xref: /netbsd-src/external/cddl/osnet/dist/uts/common/fs/zfs/dnode.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/dbuf.h>
30 #include <sys/dnode.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/spa.h>
38 #include <sys/zio.h>
39 #include <sys/dmu_zfetch.h>
40 #include <sys/range_tree.h>
41 
42 static kmem_cache_t *dnode_cache;
43 /*
44  * Define DNODE_STATS to turn on statistic gathering. By default, it is only
45  * turned on when DEBUG is also defined.
46  */
47 #ifdef	DEBUG
48 #define	DNODE_STATS
49 #endif	/* DEBUG */
50 
51 #ifdef	DNODE_STATS
52 #define	DNODE_STAT_ADD(stat)			((stat)++)
53 #else
54 #define	DNODE_STAT_ADD(stat)			/* nothing */
55 #endif	/* DNODE_STATS */
56 
57 static dnode_phys_t dnode_phys_zero;
58 
59 int zfs_default_bs = SPA_MINBLOCKSHIFT;
60 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
61 
62 #ifdef illumos
63 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
64 #endif
65 
66 static int
67 dbuf_compare(const void *x1, const void *x2)
68 {
69 	const dmu_buf_impl_t *d1 = x1;
70 	const dmu_buf_impl_t *d2 = x2;
71 
72 	if (d1->db_level < d2->db_level) {
73 		return (-1);
74 	}
75 	if (d1->db_level > d2->db_level) {
76 		return (1);
77 	}
78 
79 	if (d1->db_blkid < d2->db_blkid) {
80 		return (-1);
81 	}
82 	if (d1->db_blkid > d2->db_blkid) {
83 		return (1);
84 	}
85 
86 	if (d1->db_state == DB_SEARCH) {
87 		ASSERT3S(d2->db_state, !=, DB_SEARCH);
88 		return (-1);
89 	} else if (d2->db_state == DB_SEARCH) {
90 		ASSERT3S(d1->db_state, !=, DB_SEARCH);
91 		return (1);
92 	}
93 
94 	if ((uintptr_t)d1 < (uintptr_t)d2) {
95 		return (-1);
96 	}
97 	if ((uintptr_t)d1 > (uintptr_t)d2) {
98 		return (1);
99 	}
100 	return (0);
101 }
102 
103 /* ARGSUSED */
104 static int
105 dnode_cons(void *arg, void *unused, int kmflag)
106 {
107 	dnode_t *dn = arg;
108 	int i;
109 
110 #ifdef __NetBSD__
111 	dn = unused;
112 #endif
113 	rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
114 	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
115 	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
116 	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
117 
118 	/*
119 	 * Every dbuf has a reference, and dropping a tracked reference is
120 	 * O(number of references), so don't track dn_holds.
121 	 */
122 	refcount_create_untracked(&dn->dn_holds);
123 	refcount_create(&dn->dn_tx_holds);
124 	list_link_init(&dn->dn_link);
125 
126 	bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
127 	bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
128 	bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
129 	bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
130 	bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
131 	bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
132 	bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
133 
134 	for (i = 0; i < TXG_SIZE; i++) {
135 		list_link_init(&dn->dn_dirty_link[i]);
136 		dn->dn_free_ranges[i] = NULL;
137 		list_create(&dn->dn_dirty_records[i],
138 		    sizeof (dbuf_dirty_record_t),
139 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
140 	}
141 
142 	dn->dn_allocated_txg = 0;
143 	dn->dn_free_txg = 0;
144 	dn->dn_assigned_txg = 0;
145 	dn->dn_dirtyctx = 0;
146 	dn->dn_dirtyctx_firstset = NULL;
147 	dn->dn_bonus = NULL;
148 	dn->dn_have_spill = B_FALSE;
149 	dn->dn_zio = NULL;
150 	dn->dn_oldused = 0;
151 	dn->dn_oldflags = 0;
152 	dn->dn_olduid = 0;
153 	dn->dn_oldgid = 0;
154 	dn->dn_newuid = 0;
155 	dn->dn_newgid = 0;
156 	dn->dn_id_flags = 0;
157 
158 	dn->dn_dbufs_count = 0;
159 	avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
160 	    offsetof(dmu_buf_impl_t, db_link));
161 
162 	dn->dn_moved = 0;
163 	POINTER_INVALIDATE(&dn->dn_objset);
164 	return (0);
165 }
166 
167 /* ARGSUSED */
168 static void
169 dnode_dest(void *arg, void *unused)
170 {
171 	int i;
172 	dnode_t *dn = arg;
173 
174 #ifdef __NetBSD__
175 	dn = unused;
176 #endif
177 	rw_destroy(&dn->dn_struct_rwlock);
178 	mutex_destroy(&dn->dn_mtx);
179 	mutex_destroy(&dn->dn_dbufs_mtx);
180 	cv_destroy(&dn->dn_notxholds);
181 	refcount_destroy(&dn->dn_holds);
182 	refcount_destroy(&dn->dn_tx_holds);
183 	ASSERT(!list_link_active(&dn->dn_link));
184 
185 	for (i = 0; i < TXG_SIZE; i++) {
186 		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
187 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
188 		list_destroy(&dn->dn_dirty_records[i]);
189 		ASSERT0(dn->dn_next_nblkptr[i]);
190 		ASSERT0(dn->dn_next_nlevels[i]);
191 		ASSERT0(dn->dn_next_indblkshift[i]);
192 		ASSERT0(dn->dn_next_bonustype[i]);
193 		ASSERT0(dn->dn_rm_spillblk[i]);
194 		ASSERT0(dn->dn_next_bonuslen[i]);
195 		ASSERT0(dn->dn_next_blksz[i]);
196 	}
197 
198 	ASSERT0(dn->dn_allocated_txg);
199 	ASSERT0(dn->dn_free_txg);
200 	ASSERT0(dn->dn_assigned_txg);
201 	ASSERT0(dn->dn_dirtyctx);
202 	ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
203 	ASSERT3P(dn->dn_bonus, ==, NULL);
204 	ASSERT(!dn->dn_have_spill);
205 	ASSERT3P(dn->dn_zio, ==, NULL);
206 	ASSERT0(dn->dn_oldused);
207 	ASSERT0(dn->dn_oldflags);
208 	ASSERT0(dn->dn_olduid);
209 	ASSERT0(dn->dn_oldgid);
210 	ASSERT0(dn->dn_newuid);
211 	ASSERT0(dn->dn_newgid);
212 	ASSERT0(dn->dn_id_flags);
213 
214 	ASSERT0(dn->dn_dbufs_count);
215 	avl_destroy(&dn->dn_dbufs);
216 }
217 
218 void
219 dnode_init(void)
220 {
221 	ASSERT(dnode_cache == NULL);
222 	dnode_cache = kmem_cache_create("dnode_t",
223 	    sizeof (dnode_t),
224 	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
225 	kmem_cache_set_move(dnode_cache, dnode_move);
226 }
227 
228 void
229 dnode_fini(void)
230 {
231 	kmem_cache_destroy(dnode_cache);
232 	dnode_cache = NULL;
233 }
234 
235 
236 #ifdef ZFS_DEBUG
237 void
238 dnode_verify(dnode_t *dn)
239 {
240 	int drop_struct_lock = FALSE;
241 
242 	ASSERT(dn->dn_phys);
243 	ASSERT(dn->dn_objset);
244 	ASSERT(dn->dn_handle->dnh_dnode == dn);
245 
246 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
247 
248 	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
249 		return;
250 
251 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
252 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
253 		drop_struct_lock = TRUE;
254 	}
255 	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
256 		int i;
257 		ASSERT3U(dn->dn_indblkshift, >=, 0);
258 		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
259 		if (dn->dn_datablkshift) {
260 			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
261 			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
262 			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
263 		}
264 		ASSERT3U(dn->dn_nlevels, <=, 30);
265 		ASSERT(DMU_OT_IS_VALID(dn->dn_type));
266 		ASSERT3U(dn->dn_nblkptr, >=, 1);
267 		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
268 		ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
269 		ASSERT3U(dn->dn_datablksz, ==,
270 		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
271 		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
272 		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
273 		    dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
274 		for (i = 0; i < TXG_SIZE; i++) {
275 			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
276 		}
277 	}
278 	if (dn->dn_phys->dn_type != DMU_OT_NONE)
279 		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
280 	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
281 	if (dn->dn_dbuf != NULL) {
282 		ASSERT3P(dn->dn_phys, ==,
283 		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
284 		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
285 	}
286 	if (drop_struct_lock)
287 		rw_exit(&dn->dn_struct_rwlock);
288 }
289 #endif
290 
291 void
292 dnode_byteswap(dnode_phys_t *dnp)
293 {
294 	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
295 	int i;
296 
297 	if (dnp->dn_type == DMU_OT_NONE) {
298 		bzero(dnp, sizeof (dnode_phys_t));
299 		return;
300 	}
301 
302 	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
303 	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
304 	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
305 	dnp->dn_used = BSWAP_64(dnp->dn_used);
306 
307 	/*
308 	 * dn_nblkptr is only one byte, so it's OK to read it in either
309 	 * byte order.  We can't read dn_bouslen.
310 	 */
311 	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
312 	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
313 	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
314 		buf64[i] = BSWAP_64(buf64[i]);
315 
316 	/*
317 	 * OK to check dn_bonuslen for zero, because it won't matter if
318 	 * we have the wrong byte order.  This is necessary because the
319 	 * dnode dnode is smaller than a regular dnode.
320 	 */
321 	if (dnp->dn_bonuslen != 0) {
322 		/*
323 		 * Note that the bonus length calculated here may be
324 		 * longer than the actual bonus buffer.  This is because
325 		 * we always put the bonus buffer after the last block
326 		 * pointer (instead of packing it against the end of the
327 		 * dnode buffer).
328 		 */
329 		int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
330 		size_t len = DN_MAX_BONUSLEN - off;
331 		ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
332 		dmu_object_byteswap_t byteswap =
333 		    DMU_OT_BYTESWAP(dnp->dn_bonustype);
334 		dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
335 	}
336 
337 	/* Swap SPILL block if we have one */
338 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
339 		byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
340 
341 }
342 
343 void
344 dnode_buf_byteswap(void *vbuf, size_t size)
345 {
346 	dnode_phys_t *buf = vbuf;
347 	int i;
348 
349 	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
350 	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
351 
352 	size >>= DNODE_SHIFT;
353 	for (i = 0; i < size; i++) {
354 		dnode_byteswap(buf);
355 		buf++;
356 	}
357 }
358 
359 void
360 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
361 {
362 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
363 
364 	dnode_setdirty(dn, tx);
365 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
366 	ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
367 	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
368 	dn->dn_bonuslen = newsize;
369 	if (newsize == 0)
370 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
371 	else
372 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
373 	rw_exit(&dn->dn_struct_rwlock);
374 }
375 
376 void
377 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
378 {
379 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
380 	dnode_setdirty(dn, tx);
381 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
382 	dn->dn_bonustype = newtype;
383 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
384 	rw_exit(&dn->dn_struct_rwlock);
385 }
386 
387 void
388 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
389 {
390 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
391 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
392 	dnode_setdirty(dn, tx);
393 	dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
394 	dn->dn_have_spill = B_FALSE;
395 }
396 
397 static void
398 dnode_setdblksz(dnode_t *dn, int size)
399 {
400 	ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
401 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
402 	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
403 	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
404 	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
405 	dn->dn_datablksz = size;
406 	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
407 	dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
408 }
409 
410 static dnode_t *
411 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
412     uint64_t object, dnode_handle_t *dnh)
413 {
414 	dnode_t *dn;
415 
416 	dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
417 	ASSERT(!POINTER_IS_VALID(dn->dn_objset));
418 	dn->dn_moved = 0;
419 
420 	/*
421 	 * Defer setting dn_objset until the dnode is ready to be a candidate
422 	 * for the dnode_move() callback.
423 	 */
424 	dn->dn_object = object;
425 	dn->dn_dbuf = db;
426 	dn->dn_handle = dnh;
427 	dn->dn_phys = dnp;
428 
429 	if (dnp->dn_datablkszsec) {
430 		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
431 	} else {
432 		dn->dn_datablksz = 0;
433 		dn->dn_datablkszsec = 0;
434 		dn->dn_datablkshift = 0;
435 	}
436 	dn->dn_indblkshift = dnp->dn_indblkshift;
437 	dn->dn_nlevels = dnp->dn_nlevels;
438 	dn->dn_type = dnp->dn_type;
439 	dn->dn_nblkptr = dnp->dn_nblkptr;
440 	dn->dn_checksum = dnp->dn_checksum;
441 	dn->dn_compress = dnp->dn_compress;
442 	dn->dn_bonustype = dnp->dn_bonustype;
443 	dn->dn_bonuslen = dnp->dn_bonuslen;
444 	dn->dn_maxblkid = dnp->dn_maxblkid;
445 	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
446 	dn->dn_id_flags = 0;
447 
448 	dmu_zfetch_init(&dn->dn_zfetch, dn);
449 
450 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
451 
452 	mutex_enter(&os->os_lock);
453 	if (dnh->dnh_dnode != NULL) {
454 		/* Lost the allocation race. */
455 		mutex_exit(&os->os_lock);
456 		kmem_cache_free(dnode_cache, dn);
457 		return (dnh->dnh_dnode);
458 	}
459 
460 	/*
461 	 * Exclude special dnodes from os_dnodes so an empty os_dnodes
462 	 * signifies that the special dnodes have no references from
463 	 * their children (the entries in os_dnodes).  This allows
464 	 * dnode_destroy() to easily determine if the last child has
465 	 * been removed and then complete eviction of the objset.
466 	 */
467 	if (!DMU_OBJECT_IS_SPECIAL(object))
468 		list_insert_head(&os->os_dnodes, dn);
469 	membar_producer();
470 
471 	/*
472 	 * Everything else must be valid before assigning dn_objset
473 	 * makes the dnode eligible for dnode_move().
474 	 */
475 	dn->dn_objset = os;
476 
477 	dnh->dnh_dnode = dn;
478 	mutex_exit(&os->os_lock);
479 
480 	arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
481 	return (dn);
482 }
483 
484 /*
485  * Caller must be holding the dnode handle, which is released upon return.
486  */
487 static void
488 dnode_destroy(dnode_t *dn)
489 {
490 	objset_t *os = dn->dn_objset;
491 	boolean_t complete_os_eviction = B_FALSE;
492 
493 	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
494 
495 	mutex_enter(&os->os_lock);
496 	POINTER_INVALIDATE(&dn->dn_objset);
497 	if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
498 		list_remove(&os->os_dnodes, dn);
499 		complete_os_eviction =
500 		    list_is_empty(&os->os_dnodes) &&
501 		    list_link_active(&os->os_evicting_node);
502 	}
503 	mutex_exit(&os->os_lock);
504 
505 	/* the dnode can no longer move, so we can release the handle */
506 	zrl_remove(&dn->dn_handle->dnh_zrlock);
507 
508 	dn->dn_allocated_txg = 0;
509 	dn->dn_free_txg = 0;
510 	dn->dn_assigned_txg = 0;
511 
512 	dn->dn_dirtyctx = 0;
513 	if (dn->dn_dirtyctx_firstset != NULL) {
514 		kmem_free(dn->dn_dirtyctx_firstset, 1);
515 		dn->dn_dirtyctx_firstset = NULL;
516 	}
517 	if (dn->dn_bonus != NULL) {
518 		mutex_enter(&dn->dn_bonus->db_mtx);
519 		dbuf_destroy(dn->dn_bonus);
520 		dn->dn_bonus = NULL;
521 	}
522 	dn->dn_zio = NULL;
523 
524 	dn->dn_have_spill = B_FALSE;
525 	dn->dn_oldused = 0;
526 	dn->dn_oldflags = 0;
527 	dn->dn_olduid = 0;
528 	dn->dn_oldgid = 0;
529 	dn->dn_newuid = 0;
530 	dn->dn_newgid = 0;
531 	dn->dn_id_flags = 0;
532 
533 	dmu_zfetch_fini(&dn->dn_zfetch);
534 	kmem_cache_free(dnode_cache, dn);
535 	arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
536 
537 	if (complete_os_eviction)
538 		dmu_objset_evict_done(os);
539 }
540 
541 void
542 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
543     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
544 {
545 	int i;
546 
547 	ASSERT3U(blocksize, <=,
548 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
549 	if (blocksize == 0)
550 		blocksize = 1 << zfs_default_bs;
551 	else
552 		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
553 
554 	if (ibs == 0)
555 		ibs = zfs_default_ibs;
556 
557 	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
558 
559 	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
560 	    dn->dn_object, tx->tx_txg, blocksize, ibs);
561 
562 	ASSERT(dn->dn_type == DMU_OT_NONE);
563 	ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
564 	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
565 	ASSERT(ot != DMU_OT_NONE);
566 	ASSERT(DMU_OT_IS_VALID(ot));
567 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
568 	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
569 	    (bonustype != DMU_OT_NONE && bonuslen != 0));
570 	ASSERT(DMU_OT_IS_VALID(bonustype));
571 	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
572 	ASSERT(dn->dn_type == DMU_OT_NONE);
573 	ASSERT0(dn->dn_maxblkid);
574 	ASSERT0(dn->dn_allocated_txg);
575 	ASSERT0(dn->dn_assigned_txg);
576 	ASSERT(refcount_is_zero(&dn->dn_tx_holds));
577 	ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
578 	ASSERT(avl_is_empty(&dn->dn_dbufs));
579 
580 	for (i = 0; i < TXG_SIZE; i++) {
581 		ASSERT0(dn->dn_next_nblkptr[i]);
582 		ASSERT0(dn->dn_next_nlevels[i]);
583 		ASSERT0(dn->dn_next_indblkshift[i]);
584 		ASSERT0(dn->dn_next_bonuslen[i]);
585 		ASSERT0(dn->dn_next_bonustype[i]);
586 		ASSERT0(dn->dn_rm_spillblk[i]);
587 		ASSERT0(dn->dn_next_blksz[i]);
588 		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
589 		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
590 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
591 	}
592 
593 	dn->dn_type = ot;
594 	dnode_setdblksz(dn, blocksize);
595 	dn->dn_indblkshift = ibs;
596 	dn->dn_nlevels = 1;
597 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
598 		dn->dn_nblkptr = 1;
599 	else
600 		dn->dn_nblkptr = 1 +
601 		    ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
602 	dn->dn_bonustype = bonustype;
603 	dn->dn_bonuslen = bonuslen;
604 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
605 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
606 	dn->dn_dirtyctx = 0;
607 
608 	dn->dn_free_txg = 0;
609 	if (dn->dn_dirtyctx_firstset) {
610 		kmem_free(dn->dn_dirtyctx_firstset, 1);
611 		dn->dn_dirtyctx_firstset = NULL;
612 	}
613 
614 	dn->dn_allocated_txg = tx->tx_txg;
615 	dn->dn_id_flags = 0;
616 
617 	dnode_setdirty(dn, tx);
618 	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
619 	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
620 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
621 	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
622 }
623 
624 void
625 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
626     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
627 {
628 	int nblkptr;
629 
630 	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
631 	ASSERT3U(blocksize, <=,
632 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
633 	ASSERT0(blocksize % SPA_MINBLOCKSIZE);
634 	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
635 	ASSERT(tx->tx_txg != 0);
636 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
637 	    (bonustype != DMU_OT_NONE && bonuslen != 0) ||
638 	    (bonustype == DMU_OT_SA && bonuslen == 0));
639 	ASSERT(DMU_OT_IS_VALID(bonustype));
640 	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
641 
642 	/* clean up any unreferenced dbufs */
643 	dnode_evict_dbufs(dn);
644 
645 	dn->dn_id_flags = 0;
646 
647 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
648 	dnode_setdirty(dn, tx);
649 	if (dn->dn_datablksz != blocksize) {
650 		/* change blocksize */
651 		ASSERT(dn->dn_maxblkid == 0 &&
652 		    (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
653 		    dnode_block_freed(dn, 0)));
654 		dnode_setdblksz(dn, blocksize);
655 		dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
656 	}
657 	if (dn->dn_bonuslen != bonuslen)
658 		dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
659 
660 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
661 		nblkptr = 1;
662 	else
663 		nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
664 	if (dn->dn_bonustype != bonustype)
665 		dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
666 	if (dn->dn_nblkptr != nblkptr)
667 		dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
668 	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
669 		dbuf_rm_spill(dn, tx);
670 		dnode_rm_spill(dn, tx);
671 	}
672 	rw_exit(&dn->dn_struct_rwlock);
673 
674 	/* change type */
675 	dn->dn_type = ot;
676 
677 	/* change bonus size and type */
678 	mutex_enter(&dn->dn_mtx);
679 	dn->dn_bonustype = bonustype;
680 	dn->dn_bonuslen = bonuslen;
681 	dn->dn_nblkptr = nblkptr;
682 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
683 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
684 	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
685 
686 	/* fix up the bonus db_size */
687 	if (dn->dn_bonus) {
688 		dn->dn_bonus->db.db_size =
689 		    DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
690 		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
691 	}
692 
693 	dn->dn_allocated_txg = tx->tx_txg;
694 	mutex_exit(&dn->dn_mtx);
695 }
696 
697 #ifdef	DNODE_STATS
698 static struct {
699 	uint64_t dms_dnode_invalid;
700 	uint64_t dms_dnode_recheck1;
701 	uint64_t dms_dnode_recheck2;
702 	uint64_t dms_dnode_special;
703 	uint64_t dms_dnode_handle;
704 	uint64_t dms_dnode_rwlock;
705 	uint64_t dms_dnode_active;
706 } dnode_move_stats;
707 #endif	/* DNODE_STATS */
708 
709 static void
710 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
711 {
712 	int i;
713 
714 	ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
715 	ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
716 	ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
717 	ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
718 
719 	/* Copy fields. */
720 	ndn->dn_objset = odn->dn_objset;
721 	ndn->dn_object = odn->dn_object;
722 	ndn->dn_dbuf = odn->dn_dbuf;
723 	ndn->dn_handle = odn->dn_handle;
724 	ndn->dn_phys = odn->dn_phys;
725 	ndn->dn_type = odn->dn_type;
726 	ndn->dn_bonuslen = odn->dn_bonuslen;
727 	ndn->dn_bonustype = odn->dn_bonustype;
728 	ndn->dn_nblkptr = odn->dn_nblkptr;
729 	ndn->dn_checksum = odn->dn_checksum;
730 	ndn->dn_compress = odn->dn_compress;
731 	ndn->dn_nlevels = odn->dn_nlevels;
732 	ndn->dn_indblkshift = odn->dn_indblkshift;
733 	ndn->dn_datablkshift = odn->dn_datablkshift;
734 	ndn->dn_datablkszsec = odn->dn_datablkszsec;
735 	ndn->dn_datablksz = odn->dn_datablksz;
736 	ndn->dn_maxblkid = odn->dn_maxblkid;
737 	bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
738 	    sizeof (odn->dn_next_nblkptr));
739 	bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
740 	    sizeof (odn->dn_next_nlevels));
741 	bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
742 	    sizeof (odn->dn_next_indblkshift));
743 	bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
744 	    sizeof (odn->dn_next_bonustype));
745 	bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
746 	    sizeof (odn->dn_rm_spillblk));
747 	bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
748 	    sizeof (odn->dn_next_bonuslen));
749 	bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
750 	    sizeof (odn->dn_next_blksz));
751 	for (i = 0; i < TXG_SIZE; i++) {
752 		list_move_tail(&ndn->dn_dirty_records[i],
753 		    &odn->dn_dirty_records[i]);
754 	}
755 	bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
756 	    sizeof (odn->dn_free_ranges));
757 	ndn->dn_allocated_txg = odn->dn_allocated_txg;
758 	ndn->dn_free_txg = odn->dn_free_txg;
759 	ndn->dn_assigned_txg = odn->dn_assigned_txg;
760 	ndn->dn_dirtyctx = odn->dn_dirtyctx;
761 	ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
762 	ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
763 	refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
764 	ASSERT(avl_is_empty(&ndn->dn_dbufs));
765 	avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
766 	ndn->dn_dbufs_count = odn->dn_dbufs_count;
767 	ndn->dn_bonus = odn->dn_bonus;
768 	ndn->dn_have_spill = odn->dn_have_spill;
769 	ndn->dn_zio = odn->dn_zio;
770 	ndn->dn_oldused = odn->dn_oldused;
771 	ndn->dn_oldflags = odn->dn_oldflags;
772 	ndn->dn_olduid = odn->dn_olduid;
773 	ndn->dn_oldgid = odn->dn_oldgid;
774 	ndn->dn_newuid = odn->dn_newuid;
775 	ndn->dn_newgid = odn->dn_newgid;
776 	ndn->dn_id_flags = odn->dn_id_flags;
777 	dmu_zfetch_init(&ndn->dn_zfetch, NULL);
778 	list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
779 	ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
780 
781 	/*
782 	 * Update back pointers. Updating the handle fixes the back pointer of
783 	 * every descendant dbuf as well as the bonus dbuf.
784 	 */
785 	ASSERT(ndn->dn_handle->dnh_dnode == odn);
786 	ndn->dn_handle->dnh_dnode = ndn;
787 	if (ndn->dn_zfetch.zf_dnode == odn) {
788 		ndn->dn_zfetch.zf_dnode = ndn;
789 	}
790 
791 	/*
792 	 * Invalidate the original dnode by clearing all of its back pointers.
793 	 */
794 	odn->dn_dbuf = NULL;
795 	odn->dn_handle = NULL;
796 	avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
797 	    offsetof(dmu_buf_impl_t, db_link));
798 	odn->dn_dbufs_count = 0;
799 	odn->dn_bonus = NULL;
800 	odn->dn_zfetch.zf_dnode = NULL;
801 
802 	/*
803 	 * Set the low bit of the objset pointer to ensure that dnode_move()
804 	 * recognizes the dnode as invalid in any subsequent callback.
805 	 */
806 	POINTER_INVALIDATE(&odn->dn_objset);
807 
808 	/*
809 	 * Satisfy the destructor.
810 	 */
811 	for (i = 0; i < TXG_SIZE; i++) {
812 		list_create(&odn->dn_dirty_records[i],
813 		    sizeof (dbuf_dirty_record_t),
814 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
815 		odn->dn_free_ranges[i] = NULL;
816 		odn->dn_next_nlevels[i] = 0;
817 		odn->dn_next_indblkshift[i] = 0;
818 		odn->dn_next_bonustype[i] = 0;
819 		odn->dn_rm_spillblk[i] = 0;
820 		odn->dn_next_bonuslen[i] = 0;
821 		odn->dn_next_blksz[i] = 0;
822 	}
823 	odn->dn_allocated_txg = 0;
824 	odn->dn_free_txg = 0;
825 	odn->dn_assigned_txg = 0;
826 	odn->dn_dirtyctx = 0;
827 	odn->dn_dirtyctx_firstset = NULL;
828 	odn->dn_have_spill = B_FALSE;
829 	odn->dn_zio = NULL;
830 	odn->dn_oldused = 0;
831 	odn->dn_oldflags = 0;
832 	odn->dn_olduid = 0;
833 	odn->dn_oldgid = 0;
834 	odn->dn_newuid = 0;
835 	odn->dn_newgid = 0;
836 	odn->dn_id_flags = 0;
837 
838 	/*
839 	 * Mark the dnode.
840 	 */
841 	ndn->dn_moved = 1;
842 	odn->dn_moved = (uint8_t)-1;
843 }
844 
845 #ifdef illumos
846 #ifdef	_KERNEL
847 /*ARGSUSED*/
848 static kmem_cbrc_t
849 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
850 {
851 	dnode_t *odn = buf, *ndn = newbuf;
852 	objset_t *os;
853 	int64_t refcount;
854 	uint32_t dbufs;
855 
856 	/*
857 	 * The dnode is on the objset's list of known dnodes if the objset
858 	 * pointer is valid. We set the low bit of the objset pointer when
859 	 * freeing the dnode to invalidate it, and the memory patterns written
860 	 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
861 	 * A newly created dnode sets the objset pointer last of all to indicate
862 	 * that the dnode is known and in a valid state to be moved by this
863 	 * function.
864 	 */
865 	os = odn->dn_objset;
866 	if (!POINTER_IS_VALID(os)) {
867 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
868 		return (KMEM_CBRC_DONT_KNOW);
869 	}
870 
871 	/*
872 	 * Ensure that the objset does not go away during the move.
873 	 */
874 	rw_enter(&os_lock, RW_WRITER);
875 	if (os != odn->dn_objset) {
876 		rw_exit(&os_lock);
877 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
878 		return (KMEM_CBRC_DONT_KNOW);
879 	}
880 
881 	/*
882 	 * If the dnode is still valid, then so is the objset. We know that no
883 	 * valid objset can be freed while we hold os_lock, so we can safely
884 	 * ensure that the objset remains in use.
885 	 */
886 	mutex_enter(&os->os_lock);
887 
888 	/*
889 	 * Recheck the objset pointer in case the dnode was removed just before
890 	 * acquiring the lock.
891 	 */
892 	if (os != odn->dn_objset) {
893 		mutex_exit(&os->os_lock);
894 		rw_exit(&os_lock);
895 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
896 		return (KMEM_CBRC_DONT_KNOW);
897 	}
898 
899 	/*
900 	 * At this point we know that as long as we hold os->os_lock, the dnode
901 	 * cannot be freed and fields within the dnode can be safely accessed.
902 	 * The objset listing this dnode cannot go away as long as this dnode is
903 	 * on its list.
904 	 */
905 	rw_exit(&os_lock);
906 	if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
907 		mutex_exit(&os->os_lock);
908 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
909 		return (KMEM_CBRC_NO);
910 	}
911 	ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
912 
913 	/*
914 	 * Lock the dnode handle to prevent the dnode from obtaining any new
915 	 * holds. This also prevents the descendant dbufs and the bonus dbuf
916 	 * from accessing the dnode, so that we can discount their holds. The
917 	 * handle is safe to access because we know that while the dnode cannot
918 	 * go away, neither can its handle. Once we hold dnh_zrlock, we can
919 	 * safely move any dnode referenced only by dbufs.
920 	 */
921 	if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
922 		mutex_exit(&os->os_lock);
923 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
924 		return (KMEM_CBRC_LATER);
925 	}
926 
927 	/*
928 	 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
929 	 * We need to guarantee that there is a hold for every dbuf in order to
930 	 * determine whether the dnode is actively referenced. Falsely matching
931 	 * a dbuf to an active hold would lead to an unsafe move. It's possible
932 	 * that a thread already having an active dnode hold is about to add a
933 	 * dbuf, and we can't compare hold and dbuf counts while the add is in
934 	 * progress.
935 	 */
936 	if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
937 		zrl_exit(&odn->dn_handle->dnh_zrlock);
938 		mutex_exit(&os->os_lock);
939 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
940 		return (KMEM_CBRC_LATER);
941 	}
942 
943 	/*
944 	 * A dbuf may be removed (evicted) without an active dnode hold. In that
945 	 * case, the dbuf count is decremented under the handle lock before the
946 	 * dbuf's hold is released. This order ensures that if we count the hold
947 	 * after the dbuf is removed but before its hold is released, we will
948 	 * treat the unmatched hold as active and exit safely. If we count the
949 	 * hold before the dbuf is removed, the hold is discounted, and the
950 	 * removal is blocked until the move completes.
951 	 */
952 	refcount = refcount_count(&odn->dn_holds);
953 	ASSERT(refcount >= 0);
954 	dbufs = odn->dn_dbufs_count;
955 
956 	/* We can't have more dbufs than dnode holds. */
957 	ASSERT3U(dbufs, <=, refcount);
958 	DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
959 	    uint32_t, dbufs);
960 
961 	if (refcount > dbufs) {
962 		rw_exit(&odn->dn_struct_rwlock);
963 		zrl_exit(&odn->dn_handle->dnh_zrlock);
964 		mutex_exit(&os->os_lock);
965 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
966 		return (KMEM_CBRC_LATER);
967 	}
968 
969 	rw_exit(&odn->dn_struct_rwlock);
970 
971 	/*
972 	 * At this point we know that anyone with a hold on the dnode is not
973 	 * actively referencing it. The dnode is known and in a valid state to
974 	 * move. We're holding the locks needed to execute the critical section.
975 	 */
976 	dnode_move_impl(odn, ndn);
977 
978 	list_link_replace(&odn->dn_link, &ndn->dn_link);
979 	/* If the dnode was safe to move, the refcount cannot have changed. */
980 	ASSERT(refcount == refcount_count(&ndn->dn_holds));
981 	ASSERT(dbufs == ndn->dn_dbufs_count);
982 	zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
983 	mutex_exit(&os->os_lock);
984 
985 	return (KMEM_CBRC_YES);
986 }
987 #endif	/* _KERNEL */
988 #endif	/* illumos */
989 
990 void
991 dnode_special_close(dnode_handle_t *dnh)
992 {
993 	dnode_t *dn = dnh->dnh_dnode;
994 
995 	/*
996 	 * Wait for final references to the dnode to clear.  This can
997 	 * only happen if the arc is asyncronously evicting state that
998 	 * has a hold on this dnode while we are trying to evict this
999 	 * dnode.
1000 	 */
1001 	while (refcount_count(&dn->dn_holds) > 0)
1002 		delay(1);
1003 	ASSERT(dn->dn_dbuf == NULL ||
1004 	    dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1005 	zrl_add(&dnh->dnh_zrlock);
1006 	dnode_destroy(dn); /* implicit zrl_remove() */
1007 	zrl_destroy(&dnh->dnh_zrlock);
1008 	dnh->dnh_dnode = NULL;
1009 }
1010 
1011 void
1012 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1013     dnode_handle_t *dnh)
1014 {
1015 	dnode_t *dn;
1016 
1017 	dn = dnode_create(os, dnp, NULL, object, dnh);
1018 	zrl_init(&dnh->dnh_zrlock);
1019 	DNODE_VERIFY(dn);
1020 }
1021 
1022 static void
1023 dnode_buf_evict_async(void *dbu)
1024 {
1025 	dnode_children_t *children_dnodes = dbu;
1026 	int i;
1027 
1028 	for (i = 0; i < children_dnodes->dnc_count; i++) {
1029 		dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
1030 		dnode_t *dn;
1031 
1032 		/*
1033 		 * The dnode handle lock guards against the dnode moving to
1034 		 * another valid address, so there is no need here to guard
1035 		 * against changes to or from NULL.
1036 		 */
1037 		if (dnh->dnh_dnode == NULL) {
1038 			zrl_destroy(&dnh->dnh_zrlock);
1039 			continue;
1040 		}
1041 
1042 		zrl_add(&dnh->dnh_zrlock);
1043 		dn = dnh->dnh_dnode;
1044 		/*
1045 		 * If there are holds on this dnode, then there should
1046 		 * be holds on the dnode's containing dbuf as well; thus
1047 		 * it wouldn't be eligible for eviction and this function
1048 		 * would not have been called.
1049 		 */
1050 		ASSERT(refcount_is_zero(&dn->dn_holds));
1051 		ASSERT(refcount_is_zero(&dn->dn_tx_holds));
1052 
1053 		dnode_destroy(dn); /* implicit zrl_remove() */
1054 		zrl_destroy(&dnh->dnh_zrlock);
1055 		dnh->dnh_dnode = NULL;
1056 	}
1057 	kmem_free(children_dnodes, sizeof (dnode_children_t) +
1058 	    children_dnodes->dnc_count * sizeof (dnode_handle_t));
1059 }
1060 
1061 /*
1062  * errors:
1063  * EINVAL - invalid object number.
1064  * EIO - i/o error.
1065  * succeeds even for free dnodes.
1066  */
1067 int
1068 dnode_hold_impl(objset_t *os, uint64_t object, int flag,
1069     void *tag, dnode_t **dnp)
1070 {
1071 	int epb, idx, err;
1072 	int drop_struct_lock = FALSE;
1073 	int type;
1074 	uint64_t blk;
1075 	dnode_t *mdn, *dn;
1076 	dmu_buf_impl_t *db;
1077 	dnode_children_t *children_dnodes;
1078 	dnode_handle_t *dnh;
1079 
1080 	/*
1081 	 * If you are holding the spa config lock as writer, you shouldn't
1082 	 * be asking the DMU to do *anything* unless it's the root pool
1083 	 * which may require us to read from the root filesystem while
1084 	 * holding some (not all) of the locks as writer.
1085 	 */
1086 	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1087 	    (spa_is_root(os->os_spa) &&
1088 	    spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1089 
1090 	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1091 		dn = (object == DMU_USERUSED_OBJECT) ?
1092 		    DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1093 		if (dn == NULL)
1094 			return (SET_ERROR(ENOENT));
1095 		type = dn->dn_type;
1096 		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1097 			return (SET_ERROR(ENOENT));
1098 		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1099 			return (SET_ERROR(EEXIST));
1100 		DNODE_VERIFY(dn);
1101 		(void) refcount_add(&dn->dn_holds, tag);
1102 		*dnp = dn;
1103 		return (0);
1104 	}
1105 
1106 	if (object == 0 || object >= DN_MAX_OBJECT)
1107 		return (SET_ERROR(EINVAL));
1108 
1109 	mdn = DMU_META_DNODE(os);
1110 	ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1111 
1112 	DNODE_VERIFY(mdn);
1113 
1114 	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1115 		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1116 		drop_struct_lock = TRUE;
1117 	}
1118 
1119 	blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1120 
1121 	db = dbuf_hold(mdn, blk, FTAG);
1122 	if (drop_struct_lock)
1123 		rw_exit(&mdn->dn_struct_rwlock);
1124 	if (db == NULL)
1125 		return (SET_ERROR(EIO));
1126 	err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1127 	if (err) {
1128 		dbuf_rele(db, FTAG);
1129 		return (err);
1130 	}
1131 
1132 	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1133 	epb = db->db.db_size >> DNODE_SHIFT;
1134 
1135 	idx = object & (epb-1);
1136 
1137 	ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1138 	children_dnodes = dmu_buf_get_user(&db->db);
1139 	if (children_dnodes == NULL) {
1140 		int i;
1141 		dnode_children_t *winner;
1142 		children_dnodes = kmem_zalloc(sizeof (dnode_children_t) +
1143 		    epb * sizeof (dnode_handle_t), KM_SLEEP);
1144 		children_dnodes->dnc_count = epb;
1145 		dnh = &children_dnodes->dnc_children[0];
1146 		for (i = 0; i < epb; i++) {
1147 			zrl_init(&dnh[i].dnh_zrlock);
1148 		}
1149 		dmu_buf_init_user(&children_dnodes->dnc_dbu, NULL,
1150 		    dnode_buf_evict_async, NULL);
1151 		winner = dmu_buf_set_user(&db->db, &children_dnodes->dnc_dbu);
1152 		if (winner != NULL) {
1153 
1154 			for (i = 0; i < epb; i++) {
1155 				zrl_destroy(&dnh[i].dnh_zrlock);
1156 			}
1157 
1158 			kmem_free(children_dnodes, sizeof (dnode_children_t) +
1159 			    epb * sizeof (dnode_handle_t));
1160 			children_dnodes = winner;
1161 		}
1162 	}
1163 	ASSERT(children_dnodes->dnc_count == epb);
1164 
1165 	dnh = &children_dnodes->dnc_children[idx];
1166 	zrl_add(&dnh->dnh_zrlock);
1167 	dn = dnh->dnh_dnode;
1168 	if (dn == NULL) {
1169 		dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx;
1170 
1171 		dn = dnode_create(os, phys, db, object, dnh);
1172 	}
1173 
1174 	mutex_enter(&dn->dn_mtx);
1175 	type = dn->dn_type;
1176 	if (dn->dn_free_txg ||
1177 	    ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
1178 	    ((flag & DNODE_MUST_BE_FREE) &&
1179 	    (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
1180 		mutex_exit(&dn->dn_mtx);
1181 		zrl_remove(&dnh->dnh_zrlock);
1182 		dbuf_rele(db, FTAG);
1183 		return (type == DMU_OT_NONE ? ENOENT : EEXIST);
1184 	}
1185 	if (refcount_add(&dn->dn_holds, tag) == 1)
1186 		dbuf_add_ref(db, dnh);
1187 	mutex_exit(&dn->dn_mtx);
1188 
1189 	/* Now we can rely on the hold to prevent the dnode from moving. */
1190 	zrl_remove(&dnh->dnh_zrlock);
1191 
1192 	DNODE_VERIFY(dn);
1193 	ASSERT3P(dn->dn_dbuf, ==, db);
1194 	ASSERT3U(dn->dn_object, ==, object);
1195 	dbuf_rele(db, FTAG);
1196 
1197 	*dnp = dn;
1198 	return (0);
1199 }
1200 
1201 /*
1202  * Return held dnode if the object is allocated, NULL if not.
1203  */
1204 int
1205 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1206 {
1207 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
1208 }
1209 
1210 /*
1211  * Can only add a reference if there is already at least one
1212  * reference on the dnode.  Returns FALSE if unable to add a
1213  * new reference.
1214  */
1215 boolean_t
1216 dnode_add_ref(dnode_t *dn, void *tag)
1217 {
1218 	mutex_enter(&dn->dn_mtx);
1219 	if (refcount_is_zero(&dn->dn_holds)) {
1220 		mutex_exit(&dn->dn_mtx);
1221 		return (FALSE);
1222 	}
1223 	VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1224 	mutex_exit(&dn->dn_mtx);
1225 	return (TRUE);
1226 }
1227 
1228 void
1229 dnode_rele(dnode_t *dn, void *tag)
1230 {
1231 	mutex_enter(&dn->dn_mtx);
1232 	dnode_rele_and_unlock(dn, tag);
1233 }
1234 
1235 void
1236 dnode_rele_and_unlock(dnode_t *dn, void *tag)
1237 {
1238 	uint64_t refs;
1239 	/* Get while the hold prevents the dnode from moving. */
1240 	dmu_buf_impl_t *db = dn->dn_dbuf;
1241 	dnode_handle_t *dnh = dn->dn_handle;
1242 
1243 	refs = refcount_remove(&dn->dn_holds, tag);
1244 	mutex_exit(&dn->dn_mtx);
1245 
1246 	/*
1247 	 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1248 	 * indirectly by dbuf_rele() while relying on the dnode handle to
1249 	 * prevent the dnode from moving, since releasing the last hold could
1250 	 * result in the dnode's parent dbuf evicting its dnode handles. For
1251 	 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1252 	 * other direct or indirect hold on the dnode must first drop the dnode
1253 	 * handle.
1254 	 */
1255 	ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1256 
1257 	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1258 	if (refs == 0 && db != NULL) {
1259 		/*
1260 		 * Another thread could add a hold to the dnode handle in
1261 		 * dnode_hold_impl() while holding the parent dbuf. Since the
1262 		 * hold on the parent dbuf prevents the handle from being
1263 		 * destroyed, the hold on the handle is OK. We can't yet assert
1264 		 * that the handle has zero references, but that will be
1265 		 * asserted anyway when the handle gets destroyed.
1266 		 */
1267 		dbuf_rele(db, dnh);
1268 	}
1269 }
1270 
1271 void
1272 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1273 {
1274 	objset_t *os = dn->dn_objset;
1275 	uint64_t txg = tx->tx_txg;
1276 
1277 	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1278 		dsl_dataset_dirty(os->os_dsl_dataset, tx);
1279 		return;
1280 	}
1281 
1282 	DNODE_VERIFY(dn);
1283 
1284 #ifdef ZFS_DEBUG
1285 	mutex_enter(&dn->dn_mtx);
1286 	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1287 	ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1288 	mutex_exit(&dn->dn_mtx);
1289 #endif
1290 
1291 	/*
1292 	 * Determine old uid/gid when necessary
1293 	 */
1294 	dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1295 
1296 	mutex_enter(&os->os_lock);
1297 
1298 	/*
1299 	 * If we are already marked dirty, we're done.
1300 	 */
1301 	if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1302 		mutex_exit(&os->os_lock);
1303 		return;
1304 	}
1305 
1306 	ASSERT(!refcount_is_zero(&dn->dn_holds) ||
1307 	    !avl_is_empty(&dn->dn_dbufs));
1308 	ASSERT(dn->dn_datablksz != 0);
1309 	ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1310 	ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1311 	ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1312 
1313 	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1314 	    dn->dn_object, txg);
1315 
1316 	if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
1317 		list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
1318 	} else {
1319 		list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
1320 	}
1321 
1322 	mutex_exit(&os->os_lock);
1323 
1324 	/*
1325 	 * The dnode maintains a hold on its containing dbuf as
1326 	 * long as there are holds on it.  Each instantiated child
1327 	 * dbuf maintains a hold on the dnode.  When the last child
1328 	 * drops its hold, the dnode will drop its hold on the
1329 	 * containing dbuf. We add a "dirty hold" here so that the
1330 	 * dnode will hang around after we finish processing its
1331 	 * children.
1332 	 */
1333 	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1334 
1335 	(void) dbuf_dirty(dn->dn_dbuf, tx);
1336 
1337 	dsl_dataset_dirty(os->os_dsl_dataset, tx);
1338 }
1339 
1340 void
1341 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1342 {
1343 	int txgoff = tx->tx_txg & TXG_MASK;
1344 
1345 	dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
1346 
1347 	/* we should be the only holder... hopefully */
1348 	/* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
1349 
1350 	mutex_enter(&dn->dn_mtx);
1351 	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1352 		mutex_exit(&dn->dn_mtx);
1353 		return;
1354 	}
1355 	dn->dn_free_txg = tx->tx_txg;
1356 	mutex_exit(&dn->dn_mtx);
1357 
1358 	/*
1359 	 * If the dnode is already dirty, it needs to be moved from
1360 	 * the dirty list to the free list.
1361 	 */
1362 	mutex_enter(&dn->dn_objset->os_lock);
1363 	if (list_link_active(&dn->dn_dirty_link[txgoff])) {
1364 		list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
1365 		list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
1366 		mutex_exit(&dn->dn_objset->os_lock);
1367 	} else {
1368 		mutex_exit(&dn->dn_objset->os_lock);
1369 		dnode_setdirty(dn, tx);
1370 	}
1371 }
1372 
1373 /*
1374  * Try to change the block size for the indicated dnode.  This can only
1375  * succeed if there are no blocks allocated or dirty beyond first block
1376  */
1377 int
1378 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1379 {
1380 	dmu_buf_impl_t *db;
1381 	int err;
1382 
1383 	ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1384 	if (size == 0)
1385 		size = SPA_MINBLOCKSIZE;
1386 	else
1387 		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1388 
1389 	if (ibs == dn->dn_indblkshift)
1390 		ibs = 0;
1391 
1392 	if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1393 		return (0);
1394 
1395 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1396 
1397 	/* Check for any allocated blocks beyond the first */
1398 	if (dn->dn_maxblkid != 0)
1399 		goto fail;
1400 
1401 	mutex_enter(&dn->dn_dbufs_mtx);
1402 	for (db = avl_first(&dn->dn_dbufs); db != NULL;
1403 	    db = AVL_NEXT(&dn->dn_dbufs, db)) {
1404 		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1405 		    db->db_blkid != DMU_SPILL_BLKID) {
1406 			mutex_exit(&dn->dn_dbufs_mtx);
1407 			goto fail;
1408 		}
1409 	}
1410 	mutex_exit(&dn->dn_dbufs_mtx);
1411 
1412 	if (ibs && dn->dn_nlevels != 1)
1413 		goto fail;
1414 
1415 	/* resize the old block */
1416 	err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1417 	if (err == 0)
1418 		dbuf_new_size(db, size, tx);
1419 	else if (err != ENOENT)
1420 		goto fail;
1421 
1422 	dnode_setdblksz(dn, size);
1423 	dnode_setdirty(dn, tx);
1424 	dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1425 	if (ibs) {
1426 		dn->dn_indblkshift = ibs;
1427 		dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1428 	}
1429 	/* rele after we have fixed the blocksize in the dnode */
1430 	if (db)
1431 		dbuf_rele(db, FTAG);
1432 
1433 	rw_exit(&dn->dn_struct_rwlock);
1434 	return (0);
1435 
1436 fail:
1437 	rw_exit(&dn->dn_struct_rwlock);
1438 	return (SET_ERROR(ENOTSUP));
1439 }
1440 
1441 /* read-holding callers must not rely on the lock being continuously held */
1442 void
1443 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1444 {
1445 	uint64_t txgoff = tx->tx_txg & TXG_MASK;
1446 	int epbs, new_nlevels;
1447 	uint64_t sz;
1448 
1449 	ASSERT(blkid != DMU_BONUS_BLKID);
1450 
1451 	ASSERT(have_read ?
1452 	    RW_READ_HELD(&dn->dn_struct_rwlock) :
1453 	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
1454 
1455 	/*
1456 	 * if we have a read-lock, check to see if we need to do any work
1457 	 * before upgrading to a write-lock.
1458 	 */
1459 	if (have_read) {
1460 		if (blkid <= dn->dn_maxblkid)
1461 			return;
1462 
1463 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1464 			rw_exit(&dn->dn_struct_rwlock);
1465 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1466 		}
1467 	}
1468 
1469 	if (blkid <= dn->dn_maxblkid)
1470 		goto out;
1471 
1472 	dn->dn_maxblkid = blkid;
1473 
1474 	/*
1475 	 * Compute the number of levels necessary to support the new maxblkid.
1476 	 */
1477 	new_nlevels = 1;
1478 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1479 	for (sz = dn->dn_nblkptr;
1480 	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1481 		new_nlevels++;
1482 
1483 	if (new_nlevels > dn->dn_nlevels) {
1484 		int old_nlevels = dn->dn_nlevels;
1485 		dmu_buf_impl_t *db;
1486 		list_t *list;
1487 		dbuf_dirty_record_t *new, *dr, *dr_next;
1488 
1489 		dn->dn_nlevels = new_nlevels;
1490 
1491 		ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1492 		dn->dn_next_nlevels[txgoff] = new_nlevels;
1493 
1494 		/* dirty the left indirects */
1495 		db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1496 		ASSERT(db != NULL);
1497 		new = dbuf_dirty(db, tx);
1498 		dbuf_rele(db, FTAG);
1499 
1500 		/* transfer the dirty records to the new indirect */
1501 		mutex_enter(&dn->dn_mtx);
1502 		mutex_enter(&new->dt.di.dr_mtx);
1503 		list = &dn->dn_dirty_records[txgoff];
1504 		for (dr = list_head(list); dr; dr = dr_next) {
1505 			dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1506 			if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1507 			    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1508 			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1509 				ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1510 				list_remove(&dn->dn_dirty_records[txgoff], dr);
1511 				list_insert_tail(&new->dt.di.dr_children, dr);
1512 				dr->dr_parent = new;
1513 			}
1514 		}
1515 		mutex_exit(&new->dt.di.dr_mtx);
1516 		mutex_exit(&dn->dn_mtx);
1517 	}
1518 
1519 out:
1520 	if (have_read)
1521 		rw_downgrade(&dn->dn_struct_rwlock);
1522 }
1523 
1524 static void
1525 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1526 {
1527 	dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1528 	if (db != NULL) {
1529 		dmu_buf_will_dirty(&db->db, tx);
1530 		dbuf_rele(db, FTAG);
1531 	}
1532 }
1533 
1534 void
1535 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1536 {
1537 	dmu_buf_impl_t *db;
1538 	uint64_t blkoff, blkid, nblks;
1539 	int blksz, blkshift, head, tail;
1540 	int trunc = FALSE;
1541 	int epbs;
1542 
1543 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1544 	blksz = dn->dn_datablksz;
1545 	blkshift = dn->dn_datablkshift;
1546 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1547 
1548 	if (len == DMU_OBJECT_END) {
1549 		len = UINT64_MAX - off;
1550 		trunc = TRUE;
1551 	}
1552 
1553 	/*
1554 	 * First, block align the region to free:
1555 	 */
1556 	if (ISP2(blksz)) {
1557 		head = P2NPHASE(off, blksz);
1558 		blkoff = P2PHASE(off, blksz);
1559 		if ((off >> blkshift) > dn->dn_maxblkid)
1560 			goto out;
1561 	} else {
1562 		ASSERT(dn->dn_maxblkid == 0);
1563 		if (off == 0 && len >= blksz) {
1564 			/*
1565 			 * Freeing the whole block; fast-track this request.
1566 			 * Note that we won't dirty any indirect blocks,
1567 			 * which is fine because we will be freeing the entire
1568 			 * file and thus all indirect blocks will be freed
1569 			 * by free_children().
1570 			 */
1571 			blkid = 0;
1572 			nblks = 1;
1573 			goto done;
1574 		} else if (off >= blksz) {
1575 			/* Freeing past end-of-data */
1576 			goto out;
1577 		} else {
1578 			/* Freeing part of the block. */
1579 			head = blksz - off;
1580 			ASSERT3U(head, >, 0);
1581 		}
1582 		blkoff = off;
1583 	}
1584 	/* zero out any partial block data at the start of the range */
1585 	if (head) {
1586 		ASSERT3U(blkoff + head, ==, blksz);
1587 		if (len < head)
1588 			head = len;
1589 		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
1590 		    TRUE, FALSE, FTAG, &db) == 0) {
1591 			caddr_t data;
1592 
1593 			/* don't dirty if it isn't on disk and isn't dirty */
1594 			if (db->db_last_dirty ||
1595 			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1596 				rw_exit(&dn->dn_struct_rwlock);
1597 				dmu_buf_will_dirty(&db->db, tx);
1598 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1599 				data = db->db.db_data;
1600 				bzero(data + blkoff, head);
1601 			}
1602 			dbuf_rele(db, FTAG);
1603 		}
1604 		off += head;
1605 		len -= head;
1606 	}
1607 
1608 	/* If the range was less than one block, we're done */
1609 	if (len == 0)
1610 		goto out;
1611 
1612 	/* If the remaining range is past end of file, we're done */
1613 	if ((off >> blkshift) > dn->dn_maxblkid)
1614 		goto out;
1615 
1616 	ASSERT(ISP2(blksz));
1617 	if (trunc)
1618 		tail = 0;
1619 	else
1620 		tail = P2PHASE(len, blksz);
1621 
1622 	ASSERT0(P2PHASE(off, blksz));
1623 	/* zero out any partial block data at the end of the range */
1624 	if (tail) {
1625 		if (len < tail)
1626 			tail = len;
1627 		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
1628 		    TRUE, FALSE, FTAG, &db) == 0) {
1629 			/* don't dirty if not on disk and not dirty */
1630 			if (db->db_last_dirty ||
1631 			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1632 				rw_exit(&dn->dn_struct_rwlock);
1633 				dmu_buf_will_dirty(&db->db, tx);
1634 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1635 				bzero(db->db.db_data, tail);
1636 			}
1637 			dbuf_rele(db, FTAG);
1638 		}
1639 		len -= tail;
1640 	}
1641 
1642 	/* If the range did not include a full block, we are done */
1643 	if (len == 0)
1644 		goto out;
1645 
1646 	ASSERT(IS_P2ALIGNED(off, blksz));
1647 	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1648 	blkid = off >> blkshift;
1649 	nblks = len >> blkshift;
1650 	if (trunc)
1651 		nblks += 1;
1652 
1653 	/*
1654 	 * Dirty all the indirect blocks in this range.  Note that only
1655 	 * the first and last indirect blocks can actually be written
1656 	 * (if they were partially freed) -- they must be dirtied, even if
1657 	 * they do not exist on disk yet.  The interior blocks will
1658 	 * be freed by free_children(), so they will not actually be written.
1659 	 * Even though these interior blocks will not be written, we
1660 	 * dirty them for two reasons:
1661 	 *
1662 	 *  - It ensures that the indirect blocks remain in memory until
1663 	 *    syncing context.  (They have already been prefetched by
1664 	 *    dmu_tx_hold_free(), so we don't have to worry about reading
1665 	 *    them serially here.)
1666 	 *
1667 	 *  - The dirty space accounting will put pressure on the txg sync
1668 	 *    mechanism to begin syncing, and to delay transactions if there
1669 	 *    is a large amount of freeing.  Even though these indirect
1670 	 *    blocks will not be written, we could need to write the same
1671 	 *    amount of space if we copy the freed BPs into deadlists.
1672 	 */
1673 	if (dn->dn_nlevels > 1) {
1674 		uint64_t first, last;
1675 
1676 		first = blkid >> epbs;
1677 		dnode_dirty_l1(dn, first, tx);
1678 		if (trunc)
1679 			last = dn->dn_maxblkid >> epbs;
1680 		else
1681 			last = (blkid + nblks - 1) >> epbs;
1682 		if (last != first)
1683 			dnode_dirty_l1(dn, last, tx);
1684 
1685 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
1686 		    SPA_BLKPTRSHIFT;
1687 		for (uint64_t i = first + 1; i < last; i++) {
1688 			/*
1689 			 * Set i to the blockid of the next non-hole
1690 			 * level-1 indirect block at or after i.  Note
1691 			 * that dnode_next_offset() operates in terms of
1692 			 * level-0-equivalent bytes.
1693 			 */
1694 			uint64_t ibyte = i << shift;
1695 			int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1696 			    &ibyte, 2, 1, 0);
1697 			i = ibyte >> shift;
1698 			if (i >= last)
1699 				break;
1700 
1701 			/*
1702 			 * Normally we should not see an error, either
1703 			 * from dnode_next_offset() or dbuf_hold_level()
1704 			 * (except for ESRCH from dnode_next_offset).
1705 			 * If there is an i/o error, then when we read
1706 			 * this block in syncing context, it will use
1707 			 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
1708 			 * to the "failmode" property.  dnode_next_offset()
1709 			 * doesn't have a flag to indicate MUSTSUCCEED.
1710 			 */
1711 			if (err != 0)
1712 				break;
1713 
1714 			dnode_dirty_l1(dn, i, tx);
1715 		}
1716 	}
1717 
1718 done:
1719 	/*
1720 	 * Add this range to the dnode range list.
1721 	 * We will finish up this free operation in the syncing phase.
1722 	 */
1723 	mutex_enter(&dn->dn_mtx);
1724 	int txgoff = tx->tx_txg & TXG_MASK;
1725 	if (dn->dn_free_ranges[txgoff] == NULL) {
1726 		dn->dn_free_ranges[txgoff] =
1727 		    range_tree_create(NULL, NULL, &dn->dn_mtx);
1728 	}
1729 	range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
1730 	range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
1731 	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1732 	    blkid, nblks, tx->tx_txg);
1733 	mutex_exit(&dn->dn_mtx);
1734 
1735 	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1736 	dnode_setdirty(dn, tx);
1737 out:
1738 
1739 	rw_exit(&dn->dn_struct_rwlock);
1740 }
1741 
1742 static boolean_t
1743 dnode_spill_freed(dnode_t *dn)
1744 {
1745 	int i;
1746 
1747 	mutex_enter(&dn->dn_mtx);
1748 	for (i = 0; i < TXG_SIZE; i++) {
1749 		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1750 			break;
1751 	}
1752 	mutex_exit(&dn->dn_mtx);
1753 	return (i < TXG_SIZE);
1754 }
1755 
1756 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1757 uint64_t
1758 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1759 {
1760 	void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1761 	int i;
1762 
1763 	if (blkid == DMU_BONUS_BLKID)
1764 		return (FALSE);
1765 
1766 	/*
1767 	 * If we're in the process of opening the pool, dp will not be
1768 	 * set yet, but there shouldn't be anything dirty.
1769 	 */
1770 	if (dp == NULL)
1771 		return (FALSE);
1772 
1773 	if (dn->dn_free_txg)
1774 		return (TRUE);
1775 
1776 	if (blkid == DMU_SPILL_BLKID)
1777 		return (dnode_spill_freed(dn));
1778 
1779 	mutex_enter(&dn->dn_mtx);
1780 	for (i = 0; i < TXG_SIZE; i++) {
1781 		if (dn->dn_free_ranges[i] != NULL &&
1782 		    range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
1783 			break;
1784 	}
1785 	mutex_exit(&dn->dn_mtx);
1786 	return (i < TXG_SIZE);
1787 }
1788 
1789 /* call from syncing context when we actually write/free space for this dnode */
1790 void
1791 dnode_diduse_space(dnode_t *dn, int64_t delta)
1792 {
1793 	uint64_t space;
1794 	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1795 	    dn, dn->dn_phys,
1796 	    (u_longlong_t)dn->dn_phys->dn_used,
1797 	    (longlong_t)delta);
1798 
1799 	mutex_enter(&dn->dn_mtx);
1800 	space = DN_USED_BYTES(dn->dn_phys);
1801 	if (delta > 0) {
1802 		ASSERT3U(space + delta, >=, space); /* no overflow */
1803 	} else {
1804 		ASSERT3U(space, >=, -delta); /* no underflow */
1805 	}
1806 	space += delta;
1807 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1808 		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1809 		ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
1810 		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1811 	} else {
1812 		dn->dn_phys->dn_used = space;
1813 		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1814 	}
1815 	mutex_exit(&dn->dn_mtx);
1816 }
1817 
1818 /*
1819  * Call when we think we're going to write/free space in open context to track
1820  * the amount of memory in use by the currently open txg.
1821  */
1822 void
1823 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1824 {
1825 	objset_t *os = dn->dn_objset;
1826 	dsl_dataset_t *ds = os->os_dsl_dataset;
1827 	int64_t aspace = spa_get_asize(os->os_spa, space);
1828 
1829 	if (ds != NULL) {
1830 		dsl_dir_willuse_space(ds->ds_dir, aspace, tx);
1831 		dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx);
1832 	}
1833 
1834 	dmu_tx_willuse_space(tx, aspace);
1835 }
1836 
1837 /*
1838  * Scans a block at the indicated "level" looking for a hole or data,
1839  * depending on 'flags'.
1840  *
1841  * If level > 0, then we are scanning an indirect block looking at its
1842  * pointers.  If level == 0, then we are looking at a block of dnodes.
1843  *
1844  * If we don't find what we are looking for in the block, we return ESRCH.
1845  * Otherwise, return with *offset pointing to the beginning (if searching
1846  * forwards) or end (if searching backwards) of the range covered by the
1847  * block pointer we matched on (or dnode).
1848  *
1849  * The basic search algorithm used below by dnode_next_offset() is to
1850  * use this function to search up the block tree (widen the search) until
1851  * we find something (i.e., we don't return ESRCH) and then search back
1852  * down the tree (narrow the search) until we reach our original search
1853  * level.
1854  */
1855 static int
1856 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1857     int lvl, uint64_t blkfill, uint64_t txg)
1858 {
1859 	dmu_buf_impl_t *db = NULL;
1860 	void *data = NULL;
1861 	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1862 	uint64_t epb = 1ULL << epbs;
1863 	uint64_t minfill, maxfill;
1864 	boolean_t hole;
1865 	int i, inc, error, span;
1866 
1867 	dprintf("probing object %llu offset %llx level %d of %u\n",
1868 	    dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1869 
1870 	hole = ((flags & DNODE_FIND_HOLE) != 0);
1871 	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1872 	ASSERT(txg == 0 || !hole);
1873 
1874 	if (lvl == dn->dn_phys->dn_nlevels) {
1875 		error = 0;
1876 		epb = dn->dn_phys->dn_nblkptr;
1877 		data = dn->dn_phys->dn_blkptr;
1878 	} else {
1879 		uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
1880 		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
1881 		if (error) {
1882 			if (error != ENOENT)
1883 				return (error);
1884 			if (hole)
1885 				return (0);
1886 			/*
1887 			 * This can only happen when we are searching up
1888 			 * the block tree for data.  We don't really need to
1889 			 * adjust the offset, as we will just end up looking
1890 			 * at the pointer to this block in its parent, and its
1891 			 * going to be unallocated, so we will skip over it.
1892 			 */
1893 			return (SET_ERROR(ESRCH));
1894 		}
1895 		error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1896 		if (error) {
1897 			dbuf_rele(db, FTAG);
1898 			return (error);
1899 		}
1900 		data = db->db.db_data;
1901 	}
1902 
1903 
1904 	if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
1905 	    db->db_blkptr->blk_birth <= txg ||
1906 	    BP_IS_HOLE(db->db_blkptr))) {
1907 		/*
1908 		 * This can only happen when we are searching up the tree
1909 		 * and these conditions mean that we need to keep climbing.
1910 		 */
1911 		error = SET_ERROR(ESRCH);
1912 	} else if (lvl == 0) {
1913 		dnode_phys_t *dnp = data;
1914 		span = DNODE_SHIFT;
1915 		ASSERT(dn->dn_type == DMU_OT_DNODE);
1916 
1917 		for (i = (*offset >> span) & (blkfill - 1);
1918 		    i >= 0 && i < blkfill; i += inc) {
1919 			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1920 				break;
1921 			*offset += (1ULL << span) * inc;
1922 		}
1923 		if (i < 0 || i == blkfill)
1924 			error = SET_ERROR(ESRCH);
1925 	} else {
1926 		blkptr_t *bp = data;
1927 		uint64_t start = *offset;
1928 		span = (lvl - 1) * epbs + dn->dn_datablkshift;
1929 		minfill = 0;
1930 		maxfill = blkfill << ((lvl - 1) * epbs);
1931 
1932 		if (hole)
1933 			maxfill--;
1934 		else
1935 			minfill++;
1936 
1937 		*offset = *offset >> span;
1938 		for (i = BF64_GET(*offset, 0, epbs);
1939 		    i >= 0 && i < epb; i += inc) {
1940 			if (BP_GET_FILL(&bp[i]) >= minfill &&
1941 			    BP_GET_FILL(&bp[i]) <= maxfill &&
1942 			    (hole || bp[i].blk_birth > txg))
1943 				break;
1944 			if (inc > 0 || *offset > 0)
1945 				*offset += inc;
1946 		}
1947 		*offset = *offset << span;
1948 		if (inc < 0) {
1949 			/* traversing backwards; position offset at the end */
1950 			ASSERT3U(*offset, <=, start);
1951 			*offset = MIN(*offset + (1ULL << span) - 1, start);
1952 		} else if (*offset < start) {
1953 			*offset = start;
1954 		}
1955 		if (i < 0 || i >= epb)
1956 			error = SET_ERROR(ESRCH);
1957 	}
1958 
1959 	if (db)
1960 		dbuf_rele(db, FTAG);
1961 
1962 	return (error);
1963 }
1964 
1965 /*
1966  * Find the next hole, data, or sparse region at or after *offset.
1967  * The value 'blkfill' tells us how many items we expect to find
1968  * in an L0 data block; this value is 1 for normal objects,
1969  * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1970  * DNODES_PER_BLOCK when searching for sparse regions thereof.
1971  *
1972  * Examples:
1973  *
1974  * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1975  *	Finds the next/previous hole/data in a file.
1976  *	Used in dmu_offset_next().
1977  *
1978  * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1979  *	Finds the next free/allocated dnode an objset's meta-dnode.
1980  *	Only finds objects that have new contents since txg (ie.
1981  *	bonus buffer changes and content removal are ignored).
1982  *	Used in dmu_object_next().
1983  *
1984  * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1985  *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
1986  *	Used in dmu_object_alloc().
1987  */
1988 int
1989 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1990     int minlvl, uint64_t blkfill, uint64_t txg)
1991 {
1992 	uint64_t initial_offset = *offset;
1993 	int lvl, maxlvl;
1994 	int error = 0;
1995 
1996 	if (!(flags & DNODE_FIND_HAVELOCK))
1997 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1998 
1999 	if (dn->dn_phys->dn_nlevels == 0) {
2000 		error = SET_ERROR(ESRCH);
2001 		goto out;
2002 	}
2003 
2004 	if (dn->dn_datablkshift == 0) {
2005 		if (*offset < dn->dn_datablksz) {
2006 			if (flags & DNODE_FIND_HOLE)
2007 				*offset = dn->dn_datablksz;
2008 		} else {
2009 			error = SET_ERROR(ESRCH);
2010 		}
2011 		goto out;
2012 	}
2013 
2014 	maxlvl = dn->dn_phys->dn_nlevels;
2015 
2016 	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2017 		error = dnode_next_offset_level(dn,
2018 		    flags, offset, lvl, blkfill, txg);
2019 		if (error != ESRCH)
2020 			break;
2021 	}
2022 
2023 	while (error == 0 && --lvl >= minlvl) {
2024 		error = dnode_next_offset_level(dn,
2025 		    flags, offset, lvl, blkfill, txg);
2026 	}
2027 
2028 	/*
2029 	 * There's always a "virtual hole" at the end of the object, even
2030 	 * if all BP's which physically exist are non-holes.
2031 	 */
2032 	if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2033 	    minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2034 		error = 0;
2035 	}
2036 
2037 	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2038 	    initial_offset < *offset : initial_offset > *offset))
2039 		error = SET_ERROR(ESRCH);
2040 out:
2041 	if (!(flags & DNODE_FIND_HAVELOCK))
2042 		rw_exit(&dn->dn_struct_rwlock);
2043 
2044 	return (error);
2045 }
2046