1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DVA-based Adjustable Replacement Cache 28 * 29 * While much of the theory of operation used here is 30 * based on the self-tuning, low overhead replacement cache 31 * presented by Megiddo and Modha at FAST 2003, there are some 32 * significant differences: 33 * 34 * 1. The Megiddo and Modha model assumes any page is evictable. 35 * Pages in its cache cannot be "locked" into memory. This makes 36 * the eviction algorithm simple: evict the last page in the list. 37 * This also make the performance characteristics easy to reason 38 * about. Our cache is not so simple. At any given moment, some 39 * subset of the blocks in the cache are un-evictable because we 40 * have handed out a reference to them. Blocks are only evictable 41 * when there are no external references active. This makes 42 * eviction far more problematic: we choose to evict the evictable 43 * blocks that are the "lowest" in the list. 44 * 45 * There are times when it is not possible to evict the requested 46 * space. In these circumstances we are unable to adjust the cache 47 * size. To prevent the cache growing unbounded at these times we 48 * implement a "cache throttle" that slows the flow of new data 49 * into the cache until we can make space available. 50 * 51 * 2. The Megiddo and Modha model assumes a fixed cache size. 52 * Pages are evicted when the cache is full and there is a cache 53 * miss. Our model has a variable sized cache. It grows with 54 * high use, but also tries to react to memory pressure from the 55 * operating system: decreasing its size when system memory is 56 * tight. 57 * 58 * 3. The Megiddo and Modha model assumes a fixed page size. All 59 * elements of the cache are therefor exactly the same size. So 60 * when adjusting the cache size following a cache miss, its simply 61 * a matter of choosing a single page to evict. In our model, we 62 * have variable sized cache blocks (rangeing from 512 bytes to 63 * 128K bytes). We therefor choose a set of blocks to evict to make 64 * space for a cache miss that approximates as closely as possible 65 * the space used by the new block. 66 * 67 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 68 * by N. Megiddo & D. Modha, FAST 2003 69 */ 70 71 /* 72 * The locking model: 73 * 74 * A new reference to a cache buffer can be obtained in two 75 * ways: 1) via a hash table lookup using the DVA as a key, 76 * or 2) via one of the ARC lists. The arc_read() interface 77 * uses method 1, while the internal arc algorithms for 78 * adjusting the cache use method 2. We therefor provide two 79 * types of locks: 1) the hash table lock array, and 2) the 80 * arc list locks. 81 * 82 * Buffers do not have their own mutexs, rather they rely on the 83 * hash table mutexs for the bulk of their protection (i.e. most 84 * fields in the arc_buf_hdr_t are protected by these mutexs). 85 * 86 * buf_hash_find() returns the appropriate mutex (held) when it 87 * locates the requested buffer in the hash table. It returns 88 * NULL for the mutex if the buffer was not in the table. 89 * 90 * buf_hash_remove() expects the appropriate hash mutex to be 91 * already held before it is invoked. 92 * 93 * Each arc state also has a mutex which is used to protect the 94 * buffer list associated with the state. When attempting to 95 * obtain a hash table lock while holding an arc list lock you 96 * must use: mutex_tryenter() to avoid deadlock. Also note that 97 * the active state mutex must be held before the ghost state mutex. 98 * 99 * Arc buffers may have an associated eviction callback function. 100 * This function will be invoked prior to removing the buffer (e.g. 101 * in arc_do_user_evicts()). Note however that the data associated 102 * with the buffer may be evicted prior to the callback. The callback 103 * must be made with *no locks held* (to prevent deadlock). Additionally, 104 * the users of callbacks must ensure that their private data is 105 * protected from simultaneous callbacks from arc_buf_evict() 106 * and arc_do_user_evicts(). 107 * 108 * Note that the majority of the performance stats are manipulated 109 * with atomic operations. 110 * 111 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 112 * 113 * - L2ARC buflist creation 114 * - L2ARC buflist eviction 115 * - L2ARC write completion, which walks L2ARC buflists 116 * - ARC header destruction, as it removes from L2ARC buflists 117 * - ARC header release, as it removes from L2ARC buflists 118 */ 119 120 #include <sys/spa.h> 121 #include <sys/zio.h> 122 #include <sys/zio_checksum.h> 123 #include <sys/zfs_context.h> 124 #include <sys/arc.h> 125 #include <sys/refcount.h> 126 #include <sys/vdev.h> 127 #ifdef _KERNEL 128 #include <sys/vmsystm.h> 129 #include <vm/anon.h> 130 #include <sys/fs/swapnode.h> 131 #include <sys/dnlc.h> 132 #endif 133 #include <sys/callb.h> 134 #include <sys/kstat.h> 135 136 #ifdef __NetBSD__ 137 #include <uvm/uvm.h> 138 #ifndef btop 139 #define btop(x) ((x) / PAGE_SIZE) 140 #endif 141 #define needfree (uvmexp.free < uvmexp.freetarg ? uvmexp.freetarg : 0) 142 #define buf_init arc_buf_init 143 #define freemem uvmexp.free 144 #define minfree uvmexp.freemin 145 #define desfree uvmexp.freetarg 146 #define lotsfree (desfree * 2) 147 #define availrmem desfree 148 #define swapfs_minfree 0 149 #define swapfs_reserve 0 150 #undef curproc 151 #define curproc curlwp 152 #define proc_pageout uvm.pagedaemon_lwp 153 154 #define heap_arena kernel_map 155 #define VMEM_ALLOC 1 156 #define VMEM_FREE 2 157 static inline size_t 158 vmem_size(struct vm_map *map, int flag) 159 { 160 switch (flag) { 161 case VMEM_ALLOC: 162 return map->size; 163 case VMEM_FREE: 164 return vm_map_max(map) - vm_map_min(map) - map->size; 165 case VMEM_FREE|VMEM_ALLOC: 166 return vm_map_max(map) - vm_map_min(map); 167 default: 168 panic("vmem_size"); 169 } 170 } 171 static void *zio_arena; 172 173 #include <sys/callback.h> 174 /* Structures used for memory and kva space reclaim. */ 175 static struct callback_entry arc_kva_reclaim_entry; 176 static struct uvm_reclaim_hook arc_hook; 177 178 #endif /* __NetBSD__ */ 179 180 static kmutex_t arc_reclaim_thr_lock; 181 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 182 static uint8_t arc_thread_exit; 183 184 extern int zfs_write_limit_shift; 185 extern uint64_t zfs_write_limit_max; 186 extern kmutex_t zfs_write_limit_lock; 187 188 #define ARC_REDUCE_DNLC_PERCENT 3 189 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 190 191 typedef enum arc_reclaim_strategy { 192 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 193 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 194 } arc_reclaim_strategy_t; 195 196 /* number of seconds before growing cache again */ 197 static int arc_grow_retry = 60; 198 199 /* 200 * minimum lifespan of a prefetch block in clock ticks 201 * (initialized in arc_init()) 202 */ 203 static int arc_min_prefetch_lifespan; 204 205 static int arc_dead; 206 207 /* 208 * The arc has filled available memory and has now warmed up. 209 */ 210 static boolean_t arc_warm; 211 212 /* 213 * These tunables are for performance analysis. 214 */ 215 uint64_t zfs_arc_max; 216 uint64_t zfs_arc_min; 217 uint64_t zfs_arc_meta_limit = 0; 218 int zfs_mdcomp_disable = 0; 219 220 /* 221 * Note that buffers can be in one of 6 states: 222 * ARC_anon - anonymous (discussed below) 223 * ARC_mru - recently used, currently cached 224 * ARC_mru_ghost - recentely used, no longer in cache 225 * ARC_mfu - frequently used, currently cached 226 * ARC_mfu_ghost - frequently used, no longer in cache 227 * ARC_l2c_only - exists in L2ARC but not other states 228 * When there are no active references to the buffer, they are 229 * are linked onto a list in one of these arc states. These are 230 * the only buffers that can be evicted or deleted. Within each 231 * state there are multiple lists, one for meta-data and one for 232 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 233 * etc.) is tracked separately so that it can be managed more 234 * explicitly: favored over data, limited explicitly. 235 * 236 * Anonymous buffers are buffers that are not associated with 237 * a DVA. These are buffers that hold dirty block copies 238 * before they are written to stable storage. By definition, 239 * they are "ref'd" and are considered part of arc_mru 240 * that cannot be freed. Generally, they will aquire a DVA 241 * as they are written and migrate onto the arc_mru list. 242 * 243 * The ARC_l2c_only state is for buffers that are in the second 244 * level ARC but no longer in any of the ARC_m* lists. The second 245 * level ARC itself may also contain buffers that are in any of 246 * the ARC_m* states - meaning that a buffer can exist in two 247 * places. The reason for the ARC_l2c_only state is to keep the 248 * buffer header in the hash table, so that reads that hit the 249 * second level ARC benefit from these fast lookups. 250 */ 251 252 typedef struct arc_state { 253 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 254 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 255 uint64_t arcs_size; /* total amount of data in this state */ 256 kmutex_t arcs_mtx; 257 } arc_state_t; 258 259 /* The 6 states: */ 260 static arc_state_t ARC_anon; 261 static arc_state_t ARC_mru; 262 static arc_state_t ARC_mru_ghost; 263 static arc_state_t ARC_mfu; 264 static arc_state_t ARC_mfu_ghost; 265 static arc_state_t ARC_l2c_only; 266 267 typedef struct arc_stats { 268 kstat_named_t arcstat_hits; 269 kstat_named_t arcstat_misses; 270 kstat_named_t arcstat_demand_data_hits; 271 kstat_named_t arcstat_demand_data_misses; 272 kstat_named_t arcstat_demand_metadata_hits; 273 kstat_named_t arcstat_demand_metadata_misses; 274 kstat_named_t arcstat_prefetch_data_hits; 275 kstat_named_t arcstat_prefetch_data_misses; 276 kstat_named_t arcstat_prefetch_metadata_hits; 277 kstat_named_t arcstat_prefetch_metadata_misses; 278 kstat_named_t arcstat_mru_hits; 279 kstat_named_t arcstat_mru_ghost_hits; 280 kstat_named_t arcstat_mfu_hits; 281 kstat_named_t arcstat_mfu_ghost_hits; 282 kstat_named_t arcstat_deleted; 283 kstat_named_t arcstat_recycle_miss; 284 kstat_named_t arcstat_mutex_miss; 285 kstat_named_t arcstat_evict_skip; 286 kstat_named_t arcstat_hash_elements; 287 kstat_named_t arcstat_hash_elements_max; 288 kstat_named_t arcstat_hash_collisions; 289 kstat_named_t arcstat_hash_chains; 290 kstat_named_t arcstat_hash_chain_max; 291 kstat_named_t arcstat_p; 292 kstat_named_t arcstat_c; 293 kstat_named_t arcstat_c_min; 294 kstat_named_t arcstat_c_max; 295 kstat_named_t arcstat_size; 296 kstat_named_t arcstat_hdr_size; 297 kstat_named_t arcstat_l2_hits; 298 kstat_named_t arcstat_l2_misses; 299 kstat_named_t arcstat_l2_feeds; 300 kstat_named_t arcstat_l2_rw_clash; 301 kstat_named_t arcstat_l2_writes_sent; 302 kstat_named_t arcstat_l2_writes_done; 303 kstat_named_t arcstat_l2_writes_error; 304 kstat_named_t arcstat_l2_writes_hdr_miss; 305 kstat_named_t arcstat_l2_evict_lock_retry; 306 kstat_named_t arcstat_l2_evict_reading; 307 kstat_named_t arcstat_l2_free_on_write; 308 kstat_named_t arcstat_l2_abort_lowmem; 309 kstat_named_t arcstat_l2_cksum_bad; 310 kstat_named_t arcstat_l2_io_error; 311 kstat_named_t arcstat_l2_size; 312 kstat_named_t arcstat_l2_hdr_size; 313 kstat_named_t arcstat_memory_throttle_count; 314 } arc_stats_t; 315 316 static arc_stats_t arc_stats = { 317 { "hits", KSTAT_DATA_UINT64 }, 318 { "misses", KSTAT_DATA_UINT64 }, 319 { "demand_data_hits", KSTAT_DATA_UINT64 }, 320 { "demand_data_misses", KSTAT_DATA_UINT64 }, 321 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 322 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 323 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 324 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 325 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 326 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 327 { "mru_hits", KSTAT_DATA_UINT64 }, 328 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 329 { "mfu_hits", KSTAT_DATA_UINT64 }, 330 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 331 { "deleted", KSTAT_DATA_UINT64 }, 332 { "recycle_miss", KSTAT_DATA_UINT64 }, 333 { "mutex_miss", KSTAT_DATA_UINT64 }, 334 { "evict_skip", KSTAT_DATA_UINT64 }, 335 { "hash_elements", KSTAT_DATA_UINT64 }, 336 { "hash_elements_max", KSTAT_DATA_UINT64 }, 337 { "hash_collisions", KSTAT_DATA_UINT64 }, 338 { "hash_chains", KSTAT_DATA_UINT64 }, 339 { "hash_chain_max", KSTAT_DATA_UINT64 }, 340 { "p", KSTAT_DATA_UINT64 }, 341 { "c", KSTAT_DATA_UINT64 }, 342 { "c_min", KSTAT_DATA_UINT64 }, 343 { "c_max", KSTAT_DATA_UINT64 }, 344 { "size", KSTAT_DATA_UINT64 }, 345 { "hdr_size", KSTAT_DATA_UINT64 }, 346 { "l2_hits", KSTAT_DATA_UINT64 }, 347 { "l2_misses", KSTAT_DATA_UINT64 }, 348 { "l2_feeds", KSTAT_DATA_UINT64 }, 349 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 350 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 351 { "l2_writes_done", KSTAT_DATA_UINT64 }, 352 { "l2_writes_error", KSTAT_DATA_UINT64 }, 353 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 354 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 355 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 356 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 357 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 358 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 359 { "l2_io_error", KSTAT_DATA_UINT64 }, 360 { "l2_size", KSTAT_DATA_UINT64 }, 361 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 362 { "memory_throttle_count", KSTAT_DATA_UINT64 } 363 }; 364 365 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 366 367 #define ARCSTAT_INCR(stat, val) \ 368 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 369 370 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 371 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 372 373 #define ARCSTAT_MAX(stat, val) { \ 374 uint64_t m; \ 375 while ((val) > (m = arc_stats.stat.value.ui64) && \ 376 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 377 continue; \ 378 } 379 380 #define ARCSTAT_MAXSTAT(stat) \ 381 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 382 383 /* 384 * We define a macro to allow ARC hits/misses to be easily broken down by 385 * two separate conditions, giving a total of four different subtypes for 386 * each of hits and misses (so eight statistics total). 387 */ 388 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 389 if (cond1) { \ 390 if (cond2) { \ 391 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 392 } else { \ 393 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 394 } \ 395 } else { \ 396 if (cond2) { \ 397 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 398 } else { \ 399 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 400 } \ 401 } 402 403 kstat_t *arc_ksp; 404 static arc_state_t *arc_anon; 405 static arc_state_t *arc_mru; 406 static arc_state_t *arc_mru_ghost; 407 static arc_state_t *arc_mfu; 408 static arc_state_t *arc_mfu_ghost; 409 static arc_state_t *arc_l2c_only; 410 411 /* 412 * There are several ARC variables that are critical to export as kstats -- 413 * but we don't want to have to grovel around in the kstat whenever we wish to 414 * manipulate them. For these variables, we therefore define them to be in 415 * terms of the statistic variable. This assures that we are not introducing 416 * the possibility of inconsistency by having shadow copies of the variables, 417 * while still allowing the code to be readable. 418 */ 419 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 420 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 421 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 422 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 423 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 424 425 static int arc_no_grow; /* Don't try to grow cache size */ 426 static uint64_t arc_tempreserve; 427 static uint64_t arc_meta_used; 428 static uint64_t arc_meta_limit; 429 static uint64_t arc_meta_max = 0; 430 431 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 432 433 typedef struct arc_callback arc_callback_t; 434 435 struct arc_callback { 436 void *acb_private; 437 arc_done_func_t *acb_done; 438 arc_buf_t *acb_buf; 439 zio_t *acb_zio_dummy; 440 arc_callback_t *acb_next; 441 }; 442 443 typedef struct arc_write_callback arc_write_callback_t; 444 445 struct arc_write_callback { 446 void *awcb_private; 447 arc_done_func_t *awcb_ready; 448 arc_done_func_t *awcb_done; 449 arc_buf_t *awcb_buf; 450 }; 451 452 struct arc_buf_hdr { 453 /* protected by hash lock */ 454 dva_t b_dva; 455 uint64_t b_birth; 456 uint64_t b_cksum0; 457 458 kmutex_t b_freeze_lock; 459 zio_cksum_t *b_freeze_cksum; 460 461 arc_buf_hdr_t *b_hash_next; 462 arc_buf_t *b_buf; 463 uint32_t b_flags; 464 uint32_t b_datacnt; 465 466 arc_callback_t *b_acb; 467 kcondvar_t b_cv; 468 469 /* immutable */ 470 arc_buf_contents_t b_type; 471 uint64_t b_size; 472 spa_t *b_spa; 473 474 /* protected by arc state mutex */ 475 arc_state_t *b_state; 476 list_node_t b_arc_node; 477 478 /* updated atomically */ 479 clock_t b_arc_access; 480 481 /* self protecting */ 482 refcount_t b_refcnt; 483 484 l2arc_buf_hdr_t *b_l2hdr; 485 list_node_t b_l2node; 486 }; 487 488 static arc_buf_t *arc_eviction_list; 489 static kmutex_t arc_eviction_mtx; 490 static arc_buf_hdr_t arc_eviction_hdr; 491 static void arc_get_data_buf(arc_buf_t *buf); 492 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 493 static int arc_evict_needed(arc_buf_contents_t type); 494 static void arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes); 495 496 #define GHOST_STATE(state) \ 497 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 498 (state) == arc_l2c_only) 499 500 /* 501 * Private ARC flags. These flags are private ARC only flags that will show up 502 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 503 * be passed in as arc_flags in things like arc_read. However, these flags 504 * should never be passed and should only be set by ARC code. When adding new 505 * public flags, make sure not to smash the private ones. 506 */ 507 508 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 509 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 510 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 511 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 512 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 513 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 514 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 515 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 516 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 517 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 518 #define ARC_STORED (1 << 19) /* has been store()d to */ 519 520 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 521 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 522 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 523 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 524 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 525 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 526 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 527 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 528 (hdr)->b_l2hdr != NULL) 529 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 530 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 531 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 532 533 /* 534 * Other sizes 535 */ 536 537 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 538 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 539 540 /* 541 * Hash table routines 542 */ 543 544 #define HT_LOCK_PAD 64 545 546 struct ht_lock { 547 kmutex_t ht_lock; 548 #ifdef _KERNEL 549 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 550 #endif 551 }; 552 553 #define BUF_LOCKS 256 554 typedef struct buf_hash_table { 555 uint64_t ht_mask; 556 arc_buf_hdr_t **ht_table; 557 struct ht_lock ht_locks[BUF_LOCKS]; 558 } buf_hash_table_t; 559 560 static buf_hash_table_t buf_hash_table; 561 562 #define BUF_HASH_INDEX(spa, dva, birth) \ 563 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 564 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 565 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 566 #define HDR_LOCK(buf) \ 567 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 568 569 uint64_t zfs_crc64_table[256]; 570 571 /* 572 * Level 2 ARC 573 */ 574 575 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 576 #define L2ARC_HEADROOM 4 /* num of writes */ 577 #define L2ARC_FEED_SECS 1 /* caching interval */ 578 579 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 580 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 581 582 /* 583 * L2ARC Performance Tunables 584 */ 585 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 586 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 587 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 588 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 589 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 590 591 /* 592 * L2ARC Internals 593 */ 594 typedef struct l2arc_dev { 595 vdev_t *l2ad_vdev; /* vdev */ 596 spa_t *l2ad_spa; /* spa */ 597 uint64_t l2ad_hand; /* next write location */ 598 uint64_t l2ad_write; /* desired write size, bytes */ 599 uint64_t l2ad_boost; /* warmup write boost, bytes */ 600 uint64_t l2ad_start; /* first addr on device */ 601 uint64_t l2ad_end; /* last addr on device */ 602 uint64_t l2ad_evict; /* last addr eviction reached */ 603 boolean_t l2ad_first; /* first sweep through */ 604 list_t *l2ad_buflist; /* buffer list */ 605 list_node_t l2ad_node; /* device list node */ 606 } l2arc_dev_t; 607 608 static list_t L2ARC_dev_list; /* device list */ 609 static list_t *l2arc_dev_list; /* device list pointer */ 610 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 611 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 612 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 613 static list_t L2ARC_free_on_write; /* free after write buf list */ 614 static list_t *l2arc_free_on_write; /* free after write list ptr */ 615 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 616 static uint64_t l2arc_ndev; /* number of devices */ 617 618 typedef struct l2arc_read_callback { 619 arc_buf_t *l2rcb_buf; /* read buffer */ 620 spa_t *l2rcb_spa; /* spa */ 621 blkptr_t l2rcb_bp; /* original blkptr */ 622 zbookmark_t l2rcb_zb; /* original bookmark */ 623 int l2rcb_flags; /* original flags */ 624 } l2arc_read_callback_t; 625 626 typedef struct l2arc_write_callback { 627 l2arc_dev_t *l2wcb_dev; /* device info */ 628 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 629 } l2arc_write_callback_t; 630 631 struct l2arc_buf_hdr { 632 /* protected by arc_buf_hdr mutex */ 633 l2arc_dev_t *b_dev; /* L2ARC device */ 634 daddr_t b_daddr; /* disk address, offset byte */ 635 }; 636 637 typedef struct l2arc_data_free { 638 /* protected by l2arc_free_on_write_mtx */ 639 void *l2df_data; 640 size_t l2df_size; 641 void (*l2df_func)(void *, size_t); 642 list_node_t l2df_list_node; 643 } l2arc_data_free_t; 644 645 static kmutex_t l2arc_feed_thr_lock; 646 static kcondvar_t l2arc_feed_thr_cv; 647 static uint8_t l2arc_thread_exit; 648 649 static void l2arc_read_done(zio_t *zio); 650 static void l2arc_hdr_stat_add(void); 651 static void l2arc_hdr_stat_remove(void); 652 653 static uint64_t 654 buf_hash(spa_t *spa, const dva_t *dva, uint64_t birth) 655 { 656 uintptr_t spav = (uintptr_t)spa; 657 uint8_t *vdva = (uint8_t *)dva; 658 uint64_t crc = -1ULL; 659 int i; 660 661 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 662 663 for (i = 0; i < sizeof (dva_t); i++) 664 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 665 666 crc ^= (spav>>8) ^ birth; 667 668 return (crc); 669 } 670 671 #define BUF_EMPTY(buf) \ 672 ((buf)->b_dva.dva_word[0] == 0 && \ 673 (buf)->b_dva.dva_word[1] == 0 && \ 674 (buf)->b_birth == 0) 675 676 #define BUF_EQUAL(spa, dva, birth, buf) \ 677 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 678 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 679 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 680 681 static arc_buf_hdr_t * 682 buf_hash_find(spa_t *spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 683 { 684 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 685 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 686 arc_buf_hdr_t *buf; 687 688 mutex_enter(hash_lock); 689 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 690 buf = buf->b_hash_next) { 691 if (BUF_EQUAL(spa, dva, birth, buf)) { 692 *lockp = hash_lock; 693 return (buf); 694 } 695 } 696 mutex_exit(hash_lock); 697 *lockp = NULL; 698 return (NULL); 699 } 700 701 /* 702 * Insert an entry into the hash table. If there is already an element 703 * equal to elem in the hash table, then the already existing element 704 * will be returned and the new element will not be inserted. 705 * Otherwise returns NULL. 706 */ 707 static arc_buf_hdr_t * 708 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 709 { 710 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 711 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 712 arc_buf_hdr_t *fbuf; 713 uint32_t i; 714 715 ASSERT(!HDR_IN_HASH_TABLE(buf)); 716 *lockp = hash_lock; 717 mutex_enter(hash_lock); 718 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 719 fbuf = fbuf->b_hash_next, i++) { 720 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 721 return (fbuf); 722 } 723 724 buf->b_hash_next = buf_hash_table.ht_table[idx]; 725 buf_hash_table.ht_table[idx] = buf; 726 buf->b_flags |= ARC_IN_HASH_TABLE; 727 728 /* collect some hash table performance data */ 729 if (i > 0) { 730 ARCSTAT_BUMP(arcstat_hash_collisions); 731 if (i == 1) 732 ARCSTAT_BUMP(arcstat_hash_chains); 733 734 ARCSTAT_MAX(arcstat_hash_chain_max, i); 735 } 736 737 ARCSTAT_BUMP(arcstat_hash_elements); 738 ARCSTAT_MAXSTAT(arcstat_hash_elements); 739 740 return (NULL); 741 } 742 743 static void 744 buf_hash_remove(arc_buf_hdr_t *buf) 745 { 746 arc_buf_hdr_t *fbuf, **bufp; 747 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 748 749 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 750 ASSERT(HDR_IN_HASH_TABLE(buf)); 751 752 bufp = &buf_hash_table.ht_table[idx]; 753 while ((fbuf = *bufp) != buf) { 754 ASSERT(fbuf != NULL); 755 bufp = &fbuf->b_hash_next; 756 } 757 *bufp = buf->b_hash_next; 758 buf->b_hash_next = NULL; 759 buf->b_flags &= ~ARC_IN_HASH_TABLE; 760 761 /* collect some hash table performance data */ 762 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 763 764 if (buf_hash_table.ht_table[idx] && 765 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 766 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 767 } 768 769 /* 770 * Global data structures and functions for the buf kmem cache. 771 */ 772 static kmem_cache_t *hdr_cache; 773 static kmem_cache_t *buf_cache; 774 775 static void 776 buf_fini(void) 777 { 778 int i; 779 780 kmem_free(buf_hash_table.ht_table, 781 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 782 for (i = 0; i < BUF_LOCKS; i++) 783 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 784 kmem_cache_destroy(hdr_cache); 785 kmem_cache_destroy(buf_cache); 786 } 787 788 /* 789 * Constructor callback - called when the cache is empty 790 * and a new buf is requested. 791 */ 792 /* ARGSUSED */ 793 static int 794 hdr_cons(void *vbuf, void *unused, int kmflag) 795 { 796 arc_buf_hdr_t *buf = unused; 797 798 bzero(buf, sizeof (arc_buf_hdr_t)); 799 refcount_create(&buf->b_refcnt); 800 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 801 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 802 803 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 804 return (0); 805 } 806 807 /* ARGSUSED */ 808 static int 809 buf_cons(void *vbuf, void *unused, int kmflag) 810 { 811 arc_buf_t *buf = unused; 812 813 bzero(buf, sizeof (arc_buf_t)); 814 rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL); 815 return (0); 816 } 817 818 /* 819 * Destructor callback - called when a cached buf is 820 * no longer required. 821 */ 822 /* ARGSUSED */ 823 static void 824 hdr_dest(void *vbuf, void *unused) 825 { 826 arc_buf_hdr_t *buf = unused; 827 828 refcount_destroy(&buf->b_refcnt); 829 cv_destroy(&buf->b_cv); 830 mutex_destroy(&buf->b_freeze_lock); 831 832 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 833 } 834 835 /* ARGSUSED */ 836 static void 837 buf_dest(void *vbuf, void *unused) 838 { 839 arc_buf_t *buf = unused; 840 841 rw_destroy(&buf->b_lock); 842 } 843 844 /* 845 * Reclaim callback -- invoked when memory is low. 846 */ 847 /* ARGSUSED */ 848 static void 849 hdr_recl(void *unused) 850 { 851 dprintf("hdr_recl called\n"); 852 /* 853 * umem calls the reclaim func when we destroy the buf cache, 854 * which is after we do arc_fini(). 855 */ 856 if (!arc_dead) 857 cv_signal(&arc_reclaim_thr_cv); 858 } 859 860 static void 861 buf_init(void) 862 { 863 uint64_t *ct; 864 uint64_t hsize = 1ULL << 12; 865 int i, j; 866 867 /* 868 * The hash table is big enough to fill all of physical memory 869 * with an average 64K block size. The table will take up 870 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 871 */ 872 while (hsize * 65536 < (uint64_t)physmem * PAGESIZE) 873 hsize <<= 1; 874 retry: 875 buf_hash_table.ht_mask = hsize - 1; 876 buf_hash_table.ht_table = 877 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 878 if (buf_hash_table.ht_table == NULL) { 879 ASSERT(hsize > (1ULL << 8)); 880 hsize >>= 1; 881 goto retry; 882 } 883 884 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 885 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 886 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 887 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 888 889 for (i = 0; i < 256; i++) 890 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 891 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 892 893 for (i = 0; i < BUF_LOCKS; i++) { 894 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 895 NULL, MUTEX_DEFAULT, NULL); 896 } 897 } 898 899 #define ARC_MINTIME (hz>>4) /* 62 ms */ 900 901 static void 902 arc_cksum_verify(arc_buf_t *buf) 903 { 904 zio_cksum_t zc; 905 906 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 907 return; 908 909 mutex_enter(&buf->b_hdr->b_freeze_lock); 910 if (buf->b_hdr->b_freeze_cksum == NULL || 911 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 912 mutex_exit(&buf->b_hdr->b_freeze_lock); 913 return; 914 } 915 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 916 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 917 panic("buffer modified while frozen!"); 918 mutex_exit(&buf->b_hdr->b_freeze_lock); 919 } 920 921 static int 922 arc_cksum_equal(arc_buf_t *buf) 923 { 924 zio_cksum_t zc; 925 int equal; 926 927 mutex_enter(&buf->b_hdr->b_freeze_lock); 928 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 929 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 930 mutex_exit(&buf->b_hdr->b_freeze_lock); 931 932 return (equal); 933 } 934 935 static void 936 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 937 { 938 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 939 return; 940 941 mutex_enter(&buf->b_hdr->b_freeze_lock); 942 if (buf->b_hdr->b_freeze_cksum != NULL) { 943 mutex_exit(&buf->b_hdr->b_freeze_lock); 944 return; 945 } 946 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 947 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 948 buf->b_hdr->b_freeze_cksum); 949 mutex_exit(&buf->b_hdr->b_freeze_lock); 950 } 951 952 void 953 arc_buf_thaw(arc_buf_t *buf) 954 { 955 if (zfs_flags & ZFS_DEBUG_MODIFY) { 956 if (buf->b_hdr->b_state != arc_anon) 957 panic("modifying non-anon buffer!"); 958 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 959 panic("modifying buffer while i/o in progress!"); 960 arc_cksum_verify(buf); 961 } 962 963 mutex_enter(&buf->b_hdr->b_freeze_lock); 964 if (buf->b_hdr->b_freeze_cksum != NULL) { 965 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 966 buf->b_hdr->b_freeze_cksum = NULL; 967 } 968 mutex_exit(&buf->b_hdr->b_freeze_lock); 969 } 970 971 void 972 arc_buf_freeze(arc_buf_t *buf) 973 { 974 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 975 return; 976 977 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 978 buf->b_hdr->b_state == arc_anon); 979 arc_cksum_compute(buf, B_FALSE); 980 } 981 982 static void 983 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 984 { 985 ASSERT(MUTEX_HELD(hash_lock)); 986 987 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 988 (ab->b_state != arc_anon)) { 989 uint64_t delta = ab->b_size * ab->b_datacnt; 990 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 991 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 992 993 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 994 mutex_enter(&ab->b_state->arcs_mtx); 995 ASSERT(list_link_active(&ab->b_arc_node)); 996 list_remove(list, ab); 997 if (GHOST_STATE(ab->b_state)) { 998 ASSERT3U(ab->b_datacnt, ==, 0); 999 ASSERT3P(ab->b_buf, ==, NULL); 1000 delta = ab->b_size; 1001 } 1002 ASSERT(delta > 0); 1003 ASSERT3U(*size, >=, delta); 1004 atomic_add_64(size, -delta); 1005 mutex_exit(&ab->b_state->arcs_mtx); 1006 /* remove the prefetch flag if we get a reference */ 1007 if (ab->b_flags & ARC_PREFETCH) 1008 ab->b_flags &= ~ARC_PREFETCH; 1009 } 1010 } 1011 1012 static int 1013 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1014 { 1015 int cnt; 1016 arc_state_t *state = ab->b_state; 1017 1018 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1019 ASSERT(!GHOST_STATE(state)); 1020 1021 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1022 (state != arc_anon)) { 1023 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1024 1025 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1026 mutex_enter(&state->arcs_mtx); 1027 ASSERT(!list_link_active(&ab->b_arc_node)); 1028 list_insert_head(&state->arcs_list[ab->b_type], ab); 1029 ASSERT(ab->b_datacnt > 0); 1030 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1031 mutex_exit(&state->arcs_mtx); 1032 } 1033 return (cnt); 1034 } 1035 1036 /* 1037 * Move the supplied buffer to the indicated state. The mutex 1038 * for the buffer must be held by the caller. 1039 */ 1040 static void 1041 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1042 { 1043 arc_state_t *old_state = ab->b_state; 1044 int64_t refcnt = refcount_count(&ab->b_refcnt); 1045 uint64_t from_delta, to_delta; 1046 1047 ASSERT(MUTEX_HELD(hash_lock)); 1048 ASSERT(new_state != old_state); 1049 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1050 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1051 1052 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1053 1054 /* 1055 * If this buffer is evictable, transfer it from the 1056 * old state list to the new state list. 1057 */ 1058 if (refcnt == 0) { 1059 if (old_state != arc_anon) { 1060 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1061 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1062 1063 if (use_mutex) 1064 mutex_enter(&old_state->arcs_mtx); 1065 1066 ASSERT(list_link_active(&ab->b_arc_node)); 1067 list_remove(&old_state->arcs_list[ab->b_type], ab); 1068 1069 /* 1070 * If prefetching out of the ghost cache, 1071 * we will have a non-null datacnt. 1072 */ 1073 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1074 /* ghost elements have a ghost size */ 1075 ASSERT(ab->b_buf == NULL); 1076 from_delta = ab->b_size; 1077 } 1078 ASSERT3U(*size, >=, from_delta); 1079 atomic_add_64(size, -from_delta); 1080 1081 if (use_mutex) 1082 mutex_exit(&old_state->arcs_mtx); 1083 } 1084 if (new_state != arc_anon) { 1085 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1086 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1087 1088 if (use_mutex) 1089 mutex_enter(&new_state->arcs_mtx); 1090 1091 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1092 1093 /* ghost elements have a ghost size */ 1094 if (GHOST_STATE(new_state)) { 1095 ASSERT(ab->b_datacnt == 0); 1096 ASSERT(ab->b_buf == NULL); 1097 to_delta = ab->b_size; 1098 } 1099 atomic_add_64(size, to_delta); 1100 1101 if (use_mutex) 1102 mutex_exit(&new_state->arcs_mtx); 1103 } 1104 } 1105 1106 ASSERT(!BUF_EMPTY(ab)); 1107 if (new_state == arc_anon) { 1108 buf_hash_remove(ab); 1109 } 1110 1111 /* adjust state sizes */ 1112 if (to_delta) 1113 atomic_add_64(&new_state->arcs_size, to_delta); 1114 if (from_delta) { 1115 ASSERT3U(old_state->arcs_size, >=, from_delta); 1116 atomic_add_64(&old_state->arcs_size, -from_delta); 1117 } 1118 ab->b_state = new_state; 1119 1120 /* adjust l2arc hdr stats */ 1121 if (new_state == arc_l2c_only) 1122 l2arc_hdr_stat_add(); 1123 else if (old_state == arc_l2c_only) 1124 l2arc_hdr_stat_remove(); 1125 } 1126 1127 void 1128 arc_space_consume(uint64_t space) 1129 { 1130 atomic_add_64(&arc_meta_used, space); 1131 atomic_add_64(&arc_size, space); 1132 } 1133 1134 void 1135 arc_space_return(uint64_t space) 1136 { 1137 ASSERT(arc_meta_used >= space); 1138 if (arc_meta_max < arc_meta_used) 1139 arc_meta_max = arc_meta_used; 1140 atomic_add_64(&arc_meta_used, -space); 1141 ASSERT(arc_size >= space); 1142 atomic_add_64(&arc_size, -space); 1143 } 1144 1145 void * 1146 arc_data_buf_alloc(uint64_t size) 1147 { 1148 if (arc_evict_needed(ARC_BUFC_DATA)) 1149 cv_signal(&arc_reclaim_thr_cv); 1150 atomic_add_64(&arc_size, size); 1151 return (zio_data_buf_alloc(size)); 1152 } 1153 1154 void 1155 arc_data_buf_free(void *buf, uint64_t size) 1156 { 1157 zio_data_buf_free(buf, size); 1158 ASSERT(arc_size >= size); 1159 atomic_add_64(&arc_size, -size); 1160 } 1161 1162 arc_buf_t * 1163 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1164 { 1165 arc_buf_hdr_t *hdr; 1166 arc_buf_t *buf; 1167 1168 ASSERT3U(size, >, 0); 1169 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1170 ASSERT(BUF_EMPTY(hdr)); 1171 hdr->b_size = size; 1172 hdr->b_type = type; 1173 hdr->b_spa = spa; 1174 hdr->b_state = arc_anon; 1175 hdr->b_arc_access = 0; 1176 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1177 buf->b_hdr = hdr; 1178 buf->b_data = NULL; 1179 buf->b_efunc = NULL; 1180 buf->b_private = NULL; 1181 buf->b_next = NULL; 1182 hdr->b_buf = buf; 1183 arc_get_data_buf(buf); 1184 hdr->b_datacnt = 1; 1185 hdr->b_flags = 0; 1186 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1187 (void) refcount_add(&hdr->b_refcnt, tag); 1188 1189 return (buf); 1190 } 1191 1192 static arc_buf_t * 1193 arc_buf_clone(arc_buf_t *from) 1194 { 1195 arc_buf_t *buf; 1196 arc_buf_hdr_t *hdr = from->b_hdr; 1197 uint64_t size = hdr->b_size; 1198 1199 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1200 buf->b_hdr = hdr; 1201 buf->b_data = NULL; 1202 buf->b_efunc = NULL; 1203 buf->b_private = NULL; 1204 buf->b_next = hdr->b_buf; 1205 hdr->b_buf = buf; 1206 arc_get_data_buf(buf); 1207 bcopy(from->b_data, buf->b_data, size); 1208 hdr->b_datacnt += 1; 1209 return (buf); 1210 } 1211 1212 void 1213 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1214 { 1215 arc_buf_hdr_t *hdr; 1216 kmutex_t *hash_lock; 1217 1218 /* 1219 * Check to see if this buffer is evicted. Callers 1220 * must verify b_data != NULL to know if the add_ref 1221 * was successful. 1222 */ 1223 rw_enter(&buf->b_lock, RW_READER); 1224 if (buf->b_data == NULL) { 1225 rw_exit(&buf->b_lock); 1226 return; 1227 } 1228 hdr = buf->b_hdr; 1229 ASSERT(hdr != NULL); 1230 hash_lock = HDR_LOCK(hdr); 1231 mutex_enter(hash_lock); 1232 rw_exit(&buf->b_lock); 1233 1234 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1235 add_reference(hdr, hash_lock, tag); 1236 arc_access(hdr, hash_lock); 1237 mutex_exit(hash_lock); 1238 ARCSTAT_BUMP(arcstat_hits); 1239 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1240 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1241 data, metadata, hits); 1242 } 1243 1244 /* 1245 * Free the arc data buffer. If it is an l2arc write in progress, 1246 * the buffer is placed on l2arc_free_on_write to be freed later. 1247 */ 1248 static void 1249 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1250 void *data, size_t size) 1251 { 1252 if (HDR_L2_WRITING(hdr)) { 1253 l2arc_data_free_t *df; 1254 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1255 df->l2df_data = data; 1256 df->l2df_size = size; 1257 df->l2df_func = free_func; 1258 mutex_enter(&l2arc_free_on_write_mtx); 1259 list_insert_head(l2arc_free_on_write, df); 1260 mutex_exit(&l2arc_free_on_write_mtx); 1261 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1262 } else { 1263 free_func(data, size); 1264 } 1265 } 1266 1267 static void 1268 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1269 { 1270 arc_buf_t **bufp; 1271 1272 /* free up data associated with the buf */ 1273 if (buf->b_data) { 1274 arc_state_t *state = buf->b_hdr->b_state; 1275 uint64_t size = buf->b_hdr->b_size; 1276 arc_buf_contents_t type = buf->b_hdr->b_type; 1277 1278 arc_cksum_verify(buf); 1279 if (!recycle) { 1280 if (type == ARC_BUFC_METADATA) { 1281 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1282 buf->b_data, size); 1283 arc_space_return(size); 1284 } else { 1285 ASSERT(type == ARC_BUFC_DATA); 1286 arc_buf_data_free(buf->b_hdr, 1287 zio_data_buf_free, buf->b_data, size); 1288 atomic_add_64(&arc_size, -size); 1289 } 1290 } 1291 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1292 uint64_t *cnt = &state->arcs_lsize[type]; 1293 1294 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1295 ASSERT(state != arc_anon); 1296 1297 ASSERT3U(*cnt, >=, size); 1298 atomic_add_64(cnt, -size); 1299 } 1300 ASSERT3U(state->arcs_size, >=, size); 1301 atomic_add_64(&state->arcs_size, -size); 1302 buf->b_data = NULL; 1303 ASSERT(buf->b_hdr->b_datacnt > 0); 1304 buf->b_hdr->b_datacnt -= 1; 1305 } 1306 1307 /* only remove the buf if requested */ 1308 if (!all) 1309 return; 1310 1311 /* remove the buf from the hdr list */ 1312 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1313 continue; 1314 *bufp = buf->b_next; 1315 1316 ASSERT(buf->b_efunc == NULL); 1317 1318 /* clean up the buf */ 1319 buf->b_hdr = NULL; 1320 kmem_cache_free(buf_cache, buf); 1321 } 1322 1323 static void 1324 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1325 { 1326 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1327 ASSERT3P(hdr->b_state, ==, arc_anon); 1328 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1329 ASSERT(!(hdr->b_flags & ARC_STORED)); 1330 1331 if (hdr->b_l2hdr != NULL) { 1332 if (!MUTEX_HELD(&l2arc_buflist_mtx)) { 1333 /* 1334 * To prevent arc_free() and l2arc_evict() from 1335 * attempting to free the same buffer at the same time, 1336 * a FREE_IN_PROGRESS flag is given to arc_free() to 1337 * give it priority. l2arc_evict() can't destroy this 1338 * header while we are waiting on l2arc_buflist_mtx. 1339 * 1340 * The hdr may be removed from l2ad_buflist before we 1341 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1342 */ 1343 mutex_enter(&l2arc_buflist_mtx); 1344 if (hdr->b_l2hdr != NULL) { 1345 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, 1346 hdr); 1347 } 1348 mutex_exit(&l2arc_buflist_mtx); 1349 } else { 1350 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr); 1351 } 1352 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1353 kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t)); 1354 if (hdr->b_state == arc_l2c_only) 1355 l2arc_hdr_stat_remove(); 1356 hdr->b_l2hdr = NULL; 1357 } 1358 1359 if (!BUF_EMPTY(hdr)) { 1360 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1361 bzero(&hdr->b_dva, sizeof (dva_t)); 1362 hdr->b_birth = 0; 1363 hdr->b_cksum0 = 0; 1364 } 1365 while (hdr->b_buf) { 1366 arc_buf_t *buf = hdr->b_buf; 1367 1368 if (buf->b_efunc) { 1369 mutex_enter(&arc_eviction_mtx); 1370 rw_enter(&buf->b_lock, RW_WRITER); 1371 ASSERT(buf->b_hdr != NULL); 1372 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1373 hdr->b_buf = buf->b_next; 1374 buf->b_hdr = &arc_eviction_hdr; 1375 buf->b_next = arc_eviction_list; 1376 arc_eviction_list = buf; 1377 rw_exit(&buf->b_lock); 1378 mutex_exit(&arc_eviction_mtx); 1379 } else { 1380 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1381 } 1382 } 1383 if (hdr->b_freeze_cksum != NULL) { 1384 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1385 hdr->b_freeze_cksum = NULL; 1386 } 1387 1388 ASSERT(!list_link_active(&hdr->b_arc_node)); 1389 ASSERT3P(hdr->b_hash_next, ==, NULL); 1390 ASSERT3P(hdr->b_acb, ==, NULL); 1391 kmem_cache_free(hdr_cache, hdr); 1392 } 1393 1394 void 1395 arc_buf_free(arc_buf_t *buf, void *tag) 1396 { 1397 arc_buf_hdr_t *hdr = buf->b_hdr; 1398 int hashed = hdr->b_state != arc_anon; 1399 1400 ASSERT(buf->b_efunc == NULL); 1401 ASSERT(buf->b_data != NULL); 1402 1403 if (hashed) { 1404 kmutex_t *hash_lock = HDR_LOCK(hdr); 1405 1406 mutex_enter(hash_lock); 1407 (void) remove_reference(hdr, hash_lock, tag); 1408 if (hdr->b_datacnt > 1) 1409 arc_buf_destroy(buf, FALSE, TRUE); 1410 else 1411 hdr->b_flags |= ARC_BUF_AVAILABLE; 1412 mutex_exit(hash_lock); 1413 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1414 int destroy_hdr; 1415 /* 1416 * We are in the middle of an async write. Don't destroy 1417 * this buffer unless the write completes before we finish 1418 * decrementing the reference count. 1419 */ 1420 mutex_enter(&arc_eviction_mtx); 1421 (void) remove_reference(hdr, NULL, tag); 1422 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1423 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1424 mutex_exit(&arc_eviction_mtx); 1425 if (destroy_hdr) 1426 arc_hdr_destroy(hdr); 1427 } else { 1428 if (remove_reference(hdr, NULL, tag) > 0) { 1429 ASSERT(HDR_IO_ERROR(hdr)); 1430 arc_buf_destroy(buf, FALSE, TRUE); 1431 } else { 1432 arc_hdr_destroy(hdr); 1433 } 1434 } 1435 } 1436 1437 int 1438 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1439 { 1440 arc_buf_hdr_t *hdr = buf->b_hdr; 1441 kmutex_t *hash_lock = HDR_LOCK(hdr); 1442 int no_callback = (buf->b_efunc == NULL); 1443 1444 if (hdr->b_state == arc_anon) { 1445 arc_buf_free(buf, tag); 1446 return (no_callback); 1447 } 1448 1449 mutex_enter(hash_lock); 1450 ASSERT(hdr->b_state != arc_anon); 1451 ASSERT(buf->b_data != NULL); 1452 1453 (void) remove_reference(hdr, hash_lock, tag); 1454 if (hdr->b_datacnt > 1) { 1455 if (no_callback) 1456 arc_buf_destroy(buf, FALSE, TRUE); 1457 } else if (no_callback) { 1458 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1459 hdr->b_flags |= ARC_BUF_AVAILABLE; 1460 } 1461 ASSERT(no_callback || hdr->b_datacnt > 1 || 1462 refcount_is_zero(&hdr->b_refcnt)); 1463 mutex_exit(hash_lock); 1464 return (no_callback); 1465 } 1466 1467 int 1468 arc_buf_size(arc_buf_t *buf) 1469 { 1470 return (buf->b_hdr->b_size); 1471 } 1472 1473 /* 1474 * Evict buffers from list until we've removed the specified number of 1475 * bytes. Move the removed buffers to the appropriate evict state. 1476 * If the recycle flag is set, then attempt to "recycle" a buffer: 1477 * - look for a buffer to evict that is `bytes' long. 1478 * - return the data block from this buffer rather than freeing it. 1479 * This flag is used by callers that are trying to make space for a 1480 * new buffer in a full arc cache. 1481 * 1482 * This function makes a "best effort". It skips over any buffers 1483 * it can't get a hash_lock on, and so may not catch all candidates. 1484 * It may also return without evicting as much space as requested. 1485 */ 1486 static void * 1487 arc_evict(arc_state_t *state, spa_t *spa, int64_t bytes, boolean_t recycle, 1488 arc_buf_contents_t type) 1489 { 1490 arc_state_t *evicted_state; 1491 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1492 arc_buf_hdr_t *ab, *ab_prev = NULL; 1493 list_t *list = &state->arcs_list[type]; 1494 kmutex_t *hash_lock; 1495 boolean_t have_lock; 1496 void *stolen = NULL; 1497 1498 ASSERT(state == arc_mru || state == arc_mfu); 1499 1500 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1501 1502 mutex_enter(&state->arcs_mtx); 1503 mutex_enter(&evicted_state->arcs_mtx); 1504 1505 for (ab = list_tail(list); ab; ab = ab_prev) { 1506 ab_prev = list_prev(list, ab); 1507 /* prefetch buffers have a minimum lifespan */ 1508 if (HDR_IO_IN_PROGRESS(ab) || 1509 (spa && ab->b_spa != spa) || 1510 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1511 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 1512 skipped++; 1513 continue; 1514 } 1515 /* "lookahead" for better eviction candidate */ 1516 if (recycle && ab->b_size != bytes && 1517 ab_prev && ab_prev->b_size == bytes) 1518 continue; 1519 hash_lock = HDR_LOCK(ab); 1520 have_lock = MUTEX_HELD(hash_lock); 1521 if (have_lock || mutex_tryenter(hash_lock)) { 1522 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1523 ASSERT(ab->b_datacnt > 0); 1524 while (ab->b_buf) { 1525 arc_buf_t *buf = ab->b_buf; 1526 if (!rw_tryenter(&buf->b_lock, RW_WRITER)) { 1527 missed += 1; 1528 break; 1529 } 1530 if (buf->b_data) { 1531 bytes_evicted += ab->b_size; 1532 if (recycle && ab->b_type == type && 1533 ab->b_size == bytes && 1534 !HDR_L2_WRITING(ab)) { 1535 stolen = buf->b_data; 1536 recycle = FALSE; 1537 } 1538 } 1539 if (buf->b_efunc) { 1540 mutex_enter(&arc_eviction_mtx); 1541 arc_buf_destroy(buf, 1542 buf->b_data == stolen, FALSE); 1543 ab->b_buf = buf->b_next; 1544 buf->b_hdr = &arc_eviction_hdr; 1545 buf->b_next = arc_eviction_list; 1546 arc_eviction_list = buf; 1547 mutex_exit(&arc_eviction_mtx); 1548 rw_exit(&buf->b_lock); 1549 } else { 1550 rw_exit(&buf->b_lock); 1551 arc_buf_destroy(buf, 1552 buf->b_data == stolen, TRUE); 1553 } 1554 } 1555 if (ab->b_datacnt == 0) { 1556 arc_change_state(evicted_state, ab, hash_lock); 1557 ASSERT(HDR_IN_HASH_TABLE(ab)); 1558 ab->b_flags |= ARC_IN_HASH_TABLE; 1559 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1560 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1561 } 1562 if (!have_lock) 1563 mutex_exit(hash_lock); 1564 if (bytes >= 0 && bytes_evicted >= bytes) 1565 break; 1566 } else { 1567 missed += 1; 1568 } 1569 } 1570 1571 mutex_exit(&evicted_state->arcs_mtx); 1572 mutex_exit(&state->arcs_mtx); 1573 1574 if (bytes_evicted < bytes) 1575 dprintf("only evicted %lld bytes from %x", 1576 (longlong_t)bytes_evicted, state); 1577 1578 if (skipped) 1579 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1580 1581 if (missed) 1582 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1583 1584 /* 1585 * We have just evicted some date into the ghost state, make 1586 * sure we also adjust the ghost state size if necessary. 1587 */ 1588 if (arc_no_grow && 1589 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1590 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1591 arc_mru_ghost->arcs_size - arc_c; 1592 1593 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1594 int64_t todelete = 1595 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1596 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1597 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1598 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1599 arc_mru_ghost->arcs_size + 1600 arc_mfu_ghost->arcs_size - arc_c); 1601 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1602 } 1603 } 1604 1605 return (stolen); 1606 } 1607 1608 /* 1609 * Remove buffers from list until we've removed the specified number of 1610 * bytes. Destroy the buffers that are removed. 1611 */ 1612 static void 1613 arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes) 1614 { 1615 arc_buf_hdr_t *ab, *ab_prev; 1616 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1617 kmutex_t *hash_lock; 1618 uint64_t bytes_deleted = 0; 1619 uint64_t bufs_skipped = 0; 1620 1621 ASSERT(GHOST_STATE(state)); 1622 top: 1623 mutex_enter(&state->arcs_mtx); 1624 for (ab = list_tail(list); ab; ab = ab_prev) { 1625 ab_prev = list_prev(list, ab); 1626 if (spa && ab->b_spa != spa) 1627 continue; 1628 hash_lock = HDR_LOCK(ab); 1629 if (mutex_tryenter(hash_lock)) { 1630 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1631 ASSERT(ab->b_buf == NULL); 1632 ARCSTAT_BUMP(arcstat_deleted); 1633 bytes_deleted += ab->b_size; 1634 1635 if (ab->b_l2hdr != NULL) { 1636 /* 1637 * This buffer is cached on the 2nd Level ARC; 1638 * don't destroy the header. 1639 */ 1640 arc_change_state(arc_l2c_only, ab, hash_lock); 1641 mutex_exit(hash_lock); 1642 } else { 1643 arc_change_state(arc_anon, ab, hash_lock); 1644 mutex_exit(hash_lock); 1645 arc_hdr_destroy(ab); 1646 } 1647 1648 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1649 if (bytes >= 0 && bytes_deleted >= bytes) 1650 break; 1651 } else { 1652 if (bytes < 0) { 1653 mutex_exit(&state->arcs_mtx); 1654 mutex_enter(hash_lock); 1655 mutex_exit(hash_lock); 1656 goto top; 1657 } 1658 bufs_skipped += 1; 1659 } 1660 } 1661 mutex_exit(&state->arcs_mtx); 1662 1663 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1664 (bytes < 0 || bytes_deleted < bytes)) { 1665 list = &state->arcs_list[ARC_BUFC_METADATA]; 1666 goto top; 1667 } 1668 1669 if (bufs_skipped) { 1670 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1671 ASSERT(bytes >= 0); 1672 } 1673 1674 if (bytes_deleted < bytes) 1675 dprintf("only deleted %lld bytes from %p", 1676 (longlong_t)bytes_deleted, state); 1677 } 1678 1679 static void 1680 arc_adjust(void) 1681 { 1682 int64_t top_sz, mru_over, arc_over, todelete; 1683 1684 top_sz = arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used; 1685 1686 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1687 int64_t toevict = 1688 MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], top_sz - arc_p); 1689 (void) arc_evict(arc_mru, NULL, toevict, FALSE, ARC_BUFC_DATA); 1690 top_sz = arc_anon->arcs_size + arc_mru->arcs_size; 1691 } 1692 1693 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1694 int64_t toevict = 1695 MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], top_sz - arc_p); 1696 (void) arc_evict(arc_mru, NULL, toevict, FALSE, 1697 ARC_BUFC_METADATA); 1698 top_sz = arc_anon->arcs_size + arc_mru->arcs_size; 1699 } 1700 1701 mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c; 1702 1703 if (mru_over > 0) { 1704 if (arc_mru_ghost->arcs_size > 0) { 1705 todelete = MIN(arc_mru_ghost->arcs_size, mru_over); 1706 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1707 } 1708 } 1709 1710 if ((arc_over = arc_size - arc_c) > 0) { 1711 int64_t tbl_over; 1712 1713 if (arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1714 int64_t toevict = 1715 MIN(arc_mfu->arcs_lsize[ARC_BUFC_DATA], arc_over); 1716 (void) arc_evict(arc_mfu, NULL, toevict, FALSE, 1717 ARC_BUFC_DATA); 1718 arc_over = arc_size - arc_c; 1719 } 1720 1721 if (arc_over > 0 && 1722 arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1723 int64_t toevict = 1724 MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA], 1725 arc_over); 1726 (void) arc_evict(arc_mfu, NULL, toevict, FALSE, 1727 ARC_BUFC_METADATA); 1728 } 1729 1730 tbl_over = arc_size + arc_mru_ghost->arcs_size + 1731 arc_mfu_ghost->arcs_size - arc_c * 2; 1732 1733 if (tbl_over > 0 && arc_mfu_ghost->arcs_size > 0) { 1734 todelete = MIN(arc_mfu_ghost->arcs_size, tbl_over); 1735 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1736 } 1737 } 1738 } 1739 1740 static void 1741 arc_do_user_evicts(void) 1742 { 1743 mutex_enter(&arc_eviction_mtx); 1744 while (arc_eviction_list != NULL) { 1745 arc_buf_t *buf = arc_eviction_list; 1746 arc_eviction_list = buf->b_next; 1747 rw_enter(&buf->b_lock, RW_WRITER); 1748 buf->b_hdr = NULL; 1749 rw_exit(&buf->b_lock); 1750 mutex_exit(&arc_eviction_mtx); 1751 1752 if (buf->b_efunc != NULL) 1753 VERIFY(buf->b_efunc(buf) == 0); 1754 1755 buf->b_efunc = NULL; 1756 buf->b_private = NULL; 1757 kmem_cache_free(buf_cache, buf); 1758 mutex_enter(&arc_eviction_mtx); 1759 } 1760 mutex_exit(&arc_eviction_mtx); 1761 } 1762 1763 /* 1764 * Flush all *evictable* data from the cache for the given spa. 1765 * NOTE: this will not touch "active" (i.e. referenced) data. 1766 */ 1767 void 1768 arc_flush(spa_t *spa) 1769 { 1770 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1771 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_DATA); 1772 if (spa) 1773 break; 1774 } 1775 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1776 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_METADATA); 1777 if (spa) 1778 break; 1779 } 1780 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1781 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_DATA); 1782 if (spa) 1783 break; 1784 } 1785 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1786 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_METADATA); 1787 if (spa) 1788 break; 1789 } 1790 1791 arc_evict_ghost(arc_mru_ghost, spa, -1); 1792 arc_evict_ghost(arc_mfu_ghost, spa, -1); 1793 1794 mutex_enter(&arc_reclaim_thr_lock); 1795 arc_do_user_evicts(); 1796 mutex_exit(&arc_reclaim_thr_lock); 1797 ASSERT(spa || arc_eviction_list == NULL); 1798 } 1799 1800 int arc_shrink_shift = 5; /* log2(fraction of arc to reclaim) */ 1801 1802 void 1803 arc_shrink(void) 1804 { 1805 if (arc_c > arc_c_min) { 1806 uint64_t to_free; 1807 1808 #ifdef _KERNEL 1809 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1810 #else 1811 to_free = arc_c >> arc_shrink_shift; 1812 #endif 1813 if (arc_c > arc_c_min + to_free) 1814 atomic_add_64(&arc_c, -to_free); 1815 else 1816 arc_c = arc_c_min; 1817 1818 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1819 if (arc_c > arc_size) 1820 arc_c = MAX(arc_size, arc_c_min); 1821 if (arc_p > arc_c) 1822 arc_p = (arc_c >> 1); 1823 ASSERT(arc_c >= arc_c_min); 1824 ASSERT((int64_t)arc_p >= 0); 1825 } 1826 1827 if (arc_size > arc_c) 1828 arc_adjust(); 1829 } 1830 1831 static int 1832 arc_reclaim_needed(void) 1833 { 1834 uint64_t extra; 1835 1836 #ifdef _KERNEL 1837 1838 if (needfree) 1839 return (1); 1840 1841 /* 1842 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1843 */ 1844 extra = desfree; 1845 1846 /* 1847 * check that we're out of range of the pageout scanner. It starts to 1848 * schedule paging if freemem is less than lotsfree and needfree. 1849 * lotsfree is the high-water mark for pageout, and needfree is the 1850 * number of needed free pages. We add extra pages here to make sure 1851 * the scanner doesn't start up while we're freeing memory. 1852 */ 1853 if (freemem < lotsfree + needfree + extra) 1854 return (1); 1855 1856 /* 1857 * check to make sure that swapfs has enough space so that anon 1858 * reservations can still succeed. anon_resvmem() checks that the 1859 * availrmem is greater than swapfs_minfree, and the number of reserved 1860 * swap pages. We also add a bit of extra here just to prevent 1861 * circumstances from getting really dire. 1862 */ 1863 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1864 return (1); 1865 1866 #if defined(__i386) 1867 /* 1868 * If we're on an i386 platform, it's possible that we'll exhaust the 1869 * kernel heap space before we ever run out of available physical 1870 * memory. Most checks of the size of the heap_area compare against 1871 * tune.t_minarmem, which is the minimum available real memory that we 1872 * can have in the system. However, this is generally fixed at 25 pages 1873 * which is so low that it's useless. In this comparison, we seek to 1874 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1875 * heap is allocated. (Or, in the calculation, if less than 1/4th is 1876 * free) 1877 */ 1878 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1879 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1880 return (1); 1881 #endif 1882 1883 #else 1884 if (spa_get_random(100) == 0) 1885 return (1); 1886 #endif 1887 return (0); 1888 } 1889 1890 static void 1891 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1892 { 1893 size_t i; 1894 kmem_cache_t *prev_cache = NULL; 1895 kmem_cache_t *prev_data_cache = NULL; 1896 extern kmem_cache_t *zio_buf_cache[]; 1897 extern kmem_cache_t *zio_data_buf_cache[]; 1898 1899 #ifdef _KERNEL 1900 if (arc_meta_used >= arc_meta_limit) { 1901 /* 1902 * We are exceeding our meta-data cache limit. 1903 * Purge some DNLC entries to release holds on meta-data. 1904 */ 1905 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1906 } 1907 #if defined(__i386) 1908 /* 1909 * Reclaim unused memory from all kmem caches. 1910 */ 1911 kmem_reap(); 1912 #endif 1913 #endif 1914 1915 /* 1916 * An aggressive reclamation will shrink the cache size as well as 1917 * reap free buffers from the arc kmem caches. 1918 */ 1919 if (strat == ARC_RECLAIM_AGGR) 1920 arc_shrink(); 1921 1922 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1923 if (zio_buf_cache[i] != prev_cache) { 1924 prev_cache = zio_buf_cache[i]; 1925 kmem_cache_reap_now(zio_buf_cache[i]); 1926 } 1927 if (zio_data_buf_cache[i] != prev_data_cache) { 1928 prev_data_cache = zio_data_buf_cache[i]; 1929 kmem_cache_reap_now(zio_data_buf_cache[i]); 1930 } 1931 } 1932 kmem_cache_reap_now(buf_cache); 1933 kmem_cache_reap_now(hdr_cache); 1934 } 1935 1936 static void 1937 arc_reclaim_thread(void) 1938 { 1939 clock_t growtime = 0; 1940 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1941 callb_cpr_t cpr; 1942 1943 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1944 1945 mutex_enter(&arc_reclaim_thr_lock); 1946 while (arc_thread_exit == 0) { 1947 if (arc_reclaim_needed()) { 1948 1949 if (arc_no_grow) { 1950 if (last_reclaim == ARC_RECLAIM_CONS) { 1951 last_reclaim = ARC_RECLAIM_AGGR; 1952 } else { 1953 last_reclaim = ARC_RECLAIM_CONS; 1954 } 1955 } else { 1956 arc_no_grow = TRUE; 1957 last_reclaim = ARC_RECLAIM_AGGR; 1958 membar_producer(); 1959 } 1960 1961 /* reset the growth delay for every reclaim */ 1962 growtime = lbolt + (arc_grow_retry * hz); 1963 1964 arc_kmem_reap_now(last_reclaim); 1965 arc_warm = B_TRUE; 1966 1967 } else if (arc_no_grow && lbolt >= growtime) { 1968 arc_no_grow = FALSE; 1969 } 1970 1971 if (2 * arc_c < arc_size + 1972 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size) 1973 arc_adjust(); 1974 1975 if (arc_eviction_list != NULL) 1976 arc_do_user_evicts(); 1977 1978 /* block until needed, or one second, whichever is shorter */ 1979 CALLB_CPR_SAFE_BEGIN(&cpr); 1980 (void) cv_timedwait(&arc_reclaim_thr_cv, 1981 &arc_reclaim_thr_lock, (hz)); 1982 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1983 } 1984 1985 arc_thread_exit = 0; 1986 cv_broadcast(&arc_reclaim_thr_cv); 1987 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1988 thread_exit(); 1989 } 1990 1991 /* 1992 * Adapt arc info given the number of bytes we are trying to add and 1993 * the state that we are comming from. This function is only called 1994 * when we are adding new content to the cache. 1995 */ 1996 static void 1997 arc_adapt(int bytes, arc_state_t *state) 1998 { 1999 int mult; 2000 2001 if (state == arc_l2c_only) 2002 return; 2003 2004 ASSERT(bytes > 0); 2005 /* 2006 * Adapt the target size of the MRU list: 2007 * - if we just hit in the MRU ghost list, then increase 2008 * the target size of the MRU list. 2009 * - if we just hit in the MFU ghost list, then increase 2010 * the target size of the MFU list by decreasing the 2011 * target size of the MRU list. 2012 */ 2013 if (state == arc_mru_ghost) { 2014 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2015 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2016 2017 arc_p = MIN(arc_c, arc_p + bytes * mult); 2018 } else if (state == arc_mfu_ghost) { 2019 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2020 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2021 2022 arc_p = MAX(0, (int64_t)arc_p - bytes * mult); 2023 } 2024 ASSERT((int64_t)arc_p >= 0); 2025 2026 if (arc_reclaim_needed()) { 2027 cv_signal(&arc_reclaim_thr_cv); 2028 return; 2029 } 2030 2031 if (arc_no_grow) 2032 return; 2033 2034 if (arc_c >= arc_c_max) 2035 return; 2036 2037 /* 2038 * If we're within (2 * maxblocksize) bytes of the target 2039 * cache size, increment the target cache size 2040 */ 2041 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2042 atomic_add_64(&arc_c, (int64_t)bytes); 2043 if (arc_c > arc_c_max) 2044 arc_c = arc_c_max; 2045 else if (state == arc_anon) 2046 atomic_add_64(&arc_p, (int64_t)bytes); 2047 if (arc_p > arc_c) 2048 arc_p = arc_c; 2049 } 2050 ASSERT((int64_t)arc_p >= 0); 2051 } 2052 2053 /* 2054 * Check if the cache has reached its limits and eviction is required 2055 * prior to insert. 2056 */ 2057 static int 2058 arc_evict_needed(arc_buf_contents_t type) 2059 { 2060 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2061 return (1); 2062 2063 #ifdef _KERNEL 2064 /* 2065 * If zio data pages are being allocated out of a separate heap segment, 2066 * then enforce that the size of available vmem for this area remains 2067 * above about 1/32nd free. 2068 */ 2069 if (type == ARC_BUFC_DATA && zio_arena != NULL && 2070 vmem_size(zio_arena, VMEM_FREE) < 2071 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 2072 return (1); 2073 #endif 2074 2075 if (arc_reclaim_needed()) 2076 return (1); 2077 2078 return (arc_size > arc_c); 2079 } 2080 2081 /* 2082 * The buffer, supplied as the first argument, needs a data block. 2083 * So, if we are at cache max, determine which cache should be victimized. 2084 * We have the following cases: 2085 * 2086 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2087 * In this situation if we're out of space, but the resident size of the MFU is 2088 * under the limit, victimize the MFU cache to satisfy this insertion request. 2089 * 2090 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2091 * Here, we've used up all of the available space for the MRU, so we need to 2092 * evict from our own cache instead. Evict from the set of resident MRU 2093 * entries. 2094 * 2095 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2096 * c minus p represents the MFU space in the cache, since p is the size of the 2097 * cache that is dedicated to the MRU. In this situation there's still space on 2098 * the MFU side, so the MRU side needs to be victimized. 2099 * 2100 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2101 * MFU's resident set is consuming more space than it has been allotted. In 2102 * this situation, we must victimize our own cache, the MFU, for this insertion. 2103 */ 2104 static void 2105 arc_get_data_buf(arc_buf_t *buf) 2106 { 2107 arc_state_t *state = buf->b_hdr->b_state; 2108 uint64_t size = buf->b_hdr->b_size; 2109 arc_buf_contents_t type = buf->b_hdr->b_type; 2110 2111 arc_adapt(size, state); 2112 2113 /* 2114 * We have not yet reached cache maximum size, 2115 * just allocate a new buffer. 2116 */ 2117 if (!arc_evict_needed(type)) { 2118 if (type == ARC_BUFC_METADATA) { 2119 buf->b_data = zio_buf_alloc(size); 2120 arc_space_consume(size); 2121 } else { 2122 ASSERT(type == ARC_BUFC_DATA); 2123 buf->b_data = zio_data_buf_alloc(size); 2124 atomic_add_64(&arc_size, size); 2125 } 2126 goto out; 2127 } 2128 2129 /* 2130 * If we are prefetching from the mfu ghost list, this buffer 2131 * will end up on the mru list; so steal space from there. 2132 */ 2133 if (state == arc_mfu_ghost) 2134 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2135 else if (state == arc_mru_ghost) 2136 state = arc_mru; 2137 2138 if (state == arc_mru || state == arc_anon) { 2139 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2140 state = (arc_mfu->arcs_lsize[type] > 0 && 2141 arc_p > mru_used) ? arc_mfu : arc_mru; 2142 } else { 2143 /* MFU cases */ 2144 uint64_t mfu_space = arc_c - arc_p; 2145 state = (arc_mru->arcs_lsize[type] > 0 && 2146 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2147 } 2148 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2149 if (type == ARC_BUFC_METADATA) { 2150 buf->b_data = zio_buf_alloc(size); 2151 arc_space_consume(size); 2152 } else { 2153 ASSERT(type == ARC_BUFC_DATA); 2154 buf->b_data = zio_data_buf_alloc(size); 2155 atomic_add_64(&arc_size, size); 2156 } 2157 ARCSTAT_BUMP(arcstat_recycle_miss); 2158 } 2159 ASSERT(buf->b_data != NULL); 2160 out: 2161 /* 2162 * Update the state size. Note that ghost states have a 2163 * "ghost size" and so don't need to be updated. 2164 */ 2165 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2166 arc_buf_hdr_t *hdr = buf->b_hdr; 2167 2168 atomic_add_64(&hdr->b_state->arcs_size, size); 2169 if (list_link_active(&hdr->b_arc_node)) { 2170 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2171 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2172 } 2173 /* 2174 * If we are growing the cache, and we are adding anonymous 2175 * data, and we have outgrown arc_p, update arc_p 2176 */ 2177 if (arc_size < arc_c && hdr->b_state == arc_anon && 2178 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2179 arc_p = MIN(arc_c, arc_p + size); 2180 } 2181 } 2182 2183 /* 2184 * This routine is called whenever a buffer is accessed. 2185 * NOTE: the hash lock is dropped in this function. 2186 */ 2187 static void 2188 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2189 { 2190 ASSERT(MUTEX_HELD(hash_lock)); 2191 2192 if (buf->b_state == arc_anon) { 2193 /* 2194 * This buffer is not in the cache, and does not 2195 * appear in our "ghost" list. Add the new buffer 2196 * to the MRU state. 2197 */ 2198 2199 ASSERT(buf->b_arc_access == 0); 2200 buf->b_arc_access = lbolt; 2201 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2202 arc_change_state(arc_mru, buf, hash_lock); 2203 2204 } else if (buf->b_state == arc_mru) { 2205 /* 2206 * If this buffer is here because of a prefetch, then either: 2207 * - clear the flag if this is a "referencing" read 2208 * (any subsequent access will bump this into the MFU state). 2209 * or 2210 * - move the buffer to the head of the list if this is 2211 * another prefetch (to make it less likely to be evicted). 2212 */ 2213 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2214 if (refcount_count(&buf->b_refcnt) == 0) { 2215 ASSERT(list_link_active(&buf->b_arc_node)); 2216 } else { 2217 buf->b_flags &= ~ARC_PREFETCH; 2218 ARCSTAT_BUMP(arcstat_mru_hits); 2219 } 2220 buf->b_arc_access = lbolt; 2221 return; 2222 } 2223 2224 /* 2225 * This buffer has been "accessed" only once so far, 2226 * but it is still in the cache. Move it to the MFU 2227 * state. 2228 */ 2229 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 2230 /* 2231 * More than 125ms have passed since we 2232 * instantiated this buffer. Move it to the 2233 * most frequently used state. 2234 */ 2235 buf->b_arc_access = lbolt; 2236 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2237 arc_change_state(arc_mfu, buf, hash_lock); 2238 } 2239 ARCSTAT_BUMP(arcstat_mru_hits); 2240 } else if (buf->b_state == arc_mru_ghost) { 2241 arc_state_t *new_state; 2242 /* 2243 * This buffer has been "accessed" recently, but 2244 * was evicted from the cache. Move it to the 2245 * MFU state. 2246 */ 2247 2248 if (buf->b_flags & ARC_PREFETCH) { 2249 new_state = arc_mru; 2250 if (refcount_count(&buf->b_refcnt) > 0) 2251 buf->b_flags &= ~ARC_PREFETCH; 2252 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2253 } else { 2254 new_state = arc_mfu; 2255 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2256 } 2257 2258 buf->b_arc_access = lbolt; 2259 arc_change_state(new_state, buf, hash_lock); 2260 2261 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2262 } else if (buf->b_state == arc_mfu) { 2263 /* 2264 * This buffer has been accessed more than once and is 2265 * still in the cache. Keep it in the MFU state. 2266 * 2267 * NOTE: an add_reference() that occurred when we did 2268 * the arc_read() will have kicked this off the list. 2269 * If it was a prefetch, we will explicitly move it to 2270 * the head of the list now. 2271 */ 2272 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2273 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2274 ASSERT(list_link_active(&buf->b_arc_node)); 2275 } 2276 ARCSTAT_BUMP(arcstat_mfu_hits); 2277 buf->b_arc_access = lbolt; 2278 } else if (buf->b_state == arc_mfu_ghost) { 2279 arc_state_t *new_state = arc_mfu; 2280 /* 2281 * This buffer has been accessed more than once but has 2282 * been evicted from the cache. Move it back to the 2283 * MFU state. 2284 */ 2285 2286 if (buf->b_flags & ARC_PREFETCH) { 2287 /* 2288 * This is a prefetch access... 2289 * move this block back to the MRU state. 2290 */ 2291 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2292 new_state = arc_mru; 2293 } 2294 2295 buf->b_arc_access = lbolt; 2296 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2297 arc_change_state(new_state, buf, hash_lock); 2298 2299 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2300 } else if (buf->b_state == arc_l2c_only) { 2301 /* 2302 * This buffer is on the 2nd Level ARC. 2303 */ 2304 2305 buf->b_arc_access = lbolt; 2306 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2307 arc_change_state(arc_mfu, buf, hash_lock); 2308 } else { 2309 ASSERT(!"invalid arc state"); 2310 } 2311 } 2312 2313 /* a generic arc_done_func_t which you can use */ 2314 /* ARGSUSED */ 2315 void 2316 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2317 { 2318 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2319 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2320 } 2321 2322 /* a generic arc_done_func_t */ 2323 void 2324 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2325 { 2326 arc_buf_t **bufp = arg; 2327 if (zio && zio->io_error) { 2328 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2329 *bufp = NULL; 2330 } else { 2331 *bufp = buf; 2332 } 2333 } 2334 2335 static void 2336 arc_read_done(zio_t *zio) 2337 { 2338 arc_buf_hdr_t *hdr, *found; 2339 arc_buf_t *buf; 2340 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2341 kmutex_t *hash_lock; 2342 arc_callback_t *callback_list, *acb; 2343 int freeable = FALSE; 2344 2345 buf = zio->io_private; 2346 hdr = buf->b_hdr; 2347 2348 /* 2349 * The hdr was inserted into hash-table and removed from lists 2350 * prior to starting I/O. We should find this header, since 2351 * it's in the hash table, and it should be legit since it's 2352 * not possible to evict it during the I/O. The only possible 2353 * reason for it not to be found is if we were freed during the 2354 * read. 2355 */ 2356 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 2357 &hash_lock); 2358 2359 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2360 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2361 (found == hdr && HDR_L2_READING(hdr))); 2362 2363 hdr->b_flags &= ~ARC_L2_EVICTED; 2364 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2365 hdr->b_flags &= ~ARC_L2CACHE; 2366 2367 /* byteswap if necessary */ 2368 callback_list = hdr->b_acb; 2369 ASSERT(callback_list != NULL); 2370 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 2371 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2372 byteswap_uint64_array : 2373 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap; 2374 func(buf->b_data, hdr->b_size); 2375 } 2376 2377 arc_cksum_compute(buf, B_FALSE); 2378 2379 /* create copies of the data buffer for the callers */ 2380 abuf = buf; 2381 for (acb = callback_list; acb; acb = acb->acb_next) { 2382 if (acb->acb_done) { 2383 if (abuf == NULL) 2384 abuf = arc_buf_clone(buf); 2385 acb->acb_buf = abuf; 2386 abuf = NULL; 2387 } 2388 } 2389 hdr->b_acb = NULL; 2390 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2391 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2392 if (abuf == buf) 2393 hdr->b_flags |= ARC_BUF_AVAILABLE; 2394 2395 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2396 2397 if (zio->io_error != 0) { 2398 hdr->b_flags |= ARC_IO_ERROR; 2399 if (hdr->b_state != arc_anon) 2400 arc_change_state(arc_anon, hdr, hash_lock); 2401 if (HDR_IN_HASH_TABLE(hdr)) 2402 buf_hash_remove(hdr); 2403 freeable = refcount_is_zero(&hdr->b_refcnt); 2404 } 2405 2406 /* 2407 * Broadcast before we drop the hash_lock to avoid the possibility 2408 * that the hdr (and hence the cv) might be freed before we get to 2409 * the cv_broadcast(). 2410 */ 2411 cv_broadcast(&hdr->b_cv); 2412 2413 if (hash_lock) { 2414 /* 2415 * Only call arc_access on anonymous buffers. This is because 2416 * if we've issued an I/O for an evicted buffer, we've already 2417 * called arc_access (to prevent any simultaneous readers from 2418 * getting confused). 2419 */ 2420 if (zio->io_error == 0 && hdr->b_state == arc_anon) 2421 arc_access(hdr, hash_lock); 2422 mutex_exit(hash_lock); 2423 } else { 2424 /* 2425 * This block was freed while we waited for the read to 2426 * complete. It has been removed from the hash table and 2427 * moved to the anonymous state (so that it won't show up 2428 * in the cache). 2429 */ 2430 ASSERT3P(hdr->b_state, ==, arc_anon); 2431 freeable = refcount_is_zero(&hdr->b_refcnt); 2432 } 2433 2434 /* execute each callback and free its structure */ 2435 while ((acb = callback_list) != NULL) { 2436 if (acb->acb_done) 2437 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2438 2439 if (acb->acb_zio_dummy != NULL) { 2440 acb->acb_zio_dummy->io_error = zio->io_error; 2441 zio_nowait(acb->acb_zio_dummy); 2442 } 2443 2444 callback_list = acb->acb_next; 2445 kmem_free(acb, sizeof (arc_callback_t)); 2446 } 2447 2448 if (freeable) 2449 arc_hdr_destroy(hdr); 2450 } 2451 2452 /* 2453 * "Read" the block block at the specified DVA (in bp) via the 2454 * cache. If the block is found in the cache, invoke the provided 2455 * callback immediately and return. Note that the `zio' parameter 2456 * in the callback will be NULL in this case, since no IO was 2457 * required. If the block is not in the cache pass the read request 2458 * on to the spa with a substitute callback function, so that the 2459 * requested block will be added to the cache. 2460 * 2461 * If a read request arrives for a block that has a read in-progress, 2462 * either wait for the in-progress read to complete (and return the 2463 * results); or, if this is a read with a "done" func, add a record 2464 * to the read to invoke the "done" func when the read completes, 2465 * and return; or just return. 2466 * 2467 * arc_read_done() will invoke all the requested "done" functions 2468 * for readers of this block. 2469 * 2470 * Normal callers should use arc_read and pass the arc buffer and offset 2471 * for the bp. But if you know you don't need locking, you can use 2472 * arc_read_nolock. Callers cannot use a "done" function in a prefetch 2473 * call (i.e., with ARC_NOWAIT set). 2474 */ 2475 int 2476 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf, 2477 arc_done_func_t *done, void *private, int priority, int zio_flags, 2478 uint32_t *arc_flags, const zbookmark_t *zb) 2479 { 2480 int err; 2481 arc_buf_hdr_t *hdr = pbuf->b_hdr; 2482 2483 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); 2484 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); 2485 rw_enter(&pbuf->b_lock, RW_READER); 2486 2487 err = arc_read_nolock(pio, spa, bp, done, private, priority, 2488 zio_flags, arc_flags, zb); 2489 2490 ASSERT3P(hdr, ==, pbuf->b_hdr); 2491 rw_exit(&pbuf->b_lock); 2492 return (err); 2493 } 2494 2495 int 2496 arc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp, 2497 arc_done_func_t *done, void *private, int priority, int zio_flags, 2498 uint32_t *arc_flags, const zbookmark_t *zb) 2499 { 2500 arc_buf_hdr_t *hdr; 2501 arc_buf_t *buf; 2502 kmutex_t *hash_lock; 2503 zio_t *rzio; 2504 2505 top: 2506 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2507 if (hdr && hdr->b_datacnt > 0) { 2508 2509 *arc_flags |= ARC_CACHED; 2510 2511 if (HDR_IO_IN_PROGRESS(hdr)) { 2512 2513 if (*arc_flags & ARC_WAIT) { 2514 cv_wait(&hdr->b_cv, hash_lock); 2515 mutex_exit(hash_lock); 2516 goto top; 2517 } 2518 ASSERT(*arc_flags & ARC_NOWAIT); 2519 2520 if (done) { 2521 arc_callback_t *acb = NULL; 2522 2523 acb = kmem_zalloc(sizeof (arc_callback_t), 2524 KM_SLEEP); 2525 acb->acb_done = done; 2526 acb->acb_private = private; 2527 if (pio != NULL) 2528 acb->acb_zio_dummy = zio_null(pio, 2529 spa, NULL, NULL, zio_flags); 2530 2531 ASSERT(acb->acb_done != NULL); 2532 acb->acb_next = hdr->b_acb; 2533 hdr->b_acb = acb; 2534 add_reference(hdr, hash_lock, private); 2535 mutex_exit(hash_lock); 2536 return (0); 2537 } 2538 mutex_exit(hash_lock); 2539 return (0); 2540 } 2541 2542 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2543 2544 if (done) { 2545 add_reference(hdr, hash_lock, private); 2546 /* 2547 * If this block is already in use, create a new 2548 * copy of the data so that we will be guaranteed 2549 * that arc_release() will always succeed. 2550 */ 2551 buf = hdr->b_buf; 2552 ASSERT(buf); 2553 ASSERT(buf->b_data); 2554 if (HDR_BUF_AVAILABLE(hdr)) { 2555 ASSERT(buf->b_efunc == NULL); 2556 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2557 } else { 2558 buf = arc_buf_clone(buf); 2559 } 2560 } else if (*arc_flags & ARC_PREFETCH && 2561 refcount_count(&hdr->b_refcnt) == 0) { 2562 hdr->b_flags |= ARC_PREFETCH; 2563 } 2564 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2565 arc_access(hdr, hash_lock); 2566 if (*arc_flags & ARC_L2CACHE) 2567 hdr->b_flags |= ARC_L2CACHE; 2568 mutex_exit(hash_lock); 2569 ARCSTAT_BUMP(arcstat_hits); 2570 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2571 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2572 data, metadata, hits); 2573 2574 if (done) 2575 done(NULL, buf, private); 2576 } else { 2577 uint64_t size = BP_GET_LSIZE(bp); 2578 arc_callback_t *acb; 2579 vdev_t *vd = NULL; 2580 daddr_t addr; 2581 2582 if (hdr == NULL) { 2583 /* this block is not in the cache */ 2584 arc_buf_hdr_t *exists; 2585 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2586 buf = arc_buf_alloc(spa, size, private, type); 2587 hdr = buf->b_hdr; 2588 hdr->b_dva = *BP_IDENTITY(bp); 2589 hdr->b_birth = bp->blk_birth; 2590 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2591 exists = buf_hash_insert(hdr, &hash_lock); 2592 if (exists) { 2593 /* somebody beat us to the hash insert */ 2594 mutex_exit(hash_lock); 2595 bzero(&hdr->b_dva, sizeof (dva_t)); 2596 hdr->b_birth = 0; 2597 hdr->b_cksum0 = 0; 2598 (void) arc_buf_remove_ref(buf, private); 2599 goto top; /* restart the IO request */ 2600 } 2601 /* if this is a prefetch, we don't have a reference */ 2602 if (*arc_flags & ARC_PREFETCH) { 2603 (void) remove_reference(hdr, hash_lock, 2604 private); 2605 hdr->b_flags |= ARC_PREFETCH; 2606 } 2607 if (*arc_flags & ARC_L2CACHE) 2608 hdr->b_flags |= ARC_L2CACHE; 2609 if (BP_GET_LEVEL(bp) > 0) 2610 hdr->b_flags |= ARC_INDIRECT; 2611 } else { 2612 /* this block is in the ghost cache */ 2613 ASSERT(GHOST_STATE(hdr->b_state)); 2614 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2615 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2616 ASSERT(hdr->b_buf == NULL); 2617 2618 /* if this is a prefetch, we don't have a reference */ 2619 if (*arc_flags & ARC_PREFETCH) 2620 hdr->b_flags |= ARC_PREFETCH; 2621 else 2622 add_reference(hdr, hash_lock, private); 2623 if (*arc_flags & ARC_L2CACHE) 2624 hdr->b_flags |= ARC_L2CACHE; 2625 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2626 buf->b_hdr = hdr; 2627 buf->b_data = NULL; 2628 buf->b_efunc = NULL; 2629 buf->b_private = NULL; 2630 buf->b_next = NULL; 2631 hdr->b_buf = buf; 2632 arc_get_data_buf(buf); 2633 ASSERT(hdr->b_datacnt == 0); 2634 hdr->b_datacnt = 1; 2635 2636 } 2637 2638 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2639 acb->acb_done = done; 2640 acb->acb_private = private; 2641 2642 ASSERT(hdr->b_acb == NULL); 2643 hdr->b_acb = acb; 2644 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2645 2646 /* 2647 * If the buffer has been evicted, migrate it to a present state 2648 * before issuing the I/O. Once we drop the hash-table lock, 2649 * the header will be marked as I/O in progress and have an 2650 * attached buffer. At this point, anybody who finds this 2651 * buffer ought to notice that it's legit but has a pending I/O. 2652 */ 2653 2654 if (GHOST_STATE(hdr->b_state)) 2655 arc_access(hdr, hash_lock); 2656 2657 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2658 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2659 addr = hdr->b_l2hdr->b_daddr; 2660 /* 2661 * Lock out device removal. 2662 */ 2663 if (vdev_is_dead(vd) || 2664 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2665 vd = NULL; 2666 } 2667 2668 mutex_exit(hash_lock); 2669 2670 ASSERT3U(hdr->b_size, ==, size); 2671 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 2672 zbookmark_t *, zb); 2673 ARCSTAT_BUMP(arcstat_misses); 2674 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2675 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2676 data, metadata, misses); 2677 2678 if (vd != NULL) { 2679 /* 2680 * Read from the L2ARC if the following are true: 2681 * 1. The L2ARC vdev was previously cached. 2682 * 2. This buffer still has L2ARC metadata. 2683 * 3. This buffer isn't currently writing to the L2ARC. 2684 * 4. The L2ARC entry wasn't evicted, which may 2685 * also have invalidated the vdev. 2686 */ 2687 if (hdr->b_l2hdr != NULL && 2688 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) { 2689 l2arc_read_callback_t *cb; 2690 2691 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2692 ARCSTAT_BUMP(arcstat_l2_hits); 2693 2694 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2695 KM_SLEEP); 2696 cb->l2rcb_buf = buf; 2697 cb->l2rcb_spa = spa; 2698 cb->l2rcb_bp = *bp; 2699 cb->l2rcb_zb = *zb; 2700 cb->l2rcb_flags = zio_flags; 2701 2702 /* 2703 * l2arc read. The SCL_L2ARC lock will be 2704 * released by l2arc_read_done(). 2705 */ 2706 rzio = zio_read_phys(pio, vd, addr, size, 2707 buf->b_data, ZIO_CHECKSUM_OFF, 2708 l2arc_read_done, cb, priority, zio_flags | 2709 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 2710 ZIO_FLAG_DONT_PROPAGATE | 2711 ZIO_FLAG_DONT_RETRY, B_FALSE); 2712 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2713 zio_t *, rzio); 2714 2715 if (*arc_flags & ARC_NOWAIT) { 2716 zio_nowait(rzio); 2717 return (0); 2718 } 2719 2720 ASSERT(*arc_flags & ARC_WAIT); 2721 if (zio_wait(rzio) == 0) 2722 return (0); 2723 2724 /* l2arc read error; goto zio_read() */ 2725 } else { 2726 DTRACE_PROBE1(l2arc__miss, 2727 arc_buf_hdr_t *, hdr); 2728 ARCSTAT_BUMP(arcstat_l2_misses); 2729 if (HDR_L2_WRITING(hdr)) 2730 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2731 spa_config_exit(spa, SCL_L2ARC, vd); 2732 } 2733 } 2734 2735 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2736 arc_read_done, buf, priority, zio_flags, zb); 2737 2738 if (*arc_flags & ARC_WAIT) 2739 return (zio_wait(rzio)); 2740 2741 ASSERT(*arc_flags & ARC_NOWAIT); 2742 zio_nowait(rzio); 2743 } 2744 return (0); 2745 } 2746 2747 /* 2748 * arc_read() variant to support pool traversal. If the block is already 2749 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 2750 * The idea is that we don't want pool traversal filling up memory, but 2751 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 2752 */ 2753 int 2754 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 2755 { 2756 arc_buf_hdr_t *hdr; 2757 kmutex_t *hash_mtx; 2758 int rc = 0; 2759 2760 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 2761 2762 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 2763 arc_buf_t *buf = hdr->b_buf; 2764 2765 ASSERT(buf); 2766 while (buf->b_data == NULL) { 2767 buf = buf->b_next; 2768 ASSERT(buf); 2769 } 2770 bcopy(buf->b_data, data, hdr->b_size); 2771 } else { 2772 rc = ENOENT; 2773 } 2774 2775 if (hash_mtx) 2776 mutex_exit(hash_mtx); 2777 2778 return (rc); 2779 } 2780 2781 void 2782 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2783 { 2784 ASSERT(buf->b_hdr != NULL); 2785 ASSERT(buf->b_hdr->b_state != arc_anon); 2786 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2787 buf->b_efunc = func; 2788 buf->b_private = private; 2789 } 2790 2791 /* 2792 * This is used by the DMU to let the ARC know that a buffer is 2793 * being evicted, so the ARC should clean up. If this arc buf 2794 * is not yet in the evicted state, it will be put there. 2795 */ 2796 int 2797 arc_buf_evict(arc_buf_t *buf) 2798 { 2799 arc_buf_hdr_t *hdr; 2800 kmutex_t *hash_lock; 2801 arc_buf_t **bufp; 2802 2803 rw_enter(&buf->b_lock, RW_WRITER); 2804 hdr = buf->b_hdr; 2805 if (hdr == NULL) { 2806 /* 2807 * We are in arc_do_user_evicts(). 2808 */ 2809 ASSERT(buf->b_data == NULL); 2810 rw_exit(&buf->b_lock); 2811 return (0); 2812 } else if (buf->b_data == NULL) { 2813 arc_buf_t copy = *buf; /* structure assignment */ 2814 /* 2815 * We are on the eviction list; process this buffer now 2816 * but let arc_do_user_evicts() do the reaping. 2817 */ 2818 buf->b_efunc = NULL; 2819 rw_exit(&buf->b_lock); 2820 VERIFY(copy.b_efunc(©) == 0); 2821 return (1); 2822 } 2823 hash_lock = HDR_LOCK(hdr); 2824 mutex_enter(hash_lock); 2825 2826 ASSERT(buf->b_hdr == hdr); 2827 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2828 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2829 2830 /* 2831 * Pull this buffer off of the hdr 2832 */ 2833 bufp = &hdr->b_buf; 2834 while (*bufp != buf) 2835 bufp = &(*bufp)->b_next; 2836 *bufp = buf->b_next; 2837 2838 ASSERT(buf->b_data != NULL); 2839 arc_buf_destroy(buf, FALSE, FALSE); 2840 2841 if (hdr->b_datacnt == 0) { 2842 arc_state_t *old_state = hdr->b_state; 2843 arc_state_t *evicted_state; 2844 2845 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2846 2847 evicted_state = 2848 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2849 2850 mutex_enter(&old_state->arcs_mtx); 2851 mutex_enter(&evicted_state->arcs_mtx); 2852 2853 arc_change_state(evicted_state, hdr, hash_lock); 2854 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2855 hdr->b_flags |= ARC_IN_HASH_TABLE; 2856 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2857 2858 mutex_exit(&evicted_state->arcs_mtx); 2859 mutex_exit(&old_state->arcs_mtx); 2860 } 2861 mutex_exit(hash_lock); 2862 rw_exit(&buf->b_lock); 2863 2864 VERIFY(buf->b_efunc(buf) == 0); 2865 buf->b_efunc = NULL; 2866 buf->b_private = NULL; 2867 buf->b_hdr = NULL; 2868 kmem_cache_free(buf_cache, buf); 2869 return (1); 2870 } 2871 2872 /* 2873 * Release this buffer from the cache. This must be done 2874 * after a read and prior to modifying the buffer contents. 2875 * If the buffer has more than one reference, we must make 2876 * a new hdr for the buffer. 2877 */ 2878 void 2879 arc_release(arc_buf_t *buf, void *tag) 2880 { 2881 arc_buf_hdr_t *hdr; 2882 kmutex_t *hash_lock; 2883 l2arc_buf_hdr_t *l2hdr; 2884 uint64_t buf_size; 2885 2886 rw_enter(&buf->b_lock, RW_WRITER); 2887 hdr = buf->b_hdr; 2888 2889 /* this buffer is not on any list */ 2890 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2891 ASSERT(!(hdr->b_flags & ARC_STORED)); 2892 2893 if (hdr->b_state == arc_anon) { 2894 /* this buffer is already released */ 2895 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2896 ASSERT(BUF_EMPTY(hdr)); 2897 ASSERT(buf->b_efunc == NULL); 2898 arc_buf_thaw(buf); 2899 rw_exit(&buf->b_lock); 2900 return; 2901 } 2902 2903 hash_lock = HDR_LOCK(hdr); 2904 mutex_enter(hash_lock); 2905 2906 l2hdr = hdr->b_l2hdr; 2907 if (l2hdr) { 2908 mutex_enter(&l2arc_buflist_mtx); 2909 hdr->b_l2hdr = NULL; 2910 buf_size = hdr->b_size; 2911 } 2912 2913 /* 2914 * Do we have more than one buf? 2915 */ 2916 if (hdr->b_datacnt > 1) { 2917 arc_buf_hdr_t *nhdr; 2918 arc_buf_t **bufp; 2919 uint64_t blksz = hdr->b_size; 2920 spa_t *spa = hdr->b_spa; 2921 arc_buf_contents_t type = hdr->b_type; 2922 uint32_t flags = hdr->b_flags; 2923 2924 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 2925 /* 2926 * Pull the data off of this buf and attach it to 2927 * a new anonymous buf. 2928 */ 2929 (void) remove_reference(hdr, hash_lock, tag); 2930 bufp = &hdr->b_buf; 2931 while (*bufp != buf) 2932 bufp = &(*bufp)->b_next; 2933 *bufp = (*bufp)->b_next; 2934 buf->b_next = NULL; 2935 2936 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 2937 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 2938 if (refcount_is_zero(&hdr->b_refcnt)) { 2939 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 2940 ASSERT3U(*size, >=, hdr->b_size); 2941 atomic_add_64(size, -hdr->b_size); 2942 } 2943 hdr->b_datacnt -= 1; 2944 arc_cksum_verify(buf); 2945 2946 mutex_exit(hash_lock); 2947 2948 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 2949 nhdr->b_size = blksz; 2950 nhdr->b_spa = spa; 2951 nhdr->b_type = type; 2952 nhdr->b_buf = buf; 2953 nhdr->b_state = arc_anon; 2954 nhdr->b_arc_access = 0; 2955 nhdr->b_flags = flags & ARC_L2_WRITING; 2956 nhdr->b_l2hdr = NULL; 2957 nhdr->b_datacnt = 1; 2958 nhdr->b_freeze_cksum = NULL; 2959 (void) refcount_add(&nhdr->b_refcnt, tag); 2960 buf->b_hdr = nhdr; 2961 rw_exit(&buf->b_lock); 2962 atomic_add_64(&arc_anon->arcs_size, blksz); 2963 } else { 2964 rw_exit(&buf->b_lock); 2965 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 2966 ASSERT(!list_link_active(&hdr->b_arc_node)); 2967 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2968 arc_change_state(arc_anon, hdr, hash_lock); 2969 hdr->b_arc_access = 0; 2970 mutex_exit(hash_lock); 2971 2972 bzero(&hdr->b_dva, sizeof (dva_t)); 2973 hdr->b_birth = 0; 2974 hdr->b_cksum0 = 0; 2975 arc_buf_thaw(buf); 2976 } 2977 buf->b_efunc = NULL; 2978 buf->b_private = NULL; 2979 2980 if (l2hdr) { 2981 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 2982 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 2983 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 2984 mutex_exit(&l2arc_buflist_mtx); 2985 } 2986 } 2987 2988 int 2989 arc_released(arc_buf_t *buf) 2990 { 2991 int released; 2992 2993 rw_enter(&buf->b_lock, RW_READER); 2994 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 2995 rw_exit(&buf->b_lock); 2996 return (released); 2997 } 2998 2999 int 3000 arc_has_callback(arc_buf_t *buf) 3001 { 3002 int callback; 3003 3004 rw_enter(&buf->b_lock, RW_READER); 3005 callback = (buf->b_efunc != NULL); 3006 rw_exit(&buf->b_lock); 3007 return (callback); 3008 } 3009 3010 #ifdef ZFS_DEBUG 3011 int 3012 arc_referenced(arc_buf_t *buf) 3013 { 3014 int referenced; 3015 3016 rw_enter(&buf->b_lock, RW_READER); 3017 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3018 rw_exit(&buf->b_lock); 3019 return (referenced); 3020 } 3021 #endif 3022 3023 static void 3024 arc_write_ready(zio_t *zio) 3025 { 3026 arc_write_callback_t *callback = zio->io_private; 3027 arc_buf_t *buf = callback->awcb_buf; 3028 arc_buf_hdr_t *hdr = buf->b_hdr; 3029 3030 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3031 callback->awcb_ready(zio, buf, callback->awcb_private); 3032 3033 /* 3034 * If the IO is already in progress, then this is a re-write 3035 * attempt, so we need to thaw and re-compute the cksum. 3036 * It is the responsibility of the callback to handle the 3037 * accounting for any re-write attempt. 3038 */ 3039 if (HDR_IO_IN_PROGRESS(hdr)) { 3040 mutex_enter(&hdr->b_freeze_lock); 3041 if (hdr->b_freeze_cksum != NULL) { 3042 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3043 hdr->b_freeze_cksum = NULL; 3044 } 3045 mutex_exit(&hdr->b_freeze_lock); 3046 } 3047 arc_cksum_compute(buf, B_FALSE); 3048 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3049 } 3050 3051 static void 3052 arc_write_done(zio_t *zio) 3053 { 3054 arc_write_callback_t *callback = zio->io_private; 3055 arc_buf_t *buf = callback->awcb_buf; 3056 arc_buf_hdr_t *hdr = buf->b_hdr; 3057 3058 hdr->b_acb = NULL; 3059 3060 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3061 hdr->b_birth = zio->io_bp->blk_birth; 3062 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3063 /* 3064 * If the block to be written was all-zero, we may have 3065 * compressed it away. In this case no write was performed 3066 * so there will be no dva/birth-date/checksum. The buffer 3067 * must therefor remain anonymous (and uncached). 3068 */ 3069 if (!BUF_EMPTY(hdr)) { 3070 arc_buf_hdr_t *exists; 3071 kmutex_t *hash_lock; 3072 3073 arc_cksum_verify(buf); 3074 3075 exists = buf_hash_insert(hdr, &hash_lock); 3076 if (exists) { 3077 /* 3078 * This can only happen if we overwrite for 3079 * sync-to-convergence, because we remove 3080 * buffers from the hash table when we arc_free(). 3081 */ 3082 ASSERT(zio->io_flags & ZIO_FLAG_IO_REWRITE); 3083 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 3084 BP_IDENTITY(zio->io_bp))); 3085 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 3086 zio->io_bp->blk_birth); 3087 3088 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3089 arc_change_state(arc_anon, exists, hash_lock); 3090 mutex_exit(hash_lock); 3091 arc_hdr_destroy(exists); 3092 exists = buf_hash_insert(hdr, &hash_lock); 3093 ASSERT3P(exists, ==, NULL); 3094 } 3095 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3096 /* if it's not anon, we are doing a scrub */ 3097 if (hdr->b_state == arc_anon) 3098 arc_access(hdr, hash_lock); 3099 mutex_exit(hash_lock); 3100 } else if (callback->awcb_done == NULL) { 3101 int destroy_hdr; 3102 /* 3103 * This is an anonymous buffer with no user callback, 3104 * destroy it if there are no active references. 3105 */ 3106 mutex_enter(&arc_eviction_mtx); 3107 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 3108 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3109 mutex_exit(&arc_eviction_mtx); 3110 if (destroy_hdr) 3111 arc_hdr_destroy(hdr); 3112 } else { 3113 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3114 } 3115 hdr->b_flags &= ~ARC_STORED; 3116 3117 if (callback->awcb_done) { 3118 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3119 callback->awcb_done(zio, buf, callback->awcb_private); 3120 } 3121 3122 kmem_free(callback, sizeof (arc_write_callback_t)); 3123 } 3124 3125 void 3126 write_policy(spa_t *spa, const writeprops_t *wp, zio_prop_t *zp) 3127 { 3128 boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata); 3129 3130 /* Determine checksum setting */ 3131 if (ismd) { 3132 /* 3133 * Metadata always gets checksummed. If the data 3134 * checksum is multi-bit correctable, and it's not a 3135 * ZBT-style checksum, then it's suitable for metadata 3136 * as well. Otherwise, the metadata checksum defaults 3137 * to fletcher4. 3138 */ 3139 if (zio_checksum_table[wp->wp_oschecksum].ci_correctable && 3140 !zio_checksum_table[wp->wp_oschecksum].ci_zbt) 3141 zp->zp_checksum = wp->wp_oschecksum; 3142 else 3143 zp->zp_checksum = ZIO_CHECKSUM_FLETCHER_4; 3144 } else { 3145 zp->zp_checksum = zio_checksum_select(wp->wp_dnchecksum, 3146 wp->wp_oschecksum); 3147 } 3148 3149 /* Determine compression setting */ 3150 if (ismd) { 3151 /* 3152 * XXX -- we should design a compression algorithm 3153 * that specializes in arrays of bps. 3154 */ 3155 zp->zp_compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 3156 ZIO_COMPRESS_LZJB; 3157 } else { 3158 zp->zp_compress = zio_compress_select(wp->wp_dncompress, 3159 wp->wp_oscompress); 3160 } 3161 3162 zp->zp_type = wp->wp_type; 3163 zp->zp_level = wp->wp_level; 3164 zp->zp_ndvas = MIN(wp->wp_copies + ismd, spa_max_replication(spa)); 3165 } 3166 3167 zio_t * 3168 arc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp, 3169 boolean_t l2arc, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 3170 arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority, 3171 int zio_flags, const zbookmark_t *zb) 3172 { 3173 arc_buf_hdr_t *hdr = buf->b_hdr; 3174 arc_write_callback_t *callback; 3175 zio_t *zio; 3176 zio_prop_t zp; 3177 3178 ASSERT(ready != NULL); 3179 ASSERT(!HDR_IO_ERROR(hdr)); 3180 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3181 ASSERT(hdr->b_acb == 0); 3182 if (l2arc) 3183 hdr->b_flags |= ARC_L2CACHE; 3184 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3185 callback->awcb_ready = ready; 3186 callback->awcb_done = done; 3187 callback->awcb_private = private; 3188 callback->awcb_buf = buf; 3189 3190 write_policy(spa, wp, &zp); 3191 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, &zp, 3192 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3193 3194 return (zio); 3195 } 3196 3197 int 3198 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 3199 zio_done_func_t *done, void *private, uint32_t arc_flags) 3200 { 3201 arc_buf_hdr_t *ab; 3202 kmutex_t *hash_lock; 3203 zio_t *zio; 3204 3205 /* 3206 * If this buffer is in the cache, release it, so it 3207 * can be re-used. 3208 */ 3209 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 3210 if (ab != NULL) { 3211 /* 3212 * The checksum of blocks to free is not always 3213 * preserved (eg. on the deadlist). However, if it is 3214 * nonzero, it should match what we have in the cache. 3215 */ 3216 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 3217 bp->blk_cksum.zc_word[0] == ab->b_cksum0 || 3218 bp->blk_fill == BLK_FILL_ALREADY_FREED); 3219 3220 if (ab->b_state != arc_anon) 3221 arc_change_state(arc_anon, ab, hash_lock); 3222 if (HDR_IO_IN_PROGRESS(ab)) { 3223 /* 3224 * This should only happen when we prefetch. 3225 */ 3226 ASSERT(ab->b_flags & ARC_PREFETCH); 3227 ASSERT3U(ab->b_datacnt, ==, 1); 3228 ab->b_flags |= ARC_FREED_IN_READ; 3229 if (HDR_IN_HASH_TABLE(ab)) 3230 buf_hash_remove(ab); 3231 ab->b_arc_access = 0; 3232 bzero(&ab->b_dva, sizeof (dva_t)); 3233 ab->b_birth = 0; 3234 ab->b_cksum0 = 0; 3235 ab->b_buf->b_efunc = NULL; 3236 ab->b_buf->b_private = NULL; 3237 mutex_exit(hash_lock); 3238 } else if (refcount_is_zero(&ab->b_refcnt)) { 3239 ab->b_flags |= ARC_FREE_IN_PROGRESS; 3240 mutex_exit(hash_lock); 3241 arc_hdr_destroy(ab); 3242 ARCSTAT_BUMP(arcstat_deleted); 3243 } else { 3244 /* 3245 * We still have an active reference on this 3246 * buffer. This can happen, e.g., from 3247 * dbuf_unoverride(). 3248 */ 3249 ASSERT(!HDR_IN_HASH_TABLE(ab)); 3250 ab->b_arc_access = 0; 3251 bzero(&ab->b_dva, sizeof (dva_t)); 3252 ab->b_birth = 0; 3253 ab->b_cksum0 = 0; 3254 ab->b_buf->b_efunc = NULL; 3255 ab->b_buf->b_private = NULL; 3256 mutex_exit(hash_lock); 3257 } 3258 } 3259 3260 zio = zio_free(pio, spa, txg, bp, done, private, ZIO_FLAG_MUSTSUCCEED); 3261 3262 if (arc_flags & ARC_WAIT) 3263 return (zio_wait(zio)); 3264 3265 ASSERT(arc_flags & ARC_NOWAIT); 3266 zio_nowait(zio); 3267 3268 return (0); 3269 } 3270 3271 static int 3272 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3273 { 3274 #ifdef _KERNEL 3275 uint64_t inflight_data = arc_anon->arcs_size; 3276 uint64_t available_memory = ptob(freemem); 3277 static uint64_t page_load = 0; 3278 static uint64_t last_txg = 0; 3279 3280 available_memory = 3281 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3282 if (available_memory >= zfs_write_limit_max) 3283 return (0); 3284 3285 if (txg > last_txg) { 3286 last_txg = txg; 3287 page_load = 0; 3288 } 3289 /* 3290 * If we are in pageout, we know that memory is already tight, 3291 * the arc is already going to be evicting, so we just want to 3292 * continue to let page writes occur as quickly as possible. 3293 */ 3294 if (curproc == proc_pageout) { 3295 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3296 return (ERESTART); 3297 /* Note: reserve is inflated, so we deflate */ 3298 page_load += reserve / 8; 3299 return (0); 3300 } else if (page_load > 0 && arc_reclaim_needed()) { 3301 /* memory is low, delay before restarting */ 3302 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3303 return (EAGAIN); 3304 } 3305 page_load = 0; 3306 3307 if (arc_size > arc_c_min) { 3308 uint64_t evictable_memory = 3309 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3310 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3311 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3312 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3313 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3314 } 3315 3316 if (inflight_data > available_memory / 4) { 3317 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3318 return (ERESTART); 3319 } 3320 #endif 3321 return (0); 3322 } 3323 3324 void 3325 arc_tempreserve_clear(uint64_t reserve) 3326 { 3327 atomic_add_64(&arc_tempreserve, -reserve); 3328 ASSERT((int64_t)arc_tempreserve >= 0); 3329 } 3330 3331 int 3332 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3333 { 3334 int error; 3335 3336 #ifdef ZFS_DEBUG 3337 /* 3338 * Once in a while, fail for no reason. Everything should cope. 3339 */ 3340 if (spa_get_random(10000) == 0) { 3341 dprintf("forcing random failure\n"); 3342 return (ERESTART); 3343 } 3344 #endif 3345 if (reserve > arc_c/4 && !arc_no_grow) 3346 arc_c = MIN(arc_c_max, reserve * 4); 3347 if (reserve > arc_c) 3348 return (ENOMEM); 3349 3350 /* 3351 * Writes will, almost always, require additional memory allocations 3352 * in order to compress/encrypt/etc the data. We therefor need to 3353 * make sure that there is sufficient available memory for this. 3354 */ 3355 if (error = arc_memory_throttle(reserve, txg)) 3356 return (error); 3357 3358 /* 3359 * Throttle writes when the amount of dirty data in the cache 3360 * gets too large. We try to keep the cache less than half full 3361 * of dirty blocks so that our sync times don't grow too large. 3362 * Note: if two requests come in concurrently, we might let them 3363 * both succeed, when one of them should fail. Not a huge deal. 3364 */ 3365 if (reserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 && 3366 arc_anon->arcs_size > arc_c / 4) { 3367 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3368 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3369 arc_tempreserve>>10, 3370 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3371 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3372 reserve>>10, arc_c>>10); 3373 return (ERESTART); 3374 } 3375 atomic_add_64(&arc_tempreserve, reserve); 3376 return (0); 3377 } 3378 3379 #if defined(__NetBSD__) && defined(_KERNEL) 3380 /* Reclaim hook registered to uvm for reclaiming KVM and memory */ 3381 static void 3382 arc_uvm_reclaim_hook(void) 3383 { 3384 3385 if (mutex_tryenter(&arc_reclaim_thr_lock)) { 3386 cv_broadcast(&arc_reclaim_thr_cv); 3387 mutex_exit(&arc_reclaim_thr_lock); 3388 } 3389 } 3390 3391 static int 3392 arc_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 3393 { 3394 3395 3396 if (mutex_tryenter(&arc_reclaim_thr_lock)) { 3397 cv_broadcast(&arc_reclaim_thr_cv); 3398 mutex_exit(&arc_reclaim_thr_lock); 3399 } 3400 3401 return CALLBACK_CHAIN_CONTINUE; 3402 } 3403 3404 #endif /* __NetBSD__ */ 3405 3406 void 3407 arc_init(void) 3408 { 3409 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3410 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3411 3412 /* Convert seconds to clock ticks */ 3413 arc_min_prefetch_lifespan = 1 * hz; 3414 3415 /* Start out with 1/8 of all memory */ 3416 arc_c = physmem * PAGESIZE / 8; 3417 3418 #ifdef _KERNEL 3419 /* 3420 * On architectures where the physical memory can be larger 3421 * than the addressable space (intel in 32-bit mode), we may 3422 * need to limit the cache to 1/8 of VM size. 3423 */ 3424 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3425 #endif 3426 3427 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3428 arc_c_min = MAX(arc_c / 4, 64<<20); 3429 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3430 if (arc_c * 8 >= 1<<30) 3431 arc_c_max = (arc_c * 8) - (1<<30); 3432 else 3433 arc_c_max = arc_c_min; 3434 arc_c_max = MAX(arc_c * 6, arc_c_max); 3435 3436 /* 3437 * Allow the tunables to override our calculations if they are 3438 * reasonable (ie. over 64MB) 3439 */ 3440 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3441 arc_c_max = zfs_arc_max; 3442 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3443 arc_c_min = zfs_arc_min; 3444 3445 arc_c = arc_c_max; 3446 arc_p = (arc_c >> 1); 3447 3448 /* limit meta-data to 1/4 of the arc capacity */ 3449 arc_meta_limit = arc_c_max / 4; 3450 3451 /* Allow the tunable to override if it is reasonable */ 3452 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3453 arc_meta_limit = zfs_arc_meta_limit; 3454 3455 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3456 arc_c_min = arc_meta_limit / 2; 3457 3458 /* if kmem_flags are set, lets try to use less memory */ 3459 if (kmem_debugging()) 3460 arc_c = arc_c / 2; 3461 if (arc_c < arc_c_min) 3462 arc_c = arc_c_min; 3463 3464 arc_anon = &ARC_anon; 3465 arc_mru = &ARC_mru; 3466 arc_mru_ghost = &ARC_mru_ghost; 3467 arc_mfu = &ARC_mfu; 3468 arc_mfu_ghost = &ARC_mfu_ghost; 3469 arc_l2c_only = &ARC_l2c_only; 3470 arc_size = 0; 3471 3472 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3473 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3474 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3475 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3476 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3477 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3478 3479 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3480 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3481 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3482 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3483 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3484 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3485 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3486 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3487 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3488 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3489 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3490 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3491 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3492 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3493 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3494 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3495 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3496 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3497 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3498 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3499 3500 buf_init(); 3501 3502 arc_thread_exit = 0; 3503 arc_eviction_list = NULL; 3504 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3505 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3506 3507 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3508 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3509 3510 if (arc_ksp != NULL) { 3511 arc_ksp->ks_data = &arc_stats; 3512 kstat_install(arc_ksp); 3513 } 3514 3515 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3516 TS_RUN, maxclsyspri); 3517 3518 #if defined(__NetBSD__) && defined(_KERNEL) 3519 arc_hook.uvm_reclaim_hook = &arc_uvm_reclaim_hook; 3520 3521 uvm_reclaim_hook_add(&arc_hook); 3522 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback, 3523 &arc_kva_reclaim_entry, NULL, arc_kva_reclaim_callback); 3524 3525 #endif 3526 3527 arc_dead = FALSE; 3528 arc_warm = B_FALSE; 3529 3530 if (zfs_write_limit_max == 0) 3531 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3532 else 3533 zfs_write_limit_shift = 0; 3534 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3535 } 3536 3537 void 3538 arc_fini(void) 3539 { 3540 mutex_enter(&arc_reclaim_thr_lock); 3541 arc_thread_exit = 1; 3542 while (arc_thread_exit != 0) 3543 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3544 mutex_exit(&arc_reclaim_thr_lock); 3545 3546 arc_flush(NULL); 3547 3548 arc_dead = TRUE; 3549 3550 if (arc_ksp != NULL) { 3551 kstat_delete(arc_ksp); 3552 arc_ksp = NULL; 3553 } 3554 3555 mutex_destroy(&arc_eviction_mtx); 3556 mutex_destroy(&arc_reclaim_thr_lock); 3557 cv_destroy(&arc_reclaim_thr_cv); 3558 3559 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3560 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3561 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3562 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3563 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3564 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3565 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3566 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3567 3568 mutex_destroy(&arc_anon->arcs_mtx); 3569 mutex_destroy(&arc_mru->arcs_mtx); 3570 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3571 mutex_destroy(&arc_mfu->arcs_mtx); 3572 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3573 mutex_destroy(&arc_l2c_only->arcs_mtx); 3574 3575 mutex_destroy(&zfs_write_limit_lock); 3576 3577 #if defined(__NetBSD__) && defined(_KERNEL) 3578 uvm_reclaim_hook_del(&arc_hook); 3579 callback_unregister(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback, 3580 &arc_kva_reclaim_entry); 3581 #endif 3582 3583 buf_fini(); 3584 } 3585 3586 /* 3587 * Level 2 ARC 3588 * 3589 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3590 * It uses dedicated storage devices to hold cached data, which are populated 3591 * using large infrequent writes. The main role of this cache is to boost 3592 * the performance of random read workloads. The intended L2ARC devices 3593 * include short-stroked disks, solid state disks, and other media with 3594 * substantially faster read latency than disk. 3595 * 3596 * +-----------------------+ 3597 * | ARC | 3598 * +-----------------------+ 3599 * | ^ ^ 3600 * | | | 3601 * l2arc_feed_thread() arc_read() 3602 * | | | 3603 * | l2arc read | 3604 * V | | 3605 * +---------------+ | 3606 * | L2ARC | | 3607 * +---------------+ | 3608 * | ^ | 3609 * l2arc_write() | | 3610 * | | | 3611 * V | | 3612 * +-------+ +-------+ 3613 * | vdev | | vdev | 3614 * | cache | | cache | 3615 * +-------+ +-------+ 3616 * +=========+ .-----. 3617 * : L2ARC : |-_____-| 3618 * : devices : | Disks | 3619 * +=========+ `-_____-' 3620 * 3621 * Read requests are satisfied from the following sources, in order: 3622 * 3623 * 1) ARC 3624 * 2) vdev cache of L2ARC devices 3625 * 3) L2ARC devices 3626 * 4) vdev cache of disks 3627 * 5) disks 3628 * 3629 * Some L2ARC device types exhibit extremely slow write performance. 3630 * To accommodate for this there are some significant differences between 3631 * the L2ARC and traditional cache design: 3632 * 3633 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3634 * the ARC behave as usual, freeing buffers and placing headers on ghost 3635 * lists. The ARC does not send buffers to the L2ARC during eviction as 3636 * this would add inflated write latencies for all ARC memory pressure. 3637 * 3638 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3639 * It does this by periodically scanning buffers from the eviction-end of 3640 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3641 * not already there. It scans until a headroom of buffers is satisfied, 3642 * which itself is a buffer for ARC eviction. The thread that does this is 3643 * l2arc_feed_thread(), illustrated below; example sizes are included to 3644 * provide a better sense of ratio than this diagram: 3645 * 3646 * head --> tail 3647 * +---------------------+----------+ 3648 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3649 * +---------------------+----------+ | o L2ARC eligible 3650 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3651 * +---------------------+----------+ | 3652 * 15.9 Gbytes ^ 32 Mbytes | 3653 * headroom | 3654 * l2arc_feed_thread() 3655 * | 3656 * l2arc write hand <--[oooo]--' 3657 * | 8 Mbyte 3658 * | write max 3659 * V 3660 * +==============================+ 3661 * L2ARC dev |####|#|###|###| |####| ... | 3662 * +==============================+ 3663 * 32 Gbytes 3664 * 3665 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3666 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3667 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3668 * safe to say that this is an uncommon case, since buffers at the end of 3669 * the ARC lists have moved there due to inactivity. 3670 * 3671 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3672 * then the L2ARC simply misses copying some buffers. This serves as a 3673 * pressure valve to prevent heavy read workloads from both stalling the ARC 3674 * with waits and clogging the L2ARC with writes. This also helps prevent 3675 * the potential for the L2ARC to churn if it attempts to cache content too 3676 * quickly, such as during backups of the entire pool. 3677 * 3678 * 5. After system boot and before the ARC has filled main memory, there are 3679 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3680 * lists can remain mostly static. Instead of searching from tail of these 3681 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3682 * for eligible buffers, greatly increasing its chance of finding them. 3683 * 3684 * The L2ARC device write speed is also boosted during this time so that 3685 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3686 * there are no L2ARC reads, and no fear of degrading read performance 3687 * through increased writes. 3688 * 3689 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3690 * the vdev queue can aggregate them into larger and fewer writes. Each 3691 * device is written to in a rotor fashion, sweeping writes through 3692 * available space then repeating. 3693 * 3694 * 7. The L2ARC does not store dirty content. It never needs to flush 3695 * write buffers back to disk based storage. 3696 * 3697 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3698 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3699 * 3700 * The performance of the L2ARC can be tweaked by a number of tunables, which 3701 * may be necessary for different workloads: 3702 * 3703 * l2arc_write_max max write bytes per interval 3704 * l2arc_write_boost extra write bytes during device warmup 3705 * l2arc_noprefetch skip caching prefetched buffers 3706 * l2arc_headroom number of max device writes to precache 3707 * l2arc_feed_secs seconds between L2ARC writing 3708 * 3709 * Tunables may be removed or added as future performance improvements are 3710 * integrated, and also may become zpool properties. 3711 */ 3712 3713 static void 3714 l2arc_hdr_stat_add(void) 3715 { 3716 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3717 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3718 } 3719 3720 static void 3721 l2arc_hdr_stat_remove(void) 3722 { 3723 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3724 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3725 } 3726 3727 /* 3728 * Cycle through L2ARC devices. This is how L2ARC load balances. 3729 * If a device is returned, this also returns holding the spa config lock. 3730 */ 3731 static l2arc_dev_t * 3732 l2arc_dev_get_next(void) 3733 { 3734 l2arc_dev_t *first, *next = NULL; 3735 3736 /* 3737 * Lock out the removal of spas (spa_namespace_lock), then removal 3738 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3739 * both locks will be dropped and a spa config lock held instead. 3740 */ 3741 mutex_enter(&spa_namespace_lock); 3742 mutex_enter(&l2arc_dev_mtx); 3743 3744 /* if there are no vdevs, there is nothing to do */ 3745 if (l2arc_ndev == 0) 3746 goto out; 3747 3748 first = NULL; 3749 next = l2arc_dev_last; 3750 do { 3751 /* loop around the list looking for a non-faulted vdev */ 3752 if (next == NULL) { 3753 next = list_head(l2arc_dev_list); 3754 } else { 3755 next = list_next(l2arc_dev_list, next); 3756 if (next == NULL) 3757 next = list_head(l2arc_dev_list); 3758 } 3759 3760 /* if we have come back to the start, bail out */ 3761 if (first == NULL) 3762 first = next; 3763 else if (next == first) 3764 break; 3765 3766 } while (vdev_is_dead(next->l2ad_vdev)); 3767 3768 /* if we were unable to find any usable vdevs, return NULL */ 3769 if (vdev_is_dead(next->l2ad_vdev)) 3770 next = NULL; 3771 3772 l2arc_dev_last = next; 3773 3774 out: 3775 mutex_exit(&l2arc_dev_mtx); 3776 3777 /* 3778 * Grab the config lock to prevent the 'next' device from being 3779 * removed while we are writing to it. 3780 */ 3781 if (next != NULL) 3782 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 3783 mutex_exit(&spa_namespace_lock); 3784 3785 return (next); 3786 } 3787 3788 /* 3789 * Free buffers that were tagged for destruction. 3790 */ 3791 static void 3792 l2arc_do_free_on_write() 3793 { 3794 list_t *buflist; 3795 l2arc_data_free_t *df, *df_prev; 3796 3797 mutex_enter(&l2arc_free_on_write_mtx); 3798 buflist = l2arc_free_on_write; 3799 3800 for (df = list_tail(buflist); df; df = df_prev) { 3801 df_prev = list_prev(buflist, df); 3802 ASSERT(df->l2df_data != NULL); 3803 ASSERT(df->l2df_func != NULL); 3804 df->l2df_func(df->l2df_data, df->l2df_size); 3805 list_remove(buflist, df); 3806 kmem_free(df, sizeof (l2arc_data_free_t)); 3807 } 3808 3809 mutex_exit(&l2arc_free_on_write_mtx); 3810 } 3811 3812 /* 3813 * A write to a cache device has completed. Update all headers to allow 3814 * reads from these buffers to begin. 3815 */ 3816 static void 3817 l2arc_write_done(zio_t *zio) 3818 { 3819 l2arc_write_callback_t *cb; 3820 l2arc_dev_t *dev; 3821 list_t *buflist; 3822 arc_buf_hdr_t *head, *ab, *ab_prev; 3823 l2arc_buf_hdr_t *abl2; 3824 kmutex_t *hash_lock; 3825 3826 cb = zio->io_private; 3827 ASSERT(cb != NULL); 3828 dev = cb->l2wcb_dev; 3829 ASSERT(dev != NULL); 3830 head = cb->l2wcb_head; 3831 ASSERT(head != NULL); 3832 buflist = dev->l2ad_buflist; 3833 ASSERT(buflist != NULL); 3834 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3835 l2arc_write_callback_t *, cb); 3836 3837 if (zio->io_error != 0) 3838 ARCSTAT_BUMP(arcstat_l2_writes_error); 3839 3840 mutex_enter(&l2arc_buflist_mtx); 3841 3842 /* 3843 * All writes completed, or an error was hit. 3844 */ 3845 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3846 ab_prev = list_prev(buflist, ab); 3847 3848 hash_lock = HDR_LOCK(ab); 3849 if (!mutex_tryenter(hash_lock)) { 3850 /* 3851 * This buffer misses out. It may be in a stage 3852 * of eviction. Its ARC_L2_WRITING flag will be 3853 * left set, denying reads to this buffer. 3854 */ 3855 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3856 continue; 3857 } 3858 3859 if (zio->io_error != 0) { 3860 /* 3861 * Error - drop L2ARC entry. 3862 */ 3863 list_remove(buflist, ab); 3864 abl2 = ab->b_l2hdr; 3865 ab->b_l2hdr = NULL; 3866 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3867 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3868 } 3869 3870 /* 3871 * Allow ARC to begin reads to this L2ARC entry. 3872 */ 3873 ab->b_flags &= ~ARC_L2_WRITING; 3874 3875 mutex_exit(hash_lock); 3876 } 3877 3878 atomic_inc_64(&l2arc_writes_done); 3879 list_remove(buflist, head); 3880 kmem_cache_free(hdr_cache, head); 3881 mutex_exit(&l2arc_buflist_mtx); 3882 3883 l2arc_do_free_on_write(); 3884 3885 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3886 } 3887 3888 /* 3889 * A read to a cache device completed. Validate buffer contents before 3890 * handing over to the regular ARC routines. 3891 */ 3892 static void 3893 l2arc_read_done(zio_t *zio) 3894 { 3895 l2arc_read_callback_t *cb; 3896 arc_buf_hdr_t *hdr; 3897 arc_buf_t *buf; 3898 kmutex_t *hash_lock; 3899 int equal; 3900 3901 ASSERT(zio->io_vd != NULL); 3902 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 3903 3904 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 3905 3906 cb = zio->io_private; 3907 ASSERT(cb != NULL); 3908 buf = cb->l2rcb_buf; 3909 ASSERT(buf != NULL); 3910 hdr = buf->b_hdr; 3911 ASSERT(hdr != NULL); 3912 3913 hash_lock = HDR_LOCK(hdr); 3914 mutex_enter(hash_lock); 3915 3916 /* 3917 * Check this survived the L2ARC journey. 3918 */ 3919 equal = arc_cksum_equal(buf); 3920 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 3921 mutex_exit(hash_lock); 3922 zio->io_private = buf; 3923 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 3924 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 3925 arc_read_done(zio); 3926 } else { 3927 mutex_exit(hash_lock); 3928 /* 3929 * Buffer didn't survive caching. Increment stats and 3930 * reissue to the original storage device. 3931 */ 3932 if (zio->io_error != 0) { 3933 ARCSTAT_BUMP(arcstat_l2_io_error); 3934 } else { 3935 zio->io_error = EIO; 3936 } 3937 if (!equal) 3938 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 3939 3940 /* 3941 * If there's no waiter, issue an async i/o to the primary 3942 * storage now. If there *is* a waiter, the caller must 3943 * issue the i/o in a context where it's OK to block. 3944 */ 3945 if (zio->io_waiter == NULL) 3946 zio_nowait(zio_read(zio->io_parent, 3947 cb->l2rcb_spa, &cb->l2rcb_bp, 3948 buf->b_data, zio->io_size, arc_read_done, buf, 3949 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 3950 } 3951 3952 kmem_free(cb, sizeof (l2arc_read_callback_t)); 3953 } 3954 3955 /* 3956 * This is the list priority from which the L2ARC will search for pages to 3957 * cache. This is used within loops (0..3) to cycle through lists in the 3958 * desired order. This order can have a significant effect on cache 3959 * performance. 3960 * 3961 * Currently the metadata lists are hit first, MFU then MRU, followed by 3962 * the data lists. This function returns a locked list, and also returns 3963 * the lock pointer. 3964 */ 3965 static list_t * 3966 l2arc_list_locked(int list_num, kmutex_t **lock) 3967 { 3968 list_t *list; 3969 3970 ASSERT(list_num >= 0 && list_num <= 3); 3971 3972 switch (list_num) { 3973 case 0: 3974 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 3975 *lock = &arc_mfu->arcs_mtx; 3976 break; 3977 case 1: 3978 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 3979 *lock = &arc_mru->arcs_mtx; 3980 break; 3981 case 2: 3982 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 3983 *lock = &arc_mfu->arcs_mtx; 3984 break; 3985 case 3: 3986 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 3987 *lock = &arc_mru->arcs_mtx; 3988 break; 3989 } 3990 3991 ASSERT(!(MUTEX_HELD(*lock))); 3992 mutex_enter(*lock); 3993 return (list); 3994 } 3995 3996 /* 3997 * Evict buffers from the device write hand to the distance specified in 3998 * bytes. This distance may span populated buffers, it may span nothing. 3999 * This is clearing a region on the L2ARC device ready for writing. 4000 * If the 'all' boolean is set, every buffer is evicted. 4001 */ 4002 static void 4003 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4004 { 4005 list_t *buflist; 4006 l2arc_buf_hdr_t *abl2; 4007 arc_buf_hdr_t *ab, *ab_prev; 4008 kmutex_t *hash_lock; 4009 uint64_t taddr; 4010 4011 buflist = dev->l2ad_buflist; 4012 4013 if (buflist == NULL) 4014 return; 4015 4016 if (!all && dev->l2ad_first) { 4017 /* 4018 * This is the first sweep through the device. There is 4019 * nothing to evict. 4020 */ 4021 return; 4022 } 4023 4024 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4025 /* 4026 * When nearing the end of the device, evict to the end 4027 * before the device write hand jumps to the start. 4028 */ 4029 taddr = dev->l2ad_end; 4030 } else { 4031 taddr = dev->l2ad_hand + distance; 4032 } 4033 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4034 uint64_t, taddr, boolean_t, all); 4035 4036 top: 4037 mutex_enter(&l2arc_buflist_mtx); 4038 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4039 ab_prev = list_prev(buflist, ab); 4040 4041 hash_lock = HDR_LOCK(ab); 4042 if (!mutex_tryenter(hash_lock)) { 4043 /* 4044 * Missed the hash lock. Retry. 4045 */ 4046 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4047 mutex_exit(&l2arc_buflist_mtx); 4048 mutex_enter(hash_lock); 4049 mutex_exit(hash_lock); 4050 goto top; 4051 } 4052 4053 if (HDR_L2_WRITE_HEAD(ab)) { 4054 /* 4055 * We hit a write head node. Leave it for 4056 * l2arc_write_done(). 4057 */ 4058 list_remove(buflist, ab); 4059 mutex_exit(hash_lock); 4060 continue; 4061 } 4062 4063 if (!all && ab->b_l2hdr != NULL && 4064 (ab->b_l2hdr->b_daddr > taddr || 4065 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4066 /* 4067 * We've evicted to the target address, 4068 * or the end of the device. 4069 */ 4070 mutex_exit(hash_lock); 4071 break; 4072 } 4073 4074 if (HDR_FREE_IN_PROGRESS(ab)) { 4075 /* 4076 * Already on the path to destruction. 4077 */ 4078 mutex_exit(hash_lock); 4079 continue; 4080 } 4081 4082 if (ab->b_state == arc_l2c_only) { 4083 ASSERT(!HDR_L2_READING(ab)); 4084 /* 4085 * This doesn't exist in the ARC. Destroy. 4086 * arc_hdr_destroy() will call list_remove() 4087 * and decrement arcstat_l2_size. 4088 */ 4089 arc_change_state(arc_anon, ab, hash_lock); 4090 arc_hdr_destroy(ab); 4091 } else { 4092 /* 4093 * Invalidate issued or about to be issued 4094 * reads, since we may be about to write 4095 * over this location. 4096 */ 4097 if (HDR_L2_READING(ab)) { 4098 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4099 ab->b_flags |= ARC_L2_EVICTED; 4100 } 4101 4102 /* 4103 * Tell ARC this no longer exists in L2ARC. 4104 */ 4105 if (ab->b_l2hdr != NULL) { 4106 abl2 = ab->b_l2hdr; 4107 ab->b_l2hdr = NULL; 4108 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4109 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4110 } 4111 list_remove(buflist, ab); 4112 4113 /* 4114 * This may have been leftover after a 4115 * failed write. 4116 */ 4117 ab->b_flags &= ~ARC_L2_WRITING; 4118 } 4119 mutex_exit(hash_lock); 4120 } 4121 mutex_exit(&l2arc_buflist_mtx); 4122 4123 spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict)); 4124 dev->l2ad_evict = taddr; 4125 } 4126 4127 /* 4128 * Find and write ARC buffers to the L2ARC device. 4129 * 4130 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4131 * for reading until they have completed writing. 4132 */ 4133 static void 4134 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4135 { 4136 arc_buf_hdr_t *ab, *ab_prev, *head; 4137 l2arc_buf_hdr_t *hdrl2; 4138 list_t *list; 4139 uint64_t passed_sz, write_sz, buf_sz, headroom; 4140 void *buf_data; 4141 kmutex_t *hash_lock, *list_lock; 4142 boolean_t have_lock, full; 4143 l2arc_write_callback_t *cb; 4144 zio_t *pio, *wzio; 4145 4146 ASSERT(dev->l2ad_vdev != NULL); 4147 4148 pio = NULL; 4149 write_sz = 0; 4150 full = B_FALSE; 4151 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4152 head->b_flags |= ARC_L2_WRITE_HEAD; 4153 4154 /* 4155 * Copy buffers for L2ARC writing. 4156 */ 4157 mutex_enter(&l2arc_buflist_mtx); 4158 for (int try = 0; try <= 3; try++) { 4159 list = l2arc_list_locked(try, &list_lock); 4160 passed_sz = 0; 4161 4162 /* 4163 * L2ARC fast warmup. 4164 * 4165 * Until the ARC is warm and starts to evict, read from the 4166 * head of the ARC lists rather than the tail. 4167 */ 4168 headroom = target_sz * l2arc_headroom; 4169 if (arc_warm == B_FALSE) 4170 ab = list_head(list); 4171 else 4172 ab = list_tail(list); 4173 4174 for (; ab; ab = ab_prev) { 4175 if (arc_warm == B_FALSE) 4176 ab_prev = list_next(list, ab); 4177 else 4178 ab_prev = list_prev(list, ab); 4179 4180 hash_lock = HDR_LOCK(ab); 4181 have_lock = MUTEX_HELD(hash_lock); 4182 if (!have_lock && !mutex_tryenter(hash_lock)) { 4183 /* 4184 * Skip this buffer rather than waiting. 4185 */ 4186 continue; 4187 } 4188 4189 passed_sz += ab->b_size; 4190 if (passed_sz > headroom) { 4191 /* 4192 * Searched too far. 4193 */ 4194 mutex_exit(hash_lock); 4195 break; 4196 } 4197 4198 if (ab->b_spa != spa) { 4199 mutex_exit(hash_lock); 4200 continue; 4201 } 4202 4203 if (ab->b_l2hdr != NULL) { 4204 /* 4205 * Already in L2ARC. 4206 */ 4207 mutex_exit(hash_lock); 4208 continue; 4209 } 4210 4211 if (HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) { 4212 mutex_exit(hash_lock); 4213 continue; 4214 } 4215 4216 if ((write_sz + ab->b_size) > target_sz) { 4217 full = B_TRUE; 4218 mutex_exit(hash_lock); 4219 break; 4220 } 4221 4222 if (ab->b_buf == NULL) { 4223 DTRACE_PROBE1(l2arc__buf__null, void *, ab); 4224 mutex_exit(hash_lock); 4225 continue; 4226 } 4227 4228 if (pio == NULL) { 4229 /* 4230 * Insert a dummy header on the buflist so 4231 * l2arc_write_done() can find where the 4232 * write buffers begin without searching. 4233 */ 4234 list_insert_head(dev->l2ad_buflist, head); 4235 4236 cb = kmem_alloc( 4237 sizeof (l2arc_write_callback_t), KM_SLEEP); 4238 cb->l2wcb_dev = dev; 4239 cb->l2wcb_head = head; 4240 pio = zio_root(spa, l2arc_write_done, cb, 4241 ZIO_FLAG_CANFAIL); 4242 } 4243 4244 /* 4245 * Create and add a new L2ARC header. 4246 */ 4247 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4248 hdrl2->b_dev = dev; 4249 hdrl2->b_daddr = dev->l2ad_hand; 4250 4251 ab->b_flags |= ARC_L2_WRITING; 4252 ab->b_l2hdr = hdrl2; 4253 list_insert_head(dev->l2ad_buflist, ab); 4254 buf_data = ab->b_buf->b_data; 4255 buf_sz = ab->b_size; 4256 4257 /* 4258 * Compute and store the buffer cksum before 4259 * writing. On debug the cksum is verified first. 4260 */ 4261 arc_cksum_verify(ab->b_buf); 4262 arc_cksum_compute(ab->b_buf, B_TRUE); 4263 4264 mutex_exit(hash_lock); 4265 4266 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4267 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4268 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4269 ZIO_FLAG_CANFAIL, B_FALSE); 4270 4271 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4272 zio_t *, wzio); 4273 (void) zio_nowait(wzio); 4274 4275 /* 4276 * Keep the clock hand suitably device-aligned. 4277 */ 4278 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4279 4280 write_sz += buf_sz; 4281 dev->l2ad_hand += buf_sz; 4282 } 4283 4284 mutex_exit(list_lock); 4285 4286 if (full == B_TRUE) 4287 break; 4288 } 4289 mutex_exit(&l2arc_buflist_mtx); 4290 4291 if (pio == NULL) { 4292 ASSERT3U(write_sz, ==, 0); 4293 kmem_cache_free(hdr_cache, head); 4294 return; 4295 } 4296 4297 ASSERT3U(write_sz, <=, target_sz); 4298 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4299 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4300 spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz); 4301 4302 /* 4303 * Bump device hand to the device start if it is approaching the end. 4304 * l2arc_evict() will already have evicted ahead for this case. 4305 */ 4306 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4307 spa_l2cache_space_update(dev->l2ad_vdev, 0, 4308 dev->l2ad_end - dev->l2ad_hand); 4309 dev->l2ad_hand = dev->l2ad_start; 4310 dev->l2ad_evict = dev->l2ad_start; 4311 dev->l2ad_first = B_FALSE; 4312 } 4313 4314 (void) zio_wait(pio); 4315 } 4316 4317 /* 4318 * This thread feeds the L2ARC at regular intervals. This is the beating 4319 * heart of the L2ARC. 4320 */ 4321 static void 4322 l2arc_feed_thread(void) 4323 { 4324 callb_cpr_t cpr; 4325 l2arc_dev_t *dev; 4326 spa_t *spa; 4327 uint64_t size; 4328 4329 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4330 4331 mutex_enter(&l2arc_feed_thr_lock); 4332 4333 while (l2arc_thread_exit == 0) { 4334 /* 4335 * Pause for l2arc_feed_secs seconds between writes. 4336 */ 4337 CALLB_CPR_SAFE_BEGIN(&cpr); 4338 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4339 (hz * l2arc_feed_secs)); 4340 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4341 4342 /* 4343 * Quick check for L2ARC devices. 4344 */ 4345 mutex_enter(&l2arc_dev_mtx); 4346 if (l2arc_ndev == 0) { 4347 mutex_exit(&l2arc_dev_mtx); 4348 continue; 4349 } 4350 mutex_exit(&l2arc_dev_mtx); 4351 4352 /* 4353 * This selects the next l2arc device to write to, and in 4354 * doing so the next spa to feed from: dev->l2ad_spa. This 4355 * will return NULL if there are now no l2arc devices or if 4356 * they are all faulted. 4357 * 4358 * If a device is returned, its spa's config lock is also 4359 * held to prevent device removal. l2arc_dev_get_next() 4360 * will grab and release l2arc_dev_mtx. 4361 */ 4362 if ((dev = l2arc_dev_get_next()) == NULL) 4363 continue; 4364 4365 spa = dev->l2ad_spa; 4366 ASSERT(spa != NULL); 4367 4368 /* 4369 * Avoid contributing to memory pressure. 4370 */ 4371 if (arc_reclaim_needed()) { 4372 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4373 spa_config_exit(spa, SCL_L2ARC, dev); 4374 continue; 4375 } 4376 4377 ARCSTAT_BUMP(arcstat_l2_feeds); 4378 4379 size = dev->l2ad_write; 4380 if (arc_warm == B_FALSE) 4381 size += dev->l2ad_boost; 4382 4383 /* 4384 * Evict L2ARC buffers that will be overwritten. 4385 */ 4386 l2arc_evict(dev, size, B_FALSE); 4387 4388 /* 4389 * Write ARC buffers. 4390 */ 4391 l2arc_write_buffers(spa, dev, size); 4392 spa_config_exit(spa, SCL_L2ARC, dev); 4393 } 4394 4395 l2arc_thread_exit = 0; 4396 cv_broadcast(&l2arc_feed_thr_cv); 4397 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4398 thread_exit(); 4399 } 4400 4401 boolean_t 4402 l2arc_vdev_present(vdev_t *vd) 4403 { 4404 l2arc_dev_t *dev; 4405 4406 mutex_enter(&l2arc_dev_mtx); 4407 for (dev = list_head(l2arc_dev_list); dev != NULL; 4408 dev = list_next(l2arc_dev_list, dev)) { 4409 if (dev->l2ad_vdev == vd) 4410 break; 4411 } 4412 mutex_exit(&l2arc_dev_mtx); 4413 4414 return (dev != NULL); 4415 } 4416 4417 /* 4418 * Add a vdev for use by the L2ARC. By this point the spa has already 4419 * validated the vdev and opened it. 4420 */ 4421 void 4422 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end) 4423 { 4424 l2arc_dev_t *adddev; 4425 4426 ASSERT(!l2arc_vdev_present(vd)); 4427 4428 /* 4429 * Create a new l2arc device entry. 4430 */ 4431 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4432 adddev->l2ad_spa = spa; 4433 adddev->l2ad_vdev = vd; 4434 adddev->l2ad_write = l2arc_write_max; 4435 adddev->l2ad_boost = l2arc_write_boost; 4436 adddev->l2ad_start = start; 4437 adddev->l2ad_end = end; 4438 adddev->l2ad_hand = adddev->l2ad_start; 4439 adddev->l2ad_evict = adddev->l2ad_start; 4440 adddev->l2ad_first = B_TRUE; 4441 ASSERT3U(adddev->l2ad_write, >, 0); 4442 4443 /* 4444 * This is a list of all ARC buffers that are still valid on the 4445 * device. 4446 */ 4447 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4448 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4449 offsetof(arc_buf_hdr_t, b_l2node)); 4450 4451 spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0); 4452 4453 /* 4454 * Add device to global list 4455 */ 4456 mutex_enter(&l2arc_dev_mtx); 4457 list_insert_head(l2arc_dev_list, adddev); 4458 atomic_inc_64(&l2arc_ndev); 4459 mutex_exit(&l2arc_dev_mtx); 4460 } 4461 4462 /* 4463 * Remove a vdev from the L2ARC. 4464 */ 4465 void 4466 l2arc_remove_vdev(vdev_t *vd) 4467 { 4468 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4469 4470 /* 4471 * Find the device by vdev 4472 */ 4473 mutex_enter(&l2arc_dev_mtx); 4474 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4475 nextdev = list_next(l2arc_dev_list, dev); 4476 if (vd == dev->l2ad_vdev) { 4477 remdev = dev; 4478 break; 4479 } 4480 } 4481 ASSERT(remdev != NULL); 4482 4483 /* 4484 * Remove device from global list 4485 */ 4486 list_remove(l2arc_dev_list, remdev); 4487 l2arc_dev_last = NULL; /* may have been invalidated */ 4488 atomic_dec_64(&l2arc_ndev); 4489 mutex_exit(&l2arc_dev_mtx); 4490 4491 /* 4492 * Clear all buflists and ARC references. L2ARC device flush. 4493 */ 4494 l2arc_evict(remdev, 0, B_TRUE); 4495 list_destroy(remdev->l2ad_buflist); 4496 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4497 kmem_free(remdev, sizeof (l2arc_dev_t)); 4498 } 4499 4500 void 4501 l2arc_init(void) 4502 { 4503 l2arc_thread_exit = 0; 4504 l2arc_ndev = 0; 4505 l2arc_writes_sent = 0; 4506 l2arc_writes_done = 0; 4507 4508 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4509 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4510 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4511 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4512 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4513 4514 l2arc_dev_list = &L2ARC_dev_list; 4515 l2arc_free_on_write = &L2ARC_free_on_write; 4516 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4517 offsetof(l2arc_dev_t, l2ad_node)); 4518 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4519 offsetof(l2arc_data_free_t, l2df_list_node)); 4520 } 4521 4522 void 4523 l2arc_fini(void) 4524 { 4525 /* 4526 * This is called from dmu_fini(), which is called from spa_fini(); 4527 * Because of this, we can assume that all l2arc devices have 4528 * already been removed when the pools themselves were removed. 4529 */ 4530 4531 l2arc_do_free_on_write(); 4532 4533 mutex_destroy(&l2arc_feed_thr_lock); 4534 cv_destroy(&l2arc_feed_thr_cv); 4535 mutex_destroy(&l2arc_dev_mtx); 4536 mutex_destroy(&l2arc_buflist_mtx); 4537 mutex_destroy(&l2arc_free_on_write_mtx); 4538 4539 list_destroy(l2arc_dev_list); 4540 list_destroy(l2arc_free_on_write); 4541 } 4542 4543 void 4544 l2arc_start(void) 4545 { 4546 if (!(spa_mode & FWRITE)) 4547 return; 4548 4549 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4550 TS_RUN, minclsyspri); 4551 } 4552 4553 void 4554 l2arc_stop(void) 4555 { 4556 if (!(spa_mode & FWRITE)) 4557 return; 4558 4559 mutex_enter(&l2arc_feed_thr_lock); 4560 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4561 l2arc_thread_exit = 1; 4562 while (l2arc_thread_exit != 0) 4563 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4564 mutex_exit(&l2arc_feed_thr_lock); 4565 } 4566