1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/dbuf.h> 30 #include <sys/dnode.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_impl.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dmu_objset.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/spa.h> 38 #include <sys/zio.h> 39 #include <sys/dmu_zfetch.h> 40 #include <sys/range_tree.h> 41 42 static kmem_cache_t *dnode_cache; 43 /* 44 * Define DNODE_STATS to turn on statistic gathering. By default, it is only 45 * turned on when DEBUG is also defined. 46 */ 47 #ifdef DEBUG 48 #define DNODE_STATS 49 #endif /* DEBUG */ 50 51 #ifdef DNODE_STATS 52 #define DNODE_STAT_ADD(stat) ((stat)++) 53 #else 54 #define DNODE_STAT_ADD(stat) /* nothing */ 55 #endif /* DNODE_STATS */ 56 57 static dnode_phys_t dnode_phys_zero; 58 59 int zfs_default_bs = SPA_MINBLOCKSHIFT; 60 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 61 62 #ifdef illumos 63 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 64 #endif 65 66 static int 67 dbuf_compare(const void *x1, const void *x2) 68 { 69 const dmu_buf_impl_t *d1 = x1; 70 const dmu_buf_impl_t *d2 = x2; 71 72 if (d1->db_level < d2->db_level) { 73 return (-1); 74 } 75 if (d1->db_level > d2->db_level) { 76 return (1); 77 } 78 79 if (d1->db_blkid < d2->db_blkid) { 80 return (-1); 81 } 82 if (d1->db_blkid > d2->db_blkid) { 83 return (1); 84 } 85 86 if (d1->db_state == DB_SEARCH) { 87 ASSERT3S(d2->db_state, !=, DB_SEARCH); 88 return (-1); 89 } else if (d2->db_state == DB_SEARCH) { 90 ASSERT3S(d1->db_state, !=, DB_SEARCH); 91 return (1); 92 } 93 94 if ((uintptr_t)d1 < (uintptr_t)d2) { 95 return (-1); 96 } 97 if ((uintptr_t)d1 > (uintptr_t)d2) { 98 return (1); 99 } 100 return (0); 101 } 102 103 /* ARGSUSED */ 104 static int 105 dnode_cons(void *arg, void *unused, int kmflag) 106 { 107 dnode_t *dn = arg; 108 int i; 109 110 #ifdef __NetBSD__ 111 dn = unused; 112 #endif 113 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); 114 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 115 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 116 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 117 118 /* 119 * Every dbuf has a reference, and dropping a tracked reference is 120 * O(number of references), so don't track dn_holds. 121 */ 122 refcount_create_untracked(&dn->dn_holds); 123 refcount_create(&dn->dn_tx_holds); 124 list_link_init(&dn->dn_link); 125 126 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 127 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 128 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 129 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 130 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 131 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 132 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 133 134 for (i = 0; i < TXG_SIZE; i++) { 135 list_link_init(&dn->dn_dirty_link[i]); 136 dn->dn_free_ranges[i] = NULL; 137 list_create(&dn->dn_dirty_records[i], 138 sizeof (dbuf_dirty_record_t), 139 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 140 } 141 142 dn->dn_allocated_txg = 0; 143 dn->dn_free_txg = 0; 144 dn->dn_assigned_txg = 0; 145 dn->dn_dirtyctx = 0; 146 dn->dn_dirtyctx_firstset = NULL; 147 dn->dn_bonus = NULL; 148 dn->dn_have_spill = B_FALSE; 149 dn->dn_zio = NULL; 150 dn->dn_oldused = 0; 151 dn->dn_oldflags = 0; 152 dn->dn_olduid = 0; 153 dn->dn_oldgid = 0; 154 dn->dn_newuid = 0; 155 dn->dn_newgid = 0; 156 dn->dn_id_flags = 0; 157 158 dn->dn_dbufs_count = 0; 159 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 160 offsetof(dmu_buf_impl_t, db_link)); 161 162 dn->dn_moved = 0; 163 POINTER_INVALIDATE(&dn->dn_objset); 164 return (0); 165 } 166 167 /* ARGSUSED */ 168 static void 169 dnode_dest(void *arg, void *unused) 170 { 171 int i; 172 dnode_t *dn = arg; 173 174 #ifdef __NetBSD__ 175 dn = unused; 176 #endif 177 rw_destroy(&dn->dn_struct_rwlock); 178 mutex_destroy(&dn->dn_mtx); 179 mutex_destroy(&dn->dn_dbufs_mtx); 180 cv_destroy(&dn->dn_notxholds); 181 refcount_destroy(&dn->dn_holds); 182 refcount_destroy(&dn->dn_tx_holds); 183 ASSERT(!list_link_active(&dn->dn_link)); 184 185 for (i = 0; i < TXG_SIZE; i++) { 186 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 187 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 188 list_destroy(&dn->dn_dirty_records[i]); 189 ASSERT0(dn->dn_next_nblkptr[i]); 190 ASSERT0(dn->dn_next_nlevels[i]); 191 ASSERT0(dn->dn_next_indblkshift[i]); 192 ASSERT0(dn->dn_next_bonustype[i]); 193 ASSERT0(dn->dn_rm_spillblk[i]); 194 ASSERT0(dn->dn_next_bonuslen[i]); 195 ASSERT0(dn->dn_next_blksz[i]); 196 } 197 198 ASSERT0(dn->dn_allocated_txg); 199 ASSERT0(dn->dn_free_txg); 200 ASSERT0(dn->dn_assigned_txg); 201 ASSERT0(dn->dn_dirtyctx); 202 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 203 ASSERT3P(dn->dn_bonus, ==, NULL); 204 ASSERT(!dn->dn_have_spill); 205 ASSERT3P(dn->dn_zio, ==, NULL); 206 ASSERT0(dn->dn_oldused); 207 ASSERT0(dn->dn_oldflags); 208 ASSERT0(dn->dn_olduid); 209 ASSERT0(dn->dn_oldgid); 210 ASSERT0(dn->dn_newuid); 211 ASSERT0(dn->dn_newgid); 212 ASSERT0(dn->dn_id_flags); 213 214 ASSERT0(dn->dn_dbufs_count); 215 avl_destroy(&dn->dn_dbufs); 216 } 217 218 void 219 dnode_init(void) 220 { 221 ASSERT(dnode_cache == NULL); 222 dnode_cache = kmem_cache_create("dnode_t", 223 sizeof (dnode_t), 224 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 225 kmem_cache_set_move(dnode_cache, dnode_move); 226 } 227 228 void 229 dnode_fini(void) 230 { 231 kmem_cache_destroy(dnode_cache); 232 dnode_cache = NULL; 233 } 234 235 236 #ifdef ZFS_DEBUG 237 void 238 dnode_verify(dnode_t *dn) 239 { 240 int drop_struct_lock = FALSE; 241 242 ASSERT(dn->dn_phys); 243 ASSERT(dn->dn_objset); 244 ASSERT(dn->dn_handle->dnh_dnode == dn); 245 246 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 247 248 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 249 return; 250 251 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 252 rw_enter(&dn->dn_struct_rwlock, RW_READER); 253 drop_struct_lock = TRUE; 254 } 255 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 256 int i; 257 ASSERT3U(dn->dn_indblkshift, >=, 0); 258 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 259 if (dn->dn_datablkshift) { 260 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 261 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 262 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 263 } 264 ASSERT3U(dn->dn_nlevels, <=, 30); 265 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 266 ASSERT3U(dn->dn_nblkptr, >=, 1); 267 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 268 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 269 ASSERT3U(dn->dn_datablksz, ==, 270 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 271 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 272 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 273 dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 274 for (i = 0; i < TXG_SIZE; i++) { 275 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 276 } 277 } 278 if (dn->dn_phys->dn_type != DMU_OT_NONE) 279 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 280 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 281 if (dn->dn_dbuf != NULL) { 282 ASSERT3P(dn->dn_phys, ==, 283 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 284 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 285 } 286 if (drop_struct_lock) 287 rw_exit(&dn->dn_struct_rwlock); 288 } 289 #endif 290 291 void 292 dnode_byteswap(dnode_phys_t *dnp) 293 { 294 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 295 int i; 296 297 if (dnp->dn_type == DMU_OT_NONE) { 298 bzero(dnp, sizeof (dnode_phys_t)); 299 return; 300 } 301 302 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 303 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 304 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 305 dnp->dn_used = BSWAP_64(dnp->dn_used); 306 307 /* 308 * dn_nblkptr is only one byte, so it's OK to read it in either 309 * byte order. We can't read dn_bouslen. 310 */ 311 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 312 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 313 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 314 buf64[i] = BSWAP_64(buf64[i]); 315 316 /* 317 * OK to check dn_bonuslen for zero, because it won't matter if 318 * we have the wrong byte order. This is necessary because the 319 * dnode dnode is smaller than a regular dnode. 320 */ 321 if (dnp->dn_bonuslen != 0) { 322 /* 323 * Note that the bonus length calculated here may be 324 * longer than the actual bonus buffer. This is because 325 * we always put the bonus buffer after the last block 326 * pointer (instead of packing it against the end of the 327 * dnode buffer). 328 */ 329 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 330 size_t len = DN_MAX_BONUSLEN - off; 331 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 332 dmu_object_byteswap_t byteswap = 333 DMU_OT_BYTESWAP(dnp->dn_bonustype); 334 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); 335 } 336 337 /* Swap SPILL block if we have one */ 338 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 339 byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t)); 340 341 } 342 343 void 344 dnode_buf_byteswap(void *vbuf, size_t size) 345 { 346 dnode_phys_t *buf = vbuf; 347 int i; 348 349 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 350 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 351 352 size >>= DNODE_SHIFT; 353 for (i = 0; i < size; i++) { 354 dnode_byteswap(buf); 355 buf++; 356 } 357 } 358 359 void 360 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 361 { 362 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 363 364 dnode_setdirty(dn, tx); 365 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 366 ASSERT3U(newsize, <=, DN_MAX_BONUSLEN - 367 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 368 dn->dn_bonuslen = newsize; 369 if (newsize == 0) 370 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 371 else 372 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 373 rw_exit(&dn->dn_struct_rwlock); 374 } 375 376 void 377 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 378 { 379 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 380 dnode_setdirty(dn, tx); 381 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 382 dn->dn_bonustype = newtype; 383 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 384 rw_exit(&dn->dn_struct_rwlock); 385 } 386 387 void 388 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 389 { 390 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 391 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 392 dnode_setdirty(dn, tx); 393 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK; 394 dn->dn_have_spill = B_FALSE; 395 } 396 397 static void 398 dnode_setdblksz(dnode_t *dn, int size) 399 { 400 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 401 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 402 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 403 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 404 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 405 dn->dn_datablksz = size; 406 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 407 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 408 } 409 410 static dnode_t * 411 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 412 uint64_t object, dnode_handle_t *dnh) 413 { 414 dnode_t *dn; 415 416 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 417 ASSERT(!POINTER_IS_VALID(dn->dn_objset)); 418 dn->dn_moved = 0; 419 420 /* 421 * Defer setting dn_objset until the dnode is ready to be a candidate 422 * for the dnode_move() callback. 423 */ 424 dn->dn_object = object; 425 dn->dn_dbuf = db; 426 dn->dn_handle = dnh; 427 dn->dn_phys = dnp; 428 429 if (dnp->dn_datablkszsec) { 430 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 431 } else { 432 dn->dn_datablksz = 0; 433 dn->dn_datablkszsec = 0; 434 dn->dn_datablkshift = 0; 435 } 436 dn->dn_indblkshift = dnp->dn_indblkshift; 437 dn->dn_nlevels = dnp->dn_nlevels; 438 dn->dn_type = dnp->dn_type; 439 dn->dn_nblkptr = dnp->dn_nblkptr; 440 dn->dn_checksum = dnp->dn_checksum; 441 dn->dn_compress = dnp->dn_compress; 442 dn->dn_bonustype = dnp->dn_bonustype; 443 dn->dn_bonuslen = dnp->dn_bonuslen; 444 dn->dn_maxblkid = dnp->dn_maxblkid; 445 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 446 dn->dn_id_flags = 0; 447 448 dmu_zfetch_init(&dn->dn_zfetch, dn); 449 450 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 451 452 mutex_enter(&os->os_lock); 453 if (dnh->dnh_dnode != NULL) { 454 /* Lost the allocation race. */ 455 mutex_exit(&os->os_lock); 456 kmem_cache_free(dnode_cache, dn); 457 return (dnh->dnh_dnode); 458 } 459 460 /* 461 * Exclude special dnodes from os_dnodes so an empty os_dnodes 462 * signifies that the special dnodes have no references from 463 * their children (the entries in os_dnodes). This allows 464 * dnode_destroy() to easily determine if the last child has 465 * been removed and then complete eviction of the objset. 466 */ 467 if (!DMU_OBJECT_IS_SPECIAL(object)) 468 list_insert_head(&os->os_dnodes, dn); 469 membar_producer(); 470 471 /* 472 * Everything else must be valid before assigning dn_objset 473 * makes the dnode eligible for dnode_move(). 474 */ 475 dn->dn_objset = os; 476 477 dnh->dnh_dnode = dn; 478 mutex_exit(&os->os_lock); 479 480 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER); 481 return (dn); 482 } 483 484 /* 485 * Caller must be holding the dnode handle, which is released upon return. 486 */ 487 static void 488 dnode_destroy(dnode_t *dn) 489 { 490 objset_t *os = dn->dn_objset; 491 boolean_t complete_os_eviction = B_FALSE; 492 493 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 494 495 mutex_enter(&os->os_lock); 496 POINTER_INVALIDATE(&dn->dn_objset); 497 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 498 list_remove(&os->os_dnodes, dn); 499 complete_os_eviction = 500 list_is_empty(&os->os_dnodes) && 501 list_link_active(&os->os_evicting_node); 502 } 503 mutex_exit(&os->os_lock); 504 505 /* the dnode can no longer move, so we can release the handle */ 506 zrl_remove(&dn->dn_handle->dnh_zrlock); 507 508 dn->dn_allocated_txg = 0; 509 dn->dn_free_txg = 0; 510 dn->dn_assigned_txg = 0; 511 512 dn->dn_dirtyctx = 0; 513 if (dn->dn_dirtyctx_firstset != NULL) { 514 kmem_free(dn->dn_dirtyctx_firstset, 1); 515 dn->dn_dirtyctx_firstset = NULL; 516 } 517 if (dn->dn_bonus != NULL) { 518 mutex_enter(&dn->dn_bonus->db_mtx); 519 dbuf_destroy(dn->dn_bonus); 520 dn->dn_bonus = NULL; 521 } 522 dn->dn_zio = NULL; 523 524 dn->dn_have_spill = B_FALSE; 525 dn->dn_oldused = 0; 526 dn->dn_oldflags = 0; 527 dn->dn_olduid = 0; 528 dn->dn_oldgid = 0; 529 dn->dn_newuid = 0; 530 dn->dn_newgid = 0; 531 dn->dn_id_flags = 0; 532 533 dmu_zfetch_fini(&dn->dn_zfetch); 534 kmem_cache_free(dnode_cache, dn); 535 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER); 536 537 if (complete_os_eviction) 538 dmu_objset_evict_done(os); 539 } 540 541 void 542 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 543 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 544 { 545 int i; 546 547 ASSERT3U(blocksize, <=, 548 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 549 if (blocksize == 0) 550 blocksize = 1 << zfs_default_bs; 551 else 552 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 553 554 if (ibs == 0) 555 ibs = zfs_default_ibs; 556 557 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 558 559 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset, 560 dn->dn_object, tx->tx_txg, blocksize, ibs); 561 562 ASSERT(dn->dn_type == DMU_OT_NONE); 563 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 564 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 565 ASSERT(ot != DMU_OT_NONE); 566 ASSERT(DMU_OT_IS_VALID(ot)); 567 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 568 (bonustype == DMU_OT_SA && bonuslen == 0) || 569 (bonustype != DMU_OT_NONE && bonuslen != 0)); 570 ASSERT(DMU_OT_IS_VALID(bonustype)); 571 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 572 ASSERT(dn->dn_type == DMU_OT_NONE); 573 ASSERT0(dn->dn_maxblkid); 574 ASSERT0(dn->dn_allocated_txg); 575 ASSERT0(dn->dn_assigned_txg); 576 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 577 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1); 578 ASSERT(avl_is_empty(&dn->dn_dbufs)); 579 580 for (i = 0; i < TXG_SIZE; i++) { 581 ASSERT0(dn->dn_next_nblkptr[i]); 582 ASSERT0(dn->dn_next_nlevels[i]); 583 ASSERT0(dn->dn_next_indblkshift[i]); 584 ASSERT0(dn->dn_next_bonuslen[i]); 585 ASSERT0(dn->dn_next_bonustype[i]); 586 ASSERT0(dn->dn_rm_spillblk[i]); 587 ASSERT0(dn->dn_next_blksz[i]); 588 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 589 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 590 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 591 } 592 593 dn->dn_type = ot; 594 dnode_setdblksz(dn, blocksize); 595 dn->dn_indblkshift = ibs; 596 dn->dn_nlevels = 1; 597 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 598 dn->dn_nblkptr = 1; 599 else 600 dn->dn_nblkptr = 1 + 601 ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 602 dn->dn_bonustype = bonustype; 603 dn->dn_bonuslen = bonuslen; 604 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 605 dn->dn_compress = ZIO_COMPRESS_INHERIT; 606 dn->dn_dirtyctx = 0; 607 608 dn->dn_free_txg = 0; 609 if (dn->dn_dirtyctx_firstset) { 610 kmem_free(dn->dn_dirtyctx_firstset, 1); 611 dn->dn_dirtyctx_firstset = NULL; 612 } 613 614 dn->dn_allocated_txg = tx->tx_txg; 615 dn->dn_id_flags = 0; 616 617 dnode_setdirty(dn, tx); 618 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 619 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 620 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 621 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 622 } 623 624 void 625 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 626 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 627 { 628 int nblkptr; 629 630 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 631 ASSERT3U(blocksize, <=, 632 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 633 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 634 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 635 ASSERT(tx->tx_txg != 0); 636 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 637 (bonustype != DMU_OT_NONE && bonuslen != 0) || 638 (bonustype == DMU_OT_SA && bonuslen == 0)); 639 ASSERT(DMU_OT_IS_VALID(bonustype)); 640 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 641 642 /* clean up any unreferenced dbufs */ 643 dnode_evict_dbufs(dn); 644 645 dn->dn_id_flags = 0; 646 647 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 648 dnode_setdirty(dn, tx); 649 if (dn->dn_datablksz != blocksize) { 650 /* change blocksize */ 651 ASSERT(dn->dn_maxblkid == 0 && 652 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 653 dnode_block_freed(dn, 0))); 654 dnode_setdblksz(dn, blocksize); 655 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; 656 } 657 if (dn->dn_bonuslen != bonuslen) 658 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; 659 660 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 661 nblkptr = 1; 662 else 663 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 664 if (dn->dn_bonustype != bonustype) 665 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype; 666 if (dn->dn_nblkptr != nblkptr) 667 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr; 668 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 669 dbuf_rm_spill(dn, tx); 670 dnode_rm_spill(dn, tx); 671 } 672 rw_exit(&dn->dn_struct_rwlock); 673 674 /* change type */ 675 dn->dn_type = ot; 676 677 /* change bonus size and type */ 678 mutex_enter(&dn->dn_mtx); 679 dn->dn_bonustype = bonustype; 680 dn->dn_bonuslen = bonuslen; 681 dn->dn_nblkptr = nblkptr; 682 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 683 dn->dn_compress = ZIO_COMPRESS_INHERIT; 684 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 685 686 /* fix up the bonus db_size */ 687 if (dn->dn_bonus) { 688 dn->dn_bonus->db.db_size = 689 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t); 690 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 691 } 692 693 dn->dn_allocated_txg = tx->tx_txg; 694 mutex_exit(&dn->dn_mtx); 695 } 696 697 #ifdef DNODE_STATS 698 static struct { 699 uint64_t dms_dnode_invalid; 700 uint64_t dms_dnode_recheck1; 701 uint64_t dms_dnode_recheck2; 702 uint64_t dms_dnode_special; 703 uint64_t dms_dnode_handle; 704 uint64_t dms_dnode_rwlock; 705 uint64_t dms_dnode_active; 706 } dnode_move_stats; 707 #endif /* DNODE_STATS */ 708 709 static void 710 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 711 { 712 int i; 713 714 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 715 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 716 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 717 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock)); 718 719 /* Copy fields. */ 720 ndn->dn_objset = odn->dn_objset; 721 ndn->dn_object = odn->dn_object; 722 ndn->dn_dbuf = odn->dn_dbuf; 723 ndn->dn_handle = odn->dn_handle; 724 ndn->dn_phys = odn->dn_phys; 725 ndn->dn_type = odn->dn_type; 726 ndn->dn_bonuslen = odn->dn_bonuslen; 727 ndn->dn_bonustype = odn->dn_bonustype; 728 ndn->dn_nblkptr = odn->dn_nblkptr; 729 ndn->dn_checksum = odn->dn_checksum; 730 ndn->dn_compress = odn->dn_compress; 731 ndn->dn_nlevels = odn->dn_nlevels; 732 ndn->dn_indblkshift = odn->dn_indblkshift; 733 ndn->dn_datablkshift = odn->dn_datablkshift; 734 ndn->dn_datablkszsec = odn->dn_datablkszsec; 735 ndn->dn_datablksz = odn->dn_datablksz; 736 ndn->dn_maxblkid = odn->dn_maxblkid; 737 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 738 sizeof (odn->dn_next_nblkptr)); 739 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 740 sizeof (odn->dn_next_nlevels)); 741 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 742 sizeof (odn->dn_next_indblkshift)); 743 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 744 sizeof (odn->dn_next_bonustype)); 745 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 746 sizeof (odn->dn_rm_spillblk)); 747 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 748 sizeof (odn->dn_next_bonuslen)); 749 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 750 sizeof (odn->dn_next_blksz)); 751 for (i = 0; i < TXG_SIZE; i++) { 752 list_move_tail(&ndn->dn_dirty_records[i], 753 &odn->dn_dirty_records[i]); 754 } 755 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], 756 sizeof (odn->dn_free_ranges)); 757 ndn->dn_allocated_txg = odn->dn_allocated_txg; 758 ndn->dn_free_txg = odn->dn_free_txg; 759 ndn->dn_assigned_txg = odn->dn_assigned_txg; 760 ndn->dn_dirtyctx = odn->dn_dirtyctx; 761 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 762 ASSERT(refcount_count(&odn->dn_tx_holds) == 0); 763 refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 764 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 765 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 766 ndn->dn_dbufs_count = odn->dn_dbufs_count; 767 ndn->dn_bonus = odn->dn_bonus; 768 ndn->dn_have_spill = odn->dn_have_spill; 769 ndn->dn_zio = odn->dn_zio; 770 ndn->dn_oldused = odn->dn_oldused; 771 ndn->dn_oldflags = odn->dn_oldflags; 772 ndn->dn_olduid = odn->dn_olduid; 773 ndn->dn_oldgid = odn->dn_oldgid; 774 ndn->dn_newuid = odn->dn_newuid; 775 ndn->dn_newgid = odn->dn_newgid; 776 ndn->dn_id_flags = odn->dn_id_flags; 777 dmu_zfetch_init(&ndn->dn_zfetch, NULL); 778 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); 779 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; 780 781 /* 782 * Update back pointers. Updating the handle fixes the back pointer of 783 * every descendant dbuf as well as the bonus dbuf. 784 */ 785 ASSERT(ndn->dn_handle->dnh_dnode == odn); 786 ndn->dn_handle->dnh_dnode = ndn; 787 if (ndn->dn_zfetch.zf_dnode == odn) { 788 ndn->dn_zfetch.zf_dnode = ndn; 789 } 790 791 /* 792 * Invalidate the original dnode by clearing all of its back pointers. 793 */ 794 odn->dn_dbuf = NULL; 795 odn->dn_handle = NULL; 796 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 797 offsetof(dmu_buf_impl_t, db_link)); 798 odn->dn_dbufs_count = 0; 799 odn->dn_bonus = NULL; 800 odn->dn_zfetch.zf_dnode = NULL; 801 802 /* 803 * Set the low bit of the objset pointer to ensure that dnode_move() 804 * recognizes the dnode as invalid in any subsequent callback. 805 */ 806 POINTER_INVALIDATE(&odn->dn_objset); 807 808 /* 809 * Satisfy the destructor. 810 */ 811 for (i = 0; i < TXG_SIZE; i++) { 812 list_create(&odn->dn_dirty_records[i], 813 sizeof (dbuf_dirty_record_t), 814 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 815 odn->dn_free_ranges[i] = NULL; 816 odn->dn_next_nlevels[i] = 0; 817 odn->dn_next_indblkshift[i] = 0; 818 odn->dn_next_bonustype[i] = 0; 819 odn->dn_rm_spillblk[i] = 0; 820 odn->dn_next_bonuslen[i] = 0; 821 odn->dn_next_blksz[i] = 0; 822 } 823 odn->dn_allocated_txg = 0; 824 odn->dn_free_txg = 0; 825 odn->dn_assigned_txg = 0; 826 odn->dn_dirtyctx = 0; 827 odn->dn_dirtyctx_firstset = NULL; 828 odn->dn_have_spill = B_FALSE; 829 odn->dn_zio = NULL; 830 odn->dn_oldused = 0; 831 odn->dn_oldflags = 0; 832 odn->dn_olduid = 0; 833 odn->dn_oldgid = 0; 834 odn->dn_newuid = 0; 835 odn->dn_newgid = 0; 836 odn->dn_id_flags = 0; 837 838 /* 839 * Mark the dnode. 840 */ 841 ndn->dn_moved = 1; 842 odn->dn_moved = (uint8_t)-1; 843 } 844 845 #ifdef illumos 846 #ifdef _KERNEL 847 /*ARGSUSED*/ 848 static kmem_cbrc_t 849 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 850 { 851 dnode_t *odn = buf, *ndn = newbuf; 852 objset_t *os; 853 int64_t refcount; 854 uint32_t dbufs; 855 856 /* 857 * The dnode is on the objset's list of known dnodes if the objset 858 * pointer is valid. We set the low bit of the objset pointer when 859 * freeing the dnode to invalidate it, and the memory patterns written 860 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 861 * A newly created dnode sets the objset pointer last of all to indicate 862 * that the dnode is known and in a valid state to be moved by this 863 * function. 864 */ 865 os = odn->dn_objset; 866 if (!POINTER_IS_VALID(os)) { 867 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid); 868 return (KMEM_CBRC_DONT_KNOW); 869 } 870 871 /* 872 * Ensure that the objset does not go away during the move. 873 */ 874 rw_enter(&os_lock, RW_WRITER); 875 if (os != odn->dn_objset) { 876 rw_exit(&os_lock); 877 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1); 878 return (KMEM_CBRC_DONT_KNOW); 879 } 880 881 /* 882 * If the dnode is still valid, then so is the objset. We know that no 883 * valid objset can be freed while we hold os_lock, so we can safely 884 * ensure that the objset remains in use. 885 */ 886 mutex_enter(&os->os_lock); 887 888 /* 889 * Recheck the objset pointer in case the dnode was removed just before 890 * acquiring the lock. 891 */ 892 if (os != odn->dn_objset) { 893 mutex_exit(&os->os_lock); 894 rw_exit(&os_lock); 895 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2); 896 return (KMEM_CBRC_DONT_KNOW); 897 } 898 899 /* 900 * At this point we know that as long as we hold os->os_lock, the dnode 901 * cannot be freed and fields within the dnode can be safely accessed. 902 * The objset listing this dnode cannot go away as long as this dnode is 903 * on its list. 904 */ 905 rw_exit(&os_lock); 906 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 907 mutex_exit(&os->os_lock); 908 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special); 909 return (KMEM_CBRC_NO); 910 } 911 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 912 913 /* 914 * Lock the dnode handle to prevent the dnode from obtaining any new 915 * holds. This also prevents the descendant dbufs and the bonus dbuf 916 * from accessing the dnode, so that we can discount their holds. The 917 * handle is safe to access because we know that while the dnode cannot 918 * go away, neither can its handle. Once we hold dnh_zrlock, we can 919 * safely move any dnode referenced only by dbufs. 920 */ 921 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 922 mutex_exit(&os->os_lock); 923 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle); 924 return (KMEM_CBRC_LATER); 925 } 926 927 /* 928 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 929 * We need to guarantee that there is a hold for every dbuf in order to 930 * determine whether the dnode is actively referenced. Falsely matching 931 * a dbuf to an active hold would lead to an unsafe move. It's possible 932 * that a thread already having an active dnode hold is about to add a 933 * dbuf, and we can't compare hold and dbuf counts while the add is in 934 * progress. 935 */ 936 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 937 zrl_exit(&odn->dn_handle->dnh_zrlock); 938 mutex_exit(&os->os_lock); 939 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock); 940 return (KMEM_CBRC_LATER); 941 } 942 943 /* 944 * A dbuf may be removed (evicted) without an active dnode hold. In that 945 * case, the dbuf count is decremented under the handle lock before the 946 * dbuf's hold is released. This order ensures that if we count the hold 947 * after the dbuf is removed but before its hold is released, we will 948 * treat the unmatched hold as active and exit safely. If we count the 949 * hold before the dbuf is removed, the hold is discounted, and the 950 * removal is blocked until the move completes. 951 */ 952 refcount = refcount_count(&odn->dn_holds); 953 ASSERT(refcount >= 0); 954 dbufs = odn->dn_dbufs_count; 955 956 /* We can't have more dbufs than dnode holds. */ 957 ASSERT3U(dbufs, <=, refcount); 958 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 959 uint32_t, dbufs); 960 961 if (refcount > dbufs) { 962 rw_exit(&odn->dn_struct_rwlock); 963 zrl_exit(&odn->dn_handle->dnh_zrlock); 964 mutex_exit(&os->os_lock); 965 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active); 966 return (KMEM_CBRC_LATER); 967 } 968 969 rw_exit(&odn->dn_struct_rwlock); 970 971 /* 972 * At this point we know that anyone with a hold on the dnode is not 973 * actively referencing it. The dnode is known and in a valid state to 974 * move. We're holding the locks needed to execute the critical section. 975 */ 976 dnode_move_impl(odn, ndn); 977 978 list_link_replace(&odn->dn_link, &ndn->dn_link); 979 /* If the dnode was safe to move, the refcount cannot have changed. */ 980 ASSERT(refcount == refcount_count(&ndn->dn_holds)); 981 ASSERT(dbufs == ndn->dn_dbufs_count); 982 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 983 mutex_exit(&os->os_lock); 984 985 return (KMEM_CBRC_YES); 986 } 987 #endif /* _KERNEL */ 988 #endif /* illumos */ 989 990 void 991 dnode_special_close(dnode_handle_t *dnh) 992 { 993 dnode_t *dn = dnh->dnh_dnode; 994 995 /* 996 * Wait for final references to the dnode to clear. This can 997 * only happen if the arc is asyncronously evicting state that 998 * has a hold on this dnode while we are trying to evict this 999 * dnode. 1000 */ 1001 while (refcount_count(&dn->dn_holds) > 0) 1002 delay(1); 1003 ASSERT(dn->dn_dbuf == NULL || 1004 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 1005 zrl_add(&dnh->dnh_zrlock); 1006 dnode_destroy(dn); /* implicit zrl_remove() */ 1007 zrl_destroy(&dnh->dnh_zrlock); 1008 dnh->dnh_dnode = NULL; 1009 } 1010 1011 void 1012 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1013 dnode_handle_t *dnh) 1014 { 1015 dnode_t *dn; 1016 1017 dn = dnode_create(os, dnp, NULL, object, dnh); 1018 zrl_init(&dnh->dnh_zrlock); 1019 DNODE_VERIFY(dn); 1020 } 1021 1022 static void 1023 dnode_buf_evict_async(void *dbu) 1024 { 1025 dnode_children_t *children_dnodes = dbu; 1026 int i; 1027 1028 for (i = 0; i < children_dnodes->dnc_count; i++) { 1029 dnode_handle_t *dnh = &children_dnodes->dnc_children[i]; 1030 dnode_t *dn; 1031 1032 /* 1033 * The dnode handle lock guards against the dnode moving to 1034 * another valid address, so there is no need here to guard 1035 * against changes to or from NULL. 1036 */ 1037 if (dnh->dnh_dnode == NULL) { 1038 zrl_destroy(&dnh->dnh_zrlock); 1039 continue; 1040 } 1041 1042 zrl_add(&dnh->dnh_zrlock); 1043 dn = dnh->dnh_dnode; 1044 /* 1045 * If there are holds on this dnode, then there should 1046 * be holds on the dnode's containing dbuf as well; thus 1047 * it wouldn't be eligible for eviction and this function 1048 * would not have been called. 1049 */ 1050 ASSERT(refcount_is_zero(&dn->dn_holds)); 1051 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 1052 1053 dnode_destroy(dn); /* implicit zrl_remove() */ 1054 zrl_destroy(&dnh->dnh_zrlock); 1055 dnh->dnh_dnode = NULL; 1056 } 1057 kmem_free(children_dnodes, sizeof (dnode_children_t) + 1058 children_dnodes->dnc_count * sizeof (dnode_handle_t)); 1059 } 1060 1061 /* 1062 * errors: 1063 * EINVAL - invalid object number. 1064 * EIO - i/o error. 1065 * succeeds even for free dnodes. 1066 */ 1067 int 1068 dnode_hold_impl(objset_t *os, uint64_t object, int flag, 1069 void *tag, dnode_t **dnp) 1070 { 1071 int epb, idx, err; 1072 int drop_struct_lock = FALSE; 1073 int type; 1074 uint64_t blk; 1075 dnode_t *mdn, *dn; 1076 dmu_buf_impl_t *db; 1077 dnode_children_t *children_dnodes; 1078 dnode_handle_t *dnh; 1079 1080 /* 1081 * If you are holding the spa config lock as writer, you shouldn't 1082 * be asking the DMU to do *anything* unless it's the root pool 1083 * which may require us to read from the root filesystem while 1084 * holding some (not all) of the locks as writer. 1085 */ 1086 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1087 (spa_is_root(os->os_spa) && 1088 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1089 1090 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) { 1091 dn = (object == DMU_USERUSED_OBJECT) ? 1092 DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os); 1093 if (dn == NULL) 1094 return (SET_ERROR(ENOENT)); 1095 type = dn->dn_type; 1096 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1097 return (SET_ERROR(ENOENT)); 1098 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1099 return (SET_ERROR(EEXIST)); 1100 DNODE_VERIFY(dn); 1101 (void) refcount_add(&dn->dn_holds, tag); 1102 *dnp = dn; 1103 return (0); 1104 } 1105 1106 if (object == 0 || object >= DN_MAX_OBJECT) 1107 return (SET_ERROR(EINVAL)); 1108 1109 mdn = DMU_META_DNODE(os); 1110 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1111 1112 DNODE_VERIFY(mdn); 1113 1114 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1115 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1116 drop_struct_lock = TRUE; 1117 } 1118 1119 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1120 1121 db = dbuf_hold(mdn, blk, FTAG); 1122 if (drop_struct_lock) 1123 rw_exit(&mdn->dn_struct_rwlock); 1124 if (db == NULL) 1125 return (SET_ERROR(EIO)); 1126 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 1127 if (err) { 1128 dbuf_rele(db, FTAG); 1129 return (err); 1130 } 1131 1132 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1133 epb = db->db.db_size >> DNODE_SHIFT; 1134 1135 idx = object & (epb-1); 1136 1137 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1138 children_dnodes = dmu_buf_get_user(&db->db); 1139 if (children_dnodes == NULL) { 1140 int i; 1141 dnode_children_t *winner; 1142 children_dnodes = kmem_zalloc(sizeof (dnode_children_t) + 1143 epb * sizeof (dnode_handle_t), KM_SLEEP); 1144 children_dnodes->dnc_count = epb; 1145 dnh = &children_dnodes->dnc_children[0]; 1146 for (i = 0; i < epb; i++) { 1147 zrl_init(&dnh[i].dnh_zrlock); 1148 } 1149 dmu_buf_init_user(&children_dnodes->dnc_dbu, NULL, 1150 dnode_buf_evict_async, NULL); 1151 winner = dmu_buf_set_user(&db->db, &children_dnodes->dnc_dbu); 1152 if (winner != NULL) { 1153 1154 for (i = 0; i < epb; i++) { 1155 zrl_destroy(&dnh[i].dnh_zrlock); 1156 } 1157 1158 kmem_free(children_dnodes, sizeof (dnode_children_t) + 1159 epb * sizeof (dnode_handle_t)); 1160 children_dnodes = winner; 1161 } 1162 } 1163 ASSERT(children_dnodes->dnc_count == epb); 1164 1165 dnh = &children_dnodes->dnc_children[idx]; 1166 zrl_add(&dnh->dnh_zrlock); 1167 dn = dnh->dnh_dnode; 1168 if (dn == NULL) { 1169 dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx; 1170 1171 dn = dnode_create(os, phys, db, object, dnh); 1172 } 1173 1174 mutex_enter(&dn->dn_mtx); 1175 type = dn->dn_type; 1176 if (dn->dn_free_txg || 1177 ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) || 1178 ((flag & DNODE_MUST_BE_FREE) && 1179 (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) { 1180 mutex_exit(&dn->dn_mtx); 1181 zrl_remove(&dnh->dnh_zrlock); 1182 dbuf_rele(db, FTAG); 1183 return (type == DMU_OT_NONE ? ENOENT : EEXIST); 1184 } 1185 if (refcount_add(&dn->dn_holds, tag) == 1) 1186 dbuf_add_ref(db, dnh); 1187 mutex_exit(&dn->dn_mtx); 1188 1189 /* Now we can rely on the hold to prevent the dnode from moving. */ 1190 zrl_remove(&dnh->dnh_zrlock); 1191 1192 DNODE_VERIFY(dn); 1193 ASSERT3P(dn->dn_dbuf, ==, db); 1194 ASSERT3U(dn->dn_object, ==, object); 1195 dbuf_rele(db, FTAG); 1196 1197 *dnp = dn; 1198 return (0); 1199 } 1200 1201 /* 1202 * Return held dnode if the object is allocated, NULL if not. 1203 */ 1204 int 1205 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 1206 { 1207 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp)); 1208 } 1209 1210 /* 1211 * Can only add a reference if there is already at least one 1212 * reference on the dnode. Returns FALSE if unable to add a 1213 * new reference. 1214 */ 1215 boolean_t 1216 dnode_add_ref(dnode_t *dn, void *tag) 1217 { 1218 mutex_enter(&dn->dn_mtx); 1219 if (refcount_is_zero(&dn->dn_holds)) { 1220 mutex_exit(&dn->dn_mtx); 1221 return (FALSE); 1222 } 1223 VERIFY(1 < refcount_add(&dn->dn_holds, tag)); 1224 mutex_exit(&dn->dn_mtx); 1225 return (TRUE); 1226 } 1227 1228 void 1229 dnode_rele(dnode_t *dn, void *tag) 1230 { 1231 mutex_enter(&dn->dn_mtx); 1232 dnode_rele_and_unlock(dn, tag); 1233 } 1234 1235 void 1236 dnode_rele_and_unlock(dnode_t *dn, void *tag) 1237 { 1238 uint64_t refs; 1239 /* Get while the hold prevents the dnode from moving. */ 1240 dmu_buf_impl_t *db = dn->dn_dbuf; 1241 dnode_handle_t *dnh = dn->dn_handle; 1242 1243 refs = refcount_remove(&dn->dn_holds, tag); 1244 mutex_exit(&dn->dn_mtx); 1245 1246 /* 1247 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1248 * indirectly by dbuf_rele() while relying on the dnode handle to 1249 * prevent the dnode from moving, since releasing the last hold could 1250 * result in the dnode's parent dbuf evicting its dnode handles. For 1251 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1252 * other direct or indirect hold on the dnode must first drop the dnode 1253 * handle. 1254 */ 1255 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1256 1257 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1258 if (refs == 0 && db != NULL) { 1259 /* 1260 * Another thread could add a hold to the dnode handle in 1261 * dnode_hold_impl() while holding the parent dbuf. Since the 1262 * hold on the parent dbuf prevents the handle from being 1263 * destroyed, the hold on the handle is OK. We can't yet assert 1264 * that the handle has zero references, but that will be 1265 * asserted anyway when the handle gets destroyed. 1266 */ 1267 dbuf_rele(db, dnh); 1268 } 1269 } 1270 1271 void 1272 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1273 { 1274 objset_t *os = dn->dn_objset; 1275 uint64_t txg = tx->tx_txg; 1276 1277 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1278 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1279 return; 1280 } 1281 1282 DNODE_VERIFY(dn); 1283 1284 #ifdef ZFS_DEBUG 1285 mutex_enter(&dn->dn_mtx); 1286 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1287 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1288 mutex_exit(&dn->dn_mtx); 1289 #endif 1290 1291 /* 1292 * Determine old uid/gid when necessary 1293 */ 1294 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1295 1296 mutex_enter(&os->os_lock); 1297 1298 /* 1299 * If we are already marked dirty, we're done. 1300 */ 1301 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1302 mutex_exit(&os->os_lock); 1303 return; 1304 } 1305 1306 ASSERT(!refcount_is_zero(&dn->dn_holds) || 1307 !avl_is_empty(&dn->dn_dbufs)); 1308 ASSERT(dn->dn_datablksz != 0); 1309 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]); 1310 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]); 1311 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]); 1312 1313 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1314 dn->dn_object, txg); 1315 1316 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) { 1317 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn); 1318 } else { 1319 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn); 1320 } 1321 1322 mutex_exit(&os->os_lock); 1323 1324 /* 1325 * The dnode maintains a hold on its containing dbuf as 1326 * long as there are holds on it. Each instantiated child 1327 * dbuf maintains a hold on the dnode. When the last child 1328 * drops its hold, the dnode will drop its hold on the 1329 * containing dbuf. We add a "dirty hold" here so that the 1330 * dnode will hang around after we finish processing its 1331 * children. 1332 */ 1333 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1334 1335 (void) dbuf_dirty(dn->dn_dbuf, tx); 1336 1337 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1338 } 1339 1340 void 1341 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1342 { 1343 int txgoff = tx->tx_txg & TXG_MASK; 1344 1345 dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg); 1346 1347 /* we should be the only holder... hopefully */ 1348 /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */ 1349 1350 mutex_enter(&dn->dn_mtx); 1351 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1352 mutex_exit(&dn->dn_mtx); 1353 return; 1354 } 1355 dn->dn_free_txg = tx->tx_txg; 1356 mutex_exit(&dn->dn_mtx); 1357 1358 /* 1359 * If the dnode is already dirty, it needs to be moved from 1360 * the dirty list to the free list. 1361 */ 1362 mutex_enter(&dn->dn_objset->os_lock); 1363 if (list_link_active(&dn->dn_dirty_link[txgoff])) { 1364 list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn); 1365 list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn); 1366 mutex_exit(&dn->dn_objset->os_lock); 1367 } else { 1368 mutex_exit(&dn->dn_objset->os_lock); 1369 dnode_setdirty(dn, tx); 1370 } 1371 } 1372 1373 /* 1374 * Try to change the block size for the indicated dnode. This can only 1375 * succeed if there are no blocks allocated or dirty beyond first block 1376 */ 1377 int 1378 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1379 { 1380 dmu_buf_impl_t *db; 1381 int err; 1382 1383 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1384 if (size == 0) 1385 size = SPA_MINBLOCKSIZE; 1386 else 1387 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1388 1389 if (ibs == dn->dn_indblkshift) 1390 ibs = 0; 1391 1392 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1393 return (0); 1394 1395 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1396 1397 /* Check for any allocated blocks beyond the first */ 1398 if (dn->dn_maxblkid != 0) 1399 goto fail; 1400 1401 mutex_enter(&dn->dn_dbufs_mtx); 1402 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1403 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1404 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1405 db->db_blkid != DMU_SPILL_BLKID) { 1406 mutex_exit(&dn->dn_dbufs_mtx); 1407 goto fail; 1408 } 1409 } 1410 mutex_exit(&dn->dn_dbufs_mtx); 1411 1412 if (ibs && dn->dn_nlevels != 1) 1413 goto fail; 1414 1415 /* resize the old block */ 1416 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1417 if (err == 0) 1418 dbuf_new_size(db, size, tx); 1419 else if (err != ENOENT) 1420 goto fail; 1421 1422 dnode_setdblksz(dn, size); 1423 dnode_setdirty(dn, tx); 1424 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1425 if (ibs) { 1426 dn->dn_indblkshift = ibs; 1427 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1428 } 1429 /* rele after we have fixed the blocksize in the dnode */ 1430 if (db) 1431 dbuf_rele(db, FTAG); 1432 1433 rw_exit(&dn->dn_struct_rwlock); 1434 return (0); 1435 1436 fail: 1437 rw_exit(&dn->dn_struct_rwlock); 1438 return (SET_ERROR(ENOTSUP)); 1439 } 1440 1441 /* read-holding callers must not rely on the lock being continuously held */ 1442 void 1443 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read) 1444 { 1445 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1446 int epbs, new_nlevels; 1447 uint64_t sz; 1448 1449 ASSERT(blkid != DMU_BONUS_BLKID); 1450 1451 ASSERT(have_read ? 1452 RW_READ_HELD(&dn->dn_struct_rwlock) : 1453 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1454 1455 /* 1456 * if we have a read-lock, check to see if we need to do any work 1457 * before upgrading to a write-lock. 1458 */ 1459 if (have_read) { 1460 if (blkid <= dn->dn_maxblkid) 1461 return; 1462 1463 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1464 rw_exit(&dn->dn_struct_rwlock); 1465 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1466 } 1467 } 1468 1469 if (blkid <= dn->dn_maxblkid) 1470 goto out; 1471 1472 dn->dn_maxblkid = blkid; 1473 1474 /* 1475 * Compute the number of levels necessary to support the new maxblkid. 1476 */ 1477 new_nlevels = 1; 1478 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1479 for (sz = dn->dn_nblkptr; 1480 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1481 new_nlevels++; 1482 1483 if (new_nlevels > dn->dn_nlevels) { 1484 int old_nlevels = dn->dn_nlevels; 1485 dmu_buf_impl_t *db; 1486 list_t *list; 1487 dbuf_dirty_record_t *new, *dr, *dr_next; 1488 1489 dn->dn_nlevels = new_nlevels; 1490 1491 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1492 dn->dn_next_nlevels[txgoff] = new_nlevels; 1493 1494 /* dirty the left indirects */ 1495 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1496 ASSERT(db != NULL); 1497 new = dbuf_dirty(db, tx); 1498 dbuf_rele(db, FTAG); 1499 1500 /* transfer the dirty records to the new indirect */ 1501 mutex_enter(&dn->dn_mtx); 1502 mutex_enter(&new->dt.di.dr_mtx); 1503 list = &dn->dn_dirty_records[txgoff]; 1504 for (dr = list_head(list); dr; dr = dr_next) { 1505 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1506 if (dr->dr_dbuf->db_level != new_nlevels-1 && 1507 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1508 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 1509 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 1510 list_remove(&dn->dn_dirty_records[txgoff], dr); 1511 list_insert_tail(&new->dt.di.dr_children, dr); 1512 dr->dr_parent = new; 1513 } 1514 } 1515 mutex_exit(&new->dt.di.dr_mtx); 1516 mutex_exit(&dn->dn_mtx); 1517 } 1518 1519 out: 1520 if (have_read) 1521 rw_downgrade(&dn->dn_struct_rwlock); 1522 } 1523 1524 static void 1525 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 1526 { 1527 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1528 if (db != NULL) { 1529 dmu_buf_will_dirty(&db->db, tx); 1530 dbuf_rele(db, FTAG); 1531 } 1532 } 1533 1534 void 1535 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 1536 { 1537 dmu_buf_impl_t *db; 1538 uint64_t blkoff, blkid, nblks; 1539 int blksz, blkshift, head, tail; 1540 int trunc = FALSE; 1541 int epbs; 1542 1543 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1544 blksz = dn->dn_datablksz; 1545 blkshift = dn->dn_datablkshift; 1546 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1547 1548 if (len == DMU_OBJECT_END) { 1549 len = UINT64_MAX - off; 1550 trunc = TRUE; 1551 } 1552 1553 /* 1554 * First, block align the region to free: 1555 */ 1556 if (ISP2(blksz)) { 1557 head = P2NPHASE(off, blksz); 1558 blkoff = P2PHASE(off, blksz); 1559 if ((off >> blkshift) > dn->dn_maxblkid) 1560 goto out; 1561 } else { 1562 ASSERT(dn->dn_maxblkid == 0); 1563 if (off == 0 && len >= blksz) { 1564 /* 1565 * Freeing the whole block; fast-track this request. 1566 * Note that we won't dirty any indirect blocks, 1567 * which is fine because we will be freeing the entire 1568 * file and thus all indirect blocks will be freed 1569 * by free_children(). 1570 */ 1571 blkid = 0; 1572 nblks = 1; 1573 goto done; 1574 } else if (off >= blksz) { 1575 /* Freeing past end-of-data */ 1576 goto out; 1577 } else { 1578 /* Freeing part of the block. */ 1579 head = blksz - off; 1580 ASSERT3U(head, >, 0); 1581 } 1582 blkoff = off; 1583 } 1584 /* zero out any partial block data at the start of the range */ 1585 if (head) { 1586 ASSERT3U(blkoff + head, ==, blksz); 1587 if (len < head) 1588 head = len; 1589 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), 1590 TRUE, FALSE, FTAG, &db) == 0) { 1591 caddr_t data; 1592 1593 /* don't dirty if it isn't on disk and isn't dirty */ 1594 if (db->db_last_dirty || 1595 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1596 rw_exit(&dn->dn_struct_rwlock); 1597 dmu_buf_will_dirty(&db->db, tx); 1598 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1599 data = db->db.db_data; 1600 bzero(data + blkoff, head); 1601 } 1602 dbuf_rele(db, FTAG); 1603 } 1604 off += head; 1605 len -= head; 1606 } 1607 1608 /* If the range was less than one block, we're done */ 1609 if (len == 0) 1610 goto out; 1611 1612 /* If the remaining range is past end of file, we're done */ 1613 if ((off >> blkshift) > dn->dn_maxblkid) 1614 goto out; 1615 1616 ASSERT(ISP2(blksz)); 1617 if (trunc) 1618 tail = 0; 1619 else 1620 tail = P2PHASE(len, blksz); 1621 1622 ASSERT0(P2PHASE(off, blksz)); 1623 /* zero out any partial block data at the end of the range */ 1624 if (tail) { 1625 if (len < tail) 1626 tail = len; 1627 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), 1628 TRUE, FALSE, FTAG, &db) == 0) { 1629 /* don't dirty if not on disk and not dirty */ 1630 if (db->db_last_dirty || 1631 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1632 rw_exit(&dn->dn_struct_rwlock); 1633 dmu_buf_will_dirty(&db->db, tx); 1634 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1635 bzero(db->db.db_data, tail); 1636 } 1637 dbuf_rele(db, FTAG); 1638 } 1639 len -= tail; 1640 } 1641 1642 /* If the range did not include a full block, we are done */ 1643 if (len == 0) 1644 goto out; 1645 1646 ASSERT(IS_P2ALIGNED(off, blksz)); 1647 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 1648 blkid = off >> blkshift; 1649 nblks = len >> blkshift; 1650 if (trunc) 1651 nblks += 1; 1652 1653 /* 1654 * Dirty all the indirect blocks in this range. Note that only 1655 * the first and last indirect blocks can actually be written 1656 * (if they were partially freed) -- they must be dirtied, even if 1657 * they do not exist on disk yet. The interior blocks will 1658 * be freed by free_children(), so they will not actually be written. 1659 * Even though these interior blocks will not be written, we 1660 * dirty them for two reasons: 1661 * 1662 * - It ensures that the indirect blocks remain in memory until 1663 * syncing context. (They have already been prefetched by 1664 * dmu_tx_hold_free(), so we don't have to worry about reading 1665 * them serially here.) 1666 * 1667 * - The dirty space accounting will put pressure on the txg sync 1668 * mechanism to begin syncing, and to delay transactions if there 1669 * is a large amount of freeing. Even though these indirect 1670 * blocks will not be written, we could need to write the same 1671 * amount of space if we copy the freed BPs into deadlists. 1672 */ 1673 if (dn->dn_nlevels > 1) { 1674 uint64_t first, last; 1675 1676 first = blkid >> epbs; 1677 dnode_dirty_l1(dn, first, tx); 1678 if (trunc) 1679 last = dn->dn_maxblkid >> epbs; 1680 else 1681 last = (blkid + nblks - 1) >> epbs; 1682 if (last != first) 1683 dnode_dirty_l1(dn, last, tx); 1684 1685 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 1686 SPA_BLKPTRSHIFT; 1687 for (uint64_t i = first + 1; i < last; i++) { 1688 /* 1689 * Set i to the blockid of the next non-hole 1690 * level-1 indirect block at or after i. Note 1691 * that dnode_next_offset() operates in terms of 1692 * level-0-equivalent bytes. 1693 */ 1694 uint64_t ibyte = i << shift; 1695 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 1696 &ibyte, 2, 1, 0); 1697 i = ibyte >> shift; 1698 if (i >= last) 1699 break; 1700 1701 /* 1702 * Normally we should not see an error, either 1703 * from dnode_next_offset() or dbuf_hold_level() 1704 * (except for ESRCH from dnode_next_offset). 1705 * If there is an i/o error, then when we read 1706 * this block in syncing context, it will use 1707 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 1708 * to the "failmode" property. dnode_next_offset() 1709 * doesn't have a flag to indicate MUSTSUCCEED. 1710 */ 1711 if (err != 0) 1712 break; 1713 1714 dnode_dirty_l1(dn, i, tx); 1715 } 1716 } 1717 1718 done: 1719 /* 1720 * Add this range to the dnode range list. 1721 * We will finish up this free operation in the syncing phase. 1722 */ 1723 mutex_enter(&dn->dn_mtx); 1724 int txgoff = tx->tx_txg & TXG_MASK; 1725 if (dn->dn_free_ranges[txgoff] == NULL) { 1726 dn->dn_free_ranges[txgoff] = 1727 range_tree_create(NULL, NULL, &dn->dn_mtx); 1728 } 1729 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 1730 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 1731 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 1732 blkid, nblks, tx->tx_txg); 1733 mutex_exit(&dn->dn_mtx); 1734 1735 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 1736 dnode_setdirty(dn, tx); 1737 out: 1738 1739 rw_exit(&dn->dn_struct_rwlock); 1740 } 1741 1742 static boolean_t 1743 dnode_spill_freed(dnode_t *dn) 1744 { 1745 int i; 1746 1747 mutex_enter(&dn->dn_mtx); 1748 for (i = 0; i < TXG_SIZE; i++) { 1749 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 1750 break; 1751 } 1752 mutex_exit(&dn->dn_mtx); 1753 return (i < TXG_SIZE); 1754 } 1755 1756 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 1757 uint64_t 1758 dnode_block_freed(dnode_t *dn, uint64_t blkid) 1759 { 1760 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 1761 int i; 1762 1763 if (blkid == DMU_BONUS_BLKID) 1764 return (FALSE); 1765 1766 /* 1767 * If we're in the process of opening the pool, dp will not be 1768 * set yet, but there shouldn't be anything dirty. 1769 */ 1770 if (dp == NULL) 1771 return (FALSE); 1772 1773 if (dn->dn_free_txg) 1774 return (TRUE); 1775 1776 if (blkid == DMU_SPILL_BLKID) 1777 return (dnode_spill_freed(dn)); 1778 1779 mutex_enter(&dn->dn_mtx); 1780 for (i = 0; i < TXG_SIZE; i++) { 1781 if (dn->dn_free_ranges[i] != NULL && 1782 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 1783 break; 1784 } 1785 mutex_exit(&dn->dn_mtx); 1786 return (i < TXG_SIZE); 1787 } 1788 1789 /* call from syncing context when we actually write/free space for this dnode */ 1790 void 1791 dnode_diduse_space(dnode_t *dn, int64_t delta) 1792 { 1793 uint64_t space; 1794 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 1795 dn, dn->dn_phys, 1796 (u_longlong_t)dn->dn_phys->dn_used, 1797 (longlong_t)delta); 1798 1799 mutex_enter(&dn->dn_mtx); 1800 space = DN_USED_BYTES(dn->dn_phys); 1801 if (delta > 0) { 1802 ASSERT3U(space + delta, >=, space); /* no overflow */ 1803 } else { 1804 ASSERT3U(space, >=, -delta); /* no underflow */ 1805 } 1806 space += delta; 1807 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 1808 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 1809 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 1810 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 1811 } else { 1812 dn->dn_phys->dn_used = space; 1813 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 1814 } 1815 mutex_exit(&dn->dn_mtx); 1816 } 1817 1818 /* 1819 * Call when we think we're going to write/free space in open context to track 1820 * the amount of memory in use by the currently open txg. 1821 */ 1822 void 1823 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx) 1824 { 1825 objset_t *os = dn->dn_objset; 1826 dsl_dataset_t *ds = os->os_dsl_dataset; 1827 int64_t aspace = spa_get_asize(os->os_spa, space); 1828 1829 if (ds != NULL) { 1830 dsl_dir_willuse_space(ds->ds_dir, aspace, tx); 1831 dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx); 1832 } 1833 1834 dmu_tx_willuse_space(tx, aspace); 1835 } 1836 1837 /* 1838 * Scans a block at the indicated "level" looking for a hole or data, 1839 * depending on 'flags'. 1840 * 1841 * If level > 0, then we are scanning an indirect block looking at its 1842 * pointers. If level == 0, then we are looking at a block of dnodes. 1843 * 1844 * If we don't find what we are looking for in the block, we return ESRCH. 1845 * Otherwise, return with *offset pointing to the beginning (if searching 1846 * forwards) or end (if searching backwards) of the range covered by the 1847 * block pointer we matched on (or dnode). 1848 * 1849 * The basic search algorithm used below by dnode_next_offset() is to 1850 * use this function to search up the block tree (widen the search) until 1851 * we find something (i.e., we don't return ESRCH) and then search back 1852 * down the tree (narrow the search) until we reach our original search 1853 * level. 1854 */ 1855 static int 1856 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 1857 int lvl, uint64_t blkfill, uint64_t txg) 1858 { 1859 dmu_buf_impl_t *db = NULL; 1860 void *data = NULL; 1861 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 1862 uint64_t epb = 1ULL << epbs; 1863 uint64_t minfill, maxfill; 1864 boolean_t hole; 1865 int i, inc, error, span; 1866 1867 dprintf("probing object %llu offset %llx level %d of %u\n", 1868 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); 1869 1870 hole = ((flags & DNODE_FIND_HOLE) != 0); 1871 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 1872 ASSERT(txg == 0 || !hole); 1873 1874 if (lvl == dn->dn_phys->dn_nlevels) { 1875 error = 0; 1876 epb = dn->dn_phys->dn_nblkptr; 1877 data = dn->dn_phys->dn_blkptr; 1878 } else { 1879 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 1880 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 1881 if (error) { 1882 if (error != ENOENT) 1883 return (error); 1884 if (hole) 1885 return (0); 1886 /* 1887 * This can only happen when we are searching up 1888 * the block tree for data. We don't really need to 1889 * adjust the offset, as we will just end up looking 1890 * at the pointer to this block in its parent, and its 1891 * going to be unallocated, so we will skip over it. 1892 */ 1893 return (SET_ERROR(ESRCH)); 1894 } 1895 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT); 1896 if (error) { 1897 dbuf_rele(db, FTAG); 1898 return (error); 1899 } 1900 data = db->db.db_data; 1901 } 1902 1903 1904 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 1905 db->db_blkptr->blk_birth <= txg || 1906 BP_IS_HOLE(db->db_blkptr))) { 1907 /* 1908 * This can only happen when we are searching up the tree 1909 * and these conditions mean that we need to keep climbing. 1910 */ 1911 error = SET_ERROR(ESRCH); 1912 } else if (lvl == 0) { 1913 dnode_phys_t *dnp = data; 1914 span = DNODE_SHIFT; 1915 ASSERT(dn->dn_type == DMU_OT_DNODE); 1916 1917 for (i = (*offset >> span) & (blkfill - 1); 1918 i >= 0 && i < blkfill; i += inc) { 1919 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 1920 break; 1921 *offset += (1ULL << span) * inc; 1922 } 1923 if (i < 0 || i == blkfill) 1924 error = SET_ERROR(ESRCH); 1925 } else { 1926 blkptr_t *bp = data; 1927 uint64_t start = *offset; 1928 span = (lvl - 1) * epbs + dn->dn_datablkshift; 1929 minfill = 0; 1930 maxfill = blkfill << ((lvl - 1) * epbs); 1931 1932 if (hole) 1933 maxfill--; 1934 else 1935 minfill++; 1936 1937 *offset = *offset >> span; 1938 for (i = BF64_GET(*offset, 0, epbs); 1939 i >= 0 && i < epb; i += inc) { 1940 if (BP_GET_FILL(&bp[i]) >= minfill && 1941 BP_GET_FILL(&bp[i]) <= maxfill && 1942 (hole || bp[i].blk_birth > txg)) 1943 break; 1944 if (inc > 0 || *offset > 0) 1945 *offset += inc; 1946 } 1947 *offset = *offset << span; 1948 if (inc < 0) { 1949 /* traversing backwards; position offset at the end */ 1950 ASSERT3U(*offset, <=, start); 1951 *offset = MIN(*offset + (1ULL << span) - 1, start); 1952 } else if (*offset < start) { 1953 *offset = start; 1954 } 1955 if (i < 0 || i >= epb) 1956 error = SET_ERROR(ESRCH); 1957 } 1958 1959 if (db) 1960 dbuf_rele(db, FTAG); 1961 1962 return (error); 1963 } 1964 1965 /* 1966 * Find the next hole, data, or sparse region at or after *offset. 1967 * The value 'blkfill' tells us how many items we expect to find 1968 * in an L0 data block; this value is 1 for normal objects, 1969 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 1970 * DNODES_PER_BLOCK when searching for sparse regions thereof. 1971 * 1972 * Examples: 1973 * 1974 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 1975 * Finds the next/previous hole/data in a file. 1976 * Used in dmu_offset_next(). 1977 * 1978 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 1979 * Finds the next free/allocated dnode an objset's meta-dnode. 1980 * Only finds objects that have new contents since txg (ie. 1981 * bonus buffer changes and content removal are ignored). 1982 * Used in dmu_object_next(). 1983 * 1984 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 1985 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 1986 * Used in dmu_object_alloc(). 1987 */ 1988 int 1989 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 1990 int minlvl, uint64_t blkfill, uint64_t txg) 1991 { 1992 uint64_t initial_offset = *offset; 1993 int lvl, maxlvl; 1994 int error = 0; 1995 1996 if (!(flags & DNODE_FIND_HAVELOCK)) 1997 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1998 1999 if (dn->dn_phys->dn_nlevels == 0) { 2000 error = SET_ERROR(ESRCH); 2001 goto out; 2002 } 2003 2004 if (dn->dn_datablkshift == 0) { 2005 if (*offset < dn->dn_datablksz) { 2006 if (flags & DNODE_FIND_HOLE) 2007 *offset = dn->dn_datablksz; 2008 } else { 2009 error = SET_ERROR(ESRCH); 2010 } 2011 goto out; 2012 } 2013 2014 maxlvl = dn->dn_phys->dn_nlevels; 2015 2016 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 2017 error = dnode_next_offset_level(dn, 2018 flags, offset, lvl, blkfill, txg); 2019 if (error != ESRCH) 2020 break; 2021 } 2022 2023 while (error == 0 && --lvl >= minlvl) { 2024 error = dnode_next_offset_level(dn, 2025 flags, offset, lvl, blkfill, txg); 2026 } 2027 2028 /* 2029 * There's always a "virtual hole" at the end of the object, even 2030 * if all BP's which physically exist are non-holes. 2031 */ 2032 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 2033 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 2034 error = 0; 2035 } 2036 2037 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 2038 initial_offset < *offset : initial_offset > *offset)) 2039 error = SET_ERROR(ESRCH); 2040 out: 2041 if (!(flags & DNODE_FIND_HAVELOCK)) 2042 rw_exit(&dn->dn_struct_rwlock); 2043 2044 return (error); 2045 } 2046