1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>. 24 * All rights reserved. 25 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 26 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dsl_dataset.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_prop.h> 37 #include <sys/dsl_synctask.h> 38 #include <sys/dsl_deleg.h> 39 #include <sys/dmu_impl.h> 40 #include <sys/spa.h> 41 #include <sys/metaslab.h> 42 #include <sys/zap.h> 43 #include <sys/zio.h> 44 #include <sys/arc.h> 45 #include <sys/sunddi.h> 46 #include <sys/zvol.h> 47 #ifdef _KERNEL 48 #include <sys/zfs_vfsops.h> 49 #endif 50 #include <sys/zfeature.h> 51 #include <sys/policy.h> 52 #include <sys/zfs_znode.h> 53 #include "zfs_namecheck.h" 54 #include "zfs_prop.h" 55 56 /* 57 * Filesystem and Snapshot Limits 58 * ------------------------------ 59 * 60 * These limits are used to restrict the number of filesystems and/or snapshots 61 * that can be created at a given level in the tree or below. A typical 62 * use-case is with a delegated dataset where the administrator wants to ensure 63 * that a user within the zone is not creating too many additional filesystems 64 * or snapshots, even though they're not exceeding their space quota. 65 * 66 * The filesystem and snapshot counts are stored as extensible properties. This 67 * capability is controlled by a feature flag and must be enabled to be used. 68 * Once enabled, the feature is not active until the first limit is set. At 69 * that point, future operations to create/destroy filesystems or snapshots 70 * will validate and update the counts. 71 * 72 * Because the count properties will not exist before the feature is active, 73 * the counts are updated when a limit is first set on an uninitialized 74 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 75 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 76 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 77 * snapshot count properties on a node indicate uninitialized counts on that 78 * node.) When first setting a limit on an uninitialized node, the code starts 79 * at the filesystem with the new limit and descends into all sub-filesystems 80 * to add the count properties. 81 * 82 * In practice this is lightweight since a limit is typically set when the 83 * filesystem is created and thus has no children. Once valid, changing the 84 * limit value won't require a re-traversal since the counts are already valid. 85 * When recursively fixing the counts, if a node with a limit is encountered 86 * during the descent, the counts are known to be valid and there is no need to 87 * descend into that filesystem's children. The counts on filesystems above the 88 * one with the new limit will still be uninitialized, unless a limit is 89 * eventually set on one of those filesystems. The counts are always recursively 90 * updated when a limit is set on a dataset, unless there is already a limit. 91 * When a new limit value is set on a filesystem with an existing limit, it is 92 * possible for the new limit to be less than the current count at that level 93 * since a user who can change the limit is also allowed to exceed the limit. 94 * 95 * Once the feature is active, then whenever a filesystem or snapshot is 96 * created, the code recurses up the tree, validating the new count against the 97 * limit at each initialized level. In practice, most levels will not have a 98 * limit set. If there is a limit at any initialized level up the tree, the 99 * check must pass or the creation will fail. Likewise, when a filesystem or 100 * snapshot is destroyed, the counts are recursively adjusted all the way up 101 * the initizized nodes in the tree. Renaming a filesystem into different point 102 * in the tree will first validate, then update the counts on each branch up to 103 * the common ancestor. A receive will also validate the counts and then update 104 * them. 105 * 106 * An exception to the above behavior is that the limit is not enforced if the 107 * user has permission to modify the limit. This is primarily so that 108 * recursive snapshots in the global zone always work. We want to prevent a 109 * denial-of-service in which a lower level delegated dataset could max out its 110 * limit and thus block recursive snapshots from being taken in the global zone. 111 * Because of this, it is possible for the snapshot count to be over the limit 112 * and snapshots taken in the global zone could cause a lower level dataset to 113 * hit or exceed its limit. The administrator taking the global zone recursive 114 * snapshot should be aware of this side-effect and behave accordingly. 115 * For consistency, the filesystem limit is also not enforced if the user can 116 * modify the limit. 117 * 118 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 119 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 120 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 121 * dsl_dir_init_fs_ss_count(). 122 * 123 * There is a special case when we receive a filesystem that already exists. In 124 * this case a temporary clone name of %X is created (see dmu_recv_begin). We 125 * never update the filesystem counts for temporary clones. 126 * 127 * Likewise, we do not update the snapshot counts for temporary snapshots, 128 * such as those created by zfs diff. 129 */ 130 131 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd); 132 133 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 134 135 static void 136 dsl_dir_evict_async(void *dbu) 137 { 138 dsl_dir_t *dd = dbu; 139 dsl_pool_t *dp = dd->dd_pool; 140 int t; 141 142 dd->dd_dbuf = NULL; 143 144 for (t = 0; t < TXG_SIZE; t++) { 145 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 146 ASSERT(dd->dd_tempreserved[t] == 0); 147 ASSERT(dd->dd_space_towrite[t] == 0); 148 } 149 150 if (dd->dd_parent) 151 dsl_dir_async_rele(dd->dd_parent, dd); 152 153 spa_async_close(dd->dd_pool->dp_spa, dd); 154 155 dsl_prop_fini(dd); 156 mutex_destroy(&dd->dd_lock); 157 kmem_free(dd, sizeof (dsl_dir_t)); 158 } 159 160 int 161 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 162 const char *tail, void *tag, dsl_dir_t **ddp) 163 { 164 dmu_buf_t *dbuf; 165 dsl_dir_t *dd; 166 int err; 167 168 ASSERT(dsl_pool_config_held(dp)); 169 170 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 171 if (err != 0) 172 return (err); 173 dd = dmu_buf_get_user(dbuf); 174 #ifdef ZFS_DEBUG 175 { 176 dmu_object_info_t doi; 177 dmu_object_info_from_db(dbuf, &doi); 178 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 179 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 180 } 181 #endif 182 if (dd == NULL) { 183 dsl_dir_t *winner; 184 185 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 186 dd->dd_object = ddobj; 187 dd->dd_dbuf = dbuf; 188 dd->dd_pool = dp; 189 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 190 dsl_prop_init(dd); 191 192 dsl_dir_snap_cmtime_update(dd); 193 194 if (dsl_dir_phys(dd)->dd_parent_obj) { 195 err = dsl_dir_hold_obj(dp, 196 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd, 197 &dd->dd_parent); 198 if (err != 0) 199 goto errout; 200 if (tail) { 201 #ifdef ZFS_DEBUG 202 uint64_t foundobj; 203 204 err = zap_lookup(dp->dp_meta_objset, 205 dsl_dir_phys(dd->dd_parent)-> 206 dd_child_dir_zapobj, tail, 207 sizeof (foundobj), 1, &foundobj); 208 ASSERT(err || foundobj == ddobj); 209 #endif 210 (void) strcpy(dd->dd_myname, tail); 211 } else { 212 err = zap_value_search(dp->dp_meta_objset, 213 dsl_dir_phys(dd->dd_parent)-> 214 dd_child_dir_zapobj, 215 ddobj, 0, dd->dd_myname); 216 } 217 if (err != 0) 218 goto errout; 219 } else { 220 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa)); 221 } 222 223 if (dsl_dir_is_clone(dd)) { 224 dmu_buf_t *origin_bonus; 225 dsl_dataset_phys_t *origin_phys; 226 227 /* 228 * We can't open the origin dataset, because 229 * that would require opening this dsl_dir. 230 * Just look at its phys directly instead. 231 */ 232 err = dmu_bonus_hold(dp->dp_meta_objset, 233 dsl_dir_phys(dd)->dd_origin_obj, FTAG, 234 &origin_bonus); 235 if (err != 0) 236 goto errout; 237 origin_phys = origin_bonus->db_data; 238 dd->dd_origin_txg = 239 origin_phys->ds_creation_txg; 240 dmu_buf_rele(origin_bonus, FTAG); 241 } 242 243 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async, 244 &dd->dd_dbuf); 245 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu); 246 if (winner != NULL) { 247 if (dd->dd_parent) 248 dsl_dir_rele(dd->dd_parent, dd); 249 dsl_prop_fini(dd); 250 mutex_destroy(&dd->dd_lock); 251 kmem_free(dd, sizeof (dsl_dir_t)); 252 dd = winner; 253 } else { 254 spa_open_ref(dp->dp_spa, dd); 255 } 256 } 257 258 /* 259 * The dsl_dir_t has both open-to-close and instantiate-to-evict 260 * holds on the spa. We need the open-to-close holds because 261 * otherwise the spa_refcnt wouldn't change when we open a 262 * dir which the spa also has open, so we could incorrectly 263 * think it was OK to unload/export/destroy the pool. We need 264 * the instantiate-to-evict hold because the dsl_dir_t has a 265 * pointer to the dd_pool, which has a pointer to the spa_t. 266 */ 267 spa_open_ref(dp->dp_spa, tag); 268 ASSERT3P(dd->dd_pool, ==, dp); 269 ASSERT3U(dd->dd_object, ==, ddobj); 270 ASSERT3P(dd->dd_dbuf, ==, dbuf); 271 *ddp = dd; 272 return (0); 273 274 errout: 275 if (dd->dd_parent) 276 dsl_dir_rele(dd->dd_parent, dd); 277 dsl_prop_fini(dd); 278 mutex_destroy(&dd->dd_lock); 279 kmem_free(dd, sizeof (dsl_dir_t)); 280 dmu_buf_rele(dbuf, tag); 281 return (err); 282 } 283 284 void 285 dsl_dir_rele(dsl_dir_t *dd, void *tag) 286 { 287 dprintf_dd(dd, "%s\n", ""); 288 spa_close(dd->dd_pool->dp_spa, tag); 289 dmu_buf_rele(dd->dd_dbuf, tag); 290 } 291 292 /* 293 * Remove a reference to the given dsl dir that is being asynchronously 294 * released. Async releases occur from a taskq performing eviction of 295 * dsl datasets and dirs. This process is identical to a normal release 296 * with the exception of using the async API for releasing the reference on 297 * the spa. 298 */ 299 void 300 dsl_dir_async_rele(dsl_dir_t *dd, void *tag) 301 { 302 dprintf_dd(dd, "%s\n", ""); 303 spa_async_close(dd->dd_pool->dp_spa, tag); 304 dmu_buf_rele(dd->dd_dbuf, tag); 305 } 306 307 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */ 308 void 309 dsl_dir_name(dsl_dir_t *dd, char *buf) 310 { 311 if (dd->dd_parent) { 312 dsl_dir_name(dd->dd_parent, buf); 313 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <, 314 ZFS_MAX_DATASET_NAME_LEN); 315 } else { 316 buf[0] = '\0'; 317 } 318 if (!MUTEX_HELD(&dd->dd_lock)) { 319 /* 320 * recursive mutex so that we can use 321 * dprintf_dd() with dd_lock held 322 */ 323 mutex_enter(&dd->dd_lock); 324 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 325 <, ZFS_MAX_DATASET_NAME_LEN); 326 mutex_exit(&dd->dd_lock); 327 } else { 328 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 329 <, ZFS_MAX_DATASET_NAME_LEN); 330 } 331 } 332 333 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 334 int 335 dsl_dir_namelen(dsl_dir_t *dd) 336 { 337 int result = 0; 338 339 if (dd->dd_parent) { 340 /* parent's name + 1 for the "/" */ 341 result = dsl_dir_namelen(dd->dd_parent) + 1; 342 } 343 344 if (!MUTEX_HELD(&dd->dd_lock)) { 345 /* see dsl_dir_name */ 346 mutex_enter(&dd->dd_lock); 347 result += strlen(dd->dd_myname); 348 mutex_exit(&dd->dd_lock); 349 } else { 350 result += strlen(dd->dd_myname); 351 } 352 353 return (result); 354 } 355 356 static int 357 getcomponent(const char *path, char *component, const char **nextp) 358 { 359 char *p; 360 361 if ((path == NULL) || (path[0] == '\0')) 362 return (SET_ERROR(ENOENT)); 363 /* This would be a good place to reserve some namespace... */ 364 p = strpbrk(path, "/@"); 365 if (p && (p[1] == '/' || p[1] == '@')) { 366 /* two separators in a row */ 367 return (SET_ERROR(EINVAL)); 368 } 369 if (p == NULL || p == path) { 370 /* 371 * if the first thing is an @ or /, it had better be an 372 * @ and it had better not have any more ats or slashes, 373 * and it had better have something after the @. 374 */ 375 if (p != NULL && 376 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 377 return (SET_ERROR(EINVAL)); 378 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN) 379 return (SET_ERROR(ENAMETOOLONG)); 380 (void) strcpy(component, path); 381 p = NULL; 382 } else if (p[0] == '/') { 383 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 384 return (SET_ERROR(ENAMETOOLONG)); 385 (void) strncpy(component, path, p - path); 386 component[p - path] = '\0'; 387 p++; 388 } else if (p[0] == '@') { 389 /* 390 * if the next separator is an @, there better not be 391 * any more slashes. 392 */ 393 if (strchr(path, '/')) 394 return (SET_ERROR(EINVAL)); 395 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 396 return (SET_ERROR(ENAMETOOLONG)); 397 (void) strncpy(component, path, p - path); 398 component[p - path] = '\0'; 399 } else { 400 panic("invalid p=%p", (void *)p); 401 } 402 *nextp = p; 403 return (0); 404 } 405 406 /* 407 * Return the dsl_dir_t, and possibly the last component which couldn't 408 * be found in *tail. The name must be in the specified dsl_pool_t. This 409 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 410 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 411 * (*tail)[0] == '@' means that the last component is a snapshot. 412 */ 413 int 414 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag, 415 dsl_dir_t **ddp, const char **tailp) 416 { 417 char buf[ZFS_MAX_DATASET_NAME_LEN]; 418 const char *spaname, *next, *nextnext = NULL; 419 int err; 420 dsl_dir_t *dd; 421 uint64_t ddobj; 422 423 err = getcomponent(name, buf, &next); 424 if (err != 0) 425 return (err); 426 427 /* Make sure the name is in the specified pool. */ 428 spaname = spa_name(dp->dp_spa); 429 if (strcmp(buf, spaname) != 0) 430 return (SET_ERROR(EXDEV)); 431 432 ASSERT(dsl_pool_config_held(dp)); 433 434 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 435 if (err != 0) { 436 return (err); 437 } 438 439 while (next != NULL) { 440 dsl_dir_t *child_dd; 441 err = getcomponent(next, buf, &nextnext); 442 if (err != 0) 443 break; 444 ASSERT(next[0] != '\0'); 445 if (next[0] == '@') 446 break; 447 dprintf("looking up %s in obj%lld\n", 448 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj); 449 450 err = zap_lookup(dp->dp_meta_objset, 451 dsl_dir_phys(dd)->dd_child_dir_zapobj, 452 buf, sizeof (ddobj), 1, &ddobj); 453 if (err != 0) { 454 if (err == ENOENT) 455 err = 0; 456 break; 457 } 458 459 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd); 460 if (err != 0) 461 break; 462 dsl_dir_rele(dd, tag); 463 dd = child_dd; 464 next = nextnext; 465 } 466 467 if (err != 0) { 468 dsl_dir_rele(dd, tag); 469 return (err); 470 } 471 472 /* 473 * It's an error if there's more than one component left, or 474 * tailp==NULL and there's any component left. 475 */ 476 if (next != NULL && 477 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 478 /* bad path name */ 479 dsl_dir_rele(dd, tag); 480 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 481 err = SET_ERROR(ENOENT); 482 } 483 if (tailp != NULL) 484 *tailp = next; 485 *ddp = dd; 486 return (err); 487 } 488 489 /* 490 * If the counts are already initialized for this filesystem and its 491 * descendants then do nothing, otherwise initialize the counts. 492 * 493 * The counts on this filesystem, and those below, may be uninitialized due to 494 * either the use of a pre-existing pool which did not support the 495 * filesystem/snapshot limit feature, or one in which the feature had not yet 496 * been enabled. 497 * 498 * Recursively descend the filesystem tree and update the filesystem/snapshot 499 * counts on each filesystem below, then update the cumulative count on the 500 * current filesystem. If the filesystem already has a count set on it, 501 * then we know that its counts, and the counts on the filesystems below it, 502 * are already correct, so we don't have to update this filesystem. 503 */ 504 static void 505 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 506 { 507 uint64_t my_fs_cnt = 0; 508 uint64_t my_ss_cnt = 0; 509 dsl_pool_t *dp = dd->dd_pool; 510 objset_t *os = dp->dp_meta_objset; 511 zap_cursor_t *zc; 512 zap_attribute_t *za; 513 dsl_dataset_t *ds; 514 515 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 516 ASSERT(dsl_pool_config_held(dp)); 517 ASSERT(dmu_tx_is_syncing(tx)); 518 519 dsl_dir_zapify(dd, tx); 520 521 /* 522 * If the filesystem count has already been initialized then we 523 * don't need to recurse down any further. 524 */ 525 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 526 return; 527 528 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 529 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 530 531 /* Iterate my child dirs */ 532 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj); 533 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 534 dsl_dir_t *chld_dd; 535 uint64_t count; 536 537 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 538 &chld_dd)); 539 540 /* 541 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and 542 * temporary datasets. 543 */ 544 if (chld_dd->dd_myname[0] == '$' || 545 chld_dd->dd_myname[0] == '%') { 546 dsl_dir_rele(chld_dd, FTAG); 547 continue; 548 } 549 550 my_fs_cnt++; /* count this child */ 551 552 dsl_dir_init_fs_ss_count(chld_dd, tx); 553 554 VERIFY0(zap_lookup(os, chld_dd->dd_object, 555 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 556 my_fs_cnt += count; 557 VERIFY0(zap_lookup(os, chld_dd->dd_object, 558 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 559 my_ss_cnt += count; 560 561 dsl_dir_rele(chld_dd, FTAG); 562 } 563 zap_cursor_fini(zc); 564 /* Count my snapshots (we counted children's snapshots above) */ 565 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 566 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds)); 567 568 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj); 569 zap_cursor_retrieve(zc, za) == 0; 570 zap_cursor_advance(zc)) { 571 /* Don't count temporary snapshots */ 572 if (za->za_name[0] != '%') 573 my_ss_cnt++; 574 } 575 zap_cursor_fini(zc); 576 577 dsl_dataset_rele(ds, FTAG); 578 579 kmem_free(zc, sizeof (zap_cursor_t)); 580 kmem_free(za, sizeof (zap_attribute_t)); 581 582 /* we're in a sync task, update counts */ 583 dmu_buf_will_dirty(dd->dd_dbuf, tx); 584 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 585 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 586 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 587 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 588 } 589 590 static int 591 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 592 { 593 char *ddname = (char *)arg; 594 dsl_pool_t *dp = dmu_tx_pool(tx); 595 dsl_dataset_t *ds; 596 dsl_dir_t *dd; 597 int error; 598 599 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 600 if (error != 0) 601 return (error); 602 603 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 604 dsl_dataset_rele(ds, FTAG); 605 return (SET_ERROR(ENOTSUP)); 606 } 607 608 dd = ds->ds_dir; 609 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 610 dsl_dir_is_zapified(dd) && 611 zap_contains(dp->dp_meta_objset, dd->dd_object, 612 DD_FIELD_FILESYSTEM_COUNT) == 0) { 613 dsl_dataset_rele(ds, FTAG); 614 return (SET_ERROR(EALREADY)); 615 } 616 617 dsl_dataset_rele(ds, FTAG); 618 return (0); 619 } 620 621 static void 622 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 623 { 624 char *ddname = (char *)arg; 625 dsl_pool_t *dp = dmu_tx_pool(tx); 626 dsl_dataset_t *ds; 627 spa_t *spa; 628 629 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 630 631 spa = dsl_dataset_get_spa(ds); 632 633 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 634 /* 635 * Since the feature was not active and we're now setting a 636 * limit, increment the feature-active counter so that the 637 * feature becomes active for the first time. 638 * 639 * We are already in a sync task so we can update the MOS. 640 */ 641 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 642 } 643 644 /* 645 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 646 * we need to ensure the counts are correct. Descend down the tree from 647 * this point and update all of the counts to be accurate. 648 */ 649 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 650 651 dsl_dataset_rele(ds, FTAG); 652 } 653 654 /* 655 * Make sure the feature is enabled and activate it if necessary. 656 * Since we're setting a limit, ensure the on-disk counts are valid. 657 * This is only called by the ioctl path when setting a limit value. 658 * 659 * We do not need to validate the new limit, since users who can change the 660 * limit are also allowed to exceed the limit. 661 */ 662 int 663 dsl_dir_activate_fs_ss_limit(const char *ddname) 664 { 665 int error; 666 667 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 668 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0, 669 ZFS_SPACE_CHECK_RESERVED); 670 671 if (error == EALREADY) 672 error = 0; 673 674 return (error); 675 } 676 677 /* 678 * Used to determine if the filesystem_limit or snapshot_limit should be 679 * enforced. We allow the limit to be exceeded if the user has permission to 680 * write the property value. We pass in the creds that we got in the open 681 * context since we will always be the GZ root in syncing context. We also have 682 * to handle the case where we are allowed to change the limit on the current 683 * dataset, but there may be another limit in the tree above. 684 * 685 * We can never modify these two properties within a non-global zone. In 686 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 687 * can't use that function since we are already holding the dp_config_rwlock. 688 * In addition, we already have the dd and dealing with snapshots is simplified 689 * in this code. 690 */ 691 692 typedef enum { 693 ENFORCE_ALWAYS, 694 ENFORCE_NEVER, 695 ENFORCE_ABOVE 696 } enforce_res_t; 697 698 static enforce_res_t 699 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr) 700 { 701 enforce_res_t enforce = ENFORCE_ALWAYS; 702 uint64_t obj; 703 dsl_dataset_t *ds; 704 uint64_t zoned; 705 706 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 707 prop == ZFS_PROP_SNAPSHOT_LIMIT); 708 709 #ifdef _KERNEL 710 #ifdef illumos 711 if (crgetzoneid(cr) != GLOBAL_ZONEID) 712 #endif 713 #ifdef __FreeBSD__ 714 if (jailed(cr)) 715 #endif 716 #ifdef __NetBSD__ 717 if (0) 718 #endif 719 return (ENFORCE_ALWAYS); 720 721 if (secpolicy_zfs(cr) == 0) 722 return (ENFORCE_NEVER); 723 #endif 724 725 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0) 726 return (ENFORCE_ALWAYS); 727 728 ASSERT(dsl_pool_config_held(dd->dd_pool)); 729 730 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 731 return (ENFORCE_ALWAYS); 732 733 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) { 734 /* Only root can access zoned fs's from the GZ */ 735 enforce = ENFORCE_ALWAYS; 736 } else { 737 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 738 enforce = ENFORCE_ABOVE; 739 } 740 741 dsl_dataset_rele(ds, FTAG); 742 return (enforce); 743 } 744 745 /* 746 * Check if adding additional child filesystem(s) would exceed any filesystem 747 * limits or adding additional snapshot(s) would exceed any snapshot limits. 748 * The prop argument indicates which limit to check. 749 * 750 * Note that all filesystem limits up to the root (or the highest 751 * initialized) filesystem or the given ancestor must be satisfied. 752 */ 753 int 754 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 755 dsl_dir_t *ancestor, cred_t *cr) 756 { 757 objset_t *os = dd->dd_pool->dp_meta_objset; 758 uint64_t limit, count; 759 char *count_prop; 760 enforce_res_t enforce; 761 int err = 0; 762 763 ASSERT(dsl_pool_config_held(dd->dd_pool)); 764 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 765 prop == ZFS_PROP_SNAPSHOT_LIMIT); 766 767 /* 768 * If we're allowed to change the limit, don't enforce the limit 769 * e.g. this can happen if a snapshot is taken by an administrative 770 * user in the global zone (i.e. a recursive snapshot by root). 771 * However, we must handle the case of delegated permissions where we 772 * are allowed to change the limit on the current dataset, but there 773 * is another limit in the tree above. 774 */ 775 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr); 776 if (enforce == ENFORCE_NEVER) 777 return (0); 778 779 /* 780 * e.g. if renaming a dataset with no snapshots, count adjustment 781 * is 0. 782 */ 783 if (delta == 0) 784 return (0); 785 786 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 787 /* 788 * We don't enforce the limit for temporary snapshots. This is 789 * indicated by a NULL cred_t argument. 790 */ 791 if (cr == NULL) 792 return (0); 793 794 count_prop = DD_FIELD_SNAPSHOT_COUNT; 795 } else { 796 count_prop = DD_FIELD_FILESYSTEM_COUNT; 797 } 798 799 /* 800 * If an ancestor has been provided, stop checking the limit once we 801 * hit that dir. We need this during rename so that we don't overcount 802 * the check once we recurse up to the common ancestor. 803 */ 804 if (ancestor == dd) 805 return (0); 806 807 /* 808 * If we hit an uninitialized node while recursing up the tree, we can 809 * stop since we know there is no limit here (or above). The counts are 810 * not valid on this node and we know we won't touch this node's counts. 811 */ 812 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object, 813 count_prop, sizeof (count), 1, &count) == ENOENT) 814 return (0); 815 816 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 817 B_FALSE); 818 if (err != 0) 819 return (err); 820 821 /* Is there a limit which we've hit? */ 822 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 823 return (SET_ERROR(EDQUOT)); 824 825 if (dd->dd_parent != NULL) 826 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 827 ancestor, cr); 828 829 return (err); 830 } 831 832 /* 833 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 834 * parents. When a new filesystem/snapshot is created, increment the count on 835 * all parents, and when a filesystem/snapshot is destroyed, decrement the 836 * count. 837 */ 838 void 839 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 840 dmu_tx_t *tx) 841 { 842 int err; 843 objset_t *os = dd->dd_pool->dp_meta_objset; 844 uint64_t count; 845 846 ASSERT(dsl_pool_config_held(dd->dd_pool)); 847 ASSERT(dmu_tx_is_syncing(tx)); 848 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 849 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 850 851 /* 852 * When we receive an incremental stream into a filesystem that already 853 * exists, a temporary clone is created. We don't count this temporary 854 * clone, whose name begins with a '%'. We also ignore hidden ($FREE, 855 * $MOS & $ORIGIN) objsets. 856 */ 857 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') && 858 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0) 859 return; 860 861 /* 862 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 863 */ 864 if (delta == 0) 865 return; 866 867 /* 868 * If we hit an uninitialized node while recursing up the tree, we can 869 * stop since we know the counts are not valid on this node and we 870 * know we shouldn't touch this node's counts. An uninitialized count 871 * on the node indicates that either the feature has not yet been 872 * activated or there are no limits on this part of the tree. 873 */ 874 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 875 prop, sizeof (count), 1, &count)) == ENOENT) 876 return; 877 VERIFY0(err); 878 879 count += delta; 880 /* Use a signed verify to make sure we're not neg. */ 881 VERIFY3S(count, >=, 0); 882 883 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 884 tx)); 885 886 /* Roll up this additional count into our ancestors */ 887 if (dd->dd_parent != NULL) 888 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 889 } 890 891 uint64_t 892 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 893 dmu_tx_t *tx) 894 { 895 objset_t *mos = dp->dp_meta_objset; 896 uint64_t ddobj; 897 dsl_dir_phys_t *ddphys; 898 dmu_buf_t *dbuf; 899 900 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 901 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 902 if (pds) { 903 VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj, 904 name, sizeof (uint64_t), 1, &ddobj, tx)); 905 } else { 906 /* it's the root dir */ 907 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 908 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 909 } 910 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 911 dmu_buf_will_dirty(dbuf, tx); 912 ddphys = dbuf->db_data; 913 914 ddphys->dd_creation_time = gethrestime_sec(); 915 if (pds) { 916 ddphys->dd_parent_obj = pds->dd_object; 917 918 /* update the filesystem counts */ 919 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 920 } 921 ddphys->dd_props_zapobj = zap_create(mos, 922 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 923 ddphys->dd_child_dir_zapobj = zap_create(mos, 924 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 925 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 926 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 927 dmu_buf_rele(dbuf, FTAG); 928 929 return (ddobj); 930 } 931 932 boolean_t 933 dsl_dir_is_clone(dsl_dir_t *dd) 934 { 935 return (dsl_dir_phys(dd)->dd_origin_obj && 936 (dd->dd_pool->dp_origin_snap == NULL || 937 dsl_dir_phys(dd)->dd_origin_obj != 938 dd->dd_pool->dp_origin_snap->ds_object)); 939 } 940 941 void 942 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 943 { 944 mutex_enter(&dd->dd_lock); 945 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED, 946 dsl_dir_phys(dd)->dd_used_bytes); 947 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, 948 dsl_dir_phys(dd)->dd_quota); 949 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 950 dsl_dir_phys(dd)->dd_reserved); 951 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO, 952 dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 : 953 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 / 954 dsl_dir_phys(dd)->dd_compressed_bytes)); 955 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 956 dsl_dir_phys(dd)->dd_uncompressed_bytes); 957 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 958 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 959 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]); 960 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 961 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]); 962 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 963 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]); 964 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 965 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] + 966 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]); 967 } 968 mutex_exit(&dd->dd_lock); 969 970 if (dsl_dir_is_zapified(dd)) { 971 uint64_t count; 972 objset_t *os = dd->dd_pool->dp_meta_objset; 973 974 if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 975 sizeof (count), 1, &count) == 0) { 976 dsl_prop_nvlist_add_uint64(nv, 977 ZFS_PROP_FILESYSTEM_COUNT, count); 978 } 979 if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 980 sizeof (count), 1, &count) == 0) { 981 dsl_prop_nvlist_add_uint64(nv, 982 ZFS_PROP_SNAPSHOT_COUNT, count); 983 } 984 } 985 986 if (dsl_dir_is_clone(dd)) { 987 dsl_dataset_t *ds; 988 char buf[ZFS_MAX_DATASET_NAME_LEN]; 989 990 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 991 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds)); 992 dsl_dataset_name(ds, buf); 993 dsl_dataset_rele(ds, FTAG); 994 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 995 } 996 } 997 998 void 999 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 1000 { 1001 dsl_pool_t *dp = dd->dd_pool; 1002 1003 ASSERT(dsl_dir_phys(dd)); 1004 1005 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 1006 /* up the hold count until we can be written out */ 1007 dmu_buf_add_ref(dd->dd_dbuf, dd); 1008 } 1009 } 1010 1011 static int64_t 1012 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 1013 { 1014 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved); 1015 uint64_t new_accounted = 1016 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved); 1017 return (new_accounted - old_accounted); 1018 } 1019 1020 void 1021 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1022 { 1023 ASSERT(dmu_tx_is_syncing(tx)); 1024 1025 mutex_enter(&dd->dd_lock); 1026 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]); 1027 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg, 1028 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024); 1029 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0; 1030 mutex_exit(&dd->dd_lock); 1031 1032 /* release the hold from dsl_dir_dirty */ 1033 dmu_buf_rele(dd->dd_dbuf, dd); 1034 } 1035 1036 static uint64_t 1037 dsl_dir_space_towrite(dsl_dir_t *dd) 1038 { 1039 uint64_t space = 0; 1040 int i; 1041 1042 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1043 1044 for (i = 0; i < TXG_SIZE; i++) { 1045 space += dd->dd_space_towrite[i&TXG_MASK]; 1046 ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0); 1047 } 1048 return (space); 1049 } 1050 1051 /* 1052 * How much space would dd have available if ancestor had delta applied 1053 * to it? If ondiskonly is set, we're only interested in what's 1054 * on-disk, not estimated pending changes. 1055 */ 1056 uint64_t 1057 dsl_dir_space_available(dsl_dir_t *dd, 1058 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1059 { 1060 uint64_t parentspace, myspace, quota, used; 1061 1062 /* 1063 * If there are no restrictions otherwise, assume we have 1064 * unlimited space available. 1065 */ 1066 quota = UINT64_MAX; 1067 parentspace = UINT64_MAX; 1068 1069 if (dd->dd_parent != NULL) { 1070 parentspace = dsl_dir_space_available(dd->dd_parent, 1071 ancestor, delta, ondiskonly); 1072 } 1073 1074 mutex_enter(&dd->dd_lock); 1075 if (dsl_dir_phys(dd)->dd_quota != 0) 1076 quota = dsl_dir_phys(dd)->dd_quota; 1077 used = dsl_dir_phys(dd)->dd_used_bytes; 1078 if (!ondiskonly) 1079 used += dsl_dir_space_towrite(dd); 1080 1081 if (dd->dd_parent == NULL) { 1082 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE); 1083 quota = MIN(quota, poolsize); 1084 } 1085 1086 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) { 1087 /* 1088 * We have some space reserved, in addition to what our 1089 * parent gave us. 1090 */ 1091 parentspace += dsl_dir_phys(dd)->dd_reserved - used; 1092 } 1093 1094 if (dd == ancestor) { 1095 ASSERT(delta <= 0); 1096 ASSERT(used >= -delta); 1097 used += delta; 1098 if (parentspace != UINT64_MAX) 1099 parentspace -= delta; 1100 } 1101 1102 if (used > quota) { 1103 /* over quota */ 1104 myspace = 0; 1105 } else { 1106 /* 1107 * the lesser of the space provided by our parent and 1108 * the space left in our quota 1109 */ 1110 myspace = MIN(parentspace, quota - used); 1111 } 1112 1113 mutex_exit(&dd->dd_lock); 1114 1115 return (myspace); 1116 } 1117 1118 struct tempreserve { 1119 list_node_t tr_node; 1120 dsl_dir_t *tr_ds; 1121 uint64_t tr_size; 1122 }; 1123 1124 static int 1125 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1126 boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list, 1127 dmu_tx_t *tx, boolean_t first) 1128 { 1129 uint64_t txg = tx->tx_txg; 1130 uint64_t est_inflight, used_on_disk, quota, parent_rsrv; 1131 uint64_t deferred = 0; 1132 struct tempreserve *tr; 1133 int retval = EDQUOT; 1134 int txgidx = txg & TXG_MASK; 1135 int i; 1136 uint64_t ref_rsrv = 0; 1137 1138 ASSERT3U(txg, !=, 0); 1139 ASSERT3S(asize, >, 0); 1140 1141 mutex_enter(&dd->dd_lock); 1142 1143 /* 1144 * Check against the dsl_dir's quota. We don't add in the delta 1145 * when checking for over-quota because they get one free hit. 1146 */ 1147 est_inflight = dsl_dir_space_towrite(dd); 1148 for (i = 0; i < TXG_SIZE; i++) 1149 est_inflight += dd->dd_tempreserved[i]; 1150 used_on_disk = dsl_dir_phys(dd)->dd_used_bytes; 1151 1152 /* 1153 * On the first iteration, fetch the dataset's used-on-disk and 1154 * refreservation values. Also, if checkrefquota is set, test if 1155 * allocating this space would exceed the dataset's refquota. 1156 */ 1157 if (first && tx->tx_objset) { 1158 int error; 1159 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1160 1161 error = dsl_dataset_check_quota(ds, checkrefquota, 1162 asize, est_inflight, &used_on_disk, &ref_rsrv); 1163 if (error) { 1164 mutex_exit(&dd->dd_lock); 1165 return (error); 1166 } 1167 } 1168 1169 /* 1170 * If this transaction will result in a net free of space, 1171 * we want to let it through. 1172 */ 1173 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0) 1174 quota = UINT64_MAX; 1175 else 1176 quota = dsl_dir_phys(dd)->dd_quota; 1177 1178 /* 1179 * Adjust the quota against the actual pool size at the root 1180 * minus any outstanding deferred frees. 1181 * To ensure that it's possible to remove files from a full 1182 * pool without inducing transient overcommits, we throttle 1183 * netfree transactions against a quota that is slightly larger, 1184 * but still within the pool's allocation slop. In cases where 1185 * we're very close to full, this will allow a steady trickle of 1186 * removes to get through. 1187 */ 1188 if (dd->dd_parent == NULL) { 1189 spa_t *spa = dd->dd_pool->dp_spa; 1190 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree); 1191 deferred = metaslab_class_get_deferred(spa_normal_class(spa)); 1192 if (poolsize - deferred < quota) { 1193 quota = poolsize - deferred; 1194 retval = ENOSPC; 1195 } 1196 } 1197 1198 /* 1199 * If they are requesting more space, and our current estimate 1200 * is over quota, they get to try again unless the actual 1201 * on-disk is over quota and there are no pending changes (which 1202 * may free up space for us). 1203 */ 1204 if (used_on_disk + est_inflight >= quota) { 1205 if (est_inflight > 0 || used_on_disk < quota || 1206 (retval == ENOSPC && used_on_disk < quota + deferred)) 1207 retval = ERESTART; 1208 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1209 "quota=%lluK tr=%lluK err=%d\n", 1210 used_on_disk>>10, est_inflight>>10, 1211 quota>>10, asize>>10, retval); 1212 mutex_exit(&dd->dd_lock); 1213 return (SET_ERROR(retval)); 1214 } 1215 1216 /* We need to up our estimated delta before dropping dd_lock */ 1217 dd->dd_tempreserved[txgidx] += asize; 1218 1219 parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1220 asize - ref_rsrv); 1221 mutex_exit(&dd->dd_lock); 1222 1223 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1224 tr->tr_ds = dd; 1225 tr->tr_size = asize; 1226 list_insert_tail(tr_list, tr); 1227 1228 /* see if it's OK with our parent */ 1229 if (dd->dd_parent && parent_rsrv) { 1230 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0); 1231 1232 return (dsl_dir_tempreserve_impl(dd->dd_parent, 1233 parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE)); 1234 } else { 1235 return (0); 1236 } 1237 } 1238 1239 /* 1240 * Reserve space in this dsl_dir, to be used in this tx's txg. 1241 * After the space has been dirtied (and dsl_dir_willuse_space() 1242 * has been called), the reservation should be canceled, using 1243 * dsl_dir_tempreserve_clear(). 1244 */ 1245 int 1246 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1247 uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx) 1248 { 1249 int err; 1250 list_t *tr_list; 1251 1252 if (asize == 0) { 1253 *tr_cookiep = NULL; 1254 return (0); 1255 } 1256 1257 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1258 list_create(tr_list, sizeof (struct tempreserve), 1259 offsetof(struct tempreserve, tr_node)); 1260 ASSERT3S(asize, >, 0); 1261 ASSERT3S(fsize, >=, 0); 1262 1263 err = arc_tempreserve_space(lsize, tx->tx_txg); 1264 if (err == 0) { 1265 struct tempreserve *tr; 1266 1267 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1268 tr->tr_size = lsize; 1269 list_insert_tail(tr_list, tr); 1270 } else { 1271 if (err == EAGAIN) { 1272 /* 1273 * If arc_memory_throttle() detected that pageout 1274 * is running and we are low on memory, we delay new 1275 * non-pageout transactions to give pageout an 1276 * advantage. 1277 * 1278 * It is unfortunate to be delaying while the caller's 1279 * locks are held. 1280 */ 1281 txg_delay(dd->dd_pool, tx->tx_txg, 1282 MSEC2NSEC(10), MSEC2NSEC(10)); 1283 err = SET_ERROR(ERESTART); 1284 } 1285 } 1286 1287 if (err == 0) { 1288 err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize, 1289 FALSE, asize > usize, tr_list, tx, TRUE); 1290 } 1291 1292 if (err != 0) 1293 dsl_dir_tempreserve_clear(tr_list, tx); 1294 else 1295 *tr_cookiep = tr_list; 1296 1297 return (err); 1298 } 1299 1300 /* 1301 * Clear a temporary reservation that we previously made with 1302 * dsl_dir_tempreserve_space(). 1303 */ 1304 void 1305 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1306 { 1307 int txgidx = tx->tx_txg & TXG_MASK; 1308 list_t *tr_list = tr_cookie; 1309 struct tempreserve *tr; 1310 1311 ASSERT3U(tx->tx_txg, !=, 0); 1312 1313 if (tr_cookie == NULL) 1314 return; 1315 1316 while ((tr = list_head(tr_list)) != NULL) { 1317 if (tr->tr_ds) { 1318 mutex_enter(&tr->tr_ds->dd_lock); 1319 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1320 tr->tr_size); 1321 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1322 mutex_exit(&tr->tr_ds->dd_lock); 1323 } else { 1324 arc_tempreserve_clear(tr->tr_size); 1325 } 1326 list_remove(tr_list, tr); 1327 kmem_free(tr, sizeof (struct tempreserve)); 1328 } 1329 1330 kmem_free(tr_list, sizeof (list_t)); 1331 } 1332 1333 /* 1334 * This should be called from open context when we think we're going to write 1335 * or free space, for example when dirtying data. Be conservative; it's okay 1336 * to write less space or free more, but we don't want to write more or free 1337 * less than the amount specified. 1338 */ 1339 void 1340 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1341 { 1342 int64_t parent_space; 1343 uint64_t est_used; 1344 1345 mutex_enter(&dd->dd_lock); 1346 if (space > 0) 1347 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1348 1349 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes; 1350 parent_space = parent_delta(dd, est_used, space); 1351 mutex_exit(&dd->dd_lock); 1352 1353 /* Make sure that we clean up dd_space_to* */ 1354 dsl_dir_dirty(dd, tx); 1355 1356 /* XXX this is potentially expensive and unnecessary... */ 1357 if (parent_space && dd->dd_parent) 1358 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx); 1359 } 1360 1361 /* call from syncing context when we actually write/free space for this dd */ 1362 void 1363 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1364 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1365 { 1366 int64_t accounted_delta; 1367 1368 /* 1369 * dsl_dataset_set_refreservation_sync_impl() calls this with 1370 * dd_lock held, so that it can atomically update 1371 * ds->ds_reserved and the dsl_dir accounting, so that 1372 * dsl_dataset_check_quota() can see dataset and dir accounting 1373 * consistently. 1374 */ 1375 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1376 1377 ASSERT(dmu_tx_is_syncing(tx)); 1378 ASSERT(type < DD_USED_NUM); 1379 1380 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1381 1382 if (needlock) 1383 mutex_enter(&dd->dd_lock); 1384 accounted_delta = 1385 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used); 1386 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used); 1387 ASSERT(compressed >= 0 || 1388 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed); 1389 ASSERT(uncompressed >= 0 || 1390 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed); 1391 dsl_dir_phys(dd)->dd_used_bytes += used; 1392 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed; 1393 dsl_dir_phys(dd)->dd_compressed_bytes += compressed; 1394 1395 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1396 ASSERT(used > 0 || 1397 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used); 1398 dsl_dir_phys(dd)->dd_used_breakdown[type] += used; 1399 #ifdef DEBUG 1400 dd_used_t t; 1401 uint64_t u = 0; 1402 for (t = 0; t < DD_USED_NUM; t++) 1403 u += dsl_dir_phys(dd)->dd_used_breakdown[t]; 1404 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes); 1405 #endif 1406 } 1407 if (needlock) 1408 mutex_exit(&dd->dd_lock); 1409 1410 if (dd->dd_parent != NULL) { 1411 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1412 accounted_delta, compressed, uncompressed, tx); 1413 dsl_dir_transfer_space(dd->dd_parent, 1414 used - accounted_delta, 1415 DD_USED_CHILD_RSRV, DD_USED_CHILD, NULL); 1416 } 1417 } 1418 1419 void 1420 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1421 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1422 { 1423 ASSERT(tx == NULL || dmu_tx_is_syncing(tx)); 1424 ASSERT(oldtype < DD_USED_NUM); 1425 ASSERT(newtype < DD_USED_NUM); 1426 1427 if (delta == 0 || 1428 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1429 return; 1430 1431 if (tx != NULL) 1432 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1433 mutex_enter(&dd->dd_lock); 1434 ASSERT(delta > 0 ? 1435 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta : 1436 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta); 1437 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta)); 1438 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta; 1439 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta; 1440 mutex_exit(&dd->dd_lock); 1441 } 1442 1443 typedef struct dsl_dir_set_qr_arg { 1444 const char *ddsqra_name; 1445 zprop_source_t ddsqra_source; 1446 uint64_t ddsqra_value; 1447 } dsl_dir_set_qr_arg_t; 1448 1449 static int 1450 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1451 { 1452 dsl_dir_set_qr_arg_t *ddsqra = arg; 1453 dsl_pool_t *dp = dmu_tx_pool(tx); 1454 dsl_dataset_t *ds; 1455 int error; 1456 uint64_t towrite, newval; 1457 1458 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1459 if (error != 0) 1460 return (error); 1461 1462 error = dsl_prop_predict(ds->ds_dir, "quota", 1463 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1464 if (error != 0) { 1465 dsl_dataset_rele(ds, FTAG); 1466 return (error); 1467 } 1468 1469 if (newval == 0) { 1470 dsl_dataset_rele(ds, FTAG); 1471 return (0); 1472 } 1473 1474 mutex_enter(&ds->ds_dir->dd_lock); 1475 /* 1476 * If we are doing the preliminary check in open context, and 1477 * there are pending changes, then don't fail it, since the 1478 * pending changes could under-estimate the amount of space to be 1479 * freed up. 1480 */ 1481 towrite = dsl_dir_space_towrite(ds->ds_dir); 1482 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1483 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved || 1484 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) { 1485 error = SET_ERROR(ENOSPC); 1486 } 1487 mutex_exit(&ds->ds_dir->dd_lock); 1488 dsl_dataset_rele(ds, FTAG); 1489 return (error); 1490 } 1491 1492 static void 1493 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1494 { 1495 dsl_dir_set_qr_arg_t *ddsqra = arg; 1496 dsl_pool_t *dp = dmu_tx_pool(tx); 1497 dsl_dataset_t *ds; 1498 uint64_t newval; 1499 1500 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1501 1502 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1503 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1504 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1505 &ddsqra->ddsqra_value, tx); 1506 1507 VERIFY0(dsl_prop_get_int_ds(ds, 1508 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1509 } else { 1510 newval = ddsqra->ddsqra_value; 1511 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1512 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1513 } 1514 1515 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1516 mutex_enter(&ds->ds_dir->dd_lock); 1517 dsl_dir_phys(ds->ds_dir)->dd_quota = newval; 1518 mutex_exit(&ds->ds_dir->dd_lock); 1519 dsl_dataset_rele(ds, FTAG); 1520 } 1521 1522 int 1523 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1524 { 1525 dsl_dir_set_qr_arg_t ddsqra; 1526 1527 ddsqra.ddsqra_name = ddname; 1528 ddsqra.ddsqra_source = source; 1529 ddsqra.ddsqra_value = quota; 1530 1531 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1532 dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); 1533 } 1534 1535 int 1536 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1537 { 1538 dsl_dir_set_qr_arg_t *ddsqra = arg; 1539 dsl_pool_t *dp = dmu_tx_pool(tx); 1540 dsl_dataset_t *ds; 1541 dsl_dir_t *dd; 1542 uint64_t newval, used, avail; 1543 int error; 1544 1545 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1546 if (error != 0) 1547 return (error); 1548 dd = ds->ds_dir; 1549 1550 /* 1551 * If we are doing the preliminary check in open context, the 1552 * space estimates may be inaccurate. 1553 */ 1554 if (!dmu_tx_is_syncing(tx)) { 1555 dsl_dataset_rele(ds, FTAG); 1556 return (0); 1557 } 1558 1559 error = dsl_prop_predict(ds->ds_dir, 1560 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1561 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1562 if (error != 0) { 1563 dsl_dataset_rele(ds, FTAG); 1564 return (error); 1565 } 1566 1567 mutex_enter(&dd->dd_lock); 1568 used = dsl_dir_phys(dd)->dd_used_bytes; 1569 mutex_exit(&dd->dd_lock); 1570 1571 if (dd->dd_parent) { 1572 avail = dsl_dir_space_available(dd->dd_parent, 1573 NULL, 0, FALSE); 1574 } else { 1575 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used; 1576 } 1577 1578 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) { 1579 uint64_t delta = MAX(used, newval) - 1580 MAX(used, dsl_dir_phys(dd)->dd_reserved); 1581 1582 if (delta > avail || 1583 (dsl_dir_phys(dd)->dd_quota > 0 && 1584 newval > dsl_dir_phys(dd)->dd_quota)) 1585 error = SET_ERROR(ENOSPC); 1586 } 1587 1588 dsl_dataset_rele(ds, FTAG); 1589 return (error); 1590 } 1591 1592 void 1593 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1594 { 1595 uint64_t used; 1596 int64_t delta; 1597 1598 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1599 1600 mutex_enter(&dd->dd_lock); 1601 used = dsl_dir_phys(dd)->dd_used_bytes; 1602 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved); 1603 dsl_dir_phys(dd)->dd_reserved = value; 1604 1605 if (dd->dd_parent != NULL) { 1606 /* Roll up this additional usage into our ancestors */ 1607 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1608 delta, 0, 0, tx); 1609 } 1610 mutex_exit(&dd->dd_lock); 1611 } 1612 1613 static void 1614 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1615 { 1616 dsl_dir_set_qr_arg_t *ddsqra = arg; 1617 dsl_pool_t *dp = dmu_tx_pool(tx); 1618 dsl_dataset_t *ds; 1619 uint64_t newval; 1620 1621 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1622 1623 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1624 dsl_prop_set_sync_impl(ds, 1625 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1626 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1627 &ddsqra->ddsqra_value, tx); 1628 1629 VERIFY0(dsl_prop_get_int_ds(ds, 1630 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1631 } else { 1632 newval = ddsqra->ddsqra_value; 1633 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1634 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1635 (longlong_t)newval); 1636 } 1637 1638 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1639 dsl_dataset_rele(ds, FTAG); 1640 } 1641 1642 int 1643 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1644 uint64_t reservation) 1645 { 1646 dsl_dir_set_qr_arg_t ddsqra; 1647 1648 ddsqra.ddsqra_name = ddname; 1649 ddsqra.ddsqra_source = source; 1650 ddsqra.ddsqra_value = reservation; 1651 1652 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1653 dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); 1654 } 1655 1656 static dsl_dir_t * 1657 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1658 { 1659 for (; ds1; ds1 = ds1->dd_parent) { 1660 dsl_dir_t *dd; 1661 for (dd = ds2; dd; dd = dd->dd_parent) { 1662 if (ds1 == dd) 1663 return (dd); 1664 } 1665 } 1666 return (NULL); 1667 } 1668 1669 /* 1670 * If delta is applied to dd, how much of that delta would be applied to 1671 * ancestor? Syncing context only. 1672 */ 1673 static int64_t 1674 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1675 { 1676 if (dd == ancestor) 1677 return (delta); 1678 1679 mutex_enter(&dd->dd_lock); 1680 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta); 1681 mutex_exit(&dd->dd_lock); 1682 return (would_change(dd->dd_parent, delta, ancestor)); 1683 } 1684 1685 typedef struct dsl_dir_rename_arg { 1686 const char *ddra_oldname; 1687 const char *ddra_newname; 1688 cred_t *ddra_cred; 1689 } dsl_dir_rename_arg_t; 1690 1691 /* ARGSUSED */ 1692 static int 1693 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1694 { 1695 int *deltap = arg; 1696 char namebuf[ZFS_MAX_DATASET_NAME_LEN]; 1697 1698 dsl_dataset_name(ds, namebuf); 1699 1700 if (strlen(namebuf) + *deltap >= ZFS_MAX_DATASET_NAME_LEN) 1701 return (SET_ERROR(ENAMETOOLONG)); 1702 return (0); 1703 } 1704 1705 static int 1706 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1707 { 1708 dsl_dir_rename_arg_t *ddra = arg; 1709 dsl_pool_t *dp = dmu_tx_pool(tx); 1710 dsl_dir_t *dd, *newparent; 1711 const char *mynewname; 1712 int error; 1713 int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname); 1714 1715 /* target dir should exist */ 1716 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1717 if (error != 0) 1718 return (error); 1719 1720 /* new parent should exist */ 1721 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1722 &newparent, &mynewname); 1723 if (error != 0) { 1724 dsl_dir_rele(dd, FTAG); 1725 return (error); 1726 } 1727 1728 /* can't rename to different pool */ 1729 if (dd->dd_pool != newparent->dd_pool) { 1730 dsl_dir_rele(newparent, FTAG); 1731 dsl_dir_rele(dd, FTAG); 1732 return (SET_ERROR(EXDEV)); 1733 } 1734 1735 /* new name should not already exist */ 1736 if (mynewname == NULL) { 1737 dsl_dir_rele(newparent, FTAG); 1738 dsl_dir_rele(dd, FTAG); 1739 return (SET_ERROR(EEXIST)); 1740 } 1741 1742 /* if the name length is growing, validate child name lengths */ 1743 if (delta > 0) { 1744 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 1745 &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1746 if (error != 0) { 1747 dsl_dir_rele(newparent, FTAG); 1748 dsl_dir_rele(dd, FTAG); 1749 return (error); 1750 } 1751 } 1752 1753 if (dmu_tx_is_syncing(tx)) { 1754 if (spa_feature_is_active(dp->dp_spa, 1755 SPA_FEATURE_FS_SS_LIMIT)) { 1756 /* 1757 * Although this is the check function and we don't 1758 * normally make on-disk changes in check functions, 1759 * we need to do that here. 1760 * 1761 * Ensure this portion of the tree's counts have been 1762 * initialized in case the new parent has limits set. 1763 */ 1764 dsl_dir_init_fs_ss_count(dd, tx); 1765 } 1766 } 1767 1768 if (newparent != dd->dd_parent) { 1769 /* is there enough space? */ 1770 uint64_t myspace = 1771 MAX(dsl_dir_phys(dd)->dd_used_bytes, 1772 dsl_dir_phys(dd)->dd_reserved); 1773 objset_t *os = dd->dd_pool->dp_meta_objset; 1774 uint64_t fs_cnt = 0; 1775 uint64_t ss_cnt = 0; 1776 1777 if (dsl_dir_is_zapified(dd)) { 1778 int err; 1779 1780 err = zap_lookup(os, dd->dd_object, 1781 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1782 &fs_cnt); 1783 if (err != ENOENT && err != 0) { 1784 dsl_dir_rele(newparent, FTAG); 1785 dsl_dir_rele(dd, FTAG); 1786 return (err); 1787 } 1788 1789 /* 1790 * have to add 1 for the filesystem itself that we're 1791 * moving 1792 */ 1793 fs_cnt++; 1794 1795 err = zap_lookup(os, dd->dd_object, 1796 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1797 &ss_cnt); 1798 if (err != ENOENT && err != 0) { 1799 dsl_dir_rele(newparent, FTAG); 1800 dsl_dir_rele(dd, FTAG); 1801 return (err); 1802 } 1803 } 1804 1805 /* no rename into our descendant */ 1806 if (closest_common_ancestor(dd, newparent) == dd) { 1807 dsl_dir_rele(newparent, FTAG); 1808 dsl_dir_rele(dd, FTAG); 1809 return (SET_ERROR(EINVAL)); 1810 } 1811 1812 error = dsl_dir_transfer_possible(dd->dd_parent, 1813 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred); 1814 if (error != 0) { 1815 dsl_dir_rele(newparent, FTAG); 1816 dsl_dir_rele(dd, FTAG); 1817 return (error); 1818 } 1819 } 1820 1821 dsl_dir_rele(newparent, FTAG); 1822 dsl_dir_rele(dd, FTAG); 1823 return (0); 1824 } 1825 1826 static void 1827 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 1828 { 1829 dsl_dir_rename_arg_t *ddra = arg; 1830 dsl_pool_t *dp = dmu_tx_pool(tx); 1831 dsl_dir_t *dd, *newparent; 1832 const char *mynewname; 1833 int error; 1834 objset_t *mos = dp->dp_meta_objset; 1835 1836 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 1837 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 1838 &mynewname)); 1839 1840 /* Log this before we change the name. */ 1841 spa_history_log_internal_dd(dd, "rename", tx, 1842 "-> %s", ddra->ddra_newname); 1843 1844 if (newparent != dd->dd_parent) { 1845 objset_t *os = dd->dd_pool->dp_meta_objset; 1846 uint64_t fs_cnt = 0; 1847 uint64_t ss_cnt = 0; 1848 1849 /* 1850 * We already made sure the dd counts were initialized in the 1851 * check function. 1852 */ 1853 if (spa_feature_is_active(dp->dp_spa, 1854 SPA_FEATURE_FS_SS_LIMIT)) { 1855 VERIFY0(zap_lookup(os, dd->dd_object, 1856 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1857 &fs_cnt)); 1858 /* add 1 for the filesystem itself that we're moving */ 1859 fs_cnt++; 1860 1861 VERIFY0(zap_lookup(os, dd->dd_object, 1862 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1863 &ss_cnt)); 1864 } 1865 1866 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 1867 DD_FIELD_FILESYSTEM_COUNT, tx); 1868 dsl_fs_ss_count_adjust(newparent, fs_cnt, 1869 DD_FIELD_FILESYSTEM_COUNT, tx); 1870 1871 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 1872 DD_FIELD_SNAPSHOT_COUNT, tx); 1873 dsl_fs_ss_count_adjust(newparent, ss_cnt, 1874 DD_FIELD_SNAPSHOT_COUNT, tx); 1875 1876 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1877 -dsl_dir_phys(dd)->dd_used_bytes, 1878 -dsl_dir_phys(dd)->dd_compressed_bytes, 1879 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 1880 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 1881 dsl_dir_phys(dd)->dd_used_bytes, 1882 dsl_dir_phys(dd)->dd_compressed_bytes, 1883 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 1884 1885 if (dsl_dir_phys(dd)->dd_reserved > 1886 dsl_dir_phys(dd)->dd_used_bytes) { 1887 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved - 1888 dsl_dir_phys(dd)->dd_used_bytes; 1889 1890 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1891 -unused_rsrv, 0, 0, tx); 1892 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 1893 unused_rsrv, 0, 0, tx); 1894 } 1895 } 1896 1897 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1898 1899 /* remove from old parent zapobj */ 1900 error = zap_remove(mos, 1901 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj, 1902 dd->dd_myname, tx); 1903 ASSERT0(error); 1904 1905 (void) strcpy(dd->dd_myname, mynewname); 1906 dsl_dir_rele(dd->dd_parent, dd); 1907 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object; 1908 VERIFY0(dsl_dir_hold_obj(dp, 1909 newparent->dd_object, NULL, dd, &dd->dd_parent)); 1910 1911 /* add to new parent zapobj */ 1912 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj, 1913 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 1914 1915 #ifdef __FreeBSD__ 1916 #ifdef _KERNEL 1917 zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname); 1918 zvol_rename_minors(ddra->ddra_oldname, ddra->ddra_newname); 1919 #endif 1920 #endif 1921 1922 dsl_prop_notify_all(dd); 1923 1924 dsl_dir_rele(newparent, FTAG); 1925 dsl_dir_rele(dd, FTAG); 1926 } 1927 1928 int 1929 dsl_dir_rename(const char *oldname, const char *newname) 1930 { 1931 dsl_dir_rename_arg_t ddra; 1932 1933 ddra.ddra_oldname = oldname; 1934 ddra.ddra_newname = newname; 1935 ddra.ddra_cred = CRED(); 1936 1937 return (dsl_sync_task(oldname, 1938 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 1939 3, ZFS_SPACE_CHECK_RESERVED)); 1940 } 1941 1942 int 1943 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 1944 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr) 1945 { 1946 dsl_dir_t *ancestor; 1947 int64_t adelta; 1948 uint64_t avail; 1949 int err; 1950 1951 ancestor = closest_common_ancestor(sdd, tdd); 1952 adelta = would_change(sdd, -space, ancestor); 1953 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 1954 if (avail < space) 1955 return (SET_ERROR(ENOSPC)); 1956 1957 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 1958 ancestor, cr); 1959 if (err != 0) 1960 return (err); 1961 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 1962 ancestor, cr); 1963 if (err != 0) 1964 return (err); 1965 1966 return (0); 1967 } 1968 1969 timestruc_t 1970 dsl_dir_snap_cmtime(dsl_dir_t *dd) 1971 { 1972 timestruc_t t; 1973 1974 mutex_enter(&dd->dd_lock); 1975 t = dd->dd_snap_cmtime; 1976 mutex_exit(&dd->dd_lock); 1977 1978 return (t); 1979 } 1980 1981 void 1982 dsl_dir_snap_cmtime_update(dsl_dir_t *dd) 1983 { 1984 timestruc_t t; 1985 1986 gethrestime(&t); 1987 mutex_enter(&dd->dd_lock); 1988 dd->dd_snap_cmtime = t; 1989 mutex_exit(&dd->dd_lock); 1990 } 1991 1992 void 1993 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 1994 { 1995 objset_t *mos = dd->dd_pool->dp_meta_objset; 1996 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 1997 } 1998 1999 boolean_t 2000 dsl_dir_is_zapified(dsl_dir_t *dd) 2001 { 2002 dmu_object_info_t doi; 2003 2004 dmu_object_info_from_db(dd->dd_dbuf, &doi); 2005 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 2006 } 2007