_config != NULL) {
1526 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1527 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1528 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1529 	} else {
1530 		nl2cache = 0;
1531 		newvdevs = NULL;
1532 	}
1533 
1534 	oldvdevs = sav->sav_vdevs;
1535 	oldnvdevs = sav->sav_count;
1536 	sav->sav_vdevs = NULL;
1537 	sav->sav_count = 0;
1538 
1539 	/*
1540 	 * Process new nvlist of vdevs.
1541 	 */
1542 	for (i = 0; i < nl2cache; i++) {
1543 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1544 		    &guid) == 0);
1545 
1546 		newvdevs[i] = NULL;
1547 		for (j = 0; j < oldnvdevs; j++) {
1548 			vd = oldvdevs[j];
1549 			if (vd != NULL && guid == vd->vdev_guid) {
1550 				/*
1551 				 * Retain previous vdev for add/remove ops.
1552 				 */
1553 				newvdevs[i] = vd;
1554 				oldvdevs[j] = NULL;
1555 				break;
1556 			}
1557 		}
1558 
1559 		if (newvdevs[i] == NULL) {
1560 			/*
1561 			 * Create new vdev
1562 			 */
1563 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1564 			    VDEV_ALLOC_L2CACHE) == 0);
1565 			ASSERT(vd != NULL);
1566 			newvdevs[i] = vd;
1567 
1568 			/*
1569 			 * Commit this vdev as an l2cache device,
1570 			 * even if it fails to open.
1571 			 */
1572 			spa_l2cache_add(vd);
1573 
1574 			vd->vdev_top = vd;
1575 			vd->vdev_aux = sav;
1576 
1577 			spa_l2cache_activate(vd);
1578 
1579 			if (vdev_open(vd) != 0)
1580 				continue;
1581 
1582 			(void) vdev_validate_aux(vd);
1583 
1584 			if (!vdev_is_dead(vd))
1585 				l2arc_add_vdev(spa, vd);
1586 		}
1587 	}
1588 
1589 	/*
1590 	 * Purge vdevs that were dropped
1591 	 */
1592 	for (i = 0; i < oldnvdevs; i++) {
1593 		uint64_t pool;
1594 
1595 		vd = oldvdevs[i];
1596 		if (vd != NULL) {
1597 			ASSERT(vd->vdev_isl2cache);
1598 
1599 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1600 			    pool != 0ULL && l2arc_vdev_present(vd))
1601 				l2arc_remove_vdev(vd);
1602 			vdev_clear_stats(vd);
1603 			vdev_free(vd);
1604 		}
1605 	}
1606 
1607 	if (oldvdevs)
1608 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1609 
1610 	if (sav->sav_config == NULL)
1611 		goto out;
1612 
1613 	sav->sav_vdevs = newvdevs;
1614 	sav->sav_count = (int)nl2cache;
1615 
1616 	/*
1617 	 * Recompute the stashed list of l2cache devices, with status
1618 	 * information this time.
1619 	 */
1620 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1621 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1622 
1623 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1624 	for (i = 0; i < sav->sav_count; i++)
1625 		l2cache[i] = vdev_config_generate(spa,
1626 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1627 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1628 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1629 out:
1630 	for (i = 0; i < sav->sav_count; i++)
1631 		nvlist_free(l2cache[i]);
1632 	if (sav->sav_count)
1633 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1634 }
1635 
1636 static int
1637 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1638 {
1639 	dmu_buf_t *db;
1640 	char *packed = NULL;
1641 	size_t nvsize = 0;
1642 	int error;
1643 	*value = NULL;
1644 
1645 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1646 	if (error != 0)
1647 		return (error);
1648 
1649 	nvsize = *(uint64_t *)db->db_data;
1650 	dmu_buf_rele(db, FTAG);
1651 
1652 	packed = kmem_alloc(nvsize, KM_SLEEP);
1653 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1654 	    DMU_READ_PREFETCH);
1655 	if (error == 0)
1656 		error = nvlist_unpack(packed, nvsize, value, 0);
1657 	kmem_free(packed, nvsize);
1658 
1659 	return (error);
1660 }
1661 
1662 /*
1663  * Checks to see if the given vdev could not be opened, in which case we post a
1664  * sysevent to notify the autoreplace code that the device has been removed.
1665  */
1666 static void
1667 spa_check_removed(vdev_t *vd)
1668 {
1669 	for (int c = 0; c < vd->vdev_children; c++)
1670 		spa_check_removed(vd->vdev_child[c]);
1671 
1672 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1673 	    !vd->vdev_ishole) {
1674 		zfs_post_autoreplace(vd->vdev_spa, vd);
1675 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1676 	}
1677 }
1678 
1679 static void
1680 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1681 {
1682 	ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1683 
1684 	vd->vdev_top_zap = mvd->vdev_top_zap;
1685 	vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1686 
1687 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1688 		spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1689 	}
1690 }
1691 
1692 /*
1693  * Validate the current config against the MOS config
1694  */
1695 static boolean_t
1696 spa_config_valid(spa_t *spa, nvlist_t *config)
1697 {
1698 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1699 	nvlist_t *nv;
1700 
1701 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1702 
1703 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1704 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1705 
1706 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1707 
1708 	/*
1709 	 * If we're doing a normal import, then build up any additional
1710 	 * diagnostic information about missing devices in this config.
1711 	 * We'll pass this up to the user for further processing.
1712 	 */
1713 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1714 		nvlist_t **child, *nv;
1715 		uint64_t idx = 0;
1716 
1717 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1718 		    KM_SLEEP);
1719 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1720 
1721 		for (int c = 0; c < rvd->vdev_children; c++) {
1722 			vdev_t *tvd = rvd->vdev_child[c];
1723 			vdev_t *mtvd  = mrvd->vdev_child[c];
1724 
1725 			if (tvd->vdev_ops == &vdev_missing_ops &&
1726 			    mtvd->vdev_ops != &vdev_missing_ops &&
1727 			    mtvd->vdev_islog)
1728 				child[idx++] = vdev_config_generate(spa, mtvd,
1729 				    B_FALSE, 0);
1730 		}
1731 
1732 		if (idx) {
1733 			VERIFY(nvlist_add_nvlist_array(nv,
1734 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1735 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1736 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1737 
1738 			for (int i = 0; i < idx; i++)
1739 				nvlist_free(child[i]);
1740 		}
1741 		nvlist_free(nv);
1742 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1743 	}
1744 
1745 	/*
1746 	 * Compare the root vdev tree with the information we have
1747 	 * from the MOS config (mrvd). Check each top-level vdev
1748 	 * with the corresponding MOS config top-level (mtvd).
1749 	 */
1750 	for (int c = 0; c < rvd->vdev_children; c++) {
1751 		vdev_t *tvd = rvd->vdev_child[c];
1752 		vdev_t *mtvd  = mrvd->vdev_child[c];
1753 
1754 		/*
1755 		 * Resolve any "missing" vdevs in the current configuration.
1756 		 * If we find that the MOS config has more accurate information
1757 		 * about the top-level vdev then use that vdev instead.
1758 		 */
1759 		if (tvd->vdev_ops == &vdev_missing_ops &&
1760 		    mtvd->vdev_ops != &vdev_missing_ops) {
1761 
1762 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1763 				continue;
1764 
1765 			/*
1766 			 * Device specific actions.
1767 			 */
1768 			if (mtvd->vdev_islog) {
1769 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1770 			} else {
1771 				/*
1772 				 * XXX - once we have 'readonly' pool
1773 				 * support we should be able to handle
1774 				 * missing data devices by transitioning
1775 				 * the pool to readonly.
1776 				 */
1777 				continue;
1778 			}
1779 
1780 			/*
1781 			 * Swap the missing vdev with the data we were
1782 			 * able to obtain from the MOS config.
1783 			 */
1784 			vdev_remove_child(rvd, tvd);
1785 			vdev_remove_child(mrvd, mtvd);
1786 
1787 			vdev_add_child(rvd, mtvd);
1788 			vdev_add_child(mrvd, tvd);
1789 
1790 			spa_config_exit(spa, SCL_ALL, FTAG);
1791 			vdev_load(mtvd);
1792 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1793 
1794 			vdev_reopen(rvd);
1795 		} else {
1796 			if (mtvd->vdev_islog) {
1797 				/*
1798 				 * Load the slog device's state from the MOS
1799 				 * config since it's possible that the label
1800 				 * does not contain the most up-to-date
1801 				 * information.
1802 				 */
1803 				vdev_load_log_state(tvd, mtvd);
1804 				vdev_reopen(tvd);
1805 			}
1806 
1807 			/*
1808 			 * Per-vdev ZAP info is stored exclusively in the MOS.
1809 			 */
1810 			spa_config_valid_zaps(tvd, mtvd);
1811 		}
1812 	}
1813 
1814 	vdev_free(mrvd);
1815 	spa_config_exit(spa, SCL_ALL, FTAG);
1816 
1817 	/*
1818 	 * Ensure we were able to validate the config.
1819 	 */
1820 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1821 }
1822 
1823 /*
1824  * Check for missing log devices
1825  */
1826 static boolean_t
1827 spa_check_logs(spa_t *spa)
1828 {
1829 	boolean_t rv = B_FALSE;
1830 	dsl_pool_t *dp = spa_get_dsl(spa);
1831 
1832 	switch (spa->spa_log_state) {
1833 	case SPA_LOG_MISSING:
1834 		/* need to recheck in case slog has been restored */
1835 	case SPA_LOG_UNKNOWN:
1836 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1837 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1838 		if (rv)
1839 			spa_set_log_state(spa, SPA_LOG_MISSING);
1840 		break;
1841 	}
1842 	return (rv);
1843 }
1844 
1845 static boolean_t
1846 spa_passivate_log(spa_t *spa)
1847 {
1848 	vdev_t *rvd = spa->spa_root_vdev;
1849 	boolean_t slog_found = B_FALSE;
1850 
1851 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1852 
1853 	if (!spa_has_slogs(spa))
1854 		return (B_FALSE);
1855 
1856 	for (int c = 0; c < rvd->vdev_children; c++) {
1857 		vdev_t *tvd = rvd->vdev_child[c];
1858 		metaslab_group_t *mg = tvd->vdev_mg;
1859 
1860 		if (tvd->vdev_islog) {
1861 			metaslab_group_passivate(mg);
1862 			slog_found = B_TRUE;
1863 		}
1864 	}
1865 
1866 	return (slog_found);
1867 }
1868 
1869 static void
1870 spa_activate_log(spa_t *spa)
1871 {
1872 	vdev_t *rvd = spa->spa_root_vdev;
1873 
1874 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1875 
1876 	for (int c = 0; c < rvd->vdev_children; c++) {
1877 		vdev_t *tvd = rvd->vdev_child[c];
1878 		metaslab_group_t *mg = tvd->vdev_mg;
1879 
1880 		if (tvd->vdev_islog)
1881 			metaslab_group_activate(mg);
1882 	}
1883 }
1884 
1885 int
1886 spa_offline_log(spa_t *spa)
1887 {
1888 	int error;
1889 
1890 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1891 	    NULL, DS_FIND_CHILDREN);
1892 	if (error == 0) {
1893 		/*
1894 		 * We successfully offlined the log device, sync out the
1895 		 * current txg so that the "stubby" block can be removed
1896 		 * by zil_sync().
1897 		 */
1898 		txg_wait_synced(spa->spa_dsl_pool, 0);
1899 	}
1900 	return (error);
1901 }
1902 
1903 static void
1904 spa_aux_check_removed(spa_aux_vdev_t *sav)
1905 {
1906 	int i;
1907 
1908 	for (i = 0; i < sav->sav_count; i++)
1909 		spa_check_removed(sav->sav_vdevs[i]);
1910 }
1911 
1912 void
1913 spa_claim_notify(zio_t *zio)
1914 {
1915 	spa_t *spa = zio->io_spa;
1916 
1917 	if (zio->io_error)
1918 		return;
1919 
1920 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1921 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1922 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1923 	mutex_exit(&spa->spa_props_lock);
1924 }
1925 
1926 typedef struct spa_load_error {
1927 	uint64_t	sle_meta_count;
1928 	uint64_t	sle_data_count;
1929 } spa_load_error_t;
1930 
1931 static void
1932 spa_load_verify_done(zio_t *zio)
1933 {
1934 	blkptr_t *bp = zio->io_bp;
1935 	spa_load_error_t *sle = zio->io_private;
1936 	dmu_object_type_t type = BP_GET_TYPE(bp);
1937 	int error = zio->io_error;
1938 	spa_t *spa = zio->io_spa;
1939 
1940 	if (error) {
1941 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1942 		    type != DMU_OT_INTENT_LOG)
1943 			atomic_inc_64(&sle->sle_meta_count);
1944 		else
1945 			atomic_inc_64(&sle->sle_data_count);
1946 	}
1947 	zio_data_buf_free(zio->io_data, zio->io_size);
1948 
1949 	mutex_enter(&spa->spa_scrub_lock);
1950 	spa->spa_scrub_inflight--;
1951 	cv_broadcast(&spa->spa_scrub_io_cv);
1952 	mutex_exit(&spa->spa_scrub_lock);
1953 }
1954 
1955 /*
1956  * Maximum number of concurrent scrub i/os to create while verifying
1957  * a pool while importing it.
1958  */
1959 int spa_load_verify_maxinflight = 10000;
1960 boolean_t spa_load_verify_metadata = B_TRUE;
1961 boolean_t spa_load_verify_data = B_TRUE;
1962 
1963 SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1964     &spa_load_verify_maxinflight, 0,
1965     "Maximum number of concurrent scrub I/Os to create while verifying a "
1966     "pool while importing it");
1967 
1968 SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1969     &spa_load_verify_metadata, 0,
1970     "Check metadata on import?");
1971 
1972 SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1973     &spa_load_verify_data, 0,
1974     "Check user data on import?");
1975 
1976 /*ARGSUSED*/
1977 static int
1978 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1979     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1980 {
1981 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1982 		return (0);
1983 	/*
1984 	 * Note: normally this routine will not be called if
1985 	 * spa_load_verify_metadata is not set.  However, it may be useful
1986 	 * to manually set the flag after the traversal has begun.
1987 	 */
1988 	if (!spa_load_verify_metadata)
1989 		return (0);
1990 	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1991 		return (0);
1992 
1993 	zio_t *rio = arg;
1994 	size_t size = BP_GET_PSIZE(bp);
1995 	void *data = zio_data_buf_alloc(size);
1996 
1997 	mutex_enter(&spa->spa_scrub_lock);
1998 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1999 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2000 	spa->spa_scrub_inflight++;
2001 	mutex_exit(&spa->spa_scrub_lock);
2002 
2003 	zio_nowait(zio_read(rio, spa, bp, data, size,
2004 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2005 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2006 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2007 	return (0);
2008 }
2009 
2010 /* ARGSUSED */
2011 int
2012 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2013 {
2014 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2015 		return (SET_ERROR(ENAMETOOLONG));
2016 
2017 	return (0);
2018 }
2019 
2020 static int
2021 spa_load_verify(spa_t *spa)
2022 {
2023 	zio_t *rio;
2024 	spa_load_error_t sle = { 0 };
2025 	zpool_rewind_policy_t policy;
2026 	boolean_t verify_ok = B_FALSE;
2027 	int error = 0;
2028 
2029 	zpool_get_rewind_policy(spa->spa_config, &policy);
2030 
2031 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2032 		return (0);
2033 
2034 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2035 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2036 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2037 	    DS_FIND_CHILDREN);
2038 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2039 	if (error != 0)
2040 		return (error);
2041 
2042 	rio = zio_root(spa, NULL, &sle,
2043 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2044 
2045 	if (spa_load_verify_metadata) {
2046 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2047 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2048 		    spa_load_verify_cb, rio);
2049 	}
2050 
2051 	(void) zio_wait(rio);
2052 
2053 	spa->spa_load_meta_errors = sle.sle_meta_count;
2054 	spa->spa_load_data_errors = sle.sle_data_count;
2055 
2056 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2057 	    sle.sle_data_count <= policy.zrp_maxdata) {
2058 		int64_t loss = 0;
2059 
2060 		verify_ok = B_TRUE;
2061 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2062 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2063 
2064 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2065 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2066 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2067 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2068 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2069 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2070 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2071 	} else {
2072 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2073 	}
2074 
2075 	if (error) {
2076 		if (error != ENXIO && error != EIO)
2077 			error = SET_ERROR(EIO);
2078 		return (error);
2079 	}
2080 
2081 	return (verify_ok ? 0 : EIO);
2082 }
2083 
2084 /*
2085  * Find a value in the pool props object.
2086  */
2087 static void
2088 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2089 {
2090 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2091 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2092 }
2093 
2094 /*
2095  * Find a value in the pool directory object.
2096  */
2097 static int
2098 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2099 {
2100 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2101 	    name, sizeof (uint64_t), 1, val));
2102 }
2103 
2104 static int
2105 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2106 {
2107 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2108 	return (err);
2109 }
2110 
2111 /*
2112  * Fix up config after a partly-completed split.  This is done with the
2113  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2114  * pool have that entry in their config, but only the splitting one contains
2115  * a list of all the guids of the vdevs that are being split off.
2116  *
2117  * This function determines what to do with that list: either rejoin
2118  * all the disks to the pool, or complete the splitting process.  To attempt
2119  * the rejoin, each disk that is offlined is marked online again, and
2120  * we do a reopen() call.  If the vdev label for every disk that was
2121  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2122  * then we call vdev_split() on each disk, and complete the split.
2123  *
2124  * Otherwise we leave the config alone, with all the vdevs in place in
2125  * the original pool.
2126  */
2127 static void
2128 spa_try_repair(spa_t *spa, nvlist_t *config)
2129 {
2130 	uint_t extracted;
2131 	uint64_t *glist;
2132 	uint_t i, gcount;
2133 	nvlist_t *nvl;
2134 	vdev_t **vd;
2135 	boolean_t attempt_reopen;
2136 
2137 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2138 		return;
2139 
2140 	/* check that the config is complete */
2141 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2142 	    &glist, &gcount) != 0)
2143 		return;
2144 
2145 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2146 
2147 	/* attempt to online all the vdevs & validate */
2148 	attempt_reopen = B_TRUE;
2149 	for (i = 0; i < gcount; i++) {
2150 		if (glist[i] == 0)	/* vdev is hole */
2151 			continue;
2152 
2153 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2154 		if (vd[i] == NULL) {
2155 			/*
2156 			 * Don't bother attempting to reopen the disks;
2157 			 * just do the split.
2158 			 */
2159 			attempt_reopen = B_FALSE;
2160 		} else {
2161 			/* attempt to re-online it */
2162 			vd[i]->vdev_offline = B_FALSE;
2163 		}
2164 	}
2165 
2166 	if (attempt_reopen) {
2167 		vdev_reopen(spa->spa_root_vdev);
2168 
2169 		/* check each device to see what state it's in */
2170 		for (extracted = 0, i = 0; i < gcount; i++) {
2171 			if (vd[i] != NULL &&
2172 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2173 				break;
2174 			++extracted;
2175 		}
2176 	}
2177 
2178 	/*
2179 	 * If every disk has been moved to the new pool, or if we never
2180 	 * even attempted to look at them, then we split them off for
2181 	 * good.
2182 	 */
2183 	if (!attempt_reopen || gcount == extracted) {
2184 		for (i = 0; i < gcount; i++)
2185 			if (vd[i] != NULL)
2186 				vdev_split(vd[i]);
2187 		vdev_reopen(spa->spa_root_vdev);
2188 	}
2189 
2190 	kmem_free(vd, gcount * sizeof (vdev_t *));
2191 }
2192 
2193 static int
2194 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2195     boolean_t mosconfig)
2196 {
2197 	nvlist_t *config = spa->spa_config;
2198 	char *ereport = FM_EREPORT_ZFS_POOL;
2199 	char *comment;
2200 	int error;
2201 	uint64_t pool_guid;
2202 	nvlist_t *nvl;
2203 
2204 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2205 		return (SET_ERROR(EINVAL));
2206 
2207 	ASSERT(spa->spa_comment == NULL);
2208 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2209 		spa->spa_comment = spa_strdup(comment);
2210 
2211 	/*
2212 	 * Versioning wasn't explicitly added to the label until later, so if
2213 	 * it's not present treat it as the initial version.
2214 	 */
2215 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2216 	    &spa->spa_ubsync.ub_version) != 0)
2217 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2218 
2219 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2220 	    &spa->spa_config_txg);
2221 
2222 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2223 	    spa_guid_exists(pool_guid, 0)) {
2224 		error = SET_ERROR(EEXIST);
2225 	} else {
2226 		spa->spa_config_guid = pool_guid;
2227 
2228 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2229 		    &nvl) == 0) {
2230 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2231 			    KM_SLEEP) == 0);
2232 		}
2233 
2234 		nvlist_free(spa->spa_load_info);
2235 		spa->spa_load_info = fnvlist_alloc();
2236 
2237 		gethrestime(&spa->spa_loaded_ts);
2238 		error = spa_load_impl(spa, pool_guid, config, state, type,
2239 		    mosconfig, &ereport);
2240 	}
2241 
2242 	/*
2243 	 * Don't count references from objsets that are already closed
2244 	 * and are making their way through the eviction process.
2245 	 */
2246 	spa_evicting_os_wait(spa);
2247 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2248 	if (error) {
2249 		if (error != EEXIST) {
2250 			spa->spa_loaded_ts.tv_sec = 0;
2251 			spa->spa_loaded_ts.tv_nsec = 0;
2252 		}
2253 		if (error != EBADF) {
2254 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2255 		}
2256 	}
2257 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2258 	spa->spa_ena = 0;
2259 
2260 	return (error);
2261 }
2262 
2263 /*
2264  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2265  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2266  * spa's per-vdev ZAP list.
2267  */
2268 static uint64_t
2269 vdev_count_verify_zaps(vdev_t *vd)
2270 {
2271 	spa_t *spa = vd->vdev_spa;
2272 	uint64_t total = 0;
2273 	if (vd->vdev_top_zap != 0) {
2274 		total++;
2275 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2276 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2277 	}
2278 	if (vd->vdev_leaf_zap != 0) {
2279 		total++;
2280 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2281 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2282 	}
2283 
2284 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2285 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2286 	}
2287 
2288 	return (total);
2289 }
2290 
2291 /*
2292  * Load an existing storage pool, using the pool's builtin spa_config as a
2293  * source of configuration information.
2294  */
2295 static int
2296 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2297     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2298     char **ereport)
2299 {
2300 	int error = 0;
2301 	nvlist_t *nvroot = NULL;
2302 	nvlist_t *label;
2303 	vdev_t *rvd;
2304 	uberblock_t *ub = &spa->spa_uberblock;
2305 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2306 	int orig_mode = spa->spa_mode;
2307 	int parse;
2308 	uint64_t obj;
2309 	boolean_t missing_feat_write = B_FALSE;
2310 
2311 	/*
2312 	 * If this is an untrusted config, access the pool in read-only mode.
2313 	 * This prevents things like resilvering recently removed devices.
2314 	 */
2315 	if (!mosconfig)
2316 		spa->spa_mode = FREAD;
2317 
2318 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2319 
2320 	spa->spa_load_state = state;
2321 
2322 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2323 		return (SET_ERROR(EINVAL));
2324 
2325 	parse = (type == SPA_IMPORT_EXISTING ?
2326 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2327 
2328 	/*
2329 	 * Create "The Godfather" zio to hold all async IOs
2330 	 */
2331 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2332 	    KM_SLEEP);
2333 	for (int i = 0; i < max_ncpus; i++) {
2334 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2335 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2336 		    ZIO_FLAG_GODFATHER);
2337 	}
2338 
2339 	/*
2340 	 * Parse the configuration into a vdev tree.  We explicitly set the
2341 	 * value that will be returned by spa_version() since parsing the
2342 	 * configuration requires knowing the version number.
2343 	 */
2344 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2345 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2346 	spa_config_exit(spa, SCL_ALL, FTAG);
2347 
2348 	if (error != 0)
2349 		return (error);
2350 
2351 	ASSERT(spa->spa_root_vdev == rvd);
2352 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2353 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2354 
2355 	if (type != SPA_IMPORT_ASSEMBLE) {
2356 		ASSERT(spa_guid(spa) == pool_guid);
2357 	}
2358 
2359 	/*
2360 	 * Try to open all vdevs, loading each label in the process.
2361 	 */
2362 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2363 	error = vdev_open(rvd);
2364 	spa_config_exit(spa, SCL_ALL, FTAG);
2365 	if (error != 0)
2366 		return (error);
2367 
2368 	/*
2369 	 * We need to validate the vdev labels against the configuration that
2370 	 * we have in hand, which is dependent on the setting of mosconfig. If
2371 	 * mosconfig is true then we're validating the vdev labels based on
2372 	 * that config.  Otherwise, we're validating against the cached config
2373 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2374 	 * later we will recursively call spa_load() and validate against
2375 	 * the vdev config.
2376 	 *
2377 	 * If we're assembling a new pool that's been split off from an
2378 	 * existing pool, the labels haven't yet been updated so we skip
2379 	 * validation for now.
2380 	 */
2381 	if (type != SPA_IMPORT_ASSEMBLE) {
2382 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2383 		error = vdev_validate(rvd, mosconfig);
2384 		spa_config_exit(spa, SCL_ALL, FTAG);
2385 
2386 		if (error != 0)
2387 			return (error);
2388 
2389 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2390 			return (SET_ERROR(ENXIO));
2391 	}
2392 
2393 	/*
2394 	 * Find the best uberblock.
2395 	 */
2396 	vdev_uberblock_load(rvd, ub, &label);
2397 
2398 	/*
2399 	 * If we weren't able to find a single valid uberblock, return failure.
2400 	 */
2401 	if (ub->ub_txg == 0) {
2402 		nvlist_free(label);
2403 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2404 	}
2405 
2406 	/*
2407 	 * If the pool has an unsupported version we can't open it.
2408 	 */
2409 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2410 		nvlist_free(label);
2411 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2412 	}
2413 
2414 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2415 		nvlist_t *features;
2416 
2417 		/*
2418 		 * If we weren't able to find what's necessary for reading the
2419 		 * MOS in the label, return failure.
2420 		 */
2421 		if (label == NULL || nvlist_lookup_nvlist(label,
2422 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2423 			nvlist_free(label);
2424 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2425 			    ENXIO));
2426 		}
2427 
2428 		/*
2429 		 * Update our in-core representation with the definitive values
2430 		 * from the label.
2431 		 */
2432 		nvlist_free(spa->spa_label_features);
2433 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2434 	}
2435 
2436 	nvlist_free(label);
2437 
2438 	/*
2439 	 * Look through entries in the label nvlist's features_for_read. If
2440 	 * there is a feature listed there which we don't understand then we
2441 	 * cannot open a pool.
2442 	 */
2443 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2444 		nvlist_t *unsup_feat;
2445 
2446 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2447 		    0);
2448 
2449 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2450 		    NULL); nvp != NULL;
2451 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2452 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2453 				VERIFY(nvlist_add_string(unsup_feat,
2454 				    nvpair_name(nvp), "") == 0);
2455 			}
2456 		}
2457 
2458 		if (!nvlist_empty(unsup_feat)) {
2459 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2460 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2461 			nvlist_free(unsup_feat);
2462 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2463 			    ENOTSUP));
2464 		}
2465 
2466 		nvlist_free(unsup_feat);
2467 	}
2468 
2469 	/*
2470 	 * If the vdev guid sum doesn't match the uberblock, we have an
2471 	 * incomplete configuration.  We first check to see if the pool
2472 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2473 	 * If it is, defer the vdev_guid_sum check till later so we
2474 	 * can handle missing vdevs.
2475 	 */
2476 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2477 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2478 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2479 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2480 
2481 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2482 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2483 		spa_try_repair(spa, config);
2484 		spa_config_exit(spa, SCL_ALL, FTAG);
2485 		nvlist_free(spa->spa_config_splitting);
2486 		spa->spa_config_splitting = NULL;
2487 	}
2488 
2489 	/*
2490 	 * Initialize internal SPA structures.
2491 	 */
2492 	spa->spa_state = POOL_STATE_ACTIVE;
2493 	spa->spa_ubsync = spa->spa_uberblock;
2494 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2495 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2496 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2497 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2498 	spa->spa_claim_max_txg = spa->spa_first_txg;
2499 	spa->spa_prev_software_version = ub->ub_software_version;
2500 
2501 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2502 	if (error)
2503 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2504 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2505 
2506 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2507 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2508 
2509 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2510 		boolean_t missing_feat_read = B_FALSE;
2511 		nvlist_t *unsup_feat, *enabled_feat;
2512 
2513 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2514 		    &spa->spa_feat_for_read_obj) != 0) {
2515 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2516 		}
2517 
2518 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2519 		    &spa->spa_feat_for_write_obj) != 0) {
2520 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2521 		}
2522 
2523 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2524 		    &spa->spa_feat_desc_obj) != 0) {
2525 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2526 		}
2527 
2528 		enabled_feat = fnvlist_alloc();
2529 		unsup_feat = fnvlist_alloc();
2530 
2531 		if (!spa_features_check(spa, B_FALSE,
2532 		    unsup_feat, enabled_feat))
2533 			missing_feat_read = B_TRUE;
2534 
2535 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2536 			if (!spa_features_check(spa, B_TRUE,
2537 			    unsup_feat, enabled_feat)) {
2538 				missing_feat_write = B_TRUE;
2539 			}
2540 		}
2541 
2542 		fnvlist_add_nvlist(spa->spa_load_info,
2543 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2544 
2545 		if (!nvlist_empty(unsup_feat)) {
2546 			fnvlist_add_nvlist(spa->spa_load_info,
2547 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2548 		}
2549 
2550 		fnvlist_free(enabled_feat);
2551 		fnvlist_free(unsup_feat);
2552 
2553 		if (!missing_feat_read) {
2554 			fnvlist_add_boolean(spa->spa_load_info,
2555 			    ZPOOL_CONFIG_CAN_RDONLY);
2556 		}
2557 
2558 		/*
2559 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2560 		 * twofold: to determine whether the pool is available for
2561 		 * import in read-write mode and (if it is not) whether the
2562 		 * pool is available for import in read-only mode. If the pool
2563 		 * is available for import in read-write mode, it is displayed
2564 		 * as available in userland; if it is not available for import
2565 		 * in read-only mode, it is displayed as unavailable in
2566 		 * userland. If the pool is available for import in read-only
2567 		 * mode but not read-write mode, it is displayed as unavailable
2568 		 * in userland with a special note that the pool is actually
2569 		 * available for open in read-only mode.
2570 		 *
2571 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2572 		 * missing a feature for write, we must first determine whether
2573 		 * the pool can be opened read-only before returning to
2574 		 * userland in order to know whether to display the
2575 		 * abovementioned note.
2576 		 */
2577 		if (missing_feat_read || (missing_feat_write &&
2578 		    spa_writeable(spa))) {
2579 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2580 			    ENOTSUP));
2581 		}
2582 
2583 		/*
2584 		 * Load refcounts for ZFS features from disk into an in-memory
2585 		 * cache during SPA initialization.
2586 		 */
2587 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2588 			uint64_t refcount;
2589 
2590 			error = feature_get_refcount_from_disk(spa,
2591 			    &spa_feature_table[i], &refcount);
2592 			if (error == 0) {
2593 				spa->spa_feat_refcount_cache[i] = refcount;
2594 			} else if (error == ENOTSUP) {
2595 				spa->spa_feat_refcount_cache[i] =
2596 				    SPA_FEATURE_DISABLED;
2597 			} else {
2598 				return (spa_vdev_err(rvd,
2599 				    VDEV_AUX_CORRUPT_DATA, EIO));
2600 			}
2601 		}
2602 	}
2603 
2604 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2605 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2606 		    &spa->spa_feat_enabled_txg_obj) != 0)
2607 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2608 	}
2609 
2610 	spa->spa_is_initializing = B_TRUE;
2611 	error = dsl_pool_open(spa->spa_dsl_pool);
2612 	spa->spa_is_initializing = B_FALSE;
2613 	if (error != 0)
2614 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2615 
2616 	if (!mosconfig) {
2617 		uint64_t hostid;
2618 		nvlist_t *policy = NULL, *nvconfig;
2619 
2620 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2621 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2622 
2623 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2624 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2625 			char *hostname;
2626 			unsigned long myhostid = 0;
2627 
2628 			VERIFY(nvlist_lookup_string(nvconfig,
2629 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2630 
2631 #ifdef	_KERNEL
2632 			myhostid = zone_get_hostid(NULL);
2633 #else	/* _KERNEL */
2634 			/*
2635 			 * We're emulating the system's hostid in userland, so
2636 			 * we can't use zone_get_hostid().
2637 			 */
2638 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2639 #endif	/* _KERNEL */
2640 			if (check_hostid && hostid != 0 && myhostid != 0 &&
2641 			    hostid != myhostid) {
2642 				nvlist_free(nvconfig);
2643 				cmn_err(CE_WARN, "pool '%s' could not be "
2644 				    "loaded as it was last accessed by "
2645 				    "another system (host: %s hostid: 0x%lx). "
2646 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2647 				    spa_name(spa), hostname,
2648 				    (unsigned long)hostid);
2649 				return (SET_ERROR(EBADF));
2650 			}
2651 		}
2652 		if (nvlist_lookup_nvlist(spa->spa_config,
2653 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2654 			VERIFY(nvlist_add_nvlist(nvconfig,
2655 			    ZPOOL_REWIND_POLICY, policy) == 0);
2656 
2657 		spa_config_set(spa, nvconfig);
2658 		spa_unload(spa);
2659 		spa_deactivate(spa);
2660 		spa_activate(spa, orig_mode);
2661 
2662 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2663 	}
2664 
2665 	/* Grab the secret checksum salt from the MOS. */
2666 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2667 	    DMU_POOL_CHECKSUM_SALT, 1,
2668 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2669 	    spa->spa_cksum_salt.zcs_bytes);
2670 	if (error == ENOENT) {
2671 		/* Generate a new salt for subsequent use */
2672 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2673 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2674 	} else if (error != 0) {
2675 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2676 	}
2677 
2678 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2679 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2680 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2681 	if (error != 0)
2682 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2683 
2684 	/*
2685 	 * Load the bit that tells us to use the new accounting function
2686 	 * (raid-z deflation).  If we have an older pool, this will not
2687 	 * be present.
2688 	 */
2689 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2690 	if (error != 0 && error != ENOENT)
2691 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2692 
2693 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2694 	    &spa->spa_creation_version);
2695 	if (error != 0 && error != ENOENT)
2696 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2697 
2698 	/*
2699 	 * Load the persistent error log.  If we have an older pool, this will
2700 	 * not be present.
2701 	 */
2702 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2703 	if (error != 0 && error != ENOENT)
2704 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2705 
2706 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2707 	    &spa->spa_errlog_scrub);
2708 	if (error != 0 && error != ENOENT)
2709 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2710 
2711 	/*
2712 	 * Load the history object.  If we have an older pool, this
2713 	 * will not be present.
2714 	 */
2715 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2716 	if (error != 0 && error != ENOENT)
2717 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2718 
2719 	/*
2720 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
2721 	 * be present; in this case, defer its creation to a later time to
2722 	 * avoid dirtying the MOS this early / out of sync context. See
2723 	 * spa_sync_config_object.
2724 	 */
2725 
2726 	/* The sentinel is only available in the MOS config. */
2727 	nvlist_t *mos_config;
2728 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2729 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2730 
2731 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2732 	    &spa->spa_all_vdev_zaps);
2733 
2734 	if (error != ENOENT && error != 0) {
2735 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2736 	} else if (error == 0 && !nvlist_exists(mos_config,
2737 	    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2738 		/*
2739 		 * An older version of ZFS overwrote the sentinel value, so
2740 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2741 		 * destruction to later; see spa_sync_config_object.
2742 		 */
2743 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
2744 		/*
2745 		 * We're assuming that no vdevs have had their ZAPs created
2746 		 * before this. Better be sure of it.
2747 		 */
2748 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2749 	}
2750 	nvlist_free(mos_config);
2751 
2752 	/*
2753 	 * If we're assembling the pool from the split-off vdevs of
2754 	 * an existing pool, we don't want to attach the spares & cache
2755 	 * devices.
2756 	 */
2757 
2758 	/*
2759 	 * Load any hot spares for this pool.
2760 	 */
2761 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2762 	if (error != 0 && error != ENOENT)
2763 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2764 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2765 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2766 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2767 		    &spa->spa_spares.sav_config) != 0)
2768 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2769 
2770 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2771 		spa_load_spares(spa);
2772 		spa_config_exit(spa, SCL_ALL, FTAG);
2773 	} else if (error == 0) {
2774 		spa->spa_spares.sav_sync = B_TRUE;
2775 	}
2776 
2777 	/*
2778 	 * Load any level 2 ARC devices for this pool.
2779 	 */
2780 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2781 	    &spa->spa_l2cache.sav_object);
2782 	if (error != 0 && error != ENOENT)
2783 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2784 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2785 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2786 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2787 		    &spa->spa_l2cache.sav_config) != 0)
2788 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2789 
2790 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2791 		spa_load_l2cache(spa);
2792 		spa_config_exit(spa, SCL_ALL, FTAG);
2793 	} else if (error == 0) {
2794 		spa->spa_l2cache.sav_sync = B_TRUE;
2795 	}
2796 
2797 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2798 
2799 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2800 	if (error && error != ENOENT)
2801 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2802 
2803 	if (error == 0) {
2804 		uint64_t autoreplace;
2805 
2806 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2807 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2808 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2809 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2810 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2811 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2812 		    &spa->spa_dedup_ditto);
2813 
2814 		spa->spa_autoreplace = (autoreplace != 0);
2815 	}
2816 
2817 	/*
2818 	 * If the 'autoreplace' property is set, then post a resource notifying
2819 	 * the ZFS DE that it should not issue any faults for unopenable
2820 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2821 	 * unopenable vdevs so that the normal autoreplace handler can take
2822 	 * over.
2823 	 */
2824 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2825 		spa_check_removed(spa->spa_root_vdev);
2826 		/*
2827 		 * For the import case, this is done in spa_import(), because
2828 		 * at this point we're using the spare definitions from
2829 		 * the MOS config, not necessarily from the userland config.
2830 		 */
2831 		if (state != SPA_LOAD_IMPORT) {
2832 			spa_aux_check_removed(&spa->spa_spares);
2833 			spa_aux_check_removed(&spa->spa_l2cache);
2834 		}
2835 	}
2836 
2837 	/*
2838 	 * Load the vdev state for all toplevel vdevs.
2839 	 */
2840 	vdev_load(rvd);
2841 
2842 	/*
2843 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2844 	 */
2845 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2846 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2847 	spa_config_exit(spa, SCL_ALL, FTAG);
2848 
2849 	/*
2850 	 * Load the DDTs (dedup tables).
2851 	 */
2852 	error = ddt_load(spa);
2853 	if (error != 0)
2854 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2855 
2856 	spa_update_dspace(spa);
2857 
2858 	/*
2859 	 * Validate the config, using the MOS config to fill in any
2860 	 * information which might be missing.  If we fail to validate
2861 	 * the config then declare the pool unfit for use. If we're
2862 	 * assembling a pool from a split, the log is not transferred
2863 	 * over.
2864 	 */
2865 	if (type != SPA_IMPORT_ASSEMBLE) {
2866 		nvlist_t *nvconfig;
2867 
2868 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2869 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2870 
2871 		if (!spa_config_valid(spa, nvconfig)) {
2872 			nvlist_free(nvconfig);
2873 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2874 			    ENXIO));
2875 		}
2876 		nvlist_free(nvconfig);
2877 
2878 		/*
2879 		 * Now that we've validated the config, check the state of the
2880 		 * root vdev.  If it can't be opened, it indicates one or
2881 		 * more toplevel vdevs are faulted.
2882 		 */
2883 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2884 			return (SET_ERROR(ENXIO));
2885 
2886 		if (spa_writeable(spa) && spa_check_logs(spa)) {
2887 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2888 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2889 		}
2890 	}
2891 
2892 	if (missing_feat_write) {
2893 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2894 
2895 		/*
2896 		 * At this point, we know that we can open the pool in
2897 		 * read-only mode but not read-write mode. We now have enough
2898 		 * information and can return to userland.
2899 		 */
2900 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2901 	}
2902 
2903 	/*
2904 	 * We've successfully opened the pool, verify that we're ready
2905 	 * to start pushing transactions.
2906 	 */
2907 	if (state != SPA_LOAD_TRYIMPORT) {
2908 		if (error = spa_load_verify(spa))
2909 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2910 			    error));
2911 	}
2912 
2913 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2914 	    spa->spa_load_max_txg == UINT64_MAX)) {
2915 		dmu_tx_t *tx;
2916 		int need_update = B_FALSE;
2917 		dsl_pool_t *dp = spa_get_dsl(spa);
2918 
2919 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2920 
2921 		/*
2922 		 * Claim log blocks that haven't been committed yet.
2923 		 * This must all happen in a single txg.
2924 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2925 		 * invoked from zil_claim_log_block()'s i/o done callback.
2926 		 * Price of rollback is that we abandon the log.
2927 		 */
2928 		spa->spa_claiming = B_TRUE;
2929 
2930 		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2931 		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2932 		    zil_claim, tx, DS_FIND_CHILDREN);
2933 		dmu_tx_commit(tx);
2934 
2935 		spa->spa_claiming = B_FALSE;
2936 
2937 		spa_set_log_state(spa, SPA_LOG_GOOD);
2938 		spa->spa_sync_on = B_TRUE;
2939 		txg_sync_start(spa->spa_dsl_pool);
2940 
2941 		/*
2942 		 * Wait for all claims to sync.  We sync up to the highest
2943 		 * claimed log block birth time so that claimed log blocks
2944 		 * don't appear to be from the future.  spa_claim_max_txg
2945 		 * will have been set for us by either zil_check_log_chain()
2946 		 * (invoked from spa_check_logs()) or zil_claim() above.
2947 		 */
2948 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2949 
2950 		/*
2951 		 * If the config cache is stale, or we have uninitialized
2952 		 * metaslabs (see spa_vdev_add()), then update the config.
2953 		 *
2954 		 * If this is a verbatim import, trust the current
2955 		 * in-core spa_config and update the disk labels.
2956 		 */
2957 		if (config_cache_txg != spa->spa_config_txg ||
2958 		    state == SPA_LOAD_IMPORT ||
2959 		    state == SPA_LOAD_RECOVER ||
2960 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2961 			need_update = B_TRUE;
2962 
2963 		for (int c = 0; c < rvd->vdev_children; c++)
2964 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2965 				need_update = B_TRUE;
2966 
2967 		/*
2968 		 * Update the config cache asychronously in case we're the
2969 		 * root pool, in which case the config cache isn't writable yet.
2970 		 */
2971 		if (need_update)
2972 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2973 
2974 		/*
2975 		 * Check all DTLs to see if anything needs resilvering.
2976 		 */
2977 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2978 		    vdev_resilver_needed(rvd, NULL, NULL))
2979 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2980 
2981 		/*
2982 		 * Log the fact that we booted up (so that we can detect if
2983 		 * we rebooted in the middle of an operation).
2984 		 */
2985 		spa_history_log_version(spa, "open");
2986 
2987 		/*
2988 		 * Delete any inconsistent datasets.
2989 		 */
2990 		(void) dmu_objset_find(spa_name(spa),
2991 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2992 
2993 		/*
2994 		 * Clean up any stale temporary dataset userrefs.
2995 		 */
2996 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2997 	}
2998 
2999 	return (0);
3000 }
3001 
3002 static int
3003 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
3004 {
3005 	int mode = spa->spa_mode;
3006 
3007 	spa_unload(spa);
3008 	spa_deactivate(spa);
3009 
3010 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3011 
3012 	spa_activate(spa, mode);
3013 	spa_async_suspend(spa);
3014 
3015 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
3016 }
3017 
3018 /*
3019  * If spa_load() fails this function will try loading prior txg's. If
3020  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3021  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3022  * function will not rewind the pool and will return the same error as
3023  * spa_load().
3024  */
3025 static int
3026 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
3027     uint64_t max_request, int rewind_flags)
3028 {
3029 	nvlist_t *loadinfo = NULL;
3030 	nvlist_t *config = NULL;
3031 	int load_error, rewind_error;
3032 	uint64_t safe_rewind_txg;
3033 	uint64_t min_txg;
3034 
3035 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3036 		spa->spa_load_max_txg = spa->spa_load_txg;
3037 		spa_set_log_state(spa, SPA_LOG_CLEAR);
3038 	} else {
3039 		spa->spa_load_max_txg = max_request;
3040 		if (max_request != UINT64_MAX)
3041 			spa->spa_extreme_rewind = B_TRUE;
3042 	}
3043 
3044 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3045 	    mosconfig);
3046 	if (load_error == 0)
3047 		return (0);
3048 
3049 	if (spa->spa_root_vdev != NULL)
3050 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3051 
3052 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3053 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3054 
3055 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
3056 		nvlist_free(config);
3057 		return (load_error);
3058 	}
3059 
3060 	if (state == SPA_LOAD_RECOVER) {
3061 		/* Price of rolling back is discarding txgs, including log */
3062 		spa_set_log_state(spa, SPA_LOG_CLEAR);
3063 	} else {
3064 		/*
3065 		 * If we aren't rolling back save the load info from our first
3066 		 * import attempt so that we can restore it after attempting
3067 		 * to rewind.
3068 		 */
3069 		loadinfo = spa->spa_load_info;
3070 		spa->spa_load_info = fnvlist_alloc();
3071 	}
3072 
3073 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3074 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3075 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3076 	    TXG_INITIAL : safe_rewind_txg;
3077 
3078 	/*
3079 	 * Continue as long as we're finding errors, we're still within
3080 	 * the acceptable rewind range, and we're still finding uberblocks
3081 	 */
3082 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3083 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3084 		if (spa->spa_load_max_txg < safe_rewind_txg)
3085 			spa->spa_extreme_rewind = B_TRUE;
3086 		rewind_error = spa_load_retry(spa, state, mosconfig);
3087 	}
3088 
3089 	spa->spa_extreme_rewind = B_FALSE;
3090 	spa->spa_load_max_txg = UINT64_MAX;
3091 
3092 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3093 		spa_config_set(spa, config);
3094 
3095 	if (state == SPA_LOAD_RECOVER) {
3096 		ASSERT3P(loadinfo, ==, NULL);
3097 		return (rewind_error);
3098 	} else {
3099 		/* Store the rewind info as part of the initial load info */
3100 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3101 		    spa->spa_load_info);
3102 
3103 		/* Restore the initial load info */
3104 		fnvlist_free(spa->spa_load_info);
3105 		spa->spa_load_info = loadinfo;
3106 
3107 		return (load_error);
3108 	}
3109 }
3110 
3111 /*
3112  * Pool Open/Import
3113  *
3114  * The import case is identical to an open except that the configuration is sent
3115  * down from userland, instead of grabbed from the configuration cache.  For the
3116  * case of an open, the pool configuration will exist in the
3117  * POOL_STATE_UNINITIALIZED state.
3118  *
3119  * The stats information (gen/count/ustats) is used to gather vdev statistics at
3120  * the same time open the pool, without having to keep around the spa_t in some
3121  * ambiguous state.
3122  */
3123 static int
3124 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3125     nvlist_t **config)
3126 {
3127 	spa_t *spa;
3128 	spa_load_state_t state = SPA_LOAD_OPEN;
3129 	int error;
3130 	int locked = B_FALSE;
3131 	int firstopen = B_FALSE;
3132 
3133 	*spapp = NULL;
3134 
3135 	/*
3136 	 * As disgusting as this is, we need to support recursive calls to this
3137 	 * function because dsl_dir_open() is called during spa_load(), and ends
3138 	 * up calling spa_open() again.  The real fix is to figure out how to
3139 	 * avoid dsl_dir_open() calling this in the first place.
3140 	 */
3141 	if (mutex_owner(&spa_namespace_lock) != curthread) {
3142 		mutex_enter(&spa_namespace_lock);
3143 		locked = B_TRUE;
3144 	}
3145 
3146 	if ((spa = spa_lookup(pool)) == NULL) {
3147 		if (locked)
3148 			mutex_exit(&spa_namespace_lock);
3149 		return (SET_ERROR(ENOENT));
3150 	}
3151 
3152 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3153 		zpool_rewind_policy_t policy;
3154 
3155 		firstopen = B_TRUE;
3156 
3157 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3158 		    &policy);
3159 		if (policy.zrp_request & ZPOOL_DO_REWIND)
3160 			state = SPA_LOAD_RECOVER;
3161 
3162 		spa_activate(spa, spa_mode_global);
3163 
3164 		if (state != SPA_LOAD_RECOVER)
3165 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3166 
3167 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3168 		    policy.zrp_request);
3169 
3170 		if (error == EBADF) {
3171 			/*
3172 			 * If vdev_validate() returns failure (indicated by
3173 			 * EBADF), it indicates that one of the vdevs indicates
3174 			 * that the pool has been exported or destroyed.  If
3175 			 * this is the case, the config cache is out of sync and
3176 			 * we should remove the pool from the namespace.
3177 			 */
3178 			spa_unload(spa);
3179 			spa_deactivate(spa);
3180 			spa_config_sync(spa, B_TRUE, B_TRUE);
3181 			spa_remove(spa);
3182 			if (locked)
3183 				mutex_exit(&spa_namespace_lock);
3184 			return (SET_ERROR(ENOENT));
3185 		}
3186 
3187 		if (error) {
3188 			/*
3189 			 * We can't open the pool, but we still have useful
3190 			 * information: the state of each vdev after the
3191 			 * attempted vdev_open().  Return this to the user.
3192 			 */
3193 			if (config != NULL && spa->spa_config) {
3194 				VERIFY(nvlist_dup(spa->spa_config, config,
3195 				    KM_SLEEP) == 0);
3196 				VERIFY(nvlist_add_nvlist(*config,
3197 				    ZPOOL_CONFIG_LOAD_INFO,
3198 				    spa->spa_load_info) == 0);
3199 			}
3200 			spa_unload(spa);
3201 			spa_deactivate(spa);
3202 			spa->spa_last_open_failed = error;
3203 			if (locked)
3204 				mutex_exit(&spa_namespace_lock);
3205 			*spapp = NULL;
3206 			return (error);
3207 		}
3208 	}
3209 
3210 	spa_open_ref(spa, tag);
3211 
3212 	if (config != NULL)
3213 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3214 
3215 	/*
3216 	 * If we've recovered the pool, pass back any information we
3217 	 * gathered while doing the load.
3218 	 */
3219 	if (state == SPA_LOAD_RECOVER) {
3220 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3221 		    spa->spa_load_info) == 0);
3222 	}
3223 
3224 	if (locked) {
3225 		spa->spa_last_open_failed = 0;
3226 		spa->spa_last_ubsync_txg = 0;
3227 		spa->spa_load_txg = 0;
3228 		mutex_exit(&spa_namespace_lock);
3229 #ifdef __FreeBSD__
3230 #ifdef _KERNEL
3231 		if (firstopen)
3232 			zvol_create_minors(spa->spa_name);
3233 #endif
3234 #endif
3235 	}
3236 
3237 	*spapp = spa;
3238 
3239 	return (0);
3240 }
3241 
3242 int
3243 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3244     nvlist_t **config)
3245 {
3246 	return (spa_open_common(name, spapp, tag, policy, config));
3247 }
3248 
3249 int
3250 spa_open(const char *name, spa_t **spapp, void *tag)
3251 {
3252 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3253 }
3254 
3255 /*
3256  * Lookup the given spa_t, incrementing the inject count in the process,
3257  * preventing it from being exported or destroyed.
3258  */
3259 spa_t *
3260 spa_inject_addref(char *name)
3261 {
3262 	spa_t *spa;
3263 
3264 	mutex_enter(&spa_namespace_lock);
3265 	if ((spa = spa_lookup(name)) == NULL) {
3266 		mutex_exit(&spa_namespace_lock);
3267 		return (NULL);
3268 	}
3269 	spa->spa_inject_ref++;
3270 	mutex_exit(&spa_namespace_lock);
3271 
3272 	return (spa);
3273 }
3274 
3275 void
3276 spa_inject_delref(spa_t *spa)
3277 {
3278 	mutex_enter(&spa_namespace_lock);
3279 	spa->spa_inject_ref--;
3280 	mutex_exit(&spa_namespace_lock);
3281 }
3282 
3283 /*
3284  * Add spares device information to the nvlist.
3285  */
3286 static void
3287 spa_add_spares(spa_t *spa, nvlist_t *config)
3288 {
3289 	nvlist_t **spares;
3290 	uint_t i, nspares;
3291 	nvlist_t *nvroot;
3292 	uint64_t guid;
3293 	vdev_stat_t *vs;
3294 	uint_t vsc;
3295 	uint64_t pool;
3296 
3297 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3298 
3299 	if (spa->spa_spares.sav_count == 0)
3300 		return;
3301 
3302 	VERIFY(nvlist_lookup_nvlist(config,
3303 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3304 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3305 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3306 	if (nspares != 0) {
3307 		VERIFY(nvlist_add_nvlist_array(nvroot,
3308 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3309 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3310 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3311 
3312 		/*
3313 		 * Go through and find any spares which have since been
3314 		 * repurposed as an active spare.  If this is the case, update
3315 		 * their status appropriately.
3316 		 */
3317 		for (i = 0; i < nspares; i++) {
3318 			VERIFY(nvlist_lookup_uint64(spares[i],
3319 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3320 			if (spa_spare_exists(guid, &pool, NULL) &&
3321 			    pool != 0ULL) {
3322 				VERIFY(nvlist_lookup_uint64_array(
3323 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3324 				    (uint64_t **)&vs, &vsc) == 0);
3325 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3326 				vs->vs_aux = VDEV_AUX_SPARED;
3327 			}
3328 		}
3329 	}
3330 }
3331 
3332 /*
3333  * Add l2cache device information to the nvlist, including vdev stats.
3334  */
3335 static void
3336 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3337 {
3338 	nvlist_t **l2cache;
3339 	uint_t i, j, nl2cache;
3340 	nvlist_t *nvroot;
3341 	uint64_t guid;
3342 	vdev_t *vd;
3343 	vdev_stat_t *vs;
3344 	uint_t vsc;
3345 
3346 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3347 
3348 	if (spa->spa_l2cache.sav_count == 0)
3349 		return;
3350 
3351 	VERIFY(nvlist_lookup_nvlist(config,
3352 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3353 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3354 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3355 	if (nl2cache != 0) {
3356 		VERIFY(nvlist_add_nvlist_array(nvroot,
3357 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3358 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3359 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3360 
3361 		/*
3362 		 * Update level 2 cache device stats.
3363 		 */
3364 
3365 		for (i = 0; i < nl2cache; i++) {
3366 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3367 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3368 
3369 			vd = NULL;
3370 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3371 				if (guid ==
3372 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3373 					vd = spa->spa_l2cache.sav_vdevs[j];
3374 					break;
3375 				}
3376 			}
3377 			ASSERT(vd != NULL);
3378 
3379 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3380 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3381 			    == 0);
3382 			vdev_get_stats(vd, vs);
3383 		}
3384 	}
3385 }
3386 
3387 static void
3388 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3389 {
3390 	nvlist_t *features;
3391 	zap_cursor_t zc;
3392 	zap_attribute_t za;
3393 
3394 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3395 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3396 
3397 	/* We may be unable to read features if pool is suspended. */
3398 	if (spa_suspended(spa))
3399 		goto out;
3400 
3401 	if (spa->spa_feat_for_read_obj != 0) {
3402 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3403 		    spa->spa_feat_for_read_obj);
3404 		    zap_cursor_retrieve(&zc, &za) == 0;
3405 		    zap_cursor_advance(&zc)) {
3406 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3407 			    za.za_num_integers == 1);
3408 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3409 			    za.za_first_integer));
3410 		}
3411 		zap_cursor_fini(&zc);
3412 	}
3413 
3414 	if (spa->spa_feat_for_write_obj != 0) {
3415 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3416 		    spa->spa_feat_for_write_obj);
3417 		    zap_cursor_retrieve(&zc, &za) == 0;
3418 		    zap_cursor_advance(&zc)) {
3419 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3420 			    za.za_num_integers == 1);
3421 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3422 			    za.za_first_integer));
3423 		}
3424 		zap_cursor_fini(&zc);
3425 	}
3426 
3427 out:
3428 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3429 	    features) == 0);
3430 	nvlist_free(features);
3431 }
3432 
3433 int
3434 spa_get_stats(const char *name, nvlist_t **config,
3435     char *altroot, size_t buflen)
3436 {
3437 	int error;
3438 	spa_t *spa;
3439 
3440 	*config = NULL;
3441 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3442 
3443 	if (spa != NULL) {
3444 		/*
3445 		 * This still leaves a window of inconsistency where the spares
3446 		 * or l2cache devices could change and the config would be
3447 		 * self-inconsistent.
3448 		 */
3449 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3450 
3451 		if (*config != NULL) {
3452 			uint64_t loadtimes[2];
3453 
3454 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3455 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3456 			VERIFY(nvlist_add_uint64_array(*config,
3457 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3458 
3459 			VERIFY(nvlist_add_uint64(*config,
3460 			    ZPOOL_CONFIG_ERRCOUNT,
3461 			    spa_get_errlog_size(spa)) == 0);
3462 
3463 			if (spa_suspended(spa))
3464 				VERIFY(nvlist_add_uint64(*config,
3465 				    ZPOOL_CONFIG_SUSPENDED,
3466 				    spa->spa_failmode) == 0);
3467 
3468 			spa_add_spares(spa, *config);
3469 			spa_add_l2cache(spa, *config);
3470 			spa_add_feature_stats(spa, *config);
3471 		}
3472 	}
3473 
3474 	/*
3475 	 * We want to get the alternate root even for faulted pools, so we cheat
3476 	 * and call spa_lookup() directly.
3477 	 */
3478 	if (altroot) {
3479 		if (spa == NULL) {
3480 			mutex_enter(&spa_namespace_lock);
3481 			spa = spa_lookup(name);
3482 			if (spa)
3483 				spa_altroot(spa, altroot, buflen);
3484 			else
3485 				altroot[0] = '\0';
3486 			spa = NULL;
3487 			mutex_exit(&spa_namespace_lock);
3488 		} else {
3489 			spa_altroot(spa, altroot, buflen);
3490 		}
3491 	}
3492 
3493 	if (spa != NULL) {
3494 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3495 		spa_close(spa, FTAG);
3496 	}
3497 
3498 	return (error);
3499 }
3500 
3501 /*
3502  * Validate that the auxiliary device array is well formed.  We must have an
3503  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3504  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3505  * specified, as long as they are well-formed.
3506  */
3507 static int
3508 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3509     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3510     vdev_labeltype_t label)
3511 {
3512 	nvlist_t **dev;
3513 	uint_t i, ndev;
3514 	vdev_t *vd;
3515 	int error;
3516 
3517 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3518 
3519 	/*
3520 	 * It's acceptable to have no devs specified.
3521 	 */
3522 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3523 		return (0);
3524 
3525 	if (ndev == 0)
3526 		return (SET_ERROR(EINVAL));
3527 
3528 	/*
3529 	 * Make sure the pool is formatted with a version that supports this
3530 	 * device type.
3531 	 */
3532 	if (spa_version(spa) < version)
3533 		return (SET_ERROR(ENOTSUP));
3534 
3535 	/*
3536 	 * Set the pending device list so we correctly handle device in-use
3537 	 * checking.
3538 	 */
3539 	sav->sav_pending = dev;
3540 	sav->sav_npending = ndev;
3541 
3542 	for (i = 0; i < ndev; i++) {
3543 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3544 		    mode)) != 0)
3545 			goto out;
3546 
3547 		if (!vd->vdev_ops->vdev_op_leaf) {
3548 			vdev_free(vd);
3549 			error = SET_ERROR(EINVAL);
3550 			goto out;
3551 		}
3552 
3553 		/*
3554 		 * The L2ARC currently only supports disk devices in
3555 		 * kernel context.  For user-level testing, we allow it.
3556 		 */
3557 #ifdef _KERNEL
3558 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3559 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3560 			error = SET_ERROR(ENOTBLK);
3561 			vdev_free(vd);
3562 			goto out;
3563 		}
3564 #endif
3565 		vd->vdev_top = vd;
3566 
3567 		if ((error = vdev_open(vd)) == 0 &&
3568 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3569 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3570 			    vd->vdev_guid) == 0);
3571 		}
3572 
3573 		vdev_free(vd);
3574 
3575 		if (error &&
3576 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3577 			goto out;
3578 		else
3579 			error = 0;
3580 	}
3581 
3582 out:
3583 	sav->sav_pending = NULL;
3584 	sav->sav_npending = 0;
3585 	return (error);
3586 }
3587 
3588 static int
3589 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3590 {
3591 	int error;
3592 
3593 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3594 
3595 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3596 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3597 	    VDEV_LABEL_SPARE)) != 0) {
3598 		return (error);
3599 	}
3600 
3601 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3602 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3603 	    VDEV_LABEL_L2CACHE));
3604 }
3605 
3606 static void
3607 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3608     const char *config)
3609 {
3610 	int i;
3611 
3612 	if (sav->sav_config != NULL) {
3613 		nvlist_t **olddevs;
3614 		uint_t oldndevs;
3615 		nvlist_t **newdevs;
3616 
3617 		/*
3618 		 * Generate new dev list by concatentating with the
3619 		 * current dev list.
3620 		 */
3621 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3622 		    &olddevs, &oldndevs) == 0);
3623 
3624 		newdevs = kmem_alloc(sizeof (void *) *
3625 		    (ndevs + oldndevs), KM_SLEEP);
3626 		for (i = 0; i < oldndevs; i++)
3627 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3628 			    KM_SLEEP) == 0);
3629 		for (i = 0; i < ndevs; i++)
3630 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3631 			    KM_SLEEP) == 0);
3632 
3633 		VERIFY(nvlist_remove(sav->sav_config, config,
3634 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3635 
3636 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3637 		    config, newdevs, ndevs + oldndevs) == 0);
3638 		for (i = 0; i < oldndevs + ndevs; i++)
3639 			nvlist_free(newdevs[i]);
3640 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3641 	} else {
3642 		/*
3643 		 * Generate a new dev list.
3644 		 */
3645 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3646 		    KM_SLEEP) == 0);
3647 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3648 		    devs, ndevs) == 0);
3649 	}
3650 }
3651 
3652 /*
3653  * Stop and drop level 2 ARC devices
3654  */
3655 void
3656 spa_l2cache_drop(spa_t *spa)
3657 {
3658 	vdev_t *vd;
3659 	int i;
3660 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3661 
3662 	for (i = 0; i < sav->sav_count; i++) {
3663 		uint64_t pool;
3664 
3665 		vd = sav->sav_vdevs[i];
3666 		ASSERT(vd != NULL);
3667 
3668 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3669 		    pool != 0ULL && l2arc_vdev_present(vd))
3670 			l2arc_remove_vdev(vd);
3671 	}
3672 }
3673 
3674 /*
3675  * Pool Creation
3676  */
3677 int
3678 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3679     nvlist_t *zplprops)
3680 {
3681 	spa_t *spa;
3682 	char *altroot = NULL;
3683 	vdev_t *rvd;
3684 	dsl_pool_t *dp;
3685 	dmu_tx_t *tx;
3686 	int error = 0;
3687 	uint64_t txg = TXG_INITIAL;
3688 	nvlist_t **spares, **l2cache;
3689 	uint_t nspares, nl2cache;
3690 	uint64_t version, obj;
3691 	boolean_t has_features;
3692 
3693 	/*
3694 	 * If this pool already exists, return failure.
3695 	 */
3696 	mutex_enter(&spa_namespace_lock);
3697 	if (spa_lookup(pool) != NULL) {
3698 		mutex_exit(&spa_namespace_lock);
3699 		return (SET_ERROR(EEXIST));
3700 	}
3701 
3702 	/*
3703 	 * Allocate a new spa_t structure.
3704 	 */
3705 	(void) nvlist_lookup_string(props,
3706 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3707 	spa = spa_add(pool, NULL, altroot);
3708 	spa_activate(spa, spa_mode_global);
3709 
3710 	if (props && (error = spa_prop_validate(spa, props))) {
3711 		spa_deactivate(spa);
3712 		spa_remove(spa);
3713 		mutex_exit(&spa_namespace_lock);
3714 		return (error);
3715 	}
3716 
3717 	has_features = B_FALSE;
3718 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3719 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3720 		if (zpool_prop_feature(nvpair_name(elem)))
3721 			has_features = B_TRUE;
3722 	}
3723 
3724 	if (has_features || nvlist_lookup_uint64(props,
3725 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3726 		version = SPA_VERSION;
3727 	}
3728 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3729 
3730 	spa->spa_first_txg = txg;
3731 	spa->spa_uberblock.ub_txg = txg - 1;
3732 	spa->spa_uberblock.ub_version = version;
3733 	spa->spa_ubsync = spa->spa_uberblock;
3734 	spa->spa_load_state = SPA_LOAD_CREATE;
3735 
3736 	/*
3737 	 * Create "The Godfather" zio to hold all async IOs
3738 	 */
3739 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3740 	    KM_SLEEP);
3741 	for (int i = 0; i < max_ncpus; i++) {
3742 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3743 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3744 		    ZIO_FLAG_GODFATHER);
3745 	}
3746 
3747 	/*
3748 	 * Create the root vdev.
3749 	 */
3750 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3751 
3752 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3753 
3754 	ASSERT(error != 0 || rvd != NULL);
3755 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3756 
3757 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3758 		error = SET_ERROR(EINVAL);
3759 
3760 	if (error == 0 &&
3761 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3762 	    (error = spa_validate_aux(spa, nvroot, txg,
3763 	    VDEV_ALLOC_ADD)) == 0) {
3764 		for (int c = 0; c < rvd->vdev_children; c++) {
3765 			vdev_ashift_optimize(rvd->vdev_child[c]);
3766 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3767 			vdev_expand(rvd->vdev_child[c], txg);
3768 		}
3769 	}
3770 
3771 	spa_config_exit(spa, SCL_ALL, FTAG);
3772 
3773 	if (error != 0) {
3774 		spa_unload(spa);
3775 		spa_deactivate(spa);
3776 		spa_remove(spa);
3777 		mutex_exit(&spa_namespace_lock);
3778 		return (error);
3779 	}
3780 
3781 	/*
3782 	 * Get the list of spares, if specified.
3783 	 */
3784 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3785 	    &spares, &nspares) == 0) {
3786 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3787 		    KM_SLEEP) == 0);
3788 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3789 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3790 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3791 		spa_load_spares(spa);
3792 		spa_config_exit(spa, SCL_ALL, FTAG);
3793 		spa->spa_spares.sav_sync = B_TRUE;
3794 	}
3795 
3796 	/*
3797 	 * Get the list of level 2 cache devices, if specified.
3798 	 */
3799 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3800 	    &l2cache, &nl2cache) == 0) {
3801 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3802 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3803 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3804 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3805 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3806 		spa_load_l2cache(spa);
3807 		spa_config_exit(spa, SCL_ALL, FTAG);
3808 		spa->spa_l2cache.sav_sync = B_TRUE;
3809 	}
3810 
3811 	spa->spa_is_initializing = B_TRUE;
3812 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3813 	spa->spa_meta_objset = dp->dp_meta_objset;
3814 	spa->spa_is_initializing = B_FALSE;
3815 
3816 	/*
3817 	 * Create DDTs (dedup tables).
3818 	 */
3819 	ddt_create(spa);
3820 
3821 	spa_update_dspace(spa);
3822 
3823 	tx = dmu_tx_create_assigned(dp, txg);
3824 
3825 	/*
3826 	 * Create the pool config object.
3827 	 */
3828 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3829 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3830 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3831 
3832 	if (zap_add(spa->spa_meta_objset,
3833 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3834 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3835 		cmn_err(CE_PANIC, "failed to add pool config");
3836 	}
3837 
3838 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3839 		spa_feature_create_zap_objects(spa, tx);
3840 
3841 	if (zap_add(spa->spa_meta_objset,
3842 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3843 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3844 		cmn_err(CE_PANIC, "failed to add pool version");
3845 	}
3846 
3847 	/* Newly created pools with the right version are always deflated. */
3848 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3849 		spa->spa_deflate = TRUE;
3850 		if (zap_add(spa->spa_meta_objset,
3851 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3852 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3853 			cmn_err(CE_PANIC, "failed to add deflate");
3854 		}
3855 	}
3856 
3857 	/*
3858 	 * Create the deferred-free bpobj.  Turn off compression
3859 	 * because sync-to-convergence takes longer if the blocksize
3860 	 * keeps changing.
3861 	 */
3862 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3863 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3864 	    ZIO_COMPRESS_OFF, tx);
3865 	if (zap_add(spa->spa_meta_objset,
3866 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3867 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3868 		cmn_err(CE_PANIC, "failed to add bpobj");
3869 	}
3870 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3871 	    spa->spa_meta_objset, obj));
3872 
3873 	/*
3874 	 * Create the pool's history object.
3875 	 */
3876 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3877 		spa_history_create_obj(spa, tx);
3878 
3879 	/*
3880 	 * Generate some random noise for salted checksums to operate on.
3881 	 */
3882 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3883 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3884 
3885 	/*
3886 	 * Set pool properties.
3887 	 */
3888 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3889 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3890 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3891 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3892 
3893 	if (props != NULL) {
3894 		spa_configfile_set(spa, props, B_FALSE);
3895 		spa_sync_props(props, tx);
3896 	}
3897 
3898 	dmu_tx_commit(tx);
3899 
3900 	spa->spa_sync_on = B_TRUE;
3901 	txg_sync_start(spa->spa_dsl_pool);
3902 
3903 	/*
3904 	 * We explicitly wait for the first transaction to complete so that our
3905 	 * bean counters are appropriately updated.
3906 	 */
3907 	txg_wait_synced(spa->spa_dsl_pool, txg);
3908 
3909 	spa_config_sync(spa, B_FALSE, B_TRUE);
3910 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3911 
3912 	spa_history_log_version(spa, "create");
3913 
3914 	/*
3915 	 * Don't count references from objsets that are already closed
3916 	 * and are making their way through the eviction process.
3917 	 */
3918 	spa_evicting_os_wait(spa);
3919 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3920 	spa->spa_load_state = SPA_LOAD_NONE;
3921 
3922 	mutex_exit(&spa_namespace_lock);
3923 
3924 	return (0);
3925 }
3926 
3927 #ifndef __NetBSD__
3928 #ifdef _KERNEL
3929 #ifdef illumos
3930 /*
3931  * Get the root pool information from the root disk, then import the root pool
3932  * during the system boot up time.
3933  */
3934 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3935 
3936 static nvlist_t *
3937 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3938 {
3939 	nvlist_t *config;
3940 	nvlist_t *nvtop, *nvroot;
3941 	uint64_t pgid;
3942 
3943 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3944 		return (NULL);
3945 
3946 	/*
3947 	 * Add this top-level vdev to the child array.
3948 	 */
3949 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3950 	    &nvtop) == 0);
3951 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3952 	    &pgid) == 0);
3953 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3954 
3955 	/*
3956 	 * Put this pool's top-level vdevs into a root vdev.
3957 	 */
3958 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3959 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3960 	    VDEV_TYPE_ROOT) == 0);
3961 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3962 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3963 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3964 	    &nvtop, 1) == 0);
3965 
3966 	/*
3967 	 * Replace the existing vdev_tree with the new root vdev in
3968 	 * this pool's configuration (remove the old, add the new).
3969 	 */
3970 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3971 	nvlist_free(nvroot);
3972 	return (config);
3973 }
3974 
3975 /*
3976  * Walk the vdev tree and see if we can find a device with "better"
3977  * configuration. A configuration is "better" if the label on that
3978  * device has a more recent txg.
3979  */
3980 static void
3981 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3982 {
3983 	for (int c = 0; c < vd->vdev_children; c++)
3984 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3985 
3986 	if (vd->vdev_ops->vdev_op_leaf) {
3987 		nvlist_t *label;
3988 		uint64_t label_txg;
3989 
3990 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3991 		    &label) != 0)
3992 			return;
3993 
3994 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3995 		    &label_txg) == 0);
3996 
3997 		/*
3998 		 * Do we have a better boot device?
3999 		 */
4000 		if (label_txg > *txg) {
4001 			*txg = label_txg;
4002 			*avd = vd;
4003 		}
4004 		nvlist_free(label);
4005 	}
4006 }
4007 
4008 /*
4009  * Import a root pool.
4010  *
4011  * For x86. devpath_list will consist of devid and/or physpath name of
4012  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4013  * The GRUB "findroot" command will return the vdev we should boot.
4014  *
4015  * For Sparc, devpath_list consists the physpath name of the booting device
4016  * no matter the rootpool is a single device pool or a mirrored pool.
4017  * e.g.
4018  *	"/pci@1f,0/ide@d/disk@0,0:a"
4019  */
4020 int
4021 spa_import_rootpool(char *devpath, char *devid)
4022 {
4023 	spa_t *spa;
4024 	vdev_t *rvd, *bvd, *avd = NULL;
4025 	nvlist_t *config, *nvtop;
4026 	uint64_t guid, txg;
4027 	char *pname;
4028 	int error;
4029 
4030 	/*
4031 	 * Read the label from the boot device and generate a configuration.
4032 	 */
4033 	config = spa_generate_rootconf(devpath, devid, &guid);
4034 #if defined(_OBP) && defined(_KERNEL)
4035 	if (config == NULL) {
4036 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
4037 			/* iscsi boot */
4038 			get_iscsi_bootpath_phy(devpath);
4039 			config = spa_generate_rootconf(devpath, devid, &guid);
4040 		}
4041 	}
4042 #endif
4043 	if (config == NULL) {
4044 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4045 		    devpath);
4046 		return (SET_ERROR(EIO));
4047 	}
4048 
4049 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4050 	    &pname) == 0);
4051 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4052 
4053 	mutex_enter(&spa_namespace_lock);
4054 	if ((spa = spa_lookup(pname)) != NULL) {
4055 		/*
4056 		 * Remove the existing root pool from the namespace so that we
4057 		 * can replace it with the correct config we just read in.
4058 		 */
4059 		spa_remove(spa);
4060 	}
4061 
4062 	spa = spa_add(pname, config, NULL);
4063 	spa->spa_is_root = B_TRUE;
4064 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4065 
4066 	/*
4067 	 * Build up a vdev tree based on the boot device's label config.
4068 	 */
4069 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4070 	    &nvtop) == 0);
4071 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4072 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4073 	    VDEV_ALLOC_ROOTPOOL);
4074 	spa_config_exit(spa, SCL_ALL, FTAG);
4075 	if (error) {
4076 		mutex_exit(&spa_namespace_lock);
4077 		nvlist_free(config);
4078 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4079 		    pname);
4080 		return (error);
4081 	}
4082 
4083 	/*
4084 	 * Get the boot vdev.
4085 	 */
4086 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4087 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4088 		    (u_longlong_t)guid);
4089 		error = SET_ERROR(ENOENT);
4090 		goto out;
4091 	}
4092 
4093 	/*
4094 	 * Determine if there is a better boot device.
4095 	 */
4096 	avd = bvd;
4097 	spa_alt_rootvdev(rvd, &avd, &txg);
4098 	if (avd != bvd) {
4099 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4100 		    "try booting from '%s'", avd->vdev_path);
4101 		error = SET_ERROR(EINVAL);
4102 		goto out;
4103 	}
4104 
4105 	/*
4106 	 * If the boot device is part of a spare vdev then ensure that
4107 	 * we're booting off the active spare.
4108 	 */
4109 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4110 	    !bvd->vdev_isspare) {
4111 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4112 		    "try booting from '%s'",
4113 		    bvd->vdev_parent->
4114 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4115 		error = SET_ERROR(EINVAL);
4116 		goto out;
4117 	}
4118 
4119 	error = 0;
4120 out:
4121 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4122 	vdev_free(rvd);
4123 	spa_config_exit(spa, SCL_ALL, FTAG);
4124 	mutex_exit(&spa_namespace_lock);
4125 
4126 	nvlist_free(config);
4127 	return (error);
4128 }
4129 
4130 #else	/* !illumos */
4131 
4132 extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4133     uint64_t *count);
4134 
4135 static nvlist_t *
4136 spa_generate_rootconf(const char *name)
4137 {
4138 	nvlist_t **configs, **tops;
4139 	nvlist_t *config;
4140 	nvlist_t *best_cfg, *nvtop, *nvroot;
4141 	uint64_t *holes;
4142 	uint64_t best_txg;
4143 	uint64_t nchildren;
4144 	uint64_t pgid;
4145 	uint64_t count;
4146 	uint64_t i;
4147 	uint_t   nholes;
4148 
4149 	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4150 		return (NULL);
4151 
4152 	ASSERT3U(count, !=, 0);
4153 	best_txg = 0;
4154 	for (i = 0; i < count; i++) {
4155 		uint64_t txg;
4156 
4157 		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4158 		    &txg) == 0);
4159 		if (txg > best_txg) {
4160 			best_txg = txg;
4161 			best_cfg = configs[i];
4162 		}
4163 	}
4164 
4165 	nchildren = 1;
4166 	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4167 	holes = NULL;
4168 	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4169 	    &holes, &nholes);
4170 
4171 	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4172 	for (i = 0; i < nchildren; i++) {
4173 		if (i >= count)
4174 			break;
4175 		if (configs[i] == NULL)
4176 			continue;
4177 		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4178 		    &nvtop) == 0);
4179 		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4180 	}
4181 	for (i = 0; holes != NULL && i < nholes; i++) {
4182 		if (i >= nchildren)
4183 			continue;
4184 		if (tops[holes[i]] != NULL)
4185 			continue;
4186 		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4187 		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4188 		    VDEV_TYPE_HOLE) == 0);
4189 		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4190 		    holes[i]) == 0);
4191 		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4192 		    0) == 0);
4193 	}
4194 	for (i = 0; i < nchildren; i++) {
4195 		if (tops[i] != NULL)
4196 			continue;
4197 		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4198 		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4199 		    VDEV_TYPE_MISSING) == 0);
4200 		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4201 		    i) == 0);
4202 		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4203 		    0) == 0);
4204 	}
4205 
4206 	/*
4207 	 * Create pool config based on the best vdev config.
4208 	 */
4209 	nvlist_dup(best_cfg, &config, KM_SLEEP);
4210 
4211 	/*
4212 	 * Put this pool's top-level vdevs into a root vdev.
4213 	 */
4214 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4215 	    &pgid) == 0);
4216 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4217 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4218 	    VDEV_TYPE_ROOT) == 0);
4219 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4220 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4221 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4222 	    tops, nchildren) == 0);
4223 
4224 	/*
4225 	 * Replace the existing vdev_tree with the new root vdev in
4226 	 * this pool's configuration (remove the old, add the new).
4227 	 */
4228 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4229 
4230 	/*
4231 	 * Drop vdev config elements that should not be present at pool level.
4232 	 */
4233 	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4234 	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4235 
4236 	for (i = 0; i < count; i++)
4237 		nvlist_free(configs[i]);
4238 	kmem_free(configs, count * sizeof(void *));
4239 	for (i = 0; i < nchildren; i++)
4240 		nvlist_free(tops[i]);
4241 	kmem_free(tops, nchildren * sizeof(void *));
4242 	nvlist_free(nvroot);
4243 	return (config);
4244 }
4245 
4246 int
4247 spa_import_rootpool(const char *name)
4248 {
4249 	spa_t *spa;
4250 	vdev_t *rvd, *bvd, *avd = NULL;
4251 	nvlist_t *config, *nvtop;
4252 	uint64_t txg;
4253 	char *pname;
4254 	int error;
4255 
4256 	/*
4257 	 * Read the label from the boot device and generate a configuration.
4258 	 */
4259 	config = spa_generate_rootconf(name);
4260 
4261 	mutex_enter(&spa_namespace_lock);
4262 	if (config != NULL) {
4263 		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4264 		    &pname) == 0 && strcmp(name, pname) == 0);
4265 		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4266 		    == 0);
4267 
4268 		if ((spa = spa_lookup(pname)) != NULL) {
4269 			/*
4270 			 * Remove the existing root pool from the namespace so
4271 			 * that we can replace it with the correct config
4272 			 * we just read in.
4273 			 */
4274 			spa_remove(spa);
4275 		}
4276 		spa = spa_add(pname, config, NULL);
4277 
4278 		/*
4279 		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4280 		 * via spa_version().
4281 		 */
4282 		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4283 		    &spa->spa_ubsync.ub_version) != 0)
4284 			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4285 	} else if ((spa = spa_lookup(name)) == NULL) {
4286 		mutex_exit(&spa_namespace_lock);
4287 		nvlist_free(config);
4288 		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4289 		    name);
4290 		return (EIO);
4291 	} else {
4292 		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4293 	}
4294 	spa->spa_is_root = B_TRUE;
4295 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4296 
4297 	/*
4298 	 * Build up a vdev tree based on the boot device's label config.
4299 	 */
4300 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4301 	    &nvtop) == 0);
4302 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4303 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4304 	    VDEV_ALLOC_ROOTPOOL);
4305 	spa_config_exit(spa, SCL_ALL, FTAG);
4306 	if (error) {
4307 		mutex_exit(&spa_namespace_lock);
4308 		nvlist_free(config);
4309 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4310 		    pname);
4311 		return (error);
4312 	}
4313 
4314 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4315 	vdev_free(rvd);
4316 	spa_config_exit(spa, SCL_ALL, FTAG);
4317 	mutex_exit(&spa_namespace_lock);
4318 
4319 	nvlist_free(config);
4320 	return (0);
4321 }
4322 
4323 #endif	/* illumos */
4324 #endif	/* _KERNEL */
4325 #endif	/* !__NetBSD__ */
4326 
4327 /*
4328  * Import a non-root pool into the system.
4329  */
4330 int
4331 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4332 {
4333 	spa_t *spa;
4334 	char *altroot = NULL;
4335 	spa_load_state_t state = SPA_LOAD_IMPORT;
4336 	zpool_rewind_policy_t policy;
4337 	uint64_t mode = spa_mode_global;
4338 	uint64_t readonly = B_FALSE;
4339 	int error;
4340 	nvlist_t *nvroot;
4341 	nvlist_t **spares, **l2cache;
4342 	uint_t nspares, nl2cache;
4343 
4344 	/*
4345 	 * If a pool with this name exists, return failure.
4346 	 */
4347 	mutex_enter(&spa_namespace_lock);
4348 	if (spa_lookup(pool) != NULL) {
4349 		mutex_exit(&spa_namespace_lock);
4350 		return (SET_ERROR(EEXIST));
4351 	}
4352 
4353 	/*
4354 	 * Create and initialize the spa structure.
4355 	 */
4356 	(void) nvlist_lookup_string(props,
4357 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4358 	(void) nvlist_lookup_uint64(props,
4359 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4360 	if (readonly)
4361 		mode = FREAD;
4362 	spa = spa_add(pool, config, altroot);
4363 	spa->spa_import_flags = flags;
4364 
4365 	/*
4366 	 * Verbatim import - Take a pool and insert it into the namespace
4367 	 * as if it had been loaded at boot.
4368 	 */
4369 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4370 		if (props != NULL)
4371 			spa_configfile_set(spa, props, B_FALSE);
4372 
4373 		spa_config_sync(spa, B_FALSE, B_TRUE);
4374 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4375 
4376 		mutex_exit(&spa_namespace_lock);
4377 		return (0);
4378 	}
4379 
4380 	spa_activate(spa, mode);
4381 
4382 	/*
4383 	 * Don't start async tasks until we know everything is healthy.
4384 	 */
4385 	spa_async_suspend(spa);
4386 
4387 	zpool_get_rewind_policy(config, &policy);
4388 	if (policy.zrp_request & ZPOOL_DO_REWIND)
4389 		state = SPA_LOAD_RECOVER;
4390 
4391 	/*
4392 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4393 	 * because the user-supplied config is actually the one to trust when
4394 	 * doing an import.
4395 	 */
4396 	if (state != SPA_LOAD_RECOVER)
4397 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4398 
4399 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4400 	    policy.zrp_request);
4401 
4402 	/*
4403 	 * Propagate anything learned while loading the pool and pass it
4404 	 * back to caller (i.e. rewind info, missing devices, etc).
4405 	 */
4406 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4407 	    spa->spa_load_info) == 0);
4408 
4409 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4410 	/*
4411 	 * Toss any existing sparelist, as it doesn't have any validity
4412 	 * anymore, and conflicts with spa_has_spare().
4413 	 */
4414 	if (spa->spa_spares.sav_config) {
4415 		nvlist_free(spa->spa_spares.sav_config);
4416 		spa->spa_spares.sav_config = NULL;
4417 		spa_load_spares(spa);
4418 	}
4419 	if (spa->spa_l2cache.sav_config) {
4420 		nvlist_free(spa->spa_l2cache.sav_config);
4421 		spa->spa_l2cache.sav_config = NULL;
4422 		spa_load_l2cache(spa);
4423 	}
4424 
4425 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4426 	    &nvroot) == 0);
4427 	if (error == 0)
4428 		error = spa_validate_aux(spa, nvroot, -1ULL,
4429 		    VDEV_ALLOC_SPARE);
4430 	if (error == 0)
4431 		error = spa_validate_aux(spa, nvroot, -1ULL,
4432 		    VDEV_ALLOC_L2CACHE);
4433 	spa_config_exit(spa, SCL_ALL, FTAG);
4434 
4435 	if (props != NULL)
4436 		spa_configfile_set(spa, props, B_FALSE);
4437 
4438 	if (error != 0 || (props && spa_writeable(spa) &&
4439 	    (error = spa_prop_set(spa, props)))) {
4440 		spa_unload(spa);
4441 		spa_deactivate(spa);
4442 		spa_remove(spa);
4443 		mutex_exit(&spa_namespace_lock);
4444 		return (error);
4445 	}
4446 
4447 	spa_async_resume(spa);
4448 
4449 	/*
4450 	 * Override any spares and level 2 cache devices as specified by
4451 	 * the user, as these may have correct device names/devids, etc.
4452 	 */
4453 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4454 	    &spares, &nspares) == 0) {
4455 		if (spa->spa_spares.sav_config)
4456 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4457 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4458 		else
4459 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4460 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4461 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4462 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4463 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4464 		spa_load_spares(spa);
4465 		spa_config_exit(spa, SCL_ALL, FTAG);
4466 		spa->spa_spares.sav_sync = B_TRUE;
4467 	}
4468 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4469 	    &l2cache, &nl2cache) == 0) {
4470 		if (spa->spa_l2cache.sav_config)
4471 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4472 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4473 		else
4474 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4475 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4476 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4477 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4478 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4479 		spa_load_l2cache(spa);
4480 		spa_config_exit(spa, SCL_ALL, FTAG);
4481 		spa->spa_l2cache.sav_sync = B_TRUE;
4482 	}
4483 
4484 	/*
4485 	 * Check for any removed devices.
4486 	 */
4487 	if (spa->spa_autoreplace) {
4488 		spa_aux_check_removed(&spa->spa_spares);
4489 		spa_aux_check_removed(&spa->spa_l2cache);
4490 	}
4491 
4492 	if (spa_writeable(spa)) {
4493 		/*
4494 		 * Update the config cache to include the newly-imported pool.
4495 		 */
4496 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4497 	}
4498 
4499 	/*
4500 	 * It's possible that the pool was expanded while it was exported.
4501 	 * We kick off an async task to handle this for us.
4502 	 */
4503 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4504 
4505 	spa_history_log_version(spa, "import");
4506 
4507 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4508 
4509 	mutex_exit(&spa_namespace_lock);
4510 
4511 #ifdef __FreeBSD__
4512 #ifdef _KERNEL
4513 	zvol_create_minors(pool);
4514 #endif
4515 #endif
4516 	return (0);
4517 }
4518 
4519 nvlist_t *
4520 spa_tryimport(nvlist_t *tryconfig)
4521 {
4522 	nvlist_t *config = NULL;
4523 	char *poolname;
4524 	spa_t *spa;
4525 	uint64_t state;
4526 	int error;
4527 
4528 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4529 		return (NULL);
4530 
4531 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4532 		return (NULL);
4533 
4534 	/*
4535 	 * Create and initialize the spa structure.
4536 	 */
4537 	mutex_enter(&spa_namespace_lock);
4538 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4539 	spa_activate(spa, FREAD);
4540 
4541 	/*
4542 	 * Pass off the heavy lifting to spa_load().
4543 	 * Pass TRUE for mosconfig because the user-supplied config
4544 	 * is actually the one to trust when doing an import.
4545 	 */
4546 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4547 
4548 	/*
4549 	 * If 'tryconfig' was at least parsable, return the current config.
4550 	 */
4551 	if (spa->spa_root_vdev != NULL) {
4552 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4553 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4554 		    poolname) == 0);
4555 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4556 		    state) == 0);
4557 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4558 		    spa->spa_uberblock.ub_timestamp) == 0);
4559 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4560 		    spa->spa_load_info) == 0);
4561 
4562 		/*
4563 		 * If the bootfs property exists on this pool then we
4564 		 * copy it out so that external consumers can tell which
4565 		 * pools are bootable.
4566 		 */
4567 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4568 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4569 
4570 			/*
4571 			 * We have to play games with the name since the
4572 			 * pool was opened as TRYIMPORT_NAME.
4573 			 */
4574 			if (dsl_dsobj_to_dsname(spa_name(spa),
4575 			    spa->spa_bootfs, tmpname) == 0) {
4576 				char *cp;
4577 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4578 
4579 				cp = strchr(tmpname, '/');
4580 				if (cp == NULL) {
4581 					(void) strlcpy(dsname, tmpname,
4582 					    MAXPATHLEN);
4583 				} else {
4584 					(void) snprintf(dsname, MAXPATHLEN,
4585 					    "%s/%s", poolname, ++cp);
4586 				}
4587 				VERIFY(nvlist_add_string(config,
4588 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4589 				kmem_free(dsname, MAXPATHLEN);
4590 			}
4591 			kmem_free(tmpname, MAXPATHLEN);
4592 		}
4593 
4594 		/*
4595 		 * Add the list of hot spares and level 2 cache devices.
4596 		 */
4597 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4598 		spa_add_spares(spa, config);
4599 		spa_add_l2cache(spa, config);
4600 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4601 	}
4602 
4603 	spa_unload(spa);
4604 	spa_deactivate(spa);
4605 	spa_remove(spa);
4606 	mutex_exit(&spa_namespace_lock);
4607 
4608 	return (config);
4609 }
4610 
4611 /*
4612  * Pool export/destroy
4613  *
4614  * The act of destroying or exporting a pool is very simple.  We make sure there
4615  * is no more pending I/O and any references to the pool are gone.  Then, we
4616  * update the pool state and sync all the labels to disk, removing the
4617  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4618  * we don't sync the labels or remove the configuration cache.
4619  */
4620 static int
4621 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4622     boolean_t force, boolean_t hardforce)
4623 {
4624 	spa_t *spa;
4625 
4626 	if (oldconfig)
4627 		*oldconfig = NULL;
4628 
4629 	if (!(spa_mode_global & FWRITE))
4630 		return (SET_ERROR(EROFS));
4631 
4632 	mutex_enter(&spa_namespace_lock);
4633 	if ((spa = spa_lookup(pool)) == NULL) {
4634 		mutex_exit(&spa_namespace_lock);
4635 		return (SET_ERROR(ENOENT));
4636 	}
4637 
4638 	/*
4639 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4640 	 * reacquire the namespace lock, and see if we can export.
4641 	 */
4642 	spa_open_ref(spa, FTAG);
4643 	mutex_exit(&spa_namespace_lock);
4644 	spa_async_suspend(spa);
4645 	mutex_enter(&spa_namespace_lock);
4646 	spa_close(spa, FTAG);
4647 
4648 	/*
4649 	 * The pool will be in core if it's openable,
4650 	 * in which case we can modify its state.
4651 	 */
4652 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4653 		/*
4654 		 * Objsets may be open only because they're dirty, so we
4655 		 * have to force it to sync before checking spa_refcnt.
4656 		 */
4657 		txg_wait_synced(spa->spa_dsl_pool, 0);
4658 		spa_evicting_os_wait(spa);
4659 
4660 		/*
4661 		 * A pool cannot be exported or destroyed if there are active
4662 		 * references.  If we are resetting a pool, allow references by
4663 		 * fault injection handlers.
4664 		 */
4665 		if (!spa_refcount_zero(spa) ||
4666 		    (spa->spa_inject_ref != 0 &&
4667 		    new_state != POOL_STATE_UNINITIALIZED)) {
4668 			spa_async_resume(spa);
4669 			mutex_exit(&spa_namespace_lock);
4670 			return (SET_ERROR(EBUSY));
4671 		}
4672 
4673 		/*
4674 		 * A pool cannot be exported if it has an active shared spare.
4675 		 * This is to prevent other pools stealing the active spare
4676 		 * from an exported pool. At user's own will, such pool can
4677 		 * be forcedly exported.
4678 		 */
4679 		if (!force && new_state == POOL_STATE_EXPORTED &&
4680 		    spa_has_active_shared_spare(spa)) {
4681 			spa_async_resume(spa);
4682 			mutex_exit(&spa_namespace_lock);
4683 			return (SET_ERROR(EXDEV));
4684 		}
4685 
4686 		/*
4687 		 * We want this to be reflected on every label,
4688 		 * so mark them all dirty.  spa_unload() will do the
4689 		 * final sync that pushes these changes out.
4690 		 */
4691 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4692 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4693 			spa->spa_state = new_state;
4694 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4695 			    TXG_DEFER_SIZE + 1;
4696 			vdev_config_dirty(spa->spa_root_vdev);
4697 			spa_config_exit(spa, SCL_ALL, FTAG);
4698 		}
4699 	}
4700 
4701 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4702 
4703 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4704 		spa_unload(spa);
4705 		spa_deactivate(spa);
4706 	}
4707 
4708 	if (oldconfig && spa->spa_config)
4709 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4710 
4711 	if (new_state != POOL_STATE_UNINITIALIZED) {
4712 		if (!hardforce)
4713 			spa_config_sync(spa, B_TRUE, B_TRUE);
4714 		spa_remove(spa);
4715 	}
4716 	mutex_exit(&spa_namespace_lock);
4717 
4718 	return (0);
4719 }
4720 
4721 /*
4722  * Destroy a storage pool.
4723  */
4724 int
4725 spa_destroy(char *pool)
4726 {
4727 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4728 	    B_FALSE, B_FALSE));
4729 }
4730 
4731 /*
4732  * Export a storage pool.
4733  */
4734 int
4735 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4736     boolean_t hardforce)
4737 {
4738 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4739 	    force, hardforce));
4740 }
4741 
4742 /*
4743  * Similar to spa_export(), this unloads the spa_t without actually removing it
4744  * from the namespace in any way.
4745  */
4746 int
4747 spa_reset(char *pool)
4748 {
4749 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4750 	    B_FALSE, B_FALSE));
4751 }
4752 
4753 /*
4754  * ==========================================================================
4755  * Device manipulation
4756  * ==========================================================================
4757  */
4758 
4759 /*
4760  * Add a device to a storage pool.
4761  */
4762 int
4763 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4764 {
4765 	uint64_t txg, id;
4766 	int error;
4767 	vdev_t *rvd = spa->spa_root_vdev;
4768 	vdev_t *vd, *tvd;
4769 	nvlist_t **spares, **l2cache;
4770 	uint_t nspares, nl2cache;
4771 
4772 	ASSERT(spa_writeable(spa));
4773 
4774 	txg = spa_vdev_enter(spa);
4775 
4776 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4777 	    VDEV_ALLOC_ADD)) != 0)
4778 		return (spa_vdev_exit(spa, NULL, txg, error));
4779 
4780 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4781 
4782 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4783 	    &nspares) != 0)
4784 		nspares = 0;
4785 
4786 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4787 	    &nl2cache) != 0)
4788 		nl2cache = 0;
4789 
4790 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4791 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4792 
4793 	if (vd->vdev_children != 0 &&
4794 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4795 		return (spa_vdev_exit(spa, vd, txg, error));
4796 
4797 	/*
4798 	 * We must validate the spares and l2cache devices after checking the
4799 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4800 	 */
4801 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4802 		return (spa_vdev_exit(spa, vd, txg, error));
4803 
4804 	/*
4805 	 * Transfer each new top-level vdev from vd to rvd.
4806 	 */
4807 	for (int c = 0; c < vd->vdev_children; c++) {
4808 
4809 		/*
4810 		 * Set the vdev id to the first hole, if one exists.
4811 		 */
4812 		for (id = 0; id < rvd->vdev_children; id++) {
4813 			if (rvd->vdev_child[id]->vdev_ishole) {
4814 				vdev_free(rvd->vdev_child[id]);
4815 				break;
4816 			}
4817 		}
4818 		tvd = vd->vdev_child[c];
4819 		vdev_remove_child(vd, tvd);
4820 		tvd->vdev_id = id;
4821 		vdev_add_child(rvd, tvd);
4822 		vdev_config_dirty(tvd);
4823 	}
4824 
4825 	if (nspares != 0) {
4826 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4827 		    ZPOOL_CONFIG_SPARES);
4828 		spa_load_spares(spa);
4829 		spa->spa_spares.sav_sync = B_TRUE;
4830 	}
4831 
4832 	if (nl2cache != 0) {
4833 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4834 		    ZPOOL_CONFIG_L2CACHE);
4835 		spa_load_l2cache(spa);
4836 		spa->spa_l2cache.sav_sync = B_TRUE;
4837 	}
4838 
4839 	/*
4840 	 * We have to be careful when adding new vdevs to an existing pool.
4841 	 * If other threads start allocating from these vdevs before we
4842 	 * sync the config cache, and we lose power, then upon reboot we may
4843 	 * fail to open the pool because there are DVAs that the config cache
4844 	 * can't translate.  Therefore, we first add the vdevs without
4845 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4846 	 * and then let spa_config_update() initialize the new metaslabs.
4847 	 *
4848 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4849 	 * if we lose power at any point in this sequence, the remaining
4850 	 * steps will be completed the next time we load the pool.
4851 	 */
4852 	(void) spa_vdev_exit(spa, vd, txg, 0);
4853 
4854 	mutex_enter(&spa_namespace_lock);
4855 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4856 	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4857 	mutex_exit(&spa_namespace_lock);
4858 
4859 	return (0);
4860 }
4861 
4862 /*
4863  * Attach a device to a mirror.  The arguments are the path to any device
4864  * in the mirror, and the nvroot for the new device.  If the path specifies
4865  * a device that is not mirrored, we automatically insert the mirror vdev.
4866  *
4867  * If 'replacing' is specified, the new device is intended to replace the
4868  * existing device; in this case the two devices are made into their own
4869  * mirror using the 'replacing' vdev, which is functionally identical to
4870  * the mirror vdev (it actually reuses all the same ops) but has a few
4871  * extra rules: you can't attach to it after it's been created, and upon
4872  * completion of resilvering, the first disk (the one being replaced)
4873  * is automatically detached.
4874  */
4875 int
4876 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4877 {
4878 	uint64_t txg, dtl_max_txg;
4879 	vdev_t *rvd = spa->spa_root_vdev;
4880 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4881 	vdev_ops_t *pvops;
4882 	char *oldvdpath, *newvdpath;
4883 	int newvd_isspare;
4884 	int error;
4885 
4886 	ASSERT(spa_writeable(spa));
4887 
4888 	txg = spa_vdev_enter(spa);
4889 
4890 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4891 
4892 	if (oldvd == NULL)
4893 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4894 
4895 	if (!oldvd->vdev_ops->vdev_op_leaf)
4896 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4897 
4898 	pvd = oldvd->vdev_parent;
4899 
4900 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4901 	    VDEV_ALLOC_ATTACH)) != 0)
4902 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4903 
4904 	if (newrootvd->vdev_children != 1)
4905 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4906 
4907 	newvd = newrootvd->vdev_child[0];
4908 
4909 	if (!newvd->vdev_ops->vdev_op_leaf)
4910 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4911 
4912 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4913 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4914 
4915 	/*
4916 	 * Spares can't replace logs
4917 	 */
4918 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4919 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4920 
4921 	if (!replacing) {
4922 		/*
4923 		 * For attach, the only allowable parent is a mirror or the root
4924 		 * vdev.
4925 		 */
4926 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4927 		    pvd->vdev_ops != &vdev_root_ops)
4928 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4929 
4930 		pvops = &vdev_mirror_ops;
4931 	} else {
4932 		/*
4933 		 * Active hot spares can only be replaced by inactive hot
4934 		 * spares.
4935 		 */
4936 		if (pvd->vdev_ops == &vdev_spare_ops &&
4937 		    oldvd->vdev_isspare &&
4938 		    !spa_has_spare(spa, newvd->vdev_guid))
4939 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4940 
4941 		/*
4942 		 * If the source is a hot spare, and the parent isn't already a
4943 		 * spare, then we want to create a new hot spare.  Otherwise, we
4944 		 * want to create a replacing vdev.  The user is not allowed to
4945 		 * attach to a spared vdev child unless the 'isspare' state is
4946 		 * the same (spare replaces spare, non-spare replaces
4947 		 * non-spare).
4948 		 */
4949 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4950 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4951 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4952 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4953 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4954 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4955 		}
4956 
4957 		if (newvd->vdev_isspare)
4958 			pvops = &vdev_spare_ops;
4959 		else
4960 			pvops = &vdev_replacing_ops;
4961 	}
4962 
4963 	/*
4964 	 * Make sure the new device is big enough.
4965 	 */
4966 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4967 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4968 
4969 	/*
4970 	 * The new device cannot have a higher alignment requirement
4971 	 * than the top-level vdev.
4972 	 */
4973 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4974 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4975 
4976 	/*
4977 	 * If this is an in-place replacement, update oldvd's path and devid
4978 	 * to make it distinguishable from newvd, and unopenable from now on.
4979 	 */
4980 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4981 		spa_strfree(oldvd->vdev_path);
4982 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4983 		    KM_SLEEP);
4984 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4985 		    newvd->vdev_path, "old");
4986 		if (oldvd->vdev_devid != NULL) {
4987 			spa_strfree(oldvd->vdev_devid);
4988 			oldvd->vdev_devid = NULL;
4989 		}
4990 	}
4991 
4992 	/* mark the device being resilvered */
4993 	newvd->vdev_resilver_txg = txg;
4994 
4995 	/*
4996 	 * If the parent is not a mirror, or if we're replacing, insert the new
4997 	 * mirror/replacing/spare vdev above oldvd.
4998 	 */
4999 	if (pvd->vdev_ops != pvops)
5000 		pvd = vdev_add_parent(oldvd, pvops);
5001 
5002 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
5003 	ASSERT(pvd->vdev_ops == pvops);
5004 	ASSERT(oldvd->vdev_parent == pvd);
5005 
5006 	/*
5007 	 * Extract the new device from its root and add it to pvd.
5008 	 */
5009 	vdev_remove_child(newrootvd, newvd);
5010 	newvd->vdev_id = pvd->vdev_children;
5011 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
5012 	vdev_add_child(pvd, newvd);
5013 
5014 	tvd = newvd->vdev_top;
5015 	ASSERT(pvd->vdev_top == tvd);
5016 	ASSERT(tvd->vdev_parent == rvd);
5017 
5018 	vdev_config_dirty(tvd);
5019 
5020 	/*
5021 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5022 	 * for any dmu_sync-ed blocks.  It will propagate upward when
5023 	 * spa_vdev_exit() calls vdev_dtl_reassess().
5024 	 */
5025 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5026 
5027 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5028 	    dtl_max_txg - TXG_INITIAL);
5029 
5030 	if (newvd->vdev_isspare) {
5031 		spa_spare_activate(newvd);
5032 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
5033 	}
5034 
5035 	oldvdpath = spa_strdup(oldvd->vdev_path);
5036 	newvdpath = spa_strdup(newvd->vdev_path);
5037 	newvd_isspare = newvd->vdev_isspare;
5038 
5039 	/*
5040 	 * Mark newvd's DTL dirty in this txg.
5041 	 */
5042 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
5043 
5044 	/*
5045 	 * Schedule the resilver to restart in the future. We do this to
5046 	 * ensure that dmu_sync-ed blocks have been stitched into the
5047 	 * respective datasets.
5048 	 */
5049 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5050 
5051 	if (spa->spa_bootfs)
5052 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5053 
5054 	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
5055 
5056 	/*
5057 	 * Commit the config
5058 	 */
5059 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5060 
5061 	spa_history_log_internal(spa, "vdev attach", NULL,
5062 	    "%s vdev=%s %s vdev=%s",
5063 	    replacing && newvd_isspare ? "spare in" :
5064 	    replacing ? "replace" : "attach", newvdpath,
5065 	    replacing ? "for" : "to", oldvdpath);
5066 
5067 	spa_strfree(oldvdpath);
5068 	spa_strfree(newvdpath);
5069 
5070 	return (0);
5071 }
5072 
5073 /*
5074  * Detach a device from a mirror or replacing vdev.
5075  *
5076  * If 'replace_done' is specified, only detach if the parent
5077  * is a replacing vdev.
5078  */
5079 int
5080 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5081 {
5082 	uint64_t txg;
5083 	int error;
5084 	vdev_t *rvd = spa->spa_root_vdev;
5085 	vdev_t *vd, *pvd, *cvd, *tvd;
5086 	boolean_t unspare = B_FALSE;
5087 	uint64_t unspare_guid = 0;
5088 	char *vdpath;
5089 
5090 	ASSERT(spa_writeable(spa));
5091 
5092 	txg = spa_vdev_enter(spa);
5093 
5094 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5095 
5096 	if (vd == NULL)
5097 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5098 
5099 	if (!vd->vdev_ops->vdev_op_leaf)
5100 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5101 
5102 	pvd = vd->vdev_parent;
5103 
5104 	/*
5105 	 * If the parent/child relationship is not as expected, don't do it.
5106 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5107 	 * vdev that's replacing B with C.  The user's intent in replacing
5108 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5109 	 * the replace by detaching C, the expected behavior is to end up
5110 	 * M(A,B).  But suppose that right after deciding to detach C,
5111 	 * the replacement of B completes.  We would have M(A,C), and then
5112 	 * ask to detach C, which would leave us with just A -- not what
5113 	 * the user wanted.  To prevent this, we make sure that the
5114 	 * parent/child relationship hasn't changed -- in this example,
5115 	 * that C's parent is still the replacing vdev R.
5116 	 */
5117 	if (pvd->vdev_guid != pguid && pguid != 0)
5118 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5119 
5120 	/*
5121 	 * Only 'replacing' or 'spare' vdevs can be replaced.
5122 	 */
5123 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5124 	    pvd->vdev_ops != &vdev_spare_ops)
5125 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5126 
5127 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5128 	    spa_version(spa) >= SPA_VERSION_SPARES);
5129 
5130 	/*
5131 	 * Only mirror, replacing, and spare vdevs support detach.
5132 	 */
5133 	if (pvd->vdev_ops != &vdev_replacing_ops &&
5134 	    pvd->vdev_ops != &vdev_mirror_ops &&
5135 	    pvd->vdev_ops != &vdev_spare_ops)
5136 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5137 
5138 	/*
5139 	 * If this device has the only valid copy of some data,
5140 	 * we cannot safely detach it.
5141 	 */
5142 	if (vdev_dtl_required(vd))
5143 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5144 
5145 	ASSERT(pvd->vdev_children >= 2);
5146 
5147 	/*
5148 	 * If we are detaching the second disk from a replacing vdev, then
5149 	 * check to see if we changed the original vdev's path to have "/old"
5150 	 * at the end in spa_vdev_attach().  If so, undo that change now.
5151 	 */
5152 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5153 	    vd->vdev_path != NULL) {
5154 		size_t len = strlen(vd->vdev_path);
5155 
5156 		for (int c = 0; c < pvd->vdev_children; c++) {
5157 			cvd = pvd->vdev_child[c];
5158 
5159 			if (cvd == vd || cvd->vdev_path == NULL)
5160 				continue;
5161 
5162 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5163 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5164 				spa_strfree(cvd->vdev_path);
5165 				cvd->vdev_path = spa_strdup(vd->vdev_path);
5166 				break;
5167 			}
5168 		}
5169 	}
5170 
5171 	/*
5172 	 * If we are detaching the original disk from a spare, then it implies
5173 	 * that the spare should become a real disk, and be removed from the
5174 	 * active spare list for the pool.
5175 	 */
5176 	if (pvd->vdev_ops == &vdev_spare_ops &&
5177 	    vd->vdev_id == 0 &&
5178 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5179 		unspare = B_TRUE;
5180 
5181 	/*
5182 	 * Erase the disk labels so the disk can be used for other things.
5183 	 * This must be done after all other error cases are handled,
5184 	 * but before we disembowel vd (so we can still do I/O to it).
5185 	 * But if we can't do it, don't treat the error as fatal --
5186 	 * it may be that the unwritability of the disk is the reason
5187 	 * it's being detached!
5188 	 */
5189 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5190 
5191 	/*
5192 	 * Remove vd from its parent and compact the parent's children.
5193 	 */
5194 	vdev_remove_child(pvd, vd);
5195 	vdev_compact_children(pvd);
5196 
5197 	/*
5198 	 * Remember one of the remaining children so we can get tvd below.
5199 	 */
5200 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5201 
5202 	/*
5203 	 * If we need to remove the remaining child from the list of hot spares,
5204 	 * do it now, marking the vdev as no longer a spare in the process.
5205 	 * We must do this before vdev_remove_parent(), because that can
5206 	 * change the GUID if it creates a new toplevel GUID.  For a similar
5207 	 * reason, we must remove the spare now, in the same txg as the detach;
5208 	 * otherwise someone could attach a new sibling, change the GUID, and
5209 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5210 	 */
5211 	if (unspare) {
5212 		ASSERT(cvd->vdev_isspare);
5213 		spa_spare_remove(cvd);
5214 		unspare_guid = cvd->vdev_guid;
5215 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5216 		cvd->vdev_unspare = B_TRUE;
5217 	}
5218 
5219 	/*
5220 	 * If the parent mirror/replacing vdev only has one child,
5221 	 * the parent is no longer needed.  Remove it from the tree.
5222 	 */
5223 	if (pvd->vdev_children == 1) {
5224 		if (pvd->vdev_ops == &vdev_spare_ops)
5225 			cvd->vdev_unspare = B_FALSE;
5226 		vdev_remove_parent(cvd);
5227 	}
5228 
5229 
5230 	/*
5231 	 * We don't set tvd until now because the parent we just removed
5232 	 * may have been the previous top-level vdev.
5233 	 */
5234 	tvd = cvd->vdev_top;
5235 	ASSERT(tvd->vdev_parent == rvd);
5236 
5237 	/*
5238 	 * Reevaluate the parent vdev state.
5239 	 */
5240 	vdev_propagate_state(cvd);
5241 
5242 	/*
5243 	 * If the 'autoexpand' property is set on the pool then automatically
5244 	 * try to expand the size of the pool. For example if the device we
5245 	 * just detached was smaller than the others, it may be possible to
5246 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5247 	 * first so that we can obtain the updated sizes of the leaf vdevs.
5248 	 */
5249 	if (spa->spa_autoexpand) {
5250 		vdev_reopen(tvd);
5251 		vdev_expand(tvd, txg);
5252 	}
5253 
5254 	vdev_config_dirty(tvd);
5255 
5256 	/*
5257 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5258 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5259 	 * But first make sure we're not on any *other* txg's DTL list, to
5260 	 * prevent vd from being accessed after it's freed.
5261 	 */
5262 	vdpath = spa_strdup(vd->vdev_path);
5263 	for (int t = 0; t < TXG_SIZE; t++)
5264 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5265 	vd->vdev_detached = B_TRUE;
5266 	vdev_dirty(tvd, VDD_DTL, vd, txg);
5267 
5268 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5269 
5270 	/* hang on to the spa before we release the lock */
5271 	spa_open_ref(spa, FTAG);
5272 
5273 	error = spa_vdev_exit(spa, vd, txg, 0);
5274 
5275 	spa_history_log_internal(spa, "detach", NULL,
5276 	    "vdev=%s", vdpath);
5277 	spa_strfree(vdpath);
5278 
5279 	/*
5280 	 * If this was the removal of the original device in a hot spare vdev,
5281 	 * then we want to go through and remove the device from the hot spare
5282 	 * list of every other pool.
5283 	 */
5284 	if (unspare) {
5285 		spa_t *altspa = NULL;
5286 
5287 		mutex_enter(&spa_namespace_lock);
5288 		while ((altspa = spa_next(altspa)) != NULL) {
5289 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5290 			    altspa == spa)
5291 				continue;
5292 
5293 			spa_open_ref(altspa, FTAG);
5294 			mutex_exit(&spa_namespace_lock);
5295 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5296 			mutex_enter(&spa_namespace_lock);
5297 			spa_close(altspa, FTAG);
5298 		}
5299 		mutex_exit(&spa_namespace_lock);
5300 
5301 		/* search the rest of the vdevs for spares to remove */
5302 		spa_vdev_resilver_done(spa);
5303 	}
5304 
5305 	/* all done with the spa; OK to release */
5306 	mutex_enter(&spa_namespace_lock);
5307 	spa_close(spa, FTAG);
5308 	mutex_exit(&spa_namespace_lock);
5309 
5310 	return (error);
5311 }
5312 
5313 /*
5314  * Split a set of devices from their mirrors, and create a new pool from them.
5315  */
5316 int
5317 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5318     nvlist_t *props, boolean_t exp)
5319 {
5320 	int error = 0;
5321 	uint64_t txg, *glist;
5322 	spa_t *newspa;
5323 	uint_t c, children, lastlog;
5324 	nvlist_t **child, *nvl, *tmp;
5325 	dmu_tx_t *tx;
5326 	char *altroot = NULL;
5327 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5328 	boolean_t activate_slog;
5329 
5330 	ASSERT(spa_writeable(spa));
5331 
5332 	txg = spa_vdev_enter(spa);
5333 
5334 	/* clear the log and flush everything up to now */
5335 	activate_slog = spa_passivate_log(spa);
5336 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5337 	error = spa_offline_log(spa);
5338 	txg = spa_vdev_config_enter(spa);
5339 
5340 	if (activate_slog)
5341 		spa_activate_log(spa);
5342 
5343 	if (error != 0)
5344 		return (spa_vdev_exit(spa, NULL, txg, error));
5345 
5346 	/* check new spa name before going any further */
5347 	if (spa_lookup(newname) != NULL)
5348 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5349 
5350 	/*
5351 	 * scan through all the children to ensure they're all mirrors
5352 	 */
5353 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5354 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5355 	    &children) != 0)
5356 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5357 
5358 	/* first, check to ensure we've got the right child count */
5359 	rvd = spa->spa_root_vdev;
5360 	lastlog = 0;
5361 	for (c = 0; c < rvd->vdev_children; c++) {
5362 		vdev_t *vd = rvd->vdev_child[c];
5363 
5364 		/* don't count the holes & logs as children */
5365 		if (vd->vdev_islog || vd->vdev_ishole) {
5366 			if (lastlog == 0)
5367 				lastlog = c;
5368 			continue;
5369 		}
5370 
5371 		lastlog = 0;
5372 	}
5373 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5374 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5375 
5376 	/* next, ensure no spare or cache devices are part of the split */
5377 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5378 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5379 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5380 
5381 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5382 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5383 
5384 	/* then, loop over each vdev and validate it */
5385 	for (c = 0; c < children; c++) {
5386 		uint64_t is_hole = 0;
5387 
5388 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5389 		    &is_hole);
5390 
5391 		if (is_hole != 0) {
5392 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5393 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5394 				continue;
5395 			} else {
5396 				error = SET_ERROR(EINVAL);
5397 				break;
5398 			}
5399 		}
5400 
5401 		/* which disk is going to be split? */
5402 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5403 		    &glist[c]) != 0) {
5404 			error = SET_ERROR(EINVAL);
5405 			break;
5406 		}
5407 
5408 		/* look it up in the spa */
5409 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5410 		if (vml[c] == NULL) {
5411 			error = SET_ERROR(ENODEV);
5412 			break;
5413 		}
5414 
5415 		/* make sure there's nothing stopping the split */
5416 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5417 		    vml[c]->vdev_islog ||
5418 		    vml[c]->vdev_ishole ||
5419 		    vml[c]->vdev_isspare ||
5420 		    vml[c]->vdev_isl2cache ||
5421 		    !vdev_writeable(vml[c]) ||
5422 		    vml[c]->vdev_children != 0 ||
5423 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5424 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5425 			error = SET_ERROR(EINVAL);
5426 			break;
5427 		}
5428 
5429 		if (vdev_dtl_required(vml[c])) {
5430 			error = SET_ERROR(EBUSY);
5431 			break;
5432 		}
5433 
5434 		/* we need certain info from the top level */
5435 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5436 		    vml[c]->vdev_top->vdev_ms_array) == 0);
5437 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5438 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5439 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5440 		    vml[c]->vdev_top->vdev_asize) == 0);
5441 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5442 		    vml[c]->vdev_top->vdev_ashift) == 0);
5443 
5444 		/* transfer per-vdev ZAPs */
5445 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5446 		VERIFY0(nvlist_add_uint64(child[c],
5447 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5448 
5449 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5450 		VERIFY0(nvlist_add_uint64(child[c],
5451 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
5452 		    vml[c]->vdev_parent->vdev_top_zap));
5453 	}
5454 
5455 	if (error != 0) {
5456 		kmem_free(vml, children * sizeof (vdev_t *));
5457 		kmem_free(glist, children * sizeof (uint64_t));
5458 		return (spa_vdev_exit(spa, NULL, txg, error));
5459 	}
5460 
5461 	/* stop writers from using the disks */
5462 	for (c = 0; c < children; c++) {
5463 		if (vml[c] != NULL)
5464 			vml[c]->vdev_offline = B_TRUE;
5465 	}
5466 	vdev_reopen(spa->spa_root_vdev);
5467 
5468 	/*
5469 	 * Temporarily record the splitting vdevs in the spa config.  This
5470 	 * will disappear once the config is regenerated.
5471 	 */
5472 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5473 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5474 	    glist, children) == 0);
5475 	kmem_free(glist, children * sizeof (uint64_t));
5476 
5477 	mutex_enter(&spa->spa_props_lock);
5478 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5479 	    nvl) == 0);
5480 	mutex_exit(&spa->spa_props_lock);
5481 	spa->spa_config_splitting = nvl;
5482 	vdev_config_dirty(spa->spa_root_vdev);
5483 
5484 	/* configure and create the new pool */
5485 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5486 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5487 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5488 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5489 	    spa_version(spa)) == 0);
5490 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5491 	    spa->spa_config_txg) == 0);
5492 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5493 	    spa_generate_guid(NULL)) == 0);
5494 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5495 	(void) nvlist_lookup_string(props,
5496 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5497 
5498 	/* add the new pool to the namespace */
5499 	newspa = spa_add(newname, config, altroot);
5500 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5501 	newspa->spa_config_txg = spa->spa_config_txg;
5502 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5503 
5504 	/* release the spa config lock, retaining the namespace lock */
5505 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5506 
5507 	if (zio_injection_enabled)
5508 		zio_handle_panic_injection(spa, FTAG, 1);
5509 
5510 	spa_activate(newspa, spa_mode_global);
5511 	spa_async_suspend(newspa);
5512 
5513 #ifndef illumos
5514 	/* mark that we are creating new spa by splitting */
5515 	newspa->spa_splitting_newspa = B_TRUE;
5516 #endif
5517 	/* create the new pool from the disks of the original pool */
5518 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5519 #ifndef illumos
5520 	newspa->spa_splitting_newspa = B_FALSE;
5521 #endif
5522 	if (error)
5523 		goto out;
5524 
5525 	/* if that worked, generate a real config for the new pool */
5526 	if (newspa->spa_root_vdev != NULL) {
5527 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5528 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5529 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5530 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5531 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5532 		    B_TRUE));
5533 	}
5534 
5535 	/* set the props */
5536 	if (props != NULL) {
5537 		spa_configfile_set(newspa, props, B_FALSE);
5538 		error = spa_prop_set(newspa, props);
5539 		if (error)
5540 			goto out;
5541 	}
5542 
5543 	/* flush everything */
5544 	txg = spa_vdev_config_enter(newspa);
5545 	vdev_config_dirty(newspa->spa_root_vdev);
5546 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5547 
5548 	if (zio_injection_enabled)
5549 		zio_handle_panic_injection(spa, FTAG, 2);
5550 
5551 	spa_async_resume(newspa);
5552 
5553 	/* finally, update the original pool's config */
5554 	txg = spa_vdev_config_enter(spa);
5555 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5556 	error = dmu_tx_assign(tx, TXG_WAIT);
5557 	if (error != 0)
5558 		dmu_tx_abort(tx);
5559 	for (c = 0; c < children; c++) {
5560 		if (vml[c] != NULL) {
5561 			vdev_split(vml[c]);
5562 			if (error == 0)
5563 				spa_history_log_internal(spa, "detach", tx,
5564 				    "vdev=%s", vml[c]->vdev_path);
5565 
5566 			vdev_free(vml[c]);
5567 		}
5568 	}
5569 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
5570 	vdev_config_dirty(spa->spa_root_vdev);
5571 	spa->spa_config_splitting = NULL;
5572 	nvlist_free(nvl);
5573 	if (error == 0)
5574 		dmu_tx_commit(tx);
5575 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5576 
5577 	if (zio_injection_enabled)
5578 		zio_handle_panic_injection(spa, FTAG, 3);
5579 
5580 	/* split is complete; log a history record */
5581 	spa_history_log_internal(newspa, "split", NULL,
5582 	    "from pool %s", spa_name(spa));
5583 
5584 	kmem_free(vml, children * sizeof (vdev_t *));
5585 
5586 	/* if we're not going to mount the filesystems in userland, export */
5587 	if (exp)
5588 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5589 		    B_FALSE, B_FALSE);
5590 
5591 	return (error);
5592 
5593 out:
5594 	spa_unload(newspa);
5595 	spa_deactivate(newspa);
5596 	spa_remove(newspa);
5597 
5598 	txg = spa_vdev_config_enter(spa);
5599 
5600 	/* re-online all offlined disks */
5601 	for (c = 0; c < children; c++) {
5602 		if (vml[c] != NULL)
5603 			vml[c]->vdev_offline = B_FALSE;
5604 	}
5605 	vdev_reopen(spa->spa_root_vdev);
5606 
5607 	nvlist_free(spa->spa_config_splitting);
5608 	spa->spa_config_splitting = NULL;
5609 	(void) spa_vdev_exit(spa, NULL, txg, error);
5610 
5611 	kmem_free(vml, children * sizeof (vdev_t *));
5612 	return (error);
5613 }
5614 
5615 static nvlist_t *
5616 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5617 {
5618 	for (int i = 0; i < count; i++) {
5619 		uint64_t guid;
5620 
5621 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5622 		    &guid) == 0);
5623 
5624 		if (guid == target_guid)
5625 			return (nvpp[i]);
5626 	}
5627 
5628 	return (NULL);
5629 }
5630 
5631 static void
5632 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5633     nvlist_t *dev_to_remove)
5634 {
5635 	nvlist_t **newdev = NULL;
5636 
5637 	if (count > 1)
5638 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5639 
5640 	for (int i = 0, j = 0; i < count; i++) {
5641 		if (dev[i] == dev_to_remove)
5642 			continue;
5643 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5644 	}
5645 
5646 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5647 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5648 
5649 	for (int i = 0; i < count - 1; i++)
5650 		nvlist_free(newdev[i]);
5651 
5652 	if (count > 1)
5653 		kmem_free(newdev, (count - 1) * sizeof (void *));
5654 }
5655 
5656 /*
5657  * Evacuate the device.
5658  */
5659 static int
5660 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5661 {
5662 	uint64_t txg;
5663 	int error = 0;
5664 
5665 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5666 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5667 	ASSERT(vd == vd->vdev_top);
5668 
5669 	/*
5670 	 * Evacuate the device.  We don't hold the config lock as writer
5671 	 * since we need to do I/O but we do keep the
5672 	 * spa_namespace_lock held.  Once this completes the device
5673 	 * should no longer have any blocks allocated on it.
5674 	 */
5675 	if (vd->vdev_islog) {
5676 		if (vd->vdev_stat.vs_alloc != 0)
5677 			error = spa_offline_log(spa);
5678 	} else {
5679 		error = SET_ERROR(ENOTSUP);
5680 	}
5681 
5682 	if (error)
5683 		return (error);
5684 
5685 	/*
5686 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5687 	 * associated with this vdev, and wait for these changes to sync.
5688 	 */
5689 	ASSERT0(vd->vdev_stat.vs_alloc);
5690 	txg = spa_vdev_config_enter(spa);
5691 	vd->vdev_removing = B_TRUE;
5692 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5693 	vdev_config_dirty(vd);
5694 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5695 
5696 	return (0);
5697 }
5698 
5699 /*
5700  * Complete the removal by cleaning up the namespace.
5701  */
5702 static void
5703 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5704 {
5705 	vdev_t *rvd = spa->spa_root_vdev;
5706 	uint64_t id = vd->vdev_id;
5707 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5708 
5709 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5710 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5711 	ASSERT(vd == vd->vdev_top);
5712 
5713 	/*
5714 	 * Only remove any devices which are empty.
5715 	 */
5716 	if (vd->vdev_stat.vs_alloc != 0)
5717 		return;
5718 
5719 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5720 
5721 	if (list_link_active(&vd->vdev_state_dirty_node))
5722 		vdev_state_clean(vd);
5723 	if (list_link_active(&vd->vdev_config_dirty_node))
5724 		vdev_config_clean(vd);
5725 
5726 	vdev_free(vd);
5727 
5728 	if (last_vdev) {
5729 		vdev_compact_children(rvd);
5730 	} else {
5731 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5732 		vdev_add_child(rvd, vd);
5733 	}
5734 	vdev_config_dirty(rvd);
5735 
5736 	/*
5737 	 * Reassess the health of our root vdev.
5738 	 */
5739 	vdev_reopen(rvd);
5740 }
5741 
5742 /*
5743  * Remove a device from the pool -
5744  *
5745  * Removing a device from the vdev namespace requires several steps
5746  * and can take a significant amount of time.  As a result we use
5747  * the spa_vdev_config_[enter/exit] functions which allow us to
5748  * grab and release the spa_config_lock while still holding the namespace
5749  * lock.  During each step the configuration is synced out.
5750  *
5751  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5752  * devices.
5753  */
5754 int
5755 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5756 {
5757 	vdev_t *vd;
5758 	sysevent_t *ev = NULL;
5759 	metaslab_group_t *mg;
5760 	nvlist_t **spares, **l2cache, *nv;
5761 	uint64_t txg = 0;
5762 	uint_t nspares, nl2cache;
5763 	int error = 0;
5764 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5765 
5766 	ASSERT(spa_writeable(spa));
5767 
5768 	if (!locked)
5769 		txg = spa_vdev_enter(spa);
5770 
5771 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5772 
5773 	if (spa->spa_spares.sav_vdevs != NULL &&
5774 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5775 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5776 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5777 		/*
5778 		 * Only remove the hot spare if it's not currently in use
5779 		 * in this pool.
5780 		 */
5781 		if (vd == NULL || unspare) {
5782 			if (vd == NULL)
5783 				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5784 			ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5785 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5786 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5787 			spa_load_spares(spa);
5788 			spa->spa_spares.sav_sync = B_TRUE;
5789 		} else {
5790 			error = SET_ERROR(EBUSY);
5791 		}
5792 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5793 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5794 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5795 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5796 		/*
5797 		 * Cache devices can always be removed.
5798 		 */
5799 		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5800 		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5801 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5802 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5803 		spa_load_l2cache(spa);
5804 		spa->spa_l2cache.sav_sync = B_TRUE;
5805 	} else if (vd != NULL && vd->vdev_islog) {
5806 		ASSERT(!locked);
5807 		ASSERT(vd == vd->vdev_top);
5808 
5809 		mg = vd->vdev_mg;
5810 
5811 		/*
5812 		 * Stop allocating from this vdev.
5813 		 */
5814 		metaslab_group_passivate(mg);
5815 
5816 		/*
5817 		 * Wait for the youngest allocations and frees to sync,
5818 		 * and then wait for the deferral of those frees to finish.
5819 		 */
5820 		spa_vdev_config_exit(spa, NULL,
5821 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5822 
5823 		/*
5824 		 * Attempt to evacuate the vdev.
5825 		 */
5826 		error = spa_vdev_remove_evacuate(spa, vd);
5827 
5828 		txg = spa_vdev_config_enter(spa);
5829 
5830 		/*
5831 		 * If we couldn't evacuate the vdev, unwind.
5832 		 */
5833 		if (error) {
5834 			metaslab_group_activate(mg);
5835 			return (spa_vdev_exit(spa, NULL, txg, error));
5836 		}
5837 
5838 		/*
5839 		 * Clean up the vdev namespace.
5840 		 */
5841 		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV);
5842 		spa_vdev_remove_from_namespace(spa, vd);
5843 
5844 	} else if (vd != NULL) {
5845 		/*
5846 		 * Normal vdevs cannot be removed (yet).
5847 		 */
5848 		error = SET_ERROR(ENOTSUP);
5849 	} else {
5850 		/*
5851 		 * There is no vdev of any kind with the specified guid.
5852 		 */
5853 		error = SET_ERROR(ENOENT);
5854 	}
5855 
5856 	if (!locked)
5857 		error = spa_vdev_exit(spa, NULL, txg, error);
5858 
5859 	if (ev)
5860 		spa_event_post(ev);
5861 
5862 	return (error);
5863 }
5864 
5865 /*
5866  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5867  * currently spared, so we can detach it.
5868  */
5869 static vdev_t *
5870 spa_vdev_resilver_done_hunt(vdev_t *vd)
5871 {
5872 	vdev_t *newvd, *oldvd;
5873 
5874 	for (int c = 0; c < vd->vdev_children; c++) {
5875 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5876 		if (oldvd != NULL)
5877 			return (oldvd);
5878 	}
5879 
5880 	/*
5881 	 * Check for a completed replacement.  We always consider the first
5882 	 * vdev in the list to be the oldest vdev, and the last one to be
5883 	 * the newest (see spa_vdev_attach() for how that works).  In
5884 	 * the case where the newest vdev is faulted, we will not automatically
5885 	 * remove it after a resilver completes.  This is OK as it will require
5886 	 * user intervention to determine which disk the admin wishes to keep.
5887 	 */
5888 	if (vd->vdev_ops == &vdev_replacing_ops) {
5889 		ASSERT(vd->vdev_children > 1);
5890 
5891 		newvd = vd->vdev_child[vd->vdev_children - 1];
5892 		oldvd = vd->vdev_child[0];
5893 
5894 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5895 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5896 		    !vdev_dtl_required(oldvd))
5897 			return (oldvd);
5898 	}
5899 
5900 	/*
5901 	 * Check for a completed resilver with the 'unspare' flag set.
5902 	 */
5903 	if (vd->vdev_ops == &vdev_spare_ops) {
5904 		vdev_t *first = vd->vdev_child[0];
5905 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5906 
5907 		if (last->vdev_unspare) {
5908 			oldvd = first;
5909 			newvd = last;
5910 		} else if (first->vdev_unspare) {
5911 			oldvd = last;
5912 			newvd = first;
5913 		} else {
5914 			oldvd = NULL;
5915 		}
5916 
5917 		if (oldvd != NULL &&
5918 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5919 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5920 		    !vdev_dtl_required(oldvd))
5921 			return (oldvd);
5922 
5923 		/*
5924 		 * If there are more than two spares attached to a disk,
5925 		 * and those spares are not required, then we want to
5926 		 * attempt to free them up now so that they can be used
5927 		 * by other pools.  Once we're back down to a single
5928 		 * disk+spare, we stop removing them.
5929 		 */
5930 		if (vd->vdev_children > 2) {
5931 			newvd = vd->vdev_child[1];
5932 
5933 			if (newvd->vdev_isspare && last->vdev_isspare &&
5934 			    vdev_dtl_empty(last, DTL_MISSING) &&
5935 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5936 			    !vdev_dtl_required(newvd))
5937 				return (newvd);
5938 		}
5939 	}
5940 
5941 	return (NULL);
5942 }
5943 
5944 static void
5945 spa_vdev_resilver_done(spa_t *spa)
5946 {
5947 	vdev_t *vd, *pvd, *ppvd;
5948 	uint64_t guid, sguid, pguid, ppguid;
5949 
5950 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5951 
5952 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5953 		pvd = vd->vdev_parent;
5954 		ppvd = pvd->vdev_parent;
5955 		guid = vd->vdev_guid;
5956 		pguid = pvd->vdev_guid;
5957 		ppguid = ppvd->vdev_guid;
5958 		sguid = 0;
5959 		/*
5960 		 * If we have just finished replacing a hot spared device, then
5961 		 * we need to detach the parent's first child (the original hot
5962 		 * spare) as well.
5963 		 */
5964 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5965 		    ppvd->vdev_children == 2) {
5966 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5967 			sguid = ppvd->vdev_child[1]->vdev_guid;
5968 		}
5969 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5970 
5971 		spa_config_exit(spa, SCL_ALL, FTAG);
5972 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5973 			return;
5974 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5975 			return;
5976 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5977 	}
5978 
5979 	spa_config_exit(spa, SCL_ALL, FTAG);
5980 }
5981 
5982 /*
5983  * Update the stored path or FRU for this vdev.
5984  */
5985 int
5986 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5987     boolean_t ispath)
5988 {
5989 	vdev_t *vd;
5990 	boolean_t sync = B_FALSE;
5991 
5992 	ASSERT(spa_writeable(spa));
5993 
5994 	spa_vdev_state_enter(spa, SCL_ALL);
5995 
5996 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5997 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5998 
5999 	if (!vd->vdev_ops->vdev_op_leaf)
6000 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6001 
6002 	if (ispath) {
6003 		if (strcmp(value, vd->vdev_path) != 0) {
6004 			spa_strfree(vd->vdev_path);
6005 			vd->vdev_path = spa_strdup(value);
6006 			sync = B_TRUE;
6007 		}
6008 	} else {
6009 		if (vd->vdev_fru == NULL) {
6010 			vd->vdev_fru = spa_strdup(value);
6011 			sync = B_TRUE;
6012 		} else if (strcmp(value, vd->vdev_fru) != 0) {
6013 			spa_strfree(vd->vdev_fru);
6014 			vd->vdev_fru = spa_strdup(value);
6015 			sync = B_TRUE;
6016 		}
6017 	}
6018 
6019 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6020 }
6021 
6022 int
6023 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6024 {
6025 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6026 }
6027 
6028 int
6029 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6030 {
6031 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6032 }
6033 
6034 /*
6035  * ==========================================================================
6036  * SPA Scanning
6037  * ==========================================================================
6038  */
6039 
6040 int
6041 spa_scan_stop(spa_t *spa)
6042 {
6043 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6044 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6045 		return (SET_ERROR(EBUSY));
6046 	return (dsl_scan_cancel(spa->spa_dsl_pool));
6047 }
6048 
6049 int
6050 spa_scan(spa_t *spa, pool_scan_func_t func)
6051 {
6052 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6053 
6054 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6055 		return (SET_ERROR(ENOTSUP));
6056 
6057 	/*
6058 	 * If a resilver was requested, but there is no DTL on a
6059 	 * writeable leaf device, we have nothing to do.
6060 	 */
6061 	if (func == POOL_SCAN_RESILVER &&
6062 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6063 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6064 		return (0);
6065 	}
6066 
6067 	return (dsl_scan(spa->spa_dsl_pool, func));
6068 }
6069 
6070 /*
6071  * ==========================================================================
6072  * SPA async task processing
6073  * ==========================================================================
6074  */
6075 
6076 static void
6077 spa_async_remove(spa_t *spa, vdev_t *vd)
6078 {
6079 	if (vd->vdev_remove_wanted) {
6080 		vd->vdev_remove_wanted = B_FALSE;
6081 		vd->vdev_delayed_close = B_FALSE;
6082 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6083 
6084 		/*
6085 		 * We want to clear the stats, but we don't want to do a full
6086 		 * vdev_clear() as that will cause us to throw away
6087 		 * degraded/faulted state as well as attempt to reopen the
6088 		 * device, all of which is a waste.
6089 		 */
6090 		vd->vdev_stat.vs_read_errors = 0;
6091 		vd->vdev_stat.vs_write_errors = 0;
6092 		vd->vdev_stat.vs_checksum_errors = 0;
6093 
6094 		vdev_state_dirty(vd->vdev_top);
6095 		/* Tell userspace that the vdev is gone. */
6096 		zfs_post_remove(spa, vd);
6097 	}
6098 
6099 	for (int c = 0; c < vd->vdev_children; c++)
6100 		spa_async_remove(spa, vd->vdev_child[c]);
6101 }
6102 
6103 static void
6104 spa_async_probe(spa_t *spa, vdev_t *vd)
6105 {
6106 	if (vd->vdev_probe_wanted) {
6107 		vd->vdev_probe_wanted = B_FALSE;
6108 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
6109 	}
6110 
6111 	for (int c = 0; c < vd->vdev_children; c++)
6112 		spa_async_probe(spa, vd->vdev_child[c]);
6113 }
6114 
6115 static void
6116 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6117 {
6118 	sysevent_id_t eid;
6119 	nvlist_t *attr;
6120 	char *physpath;
6121 
6122 	if (!spa->spa_autoexpand)
6123 		return;
6124 
6125 	for (int c = 0; c < vd->vdev_children; c++) {
6126 		vdev_t *cvd = vd->vdev_child[c];
6127 		spa_async_autoexpand(spa, cvd);
6128 	}
6129 
6130 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6131 		return;
6132 
6133 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6134 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6135 
6136 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6137 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6138 
6139 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6140 	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
6141 
6142 	nvlist_free(attr);
6143 	kmem_free(physpath, MAXPATHLEN);
6144 }
6145 
6146 static void
6147 spa_async_thread(void *arg)
6148 {
6149 	spa_t *spa = arg;
6150 	int tasks;
6151 
6152 	ASSERT(spa->spa_sync_on);
6153 
6154 	mutex_enter(&spa->spa_async_lock);
6155 	tasks = spa->spa_async_tasks;
6156 	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6157 	mutex_exit(&spa->spa_async_lock);
6158 
6159 	/*
6160 	 * See if the config needs to be updated.
6161 	 */
6162 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6163 		uint64_t old_space, new_space;
6164 
6165 		mutex_enter(&spa_namespace_lock);
6166 		old_space = metaslab_class_get_space(spa_normal_class(spa));
6167 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6168 		new_space = metaslab_class_get_space(spa_normal_class(spa));
6169 		mutex_exit(&spa_namespace_lock);
6170 
6171 		/*
6172 		 * If the pool grew as a result of the config update,
6173 		 * then log an internal history event.
6174 		 */
6175 		if (new_space != old_space) {
6176 			spa_history_log_internal(spa, "vdev online", NULL,
6177 			    "pool '%s' size: %llu(+%llu)",
6178 			    spa_name(spa), new_space, new_space - old_space);
6179 		}
6180 	}
6181 
6182 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6183 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6184 		spa_async_autoexpand(spa, spa->spa_root_vdev);
6185 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6186 	}
6187 
6188 	/*
6189 	 * See if any devices need to be probed.
6190 	 */
6191 	if (tasks & SPA_ASYNC_PROBE) {
6192 		spa_vdev_state_enter(spa, SCL_NONE);
6193 		spa_async_probe(spa, spa->spa_root_vdev);
6194 		(void) spa_vdev_state_exit(spa, NULL, 0);
6195 	}
6196 
6197 	/*
6198 	 * If any devices are done replacing, detach them.
6199 	 */
6200 	if (tasks & SPA_ASYNC_RESILVER_DONE)
6201 		spa_vdev_resilver_done(spa);
6202 
6203 	/*
6204 	 * Kick off a resilver.
6205 	 */
6206 	if (tasks & SPA_ASYNC_RESILVER)
6207 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6208 
6209 	/*
6210 	 * Let the world know that we're done.
6211 	 */
6212 	mutex_enter(&spa->spa_async_lock);
6213 	spa->spa_async_thread = NULL;
6214 	cv_broadcast(&spa->spa_async_cv);
6215 	mutex_exit(&spa->spa_async_lock);
6216 	thread_exit();
6217 }
6218 
6219 static void
6220 spa_async_thread_vd(void *arg)
6221 {
6222 	spa_t *spa = arg;
6223 	int tasks;
6224 
6225 	ASSERT(spa->spa_sync_on);
6226 
6227 	mutex_enter(&spa->spa_async_lock);
6228 	tasks = spa->spa_async_tasks;
6229 retry:
6230 	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6231 	mutex_exit(&spa->spa_async_lock);
6232 
6233 	/*
6234 	 * See if any devices need to be marked REMOVED.
6235 	 */
6236 	if (tasks & SPA_ASYNC_REMOVE) {
6237 		spa_vdev_state_enter(spa, SCL_NONE);
6238 		spa_async_remove(spa, spa->spa_root_vdev);
6239 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6240 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6241 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6242 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6243 		(void) spa_vdev_state_exit(spa, NULL, 0);
6244 	}
6245 
6246 	/*
6247 	 * Let the world know that we're done.
6248 	 */
6249 	mutex_enter(&spa->spa_async_lock);
6250 	tasks = spa->spa_async_tasks;
6251 	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6252 		goto retry;
6253 	spa->spa_async_thread_vd = NULL;
6254 	cv_broadcast(&spa->spa_async_cv);
6255 	mutex_exit(&spa->spa_async_lock);
6256 	thread_exit();
6257 }
6258 
6259 void
6260 spa_async_suspend(spa_t *spa)
6261 {
6262 	mutex_enter(&spa->spa_async_lock);
6263 	spa->spa_async_suspended++;
6264 	while (spa->spa_async_thread != NULL &&
6265 	    spa->spa_async_thread_vd != NULL)
6266 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6267 	mutex_exit(&spa->spa_async_lock);
6268 }
6269 
6270 void
6271 spa_async_resume(spa_t *spa)
6272 {
6273 	mutex_enter(&spa->spa_async_lock);
6274 	ASSERT(spa->spa_async_suspended != 0);
6275 	spa->spa_async_suspended--;
6276 	mutex_exit(&spa->spa_async_lock);
6277 }
6278 
6279 static boolean_t
6280 spa_async_tasks_pending(spa_t *spa)
6281 {
6282 	uint_t non_config_tasks;
6283 	uint_t config_task;
6284 	boolean_t config_task_suspended;
6285 
6286 	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6287 	    SPA_ASYNC_REMOVE);
6288 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6289 	if (spa->spa_ccw_fail_time == 0) {
6290 		config_task_suspended = B_FALSE;
6291 	} else {
6292 		config_task_suspended =
6293 		    (gethrtime() - spa->spa_ccw_fail_time) <
6294 		    (zfs_ccw_retry_interval * NANOSEC);
6295 	}
6296 
6297 	return (non_config_tasks || (config_task && !config_task_suspended));
6298 }
6299 
6300 static void
6301 spa_async_dispatch(spa_t *spa)
6302 {
6303 	mutex_enter(&spa->spa_async_lock);
6304 	if (spa_async_tasks_pending(spa) &&
6305 	    !spa->spa_async_suspended &&
6306 	    spa->spa_async_thread == NULL &&
6307 	    rootdir != NULL)
6308 		spa->spa_async_thread = thread_create(NULL, 0,
6309 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6310 	mutex_exit(&spa->spa_async_lock);
6311 }
6312 
6313 static void
6314 spa_async_dispatch_vd(spa_t *spa)
6315 {
6316 	mutex_enter(&spa->spa_async_lock);
6317 	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6318 	    !spa->spa_async_suspended &&
6319 	    spa->spa_async_thread_vd == NULL &&
6320 	    rootdir != NULL)
6321 		spa->spa_async_thread_vd = thread_create(NULL, 0,
6322 		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6323 	mutex_exit(&spa->spa_async_lock);
6324 }
6325 
6326 void
6327 spa_async_request(spa_t *spa, int task)
6328 {
6329 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6330 	mutex_enter(&spa->spa_async_lock);
6331 	spa->spa_async_tasks |= task;
6332 	mutex_exit(&spa->spa_async_lock);
6333 	spa_async_dispatch_vd(spa);
6334 }
6335 
6336 /*
6337  * ==========================================================================
6338  * SPA syncing routines
6339  * ==========================================================================
6340  */
6341 
6342 static int
6343 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6344 {
6345 	bpobj_t *bpo = arg;
6346 	bpobj_enqueue(bpo, bp, tx);
6347 	return (0);
6348 }
6349 
6350 static int
6351 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6352 {
6353 	zio_t *zio = arg;
6354 
6355 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6356 	    BP_GET_PSIZE(bp), zio->io_flags));
6357 	return (0);
6358 }
6359 
6360 /*
6361  * Note: this simple function is not inlined to make it easier to dtrace the
6362  * amount of time spent syncing frees.
6363  */
6364 static void
6365 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6366 {
6367 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6368 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6369 	VERIFY(zio_wait(zio) == 0);
6370 }
6371 
6372 /*
6373  * Note: this simple function is not inlined to make it easier to dtrace the
6374  * amount of time spent syncing deferred frees.
6375  */
6376 static void
6377 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6378 {
6379 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6380 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6381 	    spa_free_sync_cb, zio, tx), ==, 0);
6382 	VERIFY0(zio_wait(zio));
6383 }
6384 
6385 
6386 static void
6387 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6388 {
6389 	char *packed = NULL;
6390 	size_t bufsize;
6391 	size_t nvsize = 0;
6392 	dmu_buf_t *db;
6393 
6394 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6395 
6396 	/*
6397 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6398 	 * information.  This avoids the dmu_buf_will_dirty() path and
6399 	 * saves us a pre-read to get data we don't actually care about.
6400 	 */
6401 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6402 	packed = kmem_alloc(bufsize, KM_SLEEP);
6403 
6404 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6405 	    KM_SLEEP) == 0);
6406 	bzero(packed + nvsize, bufsize - nvsize);
6407 
6408 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6409 
6410 	kmem_free(packed, bufsize);
6411 
6412 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6413 	dmu_buf_will_dirty(db, tx);
6414 	*(uint64_t *)db->db_data = nvsize;
6415 	dmu_buf_rele(db, FTAG);
6416 }
6417 
6418 static void
6419 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6420     const char *config, const char *entry)
6421 {
6422 	nvlist_t *nvroot;
6423 	nvlist_t **list;
6424 	int i;
6425 
6426 	if (!sav->sav_sync)
6427 		return;
6428 
6429 	/*
6430 	 * Update the MOS nvlist describing the list of available devices.
6431 	 * spa_validate_aux() will have already made sure this nvlist is
6432 	 * valid and the vdevs are labeled appropriately.
6433 	 */
6434 	if (sav->sav_object == 0) {
6435 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6436 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6437 		    sizeof (uint64_t), tx);
6438 		VERIFY(zap_update(spa->spa_meta_objset,
6439 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6440 		    &sav->sav_object, tx) == 0);
6441 	}
6442 
6443 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6444 	if (sav->sav_count == 0) {
6445 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6446 	} else {
6447 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6448 		for (i = 0; i < sav->sav_count; i++)
6449 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6450 			    B_FALSE, VDEV_CONFIG_L2CACHE);
6451 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6452 		    sav->sav_count) == 0);
6453 		for (i = 0; i < sav->sav_count; i++)
6454 			nvlist_free(list[i]);
6455 		kmem_free(list, sav->sav_count * sizeof (void *));
6456 	}
6457 
6458 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6459 	nvlist_free(nvroot);
6460 
6461 	sav->sav_sync = B_FALSE;
6462 }
6463 
6464 /*
6465  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6466  * The all-vdev ZAP must be empty.
6467  */
6468 static void
6469 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6470 {
6471 	spa_t *spa = vd->vdev_spa;
6472 	if (vd->vdev_top_zap != 0) {
6473 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6474 		    vd->vdev_top_zap, tx));
6475 	}
6476 	if (vd->vdev_leaf_zap != 0) {
6477 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6478 		    vd->vdev_leaf_zap, tx));
6479 	}
6480 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
6481 		spa_avz_build(vd->vdev_child[i], avz, tx);
6482 	}
6483 }
6484 
6485 static void
6486 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6487 {
6488 	nvlist_t *config;
6489 
6490 	/*
6491 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6492 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
6493 	 * Similarly, if the pool is being assembled (e.g. after a split), we
6494 	 * need to rebuild the AVZ although the config may not be dirty.
6495 	 */
6496 	if (list_is_empty(&spa->spa_config_dirty_list) &&
6497 	    spa->spa_avz_action == AVZ_ACTION_NONE)
6498 		return;
6499 
6500 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6501 
6502 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6503 	    spa->spa_all_vdev_zaps != 0);
6504 
6505 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6506 		/* Make and build the new AVZ */
6507 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
6508 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6509 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6510 
6511 		/* Diff old AVZ with new one */
6512 		zap_cursor_t zc;
6513 		zap_attribute_t za;
6514 
6515 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6516 		    spa->spa_all_vdev_zaps);
6517 		    zap_cursor_retrieve(&zc, &za) == 0;
6518 		    zap_cursor_advance(&zc)) {
6519 			uint64_t vdzap = za.za_first_integer;
6520 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6521 			    vdzap) == ENOENT) {
6522 				/*
6523 				 * ZAP is listed in old AVZ but not in new one;
6524 				 * destroy it
6525 				 */
6526 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6527 				    tx));
6528 			}
6529 		}
6530 
6531 		zap_cursor_fini(&zc);
6532 
6533 		/* Destroy the old AVZ */
6534 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6535 		    spa->spa_all_vdev_zaps, tx));
6536 
6537 		/* Replace the old AVZ in the dir obj with the new one */
6538 		VERIFY0(zap_update(spa->spa_meta_objset,
6539 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6540 		    sizeof (new_avz), 1, &new_avz, tx));
6541 
6542 		spa->spa_all_vdev_zaps = new_avz;
6543 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6544 		zap_cursor_t zc;
6545 		zap_attribute_t za;
6546 
6547 		/* Walk through the AVZ and destroy all listed ZAPs */
6548 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6549 		    spa->spa_all_vdev_zaps);
6550 		    zap_cursor_retrieve(&zc, &za) == 0;
6551 		    zap_cursor_advance(&zc)) {
6552 			uint64_t zap = za.za_first_integer;
6553 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6554 		}
6555 
6556 		zap_cursor_fini(&zc);
6557 
6558 		/* Destroy and unlink the AVZ itself */
6559 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6560 		    spa->spa_all_vdev_zaps, tx));
6561 		VERIFY0(zap_remove(spa->spa_meta_objset,
6562 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6563 		spa->spa_all_vdev_zaps = 0;
6564 	}
6565 
6566 	if (spa->spa_all_vdev_zaps == 0) {
6567 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6568 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6569 		    DMU_POOL_VDEV_ZAP_MAP, tx);
6570 	}
6571 	spa->spa_avz_action = AVZ_ACTION_NONE;
6572 
6573 	/* Create ZAPs for vdevs that don't have them. */
6574 	vdev_construct_zaps(spa->spa_root_vdev, tx);
6575 
6576 	config = spa_config_generate(spa, spa->spa_root_vdev,
6577 	    dmu_tx_get_txg(tx), B_FALSE);
6578 
6579 	/*
6580 	 * If we're upgrading the spa version then make sure that
6581 	 * the config object gets updated with the correct version.
6582 	 */
6583 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6584 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6585 		    spa->spa_uberblock.ub_version);
6586 
6587 	spa_config_exit(spa, SCL_STATE, FTAG);
6588 
6589 	nvlist_free(spa->spa_config_syncing);
6590 	spa->spa_config_syncing = config;
6591 
6592 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6593 }
6594 
6595 static void
6596 spa_sync_version(void *arg, dmu_tx_t *tx)
6597 {
6598 	uint64_t *versionp = arg;
6599 	uint64_t version = *versionp;
6600 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6601 
6602 	/*
6603 	 * Setting the version is special cased when first creating the pool.
6604 	 */
6605 	ASSERT(tx->tx_txg != TXG_INITIAL);
6606 
6607 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6608 	ASSERT(version >= spa_version(spa));
6609 
6610 	spa->spa_uberblock.ub_version = version;
6611 	vdev_config_dirty(spa->spa_root_vdev);
6612 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6613 }
6614 
6615 /*
6616  * Set zpool properties.
6617  */
6618 static void
6619 spa_sync_props(void *arg, dmu_tx_t *tx)
6620 {
6621 	nvlist_t *nvp = arg;
6622 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6623 	objset_t *mos = spa->spa_meta_objset;
6624 	nvpair_t *elem = NULL;
6625 
6626 	mutex_enter(&spa->spa_props_lock);
6627 
6628 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6629 		uint64_t intval;
6630 		char *strval, *fname;
6631 		zpool_prop_t prop;
6632 		const char *propname;
6633 		zprop_type_t proptype;
6634 		spa_feature_t fid;
6635 
6636 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6637 		case ZPROP_INVAL:
6638 			/*
6639 			 * We checked this earlier in spa_prop_validate().
6640 			 */
6641 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6642 
6643 			fname = strchr(nvpair_name(elem), '@') + 1;
6644 			VERIFY0(zfeature_lookup_name(fname, &fid));
6645 
6646 			spa_feature_enable(spa, fid, tx);
6647 			spa_history_log_internal(spa, "set", tx,
6648 			    "%s=enabled", nvpair_name(elem));
6649 			break;
6650 
6651 		case ZPOOL_PROP_VERSION:
6652 			intval = fnvpair_value_uint64(elem);
6653 			/*
6654 			 * The version is synced seperatly before other
6655 			 * properties and should be correct by now.
6656 			 */
6657 			ASSERT3U(spa_version(spa), >=, intval);
6658 			break;
6659 
6660 		case ZPOOL_PROP_ALTROOT:
6661 			/*
6662 			 * 'altroot' is a non-persistent property. It should
6663 			 * have been set temporarily at creation or import time.
6664 			 */
6665 			ASSERT(spa->spa_root != NULL);
6666 			break;
6667 
6668 		case ZPOOL_PROP_READONLY:
6669 		case ZPOOL_PROP_CACHEFILE:
6670 			/*
6671 			 * 'readonly' and 'cachefile' are also non-persisitent
6672 			 * properties.
6673 			 */
6674 			break;
6675 		case ZPOOL_PROP_COMMENT:
6676 			strval = fnvpair_value_string(elem);
6677 			if (spa->spa_comment != NULL)
6678 				spa_strfree(spa->spa_comment);
6679 			spa->spa_comment = spa_strdup(strval);
6680 			/*
6681 			 * We need to dirty the configuration on all the vdevs
6682 			 * so that their labels get updated.  It's unnecessary
6683 			 * to do this for pool creation since the vdev's
6684 			 * configuratoin has already been dirtied.
6685 			 */
6686 			if (tx->tx_txg != TXG_INITIAL)
6687 				vdev_config_dirty(spa->spa_root_vdev);
6688 			spa_history_log_internal(spa, "set", tx,
6689 			    "%s=%s", nvpair_name(elem), strval);
6690 			break;
6691 		default:
6692 			/*
6693 			 * Set pool property values in the poolprops mos object.
6694 			 */
6695 			if (spa->spa_pool_props_object == 0) {
6696 				spa->spa_pool_props_object =
6697 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6698 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6699 				    tx);
6700 			}
6701 
6702 			/* normalize the property name */
6703 			propname = zpool_prop_to_name(prop);
6704 			proptype = zpool_prop_get_type(prop);
6705 
6706 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6707 				ASSERT(proptype == PROP_TYPE_STRING);
6708 				strval = fnvpair_value_string(elem);
6709 				VERIFY0(zap_update(mos,
6710 				    spa->spa_pool_props_object, propname,
6711 				    1, strlen(strval) + 1, strval, tx));
6712 				spa_history_log_internal(spa, "set", tx,
6713 				    "%s=%s", nvpair_name(elem), strval);
6714 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6715 				intval = fnvpair_value_uint64(elem);
6716 
6717 				if (proptype == PROP_TYPE_INDEX) {
6718 					const char *unused;
6719 					VERIFY0(zpool_prop_index_to_string(
6720 					    prop, intval, &unused));
6721 				}
6722 				VERIFY0(zap_update(mos,
6723 				    spa->spa_pool_props_object, propname,
6724 				    8, 1, &intval, tx));
6725 				spa_history_log_internal(spa, "set", tx,
6726 				    "%s=%lld", nvpair_name(elem), intval);
6727 			} else {
6728 				ASSERT(0); /* not allowed */
6729 			}
6730 
6731 			switch (prop) {
6732 			case ZPOOL_PROP_DELEGATION:
6733 				spa->spa_delegation = intval;
6734 				break;
6735 			case ZPOOL_PROP_BOOTFS:
6736 				spa->spa_bootfs = intval;
6737 				break;
6738 			case ZPOOL_PROP_FAILUREMODE:
6739 				spa->spa_failmode = intval;
6740 				break;
6741 			case ZPOOL_PROP_AUTOEXPAND:
6742 				spa->spa_autoexpand = intval;
6743 				if (tx->tx_txg != TXG_INITIAL)
6744 					spa_async_request(spa,
6745 					    SPA_ASYNC_AUTOEXPAND);
6746 				break;
6747 			case ZPOOL_PROP_DEDUPDITTO:
6748 				spa->spa_dedup_ditto = intval;
6749 				break;
6750 			default:
6751 				break;
6752 			}
6753 		}
6754 
6755 	}
6756 
6757 	mutex_exit(&spa->spa_props_lock);
6758 }
6759 
6760 /*
6761  * Perform one-time upgrade on-disk changes.  spa_version() does not
6762  * reflect the new version this txg, so there must be no changes this
6763  * txg to anything that the upgrade code depends on after it executes.
6764  * Therefore this must be called after dsl_pool_sync() does the sync
6765  * tasks.
6766  */
6767 static void
6768 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6769 {
6770 	dsl_pool_t *dp = spa->spa_dsl_pool;
6771 
6772 	ASSERT(spa->spa_sync_pass == 1);
6773 
6774 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6775 
6776 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6777 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6778 		dsl_pool_create_origin(dp, tx);
6779 
6780 		/* Keeping the origin open increases spa_minref */
6781 		spa->spa_minref += 3;
6782 	}
6783 
6784 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6785 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6786 		dsl_pool_upgrade_clones(dp, tx);
6787 	}
6788 
6789 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6790 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6791 		dsl_pool_upgrade_dir_clones(dp, tx);
6792 
6793 		/* Keeping the freedir open increases spa_minref */
6794 		spa->spa_minref += 3;
6795 	}
6796 
6797 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6798 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6799 		spa_feature_create_zap_objects(spa, tx);
6800 	}
6801 
6802 	/*
6803 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6804 	 * when possibility to use lz4 compression for metadata was added
6805 	 * Old pools that have this feature enabled must be upgraded to have
6806 	 * this feature active
6807 	 */
6808 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6809 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6810 		    SPA_FEATURE_LZ4_COMPRESS);
6811 		boolean_t lz4_ac = spa_feature_is_active(spa,
6812 		    SPA_FEATURE_LZ4_COMPRESS);
6813 
6814 		if (lz4_en && !lz4_ac)
6815 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6816 	}
6817 
6818 	/*
6819 	 * If we haven't written the salt, do so now.  Note that the
6820 	 * feature may not be activated yet, but that's fine since
6821 	 * the presence of this ZAP entry is backwards compatible.
6822 	 */
6823 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6824 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6825 		VERIFY0(zap_add(spa->spa_meta_objset,
6826 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6827 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6828 		    spa->spa_cksum_salt.zcs_bytes, tx));
6829 	}
6830 
6831 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6832 }
6833 
6834 /*
6835  * Sync the specified transaction group.  New blocks may be dirtied as
6836  * part of the process, so we iterate until it converges.
6837  */
6838 
6839 void
6840 spa_sync(spa_t *spa, uint64_t txg)
6841 {
6842 	dsl_pool_t *dp = spa->spa_dsl_pool;
6843 	objset_t *mos = spa->spa_meta_objset;
6844 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6845 	vdev_t *rvd = spa->spa_root_vdev;
6846 	vdev_t *vd;
6847 	dmu_tx_t *tx;
6848 	int error;
6849 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6850 	    zfs_vdev_queue_depth_pct / 100;
6851 
6852 	VERIFY(spa_writeable(spa));
6853 
6854 	/*
6855 	 * Lock out configuration changes.
6856 	 */
6857 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6858 
6859 	spa->spa_syncing_txg = txg;
6860 	spa->spa_sync_pass = 0;
6861 
6862 	mutex_enter(&spa->spa_alloc_lock);
6863 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6864 	mutex_exit(&spa->spa_alloc_lock);
6865 
6866 	/*
6867 	 * If there are any pending vdev state changes, convert them
6868 	 * into config changes that go out with this transaction group.
6869 	 */
6870 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6871 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6872 		/*
6873 		 * We need the write lock here because, for aux vdevs,
6874 		 * calling vdev_config_dirty() modifies sav_config.
6875 		 * This is ugly and will become unnecessary when we
6876 		 * eliminate the aux vdev wart by integrating all vdevs
6877 		 * into the root vdev tree.
6878 		 */
6879 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6880 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6881 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6882 			vdev_state_clean(vd);
6883 			vdev_config_dirty(vd);
6884 		}
6885 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6886 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6887 	}
6888 	spa_config_exit(spa, SCL_STATE, FTAG);
6889 
6890 	tx = dmu_tx_create_assigned(dp, txg);
6891 
6892 	spa->spa_sync_starttime = gethrtime();
6893 #ifdef illumos
6894 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6895 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6896 #endif	/* illumos */
6897 #ifdef __FreeBSD__
6898 #ifdef _KERNEL
6899 	callout_schedule(&spa->spa_deadman_cycid,
6900 	    hz * spa->spa_deadman_synctime / NANOSEC);
6901 #endif
6902 #endif /* __FreeBSD__ */
6903 #ifdef __NetBSD__
6904 #ifdef _KERNEL
6905 	callout_schedule(&spa->spa_deadman_cycid,
6906 	    hz * spa->spa_deadman_synctime / NANOSEC);
6907 #endif
6908 #endif
6909 
6910 	/*
6911 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6912 	 * set spa_deflate if we have no raid-z vdevs.
6913 	 */
6914 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6915 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6916 		int i;
6917 
6918 		for (i = 0; i < rvd->vdev_children; i++) {
6919 			vd = rvd->vdev_child[i];
6920 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6921 				break;
6922 		}
6923 		if (i == rvd->vdev_children) {
6924 			spa->spa_deflate = TRUE;
6925 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6926 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6927 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6928 		}
6929 	}
6930 
6931 	/*
6932 	 * Set the top-level vdev's max queue depth. Evaluate each
6933 	 * top-level's async write queue depth in case it changed.
6934 	 * The max queue depth will not change in the middle of syncing
6935 	 * out this txg.
6936 	 */
6937 	uint64_t queue_depth_total = 0;
6938 	for (int c = 0; c < rvd->vdev_children; c++) {
6939 		vdev_t *tvd = rvd->vdev_child[c];
6940 		metaslab_group_t *mg = tvd->vdev_mg;
6941 
6942 		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6943 		    !metaslab_group_initialized(mg))
6944 			continue;
6945 
6946 		/*
6947 		 * It is safe to do a lock-free check here because only async
6948 		 * allocations look at mg_max_alloc_queue_depth, and async
6949 		 * allocations all happen from spa_sync().
6950 		 */
6951 		ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6952 		mg->mg_max_alloc_queue_depth = max_queue_depth;
6953 		queue_depth_total += mg->mg_max_alloc_queue_depth;
6954 	}
6955 	metaslab_class_t *mc = spa_normal_class(spa);
6956 	ASSERT0(refcount_count(&mc->mc_alloc_slots));
6957 	mc->mc_alloc_max_slots = queue_depth_total;
6958 	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6959 
6960 	ASSERT3U(mc->mc_alloc_max_slots, <=,
6961 	    max_queue_depth * rvd->vdev_children);
6962 
6963 	/*
6964 	 * Iterate to convergence.
6965 	 */
6966 	do {
6967 		int pass = ++spa->spa_sync_pass;
6968 
6969 		spa_sync_config_object(spa, tx);
6970 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6971 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6972 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6973 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6974 		spa_errlog_sync(spa, txg);
6975 		dsl_pool_sync(dp, txg);
6976 
6977 		if (pass < zfs_sync_pass_deferred_free) {
6978 			spa_sync_frees(spa, free_bpl, tx);
6979 		} else {
6980 			/*
6981 			 * We can not defer frees in pass 1, because
6982 			 * we sync the deferred frees later in pass 1.
6983 			 */
6984 			ASSERT3U(pass, >, 1);
6985 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6986 			    &spa->spa_deferred_bpobj, tx);
6987 		}
6988 
6989 		ddt_sync(spa, txg);
6990 		dsl_scan_sync(dp, tx);
6991 
6992 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6993 			vdev_sync(vd, txg);
6994 
6995 		if (pass == 1) {
6996 			spa_sync_upgrades(spa, tx);
6997 			ASSERT3U(txg, >=,
6998 			    spa->spa_uberblock.ub_rootbp.blk_birth);
6999 			/*
7000 			 * Note: We need to check if the MOS is dirty
7001 			 * because we could have marked the MOS dirty
7002 			 * without updating the uberblock (e.g. if we
7003 			 * have sync tasks but no dirty user data).  We
7004 			 * need to check the uberblock's rootbp because
7005 			 * it is updated if we have synced out dirty
7006 			 * data (though in this case the MOS will most
7007 			 * likely also be dirty due to second order
7008 			 * effects, we don't want to rely on that here).
7009 			 */
7010 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7011 			    !dmu_objset_is_dirty(mos, txg)) {
7012 				/*
7013 				 * Nothing changed on the first pass,
7014 				 * therefore this TXG is a no-op.  Avoid
7015 				 * syncing deferred frees, so that we
7016 				 * can keep this TXG as a no-op.
7017 				 */
7018 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7019 				    txg));
7020 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7021 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7022 				break;
7023 			}
7024 			spa_sync_deferred_frees(spa, tx);
7025 		}
7026 
7027 	} while (dmu_objset_is_dirty(mos, txg));
7028 
7029 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
7030 		/*
7031 		 * Make sure that the number of ZAPs for all the vdevs matches
7032 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
7033 		 * called if the config is dirty; otherwise there may be
7034 		 * outstanding AVZ operations that weren't completed in
7035 		 * spa_sync_config_object.
7036 		 */
7037 		uint64_t all_vdev_zap_entry_count;
7038 		ASSERT0(zap_count(spa->spa_meta_objset,
7039 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7040 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7041 		    all_vdev_zap_entry_count);
7042 	}
7043 
7044 	/*
7045 	 * Rewrite the vdev configuration (which includes the uberblock)
7046 	 * to commit the transaction group.
7047 	 *
7048 	 * If there are no dirty vdevs, we sync the uberblock to a few
7049 	 * random top-level vdevs that are known to be visible in the
7050 	 * config cache (see spa_vdev_add() for a complete description).
7051 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7052 	 */
7053 	for (;;) {
7054 		/*
7055 		 * We hold SCL_STATE to prevent vdev open/close/etc.
7056 		 * while we're attempting to write the vdev labels.
7057 		 */
7058 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7059 
7060 		if (list_is_empty(&spa->spa_config_dirty_list)) {
7061 			vdev_t *svd[SPA_DVAS_PER_BP];
7062 			int svdcount = 0;
7063 			int children = rvd->vdev_children;
7064 			int c0 = spa_get_random(children);
7065 
7066 			for (int c = 0; c < children; c++) {
7067 				vd = rvd->vdev_child[(c0 + c) % children];
7068 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
7069 					continue;
7070 				svd[svdcount++] = vd;
7071 				if (svdcount == SPA_DVAS_PER_BP)
7072 					break;
7073 			}
7074 			error = vdev_config_sync(svd, svdcount, txg);
7075 		} else {
7076 			error = vdev_config_sync(rvd->vdev_child,
7077 			    rvd->vdev_children, txg);
7078 		}
7079 
7080 		if (error == 0)
7081 			spa->spa_last_synced_guid = rvd->vdev_guid;
7082 
7083 		spa_config_exit(spa, SCL_STATE, FTAG);
7084 
7085 		if (error == 0)
7086 			break;
7087 		zio_suspend(spa, NULL);
7088 		zio_resume_wait(spa);
7089 	}
7090 	dmu_tx_commit(tx);
7091 
7092 #ifdef illumos
7093 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
7094 #endif	/* illumos */
7095 #ifdef __FreeBSD__
7096 #ifdef _KERNEL
7097 	callout_drain(&spa->spa_deadman_cycid);
7098 #endif
7099 #endif	/* __FreeBSD__ */
7100 #ifdef __NetBSD__
7101 #ifdef _KERNEL
7102 	callout_drain(&spa->spa_deadman_cycid);
7103 #endif
7104 #endif	/* __NetBSD__ */
7105 
7106 	/*
7107 	 * Clear the dirty config list.
7108 	 */
7109 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7110 		vdev_config_clean(vd);
7111 
7112 	/*
7113 	 * Now that the new config has synced transactionally,
7114 	 * let it become visible to the config cache.
7115 	 */
7116 	if (spa->spa_config_syncing != NULL) {
7117 		spa_config_set(spa, spa->spa_config_syncing);
7118 		spa->spa_config_txg = txg;
7119 		spa->spa_config_syncing = NULL;
7120 	}
7121 
7122 	dsl_pool_sync_done(dp, txg);
7123 
7124 	mutex_enter(&spa->spa_alloc_lock);
7125 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
7126 	mutex_exit(&spa->spa_alloc_lock);
7127 
7128 	/*
7129 	 * Update usable space statistics.
7130 	 */
7131 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
7132 		vdev_sync_done(vd, txg);
7133 
7134 	spa_update_dspace(spa);
7135 
7136 	/*
7137 	 * It had better be the case that we didn't dirty anything
7138 	 * since vdev_config_sync().
7139 	 */
7140 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7141 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7142 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7143 
7144 	spa->spa_sync_pass = 0;
7145 
7146 	/*
7147 	 * Update the last synced uberblock here. We want to do this at
7148 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
7149 	 * will be guaranteed that all the processing associated with
7150 	 * that txg has been completed.
7151 	 */
7152 	spa->spa_ubsync = spa->spa_uberblock;
7153 	spa_config_exit(spa, SCL_CONFIG, FTAG);
7154 
7155 	spa_handle_ignored_writes(spa);
7156 
7157 	/*
7158 	 * If any async tasks have been requested, kick them off.
7159 	 */
7160 	spa_async_dispatch(spa);
7161 	spa_async_dispatch_vd(spa);
7162 }
7163 
7164 /*
7165  * Sync all pools.  We don't want to hold the namespace lock across these
7166  * operations, so we take a reference on the spa_t and drop the lock during the
7167  * sync.
7168  */
7169 void
7170 spa_sync_allpools(void)
7171 {
7172 	spa_t *spa = NULL;
7173 	mutex_enter(&spa_namespace_lock);
7174 	while ((spa = spa_next(spa)) != NULL) {
7175 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
7176 		    !spa_writeable(spa) || spa_suspended(spa))
7177 			continue;
7178 		spa_open_ref(spa, FTAG);
7179 		mutex_exit(&spa_namespace_lock);
7180 		txg_wait_synced(spa_get_dsl(spa), 0);
7181 		mutex_enter(&spa_namespace_lock);
7182 		spa_close(spa, FTAG);
7183 	}
7184 	mutex_exit(&spa_namespace_lock);
7185 }
7186 
7187 /*
7188  * ==========================================================================
7189  * Miscellaneous routines
7190  * ==========================================================================
7191  */
7192 
7193 /*
7194  * Remove all pools in the system.
7195  */
7196 void
7197 spa_evict_all(void)
7198 {
7199 	spa_t *spa;
7200 
7201 	/*
7202 	 * Remove all cached state.  All pools should be closed now,
7203 	 * so every spa in the AVL tree should be unreferenced.
7204 	 */
7205 	mutex_enter(&spa_namespace_lock);
7206 	while ((spa = spa_next(NULL)) != NULL) {
7207 		/*
7208 		 * Stop async tasks.  The async thread may need to detach
7209 		 * a device that's been replaced, which requires grabbing
7210 		 * spa_namespace_lock, so we must drop it here.
7211 		 */
7212 		spa_open_ref(spa, FTAG);
7213 		mutex_exit(&spa_namespace_lock);
7214 		spa_async_suspend(spa);
7215 		mutex_enter(&spa_namespace_lock);
7216 		spa_close(spa, FTAG);
7217 
7218 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7219 			spa_unload(spa);
7220 			spa_deactivate(spa);
7221 		}
7222 		spa_remove(spa);
7223 	}
7224 	mutex_exit(&spa_namespace_lock);
7225 }
7226 
7227 vdev_t *
7228 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7229 {
7230 	vdev_t *vd;
7231 	int i;
7232 
7233 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7234 		return (vd);
7235 
7236 	if (aux) {
7237 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7238 			vd = spa->spa_l2cache.sav_vdevs[i];
7239 			if (vd->vdev_guid == guid)
7240 				return (vd);
7241 		}
7242 
7243 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
7244 			vd = spa->spa_spares.sav_vdevs[i];
7245 			if (vd->vdev_guid == guid)
7246 				return (vd);
7247 		}
7248 	}
7249 
7250 	return (NULL);
7251 }
7252 
7253 void
7254 spa_upgrade(spa_t *spa, uint64_t version)
7255 {
7256 	ASSERT(spa_writeable(spa));
7257 
7258 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7259 
7260 	/*
7261 	 * This should only be called for a non-faulted pool, and since a
7262 	 * future version would result in an unopenable pool, this shouldn't be
7263 	 * possible.
7264 	 */
7265 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7266 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7267 
7268 	spa->spa_uberblock.ub_version = version;
7269 	vdev_config_dirty(spa->spa_root_vdev);
7270 
7271 	spa_config_exit(spa, SCL_ALL, FTAG);
7272 
7273 	txg_wait_synced(spa_get_dsl(spa), 0);
7274 }
7275 
7276 boolean_t
7277 spa_has_spare(spa_t *spa, uint64_t guid)
7278 {
7279 	int i;
7280 	uint64_t spareguid;
7281 	spa_aux_vdev_t *sav = &spa->spa_spares;
7282 
7283 	for (i = 0; i < sav->sav_count; i++)
7284 		if (sav->sav_vdevs[i]->vdev_guid == guid)
7285 			return (B_TRUE);
7286 
7287 	for (i = 0; i < sav->sav_npending; i++) {
7288 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7289 		    &spareguid) == 0 && spareguid == guid)
7290 			return (B_TRUE);
7291 	}
7292 
7293 	return (B_FALSE);
7294 }
7295 
7296 /*
7297  * Check if a pool has an active shared spare device.
7298  * Note: reference count of an active spare is 2, as a spare and as a replace
7299  */
7300 static boolean_t
7301 spa_has_active_shared_spare(spa_t *spa)
7302 {
7303 	int i, refcnt;
7304 	uint64_t pool;
7305 	spa_aux_vdev_t *sav = &spa->spa_spares;
7306 
7307 	for (i = 0; i < sav->sav_count; i++) {
7308 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7309 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7310 		    refcnt > 2)
7311 			return (B_TRUE);
7312 	}
7313 
7314 	return (B_FALSE);
7315 }
7316 
7317 static sysevent_t *
7318 spa_event_create(spa_t *spa, vdev_t *vd, const char *name)
7319 {
7320 	sysevent_t		*ev = NULL;
7321 #ifdef _KERNEL
7322 	sysevent_attr_list_t	*attr = NULL;
7323 	sysevent_value_t	value;
7324 
7325 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7326 	    SE_SLEEP);
7327 	ASSERT(ev != NULL);
7328 
7329 	value.value_type = SE_DATA_TYPE_STRING;
7330 	value.value.sv_string = spa_name(spa);
7331 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7332 		goto done;
7333 
7334 	value.value_type = SE_DATA_TYPE_UINT64;
7335 	value.value.sv_uint64 = spa_guid(spa);
7336 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7337 		goto done;
7338 
7339 	if (vd) {
7340 		value.value_type = SE_DATA_TYPE_UINT64;
7341 		value.value.sv_uint64 = vd->vdev_guid;
7342 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7343 		    SE_SLEEP) != 0)
7344 			goto done;
7345 
7346 		if (vd->vdev_path) {
7347 			value.value_type = SE_DATA_TYPE_STRING;
7348 			value.value.sv_string = vd->vdev_path;
7349 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7350 			    &value, SE_SLEEP) != 0)
7351 				goto done;
7352 		}
7353 	}
7354 
7355 	if (sysevent_attach_attributes(ev, attr) != 0)
7356 		goto done;
7357 	attr = NULL;
7358 
7359 done:
7360 	if (attr)
7361 		sysevent_free_attr(attr);
7362 
7363 #endif
7364 	return (ev);
7365 }
7366 
7367 static void
7368 spa_event_post(sysevent_t *ev)
7369 {
7370 #ifdef _KERNEL
7371 	sysevent_id_t		eid;
7372 
7373 	(void) log_sysevent(ev, SE_SLEEP, &eid);
7374 	sysevent_free(ev);
7375 #endif
7376 }
7377 
7378 /*
7379  * Post a sysevent corresponding to the given event.  The 'name' must be one of
7380  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7381  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7382  * in the userland libzpool, as we don't want consumers to misinterpret ztest
7383  * or zdb as real changes.
7384  */
7385 void
7386 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7387 {
7388 	spa_event_post(spa_event_create(spa, vd, name));
7389 }
7390