xref: /netbsd-src/external/cddl/osnet/dist/uts/common/fs/zfs/dbuf.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 #include <sys/callb.h>
49 
50 uint_t zfs_dbuf_evict_key;
51 
52 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
53 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
54 
55 #ifndef __lint
56 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
57     dmu_buf_evict_func_t *evict_func_sync,
58     dmu_buf_evict_func_t *evict_func_async,
59     dmu_buf_t **clear_on_evict_dbufp);
60 #endif /* ! __lint */
61 
62 /*
63  * Global data structures and functions for the dbuf cache.
64  */
65 static kmem_cache_t *dbuf_kmem_cache;
66 static taskq_t *dbu_evict_taskq;
67 
68 static kthread_t *dbuf_cache_evict_thread;
69 static kmutex_t dbuf_evict_lock;
70 static kcondvar_t dbuf_evict_cv;
71 static boolean_t dbuf_evict_thread_exit;
72 
73 /*
74  * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
75  * are not currently held but have been recently released. These dbufs
76  * are not eligible for arc eviction until they are aged out of the cache.
77  * Dbufs are added to the dbuf cache once the last hold is released. If a
78  * dbuf is later accessed and still exists in the dbuf cache, then it will
79  * be removed from the cache and later re-added to the head of the cache.
80  * Dbufs that are aged out of the cache will be immediately destroyed and
81  * become eligible for arc eviction.
82  */
83 static multilist_t dbuf_cache;
84 static refcount_t dbuf_cache_size;
85 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024;
86 
87 /* Cap the size of the dbuf cache to log2 fraction of arc size. */
88 int dbuf_cache_max_shift = 5;
89 
90 /*
91  * The dbuf cache uses a three-stage eviction policy:
92  *	- A low water marker designates when the dbuf eviction thread
93  *	should stop evicting from the dbuf cache.
94  *	- When we reach the maximum size (aka mid water mark), we
95  *	signal the eviction thread to run.
96  *	- The high water mark indicates when the eviction thread
97  *	is unable to keep up with the incoming load and eviction must
98  *	happen in the context of the calling thread.
99  *
100  * The dbuf cache:
101  *                                                 (max size)
102  *                                      low water   mid water   hi water
103  * +----------------------------------------+----------+----------+
104  * |                                        |          |          |
105  * |                                        |          |          |
106  * |                                        |          |          |
107  * |                                        |          |          |
108  * +----------------------------------------+----------+----------+
109  *                                        stop        signal     evict
110  *                                      evicting     eviction   directly
111  *                                                    thread
112  *
113  * The high and low water marks indicate the operating range for the eviction
114  * thread. The low water mark is, by default, 90% of the total size of the
115  * cache and the high water mark is at 110% (both of these percentages can be
116  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
117  * respectively). The eviction thread will try to ensure that the cache remains
118  * within this range by waking up every second and checking if the cache is
119  * above the low water mark. The thread can also be woken up by callers adding
120  * elements into the cache if the cache is larger than the mid water (i.e max
121  * cache size). Once the eviction thread is woken up and eviction is required,
122  * it will continue evicting buffers until it's able to reduce the cache size
123  * to the low water mark. If the cache size continues to grow and hits the high
124  * water mark, then callers adding elments to the cache will begin to evict
125  * directly from the cache until the cache is no longer above the high water
126  * mark.
127  */
128 
129 /*
130  * The percentage above and below the maximum cache size.
131  */
132 uint_t dbuf_cache_hiwater_pct = 10;
133 uint_t dbuf_cache_lowater_pct = 10;
134 
135 /* ARGSUSED */
136 static int
137 dbuf_cons(void *vdb, void *unused, int kmflag)
138 {
139 	dmu_buf_impl_t *db = vdb;
140 
141 #ifdef __NetBSD__
142 	db = unused;
143 #endif
144 	bzero(db, sizeof (dmu_buf_impl_t));
145 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
146 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
147 	multilist_link_init(&db->db_cache_link);
148 	refcount_create(&db->db_holds);
149 
150 	return (0);
151 }
152 
153 /* ARGSUSED */
154 static void
155 dbuf_dest(void *vdb, void *unused)
156 {
157 	dmu_buf_impl_t *db = vdb;
158 
159 #ifdef __NetBSD__
160 	db = unused;
161 #endif
162 	mutex_destroy(&db->db_mtx);
163 	cv_destroy(&db->db_changed);
164 	ASSERT(!multilist_link_active(&db->db_cache_link));
165 	refcount_destroy(&db->db_holds);
166 }
167 
168 /*
169  * dbuf hash table routines
170  */
171 static dbuf_hash_table_t dbuf_hash_table;
172 
173 static uint64_t dbuf_hash_count;
174 
175 static uint64_t
176 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
177 {
178 	uintptr_t osv = (uintptr_t)os;
179 	uint64_t crc = -1ULL;
180 
181 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
182 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
183 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
184 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
185 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
186 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
187 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
188 
189 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
190 
191 	return (crc);
192 }
193 
194 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
195 	((dbuf)->db.db_object == (obj) &&		\
196 	(dbuf)->db_objset == (os) &&			\
197 	(dbuf)->db_level == (level) &&			\
198 	(dbuf)->db_blkid == (blkid))
199 
200 dmu_buf_impl_t *
201 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
202 {
203 	dbuf_hash_table_t *h = &dbuf_hash_table;
204 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
205 	uint64_t idx = hv & h->hash_table_mask;
206 	dmu_buf_impl_t *db;
207 
208 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
209 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
210 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
211 			mutex_enter(&db->db_mtx);
212 			if (db->db_state != DB_EVICTING) {
213 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
214 				return (db);
215 			}
216 			mutex_exit(&db->db_mtx);
217 		}
218 	}
219 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
220 	return (NULL);
221 }
222 
223 static dmu_buf_impl_t *
224 dbuf_find_bonus(objset_t *os, uint64_t object)
225 {
226 	dnode_t *dn;
227 	dmu_buf_impl_t *db = NULL;
228 
229 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
230 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
231 		if (dn->dn_bonus != NULL) {
232 			db = dn->dn_bonus;
233 			mutex_enter(&db->db_mtx);
234 		}
235 		rw_exit(&dn->dn_struct_rwlock);
236 		dnode_rele(dn, FTAG);
237 	}
238 	return (db);
239 }
240 
241 /*
242  * Insert an entry into the hash table.  If there is already an element
243  * equal to elem in the hash table, then the already existing element
244  * will be returned and the new element will not be inserted.
245  * Otherwise returns NULL.
246  */
247 static dmu_buf_impl_t *
248 dbuf_hash_insert(dmu_buf_impl_t *db)
249 {
250 	dbuf_hash_table_t *h = &dbuf_hash_table;
251 	objset_t *os = db->db_objset;
252 	uint64_t obj = db->db.db_object;
253 	int level = db->db_level;
254 	uint64_t blkid = db->db_blkid;
255 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
256 	uint64_t idx = hv & h->hash_table_mask;
257 	dmu_buf_impl_t *dbf;
258 
259 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
260 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
261 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
262 			mutex_enter(&dbf->db_mtx);
263 			if (dbf->db_state != DB_EVICTING) {
264 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
265 				return (dbf);
266 			}
267 			mutex_exit(&dbf->db_mtx);
268 		}
269 	}
270 
271 	mutex_enter(&db->db_mtx);
272 	db->db_hash_next = h->hash_table[idx];
273 	h->hash_table[idx] = db;
274 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
275 	atomic_inc_64(&dbuf_hash_count);
276 
277 	return (NULL);
278 }
279 
280 /*
281  * Remove an entry from the hash table.  It must be in the EVICTING state.
282  */
283 static void
284 dbuf_hash_remove(dmu_buf_impl_t *db)
285 {
286 	dbuf_hash_table_t *h = &dbuf_hash_table;
287 	uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
288 	    db->db_level, db->db_blkid);
289 	uint64_t idx = hv & h->hash_table_mask;
290 	dmu_buf_impl_t *dbf, **dbp;
291 
292 	/*
293 	 * We musn't hold db_mtx to maintain lock ordering:
294 	 * DBUF_HASH_MUTEX > db_mtx.
295 	 */
296 	ASSERT(refcount_is_zero(&db->db_holds));
297 	ASSERT(db->db_state == DB_EVICTING);
298 	ASSERT(!MUTEX_HELD(&db->db_mtx));
299 
300 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
301 	dbp = &h->hash_table[idx];
302 	while ((dbf = *dbp) != db) {
303 		dbp = &dbf->db_hash_next;
304 		ASSERT(dbf != NULL);
305 	}
306 	*dbp = db->db_hash_next;
307 	db->db_hash_next = NULL;
308 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
309 	atomic_dec_64(&dbuf_hash_count);
310 }
311 
312 typedef enum {
313 	DBVU_EVICTING,
314 	DBVU_NOT_EVICTING
315 } dbvu_verify_type_t;
316 
317 static void
318 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
319 {
320 #ifdef ZFS_DEBUG
321 	int64_t holds;
322 
323 	if (db->db_user == NULL)
324 		return;
325 
326 	/* Only data blocks support the attachment of user data. */
327 	ASSERT(db->db_level == 0);
328 
329 	/* Clients must resolve a dbuf before attaching user data. */
330 	ASSERT(db->db.db_data != NULL);
331 	ASSERT3U(db->db_state, ==, DB_CACHED);
332 
333 	holds = refcount_count(&db->db_holds);
334 	if (verify_type == DBVU_EVICTING) {
335 		/*
336 		 * Immediate eviction occurs when holds == dirtycnt.
337 		 * For normal eviction buffers, holds is zero on
338 		 * eviction, except when dbuf_fix_old_data() calls
339 		 * dbuf_clear_data().  However, the hold count can grow
340 		 * during eviction even though db_mtx is held (see
341 		 * dmu_bonus_hold() for an example), so we can only
342 		 * test the generic invariant that holds >= dirtycnt.
343 		 */
344 		ASSERT3U(holds, >=, db->db_dirtycnt);
345 	} else {
346 		if (db->db_user_immediate_evict == TRUE)
347 			ASSERT3U(holds, >=, db->db_dirtycnt);
348 		else
349 			ASSERT3U(holds, >, 0);
350 	}
351 #endif
352 }
353 
354 static void
355 dbuf_evict_user(dmu_buf_impl_t *db)
356 {
357 	dmu_buf_user_t *dbu = db->db_user;
358 
359 	ASSERT(MUTEX_HELD(&db->db_mtx));
360 
361 	if (dbu == NULL)
362 		return;
363 
364 	dbuf_verify_user(db, DBVU_EVICTING);
365 	db->db_user = NULL;
366 
367 #ifdef ZFS_DEBUG
368 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
369 		*dbu->dbu_clear_on_evict_dbufp = NULL;
370 #endif
371 
372 	/*
373 	 * There are two eviction callbacks - one that we call synchronously
374 	 * and one that we invoke via a taskq.  The async one is useful for
375 	 * avoiding lock order reversals and limiting stack depth.
376 	 *
377 	 * Note that if we have a sync callback but no async callback,
378 	 * it's likely that the sync callback will free the structure
379 	 * containing the dbu.  In that case we need to take care to not
380 	 * dereference dbu after calling the sync evict func.
381 	 */
382 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
383 
384 	if (dbu->dbu_evict_func_sync != NULL)
385 		dbu->dbu_evict_func_sync(dbu);
386 
387 	if (has_async) {
388 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
389 		    dbu, 0, &dbu->dbu_tqent);
390 	}
391 }
392 
393 boolean_t
394 dbuf_is_metadata(dmu_buf_impl_t *db)
395 {
396 	if (db->db_level > 0) {
397 		return (B_TRUE);
398 	} else {
399 		boolean_t is_metadata;
400 
401 		DB_DNODE_ENTER(db);
402 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
403 		DB_DNODE_EXIT(db);
404 
405 		return (is_metadata);
406 	}
407 }
408 
409 /*
410  * This function *must* return indices evenly distributed between all
411  * sublists of the multilist. This is needed due to how the dbuf eviction
412  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
413  * distributed between all sublists and uses this assumption when
414  * deciding which sublist to evict from and how much to evict from it.
415  */
416 unsigned int
417 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
418 {
419 	dmu_buf_impl_t *db = obj;
420 
421 	/*
422 	 * The assumption here, is the hash value for a given
423 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
424 	 * (i.e. it's objset, object, level and blkid fields don't change).
425 	 * Thus, we don't need to store the dbuf's sublist index
426 	 * on insertion, as this index can be recalculated on removal.
427 	 *
428 	 * Also, the low order bits of the hash value are thought to be
429 	 * distributed evenly. Otherwise, in the case that the multilist
430 	 * has a power of two number of sublists, each sublists' usage
431 	 * would not be evenly distributed.
432 	 */
433 	return (dbuf_hash(db->db_objset, db->db.db_object,
434 	    db->db_level, db->db_blkid) %
435 	    multilist_get_num_sublists(ml));
436 }
437 
438 static inline boolean_t
439 dbuf_cache_above_hiwater(void)
440 {
441 	uint64_t dbuf_cache_hiwater_bytes =
442 	    (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
443 
444 	return (refcount_count(&dbuf_cache_size) >
445 	    dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
446 }
447 
448 static inline boolean_t
449 dbuf_cache_above_lowater(void)
450 {
451 	uint64_t dbuf_cache_lowater_bytes =
452 	    (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
453 
454 	return (refcount_count(&dbuf_cache_size) >
455 	    dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
456 }
457 
458 /*
459  * Evict the oldest eligible dbuf from the dbuf cache.
460  */
461 static void
462 dbuf_evict_one(void)
463 {
464 	int idx = multilist_get_random_index(&dbuf_cache);
465 	multilist_sublist_t *mls = multilist_sublist_lock(&dbuf_cache, idx);
466 
467 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
468 
469 	/*
470 	 * Set the thread's tsd to indicate that it's processing evictions.
471 	 * Once a thread stops evicting from the dbuf cache it will
472 	 * reset its tsd to NULL.
473 	 */
474 	ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
475 	(void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
476 
477 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
478 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
479 		db = multilist_sublist_prev(mls, db);
480 	}
481 
482 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
483 	    multilist_sublist_t *, mls);
484 
485 	if (db != NULL) {
486 		multilist_sublist_remove(mls, db);
487 		multilist_sublist_unlock(mls);
488 		(void) refcount_remove_many(&dbuf_cache_size,
489 		    db->db.db_size, db);
490 		dbuf_destroy(db);
491 	} else {
492 		multilist_sublist_unlock(mls);
493 	}
494 	(void) tsd_set(zfs_dbuf_evict_key, NULL);
495 }
496 
497 /*
498  * The dbuf evict thread is responsible for aging out dbufs from the
499  * cache. Once the cache has reached it's maximum size, dbufs are removed
500  * and destroyed. The eviction thread will continue running until the size
501  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
502  * out of the cache it is destroyed and becomes eligible for arc eviction.
503  */
504 static void
505 dbuf_evict_thread(void *dummy __unused)
506 {
507 	callb_cpr_t cpr;
508 
509 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
510 
511 	mutex_enter(&dbuf_evict_lock);
512 	while (!dbuf_evict_thread_exit) {
513 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
514 			CALLB_CPR_SAFE_BEGIN(&cpr);
515 			(void) cv_timedwait_hires(&dbuf_evict_cv,
516 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
517 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
518 		}
519 		mutex_exit(&dbuf_evict_lock);
520 
521 		/*
522 		 * Keep evicting as long as we're above the low water mark
523 		 * for the cache. We do this without holding the locks to
524 		 * minimize lock contention.
525 		 */
526 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
527 			dbuf_evict_one();
528 		}
529 
530 		mutex_enter(&dbuf_evict_lock);
531 	}
532 
533 	dbuf_evict_thread_exit = B_FALSE;
534 	cv_broadcast(&dbuf_evict_cv);
535 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
536 	thread_exit();
537 }
538 
539 /*
540  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
541  * If the dbuf cache is at its high water mark, then evict a dbuf from the
542  * dbuf cache using the callers context.
543  */
544 static void
545 dbuf_evict_notify(void)
546 {
547 
548 	/*
549 	 * We use thread specific data to track when a thread has
550 	 * started processing evictions. This allows us to avoid deeply
551 	 * nested stacks that would have a call flow similar to this:
552 	 *
553 	 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
554 	 *	^						|
555 	 *	|						|
556 	 *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
557 	 *
558 	 * The dbuf_eviction_thread will always have its tsd set until
559 	 * that thread exits. All other threads will only set their tsd
560 	 * if they are participating in the eviction process. This only
561 	 * happens if the eviction thread is unable to process evictions
562 	 * fast enough. To keep the dbuf cache size in check, other threads
563 	 * can evict from the dbuf cache directly. Those threads will set
564 	 * their tsd values so that we ensure that they only evict one dbuf
565 	 * from the dbuf cache.
566 	 */
567 	if (tsd_get(zfs_dbuf_evict_key) != NULL)
568 		return;
569 
570 	if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
571 		boolean_t evict_now = B_FALSE;
572 
573 		mutex_enter(&dbuf_evict_lock);
574 		if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
575 			evict_now = dbuf_cache_above_hiwater();
576 			cv_signal(&dbuf_evict_cv);
577 		}
578 		mutex_exit(&dbuf_evict_lock);
579 
580 		if (evict_now) {
581 			dbuf_evict_one();
582 		}
583 	}
584 }
585 
586 void
587 dbuf_init(void)
588 {
589 	uint64_t hsize = 1ULL << 16;
590 	dbuf_hash_table_t *h = &dbuf_hash_table;
591 	int i;
592 
593 	/*
594 	 * The hash table is big enough to fill all of physical memory
595 	 * with an average 4K block size.  The table will take up
596 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
597 	 */
598 	while (hsize * 4096 < (uint64_t)physmem * PAGESIZE)
599 		hsize <<= 1;
600 
601 retry:
602 	h->hash_table_mask = hsize - 1;
603 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
604 	if (h->hash_table == NULL) {
605 		/* XXX - we should really return an error instead of assert */
606 		ASSERT(hsize > (1ULL << 10));
607 		hsize >>= 1;
608 		goto retry;
609 	}
610 
611 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
612 	    sizeof (dmu_buf_impl_t),
613 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
614 
615 	for (i = 0; i < DBUF_MUTEXES; i++)
616 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
617 
618 	/*
619 	 * Setup the parameters for the dbuf cache. We cap the size of the
620 	 * dbuf cache to 1/32nd (default) of the size of the ARC.
621 	 */
622 	dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
623 	    arc_max_bytes() >> dbuf_cache_max_shift);
624 
625 	/*
626 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
627 	 * configuration is not required.
628 	 */
629 	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
630 
631 	multilist_create(&dbuf_cache, sizeof (dmu_buf_impl_t),
632 	    offsetof(dmu_buf_impl_t, db_cache_link),
633 	    zfs_arc_num_sublists_per_state,
634 	    dbuf_cache_multilist_index_func);
635 	refcount_create(&dbuf_cache_size);
636 
637 	tsd_create(&zfs_dbuf_evict_key, NULL);
638 	dbuf_evict_thread_exit = B_FALSE;
639 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
640 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
641 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
642 	    NULL, 0, &p0, TS_RUN, minclsyspri);
643 }
644 
645 void
646 dbuf_fini(void)
647 {
648 	dbuf_hash_table_t *h = &dbuf_hash_table;
649 	int i;
650 
651 	for (i = 0; i < DBUF_MUTEXES; i++)
652 		mutex_destroy(&h->hash_mutexes[i]);
653 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
654 	kmem_cache_destroy(dbuf_kmem_cache);
655 	taskq_destroy(dbu_evict_taskq);
656 
657 	mutex_enter(&dbuf_evict_lock);
658 	dbuf_evict_thread_exit = B_TRUE;
659 	while (dbuf_evict_thread_exit) {
660 		cv_signal(&dbuf_evict_cv);
661 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
662 	}
663 	mutex_exit(&dbuf_evict_lock);
664 	tsd_destroy(&zfs_dbuf_evict_key);
665 
666 	mutex_destroy(&dbuf_evict_lock);
667 	cv_destroy(&dbuf_evict_cv);
668 
669 	refcount_destroy(&dbuf_cache_size);
670 	multilist_destroy(&dbuf_cache);
671 }
672 
673 /*
674  * Other stuff.
675  */
676 
677 #ifdef ZFS_DEBUG
678 static void
679 dbuf_verify(dmu_buf_impl_t *db)
680 {
681 	dnode_t *dn;
682 	dbuf_dirty_record_t *dr;
683 
684 	ASSERT(MUTEX_HELD(&db->db_mtx));
685 
686 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
687 		return;
688 
689 	ASSERT(db->db_objset != NULL);
690 	DB_DNODE_ENTER(db);
691 	dn = DB_DNODE(db);
692 	if (dn == NULL) {
693 		ASSERT(db->db_parent == NULL);
694 		ASSERT(db->db_blkptr == NULL);
695 	} else {
696 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
697 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
698 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
699 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
700 		    db->db_blkid == DMU_SPILL_BLKID ||
701 		    !avl_is_empty(&dn->dn_dbufs));
702 	}
703 	if (db->db_blkid == DMU_BONUS_BLKID) {
704 		ASSERT(dn != NULL);
705 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
706 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
707 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
708 		ASSERT(dn != NULL);
709 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
710 		ASSERT0(db->db.db_offset);
711 	} else {
712 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
713 	}
714 
715 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
716 		ASSERT(dr->dr_dbuf == db);
717 
718 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
719 		ASSERT(dr->dr_dbuf == db);
720 
721 	/*
722 	 * We can't assert that db_size matches dn_datablksz because it
723 	 * can be momentarily different when another thread is doing
724 	 * dnode_set_blksz().
725 	 */
726 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
727 		dr = db->db_data_pending;
728 		/*
729 		 * It should only be modified in syncing context, so
730 		 * make sure we only have one copy of the data.
731 		 */
732 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
733 	}
734 
735 	/* verify db->db_blkptr */
736 	if (db->db_blkptr) {
737 		if (db->db_parent == dn->dn_dbuf) {
738 			/* db is pointed to by the dnode */
739 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
740 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
741 				ASSERT(db->db_parent == NULL);
742 			else
743 				ASSERT(db->db_parent != NULL);
744 			if (db->db_blkid != DMU_SPILL_BLKID)
745 				ASSERT3P(db->db_blkptr, ==,
746 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
747 		} else {
748 			/* db is pointed to by an indirect block */
749 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
750 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
751 			ASSERT3U(db->db_parent->db.db_object, ==,
752 			    db->db.db_object);
753 			/*
754 			 * dnode_grow_indblksz() can make this fail if we don't
755 			 * have the struct_rwlock.  XXX indblksz no longer
756 			 * grows.  safe to do this now?
757 			 */
758 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
759 				ASSERT3P(db->db_blkptr, ==,
760 				    ((blkptr_t *)db->db_parent->db.db_data +
761 				    db->db_blkid % epb));
762 			}
763 		}
764 	}
765 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
766 	    (db->db_buf == NULL || db->db_buf->b_data) &&
767 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
768 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
769 		/*
770 		 * If the blkptr isn't set but they have nonzero data,
771 		 * it had better be dirty, otherwise we'll lose that
772 		 * data when we evict this buffer.
773 		 *
774 		 * There is an exception to this rule for indirect blocks; in
775 		 * this case, if the indirect block is a hole, we fill in a few
776 		 * fields on each of the child blocks (importantly, birth time)
777 		 * to prevent hole birth times from being lost when you
778 		 * partially fill in a hole.
779 		 */
780 		if (db->db_dirtycnt == 0) {
781 			if (db->db_level == 0) {
782 				uint64_t *buf = db->db.db_data;
783 				int i;
784 
785 				for (i = 0; i < db->db.db_size >> 3; i++) {
786 					ASSERT(buf[i] == 0);
787 				}
788 			} else {
789 				blkptr_t *bps = db->db.db_data;
790 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
791 				    db->db.db_size);
792 				/*
793 				 * We want to verify that all the blkptrs in the
794 				 * indirect block are holes, but we may have
795 				 * automatically set up a few fields for them.
796 				 * We iterate through each blkptr and verify
797 				 * they only have those fields set.
798 				 */
799 				for (int i = 0;
800 				    i < db->db.db_size / sizeof (blkptr_t);
801 				    i++) {
802 					blkptr_t *bp = &bps[i];
803 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
804 					    &bp->blk_cksum));
805 					ASSERT(
806 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
807 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
808 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
809 					ASSERT0(bp->blk_fill);
810 					ASSERT0(bp->blk_pad[0]);
811 					ASSERT0(bp->blk_pad[1]);
812 					ASSERT(!BP_IS_EMBEDDED(bp));
813 					ASSERT(BP_IS_HOLE(bp));
814 					ASSERT0(bp->blk_phys_birth);
815 				}
816 			}
817 		}
818 	}
819 	DB_DNODE_EXIT(db);
820 }
821 #endif
822 
823 static void
824 dbuf_clear_data(dmu_buf_impl_t *db)
825 {
826 	ASSERT(MUTEX_HELD(&db->db_mtx));
827 	dbuf_evict_user(db);
828 	ASSERT3P(db->db_buf, ==, NULL);
829 	db->db.db_data = NULL;
830 	if (db->db_state != DB_NOFILL)
831 		db->db_state = DB_UNCACHED;
832 }
833 
834 static void
835 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
836 {
837 	ASSERT(MUTEX_HELD(&db->db_mtx));
838 	ASSERT(buf != NULL);
839 
840 	db->db_buf = buf;
841 	ASSERT(buf->b_data != NULL);
842 	db->db.db_data = buf->b_data;
843 }
844 
845 /*
846  * Loan out an arc_buf for read.  Return the loaned arc_buf.
847  */
848 arc_buf_t *
849 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
850 {
851 	arc_buf_t *abuf;
852 
853 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
854 	mutex_enter(&db->db_mtx);
855 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
856 		int blksz = db->db.db_size;
857 		spa_t *spa = db->db_objset->os_spa;
858 
859 		mutex_exit(&db->db_mtx);
860 		abuf = arc_loan_buf(spa, blksz);
861 		bcopy(db->db.db_data, abuf->b_data, blksz);
862 	} else {
863 		abuf = db->db_buf;
864 		arc_loan_inuse_buf(abuf, db);
865 		db->db_buf = NULL;
866 		dbuf_clear_data(db);
867 		mutex_exit(&db->db_mtx);
868 	}
869 	return (abuf);
870 }
871 
872 /*
873  * Calculate which level n block references the data at the level 0 offset
874  * provided.
875  */
876 uint64_t
877 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
878 {
879 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
880 		/*
881 		 * The level n blkid is equal to the level 0 blkid divided by
882 		 * the number of level 0s in a level n block.
883 		 *
884 		 * The level 0 blkid is offset >> datablkshift =
885 		 * offset / 2^datablkshift.
886 		 *
887 		 * The number of level 0s in a level n is the number of block
888 		 * pointers in an indirect block, raised to the power of level.
889 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
890 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
891 		 *
892 		 * Thus, the level n blkid is: offset /
893 		 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
894 		 * = offset / 2^(datablkshift + level *
895 		 *   (indblkshift - SPA_BLKPTRSHIFT))
896 		 * = offset >> (datablkshift + level *
897 		 *   (indblkshift - SPA_BLKPTRSHIFT))
898 		 */
899 		return (offset >> (dn->dn_datablkshift + level *
900 		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
901 	} else {
902 		ASSERT3U(offset, <, dn->dn_datablksz);
903 		return (0);
904 	}
905 }
906 
907 static void
908 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
909 {
910 	dmu_buf_impl_t *db = vdb;
911 
912 	mutex_enter(&db->db_mtx);
913 	ASSERT3U(db->db_state, ==, DB_READ);
914 	/*
915 	 * All reads are synchronous, so we must have a hold on the dbuf
916 	 */
917 	ASSERT(refcount_count(&db->db_holds) > 0);
918 	ASSERT(db->db_buf == NULL);
919 	ASSERT(db->db.db_data == NULL);
920 	if (db->db_level == 0 && db->db_freed_in_flight) {
921 		/* we were freed in flight; disregard any error */
922 		arc_release(buf, db);
923 		bzero(buf->b_data, db->db.db_size);
924 		arc_buf_freeze(buf);
925 		db->db_freed_in_flight = FALSE;
926 		dbuf_set_data(db, buf);
927 		db->db_state = DB_CACHED;
928 	} else if (zio == NULL || zio->io_error == 0) {
929 		dbuf_set_data(db, buf);
930 		db->db_state = DB_CACHED;
931 	} else {
932 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
933 		ASSERT3P(db->db_buf, ==, NULL);
934 		arc_buf_destroy(buf, db);
935 		db->db_state = DB_UNCACHED;
936 	}
937 	cv_broadcast(&db->db_changed);
938 	dbuf_rele_and_unlock(db, NULL);
939 }
940 
941 static void
942 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
943 {
944 	dnode_t *dn;
945 	zbookmark_phys_t zb;
946 	arc_flags_t aflags = ARC_FLAG_NOWAIT;
947 
948 	DB_DNODE_ENTER(db);
949 	dn = DB_DNODE(db);
950 	ASSERT(!refcount_is_zero(&db->db_holds));
951 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
952 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
953 	ASSERT(MUTEX_HELD(&db->db_mtx));
954 	ASSERT(db->db_state == DB_UNCACHED);
955 	ASSERT(db->db_buf == NULL);
956 
957 	if (db->db_blkid == DMU_BONUS_BLKID) {
958 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
959 
960 		ASSERT3U(bonuslen, <=, db->db.db_size);
961 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
962 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
963 		if (bonuslen < DN_MAX_BONUSLEN)
964 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
965 		if (bonuslen)
966 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
967 		DB_DNODE_EXIT(db);
968 		db->db_state = DB_CACHED;
969 		mutex_exit(&db->db_mtx);
970 		return;
971 	}
972 
973 	/*
974 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
975 	 * processes the delete record and clears the bp while we are waiting
976 	 * for the dn_mtx (resulting in a "no" from block_freed).
977 	 */
978 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
979 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
980 	    BP_IS_HOLE(db->db_blkptr)))) {
981 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
982 
983 		dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa,
984 		    db->db.db_size, db, type));
985 		bzero(db->db.db_data, db->db.db_size);
986 
987 		if (db->db_blkptr != NULL && db->db_level > 0 &&
988 		    BP_IS_HOLE(db->db_blkptr) &&
989 		    db->db_blkptr->blk_birth != 0) {
990 			blkptr_t *bps = db->db.db_data;
991 			for (int i = 0; i < ((1 <<
992 			    DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
993 			    i++) {
994 				blkptr_t *bp = &bps[i];
995 				ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
996 				    1 << dn->dn_indblkshift);
997 				BP_SET_LSIZE(bp,
998 				    BP_GET_LEVEL(db->db_blkptr) == 1 ?
999 				    dn->dn_datablksz :
1000 				    BP_GET_LSIZE(db->db_blkptr));
1001 				BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1002 				BP_SET_LEVEL(bp,
1003 				    BP_GET_LEVEL(db->db_blkptr) - 1);
1004 				BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1005 			}
1006 		}
1007 		DB_DNODE_EXIT(db);
1008 		db->db_state = DB_CACHED;
1009 		mutex_exit(&db->db_mtx);
1010 		return;
1011 	}
1012 
1013 	DB_DNODE_EXIT(db);
1014 
1015 	db->db_state = DB_READ;
1016 	mutex_exit(&db->db_mtx);
1017 
1018 	if (DBUF_IS_L2CACHEABLE(db))
1019 		aflags |= ARC_FLAG_L2CACHE;
1020 
1021 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1022 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1023 	    db->db.db_object, db->db_level, db->db_blkid);
1024 
1025 	dbuf_add_ref(db, NULL);
1026 
1027 	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1028 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1029 	    (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1030 	    &aflags, &zb);
1031 }
1032 
1033 int
1034 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1035 {
1036 	int err = 0;
1037 	boolean_t havepzio = (zio != NULL);
1038 	boolean_t prefetch;
1039 	dnode_t *dn;
1040 
1041 	/*
1042 	 * We don't have to hold the mutex to check db_state because it
1043 	 * can't be freed while we have a hold on the buffer.
1044 	 */
1045 	ASSERT(!refcount_is_zero(&db->db_holds));
1046 
1047 	if (db->db_state == DB_NOFILL)
1048 		return (SET_ERROR(EIO));
1049 
1050 	DB_DNODE_ENTER(db);
1051 	dn = DB_DNODE(db);
1052 	if ((flags & DB_RF_HAVESTRUCT) == 0)
1053 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1054 
1055 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1056 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1057 	    DBUF_IS_CACHEABLE(db);
1058 
1059 	mutex_enter(&db->db_mtx);
1060 	if (db->db_state == DB_CACHED) {
1061 		mutex_exit(&db->db_mtx);
1062 		if (prefetch)
1063 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1064 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1065 			rw_exit(&dn->dn_struct_rwlock);
1066 		DB_DNODE_EXIT(db);
1067 	} else if (db->db_state == DB_UNCACHED) {
1068 		spa_t *spa = dn->dn_objset->os_spa;
1069 
1070 		if (zio == NULL)
1071 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1072 		dbuf_read_impl(db, zio, flags);
1073 
1074 		/* dbuf_read_impl has dropped db_mtx for us */
1075 
1076 		if (prefetch)
1077 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1078 
1079 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1080 			rw_exit(&dn->dn_struct_rwlock);
1081 		DB_DNODE_EXIT(db);
1082 
1083 		if (!havepzio)
1084 			err = zio_wait(zio);
1085 	} else {
1086 		/*
1087 		 * Another reader came in while the dbuf was in flight
1088 		 * between UNCACHED and CACHED.  Either a writer will finish
1089 		 * writing the buffer (sending the dbuf to CACHED) or the
1090 		 * first reader's request will reach the read_done callback
1091 		 * and send the dbuf to CACHED.  Otherwise, a failure
1092 		 * occurred and the dbuf went to UNCACHED.
1093 		 */
1094 		mutex_exit(&db->db_mtx);
1095 		if (prefetch)
1096 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1097 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1098 			rw_exit(&dn->dn_struct_rwlock);
1099 		DB_DNODE_EXIT(db);
1100 
1101 		/* Skip the wait per the caller's request. */
1102 		mutex_enter(&db->db_mtx);
1103 		if ((flags & DB_RF_NEVERWAIT) == 0) {
1104 			while (db->db_state == DB_READ ||
1105 			    db->db_state == DB_FILL) {
1106 				ASSERT(db->db_state == DB_READ ||
1107 				    (flags & DB_RF_HAVESTRUCT) == 0);
1108 				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1109 				    db, zio_t *, zio);
1110 				cv_wait(&db->db_changed, &db->db_mtx);
1111 			}
1112 			if (db->db_state == DB_UNCACHED)
1113 				err = SET_ERROR(EIO);
1114 		}
1115 		mutex_exit(&db->db_mtx);
1116 	}
1117 
1118 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
1119 	return (err);
1120 }
1121 
1122 static void
1123 dbuf_noread(dmu_buf_impl_t *db)
1124 {
1125 	ASSERT(!refcount_is_zero(&db->db_holds));
1126 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1127 	mutex_enter(&db->db_mtx);
1128 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1129 		cv_wait(&db->db_changed, &db->db_mtx);
1130 	if (db->db_state == DB_UNCACHED) {
1131 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1132 		spa_t *spa = db->db_objset->os_spa;
1133 
1134 		ASSERT(db->db_buf == NULL);
1135 		ASSERT(db->db.db_data == NULL);
1136 		dbuf_set_data(db, arc_alloc_buf(spa, db->db.db_size, db, type));
1137 		db->db_state = DB_FILL;
1138 	} else if (db->db_state == DB_NOFILL) {
1139 		dbuf_clear_data(db);
1140 	} else {
1141 		ASSERT3U(db->db_state, ==, DB_CACHED);
1142 	}
1143 	mutex_exit(&db->db_mtx);
1144 }
1145 
1146 /*
1147  * This is our just-in-time copy function.  It makes a copy of
1148  * buffers, that have been modified in a previous transaction
1149  * group, before we modify them in the current active group.
1150  *
1151  * This function is used in two places: when we are dirtying a
1152  * buffer for the first time in a txg, and when we are freeing
1153  * a range in a dnode that includes this buffer.
1154  *
1155  * Note that when we are called from dbuf_free_range() we do
1156  * not put a hold on the buffer, we just traverse the active
1157  * dbuf list for the dnode.
1158  */
1159 static void
1160 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1161 {
1162 	dbuf_dirty_record_t *dr = db->db_last_dirty;
1163 
1164 	ASSERT(MUTEX_HELD(&db->db_mtx));
1165 	ASSERT(db->db.db_data != NULL);
1166 	ASSERT(db->db_level == 0);
1167 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1168 
1169 	if (dr == NULL ||
1170 	    (dr->dt.dl.dr_data !=
1171 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1172 		return;
1173 
1174 	/*
1175 	 * If the last dirty record for this dbuf has not yet synced
1176 	 * and its referencing the dbuf data, either:
1177 	 *	reset the reference to point to a new copy,
1178 	 * or (if there a no active holders)
1179 	 *	just null out the current db_data pointer.
1180 	 */
1181 	ASSERT(dr->dr_txg >= txg - 2);
1182 	if (db->db_blkid == DMU_BONUS_BLKID) {
1183 		/* Note that the data bufs here are zio_bufs */
1184 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1185 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1186 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
1187 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1188 		int size = db->db.db_size;
1189 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1190 		spa_t *spa = db->db_objset->os_spa;
1191 
1192 		dr->dt.dl.dr_data = arc_alloc_buf(spa, size, db, type);
1193 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1194 	} else {
1195 		db->db_buf = NULL;
1196 		dbuf_clear_data(db);
1197 	}
1198 }
1199 
1200 void
1201 dbuf_unoverride(dbuf_dirty_record_t *dr)
1202 {
1203 	dmu_buf_impl_t *db = dr->dr_dbuf;
1204 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1205 	uint64_t txg = dr->dr_txg;
1206 
1207 	ASSERT(MUTEX_HELD(&db->db_mtx));
1208 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1209 	ASSERT(db->db_level == 0);
1210 
1211 	if (db->db_blkid == DMU_BONUS_BLKID ||
1212 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1213 		return;
1214 
1215 	ASSERT(db->db_data_pending != dr);
1216 
1217 	/* free this block */
1218 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1219 		zio_free(db->db_objset->os_spa, txg, bp);
1220 
1221 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1222 	dr->dt.dl.dr_nopwrite = B_FALSE;
1223 
1224 	/*
1225 	 * Release the already-written buffer, so we leave it in
1226 	 * a consistent dirty state.  Note that all callers are
1227 	 * modifying the buffer, so they will immediately do
1228 	 * another (redundant) arc_release().  Therefore, leave
1229 	 * the buf thawed to save the effort of freezing &
1230 	 * immediately re-thawing it.
1231 	 */
1232 	arc_release(dr->dt.dl.dr_data, db);
1233 }
1234 
1235 /*
1236  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1237  * data blocks in the free range, so that any future readers will find
1238  * empty blocks.
1239  */
1240 void
1241 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1242     dmu_tx_t *tx)
1243 {
1244 	dmu_buf_impl_t db_search;
1245 	dmu_buf_impl_t *db, *db_next;
1246 	uint64_t txg = tx->tx_txg;
1247 	avl_index_t where;
1248 
1249 	if (end_blkid > dn->dn_maxblkid &&
1250 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1251 		end_blkid = dn->dn_maxblkid;
1252 	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1253 
1254 	db_search.db_level = 0;
1255 	db_search.db_blkid = start_blkid;
1256 	db_search.db_state = DB_SEARCH;
1257 
1258 	mutex_enter(&dn->dn_dbufs_mtx);
1259 	db = avl_find(&dn->dn_dbufs, &db_search, &where);
1260 	ASSERT3P(db, ==, NULL);
1261 
1262 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1263 
1264 	for (; db != NULL; db = db_next) {
1265 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1266 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1267 
1268 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
1269 			break;
1270 		}
1271 		ASSERT3U(db->db_blkid, >=, start_blkid);
1272 
1273 		/* found a level 0 buffer in the range */
1274 		mutex_enter(&db->db_mtx);
1275 		if (dbuf_undirty(db, tx)) {
1276 			/* mutex has been dropped and dbuf destroyed */
1277 			continue;
1278 		}
1279 
1280 		if (db->db_state == DB_UNCACHED ||
1281 		    db->db_state == DB_NOFILL ||
1282 		    db->db_state == DB_EVICTING) {
1283 			ASSERT(db->db.db_data == NULL);
1284 			mutex_exit(&db->db_mtx);
1285 			continue;
1286 		}
1287 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1288 			/* will be handled in dbuf_read_done or dbuf_rele */
1289 			db->db_freed_in_flight = TRUE;
1290 			mutex_exit(&db->db_mtx);
1291 			continue;
1292 		}
1293 		if (refcount_count(&db->db_holds) == 0) {
1294 			ASSERT(db->db_buf);
1295 			dbuf_destroy(db);
1296 			continue;
1297 		}
1298 		/* The dbuf is referenced */
1299 
1300 		if (db->db_last_dirty != NULL) {
1301 			dbuf_dirty_record_t *dr = db->db_last_dirty;
1302 
1303 			if (dr->dr_txg == txg) {
1304 				/*
1305 				 * This buffer is "in-use", re-adjust the file
1306 				 * size to reflect that this buffer may
1307 				 * contain new data when we sync.
1308 				 */
1309 				if (db->db_blkid != DMU_SPILL_BLKID &&
1310 				    db->db_blkid > dn->dn_maxblkid)
1311 					dn->dn_maxblkid = db->db_blkid;
1312 				dbuf_unoverride(dr);
1313 			} else {
1314 				/*
1315 				 * This dbuf is not dirty in the open context.
1316 				 * Either uncache it (if its not referenced in
1317 				 * the open context) or reset its contents to
1318 				 * empty.
1319 				 */
1320 				dbuf_fix_old_data(db, txg);
1321 			}
1322 		}
1323 		/* clear the contents if its cached */
1324 		if (db->db_state == DB_CACHED) {
1325 			ASSERT(db->db.db_data != NULL);
1326 			arc_release(db->db_buf, db);
1327 			bzero(db->db.db_data, db->db.db_size);
1328 			arc_buf_freeze(db->db_buf);
1329 		}
1330 
1331 		mutex_exit(&db->db_mtx);
1332 	}
1333 	mutex_exit(&dn->dn_dbufs_mtx);
1334 }
1335 
1336 static int
1337 dbuf_block_freeable(dmu_buf_impl_t *db)
1338 {
1339 	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
1340 	uint64_t birth_txg = 0;
1341 
1342 	/*
1343 	 * We don't need any locking to protect db_blkptr:
1344 	 * If it's syncing, then db_last_dirty will be set
1345 	 * so we'll ignore db_blkptr.
1346 	 *
1347 	 * This logic ensures that only block births for
1348 	 * filled blocks are considered.
1349 	 */
1350 	ASSERT(MUTEX_HELD(&db->db_mtx));
1351 	if (db->db_last_dirty && (db->db_blkptr == NULL ||
1352 	    !BP_IS_HOLE(db->db_blkptr))) {
1353 		birth_txg = db->db_last_dirty->dr_txg;
1354 	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1355 		birth_txg = db->db_blkptr->blk_birth;
1356 	}
1357 
1358 	/*
1359 	 * If this block don't exist or is in a snapshot, it can't be freed.
1360 	 * Don't pass the bp to dsl_dataset_block_freeable() since we
1361 	 * are holding the db_mtx lock and might deadlock if we are
1362 	 * prefetching a dedup-ed block.
1363 	 */
1364 	if (birth_txg != 0)
1365 		return (ds == NULL ||
1366 		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
1367 	else
1368 		return (B_FALSE);
1369 }
1370 
1371 void
1372 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1373 {
1374 	arc_buf_t *buf, *obuf;
1375 	int osize = db->db.db_size;
1376 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1377 	dnode_t *dn;
1378 
1379 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1380 
1381 	DB_DNODE_ENTER(db);
1382 	dn = DB_DNODE(db);
1383 
1384 	/* XXX does *this* func really need the lock? */
1385 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1386 
1387 	/*
1388 	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1389 	 * is OK, because there can be no other references to the db
1390 	 * when we are changing its size, so no concurrent DB_FILL can
1391 	 * be happening.
1392 	 */
1393 	/*
1394 	 * XXX we should be doing a dbuf_read, checking the return
1395 	 * value and returning that up to our callers
1396 	 */
1397 	dmu_buf_will_dirty(&db->db, tx);
1398 
1399 	/* create the data buffer for the new block */
1400 	buf = arc_alloc_buf(dn->dn_objset->os_spa, size, db, type);
1401 
1402 	/* copy old block data to the new block */
1403 	obuf = db->db_buf;
1404 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1405 	/* zero the remainder */
1406 	if (size > osize)
1407 		bzero((uint8_t *)buf->b_data + osize, size - osize);
1408 
1409 	mutex_enter(&db->db_mtx);
1410 	dbuf_set_data(db, buf);
1411 	arc_buf_destroy(obuf, db);
1412 	db->db.db_size = size;
1413 
1414 	if (db->db_level == 0) {
1415 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1416 		db->db_last_dirty->dt.dl.dr_data = buf;
1417 	}
1418 	mutex_exit(&db->db_mtx);
1419 
1420 	dnode_willuse_space(dn, size-osize, tx);
1421 	DB_DNODE_EXIT(db);
1422 }
1423 
1424 void
1425 dbuf_release_bp(dmu_buf_impl_t *db)
1426 {
1427 	objset_t *os = db->db_objset;
1428 
1429 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1430 	ASSERT(arc_released(os->os_phys_buf) ||
1431 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1432 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1433 
1434 	(void) arc_release(db->db_buf, db);
1435 }
1436 
1437 /*
1438  * We already have a dirty record for this TXG, and we are being
1439  * dirtied again.
1440  */
1441 static void
1442 dbuf_redirty(dbuf_dirty_record_t *dr)
1443 {
1444 	dmu_buf_impl_t *db = dr->dr_dbuf;
1445 
1446 	ASSERT(MUTEX_HELD(&db->db_mtx));
1447 
1448 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1449 		/*
1450 		 * If this buffer has already been written out,
1451 		 * we now need to reset its state.
1452 		 */
1453 		dbuf_unoverride(dr);
1454 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1455 		    db->db_state != DB_NOFILL) {
1456 			/* Already released on initial dirty, so just thaw. */
1457 			ASSERT(arc_released(db->db_buf));
1458 			arc_buf_thaw(db->db_buf);
1459 		}
1460 	}
1461 }
1462 
1463 dbuf_dirty_record_t *
1464 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1465 {
1466 	dnode_t *dn;
1467 	objset_t *os;
1468 	dbuf_dirty_record_t **drp, *dr;
1469 	int drop_struct_lock = FALSE;
1470 	boolean_t do_free_accounting = B_FALSE;
1471 	int txgoff = tx->tx_txg & TXG_MASK;
1472 
1473 	ASSERT(tx->tx_txg != 0);
1474 	ASSERT(!refcount_is_zero(&db->db_holds));
1475 	DMU_TX_DIRTY_BUF(tx, db);
1476 
1477 	DB_DNODE_ENTER(db);
1478 	dn = DB_DNODE(db);
1479 	/*
1480 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1481 	 * objects may be dirtied in syncing context, but only if they
1482 	 * were already pre-dirtied in open context.
1483 	 */
1484 #ifdef DEBUG
1485 	if (dn->dn_objset->os_dsl_dataset != NULL) {
1486 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1487 		    RW_READER, FTAG);
1488 	}
1489 	ASSERT(!dmu_tx_is_syncing(tx) ||
1490 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1491 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1492 	    dn->dn_objset->os_dsl_dataset == NULL);
1493 	if (dn->dn_objset->os_dsl_dataset != NULL)
1494 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1495 #endif
1496 	/*
1497 	 * We make this assert for private objects as well, but after we
1498 	 * check if we're already dirty.  They are allowed to re-dirty
1499 	 * in syncing context.
1500 	 */
1501 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1502 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1503 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1504 
1505 	mutex_enter(&db->db_mtx);
1506 	/*
1507 	 * XXX make this true for indirects too?  The problem is that
1508 	 * transactions created with dmu_tx_create_assigned() from
1509 	 * syncing context don't bother holding ahead.
1510 	 */
1511 	ASSERT(db->db_level != 0 ||
1512 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1513 	    db->db_state == DB_NOFILL);
1514 
1515 	mutex_enter(&dn->dn_mtx);
1516 	/*
1517 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1518 	 * initialize the objset.
1519 	 */
1520 	if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1521 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1522 			rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1523 			    RW_READER, FTAG);
1524 		}
1525 		if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1526 			dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1527 			    DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1528 			ASSERT(dn->dn_dirtyctx_firstset == NULL);
1529 			dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1530 		}
1531 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1532 			rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1533 			    FTAG);
1534 		}
1535 	}
1536 	mutex_exit(&dn->dn_mtx);
1537 
1538 	if (db->db_blkid == DMU_SPILL_BLKID)
1539 		dn->dn_have_spill = B_TRUE;
1540 
1541 	/*
1542 	 * If this buffer is already dirty, we're done.
1543 	 */
1544 	drp = &db->db_last_dirty;
1545 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1546 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1547 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1548 		drp = &dr->dr_next;
1549 	if (dr && dr->dr_txg == tx->tx_txg) {
1550 		DB_DNODE_EXIT(db);
1551 
1552 		dbuf_redirty(dr);
1553 		mutex_exit(&db->db_mtx);
1554 		return (dr);
1555 	}
1556 
1557 	/*
1558 	 * Only valid if not already dirty.
1559 	 */
1560 	ASSERT(dn->dn_object == 0 ||
1561 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1562 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1563 
1564 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1565 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1566 	    dn->dn_phys->dn_nlevels > db->db_level ||
1567 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1568 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1569 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1570 
1571 	/*
1572 	 * We should only be dirtying in syncing context if it's the
1573 	 * mos or we're initializing the os or it's a special object.
1574 	 * However, we are allowed to dirty in syncing context provided
1575 	 * we already dirtied it in open context.  Hence we must make
1576 	 * this assertion only if we're not already dirty.
1577 	 */
1578 	os = dn->dn_objset;
1579 #ifdef DEBUG
1580 	if (dn->dn_objset->os_dsl_dataset != NULL)
1581 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1582 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1583 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1584 	if (dn->dn_objset->os_dsl_dataset != NULL)
1585 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1586 #endif
1587 	ASSERT(db->db.db_size != 0);
1588 
1589 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1590 
1591 	if (db->db_blkid != DMU_BONUS_BLKID) {
1592 		/*
1593 		 * Update the accounting.
1594 		 * Note: we delay "free accounting" until after we drop
1595 		 * the db_mtx.  This keeps us from grabbing other locks
1596 		 * (and possibly deadlocking) in bp_get_dsize() while
1597 		 * also holding the db_mtx.
1598 		 */
1599 		dnode_willuse_space(dn, db->db.db_size, tx);
1600 		do_free_accounting = dbuf_block_freeable(db);
1601 	}
1602 
1603 	/*
1604 	 * If this buffer is dirty in an old transaction group we need
1605 	 * to make a copy of it so that the changes we make in this
1606 	 * transaction group won't leak out when we sync the older txg.
1607 	 */
1608 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1609 	if (db->db_level == 0) {
1610 		void *data_old = db->db_buf;
1611 
1612 		if (db->db_state != DB_NOFILL) {
1613 			if (db->db_blkid == DMU_BONUS_BLKID) {
1614 				dbuf_fix_old_data(db, tx->tx_txg);
1615 				data_old = db->db.db_data;
1616 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1617 				/*
1618 				 * Release the data buffer from the cache so
1619 				 * that we can modify it without impacting
1620 				 * possible other users of this cached data
1621 				 * block.  Note that indirect blocks and
1622 				 * private objects are not released until the
1623 				 * syncing state (since they are only modified
1624 				 * then).
1625 				 */
1626 				arc_release(db->db_buf, db);
1627 				dbuf_fix_old_data(db, tx->tx_txg);
1628 				data_old = db->db_buf;
1629 			}
1630 			ASSERT(data_old != NULL);
1631 		}
1632 		dr->dt.dl.dr_data = data_old;
1633 	} else {
1634 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1635 		list_create(&dr->dt.di.dr_children,
1636 		    sizeof (dbuf_dirty_record_t),
1637 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1638 	}
1639 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1640 		dr->dr_accounted = db->db.db_size;
1641 	dr->dr_dbuf = db;
1642 	dr->dr_txg = tx->tx_txg;
1643 	dr->dr_next = *drp;
1644 	*drp = dr;
1645 
1646 	/*
1647 	 * We could have been freed_in_flight between the dbuf_noread
1648 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1649 	 * happened after the free.
1650 	 */
1651 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1652 	    db->db_blkid != DMU_SPILL_BLKID) {
1653 		mutex_enter(&dn->dn_mtx);
1654 		if (dn->dn_free_ranges[txgoff] != NULL) {
1655 			range_tree_clear(dn->dn_free_ranges[txgoff],
1656 			    db->db_blkid, 1);
1657 		}
1658 		mutex_exit(&dn->dn_mtx);
1659 		db->db_freed_in_flight = FALSE;
1660 	}
1661 
1662 	/*
1663 	 * This buffer is now part of this txg
1664 	 */
1665 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1666 	db->db_dirtycnt += 1;
1667 	ASSERT3U(db->db_dirtycnt, <=, 3);
1668 
1669 	mutex_exit(&db->db_mtx);
1670 
1671 	if (db->db_blkid == DMU_BONUS_BLKID ||
1672 	    db->db_blkid == DMU_SPILL_BLKID) {
1673 		mutex_enter(&dn->dn_mtx);
1674 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1675 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1676 		mutex_exit(&dn->dn_mtx);
1677 		dnode_setdirty(dn, tx);
1678 		DB_DNODE_EXIT(db);
1679 		return (dr);
1680 	}
1681 
1682 	/*
1683 	 * The dn_struct_rwlock prevents db_blkptr from changing
1684 	 * due to a write from syncing context completing
1685 	 * while we are running, so we want to acquire it before
1686 	 * looking at db_blkptr.
1687 	 */
1688 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1689 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1690 		drop_struct_lock = TRUE;
1691 	}
1692 
1693 	if (do_free_accounting) {
1694 		blkptr_t *bp = db->db_blkptr;
1695 		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1696 		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1697 		/*
1698 		 * This is only a guess -- if the dbuf is dirty
1699 		 * in a previous txg, we don't know how much
1700 		 * space it will use on disk yet.  We should
1701 		 * really have the struct_rwlock to access
1702 		 * db_blkptr, but since this is just a guess,
1703 		 * it's OK if we get an odd answer.
1704 		 */
1705 		ddt_prefetch(os->os_spa, bp);
1706 		dnode_willuse_space(dn, -willfree, tx);
1707 	}
1708 
1709 	if (db->db_level == 0) {
1710 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1711 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1712 	}
1713 
1714 	if (db->db_level+1 < dn->dn_nlevels) {
1715 		dmu_buf_impl_t *parent = db->db_parent;
1716 		dbuf_dirty_record_t *di;
1717 		int parent_held = FALSE;
1718 
1719 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1720 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1721 
1722 			parent = dbuf_hold_level(dn, db->db_level+1,
1723 			    db->db_blkid >> epbs, FTAG);
1724 			ASSERT(parent != NULL);
1725 			parent_held = TRUE;
1726 		}
1727 		if (drop_struct_lock)
1728 			rw_exit(&dn->dn_struct_rwlock);
1729 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1730 		di = dbuf_dirty(parent, tx);
1731 		if (parent_held)
1732 			dbuf_rele(parent, FTAG);
1733 
1734 		mutex_enter(&db->db_mtx);
1735 		/*
1736 		 * Since we've dropped the mutex, it's possible that
1737 		 * dbuf_undirty() might have changed this out from under us.
1738 		 */
1739 		if (db->db_last_dirty == dr ||
1740 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1741 			mutex_enter(&di->dt.di.dr_mtx);
1742 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1743 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1744 			list_insert_tail(&di->dt.di.dr_children, dr);
1745 			mutex_exit(&di->dt.di.dr_mtx);
1746 			dr->dr_parent = di;
1747 		}
1748 		mutex_exit(&db->db_mtx);
1749 	} else {
1750 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1751 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1752 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1753 		mutex_enter(&dn->dn_mtx);
1754 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1755 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1756 		mutex_exit(&dn->dn_mtx);
1757 		if (drop_struct_lock)
1758 			rw_exit(&dn->dn_struct_rwlock);
1759 	}
1760 
1761 	dnode_setdirty(dn, tx);
1762 	DB_DNODE_EXIT(db);
1763 	return (dr);
1764 }
1765 
1766 /*
1767  * Undirty a buffer in the transaction group referenced by the given
1768  * transaction.  Return whether this evicted the dbuf.
1769  */
1770 static boolean_t
1771 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1772 {
1773 	dnode_t *dn;
1774 	uint64_t txg = tx->tx_txg;
1775 	dbuf_dirty_record_t *dr, **drp;
1776 
1777 	ASSERT(txg != 0);
1778 
1779 	/*
1780 	 * Due to our use of dn_nlevels below, this can only be called
1781 	 * in open context, unless we are operating on the MOS.
1782 	 * From syncing context, dn_nlevels may be different from the
1783 	 * dn_nlevels used when dbuf was dirtied.
1784 	 */
1785 	ASSERT(db->db_objset ==
1786 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1787 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1788 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1789 	ASSERT0(db->db_level);
1790 	ASSERT(MUTEX_HELD(&db->db_mtx));
1791 
1792 	/*
1793 	 * If this buffer is not dirty, we're done.
1794 	 */
1795 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1796 		if (dr->dr_txg <= txg)
1797 			break;
1798 	if (dr == NULL || dr->dr_txg < txg)
1799 		return (B_FALSE);
1800 	ASSERT(dr->dr_txg == txg);
1801 	ASSERT(dr->dr_dbuf == db);
1802 
1803 	DB_DNODE_ENTER(db);
1804 	dn = DB_DNODE(db);
1805 
1806 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1807 
1808 	ASSERT(db->db.db_size != 0);
1809 
1810 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1811 	    dr->dr_accounted, txg);
1812 
1813 	*drp = dr->dr_next;
1814 
1815 	/*
1816 	 * Note that there are three places in dbuf_dirty()
1817 	 * where this dirty record may be put on a list.
1818 	 * Make sure to do a list_remove corresponding to
1819 	 * every one of those list_insert calls.
1820 	 */
1821 	if (dr->dr_parent) {
1822 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1823 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1824 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1825 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1826 	    db->db_level + 1 == dn->dn_nlevels) {
1827 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1828 		mutex_enter(&dn->dn_mtx);
1829 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1830 		mutex_exit(&dn->dn_mtx);
1831 	}
1832 	DB_DNODE_EXIT(db);
1833 
1834 	if (db->db_state != DB_NOFILL) {
1835 		dbuf_unoverride(dr);
1836 
1837 		ASSERT(db->db_buf != NULL);
1838 		ASSERT(dr->dt.dl.dr_data != NULL);
1839 		if (dr->dt.dl.dr_data != db->db_buf)
1840 			arc_buf_destroy(dr->dt.dl.dr_data, db);
1841 	}
1842 
1843 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1844 
1845 	ASSERT(db->db_dirtycnt > 0);
1846 	db->db_dirtycnt -= 1;
1847 
1848 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1849 		ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1850 		dbuf_destroy(db);
1851 		return (B_TRUE);
1852 	}
1853 
1854 	return (B_FALSE);
1855 }
1856 
1857 void
1858 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1859 {
1860 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1861 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1862 
1863 	ASSERT(tx->tx_txg != 0);
1864 	ASSERT(!refcount_is_zero(&db->db_holds));
1865 
1866 	/*
1867 	 * Quick check for dirtyness.  For already dirty blocks, this
1868 	 * reduces runtime of this function by >90%, and overall performance
1869 	 * by 50% for some workloads (e.g. file deletion with indirect blocks
1870 	 * cached).
1871 	 */
1872 	mutex_enter(&db->db_mtx);
1873 	dbuf_dirty_record_t *dr;
1874 	for (dr = db->db_last_dirty;
1875 	    dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1876 		/*
1877 		 * It's possible that it is already dirty but not cached,
1878 		 * because there are some calls to dbuf_dirty() that don't
1879 		 * go through dmu_buf_will_dirty().
1880 		 */
1881 		if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1882 			/* This dbuf is already dirty and cached. */
1883 			dbuf_redirty(dr);
1884 			mutex_exit(&db->db_mtx);
1885 			return;
1886 		}
1887 	}
1888 	mutex_exit(&db->db_mtx);
1889 
1890 	DB_DNODE_ENTER(db);
1891 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1892 		rf |= DB_RF_HAVESTRUCT;
1893 	DB_DNODE_EXIT(db);
1894 	(void) dbuf_read(db, NULL, rf);
1895 	(void) dbuf_dirty(db, tx);
1896 }
1897 
1898 void
1899 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1900 {
1901 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1902 
1903 	db->db_state = DB_NOFILL;
1904 
1905 	dmu_buf_will_fill(db_fake, tx);
1906 }
1907 
1908 void
1909 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1910 {
1911 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1912 
1913 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1914 	ASSERT(tx->tx_txg != 0);
1915 	ASSERT(db->db_level == 0);
1916 	ASSERT(!refcount_is_zero(&db->db_holds));
1917 
1918 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1919 	    dmu_tx_private_ok(tx));
1920 
1921 	dbuf_noread(db);
1922 	(void) dbuf_dirty(db, tx);
1923 }
1924 
1925 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1926 /* ARGSUSED */
1927 void
1928 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1929 {
1930 	mutex_enter(&db->db_mtx);
1931 	DBUF_VERIFY(db);
1932 
1933 	if (db->db_state == DB_FILL) {
1934 		if (db->db_level == 0 && db->db_freed_in_flight) {
1935 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1936 			/* we were freed while filling */
1937 			/* XXX dbuf_undirty? */
1938 			bzero(db->db.db_data, db->db.db_size);
1939 			db->db_freed_in_flight = FALSE;
1940 		}
1941 		db->db_state = DB_CACHED;
1942 		cv_broadcast(&db->db_changed);
1943 	}
1944 	mutex_exit(&db->db_mtx);
1945 }
1946 
1947 void
1948 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1949     bp_embedded_type_t etype, enum zio_compress comp,
1950     int uncompressed_size, int compressed_size, int byteorder,
1951     dmu_tx_t *tx)
1952 {
1953 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1954 	struct dirty_leaf *dl;
1955 	dmu_object_type_t type;
1956 
1957 	if (etype == BP_EMBEDDED_TYPE_DATA) {
1958 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1959 		    SPA_FEATURE_EMBEDDED_DATA));
1960 	}
1961 
1962 	DB_DNODE_ENTER(db);
1963 	type = DB_DNODE(db)->dn_type;
1964 	DB_DNODE_EXIT(db);
1965 
1966 	ASSERT0(db->db_level);
1967 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1968 
1969 	dmu_buf_will_not_fill(dbuf, tx);
1970 
1971 	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1972 	dl = &db->db_last_dirty->dt.dl;
1973 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1974 	    data, comp, uncompressed_size, compressed_size);
1975 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1976 	BP_SET_TYPE(&dl->dr_overridden_by, type);
1977 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1978 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1979 
1980 	dl->dr_override_state = DR_OVERRIDDEN;
1981 	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1982 }
1983 
1984 /*
1985  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1986  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1987  */
1988 void
1989 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1990 {
1991 	ASSERT(!refcount_is_zero(&db->db_holds));
1992 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1993 	ASSERT(db->db_level == 0);
1994 	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1995 	ASSERT(buf != NULL);
1996 	ASSERT(arc_buf_size(buf) == db->db.db_size);
1997 	ASSERT(tx->tx_txg != 0);
1998 
1999 	arc_return_buf(buf, db);
2000 	ASSERT(arc_released(buf));
2001 
2002 	mutex_enter(&db->db_mtx);
2003 
2004 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
2005 		cv_wait(&db->db_changed, &db->db_mtx);
2006 
2007 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2008 
2009 	if (db->db_state == DB_CACHED &&
2010 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2011 		mutex_exit(&db->db_mtx);
2012 		(void) dbuf_dirty(db, tx);
2013 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2014 		arc_buf_destroy(buf, db);
2015 		xuio_stat_wbuf_copied();
2016 		return;
2017 	}
2018 
2019 	xuio_stat_wbuf_nocopy();
2020 	if (db->db_state == DB_CACHED) {
2021 		dbuf_dirty_record_t *dr = db->db_last_dirty;
2022 
2023 		ASSERT(db->db_buf != NULL);
2024 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2025 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
2026 			if (!arc_released(db->db_buf)) {
2027 				ASSERT(dr->dt.dl.dr_override_state ==
2028 				    DR_OVERRIDDEN);
2029 				arc_release(db->db_buf, db);
2030 			}
2031 			dr->dt.dl.dr_data = buf;
2032 			arc_buf_destroy(db->db_buf, db);
2033 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2034 			arc_release(db->db_buf, db);
2035 			arc_buf_destroy(db->db_buf, db);
2036 		}
2037 		db->db_buf = NULL;
2038 	}
2039 	ASSERT(db->db_buf == NULL);
2040 	dbuf_set_data(db, buf);
2041 	db->db_state = DB_FILL;
2042 	mutex_exit(&db->db_mtx);
2043 	(void) dbuf_dirty(db, tx);
2044 	dmu_buf_fill_done(&db->db, tx);
2045 }
2046 
2047 void
2048 dbuf_destroy(dmu_buf_impl_t *db)
2049 {
2050 	dnode_t *dn;
2051 	dmu_buf_impl_t *parent = db->db_parent;
2052 	dmu_buf_impl_t *dndb;
2053 
2054 	ASSERT(MUTEX_HELD(&db->db_mtx));
2055 	ASSERT(refcount_is_zero(&db->db_holds));
2056 
2057 	if (db->db_buf != NULL) {
2058 		arc_buf_destroy(db->db_buf, db);
2059 		db->db_buf = NULL;
2060 	}
2061 
2062 	if (db->db_blkid == DMU_BONUS_BLKID) {
2063 		ASSERT(db->db.db_data != NULL);
2064 		zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
2065 		arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2066 		db->db_state = DB_UNCACHED;
2067 	}
2068 
2069 	dbuf_clear_data(db);
2070 
2071 	if (multilist_link_active(&db->db_cache_link)) {
2072 		multilist_remove(&dbuf_cache, db);
2073 		(void) refcount_remove_many(&dbuf_cache_size,
2074 		    db->db.db_size, db);
2075 	}
2076 
2077 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2078 	ASSERT(db->db_data_pending == NULL);
2079 
2080 	db->db_state = DB_EVICTING;
2081 	db->db_blkptr = NULL;
2082 
2083 	/*
2084 	 * Now that db_state is DB_EVICTING, nobody else can find this via
2085 	 * the hash table.  We can now drop db_mtx, which allows us to
2086 	 * acquire the dn_dbufs_mtx.
2087 	 */
2088 	mutex_exit(&db->db_mtx);
2089 
2090 	DB_DNODE_ENTER(db);
2091 	dn = DB_DNODE(db);
2092 	dndb = dn->dn_dbuf;
2093 	if (db->db_blkid != DMU_BONUS_BLKID) {
2094 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2095 		if (needlock)
2096 			mutex_enter(&dn->dn_dbufs_mtx);
2097 		avl_remove(&dn->dn_dbufs, db);
2098 		atomic_dec_32(&dn->dn_dbufs_count);
2099 		membar_producer();
2100 		DB_DNODE_EXIT(db);
2101 		if (needlock)
2102 			mutex_exit(&dn->dn_dbufs_mtx);
2103 		/*
2104 		 * Decrementing the dbuf count means that the hold corresponding
2105 		 * to the removed dbuf is no longer discounted in dnode_move(),
2106 		 * so the dnode cannot be moved until after we release the hold.
2107 		 * The membar_producer() ensures visibility of the decremented
2108 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2109 		 * release any lock.
2110 		 */
2111 		dnode_rele(dn, db);
2112 		db->db_dnode_handle = NULL;
2113 
2114 		dbuf_hash_remove(db);
2115 	} else {
2116 		DB_DNODE_EXIT(db);
2117 	}
2118 
2119 	ASSERT(refcount_is_zero(&db->db_holds));
2120 
2121 	db->db_parent = NULL;
2122 
2123 	ASSERT(db->db_buf == NULL);
2124 	ASSERT(db->db.db_data == NULL);
2125 	ASSERT(db->db_hash_next == NULL);
2126 	ASSERT(db->db_blkptr == NULL);
2127 	ASSERT(db->db_data_pending == NULL);
2128 	ASSERT(!multilist_link_active(&db->db_cache_link));
2129 
2130 	kmem_cache_free(dbuf_kmem_cache, db);
2131 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2132 
2133 	/*
2134 	 * If this dbuf is referenced from an indirect dbuf,
2135 	 * decrement the ref count on the indirect dbuf.
2136 	 */
2137 	if (parent && parent != dndb)
2138 		dbuf_rele(parent, db);
2139 }
2140 
2141 /*
2142  * Note: While bpp will always be updated if the function returns success,
2143  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2144  * this happens when the dnode is the meta-dnode, or a userused or groupused
2145  * object.
2146  */
2147 static int
2148 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2149     dmu_buf_impl_t **parentp, blkptr_t **bpp)
2150 {
2151 	int nlevels, epbs;
2152 
2153 	*parentp = NULL;
2154 	*bpp = NULL;
2155 
2156 	ASSERT(blkid != DMU_BONUS_BLKID);
2157 
2158 	if (blkid == DMU_SPILL_BLKID) {
2159 		mutex_enter(&dn->dn_mtx);
2160 		if (dn->dn_have_spill &&
2161 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2162 			*bpp = &dn->dn_phys->dn_spill;
2163 		else
2164 			*bpp = NULL;
2165 		dbuf_add_ref(dn->dn_dbuf, NULL);
2166 		*parentp = dn->dn_dbuf;
2167 		mutex_exit(&dn->dn_mtx);
2168 		return (0);
2169 	}
2170 
2171 	if (dn->dn_phys->dn_nlevels == 0)
2172 		nlevels = 1;
2173 	else
2174 		nlevels = dn->dn_phys->dn_nlevels;
2175 
2176 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2177 
2178 	ASSERT3U(level * epbs, <, 64);
2179 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2180 	if (level >= nlevels ||
2181 	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2182 		/* the buffer has no parent yet */
2183 		return (SET_ERROR(ENOENT));
2184 	} else if (level < nlevels-1) {
2185 		/* this block is referenced from an indirect block */
2186 		int err = dbuf_hold_impl(dn, level+1,
2187 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2188 		if (err)
2189 			return (err);
2190 		err = dbuf_read(*parentp, NULL,
2191 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2192 		if (err) {
2193 			dbuf_rele(*parentp, NULL);
2194 			*parentp = NULL;
2195 			return (err);
2196 		}
2197 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2198 		    (blkid & ((1ULL << epbs) - 1));
2199 		return (0);
2200 	} else {
2201 		/* the block is referenced from the dnode */
2202 		ASSERT3U(level, ==, nlevels-1);
2203 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2204 		    blkid < dn->dn_phys->dn_nblkptr);
2205 		if (dn->dn_dbuf) {
2206 			dbuf_add_ref(dn->dn_dbuf, NULL);
2207 			*parentp = dn->dn_dbuf;
2208 		}
2209 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
2210 		return (0);
2211 	}
2212 }
2213 
2214 static dmu_buf_impl_t *
2215 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2216     dmu_buf_impl_t *parent, blkptr_t *blkptr)
2217 {
2218 	objset_t *os = dn->dn_objset;
2219 	dmu_buf_impl_t *db, *odb;
2220 
2221 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2222 	ASSERT(dn->dn_type != DMU_OT_NONE);
2223 
2224 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2225 
2226 	db->db_objset = os;
2227 	db->db.db_object = dn->dn_object;
2228 	db->db_level = level;
2229 	db->db_blkid = blkid;
2230 	db->db_last_dirty = NULL;
2231 	db->db_dirtycnt = 0;
2232 	db->db_dnode_handle = dn->dn_handle;
2233 	db->db_parent = parent;
2234 	db->db_blkptr = blkptr;
2235 
2236 	db->db_user = NULL;
2237 	db->db_user_immediate_evict = FALSE;
2238 	db->db_freed_in_flight = FALSE;
2239 	db->db_pending_evict = FALSE;
2240 
2241 	if (blkid == DMU_BONUS_BLKID) {
2242 		ASSERT3P(parent, ==, dn->dn_dbuf);
2243 		db->db.db_size = DN_MAX_BONUSLEN -
2244 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2245 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2246 		db->db.db_offset = DMU_BONUS_BLKID;
2247 		db->db_state = DB_UNCACHED;
2248 		/* the bonus dbuf is not placed in the hash table */
2249 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2250 		return (db);
2251 	} else if (blkid == DMU_SPILL_BLKID) {
2252 		db->db.db_size = (blkptr != NULL) ?
2253 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2254 		db->db.db_offset = 0;
2255 	} else {
2256 		int blocksize =
2257 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2258 		db->db.db_size = blocksize;
2259 		db->db.db_offset = db->db_blkid * blocksize;
2260 	}
2261 
2262 	/*
2263 	 * Hold the dn_dbufs_mtx while we get the new dbuf
2264 	 * in the hash table *and* added to the dbufs list.
2265 	 * This prevents a possible deadlock with someone
2266 	 * trying to look up this dbuf before its added to the
2267 	 * dn_dbufs list.
2268 	 */
2269 	mutex_enter(&dn->dn_dbufs_mtx);
2270 	db->db_state = DB_EVICTING;
2271 	if ((odb = dbuf_hash_insert(db)) != NULL) {
2272 		/* someone else inserted it first */
2273 		kmem_cache_free(dbuf_kmem_cache, db);
2274 		mutex_exit(&dn->dn_dbufs_mtx);
2275 		return (odb);
2276 	}
2277 	avl_add(&dn->dn_dbufs, db);
2278 
2279 	db->db_state = DB_UNCACHED;
2280 	mutex_exit(&dn->dn_dbufs_mtx);
2281 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2282 
2283 	if (parent && parent != dn->dn_dbuf)
2284 		dbuf_add_ref(parent, db);
2285 
2286 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2287 	    refcount_count(&dn->dn_holds) > 0);
2288 	(void) refcount_add(&dn->dn_holds, db);
2289 	atomic_inc_32(&dn->dn_dbufs_count);
2290 
2291 	dprintf_dbuf(db, "db=%p\n", db);
2292 
2293 	return (db);
2294 }
2295 
2296 typedef struct dbuf_prefetch_arg {
2297 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
2298 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2299 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2300 	int dpa_curlevel; /* The current level that we're reading */
2301 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2302 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2303 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2304 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2305 } dbuf_prefetch_arg_t;
2306 
2307 /*
2308  * Actually issue the prefetch read for the block given.
2309  */
2310 static void
2311 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2312 {
2313 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2314 		return;
2315 
2316 	arc_flags_t aflags =
2317 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2318 
2319 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2320 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2321 	ASSERT(dpa->dpa_zio != NULL);
2322 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2323 	    dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2324 	    &aflags, &dpa->dpa_zb);
2325 }
2326 
2327 /*
2328  * Called when an indirect block above our prefetch target is read in.  This
2329  * will either read in the next indirect block down the tree or issue the actual
2330  * prefetch if the next block down is our target.
2331  */
2332 static void
2333 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2334 {
2335 	dbuf_prefetch_arg_t *dpa = private;
2336 
2337 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2338 	ASSERT3S(dpa->dpa_curlevel, >, 0);
2339 
2340 	/*
2341 	 * The dpa_dnode is only valid if we are called with a NULL
2342 	 * zio. This indicates that the arc_read() returned without
2343 	 * first calling zio_read() to issue a physical read. Once
2344 	 * a physical read is made the dpa_dnode must be invalidated
2345 	 * as the locks guarding it may have been dropped. If the
2346 	 * dpa_dnode is still valid, then we want to add it to the dbuf
2347 	 * cache. To do so, we must hold the dbuf associated with the block
2348 	 * we just prefetched, read its contents so that we associate it
2349 	 * with an arc_buf_t, and then release it.
2350 	 */
2351 	if (zio != NULL) {
2352 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2353 		if (zio->io_flags & ZIO_FLAG_RAW) {
2354 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2355 		} else {
2356 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2357 		}
2358 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2359 
2360 		dpa->dpa_dnode = NULL;
2361 	} else if (dpa->dpa_dnode != NULL) {
2362 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2363 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
2364 		    dpa->dpa_zb.zb_level));
2365 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2366 		    dpa->dpa_curlevel, curblkid, FTAG);
2367 		(void) dbuf_read(db, NULL,
2368 		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2369 		dbuf_rele(db, FTAG);
2370 	}
2371 
2372 	dpa->dpa_curlevel--;
2373 
2374 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2375 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2376 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2377 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2378 	if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2379 		kmem_free(dpa, sizeof (*dpa));
2380 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2381 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2382 		dbuf_issue_final_prefetch(dpa, bp);
2383 		kmem_free(dpa, sizeof (*dpa));
2384 	} else {
2385 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2386 		zbookmark_phys_t zb;
2387 
2388 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2389 
2390 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2391 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2392 
2393 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2394 		    bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2395 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2396 		    &iter_aflags, &zb);
2397 	}
2398 
2399 	arc_buf_destroy(abuf, private);
2400 }
2401 
2402 /*
2403  * Issue prefetch reads for the given block on the given level.  If the indirect
2404  * blocks above that block are not in memory, we will read them in
2405  * asynchronously.  As a result, this call never blocks waiting for a read to
2406  * complete.
2407  */
2408 void
2409 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2410     arc_flags_t aflags)
2411 {
2412 	blkptr_t bp;
2413 	int epbs, nlevels, curlevel;
2414 	uint64_t curblkid;
2415 
2416 	ASSERT(blkid != DMU_BONUS_BLKID);
2417 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2418 
2419 	if (blkid > dn->dn_maxblkid)
2420 		return;
2421 
2422 	if (dnode_block_freed(dn, blkid))
2423 		return;
2424 
2425 	/*
2426 	 * This dnode hasn't been written to disk yet, so there's nothing to
2427 	 * prefetch.
2428 	 */
2429 	nlevels = dn->dn_phys->dn_nlevels;
2430 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2431 		return;
2432 
2433 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2434 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2435 		return;
2436 
2437 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2438 	    level, blkid);
2439 	if (db != NULL) {
2440 		mutex_exit(&db->db_mtx);
2441 		/*
2442 		 * This dbuf already exists.  It is either CACHED, or
2443 		 * (we assume) about to be read or filled.
2444 		 */
2445 		return;
2446 	}
2447 
2448 	/*
2449 	 * Find the closest ancestor (indirect block) of the target block
2450 	 * that is present in the cache.  In this indirect block, we will
2451 	 * find the bp that is at curlevel, curblkid.
2452 	 */
2453 	curlevel = level;
2454 	curblkid = blkid;
2455 	while (curlevel < nlevels - 1) {
2456 		int parent_level = curlevel + 1;
2457 		uint64_t parent_blkid = curblkid >> epbs;
2458 		dmu_buf_impl_t *db;
2459 
2460 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2461 		    FALSE, TRUE, FTAG, &db) == 0) {
2462 			blkptr_t *bpp = db->db_buf->b_data;
2463 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2464 			dbuf_rele(db, FTAG);
2465 			break;
2466 		}
2467 
2468 		curlevel = parent_level;
2469 		curblkid = parent_blkid;
2470 	}
2471 
2472 	if (curlevel == nlevels - 1) {
2473 		/* No cached indirect blocks found. */
2474 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2475 		bp = dn->dn_phys->dn_blkptr[curblkid];
2476 	}
2477 	if (BP_IS_HOLE(&bp))
2478 		return;
2479 
2480 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2481 
2482 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2483 	    ZIO_FLAG_CANFAIL);
2484 
2485 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2486 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2487 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2488 	    dn->dn_object, level, blkid);
2489 	dpa->dpa_curlevel = curlevel;
2490 	dpa->dpa_prio = prio;
2491 	dpa->dpa_aflags = aflags;
2492 	dpa->dpa_spa = dn->dn_objset->os_spa;
2493 	dpa->dpa_dnode = dn;
2494 	dpa->dpa_epbs = epbs;
2495 	dpa->dpa_zio = pio;
2496 
2497 	/*
2498 	 * If we have the indirect just above us, no need to do the asynchronous
2499 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
2500 	 * a higher level, though, we want to issue the prefetches for all the
2501 	 * indirect blocks asynchronously, so we can go on with whatever we were
2502 	 * doing.
2503 	 */
2504 	if (curlevel == level) {
2505 		ASSERT3U(curblkid, ==, blkid);
2506 		dbuf_issue_final_prefetch(dpa, &bp);
2507 		kmem_free(dpa, sizeof (*dpa));
2508 	} else {
2509 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2510 		zbookmark_phys_t zb;
2511 
2512 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2513 		    dn->dn_object, curlevel, curblkid);
2514 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2515 		    &bp, dbuf_prefetch_indirect_done, dpa, prio,
2516 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2517 		    &iter_aflags, &zb);
2518 	}
2519 	/*
2520 	 * We use pio here instead of dpa_zio since it's possible that
2521 	 * dpa may have already been freed.
2522 	 */
2523 	zio_nowait(pio);
2524 }
2525 
2526 /*
2527  * Returns with db_holds incremented, and db_mtx not held.
2528  * Note: dn_struct_rwlock must be held.
2529  */
2530 int
2531 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2532     boolean_t fail_sparse, boolean_t fail_uncached,
2533     void *tag, dmu_buf_impl_t **dbp)
2534 {
2535 	dmu_buf_impl_t *db, *parent = NULL;
2536 
2537 	ASSERT(blkid != DMU_BONUS_BLKID);
2538 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2539 	ASSERT3U(dn->dn_nlevels, >, level);
2540 
2541 	*dbp = NULL;
2542 top:
2543 	/* dbuf_find() returns with db_mtx held */
2544 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2545 
2546 	if (db == NULL) {
2547 		blkptr_t *bp = NULL;
2548 		int err;
2549 
2550 		if (fail_uncached)
2551 			return (SET_ERROR(ENOENT));
2552 
2553 		ASSERT3P(parent, ==, NULL);
2554 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2555 		if (fail_sparse) {
2556 			if (err == 0 && bp && BP_IS_HOLE(bp))
2557 				err = SET_ERROR(ENOENT);
2558 			if (err) {
2559 				if (parent)
2560 					dbuf_rele(parent, NULL);
2561 				return (err);
2562 			}
2563 		}
2564 		if (err && err != ENOENT)
2565 			return (err);
2566 		db = dbuf_create(dn, level, blkid, parent, bp);
2567 	}
2568 
2569 	if (fail_uncached && db->db_state != DB_CACHED) {
2570 		mutex_exit(&db->db_mtx);
2571 		return (SET_ERROR(ENOENT));
2572 	}
2573 
2574 	if (db->db_buf != NULL)
2575 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2576 
2577 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2578 
2579 	/*
2580 	 * If this buffer is currently syncing out, and we are are
2581 	 * still referencing it from db_data, we need to make a copy
2582 	 * of it in case we decide we want to dirty it again in this txg.
2583 	 */
2584 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2585 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2586 	    db->db_state == DB_CACHED && db->db_data_pending) {
2587 		dbuf_dirty_record_t *dr = db->db_data_pending;
2588 
2589 		if (dr->dt.dl.dr_data == db->db_buf) {
2590 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2591 
2592 			dbuf_set_data(db,
2593 			    arc_alloc_buf(dn->dn_objset->os_spa,
2594 			    db->db.db_size, db, type));
2595 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2596 			    db->db.db_size);
2597 		}
2598 	}
2599 
2600 	if (multilist_link_active(&db->db_cache_link)) {
2601 		ASSERT(refcount_is_zero(&db->db_holds));
2602 		multilist_remove(&dbuf_cache, db);
2603 		(void) refcount_remove_many(&dbuf_cache_size,
2604 		    db->db.db_size, db);
2605 	}
2606 	(void) refcount_add(&db->db_holds, tag);
2607 	DBUF_VERIFY(db);
2608 	mutex_exit(&db->db_mtx);
2609 
2610 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
2611 	if (parent)
2612 		dbuf_rele(parent, NULL);
2613 
2614 	ASSERT3P(DB_DNODE(db), ==, dn);
2615 	ASSERT3U(db->db_blkid, ==, blkid);
2616 	ASSERT3U(db->db_level, ==, level);
2617 	*dbp = db;
2618 
2619 	return (0);
2620 }
2621 
2622 dmu_buf_impl_t *
2623 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2624 {
2625 	return (dbuf_hold_level(dn, 0, blkid, tag));
2626 }
2627 
2628 dmu_buf_impl_t *
2629 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2630 {
2631 	dmu_buf_impl_t *db;
2632 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2633 	return (err ? NULL : db);
2634 }
2635 
2636 void
2637 dbuf_create_bonus(dnode_t *dn)
2638 {
2639 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2640 
2641 	ASSERT(dn->dn_bonus == NULL);
2642 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2643 }
2644 
2645 int
2646 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2647 {
2648 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2649 	dnode_t *dn;
2650 
2651 	if (db->db_blkid != DMU_SPILL_BLKID)
2652 		return (SET_ERROR(ENOTSUP));
2653 	if (blksz == 0)
2654 		blksz = SPA_MINBLOCKSIZE;
2655 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2656 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2657 
2658 	DB_DNODE_ENTER(db);
2659 	dn = DB_DNODE(db);
2660 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2661 	dbuf_new_size(db, blksz, tx);
2662 	rw_exit(&dn->dn_struct_rwlock);
2663 	DB_DNODE_EXIT(db);
2664 
2665 	return (0);
2666 }
2667 
2668 void
2669 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2670 {
2671 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2672 }
2673 
2674 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2675 void
2676 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2677 {
2678 	int64_t holds = refcount_add(&db->db_holds, tag);
2679 	ASSERT3S(holds, >, 1);
2680 }
2681 
2682 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2683 boolean_t
2684 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2685     void *tag)
2686 {
2687 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2688 	dmu_buf_impl_t *found_db;
2689 	boolean_t result = B_FALSE;
2690 
2691 	if (db->db_blkid == DMU_BONUS_BLKID)
2692 		found_db = dbuf_find_bonus(os, obj);
2693 	else
2694 		found_db = dbuf_find(os, obj, 0, blkid);
2695 
2696 	if (found_db != NULL) {
2697 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2698 			(void) refcount_add(&db->db_holds, tag);
2699 			result = B_TRUE;
2700 		}
2701 		mutex_exit(&db->db_mtx);
2702 	}
2703 	return (result);
2704 }
2705 
2706 /*
2707  * If you call dbuf_rele() you had better not be referencing the dnode handle
2708  * unless you have some other direct or indirect hold on the dnode. (An indirect
2709  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2710  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2711  * dnode's parent dbuf evicting its dnode handles.
2712  */
2713 void
2714 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2715 {
2716 	mutex_enter(&db->db_mtx);
2717 	dbuf_rele_and_unlock(db, tag);
2718 }
2719 
2720 void
2721 dmu_buf_rele(dmu_buf_t *db, void *tag)
2722 {
2723 	dbuf_rele((dmu_buf_impl_t *)db, tag);
2724 }
2725 
2726 /*
2727  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2728  * db_dirtycnt and db_holds to be updated atomically.
2729  */
2730 void
2731 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2732 {
2733 	int64_t holds;
2734 
2735 	ASSERT(MUTEX_HELD(&db->db_mtx));
2736 	DBUF_VERIFY(db);
2737 
2738 	/*
2739 	 * Remove the reference to the dbuf before removing its hold on the
2740 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2741 	 * buffer has a corresponding dnode hold.
2742 	 */
2743 	holds = refcount_remove(&db->db_holds, tag);
2744 	ASSERT(holds >= 0);
2745 
2746 	/*
2747 	 * We can't freeze indirects if there is a possibility that they
2748 	 * may be modified in the current syncing context.
2749 	 */
2750 	if (db->db_buf != NULL &&
2751 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2752 		arc_buf_freeze(db->db_buf);
2753 	}
2754 
2755 	if (holds == db->db_dirtycnt &&
2756 	    db->db_level == 0 && db->db_user_immediate_evict)
2757 		dbuf_evict_user(db);
2758 
2759 	if (holds == 0) {
2760 		if (db->db_blkid == DMU_BONUS_BLKID) {
2761 			dnode_t *dn;
2762 			boolean_t evict_dbuf = db->db_pending_evict;
2763 
2764 			/*
2765 			 * If the dnode moves here, we cannot cross this
2766 			 * barrier until the move completes.
2767 			 */
2768 			DB_DNODE_ENTER(db);
2769 
2770 			dn = DB_DNODE(db);
2771 			atomic_dec_32(&dn->dn_dbufs_count);
2772 
2773 			/*
2774 			 * Decrementing the dbuf count means that the bonus
2775 			 * buffer's dnode hold is no longer discounted in
2776 			 * dnode_move(). The dnode cannot move until after
2777 			 * the dnode_rele() below.
2778 			 */
2779 			DB_DNODE_EXIT(db);
2780 
2781 			/*
2782 			 * Do not reference db after its lock is dropped.
2783 			 * Another thread may evict it.
2784 			 */
2785 			mutex_exit(&db->db_mtx);
2786 
2787 			if (evict_dbuf)
2788 				dnode_evict_bonus(dn);
2789 
2790 			dnode_rele(dn, db);
2791 		} else if (db->db_buf == NULL) {
2792 			/*
2793 			 * This is a special case: we never associated this
2794 			 * dbuf with any data allocated from the ARC.
2795 			 */
2796 			ASSERT(db->db_state == DB_UNCACHED ||
2797 			    db->db_state == DB_NOFILL);
2798 			dbuf_destroy(db);
2799 		} else if (arc_released(db->db_buf)) {
2800 			/*
2801 			 * This dbuf has anonymous data associated with it.
2802 			 */
2803 			dbuf_destroy(db);
2804 		} else {
2805 			boolean_t do_arc_evict = B_FALSE;
2806 			blkptr_t bp;
2807 			spa_t *spa = dmu_objset_spa(db->db_objset);
2808 
2809 			if (!DBUF_IS_CACHEABLE(db) &&
2810 			    db->db_blkptr != NULL &&
2811 			    !BP_IS_HOLE(db->db_blkptr) &&
2812 			    !BP_IS_EMBEDDED(db->db_blkptr)) {
2813 				do_arc_evict = B_TRUE;
2814 				bp = *db->db_blkptr;
2815 			}
2816 
2817 			if (!DBUF_IS_CACHEABLE(db) ||
2818 			    db->db_pending_evict) {
2819 				dbuf_destroy(db);
2820 			} else if (!multilist_link_active(&db->db_cache_link)) {
2821 				multilist_insert(&dbuf_cache, db);
2822 				(void) refcount_add_many(&dbuf_cache_size,
2823 				    db->db.db_size, db);
2824 				mutex_exit(&db->db_mtx);
2825 
2826 				dbuf_evict_notify();
2827 			}
2828 
2829 			if (do_arc_evict)
2830 				arc_freed(spa, &bp);
2831 		}
2832 	} else {
2833 		mutex_exit(&db->db_mtx);
2834 	}
2835 
2836 }
2837 
2838 #pragma weak dmu_buf_refcount = dbuf_refcount
2839 uint64_t
2840 dbuf_refcount(dmu_buf_impl_t *db)
2841 {
2842 	return (refcount_count(&db->db_holds));
2843 }
2844 
2845 void *
2846 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2847     dmu_buf_user_t *new_user)
2848 {
2849 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2850 
2851 	mutex_enter(&db->db_mtx);
2852 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2853 	if (db->db_user == old_user)
2854 		db->db_user = new_user;
2855 	else
2856 		old_user = db->db_user;
2857 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2858 	mutex_exit(&db->db_mtx);
2859 
2860 	return (old_user);
2861 }
2862 
2863 void *
2864 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2865 {
2866 	return (dmu_buf_replace_user(db_fake, NULL, user));
2867 }
2868 
2869 void *
2870 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2871 {
2872 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2873 
2874 	db->db_user_immediate_evict = TRUE;
2875 	return (dmu_buf_set_user(db_fake, user));
2876 }
2877 
2878 void *
2879 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2880 {
2881 	return (dmu_buf_replace_user(db_fake, user, NULL));
2882 }
2883 
2884 void *
2885 dmu_buf_get_user(dmu_buf_t *db_fake)
2886 {
2887 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2888 
2889 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2890 	return (db->db_user);
2891 }
2892 
2893 void
2894 dmu_buf_user_evict_wait()
2895 {
2896 	taskq_wait(dbu_evict_taskq);
2897 }
2898 
2899 boolean_t
2900 dmu_buf_freeable(dmu_buf_t *dbuf)
2901 {
2902 	boolean_t res = B_FALSE;
2903 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2904 
2905 	if (db->db_blkptr)
2906 		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2907 		    db->db_blkptr, db->db_blkptr->blk_birth);
2908 
2909 	return (res);
2910 }
2911 
2912 blkptr_t *
2913 dmu_buf_get_blkptr(dmu_buf_t *db)
2914 {
2915 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2916 	return (dbi->db_blkptr);
2917 }
2918 
2919 objset_t *
2920 dmu_buf_get_objset(dmu_buf_t *db)
2921 {
2922 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2923 	return (dbi->db_objset);
2924 }
2925 
2926 dnode_t *
2927 dmu_buf_dnode_enter(dmu_buf_t *db)
2928 {
2929 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2930 	DB_DNODE_ENTER(dbi);
2931 	return (DB_DNODE(dbi));
2932 }
2933 
2934 void
2935 dmu_buf_dnode_exit(dmu_buf_t *db)
2936 {
2937 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2938 	DB_DNODE_EXIT(dbi);
2939 }
2940 
2941 static void
2942 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2943 {
2944 	/* ASSERT(dmu_tx_is_syncing(tx) */
2945 	ASSERT(MUTEX_HELD(&db->db_mtx));
2946 
2947 	if (db->db_blkptr != NULL)
2948 		return;
2949 
2950 	if (db->db_blkid == DMU_SPILL_BLKID) {
2951 		db->db_blkptr = &dn->dn_phys->dn_spill;
2952 		BP_ZERO(db->db_blkptr);
2953 		return;
2954 	}
2955 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2956 		/*
2957 		 * This buffer was allocated at a time when there was
2958 		 * no available blkptrs from the dnode, or it was
2959 		 * inappropriate to hook it in (i.e., nlevels mis-match).
2960 		 */
2961 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2962 		ASSERT(db->db_parent == NULL);
2963 		db->db_parent = dn->dn_dbuf;
2964 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2965 		DBUF_VERIFY(db);
2966 	} else {
2967 		dmu_buf_impl_t *parent = db->db_parent;
2968 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2969 
2970 		ASSERT(dn->dn_phys->dn_nlevels > 1);
2971 		if (parent == NULL) {
2972 			mutex_exit(&db->db_mtx);
2973 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2974 			parent = dbuf_hold_level(dn, db->db_level + 1,
2975 			    db->db_blkid >> epbs, db);
2976 			rw_exit(&dn->dn_struct_rwlock);
2977 			mutex_enter(&db->db_mtx);
2978 			db->db_parent = parent;
2979 		}
2980 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2981 		    (db->db_blkid & ((1ULL << epbs) - 1));
2982 		DBUF_VERIFY(db);
2983 	}
2984 }
2985 
2986 static void
2987 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2988 {
2989 	dmu_buf_impl_t *db = dr->dr_dbuf;
2990 	dnode_t *dn;
2991 	zio_t *zio;
2992 
2993 	ASSERT(dmu_tx_is_syncing(tx));
2994 
2995 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2996 
2997 	mutex_enter(&db->db_mtx);
2998 
2999 	ASSERT(db->db_level > 0);
3000 	DBUF_VERIFY(db);
3001 
3002 	/* Read the block if it hasn't been read yet. */
3003 	if (db->db_buf == NULL) {
3004 		mutex_exit(&db->db_mtx);
3005 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3006 		mutex_enter(&db->db_mtx);
3007 	}
3008 	ASSERT3U(db->db_state, ==, DB_CACHED);
3009 	ASSERT(db->db_buf != NULL);
3010 
3011 	DB_DNODE_ENTER(db);
3012 	dn = DB_DNODE(db);
3013 	/* Indirect block size must match what the dnode thinks it is. */
3014 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3015 	dbuf_check_blkptr(dn, db);
3016 	DB_DNODE_EXIT(db);
3017 
3018 	/* Provide the pending dirty record to child dbufs */
3019 	db->db_data_pending = dr;
3020 
3021 	mutex_exit(&db->db_mtx);
3022 	dbuf_write(dr, db->db_buf, tx);
3023 
3024 	zio = dr->dr_zio;
3025 	mutex_enter(&dr->dt.di.dr_mtx);
3026 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3027 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3028 	mutex_exit(&dr->dt.di.dr_mtx);
3029 	zio_nowait(zio);
3030 }
3031 
3032 static void
3033 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3034 {
3035 	arc_buf_t **datap = &dr->dt.dl.dr_data;
3036 	dmu_buf_impl_t *db = dr->dr_dbuf;
3037 	dnode_t *dn;
3038 	objset_t *os;
3039 	uint64_t txg = tx->tx_txg;
3040 
3041 	ASSERT(dmu_tx_is_syncing(tx));
3042 
3043 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3044 
3045 	mutex_enter(&db->db_mtx);
3046 	/*
3047 	 * To be synced, we must be dirtied.  But we
3048 	 * might have been freed after the dirty.
3049 	 */
3050 	if (db->db_state == DB_UNCACHED) {
3051 		/* This buffer has been freed since it was dirtied */
3052 		ASSERT(db->db.db_data == NULL);
3053 	} else if (db->db_state == DB_FILL) {
3054 		/* This buffer was freed and is now being re-filled */
3055 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3056 	} else {
3057 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3058 	}
3059 	DBUF_VERIFY(db);
3060 
3061 	DB_DNODE_ENTER(db);
3062 	dn = DB_DNODE(db);
3063 
3064 	if (db->db_blkid == DMU_SPILL_BLKID) {
3065 		mutex_enter(&dn->dn_mtx);
3066 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3067 		mutex_exit(&dn->dn_mtx);
3068 	}
3069 
3070 	/*
3071 	 * If this is a bonus buffer, simply copy the bonus data into the
3072 	 * dnode.  It will be written out when the dnode is synced (and it
3073 	 * will be synced, since it must have been dirty for dbuf_sync to
3074 	 * be called).
3075 	 */
3076 	if (db->db_blkid == DMU_BONUS_BLKID) {
3077 		dbuf_dirty_record_t **drp;
3078 
3079 		ASSERT(*datap != NULL);
3080 		ASSERT0(db->db_level);
3081 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
3082 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
3083 		DB_DNODE_EXIT(db);
3084 
3085 		if (*datap != db->db.db_data) {
3086 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
3087 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
3088 		}
3089 		db->db_data_pending = NULL;
3090 		drp = &db->db_last_dirty;
3091 		while (*drp != dr)
3092 			drp = &(*drp)->dr_next;
3093 		ASSERT(dr->dr_next == NULL);
3094 		ASSERT(dr->dr_dbuf == db);
3095 		*drp = dr->dr_next;
3096 		if (dr->dr_dbuf->db_level != 0) {
3097 			list_destroy(&dr->dt.di.dr_children);
3098 			mutex_destroy(&dr->dt.di.dr_mtx);
3099 		}
3100 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
3101 		ASSERT(db->db_dirtycnt > 0);
3102 		db->db_dirtycnt -= 1;
3103 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3104 		return;
3105 	}
3106 
3107 	os = dn->dn_objset;
3108 
3109 	/*
3110 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
3111 	 * operation to sneak in. As a result, we need to ensure that we
3112 	 * don't check the dr_override_state until we have returned from
3113 	 * dbuf_check_blkptr.
3114 	 */
3115 	dbuf_check_blkptr(dn, db);
3116 
3117 	/*
3118 	 * If this buffer is in the middle of an immediate write,
3119 	 * wait for the synchronous IO to complete.
3120 	 */
3121 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3122 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3123 		cv_wait(&db->db_changed, &db->db_mtx);
3124 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3125 	}
3126 
3127 	if (db->db_state != DB_NOFILL &&
3128 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3129 	    refcount_count(&db->db_holds) > 1 &&
3130 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3131 	    *datap == db->db_buf) {
3132 		/*
3133 		 * If this buffer is currently "in use" (i.e., there
3134 		 * are active holds and db_data still references it),
3135 		 * then make a copy before we start the write so that
3136 		 * any modifications from the open txg will not leak
3137 		 * into this write.
3138 		 *
3139 		 * NOTE: this copy does not need to be made for
3140 		 * objects only modified in the syncing context (e.g.
3141 		 * DNONE_DNODE blocks).
3142 		 */
3143 		int blksz = arc_buf_size(*datap);
3144 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3145 		*datap = arc_alloc_buf(os->os_spa, blksz, db, type);
3146 		bcopy(db->db.db_data, (*datap)->b_data, blksz);
3147 	}
3148 	db->db_data_pending = dr;
3149 
3150 	mutex_exit(&db->db_mtx);
3151 
3152 	dbuf_write(dr, *datap, tx);
3153 
3154 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3155 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3156 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3157 		DB_DNODE_EXIT(db);
3158 	} else {
3159 		/*
3160 		 * Although zio_nowait() does not "wait for an IO", it does
3161 		 * initiate the IO. If this is an empty write it seems plausible
3162 		 * that the IO could actually be completed before the nowait
3163 		 * returns. We need to DB_DNODE_EXIT() first in case
3164 		 * zio_nowait() invalidates the dbuf.
3165 		 */
3166 		DB_DNODE_EXIT(db);
3167 		zio_nowait(dr->dr_zio);
3168 	}
3169 }
3170 
3171 void
3172 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3173 {
3174 	dbuf_dirty_record_t *dr;
3175 
3176 	while (dr = list_head(list)) {
3177 		if (dr->dr_zio != NULL) {
3178 			/*
3179 			 * If we find an already initialized zio then we
3180 			 * are processing the meta-dnode, and we have finished.
3181 			 * The dbufs for all dnodes are put back on the list
3182 			 * during processing, so that we can zio_wait()
3183 			 * these IOs after initiating all child IOs.
3184 			 */
3185 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3186 			    DMU_META_DNODE_OBJECT);
3187 			break;
3188 		}
3189 		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3190 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3191 			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3192 		}
3193 		list_remove(list, dr);
3194 		if (dr->dr_dbuf->db_level > 0)
3195 			dbuf_sync_indirect(dr, tx);
3196 		else
3197 			dbuf_sync_leaf(dr, tx);
3198 	}
3199 }
3200 
3201 /* ARGSUSED */
3202 static void
3203 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3204 {
3205 	dmu_buf_impl_t *db = vdb;
3206 	dnode_t *dn;
3207 	blkptr_t *bp = zio->io_bp;
3208 	blkptr_t *bp_orig = &zio->io_bp_orig;
3209 	spa_t *spa = zio->io_spa;
3210 	int64_t delta;
3211 	uint64_t fill = 0;
3212 	int i;
3213 
3214 	ASSERT3P(db->db_blkptr, !=, NULL);
3215 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3216 
3217 	DB_DNODE_ENTER(db);
3218 	dn = DB_DNODE(db);
3219 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3220 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3221 	zio->io_prev_space_delta = delta;
3222 
3223 	if (bp->blk_birth != 0) {
3224 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3225 		    BP_GET_TYPE(bp) == dn->dn_type) ||
3226 		    (db->db_blkid == DMU_SPILL_BLKID &&
3227 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3228 		    BP_IS_EMBEDDED(bp));
3229 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3230 	}
3231 
3232 	mutex_enter(&db->db_mtx);
3233 
3234 #ifdef ZFS_DEBUG
3235 	if (db->db_blkid == DMU_SPILL_BLKID) {
3236 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3237 		ASSERT(!(BP_IS_HOLE(bp)) &&
3238 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3239 	}
3240 #endif
3241 
3242 	if (db->db_level == 0) {
3243 		mutex_enter(&dn->dn_mtx);
3244 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3245 		    db->db_blkid != DMU_SPILL_BLKID)
3246 			dn->dn_phys->dn_maxblkid = db->db_blkid;
3247 		mutex_exit(&dn->dn_mtx);
3248 
3249 		if (dn->dn_type == DMU_OT_DNODE) {
3250 			dnode_phys_t *dnp = db->db.db_data;
3251 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
3252 			    i--, dnp++) {
3253 				if (dnp->dn_type != DMU_OT_NONE)
3254 					fill++;
3255 			}
3256 		} else {
3257 			if (BP_IS_HOLE(bp)) {
3258 				fill = 0;
3259 			} else {
3260 				fill = 1;
3261 			}
3262 		}
3263 	} else {
3264 		blkptr_t *ibp = db->db.db_data;
3265 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3266 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3267 			if (BP_IS_HOLE(ibp))
3268 				continue;
3269 			fill += BP_GET_FILL(ibp);
3270 		}
3271 	}
3272 	DB_DNODE_EXIT(db);
3273 
3274 	if (!BP_IS_EMBEDDED(bp))
3275 		bp->blk_fill = fill;
3276 
3277 	mutex_exit(&db->db_mtx);
3278 
3279 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3280 	*db->db_blkptr = *bp;
3281 	rw_exit(&dn->dn_struct_rwlock);
3282 }
3283 
3284 /* ARGSUSED */
3285 /*
3286  * This function gets called just prior to running through the compression
3287  * stage of the zio pipeline. If we're an indirect block comprised of only
3288  * holes, then we want this indirect to be compressed away to a hole. In
3289  * order to do that we must zero out any information about the holes that
3290  * this indirect points to prior to before we try to compress it.
3291  */
3292 static void
3293 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3294 {
3295 	dmu_buf_impl_t *db = vdb;
3296 	dnode_t *dn;
3297 	blkptr_t *bp;
3298 	uint64_t i;
3299 	int epbs;
3300 
3301 	ASSERT3U(db->db_level, >, 0);
3302 	DB_DNODE_ENTER(db);
3303 	dn = DB_DNODE(db);
3304 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3305 
3306 	/* Determine if all our children are holes */
3307 	for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3308 		if (!BP_IS_HOLE(bp))
3309 			break;
3310 	}
3311 
3312 	/*
3313 	 * If all the children are holes, then zero them all out so that
3314 	 * we may get compressed away.
3315 	 */
3316 	if (i == 1 << epbs) {
3317 		/* didn't find any non-holes */
3318 		bzero(db->db.db_data, db->db.db_size);
3319 	}
3320 	DB_DNODE_EXIT(db);
3321 }
3322 
3323 /*
3324  * The SPA will call this callback several times for each zio - once
3325  * for every physical child i/o (zio->io_phys_children times).  This
3326  * allows the DMU to monitor the progress of each logical i/o.  For example,
3327  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3328  * block.  There may be a long delay before all copies/fragments are completed,
3329  * so this callback allows us to retire dirty space gradually, as the physical
3330  * i/os complete.
3331  */
3332 /* ARGSUSED */
3333 static void
3334 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3335 {
3336 	dmu_buf_impl_t *db = arg;
3337 	objset_t *os = db->db_objset;
3338 	dsl_pool_t *dp = dmu_objset_pool(os);
3339 	dbuf_dirty_record_t *dr;
3340 	int delta = 0;
3341 
3342 	dr = db->db_data_pending;
3343 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3344 
3345 	/*
3346 	 * The callback will be called io_phys_children times.  Retire one
3347 	 * portion of our dirty space each time we are called.  Any rounding
3348 	 * error will be cleaned up by dsl_pool_sync()'s call to
3349 	 * dsl_pool_undirty_space().
3350 	 */
3351 	delta = dr->dr_accounted / zio->io_phys_children;
3352 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
3353 }
3354 
3355 /* ARGSUSED */
3356 static void
3357 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3358 {
3359 	dmu_buf_impl_t *db = vdb;
3360 	blkptr_t *bp_orig = &zio->io_bp_orig;
3361 	blkptr_t *bp = db->db_blkptr;
3362 	objset_t *os = db->db_objset;
3363 	dmu_tx_t *tx = os->os_synctx;
3364 	dbuf_dirty_record_t **drp, *dr;
3365 
3366 	ASSERT0(zio->io_error);
3367 	ASSERT(db->db_blkptr == bp);
3368 
3369 	/*
3370 	 * For nopwrites and rewrites we ensure that the bp matches our
3371 	 * original and bypass all the accounting.
3372 	 */
3373 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3374 		ASSERT(BP_EQUAL(bp, bp_orig));
3375 	} else {
3376 		dsl_dataset_t *ds = os->os_dsl_dataset;
3377 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3378 		dsl_dataset_block_born(ds, bp, tx);
3379 	}
3380 
3381 	mutex_enter(&db->db_mtx);
3382 
3383 	DBUF_VERIFY(db);
3384 
3385 	drp = &db->db_last_dirty;
3386 	while ((dr = *drp) != db->db_data_pending)
3387 		drp = &dr->dr_next;
3388 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3389 	ASSERT(dr->dr_dbuf == db);
3390 	ASSERT(dr->dr_next == NULL);
3391 	*drp = dr->dr_next;
3392 
3393 #ifdef ZFS_DEBUG
3394 	if (db->db_blkid == DMU_SPILL_BLKID) {
3395 		dnode_t *dn;
3396 
3397 		DB_DNODE_ENTER(db);
3398 		dn = DB_DNODE(db);
3399 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3400 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3401 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3402 		DB_DNODE_EXIT(db);
3403 	}
3404 #endif
3405 
3406 	if (db->db_level == 0) {
3407 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3408 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3409 		if (db->db_state != DB_NOFILL) {
3410 			if (dr->dt.dl.dr_data != db->db_buf)
3411 				arc_buf_destroy(dr->dt.dl.dr_data, db);
3412 		}
3413 	} else {
3414 		dnode_t *dn;
3415 
3416 		DB_DNODE_ENTER(db);
3417 		dn = DB_DNODE(db);
3418 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3419 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3420 		if (!BP_IS_HOLE(db->db_blkptr)) {
3421 			int epbs =
3422 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3423 			ASSERT3U(db->db_blkid, <=,
3424 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3425 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3426 			    db->db.db_size);
3427 		}
3428 		DB_DNODE_EXIT(db);
3429 		mutex_destroy(&dr->dt.di.dr_mtx);
3430 		list_destroy(&dr->dt.di.dr_children);
3431 	}
3432 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
3433 
3434 	cv_broadcast(&db->db_changed);
3435 	ASSERT(db->db_dirtycnt > 0);
3436 	db->db_dirtycnt -= 1;
3437 	db->db_data_pending = NULL;
3438 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3439 }
3440 
3441 static void
3442 dbuf_write_nofill_ready(zio_t *zio)
3443 {
3444 	dbuf_write_ready(zio, NULL, zio->io_private);
3445 }
3446 
3447 static void
3448 dbuf_write_nofill_done(zio_t *zio)
3449 {
3450 	dbuf_write_done(zio, NULL, zio->io_private);
3451 }
3452 
3453 static void
3454 dbuf_write_override_ready(zio_t *zio)
3455 {
3456 	dbuf_dirty_record_t *dr = zio->io_private;
3457 	dmu_buf_impl_t *db = dr->dr_dbuf;
3458 
3459 	dbuf_write_ready(zio, NULL, db);
3460 }
3461 
3462 static void
3463 dbuf_write_override_done(zio_t *zio)
3464 {
3465 	dbuf_dirty_record_t *dr = zio->io_private;
3466 	dmu_buf_impl_t *db = dr->dr_dbuf;
3467 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3468 
3469 	mutex_enter(&db->db_mtx);
3470 	if (!BP_EQUAL(zio->io_bp, obp)) {
3471 		if (!BP_IS_HOLE(obp))
3472 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3473 		arc_release(dr->dt.dl.dr_data, db);
3474 	}
3475 	mutex_exit(&db->db_mtx);
3476 
3477 	dbuf_write_done(zio, NULL, db);
3478 }
3479 
3480 /* Issue I/O to commit a dirty buffer to disk. */
3481 static void
3482 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3483 {
3484 	dmu_buf_impl_t *db = dr->dr_dbuf;
3485 	dnode_t *dn;
3486 	objset_t *os;
3487 	dmu_buf_impl_t *parent = db->db_parent;
3488 	uint64_t txg = tx->tx_txg;
3489 	zbookmark_phys_t zb;
3490 	zio_prop_t zp;
3491 	zio_t *zio;
3492 	int wp_flag = 0;
3493 
3494 	ASSERT(dmu_tx_is_syncing(tx));
3495 
3496 	DB_DNODE_ENTER(db);
3497 	dn = DB_DNODE(db);
3498 	os = dn->dn_objset;
3499 
3500 	if (db->db_state != DB_NOFILL) {
3501 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3502 			/*
3503 			 * Private object buffers are released here rather
3504 			 * than in dbuf_dirty() since they are only modified
3505 			 * in the syncing context and we don't want the
3506 			 * overhead of making multiple copies of the data.
3507 			 */
3508 			if (BP_IS_HOLE(db->db_blkptr)) {
3509 				arc_buf_thaw(data);
3510 			} else {
3511 				dbuf_release_bp(db);
3512 			}
3513 		}
3514 	}
3515 
3516 	if (parent != dn->dn_dbuf) {
3517 		/* Our parent is an indirect block. */
3518 		/* We have a dirty parent that has been scheduled for write. */
3519 		ASSERT(parent && parent->db_data_pending);
3520 		/* Our parent's buffer is one level closer to the dnode. */
3521 		ASSERT(db->db_level == parent->db_level-1);
3522 		/*
3523 		 * We're about to modify our parent's db_data by modifying
3524 		 * our block pointer, so the parent must be released.
3525 		 */
3526 		ASSERT(arc_released(parent->db_buf));
3527 		zio = parent->db_data_pending->dr_zio;
3528 	} else {
3529 		/* Our parent is the dnode itself. */
3530 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3531 		    db->db_blkid != DMU_SPILL_BLKID) ||
3532 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3533 		if (db->db_blkid != DMU_SPILL_BLKID)
3534 			ASSERT3P(db->db_blkptr, ==,
3535 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
3536 		zio = dn->dn_zio;
3537 	}
3538 
3539 	ASSERT(db->db_level == 0 || data == db->db_buf);
3540 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3541 	ASSERT(zio);
3542 
3543 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3544 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3545 	    db->db.db_object, db->db_level, db->db_blkid);
3546 
3547 	if (db->db_blkid == DMU_SPILL_BLKID)
3548 		wp_flag = WP_SPILL;
3549 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3550 
3551 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3552 	DB_DNODE_EXIT(db);
3553 
3554 	/*
3555 	 * We copy the blkptr now (rather than when we instantiate the dirty
3556 	 * record), because its value can change between open context and
3557 	 * syncing context. We do not need to hold dn_struct_rwlock to read
3558 	 * db_blkptr because we are in syncing context.
3559 	 */
3560 	dr->dr_bp_copy = *db->db_blkptr;
3561 
3562 	if (db->db_level == 0 &&
3563 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3564 		/*
3565 		 * The BP for this block has been provided by open context
3566 		 * (by dmu_sync() or dmu_buf_write_embedded()).
3567 		 */
3568 		void *contents = (data != NULL) ? data->b_data : NULL;
3569 
3570 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3571 		    &dr->dr_bp_copy, contents, db->db.db_size, &zp,
3572 		    dbuf_write_override_ready, NULL, NULL,
3573 		    dbuf_write_override_done,
3574 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3575 		mutex_enter(&db->db_mtx);
3576 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3577 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3578 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3579 		mutex_exit(&db->db_mtx);
3580 	} else if (db->db_state == DB_NOFILL) {
3581 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3582 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3583 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3584 		    &dr->dr_bp_copy, NULL, db->db.db_size, &zp,
3585 		    dbuf_write_nofill_ready, NULL, NULL,
3586 		    dbuf_write_nofill_done, db,
3587 		    ZIO_PRIORITY_ASYNC_WRITE,
3588 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3589 	} else {
3590 		ASSERT(arc_released(data));
3591 
3592 		/*
3593 		 * For indirect blocks, we want to setup the children
3594 		 * ready callback so that we can properly handle an indirect
3595 		 * block that only contains holes.
3596 		 */
3597 		arc_done_func_t *children_ready_cb = NULL;
3598 		if (db->db_level != 0)
3599 			children_ready_cb = dbuf_write_children_ready;
3600 
3601 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
3602 		    &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3603 		    &zp, dbuf_write_ready, children_ready_cb,
3604 		    dbuf_write_physdone, dbuf_write_done, db,
3605 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3606 	}
3607 }
3608