1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_send.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dbuf.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/spa.h> 41 #include <sys/zio.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/sa.h> 44 #include <sys/sa_impl.h> 45 #include <sys/zfeature.h> 46 #include <sys/blkptr.h> 47 #include <sys/range_tree.h> 48 #include <sys/callb.h> 49 50 uint_t zfs_dbuf_evict_key; 51 52 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 53 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 54 55 #ifndef __lint 56 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 57 dmu_buf_evict_func_t *evict_func_sync, 58 dmu_buf_evict_func_t *evict_func_async, 59 dmu_buf_t **clear_on_evict_dbufp); 60 #endif /* ! __lint */ 61 62 /* 63 * Global data structures and functions for the dbuf cache. 64 */ 65 static kmem_cache_t *dbuf_kmem_cache; 66 static taskq_t *dbu_evict_taskq; 67 68 static kthread_t *dbuf_cache_evict_thread; 69 static kmutex_t dbuf_evict_lock; 70 static kcondvar_t dbuf_evict_cv; 71 static boolean_t dbuf_evict_thread_exit; 72 73 /* 74 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 75 * are not currently held but have been recently released. These dbufs 76 * are not eligible for arc eviction until they are aged out of the cache. 77 * Dbufs are added to the dbuf cache once the last hold is released. If a 78 * dbuf is later accessed and still exists in the dbuf cache, then it will 79 * be removed from the cache and later re-added to the head of the cache. 80 * Dbufs that are aged out of the cache will be immediately destroyed and 81 * become eligible for arc eviction. 82 */ 83 static multilist_t dbuf_cache; 84 static refcount_t dbuf_cache_size; 85 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024; 86 87 /* Cap the size of the dbuf cache to log2 fraction of arc size. */ 88 int dbuf_cache_max_shift = 5; 89 90 /* 91 * The dbuf cache uses a three-stage eviction policy: 92 * - A low water marker designates when the dbuf eviction thread 93 * should stop evicting from the dbuf cache. 94 * - When we reach the maximum size (aka mid water mark), we 95 * signal the eviction thread to run. 96 * - The high water mark indicates when the eviction thread 97 * is unable to keep up with the incoming load and eviction must 98 * happen in the context of the calling thread. 99 * 100 * The dbuf cache: 101 * (max size) 102 * low water mid water hi water 103 * +----------------------------------------+----------+----------+ 104 * | | | | 105 * | | | | 106 * | | | | 107 * | | | | 108 * +----------------------------------------+----------+----------+ 109 * stop signal evict 110 * evicting eviction directly 111 * thread 112 * 113 * The high and low water marks indicate the operating range for the eviction 114 * thread. The low water mark is, by default, 90% of the total size of the 115 * cache and the high water mark is at 110% (both of these percentages can be 116 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 117 * respectively). The eviction thread will try to ensure that the cache remains 118 * within this range by waking up every second and checking if the cache is 119 * above the low water mark. The thread can also be woken up by callers adding 120 * elements into the cache if the cache is larger than the mid water (i.e max 121 * cache size). Once the eviction thread is woken up and eviction is required, 122 * it will continue evicting buffers until it's able to reduce the cache size 123 * to the low water mark. If the cache size continues to grow and hits the high 124 * water mark, then callers adding elments to the cache will begin to evict 125 * directly from the cache until the cache is no longer above the high water 126 * mark. 127 */ 128 129 /* 130 * The percentage above and below the maximum cache size. 131 */ 132 uint_t dbuf_cache_hiwater_pct = 10; 133 uint_t dbuf_cache_lowater_pct = 10; 134 135 /* ARGSUSED */ 136 static int 137 dbuf_cons(void *vdb, void *unused, int kmflag) 138 { 139 dmu_buf_impl_t *db = vdb; 140 141 #ifdef __NetBSD__ 142 db = unused; 143 #endif 144 bzero(db, sizeof (dmu_buf_impl_t)); 145 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 146 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 147 multilist_link_init(&db->db_cache_link); 148 refcount_create(&db->db_holds); 149 150 return (0); 151 } 152 153 /* ARGSUSED */ 154 static void 155 dbuf_dest(void *vdb, void *unused) 156 { 157 dmu_buf_impl_t *db = vdb; 158 159 #ifdef __NetBSD__ 160 db = unused; 161 #endif 162 mutex_destroy(&db->db_mtx); 163 cv_destroy(&db->db_changed); 164 ASSERT(!multilist_link_active(&db->db_cache_link)); 165 refcount_destroy(&db->db_holds); 166 } 167 168 /* 169 * dbuf hash table routines 170 */ 171 static dbuf_hash_table_t dbuf_hash_table; 172 173 static uint64_t dbuf_hash_count; 174 175 static uint64_t 176 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 177 { 178 uintptr_t osv = (uintptr_t)os; 179 uint64_t crc = -1ULL; 180 181 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 182 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 183 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 184 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 185 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 186 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 187 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 188 189 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 190 191 return (crc); 192 } 193 194 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 195 ((dbuf)->db.db_object == (obj) && \ 196 (dbuf)->db_objset == (os) && \ 197 (dbuf)->db_level == (level) && \ 198 (dbuf)->db_blkid == (blkid)) 199 200 dmu_buf_impl_t * 201 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 202 { 203 dbuf_hash_table_t *h = &dbuf_hash_table; 204 uint64_t hv = dbuf_hash(os, obj, level, blkid); 205 uint64_t idx = hv & h->hash_table_mask; 206 dmu_buf_impl_t *db; 207 208 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 209 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 210 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 211 mutex_enter(&db->db_mtx); 212 if (db->db_state != DB_EVICTING) { 213 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 214 return (db); 215 } 216 mutex_exit(&db->db_mtx); 217 } 218 } 219 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 220 return (NULL); 221 } 222 223 static dmu_buf_impl_t * 224 dbuf_find_bonus(objset_t *os, uint64_t object) 225 { 226 dnode_t *dn; 227 dmu_buf_impl_t *db = NULL; 228 229 if (dnode_hold(os, object, FTAG, &dn) == 0) { 230 rw_enter(&dn->dn_struct_rwlock, RW_READER); 231 if (dn->dn_bonus != NULL) { 232 db = dn->dn_bonus; 233 mutex_enter(&db->db_mtx); 234 } 235 rw_exit(&dn->dn_struct_rwlock); 236 dnode_rele(dn, FTAG); 237 } 238 return (db); 239 } 240 241 /* 242 * Insert an entry into the hash table. If there is already an element 243 * equal to elem in the hash table, then the already existing element 244 * will be returned and the new element will not be inserted. 245 * Otherwise returns NULL. 246 */ 247 static dmu_buf_impl_t * 248 dbuf_hash_insert(dmu_buf_impl_t *db) 249 { 250 dbuf_hash_table_t *h = &dbuf_hash_table; 251 objset_t *os = db->db_objset; 252 uint64_t obj = db->db.db_object; 253 int level = db->db_level; 254 uint64_t blkid = db->db_blkid; 255 uint64_t hv = dbuf_hash(os, obj, level, blkid); 256 uint64_t idx = hv & h->hash_table_mask; 257 dmu_buf_impl_t *dbf; 258 259 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 260 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 261 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 262 mutex_enter(&dbf->db_mtx); 263 if (dbf->db_state != DB_EVICTING) { 264 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 265 return (dbf); 266 } 267 mutex_exit(&dbf->db_mtx); 268 } 269 } 270 271 mutex_enter(&db->db_mtx); 272 db->db_hash_next = h->hash_table[idx]; 273 h->hash_table[idx] = db; 274 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 275 atomic_inc_64(&dbuf_hash_count); 276 277 return (NULL); 278 } 279 280 /* 281 * Remove an entry from the hash table. It must be in the EVICTING state. 282 */ 283 static void 284 dbuf_hash_remove(dmu_buf_impl_t *db) 285 { 286 dbuf_hash_table_t *h = &dbuf_hash_table; 287 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object, 288 db->db_level, db->db_blkid); 289 uint64_t idx = hv & h->hash_table_mask; 290 dmu_buf_impl_t *dbf, **dbp; 291 292 /* 293 * We musn't hold db_mtx to maintain lock ordering: 294 * DBUF_HASH_MUTEX > db_mtx. 295 */ 296 ASSERT(refcount_is_zero(&db->db_holds)); 297 ASSERT(db->db_state == DB_EVICTING); 298 ASSERT(!MUTEX_HELD(&db->db_mtx)); 299 300 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 301 dbp = &h->hash_table[idx]; 302 while ((dbf = *dbp) != db) { 303 dbp = &dbf->db_hash_next; 304 ASSERT(dbf != NULL); 305 } 306 *dbp = db->db_hash_next; 307 db->db_hash_next = NULL; 308 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 309 atomic_dec_64(&dbuf_hash_count); 310 } 311 312 typedef enum { 313 DBVU_EVICTING, 314 DBVU_NOT_EVICTING 315 } dbvu_verify_type_t; 316 317 static void 318 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 319 { 320 #ifdef ZFS_DEBUG 321 int64_t holds; 322 323 if (db->db_user == NULL) 324 return; 325 326 /* Only data blocks support the attachment of user data. */ 327 ASSERT(db->db_level == 0); 328 329 /* Clients must resolve a dbuf before attaching user data. */ 330 ASSERT(db->db.db_data != NULL); 331 ASSERT3U(db->db_state, ==, DB_CACHED); 332 333 holds = refcount_count(&db->db_holds); 334 if (verify_type == DBVU_EVICTING) { 335 /* 336 * Immediate eviction occurs when holds == dirtycnt. 337 * For normal eviction buffers, holds is zero on 338 * eviction, except when dbuf_fix_old_data() calls 339 * dbuf_clear_data(). However, the hold count can grow 340 * during eviction even though db_mtx is held (see 341 * dmu_bonus_hold() for an example), so we can only 342 * test the generic invariant that holds >= dirtycnt. 343 */ 344 ASSERT3U(holds, >=, db->db_dirtycnt); 345 } else { 346 if (db->db_user_immediate_evict == TRUE) 347 ASSERT3U(holds, >=, db->db_dirtycnt); 348 else 349 ASSERT3U(holds, >, 0); 350 } 351 #endif 352 } 353 354 static void 355 dbuf_evict_user(dmu_buf_impl_t *db) 356 { 357 dmu_buf_user_t *dbu = db->db_user; 358 359 ASSERT(MUTEX_HELD(&db->db_mtx)); 360 361 if (dbu == NULL) 362 return; 363 364 dbuf_verify_user(db, DBVU_EVICTING); 365 db->db_user = NULL; 366 367 #ifdef ZFS_DEBUG 368 if (dbu->dbu_clear_on_evict_dbufp != NULL) 369 *dbu->dbu_clear_on_evict_dbufp = NULL; 370 #endif 371 372 /* 373 * There are two eviction callbacks - one that we call synchronously 374 * and one that we invoke via a taskq. The async one is useful for 375 * avoiding lock order reversals and limiting stack depth. 376 * 377 * Note that if we have a sync callback but no async callback, 378 * it's likely that the sync callback will free the structure 379 * containing the dbu. In that case we need to take care to not 380 * dereference dbu after calling the sync evict func. 381 */ 382 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 383 384 if (dbu->dbu_evict_func_sync != NULL) 385 dbu->dbu_evict_func_sync(dbu); 386 387 if (has_async) { 388 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 389 dbu, 0, &dbu->dbu_tqent); 390 } 391 } 392 393 boolean_t 394 dbuf_is_metadata(dmu_buf_impl_t *db) 395 { 396 if (db->db_level > 0) { 397 return (B_TRUE); 398 } else { 399 boolean_t is_metadata; 400 401 DB_DNODE_ENTER(db); 402 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 403 DB_DNODE_EXIT(db); 404 405 return (is_metadata); 406 } 407 } 408 409 /* 410 * This function *must* return indices evenly distributed between all 411 * sublists of the multilist. This is needed due to how the dbuf eviction 412 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 413 * distributed between all sublists and uses this assumption when 414 * deciding which sublist to evict from and how much to evict from it. 415 */ 416 unsigned int 417 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 418 { 419 dmu_buf_impl_t *db = obj; 420 421 /* 422 * The assumption here, is the hash value for a given 423 * dmu_buf_impl_t will remain constant throughout it's lifetime 424 * (i.e. it's objset, object, level and blkid fields don't change). 425 * Thus, we don't need to store the dbuf's sublist index 426 * on insertion, as this index can be recalculated on removal. 427 * 428 * Also, the low order bits of the hash value are thought to be 429 * distributed evenly. Otherwise, in the case that the multilist 430 * has a power of two number of sublists, each sublists' usage 431 * would not be evenly distributed. 432 */ 433 return (dbuf_hash(db->db_objset, db->db.db_object, 434 db->db_level, db->db_blkid) % 435 multilist_get_num_sublists(ml)); 436 } 437 438 static inline boolean_t 439 dbuf_cache_above_hiwater(void) 440 { 441 uint64_t dbuf_cache_hiwater_bytes = 442 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100; 443 444 return (refcount_count(&dbuf_cache_size) > 445 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes); 446 } 447 448 static inline boolean_t 449 dbuf_cache_above_lowater(void) 450 { 451 uint64_t dbuf_cache_lowater_bytes = 452 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100; 453 454 return (refcount_count(&dbuf_cache_size) > 455 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes); 456 } 457 458 /* 459 * Evict the oldest eligible dbuf from the dbuf cache. 460 */ 461 static void 462 dbuf_evict_one(void) 463 { 464 int idx = multilist_get_random_index(&dbuf_cache); 465 multilist_sublist_t *mls = multilist_sublist_lock(&dbuf_cache, idx); 466 467 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 468 469 /* 470 * Set the thread's tsd to indicate that it's processing evictions. 471 * Once a thread stops evicting from the dbuf cache it will 472 * reset its tsd to NULL. 473 */ 474 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL); 475 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE); 476 477 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 478 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 479 db = multilist_sublist_prev(mls, db); 480 } 481 482 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 483 multilist_sublist_t *, mls); 484 485 if (db != NULL) { 486 multilist_sublist_remove(mls, db); 487 multilist_sublist_unlock(mls); 488 (void) refcount_remove_many(&dbuf_cache_size, 489 db->db.db_size, db); 490 dbuf_destroy(db); 491 } else { 492 multilist_sublist_unlock(mls); 493 } 494 (void) tsd_set(zfs_dbuf_evict_key, NULL); 495 } 496 497 /* 498 * The dbuf evict thread is responsible for aging out dbufs from the 499 * cache. Once the cache has reached it's maximum size, dbufs are removed 500 * and destroyed. The eviction thread will continue running until the size 501 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 502 * out of the cache it is destroyed and becomes eligible for arc eviction. 503 */ 504 static void 505 dbuf_evict_thread(void *dummy __unused) 506 { 507 callb_cpr_t cpr; 508 509 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 510 511 mutex_enter(&dbuf_evict_lock); 512 while (!dbuf_evict_thread_exit) { 513 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 514 CALLB_CPR_SAFE_BEGIN(&cpr); 515 (void) cv_timedwait_hires(&dbuf_evict_cv, 516 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 517 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 518 } 519 mutex_exit(&dbuf_evict_lock); 520 521 /* 522 * Keep evicting as long as we're above the low water mark 523 * for the cache. We do this without holding the locks to 524 * minimize lock contention. 525 */ 526 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 527 dbuf_evict_one(); 528 } 529 530 mutex_enter(&dbuf_evict_lock); 531 } 532 533 dbuf_evict_thread_exit = B_FALSE; 534 cv_broadcast(&dbuf_evict_cv); 535 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 536 thread_exit(); 537 } 538 539 /* 540 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 541 * If the dbuf cache is at its high water mark, then evict a dbuf from the 542 * dbuf cache using the callers context. 543 */ 544 static void 545 dbuf_evict_notify(void) 546 { 547 548 /* 549 * We use thread specific data to track when a thread has 550 * started processing evictions. This allows us to avoid deeply 551 * nested stacks that would have a call flow similar to this: 552 * 553 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 554 * ^ | 555 * | | 556 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 557 * 558 * The dbuf_eviction_thread will always have its tsd set until 559 * that thread exits. All other threads will only set their tsd 560 * if they are participating in the eviction process. This only 561 * happens if the eviction thread is unable to process evictions 562 * fast enough. To keep the dbuf cache size in check, other threads 563 * can evict from the dbuf cache directly. Those threads will set 564 * their tsd values so that we ensure that they only evict one dbuf 565 * from the dbuf cache. 566 */ 567 if (tsd_get(zfs_dbuf_evict_key) != NULL) 568 return; 569 570 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 571 boolean_t evict_now = B_FALSE; 572 573 mutex_enter(&dbuf_evict_lock); 574 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 575 evict_now = dbuf_cache_above_hiwater(); 576 cv_signal(&dbuf_evict_cv); 577 } 578 mutex_exit(&dbuf_evict_lock); 579 580 if (evict_now) { 581 dbuf_evict_one(); 582 } 583 } 584 } 585 586 void 587 dbuf_init(void) 588 { 589 uint64_t hsize = 1ULL << 16; 590 dbuf_hash_table_t *h = &dbuf_hash_table; 591 int i; 592 593 /* 594 * The hash table is big enough to fill all of physical memory 595 * with an average 4K block size. The table will take up 596 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 597 */ 598 while (hsize * 4096 < (uint64_t)physmem * PAGESIZE) 599 hsize <<= 1; 600 601 retry: 602 h->hash_table_mask = hsize - 1; 603 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 604 if (h->hash_table == NULL) { 605 /* XXX - we should really return an error instead of assert */ 606 ASSERT(hsize > (1ULL << 10)); 607 hsize >>= 1; 608 goto retry; 609 } 610 611 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 612 sizeof (dmu_buf_impl_t), 613 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 614 615 for (i = 0; i < DBUF_MUTEXES; i++) 616 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 617 618 /* 619 * Setup the parameters for the dbuf cache. We cap the size of the 620 * dbuf cache to 1/32nd (default) of the size of the ARC. 621 */ 622 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes, 623 arc_max_bytes() >> dbuf_cache_max_shift); 624 625 /* 626 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 627 * configuration is not required. 628 */ 629 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); 630 631 multilist_create(&dbuf_cache, sizeof (dmu_buf_impl_t), 632 offsetof(dmu_buf_impl_t, db_cache_link), 633 zfs_arc_num_sublists_per_state, 634 dbuf_cache_multilist_index_func); 635 refcount_create(&dbuf_cache_size); 636 637 tsd_create(&zfs_dbuf_evict_key, NULL); 638 dbuf_evict_thread_exit = B_FALSE; 639 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 640 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 641 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 642 NULL, 0, &p0, TS_RUN, minclsyspri); 643 } 644 645 void 646 dbuf_fini(void) 647 { 648 dbuf_hash_table_t *h = &dbuf_hash_table; 649 int i; 650 651 for (i = 0; i < DBUF_MUTEXES; i++) 652 mutex_destroy(&h->hash_mutexes[i]); 653 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 654 kmem_cache_destroy(dbuf_kmem_cache); 655 taskq_destroy(dbu_evict_taskq); 656 657 mutex_enter(&dbuf_evict_lock); 658 dbuf_evict_thread_exit = B_TRUE; 659 while (dbuf_evict_thread_exit) { 660 cv_signal(&dbuf_evict_cv); 661 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 662 } 663 mutex_exit(&dbuf_evict_lock); 664 tsd_destroy(&zfs_dbuf_evict_key); 665 666 mutex_destroy(&dbuf_evict_lock); 667 cv_destroy(&dbuf_evict_cv); 668 669 refcount_destroy(&dbuf_cache_size); 670 multilist_destroy(&dbuf_cache); 671 } 672 673 /* 674 * Other stuff. 675 */ 676 677 #ifdef ZFS_DEBUG 678 static void 679 dbuf_verify(dmu_buf_impl_t *db) 680 { 681 dnode_t *dn; 682 dbuf_dirty_record_t *dr; 683 684 ASSERT(MUTEX_HELD(&db->db_mtx)); 685 686 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 687 return; 688 689 ASSERT(db->db_objset != NULL); 690 DB_DNODE_ENTER(db); 691 dn = DB_DNODE(db); 692 if (dn == NULL) { 693 ASSERT(db->db_parent == NULL); 694 ASSERT(db->db_blkptr == NULL); 695 } else { 696 ASSERT3U(db->db.db_object, ==, dn->dn_object); 697 ASSERT3P(db->db_objset, ==, dn->dn_objset); 698 ASSERT3U(db->db_level, <, dn->dn_nlevels); 699 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 700 db->db_blkid == DMU_SPILL_BLKID || 701 !avl_is_empty(&dn->dn_dbufs)); 702 } 703 if (db->db_blkid == DMU_BONUS_BLKID) { 704 ASSERT(dn != NULL); 705 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 706 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 707 } else if (db->db_blkid == DMU_SPILL_BLKID) { 708 ASSERT(dn != NULL); 709 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 710 ASSERT0(db->db.db_offset); 711 } else { 712 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 713 } 714 715 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 716 ASSERT(dr->dr_dbuf == db); 717 718 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 719 ASSERT(dr->dr_dbuf == db); 720 721 /* 722 * We can't assert that db_size matches dn_datablksz because it 723 * can be momentarily different when another thread is doing 724 * dnode_set_blksz(). 725 */ 726 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 727 dr = db->db_data_pending; 728 /* 729 * It should only be modified in syncing context, so 730 * make sure we only have one copy of the data. 731 */ 732 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 733 } 734 735 /* verify db->db_blkptr */ 736 if (db->db_blkptr) { 737 if (db->db_parent == dn->dn_dbuf) { 738 /* db is pointed to by the dnode */ 739 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 740 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 741 ASSERT(db->db_parent == NULL); 742 else 743 ASSERT(db->db_parent != NULL); 744 if (db->db_blkid != DMU_SPILL_BLKID) 745 ASSERT3P(db->db_blkptr, ==, 746 &dn->dn_phys->dn_blkptr[db->db_blkid]); 747 } else { 748 /* db is pointed to by an indirect block */ 749 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 750 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 751 ASSERT3U(db->db_parent->db.db_object, ==, 752 db->db.db_object); 753 /* 754 * dnode_grow_indblksz() can make this fail if we don't 755 * have the struct_rwlock. XXX indblksz no longer 756 * grows. safe to do this now? 757 */ 758 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 759 ASSERT3P(db->db_blkptr, ==, 760 ((blkptr_t *)db->db_parent->db.db_data + 761 db->db_blkid % epb)); 762 } 763 } 764 } 765 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 766 (db->db_buf == NULL || db->db_buf->b_data) && 767 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 768 db->db_state != DB_FILL && !dn->dn_free_txg) { 769 /* 770 * If the blkptr isn't set but they have nonzero data, 771 * it had better be dirty, otherwise we'll lose that 772 * data when we evict this buffer. 773 * 774 * There is an exception to this rule for indirect blocks; in 775 * this case, if the indirect block is a hole, we fill in a few 776 * fields on each of the child blocks (importantly, birth time) 777 * to prevent hole birth times from being lost when you 778 * partially fill in a hole. 779 */ 780 if (db->db_dirtycnt == 0) { 781 if (db->db_level == 0) { 782 uint64_t *buf = db->db.db_data; 783 int i; 784 785 for (i = 0; i < db->db.db_size >> 3; i++) { 786 ASSERT(buf[i] == 0); 787 } 788 } else { 789 blkptr_t *bps = db->db.db_data; 790 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 791 db->db.db_size); 792 /* 793 * We want to verify that all the blkptrs in the 794 * indirect block are holes, but we may have 795 * automatically set up a few fields for them. 796 * We iterate through each blkptr and verify 797 * they only have those fields set. 798 */ 799 for (int i = 0; 800 i < db->db.db_size / sizeof (blkptr_t); 801 i++) { 802 blkptr_t *bp = &bps[i]; 803 ASSERT(ZIO_CHECKSUM_IS_ZERO( 804 &bp->blk_cksum)); 805 ASSERT( 806 DVA_IS_EMPTY(&bp->blk_dva[0]) && 807 DVA_IS_EMPTY(&bp->blk_dva[1]) && 808 DVA_IS_EMPTY(&bp->blk_dva[2])); 809 ASSERT0(bp->blk_fill); 810 ASSERT0(bp->blk_pad[0]); 811 ASSERT0(bp->blk_pad[1]); 812 ASSERT(!BP_IS_EMBEDDED(bp)); 813 ASSERT(BP_IS_HOLE(bp)); 814 ASSERT0(bp->blk_phys_birth); 815 } 816 } 817 } 818 } 819 DB_DNODE_EXIT(db); 820 } 821 #endif 822 823 static void 824 dbuf_clear_data(dmu_buf_impl_t *db) 825 { 826 ASSERT(MUTEX_HELD(&db->db_mtx)); 827 dbuf_evict_user(db); 828 ASSERT3P(db->db_buf, ==, NULL); 829 db->db.db_data = NULL; 830 if (db->db_state != DB_NOFILL) 831 db->db_state = DB_UNCACHED; 832 } 833 834 static void 835 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 836 { 837 ASSERT(MUTEX_HELD(&db->db_mtx)); 838 ASSERT(buf != NULL); 839 840 db->db_buf = buf; 841 ASSERT(buf->b_data != NULL); 842 db->db.db_data = buf->b_data; 843 } 844 845 /* 846 * Loan out an arc_buf for read. Return the loaned arc_buf. 847 */ 848 arc_buf_t * 849 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 850 { 851 arc_buf_t *abuf; 852 853 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 854 mutex_enter(&db->db_mtx); 855 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 856 int blksz = db->db.db_size; 857 spa_t *spa = db->db_objset->os_spa; 858 859 mutex_exit(&db->db_mtx); 860 abuf = arc_loan_buf(spa, blksz); 861 bcopy(db->db.db_data, abuf->b_data, blksz); 862 } else { 863 abuf = db->db_buf; 864 arc_loan_inuse_buf(abuf, db); 865 db->db_buf = NULL; 866 dbuf_clear_data(db); 867 mutex_exit(&db->db_mtx); 868 } 869 return (abuf); 870 } 871 872 /* 873 * Calculate which level n block references the data at the level 0 offset 874 * provided. 875 */ 876 uint64_t 877 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) 878 { 879 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 880 /* 881 * The level n blkid is equal to the level 0 blkid divided by 882 * the number of level 0s in a level n block. 883 * 884 * The level 0 blkid is offset >> datablkshift = 885 * offset / 2^datablkshift. 886 * 887 * The number of level 0s in a level n is the number of block 888 * pointers in an indirect block, raised to the power of level. 889 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 890 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 891 * 892 * Thus, the level n blkid is: offset / 893 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) 894 * = offset / 2^(datablkshift + level * 895 * (indblkshift - SPA_BLKPTRSHIFT)) 896 * = offset >> (datablkshift + level * 897 * (indblkshift - SPA_BLKPTRSHIFT)) 898 */ 899 return (offset >> (dn->dn_datablkshift + level * 900 (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); 901 } else { 902 ASSERT3U(offset, <, dn->dn_datablksz); 903 return (0); 904 } 905 } 906 907 static void 908 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 909 { 910 dmu_buf_impl_t *db = vdb; 911 912 mutex_enter(&db->db_mtx); 913 ASSERT3U(db->db_state, ==, DB_READ); 914 /* 915 * All reads are synchronous, so we must have a hold on the dbuf 916 */ 917 ASSERT(refcount_count(&db->db_holds) > 0); 918 ASSERT(db->db_buf == NULL); 919 ASSERT(db->db.db_data == NULL); 920 if (db->db_level == 0 && db->db_freed_in_flight) { 921 /* we were freed in flight; disregard any error */ 922 arc_release(buf, db); 923 bzero(buf->b_data, db->db.db_size); 924 arc_buf_freeze(buf); 925 db->db_freed_in_flight = FALSE; 926 dbuf_set_data(db, buf); 927 db->db_state = DB_CACHED; 928 } else if (zio == NULL || zio->io_error == 0) { 929 dbuf_set_data(db, buf); 930 db->db_state = DB_CACHED; 931 } else { 932 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 933 ASSERT3P(db->db_buf, ==, NULL); 934 arc_buf_destroy(buf, db); 935 db->db_state = DB_UNCACHED; 936 } 937 cv_broadcast(&db->db_changed); 938 dbuf_rele_and_unlock(db, NULL); 939 } 940 941 static void 942 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 943 { 944 dnode_t *dn; 945 zbookmark_phys_t zb; 946 arc_flags_t aflags = ARC_FLAG_NOWAIT; 947 948 DB_DNODE_ENTER(db); 949 dn = DB_DNODE(db); 950 ASSERT(!refcount_is_zero(&db->db_holds)); 951 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 952 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 953 ASSERT(MUTEX_HELD(&db->db_mtx)); 954 ASSERT(db->db_state == DB_UNCACHED); 955 ASSERT(db->db_buf == NULL); 956 957 if (db->db_blkid == DMU_BONUS_BLKID) { 958 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 959 960 ASSERT3U(bonuslen, <=, db->db.db_size); 961 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 962 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 963 if (bonuslen < DN_MAX_BONUSLEN) 964 bzero(db->db.db_data, DN_MAX_BONUSLEN); 965 if (bonuslen) 966 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 967 DB_DNODE_EXIT(db); 968 db->db_state = DB_CACHED; 969 mutex_exit(&db->db_mtx); 970 return; 971 } 972 973 /* 974 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 975 * processes the delete record and clears the bp while we are waiting 976 * for the dn_mtx (resulting in a "no" from block_freed). 977 */ 978 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 979 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 980 BP_IS_HOLE(db->db_blkptr)))) { 981 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 982 983 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, 984 db->db.db_size, db, type)); 985 bzero(db->db.db_data, db->db.db_size); 986 987 if (db->db_blkptr != NULL && db->db_level > 0 && 988 BP_IS_HOLE(db->db_blkptr) && 989 db->db_blkptr->blk_birth != 0) { 990 blkptr_t *bps = db->db.db_data; 991 for (int i = 0; i < ((1 << 992 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t)); 993 i++) { 994 blkptr_t *bp = &bps[i]; 995 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 996 1 << dn->dn_indblkshift); 997 BP_SET_LSIZE(bp, 998 BP_GET_LEVEL(db->db_blkptr) == 1 ? 999 dn->dn_datablksz : 1000 BP_GET_LSIZE(db->db_blkptr)); 1001 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 1002 BP_SET_LEVEL(bp, 1003 BP_GET_LEVEL(db->db_blkptr) - 1); 1004 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 1005 } 1006 } 1007 DB_DNODE_EXIT(db); 1008 db->db_state = DB_CACHED; 1009 mutex_exit(&db->db_mtx); 1010 return; 1011 } 1012 1013 DB_DNODE_EXIT(db); 1014 1015 db->db_state = DB_READ; 1016 mutex_exit(&db->db_mtx); 1017 1018 if (DBUF_IS_L2CACHEABLE(db)) 1019 aflags |= ARC_FLAG_L2CACHE; 1020 1021 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 1022 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 1023 db->db.db_object, db->db_level, db->db_blkid); 1024 1025 dbuf_add_ref(db, NULL); 1026 1027 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 1028 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 1029 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 1030 &aflags, &zb); 1031 } 1032 1033 int 1034 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1035 { 1036 int err = 0; 1037 boolean_t havepzio = (zio != NULL); 1038 boolean_t prefetch; 1039 dnode_t *dn; 1040 1041 /* 1042 * We don't have to hold the mutex to check db_state because it 1043 * can't be freed while we have a hold on the buffer. 1044 */ 1045 ASSERT(!refcount_is_zero(&db->db_holds)); 1046 1047 if (db->db_state == DB_NOFILL) 1048 return (SET_ERROR(EIO)); 1049 1050 DB_DNODE_ENTER(db); 1051 dn = DB_DNODE(db); 1052 if ((flags & DB_RF_HAVESTRUCT) == 0) 1053 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1054 1055 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1056 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1057 DBUF_IS_CACHEABLE(db); 1058 1059 mutex_enter(&db->db_mtx); 1060 if (db->db_state == DB_CACHED) { 1061 mutex_exit(&db->db_mtx); 1062 if (prefetch) 1063 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1064 if ((flags & DB_RF_HAVESTRUCT) == 0) 1065 rw_exit(&dn->dn_struct_rwlock); 1066 DB_DNODE_EXIT(db); 1067 } else if (db->db_state == DB_UNCACHED) { 1068 spa_t *spa = dn->dn_objset->os_spa; 1069 1070 if (zio == NULL) 1071 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1072 dbuf_read_impl(db, zio, flags); 1073 1074 /* dbuf_read_impl has dropped db_mtx for us */ 1075 1076 if (prefetch) 1077 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1078 1079 if ((flags & DB_RF_HAVESTRUCT) == 0) 1080 rw_exit(&dn->dn_struct_rwlock); 1081 DB_DNODE_EXIT(db); 1082 1083 if (!havepzio) 1084 err = zio_wait(zio); 1085 } else { 1086 /* 1087 * Another reader came in while the dbuf was in flight 1088 * between UNCACHED and CACHED. Either a writer will finish 1089 * writing the buffer (sending the dbuf to CACHED) or the 1090 * first reader's request will reach the read_done callback 1091 * and send the dbuf to CACHED. Otherwise, a failure 1092 * occurred and the dbuf went to UNCACHED. 1093 */ 1094 mutex_exit(&db->db_mtx); 1095 if (prefetch) 1096 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1097 if ((flags & DB_RF_HAVESTRUCT) == 0) 1098 rw_exit(&dn->dn_struct_rwlock); 1099 DB_DNODE_EXIT(db); 1100 1101 /* Skip the wait per the caller's request. */ 1102 mutex_enter(&db->db_mtx); 1103 if ((flags & DB_RF_NEVERWAIT) == 0) { 1104 while (db->db_state == DB_READ || 1105 db->db_state == DB_FILL) { 1106 ASSERT(db->db_state == DB_READ || 1107 (flags & DB_RF_HAVESTRUCT) == 0); 1108 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1109 db, zio_t *, zio); 1110 cv_wait(&db->db_changed, &db->db_mtx); 1111 } 1112 if (db->db_state == DB_UNCACHED) 1113 err = SET_ERROR(EIO); 1114 } 1115 mutex_exit(&db->db_mtx); 1116 } 1117 1118 ASSERT(err || havepzio || db->db_state == DB_CACHED); 1119 return (err); 1120 } 1121 1122 static void 1123 dbuf_noread(dmu_buf_impl_t *db) 1124 { 1125 ASSERT(!refcount_is_zero(&db->db_holds)); 1126 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1127 mutex_enter(&db->db_mtx); 1128 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1129 cv_wait(&db->db_changed, &db->db_mtx); 1130 if (db->db_state == DB_UNCACHED) { 1131 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1132 spa_t *spa = db->db_objset->os_spa; 1133 1134 ASSERT(db->db_buf == NULL); 1135 ASSERT(db->db.db_data == NULL); 1136 dbuf_set_data(db, arc_alloc_buf(spa, db->db.db_size, db, type)); 1137 db->db_state = DB_FILL; 1138 } else if (db->db_state == DB_NOFILL) { 1139 dbuf_clear_data(db); 1140 } else { 1141 ASSERT3U(db->db_state, ==, DB_CACHED); 1142 } 1143 mutex_exit(&db->db_mtx); 1144 } 1145 1146 /* 1147 * This is our just-in-time copy function. It makes a copy of 1148 * buffers, that have been modified in a previous transaction 1149 * group, before we modify them in the current active group. 1150 * 1151 * This function is used in two places: when we are dirtying a 1152 * buffer for the first time in a txg, and when we are freeing 1153 * a range in a dnode that includes this buffer. 1154 * 1155 * Note that when we are called from dbuf_free_range() we do 1156 * not put a hold on the buffer, we just traverse the active 1157 * dbuf list for the dnode. 1158 */ 1159 static void 1160 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1161 { 1162 dbuf_dirty_record_t *dr = db->db_last_dirty; 1163 1164 ASSERT(MUTEX_HELD(&db->db_mtx)); 1165 ASSERT(db->db.db_data != NULL); 1166 ASSERT(db->db_level == 0); 1167 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1168 1169 if (dr == NULL || 1170 (dr->dt.dl.dr_data != 1171 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1172 return; 1173 1174 /* 1175 * If the last dirty record for this dbuf has not yet synced 1176 * and its referencing the dbuf data, either: 1177 * reset the reference to point to a new copy, 1178 * or (if there a no active holders) 1179 * just null out the current db_data pointer. 1180 */ 1181 ASSERT(dr->dr_txg >= txg - 2); 1182 if (db->db_blkid == DMU_BONUS_BLKID) { 1183 /* Note that the data bufs here are zio_bufs */ 1184 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 1185 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1186 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 1187 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 1188 int size = db->db.db_size; 1189 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1190 spa_t *spa = db->db_objset->os_spa; 1191 1192 dr->dt.dl.dr_data = arc_alloc_buf(spa, size, db, type); 1193 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1194 } else { 1195 db->db_buf = NULL; 1196 dbuf_clear_data(db); 1197 } 1198 } 1199 1200 void 1201 dbuf_unoverride(dbuf_dirty_record_t *dr) 1202 { 1203 dmu_buf_impl_t *db = dr->dr_dbuf; 1204 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1205 uint64_t txg = dr->dr_txg; 1206 1207 ASSERT(MUTEX_HELD(&db->db_mtx)); 1208 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1209 ASSERT(db->db_level == 0); 1210 1211 if (db->db_blkid == DMU_BONUS_BLKID || 1212 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1213 return; 1214 1215 ASSERT(db->db_data_pending != dr); 1216 1217 /* free this block */ 1218 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1219 zio_free(db->db_objset->os_spa, txg, bp); 1220 1221 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1222 dr->dt.dl.dr_nopwrite = B_FALSE; 1223 1224 /* 1225 * Release the already-written buffer, so we leave it in 1226 * a consistent dirty state. Note that all callers are 1227 * modifying the buffer, so they will immediately do 1228 * another (redundant) arc_release(). Therefore, leave 1229 * the buf thawed to save the effort of freezing & 1230 * immediately re-thawing it. 1231 */ 1232 arc_release(dr->dt.dl.dr_data, db); 1233 } 1234 1235 /* 1236 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1237 * data blocks in the free range, so that any future readers will find 1238 * empty blocks. 1239 */ 1240 void 1241 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1242 dmu_tx_t *tx) 1243 { 1244 dmu_buf_impl_t db_search; 1245 dmu_buf_impl_t *db, *db_next; 1246 uint64_t txg = tx->tx_txg; 1247 avl_index_t where; 1248 1249 if (end_blkid > dn->dn_maxblkid && 1250 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1251 end_blkid = dn->dn_maxblkid; 1252 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1253 1254 db_search.db_level = 0; 1255 db_search.db_blkid = start_blkid; 1256 db_search.db_state = DB_SEARCH; 1257 1258 mutex_enter(&dn->dn_dbufs_mtx); 1259 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1260 ASSERT3P(db, ==, NULL); 1261 1262 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1263 1264 for (; db != NULL; db = db_next) { 1265 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1266 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1267 1268 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1269 break; 1270 } 1271 ASSERT3U(db->db_blkid, >=, start_blkid); 1272 1273 /* found a level 0 buffer in the range */ 1274 mutex_enter(&db->db_mtx); 1275 if (dbuf_undirty(db, tx)) { 1276 /* mutex has been dropped and dbuf destroyed */ 1277 continue; 1278 } 1279 1280 if (db->db_state == DB_UNCACHED || 1281 db->db_state == DB_NOFILL || 1282 db->db_state == DB_EVICTING) { 1283 ASSERT(db->db.db_data == NULL); 1284 mutex_exit(&db->db_mtx); 1285 continue; 1286 } 1287 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1288 /* will be handled in dbuf_read_done or dbuf_rele */ 1289 db->db_freed_in_flight = TRUE; 1290 mutex_exit(&db->db_mtx); 1291 continue; 1292 } 1293 if (refcount_count(&db->db_holds) == 0) { 1294 ASSERT(db->db_buf); 1295 dbuf_destroy(db); 1296 continue; 1297 } 1298 /* The dbuf is referenced */ 1299 1300 if (db->db_last_dirty != NULL) { 1301 dbuf_dirty_record_t *dr = db->db_last_dirty; 1302 1303 if (dr->dr_txg == txg) { 1304 /* 1305 * This buffer is "in-use", re-adjust the file 1306 * size to reflect that this buffer may 1307 * contain new data when we sync. 1308 */ 1309 if (db->db_blkid != DMU_SPILL_BLKID && 1310 db->db_blkid > dn->dn_maxblkid) 1311 dn->dn_maxblkid = db->db_blkid; 1312 dbuf_unoverride(dr); 1313 } else { 1314 /* 1315 * This dbuf is not dirty in the open context. 1316 * Either uncache it (if its not referenced in 1317 * the open context) or reset its contents to 1318 * empty. 1319 */ 1320 dbuf_fix_old_data(db, txg); 1321 } 1322 } 1323 /* clear the contents if its cached */ 1324 if (db->db_state == DB_CACHED) { 1325 ASSERT(db->db.db_data != NULL); 1326 arc_release(db->db_buf, db); 1327 bzero(db->db.db_data, db->db.db_size); 1328 arc_buf_freeze(db->db_buf); 1329 } 1330 1331 mutex_exit(&db->db_mtx); 1332 } 1333 mutex_exit(&dn->dn_dbufs_mtx); 1334 } 1335 1336 static int 1337 dbuf_block_freeable(dmu_buf_impl_t *db) 1338 { 1339 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 1340 uint64_t birth_txg = 0; 1341 1342 /* 1343 * We don't need any locking to protect db_blkptr: 1344 * If it's syncing, then db_last_dirty will be set 1345 * so we'll ignore db_blkptr. 1346 * 1347 * This logic ensures that only block births for 1348 * filled blocks are considered. 1349 */ 1350 ASSERT(MUTEX_HELD(&db->db_mtx)); 1351 if (db->db_last_dirty && (db->db_blkptr == NULL || 1352 !BP_IS_HOLE(db->db_blkptr))) { 1353 birth_txg = db->db_last_dirty->dr_txg; 1354 } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1355 birth_txg = db->db_blkptr->blk_birth; 1356 } 1357 1358 /* 1359 * If this block don't exist or is in a snapshot, it can't be freed. 1360 * Don't pass the bp to dsl_dataset_block_freeable() since we 1361 * are holding the db_mtx lock and might deadlock if we are 1362 * prefetching a dedup-ed block. 1363 */ 1364 if (birth_txg != 0) 1365 return (ds == NULL || 1366 dsl_dataset_block_freeable(ds, NULL, birth_txg)); 1367 else 1368 return (B_FALSE); 1369 } 1370 1371 void 1372 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1373 { 1374 arc_buf_t *buf, *obuf; 1375 int osize = db->db.db_size; 1376 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1377 dnode_t *dn; 1378 1379 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1380 1381 DB_DNODE_ENTER(db); 1382 dn = DB_DNODE(db); 1383 1384 /* XXX does *this* func really need the lock? */ 1385 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1386 1387 /* 1388 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 1389 * is OK, because there can be no other references to the db 1390 * when we are changing its size, so no concurrent DB_FILL can 1391 * be happening. 1392 */ 1393 /* 1394 * XXX we should be doing a dbuf_read, checking the return 1395 * value and returning that up to our callers 1396 */ 1397 dmu_buf_will_dirty(&db->db, tx); 1398 1399 /* create the data buffer for the new block */ 1400 buf = arc_alloc_buf(dn->dn_objset->os_spa, size, db, type); 1401 1402 /* copy old block data to the new block */ 1403 obuf = db->db_buf; 1404 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1405 /* zero the remainder */ 1406 if (size > osize) 1407 bzero((uint8_t *)buf->b_data + osize, size - osize); 1408 1409 mutex_enter(&db->db_mtx); 1410 dbuf_set_data(db, buf); 1411 arc_buf_destroy(obuf, db); 1412 db->db.db_size = size; 1413 1414 if (db->db_level == 0) { 1415 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1416 db->db_last_dirty->dt.dl.dr_data = buf; 1417 } 1418 mutex_exit(&db->db_mtx); 1419 1420 dnode_willuse_space(dn, size-osize, tx); 1421 DB_DNODE_EXIT(db); 1422 } 1423 1424 void 1425 dbuf_release_bp(dmu_buf_impl_t *db) 1426 { 1427 objset_t *os = db->db_objset; 1428 1429 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1430 ASSERT(arc_released(os->os_phys_buf) || 1431 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1432 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1433 1434 (void) arc_release(db->db_buf, db); 1435 } 1436 1437 /* 1438 * We already have a dirty record for this TXG, and we are being 1439 * dirtied again. 1440 */ 1441 static void 1442 dbuf_redirty(dbuf_dirty_record_t *dr) 1443 { 1444 dmu_buf_impl_t *db = dr->dr_dbuf; 1445 1446 ASSERT(MUTEX_HELD(&db->db_mtx)); 1447 1448 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1449 /* 1450 * If this buffer has already been written out, 1451 * we now need to reset its state. 1452 */ 1453 dbuf_unoverride(dr); 1454 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1455 db->db_state != DB_NOFILL) { 1456 /* Already released on initial dirty, so just thaw. */ 1457 ASSERT(arc_released(db->db_buf)); 1458 arc_buf_thaw(db->db_buf); 1459 } 1460 } 1461 } 1462 1463 dbuf_dirty_record_t * 1464 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1465 { 1466 dnode_t *dn; 1467 objset_t *os; 1468 dbuf_dirty_record_t **drp, *dr; 1469 int drop_struct_lock = FALSE; 1470 boolean_t do_free_accounting = B_FALSE; 1471 int txgoff = tx->tx_txg & TXG_MASK; 1472 1473 ASSERT(tx->tx_txg != 0); 1474 ASSERT(!refcount_is_zero(&db->db_holds)); 1475 DMU_TX_DIRTY_BUF(tx, db); 1476 1477 DB_DNODE_ENTER(db); 1478 dn = DB_DNODE(db); 1479 /* 1480 * Shouldn't dirty a regular buffer in syncing context. Private 1481 * objects may be dirtied in syncing context, but only if they 1482 * were already pre-dirtied in open context. 1483 */ 1484 #ifdef DEBUG 1485 if (dn->dn_objset->os_dsl_dataset != NULL) { 1486 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1487 RW_READER, FTAG); 1488 } 1489 ASSERT(!dmu_tx_is_syncing(tx) || 1490 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1491 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1492 dn->dn_objset->os_dsl_dataset == NULL); 1493 if (dn->dn_objset->os_dsl_dataset != NULL) 1494 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 1495 #endif 1496 /* 1497 * We make this assert for private objects as well, but after we 1498 * check if we're already dirty. They are allowed to re-dirty 1499 * in syncing context. 1500 */ 1501 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1502 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1503 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1504 1505 mutex_enter(&db->db_mtx); 1506 /* 1507 * XXX make this true for indirects too? The problem is that 1508 * transactions created with dmu_tx_create_assigned() from 1509 * syncing context don't bother holding ahead. 1510 */ 1511 ASSERT(db->db_level != 0 || 1512 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1513 db->db_state == DB_NOFILL); 1514 1515 mutex_enter(&dn->dn_mtx); 1516 /* 1517 * Don't set dirtyctx to SYNC if we're just modifying this as we 1518 * initialize the objset. 1519 */ 1520 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 1521 if (dn->dn_objset->os_dsl_dataset != NULL) { 1522 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1523 RW_READER, FTAG); 1524 } 1525 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1526 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ? 1527 DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1528 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1529 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1530 } 1531 if (dn->dn_objset->os_dsl_dataset != NULL) { 1532 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1533 FTAG); 1534 } 1535 } 1536 mutex_exit(&dn->dn_mtx); 1537 1538 if (db->db_blkid == DMU_SPILL_BLKID) 1539 dn->dn_have_spill = B_TRUE; 1540 1541 /* 1542 * If this buffer is already dirty, we're done. 1543 */ 1544 drp = &db->db_last_dirty; 1545 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1546 db->db.db_object == DMU_META_DNODE_OBJECT); 1547 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1548 drp = &dr->dr_next; 1549 if (dr && dr->dr_txg == tx->tx_txg) { 1550 DB_DNODE_EXIT(db); 1551 1552 dbuf_redirty(dr); 1553 mutex_exit(&db->db_mtx); 1554 return (dr); 1555 } 1556 1557 /* 1558 * Only valid if not already dirty. 1559 */ 1560 ASSERT(dn->dn_object == 0 || 1561 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1562 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1563 1564 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1565 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1566 dn->dn_phys->dn_nlevels > db->db_level || 1567 dn->dn_next_nlevels[txgoff] > db->db_level || 1568 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1569 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1570 1571 /* 1572 * We should only be dirtying in syncing context if it's the 1573 * mos or we're initializing the os or it's a special object. 1574 * However, we are allowed to dirty in syncing context provided 1575 * we already dirtied it in open context. Hence we must make 1576 * this assertion only if we're not already dirty. 1577 */ 1578 os = dn->dn_objset; 1579 #ifdef DEBUG 1580 if (dn->dn_objset->os_dsl_dataset != NULL) 1581 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 1582 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1583 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1584 if (dn->dn_objset->os_dsl_dataset != NULL) 1585 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 1586 #endif 1587 ASSERT(db->db.db_size != 0); 1588 1589 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1590 1591 if (db->db_blkid != DMU_BONUS_BLKID) { 1592 /* 1593 * Update the accounting. 1594 * Note: we delay "free accounting" until after we drop 1595 * the db_mtx. This keeps us from grabbing other locks 1596 * (and possibly deadlocking) in bp_get_dsize() while 1597 * also holding the db_mtx. 1598 */ 1599 dnode_willuse_space(dn, db->db.db_size, tx); 1600 do_free_accounting = dbuf_block_freeable(db); 1601 } 1602 1603 /* 1604 * If this buffer is dirty in an old transaction group we need 1605 * to make a copy of it so that the changes we make in this 1606 * transaction group won't leak out when we sync the older txg. 1607 */ 1608 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1609 if (db->db_level == 0) { 1610 void *data_old = db->db_buf; 1611 1612 if (db->db_state != DB_NOFILL) { 1613 if (db->db_blkid == DMU_BONUS_BLKID) { 1614 dbuf_fix_old_data(db, tx->tx_txg); 1615 data_old = db->db.db_data; 1616 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1617 /* 1618 * Release the data buffer from the cache so 1619 * that we can modify it without impacting 1620 * possible other users of this cached data 1621 * block. Note that indirect blocks and 1622 * private objects are not released until the 1623 * syncing state (since they are only modified 1624 * then). 1625 */ 1626 arc_release(db->db_buf, db); 1627 dbuf_fix_old_data(db, tx->tx_txg); 1628 data_old = db->db_buf; 1629 } 1630 ASSERT(data_old != NULL); 1631 } 1632 dr->dt.dl.dr_data = data_old; 1633 } else { 1634 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1635 list_create(&dr->dt.di.dr_children, 1636 sizeof (dbuf_dirty_record_t), 1637 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1638 } 1639 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1640 dr->dr_accounted = db->db.db_size; 1641 dr->dr_dbuf = db; 1642 dr->dr_txg = tx->tx_txg; 1643 dr->dr_next = *drp; 1644 *drp = dr; 1645 1646 /* 1647 * We could have been freed_in_flight between the dbuf_noread 1648 * and dbuf_dirty. We win, as though the dbuf_noread() had 1649 * happened after the free. 1650 */ 1651 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1652 db->db_blkid != DMU_SPILL_BLKID) { 1653 mutex_enter(&dn->dn_mtx); 1654 if (dn->dn_free_ranges[txgoff] != NULL) { 1655 range_tree_clear(dn->dn_free_ranges[txgoff], 1656 db->db_blkid, 1); 1657 } 1658 mutex_exit(&dn->dn_mtx); 1659 db->db_freed_in_flight = FALSE; 1660 } 1661 1662 /* 1663 * This buffer is now part of this txg 1664 */ 1665 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1666 db->db_dirtycnt += 1; 1667 ASSERT3U(db->db_dirtycnt, <=, 3); 1668 1669 mutex_exit(&db->db_mtx); 1670 1671 if (db->db_blkid == DMU_BONUS_BLKID || 1672 db->db_blkid == DMU_SPILL_BLKID) { 1673 mutex_enter(&dn->dn_mtx); 1674 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1675 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1676 mutex_exit(&dn->dn_mtx); 1677 dnode_setdirty(dn, tx); 1678 DB_DNODE_EXIT(db); 1679 return (dr); 1680 } 1681 1682 /* 1683 * The dn_struct_rwlock prevents db_blkptr from changing 1684 * due to a write from syncing context completing 1685 * while we are running, so we want to acquire it before 1686 * looking at db_blkptr. 1687 */ 1688 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1689 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1690 drop_struct_lock = TRUE; 1691 } 1692 1693 if (do_free_accounting) { 1694 blkptr_t *bp = db->db_blkptr; 1695 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ? 1696 bp_get_dsize(os->os_spa, bp) : db->db.db_size; 1697 /* 1698 * This is only a guess -- if the dbuf is dirty 1699 * in a previous txg, we don't know how much 1700 * space it will use on disk yet. We should 1701 * really have the struct_rwlock to access 1702 * db_blkptr, but since this is just a guess, 1703 * it's OK if we get an odd answer. 1704 */ 1705 ddt_prefetch(os->os_spa, bp); 1706 dnode_willuse_space(dn, -willfree, tx); 1707 } 1708 1709 if (db->db_level == 0) { 1710 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1711 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1712 } 1713 1714 if (db->db_level+1 < dn->dn_nlevels) { 1715 dmu_buf_impl_t *parent = db->db_parent; 1716 dbuf_dirty_record_t *di; 1717 int parent_held = FALSE; 1718 1719 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1720 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1721 1722 parent = dbuf_hold_level(dn, db->db_level+1, 1723 db->db_blkid >> epbs, FTAG); 1724 ASSERT(parent != NULL); 1725 parent_held = TRUE; 1726 } 1727 if (drop_struct_lock) 1728 rw_exit(&dn->dn_struct_rwlock); 1729 ASSERT3U(db->db_level+1, ==, parent->db_level); 1730 di = dbuf_dirty(parent, tx); 1731 if (parent_held) 1732 dbuf_rele(parent, FTAG); 1733 1734 mutex_enter(&db->db_mtx); 1735 /* 1736 * Since we've dropped the mutex, it's possible that 1737 * dbuf_undirty() might have changed this out from under us. 1738 */ 1739 if (db->db_last_dirty == dr || 1740 dn->dn_object == DMU_META_DNODE_OBJECT) { 1741 mutex_enter(&di->dt.di.dr_mtx); 1742 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1743 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1744 list_insert_tail(&di->dt.di.dr_children, dr); 1745 mutex_exit(&di->dt.di.dr_mtx); 1746 dr->dr_parent = di; 1747 } 1748 mutex_exit(&db->db_mtx); 1749 } else { 1750 ASSERT(db->db_level+1 == dn->dn_nlevels); 1751 ASSERT(db->db_blkid < dn->dn_nblkptr); 1752 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1753 mutex_enter(&dn->dn_mtx); 1754 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1755 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1756 mutex_exit(&dn->dn_mtx); 1757 if (drop_struct_lock) 1758 rw_exit(&dn->dn_struct_rwlock); 1759 } 1760 1761 dnode_setdirty(dn, tx); 1762 DB_DNODE_EXIT(db); 1763 return (dr); 1764 } 1765 1766 /* 1767 * Undirty a buffer in the transaction group referenced by the given 1768 * transaction. Return whether this evicted the dbuf. 1769 */ 1770 static boolean_t 1771 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1772 { 1773 dnode_t *dn; 1774 uint64_t txg = tx->tx_txg; 1775 dbuf_dirty_record_t *dr, **drp; 1776 1777 ASSERT(txg != 0); 1778 1779 /* 1780 * Due to our use of dn_nlevels below, this can only be called 1781 * in open context, unless we are operating on the MOS. 1782 * From syncing context, dn_nlevels may be different from the 1783 * dn_nlevels used when dbuf was dirtied. 1784 */ 1785 ASSERT(db->db_objset == 1786 dmu_objset_pool(db->db_objset)->dp_meta_objset || 1787 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1788 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1789 ASSERT0(db->db_level); 1790 ASSERT(MUTEX_HELD(&db->db_mtx)); 1791 1792 /* 1793 * If this buffer is not dirty, we're done. 1794 */ 1795 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1796 if (dr->dr_txg <= txg) 1797 break; 1798 if (dr == NULL || dr->dr_txg < txg) 1799 return (B_FALSE); 1800 ASSERT(dr->dr_txg == txg); 1801 ASSERT(dr->dr_dbuf == db); 1802 1803 DB_DNODE_ENTER(db); 1804 dn = DB_DNODE(db); 1805 1806 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1807 1808 ASSERT(db->db.db_size != 0); 1809 1810 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 1811 dr->dr_accounted, txg); 1812 1813 *drp = dr->dr_next; 1814 1815 /* 1816 * Note that there are three places in dbuf_dirty() 1817 * where this dirty record may be put on a list. 1818 * Make sure to do a list_remove corresponding to 1819 * every one of those list_insert calls. 1820 */ 1821 if (dr->dr_parent) { 1822 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1823 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1824 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1825 } else if (db->db_blkid == DMU_SPILL_BLKID || 1826 db->db_level + 1 == dn->dn_nlevels) { 1827 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1828 mutex_enter(&dn->dn_mtx); 1829 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1830 mutex_exit(&dn->dn_mtx); 1831 } 1832 DB_DNODE_EXIT(db); 1833 1834 if (db->db_state != DB_NOFILL) { 1835 dbuf_unoverride(dr); 1836 1837 ASSERT(db->db_buf != NULL); 1838 ASSERT(dr->dt.dl.dr_data != NULL); 1839 if (dr->dt.dl.dr_data != db->db_buf) 1840 arc_buf_destroy(dr->dt.dl.dr_data, db); 1841 } 1842 1843 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1844 1845 ASSERT(db->db_dirtycnt > 0); 1846 db->db_dirtycnt -= 1; 1847 1848 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1849 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 1850 dbuf_destroy(db); 1851 return (B_TRUE); 1852 } 1853 1854 return (B_FALSE); 1855 } 1856 1857 void 1858 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1859 { 1860 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1861 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1862 1863 ASSERT(tx->tx_txg != 0); 1864 ASSERT(!refcount_is_zero(&db->db_holds)); 1865 1866 /* 1867 * Quick check for dirtyness. For already dirty blocks, this 1868 * reduces runtime of this function by >90%, and overall performance 1869 * by 50% for some workloads (e.g. file deletion with indirect blocks 1870 * cached). 1871 */ 1872 mutex_enter(&db->db_mtx); 1873 dbuf_dirty_record_t *dr; 1874 for (dr = db->db_last_dirty; 1875 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) { 1876 /* 1877 * It's possible that it is already dirty but not cached, 1878 * because there are some calls to dbuf_dirty() that don't 1879 * go through dmu_buf_will_dirty(). 1880 */ 1881 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) { 1882 /* This dbuf is already dirty and cached. */ 1883 dbuf_redirty(dr); 1884 mutex_exit(&db->db_mtx); 1885 return; 1886 } 1887 } 1888 mutex_exit(&db->db_mtx); 1889 1890 DB_DNODE_ENTER(db); 1891 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1892 rf |= DB_RF_HAVESTRUCT; 1893 DB_DNODE_EXIT(db); 1894 (void) dbuf_read(db, NULL, rf); 1895 (void) dbuf_dirty(db, tx); 1896 } 1897 1898 void 1899 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1900 { 1901 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1902 1903 db->db_state = DB_NOFILL; 1904 1905 dmu_buf_will_fill(db_fake, tx); 1906 } 1907 1908 void 1909 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1910 { 1911 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1912 1913 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1914 ASSERT(tx->tx_txg != 0); 1915 ASSERT(db->db_level == 0); 1916 ASSERT(!refcount_is_zero(&db->db_holds)); 1917 1918 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1919 dmu_tx_private_ok(tx)); 1920 1921 dbuf_noread(db); 1922 (void) dbuf_dirty(db, tx); 1923 } 1924 1925 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1926 /* ARGSUSED */ 1927 void 1928 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1929 { 1930 mutex_enter(&db->db_mtx); 1931 DBUF_VERIFY(db); 1932 1933 if (db->db_state == DB_FILL) { 1934 if (db->db_level == 0 && db->db_freed_in_flight) { 1935 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1936 /* we were freed while filling */ 1937 /* XXX dbuf_undirty? */ 1938 bzero(db->db.db_data, db->db.db_size); 1939 db->db_freed_in_flight = FALSE; 1940 } 1941 db->db_state = DB_CACHED; 1942 cv_broadcast(&db->db_changed); 1943 } 1944 mutex_exit(&db->db_mtx); 1945 } 1946 1947 void 1948 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 1949 bp_embedded_type_t etype, enum zio_compress comp, 1950 int uncompressed_size, int compressed_size, int byteorder, 1951 dmu_tx_t *tx) 1952 { 1953 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 1954 struct dirty_leaf *dl; 1955 dmu_object_type_t type; 1956 1957 if (etype == BP_EMBEDDED_TYPE_DATA) { 1958 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 1959 SPA_FEATURE_EMBEDDED_DATA)); 1960 } 1961 1962 DB_DNODE_ENTER(db); 1963 type = DB_DNODE(db)->dn_type; 1964 DB_DNODE_EXIT(db); 1965 1966 ASSERT0(db->db_level); 1967 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1968 1969 dmu_buf_will_not_fill(dbuf, tx); 1970 1971 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1972 dl = &db->db_last_dirty->dt.dl; 1973 encode_embedded_bp_compressed(&dl->dr_overridden_by, 1974 data, comp, uncompressed_size, compressed_size); 1975 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 1976 BP_SET_TYPE(&dl->dr_overridden_by, type); 1977 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 1978 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 1979 1980 dl->dr_override_state = DR_OVERRIDDEN; 1981 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 1982 } 1983 1984 /* 1985 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1986 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1987 */ 1988 void 1989 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1990 { 1991 ASSERT(!refcount_is_zero(&db->db_holds)); 1992 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1993 ASSERT(db->db_level == 0); 1994 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA); 1995 ASSERT(buf != NULL); 1996 ASSERT(arc_buf_size(buf) == db->db.db_size); 1997 ASSERT(tx->tx_txg != 0); 1998 1999 arc_return_buf(buf, db); 2000 ASSERT(arc_released(buf)); 2001 2002 mutex_enter(&db->db_mtx); 2003 2004 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2005 cv_wait(&db->db_changed, &db->db_mtx); 2006 2007 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2008 2009 if (db->db_state == DB_CACHED && 2010 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2011 mutex_exit(&db->db_mtx); 2012 (void) dbuf_dirty(db, tx); 2013 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 2014 arc_buf_destroy(buf, db); 2015 xuio_stat_wbuf_copied(); 2016 return; 2017 } 2018 2019 xuio_stat_wbuf_nocopy(); 2020 if (db->db_state == DB_CACHED) { 2021 dbuf_dirty_record_t *dr = db->db_last_dirty; 2022 2023 ASSERT(db->db_buf != NULL); 2024 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2025 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2026 if (!arc_released(db->db_buf)) { 2027 ASSERT(dr->dt.dl.dr_override_state == 2028 DR_OVERRIDDEN); 2029 arc_release(db->db_buf, db); 2030 } 2031 dr->dt.dl.dr_data = buf; 2032 arc_buf_destroy(db->db_buf, db); 2033 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2034 arc_release(db->db_buf, db); 2035 arc_buf_destroy(db->db_buf, db); 2036 } 2037 db->db_buf = NULL; 2038 } 2039 ASSERT(db->db_buf == NULL); 2040 dbuf_set_data(db, buf); 2041 db->db_state = DB_FILL; 2042 mutex_exit(&db->db_mtx); 2043 (void) dbuf_dirty(db, tx); 2044 dmu_buf_fill_done(&db->db, tx); 2045 } 2046 2047 void 2048 dbuf_destroy(dmu_buf_impl_t *db) 2049 { 2050 dnode_t *dn; 2051 dmu_buf_impl_t *parent = db->db_parent; 2052 dmu_buf_impl_t *dndb; 2053 2054 ASSERT(MUTEX_HELD(&db->db_mtx)); 2055 ASSERT(refcount_is_zero(&db->db_holds)); 2056 2057 if (db->db_buf != NULL) { 2058 arc_buf_destroy(db->db_buf, db); 2059 db->db_buf = NULL; 2060 } 2061 2062 if (db->db_blkid == DMU_BONUS_BLKID) { 2063 ASSERT(db->db.db_data != NULL); 2064 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 2065 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2066 db->db_state = DB_UNCACHED; 2067 } 2068 2069 dbuf_clear_data(db); 2070 2071 if (multilist_link_active(&db->db_cache_link)) { 2072 multilist_remove(&dbuf_cache, db); 2073 (void) refcount_remove_many(&dbuf_cache_size, 2074 db->db.db_size, db); 2075 } 2076 2077 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2078 ASSERT(db->db_data_pending == NULL); 2079 2080 db->db_state = DB_EVICTING; 2081 db->db_blkptr = NULL; 2082 2083 /* 2084 * Now that db_state is DB_EVICTING, nobody else can find this via 2085 * the hash table. We can now drop db_mtx, which allows us to 2086 * acquire the dn_dbufs_mtx. 2087 */ 2088 mutex_exit(&db->db_mtx); 2089 2090 DB_DNODE_ENTER(db); 2091 dn = DB_DNODE(db); 2092 dndb = dn->dn_dbuf; 2093 if (db->db_blkid != DMU_BONUS_BLKID) { 2094 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2095 if (needlock) 2096 mutex_enter(&dn->dn_dbufs_mtx); 2097 avl_remove(&dn->dn_dbufs, db); 2098 atomic_dec_32(&dn->dn_dbufs_count); 2099 membar_producer(); 2100 DB_DNODE_EXIT(db); 2101 if (needlock) 2102 mutex_exit(&dn->dn_dbufs_mtx); 2103 /* 2104 * Decrementing the dbuf count means that the hold corresponding 2105 * to the removed dbuf is no longer discounted in dnode_move(), 2106 * so the dnode cannot be moved until after we release the hold. 2107 * The membar_producer() ensures visibility of the decremented 2108 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2109 * release any lock. 2110 */ 2111 dnode_rele(dn, db); 2112 db->db_dnode_handle = NULL; 2113 2114 dbuf_hash_remove(db); 2115 } else { 2116 DB_DNODE_EXIT(db); 2117 } 2118 2119 ASSERT(refcount_is_zero(&db->db_holds)); 2120 2121 db->db_parent = NULL; 2122 2123 ASSERT(db->db_buf == NULL); 2124 ASSERT(db->db.db_data == NULL); 2125 ASSERT(db->db_hash_next == NULL); 2126 ASSERT(db->db_blkptr == NULL); 2127 ASSERT(db->db_data_pending == NULL); 2128 ASSERT(!multilist_link_active(&db->db_cache_link)); 2129 2130 kmem_cache_free(dbuf_kmem_cache, db); 2131 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2132 2133 /* 2134 * If this dbuf is referenced from an indirect dbuf, 2135 * decrement the ref count on the indirect dbuf. 2136 */ 2137 if (parent && parent != dndb) 2138 dbuf_rele(parent, db); 2139 } 2140 2141 /* 2142 * Note: While bpp will always be updated if the function returns success, 2143 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2144 * this happens when the dnode is the meta-dnode, or a userused or groupused 2145 * object. 2146 */ 2147 static int 2148 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2149 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2150 { 2151 int nlevels, epbs; 2152 2153 *parentp = NULL; 2154 *bpp = NULL; 2155 2156 ASSERT(blkid != DMU_BONUS_BLKID); 2157 2158 if (blkid == DMU_SPILL_BLKID) { 2159 mutex_enter(&dn->dn_mtx); 2160 if (dn->dn_have_spill && 2161 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2162 *bpp = &dn->dn_phys->dn_spill; 2163 else 2164 *bpp = NULL; 2165 dbuf_add_ref(dn->dn_dbuf, NULL); 2166 *parentp = dn->dn_dbuf; 2167 mutex_exit(&dn->dn_mtx); 2168 return (0); 2169 } 2170 2171 if (dn->dn_phys->dn_nlevels == 0) 2172 nlevels = 1; 2173 else 2174 nlevels = dn->dn_phys->dn_nlevels; 2175 2176 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2177 2178 ASSERT3U(level * epbs, <, 64); 2179 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2180 if (level >= nlevels || 2181 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2182 /* the buffer has no parent yet */ 2183 return (SET_ERROR(ENOENT)); 2184 } else if (level < nlevels-1) { 2185 /* this block is referenced from an indirect block */ 2186 int err = dbuf_hold_impl(dn, level+1, 2187 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2188 if (err) 2189 return (err); 2190 err = dbuf_read(*parentp, NULL, 2191 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2192 if (err) { 2193 dbuf_rele(*parentp, NULL); 2194 *parentp = NULL; 2195 return (err); 2196 } 2197 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2198 (blkid & ((1ULL << epbs) - 1)); 2199 return (0); 2200 } else { 2201 /* the block is referenced from the dnode */ 2202 ASSERT3U(level, ==, nlevels-1); 2203 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2204 blkid < dn->dn_phys->dn_nblkptr); 2205 if (dn->dn_dbuf) { 2206 dbuf_add_ref(dn->dn_dbuf, NULL); 2207 *parentp = dn->dn_dbuf; 2208 } 2209 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2210 return (0); 2211 } 2212 } 2213 2214 static dmu_buf_impl_t * 2215 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2216 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2217 { 2218 objset_t *os = dn->dn_objset; 2219 dmu_buf_impl_t *db, *odb; 2220 2221 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2222 ASSERT(dn->dn_type != DMU_OT_NONE); 2223 2224 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2225 2226 db->db_objset = os; 2227 db->db.db_object = dn->dn_object; 2228 db->db_level = level; 2229 db->db_blkid = blkid; 2230 db->db_last_dirty = NULL; 2231 db->db_dirtycnt = 0; 2232 db->db_dnode_handle = dn->dn_handle; 2233 db->db_parent = parent; 2234 db->db_blkptr = blkptr; 2235 2236 db->db_user = NULL; 2237 db->db_user_immediate_evict = FALSE; 2238 db->db_freed_in_flight = FALSE; 2239 db->db_pending_evict = FALSE; 2240 2241 if (blkid == DMU_BONUS_BLKID) { 2242 ASSERT3P(parent, ==, dn->dn_dbuf); 2243 db->db.db_size = DN_MAX_BONUSLEN - 2244 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2245 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2246 db->db.db_offset = DMU_BONUS_BLKID; 2247 db->db_state = DB_UNCACHED; 2248 /* the bonus dbuf is not placed in the hash table */ 2249 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2250 return (db); 2251 } else if (blkid == DMU_SPILL_BLKID) { 2252 db->db.db_size = (blkptr != NULL) ? 2253 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2254 db->db.db_offset = 0; 2255 } else { 2256 int blocksize = 2257 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2258 db->db.db_size = blocksize; 2259 db->db.db_offset = db->db_blkid * blocksize; 2260 } 2261 2262 /* 2263 * Hold the dn_dbufs_mtx while we get the new dbuf 2264 * in the hash table *and* added to the dbufs list. 2265 * This prevents a possible deadlock with someone 2266 * trying to look up this dbuf before its added to the 2267 * dn_dbufs list. 2268 */ 2269 mutex_enter(&dn->dn_dbufs_mtx); 2270 db->db_state = DB_EVICTING; 2271 if ((odb = dbuf_hash_insert(db)) != NULL) { 2272 /* someone else inserted it first */ 2273 kmem_cache_free(dbuf_kmem_cache, db); 2274 mutex_exit(&dn->dn_dbufs_mtx); 2275 return (odb); 2276 } 2277 avl_add(&dn->dn_dbufs, db); 2278 2279 db->db_state = DB_UNCACHED; 2280 mutex_exit(&dn->dn_dbufs_mtx); 2281 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2282 2283 if (parent && parent != dn->dn_dbuf) 2284 dbuf_add_ref(parent, db); 2285 2286 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2287 refcount_count(&dn->dn_holds) > 0); 2288 (void) refcount_add(&dn->dn_holds, db); 2289 atomic_inc_32(&dn->dn_dbufs_count); 2290 2291 dprintf_dbuf(db, "db=%p\n", db); 2292 2293 return (db); 2294 } 2295 2296 typedef struct dbuf_prefetch_arg { 2297 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 2298 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 2299 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 2300 int dpa_curlevel; /* The current level that we're reading */ 2301 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 2302 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 2303 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 2304 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 2305 } dbuf_prefetch_arg_t; 2306 2307 /* 2308 * Actually issue the prefetch read for the block given. 2309 */ 2310 static void 2311 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 2312 { 2313 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2314 return; 2315 2316 arc_flags_t aflags = 2317 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 2318 2319 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2320 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 2321 ASSERT(dpa->dpa_zio != NULL); 2322 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 2323 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2324 &aflags, &dpa->dpa_zb); 2325 } 2326 2327 /* 2328 * Called when an indirect block above our prefetch target is read in. This 2329 * will either read in the next indirect block down the tree or issue the actual 2330 * prefetch if the next block down is our target. 2331 */ 2332 static void 2333 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private) 2334 { 2335 dbuf_prefetch_arg_t *dpa = private; 2336 2337 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 2338 ASSERT3S(dpa->dpa_curlevel, >, 0); 2339 2340 /* 2341 * The dpa_dnode is only valid if we are called with a NULL 2342 * zio. This indicates that the arc_read() returned without 2343 * first calling zio_read() to issue a physical read. Once 2344 * a physical read is made the dpa_dnode must be invalidated 2345 * as the locks guarding it may have been dropped. If the 2346 * dpa_dnode is still valid, then we want to add it to the dbuf 2347 * cache. To do so, we must hold the dbuf associated with the block 2348 * we just prefetched, read its contents so that we associate it 2349 * with an arc_buf_t, and then release it. 2350 */ 2351 if (zio != NULL) { 2352 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 2353 if (zio->io_flags & ZIO_FLAG_RAW) { 2354 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 2355 } else { 2356 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 2357 } 2358 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 2359 2360 dpa->dpa_dnode = NULL; 2361 } else if (dpa->dpa_dnode != NULL) { 2362 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 2363 (dpa->dpa_epbs * (dpa->dpa_curlevel - 2364 dpa->dpa_zb.zb_level)); 2365 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 2366 dpa->dpa_curlevel, curblkid, FTAG); 2367 (void) dbuf_read(db, NULL, 2368 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 2369 dbuf_rele(db, FTAG); 2370 } 2371 2372 dpa->dpa_curlevel--; 2373 2374 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 2375 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 2376 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 2377 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 2378 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) { 2379 kmem_free(dpa, sizeof (*dpa)); 2380 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 2381 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 2382 dbuf_issue_final_prefetch(dpa, bp); 2383 kmem_free(dpa, sizeof (*dpa)); 2384 } else { 2385 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2386 zbookmark_phys_t zb; 2387 2388 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2389 2390 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 2391 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 2392 2393 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2394 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 2395 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2396 &iter_aflags, &zb); 2397 } 2398 2399 arc_buf_destroy(abuf, private); 2400 } 2401 2402 /* 2403 * Issue prefetch reads for the given block on the given level. If the indirect 2404 * blocks above that block are not in memory, we will read them in 2405 * asynchronously. As a result, this call never blocks waiting for a read to 2406 * complete. 2407 */ 2408 void 2409 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 2410 arc_flags_t aflags) 2411 { 2412 blkptr_t bp; 2413 int epbs, nlevels, curlevel; 2414 uint64_t curblkid; 2415 2416 ASSERT(blkid != DMU_BONUS_BLKID); 2417 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2418 2419 if (blkid > dn->dn_maxblkid) 2420 return; 2421 2422 if (dnode_block_freed(dn, blkid)) 2423 return; 2424 2425 /* 2426 * This dnode hasn't been written to disk yet, so there's nothing to 2427 * prefetch. 2428 */ 2429 nlevels = dn->dn_phys->dn_nlevels; 2430 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 2431 return; 2432 2433 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2434 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 2435 return; 2436 2437 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 2438 level, blkid); 2439 if (db != NULL) { 2440 mutex_exit(&db->db_mtx); 2441 /* 2442 * This dbuf already exists. It is either CACHED, or 2443 * (we assume) about to be read or filled. 2444 */ 2445 return; 2446 } 2447 2448 /* 2449 * Find the closest ancestor (indirect block) of the target block 2450 * that is present in the cache. In this indirect block, we will 2451 * find the bp that is at curlevel, curblkid. 2452 */ 2453 curlevel = level; 2454 curblkid = blkid; 2455 while (curlevel < nlevels - 1) { 2456 int parent_level = curlevel + 1; 2457 uint64_t parent_blkid = curblkid >> epbs; 2458 dmu_buf_impl_t *db; 2459 2460 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 2461 FALSE, TRUE, FTAG, &db) == 0) { 2462 blkptr_t *bpp = db->db_buf->b_data; 2463 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 2464 dbuf_rele(db, FTAG); 2465 break; 2466 } 2467 2468 curlevel = parent_level; 2469 curblkid = parent_blkid; 2470 } 2471 2472 if (curlevel == nlevels - 1) { 2473 /* No cached indirect blocks found. */ 2474 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 2475 bp = dn->dn_phys->dn_blkptr[curblkid]; 2476 } 2477 if (BP_IS_HOLE(&bp)) 2478 return; 2479 2480 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 2481 2482 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 2483 ZIO_FLAG_CANFAIL); 2484 2485 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 2486 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2487 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2488 dn->dn_object, level, blkid); 2489 dpa->dpa_curlevel = curlevel; 2490 dpa->dpa_prio = prio; 2491 dpa->dpa_aflags = aflags; 2492 dpa->dpa_spa = dn->dn_objset->os_spa; 2493 dpa->dpa_dnode = dn; 2494 dpa->dpa_epbs = epbs; 2495 dpa->dpa_zio = pio; 2496 2497 /* 2498 * If we have the indirect just above us, no need to do the asynchronous 2499 * prefetch chain; we'll just run the last step ourselves. If we're at 2500 * a higher level, though, we want to issue the prefetches for all the 2501 * indirect blocks asynchronously, so we can go on with whatever we were 2502 * doing. 2503 */ 2504 if (curlevel == level) { 2505 ASSERT3U(curblkid, ==, blkid); 2506 dbuf_issue_final_prefetch(dpa, &bp); 2507 kmem_free(dpa, sizeof (*dpa)); 2508 } else { 2509 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2510 zbookmark_phys_t zb; 2511 2512 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2513 dn->dn_object, curlevel, curblkid); 2514 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2515 &bp, dbuf_prefetch_indirect_done, dpa, prio, 2516 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2517 &iter_aflags, &zb); 2518 } 2519 /* 2520 * We use pio here instead of dpa_zio since it's possible that 2521 * dpa may have already been freed. 2522 */ 2523 zio_nowait(pio); 2524 } 2525 2526 /* 2527 * Returns with db_holds incremented, and db_mtx not held. 2528 * Note: dn_struct_rwlock must be held. 2529 */ 2530 int 2531 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 2532 boolean_t fail_sparse, boolean_t fail_uncached, 2533 void *tag, dmu_buf_impl_t **dbp) 2534 { 2535 dmu_buf_impl_t *db, *parent = NULL; 2536 2537 ASSERT(blkid != DMU_BONUS_BLKID); 2538 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2539 ASSERT3U(dn->dn_nlevels, >, level); 2540 2541 *dbp = NULL; 2542 top: 2543 /* dbuf_find() returns with db_mtx held */ 2544 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 2545 2546 if (db == NULL) { 2547 blkptr_t *bp = NULL; 2548 int err; 2549 2550 if (fail_uncached) 2551 return (SET_ERROR(ENOENT)); 2552 2553 ASSERT3P(parent, ==, NULL); 2554 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 2555 if (fail_sparse) { 2556 if (err == 0 && bp && BP_IS_HOLE(bp)) 2557 err = SET_ERROR(ENOENT); 2558 if (err) { 2559 if (parent) 2560 dbuf_rele(parent, NULL); 2561 return (err); 2562 } 2563 } 2564 if (err && err != ENOENT) 2565 return (err); 2566 db = dbuf_create(dn, level, blkid, parent, bp); 2567 } 2568 2569 if (fail_uncached && db->db_state != DB_CACHED) { 2570 mutex_exit(&db->db_mtx); 2571 return (SET_ERROR(ENOENT)); 2572 } 2573 2574 if (db->db_buf != NULL) 2575 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 2576 2577 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 2578 2579 /* 2580 * If this buffer is currently syncing out, and we are are 2581 * still referencing it from db_data, we need to make a copy 2582 * of it in case we decide we want to dirty it again in this txg. 2583 */ 2584 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2585 dn->dn_object != DMU_META_DNODE_OBJECT && 2586 db->db_state == DB_CACHED && db->db_data_pending) { 2587 dbuf_dirty_record_t *dr = db->db_data_pending; 2588 2589 if (dr->dt.dl.dr_data == db->db_buf) { 2590 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2591 2592 dbuf_set_data(db, 2593 arc_alloc_buf(dn->dn_objset->os_spa, 2594 db->db.db_size, db, type)); 2595 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 2596 db->db.db_size); 2597 } 2598 } 2599 2600 if (multilist_link_active(&db->db_cache_link)) { 2601 ASSERT(refcount_is_zero(&db->db_holds)); 2602 multilist_remove(&dbuf_cache, db); 2603 (void) refcount_remove_many(&dbuf_cache_size, 2604 db->db.db_size, db); 2605 } 2606 (void) refcount_add(&db->db_holds, tag); 2607 DBUF_VERIFY(db); 2608 mutex_exit(&db->db_mtx); 2609 2610 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2611 if (parent) 2612 dbuf_rele(parent, NULL); 2613 2614 ASSERT3P(DB_DNODE(db), ==, dn); 2615 ASSERT3U(db->db_blkid, ==, blkid); 2616 ASSERT3U(db->db_level, ==, level); 2617 *dbp = db; 2618 2619 return (0); 2620 } 2621 2622 dmu_buf_impl_t * 2623 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2624 { 2625 return (dbuf_hold_level(dn, 0, blkid, tag)); 2626 } 2627 2628 dmu_buf_impl_t * 2629 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2630 { 2631 dmu_buf_impl_t *db; 2632 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 2633 return (err ? NULL : db); 2634 } 2635 2636 void 2637 dbuf_create_bonus(dnode_t *dn) 2638 { 2639 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2640 2641 ASSERT(dn->dn_bonus == NULL); 2642 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2643 } 2644 2645 int 2646 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2647 { 2648 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2649 dnode_t *dn; 2650 2651 if (db->db_blkid != DMU_SPILL_BLKID) 2652 return (SET_ERROR(ENOTSUP)); 2653 if (blksz == 0) 2654 blksz = SPA_MINBLOCKSIZE; 2655 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 2656 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2657 2658 DB_DNODE_ENTER(db); 2659 dn = DB_DNODE(db); 2660 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2661 dbuf_new_size(db, blksz, tx); 2662 rw_exit(&dn->dn_struct_rwlock); 2663 DB_DNODE_EXIT(db); 2664 2665 return (0); 2666 } 2667 2668 void 2669 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2670 { 2671 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2672 } 2673 2674 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2675 void 2676 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2677 { 2678 int64_t holds = refcount_add(&db->db_holds, tag); 2679 ASSERT3S(holds, >, 1); 2680 } 2681 2682 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 2683 boolean_t 2684 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 2685 void *tag) 2686 { 2687 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2688 dmu_buf_impl_t *found_db; 2689 boolean_t result = B_FALSE; 2690 2691 if (db->db_blkid == DMU_BONUS_BLKID) 2692 found_db = dbuf_find_bonus(os, obj); 2693 else 2694 found_db = dbuf_find(os, obj, 0, blkid); 2695 2696 if (found_db != NULL) { 2697 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 2698 (void) refcount_add(&db->db_holds, tag); 2699 result = B_TRUE; 2700 } 2701 mutex_exit(&db->db_mtx); 2702 } 2703 return (result); 2704 } 2705 2706 /* 2707 * If you call dbuf_rele() you had better not be referencing the dnode handle 2708 * unless you have some other direct or indirect hold on the dnode. (An indirect 2709 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2710 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2711 * dnode's parent dbuf evicting its dnode handles. 2712 */ 2713 void 2714 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2715 { 2716 mutex_enter(&db->db_mtx); 2717 dbuf_rele_and_unlock(db, tag); 2718 } 2719 2720 void 2721 dmu_buf_rele(dmu_buf_t *db, void *tag) 2722 { 2723 dbuf_rele((dmu_buf_impl_t *)db, tag); 2724 } 2725 2726 /* 2727 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2728 * db_dirtycnt and db_holds to be updated atomically. 2729 */ 2730 void 2731 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2732 { 2733 int64_t holds; 2734 2735 ASSERT(MUTEX_HELD(&db->db_mtx)); 2736 DBUF_VERIFY(db); 2737 2738 /* 2739 * Remove the reference to the dbuf before removing its hold on the 2740 * dnode so we can guarantee in dnode_move() that a referenced bonus 2741 * buffer has a corresponding dnode hold. 2742 */ 2743 holds = refcount_remove(&db->db_holds, tag); 2744 ASSERT(holds >= 0); 2745 2746 /* 2747 * We can't freeze indirects if there is a possibility that they 2748 * may be modified in the current syncing context. 2749 */ 2750 if (db->db_buf != NULL && 2751 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 2752 arc_buf_freeze(db->db_buf); 2753 } 2754 2755 if (holds == db->db_dirtycnt && 2756 db->db_level == 0 && db->db_user_immediate_evict) 2757 dbuf_evict_user(db); 2758 2759 if (holds == 0) { 2760 if (db->db_blkid == DMU_BONUS_BLKID) { 2761 dnode_t *dn; 2762 boolean_t evict_dbuf = db->db_pending_evict; 2763 2764 /* 2765 * If the dnode moves here, we cannot cross this 2766 * barrier until the move completes. 2767 */ 2768 DB_DNODE_ENTER(db); 2769 2770 dn = DB_DNODE(db); 2771 atomic_dec_32(&dn->dn_dbufs_count); 2772 2773 /* 2774 * Decrementing the dbuf count means that the bonus 2775 * buffer's dnode hold is no longer discounted in 2776 * dnode_move(). The dnode cannot move until after 2777 * the dnode_rele() below. 2778 */ 2779 DB_DNODE_EXIT(db); 2780 2781 /* 2782 * Do not reference db after its lock is dropped. 2783 * Another thread may evict it. 2784 */ 2785 mutex_exit(&db->db_mtx); 2786 2787 if (evict_dbuf) 2788 dnode_evict_bonus(dn); 2789 2790 dnode_rele(dn, db); 2791 } else if (db->db_buf == NULL) { 2792 /* 2793 * This is a special case: we never associated this 2794 * dbuf with any data allocated from the ARC. 2795 */ 2796 ASSERT(db->db_state == DB_UNCACHED || 2797 db->db_state == DB_NOFILL); 2798 dbuf_destroy(db); 2799 } else if (arc_released(db->db_buf)) { 2800 /* 2801 * This dbuf has anonymous data associated with it. 2802 */ 2803 dbuf_destroy(db); 2804 } else { 2805 boolean_t do_arc_evict = B_FALSE; 2806 blkptr_t bp; 2807 spa_t *spa = dmu_objset_spa(db->db_objset); 2808 2809 if (!DBUF_IS_CACHEABLE(db) && 2810 db->db_blkptr != NULL && 2811 !BP_IS_HOLE(db->db_blkptr) && 2812 !BP_IS_EMBEDDED(db->db_blkptr)) { 2813 do_arc_evict = B_TRUE; 2814 bp = *db->db_blkptr; 2815 } 2816 2817 if (!DBUF_IS_CACHEABLE(db) || 2818 db->db_pending_evict) { 2819 dbuf_destroy(db); 2820 } else if (!multilist_link_active(&db->db_cache_link)) { 2821 multilist_insert(&dbuf_cache, db); 2822 (void) refcount_add_many(&dbuf_cache_size, 2823 db->db.db_size, db); 2824 mutex_exit(&db->db_mtx); 2825 2826 dbuf_evict_notify(); 2827 } 2828 2829 if (do_arc_evict) 2830 arc_freed(spa, &bp); 2831 } 2832 } else { 2833 mutex_exit(&db->db_mtx); 2834 } 2835 2836 } 2837 2838 #pragma weak dmu_buf_refcount = dbuf_refcount 2839 uint64_t 2840 dbuf_refcount(dmu_buf_impl_t *db) 2841 { 2842 return (refcount_count(&db->db_holds)); 2843 } 2844 2845 void * 2846 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 2847 dmu_buf_user_t *new_user) 2848 { 2849 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2850 2851 mutex_enter(&db->db_mtx); 2852 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2853 if (db->db_user == old_user) 2854 db->db_user = new_user; 2855 else 2856 old_user = db->db_user; 2857 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2858 mutex_exit(&db->db_mtx); 2859 2860 return (old_user); 2861 } 2862 2863 void * 2864 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2865 { 2866 return (dmu_buf_replace_user(db_fake, NULL, user)); 2867 } 2868 2869 void * 2870 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2871 { 2872 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2873 2874 db->db_user_immediate_evict = TRUE; 2875 return (dmu_buf_set_user(db_fake, user)); 2876 } 2877 2878 void * 2879 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2880 { 2881 return (dmu_buf_replace_user(db_fake, user, NULL)); 2882 } 2883 2884 void * 2885 dmu_buf_get_user(dmu_buf_t *db_fake) 2886 { 2887 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2888 2889 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2890 return (db->db_user); 2891 } 2892 2893 void 2894 dmu_buf_user_evict_wait() 2895 { 2896 taskq_wait(dbu_evict_taskq); 2897 } 2898 2899 boolean_t 2900 dmu_buf_freeable(dmu_buf_t *dbuf) 2901 { 2902 boolean_t res = B_FALSE; 2903 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2904 2905 if (db->db_blkptr) 2906 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset, 2907 db->db_blkptr, db->db_blkptr->blk_birth); 2908 2909 return (res); 2910 } 2911 2912 blkptr_t * 2913 dmu_buf_get_blkptr(dmu_buf_t *db) 2914 { 2915 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2916 return (dbi->db_blkptr); 2917 } 2918 2919 objset_t * 2920 dmu_buf_get_objset(dmu_buf_t *db) 2921 { 2922 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2923 return (dbi->db_objset); 2924 } 2925 2926 dnode_t * 2927 dmu_buf_dnode_enter(dmu_buf_t *db) 2928 { 2929 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2930 DB_DNODE_ENTER(dbi); 2931 return (DB_DNODE(dbi)); 2932 } 2933 2934 void 2935 dmu_buf_dnode_exit(dmu_buf_t *db) 2936 { 2937 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2938 DB_DNODE_EXIT(dbi); 2939 } 2940 2941 static void 2942 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2943 { 2944 /* ASSERT(dmu_tx_is_syncing(tx) */ 2945 ASSERT(MUTEX_HELD(&db->db_mtx)); 2946 2947 if (db->db_blkptr != NULL) 2948 return; 2949 2950 if (db->db_blkid == DMU_SPILL_BLKID) { 2951 db->db_blkptr = &dn->dn_phys->dn_spill; 2952 BP_ZERO(db->db_blkptr); 2953 return; 2954 } 2955 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2956 /* 2957 * This buffer was allocated at a time when there was 2958 * no available blkptrs from the dnode, or it was 2959 * inappropriate to hook it in (i.e., nlevels mis-match). 2960 */ 2961 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2962 ASSERT(db->db_parent == NULL); 2963 db->db_parent = dn->dn_dbuf; 2964 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2965 DBUF_VERIFY(db); 2966 } else { 2967 dmu_buf_impl_t *parent = db->db_parent; 2968 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2969 2970 ASSERT(dn->dn_phys->dn_nlevels > 1); 2971 if (parent == NULL) { 2972 mutex_exit(&db->db_mtx); 2973 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2974 parent = dbuf_hold_level(dn, db->db_level + 1, 2975 db->db_blkid >> epbs, db); 2976 rw_exit(&dn->dn_struct_rwlock); 2977 mutex_enter(&db->db_mtx); 2978 db->db_parent = parent; 2979 } 2980 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2981 (db->db_blkid & ((1ULL << epbs) - 1)); 2982 DBUF_VERIFY(db); 2983 } 2984 } 2985 2986 static void 2987 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2988 { 2989 dmu_buf_impl_t *db = dr->dr_dbuf; 2990 dnode_t *dn; 2991 zio_t *zio; 2992 2993 ASSERT(dmu_tx_is_syncing(tx)); 2994 2995 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2996 2997 mutex_enter(&db->db_mtx); 2998 2999 ASSERT(db->db_level > 0); 3000 DBUF_VERIFY(db); 3001 3002 /* Read the block if it hasn't been read yet. */ 3003 if (db->db_buf == NULL) { 3004 mutex_exit(&db->db_mtx); 3005 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 3006 mutex_enter(&db->db_mtx); 3007 } 3008 ASSERT3U(db->db_state, ==, DB_CACHED); 3009 ASSERT(db->db_buf != NULL); 3010 3011 DB_DNODE_ENTER(db); 3012 dn = DB_DNODE(db); 3013 /* Indirect block size must match what the dnode thinks it is. */ 3014 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3015 dbuf_check_blkptr(dn, db); 3016 DB_DNODE_EXIT(db); 3017 3018 /* Provide the pending dirty record to child dbufs */ 3019 db->db_data_pending = dr; 3020 3021 mutex_exit(&db->db_mtx); 3022 dbuf_write(dr, db->db_buf, tx); 3023 3024 zio = dr->dr_zio; 3025 mutex_enter(&dr->dt.di.dr_mtx); 3026 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 3027 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3028 mutex_exit(&dr->dt.di.dr_mtx); 3029 zio_nowait(zio); 3030 } 3031 3032 static void 3033 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3034 { 3035 arc_buf_t **datap = &dr->dt.dl.dr_data; 3036 dmu_buf_impl_t *db = dr->dr_dbuf; 3037 dnode_t *dn; 3038 objset_t *os; 3039 uint64_t txg = tx->tx_txg; 3040 3041 ASSERT(dmu_tx_is_syncing(tx)); 3042 3043 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3044 3045 mutex_enter(&db->db_mtx); 3046 /* 3047 * To be synced, we must be dirtied. But we 3048 * might have been freed after the dirty. 3049 */ 3050 if (db->db_state == DB_UNCACHED) { 3051 /* This buffer has been freed since it was dirtied */ 3052 ASSERT(db->db.db_data == NULL); 3053 } else if (db->db_state == DB_FILL) { 3054 /* This buffer was freed and is now being re-filled */ 3055 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 3056 } else { 3057 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 3058 } 3059 DBUF_VERIFY(db); 3060 3061 DB_DNODE_ENTER(db); 3062 dn = DB_DNODE(db); 3063 3064 if (db->db_blkid == DMU_SPILL_BLKID) { 3065 mutex_enter(&dn->dn_mtx); 3066 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 3067 mutex_exit(&dn->dn_mtx); 3068 } 3069 3070 /* 3071 * If this is a bonus buffer, simply copy the bonus data into the 3072 * dnode. It will be written out when the dnode is synced (and it 3073 * will be synced, since it must have been dirty for dbuf_sync to 3074 * be called). 3075 */ 3076 if (db->db_blkid == DMU_BONUS_BLKID) { 3077 dbuf_dirty_record_t **drp; 3078 3079 ASSERT(*datap != NULL); 3080 ASSERT0(db->db_level); 3081 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 3082 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 3083 DB_DNODE_EXIT(db); 3084 3085 if (*datap != db->db.db_data) { 3086 zio_buf_free(*datap, DN_MAX_BONUSLEN); 3087 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 3088 } 3089 db->db_data_pending = NULL; 3090 drp = &db->db_last_dirty; 3091 while (*drp != dr) 3092 drp = &(*drp)->dr_next; 3093 ASSERT(dr->dr_next == NULL); 3094 ASSERT(dr->dr_dbuf == db); 3095 *drp = dr->dr_next; 3096 if (dr->dr_dbuf->db_level != 0) { 3097 list_destroy(&dr->dt.di.dr_children); 3098 mutex_destroy(&dr->dt.di.dr_mtx); 3099 } 3100 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3101 ASSERT(db->db_dirtycnt > 0); 3102 db->db_dirtycnt -= 1; 3103 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 3104 return; 3105 } 3106 3107 os = dn->dn_objset; 3108 3109 /* 3110 * This function may have dropped the db_mtx lock allowing a dmu_sync 3111 * operation to sneak in. As a result, we need to ensure that we 3112 * don't check the dr_override_state until we have returned from 3113 * dbuf_check_blkptr. 3114 */ 3115 dbuf_check_blkptr(dn, db); 3116 3117 /* 3118 * If this buffer is in the middle of an immediate write, 3119 * wait for the synchronous IO to complete. 3120 */ 3121 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 3122 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 3123 cv_wait(&db->db_changed, &db->db_mtx); 3124 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 3125 } 3126 3127 if (db->db_state != DB_NOFILL && 3128 dn->dn_object != DMU_META_DNODE_OBJECT && 3129 refcount_count(&db->db_holds) > 1 && 3130 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 3131 *datap == db->db_buf) { 3132 /* 3133 * If this buffer is currently "in use" (i.e., there 3134 * are active holds and db_data still references it), 3135 * then make a copy before we start the write so that 3136 * any modifications from the open txg will not leak 3137 * into this write. 3138 * 3139 * NOTE: this copy does not need to be made for 3140 * objects only modified in the syncing context (e.g. 3141 * DNONE_DNODE blocks). 3142 */ 3143 int blksz = arc_buf_size(*datap); 3144 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 3145 *datap = arc_alloc_buf(os->os_spa, blksz, db, type); 3146 bcopy(db->db.db_data, (*datap)->b_data, blksz); 3147 } 3148 db->db_data_pending = dr; 3149 3150 mutex_exit(&db->db_mtx); 3151 3152 dbuf_write(dr, *datap, tx); 3153 3154 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3155 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 3156 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 3157 DB_DNODE_EXIT(db); 3158 } else { 3159 /* 3160 * Although zio_nowait() does not "wait for an IO", it does 3161 * initiate the IO. If this is an empty write it seems plausible 3162 * that the IO could actually be completed before the nowait 3163 * returns. We need to DB_DNODE_EXIT() first in case 3164 * zio_nowait() invalidates the dbuf. 3165 */ 3166 DB_DNODE_EXIT(db); 3167 zio_nowait(dr->dr_zio); 3168 } 3169 } 3170 3171 void 3172 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 3173 { 3174 dbuf_dirty_record_t *dr; 3175 3176 while (dr = list_head(list)) { 3177 if (dr->dr_zio != NULL) { 3178 /* 3179 * If we find an already initialized zio then we 3180 * are processing the meta-dnode, and we have finished. 3181 * The dbufs for all dnodes are put back on the list 3182 * during processing, so that we can zio_wait() 3183 * these IOs after initiating all child IOs. 3184 */ 3185 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 3186 DMU_META_DNODE_OBJECT); 3187 break; 3188 } 3189 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 3190 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 3191 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 3192 } 3193 list_remove(list, dr); 3194 if (dr->dr_dbuf->db_level > 0) 3195 dbuf_sync_indirect(dr, tx); 3196 else 3197 dbuf_sync_leaf(dr, tx); 3198 } 3199 } 3200 3201 /* ARGSUSED */ 3202 static void 3203 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3204 { 3205 dmu_buf_impl_t *db = vdb; 3206 dnode_t *dn; 3207 blkptr_t *bp = zio->io_bp; 3208 blkptr_t *bp_orig = &zio->io_bp_orig; 3209 spa_t *spa = zio->io_spa; 3210 int64_t delta; 3211 uint64_t fill = 0; 3212 int i; 3213 3214 ASSERT3P(db->db_blkptr, !=, NULL); 3215 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 3216 3217 DB_DNODE_ENTER(db); 3218 dn = DB_DNODE(db); 3219 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 3220 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 3221 zio->io_prev_space_delta = delta; 3222 3223 if (bp->blk_birth != 0) { 3224 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 3225 BP_GET_TYPE(bp) == dn->dn_type) || 3226 (db->db_blkid == DMU_SPILL_BLKID && 3227 BP_GET_TYPE(bp) == dn->dn_bonustype) || 3228 BP_IS_EMBEDDED(bp)); 3229 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 3230 } 3231 3232 mutex_enter(&db->db_mtx); 3233 3234 #ifdef ZFS_DEBUG 3235 if (db->db_blkid == DMU_SPILL_BLKID) { 3236 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3237 ASSERT(!(BP_IS_HOLE(bp)) && 3238 db->db_blkptr == &dn->dn_phys->dn_spill); 3239 } 3240 #endif 3241 3242 if (db->db_level == 0) { 3243 mutex_enter(&dn->dn_mtx); 3244 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 3245 db->db_blkid != DMU_SPILL_BLKID) 3246 dn->dn_phys->dn_maxblkid = db->db_blkid; 3247 mutex_exit(&dn->dn_mtx); 3248 3249 if (dn->dn_type == DMU_OT_DNODE) { 3250 dnode_phys_t *dnp = db->db.db_data; 3251 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 3252 i--, dnp++) { 3253 if (dnp->dn_type != DMU_OT_NONE) 3254 fill++; 3255 } 3256 } else { 3257 if (BP_IS_HOLE(bp)) { 3258 fill = 0; 3259 } else { 3260 fill = 1; 3261 } 3262 } 3263 } else { 3264 blkptr_t *ibp = db->db.db_data; 3265 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3266 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 3267 if (BP_IS_HOLE(ibp)) 3268 continue; 3269 fill += BP_GET_FILL(ibp); 3270 } 3271 } 3272 DB_DNODE_EXIT(db); 3273 3274 if (!BP_IS_EMBEDDED(bp)) 3275 bp->blk_fill = fill; 3276 3277 mutex_exit(&db->db_mtx); 3278 3279 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3280 *db->db_blkptr = *bp; 3281 rw_exit(&dn->dn_struct_rwlock); 3282 } 3283 3284 /* ARGSUSED */ 3285 /* 3286 * This function gets called just prior to running through the compression 3287 * stage of the zio pipeline. If we're an indirect block comprised of only 3288 * holes, then we want this indirect to be compressed away to a hole. In 3289 * order to do that we must zero out any information about the holes that 3290 * this indirect points to prior to before we try to compress it. 3291 */ 3292 static void 3293 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3294 { 3295 dmu_buf_impl_t *db = vdb; 3296 dnode_t *dn; 3297 blkptr_t *bp; 3298 uint64_t i; 3299 int epbs; 3300 3301 ASSERT3U(db->db_level, >, 0); 3302 DB_DNODE_ENTER(db); 3303 dn = DB_DNODE(db); 3304 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3305 3306 /* Determine if all our children are holes */ 3307 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) { 3308 if (!BP_IS_HOLE(bp)) 3309 break; 3310 } 3311 3312 /* 3313 * If all the children are holes, then zero them all out so that 3314 * we may get compressed away. 3315 */ 3316 if (i == 1 << epbs) { 3317 /* didn't find any non-holes */ 3318 bzero(db->db.db_data, db->db.db_size); 3319 } 3320 DB_DNODE_EXIT(db); 3321 } 3322 3323 /* 3324 * The SPA will call this callback several times for each zio - once 3325 * for every physical child i/o (zio->io_phys_children times). This 3326 * allows the DMU to monitor the progress of each logical i/o. For example, 3327 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 3328 * block. There may be a long delay before all copies/fragments are completed, 3329 * so this callback allows us to retire dirty space gradually, as the physical 3330 * i/os complete. 3331 */ 3332 /* ARGSUSED */ 3333 static void 3334 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 3335 { 3336 dmu_buf_impl_t *db = arg; 3337 objset_t *os = db->db_objset; 3338 dsl_pool_t *dp = dmu_objset_pool(os); 3339 dbuf_dirty_record_t *dr; 3340 int delta = 0; 3341 3342 dr = db->db_data_pending; 3343 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 3344 3345 /* 3346 * The callback will be called io_phys_children times. Retire one 3347 * portion of our dirty space each time we are called. Any rounding 3348 * error will be cleaned up by dsl_pool_sync()'s call to 3349 * dsl_pool_undirty_space(). 3350 */ 3351 delta = dr->dr_accounted / zio->io_phys_children; 3352 dsl_pool_undirty_space(dp, delta, zio->io_txg); 3353 } 3354 3355 /* ARGSUSED */ 3356 static void 3357 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 3358 { 3359 dmu_buf_impl_t *db = vdb; 3360 blkptr_t *bp_orig = &zio->io_bp_orig; 3361 blkptr_t *bp = db->db_blkptr; 3362 objset_t *os = db->db_objset; 3363 dmu_tx_t *tx = os->os_synctx; 3364 dbuf_dirty_record_t **drp, *dr; 3365 3366 ASSERT0(zio->io_error); 3367 ASSERT(db->db_blkptr == bp); 3368 3369 /* 3370 * For nopwrites and rewrites we ensure that the bp matches our 3371 * original and bypass all the accounting. 3372 */ 3373 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 3374 ASSERT(BP_EQUAL(bp, bp_orig)); 3375 } else { 3376 dsl_dataset_t *ds = os->os_dsl_dataset; 3377 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 3378 dsl_dataset_block_born(ds, bp, tx); 3379 } 3380 3381 mutex_enter(&db->db_mtx); 3382 3383 DBUF_VERIFY(db); 3384 3385 drp = &db->db_last_dirty; 3386 while ((dr = *drp) != db->db_data_pending) 3387 drp = &dr->dr_next; 3388 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3389 ASSERT(dr->dr_dbuf == db); 3390 ASSERT(dr->dr_next == NULL); 3391 *drp = dr->dr_next; 3392 3393 #ifdef ZFS_DEBUG 3394 if (db->db_blkid == DMU_SPILL_BLKID) { 3395 dnode_t *dn; 3396 3397 DB_DNODE_ENTER(db); 3398 dn = DB_DNODE(db); 3399 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3400 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 3401 db->db_blkptr == &dn->dn_phys->dn_spill); 3402 DB_DNODE_EXIT(db); 3403 } 3404 #endif 3405 3406 if (db->db_level == 0) { 3407 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3408 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 3409 if (db->db_state != DB_NOFILL) { 3410 if (dr->dt.dl.dr_data != db->db_buf) 3411 arc_buf_destroy(dr->dt.dl.dr_data, db); 3412 } 3413 } else { 3414 dnode_t *dn; 3415 3416 DB_DNODE_ENTER(db); 3417 dn = DB_DNODE(db); 3418 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3419 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 3420 if (!BP_IS_HOLE(db->db_blkptr)) { 3421 int epbs = 3422 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3423 ASSERT3U(db->db_blkid, <=, 3424 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 3425 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 3426 db->db.db_size); 3427 } 3428 DB_DNODE_EXIT(db); 3429 mutex_destroy(&dr->dt.di.dr_mtx); 3430 list_destroy(&dr->dt.di.dr_children); 3431 } 3432 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3433 3434 cv_broadcast(&db->db_changed); 3435 ASSERT(db->db_dirtycnt > 0); 3436 db->db_dirtycnt -= 1; 3437 db->db_data_pending = NULL; 3438 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); 3439 } 3440 3441 static void 3442 dbuf_write_nofill_ready(zio_t *zio) 3443 { 3444 dbuf_write_ready(zio, NULL, zio->io_private); 3445 } 3446 3447 static void 3448 dbuf_write_nofill_done(zio_t *zio) 3449 { 3450 dbuf_write_done(zio, NULL, zio->io_private); 3451 } 3452 3453 static void 3454 dbuf_write_override_ready(zio_t *zio) 3455 { 3456 dbuf_dirty_record_t *dr = zio->io_private; 3457 dmu_buf_impl_t *db = dr->dr_dbuf; 3458 3459 dbuf_write_ready(zio, NULL, db); 3460 } 3461 3462 static void 3463 dbuf_write_override_done(zio_t *zio) 3464 { 3465 dbuf_dirty_record_t *dr = zio->io_private; 3466 dmu_buf_impl_t *db = dr->dr_dbuf; 3467 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 3468 3469 mutex_enter(&db->db_mtx); 3470 if (!BP_EQUAL(zio->io_bp, obp)) { 3471 if (!BP_IS_HOLE(obp)) 3472 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 3473 arc_release(dr->dt.dl.dr_data, db); 3474 } 3475 mutex_exit(&db->db_mtx); 3476 3477 dbuf_write_done(zio, NULL, db); 3478 } 3479 3480 /* Issue I/O to commit a dirty buffer to disk. */ 3481 static void 3482 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 3483 { 3484 dmu_buf_impl_t *db = dr->dr_dbuf; 3485 dnode_t *dn; 3486 objset_t *os; 3487 dmu_buf_impl_t *parent = db->db_parent; 3488 uint64_t txg = tx->tx_txg; 3489 zbookmark_phys_t zb; 3490 zio_prop_t zp; 3491 zio_t *zio; 3492 int wp_flag = 0; 3493 3494 ASSERT(dmu_tx_is_syncing(tx)); 3495 3496 DB_DNODE_ENTER(db); 3497 dn = DB_DNODE(db); 3498 os = dn->dn_objset; 3499 3500 if (db->db_state != DB_NOFILL) { 3501 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 3502 /* 3503 * Private object buffers are released here rather 3504 * than in dbuf_dirty() since they are only modified 3505 * in the syncing context and we don't want the 3506 * overhead of making multiple copies of the data. 3507 */ 3508 if (BP_IS_HOLE(db->db_blkptr)) { 3509 arc_buf_thaw(data); 3510 } else { 3511 dbuf_release_bp(db); 3512 } 3513 } 3514 } 3515 3516 if (parent != dn->dn_dbuf) { 3517 /* Our parent is an indirect block. */ 3518 /* We have a dirty parent that has been scheduled for write. */ 3519 ASSERT(parent && parent->db_data_pending); 3520 /* Our parent's buffer is one level closer to the dnode. */ 3521 ASSERT(db->db_level == parent->db_level-1); 3522 /* 3523 * We're about to modify our parent's db_data by modifying 3524 * our block pointer, so the parent must be released. 3525 */ 3526 ASSERT(arc_released(parent->db_buf)); 3527 zio = parent->db_data_pending->dr_zio; 3528 } else { 3529 /* Our parent is the dnode itself. */ 3530 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 3531 db->db_blkid != DMU_SPILL_BLKID) || 3532 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 3533 if (db->db_blkid != DMU_SPILL_BLKID) 3534 ASSERT3P(db->db_blkptr, ==, 3535 &dn->dn_phys->dn_blkptr[db->db_blkid]); 3536 zio = dn->dn_zio; 3537 } 3538 3539 ASSERT(db->db_level == 0 || data == db->db_buf); 3540 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 3541 ASSERT(zio); 3542 3543 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 3544 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 3545 db->db.db_object, db->db_level, db->db_blkid); 3546 3547 if (db->db_blkid == DMU_SPILL_BLKID) 3548 wp_flag = WP_SPILL; 3549 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 3550 3551 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 3552 DB_DNODE_EXIT(db); 3553 3554 /* 3555 * We copy the blkptr now (rather than when we instantiate the dirty 3556 * record), because its value can change between open context and 3557 * syncing context. We do not need to hold dn_struct_rwlock to read 3558 * db_blkptr because we are in syncing context. 3559 */ 3560 dr->dr_bp_copy = *db->db_blkptr; 3561 3562 if (db->db_level == 0 && 3563 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 3564 /* 3565 * The BP for this block has been provided by open context 3566 * (by dmu_sync() or dmu_buf_write_embedded()). 3567 */ 3568 void *contents = (data != NULL) ? data->b_data : NULL; 3569 3570 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3571 &dr->dr_bp_copy, contents, db->db.db_size, &zp, 3572 dbuf_write_override_ready, NULL, NULL, 3573 dbuf_write_override_done, 3574 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3575 mutex_enter(&db->db_mtx); 3576 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 3577 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 3578 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 3579 mutex_exit(&db->db_mtx); 3580 } else if (db->db_state == DB_NOFILL) { 3581 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 3582 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 3583 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3584 &dr->dr_bp_copy, NULL, db->db.db_size, &zp, 3585 dbuf_write_nofill_ready, NULL, NULL, 3586 dbuf_write_nofill_done, db, 3587 ZIO_PRIORITY_ASYNC_WRITE, 3588 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 3589 } else { 3590 ASSERT(arc_released(data)); 3591 3592 /* 3593 * For indirect blocks, we want to setup the children 3594 * ready callback so that we can properly handle an indirect 3595 * block that only contains holes. 3596 */ 3597 arc_done_func_t *children_ready_cb = NULL; 3598 if (db->db_level != 0) 3599 children_ready_cb = dbuf_write_children_ready; 3600 3601 dr->dr_zio = arc_write(zio, os->os_spa, txg, 3602 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 3603 &zp, dbuf_write_ready, children_ready_cb, 3604 dbuf_write_physdone, dbuf_write_done, db, 3605 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3606 } 3607 } 3608