1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/dbuf.h> 28 #include <sys/dnode.h> 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dsl_dir.h> 34 #include <sys/dsl_dataset.h> 35 #include <sys/spa.h> 36 #include <sys/zio.h> 37 #include <sys/dmu_zfetch.h> 38 39 static int free_range_compar(const void *node1, const void *node2); 40 41 static kmem_cache_t *dnode_cache; 42 43 static dnode_phys_t dnode_phys_zero; 44 45 int zfs_default_bs = SPA_MINBLOCKSHIFT; 46 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 47 48 /* ARGSUSED */ 49 static int 50 dnode_cons(void *arg, void *unused, int kmflag) 51 { 52 int i; 53 dnode_t *dn = unused; 54 bzero(dn, sizeof (dnode_t)); 55 56 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); 57 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 58 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 59 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 60 refcount_create(&dn->dn_holds); 61 refcount_create(&dn->dn_tx_holds); 62 63 for (i = 0; i < TXG_SIZE; i++) { 64 avl_create(&dn->dn_ranges[i], free_range_compar, 65 sizeof (free_range_t), 66 offsetof(struct free_range, fr_node)); 67 list_create(&dn->dn_dirty_records[i], 68 sizeof (dbuf_dirty_record_t), 69 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 70 } 71 72 list_create(&dn->dn_dbufs, sizeof (dmu_buf_impl_t), 73 offsetof(dmu_buf_impl_t, db_link)); 74 75 return (0); 76 } 77 78 /* ARGSUSED */ 79 static void 80 dnode_dest(void *arg, void *unused) 81 { 82 int i; 83 dnode_t *dn = unused; 84 85 rw_destroy(&dn->dn_struct_rwlock); 86 mutex_destroy(&dn->dn_mtx); 87 mutex_destroy(&dn->dn_dbufs_mtx); 88 cv_destroy(&dn->dn_notxholds); 89 refcount_destroy(&dn->dn_holds); 90 refcount_destroy(&dn->dn_tx_holds); 91 92 for (i = 0; i < TXG_SIZE; i++) { 93 avl_destroy(&dn->dn_ranges[i]); 94 list_destroy(&dn->dn_dirty_records[i]); 95 } 96 97 list_destroy(&dn->dn_dbufs); 98 } 99 100 void 101 dnode_init(void) 102 { 103 dnode_cache = kmem_cache_create("dnode_t", 104 sizeof (dnode_t), 105 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 106 } 107 108 void 109 dnode_fini(void) 110 { 111 kmem_cache_destroy(dnode_cache); 112 } 113 114 115 #ifdef ZFS_DEBUG 116 void 117 dnode_verify(dnode_t *dn) 118 { 119 int drop_struct_lock = FALSE; 120 121 ASSERT(dn->dn_phys); 122 ASSERT(dn->dn_objset); 123 124 ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES); 125 126 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 127 return; 128 129 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 130 rw_enter(&dn->dn_struct_rwlock, RW_READER); 131 drop_struct_lock = TRUE; 132 } 133 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 134 int i; 135 ASSERT3U(dn->dn_indblkshift, >=, 0); 136 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 137 if (dn->dn_datablkshift) { 138 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 139 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 140 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 141 } 142 ASSERT3U(dn->dn_nlevels, <=, 30); 143 ASSERT3U(dn->dn_type, <=, DMU_OT_NUMTYPES); 144 ASSERT3U(dn->dn_nblkptr, >=, 1); 145 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 146 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 147 ASSERT3U(dn->dn_datablksz, ==, 148 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 149 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 150 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 151 dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 152 for (i = 0; i < TXG_SIZE; i++) { 153 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 154 } 155 } 156 if (dn->dn_phys->dn_type != DMU_OT_NONE) 157 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 158 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || dn->dn_dbuf != NULL); 159 if (dn->dn_dbuf != NULL) { 160 ASSERT3P(dn->dn_phys, ==, 161 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 162 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 163 } 164 if (drop_struct_lock) 165 rw_exit(&dn->dn_struct_rwlock); 166 } 167 #endif 168 169 void 170 dnode_byteswap(dnode_phys_t *dnp) 171 { 172 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 173 int i; 174 175 if (dnp->dn_type == DMU_OT_NONE) { 176 bzero(dnp, sizeof (dnode_phys_t)); 177 return; 178 } 179 180 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 181 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 182 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 183 dnp->dn_used = BSWAP_64(dnp->dn_used); 184 185 /* 186 * dn_nblkptr is only one byte, so it's OK to read it in either 187 * byte order. We can't read dn_bouslen. 188 */ 189 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 190 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 191 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 192 buf64[i] = BSWAP_64(buf64[i]); 193 194 /* 195 * OK to check dn_bonuslen for zero, because it won't matter if 196 * we have the wrong byte order. This is necessary because the 197 * dnode dnode is smaller than a regular dnode. 198 */ 199 if (dnp->dn_bonuslen != 0) { 200 /* 201 * Note that the bonus length calculated here may be 202 * longer than the actual bonus buffer. This is because 203 * we always put the bonus buffer after the last block 204 * pointer (instead of packing it against the end of the 205 * dnode buffer). 206 */ 207 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 208 size_t len = DN_MAX_BONUSLEN - off; 209 ASSERT3U(dnp->dn_bonustype, <, DMU_OT_NUMTYPES); 210 dmu_ot[dnp->dn_bonustype].ot_byteswap(dnp->dn_bonus + off, len); 211 } 212 } 213 214 void 215 dnode_buf_byteswap(void *vbuf, size_t size) 216 { 217 dnode_phys_t *buf = vbuf; 218 int i; 219 220 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 221 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 222 223 size >>= DNODE_SHIFT; 224 for (i = 0; i < size; i++) { 225 dnode_byteswap(buf); 226 buf++; 227 } 228 } 229 230 static int 231 free_range_compar(const void *node1, const void *node2) 232 { 233 const free_range_t *rp1 = node1; 234 const free_range_t *rp2 = node2; 235 236 if (rp1->fr_blkid < rp2->fr_blkid) 237 return (-1); 238 else if (rp1->fr_blkid > rp2->fr_blkid) 239 return (1); 240 else return (0); 241 } 242 243 void 244 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 245 { 246 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 247 248 dnode_setdirty(dn, tx); 249 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 250 ASSERT3U(newsize, <=, DN_MAX_BONUSLEN - 251 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 252 dn->dn_bonuslen = newsize; 253 if (newsize == 0) 254 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 255 else 256 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 257 rw_exit(&dn->dn_struct_rwlock); 258 } 259 260 static void 261 dnode_setdblksz(dnode_t *dn, int size) 262 { 263 ASSERT3U(P2PHASE(size, SPA_MINBLOCKSIZE), ==, 0); 264 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 265 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 266 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 267 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 268 dn->dn_datablksz = size; 269 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 270 dn->dn_datablkshift = ISP2(size) ? highbit(size - 1) : 0; 271 } 272 273 static dnode_t * 274 dnode_create(objset_impl_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 275 uint64_t object) 276 { 277 dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 278 // (void) dnode_cons(dn, NULL, 0); /* XXX */ 279 280 dn->dn_objset = os; 281 dn->dn_object = object; 282 dn->dn_dbuf = db; 283 dn->dn_phys = dnp; 284 285 if (dnp->dn_datablkszsec) 286 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 287 dn->dn_indblkshift = dnp->dn_indblkshift; 288 dn->dn_nlevels = dnp->dn_nlevels; 289 dn->dn_type = dnp->dn_type; 290 dn->dn_nblkptr = dnp->dn_nblkptr; 291 dn->dn_checksum = dnp->dn_checksum; 292 dn->dn_compress = dnp->dn_compress; 293 dn->dn_bonustype = dnp->dn_bonustype; 294 dn->dn_bonuslen = dnp->dn_bonuslen; 295 dn->dn_maxblkid = dnp->dn_maxblkid; 296 297 dmu_zfetch_init(&dn->dn_zfetch, dn); 298 299 ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES); 300 mutex_enter(&os->os_lock); 301 list_insert_head(&os->os_dnodes, dn); 302 mutex_exit(&os->os_lock); 303 304 arc_space_consume(sizeof (dnode_t)); 305 return (dn); 306 } 307 308 static void 309 dnode_destroy(dnode_t *dn) 310 { 311 objset_impl_t *os = dn->dn_objset; 312 313 #ifdef ZFS_DEBUG 314 int i; 315 316 for (i = 0; i < TXG_SIZE; i++) { 317 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 318 ASSERT(NULL == list_head(&dn->dn_dirty_records[i])); 319 ASSERT(0 == avl_numnodes(&dn->dn_ranges[i])); 320 } 321 ASSERT(NULL == list_head(&dn->dn_dbufs)); 322 #endif 323 324 mutex_enter(&os->os_lock); 325 list_remove(&os->os_dnodes, dn); 326 mutex_exit(&os->os_lock); 327 328 if (dn->dn_dirtyctx_firstset) { 329 kmem_free(dn->dn_dirtyctx_firstset, 1); 330 dn->dn_dirtyctx_firstset = NULL; 331 } 332 dmu_zfetch_rele(&dn->dn_zfetch); 333 if (dn->dn_bonus) { 334 mutex_enter(&dn->dn_bonus->db_mtx); 335 dbuf_evict(dn->dn_bonus); 336 dn->dn_bonus = NULL; 337 } 338 kmem_cache_free(dnode_cache, dn); 339 arc_space_return(sizeof (dnode_t)); 340 } 341 342 void 343 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 344 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 345 { 346 int i; 347 348 if (blocksize == 0) 349 blocksize = 1 << zfs_default_bs; 350 else if (blocksize > SPA_MAXBLOCKSIZE) 351 blocksize = SPA_MAXBLOCKSIZE; 352 else 353 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 354 355 if (ibs == 0) 356 ibs = zfs_default_ibs; 357 358 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 359 360 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset, 361 dn->dn_object, tx->tx_txg, blocksize, ibs); 362 363 ASSERT(dn->dn_type == DMU_OT_NONE); 364 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 365 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 366 ASSERT(ot != DMU_OT_NONE); 367 ASSERT3U(ot, <, DMU_OT_NUMTYPES); 368 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 369 (bonustype != DMU_OT_NONE && bonuslen != 0)); 370 ASSERT3U(bonustype, <, DMU_OT_NUMTYPES); 371 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 372 ASSERT(dn->dn_type == DMU_OT_NONE); 373 ASSERT3U(dn->dn_maxblkid, ==, 0); 374 ASSERT3U(dn->dn_allocated_txg, ==, 0); 375 ASSERT3U(dn->dn_assigned_txg, ==, 0); 376 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 377 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1); 378 ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL); 379 380 for (i = 0; i < TXG_SIZE; i++) { 381 ASSERT3U(dn->dn_next_nlevels[i], ==, 0); 382 ASSERT3U(dn->dn_next_indblkshift[i], ==, 0); 383 ASSERT3U(dn->dn_next_bonuslen[i], ==, 0); 384 ASSERT3U(dn->dn_next_blksz[i], ==, 0); 385 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 386 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 387 ASSERT3U(avl_numnodes(&dn->dn_ranges[i]), ==, 0); 388 } 389 390 dn->dn_type = ot; 391 dnode_setdblksz(dn, blocksize); 392 dn->dn_indblkshift = ibs; 393 dn->dn_nlevels = 1; 394 dn->dn_nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 395 dn->dn_bonustype = bonustype; 396 dn->dn_bonuslen = bonuslen; 397 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 398 dn->dn_compress = ZIO_COMPRESS_INHERIT; 399 dn->dn_dirtyctx = 0; 400 401 dn->dn_free_txg = 0; 402 if (dn->dn_dirtyctx_firstset) { 403 kmem_free(dn->dn_dirtyctx_firstset, 1); 404 dn->dn_dirtyctx_firstset = NULL; 405 } 406 407 dn->dn_allocated_txg = tx->tx_txg; 408 409 dnode_setdirty(dn, tx); 410 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 411 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 412 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 413 } 414 415 void 416 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 417 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 418 { 419 int i, old_nblkptr; 420 dmu_buf_impl_t *db = NULL; 421 422 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 423 ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE); 424 ASSERT3U(blocksize % SPA_MINBLOCKSIZE, ==, 0); 425 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 426 ASSERT(tx->tx_txg != 0); 427 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 428 (bonustype != DMU_OT_NONE && bonuslen != 0)); 429 ASSERT3U(bonustype, <, DMU_OT_NUMTYPES); 430 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 431 432 for (i = 0; i < TXG_SIZE; i++) 433 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 434 435 /* clean up any unreferenced dbufs */ 436 dnode_evict_dbufs(dn); 437 ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL); 438 439 /* 440 * XXX I should really have a generation number to tell if we 441 * need to do this... 442 */ 443 if (blocksize != dn->dn_datablksz || 444 dn->dn_bonustype != bonustype || dn->dn_bonuslen != bonuslen) { 445 /* free all old data */ 446 dnode_free_range(dn, 0, -1ULL, tx); 447 } 448 449 /* change blocksize */ 450 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 451 if (blocksize != dn->dn_datablksz && 452 (!BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 453 list_head(&dn->dn_dbufs) != NULL)) { 454 db = dbuf_hold(dn, 0, FTAG); 455 dbuf_new_size(db, blocksize, tx); 456 } 457 dnode_setdblksz(dn, blocksize); 458 dnode_setdirty(dn, tx); 459 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; 460 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; 461 rw_exit(&dn->dn_struct_rwlock); 462 if (db) 463 dbuf_rele(db, FTAG); 464 465 /* change type */ 466 dn->dn_type = ot; 467 468 /* change bonus size and type */ 469 mutex_enter(&dn->dn_mtx); 470 old_nblkptr = dn->dn_nblkptr; 471 dn->dn_bonustype = bonustype; 472 dn->dn_bonuslen = bonuslen; 473 dn->dn_nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 474 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 475 dn->dn_compress = ZIO_COMPRESS_INHERIT; 476 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 477 478 /* XXX - for now, we can't make nblkptr smaller */ 479 ASSERT3U(dn->dn_nblkptr, >=, old_nblkptr); 480 481 /* fix up the bonus db_size if dn_nblkptr has changed */ 482 if (dn->dn_bonus && dn->dn_bonuslen != old_nblkptr) { 483 dn->dn_bonus->db.db_size = 484 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t); 485 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 486 } 487 488 dn->dn_allocated_txg = tx->tx_txg; 489 mutex_exit(&dn->dn_mtx); 490 } 491 492 void 493 dnode_special_close(dnode_t *dn) 494 { 495 /* 496 * Wait for final references to the dnode to clear. This can 497 * only happen if the arc is asyncronously evicting state that 498 * has a hold on this dnode while we are trying to evict this 499 * dnode. 500 */ 501 while (refcount_count(&dn->dn_holds) > 0) 502 delay(1); 503 dnode_destroy(dn); 504 } 505 506 dnode_t * 507 dnode_special_open(objset_impl_t *os, dnode_phys_t *dnp, uint64_t object) 508 { 509 dnode_t *dn = dnode_create(os, dnp, NULL, object); 510 DNODE_VERIFY(dn); 511 return (dn); 512 } 513 514 static void 515 dnode_buf_pageout(dmu_buf_t *db, void *arg) 516 { 517 dnode_t **children_dnodes = arg; 518 int i; 519 int epb = db->db_size >> DNODE_SHIFT; 520 521 for (i = 0; i < epb; i++) { 522 dnode_t *dn = children_dnodes[i]; 523 int n; 524 525 if (dn == NULL) 526 continue; 527 #ifdef ZFS_DEBUG 528 /* 529 * If there are holds on this dnode, then there should 530 * be holds on the dnode's containing dbuf as well; thus 531 * it wouldn't be eligable for eviction and this function 532 * would not have been called. 533 */ 534 ASSERT(refcount_is_zero(&dn->dn_holds)); 535 ASSERT(list_head(&dn->dn_dbufs) == NULL); 536 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 537 538 for (n = 0; n < TXG_SIZE; n++) 539 ASSERT(!list_link_active(&dn->dn_dirty_link[n])); 540 #endif 541 children_dnodes[i] = NULL; 542 dnode_destroy(dn); 543 } 544 kmem_free(children_dnodes, epb * sizeof (dnode_t *)); 545 } 546 547 /* 548 * errors: 549 * EINVAL - invalid object number. 550 * EIO - i/o error. 551 * succeeds even for free dnodes. 552 */ 553 int 554 dnode_hold_impl(objset_impl_t *os, uint64_t object, int flag, 555 void *tag, dnode_t **dnp) 556 { 557 int epb, idx, err; 558 int drop_struct_lock = FALSE; 559 int type; 560 uint64_t blk; 561 dnode_t *mdn, *dn; 562 dmu_buf_impl_t *db; 563 dnode_t **children_dnodes; 564 565 /* 566 * If you are holding the spa config lock as writer, you shouldn't 567 * be asking the DMU to do *anything*. 568 */ 569 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0); 570 571 if (object == 0 || object >= DN_MAX_OBJECT) 572 return (EINVAL); 573 574 mdn = os->os_meta_dnode; 575 576 DNODE_VERIFY(mdn); 577 578 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 579 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 580 drop_struct_lock = TRUE; 581 } 582 583 blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t)); 584 585 db = dbuf_hold(mdn, blk, FTAG); 586 if (drop_struct_lock) 587 rw_exit(&mdn->dn_struct_rwlock); 588 if (db == NULL) 589 return (EIO); 590 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 591 if (err) { 592 dbuf_rele(db, FTAG); 593 return (err); 594 } 595 596 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 597 epb = db->db.db_size >> DNODE_SHIFT; 598 599 idx = object & (epb-1); 600 601 children_dnodes = dmu_buf_get_user(&db->db); 602 if (children_dnodes == NULL) { 603 dnode_t **winner; 604 children_dnodes = kmem_zalloc(epb * sizeof (dnode_t *), 605 KM_SLEEP); 606 if (winner = dmu_buf_set_user(&db->db, children_dnodes, NULL, 607 dnode_buf_pageout)) { 608 kmem_free(children_dnodes, epb * sizeof (dnode_t *)); 609 children_dnodes = winner; 610 } 611 } 612 613 if ((dn = children_dnodes[idx]) == NULL) { 614 dnode_phys_t *dnp = (dnode_phys_t *)db->db.db_data+idx; 615 dnode_t *winner; 616 617 dn = dnode_create(os, dnp, db, object); 618 winner = atomic_cas_ptr(&children_dnodes[idx], NULL, dn); 619 if (winner != NULL) { 620 dnode_destroy(dn); 621 dn = winner; 622 } 623 } 624 625 mutex_enter(&dn->dn_mtx); 626 type = dn->dn_type; 627 if (dn->dn_free_txg || 628 ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) || 629 ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)) { 630 mutex_exit(&dn->dn_mtx); 631 dbuf_rele(db, FTAG); 632 return (type == DMU_OT_NONE ? ENOENT : EEXIST); 633 } 634 mutex_exit(&dn->dn_mtx); 635 636 if (refcount_add(&dn->dn_holds, tag) == 1) 637 dbuf_add_ref(db, dn); 638 639 DNODE_VERIFY(dn); 640 ASSERT3P(dn->dn_dbuf, ==, db); 641 ASSERT3U(dn->dn_object, ==, object); 642 dbuf_rele(db, FTAG); 643 644 *dnp = dn; 645 return (0); 646 } 647 648 /* 649 * Return held dnode if the object is allocated, NULL if not. 650 */ 651 int 652 dnode_hold(objset_impl_t *os, uint64_t object, void *tag, dnode_t **dnp) 653 { 654 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp)); 655 } 656 657 /* 658 * Can only add a reference if there is already at least one 659 * reference on the dnode. Returns FALSE if unable to add a 660 * new reference. 661 */ 662 boolean_t 663 dnode_add_ref(dnode_t *dn, void *tag) 664 { 665 mutex_enter(&dn->dn_mtx); 666 if (refcount_is_zero(&dn->dn_holds)) { 667 mutex_exit(&dn->dn_mtx); 668 return (FALSE); 669 } 670 VERIFY(1 < refcount_add(&dn->dn_holds, tag)); 671 mutex_exit(&dn->dn_mtx); 672 return (TRUE); 673 } 674 675 void 676 dnode_rele(dnode_t *dn, void *tag) 677 { 678 uint64_t refs; 679 680 mutex_enter(&dn->dn_mtx); 681 refs = refcount_remove(&dn->dn_holds, tag); 682 mutex_exit(&dn->dn_mtx); 683 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 684 if (refs == 0 && dn->dn_dbuf) 685 dbuf_rele(dn->dn_dbuf, dn); 686 } 687 688 void 689 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 690 { 691 objset_impl_t *os = dn->dn_objset; 692 uint64_t txg = tx->tx_txg; 693 694 if (dn->dn_object == DMU_META_DNODE_OBJECT) 695 return; 696 697 DNODE_VERIFY(dn); 698 699 #ifdef ZFS_DEBUG 700 mutex_enter(&dn->dn_mtx); 701 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 702 /* ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); */ 703 mutex_exit(&dn->dn_mtx); 704 #endif 705 706 mutex_enter(&os->os_lock); 707 708 /* 709 * If we are already marked dirty, we're done. 710 */ 711 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 712 mutex_exit(&os->os_lock); 713 return; 714 } 715 716 ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs)); 717 ASSERT(dn->dn_datablksz != 0); 718 ASSERT3U(dn->dn_next_bonuslen[txg&TXG_MASK], ==, 0); 719 ASSERT3U(dn->dn_next_blksz[txg&TXG_MASK], ==, 0); 720 721 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 722 dn->dn_object, txg); 723 724 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) { 725 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn); 726 } else { 727 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn); 728 } 729 730 mutex_exit(&os->os_lock); 731 732 /* 733 * The dnode maintains a hold on its containing dbuf as 734 * long as there are holds on it. Each instantiated child 735 * dbuf maintaines a hold on the dnode. When the last child 736 * drops its hold, the dnode will drop its hold on the 737 * containing dbuf. We add a "dirty hold" here so that the 738 * dnode will hang around after we finish processing its 739 * children. 740 */ 741 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 742 743 (void) dbuf_dirty(dn->dn_dbuf, tx); 744 745 dsl_dataset_dirty(os->os_dsl_dataset, tx); 746 } 747 748 void 749 dnode_free(dnode_t *dn, dmu_tx_t *tx) 750 { 751 int txgoff = tx->tx_txg & TXG_MASK; 752 753 dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg); 754 755 /* we should be the only holder... hopefully */ 756 /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */ 757 758 mutex_enter(&dn->dn_mtx); 759 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 760 mutex_exit(&dn->dn_mtx); 761 return; 762 } 763 dn->dn_free_txg = tx->tx_txg; 764 mutex_exit(&dn->dn_mtx); 765 766 /* 767 * If the dnode is already dirty, it needs to be moved from 768 * the dirty list to the free list. 769 */ 770 mutex_enter(&dn->dn_objset->os_lock); 771 if (list_link_active(&dn->dn_dirty_link[txgoff])) { 772 list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn); 773 list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn); 774 mutex_exit(&dn->dn_objset->os_lock); 775 } else { 776 mutex_exit(&dn->dn_objset->os_lock); 777 dnode_setdirty(dn, tx); 778 } 779 } 780 781 /* 782 * Try to change the block size for the indicated dnode. This can only 783 * succeed if there are no blocks allocated or dirty beyond first block 784 */ 785 int 786 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 787 { 788 dmu_buf_impl_t *db, *db_next; 789 int err; 790 791 if (size == 0) 792 size = SPA_MINBLOCKSIZE; 793 if (size > SPA_MAXBLOCKSIZE) 794 size = SPA_MAXBLOCKSIZE; 795 else 796 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 797 798 if (ibs == dn->dn_indblkshift) 799 ibs = 0; 800 801 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 802 return (0); 803 804 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 805 806 /* Check for any allocated blocks beyond the first */ 807 if (dn->dn_phys->dn_maxblkid != 0) 808 goto fail; 809 810 mutex_enter(&dn->dn_dbufs_mtx); 811 for (db = list_head(&dn->dn_dbufs); db; db = db_next) { 812 db_next = list_next(&dn->dn_dbufs, db); 813 814 if (db->db_blkid != 0 && db->db_blkid != DB_BONUS_BLKID) { 815 mutex_exit(&dn->dn_dbufs_mtx); 816 goto fail; 817 } 818 } 819 mutex_exit(&dn->dn_dbufs_mtx); 820 821 if (ibs && dn->dn_nlevels != 1) 822 goto fail; 823 824 /* resize the old block */ 825 err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db); 826 if (err == 0) 827 dbuf_new_size(db, size, tx); 828 else if (err != ENOENT) 829 goto fail; 830 831 dnode_setdblksz(dn, size); 832 dnode_setdirty(dn, tx); 833 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 834 if (ibs) { 835 dn->dn_indblkshift = ibs; 836 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 837 } 838 /* rele after we have fixed the blocksize in the dnode */ 839 if (db) 840 dbuf_rele(db, FTAG); 841 842 rw_exit(&dn->dn_struct_rwlock); 843 return (0); 844 845 fail: 846 rw_exit(&dn->dn_struct_rwlock); 847 return (ENOTSUP); 848 } 849 850 /* read-holding callers must not rely on the lock being continuously held */ 851 void 852 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read) 853 { 854 uint64_t txgoff = tx->tx_txg & TXG_MASK; 855 int epbs, new_nlevels; 856 uint64_t sz; 857 858 ASSERT(blkid != DB_BONUS_BLKID); 859 860 ASSERT(have_read ? 861 RW_READ_HELD(&dn->dn_struct_rwlock) : 862 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 863 864 /* 865 * if we have a read-lock, check to see if we need to do any work 866 * before upgrading to a write-lock. 867 */ 868 if (have_read) { 869 if (blkid <= dn->dn_maxblkid) 870 return; 871 872 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 873 rw_exit(&dn->dn_struct_rwlock); 874 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 875 } 876 } 877 878 if (blkid <= dn->dn_maxblkid) 879 goto out; 880 881 dn->dn_maxblkid = blkid; 882 883 /* 884 * Compute the number of levels necessary to support the new maxblkid. 885 */ 886 new_nlevels = 1; 887 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 888 for (sz = dn->dn_nblkptr; 889 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 890 new_nlevels++; 891 892 if (new_nlevels > dn->dn_nlevels) { 893 int old_nlevels = dn->dn_nlevels; 894 dmu_buf_impl_t *db; 895 list_t *list; 896 dbuf_dirty_record_t *new, *dr, *dr_next; 897 898 dn->dn_nlevels = new_nlevels; 899 900 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 901 dn->dn_next_nlevels[txgoff] = new_nlevels; 902 903 /* dirty the left indirects */ 904 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 905 new = dbuf_dirty(db, tx); 906 dbuf_rele(db, FTAG); 907 908 /* transfer the dirty records to the new indirect */ 909 mutex_enter(&dn->dn_mtx); 910 mutex_enter(&new->dt.di.dr_mtx); 911 list = &dn->dn_dirty_records[txgoff]; 912 for (dr = list_head(list); dr; dr = dr_next) { 913 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 914 if (dr->dr_dbuf->db_level != new_nlevels-1 && 915 dr->dr_dbuf->db_blkid != DB_BONUS_BLKID) { 916 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 917 list_remove(&dn->dn_dirty_records[txgoff], dr); 918 list_insert_tail(&new->dt.di.dr_children, dr); 919 dr->dr_parent = new; 920 } 921 } 922 mutex_exit(&new->dt.di.dr_mtx); 923 mutex_exit(&dn->dn_mtx); 924 } 925 926 out: 927 if (have_read) 928 rw_downgrade(&dn->dn_struct_rwlock); 929 } 930 931 void 932 dnode_clear_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx) 933 { 934 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK]; 935 avl_index_t where; 936 free_range_t *rp; 937 free_range_t rp_tofind; 938 uint64_t endblk = blkid + nblks; 939 940 ASSERT(MUTEX_HELD(&dn->dn_mtx)); 941 ASSERT(nblks <= UINT64_MAX - blkid); /* no overflow */ 942 943 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 944 blkid, nblks, tx->tx_txg); 945 rp_tofind.fr_blkid = blkid; 946 rp = avl_find(tree, &rp_tofind, &where); 947 if (rp == NULL) 948 rp = avl_nearest(tree, where, AVL_BEFORE); 949 if (rp == NULL) 950 rp = avl_nearest(tree, where, AVL_AFTER); 951 952 while (rp && (rp->fr_blkid <= blkid + nblks)) { 953 uint64_t fr_endblk = rp->fr_blkid + rp->fr_nblks; 954 free_range_t *nrp = AVL_NEXT(tree, rp); 955 956 if (blkid <= rp->fr_blkid && endblk >= fr_endblk) { 957 /* clear this entire range */ 958 avl_remove(tree, rp); 959 kmem_free(rp, sizeof (free_range_t)); 960 } else if (blkid <= rp->fr_blkid && 961 endblk > rp->fr_blkid && endblk < fr_endblk) { 962 /* clear the beginning of this range */ 963 rp->fr_blkid = endblk; 964 rp->fr_nblks = fr_endblk - endblk; 965 } else if (blkid > rp->fr_blkid && blkid < fr_endblk && 966 endblk >= fr_endblk) { 967 /* clear the end of this range */ 968 rp->fr_nblks = blkid - rp->fr_blkid; 969 } else if (blkid > rp->fr_blkid && endblk < fr_endblk) { 970 /* clear a chunk out of this range */ 971 free_range_t *new_rp = 972 kmem_alloc(sizeof (free_range_t), KM_SLEEP); 973 974 new_rp->fr_blkid = endblk; 975 new_rp->fr_nblks = fr_endblk - endblk; 976 avl_insert_here(tree, new_rp, rp, AVL_AFTER); 977 rp->fr_nblks = blkid - rp->fr_blkid; 978 } 979 /* there may be no overlap */ 980 rp = nrp; 981 } 982 } 983 984 void 985 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 986 { 987 dmu_buf_impl_t *db; 988 uint64_t blkoff, blkid, nblks; 989 int blksz, blkshift, head, tail; 990 int trunc = FALSE; 991 int epbs; 992 993 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 994 blksz = dn->dn_datablksz; 995 blkshift = dn->dn_datablkshift; 996 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 997 998 if (len == -1ULL) { 999 len = UINT64_MAX - off; 1000 trunc = TRUE; 1001 } 1002 1003 /* 1004 * First, block align the region to free: 1005 */ 1006 if (ISP2(blksz)) { 1007 head = P2NPHASE(off, blksz); 1008 blkoff = P2PHASE(off, blksz); 1009 if ((off >> blkshift) > dn->dn_maxblkid) 1010 goto out; 1011 } else { 1012 ASSERT(dn->dn_maxblkid == 0); 1013 if (off == 0 && len >= blksz) { 1014 /* Freeing the whole block; fast-track this request */ 1015 blkid = 0; 1016 nblks = 1; 1017 goto done; 1018 } else if (off >= blksz) { 1019 /* Freeing past end-of-data */ 1020 goto out; 1021 } else { 1022 /* Freeing part of the block. */ 1023 head = blksz - off; 1024 ASSERT3U(head, >, 0); 1025 } 1026 blkoff = off; 1027 } 1028 /* zero out any partial block data at the start of the range */ 1029 if (head) { 1030 ASSERT3U(blkoff + head, ==, blksz); 1031 if (len < head) 1032 head = len; 1033 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE, 1034 FTAG, &db) == 0) { 1035 caddr_t data; 1036 1037 /* don't dirty if it isn't on disk and isn't dirty */ 1038 if (db->db_last_dirty || 1039 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1040 rw_exit(&dn->dn_struct_rwlock); 1041 dbuf_will_dirty(db, tx); 1042 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1043 data = db->db.db_data; 1044 bzero(data + blkoff, head); 1045 } 1046 dbuf_rele(db, FTAG); 1047 } 1048 off += head; 1049 len -= head; 1050 } 1051 1052 /* If the range was less than one block, we're done */ 1053 if (len == 0) 1054 goto out; 1055 1056 /* If the remaining range is past end of file, we're done */ 1057 if ((off >> blkshift) > dn->dn_maxblkid) 1058 goto out; 1059 1060 ASSERT(ISP2(blksz)); 1061 if (trunc) 1062 tail = 0; 1063 else 1064 tail = P2PHASE(len, blksz); 1065 1066 ASSERT3U(P2PHASE(off, blksz), ==, 0); 1067 /* zero out any partial block data at the end of the range */ 1068 if (tail) { 1069 if (len < tail) 1070 tail = len; 1071 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len), 1072 TRUE, FTAG, &db) == 0) { 1073 /* don't dirty if not on disk and not dirty */ 1074 if (db->db_last_dirty || 1075 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1076 rw_exit(&dn->dn_struct_rwlock); 1077 dbuf_will_dirty(db, tx); 1078 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1079 bzero(db->db.db_data, tail); 1080 } 1081 dbuf_rele(db, FTAG); 1082 } 1083 len -= tail; 1084 } 1085 1086 /* If the range did not include a full block, we are done */ 1087 if (len == 0) 1088 goto out; 1089 1090 ASSERT(IS_P2ALIGNED(off, blksz)); 1091 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 1092 blkid = off >> blkshift; 1093 nblks = len >> blkshift; 1094 if (trunc) 1095 nblks += 1; 1096 1097 /* 1098 * Read in and mark all the level-1 indirects dirty, 1099 * so that they will stay in memory until syncing phase. 1100 * Always dirty the first and last indirect to make sure 1101 * we dirty all the partial indirects. 1102 */ 1103 if (dn->dn_nlevels > 1) { 1104 uint64_t i, first, last; 1105 int shift = epbs + dn->dn_datablkshift; 1106 1107 first = blkid >> epbs; 1108 if (db = dbuf_hold_level(dn, 1, first, FTAG)) { 1109 dbuf_will_dirty(db, tx); 1110 dbuf_rele(db, FTAG); 1111 } 1112 if (trunc) 1113 last = dn->dn_maxblkid >> epbs; 1114 else 1115 last = (blkid + nblks - 1) >> epbs; 1116 if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) { 1117 dbuf_will_dirty(db, tx); 1118 dbuf_rele(db, FTAG); 1119 } 1120 for (i = first + 1; i < last; i++) { 1121 uint64_t ibyte = i << shift; 1122 int err; 1123 1124 err = dnode_next_offset(dn, 1125 DNODE_FIND_HAVELOCK, &ibyte, 1, 1, 0); 1126 i = ibyte >> shift; 1127 if (err == ESRCH || i >= last) 1128 break; 1129 ASSERT(err == 0); 1130 db = dbuf_hold_level(dn, 1, i, FTAG); 1131 if (db) { 1132 dbuf_will_dirty(db, tx); 1133 dbuf_rele(db, FTAG); 1134 } 1135 } 1136 } 1137 done: 1138 /* 1139 * Add this range to the dnode range list. 1140 * We will finish up this free operation in the syncing phase. 1141 */ 1142 mutex_enter(&dn->dn_mtx); 1143 dnode_clear_range(dn, blkid, nblks, tx); 1144 { 1145 free_range_t *rp, *found; 1146 avl_index_t where; 1147 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK]; 1148 1149 /* Add new range to dn_ranges */ 1150 rp = kmem_alloc(sizeof (free_range_t), KM_SLEEP); 1151 rp->fr_blkid = blkid; 1152 rp->fr_nblks = nblks; 1153 found = avl_find(tree, rp, &where); 1154 ASSERT(found == NULL); 1155 avl_insert(tree, rp, where); 1156 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 1157 blkid, nblks, tx->tx_txg); 1158 } 1159 mutex_exit(&dn->dn_mtx); 1160 1161 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 1162 dnode_setdirty(dn, tx); 1163 out: 1164 if (trunc && dn->dn_maxblkid >= (off >> blkshift)) 1165 dn->dn_maxblkid = (off >> blkshift ? (off >> blkshift) - 1 : 0); 1166 1167 rw_exit(&dn->dn_struct_rwlock); 1168 } 1169 1170 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 1171 uint64_t 1172 dnode_block_freed(dnode_t *dn, uint64_t blkid) 1173 { 1174 free_range_t range_tofind; 1175 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 1176 int i; 1177 1178 if (blkid == DB_BONUS_BLKID) 1179 return (FALSE); 1180 1181 /* 1182 * If we're in the process of opening the pool, dp will not be 1183 * set yet, but there shouldn't be anything dirty. 1184 */ 1185 if (dp == NULL) 1186 return (FALSE); 1187 1188 if (dn->dn_free_txg) 1189 return (TRUE); 1190 1191 /* 1192 * If dn_datablkshift is not set, then there's only a single 1193 * block, in which case there will never be a free range so it 1194 * won't matter. 1195 */ 1196 range_tofind.fr_blkid = blkid; 1197 mutex_enter(&dn->dn_mtx); 1198 for (i = 0; i < TXG_SIZE; i++) { 1199 free_range_t *range_found; 1200 avl_index_t idx; 1201 1202 range_found = avl_find(&dn->dn_ranges[i], &range_tofind, &idx); 1203 if (range_found) { 1204 ASSERT(range_found->fr_nblks > 0); 1205 break; 1206 } 1207 range_found = avl_nearest(&dn->dn_ranges[i], idx, AVL_BEFORE); 1208 if (range_found && 1209 range_found->fr_blkid + range_found->fr_nblks > blkid) 1210 break; 1211 } 1212 mutex_exit(&dn->dn_mtx); 1213 return (i < TXG_SIZE); 1214 } 1215 1216 /* call from syncing context when we actually write/free space for this dnode */ 1217 void 1218 dnode_diduse_space(dnode_t *dn, int64_t delta) 1219 { 1220 uint64_t space; 1221 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 1222 dn, dn->dn_phys, 1223 (u_longlong_t)dn->dn_phys->dn_used, 1224 (longlong_t)delta); 1225 1226 mutex_enter(&dn->dn_mtx); 1227 space = DN_USED_BYTES(dn->dn_phys); 1228 if (delta > 0) { 1229 ASSERT3U(space + delta, >=, space); /* no overflow */ 1230 } else { 1231 ASSERT3U(space, >=, -delta); /* no underflow */ 1232 } 1233 space += delta; 1234 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 1235 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 1236 ASSERT3U(P2PHASE(space, 1<<DEV_BSHIFT), ==, 0); 1237 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 1238 } else { 1239 dn->dn_phys->dn_used = space; 1240 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 1241 } 1242 mutex_exit(&dn->dn_mtx); 1243 } 1244 1245 /* 1246 * Call when we think we're going to write/free space in open context. 1247 * Be conservative (ie. OK to write less than this or free more than 1248 * this, but don't write more or free less). 1249 */ 1250 void 1251 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx) 1252 { 1253 objset_impl_t *os = dn->dn_objset; 1254 dsl_dataset_t *ds = os->os_dsl_dataset; 1255 1256 if (space > 0) 1257 space = spa_get_asize(os->os_spa, space); 1258 1259 if (ds) 1260 dsl_dir_willuse_space(ds->ds_dir, space, tx); 1261 1262 dmu_tx_willuse_space(tx, space); 1263 } 1264 1265 static int 1266 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 1267 int lvl, uint64_t blkfill, uint64_t txg) 1268 { 1269 dmu_buf_impl_t *db = NULL; 1270 void *data = NULL; 1271 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 1272 uint64_t epb = 1ULL << epbs; 1273 uint64_t minfill, maxfill; 1274 boolean_t hole; 1275 int i, inc, error, span; 1276 1277 dprintf("probing object %llu offset %llx level %d of %u\n", 1278 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); 1279 1280 hole = flags & DNODE_FIND_HOLE; 1281 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 1282 ASSERT(txg == 0 || !hole); 1283 1284 if (lvl == dn->dn_phys->dn_nlevels) { 1285 error = 0; 1286 epb = dn->dn_phys->dn_nblkptr; 1287 data = dn->dn_phys->dn_blkptr; 1288 } else { 1289 uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl); 1290 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db); 1291 if (error) { 1292 if (error != ENOENT) 1293 return (error); 1294 if (hole) 1295 return (0); 1296 /* 1297 * This can only happen when we are searching up 1298 * the block tree for data. We don't really need to 1299 * adjust the offset, as we will just end up looking 1300 * at the pointer to this block in its parent, and its 1301 * going to be unallocated, so we will skip over it. 1302 */ 1303 return (ESRCH); 1304 } 1305 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT); 1306 if (error) { 1307 dbuf_rele(db, FTAG); 1308 return (error); 1309 } 1310 data = db->db.db_data; 1311 } 1312 1313 if (db && txg && 1314 (db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg)) { 1315 /* 1316 * This can only happen when we are searching up the tree 1317 * and these conditions mean that we need to keep climbing. 1318 */ 1319 error = ESRCH; 1320 } else if (lvl == 0) { 1321 dnode_phys_t *dnp = data; 1322 span = DNODE_SHIFT; 1323 ASSERT(dn->dn_type == DMU_OT_DNODE); 1324 1325 for (i = (*offset >> span) & (blkfill - 1); 1326 i >= 0 && i < blkfill; i += inc) { 1327 boolean_t newcontents = B_TRUE; 1328 if (txg) { 1329 int j; 1330 newcontents = B_FALSE; 1331 for (j = 0; j < dnp[i].dn_nblkptr; j++) { 1332 if (dnp[i].dn_blkptr[j].blk_birth > txg) 1333 newcontents = B_TRUE; 1334 } 1335 } 1336 if (!dnp[i].dn_type == hole && newcontents) 1337 break; 1338 *offset += (1ULL << span) * inc; 1339 } 1340 if (i < 0 || i == blkfill) 1341 error = ESRCH; 1342 } else { 1343 blkptr_t *bp = data; 1344 span = (lvl - 1) * epbs + dn->dn_datablkshift; 1345 minfill = 0; 1346 maxfill = blkfill << ((lvl - 1) * epbs); 1347 1348 if (hole) 1349 maxfill--; 1350 else 1351 minfill++; 1352 1353 for (i = (*offset >> span) & ((1ULL << epbs) - 1); 1354 i >= 0 && i < epb; i += inc) { 1355 if (bp[i].blk_fill >= minfill && 1356 bp[i].blk_fill <= maxfill && 1357 (hole || bp[i].blk_birth > txg)) 1358 break; 1359 if (inc < 0 && *offset < (1ULL << span)) 1360 *offset = 0; 1361 else 1362 *offset += (1ULL << span) * inc; 1363 } 1364 if (i < 0 || i == epb) 1365 error = ESRCH; 1366 } 1367 1368 if (db) 1369 dbuf_rele(db, FTAG); 1370 1371 return (error); 1372 } 1373 1374 /* 1375 * Find the next hole, data, or sparse region at or after *offset. 1376 * The value 'blkfill' tells us how many items we expect to find 1377 * in an L0 data block; this value is 1 for normal objects, 1378 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 1379 * DNODES_PER_BLOCK when searching for sparse regions thereof. 1380 * 1381 * Examples: 1382 * 1383 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 1384 * Finds the next/previous hole/data in a file. 1385 * Used in dmu_offset_next(). 1386 * 1387 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 1388 * Finds the next free/allocated dnode an objset's meta-dnode. 1389 * Only finds objects that have new contents since txg (ie. 1390 * bonus buffer changes and content removal are ignored). 1391 * Used in dmu_object_next(). 1392 * 1393 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 1394 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 1395 * Used in dmu_object_alloc(). 1396 */ 1397 int 1398 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 1399 int minlvl, uint64_t blkfill, uint64_t txg) 1400 { 1401 uint64_t initial_offset = *offset; 1402 int lvl, maxlvl; 1403 int error = 0; 1404 1405 if (!(flags & DNODE_FIND_HAVELOCK)) 1406 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1407 1408 if (dn->dn_phys->dn_nlevels == 0) { 1409 error = ESRCH; 1410 goto out; 1411 } 1412 1413 if (dn->dn_datablkshift == 0) { 1414 if (*offset < dn->dn_datablksz) { 1415 if (flags & DNODE_FIND_HOLE) 1416 *offset = dn->dn_datablksz; 1417 } else { 1418 error = ESRCH; 1419 } 1420 goto out; 1421 } 1422 1423 maxlvl = dn->dn_phys->dn_nlevels; 1424 1425 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 1426 error = dnode_next_offset_level(dn, 1427 flags, offset, lvl, blkfill, txg); 1428 if (error != ESRCH) 1429 break; 1430 } 1431 1432 while (error == 0 && --lvl >= minlvl) { 1433 error = dnode_next_offset_level(dn, 1434 flags, offset, lvl, blkfill, txg); 1435 } 1436 1437 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 1438 initial_offset < *offset : initial_offset > *offset)) 1439 error = ESRCH; 1440 out: 1441 if (!(flags & DNODE_FIND_HAVELOCK)) 1442 rw_exit(&dn->dn_struct_rwlock); 1443 1444 return (error); 1445 } 1446