1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Arc buffers may have an associated eviction callback function. 103 * This function will be invoked prior to removing the buffer (e.g. 104 * in arc_do_user_evicts()). Note however that the data associated 105 * with the buffer may be evicted prior to the callback. The callback 106 * must be made with *no locks held* (to prevent deadlock). Additionally, 107 * the users of callbacks must ensure that their private data is 108 * protected from simultaneous callbacks from arc_clear_callback() 109 * and arc_do_user_evicts(). 110 * 111 * Note that the majority of the performance stats are manipulated 112 * with atomic operations. 113 * 114 * The L2ARC uses the l2ad_mtx on each vdev for the following: 115 * 116 * - L2ARC buflist creation 117 * - L2ARC buflist eviction 118 * - L2ARC write completion, which walks L2ARC buflists 119 * - ARC header destruction, as it removes from L2ARC buflists 120 * - ARC header release, as it removes from L2ARC buflists 121 */ 122 123 /* 124 * ARC operation: 125 * 126 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 127 * This structure can point either to a block that is still in the cache or to 128 * one that is only accessible in an L2 ARC device, or it can provide 129 * information about a block that was recently evicted. If a block is 130 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 131 * information to retrieve it from the L2ARC device. This information is 132 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 133 * that is in this state cannot access the data directly. 134 * 135 * Blocks that are actively being referenced or have not been evicted 136 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 137 * the arc_buf_hdr_t that will point to the data block in memory. A block can 138 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 139 * caches data in two ways -- in a list of arc buffers (arc_buf_t) and 140 * also in the arc_buf_hdr_t's private physical data block pointer (b_pdata). 141 * Each arc buffer (arc_buf_t) is being actively accessed by a specific ARC 142 * consumer, and always contains uncompressed data. The ARC will provide 143 * references to this data and will keep it cached until it is no longer in 144 * use. Typically, the arc will try to cache only the L1ARC's physical data 145 * block and will aggressively evict any arc_buf_t that is no longer referenced. 146 * The amount of memory consumed by the arc_buf_t's can be seen via the 147 * "overhead_size" kstat. 148 * 149 * 150 * arc_buf_hdr_t 151 * +-----------+ 152 * | | 153 * | | 154 * | | 155 * +-----------+ 156 * l2arc_buf_hdr_t| | 157 * | | 158 * +-----------+ 159 * l1arc_buf_hdr_t| | 160 * | | arc_buf_t 161 * | b_buf +------------>+---------+ arc_buf_t 162 * | | |b_next +---->+---------+ 163 * | b_pdata +-+ |---------| |b_next +-->NULL 164 * +-----------+ | | | +---------+ 165 * | |b_data +-+ | | 166 * | +---------+ | |b_data +-+ 167 * +->+------+ | +---------+ | 168 * (potentially) | | | | 169 * compressed | | | | 170 * data +------+ | v 171 * +->+------+ +------+ 172 * uncompressed | | | | 173 * data | | | | 174 * +------+ +------+ 175 * 176 * The L1ARC's data pointer, however, may or may not be uncompressed. The 177 * ARC has the ability to store the physical data (b_pdata) associated with 178 * the DVA of the arc_buf_hdr_t. Since the b_pdata is a copy of the on-disk 179 * physical block, it will match its on-disk compression characteristics. 180 * If the block on-disk is compressed, then the physical data block 181 * in the cache will also be compressed and vice-versa. This behavior 182 * can be disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 183 * compressed ARC functionality is disabled, the b_pdata will point to an 184 * uncompressed version of the on-disk data. 185 * 186 * When a consumer reads a block, the ARC must first look to see if the 187 * arc_buf_hdr_t is cached. If the hdr is cached and already has an arc_buf_t, 188 * then an additional arc_buf_t is allocated and the uncompressed data is 189 * bcopied from the existing arc_buf_t. If the hdr is cached but does not 190 * have an arc_buf_t, then the ARC allocates a new arc_buf_t and decompresses 191 * the b_pdata contents into the arc_buf_t's b_data. If the arc_buf_hdr_t's 192 * b_pdata is not compressed, then the block is shared with the newly 193 * allocated arc_buf_t. This block sharing only occurs with one arc_buf_t 194 * in the arc buffer chain. Sharing the block reduces the memory overhead 195 * required when the hdr is caching uncompressed blocks or the compressed 196 * arc functionality has been disabled via 'zfs_compressed_arc_enabled'. 197 * 198 * The diagram below shows an example of an uncompressed ARC hdr that is 199 * sharing its data with an arc_buf_t: 200 * 201 * arc_buf_hdr_t 202 * +-----------+ 203 * | | 204 * | | 205 * | | 206 * +-----------+ 207 * l2arc_buf_hdr_t| | 208 * | | 209 * +-----------+ 210 * l1arc_buf_hdr_t| | 211 * | | arc_buf_t (shared) 212 * | b_buf +------------>+---------+ arc_buf_t 213 * | | |b_next +---->+---------+ 214 * | b_pdata +-+ |---------| |b_next +-->NULL 215 * +-----------+ | | | +---------+ 216 * | |b_data +-+ | | 217 * | +---------+ | |b_data +-+ 218 * +->+------+ | +---------+ | 219 * | | | | 220 * uncompressed | | | | 221 * data +------+ | | 222 * ^ +->+------+ | 223 * | uncompressed | | | 224 * | data | | | 225 * | +------+ | 226 * +---------------------------------+ 227 * 228 * Writing to the arc requires that the ARC first discard the b_pdata 229 * since the physical block is about to be rewritten. The new data contents 230 * will be contained in the arc_buf_t (uncompressed). As the I/O pipeline 231 * performs the write, it may compress the data before writing it to disk. 232 * The ARC will be called with the transformed data and will bcopy the 233 * transformed on-disk block into a newly allocated b_pdata. 234 * 235 * When the L2ARC is in use, it will also take advantage of the b_pdata. The 236 * L2ARC will always write the contents of b_pdata to the L2ARC. This means 237 * that when compressed arc is enabled that the L2ARC blocks are identical 238 * to the on-disk block in the main data pool. This provides a significant 239 * advantage since the ARC can leverage the bp's checksum when reading from the 240 * L2ARC to determine if the contents are valid. However, if the compressed 241 * arc is disabled, then the L2ARC's block must be transformed to look 242 * like the physical block in the main data pool before comparing the 243 * checksum and determining its validity. 244 */ 245 246 #include <sys/spa.h> 247 #include <sys/zio.h> 248 #include <sys/spa_impl.h> 249 #include <sys/zio_compress.h> 250 #include <sys/zio_checksum.h> 251 #include <sys/zfs_context.h> 252 #include <sys/arc.h> 253 #include <sys/refcount.h> 254 #include <sys/vdev.h> 255 #include <sys/vdev_impl.h> 256 #include <sys/dsl_pool.h> 257 #include <sys/multilist.h> 258 #ifdef _KERNEL 259 #include <sys/dnlc.h> 260 #include <sys/racct.h> 261 #endif 262 #include <sys/callb.h> 263 #include <sys/kstat.h> 264 #include <sys/trim_map.h> 265 #include <zfs_fletcher.h> 266 #include <sys/sdt.h> 267 268 #include <machine/vmparam.h> 269 270 #ifdef illumos 271 #ifndef _KERNEL 272 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 273 boolean_t arc_watch = B_FALSE; 274 int arc_procfd; 275 #endif 276 #endif /* illumos */ 277 278 #ifdef __NetBSD__ 279 #include <uvm/uvm.h> 280 #ifndef btop 281 #define btop(x) ((x) / PAGE_SIZE) 282 #endif 283 #ifndef ptob 284 #define ptob(x) ((x) * PAGE_SIZE) 285 #endif 286 //#define needfree (uvm_availmem() < uvmexp.freetarg ? uvmexp.freetarg : 0) 287 #define buf_init arc_buf_init 288 #define freemem uvm_availmem(false) 289 #define minfree uvmexp.freemin 290 #define desfree uvmexp.freetarg 291 #define lotsfree (desfree * 2) 292 #define availrmem desfree 293 #define swapfs_minfree 0 294 #define swapfs_reserve 0 295 #undef curproc 296 #define curproc curlwp 297 #define proc_pageout uvm.pagedaemon_lwp 298 299 static void *zio_arena; 300 301 #include <sys/callback.h> 302 /* Structures used for memory and kva space reclaim. */ 303 static struct callback_entry arc_kva_reclaim_entry; 304 305 #endif /* __NetBSD__ */ 306 307 static kmutex_t arc_reclaim_lock; 308 static kcondvar_t arc_reclaim_thread_cv; 309 static boolean_t arc_reclaim_thread_exit; 310 static kcondvar_t arc_reclaim_waiters_cv; 311 312 #ifdef __FreeBSD__ 313 static kmutex_t arc_dnlc_evicts_lock; 314 static kcondvar_t arc_dnlc_evicts_cv; 315 static boolean_t arc_dnlc_evicts_thread_exit; 316 317 uint_t arc_reduce_dnlc_percent = 3; 318 #endif 319 320 /* 321 * The number of headers to evict in arc_evict_state_impl() before 322 * dropping the sublist lock and evicting from another sublist. A lower 323 * value means we're more likely to evict the "correct" header (i.e. the 324 * oldest header in the arc state), but comes with higher overhead 325 * (i.e. more invocations of arc_evict_state_impl()). 326 */ 327 int zfs_arc_evict_batch_limit = 10; 328 329 /* 330 * The number of sublists used for each of the arc state lists. If this 331 * is not set to a suitable value by the user, it will be configured to 332 * the number of CPUs on the system in arc_init(). 333 */ 334 int zfs_arc_num_sublists_per_state = 0; 335 336 /* number of seconds before growing cache again */ 337 static int arc_grow_retry = 60; 338 339 /* shift of arc_c for calculating overflow limit in arc_get_data_buf */ 340 int zfs_arc_overflow_shift = 8; 341 342 /* shift of arc_c for calculating both min and max arc_p */ 343 static int arc_p_min_shift = 4; 344 345 /* log2(fraction of arc to reclaim) */ 346 static int arc_shrink_shift = 7; 347 348 /* 349 * log2(fraction of ARC which must be free to allow growing). 350 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 351 * when reading a new block into the ARC, we will evict an equal-sized block 352 * from the ARC. 353 * 354 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 355 * we will still not allow it to grow. 356 */ 357 int arc_no_grow_shift = 5; 358 359 360 /* 361 * minimum lifespan of a prefetch block in clock ticks 362 * (initialized in arc_init()) 363 */ 364 static int arc_min_prefetch_lifespan; 365 366 /* 367 * If this percent of memory is free, don't throttle. 368 */ 369 int arc_lotsfree_percent = 10; 370 371 static int arc_dead; 372 extern boolean_t zfs_prefetch_disable; 373 374 /* 375 * The arc has filled available memory and has now warmed up. 376 */ 377 static boolean_t arc_warm; 378 379 /* 380 * These tunables are for performance analysis. 381 */ 382 uint64_t zfs_arc_max; 383 uint64_t zfs_arc_min; 384 uint64_t zfs_arc_meta_limit = 0; 385 uint64_t zfs_arc_meta_min = 0; 386 int zfs_arc_grow_retry = 0; 387 int zfs_arc_shrink_shift = 0; 388 int zfs_arc_p_min_shift = 0; 389 uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 390 u_int zfs_arc_free_target = 0; 391 392 /* Absolute min for arc min / max is 16MB. */ 393 static uint64_t arc_abs_min = 16 << 20; 394 395 boolean_t zfs_compressed_arc_enabled = B_TRUE; 396 397 #if defined(__FreeBSD__) && defined(_KERNEL) 398 static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS); 399 static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS); 400 static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS); 401 static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS); 402 403 static void 404 arc_free_target_init(void *unused __unused) 405 { 406 407 zfs_arc_free_target = vm_pageout_wakeup_thresh; 408 } 409 SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY, 410 arc_free_target_init, NULL); 411 412 TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit); 413 TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min); 414 TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift); 415 SYSCTL_DECL(_vfs_zfs); 416 SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN, 417 0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size"); 418 SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN, 419 0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size"); 420 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN, 421 &zfs_arc_average_blocksize, 0, 422 "ARC average blocksize"); 423 SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW, 424 &arc_shrink_shift, 0, 425 "log2(fraction of arc to reclaim)"); 426 SYSCTL_INT(_vfs_zfs, OID_AUTO, compressed_arc_enabled, CTLFLAG_RDTUN, 427 &zfs_compressed_arc_enabled, 0, "Enable compressed ARC"); 428 429 /* 430 * We don't have a tunable for arc_free_target due to the dependency on 431 * pagedaemon initialisation. 432 */ 433 SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target, 434 CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int), 435 sysctl_vfs_zfs_arc_free_target, "IU", 436 "Desired number of free pages below which ARC triggers reclaim"); 437 438 static int 439 sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS) 440 { 441 u_int val; 442 int err; 443 444 val = zfs_arc_free_target; 445 err = sysctl_handle_int(oidp, &val, 0, req); 446 if (err != 0 || req->newptr == NULL) 447 return (err); 448 449 if (val < minfree) 450 return (EINVAL); 451 if (val > vm_cnt.v_page_count) 452 return (EINVAL); 453 454 zfs_arc_free_target = val; 455 456 return (0); 457 } 458 459 /* 460 * Must be declared here, before the definition of corresponding kstat 461 * macro which uses the same names will confuse the compiler. 462 */ 463 SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit, 464 CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t), 465 sysctl_vfs_zfs_arc_meta_limit, "QU", 466 "ARC metadata limit"); 467 #endif 468 469 /* 470 * Note that buffers can be in one of 6 states: 471 * ARC_anon - anonymous (discussed below) 472 * ARC_mru - recently used, currently cached 473 * ARC_mru_ghost - recentely used, no longer in cache 474 * ARC_mfu - frequently used, currently cached 475 * ARC_mfu_ghost - frequently used, no longer in cache 476 * ARC_l2c_only - exists in L2ARC but not other states 477 * When there are no active references to the buffer, they are 478 * are linked onto a list in one of these arc states. These are 479 * the only buffers that can be evicted or deleted. Within each 480 * state there are multiple lists, one for meta-data and one for 481 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 482 * etc.) is tracked separately so that it can be managed more 483 * explicitly: favored over data, limited explicitly. 484 * 485 * Anonymous buffers are buffers that are not associated with 486 * a DVA. These are buffers that hold dirty block copies 487 * before they are written to stable storage. By definition, 488 * they are "ref'd" and are considered part of arc_mru 489 * that cannot be freed. Generally, they will aquire a DVA 490 * as they are written and migrate onto the arc_mru list. 491 * 492 * The ARC_l2c_only state is for buffers that are in the second 493 * level ARC but no longer in any of the ARC_m* lists. The second 494 * level ARC itself may also contain buffers that are in any of 495 * the ARC_m* states - meaning that a buffer can exist in two 496 * places. The reason for the ARC_l2c_only state is to keep the 497 * buffer header in the hash table, so that reads that hit the 498 * second level ARC benefit from these fast lookups. 499 */ 500 501 typedef struct arc_state { 502 /* 503 * list of evictable buffers 504 */ 505 multilist_t arcs_list[ARC_BUFC_NUMTYPES]; 506 /* 507 * total amount of evictable data in this state 508 */ 509 refcount_t arcs_esize[ARC_BUFC_NUMTYPES]; 510 /* 511 * total amount of data in this state; this includes: evictable, 512 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA. 513 */ 514 refcount_t arcs_size; 515 } arc_state_t; 516 517 /* The 6 states: */ 518 static arc_state_t ARC_anon; 519 static arc_state_t ARC_mru; 520 static arc_state_t ARC_mru_ghost; 521 static arc_state_t ARC_mfu; 522 static arc_state_t ARC_mfu_ghost; 523 static arc_state_t ARC_l2c_only; 524 525 typedef struct arc_stats { 526 kstat_named_t arcstat_hits; 527 kstat_named_t arcstat_misses; 528 kstat_named_t arcstat_demand_data_hits; 529 kstat_named_t arcstat_demand_data_misses; 530 kstat_named_t arcstat_demand_metadata_hits; 531 kstat_named_t arcstat_demand_metadata_misses; 532 kstat_named_t arcstat_prefetch_data_hits; 533 kstat_named_t arcstat_prefetch_data_misses; 534 kstat_named_t arcstat_prefetch_metadata_hits; 535 kstat_named_t arcstat_prefetch_metadata_misses; 536 kstat_named_t arcstat_mru_hits; 537 kstat_named_t arcstat_mru_ghost_hits; 538 kstat_named_t arcstat_mfu_hits; 539 kstat_named_t arcstat_mfu_ghost_hits; 540 kstat_named_t arcstat_allocated; 541 kstat_named_t arcstat_deleted; 542 /* 543 * Number of buffers that could not be evicted because the hash lock 544 * was held by another thread. The lock may not necessarily be held 545 * by something using the same buffer, since hash locks are shared 546 * by multiple buffers. 547 */ 548 kstat_named_t arcstat_mutex_miss; 549 /* 550 * Number of buffers skipped because they have I/O in progress, are 551 * indrect prefetch buffers that have not lived long enough, or are 552 * not from the spa we're trying to evict from. 553 */ 554 kstat_named_t arcstat_evict_skip; 555 /* 556 * Number of times arc_evict_state() was unable to evict enough 557 * buffers to reach it's target amount. 558 */ 559 kstat_named_t arcstat_evict_not_enough; 560 kstat_named_t arcstat_evict_l2_cached; 561 kstat_named_t arcstat_evict_l2_eligible; 562 kstat_named_t arcstat_evict_l2_ineligible; 563 kstat_named_t arcstat_evict_l2_skip; 564 kstat_named_t arcstat_hash_elements; 565 kstat_named_t arcstat_hash_elements_max; 566 kstat_named_t arcstat_hash_collisions; 567 kstat_named_t arcstat_hash_chains; 568 kstat_named_t arcstat_hash_chain_max; 569 kstat_named_t arcstat_p; 570 kstat_named_t arcstat_c; 571 kstat_named_t arcstat_c_min; 572 kstat_named_t arcstat_c_max; 573 kstat_named_t arcstat_size; 574 /* 575 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pdata. 576 * Note that the compressed bytes may match the uncompressed bytes 577 * if the block is either not compressed or compressed arc is disabled. 578 */ 579 kstat_named_t arcstat_compressed_size; 580 /* 581 * Uncompressed size of the data stored in b_pdata. If compressed 582 * arc is disabled then this value will be identical to the stat 583 * above. 584 */ 585 kstat_named_t arcstat_uncompressed_size; 586 /* 587 * Number of bytes stored in all the arc_buf_t's. This is classified 588 * as "overhead" since this data is typically short-lived and will 589 * be evicted from the arc when it becomes unreferenced unless the 590 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level 591 * values have been set (see comment in dbuf.c for more information). 592 */ 593 kstat_named_t arcstat_overhead_size; 594 /* 595 * Number of bytes consumed by internal ARC structures necessary 596 * for tracking purposes; these structures are not actually 597 * backed by ARC buffers. This includes arc_buf_hdr_t structures 598 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only 599 * caches), and arc_buf_t structures (allocated via arc_buf_t 600 * cache). 601 */ 602 kstat_named_t arcstat_hdr_size; 603 /* 604 * Number of bytes consumed by ARC buffers of type equal to 605 * ARC_BUFC_DATA. This is generally consumed by buffers backing 606 * on disk user data (e.g. plain file contents). 607 */ 608 kstat_named_t arcstat_data_size; 609 /* 610 * Number of bytes consumed by ARC buffers of type equal to 611 * ARC_BUFC_METADATA. This is generally consumed by buffers 612 * backing on disk data that is used for internal ZFS 613 * structures (e.g. ZAP, dnode, indirect blocks, etc). 614 */ 615 kstat_named_t arcstat_metadata_size; 616 /* 617 * Number of bytes consumed by various buffers and structures 618 * not actually backed with ARC buffers. This includes bonus 619 * buffers (allocated directly via zio_buf_* functions), 620 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t 621 * cache), and dnode_t structures (allocated via dnode_t cache). 622 */ 623 kstat_named_t arcstat_other_size; 624 /* 625 * Total number of bytes consumed by ARC buffers residing in the 626 * arc_anon state. This includes *all* buffers in the arc_anon 627 * state; e.g. data, metadata, evictable, and unevictable buffers 628 * are all included in this value. 629 */ 630 kstat_named_t arcstat_anon_size; 631 /* 632 * Number of bytes consumed by ARC buffers that meet the 633 * following criteria: backing buffers of type ARC_BUFC_DATA, 634 * residing in the arc_anon state, and are eligible for eviction 635 * (e.g. have no outstanding holds on the buffer). 636 */ 637 kstat_named_t arcstat_anon_evictable_data; 638 /* 639 * Number of bytes consumed by ARC buffers that meet the 640 * following criteria: backing buffers of type ARC_BUFC_METADATA, 641 * residing in the arc_anon state, and are eligible for eviction 642 * (e.g. have no outstanding holds on the buffer). 643 */ 644 kstat_named_t arcstat_anon_evictable_metadata; 645 /* 646 * Total number of bytes consumed by ARC buffers residing in the 647 * arc_mru state. This includes *all* buffers in the arc_mru 648 * state; e.g. data, metadata, evictable, and unevictable buffers 649 * are all included in this value. 650 */ 651 kstat_named_t arcstat_mru_size; 652 /* 653 * Number of bytes consumed by ARC buffers that meet the 654 * following criteria: backing buffers of type ARC_BUFC_DATA, 655 * residing in the arc_mru state, and are eligible for eviction 656 * (e.g. have no outstanding holds on the buffer). 657 */ 658 kstat_named_t arcstat_mru_evictable_data; 659 /* 660 * Number of bytes consumed by ARC buffers that meet the 661 * following criteria: backing buffers of type ARC_BUFC_METADATA, 662 * residing in the arc_mru state, and are eligible for eviction 663 * (e.g. have no outstanding holds on the buffer). 664 */ 665 kstat_named_t arcstat_mru_evictable_metadata; 666 /* 667 * Total number of bytes that *would have been* consumed by ARC 668 * buffers in the arc_mru_ghost state. The key thing to note 669 * here, is the fact that this size doesn't actually indicate 670 * RAM consumption. The ghost lists only consist of headers and 671 * don't actually have ARC buffers linked off of these headers. 672 * Thus, *if* the headers had associated ARC buffers, these 673 * buffers *would have* consumed this number of bytes. 674 */ 675 kstat_named_t arcstat_mru_ghost_size; 676 /* 677 * Number of bytes that *would have been* consumed by ARC 678 * buffers that are eligible for eviction, of type 679 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state. 680 */ 681 kstat_named_t arcstat_mru_ghost_evictable_data; 682 /* 683 * Number of bytes that *would have been* consumed by ARC 684 * buffers that are eligible for eviction, of type 685 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 686 */ 687 kstat_named_t arcstat_mru_ghost_evictable_metadata; 688 /* 689 * Total number of bytes consumed by ARC buffers residing in the 690 * arc_mfu state. This includes *all* buffers in the arc_mfu 691 * state; e.g. data, metadata, evictable, and unevictable buffers 692 * are all included in this value. 693 */ 694 kstat_named_t arcstat_mfu_size; 695 /* 696 * Number of bytes consumed by ARC buffers that are eligible for 697 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu 698 * state. 699 */ 700 kstat_named_t arcstat_mfu_evictable_data; 701 /* 702 * Number of bytes consumed by ARC buffers that are eligible for 703 * eviction, of type ARC_BUFC_METADATA, and reside in the 704 * arc_mfu state. 705 */ 706 kstat_named_t arcstat_mfu_evictable_metadata; 707 /* 708 * Total number of bytes that *would have been* consumed by ARC 709 * buffers in the arc_mfu_ghost state. See the comment above 710 * arcstat_mru_ghost_size for more details. 711 */ 712 kstat_named_t arcstat_mfu_ghost_size; 713 /* 714 * Number of bytes that *would have been* consumed by ARC 715 * buffers that are eligible for eviction, of type 716 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state. 717 */ 718 kstat_named_t arcstat_mfu_ghost_evictable_data; 719 /* 720 * Number of bytes that *would have been* consumed by ARC 721 * buffers that are eligible for eviction, of type 722 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 723 */ 724 kstat_named_t arcstat_mfu_ghost_evictable_metadata; 725 kstat_named_t arcstat_l2_hits; 726 kstat_named_t arcstat_l2_misses; 727 kstat_named_t arcstat_l2_feeds; 728 kstat_named_t arcstat_l2_rw_clash; 729 kstat_named_t arcstat_l2_read_bytes; 730 kstat_named_t arcstat_l2_write_bytes; 731 kstat_named_t arcstat_l2_writes_sent; 732 kstat_named_t arcstat_l2_writes_done; 733 kstat_named_t arcstat_l2_writes_error; 734 kstat_named_t arcstat_l2_writes_lock_retry; 735 kstat_named_t arcstat_l2_evict_lock_retry; 736 kstat_named_t arcstat_l2_evict_reading; 737 kstat_named_t arcstat_l2_evict_l1cached; 738 kstat_named_t arcstat_l2_free_on_write; 739 kstat_named_t arcstat_l2_abort_lowmem; 740 kstat_named_t arcstat_l2_cksum_bad; 741 kstat_named_t arcstat_l2_io_error; 742 kstat_named_t arcstat_l2_size; 743 kstat_named_t arcstat_l2_asize; 744 kstat_named_t arcstat_l2_hdr_size; 745 kstat_named_t arcstat_l2_write_trylock_fail; 746 kstat_named_t arcstat_l2_write_passed_headroom; 747 kstat_named_t arcstat_l2_write_spa_mismatch; 748 kstat_named_t arcstat_l2_write_in_l2; 749 kstat_named_t arcstat_l2_write_hdr_io_in_progress; 750 kstat_named_t arcstat_l2_write_not_cacheable; 751 kstat_named_t arcstat_l2_write_full; 752 kstat_named_t arcstat_l2_write_buffer_iter; 753 kstat_named_t arcstat_l2_write_pios; 754 kstat_named_t arcstat_l2_write_buffer_bytes_scanned; 755 kstat_named_t arcstat_l2_write_buffer_list_iter; 756 kstat_named_t arcstat_l2_write_buffer_list_null_iter; 757 kstat_named_t arcstat_memory_throttle_count; 758 kstat_named_t arcstat_meta_used; 759 kstat_named_t arcstat_meta_limit; 760 kstat_named_t arcstat_meta_max; 761 kstat_named_t arcstat_meta_min; 762 kstat_named_t arcstat_sync_wait_for_async; 763 kstat_named_t arcstat_demand_hit_predictive_prefetch; 764 } arc_stats_t; 765 766 static arc_stats_t arc_stats = { 767 { "hits", KSTAT_DATA_UINT64 }, 768 { "misses", KSTAT_DATA_UINT64 }, 769 { "demand_data_hits", KSTAT_DATA_UINT64 }, 770 { "demand_data_misses", KSTAT_DATA_UINT64 }, 771 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 772 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 773 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 774 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 775 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 776 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 777 { "mru_hits", KSTAT_DATA_UINT64 }, 778 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 779 { "mfu_hits", KSTAT_DATA_UINT64 }, 780 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 781 { "allocated", KSTAT_DATA_UINT64 }, 782 { "deleted", KSTAT_DATA_UINT64 }, 783 { "mutex_miss", KSTAT_DATA_UINT64 }, 784 { "evict_skip", KSTAT_DATA_UINT64 }, 785 { "evict_not_enough", KSTAT_DATA_UINT64 }, 786 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 787 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 788 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 789 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 790 { "hash_elements", KSTAT_DATA_UINT64 }, 791 { "hash_elements_max", KSTAT_DATA_UINT64 }, 792 { "hash_collisions", KSTAT_DATA_UINT64 }, 793 { "hash_chains", KSTAT_DATA_UINT64 }, 794 { "hash_chain_max", KSTAT_DATA_UINT64 }, 795 { "p", KSTAT_DATA_UINT64 }, 796 { "c", KSTAT_DATA_UINT64 }, 797 { "c_min", KSTAT_DATA_UINT64 }, 798 { "c_max", KSTAT_DATA_UINT64 }, 799 { "size", KSTAT_DATA_UINT64 }, 800 { "compressed_size", KSTAT_DATA_UINT64 }, 801 { "uncompressed_size", KSTAT_DATA_UINT64 }, 802 { "overhead_size", KSTAT_DATA_UINT64 }, 803 { "hdr_size", KSTAT_DATA_UINT64 }, 804 { "data_size", KSTAT_DATA_UINT64 }, 805 { "metadata_size", KSTAT_DATA_UINT64 }, 806 { "other_size", KSTAT_DATA_UINT64 }, 807 { "anon_size", KSTAT_DATA_UINT64 }, 808 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 809 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 810 { "mru_size", KSTAT_DATA_UINT64 }, 811 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 812 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 813 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 814 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 815 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 816 { "mfu_size", KSTAT_DATA_UINT64 }, 817 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 818 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 819 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 820 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 821 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 822 { "l2_hits", KSTAT_DATA_UINT64 }, 823 { "l2_misses", KSTAT_DATA_UINT64 }, 824 { "l2_feeds", KSTAT_DATA_UINT64 }, 825 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 826 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 827 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 828 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 829 { "l2_writes_done", KSTAT_DATA_UINT64 }, 830 { "l2_writes_error", KSTAT_DATA_UINT64 }, 831 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 832 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 833 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 834 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 835 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 836 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 837 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 838 { "l2_io_error", KSTAT_DATA_UINT64 }, 839 { "l2_size", KSTAT_DATA_UINT64 }, 840 { "l2_asize", KSTAT_DATA_UINT64 }, 841 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 842 { "l2_write_trylock_fail", KSTAT_DATA_UINT64 }, 843 { "l2_write_passed_headroom", KSTAT_DATA_UINT64 }, 844 { "l2_write_spa_mismatch", KSTAT_DATA_UINT64 }, 845 { "l2_write_in_l2", KSTAT_DATA_UINT64 }, 846 { "l2_write_io_in_progress", KSTAT_DATA_UINT64 }, 847 { "l2_write_not_cacheable", KSTAT_DATA_UINT64 }, 848 { "l2_write_full", KSTAT_DATA_UINT64 }, 849 { "l2_write_buffer_iter", KSTAT_DATA_UINT64 }, 850 { "l2_write_pios", KSTAT_DATA_UINT64 }, 851 { "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 }, 852 { "l2_write_buffer_list_iter", KSTAT_DATA_UINT64 }, 853 { "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 }, 854 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 855 { "arc_meta_used", KSTAT_DATA_UINT64 }, 856 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 857 { "arc_meta_max", KSTAT_DATA_UINT64 }, 858 { "arc_meta_min", KSTAT_DATA_UINT64 }, 859 { "sync_wait_for_async", KSTAT_DATA_UINT64 }, 860 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 861 }; 862 863 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 864 865 #define ARCSTAT_INCR(stat, val) \ 866 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 867 868 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 869 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 870 871 #define ARCSTAT_MAX(stat, val) { \ 872 uint64_t m; \ 873 while ((val) > (m = arc_stats.stat.value.ui64) && \ 874 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 875 continue; \ 876 } 877 878 #define ARCSTAT_MAXSTAT(stat) \ 879 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 880 881 /* 882 * We define a macro to allow ARC hits/misses to be easily broken down by 883 * two separate conditions, giving a total of four different subtypes for 884 * each of hits and misses (so eight statistics total). 885 */ 886 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 887 if (cond1) { \ 888 if (cond2) { \ 889 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 890 } else { \ 891 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 892 } \ 893 } else { \ 894 if (cond2) { \ 895 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 896 } else { \ 897 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 898 } \ 899 } 900 901 kstat_t *arc_ksp; 902 static arc_state_t *arc_anon; 903 static arc_state_t *arc_mru; 904 static arc_state_t *arc_mru_ghost; 905 static arc_state_t *arc_mfu; 906 static arc_state_t *arc_mfu_ghost; 907 static arc_state_t *arc_l2c_only; 908 909 /* 910 * There are several ARC variables that are critical to export as kstats -- 911 * but we don't want to have to grovel around in the kstat whenever we wish to 912 * manipulate them. For these variables, we therefore define them to be in 913 * terms of the statistic variable. This assures that we are not introducing 914 * the possibility of inconsistency by having shadow copies of the variables, 915 * while still allowing the code to be readable. 916 */ 917 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 918 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 919 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 920 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 921 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 922 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 923 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 924 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 925 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 926 927 /* compressed size of entire arc */ 928 #define arc_compressed_size ARCSTAT(arcstat_compressed_size) 929 /* uncompressed size of entire arc */ 930 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) 931 /* number of bytes in the arc from arc_buf_t's */ 932 #define arc_overhead_size ARCSTAT(arcstat_overhead_size) 933 934 static int arc_no_grow; /* Don't try to grow cache size */ 935 static uint64_t arc_tempreserve; 936 static uint64_t arc_loaned_bytes; 937 938 typedef struct arc_callback arc_callback_t; 939 940 struct arc_callback { 941 void *acb_private; 942 arc_done_func_t *acb_done; 943 arc_buf_t *acb_buf; 944 zio_t *acb_zio_dummy; 945 arc_callback_t *acb_next; 946 }; 947 948 typedef struct arc_write_callback arc_write_callback_t; 949 950 struct arc_write_callback { 951 void *awcb_private; 952 arc_done_func_t *awcb_ready; 953 arc_done_func_t *awcb_children_ready; 954 arc_done_func_t *awcb_physdone; 955 arc_done_func_t *awcb_done; 956 arc_buf_t *awcb_buf; 957 }; 958 959 /* 960 * ARC buffers are separated into multiple structs as a memory saving measure: 961 * - Common fields struct, always defined, and embedded within it: 962 * - L2-only fields, always allocated but undefined when not in L2ARC 963 * - L1-only fields, only allocated when in L1ARC 964 * 965 * Buffer in L1 Buffer only in L2 966 * +------------------------+ +------------------------+ 967 * | arc_buf_hdr_t | | arc_buf_hdr_t | 968 * | | | | 969 * | | | | 970 * | | | | 971 * +------------------------+ +------------------------+ 972 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t | 973 * | (undefined if L1-only) | | | 974 * +------------------------+ +------------------------+ 975 * | l1arc_buf_hdr_t | 976 * | | 977 * | | 978 * | | 979 * | | 980 * +------------------------+ 981 * 982 * Because it's possible for the L2ARC to become extremely large, we can wind 983 * up eating a lot of memory in L2ARC buffer headers, so the size of a header 984 * is minimized by only allocating the fields necessary for an L1-cached buffer 985 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and 986 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple 987 * words in pointers. arc_hdr_realloc() is used to switch a header between 988 * these two allocation states. 989 */ 990 typedef struct l1arc_buf_hdr { 991 kmutex_t b_freeze_lock; 992 zio_cksum_t *b_freeze_cksum; 993 #ifdef ZFS_DEBUG 994 /* 995 * used for debugging wtih kmem_flags - by allocating and freeing 996 * b_thawed when the buffer is thawed, we get a record of the stack 997 * trace that thawed it. 998 */ 999 void *b_thawed; 1000 #endif 1001 1002 arc_buf_t *b_buf; 1003 uint32_t b_bufcnt; 1004 /* for waiting on writes to complete */ 1005 kcondvar_t b_cv; 1006 uint8_t b_byteswap; 1007 1008 /* protected by arc state mutex */ 1009 arc_state_t *b_state; 1010 multilist_node_t b_arc_node; 1011 1012 /* updated atomically */ 1013 clock_t b_arc_access; 1014 1015 /* self protecting */ 1016 refcount_t b_refcnt; 1017 1018 arc_callback_t *b_acb; 1019 void *b_pdata; 1020 } l1arc_buf_hdr_t; 1021 1022 typedef struct l2arc_dev l2arc_dev_t; 1023 1024 typedef struct l2arc_buf_hdr { 1025 /* protected by arc_buf_hdr mutex */ 1026 l2arc_dev_t *b_dev; /* L2ARC device */ 1027 uint64_t b_daddr; /* disk address, offset byte */ 1028 1029 list_node_t b_l2node; 1030 } l2arc_buf_hdr_t; 1031 1032 struct arc_buf_hdr { 1033 /* protected by hash lock */ 1034 dva_t b_dva; 1035 uint64_t b_birth; 1036 1037 arc_buf_contents_t b_type; 1038 arc_buf_hdr_t *b_hash_next; 1039 arc_flags_t b_flags; 1040 1041 /* 1042 * This field stores the size of the data buffer after 1043 * compression, and is set in the arc's zio completion handlers. 1044 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes). 1045 * 1046 * While the block pointers can store up to 32MB in their psize 1047 * field, we can only store up to 32MB minus 512B. This is due 1048 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e. 1049 * a field of zeros represents 512B in the bp). We can't use a 1050 * bias of 1 since we need to reserve a psize of zero, here, to 1051 * represent holes and embedded blocks. 1052 * 1053 * This isn't a problem in practice, since the maximum size of a 1054 * buffer is limited to 16MB, so we never need to store 32MB in 1055 * this field. Even in the upstream illumos code base, the 1056 * maximum size of a buffer is limited to 16MB. 1057 */ 1058 uint16_t b_psize; 1059 1060 /* 1061 * This field stores the size of the data buffer before 1062 * compression, and cannot change once set. It is in units 1063 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes) 1064 */ 1065 uint16_t b_lsize; /* immutable */ 1066 uint64_t b_spa; /* immutable */ 1067 1068 /* L2ARC fields. Undefined when not in L2ARC. */ 1069 l2arc_buf_hdr_t b_l2hdr; 1070 /* L1ARC fields. Undefined when in l2arc_only state */ 1071 l1arc_buf_hdr_t b_l1hdr; 1072 }; 1073 1074 #if defined(__FreeBSD__) && defined(_KERNEL) 1075 static int 1076 sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS) 1077 { 1078 uint64_t val; 1079 int err; 1080 1081 val = arc_meta_limit; 1082 err = sysctl_handle_64(oidp, &val, 0, req); 1083 if (err != 0 || req->newptr == NULL) 1084 return (err); 1085 1086 if (val <= 0 || val > arc_c_max) 1087 return (EINVAL); 1088 1089 arc_meta_limit = val; 1090 return (0); 1091 } 1092 1093 static int 1094 sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS) 1095 { 1096 uint64_t val; 1097 int err; 1098 1099 val = zfs_arc_max; 1100 err = sysctl_handle_64(oidp, &val, 0, req); 1101 if (err != 0 || req->newptr == NULL) 1102 return (err); 1103 1104 if (zfs_arc_max == 0) { 1105 /* Loader tunable so blindly set */ 1106 zfs_arc_max = val; 1107 return (0); 1108 } 1109 1110 if (val < arc_abs_min || val > kmem_size()) 1111 return (EINVAL); 1112 if (val < arc_c_min) 1113 return (EINVAL); 1114 if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit) 1115 return (EINVAL); 1116 1117 arc_c_max = val; 1118 1119 arc_c = arc_c_max; 1120 arc_p = (arc_c >> 1); 1121 1122 if (zfs_arc_meta_limit == 0) { 1123 /* limit meta-data to 1/4 of the arc capacity */ 1124 arc_meta_limit = arc_c_max / 4; 1125 } 1126 1127 /* if kmem_flags are set, lets try to use less memory */ 1128 if (kmem_debugging()) 1129 arc_c = arc_c / 2; 1130 1131 zfs_arc_max = arc_c; 1132 1133 return (0); 1134 } 1135 1136 static int 1137 sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS) 1138 { 1139 uint64_t val; 1140 int err; 1141 1142 val = zfs_arc_min; 1143 err = sysctl_handle_64(oidp, &val, 0, req); 1144 if (err != 0 || req->newptr == NULL) 1145 return (err); 1146 1147 if (zfs_arc_min == 0) { 1148 /* Loader tunable so blindly set */ 1149 zfs_arc_min = val; 1150 return (0); 1151 } 1152 1153 if (val < arc_abs_min || val > arc_c_max) 1154 return (EINVAL); 1155 1156 arc_c_min = val; 1157 1158 if (zfs_arc_meta_min == 0) 1159 arc_meta_min = arc_c_min / 2; 1160 1161 if (arc_c < arc_c_min) 1162 arc_c = arc_c_min; 1163 1164 zfs_arc_min = arc_c_min; 1165 1166 return (0); 1167 } 1168 #endif 1169 1170 #define GHOST_STATE(state) \ 1171 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 1172 (state) == arc_l2c_only) 1173 1174 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 1175 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 1176 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 1177 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 1178 #define HDR_COMPRESSION_ENABLED(hdr) \ 1179 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 1180 1181 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 1182 #define HDR_L2_READING(hdr) \ 1183 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 1184 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 1185 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 1186 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 1187 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 1188 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 1189 1190 #define HDR_ISTYPE_METADATA(hdr) \ 1191 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 1192 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 1193 1194 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 1195 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 1196 1197 /* For storing compression mode in b_flags */ 1198 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 1199 1200 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 1201 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 1202 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 1203 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 1204 1205 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 1206 1207 /* 1208 * Other sizes 1209 */ 1210 1211 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 1212 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 1213 1214 /* 1215 * Hash table routines 1216 */ 1217 1218 #define HT_LOCK_PAD CACHE_LINE_SIZE 1219 1220 struct ht_lock { 1221 kmutex_t ht_lock; 1222 #ifdef _KERNEL 1223 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 1224 #endif 1225 }; 1226 1227 #define BUF_LOCKS 256 1228 typedef struct buf_hash_table { 1229 uint64_t ht_mask; 1230 arc_buf_hdr_t **ht_table; 1231 struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE); 1232 } buf_hash_table_t; 1233 1234 static buf_hash_table_t buf_hash_table; 1235 1236 #define BUF_HASH_INDEX(spa, dva, birth) \ 1237 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 1238 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 1239 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 1240 #define HDR_LOCK(hdr) \ 1241 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 1242 1243 uint64_t zfs_crc64_table[256]; 1244 1245 /* 1246 * Level 2 ARC 1247 */ 1248 1249 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 1250 #define L2ARC_HEADROOM 2 /* num of writes */ 1251 /* 1252 * If we discover during ARC scan any buffers to be compressed, we boost 1253 * our headroom for the next scanning cycle by this percentage multiple. 1254 */ 1255 #define L2ARC_HEADROOM_BOOST 200 1256 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 1257 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 1258 1259 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 1260 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 1261 1262 /* L2ARC Performance Tunables */ 1263 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 1264 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 1265 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 1266 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 1267 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 1268 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 1269 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 1270 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 1271 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 1272 1273 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW, 1274 &l2arc_write_max, 0, "max write size"); 1275 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW, 1276 &l2arc_write_boost, 0, "extra write during warmup"); 1277 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW, 1278 &l2arc_headroom, 0, "number of dev writes"); 1279 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW, 1280 &l2arc_feed_secs, 0, "interval seconds"); 1281 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW, 1282 &l2arc_feed_min_ms, 0, "min interval milliseconds"); 1283 1284 SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW, 1285 &l2arc_noprefetch, 0, "don't cache prefetch bufs"); 1286 SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW, 1287 &l2arc_feed_again, 0, "turbo warmup"); 1288 SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW, 1289 &l2arc_norw, 0, "no reads during writes"); 1290 1291 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD, 1292 &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state"); 1293 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD, 1294 &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, 1295 "size of anonymous state"); 1296 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD, 1297 &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0, 1298 "size of anonymous state"); 1299 1300 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD, 1301 &ARC_mru.arcs_size.rc_count, 0, "size of mru state"); 1302 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD, 1303 &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, 1304 "size of metadata in mru state"); 1305 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD, 1306 &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0, 1307 "size of data in mru state"); 1308 1309 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD, 1310 &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state"); 1311 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD, 1312 &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, 1313 "size of metadata in mru ghost state"); 1314 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD, 1315 &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0, 1316 "size of data in mru ghost state"); 1317 1318 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD, 1319 &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state"); 1320 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD, 1321 &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, 1322 "size of metadata in mfu state"); 1323 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD, 1324 &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0, 1325 "size of data in mfu state"); 1326 1327 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD, 1328 &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state"); 1329 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD, 1330 &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, 1331 "size of metadata in mfu ghost state"); 1332 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD, 1333 &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0, 1334 "size of data in mfu ghost state"); 1335 1336 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD, 1337 &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state"); 1338 1339 /* 1340 * L2ARC Internals 1341 */ 1342 struct l2arc_dev { 1343 vdev_t *l2ad_vdev; /* vdev */ 1344 spa_t *l2ad_spa; /* spa */ 1345 uint64_t l2ad_hand; /* next write location */ 1346 uint64_t l2ad_start; /* first addr on device */ 1347 uint64_t l2ad_end; /* last addr on device */ 1348 boolean_t l2ad_first; /* first sweep through */ 1349 boolean_t l2ad_writing; /* currently writing */ 1350 kmutex_t l2ad_mtx; /* lock for buffer list */ 1351 list_t l2ad_buflist; /* buffer list */ 1352 list_node_t l2ad_node; /* device list node */ 1353 refcount_t l2ad_alloc; /* allocated bytes */ 1354 }; 1355 1356 static list_t L2ARC_dev_list; /* device list */ 1357 static list_t *l2arc_dev_list; /* device list pointer */ 1358 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 1359 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 1360 static list_t L2ARC_free_on_write; /* free after write buf list */ 1361 static list_t *l2arc_free_on_write; /* free after write list ptr */ 1362 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 1363 static uint64_t l2arc_ndev; /* number of devices */ 1364 1365 typedef struct l2arc_read_callback { 1366 arc_buf_hdr_t *l2rcb_hdr; /* read buffer */ 1367 blkptr_t l2rcb_bp; /* original blkptr */ 1368 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 1369 int l2rcb_flags; /* original flags */ 1370 void *l2rcb_data; /* temporary buffer */ 1371 } l2arc_read_callback_t; 1372 1373 typedef struct l2arc_write_callback { 1374 l2arc_dev_t *l2wcb_dev; /* device info */ 1375 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 1376 } l2arc_write_callback_t; 1377 1378 typedef struct l2arc_data_free { 1379 /* protected by l2arc_free_on_write_mtx */ 1380 void *l2df_data; 1381 size_t l2df_size; 1382 arc_buf_contents_t l2df_type; 1383 list_node_t l2df_list_node; 1384 } l2arc_data_free_t; 1385 1386 static kmutex_t l2arc_feed_thr_lock; 1387 static kcondvar_t l2arc_feed_thr_cv; 1388 static uint8_t l2arc_thread_exit; 1389 1390 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 1391 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 1392 static void arc_hdr_free_pdata(arc_buf_hdr_t *hdr); 1393 static void arc_hdr_alloc_pdata(arc_buf_hdr_t *); 1394 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 1395 static boolean_t arc_is_overflowing(); 1396 static void arc_buf_watch(arc_buf_t *); 1397 1398 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 1399 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 1400 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1401 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1402 1403 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 1404 static void l2arc_read_done(zio_t *); 1405 1406 static void 1407 l2arc_trim(const arc_buf_hdr_t *hdr) 1408 { 1409 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 1410 1411 ASSERT(HDR_HAS_L2HDR(hdr)); 1412 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 1413 1414 if (HDR_GET_PSIZE(hdr) != 0) { 1415 trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr, 1416 HDR_GET_PSIZE(hdr), 0); 1417 } 1418 } 1419 1420 static uint64_t 1421 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 1422 { 1423 uint8_t *vdva = (uint8_t *)dva; 1424 uint64_t crc = -1ULL; 1425 int i; 1426 1427 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 1428 1429 for (i = 0; i < sizeof (dva_t); i++) 1430 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 1431 1432 crc ^= (spa>>8) ^ birth; 1433 1434 return (crc); 1435 } 1436 1437 #define HDR_EMPTY(hdr) \ 1438 ((hdr)->b_dva.dva_word[0] == 0 && \ 1439 (hdr)->b_dva.dva_word[1] == 0) 1440 1441 #define HDR_EQUAL(spa, dva, birth, hdr) \ 1442 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1443 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1444 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1445 1446 static void 1447 buf_discard_identity(arc_buf_hdr_t *hdr) 1448 { 1449 hdr->b_dva.dva_word[0] = 0; 1450 hdr->b_dva.dva_word[1] = 0; 1451 hdr->b_birth = 0; 1452 } 1453 1454 static arc_buf_hdr_t * 1455 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1456 { 1457 const dva_t *dva = BP_IDENTITY(bp); 1458 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1459 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1460 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1461 arc_buf_hdr_t *hdr; 1462 1463 mutex_enter(hash_lock); 1464 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1465 hdr = hdr->b_hash_next) { 1466 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1467 *lockp = hash_lock; 1468 return (hdr); 1469 } 1470 } 1471 mutex_exit(hash_lock); 1472 *lockp = NULL; 1473 return (NULL); 1474 } 1475 1476 /* 1477 * Insert an entry into the hash table. If there is already an element 1478 * equal to elem in the hash table, then the already existing element 1479 * will be returned and the new element will not be inserted. 1480 * Otherwise returns NULL. 1481 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1482 */ 1483 static arc_buf_hdr_t * 1484 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1485 { 1486 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1487 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1488 arc_buf_hdr_t *fhdr; 1489 uint32_t i; 1490 1491 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1492 ASSERT(hdr->b_birth != 0); 1493 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1494 1495 if (lockp != NULL) { 1496 *lockp = hash_lock; 1497 mutex_enter(hash_lock); 1498 } else { 1499 ASSERT(MUTEX_HELD(hash_lock)); 1500 } 1501 1502 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1503 fhdr = fhdr->b_hash_next, i++) { 1504 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1505 return (fhdr); 1506 } 1507 1508 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1509 buf_hash_table.ht_table[idx] = hdr; 1510 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1511 1512 /* collect some hash table performance data */ 1513 if (i > 0) { 1514 ARCSTAT_BUMP(arcstat_hash_collisions); 1515 if (i == 1) 1516 ARCSTAT_BUMP(arcstat_hash_chains); 1517 1518 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1519 } 1520 1521 ARCSTAT_BUMP(arcstat_hash_elements); 1522 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1523 1524 return (NULL); 1525 } 1526 1527 static void 1528 buf_hash_remove(arc_buf_hdr_t *hdr) 1529 { 1530 arc_buf_hdr_t *fhdr, **hdrp; 1531 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1532 1533 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1534 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1535 1536 hdrp = &buf_hash_table.ht_table[idx]; 1537 while ((fhdr = *hdrp) != hdr) { 1538 ASSERT3P(fhdr, !=, NULL); 1539 hdrp = &fhdr->b_hash_next; 1540 } 1541 *hdrp = hdr->b_hash_next; 1542 hdr->b_hash_next = NULL; 1543 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1544 1545 /* collect some hash table performance data */ 1546 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1547 1548 if (buf_hash_table.ht_table[idx] && 1549 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1550 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1551 } 1552 1553 /* 1554 * Global data structures and functions for the buf kmem cache. 1555 */ 1556 static kmem_cache_t *hdr_full_cache; 1557 static kmem_cache_t *hdr_l2only_cache; 1558 static kmem_cache_t *buf_cache; 1559 1560 static void 1561 buf_fini(void) 1562 { 1563 int i; 1564 1565 kmem_free(buf_hash_table.ht_table, 1566 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1567 for (i = 0; i < BUF_LOCKS; i++) 1568 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1569 kmem_cache_destroy(hdr_full_cache); 1570 kmem_cache_destroy(hdr_l2only_cache); 1571 kmem_cache_destroy(buf_cache); 1572 } 1573 1574 /* 1575 * Constructor callback - called when the cache is empty 1576 * and a new buf is requested. 1577 */ 1578 /* ARGSUSED */ 1579 static int 1580 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1581 { 1582 arc_buf_hdr_t *hdr = vbuf; 1583 1584 bzero(hdr, HDR_FULL_SIZE); 1585 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1586 refcount_create(&hdr->b_l1hdr.b_refcnt); 1587 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1588 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1589 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1590 1591 return (0); 1592 } 1593 1594 /* ARGSUSED */ 1595 static int 1596 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1597 { 1598 arc_buf_hdr_t *hdr = vbuf; 1599 1600 bzero(hdr, HDR_L2ONLY_SIZE); 1601 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1602 1603 return (0); 1604 } 1605 1606 /* ARGSUSED */ 1607 static int 1608 buf_cons(void *vbuf, void *unused, int kmflag) 1609 { 1610 arc_buf_t *buf = vbuf; 1611 1612 bzero(buf, sizeof (arc_buf_t)); 1613 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1614 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1615 1616 return (0); 1617 } 1618 1619 /* 1620 * Destructor callback - called when a cached buf is 1621 * no longer required. 1622 */ 1623 /* ARGSUSED */ 1624 static void 1625 hdr_full_dest(void *vbuf, void *unused) 1626 { 1627 arc_buf_hdr_t *hdr = vbuf; 1628 1629 ASSERT(HDR_EMPTY(hdr)); 1630 cv_destroy(&hdr->b_l1hdr.b_cv); 1631 refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1632 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1633 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1634 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1635 } 1636 1637 /* ARGSUSED */ 1638 static void 1639 hdr_l2only_dest(void *vbuf, void *unused) 1640 { 1641 arc_buf_hdr_t *hdr = vbuf; 1642 1643 ASSERT(HDR_EMPTY(hdr)); 1644 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1645 } 1646 1647 /* ARGSUSED */ 1648 static void 1649 buf_dest(void *vbuf, void *unused) 1650 { 1651 arc_buf_t *buf = vbuf; 1652 1653 mutex_destroy(&buf->b_evict_lock); 1654 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1655 } 1656 1657 /* 1658 * Reclaim callback -- invoked when memory is low. 1659 */ 1660 /* ARGSUSED */ 1661 static void 1662 hdr_recl(void *unused) 1663 { 1664 dprintf("hdr_recl called\n"); 1665 /* 1666 * umem calls the reclaim func when we destroy the buf cache, 1667 * which is after we do arc_fini(). 1668 */ 1669 if (!arc_dead) 1670 cv_signal(&arc_reclaim_thread_cv); 1671 } 1672 1673 static void 1674 buf_init(void) 1675 { 1676 uint64_t *ct; 1677 uint64_t hsize = 1ULL << 12; 1678 int i, j; 1679 1680 /* 1681 * The hash table is big enough to fill all of physical memory 1682 * with an average block size of zfs_arc_average_blocksize (default 8K). 1683 * By default, the table will take up 1684 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1685 */ 1686 while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE) 1687 hsize <<= 1; 1688 retry: 1689 buf_hash_table.ht_mask = hsize - 1; 1690 buf_hash_table.ht_table = 1691 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1692 if (buf_hash_table.ht_table == NULL) { 1693 ASSERT(hsize > (1ULL << 8)); 1694 hsize >>= 1; 1695 goto retry; 1696 } 1697 1698 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1699 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); 1700 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1701 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, 1702 NULL, NULL, 0); 1703 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1704 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1705 1706 for (i = 0; i < 256; i++) 1707 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1708 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1709 1710 for (i = 0; i < BUF_LOCKS; i++) { 1711 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1712 NULL, MUTEX_DEFAULT, NULL); 1713 } 1714 } 1715 1716 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1717 1718 static inline boolean_t 1719 arc_buf_is_shared(arc_buf_t *buf) 1720 { 1721 boolean_t shared = (buf->b_data != NULL && 1722 buf->b_data == buf->b_hdr->b_l1hdr.b_pdata); 1723 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1724 return (shared); 1725 } 1726 1727 static inline void 1728 arc_cksum_free(arc_buf_hdr_t *hdr) 1729 { 1730 ASSERT(HDR_HAS_L1HDR(hdr)); 1731 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1732 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1733 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1734 hdr->b_l1hdr.b_freeze_cksum = NULL; 1735 } 1736 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1737 } 1738 1739 static void 1740 arc_cksum_verify(arc_buf_t *buf) 1741 { 1742 arc_buf_hdr_t *hdr = buf->b_hdr; 1743 zio_cksum_t zc; 1744 1745 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1746 return; 1747 1748 ASSERT(HDR_HAS_L1HDR(hdr)); 1749 1750 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1751 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1752 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1753 return; 1754 } 1755 fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL, &zc); 1756 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1757 panic("buffer modified while frozen!"); 1758 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1759 } 1760 1761 static boolean_t 1762 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1763 { 1764 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp); 1765 boolean_t valid_cksum; 1766 1767 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1768 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1769 1770 /* 1771 * We rely on the blkptr's checksum to determine if the block 1772 * is valid or not. When compressed arc is enabled, the l2arc 1773 * writes the block to the l2arc just as it appears in the pool. 1774 * This allows us to use the blkptr's checksum to validate the 1775 * data that we just read off of the l2arc without having to store 1776 * a separate checksum in the arc_buf_hdr_t. However, if compressed 1777 * arc is disabled, then the data written to the l2arc is always 1778 * uncompressed and won't match the block as it exists in the main 1779 * pool. When this is the case, we must first compress it if it is 1780 * compressed on the main pool before we can validate the checksum. 1781 */ 1782 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) { 1783 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1784 uint64_t lsize = HDR_GET_LSIZE(hdr); 1785 uint64_t csize; 1786 1787 void *cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr)); 1788 csize = zio_compress_data(compress, zio->io_data, cbuf, lsize); 1789 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr)); 1790 if (csize < HDR_GET_PSIZE(hdr)) { 1791 /* 1792 * Compressed blocks are always a multiple of the 1793 * smallest ashift in the pool. Ideally, we would 1794 * like to round up the csize to the next 1795 * spa_min_ashift but that value may have changed 1796 * since the block was last written. Instead, 1797 * we rely on the fact that the hdr's psize 1798 * was set to the psize of the block when it was 1799 * last written. We set the csize to that value 1800 * and zero out any part that should not contain 1801 * data. 1802 */ 1803 bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize); 1804 csize = HDR_GET_PSIZE(hdr); 1805 } 1806 zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL); 1807 } 1808 1809 /* 1810 * Block pointers always store the checksum for the logical data. 1811 * If the block pointer has the gang bit set, then the checksum 1812 * it represents is for the reconstituted data and not for an 1813 * individual gang member. The zio pipeline, however, must be able to 1814 * determine the checksum of each of the gang constituents so it 1815 * treats the checksum comparison differently than what we need 1816 * for l2arc blocks. This prevents us from using the 1817 * zio_checksum_error() interface directly. Instead we must call the 1818 * zio_checksum_error_impl() so that we can ensure the checksum is 1819 * generated using the correct checksum algorithm and accounts for the 1820 * logical I/O size and not just a gang fragment. 1821 */ 1822 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1823 BP_GET_CHECKSUM(zio->io_bp), zio->io_data, zio->io_size, 1824 zio->io_offset, NULL) == 0); 1825 zio_pop_transforms(zio); 1826 return (valid_cksum); 1827 } 1828 1829 static void 1830 arc_cksum_compute(arc_buf_t *buf) 1831 { 1832 arc_buf_hdr_t *hdr = buf->b_hdr; 1833 1834 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1835 return; 1836 1837 ASSERT(HDR_HAS_L1HDR(hdr)); 1838 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1839 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1840 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1841 return; 1842 } 1843 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1844 KM_SLEEP); 1845 fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL, 1846 hdr->b_l1hdr.b_freeze_cksum); 1847 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1848 #ifdef illumos 1849 arc_buf_watch(buf); 1850 #endif 1851 } 1852 1853 #ifdef illumos 1854 #ifndef _KERNEL 1855 typedef struct procctl { 1856 long cmd; 1857 prwatch_t prwatch; 1858 } procctl_t; 1859 #endif 1860 1861 /* ARGSUSED */ 1862 static void 1863 arc_buf_unwatch(arc_buf_t *buf) 1864 { 1865 #ifndef _KERNEL 1866 if (arc_watch) { 1867 int result; 1868 procctl_t ctl; 1869 ctl.cmd = PCWATCH; 1870 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1871 ctl.prwatch.pr_size = 0; 1872 ctl.prwatch.pr_wflags = 0; 1873 result = write(arc_procfd, &ctl, sizeof (ctl)); 1874 ASSERT3U(result, ==, sizeof (ctl)); 1875 } 1876 #endif 1877 } 1878 1879 /* ARGSUSED */ 1880 static void 1881 arc_buf_watch(arc_buf_t *buf) 1882 { 1883 #ifndef _KERNEL 1884 if (arc_watch) { 1885 int result; 1886 procctl_t ctl; 1887 ctl.cmd = PCWATCH; 1888 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1889 ctl.prwatch.pr_size = HDR_GET_LSIZE(buf->b_hdr); 1890 ctl.prwatch.pr_wflags = WA_WRITE; 1891 result = write(arc_procfd, &ctl, sizeof (ctl)); 1892 ASSERT3U(result, ==, sizeof (ctl)); 1893 } 1894 #endif 1895 } 1896 #endif /* illumos */ 1897 1898 static arc_buf_contents_t 1899 arc_buf_type(arc_buf_hdr_t *hdr) 1900 { 1901 arc_buf_contents_t type; 1902 if (HDR_ISTYPE_METADATA(hdr)) { 1903 type = ARC_BUFC_METADATA; 1904 } else { 1905 type = ARC_BUFC_DATA; 1906 } 1907 VERIFY3U(hdr->b_type, ==, type); 1908 return (type); 1909 } 1910 1911 static uint32_t 1912 arc_bufc_to_flags(arc_buf_contents_t type) 1913 { 1914 switch (type) { 1915 case ARC_BUFC_DATA: 1916 /* metadata field is 0 if buffer contains normal data */ 1917 return (0); 1918 case ARC_BUFC_METADATA: 1919 return (ARC_FLAG_BUFC_METADATA); 1920 default: 1921 break; 1922 } 1923 panic("undefined ARC buffer type!"); 1924 return ((uint32_t)-1); 1925 } 1926 1927 void 1928 arc_buf_thaw(arc_buf_t *buf) 1929 { 1930 arc_buf_hdr_t *hdr = buf->b_hdr; 1931 1932 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1933 if (hdr->b_l1hdr.b_state != arc_anon) 1934 panic("modifying non-anon buffer!"); 1935 if (HDR_IO_IN_PROGRESS(hdr)) 1936 panic("modifying buffer while i/o in progress!"); 1937 arc_cksum_verify(buf); 1938 } 1939 1940 ASSERT(HDR_HAS_L1HDR(hdr)); 1941 arc_cksum_free(hdr); 1942 1943 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1944 #ifdef ZFS_DEBUG 1945 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1946 if (hdr->b_l1hdr.b_thawed != NULL) 1947 kmem_free(hdr->b_l1hdr.b_thawed, 1); 1948 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); 1949 } 1950 #endif 1951 1952 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1953 1954 #ifdef illumos 1955 arc_buf_unwatch(buf); 1956 #endif 1957 } 1958 1959 void 1960 arc_buf_freeze(arc_buf_t *buf) 1961 { 1962 arc_buf_hdr_t *hdr = buf->b_hdr; 1963 kmutex_t *hash_lock; 1964 1965 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1966 return; 1967 1968 hash_lock = HDR_LOCK(hdr); 1969 mutex_enter(hash_lock); 1970 1971 ASSERT(HDR_HAS_L1HDR(hdr)); 1972 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL || 1973 hdr->b_l1hdr.b_state == arc_anon); 1974 arc_cksum_compute(buf); 1975 mutex_exit(hash_lock); 1976 1977 } 1978 1979 /* 1980 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1981 * the following functions should be used to ensure that the flags are 1982 * updated in a thread-safe way. When manipulating the flags either 1983 * the hash_lock must be held or the hdr must be undiscoverable. This 1984 * ensures that we're not racing with any other threads when updating 1985 * the flags. 1986 */ 1987 static inline void 1988 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1989 { 1990 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1991 hdr->b_flags |= flags; 1992 } 1993 1994 static inline void 1995 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1996 { 1997 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1998 hdr->b_flags &= ~flags; 1999 } 2000 2001 /* 2002 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 2003 * done in a special way since we have to clear and set bits 2004 * at the same time. Consumers that wish to set the compression bits 2005 * must use this function to ensure that the flags are updated in 2006 * thread-safe manner. 2007 */ 2008 static void 2009 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 2010 { 2011 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2012 2013 /* 2014 * Holes and embedded blocks will always have a psize = 0 so 2015 * we ignore the compression of the blkptr and set the 2016 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF. 2017 * Holes and embedded blocks remain anonymous so we don't 2018 * want to uncompress them. Mark them as uncompressed. 2019 */ 2020 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 2021 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 2022 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 2023 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 2024 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 2025 } else { 2026 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 2027 HDR_SET_COMPRESS(hdr, cmp); 2028 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 2029 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 2030 } 2031 } 2032 2033 static int 2034 arc_decompress(arc_buf_t *buf) 2035 { 2036 arc_buf_hdr_t *hdr = buf->b_hdr; 2037 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 2038 int error; 2039 2040 if (arc_buf_is_shared(buf)) { 2041 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 2042 } else if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) { 2043 /* 2044 * The arc_buf_hdr_t is either not compressed or is 2045 * associated with an embedded block or a hole in which 2046 * case they remain anonymous. 2047 */ 2048 IMPLY(HDR_COMPRESSION_ENABLED(hdr), HDR_GET_PSIZE(hdr) == 0 || 2049 HDR_GET_PSIZE(hdr) == HDR_GET_LSIZE(hdr)); 2050 ASSERT(!HDR_SHARED_DATA(hdr)); 2051 bcopy(hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_LSIZE(hdr)); 2052 } else { 2053 ASSERT(!HDR_SHARED_DATA(hdr)); 2054 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 2055 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2056 hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_PSIZE(hdr), 2057 HDR_GET_LSIZE(hdr)); 2058 if (error != 0) { 2059 zfs_dbgmsg("hdr %p, compress %d, psize %d, lsize %d", 2060 hdr, HDR_GET_COMPRESS(hdr), HDR_GET_PSIZE(hdr), 2061 HDR_GET_LSIZE(hdr)); 2062 return (SET_ERROR(EIO)); 2063 } 2064 } 2065 if (bswap != DMU_BSWAP_NUMFUNCS) { 2066 ASSERT(!HDR_SHARED_DATA(hdr)); 2067 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2068 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2069 } 2070 arc_cksum_compute(buf); 2071 return (0); 2072 } 2073 2074 /* 2075 * Return the size of the block, b_pdata, that is stored in the arc_buf_hdr_t. 2076 */ 2077 static uint64_t 2078 arc_hdr_size(arc_buf_hdr_t *hdr) 2079 { 2080 uint64_t size; 2081 2082 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 2083 HDR_GET_PSIZE(hdr) > 0) { 2084 size = HDR_GET_PSIZE(hdr); 2085 } else { 2086 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 2087 size = HDR_GET_LSIZE(hdr); 2088 } 2089 return (size); 2090 } 2091 2092 /* 2093 * Increment the amount of evictable space in the arc_state_t's refcount. 2094 * We account for the space used by the hdr and the arc buf individually 2095 * so that we can add and remove them from the refcount individually. 2096 */ 2097 static void 2098 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2099 { 2100 arc_buf_contents_t type = arc_buf_type(hdr); 2101 uint64_t lsize = HDR_GET_LSIZE(hdr); 2102 2103 ASSERT(HDR_HAS_L1HDR(hdr)); 2104 2105 if (GHOST_STATE(state)) { 2106 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2107 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2108 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2109 (void) refcount_add_many(&state->arcs_esize[type], lsize, hdr); 2110 return; 2111 } 2112 2113 ASSERT(!GHOST_STATE(state)); 2114 if (hdr->b_l1hdr.b_pdata != NULL) { 2115 (void) refcount_add_many(&state->arcs_esize[type], 2116 arc_hdr_size(hdr), hdr); 2117 } 2118 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2119 buf = buf->b_next) { 2120 if (arc_buf_is_shared(buf)) { 2121 ASSERT(ARC_BUF_LAST(buf)); 2122 continue; 2123 } 2124 (void) refcount_add_many(&state->arcs_esize[type], lsize, buf); 2125 } 2126 } 2127 2128 /* 2129 * Decrement the amount of evictable space in the arc_state_t's refcount. 2130 * We account for the space used by the hdr and the arc buf individually 2131 * so that we can add and remove them from the refcount individually. 2132 */ 2133 static void 2134 arc_evitable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2135 { 2136 arc_buf_contents_t type = arc_buf_type(hdr); 2137 uint64_t lsize = HDR_GET_LSIZE(hdr); 2138 2139 ASSERT(HDR_HAS_L1HDR(hdr)); 2140 2141 if (GHOST_STATE(state)) { 2142 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2143 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2144 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2145 (void) refcount_remove_many(&state->arcs_esize[type], 2146 lsize, hdr); 2147 return; 2148 } 2149 2150 ASSERT(!GHOST_STATE(state)); 2151 if (hdr->b_l1hdr.b_pdata != NULL) { 2152 (void) refcount_remove_many(&state->arcs_esize[type], 2153 arc_hdr_size(hdr), hdr); 2154 } 2155 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2156 buf = buf->b_next) { 2157 if (arc_buf_is_shared(buf)) { 2158 ASSERT(ARC_BUF_LAST(buf)); 2159 continue; 2160 } 2161 (void) refcount_remove_many(&state->arcs_esize[type], 2162 lsize, buf); 2163 } 2164 } 2165 2166 /* 2167 * Add a reference to this hdr indicating that someone is actively 2168 * referencing that memory. When the refcount transitions from 0 to 1, 2169 * we remove it from the respective arc_state_t list to indicate that 2170 * it is not evictable. 2171 */ 2172 static void 2173 add_reference(arc_buf_hdr_t *hdr, void *tag) 2174 { 2175 ASSERT(HDR_HAS_L1HDR(hdr)); 2176 if (!MUTEX_HELD(HDR_LOCK(hdr))) { 2177 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2178 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2179 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2180 } 2181 2182 arc_state_t *state = hdr->b_l1hdr.b_state; 2183 2184 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2185 (state != arc_anon)) { 2186 /* We don't use the L2-only state list. */ 2187 if (state != arc_l2c_only) { 2188 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], 2189 hdr); 2190 arc_evitable_space_decrement(hdr, state); 2191 } 2192 /* remove the prefetch flag if we get a reference */ 2193 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2194 } 2195 } 2196 2197 /* 2198 * Remove a reference from this hdr. When the reference transitions from 2199 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2200 * list making it eligible for eviction. 2201 */ 2202 static int 2203 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2204 { 2205 int cnt; 2206 arc_state_t *state = hdr->b_l1hdr.b_state; 2207 2208 ASSERT(HDR_HAS_L1HDR(hdr)); 2209 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2210 ASSERT(!GHOST_STATE(state)); 2211 2212 /* 2213 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2214 * check to prevent usage of the arc_l2c_only list. 2215 */ 2216 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2217 (state != arc_anon)) { 2218 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2219 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2220 arc_evictable_space_increment(hdr, state); 2221 } 2222 return (cnt); 2223 } 2224 2225 /* 2226 * Move the supplied buffer to the indicated state. The hash lock 2227 * for the buffer must be held by the caller. 2228 */ 2229 static void 2230 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2231 kmutex_t *hash_lock) 2232 { 2233 arc_state_t *old_state; 2234 int64_t refcnt; 2235 uint32_t bufcnt; 2236 boolean_t update_old, update_new; 2237 arc_buf_contents_t buftype = arc_buf_type(hdr); 2238 2239 /* 2240 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2241 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2242 * L1 hdr doesn't always exist when we change state to arc_anon before 2243 * destroying a header, in which case reallocating to add the L1 hdr is 2244 * pointless. 2245 */ 2246 if (HDR_HAS_L1HDR(hdr)) { 2247 old_state = hdr->b_l1hdr.b_state; 2248 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt); 2249 bufcnt = hdr->b_l1hdr.b_bufcnt; 2250 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pdata != NULL); 2251 } else { 2252 old_state = arc_l2c_only; 2253 refcnt = 0; 2254 bufcnt = 0; 2255 update_old = B_FALSE; 2256 } 2257 update_new = update_old; 2258 2259 ASSERT(MUTEX_HELD(hash_lock)); 2260 ASSERT3P(new_state, !=, old_state); 2261 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2262 ASSERT(old_state != arc_anon || bufcnt <= 1); 2263 2264 /* 2265 * If this buffer is evictable, transfer it from the 2266 * old state list to the new state list. 2267 */ 2268 if (refcnt == 0) { 2269 if (old_state != arc_anon && old_state != arc_l2c_only) { 2270 ASSERT(HDR_HAS_L1HDR(hdr)); 2271 multilist_remove(&old_state->arcs_list[buftype], hdr); 2272 2273 if (GHOST_STATE(old_state)) { 2274 ASSERT0(bufcnt); 2275 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2276 update_old = B_TRUE; 2277 } 2278 arc_evitable_space_decrement(hdr, old_state); 2279 } 2280 if (new_state != arc_anon && new_state != arc_l2c_only) { 2281 2282 /* 2283 * An L1 header always exists here, since if we're 2284 * moving to some L1-cached state (i.e. not l2c_only or 2285 * anonymous), we realloc the header to add an L1hdr 2286 * beforehand. 2287 */ 2288 ASSERT(HDR_HAS_L1HDR(hdr)); 2289 multilist_insert(&new_state->arcs_list[buftype], hdr); 2290 2291 if (GHOST_STATE(new_state)) { 2292 ASSERT0(bufcnt); 2293 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2294 update_new = B_TRUE; 2295 } 2296 arc_evictable_space_increment(hdr, new_state); 2297 } 2298 } 2299 2300 ASSERT(!HDR_EMPTY(hdr)); 2301 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2302 buf_hash_remove(hdr); 2303 2304 /* adjust state sizes (ignore arc_l2c_only) */ 2305 2306 if (update_new && new_state != arc_l2c_only) { 2307 ASSERT(HDR_HAS_L1HDR(hdr)); 2308 if (GHOST_STATE(new_state)) { 2309 ASSERT0(bufcnt); 2310 2311 /* 2312 * When moving a header to a ghost state, we first 2313 * remove all arc buffers. Thus, we'll have a 2314 * bufcnt of zero, and no arc buffer to use for 2315 * the reference. As a result, we use the arc 2316 * header pointer for the reference. 2317 */ 2318 (void) refcount_add_many(&new_state->arcs_size, 2319 HDR_GET_LSIZE(hdr), hdr); 2320 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2321 } else { 2322 uint32_t buffers = 0; 2323 2324 /* 2325 * Each individual buffer holds a unique reference, 2326 * thus we must remove each of these references one 2327 * at a time. 2328 */ 2329 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2330 buf = buf->b_next) { 2331 ASSERT3U(bufcnt, !=, 0); 2332 buffers++; 2333 2334 /* 2335 * When the arc_buf_t is sharing the data 2336 * block with the hdr, the owner of the 2337 * reference belongs to the hdr. Only 2338 * add to the refcount if the arc_buf_t is 2339 * not shared. 2340 */ 2341 if (arc_buf_is_shared(buf)) { 2342 ASSERT(ARC_BUF_LAST(buf)); 2343 continue; 2344 } 2345 2346 (void) refcount_add_many(&new_state->arcs_size, 2347 HDR_GET_LSIZE(hdr), buf); 2348 } 2349 ASSERT3U(bufcnt, ==, buffers); 2350 2351 if (hdr->b_l1hdr.b_pdata != NULL) { 2352 (void) refcount_add_many(&new_state->arcs_size, 2353 arc_hdr_size(hdr), hdr); 2354 } else { 2355 ASSERT(GHOST_STATE(old_state)); 2356 } 2357 } 2358 } 2359 2360 if (update_old && old_state != arc_l2c_only) { 2361 ASSERT(HDR_HAS_L1HDR(hdr)); 2362 if (GHOST_STATE(old_state)) { 2363 ASSERT0(bufcnt); 2364 2365 /* 2366 * When moving a header off of a ghost state, 2367 * the header will not contain any arc buffers. 2368 * We use the arc header pointer for the reference 2369 * which is exactly what we did when we put the 2370 * header on the ghost state. 2371 */ 2372 2373 (void) refcount_remove_many(&old_state->arcs_size, 2374 HDR_GET_LSIZE(hdr), hdr); 2375 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2376 } else { 2377 uint32_t buffers = 0; 2378 2379 /* 2380 * Each individual buffer holds a unique reference, 2381 * thus we must remove each of these references one 2382 * at a time. 2383 */ 2384 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2385 buf = buf->b_next) { 2386 ASSERT3P(bufcnt, !=, 0); 2387 buffers++; 2388 2389 /* 2390 * When the arc_buf_t is sharing the data 2391 * block with the hdr, the owner of the 2392 * reference belongs to the hdr. Only 2393 * add to the refcount if the arc_buf_t is 2394 * not shared. 2395 */ 2396 if (arc_buf_is_shared(buf)) { 2397 ASSERT(ARC_BUF_LAST(buf)); 2398 continue; 2399 } 2400 2401 (void) refcount_remove_many( 2402 &old_state->arcs_size, HDR_GET_LSIZE(hdr), 2403 buf); 2404 } 2405 ASSERT3U(bufcnt, ==, buffers); 2406 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2407 (void) refcount_remove_many( 2408 &old_state->arcs_size, arc_hdr_size(hdr), hdr); 2409 } 2410 } 2411 2412 if (HDR_HAS_L1HDR(hdr)) 2413 hdr->b_l1hdr.b_state = new_state; 2414 2415 /* 2416 * L2 headers should never be on the L2 state list since they don't 2417 * have L1 headers allocated. 2418 */ 2419 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2420 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2421 } 2422 2423 void 2424 arc_space_consume(uint64_t space, arc_space_type_t type) 2425 { 2426 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2427 2428 switch (type) { 2429 case ARC_SPACE_DATA: 2430 ARCSTAT_INCR(arcstat_data_size, space); 2431 break; 2432 case ARC_SPACE_META: 2433 ARCSTAT_INCR(arcstat_metadata_size, space); 2434 break; 2435 case ARC_SPACE_OTHER: 2436 ARCSTAT_INCR(arcstat_other_size, space); 2437 break; 2438 case ARC_SPACE_HDRS: 2439 ARCSTAT_INCR(arcstat_hdr_size, space); 2440 break; 2441 case ARC_SPACE_L2HDRS: 2442 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 2443 break; 2444 } 2445 2446 if (type != ARC_SPACE_DATA) 2447 ARCSTAT_INCR(arcstat_meta_used, space); 2448 2449 atomic_add_64(&arc_size, space); 2450 } 2451 2452 void 2453 arc_space_return(uint64_t space, arc_space_type_t type) 2454 { 2455 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2456 2457 switch (type) { 2458 case ARC_SPACE_DATA: 2459 ARCSTAT_INCR(arcstat_data_size, -space); 2460 break; 2461 case ARC_SPACE_META: 2462 ARCSTAT_INCR(arcstat_metadata_size, -space); 2463 break; 2464 case ARC_SPACE_OTHER: 2465 ARCSTAT_INCR(arcstat_other_size, -space); 2466 break; 2467 case ARC_SPACE_HDRS: 2468 ARCSTAT_INCR(arcstat_hdr_size, -space); 2469 break; 2470 case ARC_SPACE_L2HDRS: 2471 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 2472 break; 2473 } 2474 2475 if (type != ARC_SPACE_DATA) { 2476 ASSERT(arc_meta_used >= space); 2477 if (arc_meta_max < arc_meta_used) 2478 arc_meta_max = arc_meta_used; 2479 ARCSTAT_INCR(arcstat_meta_used, -space); 2480 } 2481 2482 ASSERT(arc_size >= space); 2483 atomic_add_64(&arc_size, -space); 2484 } 2485 2486 /* 2487 * Allocate an initial buffer for this hdr, subsequent buffers will 2488 * use arc_buf_clone(). 2489 */ 2490 static arc_buf_t * 2491 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag) 2492 { 2493 arc_buf_t *buf; 2494 2495 ASSERT(HDR_HAS_L1HDR(hdr)); 2496 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2497 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2498 hdr->b_type == ARC_BUFC_METADATA); 2499 2500 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2501 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2502 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2503 2504 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2505 buf->b_hdr = hdr; 2506 buf->b_data = NULL; 2507 buf->b_next = NULL; 2508 2509 add_reference(hdr, tag); 2510 2511 /* 2512 * We're about to change the hdr's b_flags. We must either 2513 * hold the hash_lock or be undiscoverable. 2514 */ 2515 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2516 2517 /* 2518 * If the hdr's data can be shared (no byteswapping, hdr is 2519 * uncompressed, hdr's data is not currently being written to the 2520 * L2ARC write) then we share the data buffer and set the appropriate 2521 * bit in the hdr's b_flags to indicate the hdr is sharing it's 2522 * b_pdata with the arc_buf_t. Otherwise, we allocate a new buffer to 2523 * store the buf's data. 2524 */ 2525 if (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2526 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF && !HDR_L2_WRITING(hdr)) { 2527 buf->b_data = hdr->b_l1hdr.b_pdata; 2528 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2529 } else { 2530 buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2531 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2532 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2533 } 2534 VERIFY3P(buf->b_data, !=, NULL); 2535 2536 hdr->b_l1hdr.b_buf = buf; 2537 hdr->b_l1hdr.b_bufcnt += 1; 2538 2539 return (buf); 2540 } 2541 2542 /* 2543 * Used when allocating additional buffers. 2544 */ 2545 static arc_buf_t * 2546 arc_buf_clone(arc_buf_t *from) 2547 { 2548 arc_buf_t *buf; 2549 arc_buf_hdr_t *hdr = from->b_hdr; 2550 uint64_t size = HDR_GET_LSIZE(hdr); 2551 2552 ASSERT(HDR_HAS_L1HDR(hdr)); 2553 ASSERT(hdr->b_l1hdr.b_state != arc_anon); 2554 2555 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2556 buf->b_hdr = hdr; 2557 buf->b_data = NULL; 2558 buf->b_next = hdr->b_l1hdr.b_buf; 2559 hdr->b_l1hdr.b_buf = buf; 2560 buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2561 bcopy(from->b_data, buf->b_data, size); 2562 hdr->b_l1hdr.b_bufcnt += 1; 2563 2564 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2565 return (buf); 2566 } 2567 2568 static char *arc_onloan_tag = "onloan"; 2569 2570 /* 2571 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2572 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2573 * buffers must be returned to the arc before they can be used by the DMU or 2574 * freed. 2575 */ 2576 arc_buf_t * 2577 arc_loan_buf(spa_t *spa, int size) 2578 { 2579 arc_buf_t *buf; 2580 2581 buf = arc_alloc_buf(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 2582 2583 atomic_add_64(&arc_loaned_bytes, size); 2584 return (buf); 2585 } 2586 2587 /* 2588 * Return a loaned arc buffer to the arc. 2589 */ 2590 void 2591 arc_return_buf(arc_buf_t *buf, void *tag) 2592 { 2593 arc_buf_hdr_t *hdr = buf->b_hdr; 2594 2595 ASSERT3P(buf->b_data, !=, NULL); 2596 ASSERT(HDR_HAS_L1HDR(hdr)); 2597 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2598 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2599 2600 atomic_add_64(&arc_loaned_bytes, -HDR_GET_LSIZE(hdr)); 2601 } 2602 2603 /* Detach an arc_buf from a dbuf (tag) */ 2604 void 2605 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2606 { 2607 arc_buf_hdr_t *hdr = buf->b_hdr; 2608 2609 ASSERT3P(buf->b_data, !=, NULL); 2610 ASSERT(HDR_HAS_L1HDR(hdr)); 2611 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2612 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2613 2614 atomic_add_64(&arc_loaned_bytes, HDR_GET_LSIZE(hdr)); 2615 } 2616 2617 static void 2618 l2arc_free_data_on_write(void *data, size_t size, arc_buf_contents_t type) 2619 { 2620 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2621 2622 df->l2df_data = data; 2623 df->l2df_size = size; 2624 df->l2df_type = type; 2625 mutex_enter(&l2arc_free_on_write_mtx); 2626 list_insert_head(l2arc_free_on_write, df); 2627 mutex_exit(&l2arc_free_on_write_mtx); 2628 } 2629 2630 static void 2631 arc_hdr_free_on_write(arc_buf_hdr_t *hdr) 2632 { 2633 arc_state_t *state = hdr->b_l1hdr.b_state; 2634 arc_buf_contents_t type = arc_buf_type(hdr); 2635 uint64_t size = arc_hdr_size(hdr); 2636 2637 /* protected by hash lock, if in the hash table */ 2638 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2639 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2640 ASSERT(state != arc_anon && state != arc_l2c_only); 2641 2642 (void) refcount_remove_many(&state->arcs_esize[type], 2643 size, hdr); 2644 } 2645 (void) refcount_remove_many(&state->arcs_size, size, hdr); 2646 if (type == ARC_BUFC_METADATA) { 2647 arc_space_return(size, ARC_SPACE_META); 2648 } else { 2649 ASSERT(type == ARC_BUFC_DATA); 2650 arc_space_return(size, ARC_SPACE_DATA); 2651 } 2652 2653 l2arc_free_data_on_write(hdr->b_l1hdr.b_pdata, size, type); 2654 } 2655 2656 /* 2657 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2658 * data buffer, we transfer the refcount ownership to the hdr and update 2659 * the appropriate kstats. 2660 */ 2661 static void 2662 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2663 { 2664 arc_state_t *state = hdr->b_l1hdr.b_state; 2665 2666 ASSERT(!HDR_SHARED_DATA(hdr)); 2667 ASSERT(!arc_buf_is_shared(buf)); 2668 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2669 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2670 2671 /* 2672 * Start sharing the data buffer. We transfer the 2673 * refcount ownership to the hdr since it always owns 2674 * the refcount whenever an arc_buf_t is shared. 2675 */ 2676 refcount_transfer_ownership(&state->arcs_size, buf, hdr); 2677 hdr->b_l1hdr.b_pdata = buf->b_data; 2678 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2679 2680 /* 2681 * Since we've transferred ownership to the hdr we need 2682 * to increment its compressed and uncompressed kstats and 2683 * decrement the overhead size. 2684 */ 2685 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2686 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2687 ARCSTAT_INCR(arcstat_overhead_size, -HDR_GET_LSIZE(hdr)); 2688 } 2689 2690 static void 2691 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2692 { 2693 arc_state_t *state = hdr->b_l1hdr.b_state; 2694 2695 ASSERT(HDR_SHARED_DATA(hdr)); 2696 ASSERT(arc_buf_is_shared(buf)); 2697 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2698 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2699 2700 /* 2701 * We are no longer sharing this buffer so we need 2702 * to transfer its ownership to the rightful owner. 2703 */ 2704 refcount_transfer_ownership(&state->arcs_size, hdr, buf); 2705 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2706 hdr->b_l1hdr.b_pdata = NULL; 2707 2708 /* 2709 * Since the buffer is no longer shared between 2710 * the arc buf and the hdr, count it as overhead. 2711 */ 2712 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2713 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2714 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2715 } 2716 2717 /* 2718 * Free up buf->b_data and if 'remove' is set, then pull the 2719 * arc_buf_t off of the the arc_buf_hdr_t's list and free it. 2720 */ 2721 static void 2722 arc_buf_destroy_impl(arc_buf_t *buf, boolean_t remove) 2723 { 2724 arc_buf_t **bufp; 2725 arc_buf_hdr_t *hdr = buf->b_hdr; 2726 uint64_t size = HDR_GET_LSIZE(hdr); 2727 boolean_t destroyed_buf_is_shared = arc_buf_is_shared(buf); 2728 2729 /* 2730 * Free up the data associated with the buf but only 2731 * if we're not sharing this with the hdr. If we are sharing 2732 * it with the hdr, then hdr will have performed the allocation 2733 * so allow it to do the free. 2734 */ 2735 if (buf->b_data != NULL) { 2736 /* 2737 * We're about to change the hdr's b_flags. We must either 2738 * hold the hash_lock or be undiscoverable. 2739 */ 2740 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2741 2742 arc_cksum_verify(buf); 2743 #ifdef illumos 2744 arc_buf_unwatch(buf); 2745 #endif 2746 2747 if (destroyed_buf_is_shared) { 2748 ASSERT(ARC_BUF_LAST(buf)); 2749 ASSERT(HDR_SHARED_DATA(hdr)); 2750 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2751 } else { 2752 arc_free_data_buf(hdr, buf->b_data, size, buf); 2753 ARCSTAT_INCR(arcstat_overhead_size, -size); 2754 } 2755 buf->b_data = NULL; 2756 2757 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 2758 hdr->b_l1hdr.b_bufcnt -= 1; 2759 } 2760 2761 /* only remove the buf if requested */ 2762 if (!remove) 2763 return; 2764 2765 /* remove the buf from the hdr list */ 2766 arc_buf_t *lastbuf = NULL; 2767 bufp = &hdr->b_l1hdr.b_buf; 2768 while (*bufp != NULL) { 2769 if (*bufp == buf) 2770 *bufp = buf->b_next; 2771 2772 /* 2773 * If we've removed a buffer in the middle of 2774 * the list then update the lastbuf and update 2775 * bufp. 2776 */ 2777 if (*bufp != NULL) { 2778 lastbuf = *bufp; 2779 bufp = &(*bufp)->b_next; 2780 } 2781 } 2782 buf->b_next = NULL; 2783 ASSERT3P(lastbuf, !=, buf); 2784 2785 /* 2786 * If the current arc_buf_t is sharing its data 2787 * buffer with the hdr, then reassign the hdr's 2788 * b_pdata to share it with the new buffer at the end 2789 * of the list. The shared buffer is always the last one 2790 * on the hdr's buffer list. 2791 */ 2792 if (destroyed_buf_is_shared && lastbuf != NULL) { 2793 ASSERT(ARC_BUF_LAST(buf)); 2794 ASSERT(ARC_BUF_LAST(lastbuf)); 2795 VERIFY(!arc_buf_is_shared(lastbuf)); 2796 2797 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2798 arc_hdr_free_pdata(hdr); 2799 2800 /* 2801 * We must setup a new shared block between the 2802 * last buffer and the hdr. The data would have 2803 * been allocated by the arc buf so we need to transfer 2804 * ownership to the hdr since it's now being shared. 2805 */ 2806 arc_share_buf(hdr, lastbuf); 2807 } else if (HDR_SHARED_DATA(hdr)) { 2808 ASSERT(arc_buf_is_shared(lastbuf)); 2809 } 2810 2811 if (hdr->b_l1hdr.b_bufcnt == 0) 2812 arc_cksum_free(hdr); 2813 2814 /* clean up the buf */ 2815 buf->b_hdr = NULL; 2816 kmem_cache_free(buf_cache, buf); 2817 } 2818 2819 static void 2820 arc_hdr_alloc_pdata(arc_buf_hdr_t *hdr) 2821 { 2822 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2823 ASSERT(HDR_HAS_L1HDR(hdr)); 2824 ASSERT(!HDR_SHARED_DATA(hdr)); 2825 2826 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2827 hdr->b_l1hdr.b_pdata = arc_get_data_buf(hdr, arc_hdr_size(hdr), hdr); 2828 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2829 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2830 2831 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2832 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2833 } 2834 2835 static void 2836 arc_hdr_free_pdata(arc_buf_hdr_t *hdr) 2837 { 2838 ASSERT(HDR_HAS_L1HDR(hdr)); 2839 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2840 2841 /* 2842 * If the hdr is currently being written to the l2arc then 2843 * we defer freeing the data by adding it to the l2arc_free_on_write 2844 * list. The l2arc will free the data once it's finished 2845 * writing it to the l2arc device. 2846 */ 2847 if (HDR_L2_WRITING(hdr)) { 2848 arc_hdr_free_on_write(hdr); 2849 ARCSTAT_BUMP(arcstat_l2_free_on_write); 2850 } else { 2851 arc_free_data_buf(hdr, hdr->b_l1hdr.b_pdata, 2852 arc_hdr_size(hdr), hdr); 2853 } 2854 hdr->b_l1hdr.b_pdata = NULL; 2855 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2856 2857 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2858 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2859 } 2860 2861 static arc_buf_hdr_t * 2862 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 2863 enum zio_compress compress, arc_buf_contents_t type) 2864 { 2865 arc_buf_hdr_t *hdr; 2866 2867 ASSERT3U(lsize, >, 0); 2868 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 2869 2870 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 2871 ASSERT(HDR_EMPTY(hdr)); 2872 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2873 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL); 2874 HDR_SET_PSIZE(hdr, psize); 2875 HDR_SET_LSIZE(hdr, lsize); 2876 hdr->b_spa = spa; 2877 hdr->b_type = type; 2878 hdr->b_flags = 0; 2879 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 2880 arc_hdr_set_compress(hdr, compress); 2881 2882 hdr->b_l1hdr.b_state = arc_anon; 2883 hdr->b_l1hdr.b_arc_access = 0; 2884 hdr->b_l1hdr.b_bufcnt = 0; 2885 hdr->b_l1hdr.b_buf = NULL; 2886 2887 /* 2888 * Allocate the hdr's buffer. This will contain either 2889 * the compressed or uncompressed data depending on the block 2890 * it references and compressed arc enablement. 2891 */ 2892 arc_hdr_alloc_pdata(hdr); 2893 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2894 2895 return (hdr); 2896 } 2897 2898 /* 2899 * Transition between the two allocation states for the arc_buf_hdr struct. 2900 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 2901 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 2902 * version is used when a cache buffer is only in the L2ARC in order to reduce 2903 * memory usage. 2904 */ 2905 static arc_buf_hdr_t * 2906 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 2907 { 2908 ASSERT(HDR_HAS_L2HDR(hdr)); 2909 2910 arc_buf_hdr_t *nhdr; 2911 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 2912 2913 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 2914 (old == hdr_l2only_cache && new == hdr_full_cache)); 2915 2916 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 2917 2918 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 2919 buf_hash_remove(hdr); 2920 2921 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 2922 2923 if (new == hdr_full_cache) { 2924 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2925 /* 2926 * arc_access and arc_change_state need to be aware that a 2927 * header has just come out of L2ARC, so we set its state to 2928 * l2c_only even though it's about to change. 2929 */ 2930 nhdr->b_l1hdr.b_state = arc_l2c_only; 2931 2932 /* Verify previous threads set to NULL before freeing */ 2933 ASSERT3P(nhdr->b_l1hdr.b_pdata, ==, NULL); 2934 } else { 2935 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2936 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2937 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2938 2939 /* 2940 * If we've reached here, We must have been called from 2941 * arc_evict_hdr(), as such we should have already been 2942 * removed from any ghost list we were previously on 2943 * (which protects us from racing with arc_evict_state), 2944 * thus no locking is needed during this check. 2945 */ 2946 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 2947 2948 /* 2949 * A buffer must not be moved into the arc_l2c_only 2950 * state if it's not finished being written out to the 2951 * l2arc device. Otherwise, the b_l1hdr.b_pdata field 2952 * might try to be accessed, even though it was removed. 2953 */ 2954 VERIFY(!HDR_L2_WRITING(hdr)); 2955 VERIFY3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2956 2957 #ifdef ZFS_DEBUG 2958 if (hdr->b_l1hdr.b_thawed != NULL) { 2959 kmem_free(hdr->b_l1hdr.b_thawed, 1); 2960 hdr->b_l1hdr.b_thawed = NULL; 2961 } 2962 #endif 2963 2964 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2965 } 2966 /* 2967 * The header has been reallocated so we need to re-insert it into any 2968 * lists it was on. 2969 */ 2970 (void) buf_hash_insert(nhdr, NULL); 2971 2972 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 2973 2974 mutex_enter(&dev->l2ad_mtx); 2975 2976 /* 2977 * We must place the realloc'ed header back into the list at 2978 * the same spot. Otherwise, if it's placed earlier in the list, 2979 * l2arc_write_buffers() could find it during the function's 2980 * write phase, and try to write it out to the l2arc. 2981 */ 2982 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 2983 list_remove(&dev->l2ad_buflist, hdr); 2984 2985 mutex_exit(&dev->l2ad_mtx); 2986 2987 /* 2988 * Since we're using the pointer address as the tag when 2989 * incrementing and decrementing the l2ad_alloc refcount, we 2990 * must remove the old pointer (that we're about to destroy) and 2991 * add the new pointer to the refcount. Otherwise we'd remove 2992 * the wrong pointer address when calling arc_hdr_destroy() later. 2993 */ 2994 2995 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 2996 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr); 2997 2998 buf_discard_identity(hdr); 2999 kmem_cache_free(old, hdr); 3000 3001 return (nhdr); 3002 } 3003 3004 /* 3005 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3006 * The buf is returned thawed since we expect the consumer to modify it. 3007 */ 3008 arc_buf_t * 3009 arc_alloc_buf(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type) 3010 { 3011 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3012 ZIO_COMPRESS_OFF, type); 3013 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); 3014 arc_buf_t *buf = arc_buf_alloc_impl(hdr, tag); 3015 arc_buf_thaw(buf); 3016 return (buf); 3017 } 3018 3019 static void 3020 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3021 { 3022 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3023 l2arc_dev_t *dev = l2hdr->b_dev; 3024 uint64_t asize = arc_hdr_size(hdr); 3025 3026 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3027 ASSERT(HDR_HAS_L2HDR(hdr)); 3028 3029 list_remove(&dev->l2ad_buflist, hdr); 3030 3031 ARCSTAT_INCR(arcstat_l2_asize, -asize); 3032 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr)); 3033 3034 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3035 3036 (void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr); 3037 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3038 } 3039 3040 static void 3041 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3042 { 3043 if (HDR_HAS_L1HDR(hdr)) { 3044 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3045 hdr->b_l1hdr.b_bufcnt > 0); 3046 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3047 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3048 } 3049 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3050 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3051 3052 if (!HDR_EMPTY(hdr)) 3053 buf_discard_identity(hdr); 3054 3055 if (HDR_HAS_L2HDR(hdr)) { 3056 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3057 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3058 3059 if (!buflist_held) 3060 mutex_enter(&dev->l2ad_mtx); 3061 3062 /* 3063 * Even though we checked this conditional above, we 3064 * need to check this again now that we have the 3065 * l2ad_mtx. This is because we could be racing with 3066 * another thread calling l2arc_evict() which might have 3067 * destroyed this header's L2 portion as we were waiting 3068 * to acquire the l2ad_mtx. If that happens, we don't 3069 * want to re-destroy the header's L2 portion. 3070 */ 3071 if (HDR_HAS_L2HDR(hdr)) { 3072 l2arc_trim(hdr); 3073 arc_hdr_l2hdr_destroy(hdr); 3074 } 3075 3076 if (!buflist_held) 3077 mutex_exit(&dev->l2ad_mtx); 3078 } 3079 3080 if (HDR_HAS_L1HDR(hdr)) { 3081 arc_cksum_free(hdr); 3082 3083 while (hdr->b_l1hdr.b_buf != NULL) 3084 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf, B_TRUE); 3085 3086 #ifdef ZFS_DEBUG 3087 if (hdr->b_l1hdr.b_thawed != NULL) { 3088 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3089 hdr->b_l1hdr.b_thawed = NULL; 3090 } 3091 #endif 3092 3093 if (hdr->b_l1hdr.b_pdata != NULL) { 3094 arc_hdr_free_pdata(hdr); 3095 } 3096 } 3097 3098 ASSERT3P(hdr->b_hash_next, ==, NULL); 3099 if (HDR_HAS_L1HDR(hdr)) { 3100 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3101 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3102 kmem_cache_free(hdr_full_cache, hdr); 3103 } else { 3104 kmem_cache_free(hdr_l2only_cache, hdr); 3105 } 3106 } 3107 3108 void 3109 arc_buf_destroy(arc_buf_t *buf, void* tag) 3110 { 3111 arc_buf_hdr_t *hdr = buf->b_hdr; 3112 kmutex_t *hash_lock = HDR_LOCK(hdr); 3113 3114 if (hdr->b_l1hdr.b_state == arc_anon) { 3115 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3116 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3117 VERIFY0(remove_reference(hdr, NULL, tag)); 3118 arc_hdr_destroy(hdr); 3119 return; 3120 } 3121 3122 mutex_enter(hash_lock); 3123 ASSERT3P(hdr, ==, buf->b_hdr); 3124 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3125 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3126 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3127 ASSERT3P(buf->b_data, !=, NULL); 3128 3129 (void) remove_reference(hdr, hash_lock, tag); 3130 arc_buf_destroy_impl(buf, B_TRUE); 3131 mutex_exit(hash_lock); 3132 } 3133 3134 int32_t 3135 arc_buf_size(arc_buf_t *buf) 3136 { 3137 return (HDR_GET_LSIZE(buf->b_hdr)); 3138 } 3139 3140 /* 3141 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3142 * state of the header is dependent on its state prior to entering this 3143 * function. The following transitions are possible: 3144 * 3145 * - arc_mru -> arc_mru_ghost 3146 * - arc_mfu -> arc_mfu_ghost 3147 * - arc_mru_ghost -> arc_l2c_only 3148 * - arc_mru_ghost -> deleted 3149 * - arc_mfu_ghost -> arc_l2c_only 3150 * - arc_mfu_ghost -> deleted 3151 */ 3152 static int64_t 3153 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3154 { 3155 arc_state_t *evicted_state, *state; 3156 int64_t bytes_evicted = 0; 3157 3158 ASSERT(MUTEX_HELD(hash_lock)); 3159 ASSERT(HDR_HAS_L1HDR(hdr)); 3160 3161 state = hdr->b_l1hdr.b_state; 3162 if (GHOST_STATE(state)) { 3163 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3164 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3165 3166 /* 3167 * l2arc_write_buffers() relies on a header's L1 portion 3168 * (i.e. its b_pdata field) during its write phase. 3169 * Thus, we cannot push a header onto the arc_l2c_only 3170 * state (removing it's L1 piece) until the header is 3171 * done being written to the l2arc. 3172 */ 3173 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3174 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3175 return (bytes_evicted); 3176 } 3177 3178 ARCSTAT_BUMP(arcstat_deleted); 3179 bytes_evicted += HDR_GET_LSIZE(hdr); 3180 3181 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3182 3183 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 3184 if (HDR_HAS_L2HDR(hdr)) { 3185 ASSERT(hdr->b_l1hdr.b_pdata == NULL); 3186 /* 3187 * This buffer is cached on the 2nd Level ARC; 3188 * don't destroy the header. 3189 */ 3190 arc_change_state(arc_l2c_only, hdr, hash_lock); 3191 /* 3192 * dropping from L1+L2 cached to L2-only, 3193 * realloc to remove the L1 header. 3194 */ 3195 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3196 hdr_l2only_cache); 3197 } else { 3198 ASSERT(hdr->b_l1hdr.b_pdata == NULL); 3199 arc_change_state(arc_anon, hdr, hash_lock); 3200 arc_hdr_destroy(hdr); 3201 } 3202 return (bytes_evicted); 3203 } 3204 3205 ASSERT(state == arc_mru || state == arc_mfu); 3206 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3207 3208 /* prefetch buffers have a minimum lifespan */ 3209 if (HDR_IO_IN_PROGRESS(hdr) || 3210 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3211 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3212 arc_min_prefetch_lifespan)) { 3213 ARCSTAT_BUMP(arcstat_evict_skip); 3214 return (bytes_evicted); 3215 } 3216 3217 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 3218 while (hdr->b_l1hdr.b_buf) { 3219 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3220 if (!mutex_tryenter(&buf->b_evict_lock)) { 3221 ARCSTAT_BUMP(arcstat_mutex_miss); 3222 break; 3223 } 3224 if (buf->b_data != NULL) 3225 bytes_evicted += HDR_GET_LSIZE(hdr); 3226 mutex_exit(&buf->b_evict_lock); 3227 arc_buf_destroy_impl(buf, B_TRUE); 3228 } 3229 3230 if (HDR_HAS_L2HDR(hdr)) { 3231 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3232 } else { 3233 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3234 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3235 HDR_GET_LSIZE(hdr)); 3236 } else { 3237 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3238 HDR_GET_LSIZE(hdr)); 3239 } 3240 } 3241 3242 if (hdr->b_l1hdr.b_bufcnt == 0) { 3243 arc_cksum_free(hdr); 3244 3245 bytes_evicted += arc_hdr_size(hdr); 3246 3247 /* 3248 * If this hdr is being evicted and has a compressed 3249 * buffer then we discard it here before we change states. 3250 * This ensures that the accounting is updated correctly 3251 * in arc_free_data_buf(). 3252 */ 3253 arc_hdr_free_pdata(hdr); 3254 3255 arc_change_state(evicted_state, hdr, hash_lock); 3256 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3257 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3258 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3259 } 3260 3261 return (bytes_evicted); 3262 } 3263 3264 static uint64_t 3265 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3266 uint64_t spa, int64_t bytes) 3267 { 3268 multilist_sublist_t *mls; 3269 uint64_t bytes_evicted = 0; 3270 arc_buf_hdr_t *hdr; 3271 kmutex_t *hash_lock; 3272 int evict_count = 0; 3273 3274 ASSERT3P(marker, !=, NULL); 3275 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3276 3277 mls = multilist_sublist_lock(ml, idx); 3278 3279 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3280 hdr = multilist_sublist_prev(mls, marker)) { 3281 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3282 (evict_count >= zfs_arc_evict_batch_limit)) 3283 break; 3284 3285 /* 3286 * To keep our iteration location, move the marker 3287 * forward. Since we're not holding hdr's hash lock, we 3288 * must be very careful and not remove 'hdr' from the 3289 * sublist. Otherwise, other consumers might mistake the 3290 * 'hdr' as not being on a sublist when they call the 3291 * multilist_link_active() function (they all rely on 3292 * the hash lock protecting concurrent insertions and 3293 * removals). multilist_sublist_move_forward() was 3294 * specifically implemented to ensure this is the case 3295 * (only 'marker' will be removed and re-inserted). 3296 */ 3297 multilist_sublist_move_forward(mls, marker); 3298 3299 /* 3300 * The only case where the b_spa field should ever be 3301 * zero, is the marker headers inserted by 3302 * arc_evict_state(). It's possible for multiple threads 3303 * to be calling arc_evict_state() concurrently (e.g. 3304 * dsl_pool_close() and zio_inject_fault()), so we must 3305 * skip any markers we see from these other threads. 3306 */ 3307 if (hdr->b_spa == 0) 3308 continue; 3309 3310 /* we're only interested in evicting buffers of a certain spa */ 3311 if (spa != 0 && hdr->b_spa != spa) { 3312 ARCSTAT_BUMP(arcstat_evict_skip); 3313 continue; 3314 } 3315 3316 hash_lock = HDR_LOCK(hdr); 3317 3318 /* 3319 * We aren't calling this function from any code path 3320 * that would already be holding a hash lock, so we're 3321 * asserting on this assumption to be defensive in case 3322 * this ever changes. Without this check, it would be 3323 * possible to incorrectly increment arcstat_mutex_miss 3324 * below (e.g. if the code changed such that we called 3325 * this function with a hash lock held). 3326 */ 3327 ASSERT(!MUTEX_HELD(hash_lock)); 3328 3329 if (mutex_tryenter(hash_lock)) { 3330 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 3331 mutex_exit(hash_lock); 3332 3333 bytes_evicted += evicted; 3334 3335 /* 3336 * If evicted is zero, arc_evict_hdr() must have 3337 * decided to skip this header, don't increment 3338 * evict_count in this case. 3339 */ 3340 if (evicted != 0) 3341 evict_count++; 3342 3343 /* 3344 * If arc_size isn't overflowing, signal any 3345 * threads that might happen to be waiting. 3346 * 3347 * For each header evicted, we wake up a single 3348 * thread. If we used cv_broadcast, we could 3349 * wake up "too many" threads causing arc_size 3350 * to significantly overflow arc_c; since 3351 * arc_get_data_buf() doesn't check for overflow 3352 * when it's woken up (it doesn't because it's 3353 * possible for the ARC to be overflowing while 3354 * full of un-evictable buffers, and the 3355 * function should proceed in this case). 3356 * 3357 * If threads are left sleeping, due to not 3358 * using cv_broadcast, they will be woken up 3359 * just before arc_reclaim_thread() sleeps. 3360 */ 3361 mutex_enter(&arc_reclaim_lock); 3362 if (!arc_is_overflowing()) 3363 cv_signal(&arc_reclaim_waiters_cv); 3364 mutex_exit(&arc_reclaim_lock); 3365 } else { 3366 ARCSTAT_BUMP(arcstat_mutex_miss); 3367 } 3368 } 3369 3370 multilist_sublist_unlock(mls); 3371 3372 return (bytes_evicted); 3373 } 3374 3375 /* 3376 * Evict buffers from the given arc state, until we've removed the 3377 * specified number of bytes. Move the removed buffers to the 3378 * appropriate evict state. 3379 * 3380 * This function makes a "best effort". It skips over any buffers 3381 * it can't get a hash_lock on, and so, may not catch all candidates. 3382 * It may also return without evicting as much space as requested. 3383 * 3384 * If bytes is specified using the special value ARC_EVICT_ALL, this 3385 * will evict all available (i.e. unlocked and evictable) buffers from 3386 * the given arc state; which is used by arc_flush(). 3387 */ 3388 static uint64_t 3389 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 3390 arc_buf_contents_t type) 3391 { 3392 uint64_t total_evicted = 0; 3393 multilist_t *ml = &state->arcs_list[type]; 3394 int num_sublists; 3395 arc_buf_hdr_t **markers; 3396 3397 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3398 3399 num_sublists = multilist_get_num_sublists(ml); 3400 3401 /* 3402 * If we've tried to evict from each sublist, made some 3403 * progress, but still have not hit the target number of bytes 3404 * to evict, we want to keep trying. The markers allow us to 3405 * pick up where we left off for each individual sublist, rather 3406 * than starting from the tail each time. 3407 */ 3408 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 3409 for (int i = 0; i < num_sublists; i++) { 3410 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 3411 3412 /* 3413 * A b_spa of 0 is used to indicate that this header is 3414 * a marker. This fact is used in arc_adjust_type() and 3415 * arc_evict_state_impl(). 3416 */ 3417 markers[i]->b_spa = 0; 3418 3419 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3420 multilist_sublist_insert_tail(mls, markers[i]); 3421 multilist_sublist_unlock(mls); 3422 } 3423 3424 /* 3425 * While we haven't hit our target number of bytes to evict, or 3426 * we're evicting all available buffers. 3427 */ 3428 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 3429 /* 3430 * Start eviction using a randomly selected sublist, 3431 * this is to try and evenly balance eviction across all 3432 * sublists. Always starting at the same sublist 3433 * (e.g. index 0) would cause evictions to favor certain 3434 * sublists over others. 3435 */ 3436 int sublist_idx = multilist_get_random_index(ml); 3437 uint64_t scan_evicted = 0; 3438 3439 for (int i = 0; i < num_sublists; i++) { 3440 uint64_t bytes_remaining; 3441 uint64_t bytes_evicted; 3442 3443 if (bytes == ARC_EVICT_ALL) 3444 bytes_remaining = ARC_EVICT_ALL; 3445 else if (total_evicted < bytes) 3446 bytes_remaining = bytes - total_evicted; 3447 else 3448 break; 3449 3450 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 3451 markers[sublist_idx], spa, bytes_remaining); 3452 3453 scan_evicted += bytes_evicted; 3454 total_evicted += bytes_evicted; 3455 3456 /* we've reached the end, wrap to the beginning */ 3457 if (++sublist_idx >= num_sublists) 3458 sublist_idx = 0; 3459 } 3460 3461 /* 3462 * If we didn't evict anything during this scan, we have 3463 * no reason to believe we'll evict more during another 3464 * scan, so break the loop. 3465 */ 3466 if (scan_evicted == 0) { 3467 /* This isn't possible, let's make that obvious */ 3468 ASSERT3S(bytes, !=, 0); 3469 3470 /* 3471 * When bytes is ARC_EVICT_ALL, the only way to 3472 * break the loop is when scan_evicted is zero. 3473 * In that case, we actually have evicted enough, 3474 * so we don't want to increment the kstat. 3475 */ 3476 if (bytes != ARC_EVICT_ALL) { 3477 ASSERT3S(total_evicted, <, bytes); 3478 ARCSTAT_BUMP(arcstat_evict_not_enough); 3479 } 3480 3481 break; 3482 } 3483 } 3484 3485 for (int i = 0; i < num_sublists; i++) { 3486 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3487 multilist_sublist_remove(mls, markers[i]); 3488 multilist_sublist_unlock(mls); 3489 3490 kmem_cache_free(hdr_full_cache, markers[i]); 3491 } 3492 kmem_free(markers, sizeof (*markers) * num_sublists); 3493 3494 return (total_evicted); 3495 } 3496 3497 /* 3498 * Flush all "evictable" data of the given type from the arc state 3499 * specified. This will not evict any "active" buffers (i.e. referenced). 3500 * 3501 * When 'retry' is set to B_FALSE, the function will make a single pass 3502 * over the state and evict any buffers that it can. Since it doesn't 3503 * continually retry the eviction, it might end up leaving some buffers 3504 * in the ARC due to lock misses. 3505 * 3506 * When 'retry' is set to B_TRUE, the function will continually retry the 3507 * eviction until *all* evictable buffers have been removed from the 3508 * state. As a result, if concurrent insertions into the state are 3509 * allowed (e.g. if the ARC isn't shutting down), this function might 3510 * wind up in an infinite loop, continually trying to evict buffers. 3511 */ 3512 static uint64_t 3513 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 3514 boolean_t retry) 3515 { 3516 uint64_t evicted = 0; 3517 3518 while (refcount_count(&state->arcs_esize[type]) != 0) { 3519 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 3520 3521 if (!retry) 3522 break; 3523 } 3524 3525 return (evicted); 3526 } 3527 3528 /* 3529 * Evict the specified number of bytes from the state specified, 3530 * restricting eviction to the spa and type given. This function 3531 * prevents us from trying to evict more from a state's list than 3532 * is "evictable", and to skip evicting altogether when passed a 3533 * negative value for "bytes". In contrast, arc_evict_state() will 3534 * evict everything it can, when passed a negative value for "bytes". 3535 */ 3536 static uint64_t 3537 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 3538 arc_buf_contents_t type) 3539 { 3540 int64_t delta; 3541 3542 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) { 3543 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes); 3544 return (arc_evict_state(state, spa, delta, type)); 3545 } 3546 3547 return (0); 3548 } 3549 3550 /* 3551 * Evict metadata buffers from the cache, such that arc_meta_used is 3552 * capped by the arc_meta_limit tunable. 3553 */ 3554 static uint64_t 3555 arc_adjust_meta(void) 3556 { 3557 uint64_t total_evicted = 0; 3558 int64_t target; 3559 3560 /* 3561 * If we're over the meta limit, we want to evict enough 3562 * metadata to get back under the meta limit. We don't want to 3563 * evict so much that we drop the MRU below arc_p, though. If 3564 * we're over the meta limit more than we're over arc_p, we 3565 * evict some from the MRU here, and some from the MFU below. 3566 */ 3567 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 3568 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3569 refcount_count(&arc_mru->arcs_size) - arc_p)); 3570 3571 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3572 3573 /* 3574 * Similar to the above, we want to evict enough bytes to get us 3575 * below the meta limit, but not so much as to drop us below the 3576 * space alloted to the MFU (which is defined as arc_c - arc_p). 3577 */ 3578 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 3579 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p))); 3580 3581 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3582 3583 return (total_evicted); 3584 } 3585 3586 /* 3587 * Return the type of the oldest buffer in the given arc state 3588 * 3589 * This function will select a random sublist of type ARC_BUFC_DATA and 3590 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 3591 * is compared, and the type which contains the "older" buffer will be 3592 * returned. 3593 */ 3594 static arc_buf_contents_t 3595 arc_adjust_type(arc_state_t *state) 3596 { 3597 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 3598 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 3599 int data_idx = multilist_get_random_index(data_ml); 3600 int meta_idx = multilist_get_random_index(meta_ml); 3601 multilist_sublist_t *data_mls; 3602 multilist_sublist_t *meta_mls; 3603 arc_buf_contents_t type; 3604 arc_buf_hdr_t *data_hdr; 3605 arc_buf_hdr_t *meta_hdr; 3606 3607 /* 3608 * We keep the sublist lock until we're finished, to prevent 3609 * the headers from being destroyed via arc_evict_state(). 3610 */ 3611 data_mls = multilist_sublist_lock(data_ml, data_idx); 3612 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 3613 3614 /* 3615 * These two loops are to ensure we skip any markers that 3616 * might be at the tail of the lists due to arc_evict_state(). 3617 */ 3618 3619 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 3620 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 3621 if (data_hdr->b_spa != 0) 3622 break; 3623 } 3624 3625 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 3626 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 3627 if (meta_hdr->b_spa != 0) 3628 break; 3629 } 3630 3631 if (data_hdr == NULL && meta_hdr == NULL) { 3632 type = ARC_BUFC_DATA; 3633 } else if (data_hdr == NULL) { 3634 ASSERT3P(meta_hdr, !=, NULL); 3635 type = ARC_BUFC_METADATA; 3636 } else if (meta_hdr == NULL) { 3637 ASSERT3P(data_hdr, !=, NULL); 3638 type = ARC_BUFC_DATA; 3639 } else { 3640 ASSERT3P(data_hdr, !=, NULL); 3641 ASSERT3P(meta_hdr, !=, NULL); 3642 3643 /* The headers can't be on the sublist without an L1 header */ 3644 ASSERT(HDR_HAS_L1HDR(data_hdr)); 3645 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 3646 3647 if (data_hdr->b_l1hdr.b_arc_access < 3648 meta_hdr->b_l1hdr.b_arc_access) { 3649 type = ARC_BUFC_DATA; 3650 } else { 3651 type = ARC_BUFC_METADATA; 3652 } 3653 } 3654 3655 multilist_sublist_unlock(meta_mls); 3656 multilist_sublist_unlock(data_mls); 3657 3658 return (type); 3659 } 3660 3661 /* 3662 * Evict buffers from the cache, such that arc_size is capped by arc_c. 3663 */ 3664 static uint64_t 3665 arc_adjust(void) 3666 { 3667 uint64_t total_evicted = 0; 3668 uint64_t bytes; 3669 int64_t target; 3670 3671 /* 3672 * If we're over arc_meta_limit, we want to correct that before 3673 * potentially evicting data buffers below. 3674 */ 3675 total_evicted += arc_adjust_meta(); 3676 3677 /* 3678 * Adjust MRU size 3679 * 3680 * If we're over the target cache size, we want to evict enough 3681 * from the list to get back to our target size. We don't want 3682 * to evict too much from the MRU, such that it drops below 3683 * arc_p. So, if we're over our target cache size more than 3684 * the MRU is over arc_p, we'll evict enough to get back to 3685 * arc_p here, and then evict more from the MFU below. 3686 */ 3687 target = MIN((int64_t)(arc_size - arc_c), 3688 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3689 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p)); 3690 3691 /* 3692 * If we're below arc_meta_min, always prefer to evict data. 3693 * Otherwise, try to satisfy the requested number of bytes to 3694 * evict from the type which contains older buffers; in an 3695 * effort to keep newer buffers in the cache regardless of their 3696 * type. If we cannot satisfy the number of bytes from this 3697 * type, spill over into the next type. 3698 */ 3699 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && 3700 arc_meta_used > arc_meta_min) { 3701 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3702 total_evicted += bytes; 3703 3704 /* 3705 * If we couldn't evict our target number of bytes from 3706 * metadata, we try to get the rest from data. 3707 */ 3708 target -= bytes; 3709 3710 total_evicted += 3711 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3712 } else { 3713 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3714 total_evicted += bytes; 3715 3716 /* 3717 * If we couldn't evict our target number of bytes from 3718 * data, we try to get the rest from metadata. 3719 */ 3720 target -= bytes; 3721 3722 total_evicted += 3723 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3724 } 3725 3726 /* 3727 * Adjust MFU size 3728 * 3729 * Now that we've tried to evict enough from the MRU to get its 3730 * size back to arc_p, if we're still above the target cache 3731 * size, we evict the rest from the MFU. 3732 */ 3733 target = arc_size - arc_c; 3734 3735 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && 3736 arc_meta_used > arc_meta_min) { 3737 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3738 total_evicted += bytes; 3739 3740 /* 3741 * If we couldn't evict our target number of bytes from 3742 * metadata, we try to get the rest from data. 3743 */ 3744 target -= bytes; 3745 3746 total_evicted += 3747 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3748 } else { 3749 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3750 total_evicted += bytes; 3751 3752 /* 3753 * If we couldn't evict our target number of bytes from 3754 * data, we try to get the rest from data. 3755 */ 3756 target -= bytes; 3757 3758 total_evicted += 3759 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3760 } 3761 3762 /* 3763 * Adjust ghost lists 3764 * 3765 * In addition to the above, the ARC also defines target values 3766 * for the ghost lists. The sum of the mru list and mru ghost 3767 * list should never exceed the target size of the cache, and 3768 * the sum of the mru list, mfu list, mru ghost list, and mfu 3769 * ghost list should never exceed twice the target size of the 3770 * cache. The following logic enforces these limits on the ghost 3771 * caches, and evicts from them as needed. 3772 */ 3773 target = refcount_count(&arc_mru->arcs_size) + 3774 refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 3775 3776 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 3777 total_evicted += bytes; 3778 3779 target -= bytes; 3780 3781 total_evicted += 3782 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 3783 3784 /* 3785 * We assume the sum of the mru list and mfu list is less than 3786 * or equal to arc_c (we enforced this above), which means we 3787 * can use the simpler of the two equations below: 3788 * 3789 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 3790 * mru ghost + mfu ghost <= arc_c 3791 */ 3792 target = refcount_count(&arc_mru_ghost->arcs_size) + 3793 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 3794 3795 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 3796 total_evicted += bytes; 3797 3798 target -= bytes; 3799 3800 total_evicted += 3801 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 3802 3803 return (total_evicted); 3804 } 3805 3806 void 3807 arc_flush(spa_t *spa, boolean_t retry) 3808 { 3809 uint64_t guid = 0; 3810 3811 /* 3812 * If retry is B_TRUE, a spa must not be specified since we have 3813 * no good way to determine if all of a spa's buffers have been 3814 * evicted from an arc state. 3815 */ 3816 ASSERT(!retry || spa == 0); 3817 3818 if (spa != NULL) 3819 guid = spa_load_guid(spa); 3820 3821 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 3822 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 3823 3824 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 3825 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 3826 3827 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 3828 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 3829 3830 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 3831 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 3832 } 3833 3834 void 3835 arc_shrink(int64_t to_free) 3836 { 3837 if (arc_c > arc_c_min) { 3838 DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t, 3839 arc_c_min, uint64_t, arc_p, uint64_t, to_free); 3840 if (arc_c > arc_c_min + to_free) 3841 atomic_add_64(&arc_c, -to_free); 3842 else 3843 arc_c = arc_c_min; 3844 3845 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 3846 if (arc_c > arc_size) 3847 arc_c = MAX(arc_size, arc_c_min); 3848 if (arc_p > arc_c) 3849 arc_p = (arc_c >> 1); 3850 3851 DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t, 3852 arc_p); 3853 3854 ASSERT(arc_c >= arc_c_min); 3855 ASSERT((int64_t)arc_p >= 0); 3856 } 3857 3858 if (arc_size > arc_c) { 3859 DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size, 3860 uint64_t, arc_c); 3861 (void) arc_adjust(); 3862 } 3863 } 3864 3865 static long needfree = 0; 3866 3867 typedef enum free_memory_reason_t { 3868 FMR_UNKNOWN, 3869 FMR_NEEDFREE, 3870 FMR_LOTSFREE, 3871 FMR_SWAPFS_MINFREE, 3872 FMR_PAGES_PP_MAXIMUM, 3873 FMR_HEAP_ARENA, 3874 FMR_ZIO_ARENA, 3875 FMR_ZIO_FRAG, 3876 } free_memory_reason_t; 3877 3878 int64_t last_free_memory; 3879 free_memory_reason_t last_free_reason; 3880 3881 /* 3882 * Additional reserve of pages for pp_reserve. 3883 */ 3884 int64_t arc_pages_pp_reserve = 64; 3885 3886 /* 3887 * Additional reserve of pages for swapfs. 3888 */ 3889 int64_t arc_swapfs_reserve = 64; 3890 3891 /* 3892 * Return the amount of memory that can be consumed before reclaim will be 3893 * needed. Positive if there is sufficient free memory, negative indicates 3894 * the amount of memory that needs to be freed up. 3895 */ 3896 static int64_t 3897 arc_available_memory(void) 3898 { 3899 int64_t lowest = INT64_MAX; 3900 int64_t n; 3901 free_memory_reason_t r = FMR_UNKNOWN; 3902 3903 #ifdef _KERNEL 3904 if (needfree > 0) { 3905 n = PAGESIZE * (-needfree); 3906 if (n < lowest) { 3907 lowest = n; 3908 r = FMR_NEEDFREE; 3909 } 3910 } 3911 3912 /* 3913 * Cooperate with pagedaemon when it's time for it to scan 3914 * and reclaim some pages. 3915 */ 3916 n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target); 3917 if (n < lowest) { 3918 lowest = n; 3919 r = FMR_LOTSFREE; 3920 } 3921 3922 #ifdef illumos 3923 /* 3924 * check that we're out of range of the pageout scanner. It starts to 3925 * schedule paging if freemem is less than lotsfree and needfree. 3926 * lotsfree is the high-water mark for pageout, and needfree is the 3927 * number of needed free pages. We add extra pages here to make sure 3928 * the scanner doesn't start up while we're freeing memory. 3929 */ 3930 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 3931 if (n < lowest) { 3932 lowest = n; 3933 r = FMR_LOTSFREE; 3934 } 3935 3936 /* 3937 * check to make sure that swapfs has enough space so that anon 3938 * reservations can still succeed. anon_resvmem() checks that the 3939 * availrmem is greater than swapfs_minfree, and the number of reserved 3940 * swap pages. We also add a bit of extra here just to prevent 3941 * circumstances from getting really dire. 3942 */ 3943 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 3944 desfree - arc_swapfs_reserve); 3945 if (n < lowest) { 3946 lowest = n; 3947 r = FMR_SWAPFS_MINFREE; 3948 } 3949 3950 3951 /* 3952 * Check that we have enough availrmem that memory locking (e.g., via 3953 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 3954 * stores the number of pages that cannot be locked; when availrmem 3955 * drops below pages_pp_maximum, page locking mechanisms such as 3956 * page_pp_lock() will fail.) 3957 */ 3958 n = PAGESIZE * (availrmem - pages_pp_maximum - 3959 arc_pages_pp_reserve); 3960 if (n < lowest) { 3961 lowest = n; 3962 r = FMR_PAGES_PP_MAXIMUM; 3963 } 3964 3965 #endif /* illumos */ 3966 #if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC) 3967 /* 3968 * If we're on an i386 platform, it's possible that we'll exhaust the 3969 * kernel heap space before we ever run out of available physical 3970 * memory. Most checks of the size of the heap_area compare against 3971 * tune.t_minarmem, which is the minimum available real memory that we 3972 * can have in the system. However, this is generally fixed at 25 pages 3973 * which is so low that it's useless. In this comparison, we seek to 3974 * calculate the total heap-size, and reclaim if more than 3/4ths of the 3975 * heap is allocated. (Or, in the calculation, if less than 1/4th is 3976 * free) 3977 */ 3978 n = (int64_t)vmem_size(heap_arena, VMEM_FREE) - 3979 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2); 3980 if (n < lowest) { 3981 lowest = n; 3982 r = FMR_HEAP_ARENA; 3983 } 3984 #define zio_arena NULL 3985 #else 3986 #define zio_arena heap_arena 3987 #endif 3988 3989 /* 3990 * If zio data pages are being allocated out of a separate heap segment, 3991 * then enforce that the size of available vmem for this arena remains 3992 * above about 1/16th free. 3993 * 3994 * Note: The 1/16th arena free requirement was put in place 3995 * to aggressively evict memory from the arc in order to avoid 3996 * memory fragmentation issues. 3997 */ 3998 if (zio_arena != NULL) { 3999 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) - 4000 (vmem_size(zio_arena, VMEM_ALLOC) >> 4); 4001 if (n < lowest) { 4002 lowest = n; 4003 r = FMR_ZIO_ARENA; 4004 } 4005 } 4006 4007 #if __FreeBSD__ 4008 /* 4009 * Above limits know nothing about real level of KVA fragmentation. 4010 * Start aggressive reclamation if too little sequential KVA left. 4011 */ 4012 if (lowest > 0) { 4013 n = (vmem_size(heap_arena, VMEM_MAXFREE) < SPA_MAXBLOCKSIZE) ? 4014 -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) : 4015 INT64_MAX; 4016 if (n < lowest) { 4017 lowest = n; 4018 r = FMR_ZIO_FRAG; 4019 } 4020 } 4021 #endif 4022 4023 #else /* _KERNEL */ 4024 /* Every 100 calls, free a small amount */ 4025 if (spa_get_random(100) == 0) 4026 lowest = -1024; 4027 #endif /* _KERNEL */ 4028 4029 last_free_memory = lowest; 4030 last_free_reason = r; 4031 DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r); 4032 return (lowest); 4033 } 4034 4035 4036 /* 4037 * Determine if the system is under memory pressure and is asking 4038 * to reclaim memory. A return value of B_TRUE indicates that the system 4039 * is under memory pressure and that the arc should adjust accordingly. 4040 */ 4041 static boolean_t 4042 arc_reclaim_needed(void) 4043 { 4044 return (arc_available_memory() < 0); 4045 } 4046 4047 extern kmem_cache_t *zio_buf_cache[]; 4048 extern kmem_cache_t *zio_data_buf_cache[]; 4049 extern kmem_cache_t *range_seg_cache; 4050 4051 static __noinline void 4052 arc_kmem_reap_now(void) 4053 { 4054 size_t i; 4055 kmem_cache_t *prev_cache = NULL; 4056 kmem_cache_t *prev_data_cache = NULL; 4057 4058 DTRACE_PROBE(arc__kmem_reap_start); 4059 #ifdef _KERNEL 4060 if (arc_meta_used >= arc_meta_limit) { 4061 /* 4062 * We are exceeding our meta-data cache limit. 4063 * Purge some DNLC entries to release holds on meta-data. 4064 */ 4065 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 4066 } 4067 #if defined(__i386) 4068 /* 4069 * Reclaim unused memory from all kmem caches. 4070 */ 4071 kmem_reap(); 4072 #endif 4073 #endif 4074 4075 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4076 if (zio_buf_cache[i] != prev_cache) { 4077 prev_cache = zio_buf_cache[i]; 4078 kmem_cache_reap_now(zio_buf_cache[i]); 4079 } 4080 if (zio_data_buf_cache[i] != prev_data_cache) { 4081 prev_data_cache = zio_data_buf_cache[i]; 4082 kmem_cache_reap_now(zio_data_buf_cache[i]); 4083 } 4084 } 4085 kmem_cache_reap_now(buf_cache); 4086 kmem_cache_reap_now(hdr_full_cache); 4087 kmem_cache_reap_now(hdr_l2only_cache); 4088 kmem_cache_reap_now(range_seg_cache); 4089 4090 #ifdef illumos 4091 if (zio_arena != NULL) { 4092 /* 4093 * Ask the vmem arena to reclaim unused memory from its 4094 * quantum caches. 4095 */ 4096 vmem_qcache_reap(zio_arena); 4097 } 4098 #endif 4099 DTRACE_PROBE(arc__kmem_reap_end); 4100 } 4101 4102 /* 4103 * Threads can block in arc_get_data_buf() waiting for this thread to evict 4104 * enough data and signal them to proceed. When this happens, the threads in 4105 * arc_get_data_buf() are sleeping while holding the hash lock for their 4106 * particular arc header. Thus, we must be careful to never sleep on a 4107 * hash lock in this thread. This is to prevent the following deadlock: 4108 * 4109 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L", 4110 * waiting for the reclaim thread to signal it. 4111 * 4112 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter, 4113 * fails, and goes to sleep forever. 4114 * 4115 * This possible deadlock is avoided by always acquiring a hash lock 4116 * using mutex_tryenter() from arc_reclaim_thread(). 4117 */ 4118 static void 4119 arc_reclaim_thread(void *dummy __unused) 4120 { 4121 hrtime_t growtime = 0; 4122 callb_cpr_t cpr; 4123 4124 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG); 4125 4126 mutex_enter(&arc_reclaim_lock); 4127 while (!arc_reclaim_thread_exit) { 4128 uint64_t evicted = 0; 4129 4130 /* 4131 * This is necessary in order for the mdb ::arc dcmd to 4132 * show up to date information. Since the ::arc command 4133 * does not call the kstat's update function, without 4134 * this call, the command may show stale stats for the 4135 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4136 * with this change, the data might be up to 1 second 4137 * out of date; but that should suffice. The arc_state_t 4138 * structures can be queried directly if more accurate 4139 * information is needed. 4140 */ 4141 if (arc_ksp != NULL) 4142 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4143 4144 mutex_exit(&arc_reclaim_lock); 4145 4146 /* 4147 * We call arc_adjust() before (possibly) calling 4148 * arc_kmem_reap_now(), so that we can wake up 4149 * arc_get_data_buf() sooner. 4150 */ 4151 evicted = arc_adjust(); 4152 4153 int64_t free_memory = arc_available_memory(); 4154 if (free_memory < 0) { 4155 4156 arc_no_grow = B_TRUE; 4157 arc_warm = B_TRUE; 4158 4159 /* 4160 * Wait at least zfs_grow_retry (default 60) seconds 4161 * before considering growing. 4162 */ 4163 growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4164 4165 arc_kmem_reap_now(); 4166 4167 /* 4168 * If we are still low on memory, shrink the ARC 4169 * so that we have arc_shrink_min free space. 4170 */ 4171 free_memory = arc_available_memory(); 4172 4173 int64_t to_free = 4174 (arc_c >> arc_shrink_shift) - free_memory; 4175 if (to_free > 0) { 4176 #ifdef _KERNEL 4177 to_free = MAX(to_free, ptob(needfree)); 4178 #endif 4179 arc_shrink(to_free); 4180 } 4181 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4182 arc_no_grow = B_TRUE; 4183 } else if (gethrtime() >= growtime) { 4184 arc_no_grow = B_FALSE; 4185 } 4186 4187 mutex_enter(&arc_reclaim_lock); 4188 4189 /* 4190 * If evicted is zero, we couldn't evict anything via 4191 * arc_adjust(). This could be due to hash lock 4192 * collisions, but more likely due to the majority of 4193 * arc buffers being unevictable. Therefore, even if 4194 * arc_size is above arc_c, another pass is unlikely to 4195 * be helpful and could potentially cause us to enter an 4196 * infinite loop. 4197 */ 4198 if (arc_size <= arc_c || evicted == 0) { 4199 #ifdef _KERNEL 4200 needfree = 0; 4201 #endif 4202 /* 4203 * We're either no longer overflowing, or we 4204 * can't evict anything more, so we should wake 4205 * up any threads before we go to sleep. 4206 */ 4207 cv_broadcast(&arc_reclaim_waiters_cv); 4208 4209 /* 4210 * Block until signaled, or after one second (we 4211 * might need to perform arc_kmem_reap_now() 4212 * even if we aren't being signalled) 4213 */ 4214 CALLB_CPR_SAFE_BEGIN(&cpr); 4215 (void) cv_timedwait_hires(&arc_reclaim_thread_cv, 4216 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 4217 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock); 4218 } 4219 } 4220 4221 arc_reclaim_thread_exit = B_FALSE; 4222 cv_broadcast(&arc_reclaim_thread_cv); 4223 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */ 4224 thread_exit(); 4225 } 4226 4227 #ifdef __FreeBSD__ 4228 4229 static u_int arc_dnlc_evicts_arg; 4230 extern struct vfsops zfs_vfsops; 4231 4232 static void 4233 arc_dnlc_evicts_thread(void *dummy __unused) 4234 { 4235 callb_cpr_t cpr; 4236 u_int percent; 4237 4238 CALLB_CPR_INIT(&cpr, &arc_dnlc_evicts_lock, callb_generic_cpr, FTAG); 4239 4240 mutex_enter(&arc_dnlc_evicts_lock); 4241 while (!arc_dnlc_evicts_thread_exit) { 4242 CALLB_CPR_SAFE_BEGIN(&cpr); 4243 (void) cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock); 4244 CALLB_CPR_SAFE_END(&cpr, &arc_dnlc_evicts_lock); 4245 if (arc_dnlc_evicts_arg != 0) { 4246 percent = arc_dnlc_evicts_arg; 4247 mutex_exit(&arc_dnlc_evicts_lock); 4248 #ifdef _KERNEL 4249 vnlru_free(desiredvnodes * percent / 100, &zfs_vfsops); 4250 #endif 4251 mutex_enter(&arc_dnlc_evicts_lock); 4252 /* 4253 * Clear our token only after vnlru_free() 4254 * pass is done, to avoid false queueing of 4255 * the requests. 4256 */ 4257 arc_dnlc_evicts_arg = 0; 4258 } 4259 } 4260 arc_dnlc_evicts_thread_exit = FALSE; 4261 cv_broadcast(&arc_dnlc_evicts_cv); 4262 CALLB_CPR_EXIT(&cpr); 4263 thread_exit(); 4264 } 4265 4266 void 4267 dnlc_reduce_cache(void *arg) 4268 { 4269 u_int percent; 4270 4271 percent = (u_int)(uintptr_t)arg; 4272 mutex_enter(&arc_dnlc_evicts_lock); 4273 if (arc_dnlc_evicts_arg == 0) { 4274 arc_dnlc_evicts_arg = percent; 4275 cv_broadcast(&arc_dnlc_evicts_cv); 4276 } 4277 mutex_exit(&arc_dnlc_evicts_lock); 4278 } 4279 4280 #endif 4281 4282 /* 4283 * Adapt arc info given the number of bytes we are trying to add and 4284 * the state that we are comming from. This function is only called 4285 * when we are adding new content to the cache. 4286 */ 4287 static void 4288 arc_adapt(int bytes, arc_state_t *state) 4289 { 4290 int mult; 4291 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 4292 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size); 4293 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size); 4294 4295 if (state == arc_l2c_only) 4296 return; 4297 4298 ASSERT(bytes > 0); 4299 /* 4300 * Adapt the target size of the MRU list: 4301 * - if we just hit in the MRU ghost list, then increase 4302 * the target size of the MRU list. 4303 * - if we just hit in the MFU ghost list, then increase 4304 * the target size of the MFU list by decreasing the 4305 * target size of the MRU list. 4306 */ 4307 if (state == arc_mru_ghost) { 4308 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 4309 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 4310 4311 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 4312 } else if (state == arc_mfu_ghost) { 4313 uint64_t delta; 4314 4315 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 4316 mult = MIN(mult, 10); 4317 4318 delta = MIN(bytes * mult, arc_p); 4319 arc_p = MAX(arc_p_min, arc_p - delta); 4320 } 4321 ASSERT((int64_t)arc_p >= 0); 4322 4323 if (arc_reclaim_needed()) { 4324 cv_signal(&arc_reclaim_thread_cv); 4325 return; 4326 } 4327 4328 if (arc_no_grow) 4329 return; 4330 4331 if (arc_c >= arc_c_max) 4332 return; 4333 4334 /* 4335 * If we're within (2 * maxblocksize) bytes of the target 4336 * cache size, increment the target cache size 4337 */ 4338 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 4339 DTRACE_PROBE1(arc__inc_adapt, int, bytes); 4340 atomic_add_64(&arc_c, (int64_t)bytes); 4341 if (arc_c > arc_c_max) 4342 arc_c = arc_c_max; 4343 else if (state == arc_anon) 4344 atomic_add_64(&arc_p, (int64_t)bytes); 4345 if (arc_p > arc_c) 4346 arc_p = arc_c; 4347 } 4348 ASSERT((int64_t)arc_p >= 0); 4349 } 4350 4351 /* 4352 * Check if arc_size has grown past our upper threshold, determined by 4353 * zfs_arc_overflow_shift. 4354 */ 4355 static boolean_t 4356 arc_is_overflowing(void) 4357 { 4358 /* Always allow at least one block of overflow */ 4359 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, 4360 arc_c >> zfs_arc_overflow_shift); 4361 4362 return (arc_size >= arc_c + overflow); 4363 } 4364 4365 /* 4366 * Allocate a block and return it to the caller. If we are hitting the 4367 * hard limit for the cache size, we must sleep, waiting for the eviction 4368 * thread to catch up. If we're past the target size but below the hard 4369 * limit, we'll only signal the reclaim thread and continue on. 4370 */ 4371 static void * 4372 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4373 { 4374 void *datap = NULL; 4375 arc_state_t *state = hdr->b_l1hdr.b_state; 4376 arc_buf_contents_t type = arc_buf_type(hdr); 4377 4378 arc_adapt(size, state); 4379 4380 /* 4381 * If arc_size is currently overflowing, and has grown past our 4382 * upper limit, we must be adding data faster than the evict 4383 * thread can evict. Thus, to ensure we don't compound the 4384 * problem by adding more data and forcing arc_size to grow even 4385 * further past it's target size, we halt and wait for the 4386 * eviction thread to catch up. 4387 * 4388 * It's also possible that the reclaim thread is unable to evict 4389 * enough buffers to get arc_size below the overflow limit (e.g. 4390 * due to buffers being un-evictable, or hash lock collisions). 4391 * In this case, we want to proceed regardless if we're 4392 * overflowing; thus we don't use a while loop here. 4393 */ 4394 if (arc_is_overflowing()) { 4395 mutex_enter(&arc_reclaim_lock); 4396 4397 /* 4398 * Now that we've acquired the lock, we may no longer be 4399 * over the overflow limit, lets check. 4400 * 4401 * We're ignoring the case of spurious wake ups. If that 4402 * were to happen, it'd let this thread consume an ARC 4403 * buffer before it should have (i.e. before we're under 4404 * the overflow limit and were signalled by the reclaim 4405 * thread). As long as that is a rare occurrence, it 4406 * shouldn't cause any harm. 4407 */ 4408 if (arc_is_overflowing()) { 4409 cv_signal(&arc_reclaim_thread_cv); 4410 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock); 4411 } 4412 4413 mutex_exit(&arc_reclaim_lock); 4414 } 4415 4416 VERIFY3U(hdr->b_type, ==, type); 4417 if (type == ARC_BUFC_METADATA) { 4418 datap = zio_buf_alloc(size); 4419 arc_space_consume(size, ARC_SPACE_META); 4420 } else { 4421 ASSERT(type == ARC_BUFC_DATA); 4422 datap = zio_data_buf_alloc(size); 4423 arc_space_consume(size, ARC_SPACE_DATA); 4424 } 4425 4426 /* 4427 * Update the state size. Note that ghost states have a 4428 * "ghost size" and so don't need to be updated. 4429 */ 4430 if (!GHOST_STATE(state)) { 4431 4432 (void) refcount_add_many(&state->arcs_size, size, tag); 4433 4434 /* 4435 * If this is reached via arc_read, the link is 4436 * protected by the hash lock. If reached via 4437 * arc_buf_alloc, the header should not be accessed by 4438 * any other thread. And, if reached via arc_read_done, 4439 * the hash lock will protect it if it's found in the 4440 * hash table; otherwise no other thread should be 4441 * trying to [add|remove]_reference it. 4442 */ 4443 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4444 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4445 (void) refcount_add_many(&state->arcs_esize[type], 4446 size, tag); 4447 } 4448 4449 /* 4450 * If we are growing the cache, and we are adding anonymous 4451 * data, and we have outgrown arc_p, update arc_p 4452 */ 4453 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon && 4454 (refcount_count(&arc_anon->arcs_size) + 4455 refcount_count(&arc_mru->arcs_size) > arc_p)) 4456 arc_p = MIN(arc_c, arc_p + size); 4457 } 4458 ARCSTAT_BUMP(arcstat_allocated); 4459 return (datap); 4460 } 4461 4462 /* 4463 * Free the arc data buffer. 4464 */ 4465 static void 4466 arc_free_data_buf(arc_buf_hdr_t *hdr, void *data, uint64_t size, void *tag) 4467 { 4468 arc_state_t *state = hdr->b_l1hdr.b_state; 4469 arc_buf_contents_t type = arc_buf_type(hdr); 4470 4471 /* protected by hash lock, if in the hash table */ 4472 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4473 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4474 ASSERT(state != arc_anon && state != arc_l2c_only); 4475 4476 (void) refcount_remove_many(&state->arcs_esize[type], 4477 size, tag); 4478 } 4479 (void) refcount_remove_many(&state->arcs_size, size, tag); 4480 4481 VERIFY3U(hdr->b_type, ==, type); 4482 if (type == ARC_BUFC_METADATA) { 4483 zio_buf_free(data, size); 4484 arc_space_return(size, ARC_SPACE_META); 4485 } else { 4486 ASSERT(type == ARC_BUFC_DATA); 4487 zio_data_buf_free(data, size); 4488 arc_space_return(size, ARC_SPACE_DATA); 4489 } 4490 } 4491 4492 /* 4493 * This routine is called whenever a buffer is accessed. 4494 * NOTE: the hash lock is dropped in this function. 4495 */ 4496 static void 4497 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 4498 { 4499 clock_t now; 4500 4501 ASSERT(MUTEX_HELD(hash_lock)); 4502 ASSERT(HDR_HAS_L1HDR(hdr)); 4503 4504 if (hdr->b_l1hdr.b_state == arc_anon) { 4505 /* 4506 * This buffer is not in the cache, and does not 4507 * appear in our "ghost" list. Add the new buffer 4508 * to the MRU state. 4509 */ 4510 4511 ASSERT0(hdr->b_l1hdr.b_arc_access); 4512 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4513 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4514 arc_change_state(arc_mru, hdr, hash_lock); 4515 4516 } else if (hdr->b_l1hdr.b_state == arc_mru) { 4517 now = ddi_get_lbolt(); 4518 4519 /* 4520 * If this buffer is here because of a prefetch, then either: 4521 * - clear the flag if this is a "referencing" read 4522 * (any subsequent access will bump this into the MFU state). 4523 * or 4524 * - move the buffer to the head of the list if this is 4525 * another prefetch (to make it less likely to be evicted). 4526 */ 4527 if (HDR_PREFETCH(hdr)) { 4528 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4529 /* link protected by hash lock */ 4530 ASSERT(multilist_link_active( 4531 &hdr->b_l1hdr.b_arc_node)); 4532 } else { 4533 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4534 ARCSTAT_BUMP(arcstat_mru_hits); 4535 } 4536 hdr->b_l1hdr.b_arc_access = now; 4537 return; 4538 } 4539 4540 /* 4541 * This buffer has been "accessed" only once so far, 4542 * but it is still in the cache. Move it to the MFU 4543 * state. 4544 */ 4545 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { 4546 /* 4547 * More than 125ms have passed since we 4548 * instantiated this buffer. Move it to the 4549 * most frequently used state. 4550 */ 4551 hdr->b_l1hdr.b_arc_access = now; 4552 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4553 arc_change_state(arc_mfu, hdr, hash_lock); 4554 } 4555 ARCSTAT_BUMP(arcstat_mru_hits); 4556 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 4557 arc_state_t *new_state; 4558 /* 4559 * This buffer has been "accessed" recently, but 4560 * was evicted from the cache. Move it to the 4561 * MFU state. 4562 */ 4563 4564 if (HDR_PREFETCH(hdr)) { 4565 new_state = arc_mru; 4566 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) 4567 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4568 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4569 } else { 4570 new_state = arc_mfu; 4571 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4572 } 4573 4574 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4575 arc_change_state(new_state, hdr, hash_lock); 4576 4577 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 4578 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 4579 /* 4580 * This buffer has been accessed more than once and is 4581 * still in the cache. Keep it in the MFU state. 4582 * 4583 * NOTE: an add_reference() that occurred when we did 4584 * the arc_read() will have kicked this off the list. 4585 * If it was a prefetch, we will explicitly move it to 4586 * the head of the list now. 4587 */ 4588 if ((HDR_PREFETCH(hdr)) != 0) { 4589 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4590 /* link protected by hash_lock */ 4591 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 4592 } 4593 ARCSTAT_BUMP(arcstat_mfu_hits); 4594 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4595 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 4596 arc_state_t *new_state = arc_mfu; 4597 /* 4598 * This buffer has been accessed more than once but has 4599 * been evicted from the cache. Move it back to the 4600 * MFU state. 4601 */ 4602 4603 if (HDR_PREFETCH(hdr)) { 4604 /* 4605 * This is a prefetch access... 4606 * move this block back to the MRU state. 4607 */ 4608 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 4609 new_state = arc_mru; 4610 } 4611 4612 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4613 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4614 arc_change_state(new_state, hdr, hash_lock); 4615 4616 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 4617 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 4618 /* 4619 * This buffer is on the 2nd Level ARC. 4620 */ 4621 4622 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4623 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4624 arc_change_state(arc_mfu, hdr, hash_lock); 4625 } else { 4626 ASSERT(!"invalid arc state"); 4627 } 4628 } 4629 4630 /* a generic arc_done_func_t which you can use */ 4631 /* ARGSUSED */ 4632 void 4633 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 4634 { 4635 if (zio == NULL || zio->io_error == 0) 4636 bcopy(buf->b_data, arg, HDR_GET_LSIZE(buf->b_hdr)); 4637 arc_buf_destroy(buf, arg); 4638 } 4639 4640 /* a generic arc_done_func_t */ 4641 void 4642 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 4643 { 4644 arc_buf_t **bufp = arg; 4645 if (zio && zio->io_error) { 4646 arc_buf_destroy(buf, arg); 4647 *bufp = NULL; 4648 } else { 4649 *bufp = buf; 4650 ASSERT(buf->b_data); 4651 } 4652 } 4653 4654 static void 4655 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 4656 { 4657 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 4658 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 4659 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 4660 } else { 4661 if (HDR_COMPRESSION_ENABLED(hdr)) { 4662 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, 4663 BP_GET_COMPRESS(bp)); 4664 } 4665 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 4666 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 4667 } 4668 } 4669 4670 static void 4671 arc_read_done(zio_t *zio) 4672 { 4673 arc_buf_hdr_t *hdr = zio->io_private; 4674 arc_buf_t *abuf = NULL; /* buffer we're assigning to callback */ 4675 kmutex_t *hash_lock = NULL; 4676 arc_callback_t *callback_list, *acb; 4677 int freeable = B_FALSE; 4678 4679 /* 4680 * The hdr was inserted into hash-table and removed from lists 4681 * prior to starting I/O. We should find this header, since 4682 * it's in the hash table, and it should be legit since it's 4683 * not possible to evict it during the I/O. The only possible 4684 * reason for it not to be found is if we were freed during the 4685 * read. 4686 */ 4687 if (HDR_IN_HASH_TABLE(hdr)) { 4688 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 4689 ASSERT3U(hdr->b_dva.dva_word[0], ==, 4690 BP_IDENTITY(zio->io_bp)->dva_word[0]); 4691 ASSERT3U(hdr->b_dva.dva_word[1], ==, 4692 BP_IDENTITY(zio->io_bp)->dva_word[1]); 4693 4694 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 4695 &hash_lock); 4696 4697 ASSERT((found == hdr && 4698 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 4699 (found == hdr && HDR_L2_READING(hdr))); 4700 ASSERT3P(hash_lock, !=, NULL); 4701 } 4702 4703 if (zio->io_error == 0) { 4704 /* byteswap if necessary */ 4705 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 4706 if (BP_GET_LEVEL(zio->io_bp) > 0) { 4707 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 4708 } else { 4709 hdr->b_l1hdr.b_byteswap = 4710 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 4711 } 4712 } else { 4713 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 4714 } 4715 } 4716 4717 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 4718 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 4719 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 4720 4721 callback_list = hdr->b_l1hdr.b_acb; 4722 ASSERT3P(callback_list, !=, NULL); 4723 4724 if (hash_lock && zio->io_error == 0 && 4725 hdr->b_l1hdr.b_state == arc_anon) { 4726 /* 4727 * Only call arc_access on anonymous buffers. This is because 4728 * if we've issued an I/O for an evicted buffer, we've already 4729 * called arc_access (to prevent any simultaneous readers from 4730 * getting confused). 4731 */ 4732 arc_access(hdr, hash_lock); 4733 } 4734 4735 /* create copies of the data buffer for the callers */ 4736 for (acb = callback_list; acb; acb = acb->acb_next) { 4737 if (acb->acb_done != NULL) { 4738 /* 4739 * If we're here, then this must be a demand read 4740 * since prefetch requests don't have callbacks. 4741 * If a read request has a callback (i.e. acb_done is 4742 * not NULL), then we decompress the data for the 4743 * first request and clone the rest. This avoids 4744 * having to waste cpu resources decompressing data 4745 * that nobody is explicitly waiting to read. 4746 */ 4747 if (abuf == NULL) { 4748 acb->acb_buf = arc_buf_alloc_impl(hdr, 4749 acb->acb_private); 4750 if (zio->io_error == 0) { 4751 zio->io_error = 4752 arc_decompress(acb->acb_buf); 4753 } 4754 abuf = acb->acb_buf; 4755 } else { 4756 add_reference(hdr, acb->acb_private); 4757 acb->acb_buf = arc_buf_clone(abuf); 4758 } 4759 } 4760 } 4761 hdr->b_l1hdr.b_acb = NULL; 4762 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 4763 if (abuf == NULL) { 4764 /* 4765 * This buffer didn't have a callback so it must 4766 * be a prefetch. 4767 */ 4768 ASSERT(HDR_PREFETCH(hdr)); 4769 ASSERT0(hdr->b_l1hdr.b_bufcnt); 4770 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 4771 } 4772 4773 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 4774 callback_list != NULL); 4775 4776 if (zio->io_error == 0) { 4777 arc_hdr_verify(hdr, zio->io_bp); 4778 } else { 4779 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 4780 if (hdr->b_l1hdr.b_state != arc_anon) 4781 arc_change_state(arc_anon, hdr, hash_lock); 4782 if (HDR_IN_HASH_TABLE(hdr)) 4783 buf_hash_remove(hdr); 4784 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4785 } 4786 4787 /* 4788 * Broadcast before we drop the hash_lock to avoid the possibility 4789 * that the hdr (and hence the cv) might be freed before we get to 4790 * the cv_broadcast(). 4791 */ 4792 cv_broadcast(&hdr->b_l1hdr.b_cv); 4793 4794 if (hash_lock != NULL) { 4795 mutex_exit(hash_lock); 4796 } else { 4797 /* 4798 * This block was freed while we waited for the read to 4799 * complete. It has been removed from the hash table and 4800 * moved to the anonymous state (so that it won't show up 4801 * in the cache). 4802 */ 4803 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 4804 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4805 } 4806 4807 /* execute each callback and free its structure */ 4808 while ((acb = callback_list) != NULL) { 4809 if (acb->acb_done) 4810 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 4811 4812 if (acb->acb_zio_dummy != NULL) { 4813 acb->acb_zio_dummy->io_error = zio->io_error; 4814 zio_nowait(acb->acb_zio_dummy); 4815 } 4816 4817 callback_list = acb->acb_next; 4818 kmem_free(acb, sizeof (arc_callback_t)); 4819 } 4820 4821 if (freeable) 4822 arc_hdr_destroy(hdr); 4823 } 4824 4825 /* 4826 * "Read" the block at the specified DVA (in bp) via the 4827 * cache. If the block is found in the cache, invoke the provided 4828 * callback immediately and return. Note that the `zio' parameter 4829 * in the callback will be NULL in this case, since no IO was 4830 * required. If the block is not in the cache pass the read request 4831 * on to the spa with a substitute callback function, so that the 4832 * requested block will be added to the cache. 4833 * 4834 * If a read request arrives for a block that has a read in-progress, 4835 * either wait for the in-progress read to complete (and return the 4836 * results); or, if this is a read with a "done" func, add a record 4837 * to the read to invoke the "done" func when the read completes, 4838 * and return; or just return. 4839 * 4840 * arc_read_done() will invoke all the requested "done" functions 4841 * for readers of this block. 4842 */ 4843 int 4844 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 4845 void *private, zio_priority_t priority, int zio_flags, 4846 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 4847 { 4848 arc_buf_hdr_t *hdr = NULL; 4849 kmutex_t *hash_lock = NULL; 4850 zio_t *rzio; 4851 uint64_t guid = spa_load_guid(spa); 4852 4853 ASSERT(!BP_IS_EMBEDDED(bp) || 4854 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 4855 4856 top: 4857 if (!BP_IS_EMBEDDED(bp)) { 4858 /* 4859 * Embedded BP's have no DVA and require no I/O to "read". 4860 * Create an anonymous arc buf to back it. 4861 */ 4862 hdr = buf_hash_find(guid, bp, &hash_lock); 4863 } 4864 4865 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pdata != NULL) { 4866 arc_buf_t *buf = NULL; 4867 *arc_flags |= ARC_FLAG_CACHED; 4868 4869 if (HDR_IO_IN_PROGRESS(hdr)) { 4870 4871 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 4872 priority == ZIO_PRIORITY_SYNC_READ) { 4873 /* 4874 * This sync read must wait for an 4875 * in-progress async read (e.g. a predictive 4876 * prefetch). Async reads are queued 4877 * separately at the vdev_queue layer, so 4878 * this is a form of priority inversion. 4879 * Ideally, we would "inherit" the demand 4880 * i/o's priority by moving the i/o from 4881 * the async queue to the synchronous queue, 4882 * but there is currently no mechanism to do 4883 * so. Track this so that we can evaluate 4884 * the magnitude of this potential performance 4885 * problem. 4886 * 4887 * Note that if the prefetch i/o is already 4888 * active (has been issued to the device), 4889 * the prefetch improved performance, because 4890 * we issued it sooner than we would have 4891 * without the prefetch. 4892 */ 4893 DTRACE_PROBE1(arc__sync__wait__for__async, 4894 arc_buf_hdr_t *, hdr); 4895 ARCSTAT_BUMP(arcstat_sync_wait_for_async); 4896 } 4897 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 4898 arc_hdr_clear_flags(hdr, 4899 ARC_FLAG_PREDICTIVE_PREFETCH); 4900 } 4901 4902 if (*arc_flags & ARC_FLAG_WAIT) { 4903 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 4904 mutex_exit(hash_lock); 4905 goto top; 4906 } 4907 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 4908 4909 if (done) { 4910 arc_callback_t *acb = NULL; 4911 4912 acb = kmem_zalloc(sizeof (arc_callback_t), 4913 KM_SLEEP); 4914 acb->acb_done = done; 4915 acb->acb_private = private; 4916 if (pio != NULL) 4917 acb->acb_zio_dummy = zio_null(pio, 4918 spa, NULL, NULL, NULL, zio_flags); 4919 4920 ASSERT3P(acb->acb_done, !=, NULL); 4921 acb->acb_next = hdr->b_l1hdr.b_acb; 4922 hdr->b_l1hdr.b_acb = acb; 4923 mutex_exit(hash_lock); 4924 return (0); 4925 } 4926 mutex_exit(hash_lock); 4927 return (0); 4928 } 4929 4930 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 4931 hdr->b_l1hdr.b_state == arc_mfu); 4932 4933 if (done) { 4934 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 4935 /* 4936 * This is a demand read which does not have to 4937 * wait for i/o because we did a predictive 4938 * prefetch i/o for it, which has completed. 4939 */ 4940 DTRACE_PROBE1( 4941 arc__demand__hit__predictive__prefetch, 4942 arc_buf_hdr_t *, hdr); 4943 ARCSTAT_BUMP( 4944 arcstat_demand_hit_predictive_prefetch); 4945 arc_hdr_clear_flags(hdr, 4946 ARC_FLAG_PREDICTIVE_PREFETCH); 4947 } 4948 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp)); 4949 4950 /* 4951 * If this block is already in use, create a new 4952 * copy of the data so that we will be guaranteed 4953 * that arc_release() will always succeed. 4954 */ 4955 buf = hdr->b_l1hdr.b_buf; 4956 if (buf == NULL) { 4957 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 4958 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 4959 buf = arc_buf_alloc_impl(hdr, private); 4960 VERIFY0(arc_decompress(buf)); 4961 } else { 4962 add_reference(hdr, private); 4963 buf = arc_buf_clone(buf); 4964 } 4965 ASSERT3P(buf->b_data, !=, NULL); 4966 4967 } else if (*arc_flags & ARC_FLAG_PREFETCH && 4968 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4969 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 4970 } 4971 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 4972 arc_access(hdr, hash_lock); 4973 if (*arc_flags & ARC_FLAG_L2CACHE) 4974 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 4975 mutex_exit(hash_lock); 4976 ARCSTAT_BUMP(arcstat_hits); 4977 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 4978 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 4979 data, metadata, hits); 4980 4981 if (done) 4982 done(NULL, buf, private); 4983 } else { 4984 uint64_t lsize = BP_GET_LSIZE(bp); 4985 uint64_t psize = BP_GET_PSIZE(bp); 4986 arc_callback_t *acb; 4987 vdev_t *vd = NULL; 4988 uint64_t addr = 0; 4989 boolean_t devw = B_FALSE; 4990 uint64_t size; 4991 4992 if (hdr == NULL) { 4993 /* this block is not in the cache */ 4994 arc_buf_hdr_t *exists = NULL; 4995 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 4996 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 4997 BP_GET_COMPRESS(bp), type); 4998 4999 if (!BP_IS_EMBEDDED(bp)) { 5000 hdr->b_dva = *BP_IDENTITY(bp); 5001 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 5002 exists = buf_hash_insert(hdr, &hash_lock); 5003 } 5004 if (exists != NULL) { 5005 /* somebody beat us to the hash insert */ 5006 mutex_exit(hash_lock); 5007 buf_discard_identity(hdr); 5008 arc_hdr_destroy(hdr); 5009 goto top; /* restart the IO request */ 5010 } 5011 } else { 5012 /* 5013 * This block is in the ghost cache. If it was L2-only 5014 * (and thus didn't have an L1 hdr), we realloc the 5015 * header to add an L1 hdr. 5016 */ 5017 if (!HDR_HAS_L1HDR(hdr)) { 5018 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 5019 hdr_full_cache); 5020 } 5021 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 5022 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state)); 5023 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5024 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5025 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 5026 5027 /* 5028 * This is a delicate dance that we play here. 5029 * This hdr is in the ghost list so we access it 5030 * to move it out of the ghost list before we 5031 * initiate the read. If it's a prefetch then 5032 * it won't have a callback so we'll remove the 5033 * reference that arc_buf_alloc_impl() created. We 5034 * do this after we've called arc_access() to 5035 * avoid hitting an assert in remove_reference(). 5036 */ 5037 arc_access(hdr, hash_lock); 5038 arc_hdr_alloc_pdata(hdr); 5039 } 5040 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 5041 size = arc_hdr_size(hdr); 5042 5043 /* 5044 * If compression is enabled on the hdr, then will do 5045 * RAW I/O and will store the compressed data in the hdr's 5046 * data block. Otherwise, the hdr's data block will contain 5047 * the uncompressed data. 5048 */ 5049 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 5050 zio_flags |= ZIO_FLAG_RAW; 5051 } 5052 5053 if (*arc_flags & ARC_FLAG_PREFETCH) 5054 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5055 if (*arc_flags & ARC_FLAG_L2CACHE) 5056 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5057 if (BP_GET_LEVEL(bp) > 0) 5058 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 5059 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 5060 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 5061 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 5062 5063 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 5064 acb->acb_done = done; 5065 acb->acb_private = private; 5066 5067 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5068 hdr->b_l1hdr.b_acb = acb; 5069 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5070 5071 if (HDR_HAS_L2HDR(hdr) && 5072 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 5073 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 5074 addr = hdr->b_l2hdr.b_daddr; 5075 /* 5076 * Lock out device removal. 5077 */ 5078 if (vdev_is_dead(vd) || 5079 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 5080 vd = NULL; 5081 } 5082 5083 if (priority == ZIO_PRIORITY_ASYNC_READ) 5084 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5085 else 5086 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5087 5088 if (hash_lock != NULL) 5089 mutex_exit(hash_lock); 5090 5091 /* 5092 * At this point, we have a level 1 cache miss. Try again in 5093 * L2ARC if possible. 5094 */ 5095 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 5096 5097 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 5098 uint64_t, lsize, zbookmark_phys_t *, zb); 5099 ARCSTAT_BUMP(arcstat_misses); 5100 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5101 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5102 data, metadata, misses); 5103 #ifdef __FreeBSD__ 5104 #ifdef _KERNEL 5105 #ifdef RACCT 5106 if (racct_enable) { 5107 PROC_LOCK(curproc); 5108 racct_add_force(curproc, RACCT_READBPS, size); 5109 racct_add_force(curproc, RACCT_READIOPS, 1); 5110 PROC_UNLOCK(curproc); 5111 } 5112 #endif /* RACCT */ 5113 curthread->td_ru.ru_inblock++; 5114 #endif 5115 #endif 5116 5117 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 5118 /* 5119 * Read from the L2ARC if the following are true: 5120 * 1. The L2ARC vdev was previously cached. 5121 * 2. This buffer still has L2ARC metadata. 5122 * 3. This buffer isn't currently writing to the L2ARC. 5123 * 4. The L2ARC entry wasn't evicted, which may 5124 * also have invalidated the vdev. 5125 * 5. This isn't prefetch and l2arc_noprefetch is set. 5126 */ 5127 if (HDR_HAS_L2HDR(hdr) && 5128 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 5129 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 5130 l2arc_read_callback_t *cb; 5131 void* b_data; 5132 5133 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 5134 ARCSTAT_BUMP(arcstat_l2_hits); 5135 5136 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 5137 KM_SLEEP); 5138 cb->l2rcb_hdr = hdr; 5139 cb->l2rcb_bp = *bp; 5140 cb->l2rcb_zb = *zb; 5141 cb->l2rcb_flags = zio_flags; 5142 uint64_t asize = vdev_psize_to_asize(vd, size); 5143 if (asize != size) { 5144 b_data = zio_data_buf_alloc(asize); 5145 cb->l2rcb_data = b_data; 5146 } else { 5147 b_data = hdr->b_l1hdr.b_pdata; 5148 } 5149 5150 ASSERT(addr >= VDEV_LABEL_START_SIZE && 5151 addr + asize < vd->vdev_psize - 5152 VDEV_LABEL_END_SIZE); 5153 5154 /* 5155 * l2arc read. The SCL_L2ARC lock will be 5156 * released by l2arc_read_done(). 5157 * Issue a null zio if the underlying buffer 5158 * was squashed to zero size by compression. 5159 */ 5160 ASSERT3U(HDR_GET_COMPRESS(hdr), !=, 5161 ZIO_COMPRESS_EMPTY); 5162 rzio = zio_read_phys(pio, vd, addr, 5163 asize, b_data, 5164 ZIO_CHECKSUM_OFF, 5165 l2arc_read_done, cb, priority, 5166 zio_flags | ZIO_FLAG_DONT_CACHE | 5167 ZIO_FLAG_CANFAIL | 5168 ZIO_FLAG_DONT_PROPAGATE | 5169 ZIO_FLAG_DONT_RETRY, B_FALSE); 5170 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 5171 zio_t *, rzio); 5172 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 5173 5174 if (*arc_flags & ARC_FLAG_NOWAIT) { 5175 zio_nowait(rzio); 5176 return (0); 5177 } 5178 5179 ASSERT(*arc_flags & ARC_FLAG_WAIT); 5180 if (zio_wait(rzio) == 0) 5181 return (0); 5182 5183 /* l2arc read error; goto zio_read() */ 5184 } else { 5185 DTRACE_PROBE1(l2arc__miss, 5186 arc_buf_hdr_t *, hdr); 5187 ARCSTAT_BUMP(arcstat_l2_misses); 5188 if (HDR_L2_WRITING(hdr)) 5189 ARCSTAT_BUMP(arcstat_l2_rw_clash); 5190 spa_config_exit(spa, SCL_L2ARC, vd); 5191 } 5192 } else { 5193 if (vd != NULL) 5194 spa_config_exit(spa, SCL_L2ARC, vd); 5195 if (l2arc_ndev != 0) { 5196 DTRACE_PROBE1(l2arc__miss, 5197 arc_buf_hdr_t *, hdr); 5198 ARCSTAT_BUMP(arcstat_l2_misses); 5199 } 5200 } 5201 5202 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pdata, size, 5203 arc_read_done, hdr, priority, zio_flags, zb); 5204 5205 if (*arc_flags & ARC_FLAG_WAIT) 5206 return (zio_wait(rzio)); 5207 5208 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5209 zio_nowait(rzio); 5210 } 5211 return (0); 5212 } 5213 5214 /* 5215 * Notify the arc that a block was freed, and thus will never be used again. 5216 */ 5217 void 5218 arc_freed(spa_t *spa, const blkptr_t *bp) 5219 { 5220 arc_buf_hdr_t *hdr; 5221 kmutex_t *hash_lock; 5222 uint64_t guid = spa_load_guid(spa); 5223 5224 ASSERT(!BP_IS_EMBEDDED(bp)); 5225 5226 hdr = buf_hash_find(guid, bp, &hash_lock); 5227 if (hdr == NULL) 5228 return; 5229 5230 /* 5231 * We might be trying to free a block that is still doing I/O 5232 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 5233 * dmu_sync-ed block). If this block is being prefetched, then it 5234 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 5235 * until the I/O completes. A block may also have a reference if it is 5236 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 5237 * have written the new block to its final resting place on disk but 5238 * without the dedup flag set. This would have left the hdr in the MRU 5239 * state and discoverable. When the txg finally syncs it detects that 5240 * the block was overridden in open context and issues an override I/O. 5241 * Since this is a dedup block, the override I/O will determine if the 5242 * block is already in the DDT. If so, then it will replace the io_bp 5243 * with the bp from the DDT and allow the I/O to finish. When the I/O 5244 * reaches the done callback, dbuf_write_override_done, it will 5245 * check to see if the io_bp and io_bp_override are identical. 5246 * If they are not, then it indicates that the bp was replaced with 5247 * the bp in the DDT and the override bp is freed. This allows 5248 * us to arrive here with a reference on a block that is being 5249 * freed. So if we have an I/O in progress, or a reference to 5250 * this hdr, then we don't destroy the hdr. 5251 */ 5252 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 5253 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 5254 arc_change_state(arc_anon, hdr, hash_lock); 5255 arc_hdr_destroy(hdr); 5256 mutex_exit(hash_lock); 5257 } else { 5258 mutex_exit(hash_lock); 5259 } 5260 5261 } 5262 5263 /* 5264 * Release this buffer from the cache, making it an anonymous buffer. This 5265 * must be done after a read and prior to modifying the buffer contents. 5266 * If the buffer has more than one reference, we must make 5267 * a new hdr for the buffer. 5268 */ 5269 void 5270 arc_release(arc_buf_t *buf, void *tag) 5271 { 5272 arc_buf_hdr_t *hdr = buf->b_hdr; 5273 5274 /* 5275 * It would be nice to assert that if it's DMU metadata (level > 5276 * 0 || it's the dnode file), then it must be syncing context. 5277 * But we don't know that information at this level. 5278 */ 5279 5280 mutex_enter(&buf->b_evict_lock); 5281 5282 ASSERT(HDR_HAS_L1HDR(hdr)); 5283 5284 /* 5285 * We don't grab the hash lock prior to this check, because if 5286 * the buffer's header is in the arc_anon state, it won't be 5287 * linked into the hash table. 5288 */ 5289 if (hdr->b_l1hdr.b_state == arc_anon) { 5290 mutex_exit(&buf->b_evict_lock); 5291 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5292 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 5293 ASSERT(!HDR_HAS_L2HDR(hdr)); 5294 ASSERT(HDR_EMPTY(hdr)); 5295 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5296 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 5297 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 5298 5299 hdr->b_l1hdr.b_arc_access = 0; 5300 5301 /* 5302 * If the buf is being overridden then it may already 5303 * have a hdr that is not empty. 5304 */ 5305 buf_discard_identity(hdr); 5306 arc_buf_thaw(buf); 5307 5308 return; 5309 } 5310 5311 kmutex_t *hash_lock = HDR_LOCK(hdr); 5312 mutex_enter(hash_lock); 5313 5314 /* 5315 * This assignment is only valid as long as the hash_lock is 5316 * held, we must be careful not to reference state or the 5317 * b_state field after dropping the lock. 5318 */ 5319 arc_state_t *state = hdr->b_l1hdr.b_state; 5320 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 5321 ASSERT3P(state, !=, arc_anon); 5322 5323 /* this buffer is not on any list */ 5324 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0); 5325 5326 if (HDR_HAS_L2HDR(hdr)) { 5327 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5328 5329 /* 5330 * We have to recheck this conditional again now that 5331 * we're holding the l2ad_mtx to prevent a race with 5332 * another thread which might be concurrently calling 5333 * l2arc_evict(). In that case, l2arc_evict() might have 5334 * destroyed the header's L2 portion as we were waiting 5335 * to acquire the l2ad_mtx. 5336 */ 5337 if (HDR_HAS_L2HDR(hdr)) { 5338 l2arc_trim(hdr); 5339 arc_hdr_l2hdr_destroy(hdr); 5340 } 5341 5342 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5343 } 5344 5345 /* 5346 * Do we have more than one buf? 5347 */ 5348 if (hdr->b_l1hdr.b_bufcnt > 1) { 5349 arc_buf_hdr_t *nhdr; 5350 arc_buf_t **bufp; 5351 uint64_t spa = hdr->b_spa; 5352 uint64_t psize = HDR_GET_PSIZE(hdr); 5353 uint64_t lsize = HDR_GET_LSIZE(hdr); 5354 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 5355 arc_buf_contents_t type = arc_buf_type(hdr); 5356 VERIFY3U(hdr->b_type, ==, type); 5357 5358 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 5359 (void) remove_reference(hdr, hash_lock, tag); 5360 5361 if (arc_buf_is_shared(buf)) { 5362 ASSERT(HDR_SHARED_DATA(hdr)); 5363 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 5364 ASSERT(ARC_BUF_LAST(buf)); 5365 } 5366 5367 /* 5368 * Pull the data off of this hdr and attach it to 5369 * a new anonymous hdr. Also find the last buffer 5370 * in the hdr's buffer list. 5371 */ 5372 arc_buf_t *lastbuf = NULL; 5373 bufp = &hdr->b_l1hdr.b_buf; 5374 while (*bufp != NULL) { 5375 if (*bufp == buf) { 5376 *bufp = buf->b_next; 5377 } 5378 5379 /* 5380 * If we've removed a buffer in the middle of 5381 * the list then update the lastbuf and update 5382 * bufp. 5383 */ 5384 if (*bufp != NULL) { 5385 lastbuf = *bufp; 5386 bufp = &(*bufp)->b_next; 5387 } 5388 } 5389 buf->b_next = NULL; 5390 ASSERT3P(lastbuf, !=, buf); 5391 ASSERT3P(lastbuf, !=, NULL); 5392 5393 /* 5394 * If the current arc_buf_t and the hdr are sharing their data 5395 * buffer, then we must stop sharing that block, transfer 5396 * ownership and setup sharing with a new arc_buf_t at the end 5397 * of the hdr's b_buf list. 5398 */ 5399 if (arc_buf_is_shared(buf)) { 5400 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 5401 ASSERT(ARC_BUF_LAST(lastbuf)); 5402 VERIFY(!arc_buf_is_shared(lastbuf)); 5403 5404 /* 5405 * First, sever the block sharing relationship between 5406 * buf and the arc_buf_hdr_t. Then, setup a new 5407 * block sharing relationship with the last buffer 5408 * on the arc_buf_t list. 5409 */ 5410 arc_unshare_buf(hdr, buf); 5411 arc_share_buf(hdr, lastbuf); 5412 VERIFY3P(lastbuf->b_data, !=, NULL); 5413 } else if (HDR_SHARED_DATA(hdr)) { 5414 ASSERT(arc_buf_is_shared(lastbuf)); 5415 } 5416 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 5417 ASSERT3P(state, !=, arc_l2c_only); 5418 5419 (void) refcount_remove_many(&state->arcs_size, 5420 HDR_GET_LSIZE(hdr), buf); 5421 5422 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5423 ASSERT3P(state, !=, arc_l2c_only); 5424 (void) refcount_remove_many(&state->arcs_esize[type], 5425 HDR_GET_LSIZE(hdr), buf); 5426 } 5427 5428 hdr->b_l1hdr.b_bufcnt -= 1; 5429 arc_cksum_verify(buf); 5430 #ifdef illumos 5431 arc_buf_unwatch(buf); 5432 #endif 5433 5434 mutex_exit(hash_lock); 5435 5436 /* 5437 * Allocate a new hdr. The new hdr will contain a b_pdata 5438 * buffer which will be freed in arc_write(). 5439 */ 5440 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type); 5441 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 5442 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 5443 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt)); 5444 VERIFY3U(nhdr->b_type, ==, type); 5445 ASSERT(!HDR_SHARED_DATA(nhdr)); 5446 5447 nhdr->b_l1hdr.b_buf = buf; 5448 nhdr->b_l1hdr.b_bufcnt = 1; 5449 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 5450 buf->b_hdr = nhdr; 5451 5452 mutex_exit(&buf->b_evict_lock); 5453 (void) refcount_add_many(&arc_anon->arcs_size, 5454 HDR_GET_LSIZE(nhdr), buf); 5455 } else { 5456 mutex_exit(&buf->b_evict_lock); 5457 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 5458 /* protected by hash lock, or hdr is on arc_anon */ 5459 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 5460 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5461 arc_change_state(arc_anon, hdr, hash_lock); 5462 hdr->b_l1hdr.b_arc_access = 0; 5463 mutex_exit(hash_lock); 5464 5465 buf_discard_identity(hdr); 5466 arc_buf_thaw(buf); 5467 } 5468 } 5469 5470 int 5471 arc_released(arc_buf_t *buf) 5472 { 5473 int released; 5474 5475 mutex_enter(&buf->b_evict_lock); 5476 released = (buf->b_data != NULL && 5477 buf->b_hdr->b_l1hdr.b_state == arc_anon); 5478 mutex_exit(&buf->b_evict_lock); 5479 return (released); 5480 } 5481 5482 #ifdef ZFS_DEBUG 5483 int 5484 arc_referenced(arc_buf_t *buf) 5485 { 5486 int referenced; 5487 5488 mutex_enter(&buf->b_evict_lock); 5489 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 5490 mutex_exit(&buf->b_evict_lock); 5491 return (referenced); 5492 } 5493 #endif 5494 5495 static void 5496 arc_write_ready(zio_t *zio) 5497 { 5498 arc_write_callback_t *callback = zio->io_private; 5499 arc_buf_t *buf = callback->awcb_buf; 5500 arc_buf_hdr_t *hdr = buf->b_hdr; 5501 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp); 5502 5503 ASSERT(HDR_HAS_L1HDR(hdr)); 5504 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 5505 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 5506 5507 /* 5508 * If we're reexecuting this zio because the pool suspended, then 5509 * cleanup any state that was previously set the first time the 5510 * callback as invoked. 5511 */ 5512 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 5513 arc_cksum_free(hdr); 5514 #ifdef illumos 5515 arc_buf_unwatch(buf); 5516 #endif 5517 if (hdr->b_l1hdr.b_pdata != NULL) { 5518 if (arc_buf_is_shared(buf)) { 5519 ASSERT(HDR_SHARED_DATA(hdr)); 5520 5521 arc_unshare_buf(hdr, buf); 5522 } else { 5523 arc_hdr_free_pdata(hdr); 5524 } 5525 } 5526 } 5527 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 5528 ASSERT(!HDR_SHARED_DATA(hdr)); 5529 ASSERT(!arc_buf_is_shared(buf)); 5530 5531 callback->awcb_ready(zio, buf, callback->awcb_private); 5532 5533 if (HDR_IO_IN_PROGRESS(hdr)) 5534 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 5535 5536 arc_cksum_compute(buf); 5537 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5538 5539 enum zio_compress compress; 5540 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5541 compress = ZIO_COMPRESS_OFF; 5542 } else { 5543 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp)); 5544 compress = BP_GET_COMPRESS(zio->io_bp); 5545 } 5546 HDR_SET_PSIZE(hdr, psize); 5547 arc_hdr_set_compress(hdr, compress); 5548 5549 /* 5550 * If the hdr is compressed, then copy the compressed 5551 * zio contents into arc_buf_hdr_t. Otherwise, copy the original 5552 * data buf into the hdr. Ideally, we would like to always copy the 5553 * io_data into b_pdata but the user may have disabled compressed 5554 * arc thus the on-disk block may or may not match what we maintain 5555 * in the hdr's b_pdata field. 5556 */ 5557 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 5558 ASSERT(BP_GET_COMPRESS(zio->io_bp) != ZIO_COMPRESS_OFF); 5559 ASSERT3U(psize, >, 0); 5560 arc_hdr_alloc_pdata(hdr); 5561 bcopy(zio->io_data, hdr->b_l1hdr.b_pdata, psize); 5562 } else { 5563 ASSERT3P(buf->b_data, ==, zio->io_orig_data); 5564 ASSERT3U(zio->io_orig_size, ==, HDR_GET_LSIZE(hdr)); 5565 ASSERT3U(hdr->b_l1hdr.b_byteswap, ==, DMU_BSWAP_NUMFUNCS); 5566 ASSERT(!HDR_SHARED_DATA(hdr)); 5567 ASSERT(!arc_buf_is_shared(buf)); 5568 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5569 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 5570 5571 /* 5572 * This hdr is not compressed so we're able to share 5573 * the arc_buf_t data buffer with the hdr. 5574 */ 5575 arc_share_buf(hdr, buf); 5576 VERIFY0(bcmp(zio->io_orig_data, hdr->b_l1hdr.b_pdata, 5577 HDR_GET_LSIZE(hdr))); 5578 } 5579 arc_hdr_verify(hdr, zio->io_bp); 5580 } 5581 5582 static void 5583 arc_write_children_ready(zio_t *zio) 5584 { 5585 arc_write_callback_t *callback = zio->io_private; 5586 arc_buf_t *buf = callback->awcb_buf; 5587 5588 callback->awcb_children_ready(zio, buf, callback->awcb_private); 5589 } 5590 5591 /* 5592 * The SPA calls this callback for each physical write that happens on behalf 5593 * of a logical write. See the comment in dbuf_write_physdone() for details. 5594 */ 5595 static void 5596 arc_write_physdone(zio_t *zio) 5597 { 5598 arc_write_callback_t *cb = zio->io_private; 5599 if (cb->awcb_physdone != NULL) 5600 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 5601 } 5602 5603 static void 5604 arc_write_done(zio_t *zio) 5605 { 5606 arc_write_callback_t *callback = zio->io_private; 5607 arc_buf_t *buf = callback->awcb_buf; 5608 arc_buf_hdr_t *hdr = buf->b_hdr; 5609 5610 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5611 5612 if (zio->io_error == 0) { 5613 arc_hdr_verify(hdr, zio->io_bp); 5614 5615 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5616 buf_discard_identity(hdr); 5617 } else { 5618 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 5619 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 5620 } 5621 } else { 5622 ASSERT(HDR_EMPTY(hdr)); 5623 } 5624 5625 /* 5626 * If the block to be written was all-zero or compressed enough to be 5627 * embedded in the BP, no write was performed so there will be no 5628 * dva/birth/checksum. The buffer must therefore remain anonymous 5629 * (and uncached). 5630 */ 5631 if (!HDR_EMPTY(hdr)) { 5632 arc_buf_hdr_t *exists; 5633 kmutex_t *hash_lock; 5634 5635 ASSERT(zio->io_error == 0); 5636 5637 arc_cksum_verify(buf); 5638 5639 exists = buf_hash_insert(hdr, &hash_lock); 5640 if (exists != NULL) { 5641 /* 5642 * This can only happen if we overwrite for 5643 * sync-to-convergence, because we remove 5644 * buffers from the hash table when we arc_free(). 5645 */ 5646 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 5647 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5648 panic("bad overwrite, hdr=%p exists=%p", 5649 (void *)hdr, (void *)exists); 5650 ASSERT(refcount_is_zero( 5651 &exists->b_l1hdr.b_refcnt)); 5652 arc_change_state(arc_anon, exists, hash_lock); 5653 mutex_exit(hash_lock); 5654 arc_hdr_destroy(exists); 5655 exists = buf_hash_insert(hdr, &hash_lock); 5656 ASSERT3P(exists, ==, NULL); 5657 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 5658 /* nopwrite */ 5659 ASSERT(zio->io_prop.zp_nopwrite); 5660 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5661 panic("bad nopwrite, hdr=%p exists=%p", 5662 (void *)hdr, (void *)exists); 5663 } else { 5664 /* Dedup */ 5665 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 5666 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 5667 ASSERT(BP_GET_DEDUP(zio->io_bp)); 5668 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 5669 } 5670 } 5671 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5672 /* if it's not anon, we are doing a scrub */ 5673 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 5674 arc_access(hdr, hash_lock); 5675 mutex_exit(hash_lock); 5676 } else { 5677 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5678 } 5679 5680 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5681 callback->awcb_done(zio, buf, callback->awcb_private); 5682 5683 kmem_free(callback, sizeof (arc_write_callback_t)); 5684 } 5685 5686 zio_t * 5687 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 5688 boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready, 5689 arc_done_func_t *children_ready, arc_done_func_t *physdone, 5690 arc_done_func_t *done, void *private, zio_priority_t priority, 5691 int zio_flags, const zbookmark_phys_t *zb) 5692 { 5693 arc_buf_hdr_t *hdr = buf->b_hdr; 5694 arc_write_callback_t *callback; 5695 zio_t *zio; 5696 5697 ASSERT3P(ready, !=, NULL); 5698 ASSERT3P(done, !=, NULL); 5699 ASSERT(!HDR_IO_ERROR(hdr)); 5700 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5701 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5702 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 5703 if (l2arc) 5704 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5705 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 5706 callback->awcb_ready = ready; 5707 callback->awcb_children_ready = children_ready; 5708 callback->awcb_physdone = physdone; 5709 callback->awcb_done = done; 5710 callback->awcb_private = private; 5711 callback->awcb_buf = buf; 5712 5713 /* 5714 * The hdr's b_pdata is now stale, free it now. A new data block 5715 * will be allocated when the zio pipeline calls arc_write_ready(). 5716 */ 5717 if (hdr->b_l1hdr.b_pdata != NULL) { 5718 /* 5719 * If the buf is currently sharing the data block with 5720 * the hdr then we need to break that relationship here. 5721 * The hdr will remain with a NULL data pointer and the 5722 * buf will take sole ownership of the block. 5723 */ 5724 if (arc_buf_is_shared(buf)) { 5725 ASSERT(ARC_BUF_LAST(buf)); 5726 arc_unshare_buf(hdr, buf); 5727 } else { 5728 arc_hdr_free_pdata(hdr); 5729 } 5730 VERIFY3P(buf->b_data, !=, NULL); 5731 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 5732 } 5733 ASSERT(!arc_buf_is_shared(buf)); 5734 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 5735 5736 zio = zio_write(pio, spa, txg, bp, buf->b_data, HDR_GET_LSIZE(hdr), zp, 5737 arc_write_ready, 5738 (children_ready != NULL) ? arc_write_children_ready : NULL, 5739 arc_write_physdone, arc_write_done, callback, 5740 priority, zio_flags, zb); 5741 5742 return (zio); 5743 } 5744 5745 static int 5746 arc_memory_throttle(uint64_t reserve, uint64_t txg) 5747 { 5748 #ifdef _KERNEL 5749 uint64_t available_memory = ptob(freemem); 5750 static uint64_t page_load = 0; 5751 static uint64_t last_txg = 0; 5752 5753 #if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC) 5754 available_memory = 5755 MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE))); 5756 #endif 5757 5758 if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100) 5759 return (0); 5760 5761 if (txg > last_txg) { 5762 last_txg = txg; 5763 page_load = 0; 5764 } 5765 /* 5766 * If we are in pageout, we know that memory is already tight, 5767 * the arc is already going to be evicting, so we just want to 5768 * continue to let page writes occur as quickly as possible. 5769 */ 5770 if (curlwp == uvm.pagedaemon_lwp) { 5771 if (page_load > MAX(ptob(minfree), available_memory) / 4) 5772 return (SET_ERROR(ERESTART)); 5773 /* Note: reserve is inflated, so we deflate */ 5774 page_load += reserve / 8; 5775 return (0); 5776 } else if (page_load > 0 && arc_reclaim_needed()) { 5777 /* memory is low, delay before restarting */ 5778 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 5779 return (SET_ERROR(EAGAIN)); 5780 } 5781 page_load = 0; 5782 #endif 5783 return (0); 5784 } 5785 5786 void 5787 arc_tempreserve_clear(uint64_t reserve) 5788 { 5789 atomic_add_64(&arc_tempreserve, -reserve); 5790 ASSERT((int64_t)arc_tempreserve >= 0); 5791 } 5792 5793 int 5794 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 5795 { 5796 int error; 5797 uint64_t anon_size; 5798 5799 if (reserve > arc_c/4 && !arc_no_grow) { 5800 arc_c = MIN(arc_c_max, reserve * 4); 5801 DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c); 5802 } 5803 if (reserve > arc_c) 5804 return (SET_ERROR(ENOMEM)); 5805 5806 /* 5807 * Don't count loaned bufs as in flight dirty data to prevent long 5808 * network delays from blocking transactions that are ready to be 5809 * assigned to a txg. 5810 */ 5811 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) - 5812 arc_loaned_bytes), 0); 5813 5814 /* 5815 * Writes will, almost always, require additional memory allocations 5816 * in order to compress/encrypt/etc the data. We therefore need to 5817 * make sure that there is sufficient available memory for this. 5818 */ 5819 error = arc_memory_throttle(reserve, txg); 5820 if (error != 0) 5821 return (error); 5822 5823 /* 5824 * Throttle writes when the amount of dirty data in the cache 5825 * gets too large. We try to keep the cache less than half full 5826 * of dirty blocks so that our sync times don't grow too large. 5827 * Note: if two requests come in concurrently, we might let them 5828 * both succeed, when one of them should fail. Not a huge deal. 5829 */ 5830 5831 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 5832 anon_size > arc_c / 4) { 5833 uint64_t meta_esize = 5834 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5835 uint64_t data_esize = 5836 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5837 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 5838 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 5839 arc_tempreserve >> 10, meta_esize >> 10, 5840 data_esize >> 10, reserve >> 10, arc_c >> 10); 5841 return (SET_ERROR(ERESTART)); 5842 } 5843 atomic_add_64(&arc_tempreserve, reserve); 5844 return (0); 5845 } 5846 5847 static void 5848 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 5849 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 5850 { 5851 size->value.ui64 = refcount_count(&state->arcs_size); 5852 evict_data->value.ui64 = 5853 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 5854 evict_metadata->value.ui64 = 5855 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 5856 } 5857 5858 static int 5859 arc_kstat_update(kstat_t *ksp, int rw) 5860 { 5861 arc_stats_t *as = ksp->ks_data; 5862 5863 if (rw == KSTAT_WRITE) { 5864 return (EACCES); 5865 } else { 5866 arc_kstat_update_state(arc_anon, 5867 &as->arcstat_anon_size, 5868 &as->arcstat_anon_evictable_data, 5869 &as->arcstat_anon_evictable_metadata); 5870 arc_kstat_update_state(arc_mru, 5871 &as->arcstat_mru_size, 5872 &as->arcstat_mru_evictable_data, 5873 &as->arcstat_mru_evictable_metadata); 5874 arc_kstat_update_state(arc_mru_ghost, 5875 &as->arcstat_mru_ghost_size, 5876 &as->arcstat_mru_ghost_evictable_data, 5877 &as->arcstat_mru_ghost_evictable_metadata); 5878 arc_kstat_update_state(arc_mfu, 5879 &as->arcstat_mfu_size, 5880 &as->arcstat_mfu_evictable_data, 5881 &as->arcstat_mfu_evictable_metadata); 5882 arc_kstat_update_state(arc_mfu_ghost, 5883 &as->arcstat_mfu_ghost_size, 5884 &as->arcstat_mfu_ghost_evictable_data, 5885 &as->arcstat_mfu_ghost_evictable_metadata); 5886 } 5887 5888 return (0); 5889 } 5890 5891 /* 5892 * This function *must* return indices evenly distributed between all 5893 * sublists of the multilist. This is needed due to how the ARC eviction 5894 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 5895 * distributed between all sublists and uses this assumption when 5896 * deciding which sublist to evict from and how much to evict from it. 5897 */ 5898 unsigned int 5899 arc_state_multilist_index_func(multilist_t *ml, void *obj) 5900 { 5901 arc_buf_hdr_t *hdr = obj; 5902 5903 /* 5904 * We rely on b_dva to generate evenly distributed index 5905 * numbers using buf_hash below. So, as an added precaution, 5906 * let's make sure we never add empty buffers to the arc lists. 5907 */ 5908 ASSERT(!HDR_EMPTY(hdr)); 5909 5910 /* 5911 * The assumption here, is the hash value for a given 5912 * arc_buf_hdr_t will remain constant throughout it's lifetime 5913 * (i.e. it's b_spa, b_dva, and b_birth fields don't change). 5914 * Thus, we don't need to store the header's sublist index 5915 * on insertion, as this index can be recalculated on removal. 5916 * 5917 * Also, the low order bits of the hash value are thought to be 5918 * distributed evenly. Otherwise, in the case that the multilist 5919 * has a power of two number of sublists, each sublists' usage 5920 * would not be evenly distributed. 5921 */ 5922 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 5923 multilist_get_num_sublists(ml)); 5924 } 5925 5926 #ifdef _KERNEL 5927 #ifdef __FreeBSD__ 5928 static eventhandler_tag arc_event_lowmem = NULL; 5929 #endif 5930 5931 static void 5932 arc_lowmem(void *arg __unused, int howto __unused) 5933 { 5934 5935 mutex_enter(&arc_reclaim_lock); 5936 /* XXX: Memory deficit should be passed as argument. */ 5937 needfree = btoc(arc_c >> arc_shrink_shift); 5938 DTRACE_PROBE(arc__needfree); 5939 cv_signal(&arc_reclaim_thread_cv); 5940 5941 /* 5942 * It is unsafe to block here in arbitrary threads, because we can come 5943 * here from ARC itself and may hold ARC locks and thus risk a deadlock 5944 * with ARC reclaim thread. 5945 */ 5946 if (curlwp == uvm.pagedaemon_lwp) 5947 (void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock); 5948 mutex_exit(&arc_reclaim_lock); 5949 } 5950 #endif 5951 5952 static void 5953 arc_state_init(void) 5954 { 5955 arc_anon = &ARC_anon; 5956 arc_mru = &ARC_mru; 5957 arc_mru_ghost = &ARC_mru_ghost; 5958 arc_mfu = &ARC_mfu; 5959 arc_mfu_ghost = &ARC_mfu_ghost; 5960 arc_l2c_only = &ARC_l2c_only; 5961 5962 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 5963 sizeof (arc_buf_hdr_t), 5964 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5965 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5966 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 5967 sizeof (arc_buf_hdr_t), 5968 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5969 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5970 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 5971 sizeof (arc_buf_hdr_t), 5972 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5973 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5974 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 5975 sizeof (arc_buf_hdr_t), 5976 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5977 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5978 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 5979 sizeof (arc_buf_hdr_t), 5980 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5981 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5982 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 5983 sizeof (arc_buf_hdr_t), 5984 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5985 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5986 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 5987 sizeof (arc_buf_hdr_t), 5988 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5989 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5990 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 5991 sizeof (arc_buf_hdr_t), 5992 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5993 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5994 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 5995 sizeof (arc_buf_hdr_t), 5996 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5997 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5998 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 5999 sizeof (arc_buf_hdr_t), 6000 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6001 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 6002 6003 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6004 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6005 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 6006 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 6007 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 6008 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 6009 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 6010 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 6011 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 6012 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 6013 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 6014 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 6015 6016 refcount_create(&arc_anon->arcs_size); 6017 refcount_create(&arc_mru->arcs_size); 6018 refcount_create(&arc_mru_ghost->arcs_size); 6019 refcount_create(&arc_mfu->arcs_size); 6020 refcount_create(&arc_mfu_ghost->arcs_size); 6021 refcount_create(&arc_l2c_only->arcs_size); 6022 } 6023 6024 static void 6025 arc_state_fini(void) 6026 { 6027 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6028 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6029 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 6030 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 6031 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 6032 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 6033 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 6034 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 6035 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 6036 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 6037 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 6038 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 6039 6040 refcount_destroy(&arc_anon->arcs_size); 6041 refcount_destroy(&arc_mru->arcs_size); 6042 refcount_destroy(&arc_mru_ghost->arcs_size); 6043 refcount_destroy(&arc_mfu->arcs_size); 6044 refcount_destroy(&arc_mfu_ghost->arcs_size); 6045 refcount_destroy(&arc_l2c_only->arcs_size); 6046 6047 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 6048 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 6049 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 6050 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 6051 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 6052 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 6053 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 6054 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 6055 } 6056 6057 uint64_t 6058 arc_max_bytes(void) 6059 { 6060 return (arc_c_max); 6061 } 6062 6063 void 6064 arc_init(void) 6065 { 6066 int i, prefetch_tunable_set = 0; 6067 6068 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 6069 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL); 6070 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL); 6071 6072 #ifdef __FreeBSD__ 6073 mutex_init(&arc_dnlc_evicts_lock, NULL, MUTEX_DEFAULT, NULL); 6074 cv_init(&arc_dnlc_evicts_cv, NULL, CV_DEFAULT, NULL); 6075 #endif 6076 6077 /* Convert seconds to clock ticks */ 6078 arc_min_prefetch_lifespan = 1 * hz; 6079 6080 /* Start out with 1/8 of all memory */ 6081 arc_c = kmem_size() / 8; 6082 6083 #ifdef illumos 6084 #ifdef _KERNEL 6085 /* 6086 * On architectures where the physical memory can be larger 6087 * than the addressable space (intel in 32-bit mode), we may 6088 * need to limit the cache to 1/8 of VM size. 6089 */ 6090 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 6091 #endif 6092 #endif /* illumos */ 6093 /* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */ 6094 arc_c_min = MAX(arc_c / 4, arc_abs_min); 6095 /* set max to 1/2 of all memory, or all but 1GB, whichever is more */ 6096 if (arc_c * 8 >= 1 << 30) 6097 arc_c_max = (arc_c * 8) - (1 << 30); 6098 else 6099 arc_c_max = arc_c_min; 6100 arc_c_max = MAX(arc_c * 5, arc_c_max); 6101 6102 /* 6103 * In userland, there's only the memory pressure that we artificially 6104 * create (see arc_available_memory()). Don't let arc_c get too 6105 * small, because it can cause transactions to be larger than 6106 * arc_c, causing arc_tempreserve_space() to fail. 6107 */ 6108 #ifndef _KERNEL 6109 arc_c_min = arc_c_max / 2; 6110 #endif 6111 6112 #ifdef _KERNEL 6113 /* 6114 * Allow the tunables to override our calculations if they are 6115 * reasonable. 6116 */ 6117 if (zfs_arc_max > arc_abs_min && zfs_arc_max < kmem_size()) { 6118 arc_c_max = zfs_arc_max; 6119 arc_c_min = MIN(arc_c_min, arc_c_max); 6120 } 6121 if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max) 6122 arc_c_min = zfs_arc_min; 6123 #endif 6124 6125 arc_c = arc_c_max; 6126 arc_p = (arc_c >> 1); 6127 arc_size = 0; 6128 6129 /* limit meta-data to 1/4 of the arc capacity */ 6130 arc_meta_limit = arc_c_max / 4; 6131 6132 /* Allow the tunable to override if it is reasonable */ 6133 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 6134 arc_meta_limit = zfs_arc_meta_limit; 6135 6136 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 6137 arc_c_min = arc_meta_limit / 2; 6138 6139 if (zfs_arc_meta_min > 0) { 6140 arc_meta_min = zfs_arc_meta_min; 6141 } else { 6142 arc_meta_min = arc_c_min / 2; 6143 } 6144 6145 if (zfs_arc_grow_retry > 0) 6146 arc_grow_retry = zfs_arc_grow_retry; 6147 6148 if (zfs_arc_shrink_shift > 0) 6149 arc_shrink_shift = zfs_arc_shrink_shift; 6150 6151 /* 6152 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 6153 */ 6154 if (arc_no_grow_shift >= arc_shrink_shift) 6155 arc_no_grow_shift = arc_shrink_shift - 1; 6156 6157 if (zfs_arc_p_min_shift > 0) 6158 arc_p_min_shift = zfs_arc_p_min_shift; 6159 6160 if (zfs_arc_num_sublists_per_state < 1) 6161 zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1); 6162 6163 /* if kmem_flags are set, lets try to use less memory */ 6164 if (kmem_debugging()) 6165 arc_c = arc_c / 2; 6166 if (arc_c < arc_c_min) 6167 arc_c = arc_c_min; 6168 6169 zfs_arc_min = arc_c_min; 6170 zfs_arc_max = arc_c_max; 6171 6172 arc_state_init(); 6173 buf_init(); 6174 6175 arc_reclaim_thread_exit = B_FALSE; 6176 #ifdef __FreeBSD__ 6177 arc_dnlc_evicts_thread_exit = FALSE; 6178 #endif 6179 6180 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 6181 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 6182 6183 if (arc_ksp != NULL) { 6184 arc_ksp->ks_data = &arc_stats; 6185 arc_ksp->ks_update = arc_kstat_update; 6186 kstat_install(arc_ksp); 6187 } 6188 6189 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 6190 TS_RUN, minclsyspri); 6191 6192 #ifdef __FreeBSD__ 6193 #ifdef _KERNEL 6194 arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL, 6195 EVENTHANDLER_PRI_FIRST); 6196 #endif 6197 6198 (void) thread_create(NULL, 0, arc_dnlc_evicts_thread, NULL, 0, &p0, 6199 TS_RUN, minclsyspri); 6200 #endif 6201 6202 arc_dead = B_FALSE; 6203 arc_warm = B_FALSE; 6204 6205 /* 6206 * Calculate maximum amount of dirty data per pool. 6207 * 6208 * If it has been set by /etc/system, take that. 6209 * Otherwise, use a percentage of physical memory defined by 6210 * zfs_dirty_data_max_percent (default 10%) with a cap at 6211 * zfs_dirty_data_max_max (default 4GB). 6212 */ 6213 if (zfs_dirty_data_max == 0) { 6214 zfs_dirty_data_max = ptob(physmem) * 6215 zfs_dirty_data_max_percent / 100; 6216 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 6217 zfs_dirty_data_max_max); 6218 } 6219 6220 #ifdef _KERNEL 6221 #ifdef __FreeBSD__ 6222 if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable)) 6223 prefetch_tunable_set = 1; 6224 6225 #ifdef __i386__ 6226 if (prefetch_tunable_set == 0) { 6227 printf("ZFS NOTICE: Prefetch is disabled by default on i386 " 6228 "-- to enable,\n"); 6229 printf(" add \"vfs.zfs.prefetch_disable=0\" " 6230 "to /boot/loader.conf.\n"); 6231 zfs_prefetch_disable = 1; 6232 } 6233 #else 6234 if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) && 6235 prefetch_tunable_set == 0) { 6236 printf("ZFS NOTICE: Prefetch is disabled by default if less " 6237 "than 4GB of RAM is present;\n" 6238 " to enable, add \"vfs.zfs.prefetch_disable=0\" " 6239 "to /boot/loader.conf.\n"); 6240 zfs_prefetch_disable = 1; 6241 } 6242 #endif 6243 #endif 6244 /* Warn about ZFS memory and address space requirements. */ 6245 if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) { 6246 printf("ZFS WARNING: Recommended minimum RAM size is 512MB; " 6247 "expect unstable behavior.\n"); 6248 } 6249 if (kmem_size() < 512 * (1 << 20)) { 6250 printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; " 6251 "expect unstable behavior.\n"); 6252 #ifdef __FreeBSD__ 6253 printf(" Consider tuning vm.kmem_size and " 6254 "vm.kmem_size_max\n"); 6255 printf(" in /boot/loader.conf.\n"); 6256 #endif 6257 } 6258 #endif 6259 } 6260 6261 void 6262 arc_fini(void) 6263 { 6264 mutex_enter(&arc_reclaim_lock); 6265 arc_reclaim_thread_exit = B_TRUE; 6266 /* 6267 * The reclaim thread will set arc_reclaim_thread_exit back to 6268 * B_FALSE when it is finished exiting; we're waiting for that. 6269 */ 6270 while (arc_reclaim_thread_exit) { 6271 cv_signal(&arc_reclaim_thread_cv); 6272 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock); 6273 } 6274 mutex_exit(&arc_reclaim_lock); 6275 6276 /* Use B_TRUE to ensure *all* buffers are evicted */ 6277 arc_flush(NULL, B_TRUE); 6278 6279 #ifdef __FreeBSD__ 6280 mutex_enter(&arc_dnlc_evicts_lock); 6281 arc_dnlc_evicts_thread_exit = TRUE; 6282 6283 /* 6284 * The user evicts thread will set arc_user_evicts_thread_exit 6285 * to FALSE when it is finished exiting; we're waiting for that. 6286 */ 6287 while (arc_dnlc_evicts_thread_exit) { 6288 cv_signal(&arc_dnlc_evicts_cv); 6289 cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock); 6290 } 6291 mutex_exit(&arc_dnlc_evicts_lock); 6292 6293 mutex_destroy(&arc_dnlc_evicts_lock); 6294 cv_destroy(&arc_dnlc_evicts_cv); 6295 #endif 6296 6297 arc_dead = B_TRUE; 6298 6299 if (arc_ksp != NULL) { 6300 kstat_delete(arc_ksp); 6301 arc_ksp = NULL; 6302 } 6303 6304 mutex_destroy(&arc_reclaim_lock); 6305 cv_destroy(&arc_reclaim_thread_cv); 6306 cv_destroy(&arc_reclaim_waiters_cv); 6307 6308 arc_state_fini(); 6309 buf_fini(); 6310 6311 ASSERT0(arc_loaned_bytes); 6312 6313 #ifdef __FreeBSD__ 6314 #ifdef _KERNEL 6315 if (arc_event_lowmem != NULL) 6316 EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem); 6317 #endif 6318 #endif 6319 } 6320 6321 /* 6322 * Level 2 ARC 6323 * 6324 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 6325 * It uses dedicated storage devices to hold cached data, which are populated 6326 * using large infrequent writes. The main role of this cache is to boost 6327 * the performance of random read workloads. The intended L2ARC devices 6328 * include short-stroked disks, solid state disks, and other media with 6329 * substantially faster read latency than disk. 6330 * 6331 * +-----------------------+ 6332 * | ARC | 6333 * +-----------------------+ 6334 * | ^ ^ 6335 * | | | 6336 * l2arc_feed_thread() arc_read() 6337 * | | | 6338 * | l2arc read | 6339 * V | | 6340 * +---------------+ | 6341 * | L2ARC | | 6342 * +---------------+ | 6343 * | ^ | 6344 * l2arc_write() | | 6345 * | | | 6346 * V | | 6347 * +-------+ +-------+ 6348 * | vdev | | vdev | 6349 * | cache | | cache | 6350 * +-------+ +-------+ 6351 * +=========+ .-----. 6352 * : L2ARC : |-_____-| 6353 * : devices : | Disks | 6354 * +=========+ `-_____-' 6355 * 6356 * Read requests are satisfied from the following sources, in order: 6357 * 6358 * 1) ARC 6359 * 2) vdev cache of L2ARC devices 6360 * 3) L2ARC devices 6361 * 4) vdev cache of disks 6362 * 5) disks 6363 * 6364 * Some L2ARC device types exhibit extremely slow write performance. 6365 * To accommodate for this there are some significant differences between 6366 * the L2ARC and traditional cache design: 6367 * 6368 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 6369 * the ARC behave as usual, freeing buffers and placing headers on ghost 6370 * lists. The ARC does not send buffers to the L2ARC during eviction as 6371 * this would add inflated write latencies for all ARC memory pressure. 6372 * 6373 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 6374 * It does this by periodically scanning buffers from the eviction-end of 6375 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 6376 * not already there. It scans until a headroom of buffers is satisfied, 6377 * which itself is a buffer for ARC eviction. If a compressible buffer is 6378 * found during scanning and selected for writing to an L2ARC device, we 6379 * temporarily boost scanning headroom during the next scan cycle to make 6380 * sure we adapt to compression effects (which might significantly reduce 6381 * the data volume we write to L2ARC). The thread that does this is 6382 * l2arc_feed_thread(), illustrated below; example sizes are included to 6383 * provide a better sense of ratio than this diagram: 6384 * 6385 * head --> tail 6386 * +---------------------+----------+ 6387 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 6388 * +---------------------+----------+ | o L2ARC eligible 6389 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 6390 * +---------------------+----------+ | 6391 * 15.9 Gbytes ^ 32 Mbytes | 6392 * headroom | 6393 * l2arc_feed_thread() 6394 * | 6395 * l2arc write hand <--[oooo]--' 6396 * | 8 Mbyte 6397 * | write max 6398 * V 6399 * +==============================+ 6400 * L2ARC dev |####|#|###|###| |####| ... | 6401 * +==============================+ 6402 * 32 Gbytes 6403 * 6404 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 6405 * evicted, then the L2ARC has cached a buffer much sooner than it probably 6406 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 6407 * safe to say that this is an uncommon case, since buffers at the end of 6408 * the ARC lists have moved there due to inactivity. 6409 * 6410 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 6411 * then the L2ARC simply misses copying some buffers. This serves as a 6412 * pressure valve to prevent heavy read workloads from both stalling the ARC 6413 * with waits and clogging the L2ARC with writes. This also helps prevent 6414 * the potential for the L2ARC to churn if it attempts to cache content too 6415 * quickly, such as during backups of the entire pool. 6416 * 6417 * 5. After system boot and before the ARC has filled main memory, there are 6418 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 6419 * lists can remain mostly static. Instead of searching from tail of these 6420 * lists as pictured, the l2arc_feed_thread() will search from the list heads 6421 * for eligible buffers, greatly increasing its chance of finding them. 6422 * 6423 * The L2ARC device write speed is also boosted during this time so that 6424 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 6425 * there are no L2ARC reads, and no fear of degrading read performance 6426 * through increased writes. 6427 * 6428 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 6429 * the vdev queue can aggregate them into larger and fewer writes. Each 6430 * device is written to in a rotor fashion, sweeping writes through 6431 * available space then repeating. 6432 * 6433 * 7. The L2ARC does not store dirty content. It never needs to flush 6434 * write buffers back to disk based storage. 6435 * 6436 * 8. If an ARC buffer is written (and dirtied) which also exists in the 6437 * L2ARC, the now stale L2ARC buffer is immediately dropped. 6438 * 6439 * The performance of the L2ARC can be tweaked by a number of tunables, which 6440 * may be necessary for different workloads: 6441 * 6442 * l2arc_write_max max write bytes per interval 6443 * l2arc_write_boost extra write bytes during device warmup 6444 * l2arc_noprefetch skip caching prefetched buffers 6445 * l2arc_headroom number of max device writes to precache 6446 * l2arc_headroom_boost when we find compressed buffers during ARC 6447 * scanning, we multiply headroom by this 6448 * percentage factor for the next scan cycle, 6449 * since more compressed buffers are likely to 6450 * be present 6451 * l2arc_feed_secs seconds between L2ARC writing 6452 * 6453 * Tunables may be removed or added as future performance improvements are 6454 * integrated, and also may become zpool properties. 6455 * 6456 * There are three key functions that control how the L2ARC warms up: 6457 * 6458 * l2arc_write_eligible() check if a buffer is eligible to cache 6459 * l2arc_write_size() calculate how much to write 6460 * l2arc_write_interval() calculate sleep delay between writes 6461 * 6462 * These three functions determine what to write, how much, and how quickly 6463 * to send writes. 6464 */ 6465 6466 static boolean_t 6467 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 6468 { 6469 /* 6470 * A buffer is *not* eligible for the L2ARC if it: 6471 * 1. belongs to a different spa. 6472 * 2. is already cached on the L2ARC. 6473 * 3. has an I/O in progress (it may be an incomplete read). 6474 * 4. is flagged not eligible (zfs property). 6475 */ 6476 if (hdr->b_spa != spa_guid) { 6477 ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch); 6478 return (B_FALSE); 6479 } 6480 if (HDR_HAS_L2HDR(hdr)) { 6481 ARCSTAT_BUMP(arcstat_l2_write_in_l2); 6482 return (B_FALSE); 6483 } 6484 if (HDR_IO_IN_PROGRESS(hdr)) { 6485 ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress); 6486 return (B_FALSE); 6487 } 6488 if (!HDR_L2CACHE(hdr)) { 6489 ARCSTAT_BUMP(arcstat_l2_write_not_cacheable); 6490 return (B_FALSE); 6491 } 6492 6493 return (B_TRUE); 6494 } 6495 6496 static uint64_t 6497 l2arc_write_size(void) 6498 { 6499 uint64_t size; 6500 6501 /* 6502 * Make sure our globals have meaningful values in case the user 6503 * altered them. 6504 */ 6505 size = l2arc_write_max; 6506 if (size == 0) { 6507 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 6508 "be greater than zero, resetting it to the default (%d)", 6509 L2ARC_WRITE_SIZE); 6510 size = l2arc_write_max = L2ARC_WRITE_SIZE; 6511 } 6512 6513 if (arc_warm == B_FALSE) 6514 size += l2arc_write_boost; 6515 6516 return (size); 6517 6518 } 6519 6520 static clock_t 6521 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 6522 { 6523 clock_t interval, next, now; 6524 6525 /* 6526 * If the ARC lists are busy, increase our write rate; if the 6527 * lists are stale, idle back. This is achieved by checking 6528 * how much we previously wrote - if it was more than half of 6529 * what we wanted, schedule the next write much sooner. 6530 */ 6531 if (l2arc_feed_again && wrote > (wanted / 2)) 6532 interval = (hz * l2arc_feed_min_ms) / 1000; 6533 else 6534 interval = hz * l2arc_feed_secs; 6535 6536 now = ddi_get_lbolt(); 6537 next = MAX(now, MIN(now + interval, began + interval)); 6538 6539 return (next); 6540 } 6541 6542 /* 6543 * Cycle through L2ARC devices. This is how L2ARC load balances. 6544 * If a device is returned, this also returns holding the spa config lock. 6545 */ 6546 static l2arc_dev_t * 6547 l2arc_dev_get_next(void) 6548 { 6549 l2arc_dev_t *first, *next = NULL; 6550 6551 /* 6552 * Lock out the removal of spas (spa_namespace_lock), then removal 6553 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 6554 * both locks will be dropped and a spa config lock held instead. 6555 */ 6556 mutex_enter(&spa_namespace_lock); 6557 mutex_enter(&l2arc_dev_mtx); 6558 6559 /* if there are no vdevs, there is nothing to do */ 6560 if (l2arc_ndev == 0) 6561 goto out; 6562 6563 first = NULL; 6564 next = l2arc_dev_last; 6565 do { 6566 /* loop around the list looking for a non-faulted vdev */ 6567 if (next == NULL) { 6568 next = list_head(l2arc_dev_list); 6569 } else { 6570 next = list_next(l2arc_dev_list, next); 6571 if (next == NULL) 6572 next = list_head(l2arc_dev_list); 6573 } 6574 6575 /* if we have come back to the start, bail out */ 6576 if (first == NULL) 6577 first = next; 6578 else if (next == first) 6579 break; 6580 6581 } while (vdev_is_dead(next->l2ad_vdev)); 6582 6583 /* if we were unable to find any usable vdevs, return NULL */ 6584 if (vdev_is_dead(next->l2ad_vdev)) 6585 next = NULL; 6586 6587 l2arc_dev_last = next; 6588 6589 out: 6590 mutex_exit(&l2arc_dev_mtx); 6591 6592 /* 6593 * Grab the config lock to prevent the 'next' device from being 6594 * removed while we are writing to it. 6595 */ 6596 if (next != NULL) 6597 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 6598 mutex_exit(&spa_namespace_lock); 6599 6600 return (next); 6601 } 6602 6603 /* 6604 * Free buffers that were tagged for destruction. 6605 */ 6606 static void 6607 l2arc_do_free_on_write() 6608 { 6609 list_t *buflist; 6610 l2arc_data_free_t *df, *df_prev; 6611 6612 mutex_enter(&l2arc_free_on_write_mtx); 6613 buflist = l2arc_free_on_write; 6614 6615 for (df = list_tail(buflist); df; df = df_prev) { 6616 df_prev = list_prev(buflist, df); 6617 ASSERT3P(df->l2df_data, !=, NULL); 6618 if (df->l2df_type == ARC_BUFC_METADATA) { 6619 zio_buf_free(df->l2df_data, df->l2df_size); 6620 } else { 6621 ASSERT(df->l2df_type == ARC_BUFC_DATA); 6622 zio_data_buf_free(df->l2df_data, df->l2df_size); 6623 } 6624 list_remove(buflist, df); 6625 kmem_free(df, sizeof (l2arc_data_free_t)); 6626 } 6627 6628 mutex_exit(&l2arc_free_on_write_mtx); 6629 } 6630 6631 /* 6632 * A write to a cache device has completed. Update all headers to allow 6633 * reads from these buffers to begin. 6634 */ 6635 static void 6636 l2arc_write_done(zio_t *zio) 6637 { 6638 l2arc_write_callback_t *cb; 6639 l2arc_dev_t *dev; 6640 list_t *buflist; 6641 arc_buf_hdr_t *head, *hdr, *hdr_prev; 6642 kmutex_t *hash_lock; 6643 int64_t bytes_dropped = 0; 6644 6645 cb = zio->io_private; 6646 ASSERT3P(cb, !=, NULL); 6647 dev = cb->l2wcb_dev; 6648 ASSERT3P(dev, !=, NULL); 6649 head = cb->l2wcb_head; 6650 ASSERT3P(head, !=, NULL); 6651 buflist = &dev->l2ad_buflist; 6652 ASSERT3P(buflist, !=, NULL); 6653 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 6654 l2arc_write_callback_t *, cb); 6655 6656 if (zio->io_error != 0) 6657 ARCSTAT_BUMP(arcstat_l2_writes_error); 6658 6659 /* 6660 * All writes completed, or an error was hit. 6661 */ 6662 top: 6663 mutex_enter(&dev->l2ad_mtx); 6664 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 6665 hdr_prev = list_prev(buflist, hdr); 6666 6667 hash_lock = HDR_LOCK(hdr); 6668 6669 /* 6670 * We cannot use mutex_enter or else we can deadlock 6671 * with l2arc_write_buffers (due to swapping the order 6672 * the hash lock and l2ad_mtx are taken). 6673 */ 6674 if (!mutex_tryenter(hash_lock)) { 6675 /* 6676 * Missed the hash lock. We must retry so we 6677 * don't leave the ARC_FLAG_L2_WRITING bit set. 6678 */ 6679 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 6680 6681 /* 6682 * We don't want to rescan the headers we've 6683 * already marked as having been written out, so 6684 * we reinsert the head node so we can pick up 6685 * where we left off. 6686 */ 6687 list_remove(buflist, head); 6688 list_insert_after(buflist, hdr, head); 6689 6690 mutex_exit(&dev->l2ad_mtx); 6691 6692 /* 6693 * We wait for the hash lock to become available 6694 * to try and prevent busy waiting, and increase 6695 * the chance we'll be able to acquire the lock 6696 * the next time around. 6697 */ 6698 mutex_enter(hash_lock); 6699 mutex_exit(hash_lock); 6700 goto top; 6701 } 6702 6703 /* 6704 * We could not have been moved into the arc_l2c_only 6705 * state while in-flight due to our ARC_FLAG_L2_WRITING 6706 * bit being set. Let's just ensure that's being enforced. 6707 */ 6708 ASSERT(HDR_HAS_L1HDR(hdr)); 6709 6710 if (zio->io_error != 0) { 6711 /* 6712 * Error - drop L2ARC entry. 6713 */ 6714 list_remove(buflist, hdr); 6715 l2arc_trim(hdr); 6716 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 6717 6718 ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr)); 6719 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr)); 6720 6721 bytes_dropped += arc_hdr_size(hdr); 6722 (void) refcount_remove_many(&dev->l2ad_alloc, 6723 arc_hdr_size(hdr), hdr); 6724 } 6725 6726 /* 6727 * Allow ARC to begin reads and ghost list evictions to 6728 * this L2ARC entry. 6729 */ 6730 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 6731 6732 mutex_exit(hash_lock); 6733 } 6734 6735 atomic_inc_64(&l2arc_writes_done); 6736 list_remove(buflist, head); 6737 ASSERT(!HDR_HAS_L1HDR(head)); 6738 kmem_cache_free(hdr_l2only_cache, head); 6739 mutex_exit(&dev->l2ad_mtx); 6740 6741 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 6742 6743 l2arc_do_free_on_write(); 6744 6745 kmem_free(cb, sizeof (l2arc_write_callback_t)); 6746 } 6747 6748 /* 6749 * A read to a cache device completed. Validate buffer contents before 6750 * handing over to the regular ARC routines. 6751 */ 6752 static void 6753 l2arc_read_done(zio_t *zio) 6754 { 6755 l2arc_read_callback_t *cb; 6756 arc_buf_hdr_t *hdr; 6757 kmutex_t *hash_lock; 6758 boolean_t valid_cksum; 6759 6760 ASSERT3P(zio->io_vd, !=, NULL); 6761 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 6762 6763 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 6764 6765 cb = zio->io_private; 6766 ASSERT3P(cb, !=, NULL); 6767 hdr = cb->l2rcb_hdr; 6768 ASSERT3P(hdr, !=, NULL); 6769 6770 hash_lock = HDR_LOCK(hdr); 6771 mutex_enter(hash_lock); 6772 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6773 6774 /* 6775 * If the data was read into a temporary buffer, 6776 * move it and free the buffer. 6777 */ 6778 if (cb->l2rcb_data != NULL) { 6779 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 6780 if (zio->io_error == 0) { 6781 bcopy(cb->l2rcb_data, hdr->b_l1hdr.b_pdata, 6782 arc_hdr_size(hdr)); 6783 } 6784 6785 /* 6786 * The following must be done regardless of whether 6787 * there was an error: 6788 * - free the temporary buffer 6789 * - point zio to the real ARC buffer 6790 * - set zio size accordingly 6791 * These are required because zio is either re-used for 6792 * an I/O of the block in the case of the error 6793 * or the zio is passed to arc_read_done() and it 6794 * needs real data. 6795 */ 6796 zio_data_buf_free(cb->l2rcb_data, zio->io_size); 6797 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 6798 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_pdata; 6799 } 6800 6801 ASSERT3P(zio->io_data, !=, NULL); 6802 6803 /* 6804 * Check this survived the L2ARC journey. 6805 */ 6806 ASSERT3P(zio->io_data, ==, hdr->b_l1hdr.b_pdata); 6807 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 6808 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 6809 6810 valid_cksum = arc_cksum_is_equal(hdr, zio); 6811 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 6812 mutex_exit(hash_lock); 6813 zio->io_private = hdr; 6814 arc_read_done(zio); 6815 } else { 6816 mutex_exit(hash_lock); 6817 /* 6818 * Buffer didn't survive caching. Increment stats and 6819 * reissue to the original storage device. 6820 */ 6821 if (zio->io_error != 0) { 6822 ARCSTAT_BUMP(arcstat_l2_io_error); 6823 } else { 6824 zio->io_error = SET_ERROR(EIO); 6825 } 6826 if (!valid_cksum) 6827 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 6828 6829 /* 6830 * If there's no waiter, issue an async i/o to the primary 6831 * storage now. If there *is* a waiter, the caller must 6832 * issue the i/o in a context where it's OK to block. 6833 */ 6834 if (zio->io_waiter == NULL) { 6835 zio_t *pio = zio_unique_parent(zio); 6836 6837 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 6838 6839 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp, 6840 hdr->b_l1hdr.b_pdata, zio->io_size, arc_read_done, 6841 hdr, zio->io_priority, cb->l2rcb_flags, 6842 &cb->l2rcb_zb)); 6843 } 6844 } 6845 6846 kmem_free(cb, sizeof (l2arc_read_callback_t)); 6847 } 6848 6849 /* 6850 * This is the list priority from which the L2ARC will search for pages to 6851 * cache. This is used within loops (0..3) to cycle through lists in the 6852 * desired order. This order can have a significant effect on cache 6853 * performance. 6854 * 6855 * Currently the metadata lists are hit first, MFU then MRU, followed by 6856 * the data lists. This function returns a locked list, and also returns 6857 * the lock pointer. 6858 */ 6859 static multilist_sublist_t * 6860 l2arc_sublist_lock(int list_num) 6861 { 6862 multilist_t *ml = NULL; 6863 unsigned int idx; 6864 6865 ASSERT(list_num >= 0 && list_num <= 3); 6866 6867 switch (list_num) { 6868 case 0: 6869 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 6870 break; 6871 case 1: 6872 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 6873 break; 6874 case 2: 6875 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 6876 break; 6877 case 3: 6878 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 6879 break; 6880 } 6881 6882 /* 6883 * Return a randomly-selected sublist. This is acceptable 6884 * because the caller feeds only a little bit of data for each 6885 * call (8MB). Subsequent calls will result in different 6886 * sublists being selected. 6887 */ 6888 idx = multilist_get_random_index(ml); 6889 return (multilist_sublist_lock(ml, idx)); 6890 } 6891 6892 /* 6893 * Evict buffers from the device write hand to the distance specified in 6894 * bytes. This distance may span populated buffers, it may span nothing. 6895 * This is clearing a region on the L2ARC device ready for writing. 6896 * If the 'all' boolean is set, every buffer is evicted. 6897 */ 6898 static void 6899 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 6900 { 6901 list_t *buflist; 6902 arc_buf_hdr_t *hdr, *hdr_prev; 6903 kmutex_t *hash_lock; 6904 uint64_t taddr; 6905 6906 buflist = &dev->l2ad_buflist; 6907 6908 if (!all && dev->l2ad_first) { 6909 /* 6910 * This is the first sweep through the device. There is 6911 * nothing to evict. 6912 */ 6913 return; 6914 } 6915 6916 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 6917 /* 6918 * When nearing the end of the device, evict to the end 6919 * before the device write hand jumps to the start. 6920 */ 6921 taddr = dev->l2ad_end; 6922 } else { 6923 taddr = dev->l2ad_hand + distance; 6924 } 6925 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 6926 uint64_t, taddr, boolean_t, all); 6927 6928 top: 6929 mutex_enter(&dev->l2ad_mtx); 6930 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 6931 hdr_prev = list_prev(buflist, hdr); 6932 6933 hash_lock = HDR_LOCK(hdr); 6934 6935 /* 6936 * We cannot use mutex_enter or else we can deadlock 6937 * with l2arc_write_buffers (due to swapping the order 6938 * the hash lock and l2ad_mtx are taken). 6939 */ 6940 if (!mutex_tryenter(hash_lock)) { 6941 /* 6942 * Missed the hash lock. Retry. 6943 */ 6944 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 6945 mutex_exit(&dev->l2ad_mtx); 6946 mutex_enter(hash_lock); 6947 mutex_exit(hash_lock); 6948 goto top; 6949 } 6950 6951 if (HDR_L2_WRITE_HEAD(hdr)) { 6952 /* 6953 * We hit a write head node. Leave it for 6954 * l2arc_write_done(). 6955 */ 6956 list_remove(buflist, hdr); 6957 mutex_exit(hash_lock); 6958 continue; 6959 } 6960 6961 if (!all && HDR_HAS_L2HDR(hdr) && 6962 (hdr->b_l2hdr.b_daddr >= taddr || 6963 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 6964 /* 6965 * We've evicted to the target address, 6966 * or the end of the device. 6967 */ 6968 mutex_exit(hash_lock); 6969 break; 6970 } 6971 6972 ASSERT(HDR_HAS_L2HDR(hdr)); 6973 if (!HDR_HAS_L1HDR(hdr)) { 6974 ASSERT(!HDR_L2_READING(hdr)); 6975 /* 6976 * This doesn't exist in the ARC. Destroy. 6977 * arc_hdr_destroy() will call list_remove() 6978 * and decrement arcstat_l2_size. 6979 */ 6980 arc_change_state(arc_anon, hdr, hash_lock); 6981 arc_hdr_destroy(hdr); 6982 } else { 6983 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 6984 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 6985 /* 6986 * Invalidate issued or about to be issued 6987 * reads, since we may be about to write 6988 * over this location. 6989 */ 6990 if (HDR_L2_READING(hdr)) { 6991 ARCSTAT_BUMP(arcstat_l2_evict_reading); 6992 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 6993 } 6994 6995 /* Ensure this header has finished being written */ 6996 ASSERT(!HDR_L2_WRITING(hdr)); 6997 6998 arc_hdr_l2hdr_destroy(hdr); 6999 } 7000 mutex_exit(hash_lock); 7001 } 7002 mutex_exit(&dev->l2ad_mtx); 7003 } 7004 7005 /* 7006 * Find and write ARC buffers to the L2ARC device. 7007 * 7008 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 7009 * for reading until they have completed writing. 7010 * The headroom_boost is an in-out parameter used to maintain headroom boost 7011 * state between calls to this function. 7012 * 7013 * Returns the number of bytes actually written (which may be smaller than 7014 * the delta by which the device hand has changed due to alignment). 7015 */ 7016 static uint64_t 7017 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 7018 { 7019 arc_buf_hdr_t *hdr, *hdr_prev, *head; 7020 uint64_t write_asize, write_psize, write_sz, headroom; 7021 boolean_t full; 7022 l2arc_write_callback_t *cb; 7023 zio_t *pio, *wzio; 7024 uint64_t guid = spa_load_guid(spa); 7025 int try; 7026 7027 ASSERT3P(dev->l2ad_vdev, !=, NULL); 7028 7029 pio = NULL; 7030 write_sz = write_asize = write_psize = 0; 7031 full = B_FALSE; 7032 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 7033 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 7034 7035 ARCSTAT_BUMP(arcstat_l2_write_buffer_iter); 7036 /* 7037 * Copy buffers for L2ARC writing. 7038 */ 7039 for (try = 0; try <= 3; try++) { 7040 multilist_sublist_t *mls = l2arc_sublist_lock(try); 7041 uint64_t passed_sz = 0; 7042 7043 ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter); 7044 7045 /* 7046 * L2ARC fast warmup. 7047 * 7048 * Until the ARC is warm and starts to evict, read from the 7049 * head of the ARC lists rather than the tail. 7050 */ 7051 if (arc_warm == B_FALSE) 7052 hdr = multilist_sublist_head(mls); 7053 else 7054 hdr = multilist_sublist_tail(mls); 7055 if (hdr == NULL) 7056 ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter); 7057 7058 headroom = target_sz * l2arc_headroom; 7059 if (zfs_compressed_arc_enabled) 7060 headroom = (headroom * l2arc_headroom_boost) / 100; 7061 7062 for (; hdr; hdr = hdr_prev) { 7063 kmutex_t *hash_lock; 7064 7065 if (arc_warm == B_FALSE) 7066 hdr_prev = multilist_sublist_next(mls, hdr); 7067 else 7068 hdr_prev = multilist_sublist_prev(mls, hdr); 7069 ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, 7070 HDR_GET_LSIZE(hdr)); 7071 7072 hash_lock = HDR_LOCK(hdr); 7073 if (!mutex_tryenter(hash_lock)) { 7074 ARCSTAT_BUMP(arcstat_l2_write_trylock_fail); 7075 /* 7076 * Skip this buffer rather than waiting. 7077 */ 7078 continue; 7079 } 7080 7081 passed_sz += HDR_GET_LSIZE(hdr); 7082 if (passed_sz > headroom) { 7083 /* 7084 * Searched too far. 7085 */ 7086 mutex_exit(hash_lock); 7087 ARCSTAT_BUMP(arcstat_l2_write_passed_headroom); 7088 break; 7089 } 7090 7091 if (!l2arc_write_eligible(guid, hdr)) { 7092 mutex_exit(hash_lock); 7093 continue; 7094 } 7095 7096 /* 7097 * We rely on the L1 portion of the header below, so 7098 * it's invalid for this header to have been evicted out 7099 * of the ghost cache, prior to being written out. The 7100 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 7101 */ 7102 ASSERT(HDR_HAS_L1HDR(hdr)); 7103 7104 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 7105 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 7106 ASSERT3U(arc_hdr_size(hdr), >, 0); 7107 uint64_t size = arc_hdr_size(hdr); 7108 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 7109 size); 7110 7111 if ((write_psize + asize) > target_sz) { 7112 full = B_TRUE; 7113 mutex_exit(hash_lock); 7114 ARCSTAT_BUMP(arcstat_l2_write_full); 7115 break; 7116 } 7117 7118 if (pio == NULL) { 7119 /* 7120 * Insert a dummy header on the buflist so 7121 * l2arc_write_done() can find where the 7122 * write buffers begin without searching. 7123 */ 7124 mutex_enter(&dev->l2ad_mtx); 7125 list_insert_head(&dev->l2ad_buflist, head); 7126 mutex_exit(&dev->l2ad_mtx); 7127 7128 cb = kmem_alloc( 7129 sizeof (l2arc_write_callback_t), KM_SLEEP); 7130 cb->l2wcb_dev = dev; 7131 cb->l2wcb_head = head; 7132 pio = zio_root(spa, l2arc_write_done, cb, 7133 ZIO_FLAG_CANFAIL); 7134 ARCSTAT_BUMP(arcstat_l2_write_pios); 7135 } 7136 7137 hdr->b_l2hdr.b_dev = dev; 7138 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 7139 arc_hdr_set_flags(hdr, 7140 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR); 7141 7142 mutex_enter(&dev->l2ad_mtx); 7143 list_insert_head(&dev->l2ad_buflist, hdr); 7144 mutex_exit(&dev->l2ad_mtx); 7145 7146 (void) refcount_add_many(&dev->l2ad_alloc, size, hdr); 7147 7148 /* 7149 * Normally the L2ARC can use the hdr's data, but if 7150 * we're sharing data between the hdr and one of its 7151 * bufs, L2ARC needs its own copy of the data so that 7152 * the ZIO below can't race with the buf consumer. To 7153 * ensure that this copy will be available for the 7154 * lifetime of the ZIO and be cleaned up afterwards, we 7155 * add it to the l2arc_free_on_write queue. 7156 */ 7157 void *to_write; 7158 if (!HDR_SHARED_DATA(hdr) && size == asize) { 7159 to_write = hdr->b_l1hdr.b_pdata; 7160 } else { 7161 arc_buf_contents_t type = arc_buf_type(hdr); 7162 if (type == ARC_BUFC_METADATA) { 7163 to_write = zio_buf_alloc(asize); 7164 } else { 7165 ASSERT3U(type, ==, ARC_BUFC_DATA); 7166 to_write = zio_data_buf_alloc(asize); 7167 } 7168 7169 bcopy(hdr->b_l1hdr.b_pdata, to_write, size); 7170 if (asize != size) 7171 bzero(to_write + size, asize - size); 7172 l2arc_free_data_on_write(to_write, asize, type); 7173 } 7174 wzio = zio_write_phys(pio, dev->l2ad_vdev, 7175 hdr->b_l2hdr.b_daddr, asize, to_write, 7176 ZIO_CHECKSUM_OFF, NULL, hdr, 7177 ZIO_PRIORITY_ASYNC_WRITE, 7178 ZIO_FLAG_CANFAIL, B_FALSE); 7179 7180 write_sz += HDR_GET_LSIZE(hdr); 7181 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 7182 zio_t *, wzio); 7183 7184 write_asize += size; 7185 write_psize += asize; 7186 dev->l2ad_hand += asize; 7187 7188 mutex_exit(hash_lock); 7189 7190 (void) zio_nowait(wzio); 7191 } 7192 7193 multilist_sublist_unlock(mls); 7194 7195 if (full == B_TRUE) 7196 break; 7197 } 7198 7199 /* No buffers selected for writing? */ 7200 if (pio == NULL) { 7201 ASSERT0(write_sz); 7202 ASSERT(!HDR_HAS_L1HDR(head)); 7203 kmem_cache_free(hdr_l2only_cache, head); 7204 return (0); 7205 } 7206 7207 ASSERT3U(write_psize, <=, target_sz); 7208 ARCSTAT_BUMP(arcstat_l2_writes_sent); 7209 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 7210 ARCSTAT_INCR(arcstat_l2_size, write_sz); 7211 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 7212 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 7213 7214 /* 7215 * Bump device hand to the device start if it is approaching the end. 7216 * l2arc_evict() will already have evicted ahead for this case. 7217 */ 7218 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 7219 dev->l2ad_hand = dev->l2ad_start; 7220 dev->l2ad_first = B_FALSE; 7221 } 7222 7223 dev->l2ad_writing = B_TRUE; 7224 (void) zio_wait(pio); 7225 dev->l2ad_writing = B_FALSE; 7226 7227 return (write_asize); 7228 } 7229 7230 /* 7231 * This thread feeds the L2ARC at regular intervals. This is the beating 7232 * heart of the L2ARC. 7233 */ 7234 static void 7235 l2arc_feed_thread(void *dummy __unused) 7236 { 7237 callb_cpr_t cpr; 7238 l2arc_dev_t *dev; 7239 spa_t *spa; 7240 uint64_t size, wrote; 7241 clock_t begin, next = ddi_get_lbolt() + hz; 7242 7243 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 7244 7245 mutex_enter(&l2arc_feed_thr_lock); 7246 7247 while (l2arc_thread_exit == 0) { 7248 CALLB_CPR_SAFE_BEGIN(&cpr); 7249 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 7250 next - ddi_get_lbolt()); 7251 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 7252 next = ddi_get_lbolt() + hz; 7253 7254 /* 7255 * Quick check for L2ARC devices. 7256 */ 7257 mutex_enter(&l2arc_dev_mtx); 7258 if (l2arc_ndev == 0) { 7259 mutex_exit(&l2arc_dev_mtx); 7260 continue; 7261 } 7262 mutex_exit(&l2arc_dev_mtx); 7263 begin = ddi_get_lbolt(); 7264 7265 /* 7266 * This selects the next l2arc device to write to, and in 7267 * doing so the next spa to feed from: dev->l2ad_spa. This 7268 * will return NULL if there are now no l2arc devices or if 7269 * they are all faulted. 7270 * 7271 * If a device is returned, its spa's config lock is also 7272 * held to prevent device removal. l2arc_dev_get_next() 7273 * will grab and release l2arc_dev_mtx. 7274 */ 7275 if ((dev = l2arc_dev_get_next()) == NULL) 7276 continue; 7277 7278 spa = dev->l2ad_spa; 7279 ASSERT3P(spa, !=, NULL); 7280 7281 /* 7282 * If the pool is read-only then force the feed thread to 7283 * sleep a little longer. 7284 */ 7285 if (!spa_writeable(spa)) { 7286 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 7287 spa_config_exit(spa, SCL_L2ARC, dev); 7288 continue; 7289 } 7290 7291 /* 7292 * Avoid contributing to memory pressure. 7293 */ 7294 if (arc_reclaim_needed()) { 7295 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 7296 spa_config_exit(spa, SCL_L2ARC, dev); 7297 continue; 7298 } 7299 7300 ARCSTAT_BUMP(arcstat_l2_feeds); 7301 7302 size = l2arc_write_size(); 7303 7304 /* 7305 * Evict L2ARC buffers that will be overwritten. 7306 */ 7307 l2arc_evict(dev, size, B_FALSE); 7308 7309 /* 7310 * Write ARC buffers. 7311 */ 7312 wrote = l2arc_write_buffers(spa, dev, size); 7313 7314 /* 7315 * Calculate interval between writes. 7316 */ 7317 next = l2arc_write_interval(begin, size, wrote); 7318 spa_config_exit(spa, SCL_L2ARC, dev); 7319 } 7320 7321 l2arc_thread_exit = 0; 7322 cv_broadcast(&l2arc_feed_thr_cv); 7323 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 7324 thread_exit(); 7325 } 7326 7327 boolean_t 7328 l2arc_vdev_present(vdev_t *vd) 7329 { 7330 l2arc_dev_t *dev; 7331 7332 mutex_enter(&l2arc_dev_mtx); 7333 for (dev = list_head(l2arc_dev_list); dev != NULL; 7334 dev = list_next(l2arc_dev_list, dev)) { 7335 if (dev->l2ad_vdev == vd) 7336 break; 7337 } 7338 mutex_exit(&l2arc_dev_mtx); 7339 7340 return (dev != NULL); 7341 } 7342 7343 /* 7344 * Add a vdev for use by the L2ARC. By this point the spa has already 7345 * validated the vdev and opened it. 7346 */ 7347 void 7348 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 7349 { 7350 l2arc_dev_t *adddev; 7351 7352 ASSERT(!l2arc_vdev_present(vd)); 7353 7354 vdev_ashift_optimize(vd); 7355 7356 /* 7357 * Create a new l2arc device entry. 7358 */ 7359 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 7360 adddev->l2ad_spa = spa; 7361 adddev->l2ad_vdev = vd; 7362 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 7363 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 7364 adddev->l2ad_hand = adddev->l2ad_start; 7365 adddev->l2ad_first = B_TRUE; 7366 adddev->l2ad_writing = B_FALSE; 7367 7368 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 7369 /* 7370 * This is a list of all ARC buffers that are still valid on the 7371 * device. 7372 */ 7373 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 7374 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 7375 7376 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 7377 refcount_create(&adddev->l2ad_alloc); 7378 7379 /* 7380 * Add device to global list 7381 */ 7382 mutex_enter(&l2arc_dev_mtx); 7383 list_insert_head(l2arc_dev_list, adddev); 7384 atomic_inc_64(&l2arc_ndev); 7385 mutex_exit(&l2arc_dev_mtx); 7386 } 7387 7388 /* 7389 * Remove a vdev from the L2ARC. 7390 */ 7391 void 7392 l2arc_remove_vdev(vdev_t *vd) 7393 { 7394 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 7395 7396 /* 7397 * Find the device by vdev 7398 */ 7399 mutex_enter(&l2arc_dev_mtx); 7400 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 7401 nextdev = list_next(l2arc_dev_list, dev); 7402 if (vd == dev->l2ad_vdev) { 7403 remdev = dev; 7404 break; 7405 } 7406 } 7407 ASSERT3P(remdev, !=, NULL); 7408 7409 /* 7410 * Remove device from global list 7411 */ 7412 list_remove(l2arc_dev_list, remdev); 7413 l2arc_dev_last = NULL; /* may have been invalidated */ 7414 atomic_dec_64(&l2arc_ndev); 7415 mutex_exit(&l2arc_dev_mtx); 7416 7417 /* 7418 * Clear all buflists and ARC references. L2ARC device flush. 7419 */ 7420 l2arc_evict(remdev, 0, B_TRUE); 7421 list_destroy(&remdev->l2ad_buflist); 7422 mutex_destroy(&remdev->l2ad_mtx); 7423 refcount_destroy(&remdev->l2ad_alloc); 7424 kmem_free(remdev, sizeof (l2arc_dev_t)); 7425 } 7426 7427 void 7428 l2arc_init(void) 7429 { 7430 l2arc_thread_exit = 0; 7431 l2arc_ndev = 0; 7432 l2arc_writes_sent = 0; 7433 l2arc_writes_done = 0; 7434 7435 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 7436 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 7437 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 7438 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 7439 7440 l2arc_dev_list = &L2ARC_dev_list; 7441 l2arc_free_on_write = &L2ARC_free_on_write; 7442 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 7443 offsetof(l2arc_dev_t, l2ad_node)); 7444 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 7445 offsetof(l2arc_data_free_t, l2df_list_node)); 7446 } 7447 7448 void 7449 l2arc_fini(void) 7450 { 7451 /* 7452 * This is called from dmu_fini(), which is called from spa_fini(); 7453 * Because of this, we can assume that all l2arc devices have 7454 * already been removed when the pools themselves were removed. 7455 */ 7456 7457 l2arc_do_free_on_write(); 7458 7459 mutex_destroy(&l2arc_feed_thr_lock); 7460 cv_destroy(&l2arc_feed_thr_cv); 7461 mutex_destroy(&l2arc_dev_mtx); 7462 mutex_destroy(&l2arc_free_on_write_mtx); 7463 7464 list_destroy(l2arc_dev_list); 7465 list_destroy(l2arc_free_on_write); 7466 } 7467 7468 void 7469 l2arc_start(void) 7470 { 7471 if (!(spa_mode_global & FWRITE)) 7472 return; 7473 7474 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 7475 TS_RUN, minclsyspri); 7476 } 7477 7478 void 7479 l2arc_stop(void) 7480 { 7481 if (!(spa_mode_global & FWRITE)) 7482 return; 7483 7484 mutex_enter(&l2arc_feed_thr_lock); 7485 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 7486 l2arc_thread_exit = 1; 7487 while (l2arc_thread_exit != 0) 7488 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 7489 mutex_exit(&l2arc_feed_thr_lock); 7490 } 7491