1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/dmu.h> 27 #include <sys/dmu_impl.h> 28 #include <sys/dmu_tx.h> 29 #include <sys/dbuf.h> 30 #include <sys/dnode.h> 31 #include <sys/zfs_context.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dmu_traverse.h> 34 #include <sys/dsl_dataset.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_pool.h> 37 #include <sys/dsl_synctask.h> 38 #include <sys/dsl_prop.h> 39 #include <sys/dmu_zfetch.h> 40 #include <sys/zfs_ioctl.h> 41 #include <sys/zap.h> 42 #include <sys/zio_checksum.h> 43 #ifdef _KERNEL 44 #include <sys/vmsystm.h> 45 #include <sys/zfs_znode.h> 46 #endif 47 48 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 49 { byteswap_uint8_array, TRUE, "unallocated" }, 50 { zap_byteswap, TRUE, "object directory" }, 51 { byteswap_uint64_array, TRUE, "object array" }, 52 { byteswap_uint8_array, TRUE, "packed nvlist" }, 53 { byteswap_uint64_array, TRUE, "packed nvlist size" }, 54 { byteswap_uint64_array, TRUE, "bplist" }, 55 { byteswap_uint64_array, TRUE, "bplist header" }, 56 { byteswap_uint64_array, TRUE, "SPA space map header" }, 57 { byteswap_uint64_array, TRUE, "SPA space map" }, 58 { byteswap_uint64_array, TRUE, "ZIL intent log" }, 59 { dnode_buf_byteswap, TRUE, "DMU dnode" }, 60 { dmu_objset_byteswap, TRUE, "DMU objset" }, 61 { byteswap_uint64_array, TRUE, "DSL directory" }, 62 { zap_byteswap, TRUE, "DSL directory child map"}, 63 { zap_byteswap, TRUE, "DSL dataset snap map" }, 64 { zap_byteswap, TRUE, "DSL props" }, 65 { byteswap_uint64_array, TRUE, "DSL dataset" }, 66 { zfs_znode_byteswap, TRUE, "ZFS znode" }, 67 { zfs_oldacl_byteswap, TRUE, "ZFS V0 ACL" }, 68 { byteswap_uint8_array, FALSE, "ZFS plain file" }, 69 { zap_byteswap, TRUE, "ZFS directory" }, 70 { zap_byteswap, TRUE, "ZFS master node" }, 71 { zap_byteswap, TRUE, "ZFS delete queue" }, 72 { byteswap_uint8_array, FALSE, "zvol object" }, 73 { zap_byteswap, TRUE, "zvol prop" }, 74 { byteswap_uint8_array, FALSE, "other uint8[]" }, 75 { byteswap_uint64_array, FALSE, "other uint64[]" }, 76 { zap_byteswap, TRUE, "other ZAP" }, 77 { zap_byteswap, TRUE, "persistent error log" }, 78 { byteswap_uint8_array, TRUE, "SPA history" }, 79 { byteswap_uint64_array, TRUE, "SPA history offsets" }, 80 { zap_byteswap, TRUE, "Pool properties" }, 81 { zap_byteswap, TRUE, "DSL permissions" }, 82 { zfs_acl_byteswap, TRUE, "ZFS ACL" }, 83 { byteswap_uint8_array, TRUE, "ZFS SYSACL" }, 84 { byteswap_uint8_array, TRUE, "FUID table" }, 85 { byteswap_uint64_array, TRUE, "FUID table size" }, 86 { zap_byteswap, TRUE, "DSL dataset next clones"}, 87 { zap_byteswap, TRUE, "scrub work queue" }, 88 { zap_byteswap, TRUE, "ZFS user/group used" }, 89 { zap_byteswap, TRUE, "ZFS user/group quota" }, 90 { zap_byteswap, TRUE, "snapshot refcount tags"}, 91 { zap_byteswap, TRUE, "DDT ZAP algorithm" }, 92 { zap_byteswap, TRUE, "DDT statistics" }, 93 }; 94 95 int 96 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 97 void *tag, dmu_buf_t **dbp) 98 { 99 dnode_t *dn; 100 uint64_t blkid; 101 dmu_buf_impl_t *db; 102 int err; 103 104 err = dnode_hold(os, object, FTAG, &dn); 105 if (err) 106 return (err); 107 blkid = dbuf_whichblock(dn, offset); 108 rw_enter(&dn->dn_struct_rwlock, RW_READER); 109 db = dbuf_hold(dn, blkid, tag); 110 rw_exit(&dn->dn_struct_rwlock); 111 if (db == NULL) { 112 err = EIO; 113 } else { 114 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 115 if (err) { 116 dbuf_rele(db, tag); 117 db = NULL; 118 } 119 } 120 121 dnode_rele(dn, FTAG); 122 *dbp = &db->db; 123 return (err); 124 } 125 126 int 127 dmu_bonus_max(void) 128 { 129 return (DN_MAX_BONUSLEN); 130 } 131 132 int 133 dmu_set_bonus(dmu_buf_t *db, int newsize, dmu_tx_t *tx) 134 { 135 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 136 137 if (dn->dn_bonus != (dmu_buf_impl_t *)db) 138 return (EINVAL); 139 if (newsize < 0 || newsize > db->db_size) 140 return (EINVAL); 141 dnode_setbonuslen(dn, newsize, tx); 142 return (0); 143 } 144 145 /* 146 * returns ENOENT, EIO, or 0. 147 */ 148 int 149 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 150 { 151 dnode_t *dn; 152 dmu_buf_impl_t *db; 153 int error; 154 155 error = dnode_hold(os, object, FTAG, &dn); 156 if (error) 157 return (error); 158 159 rw_enter(&dn->dn_struct_rwlock, RW_READER); 160 if (dn->dn_bonus == NULL) { 161 rw_exit(&dn->dn_struct_rwlock); 162 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 163 if (dn->dn_bonus == NULL) 164 dbuf_create_bonus(dn); 165 } 166 db = dn->dn_bonus; 167 rw_exit(&dn->dn_struct_rwlock); 168 169 /* as long as the bonus buf is held, the dnode will be held */ 170 if (refcount_add(&db->db_holds, tag) == 1) 171 VERIFY(dnode_add_ref(dn, db)); 172 173 dnode_rele(dn, FTAG); 174 175 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED)); 176 177 *dbp = &db->db; 178 return (0); 179 } 180 181 /* 182 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 183 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 184 * and can induce severe lock contention when writing to several files 185 * whose dnodes are in the same block. 186 */ 187 static int 188 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 189 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 190 { 191 dsl_pool_t *dp = NULL; 192 dmu_buf_t **dbp; 193 uint64_t blkid, nblks, i; 194 uint32_t dbuf_flags; 195 int err; 196 zio_t *zio; 197 hrtime_t start; 198 199 ASSERT(length <= DMU_MAX_ACCESS); 200 201 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 202 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 203 dbuf_flags |= DB_RF_NOPREFETCH; 204 205 rw_enter(&dn->dn_struct_rwlock, RW_READER); 206 if (dn->dn_datablkshift) { 207 int blkshift = dn->dn_datablkshift; 208 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 209 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 210 } else { 211 if (offset + length > dn->dn_datablksz) { 212 zfs_panic_recover("zfs: accessing past end of object " 213 "%llx/%llx (size=%u access=%llu+%llu)", 214 (longlong_t)dn->dn_objset-> 215 os_dsl_dataset->ds_object, 216 (longlong_t)dn->dn_object, dn->dn_datablksz, 217 (longlong_t)offset, (longlong_t)length); 218 rw_exit(&dn->dn_struct_rwlock); 219 return (EIO); 220 } 221 nblks = 1; 222 } 223 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 224 225 if (dn->dn_objset->os_dsl_dataset) 226 dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool; 227 if (dp && dsl_pool_sync_context(dp)) 228 start = gethrtime(); 229 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 230 blkid = dbuf_whichblock(dn, offset); 231 for (i = 0; i < nblks; i++) { 232 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 233 if (db == NULL) { 234 rw_exit(&dn->dn_struct_rwlock); 235 dmu_buf_rele_array(dbp, nblks, tag); 236 zio_nowait(zio); 237 return (EIO); 238 } 239 /* initiate async i/o */ 240 if (read) { 241 (void) dbuf_read(db, zio, dbuf_flags); 242 } 243 dbp[i] = &db->db; 244 } 245 rw_exit(&dn->dn_struct_rwlock); 246 247 /* wait for async i/o */ 248 err = zio_wait(zio); 249 /* track read overhead when we are in sync context */ 250 if (dp && dsl_pool_sync_context(dp)) 251 dp->dp_read_overhead += gethrtime() - start; 252 if (err) { 253 dmu_buf_rele_array(dbp, nblks, tag); 254 return (err); 255 } 256 257 /* wait for other io to complete */ 258 if (read) { 259 for (i = 0; i < nblks; i++) { 260 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 261 mutex_enter(&db->db_mtx); 262 while (db->db_state == DB_READ || 263 db->db_state == DB_FILL) 264 cv_wait(&db->db_changed, &db->db_mtx); 265 if (db->db_state == DB_UNCACHED) 266 err = EIO; 267 mutex_exit(&db->db_mtx); 268 if (err) { 269 dmu_buf_rele_array(dbp, nblks, tag); 270 return (err); 271 } 272 } 273 } 274 275 *numbufsp = nblks; 276 *dbpp = dbp; 277 return (0); 278 } 279 280 static int 281 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 282 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 283 { 284 dnode_t *dn; 285 int err; 286 287 err = dnode_hold(os, object, FTAG, &dn); 288 if (err) 289 return (err); 290 291 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 292 numbufsp, dbpp, DMU_READ_PREFETCH); 293 294 dnode_rele(dn, FTAG); 295 296 return (err); 297 } 298 299 int 300 dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 301 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 302 { 303 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 304 int err; 305 306 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 307 numbufsp, dbpp, DMU_READ_PREFETCH); 308 309 return (err); 310 } 311 312 void 313 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 314 { 315 int i; 316 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 317 318 if (numbufs == 0) 319 return; 320 321 for (i = 0; i < numbufs; i++) { 322 if (dbp[i]) 323 dbuf_rele(dbp[i], tag); 324 } 325 326 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 327 } 328 329 void 330 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 331 { 332 dnode_t *dn; 333 uint64_t blkid; 334 int nblks, i, err; 335 336 if (zfs_prefetch_disable) 337 return; 338 339 if (len == 0) { /* they're interested in the bonus buffer */ 340 dn = os->os_meta_dnode; 341 342 if (object == 0 || object >= DN_MAX_OBJECT) 343 return; 344 345 rw_enter(&dn->dn_struct_rwlock, RW_READER); 346 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 347 dbuf_prefetch(dn, blkid); 348 rw_exit(&dn->dn_struct_rwlock); 349 return; 350 } 351 352 /* 353 * XXX - Note, if the dnode for the requested object is not 354 * already cached, we will do a *synchronous* read in the 355 * dnode_hold() call. The same is true for any indirects. 356 */ 357 err = dnode_hold(os, object, FTAG, &dn); 358 if (err != 0) 359 return; 360 361 rw_enter(&dn->dn_struct_rwlock, RW_READER); 362 if (dn->dn_datablkshift) { 363 int blkshift = dn->dn_datablkshift; 364 nblks = (P2ROUNDUP(offset+len, 1<<blkshift) - 365 P2ALIGN(offset, 1<<blkshift)) >> blkshift; 366 } else { 367 nblks = (offset < dn->dn_datablksz); 368 } 369 370 if (nblks != 0) { 371 blkid = dbuf_whichblock(dn, offset); 372 for (i = 0; i < nblks; i++) 373 dbuf_prefetch(dn, blkid+i); 374 } 375 376 rw_exit(&dn->dn_struct_rwlock); 377 378 dnode_rele(dn, FTAG); 379 } 380 381 /* 382 * Get the next "chunk" of file data to free. We traverse the file from 383 * the end so that the file gets shorter over time (if we crashes in the 384 * middle, this will leave us in a better state). We find allocated file 385 * data by simply searching the allocated level 1 indirects. 386 */ 387 static int 388 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit) 389 { 390 uint64_t len = *start - limit; 391 uint64_t blkcnt = 0; 392 uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1)); 393 uint64_t iblkrange = 394 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 395 396 ASSERT(limit <= *start); 397 398 if (len <= iblkrange * maxblks) { 399 *start = limit; 400 return (0); 401 } 402 ASSERT(ISP2(iblkrange)); 403 404 while (*start > limit && blkcnt < maxblks) { 405 int err; 406 407 /* find next allocated L1 indirect */ 408 err = dnode_next_offset(dn, 409 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 410 411 /* if there are no more, then we are done */ 412 if (err == ESRCH) { 413 *start = limit; 414 return (0); 415 } else if (err) { 416 return (err); 417 } 418 blkcnt += 1; 419 420 /* reset offset to end of "next" block back */ 421 *start = P2ALIGN(*start, iblkrange); 422 if (*start <= limit) 423 *start = limit; 424 else 425 *start -= 1; 426 } 427 return (0); 428 } 429 430 static int 431 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 432 uint64_t length, boolean_t free_dnode) 433 { 434 dmu_tx_t *tx; 435 uint64_t object_size, start, end, len; 436 boolean_t trunc = (length == DMU_OBJECT_END); 437 int align, err; 438 439 align = 1 << dn->dn_datablkshift; 440 ASSERT(align > 0); 441 object_size = align == 1 ? dn->dn_datablksz : 442 (dn->dn_maxblkid + 1) << dn->dn_datablkshift; 443 444 end = offset + length; 445 if (trunc || end > object_size) 446 end = object_size; 447 if (end <= offset) 448 return (0); 449 length = end - offset; 450 451 while (length) { 452 start = end; 453 /* assert(offset <= start) */ 454 err = get_next_chunk(dn, &start, offset); 455 if (err) 456 return (err); 457 len = trunc ? DMU_OBJECT_END : end - start; 458 459 tx = dmu_tx_create(os); 460 dmu_tx_hold_free(tx, dn->dn_object, start, len); 461 err = dmu_tx_assign(tx, TXG_WAIT); 462 if (err) { 463 dmu_tx_abort(tx); 464 return (err); 465 } 466 467 dnode_free_range(dn, start, trunc ? -1 : len, tx); 468 469 if (start == 0 && free_dnode) { 470 ASSERT(trunc); 471 dnode_free(dn, tx); 472 } 473 474 length -= end - start; 475 476 dmu_tx_commit(tx); 477 end = start; 478 } 479 return (0); 480 } 481 482 int 483 dmu_free_long_range(objset_t *os, uint64_t object, 484 uint64_t offset, uint64_t length) 485 { 486 dnode_t *dn; 487 int err; 488 489 err = dnode_hold(os, object, FTAG, &dn); 490 if (err != 0) 491 return (err); 492 err = dmu_free_long_range_impl(os, dn, offset, length, FALSE); 493 dnode_rele(dn, FTAG); 494 return (err); 495 } 496 497 int 498 dmu_free_object(objset_t *os, uint64_t object) 499 { 500 dnode_t *dn; 501 dmu_tx_t *tx; 502 int err; 503 504 err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 505 FTAG, &dn); 506 if (err != 0) 507 return (err); 508 if (dn->dn_nlevels == 1) { 509 tx = dmu_tx_create(os); 510 dmu_tx_hold_bonus(tx, object); 511 dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END); 512 err = dmu_tx_assign(tx, TXG_WAIT); 513 if (err == 0) { 514 dnode_free_range(dn, 0, DMU_OBJECT_END, tx); 515 dnode_free(dn, tx); 516 dmu_tx_commit(tx); 517 } else { 518 dmu_tx_abort(tx); 519 } 520 } else { 521 err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE); 522 } 523 dnode_rele(dn, FTAG); 524 return (err); 525 } 526 527 int 528 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 529 uint64_t size, dmu_tx_t *tx) 530 { 531 dnode_t *dn; 532 int err = dnode_hold(os, object, FTAG, &dn); 533 if (err) 534 return (err); 535 ASSERT(offset < UINT64_MAX); 536 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 537 dnode_free_range(dn, offset, size, tx); 538 dnode_rele(dn, FTAG); 539 return (0); 540 } 541 542 int 543 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 544 void *buf, uint32_t flags) 545 { 546 dnode_t *dn; 547 dmu_buf_t **dbp; 548 int numbufs, err; 549 550 err = dnode_hold(os, object, FTAG, &dn); 551 if (err) 552 return (err); 553 554 /* 555 * Deal with odd block sizes, where there can't be data past the first 556 * block. If we ever do the tail block optimization, we will need to 557 * handle that here as well. 558 */ 559 if (dn->dn_maxblkid == 0) { 560 int newsz = offset > dn->dn_datablksz ? 0 : 561 MIN(size, dn->dn_datablksz - offset); 562 bzero((char *)buf + newsz, size - newsz); 563 size = newsz; 564 } 565 566 while (size > 0) { 567 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 568 int i; 569 570 /* 571 * NB: we could do this block-at-a-time, but it's nice 572 * to be reading in parallel. 573 */ 574 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 575 TRUE, FTAG, &numbufs, &dbp, flags); 576 if (err) 577 break; 578 579 for (i = 0; i < numbufs; i++) { 580 int tocpy; 581 int bufoff; 582 dmu_buf_t *db = dbp[i]; 583 584 ASSERT(size > 0); 585 586 bufoff = offset - db->db_offset; 587 tocpy = (int)MIN(db->db_size - bufoff, size); 588 589 bcopy((char *)db->db_data + bufoff, buf, tocpy); 590 591 offset += tocpy; 592 size -= tocpy; 593 buf = (char *)buf + tocpy; 594 } 595 dmu_buf_rele_array(dbp, numbufs, FTAG); 596 } 597 dnode_rele(dn, FTAG); 598 return (err); 599 } 600 601 void 602 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 603 const void *buf, dmu_tx_t *tx) 604 { 605 dmu_buf_t **dbp; 606 int numbufs, i; 607 608 if (size == 0) 609 return; 610 611 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 612 FALSE, FTAG, &numbufs, &dbp)); 613 614 for (i = 0; i < numbufs; i++) { 615 int tocpy; 616 int bufoff; 617 dmu_buf_t *db = dbp[i]; 618 619 ASSERT(size > 0); 620 621 bufoff = offset - db->db_offset; 622 tocpy = (int)MIN(db->db_size - bufoff, size); 623 624 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 625 626 if (tocpy == db->db_size) 627 dmu_buf_will_fill(db, tx); 628 else 629 dmu_buf_will_dirty(db, tx); 630 631 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 632 633 if (tocpy == db->db_size) 634 dmu_buf_fill_done(db, tx); 635 636 offset += tocpy; 637 size -= tocpy; 638 buf = (char *)buf + tocpy; 639 } 640 dmu_buf_rele_array(dbp, numbufs, FTAG); 641 } 642 643 void 644 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 645 dmu_tx_t *tx) 646 { 647 dmu_buf_t **dbp; 648 int numbufs, i; 649 650 if (size == 0) 651 return; 652 653 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 654 FALSE, FTAG, &numbufs, &dbp)); 655 656 for (i = 0; i < numbufs; i++) { 657 dmu_buf_t *db = dbp[i]; 658 659 dmu_buf_will_not_fill(db, tx); 660 } 661 dmu_buf_rele_array(dbp, numbufs, FTAG); 662 } 663 664 /* 665 * DMU support for xuio 666 */ 667 kstat_t *xuio_ksp = NULL; 668 669 int 670 dmu_xuio_init(xuio_t *xuio, int nblk) 671 { 672 dmu_xuio_t *priv; 673 uio_t *uio = &xuio->xu_uio; 674 675 uio->uio_iovcnt = nblk; 676 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 677 678 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 679 priv->cnt = nblk; 680 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 681 priv->iovp = uio->uio_iov; 682 #ifdef PORT_SOLARIS 683 XUIO_XUZC_PRIV(xuio) = priv; 684 685 if (XUIO_XUZC_RW(xuio) == UIO_READ) 686 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 687 else 688 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 689 #endif 690 return (0); 691 } 692 693 void 694 dmu_xuio_fini(xuio_t *xuio) 695 { 696 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 697 int nblk = priv->cnt; 698 699 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 700 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 701 kmem_free(priv, sizeof (dmu_xuio_t)); 702 #ifdef PORT_SOLARIS 703 if (XUIO_XUZC_RW(xuio) == UIO_READ) 704 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 705 else 706 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 707 #endif 708 } 709 710 /* 711 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 712 * and increase priv->next by 1. 713 */ 714 int 715 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 716 { 717 struct iovec *iov; 718 uio_t *uio = &xuio->xu_uio; 719 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 720 int i = priv->next++; 721 722 ASSERT(i < priv->cnt); 723 ASSERT(off + n <= arc_buf_size(abuf)); 724 iov = uio->uio_iov + i; 725 iov->iov_base = (char *)abuf->b_data + off; 726 iov->iov_len = n; 727 priv->bufs[i] = abuf; 728 return (0); 729 } 730 731 int 732 dmu_xuio_cnt(xuio_t *xuio) 733 { 734 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 735 return (priv->cnt); 736 } 737 738 arc_buf_t * 739 dmu_xuio_arcbuf(xuio_t *xuio, int i) 740 { 741 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 742 743 ASSERT(i < priv->cnt); 744 return (priv->bufs[i]); 745 } 746 747 void 748 dmu_xuio_clear(xuio_t *xuio, int i) 749 { 750 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 751 752 ASSERT(i < priv->cnt); 753 priv->bufs[i] = NULL; 754 } 755 756 #ifdef PORT_SOLARIS 757 static void 758 xuio_stat_init(void) 759 { 760 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 761 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 762 KSTAT_FLAG_VIRTUAL); 763 if (xuio_ksp != NULL) { 764 xuio_ksp->ks_data = &xuio_stats; 765 kstat_install(xuio_ksp); 766 } 767 } 768 769 static void 770 xuio_stat_fini(void) 771 { 772 if (xuio_ksp != NULL) { 773 kstat_delete(xuio_ksp); 774 xuio_ksp = NULL; 775 } 776 } 777 #endif 778 779 void 780 xuio_stat_wbuf_copied() 781 { 782 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 783 } 784 785 void 786 xuio_stat_wbuf_nocopy() 787 { 788 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 789 } 790 791 #ifdef _KERNEL 792 int 793 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 794 { 795 dmu_buf_t **dbp; 796 int numbufs, i, err; 797 xuio_t *xuio = NULL; 798 799 /* 800 * NB: we could do this block-at-a-time, but it's nice 801 * to be reading in parallel. 802 */ 803 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 804 &numbufs, &dbp); 805 if (err) 806 return (err); 807 808 if (uio->uio_extflg == UIO_XUIO) 809 xuio = (xuio_t *)uio; 810 811 for (i = 0; i < numbufs; i++) { 812 int tocpy; 813 int bufoff; 814 dmu_buf_t *db = dbp[i]; 815 816 ASSERT(size > 0); 817 818 bufoff = uio->uio_loffset - db->db_offset; 819 tocpy = (int)MIN(db->db_size - bufoff, size); 820 821 if (xuio) { 822 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 823 arc_buf_t *dbuf_abuf = dbi->db_buf; 824 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 825 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 826 if (!err) { 827 uio->uio_resid -= tocpy; 828 uio->uio_loffset += tocpy; 829 } 830 831 if (abuf == dbuf_abuf) 832 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 833 else 834 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 835 } else { 836 err = uiomove((char *)db->db_data + bufoff, tocpy, 837 UIO_READ, uio); 838 } 839 if (err) 840 break; 841 842 size -= tocpy; 843 } 844 dmu_buf_rele_array(dbp, numbufs, FTAG); 845 846 return (err); 847 } 848 849 int 850 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 851 dmu_tx_t *tx) 852 { 853 dmu_buf_t **dbp; 854 int numbufs, i; 855 int err = 0; 856 857 if (size == 0) 858 return (0); 859 860 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, 861 FALSE, FTAG, &numbufs, &dbp); 862 if (err) 863 return (err); 864 865 for (i = 0; i < numbufs; i++) { 866 int tocpy; 867 int bufoff; 868 dmu_buf_t *db = dbp[i]; 869 870 ASSERT(size > 0); 871 872 bufoff = uio->uio_loffset - db->db_offset; 873 tocpy = (int)MIN(db->db_size - bufoff, size); 874 875 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 876 877 if (tocpy == db->db_size) 878 dmu_buf_will_fill(db, tx); 879 else 880 dmu_buf_will_dirty(db, tx); 881 882 /* 883 * XXX uiomove could block forever (eg. nfs-backed 884 * pages). There needs to be a uiolockdown() function 885 * to lock the pages in memory, so that uiomove won't 886 * block. 887 */ 888 err = uiomove((char *)db->db_data + bufoff, tocpy, 889 UIO_WRITE, uio); 890 891 if (tocpy == db->db_size) 892 dmu_buf_fill_done(db, tx); 893 894 if (err) 895 break; 896 897 size -= tocpy; 898 } 899 dmu_buf_rele_array(dbp, numbufs, FTAG); 900 return (err); 901 } 902 903 #ifndef __NetBSD__ 904 int 905 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 906 page_t *pp, dmu_tx_t *tx) 907 { 908 dmu_buf_t **dbp; 909 int numbufs, i; 910 int err; 911 912 if (size == 0) 913 return (0); 914 915 err = dmu_buf_hold_array(os, object, offset, size, 916 FALSE, FTAG, &numbufs, &dbp); 917 if (err) 918 return (err); 919 920 for (i = 0; i < numbufs; i++) { 921 int tocpy, copied, thiscpy; 922 int bufoff; 923 dmu_buf_t *db = dbp[i]; 924 caddr_t va; 925 926 ASSERT(size > 0); 927 ASSERT3U(db->db_size, >=, PAGESIZE); 928 929 bufoff = offset - db->db_offset; 930 tocpy = (int)MIN(db->db_size - bufoff, size); 931 932 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 933 934 if (tocpy == db->db_size) 935 dmu_buf_will_fill(db, tx); 936 else 937 dmu_buf_will_dirty(db, tx); 938 939 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 940 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 941 thiscpy = MIN(PAGESIZE, tocpy - copied); 942 va = zfs_map_page(pp, S_READ); 943 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 944 zfs_unmap_page(pp, va); 945 pp = pp->p_next; 946 bufoff += PAGESIZE; 947 } 948 949 if (tocpy == db->db_size) 950 dmu_buf_fill_done(db, tx); 951 952 offset += tocpy; 953 size -= tocpy; 954 } 955 dmu_buf_rele_array(dbp, numbufs, FTAG); 956 return (err); 957 } 958 #endif /* __NetBSD__ */ 959 #endif 960 961 /* 962 * Allocate a loaned anonymous arc buffer. 963 */ 964 arc_buf_t * 965 dmu_request_arcbuf(dmu_buf_t *handle, int size) 966 { 967 dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode; 968 969 return (arc_loan_buf(dn->dn_objset->os_spa, size)); 970 } 971 972 /* 973 * Free a loaned arc buffer. 974 */ 975 void 976 dmu_return_arcbuf(arc_buf_t *buf) 977 { 978 arc_return_buf(buf, FTAG); 979 VERIFY(arc_buf_remove_ref(buf, FTAG) == 1); 980 } 981 982 /* 983 * When possible directly assign passed loaned arc buffer to a dbuf. 984 * If this is not possible copy the contents of passed arc buf via 985 * dmu_write(). 986 */ 987 void 988 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 989 dmu_tx_t *tx) 990 { 991 dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode; 992 dmu_buf_impl_t *db; 993 uint32_t blksz = (uint32_t)arc_buf_size(buf); 994 uint64_t blkid; 995 996 rw_enter(&dn->dn_struct_rwlock, RW_READER); 997 blkid = dbuf_whichblock(dn, offset); 998 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 999 rw_exit(&dn->dn_struct_rwlock); 1000 1001 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1002 dbuf_assign_arcbuf(db, buf, tx); 1003 dbuf_rele(db, FTAG); 1004 } else { 1005 dbuf_rele(db, FTAG); 1006 dmu_write(dn->dn_objset, dn->dn_object, offset, blksz, 1007 buf->b_data, tx); 1008 dmu_return_arcbuf(buf); 1009 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1010 } 1011 } 1012 1013 typedef struct { 1014 dbuf_dirty_record_t *dsa_dr; 1015 dmu_sync_cb_t *dsa_done; 1016 zgd_t *dsa_zgd; 1017 dmu_tx_t *dsa_tx; 1018 } dmu_sync_arg_t; 1019 1020 /* ARGSUSED */ 1021 static void 1022 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1023 { 1024 dmu_sync_arg_t *dsa = varg; 1025 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1026 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 1027 blkptr_t *bp = zio->io_bp; 1028 1029 if (zio->io_error == 0) { 1030 if (BP_IS_HOLE(bp)) { 1031 /* 1032 * A block of zeros may compress to a hole, but the 1033 * block size still needs to be known for replay. 1034 */ 1035 BP_SET_LSIZE(bp, db->db_size); 1036 } else { 1037 ASSERT(BP_GET_TYPE(bp) == dn->dn_type); 1038 ASSERT(BP_GET_LEVEL(bp) == 0); 1039 bp->blk_fill = 1; 1040 } 1041 } 1042 } 1043 1044 static void 1045 dmu_sync_late_arrival_ready(zio_t *zio) 1046 { 1047 dmu_sync_ready(zio, NULL, zio->io_private); 1048 } 1049 1050 /* ARGSUSED */ 1051 static void 1052 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1053 { 1054 dmu_sync_arg_t *dsa = varg; 1055 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1056 dmu_buf_impl_t *db = dr->dr_dbuf; 1057 1058 mutex_enter(&db->db_mtx); 1059 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1060 if (zio->io_error == 0) { 1061 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1062 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1063 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1064 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) 1065 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1066 } else { 1067 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1068 } 1069 cv_broadcast(&db->db_changed); 1070 mutex_exit(&db->db_mtx); 1071 1072 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1073 1074 kmem_free(dsa, sizeof (*dsa)); 1075 } 1076 1077 static void 1078 dmu_sync_late_arrival_done(zio_t *zio) 1079 { 1080 blkptr_t *bp = zio->io_bp; 1081 dmu_sync_arg_t *dsa = zio->io_private; 1082 1083 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1084 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1085 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1086 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1087 } 1088 1089 dmu_tx_commit(dsa->dsa_tx); 1090 1091 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1092 1093 kmem_free(dsa, sizeof (*dsa)); 1094 } 1095 1096 static int 1097 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1098 zio_prop_t *zp, zbookmark_t *zb) 1099 { 1100 dmu_sync_arg_t *dsa; 1101 dmu_tx_t *tx; 1102 1103 tx = dmu_tx_create(os); 1104 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1105 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1106 dmu_tx_abort(tx); 1107 return (EIO); /* Make zl_get_data do txg_waited_synced() */ 1108 } 1109 1110 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1111 dsa->dsa_dr = NULL; 1112 dsa->dsa_done = done; 1113 dsa->dsa_zgd = zgd; 1114 dsa->dsa_tx = tx; 1115 1116 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1117 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1118 dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa, 1119 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1120 1121 return (0); 1122 } 1123 1124 /* 1125 * Intent log support: sync the block associated with db to disk. 1126 * N.B. and XXX: the caller is responsible for making sure that the 1127 * data isn't changing while dmu_sync() is writing it. 1128 * 1129 * Return values: 1130 * 1131 * EEXIST: this txg has already been synced, so there's nothing to to. 1132 * The caller should not log the write. 1133 * 1134 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1135 * The caller should not log the write. 1136 * 1137 * EALREADY: this block is already in the process of being synced. 1138 * The caller should track its progress (somehow). 1139 * 1140 * EIO: could not do the I/O. 1141 * The caller should do a txg_wait_synced(). 1142 * 1143 * 0: the I/O has been initiated. 1144 * The caller should log this blkptr in the done callback. 1145 * It is possible that the I/O will fail, in which case 1146 * the error will be reported to the done callback and 1147 * propagated to pio from zio_done(). 1148 */ 1149 int 1150 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1151 { 1152 blkptr_t *bp = zgd->zgd_bp; 1153 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1154 objset_t *os = db->db_objset; 1155 dsl_dataset_t *ds = os->os_dsl_dataset; 1156 dbuf_dirty_record_t *dr; 1157 dmu_sync_arg_t *dsa; 1158 zbookmark_t zb; 1159 zio_prop_t zp; 1160 1161 ASSERT(pio != NULL); 1162 ASSERT(BP_IS_HOLE(bp)); 1163 ASSERT(txg != 0); 1164 1165 SET_BOOKMARK(&zb, ds->ds_object, 1166 db->db.db_object, db->db_level, db->db_blkid); 1167 1168 dmu_write_policy(os, db->db_dnode, db->db_level, WP_DMU_SYNC, &zp); 1169 1170 /* 1171 * If we're frozen (running ziltest), we always need to generate a bp. 1172 */ 1173 if (txg > spa_freeze_txg(os->os_spa)) 1174 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1175 1176 /* 1177 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1178 * and us. If we determine that this txg is not yet syncing, 1179 * but it begins to sync a moment later, that's OK because the 1180 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1181 */ 1182 mutex_enter(&db->db_mtx); 1183 1184 if (txg <= spa_last_synced_txg(os->os_spa)) { 1185 /* 1186 * This txg has already synced. There's nothing to do. 1187 */ 1188 mutex_exit(&db->db_mtx); 1189 return (EEXIST); 1190 } 1191 1192 if (txg <= spa_syncing_txg(os->os_spa)) { 1193 /* 1194 * This txg is currently syncing, so we can't mess with 1195 * the dirty record anymore; just write a new log block. 1196 */ 1197 mutex_exit(&db->db_mtx); 1198 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1199 } 1200 1201 dr = db->db_last_dirty; 1202 while (dr && dr->dr_txg != txg) 1203 dr = dr->dr_next; 1204 1205 if (dr == NULL) { 1206 /* 1207 * There's no dr for this dbuf, so it must have been freed. 1208 * There's no need to log writes to freed blocks, so we're done. 1209 */ 1210 mutex_exit(&db->db_mtx); 1211 return (ENOENT); 1212 } 1213 1214 ASSERT(dr->dr_txg == txg); 1215 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1216 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1217 /* 1218 * We have already issued a sync write for this buffer, 1219 * or this buffer has already been synced. It could not 1220 * have been dirtied since, or we would have cleared the state. 1221 */ 1222 mutex_exit(&db->db_mtx); 1223 return (EALREADY); 1224 } 1225 1226 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1227 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1228 mutex_exit(&db->db_mtx); 1229 1230 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1231 dsa->dsa_dr = dr; 1232 dsa->dsa_done = done; 1233 dsa->dsa_zgd = zgd; 1234 dsa->dsa_tx = NULL; 1235 1236 zio_nowait(arc_write(pio, os->os_spa, txg, 1237 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp, 1238 dmu_sync_ready, dmu_sync_done, dsa, 1239 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1240 1241 return (0); 1242 } 1243 1244 int 1245 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1246 dmu_tx_t *tx) 1247 { 1248 dnode_t *dn; 1249 int err; 1250 1251 err = dnode_hold(os, object, FTAG, &dn); 1252 if (err) 1253 return (err); 1254 err = dnode_set_blksz(dn, size, ibs, tx); 1255 dnode_rele(dn, FTAG); 1256 return (err); 1257 } 1258 1259 void 1260 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1261 dmu_tx_t *tx) 1262 { 1263 dnode_t *dn; 1264 1265 /* XXX assumes dnode_hold will not get an i/o error */ 1266 (void) dnode_hold(os, object, FTAG, &dn); 1267 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 1268 dn->dn_checksum = checksum; 1269 dnode_setdirty(dn, tx); 1270 dnode_rele(dn, FTAG); 1271 } 1272 1273 void 1274 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1275 dmu_tx_t *tx) 1276 { 1277 dnode_t *dn; 1278 1279 /* XXX assumes dnode_hold will not get an i/o error */ 1280 (void) dnode_hold(os, object, FTAG, &dn); 1281 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 1282 dn->dn_compress = compress; 1283 dnode_setdirty(dn, tx); 1284 dnode_rele(dn, FTAG); 1285 } 1286 1287 int zfs_mdcomp_disable = 0; 1288 1289 void 1290 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1291 { 1292 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1293 boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata); 1294 enum zio_checksum checksum = os->os_checksum; 1295 enum zio_compress compress = os->os_compress; 1296 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1297 boolean_t dedup; 1298 boolean_t dedup_verify = os->os_dedup_verify; 1299 int copies = os->os_copies; 1300 1301 /* 1302 * Determine checksum setting. 1303 */ 1304 if (ismd) { 1305 /* 1306 * Metadata always gets checksummed. If the data 1307 * checksum is multi-bit correctable, and it's not a 1308 * ZBT-style checksum, then it's suitable for metadata 1309 * as well. Otherwise, the metadata checksum defaults 1310 * to fletcher4. 1311 */ 1312 if (zio_checksum_table[checksum].ci_correctable < 1 || 1313 zio_checksum_table[checksum].ci_eck) 1314 checksum = ZIO_CHECKSUM_FLETCHER_4; 1315 } else { 1316 checksum = zio_checksum_select(dn->dn_checksum, checksum); 1317 } 1318 1319 /* 1320 * Determine compression setting. 1321 */ 1322 if (ismd) { 1323 /* 1324 * XXX -- we should design a compression algorithm 1325 * that specializes in arrays of bps. 1326 */ 1327 compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 1328 ZIO_COMPRESS_LZJB; 1329 } else { 1330 compress = zio_compress_select(dn->dn_compress, compress); 1331 } 1332 1333 /* 1334 * Determine dedup setting. If we are in dmu_sync(), we won't 1335 * actually dedup now because that's all done in syncing context; 1336 * but we do want to use the dedup checkum. If the checksum is not 1337 * strong enough to ensure unique signatures, force dedup_verify. 1338 */ 1339 dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF); 1340 if (dedup) { 1341 checksum = dedup_checksum; 1342 if (!zio_checksum_table[checksum].ci_dedup) 1343 dedup_verify = 1; 1344 } 1345 1346 if (wp & WP_DMU_SYNC) 1347 dedup = 0; 1348 1349 if (wp & WP_NOFILL) { 1350 ASSERT(!ismd && level == 0); 1351 checksum = ZIO_CHECKSUM_OFF; 1352 compress = ZIO_COMPRESS_OFF; 1353 dedup = B_FALSE; 1354 } 1355 1356 zp->zp_checksum = checksum; 1357 zp->zp_compress = compress; 1358 zp->zp_type = type; 1359 zp->zp_level = level; 1360 zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa)); 1361 zp->zp_dedup = dedup; 1362 zp->zp_dedup_verify = dedup && dedup_verify; 1363 } 1364 1365 int 1366 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1367 { 1368 dnode_t *dn; 1369 int i, err; 1370 1371 err = dnode_hold(os, object, FTAG, &dn); 1372 if (err) 1373 return (err); 1374 /* 1375 * Sync any current changes before 1376 * we go trundling through the block pointers. 1377 */ 1378 for (i = 0; i < TXG_SIZE; i++) { 1379 if (list_link_active(&dn->dn_dirty_link[i])) 1380 break; 1381 } 1382 if (i != TXG_SIZE) { 1383 dnode_rele(dn, FTAG); 1384 txg_wait_synced(dmu_objset_pool(os), 0); 1385 err = dnode_hold(os, object, FTAG, &dn); 1386 if (err) 1387 return (err); 1388 } 1389 1390 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1391 dnode_rele(dn, FTAG); 1392 1393 return (err); 1394 } 1395 1396 void 1397 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1398 { 1399 dnode_phys_t *dnp; 1400 1401 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1402 mutex_enter(&dn->dn_mtx); 1403 1404 dnp = dn->dn_phys; 1405 1406 doi->doi_data_block_size = dn->dn_datablksz; 1407 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1408 1ULL << dn->dn_indblkshift : 0; 1409 doi->doi_type = dn->dn_type; 1410 doi->doi_bonus_type = dn->dn_bonustype; 1411 doi->doi_bonus_size = dn->dn_bonuslen; 1412 doi->doi_indirection = dn->dn_nlevels; 1413 doi->doi_checksum = dn->dn_checksum; 1414 doi->doi_compress = dn->dn_compress; 1415 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1416 doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz; 1417 doi->doi_fill_count = 0; 1418 for (int i = 0; i < dnp->dn_nblkptr; i++) 1419 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill; 1420 1421 mutex_exit(&dn->dn_mtx); 1422 rw_exit(&dn->dn_struct_rwlock); 1423 } 1424 1425 /* 1426 * Get information on a DMU object. 1427 * If doi is NULL, just indicates whether the object exists. 1428 */ 1429 int 1430 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1431 { 1432 dnode_t *dn; 1433 int err = dnode_hold(os, object, FTAG, &dn); 1434 1435 if (err) 1436 return (err); 1437 1438 if (doi != NULL) 1439 dmu_object_info_from_dnode(dn, doi); 1440 1441 dnode_rele(dn, FTAG); 1442 return (0); 1443 } 1444 1445 /* 1446 * As above, but faster; can be used when you have a held dbuf in hand. 1447 */ 1448 void 1449 dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi) 1450 { 1451 dmu_object_info_from_dnode(((dmu_buf_impl_t *)db)->db_dnode, doi); 1452 } 1453 1454 /* 1455 * Faster still when you only care about the size. 1456 * This is specifically optimized for zfs_getattr(). 1457 */ 1458 void 1459 dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512) 1460 { 1461 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 1462 1463 *blksize = dn->dn_datablksz; 1464 /* add 1 for dnode space */ 1465 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1466 SPA_MINBLOCKSHIFT) + 1; 1467 } 1468 1469 void 1470 byteswap_uint64_array(void *vbuf, size_t size) 1471 { 1472 uint64_t *buf = vbuf; 1473 size_t count = size >> 3; 1474 int i; 1475 1476 ASSERT((size & 7) == 0); 1477 1478 for (i = 0; i < count; i++) 1479 buf[i] = BSWAP_64(buf[i]); 1480 } 1481 1482 void 1483 byteswap_uint32_array(void *vbuf, size_t size) 1484 { 1485 uint32_t *buf = vbuf; 1486 size_t count = size >> 2; 1487 int i; 1488 1489 ASSERT((size & 3) == 0); 1490 1491 for (i = 0; i < count; i++) 1492 buf[i] = BSWAP_32(buf[i]); 1493 } 1494 1495 void 1496 byteswap_uint16_array(void *vbuf, size_t size) 1497 { 1498 uint16_t *buf = vbuf; 1499 size_t count = size >> 1; 1500 int i; 1501 1502 ASSERT((size & 1) == 0); 1503 1504 for (i = 0; i < count; i++) 1505 buf[i] = BSWAP_16(buf[i]); 1506 } 1507 1508 /* ARGSUSED */ 1509 void 1510 byteswap_uint8_array(void *vbuf, size_t size) 1511 { 1512 } 1513 1514 void 1515 dmu_init(void) 1516 { 1517 dbuf_init(); 1518 dnode_init(); 1519 zfetch_init(); 1520 arc_init(); 1521 l2arc_init(); 1522 #ifdef PORT_SOLARIS 1523 xuio_stat_init(); 1524 #endif 1525 } 1526 1527 void 1528 dmu_fini(void) 1529 { 1530 arc_fini(); 1531 zfetch_fini(); 1532 dnode_fini(); 1533 dbuf_fini(); 1534 l2arc_fini(); 1535 #ifdef PORT_SOLARIS 1536 xuio_stat_fini(); 1537 #endif 1538 } 1539