1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2012, Martin Matuska <mm@FreeBSD.org>. All rights reserved. 27 * Copyright 2014 HybridCluster. All rights reserved. 28 * Copyright 2016 RackTop Systems. 29 * Copyright (c) 2014 Integros [integros.com] 30 */ 31 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dbuf.h> 36 #include <sys/dnode.h> 37 #include <sys/zfs_context.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/dmu_traverse.h> 40 #include <sys/dsl_dataset.h> 41 #include <sys/dsl_dir.h> 42 #include <sys/dsl_prop.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_synctask.h> 45 #include <sys/zfs_ioctl.h> 46 #include <sys/zap.h> 47 #include <sys/zio_checksum.h> 48 #include <sys/zfs_znode.h> 49 #include <zfs_fletcher.h> 50 #include <sys/avl.h> 51 #include <sys/ddt.h> 52 #include <sys/zfs_onexit.h> 53 #include <sys/dmu_send.h> 54 #include <sys/dsl_destroy.h> 55 #include <sys/blkptr.h> 56 #include <sys/dsl_bookmark.h> 57 #include <sys/zfeature.h> 58 #include <sys/bqueue.h> 59 60 #ifdef __FreeBSD__ 61 #undef dump_write 62 #define dump_write dmu_dump_write 63 #endif 64 65 #ifdef __NetBSD__ 66 #ifdef _KERNEL 67 #define FOF_OFFSET FOF_UPDATE_OFFSET 68 #define td_ucred l_cred 69 #define bwillwrite() /* nothing */ 70 71 static int 72 fo_write(struct file *fp, struct uio *uio, cred_t *cred, int flags, kthread_t *thr) 73 { 74 75 if (fp->f_type == DTYPE_VNODE) 76 flags |= FOF_UPDATE_OFFSET; 77 return (*fp->f_ops->fo_write)(fp, &fp->f_offset, uio, cred, flags); 78 } 79 80 static int 81 fo_read(struct file *fp, struct uio *uio, cred_t *cred, int flags, kthread_t *thr) 82 { 83 84 if (fp->f_type == DTYPE_VNODE) 85 flags |= FOF_UPDATE_OFFSET; 86 return (*fp->f_ops->fo_read)(fp, &fp->f_offset, uio, cred, flags); 87 } 88 #endif 89 #endif 90 91 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 92 int zfs_send_corrupt_data = B_FALSE; 93 int zfs_send_queue_length = 16 * 1024 * 1024; 94 int zfs_recv_queue_length = 16 * 1024 * 1024; 95 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */ 96 int zfs_send_set_freerecords_bit = B_TRUE; 97 98 #ifdef _KERNEL 99 TUNABLE_INT("vfs.zfs.send_set_freerecords_bit", &zfs_send_set_freerecords_bit); 100 #endif 101 102 static char *dmu_recv_tag = "dmu_recv_tag"; 103 const char *recv_clone_name = "%recv"; 104 105 #define BP_SPAN(datablkszsec, indblkshift, level) \ 106 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 107 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 108 109 static void byteswap_record(dmu_replay_record_t *drr); 110 111 struct send_thread_arg { 112 bqueue_t q; 113 dsl_dataset_t *ds; /* Dataset to traverse */ 114 uint64_t fromtxg; /* Traverse from this txg */ 115 int flags; /* flags to pass to traverse_dataset */ 116 int error_code; 117 boolean_t cancel; 118 zbookmark_phys_t resume; 119 }; 120 121 struct send_block_record { 122 boolean_t eos_marker; /* Marks the end of the stream */ 123 blkptr_t bp; 124 zbookmark_phys_t zb; 125 uint8_t indblkshift; 126 uint16_t datablkszsec; 127 bqueue_node_t ln; 128 }; 129 130 static int 131 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 132 { 133 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os); 134 struct uio auio; 135 struct iovec aiov; 136 137 /* 138 * The code does not rely on this (len being a multiple of 8). We keep 139 * this assertion because of the corresponding assertion in 140 * receive_read(). Keeping this assertion ensures that we do not 141 * inadvertently break backwards compatibility (causing the assertion 142 * in receive_read() to trigger on old software). 143 * 144 * Removing the assertions could be rolled into a new feature that uses 145 * data that isn't 8-byte aligned; if the assertions were removed, a 146 * feature flag would have to be added. 147 */ 148 149 ASSERT0(len % 8); 150 151 aiov.iov_base = buf; 152 aiov.iov_len = len; 153 auio.uio_iov = &aiov; 154 auio.uio_iovcnt = 1; 155 auio.uio_resid = len; 156 #ifdef __NetBSD__ 157 #ifdef _KERNEL 158 auio.uio_vmspace = vmspace_kernel(); 159 #endif 160 #else 161 auio.uio_segflg = UIO_SYSSPACE; 162 #endif 163 auio.uio_rw = UIO_WRITE; 164 auio.uio_offset = (off_t)-1; 165 #ifdef __FreeBSD__ 166 auio.uio_td = dsp->dsa_td; 167 #endif 168 #ifdef _KERNEL 169 if (dsp->dsa_fp->f_type == DTYPE_VNODE) 170 bwillwrite(); 171 dsp->dsa_err = fo_write(dsp->dsa_fp, &auio, dsp->dsa_td->td_ucred, 0, 172 dsp->dsa_td); 173 #else 174 fprintf(stderr, "%s: returning EOPNOTSUPP\n", __func__); 175 dsp->dsa_err = EOPNOTSUPP; 176 #endif 177 mutex_enter(&ds->ds_sendstream_lock); 178 *dsp->dsa_off += len; 179 mutex_exit(&ds->ds_sendstream_lock); 180 181 return (dsp->dsa_err); 182 } 183 184 /* 185 * For all record types except BEGIN, fill in the checksum (overlaid in 186 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 187 * up to the start of the checksum itself. 188 */ 189 static int 190 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 191 { 192 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 193 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 194 fletcher_4_incremental_native(dsp->dsa_drr, 195 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 196 &dsp->dsa_zc); 197 if (dsp->dsa_drr->drr_type == DRR_BEGIN) { 198 dsp->dsa_sent_begin = B_TRUE; 199 } else { 200 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 201 drr_checksum.drr_checksum)); 202 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 203 } 204 if (dsp->dsa_drr->drr_type == DRR_END) { 205 dsp->dsa_sent_end = B_TRUE; 206 } 207 fletcher_4_incremental_native(&dsp->dsa_drr-> 208 drr_u.drr_checksum.drr_checksum, 209 sizeof (zio_cksum_t), &dsp->dsa_zc); 210 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 211 return (SET_ERROR(EINTR)); 212 if (payload_len != 0) { 213 fletcher_4_incremental_native(payload, payload_len, 214 &dsp->dsa_zc); 215 if (dump_bytes(dsp, payload, payload_len) != 0) 216 return (SET_ERROR(EINTR)); 217 } 218 return (0); 219 } 220 221 /* 222 * Fill in the drr_free struct, or perform aggregation if the previous record is 223 * also a free record, and the two are adjacent. 224 * 225 * Note that we send free records even for a full send, because we want to be 226 * able to receive a full send as a clone, which requires a list of all the free 227 * and freeobject records that were generated on the source. 228 */ 229 static int 230 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 231 uint64_t length) 232 { 233 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 234 235 /* 236 * When we receive a free record, dbuf_free_range() assumes 237 * that the receiving system doesn't have any dbufs in the range 238 * being freed. This is always true because there is a one-record 239 * constraint: we only send one WRITE record for any given 240 * object,offset. We know that the one-record constraint is 241 * true because we always send data in increasing order by 242 * object,offset. 243 * 244 * If the increasing-order constraint ever changes, we should find 245 * another way to assert that the one-record constraint is still 246 * satisfied. 247 */ 248 ASSERT(object > dsp->dsa_last_data_object || 249 (object == dsp->dsa_last_data_object && 250 offset > dsp->dsa_last_data_offset)); 251 252 if (length != -1ULL && offset + length < offset) 253 length = -1ULL; 254 255 /* 256 * If there is a pending op, but it's not PENDING_FREE, push it out, 257 * since free block aggregation can only be done for blocks of the 258 * same type (i.e., DRR_FREE records can only be aggregated with 259 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 260 * aggregated with other DRR_FREEOBJECTS records. 261 */ 262 if (dsp->dsa_pending_op != PENDING_NONE && 263 dsp->dsa_pending_op != PENDING_FREE) { 264 if (dump_record(dsp, NULL, 0) != 0) 265 return (SET_ERROR(EINTR)); 266 dsp->dsa_pending_op = PENDING_NONE; 267 } 268 269 if (dsp->dsa_pending_op == PENDING_FREE) { 270 /* 271 * There should never be a PENDING_FREE if length is -1 272 * (because dump_dnode is the only place where this 273 * function is called with a -1, and only after flushing 274 * any pending record). 275 */ 276 ASSERT(length != -1ULL); 277 /* 278 * Check to see whether this free block can be aggregated 279 * with pending one. 280 */ 281 if (drrf->drr_object == object && drrf->drr_offset + 282 drrf->drr_length == offset) { 283 drrf->drr_length += length; 284 return (0); 285 } else { 286 /* not a continuation. Push out pending record */ 287 if (dump_record(dsp, NULL, 0) != 0) 288 return (SET_ERROR(EINTR)); 289 dsp->dsa_pending_op = PENDING_NONE; 290 } 291 } 292 /* create a FREE record and make it pending */ 293 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 294 dsp->dsa_drr->drr_type = DRR_FREE; 295 drrf->drr_object = object; 296 drrf->drr_offset = offset; 297 drrf->drr_length = length; 298 drrf->drr_toguid = dsp->dsa_toguid; 299 if (length == -1ULL) { 300 if (dump_record(dsp, NULL, 0) != 0) 301 return (SET_ERROR(EINTR)); 302 } else { 303 dsp->dsa_pending_op = PENDING_FREE; 304 } 305 306 return (0); 307 } 308 309 static int 310 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 311 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data) 312 { 313 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 314 315 /* 316 * We send data in increasing object, offset order. 317 * See comment in dump_free() for details. 318 */ 319 ASSERT(object > dsp->dsa_last_data_object || 320 (object == dsp->dsa_last_data_object && 321 offset > dsp->dsa_last_data_offset)); 322 dsp->dsa_last_data_object = object; 323 dsp->dsa_last_data_offset = offset + blksz - 1; 324 325 /* 326 * If there is any kind of pending aggregation (currently either 327 * a grouping of free objects or free blocks), push it out to 328 * the stream, since aggregation can't be done across operations 329 * of different types. 330 */ 331 if (dsp->dsa_pending_op != PENDING_NONE) { 332 if (dump_record(dsp, NULL, 0) != 0) 333 return (SET_ERROR(EINTR)); 334 dsp->dsa_pending_op = PENDING_NONE; 335 } 336 /* write a WRITE record */ 337 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 338 dsp->dsa_drr->drr_type = DRR_WRITE; 339 drrw->drr_object = object; 340 drrw->drr_type = type; 341 drrw->drr_offset = offset; 342 drrw->drr_length = blksz; 343 drrw->drr_toguid = dsp->dsa_toguid; 344 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 345 /* 346 * There's no pre-computed checksum for partial-block 347 * writes or embedded BP's, so (like 348 * fletcher4-checkummed blocks) userland will have to 349 * compute a dedup-capable checksum itself. 350 */ 351 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 352 } else { 353 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 354 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags & 355 ZCHECKSUM_FLAG_DEDUP) 356 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 357 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 358 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 359 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 360 drrw->drr_key.ddk_cksum = bp->blk_cksum; 361 } 362 363 if (dump_record(dsp, data, blksz) != 0) 364 return (SET_ERROR(EINTR)); 365 return (0); 366 } 367 368 static int 369 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 370 int blksz, const blkptr_t *bp) 371 { 372 char buf[BPE_PAYLOAD_SIZE]; 373 struct drr_write_embedded *drrw = 374 &(dsp->dsa_drr->drr_u.drr_write_embedded); 375 376 if (dsp->dsa_pending_op != PENDING_NONE) { 377 if (dump_record(dsp, NULL, 0) != 0) 378 return (EINTR); 379 dsp->dsa_pending_op = PENDING_NONE; 380 } 381 382 ASSERT(BP_IS_EMBEDDED(bp)); 383 384 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 385 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 386 drrw->drr_object = object; 387 drrw->drr_offset = offset; 388 drrw->drr_length = blksz; 389 drrw->drr_toguid = dsp->dsa_toguid; 390 drrw->drr_compression = BP_GET_COMPRESS(bp); 391 drrw->drr_etype = BPE_GET_ETYPE(bp); 392 drrw->drr_lsize = BPE_GET_LSIZE(bp); 393 drrw->drr_psize = BPE_GET_PSIZE(bp); 394 395 decode_embedded_bp_compressed(bp, buf); 396 397 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 398 return (EINTR); 399 return (0); 400 } 401 402 static int 403 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 404 { 405 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 406 407 if (dsp->dsa_pending_op != PENDING_NONE) { 408 if (dump_record(dsp, NULL, 0) != 0) 409 return (SET_ERROR(EINTR)); 410 dsp->dsa_pending_op = PENDING_NONE; 411 } 412 413 /* write a SPILL record */ 414 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 415 dsp->dsa_drr->drr_type = DRR_SPILL; 416 drrs->drr_object = object; 417 drrs->drr_length = blksz; 418 drrs->drr_toguid = dsp->dsa_toguid; 419 420 if (dump_record(dsp, data, blksz) != 0) 421 return (SET_ERROR(EINTR)); 422 return (0); 423 } 424 425 static int 426 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 427 { 428 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 429 430 /* 431 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 432 * push it out, since free block aggregation can only be done for 433 * blocks of the same type (i.e., DRR_FREE records can only be 434 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 435 * can only be aggregated with other DRR_FREEOBJECTS records. 436 */ 437 if (dsp->dsa_pending_op != PENDING_NONE && 438 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 439 if (dump_record(dsp, NULL, 0) != 0) 440 return (SET_ERROR(EINTR)); 441 dsp->dsa_pending_op = PENDING_NONE; 442 } 443 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 444 /* 445 * See whether this free object array can be aggregated 446 * with pending one 447 */ 448 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 449 drrfo->drr_numobjs += numobjs; 450 return (0); 451 } else { 452 /* can't be aggregated. Push out pending record */ 453 if (dump_record(dsp, NULL, 0) != 0) 454 return (SET_ERROR(EINTR)); 455 dsp->dsa_pending_op = PENDING_NONE; 456 } 457 } 458 459 /* write a FREEOBJECTS record */ 460 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 461 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 462 drrfo->drr_firstobj = firstobj; 463 drrfo->drr_numobjs = numobjs; 464 drrfo->drr_toguid = dsp->dsa_toguid; 465 466 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 467 468 return (0); 469 } 470 471 static int 472 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 473 { 474 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 475 476 if (object < dsp->dsa_resume_object) { 477 /* 478 * Note: when resuming, we will visit all the dnodes in 479 * the block of dnodes that we are resuming from. In 480 * this case it's unnecessary to send the dnodes prior to 481 * the one we are resuming from. We should be at most one 482 * block's worth of dnodes behind the resume point. 483 */ 484 ASSERT3U(dsp->dsa_resume_object - object, <, 485 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); 486 return (0); 487 } 488 489 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 490 return (dump_freeobjects(dsp, object, 1)); 491 492 if (dsp->dsa_pending_op != PENDING_NONE) { 493 if (dump_record(dsp, NULL, 0) != 0) 494 return (SET_ERROR(EINTR)); 495 dsp->dsa_pending_op = PENDING_NONE; 496 } 497 498 /* write an OBJECT record */ 499 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 500 dsp->dsa_drr->drr_type = DRR_OBJECT; 501 drro->drr_object = object; 502 drro->drr_type = dnp->dn_type; 503 drro->drr_bonustype = dnp->dn_bonustype; 504 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 505 drro->drr_bonuslen = dnp->dn_bonuslen; 506 drro->drr_checksumtype = dnp->dn_checksum; 507 drro->drr_compress = dnp->dn_compress; 508 drro->drr_toguid = dsp->dsa_toguid; 509 510 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 511 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 512 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 513 514 if (dump_record(dsp, DN_BONUS(dnp), 515 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 516 return (SET_ERROR(EINTR)); 517 } 518 519 /* Free anything past the end of the file. */ 520 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 521 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 522 return (SET_ERROR(EINTR)); 523 if (dsp->dsa_err != 0) 524 return (SET_ERROR(EINTR)); 525 return (0); 526 } 527 528 static boolean_t 529 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 530 { 531 if (!BP_IS_EMBEDDED(bp)) 532 return (B_FALSE); 533 534 /* 535 * Compression function must be legacy, or explicitly enabled. 536 */ 537 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 538 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4))) 539 return (B_FALSE); 540 541 /* 542 * Embed type must be explicitly enabled. 543 */ 544 switch (BPE_GET_ETYPE(bp)) { 545 case BP_EMBEDDED_TYPE_DATA: 546 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 547 return (B_TRUE); 548 break; 549 default: 550 return (B_FALSE); 551 } 552 return (B_FALSE); 553 } 554 555 /* 556 * This is the callback function to traverse_dataset that acts as the worker 557 * thread for dmu_send_impl. 558 */ 559 /*ARGSUSED*/ 560 static int 561 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 562 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 563 { 564 struct send_thread_arg *sta = arg; 565 struct send_block_record *record; 566 uint64_t record_size; 567 int err = 0; 568 569 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 570 zb->zb_object >= sta->resume.zb_object); 571 572 if (sta->cancel) 573 return (SET_ERROR(EINTR)); 574 575 if (bp == NULL) { 576 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 577 return (0); 578 } else if (zb->zb_level < 0) { 579 return (0); 580 } 581 582 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 583 record->eos_marker = B_FALSE; 584 record->bp = *bp; 585 record->zb = *zb; 586 record->indblkshift = dnp->dn_indblkshift; 587 record->datablkszsec = dnp->dn_datablkszsec; 588 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 589 bqueue_enqueue(&sta->q, record, record_size); 590 591 return (err); 592 } 593 594 /* 595 * This function kicks off the traverse_dataset. It also handles setting the 596 * error code of the thread in case something goes wrong, and pushes the End of 597 * Stream record when the traverse_dataset call has finished. If there is no 598 * dataset to traverse, the thread immediately pushes End of Stream marker. 599 */ 600 static void 601 send_traverse_thread(void *arg) 602 { 603 struct send_thread_arg *st_arg = arg; 604 int err; 605 struct send_block_record *data; 606 607 if (st_arg->ds != NULL) { 608 err = traverse_dataset_resume(st_arg->ds, 609 st_arg->fromtxg, &st_arg->resume, 610 st_arg->flags, send_cb, st_arg); 611 612 if (err != EINTR) 613 st_arg->error_code = err; 614 } 615 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 616 data->eos_marker = B_TRUE; 617 bqueue_enqueue(&st_arg->q, data, 1); 618 thread_exit(); 619 } 620 621 /* 622 * This function actually handles figuring out what kind of record needs to be 623 * dumped, reading the data (which has hopefully been prefetched), and calling 624 * the appropriate helper function. 625 */ 626 static int 627 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 628 { 629 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 630 const blkptr_t *bp = &data->bp; 631 const zbookmark_phys_t *zb = &data->zb; 632 uint8_t indblkshift = data->indblkshift; 633 uint16_t dblkszsec = data->datablkszsec; 634 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 635 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 636 int err = 0; 637 638 ASSERT3U(zb->zb_level, >=, 0); 639 640 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 641 zb->zb_object >= dsa->dsa_resume_object); 642 643 if (zb->zb_object != DMU_META_DNODE_OBJECT && 644 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 645 return (0); 646 } else if (BP_IS_HOLE(bp) && 647 zb->zb_object == DMU_META_DNODE_OBJECT) { 648 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 649 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 650 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 651 } else if (BP_IS_HOLE(bp)) { 652 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 653 uint64_t offset = zb->zb_blkid * span; 654 err = dump_free(dsa, zb->zb_object, offset, span); 655 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 656 return (0); 657 } else if (type == DMU_OT_DNODE) { 658 int blksz = BP_GET_LSIZE(bp); 659 arc_flags_t aflags = ARC_FLAG_WAIT; 660 arc_buf_t *abuf; 661 662 ASSERT0(zb->zb_level); 663 664 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 665 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 666 &aflags, zb) != 0) 667 return (SET_ERROR(EIO)); 668 669 dnode_phys_t *blk = abuf->b_data; 670 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); 671 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { 672 err = dump_dnode(dsa, dnobj + i, blk + i); 673 if (err != 0) 674 break; 675 } 676 arc_buf_destroy(abuf, &abuf); 677 } else if (type == DMU_OT_SA) { 678 arc_flags_t aflags = ARC_FLAG_WAIT; 679 arc_buf_t *abuf; 680 int blksz = BP_GET_LSIZE(bp); 681 682 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 683 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 684 &aflags, zb) != 0) 685 return (SET_ERROR(EIO)); 686 687 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 688 arc_buf_destroy(abuf, &abuf); 689 } else if (backup_do_embed(dsa, bp)) { 690 /* it's an embedded level-0 block of a regular object */ 691 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 692 ASSERT0(zb->zb_level); 693 err = dump_write_embedded(dsa, zb->zb_object, 694 zb->zb_blkid * blksz, blksz, bp); 695 } else { 696 /* it's a level-0 block of a regular object */ 697 arc_flags_t aflags = ARC_FLAG_WAIT; 698 arc_buf_t *abuf; 699 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 700 uint64_t offset; 701 702 ASSERT0(zb->zb_level); 703 ASSERT(zb->zb_object > dsa->dsa_resume_object || 704 (zb->zb_object == dsa->dsa_resume_object && 705 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 706 707 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 708 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 709 &aflags, zb) != 0) { 710 if (zfs_send_corrupt_data) { 711 /* Send a block filled with 0x"zfs badd bloc" */ 712 abuf = arc_alloc_buf(spa, blksz, &abuf, 713 ARC_BUFC_DATA); 714 uint64_t *ptr; 715 for (ptr = abuf->b_data; 716 (char *)ptr < (char *)abuf->b_data + blksz; 717 ptr++) 718 *ptr = 0x2f5baddb10cULL; 719 } else { 720 return (SET_ERROR(EIO)); 721 } 722 } 723 724 offset = zb->zb_blkid * blksz; 725 726 if (!(dsa->dsa_featureflags & 727 DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 728 blksz > SPA_OLD_MAXBLOCKSIZE) { 729 char *buf = abuf->b_data; 730 while (blksz > 0 && err == 0) { 731 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 732 err = dump_write(dsa, type, zb->zb_object, 733 offset, n, NULL, buf); 734 offset += n; 735 buf += n; 736 blksz -= n; 737 } 738 } else { 739 err = dump_write(dsa, type, zb->zb_object, 740 offset, blksz, bp, abuf->b_data); 741 } 742 arc_buf_destroy(abuf, &abuf); 743 } 744 745 ASSERT(err == 0 || err == EINTR); 746 return (err); 747 } 748 749 /* 750 * Pop the new data off the queue, and free the old data. 751 */ 752 static struct send_block_record * 753 get_next_record(bqueue_t *bq, struct send_block_record *data) 754 { 755 struct send_block_record *tmp = bqueue_dequeue(bq); 756 kmem_free(data, sizeof (*data)); 757 return (tmp); 758 } 759 760 /* 761 * Actually do the bulk of the work in a zfs send. 762 * 763 * Note: Releases dp using the specified tag. 764 */ 765 static int 766 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 767 zfs_bookmark_phys_t *ancestor_zb, 768 boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd, 769 uint64_t resumeobj, uint64_t resumeoff, 770 #ifdef illumos 771 vnode_t *vp, offset_t *off) 772 #else 773 struct file *fp, offset_t *off) 774 #endif 775 { 776 objset_t *os; 777 dmu_replay_record_t *drr; 778 dmu_sendarg_t *dsp; 779 int err; 780 uint64_t fromtxg = 0; 781 uint64_t featureflags = 0; 782 struct send_thread_arg to_arg = { 0 }; 783 784 err = dmu_objset_from_ds(to_ds, &os); 785 if (err != 0) { 786 dsl_pool_rele(dp, tag); 787 return (err); 788 } 789 790 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 791 drr->drr_type = DRR_BEGIN; 792 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 793 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 794 DMU_SUBSTREAM); 795 796 #ifdef _KERNEL 797 if (dmu_objset_type(os) == DMU_OST_ZFS) { 798 uint64_t version; 799 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 800 kmem_free(drr, sizeof (dmu_replay_record_t)); 801 dsl_pool_rele(dp, tag); 802 return (SET_ERROR(EINVAL)); 803 } 804 if (version >= ZPL_VERSION_SA) { 805 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 806 } 807 } 808 #endif 809 810 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) 811 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 812 if (embedok && 813 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 814 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 815 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 816 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4; 817 } 818 819 if (resumeobj != 0 || resumeoff != 0) { 820 featureflags |= DMU_BACKUP_FEATURE_RESUMING; 821 } 822 823 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 824 featureflags); 825 826 drr->drr_u.drr_begin.drr_creation_time = 827 dsl_dataset_phys(to_ds)->ds_creation_time; 828 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 829 if (is_clone) 830 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 831 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 832 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 833 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 834 if (zfs_send_set_freerecords_bit) 835 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS; 836 837 if (ancestor_zb != NULL) { 838 drr->drr_u.drr_begin.drr_fromguid = 839 ancestor_zb->zbm_guid; 840 fromtxg = ancestor_zb->zbm_creation_txg; 841 } 842 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 843 if (!to_ds->ds_is_snapshot) { 844 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 845 sizeof (drr->drr_u.drr_begin.drr_toname)); 846 } 847 848 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 849 850 dsp->dsa_drr = drr; 851 dsp->dsa_outfd = outfd; 852 dsp->dsa_proc = curproc; 853 dsp->dsa_td = curthread; 854 dsp->dsa_fp = fp; 855 dsp->dsa_os = os; 856 dsp->dsa_off = off; 857 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 858 dsp->dsa_pending_op = PENDING_NONE; 859 dsp->dsa_featureflags = featureflags; 860 dsp->dsa_resume_object = resumeobj; 861 dsp->dsa_resume_offset = resumeoff; 862 863 mutex_enter(&to_ds->ds_sendstream_lock); 864 list_insert_head(&to_ds->ds_sendstreams, dsp); 865 mutex_exit(&to_ds->ds_sendstream_lock); 866 867 dsl_dataset_long_hold(to_ds, FTAG); 868 dsl_pool_rele(dp, tag); 869 870 void *payload = NULL; 871 size_t payload_len = 0; 872 if (resumeobj != 0 || resumeoff != 0) { 873 dmu_object_info_t to_doi; 874 err = dmu_object_info(os, resumeobj, &to_doi); 875 if (err != 0) 876 goto out; 877 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0, 878 resumeoff / to_doi.doi_data_block_size); 879 880 nvlist_t *nvl = fnvlist_alloc(); 881 fnvlist_add_uint64(nvl, "resume_object", resumeobj); 882 fnvlist_add_uint64(nvl, "resume_offset", resumeoff); 883 payload = fnvlist_pack(nvl, &payload_len); 884 drr->drr_payloadlen = payload_len; 885 fnvlist_free(nvl); 886 } 887 888 err = dump_record(dsp, payload, payload_len); 889 fnvlist_pack_free(payload, payload_len); 890 if (err != 0) { 891 err = dsp->dsa_err; 892 goto out; 893 } 894 895 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 896 offsetof(struct send_block_record, ln)); 897 to_arg.error_code = 0; 898 to_arg.cancel = B_FALSE; 899 to_arg.ds = to_ds; 900 to_arg.fromtxg = fromtxg; 901 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 902 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, &p0, 903 TS_RUN, minclsyspri); 904 905 struct send_block_record *to_data; 906 to_data = bqueue_dequeue(&to_arg.q); 907 908 while (!to_data->eos_marker && err == 0) { 909 err = do_dump(dsp, to_data); 910 to_data = get_next_record(&to_arg.q, to_data); 911 if (issig(JUSTLOOKING) && issig(FORREAL)) 912 err = EINTR; 913 } 914 915 if (err != 0) { 916 to_arg.cancel = B_TRUE; 917 while (!to_data->eos_marker) { 918 to_data = get_next_record(&to_arg.q, to_data); 919 } 920 } 921 kmem_free(to_data, sizeof (*to_data)); 922 923 bqueue_destroy(&to_arg.q); 924 925 if (err == 0 && to_arg.error_code != 0) 926 err = to_arg.error_code; 927 928 if (err != 0) 929 goto out; 930 931 if (dsp->dsa_pending_op != PENDING_NONE) 932 if (dump_record(dsp, NULL, 0) != 0) 933 err = SET_ERROR(EINTR); 934 935 if (err != 0) { 936 if (err == EINTR && dsp->dsa_err != 0) 937 err = dsp->dsa_err; 938 goto out; 939 } 940 941 bzero(drr, sizeof (dmu_replay_record_t)); 942 drr->drr_type = DRR_END; 943 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 944 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 945 946 if (dump_record(dsp, NULL, 0) != 0) 947 err = dsp->dsa_err; 948 949 out: 950 mutex_enter(&to_ds->ds_sendstream_lock); 951 list_remove(&to_ds->ds_sendstreams, dsp); 952 mutex_exit(&to_ds->ds_sendstream_lock); 953 954 VERIFY(err != 0 || (dsp->dsa_sent_begin && dsp->dsa_sent_end)); 955 956 kmem_free(drr, sizeof (dmu_replay_record_t)); 957 kmem_free(dsp, sizeof (dmu_sendarg_t)); 958 959 dsl_dataset_long_rele(to_ds, FTAG); 960 961 return (err); 962 } 963 964 int 965 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 966 boolean_t embedok, boolean_t large_block_ok, 967 #ifdef illumos 968 int outfd, vnode_t *vp, offset_t *off) 969 #else 970 int outfd, struct file *fp, offset_t *off) 971 #endif 972 { 973 dsl_pool_t *dp; 974 dsl_dataset_t *ds; 975 dsl_dataset_t *fromds = NULL; 976 int err; 977 978 err = dsl_pool_hold(pool, FTAG, &dp); 979 if (err != 0) 980 return (err); 981 982 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 983 if (err != 0) { 984 dsl_pool_rele(dp, FTAG); 985 return (err); 986 } 987 988 if (fromsnap != 0) { 989 zfs_bookmark_phys_t zb; 990 boolean_t is_clone; 991 992 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 993 if (err != 0) { 994 dsl_dataset_rele(ds, FTAG); 995 dsl_pool_rele(dp, FTAG); 996 return (err); 997 } 998 if (!dsl_dataset_is_before(ds, fromds, 0)) 999 err = SET_ERROR(EXDEV); 1000 zb.zbm_creation_time = 1001 dsl_dataset_phys(fromds)->ds_creation_time; 1002 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 1003 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 1004 is_clone = (fromds->ds_dir != ds->ds_dir); 1005 dsl_dataset_rele(fromds, FTAG); 1006 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 1007 embedok, large_block_ok, outfd, 0, 0, fp, off); 1008 } else { 1009 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1010 embedok, large_block_ok, outfd, 0, 0, fp, off); 1011 } 1012 dsl_dataset_rele(ds, FTAG); 1013 return (err); 1014 } 1015 1016 int 1017 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, 1018 boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff, 1019 #ifdef illumos 1020 vnode_t *vp, offset_t *off) 1021 #else 1022 struct file *fp, offset_t *off) 1023 #endif 1024 { 1025 dsl_pool_t *dp; 1026 dsl_dataset_t *ds; 1027 int err; 1028 boolean_t owned = B_FALSE; 1029 1030 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 1031 return (SET_ERROR(EINVAL)); 1032 1033 err = dsl_pool_hold(tosnap, FTAG, &dp); 1034 if (err != 0) 1035 return (err); 1036 1037 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 1038 /* 1039 * We are sending a filesystem or volume. Ensure 1040 * that it doesn't change by owning the dataset. 1041 */ 1042 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 1043 owned = B_TRUE; 1044 } else { 1045 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 1046 } 1047 if (err != 0) { 1048 dsl_pool_rele(dp, FTAG); 1049 return (err); 1050 } 1051 1052 if (fromsnap != NULL) { 1053 zfs_bookmark_phys_t zb; 1054 boolean_t is_clone = B_FALSE; 1055 int fsnamelen = strchr(tosnap, '@') - tosnap; 1056 1057 /* 1058 * If the fromsnap is in a different filesystem, then 1059 * mark the send stream as a clone. 1060 */ 1061 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 1062 (fromsnap[fsnamelen] != '@' && 1063 fromsnap[fsnamelen] != '#')) { 1064 is_clone = B_TRUE; 1065 } 1066 1067 if (strchr(fromsnap, '@')) { 1068 dsl_dataset_t *fromds; 1069 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 1070 if (err == 0) { 1071 if (!dsl_dataset_is_before(ds, fromds, 0)) 1072 err = SET_ERROR(EXDEV); 1073 zb.zbm_creation_time = 1074 dsl_dataset_phys(fromds)->ds_creation_time; 1075 zb.zbm_creation_txg = 1076 dsl_dataset_phys(fromds)->ds_creation_txg; 1077 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 1078 is_clone = (ds->ds_dir != fromds->ds_dir); 1079 dsl_dataset_rele(fromds, FTAG); 1080 } 1081 } else { 1082 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 1083 } 1084 if (err != 0) { 1085 dsl_dataset_rele(ds, FTAG); 1086 dsl_pool_rele(dp, FTAG); 1087 return (err); 1088 } 1089 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 1090 embedok, large_block_ok, 1091 outfd, resumeobj, resumeoff, fp, off); 1092 } else { 1093 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1094 embedok, large_block_ok, 1095 outfd, resumeobj, resumeoff, fp, off); 1096 } 1097 if (owned) 1098 dsl_dataset_disown(ds, FTAG); 1099 else 1100 dsl_dataset_rele(ds, FTAG); 1101 return (err); 1102 } 1103 1104 static int 1105 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size, 1106 uint64_t *sizep) 1107 { 1108 int err; 1109 /* 1110 * Assume that space (both on-disk and in-stream) is dominated by 1111 * data. We will adjust for indirect blocks and the copies property, 1112 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 1113 */ 1114 1115 /* 1116 * Subtract out approximate space used by indirect blocks. 1117 * Assume most space is used by data blocks (non-indirect, non-dnode). 1118 * Assume all blocks are recordsize. Assume ditto blocks and 1119 * internal fragmentation counter out compression. 1120 * 1121 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 1122 * block, which we observe in practice. 1123 */ 1124 uint64_t recordsize; 1125 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize); 1126 if (err != 0) 1127 return (err); 1128 size -= size / recordsize * sizeof (blkptr_t); 1129 1130 /* Add in the space for the record associated with each block. */ 1131 size += size / recordsize * sizeof (dmu_replay_record_t); 1132 1133 *sizep = size; 1134 1135 return (0); 1136 } 1137 1138 int 1139 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep) 1140 { 1141 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1142 int err; 1143 uint64_t size; 1144 1145 ASSERT(dsl_pool_config_held(dp)); 1146 1147 /* tosnap must be a snapshot */ 1148 if (!ds->ds_is_snapshot) 1149 return (SET_ERROR(EINVAL)); 1150 1151 /* fromsnap, if provided, must be a snapshot */ 1152 if (fromds != NULL && !fromds->ds_is_snapshot) 1153 return (SET_ERROR(EINVAL)); 1154 1155 /* 1156 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1157 * or the origin's fs. 1158 */ 1159 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1160 return (SET_ERROR(EXDEV)); 1161 1162 /* Get uncompressed size estimate of changed data. */ 1163 if (fromds == NULL) { 1164 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1165 } else { 1166 uint64_t used, comp; 1167 err = dsl_dataset_space_written(fromds, ds, 1168 &used, &comp, &size); 1169 if (err != 0) 1170 return (err); 1171 } 1172 1173 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1174 return (err); 1175 } 1176 1177 /* 1178 * Simple callback used to traverse the blocks of a snapshot and sum their 1179 * uncompressed size 1180 */ 1181 /* ARGSUSED */ 1182 static int 1183 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1184 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1185 { 1186 uint64_t *spaceptr = arg; 1187 if (bp != NULL && !BP_IS_HOLE(bp)) { 1188 *spaceptr += BP_GET_UCSIZE(bp); 1189 } 1190 return (0); 1191 } 1192 1193 /* 1194 * Given a desination snapshot and a TXG, calculate the approximate size of a 1195 * send stream sent from that TXG. from_txg may be zero, indicating that the 1196 * whole snapshot will be sent. 1197 */ 1198 int 1199 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1200 uint64_t *sizep) 1201 { 1202 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1203 int err; 1204 uint64_t size = 0; 1205 1206 ASSERT(dsl_pool_config_held(dp)); 1207 1208 /* tosnap must be a snapshot */ 1209 if (!dsl_dataset_is_snapshot(ds)) 1210 return (SET_ERROR(EINVAL)); 1211 1212 /* verify that from_txg is before the provided snapshot was taken */ 1213 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1214 return (SET_ERROR(EXDEV)); 1215 } 1216 1217 /* 1218 * traverse the blocks of the snapshot with birth times after 1219 * from_txg, summing their uncompressed size 1220 */ 1221 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1222 dmu_calculate_send_traversal, &size); 1223 if (err) 1224 return (err); 1225 1226 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1227 return (err); 1228 } 1229 1230 typedef struct dmu_recv_begin_arg { 1231 const char *drba_origin; 1232 dmu_recv_cookie_t *drba_cookie; 1233 cred_t *drba_cred; 1234 uint64_t drba_snapobj; 1235 } dmu_recv_begin_arg_t; 1236 1237 static int 1238 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1239 uint64_t fromguid) 1240 { 1241 uint64_t val; 1242 int error; 1243 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1244 1245 /* temporary clone name must not exist */ 1246 error = zap_lookup(dp->dp_meta_objset, 1247 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1248 8, 1, &val); 1249 if (error != ENOENT) 1250 return (error == 0 ? EBUSY : error); 1251 1252 /* new snapshot name must not exist */ 1253 error = zap_lookup(dp->dp_meta_objset, 1254 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1255 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1256 if (error != ENOENT) 1257 return (error == 0 ? EEXIST : error); 1258 1259 /* 1260 * Check snapshot limit before receiving. We'll recheck again at the 1261 * end, but might as well abort before receiving if we're already over 1262 * the limit. 1263 * 1264 * Note that we do not check the file system limit with 1265 * dsl_dir_fscount_check because the temporary %clones don't count 1266 * against that limit. 1267 */ 1268 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1269 NULL, drba->drba_cred); 1270 if (error != 0) 1271 return (error); 1272 1273 if (fromguid != 0) { 1274 dsl_dataset_t *snap; 1275 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1276 1277 /* Find snapshot in this dir that matches fromguid. */ 1278 while (obj != 0) { 1279 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1280 &snap); 1281 if (error != 0) 1282 return (SET_ERROR(ENODEV)); 1283 if (snap->ds_dir != ds->ds_dir) { 1284 dsl_dataset_rele(snap, FTAG); 1285 return (SET_ERROR(ENODEV)); 1286 } 1287 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1288 break; 1289 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1290 dsl_dataset_rele(snap, FTAG); 1291 } 1292 if (obj == 0) 1293 return (SET_ERROR(ENODEV)); 1294 1295 if (drba->drba_cookie->drc_force) { 1296 drba->drba_snapobj = obj; 1297 } else { 1298 /* 1299 * If we are not forcing, there must be no 1300 * changes since fromsnap. 1301 */ 1302 if (dsl_dataset_modified_since_snap(ds, snap)) { 1303 dsl_dataset_rele(snap, FTAG); 1304 return (SET_ERROR(ETXTBSY)); 1305 } 1306 drba->drba_snapobj = ds->ds_prev->ds_object; 1307 } 1308 1309 dsl_dataset_rele(snap, FTAG); 1310 } else { 1311 /* if full, then must be forced */ 1312 if (!drba->drba_cookie->drc_force) 1313 return (SET_ERROR(EEXIST)); 1314 /* start from $ORIGIN@$ORIGIN, if supported */ 1315 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1316 dp->dp_origin_snap->ds_object : 0; 1317 } 1318 1319 return (0); 1320 1321 } 1322 1323 static int 1324 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1325 { 1326 dmu_recv_begin_arg_t *drba = arg; 1327 dsl_pool_t *dp = dmu_tx_pool(tx); 1328 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1329 uint64_t fromguid = drrb->drr_fromguid; 1330 int flags = drrb->drr_flags; 1331 int error; 1332 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1333 dsl_dataset_t *ds; 1334 const char *tofs = drba->drba_cookie->drc_tofs; 1335 1336 /* already checked */ 1337 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1338 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 1339 1340 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1341 DMU_COMPOUNDSTREAM || 1342 drrb->drr_type >= DMU_OST_NUMTYPES || 1343 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1344 return (SET_ERROR(EINVAL)); 1345 1346 /* Verify pool version supports SA if SA_SPILL feature set */ 1347 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1348 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1349 return (SET_ERROR(ENOTSUP)); 1350 1351 if (drba->drba_cookie->drc_resumable && 1352 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 1353 return (SET_ERROR(ENOTSUP)); 1354 1355 /* 1356 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1357 * record to a plan WRITE record, so the pool must have the 1358 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1359 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1360 */ 1361 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1362 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1363 return (SET_ERROR(ENOTSUP)); 1364 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1365 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1366 return (SET_ERROR(ENOTSUP)); 1367 1368 /* 1369 * The receiving code doesn't know how to translate large blocks 1370 * to smaller ones, so the pool must have the LARGE_BLOCKS 1371 * feature enabled if the stream has LARGE_BLOCKS. 1372 */ 1373 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1374 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1375 return (SET_ERROR(ENOTSUP)); 1376 1377 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1378 if (error == 0) { 1379 /* target fs already exists; recv into temp clone */ 1380 1381 /* Can't recv a clone into an existing fs */ 1382 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 1383 dsl_dataset_rele(ds, FTAG); 1384 return (SET_ERROR(EINVAL)); 1385 } 1386 1387 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1388 dsl_dataset_rele(ds, FTAG); 1389 } else if (error == ENOENT) { 1390 /* target fs does not exist; must be a full backup or clone */ 1391 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1392 1393 /* 1394 * If it's a non-clone incremental, we are missing the 1395 * target fs, so fail the recv. 1396 */ 1397 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1398 drba->drba_origin)) 1399 return (SET_ERROR(ENOENT)); 1400 1401 /* 1402 * If we're receiving a full send as a clone, and it doesn't 1403 * contain all the necessary free records and freeobject 1404 * records, reject it. 1405 */ 1406 if (fromguid == 0 && drba->drba_origin && 1407 !(flags & DRR_FLAG_FREERECORDS)) 1408 return (SET_ERROR(EINVAL)); 1409 1410 /* Open the parent of tofs */ 1411 ASSERT3U(strlen(tofs), <, sizeof (buf)); 1412 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1413 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1414 if (error != 0) 1415 return (error); 1416 1417 /* 1418 * Check filesystem and snapshot limits before receiving. We'll 1419 * recheck snapshot limits again at the end (we create the 1420 * filesystems and increment those counts during begin_sync). 1421 */ 1422 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1423 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1424 if (error != 0) { 1425 dsl_dataset_rele(ds, FTAG); 1426 return (error); 1427 } 1428 1429 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1430 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1431 if (error != 0) { 1432 dsl_dataset_rele(ds, FTAG); 1433 return (error); 1434 } 1435 1436 if (drba->drba_origin != NULL) { 1437 dsl_dataset_t *origin; 1438 error = dsl_dataset_hold(dp, drba->drba_origin, 1439 FTAG, &origin); 1440 if (error != 0) { 1441 dsl_dataset_rele(ds, FTAG); 1442 return (error); 1443 } 1444 if (!origin->ds_is_snapshot) { 1445 dsl_dataset_rele(origin, FTAG); 1446 dsl_dataset_rele(ds, FTAG); 1447 return (SET_ERROR(EINVAL)); 1448 } 1449 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 1450 fromguid != 0) { 1451 dsl_dataset_rele(origin, FTAG); 1452 dsl_dataset_rele(ds, FTAG); 1453 return (SET_ERROR(ENODEV)); 1454 } 1455 dsl_dataset_rele(origin, FTAG); 1456 } 1457 dsl_dataset_rele(ds, FTAG); 1458 error = 0; 1459 } 1460 return (error); 1461 } 1462 1463 static void 1464 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1465 { 1466 dmu_recv_begin_arg_t *drba = arg; 1467 dsl_pool_t *dp = dmu_tx_pool(tx); 1468 objset_t *mos = dp->dp_meta_objset; 1469 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1470 const char *tofs = drba->drba_cookie->drc_tofs; 1471 dsl_dataset_t *ds, *newds; 1472 uint64_t dsobj; 1473 int error; 1474 uint64_t crflags = 0; 1475 1476 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 1477 crflags |= DS_FLAG_CI_DATASET; 1478 1479 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1480 if (error == 0) { 1481 /* create temporary clone */ 1482 dsl_dataset_t *snap = NULL; 1483 if (drba->drba_snapobj != 0) { 1484 VERIFY0(dsl_dataset_hold_obj(dp, 1485 drba->drba_snapobj, FTAG, &snap)); 1486 } 1487 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1488 snap, crflags, drba->drba_cred, tx); 1489 if (drba->drba_snapobj != 0) 1490 dsl_dataset_rele(snap, FTAG); 1491 dsl_dataset_rele(ds, FTAG); 1492 } else { 1493 dsl_dir_t *dd; 1494 const char *tail; 1495 dsl_dataset_t *origin = NULL; 1496 1497 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1498 1499 if (drba->drba_origin != NULL) { 1500 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1501 FTAG, &origin)); 1502 } 1503 1504 /* Create new dataset. */ 1505 dsobj = dsl_dataset_create_sync(dd, 1506 strrchr(tofs, '/') + 1, 1507 origin, crflags, drba->drba_cred, tx); 1508 if (origin != NULL) 1509 dsl_dataset_rele(origin, FTAG); 1510 dsl_dir_rele(dd, FTAG); 1511 drba->drba_cookie->drc_newfs = B_TRUE; 1512 } 1513 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1514 1515 if (drba->drba_cookie->drc_resumable) { 1516 dsl_dataset_zapify(newds, tx); 1517 if (drrb->drr_fromguid != 0) { 1518 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 1519 8, 1, &drrb->drr_fromguid, tx)); 1520 } 1521 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 1522 8, 1, &drrb->drr_toguid, tx)); 1523 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1524 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 1525 uint64_t one = 1; 1526 uint64_t zero = 0; 1527 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 1528 8, 1, &one, tx)); 1529 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 1530 8, 1, &zero, tx)); 1531 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 1532 8, 1, &zero, tx)); 1533 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1534 DMU_BACKUP_FEATURE_EMBED_DATA) { 1535 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 1536 8, 1, &one, tx)); 1537 } 1538 } 1539 1540 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1541 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1542 1543 /* 1544 * If we actually created a non-clone, we need to create the 1545 * objset in our new dataset. 1546 */ 1547 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 1548 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1549 (void) dmu_objset_create_impl(dp->dp_spa, 1550 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1551 } 1552 rrw_exit(&newds->ds_bp_rwlock, FTAG); 1553 1554 drba->drba_cookie->drc_ds = newds; 1555 1556 spa_history_log_internal_ds(newds, "receive", tx, ""); 1557 } 1558 1559 static int 1560 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1561 { 1562 dmu_recv_begin_arg_t *drba = arg; 1563 dsl_pool_t *dp = dmu_tx_pool(tx); 1564 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1565 int error; 1566 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1567 dsl_dataset_t *ds; 1568 const char *tofs = drba->drba_cookie->drc_tofs; 1569 1570 /* already checked */ 1571 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1572 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 1573 1574 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1575 DMU_COMPOUNDSTREAM || 1576 drrb->drr_type >= DMU_OST_NUMTYPES) 1577 return (SET_ERROR(EINVAL)); 1578 1579 /* Verify pool version supports SA if SA_SPILL feature set */ 1580 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1581 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1582 return (SET_ERROR(ENOTSUP)); 1583 1584 /* 1585 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1586 * record to a plain WRITE record, so the pool must have the 1587 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1588 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1589 */ 1590 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1591 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1592 return (SET_ERROR(ENOTSUP)); 1593 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1594 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1595 return (SET_ERROR(ENOTSUP)); 1596 1597 /* 6 extra bytes for /%recv */ 1598 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1599 1600 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1601 tofs, recv_clone_name); 1602 1603 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1604 /* %recv does not exist; continue in tofs */ 1605 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1606 if (error != 0) 1607 return (error); 1608 } 1609 1610 /* check that ds is marked inconsistent */ 1611 if (!DS_IS_INCONSISTENT(ds)) { 1612 dsl_dataset_rele(ds, FTAG); 1613 return (SET_ERROR(EINVAL)); 1614 } 1615 1616 /* check that there is resuming data, and that the toguid matches */ 1617 if (!dsl_dataset_is_zapified(ds)) { 1618 dsl_dataset_rele(ds, FTAG); 1619 return (SET_ERROR(EINVAL)); 1620 } 1621 uint64_t val; 1622 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1623 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1624 if (error != 0 || drrb->drr_toguid != val) { 1625 dsl_dataset_rele(ds, FTAG); 1626 return (SET_ERROR(EINVAL)); 1627 } 1628 1629 /* 1630 * Check if the receive is still running. If so, it will be owned. 1631 * Note that nothing else can own the dataset (e.g. after the receive 1632 * fails) because it will be marked inconsistent. 1633 */ 1634 if (dsl_dataset_has_owner(ds)) { 1635 dsl_dataset_rele(ds, FTAG); 1636 return (SET_ERROR(EBUSY)); 1637 } 1638 1639 /* There should not be any snapshots of this fs yet. */ 1640 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1641 dsl_dataset_rele(ds, FTAG); 1642 return (SET_ERROR(EINVAL)); 1643 } 1644 1645 /* 1646 * Note: resume point will be checked when we process the first WRITE 1647 * record. 1648 */ 1649 1650 /* check that the origin matches */ 1651 val = 0; 1652 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1653 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1654 if (drrb->drr_fromguid != val) { 1655 dsl_dataset_rele(ds, FTAG); 1656 return (SET_ERROR(EINVAL)); 1657 } 1658 1659 dsl_dataset_rele(ds, FTAG); 1660 return (0); 1661 } 1662 1663 static void 1664 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1665 { 1666 dmu_recv_begin_arg_t *drba = arg; 1667 dsl_pool_t *dp = dmu_tx_pool(tx); 1668 const char *tofs = drba->drba_cookie->drc_tofs; 1669 dsl_dataset_t *ds; 1670 uint64_t dsobj; 1671 /* 6 extra bytes for /%recv */ 1672 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1673 1674 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1675 tofs, recv_clone_name); 1676 1677 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1678 /* %recv does not exist; continue in tofs */ 1679 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds)); 1680 drba->drba_cookie->drc_newfs = B_TRUE; 1681 } 1682 1683 /* clear the inconsistent flag so that we can own it */ 1684 ASSERT(DS_IS_INCONSISTENT(ds)); 1685 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1686 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 1687 dsobj = ds->ds_object; 1688 dsl_dataset_rele(ds, FTAG); 1689 1690 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds)); 1691 1692 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1693 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 1694 1695 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1696 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))); 1697 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1698 1699 drba->drba_cookie->drc_ds = ds; 1700 1701 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 1702 } 1703 1704 /* 1705 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1706 * succeeds; otherwise we will leak the holds on the datasets. 1707 */ 1708 int 1709 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1710 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc) 1711 { 1712 dmu_recv_begin_arg_t drba = { 0 }; 1713 1714 bzero(drc, sizeof (dmu_recv_cookie_t)); 1715 drc->drc_drr_begin = drr_begin; 1716 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1717 drc->drc_tosnap = tosnap; 1718 drc->drc_tofs = tofs; 1719 drc->drc_force = force; 1720 drc->drc_resumable = resumable; 1721 drc->drc_cred = CRED(); 1722 1723 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1724 drc->drc_byteswap = B_TRUE; 1725 fletcher_4_incremental_byteswap(drr_begin, 1726 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1727 byteswap_record(drr_begin); 1728 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1729 fletcher_4_incremental_native(drr_begin, 1730 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1731 } else { 1732 return (SET_ERROR(EINVAL)); 1733 } 1734 1735 drba.drba_origin = origin; 1736 drba.drba_cookie = drc; 1737 drba.drba_cred = CRED(); 1738 1739 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1740 DMU_BACKUP_FEATURE_RESUMING) { 1741 return (dsl_sync_task(tofs, 1742 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1743 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1744 } else { 1745 return (dsl_sync_task(tofs, 1746 dmu_recv_begin_check, dmu_recv_begin_sync, 1747 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1748 } 1749 } 1750 1751 struct receive_record_arg { 1752 dmu_replay_record_t header; 1753 void *payload; /* Pointer to a buffer containing the payload */ 1754 /* 1755 * If the record is a write, pointer to the arc_buf_t containing the 1756 * payload. 1757 */ 1758 arc_buf_t *write_buf; 1759 int payload_size; 1760 uint64_t bytes_read; /* bytes read from stream when record created */ 1761 boolean_t eos_marker; /* Marks the end of the stream */ 1762 bqueue_node_t node; 1763 }; 1764 1765 struct receive_writer_arg { 1766 objset_t *os; 1767 boolean_t byteswap; 1768 bqueue_t q; 1769 1770 /* 1771 * These three args are used to signal to the main thread that we're 1772 * done. 1773 */ 1774 kmutex_t mutex; 1775 kcondvar_t cv; 1776 boolean_t done; 1777 1778 int err; 1779 /* A map from guid to dataset to help handle dedup'd streams. */ 1780 avl_tree_t *guid_to_ds_map; 1781 boolean_t resumable; 1782 uint64_t last_object, last_offset; 1783 uint64_t bytes_read; /* bytes read when current record created */ 1784 }; 1785 1786 struct objlist { 1787 list_t list; /* List of struct receive_objnode. */ 1788 /* 1789 * Last object looked up. Used to assert that objects are being looked 1790 * up in ascending order. 1791 */ 1792 uint64_t last_lookup; 1793 }; 1794 1795 struct receive_objnode { 1796 list_node_t node; 1797 uint64_t object; 1798 }; 1799 1800 struct receive_arg { 1801 objset_t *os; 1802 kthread_t *td; 1803 struct file *fp; 1804 uint64_t voff; /* The current offset in the stream */ 1805 uint64_t bytes_read; 1806 /* 1807 * A record that has had its payload read in, but hasn't yet been handed 1808 * off to the worker thread. 1809 */ 1810 struct receive_record_arg *rrd; 1811 /* A record that has had its header read in, but not its payload. */ 1812 struct receive_record_arg *next_rrd; 1813 zio_cksum_t cksum; 1814 zio_cksum_t prev_cksum; 1815 int err; 1816 boolean_t byteswap; 1817 /* Sorted list of objects not to issue prefetches for. */ 1818 struct objlist ignore_objlist; 1819 }; 1820 1821 typedef struct guid_map_entry { 1822 uint64_t guid; 1823 dsl_dataset_t *gme_ds; 1824 avl_node_t avlnode; 1825 } guid_map_entry_t; 1826 1827 static int 1828 guid_compare(const void *arg1, const void *arg2) 1829 { 1830 const guid_map_entry_t *gmep1 = arg1; 1831 const guid_map_entry_t *gmep2 = arg2; 1832 1833 if (gmep1->guid < gmep2->guid) 1834 return (-1); 1835 else if (gmep1->guid > gmep2->guid) 1836 return (1); 1837 return (0); 1838 } 1839 1840 static void 1841 free_guid_map_onexit(void *arg) 1842 { 1843 avl_tree_t *ca = arg; 1844 void *cookie = NULL; 1845 guid_map_entry_t *gmep; 1846 1847 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1848 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1849 dsl_dataset_rele(gmep->gme_ds, gmep); 1850 kmem_free(gmep, sizeof (guid_map_entry_t)); 1851 } 1852 avl_destroy(ca); 1853 kmem_free(ca, sizeof (avl_tree_t)); 1854 } 1855 1856 static int 1857 restore_bytes(struct receive_arg *ra, void *buf, int len, off_t off, ssize_t *resid) 1858 { 1859 struct uio auio; 1860 struct iovec aiov; 1861 int error; 1862 1863 aiov.iov_base = buf; 1864 aiov.iov_len = len; 1865 auio.uio_iov = &aiov; 1866 auio.uio_iovcnt = 1; 1867 auio.uio_resid = len; 1868 #ifdef __NetBSD__ 1869 #ifdef _KERNEL 1870 auio.uio_vmspace = vmspace_kernel(); 1871 #endif 1872 #else 1873 auio.uio_segflg = UIO_SYSSPACE; 1874 #endif 1875 auio.uio_rw = UIO_READ; 1876 auio.uio_offset = off; 1877 #ifdef __FreeBSD__ 1878 auio.uio_td = ra->td; 1879 #endif 1880 #ifdef _KERNEL 1881 error = fo_read(ra->fp, &auio, ra->td->td_ucred, FOF_OFFSET, ra->td); 1882 #else 1883 fprintf(stderr, "%s: returning EOPNOTSUPP\n", __func__); 1884 error = EOPNOTSUPP; 1885 #endif 1886 *resid = auio.uio_resid; 1887 return (error); 1888 } 1889 1890 static int 1891 receive_read(struct receive_arg *ra, int len, void *buf) 1892 { 1893 int done = 0; 1894 1895 /* 1896 * The code doesn't rely on this (lengths being multiples of 8). See 1897 * comment in dump_bytes. 1898 */ 1899 ASSERT0(len % 8); 1900 1901 while (done < len) { 1902 ssize_t resid; 1903 1904 ra->err = restore_bytes(ra, buf + done, 1905 len - done, ra->voff, &resid); 1906 1907 if (resid == len - done) { 1908 /* 1909 * Note: ECKSUM indicates that the receive 1910 * was interrupted and can potentially be resumed. 1911 */ 1912 ra->err = SET_ERROR(ECKSUM); 1913 } 1914 ra->voff += len - done - resid; 1915 done = len - resid; 1916 if (ra->err != 0) 1917 return (ra->err); 1918 } 1919 1920 ra->bytes_read += len; 1921 1922 ASSERT3U(done, ==, len); 1923 return (0); 1924 } 1925 1926 static void 1927 byteswap_record(dmu_replay_record_t *drr) 1928 { 1929 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1930 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1931 drr->drr_type = BSWAP_32(drr->drr_type); 1932 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1933 1934 switch (drr->drr_type) { 1935 case DRR_BEGIN: 1936 DO64(drr_begin.drr_magic); 1937 DO64(drr_begin.drr_versioninfo); 1938 DO64(drr_begin.drr_creation_time); 1939 DO32(drr_begin.drr_type); 1940 DO32(drr_begin.drr_flags); 1941 DO64(drr_begin.drr_toguid); 1942 DO64(drr_begin.drr_fromguid); 1943 break; 1944 case DRR_OBJECT: 1945 DO64(drr_object.drr_object); 1946 DO32(drr_object.drr_type); 1947 DO32(drr_object.drr_bonustype); 1948 DO32(drr_object.drr_blksz); 1949 DO32(drr_object.drr_bonuslen); 1950 DO64(drr_object.drr_toguid); 1951 break; 1952 case DRR_FREEOBJECTS: 1953 DO64(drr_freeobjects.drr_firstobj); 1954 DO64(drr_freeobjects.drr_numobjs); 1955 DO64(drr_freeobjects.drr_toguid); 1956 break; 1957 case DRR_WRITE: 1958 DO64(drr_write.drr_object); 1959 DO32(drr_write.drr_type); 1960 DO64(drr_write.drr_offset); 1961 DO64(drr_write.drr_length); 1962 DO64(drr_write.drr_toguid); 1963 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1964 DO64(drr_write.drr_key.ddk_prop); 1965 break; 1966 case DRR_WRITE_BYREF: 1967 DO64(drr_write_byref.drr_object); 1968 DO64(drr_write_byref.drr_offset); 1969 DO64(drr_write_byref.drr_length); 1970 DO64(drr_write_byref.drr_toguid); 1971 DO64(drr_write_byref.drr_refguid); 1972 DO64(drr_write_byref.drr_refobject); 1973 DO64(drr_write_byref.drr_refoffset); 1974 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1975 drr_key.ddk_cksum); 1976 DO64(drr_write_byref.drr_key.ddk_prop); 1977 break; 1978 case DRR_WRITE_EMBEDDED: 1979 DO64(drr_write_embedded.drr_object); 1980 DO64(drr_write_embedded.drr_offset); 1981 DO64(drr_write_embedded.drr_length); 1982 DO64(drr_write_embedded.drr_toguid); 1983 DO32(drr_write_embedded.drr_lsize); 1984 DO32(drr_write_embedded.drr_psize); 1985 break; 1986 case DRR_FREE: 1987 DO64(drr_free.drr_object); 1988 DO64(drr_free.drr_offset); 1989 DO64(drr_free.drr_length); 1990 DO64(drr_free.drr_toguid); 1991 break; 1992 case DRR_SPILL: 1993 DO64(drr_spill.drr_object); 1994 DO64(drr_spill.drr_length); 1995 DO64(drr_spill.drr_toguid); 1996 break; 1997 case DRR_END: 1998 DO64(drr_end.drr_toguid); 1999 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 2000 break; 2001 } 2002 2003 if (drr->drr_type != DRR_BEGIN) { 2004 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 2005 } 2006 2007 #undef DO64 2008 #undef DO32 2009 } 2010 2011 static inline uint8_t 2012 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 2013 { 2014 if (bonus_type == DMU_OT_SA) { 2015 return (1); 2016 } else { 2017 return (1 + 2018 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); 2019 } 2020 } 2021 2022 static void 2023 save_resume_state(struct receive_writer_arg *rwa, 2024 uint64_t object, uint64_t offset, dmu_tx_t *tx) 2025 { 2026 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 2027 2028 if (!rwa->resumable) 2029 return; 2030 2031 /* 2032 * We use ds_resume_bytes[] != 0 to indicate that we need to 2033 * update this on disk, so it must not be 0. 2034 */ 2035 ASSERT(rwa->bytes_read != 0); 2036 2037 /* 2038 * We only resume from write records, which have a valid 2039 * (non-meta-dnode) object number. 2040 */ 2041 ASSERT(object != 0); 2042 2043 /* 2044 * For resuming to work correctly, we must receive records in order, 2045 * sorted by object,offset. This is checked by the callers, but 2046 * assert it here for good measure. 2047 */ 2048 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 2049 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 2050 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 2051 ASSERT3U(rwa->bytes_read, >=, 2052 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 2053 2054 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 2055 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 2056 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 2057 } 2058 2059 static int 2060 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 2061 void *data) 2062 { 2063 dmu_object_info_t doi; 2064 dmu_tx_t *tx; 2065 uint64_t object; 2066 int err; 2067 2068 if (drro->drr_type == DMU_OT_NONE || 2069 !DMU_OT_IS_VALID(drro->drr_type) || 2070 !DMU_OT_IS_VALID(drro->drr_bonustype) || 2071 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 2072 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 2073 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 2074 drro->drr_blksz < SPA_MINBLOCKSIZE || 2075 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 2076 drro->drr_bonuslen > DN_MAX_BONUSLEN) { 2077 return (SET_ERROR(EINVAL)); 2078 } 2079 2080 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 2081 2082 if (err != 0 && err != ENOENT) 2083 return (SET_ERROR(EINVAL)); 2084 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; 2085 2086 /* 2087 * If we are losing blkptrs or changing the block size this must 2088 * be a new file instance. We must clear out the previous file 2089 * contents before we can change this type of metadata in the dnode. 2090 */ 2091 if (err == 0) { 2092 int nblkptr; 2093 2094 nblkptr = deduce_nblkptr(drro->drr_bonustype, 2095 drro->drr_bonuslen); 2096 2097 if (drro->drr_blksz != doi.doi_data_block_size || 2098 nblkptr < doi.doi_nblkptr) { 2099 err = dmu_free_long_range(rwa->os, drro->drr_object, 2100 0, DMU_OBJECT_END); 2101 if (err != 0) 2102 return (SET_ERROR(EINVAL)); 2103 } 2104 } 2105 2106 tx = dmu_tx_create(rwa->os); 2107 dmu_tx_hold_bonus(tx, object); 2108 err = dmu_tx_assign(tx, TXG_WAIT); 2109 if (err != 0) { 2110 dmu_tx_abort(tx); 2111 return (err); 2112 } 2113 2114 if (object == DMU_NEW_OBJECT) { 2115 /* currently free, want to be allocated */ 2116 err = dmu_object_claim(rwa->os, drro->drr_object, 2117 drro->drr_type, drro->drr_blksz, 2118 drro->drr_bonustype, drro->drr_bonuslen, tx); 2119 } else if (drro->drr_type != doi.doi_type || 2120 drro->drr_blksz != doi.doi_data_block_size || 2121 drro->drr_bonustype != doi.doi_bonus_type || 2122 drro->drr_bonuslen != doi.doi_bonus_size) { 2123 /* currently allocated, but with different properties */ 2124 err = dmu_object_reclaim(rwa->os, drro->drr_object, 2125 drro->drr_type, drro->drr_blksz, 2126 drro->drr_bonustype, drro->drr_bonuslen, tx); 2127 } 2128 if (err != 0) { 2129 dmu_tx_commit(tx); 2130 return (SET_ERROR(EINVAL)); 2131 } 2132 2133 dmu_object_set_checksum(rwa->os, drro->drr_object, 2134 drro->drr_checksumtype, tx); 2135 dmu_object_set_compress(rwa->os, drro->drr_object, 2136 drro->drr_compress, tx); 2137 2138 if (data != NULL) { 2139 dmu_buf_t *db; 2140 2141 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 2142 dmu_buf_will_dirty(db, tx); 2143 2144 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 2145 bcopy(data, db->db_data, drro->drr_bonuslen); 2146 if (rwa->byteswap) { 2147 dmu_object_byteswap_t byteswap = 2148 DMU_OT_BYTESWAP(drro->drr_bonustype); 2149 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 2150 drro->drr_bonuslen); 2151 } 2152 dmu_buf_rele(db, FTAG); 2153 } 2154 dmu_tx_commit(tx); 2155 2156 return (0); 2157 } 2158 2159 /* ARGSUSED */ 2160 static int 2161 receive_freeobjects(struct receive_writer_arg *rwa, 2162 struct drr_freeobjects *drrfo) 2163 { 2164 uint64_t obj; 2165 int next_err = 0; 2166 2167 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2168 return (SET_ERROR(EINVAL)); 2169 2170 for (obj = drrfo->drr_firstobj; 2171 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; 2172 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2173 int err; 2174 2175 if (dmu_object_info(rwa->os, obj, NULL) != 0) 2176 continue; 2177 2178 err = dmu_free_long_object(rwa->os, obj); 2179 if (err != 0) 2180 return (err); 2181 } 2182 if (next_err != ESRCH) 2183 return (next_err); 2184 return (0); 2185 } 2186 2187 static int 2188 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 2189 arc_buf_t *abuf) 2190 { 2191 dmu_tx_t *tx; 2192 int err; 2193 2194 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset || 2195 !DMU_OT_IS_VALID(drrw->drr_type)) 2196 return (SET_ERROR(EINVAL)); 2197 2198 /* 2199 * For resuming to work, records must be in increasing order 2200 * by (object, offset). 2201 */ 2202 if (drrw->drr_object < rwa->last_object || 2203 (drrw->drr_object == rwa->last_object && 2204 drrw->drr_offset < rwa->last_offset)) { 2205 return (SET_ERROR(EINVAL)); 2206 } 2207 rwa->last_object = drrw->drr_object; 2208 rwa->last_offset = drrw->drr_offset; 2209 2210 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 2211 return (SET_ERROR(EINVAL)); 2212 2213 tx = dmu_tx_create(rwa->os); 2214 2215 dmu_tx_hold_write(tx, drrw->drr_object, 2216 drrw->drr_offset, drrw->drr_length); 2217 err = dmu_tx_assign(tx, TXG_WAIT); 2218 if (err != 0) { 2219 dmu_tx_abort(tx); 2220 return (err); 2221 } 2222 if (rwa->byteswap) { 2223 dmu_object_byteswap_t byteswap = 2224 DMU_OT_BYTESWAP(drrw->drr_type); 2225 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 2226 drrw->drr_length); 2227 } 2228 2229 dmu_buf_t *bonus; 2230 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 2231 return (SET_ERROR(EINVAL)); 2232 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 2233 2234 /* 2235 * Note: If the receive fails, we want the resume stream to start 2236 * with the same record that we last successfully received (as opposed 2237 * to the next record), so that we can verify that we are 2238 * resuming from the correct location. 2239 */ 2240 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2241 dmu_tx_commit(tx); 2242 dmu_buf_rele(bonus, FTAG); 2243 2244 return (0); 2245 } 2246 2247 /* 2248 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 2249 * streams to refer to a copy of the data that is already on the 2250 * system because it came in earlier in the stream. This function 2251 * finds the earlier copy of the data, and uses that copy instead of 2252 * data from the stream to fulfill this write. 2253 */ 2254 static int 2255 receive_write_byref(struct receive_writer_arg *rwa, 2256 struct drr_write_byref *drrwbr) 2257 { 2258 dmu_tx_t *tx; 2259 int err; 2260 guid_map_entry_t gmesrch; 2261 guid_map_entry_t *gmep; 2262 avl_index_t where; 2263 objset_t *ref_os = NULL; 2264 dmu_buf_t *dbp; 2265 2266 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 2267 return (SET_ERROR(EINVAL)); 2268 2269 /* 2270 * If the GUID of the referenced dataset is different from the 2271 * GUID of the target dataset, find the referenced dataset. 2272 */ 2273 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 2274 gmesrch.guid = drrwbr->drr_refguid; 2275 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 2276 &where)) == NULL) { 2277 return (SET_ERROR(EINVAL)); 2278 } 2279 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 2280 return (SET_ERROR(EINVAL)); 2281 } else { 2282 ref_os = rwa->os; 2283 } 2284 2285 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 2286 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 2287 if (err != 0) 2288 return (err); 2289 2290 tx = dmu_tx_create(rwa->os); 2291 2292 dmu_tx_hold_write(tx, drrwbr->drr_object, 2293 drrwbr->drr_offset, drrwbr->drr_length); 2294 err = dmu_tx_assign(tx, TXG_WAIT); 2295 if (err != 0) { 2296 dmu_tx_abort(tx); 2297 return (err); 2298 } 2299 dmu_write(rwa->os, drrwbr->drr_object, 2300 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 2301 dmu_buf_rele(dbp, FTAG); 2302 2303 /* See comment in restore_write. */ 2304 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 2305 dmu_tx_commit(tx); 2306 return (0); 2307 } 2308 2309 static int 2310 receive_write_embedded(struct receive_writer_arg *rwa, 2311 struct drr_write_embedded *drrwe, void *data) 2312 { 2313 dmu_tx_t *tx; 2314 int err; 2315 2316 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2317 return (EINVAL); 2318 2319 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2320 return (EINVAL); 2321 2322 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2323 return (EINVAL); 2324 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2325 return (EINVAL); 2326 2327 tx = dmu_tx_create(rwa->os); 2328 2329 dmu_tx_hold_write(tx, drrwe->drr_object, 2330 drrwe->drr_offset, drrwe->drr_length); 2331 err = dmu_tx_assign(tx, TXG_WAIT); 2332 if (err != 0) { 2333 dmu_tx_abort(tx); 2334 return (err); 2335 } 2336 2337 dmu_write_embedded(rwa->os, drrwe->drr_object, 2338 drrwe->drr_offset, data, drrwe->drr_etype, 2339 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2340 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2341 2342 /* See comment in restore_write. */ 2343 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2344 dmu_tx_commit(tx); 2345 return (0); 2346 } 2347 2348 static int 2349 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2350 void *data) 2351 { 2352 dmu_tx_t *tx; 2353 dmu_buf_t *db, *db_spill; 2354 int err; 2355 2356 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2357 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2358 return (SET_ERROR(EINVAL)); 2359 2360 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2361 return (SET_ERROR(EINVAL)); 2362 2363 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2364 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 2365 dmu_buf_rele(db, FTAG); 2366 return (err); 2367 } 2368 2369 tx = dmu_tx_create(rwa->os); 2370 2371 dmu_tx_hold_spill(tx, db->db_object); 2372 2373 err = dmu_tx_assign(tx, TXG_WAIT); 2374 if (err != 0) { 2375 dmu_buf_rele(db, FTAG); 2376 dmu_buf_rele(db_spill, FTAG); 2377 dmu_tx_abort(tx); 2378 return (err); 2379 } 2380 dmu_buf_will_dirty(db_spill, tx); 2381 2382 if (db_spill->db_size < drrs->drr_length) 2383 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 2384 drrs->drr_length, tx)); 2385 bcopy(data, db_spill->db_data, drrs->drr_length); 2386 2387 dmu_buf_rele(db, FTAG); 2388 dmu_buf_rele(db_spill, FTAG); 2389 2390 dmu_tx_commit(tx); 2391 return (0); 2392 } 2393 2394 /* ARGSUSED */ 2395 static int 2396 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2397 { 2398 int err; 2399 2400 if (drrf->drr_length != -1ULL && 2401 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2402 return (SET_ERROR(EINVAL)); 2403 2404 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2405 return (SET_ERROR(EINVAL)); 2406 2407 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2408 drrf->drr_offset, drrf->drr_length); 2409 2410 return (err); 2411 } 2412 2413 /* used to destroy the drc_ds on error */ 2414 static void 2415 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2416 { 2417 if (drc->drc_resumable) { 2418 /* wait for our resume state to be written to disk */ 2419 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0); 2420 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2421 } else { 2422 char name[ZFS_MAX_DATASET_NAME_LEN]; 2423 dsl_dataset_name(drc->drc_ds, name); 2424 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2425 (void) dsl_destroy_head(name); 2426 } 2427 } 2428 2429 static void 2430 receive_cksum(struct receive_arg *ra, int len, void *buf) 2431 { 2432 if (ra->byteswap) { 2433 fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 2434 } else { 2435 fletcher_4_incremental_native(buf, len, &ra->cksum); 2436 } 2437 } 2438 2439 /* 2440 * Read the payload into a buffer of size len, and update the current record's 2441 * payload field. 2442 * Allocate ra->next_rrd and read the next record's header into 2443 * ra->next_rrd->header. 2444 * Verify checksum of payload and next record. 2445 */ 2446 static int 2447 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 2448 { 2449 int err; 2450 2451 if (len != 0) { 2452 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2453 err = receive_read(ra, len, buf); 2454 if (err != 0) 2455 return (err); 2456 receive_cksum(ra, len, buf); 2457 2458 /* note: rrd is NULL when reading the begin record's payload */ 2459 if (ra->rrd != NULL) { 2460 ra->rrd->payload = buf; 2461 ra->rrd->payload_size = len; 2462 ra->rrd->bytes_read = ra->bytes_read; 2463 } 2464 } 2465 2466 ra->prev_cksum = ra->cksum; 2467 2468 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 2469 err = receive_read(ra, sizeof (ra->next_rrd->header), 2470 &ra->next_rrd->header); 2471 ra->next_rrd->bytes_read = ra->bytes_read; 2472 if (err != 0) { 2473 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2474 ra->next_rrd = NULL; 2475 return (err); 2476 } 2477 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2478 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2479 ra->next_rrd = NULL; 2480 return (SET_ERROR(EINVAL)); 2481 } 2482 2483 /* 2484 * Note: checksum is of everything up to but not including the 2485 * checksum itself. 2486 */ 2487 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2488 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2489 receive_cksum(ra, 2490 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2491 &ra->next_rrd->header); 2492 2493 zio_cksum_t cksum_orig = 2494 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2495 zio_cksum_t *cksump = 2496 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2497 2498 if (ra->byteswap) 2499 byteswap_record(&ra->next_rrd->header); 2500 2501 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2502 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2503 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2504 ra->next_rrd = NULL; 2505 return (SET_ERROR(ECKSUM)); 2506 } 2507 2508 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2509 2510 return (0); 2511 } 2512 2513 static void 2514 objlist_create(struct objlist *list) 2515 { 2516 list_create(&list->list, sizeof (struct receive_objnode), 2517 offsetof(struct receive_objnode, node)); 2518 list->last_lookup = 0; 2519 } 2520 2521 static void 2522 objlist_destroy(struct objlist *list) 2523 { 2524 for (struct receive_objnode *n = list_remove_head(&list->list); 2525 n != NULL; n = list_remove_head(&list->list)) { 2526 kmem_free(n, sizeof (*n)); 2527 } 2528 list_destroy(&list->list); 2529 } 2530 2531 /* 2532 * This function looks through the objlist to see if the specified object number 2533 * is contained in the objlist. In the process, it will remove all object 2534 * numbers in the list that are smaller than the specified object number. Thus, 2535 * any lookup of an object number smaller than a previously looked up object 2536 * number will always return false; therefore, all lookups should be done in 2537 * ascending order. 2538 */ 2539 static boolean_t 2540 objlist_exists(struct objlist *list, uint64_t object) 2541 { 2542 struct receive_objnode *node = list_head(&list->list); 2543 ASSERT3U(object, >=, list->last_lookup); 2544 list->last_lookup = object; 2545 while (node != NULL && node->object < object) { 2546 VERIFY3P(node, ==, list_remove_head(&list->list)); 2547 kmem_free(node, sizeof (*node)); 2548 node = list_head(&list->list); 2549 } 2550 return (node != NULL && node->object == object); 2551 } 2552 2553 /* 2554 * The objlist is a list of object numbers stored in ascending order. However, 2555 * the insertion of new object numbers does not seek out the correct location to 2556 * store a new object number; instead, it appends it to the list for simplicity. 2557 * Thus, any users must take care to only insert new object numbers in ascending 2558 * order. 2559 */ 2560 static void 2561 objlist_insert(struct objlist *list, uint64_t object) 2562 { 2563 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); 2564 node->object = object; 2565 #ifdef ZFS_DEBUG 2566 struct receive_objnode *last_object = list_tail(&list->list); 2567 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); 2568 ASSERT3U(node->object, >, last_objnum); 2569 #endif 2570 list_insert_tail(&list->list, node); 2571 } 2572 2573 /* 2574 * Issue the prefetch reads for any necessary indirect blocks. 2575 * 2576 * We use the object ignore list to tell us whether or not to issue prefetches 2577 * for a given object. We do this for both correctness (in case the blocksize 2578 * of an object has changed) and performance (if the object doesn't exist, don't 2579 * needlessly try to issue prefetches). We also trim the list as we go through 2580 * the stream to prevent it from growing to an unbounded size. 2581 * 2582 * The object numbers within will always be in sorted order, and any write 2583 * records we see will also be in sorted order, but they're not sorted with 2584 * respect to each other (i.e. we can get several object records before 2585 * receiving each object's write records). As a result, once we've reached a 2586 * given object number, we can safely remove any reference to lower object 2587 * numbers in the ignore list. In practice, we receive up to 32 object records 2588 * before receiving write records, so the list can have up to 32 nodes in it. 2589 */ 2590 /* ARGSUSED */ 2591 static void 2592 receive_read_prefetch(struct receive_arg *ra, 2593 uint64_t object, uint64_t offset, uint64_t length) 2594 { 2595 if (!objlist_exists(&ra->ignore_objlist, object)) { 2596 dmu_prefetch(ra->os, object, 1, offset, length, 2597 ZIO_PRIORITY_SYNC_READ); 2598 } 2599 } 2600 2601 /* 2602 * Read records off the stream, issuing any necessary prefetches. 2603 */ 2604 static int 2605 receive_read_record(struct receive_arg *ra) 2606 { 2607 int err; 2608 2609 switch (ra->rrd->header.drr_type) { 2610 case DRR_OBJECT: 2611 { 2612 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2613 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2614 void *buf = kmem_zalloc(size, KM_SLEEP); 2615 dmu_object_info_t doi; 2616 err = receive_read_payload_and_next_header(ra, size, buf); 2617 if (err != 0) { 2618 kmem_free(buf, size); 2619 return (err); 2620 } 2621 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2622 /* 2623 * See receive_read_prefetch for an explanation why we're 2624 * storing this object in the ignore_obj_list. 2625 */ 2626 if (err == ENOENT || 2627 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2628 objlist_insert(&ra->ignore_objlist, drro->drr_object); 2629 err = 0; 2630 } 2631 return (err); 2632 } 2633 case DRR_FREEOBJECTS: 2634 { 2635 err = receive_read_payload_and_next_header(ra, 0, NULL); 2636 return (err); 2637 } 2638 case DRR_WRITE: 2639 { 2640 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2641 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2642 drrw->drr_length); 2643 2644 err = receive_read_payload_and_next_header(ra, 2645 drrw->drr_length, abuf->b_data); 2646 if (err != 0) { 2647 dmu_return_arcbuf(abuf); 2648 return (err); 2649 } 2650 ra->rrd->write_buf = abuf; 2651 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2652 drrw->drr_length); 2653 return (err); 2654 } 2655 case DRR_WRITE_BYREF: 2656 { 2657 struct drr_write_byref *drrwb = 2658 &ra->rrd->header.drr_u.drr_write_byref; 2659 err = receive_read_payload_and_next_header(ra, 0, NULL); 2660 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2661 drrwb->drr_length); 2662 return (err); 2663 } 2664 case DRR_WRITE_EMBEDDED: 2665 { 2666 struct drr_write_embedded *drrwe = 2667 &ra->rrd->header.drr_u.drr_write_embedded; 2668 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2669 void *buf = kmem_zalloc(size, KM_SLEEP); 2670 2671 err = receive_read_payload_and_next_header(ra, size, buf); 2672 if (err != 0) { 2673 kmem_free(buf, size); 2674 return (err); 2675 } 2676 2677 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2678 drrwe->drr_length); 2679 return (err); 2680 } 2681 case DRR_FREE: 2682 { 2683 /* 2684 * It might be beneficial to prefetch indirect blocks here, but 2685 * we don't really have the data to decide for sure. 2686 */ 2687 err = receive_read_payload_and_next_header(ra, 0, NULL); 2688 return (err); 2689 } 2690 case DRR_END: 2691 { 2692 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2693 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2694 return (SET_ERROR(ECKSUM)); 2695 return (0); 2696 } 2697 case DRR_SPILL: 2698 { 2699 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2700 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2701 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2702 buf); 2703 if (err != 0) 2704 kmem_free(buf, drrs->drr_length); 2705 return (err); 2706 } 2707 default: 2708 return (SET_ERROR(EINVAL)); 2709 } 2710 } 2711 2712 /* 2713 * Commit the records to the pool. 2714 */ 2715 static int 2716 receive_process_record(struct receive_writer_arg *rwa, 2717 struct receive_record_arg *rrd) 2718 { 2719 int err; 2720 2721 /* Processing in order, therefore bytes_read should be increasing. */ 2722 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2723 rwa->bytes_read = rrd->bytes_read; 2724 2725 switch (rrd->header.drr_type) { 2726 case DRR_OBJECT: 2727 { 2728 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2729 err = receive_object(rwa, drro, rrd->payload); 2730 kmem_free(rrd->payload, rrd->payload_size); 2731 rrd->payload = NULL; 2732 return (err); 2733 } 2734 case DRR_FREEOBJECTS: 2735 { 2736 struct drr_freeobjects *drrfo = 2737 &rrd->header.drr_u.drr_freeobjects; 2738 return (receive_freeobjects(rwa, drrfo)); 2739 } 2740 case DRR_WRITE: 2741 { 2742 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2743 err = receive_write(rwa, drrw, rrd->write_buf); 2744 /* if receive_write() is successful, it consumes the arc_buf */ 2745 if (err != 0) 2746 dmu_return_arcbuf(rrd->write_buf); 2747 rrd->write_buf = NULL; 2748 rrd->payload = NULL; 2749 return (err); 2750 } 2751 case DRR_WRITE_BYREF: 2752 { 2753 struct drr_write_byref *drrwbr = 2754 &rrd->header.drr_u.drr_write_byref; 2755 return (receive_write_byref(rwa, drrwbr)); 2756 } 2757 case DRR_WRITE_EMBEDDED: 2758 { 2759 struct drr_write_embedded *drrwe = 2760 &rrd->header.drr_u.drr_write_embedded; 2761 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2762 kmem_free(rrd->payload, rrd->payload_size); 2763 rrd->payload = NULL; 2764 return (err); 2765 } 2766 case DRR_FREE: 2767 { 2768 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2769 return (receive_free(rwa, drrf)); 2770 } 2771 case DRR_SPILL: 2772 { 2773 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2774 err = receive_spill(rwa, drrs, rrd->payload); 2775 kmem_free(rrd->payload, rrd->payload_size); 2776 rrd->payload = NULL; 2777 return (err); 2778 } 2779 default: 2780 return (SET_ERROR(EINVAL)); 2781 } 2782 } 2783 2784 /* 2785 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2786 * receive_process_record When we're done, signal the main thread and exit. 2787 */ 2788 static void 2789 receive_writer_thread(void *arg) 2790 { 2791 struct receive_writer_arg *rwa = arg; 2792 struct receive_record_arg *rrd; 2793 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2794 rrd = bqueue_dequeue(&rwa->q)) { 2795 /* 2796 * If there's an error, the main thread will stop putting things 2797 * on the queue, but we need to clear everything in it before we 2798 * can exit. 2799 */ 2800 if (rwa->err == 0) { 2801 rwa->err = receive_process_record(rwa, rrd); 2802 } else if (rrd->write_buf != NULL) { 2803 dmu_return_arcbuf(rrd->write_buf); 2804 rrd->write_buf = NULL; 2805 rrd->payload = NULL; 2806 } else if (rrd->payload != NULL) { 2807 kmem_free(rrd->payload, rrd->payload_size); 2808 rrd->payload = NULL; 2809 } 2810 kmem_free(rrd, sizeof (*rrd)); 2811 } 2812 kmem_free(rrd, sizeof (*rrd)); 2813 mutex_enter(&rwa->mutex); 2814 rwa->done = B_TRUE; 2815 cv_signal(&rwa->cv); 2816 mutex_exit(&rwa->mutex); 2817 thread_exit(); 2818 } 2819 2820 static int 2821 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2822 { 2823 uint64_t val; 2824 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2825 uint64_t dsobj = dmu_objset_id(ra->os); 2826 uint64_t resume_obj, resume_off; 2827 2828 if (nvlist_lookup_uint64(begin_nvl, 2829 "resume_object", &resume_obj) != 0 || 2830 nvlist_lookup_uint64(begin_nvl, 2831 "resume_offset", &resume_off) != 0) { 2832 return (SET_ERROR(EINVAL)); 2833 } 2834 VERIFY0(zap_lookup(mos, dsobj, 2835 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2836 if (resume_obj != val) 2837 return (SET_ERROR(EINVAL)); 2838 VERIFY0(zap_lookup(mos, dsobj, 2839 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2840 if (resume_off != val) 2841 return (SET_ERROR(EINVAL)); 2842 2843 return (0); 2844 } 2845 2846 /* 2847 * Read in the stream's records, one by one, and apply them to the pool. There 2848 * are two threads involved; the thread that calls this function will spin up a 2849 * worker thread, read the records off the stream one by one, and issue 2850 * prefetches for any necessary indirect blocks. It will then push the records 2851 * onto an internal blocking queue. The worker thread will pull the records off 2852 * the queue, and actually write the data into the DMU. This way, the worker 2853 * thread doesn't have to wait for reads to complete, since everything it needs 2854 * (the indirect blocks) will be prefetched. 2855 * 2856 * NB: callers *must* call dmu_recv_end() if this succeeds. 2857 */ 2858 int 2859 dmu_recv_stream(dmu_recv_cookie_t *drc, struct file *fp, offset_t *voffp, 2860 int cleanup_fd, uint64_t *action_handlep) 2861 { 2862 int err = 0; 2863 struct receive_arg ra = { 0 }; 2864 struct receive_writer_arg rwa = { 0 }; 2865 int featureflags; 2866 nvlist_t *begin_nvl = NULL; 2867 2868 ra.byteswap = drc->drc_byteswap; 2869 ra.cksum = drc->drc_cksum; 2870 ra.td = curthread; 2871 ra.fp = fp; 2872 ra.voff = *voffp; 2873 2874 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2875 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2876 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2877 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2878 } 2879 2880 objlist_create(&ra.ignore_objlist); 2881 2882 /* these were verified in dmu_recv_begin */ 2883 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2884 DMU_SUBSTREAM); 2885 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2886 2887 /* 2888 * Open the objset we are modifying. 2889 */ 2890 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2891 2892 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2893 2894 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2895 2896 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2897 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2898 minor_t minor; 2899 2900 if (cleanup_fd == -1) { 2901 ra.err = SET_ERROR(EBADF); 2902 goto out; 2903 } 2904 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2905 if (ra.err != 0) { 2906 cleanup_fd = -1; 2907 goto out; 2908 } 2909 2910 if (*action_handlep == 0) { 2911 rwa.guid_to_ds_map = 2912 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2913 avl_create(rwa.guid_to_ds_map, guid_compare, 2914 sizeof (guid_map_entry_t), 2915 offsetof(guid_map_entry_t, avlnode)); 2916 err = zfs_onexit_add_cb(minor, 2917 free_guid_map_onexit, rwa.guid_to_ds_map, 2918 action_handlep); 2919 if (ra.err != 0) 2920 goto out; 2921 } else { 2922 err = zfs_onexit_cb_data(minor, *action_handlep, 2923 (void **)&rwa.guid_to_ds_map); 2924 if (ra.err != 0) 2925 goto out; 2926 } 2927 2928 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2929 } 2930 2931 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2932 void *payload = NULL; 2933 if (payloadlen != 0) 2934 payload = kmem_alloc(payloadlen, KM_SLEEP); 2935 2936 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2937 if (err != 0) { 2938 if (payloadlen != 0) 2939 kmem_free(payload, payloadlen); 2940 goto out; 2941 } 2942 if (payloadlen != 0) { 2943 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2944 kmem_free(payload, payloadlen); 2945 if (err != 0) 2946 goto out; 2947 } 2948 2949 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2950 err = resume_check(&ra, begin_nvl); 2951 if (err != 0) 2952 goto out; 2953 } 2954 2955 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2956 offsetof(struct receive_record_arg, node)); 2957 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2958 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2959 rwa.os = ra.os; 2960 rwa.byteswap = drc->drc_byteswap; 2961 rwa.resumable = drc->drc_resumable; 2962 2963 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, &p0, 2964 TS_RUN, minclsyspri); 2965 /* 2966 * We're reading rwa.err without locks, which is safe since we are the 2967 * only reader, and the worker thread is the only writer. It's ok if we 2968 * miss a write for an iteration or two of the loop, since the writer 2969 * thread will keep freeing records we send it until we send it an eos 2970 * marker. 2971 * 2972 * We can leave this loop in 3 ways: First, if rwa.err is 2973 * non-zero. In that case, the writer thread will free the rrd we just 2974 * pushed. Second, if we're interrupted; in that case, either it's the 2975 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2976 * has been handed off to the writer thread who will free it. Finally, 2977 * if receive_read_record fails or we're at the end of the stream, then 2978 * we free ra.rrd and exit. 2979 */ 2980 while (rwa.err == 0) { 2981 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2982 err = SET_ERROR(EINTR); 2983 break; 2984 } 2985 2986 ASSERT3P(ra.rrd, ==, NULL); 2987 ra.rrd = ra.next_rrd; 2988 ra.next_rrd = NULL; 2989 /* Allocates and loads header into ra.next_rrd */ 2990 err = receive_read_record(&ra); 2991 2992 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2993 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2994 ra.rrd = NULL; 2995 break; 2996 } 2997 2998 bqueue_enqueue(&rwa.q, ra.rrd, 2999 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 3000 ra.rrd = NULL; 3001 } 3002 if (ra.next_rrd == NULL) 3003 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 3004 ra.next_rrd->eos_marker = B_TRUE; 3005 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 3006 3007 mutex_enter(&rwa.mutex); 3008 while (!rwa.done) { 3009 cv_wait(&rwa.cv, &rwa.mutex); 3010 } 3011 mutex_exit(&rwa.mutex); 3012 3013 cv_destroy(&rwa.cv); 3014 mutex_destroy(&rwa.mutex); 3015 bqueue_destroy(&rwa.q); 3016 if (err == 0) 3017 err = rwa.err; 3018 3019 out: 3020 nvlist_free(begin_nvl); 3021 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 3022 zfs_onexit_fd_rele(cleanup_fd); 3023 3024 if (err != 0) { 3025 /* 3026 * Clean up references. If receive is not resumable, 3027 * destroy what we created, so we don't leave it in 3028 * the inconsistent state. 3029 */ 3030 dmu_recv_cleanup_ds(drc); 3031 } 3032 3033 *voffp = ra.voff; 3034 objlist_destroy(&ra.ignore_objlist); 3035 return (err); 3036 } 3037 3038 static int 3039 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 3040 { 3041 dmu_recv_cookie_t *drc = arg; 3042 dsl_pool_t *dp = dmu_tx_pool(tx); 3043 int error; 3044 3045 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 3046 3047 if (!drc->drc_newfs) { 3048 dsl_dataset_t *origin_head; 3049 3050 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 3051 if (error != 0) 3052 return (error); 3053 if (drc->drc_force) { 3054 /* 3055 * We will destroy any snapshots in tofs (i.e. before 3056 * origin_head) that are after the origin (which is 3057 * the snap before drc_ds, because drc_ds can not 3058 * have any snaps of its own). 3059 */ 3060 uint64_t obj; 3061 3062 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3063 while (obj != 3064 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3065 dsl_dataset_t *snap; 3066 error = dsl_dataset_hold_obj(dp, obj, FTAG, 3067 &snap); 3068 if (error != 0) 3069 break; 3070 if (snap->ds_dir != origin_head->ds_dir) 3071 error = SET_ERROR(EINVAL); 3072 if (error == 0) { 3073 error = dsl_destroy_snapshot_check_impl( 3074 snap, B_FALSE); 3075 } 3076 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3077 dsl_dataset_rele(snap, FTAG); 3078 if (error != 0) 3079 break; 3080 } 3081 if (error != 0) { 3082 dsl_dataset_rele(origin_head, FTAG); 3083 return (error); 3084 } 3085 } 3086 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 3087 origin_head, drc->drc_force, drc->drc_owner, tx); 3088 if (error != 0) { 3089 dsl_dataset_rele(origin_head, FTAG); 3090 return (error); 3091 } 3092 error = dsl_dataset_snapshot_check_impl(origin_head, 3093 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 3094 dsl_dataset_rele(origin_head, FTAG); 3095 if (error != 0) 3096 return (error); 3097 3098 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 3099 } else { 3100 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 3101 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 3102 } 3103 return (error); 3104 } 3105 3106 static void 3107 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 3108 { 3109 dmu_recv_cookie_t *drc = arg; 3110 dsl_pool_t *dp = dmu_tx_pool(tx); 3111 3112 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 3113 tx, "snap=%s", drc->drc_tosnap); 3114 3115 if (!drc->drc_newfs) { 3116 dsl_dataset_t *origin_head; 3117 3118 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 3119 &origin_head)); 3120 3121 if (drc->drc_force) { 3122 /* 3123 * Destroy any snapshots of drc_tofs (origin_head) 3124 * after the origin (the snap before drc_ds). 3125 */ 3126 uint64_t obj; 3127 3128 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3129 while (obj != 3130 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3131 dsl_dataset_t *snap; 3132 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 3133 &snap)); 3134 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3135 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3136 dsl_destroy_snapshot_sync_impl(snap, 3137 B_FALSE, tx); 3138 dsl_dataset_rele(snap, FTAG); 3139 } 3140 } 3141 VERIFY3P(drc->drc_ds->ds_prev, ==, 3142 origin_head->ds_prev); 3143 3144 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3145 origin_head, tx); 3146 dsl_dataset_snapshot_sync_impl(origin_head, 3147 drc->drc_tosnap, tx); 3148 3149 /* set snapshot's creation time and guid */ 3150 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3151 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3152 drc->drc_drrb->drr_creation_time; 3153 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3154 drc->drc_drrb->drr_toguid; 3155 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3156 ~DS_FLAG_INCONSISTENT; 3157 3158 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3159 dsl_dataset_phys(origin_head)->ds_flags &= 3160 ~DS_FLAG_INCONSISTENT; 3161 3162 drc->drc_newsnapobj = 3163 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3164 3165 dsl_dataset_rele(origin_head, FTAG); 3166 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3167 3168 if (drc->drc_owner != NULL) 3169 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3170 } else { 3171 dsl_dataset_t *ds = drc->drc_ds; 3172 3173 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3174 3175 /* set snapshot's creation time and guid */ 3176 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3177 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3178 drc->drc_drrb->drr_creation_time; 3179 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3180 drc->drc_drrb->drr_toguid; 3181 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3182 ~DS_FLAG_INCONSISTENT; 3183 3184 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3185 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3186 if (dsl_dataset_has_resume_receive_state(ds)) { 3187 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3188 DS_FIELD_RESUME_FROMGUID, tx); 3189 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3190 DS_FIELD_RESUME_OBJECT, tx); 3191 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3192 DS_FIELD_RESUME_OFFSET, tx); 3193 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3194 DS_FIELD_RESUME_BYTES, tx); 3195 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3196 DS_FIELD_RESUME_TOGUID, tx); 3197 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3198 DS_FIELD_RESUME_TONAME, tx); 3199 } 3200 drc->drc_newsnapobj = 3201 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3202 } 3203 /* 3204 * Release the hold from dmu_recv_begin. This must be done before 3205 * we return to open context, so that when we free the dataset's dnode, 3206 * we can evict its bonus buffer. 3207 */ 3208 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 3209 drc->drc_ds = NULL; 3210 } 3211 3212 static int 3213 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 3214 { 3215 dsl_pool_t *dp; 3216 dsl_dataset_t *snapds; 3217 guid_map_entry_t *gmep; 3218 int err; 3219 3220 ASSERT(guid_map != NULL); 3221 3222 err = dsl_pool_hold(name, FTAG, &dp); 3223 if (err != 0) 3224 return (err); 3225 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 3226 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 3227 if (err == 0) { 3228 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 3229 gmep->gme_ds = snapds; 3230 avl_add(guid_map, gmep); 3231 dsl_dataset_long_hold(snapds, gmep); 3232 } else 3233 kmem_free(gmep, sizeof (*gmep)); 3234 3235 dsl_pool_rele(dp, FTAG); 3236 return (err); 3237 } 3238 3239 static int dmu_recv_end_modified_blocks = 3; 3240 3241 static int 3242 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3243 { 3244 #ifdef _KERNEL 3245 /* 3246 * We will be destroying the ds; make sure its origin is unmounted if 3247 * necessary. 3248 */ 3249 char name[ZFS_MAX_DATASET_NAME_LEN]; 3250 dsl_dataset_name(drc->drc_ds, name); 3251 zfs_destroy_unmount_origin(name); 3252 #endif 3253 3254 return (dsl_sync_task(drc->drc_tofs, 3255 dmu_recv_end_check, dmu_recv_end_sync, drc, 3256 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3257 } 3258 3259 static int 3260 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3261 { 3262 return (dsl_sync_task(drc->drc_tofs, 3263 dmu_recv_end_check, dmu_recv_end_sync, drc, 3264 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3265 } 3266 3267 int 3268 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3269 { 3270 int error; 3271 3272 drc->drc_owner = owner; 3273 3274 if (drc->drc_newfs) 3275 error = dmu_recv_new_end(drc); 3276 else 3277 error = dmu_recv_existing_end(drc); 3278 3279 if (error != 0) { 3280 dmu_recv_cleanup_ds(drc); 3281 } else if (drc->drc_guid_to_ds_map != NULL) { 3282 (void) add_ds_to_guidmap(drc->drc_tofs, 3283 drc->drc_guid_to_ds_map, 3284 drc->drc_newsnapobj); 3285 } 3286 return (error); 3287 } 3288 3289 /* 3290 * Return TRUE if this objset is currently being received into. 3291 */ 3292 boolean_t 3293 dmu_objset_is_receiving(objset_t *os) 3294 { 3295 return (os->os_dsl_dataset != NULL && 3296 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3297 } 3298