xref: /netbsd-src/external/cddl/osnet/dist/uts/common/fs/zfs/dmu.c (revision a5847cc334d9a7029f6352b847e9e8d71a0f9e0c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/dmu.h>
27 #include <sys/dmu_impl.h>
28 #include <sys/dmu_tx.h>
29 #include <sys/dbuf.h>
30 #include <sys/dnode.h>
31 #include <sys/zfs_context.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_traverse.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_pool.h>
37 #include <sys/dsl_synctask.h>
38 #include <sys/dsl_prop.h>
39 #include <sys/dmu_zfetch.h>
40 #include <sys/zfs_ioctl.h>
41 #include <sys/zap.h>
42 #include <sys/zio_checksum.h>
43 #ifdef _KERNEL
44 #include <sys/vmsystm.h>
45 #include <sys/zfs_znode.h>
46 #endif
47 
48 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
49 	{	byteswap_uint8_array,	TRUE,	"unallocated"		},
50 	{	zap_byteswap,		TRUE,	"object directory"	},
51 	{	byteswap_uint64_array,	TRUE,	"object array"		},
52 	{	byteswap_uint8_array,	TRUE,	"packed nvlist"		},
53 	{	byteswap_uint64_array,	TRUE,	"packed nvlist size"	},
54 	{	byteswap_uint64_array,	TRUE,	"bplist"		},
55 	{	byteswap_uint64_array,	TRUE,	"bplist header"		},
56 	{	byteswap_uint64_array,	TRUE,	"SPA space map header"	},
57 	{	byteswap_uint64_array,	TRUE,	"SPA space map"		},
58 	{	byteswap_uint64_array,	TRUE,	"ZIL intent log"	},
59 	{	dnode_buf_byteswap,	TRUE,	"DMU dnode"		},
60 	{	dmu_objset_byteswap,	TRUE,	"DMU objset"		},
61 	{	byteswap_uint64_array,	TRUE,	"DSL directory"		},
62 	{	zap_byteswap,		TRUE,	"DSL directory child map"},
63 	{	zap_byteswap,		TRUE,	"DSL dataset snap map"	},
64 	{	zap_byteswap,		TRUE,	"DSL props"		},
65 	{	byteswap_uint64_array,	TRUE,	"DSL dataset"		},
66 	{	zfs_znode_byteswap,	TRUE,	"ZFS znode"		},
67 	{	zfs_oldacl_byteswap,	TRUE,	"ZFS V0 ACL"		},
68 	{	byteswap_uint8_array,	FALSE,	"ZFS plain file"	},
69 	{	zap_byteswap,		TRUE,	"ZFS directory"		},
70 	{	zap_byteswap,		TRUE,	"ZFS master node"	},
71 	{	zap_byteswap,		TRUE,	"ZFS delete queue"	},
72 	{	byteswap_uint8_array,	FALSE,	"zvol object"		},
73 	{	zap_byteswap,		TRUE,	"zvol prop"		},
74 	{	byteswap_uint8_array,	FALSE,	"other uint8[]"		},
75 	{	byteswap_uint64_array,	FALSE,	"other uint64[]"	},
76 	{	zap_byteswap,		TRUE,	"other ZAP"		},
77 	{	zap_byteswap,		TRUE,	"persistent error log"	},
78 	{	byteswap_uint8_array,	TRUE,	"SPA history"		},
79 	{	byteswap_uint64_array,	TRUE,	"SPA history offsets"	},
80 	{	zap_byteswap,		TRUE,	"Pool properties"	},
81 	{	zap_byteswap,		TRUE,	"DSL permissions"	},
82 	{	zfs_acl_byteswap,	TRUE,	"ZFS ACL"		},
83 	{	byteswap_uint8_array,	TRUE,	"ZFS SYSACL"		},
84 	{	byteswap_uint8_array,	TRUE,	"FUID table"		},
85 	{	byteswap_uint64_array,	TRUE,	"FUID table size"	},
86 	{	zap_byteswap,		TRUE,	"DSL dataset next clones"},
87 	{	zap_byteswap,		TRUE,	"scrub work queue"	},
88 	{	zap_byteswap,		TRUE,	"ZFS user/group used"	},
89 	{	zap_byteswap,		TRUE,	"ZFS user/group quota"	},
90 	{	zap_byteswap,		TRUE,	"snapshot refcount tags"},
91 	{	zap_byteswap,		TRUE,	"DDT ZAP algorithm"	},
92 	{	zap_byteswap,		TRUE,	"DDT statistics"	},
93 };
94 
95 int
96 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
97     void *tag, dmu_buf_t **dbp)
98 {
99 	dnode_t *dn;
100 	uint64_t blkid;
101 	dmu_buf_impl_t *db;
102 	int err;
103 
104 	err = dnode_hold(os, object, FTAG, &dn);
105 	if (err)
106 		return (err);
107 	blkid = dbuf_whichblock(dn, offset);
108 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
109 	db = dbuf_hold(dn, blkid, tag);
110 	rw_exit(&dn->dn_struct_rwlock);
111 	if (db == NULL) {
112 		err = EIO;
113 	} else {
114 		err = dbuf_read(db, NULL, DB_RF_CANFAIL);
115 		if (err) {
116 			dbuf_rele(db, tag);
117 			db = NULL;
118 		}
119 	}
120 
121 	dnode_rele(dn, FTAG);
122 	*dbp = &db->db;
123 	return (err);
124 }
125 
126 int
127 dmu_bonus_max(void)
128 {
129 	return (DN_MAX_BONUSLEN);
130 }
131 
132 int
133 dmu_set_bonus(dmu_buf_t *db, int newsize, dmu_tx_t *tx)
134 {
135 	dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
136 
137 	if (dn->dn_bonus != (dmu_buf_impl_t *)db)
138 		return (EINVAL);
139 	if (newsize < 0 || newsize > db->db_size)
140 		return (EINVAL);
141 	dnode_setbonuslen(dn, newsize, tx);
142 	return (0);
143 }
144 
145 /*
146  * returns ENOENT, EIO, or 0.
147  */
148 int
149 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
150 {
151 	dnode_t *dn;
152 	dmu_buf_impl_t *db;
153 	int error;
154 
155 	error = dnode_hold(os, object, FTAG, &dn);
156 	if (error)
157 		return (error);
158 
159 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
160 	if (dn->dn_bonus == NULL) {
161 		rw_exit(&dn->dn_struct_rwlock);
162 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
163 		if (dn->dn_bonus == NULL)
164 			dbuf_create_bonus(dn);
165 	}
166 	db = dn->dn_bonus;
167 	rw_exit(&dn->dn_struct_rwlock);
168 
169 	/* as long as the bonus buf is held, the dnode will be held */
170 	if (refcount_add(&db->db_holds, tag) == 1)
171 		VERIFY(dnode_add_ref(dn, db));
172 
173 	dnode_rele(dn, FTAG);
174 
175 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED));
176 
177 	*dbp = &db->db;
178 	return (0);
179 }
180 
181 /*
182  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
183  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
184  * and can induce severe lock contention when writing to several files
185  * whose dnodes are in the same block.
186  */
187 static int
188 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
189     int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
190 {
191 	dsl_pool_t *dp = NULL;
192 	dmu_buf_t **dbp;
193 	uint64_t blkid, nblks, i;
194 	uint32_t dbuf_flags;
195 	int err;
196 	zio_t *zio;
197 	hrtime_t start;
198 
199 	ASSERT(length <= DMU_MAX_ACCESS);
200 
201 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
202 	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
203 		dbuf_flags |= DB_RF_NOPREFETCH;
204 
205 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
206 	if (dn->dn_datablkshift) {
207 		int blkshift = dn->dn_datablkshift;
208 		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
209 		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
210 	} else {
211 		if (offset + length > dn->dn_datablksz) {
212 			zfs_panic_recover("zfs: accessing past end of object "
213 			    "%llx/%llx (size=%u access=%llu+%llu)",
214 			    (longlong_t)dn->dn_objset->
215 			    os_dsl_dataset->ds_object,
216 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
217 			    (longlong_t)offset, (longlong_t)length);
218 			rw_exit(&dn->dn_struct_rwlock);
219 			return (EIO);
220 		}
221 		nblks = 1;
222 	}
223 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
224 
225 	if (dn->dn_objset->os_dsl_dataset)
226 		dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool;
227 	if (dp && dsl_pool_sync_context(dp))
228 		start = gethrtime();
229 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
230 	blkid = dbuf_whichblock(dn, offset);
231 	for (i = 0; i < nblks; i++) {
232 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
233 		if (db == NULL) {
234 			rw_exit(&dn->dn_struct_rwlock);
235 			dmu_buf_rele_array(dbp, nblks, tag);
236 			zio_nowait(zio);
237 			return (EIO);
238 		}
239 		/* initiate async i/o */
240 		if (read) {
241 			(void) dbuf_read(db, zio, dbuf_flags);
242 		}
243 		dbp[i] = &db->db;
244 	}
245 	rw_exit(&dn->dn_struct_rwlock);
246 
247 	/* wait for async i/o */
248 	err = zio_wait(zio);
249 	/* track read overhead when we are in sync context */
250 	if (dp && dsl_pool_sync_context(dp))
251 		dp->dp_read_overhead += gethrtime() - start;
252 	if (err) {
253 		dmu_buf_rele_array(dbp, nblks, tag);
254 		return (err);
255 	}
256 
257 	/* wait for other io to complete */
258 	if (read) {
259 		for (i = 0; i < nblks; i++) {
260 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
261 			mutex_enter(&db->db_mtx);
262 			while (db->db_state == DB_READ ||
263 			    db->db_state == DB_FILL)
264 				cv_wait(&db->db_changed, &db->db_mtx);
265 			if (db->db_state == DB_UNCACHED)
266 				err = EIO;
267 			mutex_exit(&db->db_mtx);
268 			if (err) {
269 				dmu_buf_rele_array(dbp, nblks, tag);
270 				return (err);
271 			}
272 		}
273 	}
274 
275 	*numbufsp = nblks;
276 	*dbpp = dbp;
277 	return (0);
278 }
279 
280 static int
281 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
282     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
283 {
284 	dnode_t *dn;
285 	int err;
286 
287 	err = dnode_hold(os, object, FTAG, &dn);
288 	if (err)
289 		return (err);
290 
291 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
292 	    numbufsp, dbpp, DMU_READ_PREFETCH);
293 
294 	dnode_rele(dn, FTAG);
295 
296 	return (err);
297 }
298 
299 int
300 dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
301     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
302 {
303 	dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
304 	int err;
305 
306 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
307 	    numbufsp, dbpp, DMU_READ_PREFETCH);
308 
309 	return (err);
310 }
311 
312 void
313 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
314 {
315 	int i;
316 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
317 
318 	if (numbufs == 0)
319 		return;
320 
321 	for (i = 0; i < numbufs; i++) {
322 		if (dbp[i])
323 			dbuf_rele(dbp[i], tag);
324 	}
325 
326 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
327 }
328 
329 void
330 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
331 {
332 	dnode_t *dn;
333 	uint64_t blkid;
334 	int nblks, i, err;
335 
336 	if (zfs_prefetch_disable)
337 		return;
338 
339 	if (len == 0) {  /* they're interested in the bonus buffer */
340 		dn = os->os_meta_dnode;
341 
342 		if (object == 0 || object >= DN_MAX_OBJECT)
343 			return;
344 
345 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
346 		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
347 		dbuf_prefetch(dn, blkid);
348 		rw_exit(&dn->dn_struct_rwlock);
349 		return;
350 	}
351 
352 	/*
353 	 * XXX - Note, if the dnode for the requested object is not
354 	 * already cached, we will do a *synchronous* read in the
355 	 * dnode_hold() call.  The same is true for any indirects.
356 	 */
357 	err = dnode_hold(os, object, FTAG, &dn);
358 	if (err != 0)
359 		return;
360 
361 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
362 	if (dn->dn_datablkshift) {
363 		int blkshift = dn->dn_datablkshift;
364 		nblks = (P2ROUNDUP(offset+len, 1<<blkshift) -
365 		    P2ALIGN(offset, 1<<blkshift)) >> blkshift;
366 	} else {
367 		nblks = (offset < dn->dn_datablksz);
368 	}
369 
370 	if (nblks != 0) {
371 		blkid = dbuf_whichblock(dn, offset);
372 		for (i = 0; i < nblks; i++)
373 			dbuf_prefetch(dn, blkid+i);
374 	}
375 
376 	rw_exit(&dn->dn_struct_rwlock);
377 
378 	dnode_rele(dn, FTAG);
379 }
380 
381 /*
382  * Get the next "chunk" of file data to free.  We traverse the file from
383  * the end so that the file gets shorter over time (if we crashes in the
384  * middle, this will leave us in a better state).  We find allocated file
385  * data by simply searching the allocated level 1 indirects.
386  */
387 static int
388 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit)
389 {
390 	uint64_t len = *start - limit;
391 	uint64_t blkcnt = 0;
392 	uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1));
393 	uint64_t iblkrange =
394 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
395 
396 	ASSERT(limit <= *start);
397 
398 	if (len <= iblkrange * maxblks) {
399 		*start = limit;
400 		return (0);
401 	}
402 	ASSERT(ISP2(iblkrange));
403 
404 	while (*start > limit && blkcnt < maxblks) {
405 		int err;
406 
407 		/* find next allocated L1 indirect */
408 		err = dnode_next_offset(dn,
409 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
410 
411 		/* if there are no more, then we are done */
412 		if (err == ESRCH) {
413 			*start = limit;
414 			return (0);
415 		} else if (err) {
416 			return (err);
417 		}
418 		blkcnt += 1;
419 
420 		/* reset offset to end of "next" block back */
421 		*start = P2ALIGN(*start, iblkrange);
422 		if (*start <= limit)
423 			*start = limit;
424 		else
425 			*start -= 1;
426 	}
427 	return (0);
428 }
429 
430 static int
431 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
432     uint64_t length, boolean_t free_dnode)
433 {
434 	dmu_tx_t *tx;
435 	uint64_t object_size, start, end, len;
436 	boolean_t trunc = (length == DMU_OBJECT_END);
437 	int align, err;
438 
439 	align = 1 << dn->dn_datablkshift;
440 	ASSERT(align > 0);
441 	object_size = align == 1 ? dn->dn_datablksz :
442 	    (dn->dn_maxblkid + 1) << dn->dn_datablkshift;
443 
444 	end = offset + length;
445 	if (trunc || end > object_size)
446 		end = object_size;
447 	if (end <= offset)
448 		return (0);
449 	length = end - offset;
450 
451 	while (length) {
452 		start = end;
453 		/* assert(offset <= start) */
454 		err = get_next_chunk(dn, &start, offset);
455 		if (err)
456 			return (err);
457 		len = trunc ? DMU_OBJECT_END : end - start;
458 
459 		tx = dmu_tx_create(os);
460 		dmu_tx_hold_free(tx, dn->dn_object, start, len);
461 		err = dmu_tx_assign(tx, TXG_WAIT);
462 		if (err) {
463 			dmu_tx_abort(tx);
464 			return (err);
465 		}
466 
467 		dnode_free_range(dn, start, trunc ? -1 : len, tx);
468 
469 		if (start == 0 && free_dnode) {
470 			ASSERT(trunc);
471 			dnode_free(dn, tx);
472 		}
473 
474 		length -= end - start;
475 
476 		dmu_tx_commit(tx);
477 		end = start;
478 	}
479 	return (0);
480 }
481 
482 int
483 dmu_free_long_range(objset_t *os, uint64_t object,
484     uint64_t offset, uint64_t length)
485 {
486 	dnode_t *dn;
487 	int err;
488 
489 	err = dnode_hold(os, object, FTAG, &dn);
490 	if (err != 0)
491 		return (err);
492 	err = dmu_free_long_range_impl(os, dn, offset, length, FALSE);
493 	dnode_rele(dn, FTAG);
494 	return (err);
495 }
496 
497 int
498 dmu_free_object(objset_t *os, uint64_t object)
499 {
500 	dnode_t *dn;
501 	dmu_tx_t *tx;
502 	int err;
503 
504 	err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED,
505 	    FTAG, &dn);
506 	if (err != 0)
507 		return (err);
508 	if (dn->dn_nlevels == 1) {
509 		tx = dmu_tx_create(os);
510 		dmu_tx_hold_bonus(tx, object);
511 		dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END);
512 		err = dmu_tx_assign(tx, TXG_WAIT);
513 		if (err == 0) {
514 			dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
515 			dnode_free(dn, tx);
516 			dmu_tx_commit(tx);
517 		} else {
518 			dmu_tx_abort(tx);
519 		}
520 	} else {
521 		err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE);
522 	}
523 	dnode_rele(dn, FTAG);
524 	return (err);
525 }
526 
527 int
528 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
529     uint64_t size, dmu_tx_t *tx)
530 {
531 	dnode_t *dn;
532 	int err = dnode_hold(os, object, FTAG, &dn);
533 	if (err)
534 		return (err);
535 	ASSERT(offset < UINT64_MAX);
536 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
537 	dnode_free_range(dn, offset, size, tx);
538 	dnode_rele(dn, FTAG);
539 	return (0);
540 }
541 
542 int
543 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
544     void *buf, uint32_t flags)
545 {
546 	dnode_t *dn;
547 	dmu_buf_t **dbp;
548 	int numbufs, err;
549 
550 	err = dnode_hold(os, object, FTAG, &dn);
551 	if (err)
552 		return (err);
553 
554 	/*
555 	 * Deal with odd block sizes, where there can't be data past the first
556 	 * block.  If we ever do the tail block optimization, we will need to
557 	 * handle that here as well.
558 	 */
559 	if (dn->dn_maxblkid == 0) {
560 		int newsz = offset > dn->dn_datablksz ? 0 :
561 		    MIN(size, dn->dn_datablksz - offset);
562 		bzero((char *)buf + newsz, size - newsz);
563 		size = newsz;
564 	}
565 
566 	while (size > 0) {
567 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
568 		int i;
569 
570 		/*
571 		 * NB: we could do this block-at-a-time, but it's nice
572 		 * to be reading in parallel.
573 		 */
574 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
575 		    TRUE, FTAG, &numbufs, &dbp, flags);
576 		if (err)
577 			break;
578 
579 		for (i = 0; i < numbufs; i++) {
580 			int tocpy;
581 			int bufoff;
582 			dmu_buf_t *db = dbp[i];
583 
584 			ASSERT(size > 0);
585 
586 			bufoff = offset - db->db_offset;
587 			tocpy = (int)MIN(db->db_size - bufoff, size);
588 
589 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
590 
591 			offset += tocpy;
592 			size -= tocpy;
593 			buf = (char *)buf + tocpy;
594 		}
595 		dmu_buf_rele_array(dbp, numbufs, FTAG);
596 	}
597 	dnode_rele(dn, FTAG);
598 	return (err);
599 }
600 
601 void
602 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
603     const void *buf, dmu_tx_t *tx)
604 {
605 	dmu_buf_t **dbp;
606 	int numbufs, i;
607 
608 	if (size == 0)
609 		return;
610 
611 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
612 	    FALSE, FTAG, &numbufs, &dbp));
613 
614 	for (i = 0; i < numbufs; i++) {
615 		int tocpy;
616 		int bufoff;
617 		dmu_buf_t *db = dbp[i];
618 
619 		ASSERT(size > 0);
620 
621 		bufoff = offset - db->db_offset;
622 		tocpy = (int)MIN(db->db_size - bufoff, size);
623 
624 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
625 
626 		if (tocpy == db->db_size)
627 			dmu_buf_will_fill(db, tx);
628 		else
629 			dmu_buf_will_dirty(db, tx);
630 
631 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
632 
633 		if (tocpy == db->db_size)
634 			dmu_buf_fill_done(db, tx);
635 
636 		offset += tocpy;
637 		size -= tocpy;
638 		buf = (char *)buf + tocpy;
639 	}
640 	dmu_buf_rele_array(dbp, numbufs, FTAG);
641 }
642 
643 void
644 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
645     dmu_tx_t *tx)
646 {
647 	dmu_buf_t **dbp;
648 	int numbufs, i;
649 
650 	if (size == 0)
651 		return;
652 
653 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
654 	    FALSE, FTAG, &numbufs, &dbp));
655 
656 	for (i = 0; i < numbufs; i++) {
657 		dmu_buf_t *db = dbp[i];
658 
659 		dmu_buf_will_not_fill(db, tx);
660 	}
661 	dmu_buf_rele_array(dbp, numbufs, FTAG);
662 }
663 
664 /*
665  * DMU support for xuio
666  */
667 kstat_t *xuio_ksp = NULL;
668 
669 int
670 dmu_xuio_init(xuio_t *xuio, int nblk)
671 {
672 	dmu_xuio_t *priv;
673 	uio_t *uio = &xuio->xu_uio;
674 
675 	uio->uio_iovcnt = nblk;
676 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
677 
678 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
679 	priv->cnt = nblk;
680 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
681 	priv->iovp = uio->uio_iov;
682 #ifdef PORT_SOLARIS
683 	XUIO_XUZC_PRIV(xuio) = priv;
684 
685 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
686 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
687 	else
688 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
689 #endif
690 	return (0);
691 }
692 
693 void
694 dmu_xuio_fini(xuio_t *xuio)
695 {
696 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
697 	int nblk = priv->cnt;
698 
699 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
700 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
701 	kmem_free(priv, sizeof (dmu_xuio_t));
702 #ifdef PORT_SOLARIS
703 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
704 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
705 	else
706 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
707 #endif
708 }
709 
710 /*
711  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
712  * and increase priv->next by 1.
713  */
714 int
715 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
716 {
717 	struct iovec *iov;
718 	uio_t *uio = &xuio->xu_uio;
719 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
720 	int i = priv->next++;
721 
722 	ASSERT(i < priv->cnt);
723 	ASSERT(off + n <= arc_buf_size(abuf));
724 	iov = uio->uio_iov + i;
725 	iov->iov_base = (char *)abuf->b_data + off;
726 	iov->iov_len = n;
727 	priv->bufs[i] = abuf;
728 	return (0);
729 }
730 
731 int
732 dmu_xuio_cnt(xuio_t *xuio)
733 {
734 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
735 	return (priv->cnt);
736 }
737 
738 arc_buf_t *
739 dmu_xuio_arcbuf(xuio_t *xuio, int i)
740 {
741 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
742 
743 	ASSERT(i < priv->cnt);
744 	return (priv->bufs[i]);
745 }
746 
747 void
748 dmu_xuio_clear(xuio_t *xuio, int i)
749 {
750 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
751 
752 	ASSERT(i < priv->cnt);
753 	priv->bufs[i] = NULL;
754 }
755 
756 #ifdef PORT_SOLARIS
757 static void
758 xuio_stat_init(void)
759 {
760 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
761 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
762 	    KSTAT_FLAG_VIRTUAL);
763 	if (xuio_ksp != NULL) {
764 		xuio_ksp->ks_data = &xuio_stats;
765 		kstat_install(xuio_ksp);
766 	}
767 }
768 
769 static void
770 xuio_stat_fini(void)
771 {
772 	if (xuio_ksp != NULL) {
773 		kstat_delete(xuio_ksp);
774 		xuio_ksp = NULL;
775 	}
776 }
777 #endif
778 
779 void
780 xuio_stat_wbuf_copied()
781 {
782 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
783 }
784 
785 void
786 xuio_stat_wbuf_nocopy()
787 {
788 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
789 }
790 
791 #ifdef _KERNEL
792 int
793 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
794 {
795 	dmu_buf_t **dbp;
796 	int numbufs, i, err;
797 	xuio_t *xuio = NULL;
798 
799 	/*
800 	 * NB: we could do this block-at-a-time, but it's nice
801 	 * to be reading in parallel.
802 	 */
803 	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
804 	    &numbufs, &dbp);
805 	if (err)
806 		return (err);
807 
808 	if (uio->uio_extflg == UIO_XUIO)
809 		xuio = (xuio_t *)uio;
810 
811 	for (i = 0; i < numbufs; i++) {
812 		int tocpy;
813 		int bufoff;
814 		dmu_buf_t *db = dbp[i];
815 
816 		ASSERT(size > 0);
817 
818 		bufoff = uio->uio_loffset - db->db_offset;
819 		tocpy = (int)MIN(db->db_size - bufoff, size);
820 
821 		if (xuio) {
822 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
823 			arc_buf_t *dbuf_abuf = dbi->db_buf;
824 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
825 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
826 			if (!err) {
827 				uio->uio_resid -= tocpy;
828 				uio->uio_loffset += tocpy;
829 			}
830 
831 			if (abuf == dbuf_abuf)
832 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
833 			else
834 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
835 		} else {
836 			err = uiomove((char *)db->db_data + bufoff, tocpy,
837 			    UIO_READ, uio);
838 		}
839 		if (err)
840 			break;
841 
842 		size -= tocpy;
843 	}
844 	dmu_buf_rele_array(dbp, numbufs, FTAG);
845 
846 	return (err);
847 }
848 
849 int
850 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
851     dmu_tx_t *tx)
852 {
853 	dmu_buf_t **dbp;
854 	int numbufs, i;
855 	int err = 0;
856 
857 	if (size == 0)
858 		return (0);
859 
860 	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size,
861 	    FALSE, FTAG, &numbufs, &dbp);
862 	if (err)
863 		return (err);
864 
865 	for (i = 0; i < numbufs; i++) {
866 		int tocpy;
867 		int bufoff;
868 		dmu_buf_t *db = dbp[i];
869 
870 		ASSERT(size > 0);
871 
872 		bufoff = uio->uio_loffset - db->db_offset;
873 		tocpy = (int)MIN(db->db_size - bufoff, size);
874 
875 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
876 
877 		if (tocpy == db->db_size)
878 			dmu_buf_will_fill(db, tx);
879 		else
880 			dmu_buf_will_dirty(db, tx);
881 
882 		/*
883 		 * XXX uiomove could block forever (eg. nfs-backed
884 		 * pages).  There needs to be a uiolockdown() function
885 		 * to lock the pages in memory, so that uiomove won't
886 		 * block.
887 		 */
888 		err = uiomove((char *)db->db_data + bufoff, tocpy,
889 		    UIO_WRITE, uio);
890 
891 		if (tocpy == db->db_size)
892 			dmu_buf_fill_done(db, tx);
893 
894 		if (err)
895 			break;
896 
897 		size -= tocpy;
898 	}
899 	dmu_buf_rele_array(dbp, numbufs, FTAG);
900 	return (err);
901 }
902 
903 #ifndef __NetBSD__
904 int
905 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
906     page_t *pp, dmu_tx_t *tx)
907 {
908 	dmu_buf_t **dbp;
909 	int numbufs, i;
910 	int err;
911 
912 	if (size == 0)
913 		return (0);
914 
915 	err = dmu_buf_hold_array(os, object, offset, size,
916 	    FALSE, FTAG, &numbufs, &dbp);
917 	if (err)
918 		return (err);
919 
920 	for (i = 0; i < numbufs; i++) {
921 		int tocpy, copied, thiscpy;
922 		int bufoff;
923 		dmu_buf_t *db = dbp[i];
924 		caddr_t va;
925 
926 		ASSERT(size > 0);
927 		ASSERT3U(db->db_size, >=, PAGESIZE);
928 
929 		bufoff = offset - db->db_offset;
930 		tocpy = (int)MIN(db->db_size - bufoff, size);
931 
932 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
933 
934 		if (tocpy == db->db_size)
935 			dmu_buf_will_fill(db, tx);
936 		else
937 			dmu_buf_will_dirty(db, tx);
938 
939 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
940 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
941 			thiscpy = MIN(PAGESIZE, tocpy - copied);
942 			va = zfs_map_page(pp, S_READ);
943 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
944 			zfs_unmap_page(pp, va);
945 			pp = pp->p_next;
946 			bufoff += PAGESIZE;
947 		}
948 
949 		if (tocpy == db->db_size)
950 			dmu_buf_fill_done(db, tx);
951 
952 		offset += tocpy;
953 		size -= tocpy;
954 	}
955 	dmu_buf_rele_array(dbp, numbufs, FTAG);
956 	return (err);
957 }
958 #endif  /* __NetBSD__ */
959 #endif
960 
961 /*
962  * Allocate a loaned anonymous arc buffer.
963  */
964 arc_buf_t *
965 dmu_request_arcbuf(dmu_buf_t *handle, int size)
966 {
967 	dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode;
968 
969 	return (arc_loan_buf(dn->dn_objset->os_spa, size));
970 }
971 
972 /*
973  * Free a loaned arc buffer.
974  */
975 void
976 dmu_return_arcbuf(arc_buf_t *buf)
977 {
978 	arc_return_buf(buf, FTAG);
979 	VERIFY(arc_buf_remove_ref(buf, FTAG) == 1);
980 }
981 
982 /*
983  * When possible directly assign passed loaned arc buffer to a dbuf.
984  * If this is not possible copy the contents of passed arc buf via
985  * dmu_write().
986  */
987 void
988 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
989     dmu_tx_t *tx)
990 {
991 	dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode;
992 	dmu_buf_impl_t *db;
993 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
994 	uint64_t blkid;
995 
996 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
997 	blkid = dbuf_whichblock(dn, offset);
998 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
999 	rw_exit(&dn->dn_struct_rwlock);
1000 
1001 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1002 		dbuf_assign_arcbuf(db, buf, tx);
1003 		dbuf_rele(db, FTAG);
1004 	} else {
1005 		dbuf_rele(db, FTAG);
1006 		dmu_write(dn->dn_objset, dn->dn_object, offset, blksz,
1007 		    buf->b_data, tx);
1008 		dmu_return_arcbuf(buf);
1009 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1010 	}
1011 }
1012 
1013 typedef struct {
1014 	dbuf_dirty_record_t	*dsa_dr;
1015 	dmu_sync_cb_t		*dsa_done;
1016 	zgd_t			*dsa_zgd;
1017 	dmu_tx_t		*dsa_tx;
1018 } dmu_sync_arg_t;
1019 
1020 /* ARGSUSED */
1021 static void
1022 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1023 {
1024 	dmu_sync_arg_t *dsa = varg;
1025 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1026 	dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
1027 	blkptr_t *bp = zio->io_bp;
1028 
1029 	if (zio->io_error == 0) {
1030 		if (BP_IS_HOLE(bp)) {
1031 			/*
1032 			 * A block of zeros may compress to a hole, but the
1033 			 * block size still needs to be known for replay.
1034 			 */
1035 			BP_SET_LSIZE(bp, db->db_size);
1036 		} else {
1037 			ASSERT(BP_GET_TYPE(bp) == dn->dn_type);
1038 			ASSERT(BP_GET_LEVEL(bp) == 0);
1039 			bp->blk_fill = 1;
1040 		}
1041 	}
1042 }
1043 
1044 static void
1045 dmu_sync_late_arrival_ready(zio_t *zio)
1046 {
1047 	dmu_sync_ready(zio, NULL, zio->io_private);
1048 }
1049 
1050 /* ARGSUSED */
1051 static void
1052 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1053 {
1054 	dmu_sync_arg_t *dsa = varg;
1055 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1056 	dmu_buf_impl_t *db = dr->dr_dbuf;
1057 
1058 	mutex_enter(&db->db_mtx);
1059 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1060 	if (zio->io_error == 0) {
1061 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1062 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1063 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1064 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1065 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1066 	} else {
1067 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1068 	}
1069 	cv_broadcast(&db->db_changed);
1070 	mutex_exit(&db->db_mtx);
1071 
1072 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1073 
1074 	kmem_free(dsa, sizeof (*dsa));
1075 }
1076 
1077 static void
1078 dmu_sync_late_arrival_done(zio_t *zio)
1079 {
1080 	blkptr_t *bp = zio->io_bp;
1081 	dmu_sync_arg_t *dsa = zio->io_private;
1082 
1083 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1084 		ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1085 		ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1086 		zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1087 	}
1088 
1089 	dmu_tx_commit(dsa->dsa_tx);
1090 
1091 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1092 
1093 	kmem_free(dsa, sizeof (*dsa));
1094 }
1095 
1096 static int
1097 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1098     zio_prop_t *zp, zbookmark_t *zb)
1099 {
1100 	dmu_sync_arg_t *dsa;
1101 	dmu_tx_t *tx;
1102 
1103 	tx = dmu_tx_create(os);
1104 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1105 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1106 		dmu_tx_abort(tx);
1107 		return (EIO);	/* Make zl_get_data do txg_waited_synced() */
1108 	}
1109 
1110 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1111 	dsa->dsa_dr = NULL;
1112 	dsa->dsa_done = done;
1113 	dsa->dsa_zgd = zgd;
1114 	dsa->dsa_tx = tx;
1115 
1116 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1117 	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1118 	    dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa,
1119 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1120 
1121 	return (0);
1122 }
1123 
1124 /*
1125  * Intent log support: sync the block associated with db to disk.
1126  * N.B. and XXX: the caller is responsible for making sure that the
1127  * data isn't changing while dmu_sync() is writing it.
1128  *
1129  * Return values:
1130  *
1131  *	EEXIST: this txg has already been synced, so there's nothing to to.
1132  *		The caller should not log the write.
1133  *
1134  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1135  *		The caller should not log the write.
1136  *
1137  *	EALREADY: this block is already in the process of being synced.
1138  *		The caller should track its progress (somehow).
1139  *
1140  *	EIO: could not do the I/O.
1141  *		The caller should do a txg_wait_synced().
1142  *
1143  *	0: the I/O has been initiated.
1144  *		The caller should log this blkptr in the done callback.
1145  *		It is possible that the I/O will fail, in which case
1146  *		the error will be reported to the done callback and
1147  *		propagated to pio from zio_done().
1148  */
1149 int
1150 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1151 {
1152 	blkptr_t *bp = zgd->zgd_bp;
1153 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1154 	objset_t *os = db->db_objset;
1155 	dsl_dataset_t *ds = os->os_dsl_dataset;
1156 	dbuf_dirty_record_t *dr;
1157 	dmu_sync_arg_t *dsa;
1158 	zbookmark_t zb;
1159 	zio_prop_t zp;
1160 
1161 	ASSERT(pio != NULL);
1162 	ASSERT(BP_IS_HOLE(bp));
1163 	ASSERT(txg != 0);
1164 
1165 	SET_BOOKMARK(&zb, ds->ds_object,
1166 	    db->db.db_object, db->db_level, db->db_blkid);
1167 
1168 	dmu_write_policy(os, db->db_dnode, db->db_level, WP_DMU_SYNC, &zp);
1169 
1170 	/*
1171 	 * If we're frozen (running ziltest), we always need to generate a bp.
1172 	 */
1173 	if (txg > spa_freeze_txg(os->os_spa))
1174 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1175 
1176 	/*
1177 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1178 	 * and us.  If we determine that this txg is not yet syncing,
1179 	 * but it begins to sync a moment later, that's OK because the
1180 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1181 	 */
1182 	mutex_enter(&db->db_mtx);
1183 
1184 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1185 		/*
1186 		 * This txg has already synced.  There's nothing to do.
1187 		 */
1188 		mutex_exit(&db->db_mtx);
1189 		return (EEXIST);
1190 	}
1191 
1192 	if (txg <= spa_syncing_txg(os->os_spa)) {
1193 		/*
1194 		 * This txg is currently syncing, so we can't mess with
1195 		 * the dirty record anymore; just write a new log block.
1196 		 */
1197 		mutex_exit(&db->db_mtx);
1198 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1199 	}
1200 
1201 	dr = db->db_last_dirty;
1202 	while (dr && dr->dr_txg != txg)
1203 		dr = dr->dr_next;
1204 
1205 	if (dr == NULL) {
1206 		/*
1207 		 * There's no dr for this dbuf, so it must have been freed.
1208 		 * There's no need to log writes to freed blocks, so we're done.
1209 		 */
1210 		mutex_exit(&db->db_mtx);
1211 		return (ENOENT);
1212 	}
1213 
1214 	ASSERT(dr->dr_txg == txg);
1215 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1216 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1217 		/*
1218 		 * We have already issued a sync write for this buffer,
1219 		 * or this buffer has already been synced.  It could not
1220 		 * have been dirtied since, or we would have cleared the state.
1221 		 */
1222 		mutex_exit(&db->db_mtx);
1223 		return (EALREADY);
1224 	}
1225 
1226 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1227 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1228 	mutex_exit(&db->db_mtx);
1229 
1230 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1231 	dsa->dsa_dr = dr;
1232 	dsa->dsa_done = done;
1233 	dsa->dsa_zgd = zgd;
1234 	dsa->dsa_tx = NULL;
1235 
1236 	zio_nowait(arc_write(pio, os->os_spa, txg,
1237 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp,
1238 	    dmu_sync_ready, dmu_sync_done, dsa,
1239 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1240 
1241 	return (0);
1242 }
1243 
1244 int
1245 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1246 	dmu_tx_t *tx)
1247 {
1248 	dnode_t *dn;
1249 	int err;
1250 
1251 	err = dnode_hold(os, object, FTAG, &dn);
1252 	if (err)
1253 		return (err);
1254 	err = dnode_set_blksz(dn, size, ibs, tx);
1255 	dnode_rele(dn, FTAG);
1256 	return (err);
1257 }
1258 
1259 void
1260 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1261 	dmu_tx_t *tx)
1262 {
1263 	dnode_t *dn;
1264 
1265 	/* XXX assumes dnode_hold will not get an i/o error */
1266 	(void) dnode_hold(os, object, FTAG, &dn);
1267 	ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1268 	dn->dn_checksum = checksum;
1269 	dnode_setdirty(dn, tx);
1270 	dnode_rele(dn, FTAG);
1271 }
1272 
1273 void
1274 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1275 	dmu_tx_t *tx)
1276 {
1277 	dnode_t *dn;
1278 
1279 	/* XXX assumes dnode_hold will not get an i/o error */
1280 	(void) dnode_hold(os, object, FTAG, &dn);
1281 	ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1282 	dn->dn_compress = compress;
1283 	dnode_setdirty(dn, tx);
1284 	dnode_rele(dn, FTAG);
1285 }
1286 
1287 int zfs_mdcomp_disable = 0;
1288 
1289 void
1290 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1291 {
1292 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1293 	boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata);
1294 	enum zio_checksum checksum = os->os_checksum;
1295 	enum zio_compress compress = os->os_compress;
1296 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1297 	boolean_t dedup;
1298 	boolean_t dedup_verify = os->os_dedup_verify;
1299 	int copies = os->os_copies;
1300 
1301 	/*
1302 	 * Determine checksum setting.
1303 	 */
1304 	if (ismd) {
1305 		/*
1306 		 * Metadata always gets checksummed.  If the data
1307 		 * checksum is multi-bit correctable, and it's not a
1308 		 * ZBT-style checksum, then it's suitable for metadata
1309 		 * as well.  Otherwise, the metadata checksum defaults
1310 		 * to fletcher4.
1311 		 */
1312 		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1313 		    zio_checksum_table[checksum].ci_eck)
1314 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1315 	} else {
1316 		checksum = zio_checksum_select(dn->dn_checksum, checksum);
1317 	}
1318 
1319 	/*
1320 	 * Determine compression setting.
1321 	 */
1322 	if (ismd) {
1323 		/*
1324 		 * XXX -- we should design a compression algorithm
1325 		 * that specializes in arrays of bps.
1326 		 */
1327 		compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1328 		    ZIO_COMPRESS_LZJB;
1329 	} else {
1330 		compress = zio_compress_select(dn->dn_compress, compress);
1331 	}
1332 
1333 	/*
1334 	 * Determine dedup setting.  If we are in dmu_sync(), we won't
1335 	 * actually dedup now because that's all done in syncing context;
1336 	 * but we do want to use the dedup checkum.  If the checksum is not
1337 	 * strong enough to ensure unique signatures, force dedup_verify.
1338 	 */
1339 	dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF);
1340 	if (dedup) {
1341 		checksum = dedup_checksum;
1342 		if (!zio_checksum_table[checksum].ci_dedup)
1343 			dedup_verify = 1;
1344 	}
1345 
1346 	if (wp & WP_DMU_SYNC)
1347 		dedup = 0;
1348 
1349 	if (wp & WP_NOFILL) {
1350 		ASSERT(!ismd && level == 0);
1351 		checksum = ZIO_CHECKSUM_OFF;
1352 		compress = ZIO_COMPRESS_OFF;
1353 		dedup = B_FALSE;
1354 	}
1355 
1356 	zp->zp_checksum = checksum;
1357 	zp->zp_compress = compress;
1358 	zp->zp_type = type;
1359 	zp->zp_level = level;
1360 	zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
1361 	zp->zp_dedup = dedup;
1362 	zp->zp_dedup_verify = dedup && dedup_verify;
1363 }
1364 
1365 int
1366 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1367 {
1368 	dnode_t *dn;
1369 	int i, err;
1370 
1371 	err = dnode_hold(os, object, FTAG, &dn);
1372 	if (err)
1373 		return (err);
1374 	/*
1375 	 * Sync any current changes before
1376 	 * we go trundling through the block pointers.
1377 	 */
1378 	for (i = 0; i < TXG_SIZE; i++) {
1379 		if (list_link_active(&dn->dn_dirty_link[i]))
1380 			break;
1381 	}
1382 	if (i != TXG_SIZE) {
1383 		dnode_rele(dn, FTAG);
1384 		txg_wait_synced(dmu_objset_pool(os), 0);
1385 		err = dnode_hold(os, object, FTAG, &dn);
1386 		if (err)
1387 			return (err);
1388 	}
1389 
1390 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1391 	dnode_rele(dn, FTAG);
1392 
1393 	return (err);
1394 }
1395 
1396 void
1397 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1398 {
1399 	dnode_phys_t *dnp;
1400 
1401 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1402 	mutex_enter(&dn->dn_mtx);
1403 
1404 	dnp = dn->dn_phys;
1405 
1406 	doi->doi_data_block_size = dn->dn_datablksz;
1407 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1408 	    1ULL << dn->dn_indblkshift : 0;
1409 	doi->doi_type = dn->dn_type;
1410 	doi->doi_bonus_type = dn->dn_bonustype;
1411 	doi->doi_bonus_size = dn->dn_bonuslen;
1412 	doi->doi_indirection = dn->dn_nlevels;
1413 	doi->doi_checksum = dn->dn_checksum;
1414 	doi->doi_compress = dn->dn_compress;
1415 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1416 	doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz;
1417 	doi->doi_fill_count = 0;
1418 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1419 		doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1420 
1421 	mutex_exit(&dn->dn_mtx);
1422 	rw_exit(&dn->dn_struct_rwlock);
1423 }
1424 
1425 /*
1426  * Get information on a DMU object.
1427  * If doi is NULL, just indicates whether the object exists.
1428  */
1429 int
1430 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1431 {
1432 	dnode_t *dn;
1433 	int err = dnode_hold(os, object, FTAG, &dn);
1434 
1435 	if (err)
1436 		return (err);
1437 
1438 	if (doi != NULL)
1439 		dmu_object_info_from_dnode(dn, doi);
1440 
1441 	dnode_rele(dn, FTAG);
1442 	return (0);
1443 }
1444 
1445 /*
1446  * As above, but faster; can be used when you have a held dbuf in hand.
1447  */
1448 void
1449 dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi)
1450 {
1451 	dmu_object_info_from_dnode(((dmu_buf_impl_t *)db)->db_dnode, doi);
1452 }
1453 
1454 /*
1455  * Faster still when you only care about the size.
1456  * This is specifically optimized for zfs_getattr().
1457  */
1458 void
1459 dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512)
1460 {
1461 	dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
1462 
1463 	*blksize = dn->dn_datablksz;
1464 	/* add 1 for dnode space */
1465 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1466 	    SPA_MINBLOCKSHIFT) + 1;
1467 }
1468 
1469 void
1470 byteswap_uint64_array(void *vbuf, size_t size)
1471 {
1472 	uint64_t *buf = vbuf;
1473 	size_t count = size >> 3;
1474 	int i;
1475 
1476 	ASSERT((size & 7) == 0);
1477 
1478 	for (i = 0; i < count; i++)
1479 		buf[i] = BSWAP_64(buf[i]);
1480 }
1481 
1482 void
1483 byteswap_uint32_array(void *vbuf, size_t size)
1484 {
1485 	uint32_t *buf = vbuf;
1486 	size_t count = size >> 2;
1487 	int i;
1488 
1489 	ASSERT((size & 3) == 0);
1490 
1491 	for (i = 0; i < count; i++)
1492 		buf[i] = BSWAP_32(buf[i]);
1493 }
1494 
1495 void
1496 byteswap_uint16_array(void *vbuf, size_t size)
1497 {
1498 	uint16_t *buf = vbuf;
1499 	size_t count = size >> 1;
1500 	int i;
1501 
1502 	ASSERT((size & 1) == 0);
1503 
1504 	for (i = 0; i < count; i++)
1505 		buf[i] = BSWAP_16(buf[i]);
1506 }
1507 
1508 /* ARGSUSED */
1509 void
1510 byteswap_uint8_array(void *vbuf, size_t size)
1511 {
1512 }
1513 
1514 void
1515 dmu_init(void)
1516 {
1517 	dbuf_init();
1518 	dnode_init();
1519 	zfetch_init();
1520 	arc_init();
1521 	l2arc_init();
1522 #ifdef PORT_SOLARIS
1523 	xuio_stat_init();
1524 #endif
1525 }
1526 
1527 void
1528 dmu_fini(void)
1529 {
1530 	arc_fini();
1531 	zfetch_fini();
1532 	dnode_fini();
1533 	dbuf_fini();
1534 	l2arc_fini();
1535 #ifdef PORT_SOLARIS
1536 	xuio_stat_fini();
1537 #endif
1538 }
1539