1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DVA-based Adjustable Replacement Cache 28 * 29 * While much of the theory of operation used here is 30 * based on the self-tuning, low overhead replacement cache 31 * presented by Megiddo and Modha at FAST 2003, there are some 32 * significant differences: 33 * 34 * 1. The Megiddo and Modha model assumes any page is evictable. 35 * Pages in its cache cannot be "locked" into memory. This makes 36 * the eviction algorithm simple: evict the last page in the list. 37 * This also make the performance characteristics easy to reason 38 * about. Our cache is not so simple. At any given moment, some 39 * subset of the blocks in the cache are un-evictable because we 40 * have handed out a reference to them. Blocks are only evictable 41 * when there are no external references active. This makes 42 * eviction far more problematic: we choose to evict the evictable 43 * blocks that are the "lowest" in the list. 44 * 45 * There are times when it is not possible to evict the requested 46 * space. In these circumstances we are unable to adjust the cache 47 * size. To prevent the cache growing unbounded at these times we 48 * implement a "cache throttle" that slows the flow of new data 49 * into the cache until we can make space available. 50 * 51 * 2. The Megiddo and Modha model assumes a fixed cache size. 52 * Pages are evicted when the cache is full and there is a cache 53 * miss. Our model has a variable sized cache. It grows with 54 * high use, but also tries to react to memory pressure from the 55 * operating system: decreasing its size when system memory is 56 * tight. 57 * 58 * 3. The Megiddo and Modha model assumes a fixed page size. All 59 * elements of the cache are therefor exactly the same size. So 60 * when adjusting the cache size following a cache miss, its simply 61 * a matter of choosing a single page to evict. In our model, we 62 * have variable sized cache blocks (rangeing from 512 bytes to 63 * 128K bytes). We therefor choose a set of blocks to evict to make 64 * space for a cache miss that approximates as closely as possible 65 * the space used by the new block. 66 * 67 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 68 * by N. Megiddo & D. Modha, FAST 2003 69 */ 70 71 /* 72 * The locking model: 73 * 74 * A new reference to a cache buffer can be obtained in two 75 * ways: 1) via a hash table lookup using the DVA as a key, 76 * or 2) via one of the ARC lists. The arc_read() interface 77 * uses method 1, while the internal arc algorithms for 78 * adjusting the cache use method 2. We therefor provide two 79 * types of locks: 1) the hash table lock array, and 2) the 80 * arc list locks. 81 * 82 * Buffers do not have their own mutexs, rather they rely on the 83 * hash table mutexs for the bulk of their protection (i.e. most 84 * fields in the arc_buf_hdr_t are protected by these mutexs). 85 * 86 * buf_hash_find() returns the appropriate mutex (held) when it 87 * locates the requested buffer in the hash table. It returns 88 * NULL for the mutex if the buffer was not in the table. 89 * 90 * buf_hash_remove() expects the appropriate hash mutex to be 91 * already held before it is invoked. 92 * 93 * Each arc state also has a mutex which is used to protect the 94 * buffer list associated with the state. When attempting to 95 * obtain a hash table lock while holding an arc list lock you 96 * must use: mutex_tryenter() to avoid deadlock. Also note that 97 * the active state mutex must be held before the ghost state mutex. 98 * 99 * Arc buffers may have an associated eviction callback function. 100 * This function will be invoked prior to removing the buffer (e.g. 101 * in arc_do_user_evicts()). Note however that the data associated 102 * with the buffer may be evicted prior to the callback. The callback 103 * must be made with *no locks held* (to prevent deadlock). Additionally, 104 * the users of callbacks must ensure that their private data is 105 * protected from simultaneous callbacks from arc_buf_evict() 106 * and arc_do_user_evicts(). 107 * 108 * Note that the majority of the performance stats are manipulated 109 * with atomic operations. 110 * 111 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 112 * 113 * - L2ARC buflist creation 114 * - L2ARC buflist eviction 115 * - L2ARC write completion, which walks L2ARC buflists 116 * - ARC header destruction, as it removes from L2ARC buflists 117 * - ARC header release, as it removes from L2ARC buflists 118 */ 119 120 #include <sys/spa.h> 121 #include <sys/zio.h> 122 #include <sys/zfs_context.h> 123 #include <sys/arc.h> 124 #include <sys/refcount.h> 125 #include <sys/vdev.h> 126 #include <sys/vdev_impl.h> 127 #ifdef _KERNEL 128 #include <sys/vmsystm.h> 129 #include <vm/anon.h> 130 #include <sys/fs/swapnode.h> 131 #include <sys/dnlc.h> 132 #endif 133 #include <sys/callb.h> 134 #include <sys/kstat.h> 135 #include <zfs_fletcher.h> 136 137 #ifdef __NetBSD__ 138 #include <uvm/uvm.h> 139 #ifndef btop 140 #define btop(x) ((x) / PAGE_SIZE) 141 #endif 142 #define needfree (uvmexp.free < uvmexp.freetarg ? uvmexp.freetarg : 0) 143 #define buf_init arc_buf_init 144 #define freemem uvmexp.free 145 #define minfree uvmexp.freemin 146 #define desfree uvmexp.freetarg 147 #define lotsfree (desfree * 2) 148 #define availrmem desfree 149 #define swapfs_minfree 0 150 #define swapfs_reserve 0 151 #undef curproc 152 #define curproc curlwp 153 #define proc_pageout uvm.pagedaemon_lwp 154 155 #define heap_arena kernel_map 156 #define VMEM_ALLOC 1 157 #define VMEM_FREE 2 158 static inline size_t 159 vmem_size(struct vm_map *map, int flag) 160 { 161 switch (flag) { 162 case VMEM_ALLOC: 163 return map->size; 164 case VMEM_FREE: 165 return vm_map_max(map) - vm_map_min(map) - map->size; 166 case VMEM_FREE|VMEM_ALLOC: 167 return vm_map_max(map) - vm_map_min(map); 168 default: 169 panic("vmem_size"); 170 } 171 } 172 static void *zio_arena; 173 174 #include <sys/callback.h> 175 /* Structures used for memory and kva space reclaim. */ 176 static struct callback_entry arc_kva_reclaim_entry; 177 178 #ifdef _KERNEL 179 static struct uvm_reclaim_hook arc_hook; 180 #endif 181 182 #endif /* __NetBSD__ */ 183 184 static kmutex_t arc_reclaim_thr_lock; 185 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 186 static uint8_t arc_thread_exit; 187 188 extern int zfs_write_limit_shift; 189 extern uint64_t zfs_write_limit_max; 190 extern kmutex_t zfs_write_limit_lock; 191 192 #define ARC_REDUCE_DNLC_PERCENT 3 193 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 194 195 typedef enum arc_reclaim_strategy { 196 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 197 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 198 } arc_reclaim_strategy_t; 199 200 /* number of seconds before growing cache again */ 201 static int arc_grow_retry = 60; 202 203 /* shift of arc_c for calculating both min and max arc_p */ 204 static int arc_p_min_shift = 4; 205 206 /* log2(fraction of arc to reclaim) */ 207 static int arc_shrink_shift = 5; 208 209 /* 210 * minimum lifespan of a prefetch block in clock ticks 211 * (initialized in arc_init()) 212 */ 213 static int arc_min_prefetch_lifespan; 214 215 static int arc_dead; 216 217 /* 218 * The arc has filled available memory and has now warmed up. 219 */ 220 static boolean_t arc_warm; 221 222 /* 223 * These tunables are for performance analysis. 224 */ 225 uint64_t zfs_arc_max; 226 uint64_t zfs_arc_min; 227 uint64_t zfs_arc_meta_limit = 0; 228 int zfs_arc_grow_retry = 0; 229 int zfs_arc_shrink_shift = 0; 230 int zfs_arc_p_min_shift = 0; 231 232 /* 233 * Note that buffers can be in one of 6 states: 234 * ARC_anon - anonymous (discussed below) 235 * ARC_mru - recently used, currently cached 236 * ARC_mru_ghost - recentely used, no longer in cache 237 * ARC_mfu - frequently used, currently cached 238 * ARC_mfu_ghost - frequently used, no longer in cache 239 * ARC_l2c_only - exists in L2ARC but not other states 240 * When there are no active references to the buffer, they are 241 * are linked onto a list in one of these arc states. These are 242 * the only buffers that can be evicted or deleted. Within each 243 * state there are multiple lists, one for meta-data and one for 244 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 245 * etc.) is tracked separately so that it can be managed more 246 * explicitly: favored over data, limited explicitly. 247 * 248 * Anonymous buffers are buffers that are not associated with 249 * a DVA. These are buffers that hold dirty block copies 250 * before they are written to stable storage. By definition, 251 * they are "ref'd" and are considered part of arc_mru 252 * that cannot be freed. Generally, they will aquire a DVA 253 * as they are written and migrate onto the arc_mru list. 254 * 255 * The ARC_l2c_only state is for buffers that are in the second 256 * level ARC but no longer in any of the ARC_m* lists. The second 257 * level ARC itself may also contain buffers that are in any of 258 * the ARC_m* states - meaning that a buffer can exist in two 259 * places. The reason for the ARC_l2c_only state is to keep the 260 * buffer header in the hash table, so that reads that hit the 261 * second level ARC benefit from these fast lookups. 262 */ 263 264 typedef struct arc_state { 265 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 266 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 267 uint64_t arcs_size; /* total amount of data in this state */ 268 kmutex_t arcs_mtx; 269 } arc_state_t; 270 271 /* The 6 states: */ 272 static arc_state_t ARC_anon; 273 static arc_state_t ARC_mru; 274 static arc_state_t ARC_mru_ghost; 275 static arc_state_t ARC_mfu; 276 static arc_state_t ARC_mfu_ghost; 277 static arc_state_t ARC_l2c_only; 278 279 typedef struct arc_stats { 280 kstat_named_t arcstat_hits; 281 kstat_named_t arcstat_misses; 282 kstat_named_t arcstat_demand_data_hits; 283 kstat_named_t arcstat_demand_data_misses; 284 kstat_named_t arcstat_demand_metadata_hits; 285 kstat_named_t arcstat_demand_metadata_misses; 286 kstat_named_t arcstat_prefetch_data_hits; 287 kstat_named_t arcstat_prefetch_data_misses; 288 kstat_named_t arcstat_prefetch_metadata_hits; 289 kstat_named_t arcstat_prefetch_metadata_misses; 290 kstat_named_t arcstat_mru_hits; 291 kstat_named_t arcstat_mru_ghost_hits; 292 kstat_named_t arcstat_mfu_hits; 293 kstat_named_t arcstat_mfu_ghost_hits; 294 kstat_named_t arcstat_deleted; 295 kstat_named_t arcstat_recycle_miss; 296 kstat_named_t arcstat_mutex_miss; 297 kstat_named_t arcstat_evict_skip; 298 kstat_named_t arcstat_evict_l2_cached; 299 kstat_named_t arcstat_evict_l2_eligible; 300 kstat_named_t arcstat_evict_l2_ineligible; 301 kstat_named_t arcstat_hash_elements; 302 kstat_named_t arcstat_hash_elements_max; 303 kstat_named_t arcstat_hash_collisions; 304 kstat_named_t arcstat_hash_chains; 305 kstat_named_t arcstat_hash_chain_max; 306 kstat_named_t arcstat_p; 307 kstat_named_t arcstat_c; 308 kstat_named_t arcstat_c_min; 309 kstat_named_t arcstat_c_max; 310 kstat_named_t arcstat_size; 311 kstat_named_t arcstat_hdr_size; 312 kstat_named_t arcstat_data_size; 313 kstat_named_t arcstat_other_size; 314 kstat_named_t arcstat_l2_hits; 315 kstat_named_t arcstat_l2_misses; 316 kstat_named_t arcstat_l2_feeds; 317 kstat_named_t arcstat_l2_rw_clash; 318 kstat_named_t arcstat_l2_read_bytes; 319 kstat_named_t arcstat_l2_write_bytes; 320 kstat_named_t arcstat_l2_writes_sent; 321 kstat_named_t arcstat_l2_writes_done; 322 kstat_named_t arcstat_l2_writes_error; 323 kstat_named_t arcstat_l2_writes_hdr_miss; 324 kstat_named_t arcstat_l2_evict_lock_retry; 325 kstat_named_t arcstat_l2_evict_reading; 326 kstat_named_t arcstat_l2_free_on_write; 327 kstat_named_t arcstat_l2_abort_lowmem; 328 kstat_named_t arcstat_l2_cksum_bad; 329 kstat_named_t arcstat_l2_io_error; 330 kstat_named_t arcstat_l2_size; 331 kstat_named_t arcstat_l2_hdr_size; 332 kstat_named_t arcstat_memory_throttle_count; 333 } arc_stats_t; 334 335 static arc_stats_t arc_stats = { 336 { "hits", KSTAT_DATA_UINT64 }, 337 { "misses", KSTAT_DATA_UINT64 }, 338 { "demand_data_hits", KSTAT_DATA_UINT64 }, 339 { "demand_data_misses", KSTAT_DATA_UINT64 }, 340 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 341 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 342 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 343 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 344 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 345 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 346 { "mru_hits", KSTAT_DATA_UINT64 }, 347 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 348 { "mfu_hits", KSTAT_DATA_UINT64 }, 349 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 350 { "deleted", KSTAT_DATA_UINT64 }, 351 { "recycle_miss", KSTAT_DATA_UINT64 }, 352 { "mutex_miss", KSTAT_DATA_UINT64 }, 353 { "evict_skip", KSTAT_DATA_UINT64 }, 354 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 355 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 356 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 357 { "hash_elements", KSTAT_DATA_UINT64 }, 358 { "hash_elements_max", KSTAT_DATA_UINT64 }, 359 { "hash_collisions", KSTAT_DATA_UINT64 }, 360 { "hash_chains", KSTAT_DATA_UINT64 }, 361 { "hash_chain_max", KSTAT_DATA_UINT64 }, 362 { "p", KSTAT_DATA_UINT64 }, 363 { "c", KSTAT_DATA_UINT64 }, 364 { "c_min", KSTAT_DATA_UINT64 }, 365 { "c_max", KSTAT_DATA_UINT64 }, 366 { "size", KSTAT_DATA_UINT64 }, 367 { "hdr_size", KSTAT_DATA_UINT64 }, 368 { "data_size", KSTAT_DATA_UINT64 }, 369 { "other_size", KSTAT_DATA_UINT64 }, 370 { "l2_hits", KSTAT_DATA_UINT64 }, 371 { "l2_misses", KSTAT_DATA_UINT64 }, 372 { "l2_feeds", KSTAT_DATA_UINT64 }, 373 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 374 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 375 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 376 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 377 { "l2_writes_done", KSTAT_DATA_UINT64 }, 378 { "l2_writes_error", KSTAT_DATA_UINT64 }, 379 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 380 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 381 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 382 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 383 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 384 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 385 { "l2_io_error", KSTAT_DATA_UINT64 }, 386 { "l2_size", KSTAT_DATA_UINT64 }, 387 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 388 { "memory_throttle_count", KSTAT_DATA_UINT64 } 389 }; 390 391 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 392 393 #define ARCSTAT_INCR(stat, val) \ 394 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 395 396 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 397 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 398 399 #define ARCSTAT_MAX(stat, val) { \ 400 uint64_t m; \ 401 while ((val) > (m = arc_stats.stat.value.ui64) && \ 402 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 403 continue; \ 404 } 405 406 #define ARCSTAT_MAXSTAT(stat) \ 407 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 408 409 /* 410 * We define a macro to allow ARC hits/misses to be easily broken down by 411 * two separate conditions, giving a total of four different subtypes for 412 * each of hits and misses (so eight statistics total). 413 */ 414 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 415 if (cond1) { \ 416 if (cond2) { \ 417 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 418 } else { \ 419 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 420 } \ 421 } else { \ 422 if (cond2) { \ 423 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 424 } else { \ 425 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 426 } \ 427 } 428 429 kstat_t *arc_ksp; 430 static arc_state_t *arc_anon; 431 static arc_state_t *arc_mru; 432 static arc_state_t *arc_mru_ghost; 433 static arc_state_t *arc_mfu; 434 static arc_state_t *arc_mfu_ghost; 435 static arc_state_t *arc_l2c_only; 436 437 /* 438 * There are several ARC variables that are critical to export as kstats -- 439 * but we don't want to have to grovel around in the kstat whenever we wish to 440 * manipulate them. For these variables, we therefore define them to be in 441 * terms of the statistic variable. This assures that we are not introducing 442 * the possibility of inconsistency by having shadow copies of the variables, 443 * while still allowing the code to be readable. 444 */ 445 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 446 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 447 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 448 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 449 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 450 451 static int arc_no_grow; /* Don't try to grow cache size */ 452 static uint64_t arc_tempreserve; 453 static uint64_t arc_loaned_bytes; 454 static uint64_t arc_meta_used; 455 static uint64_t arc_meta_limit; 456 static uint64_t arc_meta_max = 0; 457 458 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 459 460 typedef struct arc_callback arc_callback_t; 461 462 struct arc_callback { 463 void *acb_private; 464 arc_done_func_t *acb_done; 465 arc_buf_t *acb_buf; 466 zio_t *acb_zio_dummy; 467 arc_callback_t *acb_next; 468 }; 469 470 typedef struct arc_write_callback arc_write_callback_t; 471 472 struct arc_write_callback { 473 void *awcb_private; 474 arc_done_func_t *awcb_ready; 475 arc_done_func_t *awcb_done; 476 arc_buf_t *awcb_buf; 477 }; 478 479 struct arc_buf_hdr { 480 /* protected by hash lock */ 481 dva_t b_dva; 482 uint64_t b_birth; 483 uint64_t b_cksum0; 484 485 kmutex_t b_freeze_lock; 486 zio_cksum_t *b_freeze_cksum; 487 488 arc_buf_hdr_t *b_hash_next; 489 arc_buf_t *b_buf; 490 uint32_t b_flags; 491 uint32_t b_datacnt; 492 493 arc_callback_t *b_acb; 494 kcondvar_t b_cv; 495 496 /* immutable */ 497 arc_buf_contents_t b_type; 498 uint64_t b_size; 499 uint64_t b_spa; 500 501 /* protected by arc state mutex */ 502 arc_state_t *b_state; 503 list_node_t b_arc_node; 504 505 /* updated atomically */ 506 clock_t b_arc_access; 507 508 /* self protecting */ 509 refcount_t b_refcnt; 510 511 l2arc_buf_hdr_t *b_l2hdr; 512 list_node_t b_l2node; 513 }; 514 515 static arc_buf_t *arc_eviction_list; 516 static kmutex_t arc_eviction_mtx; 517 static arc_buf_hdr_t arc_eviction_hdr; 518 static void arc_get_data_buf(arc_buf_t *buf); 519 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 520 static int arc_evict_needed(arc_buf_contents_t type); 521 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 522 523 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 524 525 #define GHOST_STATE(state) \ 526 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 527 (state) == arc_l2c_only) 528 529 /* 530 * Private ARC flags. These flags are private ARC only flags that will show up 531 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 532 * be passed in as arc_flags in things like arc_read. However, these flags 533 * should never be passed and should only be set by ARC code. When adding new 534 * public flags, make sure not to smash the private ones. 535 */ 536 537 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 538 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 539 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 540 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 541 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 542 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 543 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 544 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 545 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 546 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 547 548 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 549 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 550 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 551 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 552 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 553 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 554 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 555 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 556 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 557 (hdr)->b_l2hdr != NULL) 558 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 559 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 560 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 561 562 /* 563 * Other sizes 564 */ 565 566 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 567 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 568 569 /* 570 * Hash table routines 571 */ 572 573 #define HT_LOCK_PAD 64 574 575 struct ht_lock { 576 kmutex_t ht_lock; 577 #ifdef _KERNEL 578 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 579 #endif 580 }; 581 582 #define BUF_LOCKS 256 583 typedef struct buf_hash_table { 584 uint64_t ht_mask; 585 arc_buf_hdr_t **ht_table; 586 struct ht_lock ht_locks[BUF_LOCKS]; 587 } buf_hash_table_t; 588 589 static buf_hash_table_t buf_hash_table; 590 591 #define BUF_HASH_INDEX(spa, dva, birth) \ 592 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 593 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 594 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 595 #define HDR_LOCK(buf) \ 596 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 597 598 uint64_t zfs_crc64_table[256]; 599 600 /* 601 * Level 2 ARC 602 */ 603 604 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 605 #define L2ARC_HEADROOM 2 /* num of writes */ 606 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 607 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 608 609 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 610 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 611 612 /* 613 * L2ARC Performance Tunables 614 */ 615 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 616 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 617 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 618 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 619 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 620 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 621 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 622 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 623 624 /* 625 * L2ARC Internals 626 */ 627 typedef struct l2arc_dev { 628 vdev_t *l2ad_vdev; /* vdev */ 629 spa_t *l2ad_spa; /* spa */ 630 uint64_t l2ad_hand; /* next write location */ 631 uint64_t l2ad_write; /* desired write size, bytes */ 632 uint64_t l2ad_boost; /* warmup write boost, bytes */ 633 uint64_t l2ad_start; /* first addr on device */ 634 uint64_t l2ad_end; /* last addr on device */ 635 uint64_t l2ad_evict; /* last addr eviction reached */ 636 boolean_t l2ad_first; /* first sweep through */ 637 boolean_t l2ad_writing; /* currently writing */ 638 list_t *l2ad_buflist; /* buffer list */ 639 list_node_t l2ad_node; /* device list node */ 640 } l2arc_dev_t; 641 642 static list_t L2ARC_dev_list; /* device list */ 643 static list_t *l2arc_dev_list; /* device list pointer */ 644 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 645 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 646 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 647 static list_t L2ARC_free_on_write; /* free after write buf list */ 648 static list_t *l2arc_free_on_write; /* free after write list ptr */ 649 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 650 static uint64_t l2arc_ndev; /* number of devices */ 651 652 typedef struct l2arc_read_callback { 653 arc_buf_t *l2rcb_buf; /* read buffer */ 654 spa_t *l2rcb_spa; /* spa */ 655 blkptr_t l2rcb_bp; /* original blkptr */ 656 zbookmark_t l2rcb_zb; /* original bookmark */ 657 int l2rcb_flags; /* original flags */ 658 } l2arc_read_callback_t; 659 660 typedef struct l2arc_write_callback { 661 l2arc_dev_t *l2wcb_dev; /* device info */ 662 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 663 } l2arc_write_callback_t; 664 665 struct l2arc_buf_hdr { 666 /* protected by arc_buf_hdr mutex */ 667 l2arc_dev_t *b_dev; /* L2ARC device */ 668 uint64_t b_daddr; /* disk address, offset byte */ 669 }; 670 671 typedef struct l2arc_data_free { 672 /* protected by l2arc_free_on_write_mtx */ 673 void *l2df_data; 674 size_t l2df_size; 675 void (*l2df_func)(void *, size_t); 676 list_node_t l2df_list_node; 677 } l2arc_data_free_t; 678 679 static kmutex_t l2arc_feed_thr_lock; 680 static kcondvar_t l2arc_feed_thr_cv; 681 static uint8_t l2arc_thread_exit; 682 683 static void l2arc_read_done(zio_t *zio); 684 static void l2arc_hdr_stat_add(void); 685 static void l2arc_hdr_stat_remove(void); 686 687 static uint64_t 688 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 689 { 690 uint8_t *vdva = (uint8_t *)dva; 691 uint64_t crc = -1ULL; 692 int i; 693 694 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 695 696 for (i = 0; i < sizeof (dva_t); i++) 697 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 698 699 crc ^= (spa>>8) ^ birth; 700 701 return (crc); 702 } 703 704 #define BUF_EMPTY(buf) \ 705 ((buf)->b_dva.dva_word[0] == 0 && \ 706 (buf)->b_dva.dva_word[1] == 0 && \ 707 (buf)->b_birth == 0) 708 709 #define BUF_EQUAL(spa, dva, birth, buf) \ 710 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 711 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 712 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 713 714 static arc_buf_hdr_t * 715 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 716 { 717 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 718 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 719 arc_buf_hdr_t *buf; 720 721 mutex_enter(hash_lock); 722 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 723 buf = buf->b_hash_next) { 724 if (BUF_EQUAL(spa, dva, birth, buf)) { 725 *lockp = hash_lock; 726 return (buf); 727 } 728 } 729 mutex_exit(hash_lock); 730 *lockp = NULL; 731 return (NULL); 732 } 733 734 /* 735 * Insert an entry into the hash table. If there is already an element 736 * equal to elem in the hash table, then the already existing element 737 * will be returned and the new element will not be inserted. 738 * Otherwise returns NULL. 739 */ 740 static arc_buf_hdr_t * 741 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 742 { 743 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 744 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 745 arc_buf_hdr_t *fbuf; 746 uint32_t i; 747 748 ASSERT(!HDR_IN_HASH_TABLE(buf)); 749 *lockp = hash_lock; 750 mutex_enter(hash_lock); 751 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 752 fbuf = fbuf->b_hash_next, i++) { 753 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 754 return (fbuf); 755 } 756 757 buf->b_hash_next = buf_hash_table.ht_table[idx]; 758 buf_hash_table.ht_table[idx] = buf; 759 buf->b_flags |= ARC_IN_HASH_TABLE; 760 761 /* collect some hash table performance data */ 762 if (i > 0) { 763 ARCSTAT_BUMP(arcstat_hash_collisions); 764 if (i == 1) 765 ARCSTAT_BUMP(arcstat_hash_chains); 766 767 ARCSTAT_MAX(arcstat_hash_chain_max, i); 768 } 769 770 ARCSTAT_BUMP(arcstat_hash_elements); 771 ARCSTAT_MAXSTAT(arcstat_hash_elements); 772 773 return (NULL); 774 } 775 776 static void 777 buf_hash_remove(arc_buf_hdr_t *buf) 778 { 779 arc_buf_hdr_t *fbuf, **bufp; 780 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 781 782 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 783 ASSERT(HDR_IN_HASH_TABLE(buf)); 784 785 bufp = &buf_hash_table.ht_table[idx]; 786 while ((fbuf = *bufp) != buf) { 787 ASSERT(fbuf != NULL); 788 bufp = &fbuf->b_hash_next; 789 } 790 *bufp = buf->b_hash_next; 791 buf->b_hash_next = NULL; 792 buf->b_flags &= ~ARC_IN_HASH_TABLE; 793 794 /* collect some hash table performance data */ 795 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 796 797 if (buf_hash_table.ht_table[idx] && 798 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 799 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 800 } 801 802 /* 803 * Global data structures and functions for the buf kmem cache. 804 */ 805 static kmem_cache_t *hdr_cache; 806 static kmem_cache_t *buf_cache; 807 808 static void 809 buf_fini(void) 810 { 811 int i; 812 813 kmem_free(buf_hash_table.ht_table, 814 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 815 for (i = 0; i < BUF_LOCKS; i++) 816 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 817 kmem_cache_destroy(hdr_cache); 818 kmem_cache_destroy(buf_cache); 819 } 820 821 /* 822 * Constructor callback - called when the cache is empty 823 * and a new buf is requested. 824 */ 825 /* ARGSUSED */ 826 static int 827 hdr_cons(void *vbuf, void *unused, int kmflag) 828 { 829 arc_buf_hdr_t *buf = unused; 830 831 bzero(buf, sizeof (arc_buf_hdr_t)); 832 refcount_create(&buf->b_refcnt); 833 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 834 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 835 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 836 837 return (0); 838 } 839 840 /* ARGSUSED */ 841 static int 842 buf_cons(void *vbuf, void *unused, int kmflag) 843 { 844 arc_buf_t *buf = unused; 845 846 bzero(buf, sizeof (arc_buf_t)); 847 rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL); 848 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 849 850 return (0); 851 } 852 853 /* 854 * Destructor callback - called when a cached buf is 855 * no longer required. 856 */ 857 /* ARGSUSED */ 858 static void 859 hdr_dest(void *vbuf, void *unused) 860 { 861 arc_buf_hdr_t *buf = unused; 862 863 ASSERT(BUF_EMPTY(buf)); 864 refcount_destroy(&buf->b_refcnt); 865 cv_destroy(&buf->b_cv); 866 mutex_destroy(&buf->b_freeze_lock); 867 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 868 } 869 870 /* ARGSUSED */ 871 static void 872 buf_dest(void *vbuf, void *unused) 873 { 874 arc_buf_t *buf = unused; 875 876 rw_destroy(&buf->b_lock); 877 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 878 } 879 880 /* 881 * Reclaim callback -- invoked when memory is low. 882 */ 883 /* ARGSUSED */ 884 static void 885 hdr_recl(void *unused) 886 { 887 dprintf("hdr_recl called\n"); 888 /* 889 * umem calls the reclaim func when we destroy the buf cache, 890 * which is after we do arc_fini(). 891 */ 892 if (!arc_dead) 893 cv_signal(&arc_reclaim_thr_cv); 894 } 895 896 static void 897 buf_init(void) 898 { 899 uint64_t *ct; 900 uint64_t hsize = 1ULL << 12; 901 int i, j; 902 903 /* 904 * The hash table is big enough to fill all of physical memory 905 * with an average 64K block size. The table will take up 906 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 907 */ 908 while (hsize * 65536 < (uint64_t)physmem * PAGESIZE) 909 hsize <<= 1; 910 retry: 911 buf_hash_table.ht_mask = hsize - 1; 912 buf_hash_table.ht_table = 913 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 914 if (buf_hash_table.ht_table == NULL) { 915 ASSERT(hsize > (1ULL << 8)); 916 hsize >>= 1; 917 goto retry; 918 } 919 920 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 921 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 922 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 923 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 924 925 for (i = 0; i < 256; i++) 926 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 927 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 928 929 for (i = 0; i < BUF_LOCKS; i++) { 930 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 931 NULL, MUTEX_DEFAULT, NULL); 932 } 933 } 934 935 #define ARC_MINTIME (hz>>4) /* 62 ms */ 936 937 static void 938 arc_cksum_verify(arc_buf_t *buf) 939 { 940 zio_cksum_t zc; 941 942 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 943 return; 944 945 mutex_enter(&buf->b_hdr->b_freeze_lock); 946 if (buf->b_hdr->b_freeze_cksum == NULL || 947 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 948 mutex_exit(&buf->b_hdr->b_freeze_lock); 949 return; 950 } 951 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 952 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 953 panic("buffer modified while frozen!"); 954 mutex_exit(&buf->b_hdr->b_freeze_lock); 955 } 956 957 static int 958 arc_cksum_equal(arc_buf_t *buf) 959 { 960 zio_cksum_t zc; 961 int equal; 962 963 mutex_enter(&buf->b_hdr->b_freeze_lock); 964 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 965 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 966 mutex_exit(&buf->b_hdr->b_freeze_lock); 967 968 return (equal); 969 } 970 971 static void 972 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 973 { 974 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 975 return; 976 977 mutex_enter(&buf->b_hdr->b_freeze_lock); 978 if (buf->b_hdr->b_freeze_cksum != NULL) { 979 mutex_exit(&buf->b_hdr->b_freeze_lock); 980 return; 981 } 982 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 983 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 984 buf->b_hdr->b_freeze_cksum); 985 mutex_exit(&buf->b_hdr->b_freeze_lock); 986 } 987 988 void 989 arc_buf_thaw(arc_buf_t *buf) 990 { 991 if (zfs_flags & ZFS_DEBUG_MODIFY) { 992 if (buf->b_hdr->b_state != arc_anon) 993 panic("modifying non-anon buffer!"); 994 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 995 panic("modifying buffer while i/o in progress!"); 996 arc_cksum_verify(buf); 997 } 998 999 mutex_enter(&buf->b_hdr->b_freeze_lock); 1000 if (buf->b_hdr->b_freeze_cksum != NULL) { 1001 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1002 buf->b_hdr->b_freeze_cksum = NULL; 1003 } 1004 mutex_exit(&buf->b_hdr->b_freeze_lock); 1005 } 1006 1007 void 1008 arc_buf_freeze(arc_buf_t *buf) 1009 { 1010 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1011 return; 1012 1013 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1014 buf->b_hdr->b_state == arc_anon); 1015 arc_cksum_compute(buf, B_FALSE); 1016 } 1017 1018 static void 1019 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1020 { 1021 ASSERT(MUTEX_HELD(hash_lock)); 1022 1023 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1024 (ab->b_state != arc_anon)) { 1025 uint64_t delta = ab->b_size * ab->b_datacnt; 1026 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1027 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1028 1029 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1030 mutex_enter(&ab->b_state->arcs_mtx); 1031 ASSERT(list_link_active(&ab->b_arc_node)); 1032 list_remove(list, ab); 1033 if (GHOST_STATE(ab->b_state)) { 1034 ASSERT3U(ab->b_datacnt, ==, 0); 1035 ASSERT3P(ab->b_buf, ==, NULL); 1036 delta = ab->b_size; 1037 } 1038 ASSERT(delta > 0); 1039 ASSERT3U(*size, >=, delta); 1040 atomic_add_64(size, -delta); 1041 mutex_exit(&ab->b_state->arcs_mtx); 1042 /* remove the prefetch flag if we get a reference */ 1043 if (ab->b_flags & ARC_PREFETCH) 1044 ab->b_flags &= ~ARC_PREFETCH; 1045 } 1046 } 1047 1048 static int 1049 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1050 { 1051 int cnt; 1052 arc_state_t *state = ab->b_state; 1053 1054 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1055 ASSERT(!GHOST_STATE(state)); 1056 1057 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1058 (state != arc_anon)) { 1059 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1060 1061 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1062 mutex_enter(&state->arcs_mtx); 1063 ASSERT(!list_link_active(&ab->b_arc_node)); 1064 list_insert_head(&state->arcs_list[ab->b_type], ab); 1065 ASSERT(ab->b_datacnt > 0); 1066 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1067 mutex_exit(&state->arcs_mtx); 1068 } 1069 return (cnt); 1070 } 1071 1072 /* 1073 * Move the supplied buffer to the indicated state. The mutex 1074 * for the buffer must be held by the caller. 1075 */ 1076 static void 1077 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1078 { 1079 arc_state_t *old_state = ab->b_state; 1080 int64_t refcnt = refcount_count(&ab->b_refcnt); 1081 uint64_t from_delta, to_delta; 1082 1083 ASSERT(MUTEX_HELD(hash_lock)); 1084 ASSERT(new_state != old_state); 1085 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1086 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1087 ASSERT(ab->b_datacnt <= 1 || new_state != arc_anon); 1088 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1089 1090 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1091 1092 /* 1093 * If this buffer is evictable, transfer it from the 1094 * old state list to the new state list. 1095 */ 1096 if (refcnt == 0) { 1097 if (old_state != arc_anon) { 1098 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1099 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1100 1101 if (use_mutex) 1102 mutex_enter(&old_state->arcs_mtx); 1103 1104 ASSERT(list_link_active(&ab->b_arc_node)); 1105 list_remove(&old_state->arcs_list[ab->b_type], ab); 1106 1107 /* 1108 * If prefetching out of the ghost cache, 1109 * we will have a non-null datacnt. 1110 */ 1111 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1112 /* ghost elements have a ghost size */ 1113 ASSERT(ab->b_buf == NULL); 1114 from_delta = ab->b_size; 1115 } 1116 ASSERT3U(*size, >=, from_delta); 1117 atomic_add_64(size, -from_delta); 1118 1119 if (use_mutex) 1120 mutex_exit(&old_state->arcs_mtx); 1121 } 1122 if (new_state != arc_anon) { 1123 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1124 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1125 1126 if (use_mutex) 1127 mutex_enter(&new_state->arcs_mtx); 1128 1129 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1130 1131 /* ghost elements have a ghost size */ 1132 if (GHOST_STATE(new_state)) { 1133 ASSERT(ab->b_datacnt == 0); 1134 ASSERT(ab->b_buf == NULL); 1135 to_delta = ab->b_size; 1136 } 1137 atomic_add_64(size, to_delta); 1138 1139 if (use_mutex) 1140 mutex_exit(&new_state->arcs_mtx); 1141 } 1142 } 1143 1144 ASSERT(!BUF_EMPTY(ab)); 1145 if (new_state == arc_anon) { 1146 buf_hash_remove(ab); 1147 } 1148 1149 /* adjust state sizes */ 1150 if (to_delta) 1151 atomic_add_64(&new_state->arcs_size, to_delta); 1152 if (from_delta) { 1153 ASSERT3U(old_state->arcs_size, >=, from_delta); 1154 atomic_add_64(&old_state->arcs_size, -from_delta); 1155 } 1156 ab->b_state = new_state; 1157 1158 /* adjust l2arc hdr stats */ 1159 if (new_state == arc_l2c_only) 1160 l2arc_hdr_stat_add(); 1161 else if (old_state == arc_l2c_only) 1162 l2arc_hdr_stat_remove(); 1163 } 1164 1165 void 1166 arc_space_consume(uint64_t space, arc_space_type_t type) 1167 { 1168 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1169 1170 switch (type) { 1171 case ARC_SPACE_DATA: 1172 ARCSTAT_INCR(arcstat_data_size, space); 1173 break; 1174 case ARC_SPACE_OTHER: 1175 ARCSTAT_INCR(arcstat_other_size, space); 1176 break; 1177 case ARC_SPACE_HDRS: 1178 ARCSTAT_INCR(arcstat_hdr_size, space); 1179 break; 1180 case ARC_SPACE_L2HDRS: 1181 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1182 break; 1183 } 1184 1185 atomic_add_64(&arc_meta_used, space); 1186 atomic_add_64(&arc_size, space); 1187 } 1188 1189 void 1190 arc_space_return(uint64_t space, arc_space_type_t type) 1191 { 1192 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1193 1194 switch (type) { 1195 case ARC_SPACE_DATA: 1196 ARCSTAT_INCR(arcstat_data_size, -space); 1197 break; 1198 case ARC_SPACE_OTHER: 1199 ARCSTAT_INCR(arcstat_other_size, -space); 1200 break; 1201 case ARC_SPACE_HDRS: 1202 ARCSTAT_INCR(arcstat_hdr_size, -space); 1203 break; 1204 case ARC_SPACE_L2HDRS: 1205 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1206 break; 1207 } 1208 1209 ASSERT(arc_meta_used >= space); 1210 if (arc_meta_max < arc_meta_used) 1211 arc_meta_max = arc_meta_used; 1212 atomic_add_64(&arc_meta_used, -space); 1213 ASSERT(arc_size >= space); 1214 atomic_add_64(&arc_size, -space); 1215 } 1216 1217 void * 1218 arc_data_buf_alloc(uint64_t size) 1219 { 1220 if (arc_evict_needed(ARC_BUFC_DATA)) 1221 cv_signal(&arc_reclaim_thr_cv); 1222 atomic_add_64(&arc_size, size); 1223 return (zio_data_buf_alloc(size)); 1224 } 1225 1226 void 1227 arc_data_buf_free(void *buf, uint64_t size) 1228 { 1229 zio_data_buf_free(buf, size); 1230 ASSERT(arc_size >= size); 1231 atomic_add_64(&arc_size, -size); 1232 } 1233 1234 arc_buf_t * 1235 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1236 { 1237 arc_buf_hdr_t *hdr; 1238 arc_buf_t *buf; 1239 1240 ASSERT3U(size, >, 0); 1241 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1242 ASSERT(BUF_EMPTY(hdr)); 1243 hdr->b_size = size; 1244 hdr->b_type = type; 1245 hdr->b_spa = spa_guid(spa); 1246 hdr->b_state = arc_anon; 1247 hdr->b_arc_access = 0; 1248 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1249 buf->b_hdr = hdr; 1250 buf->b_data = NULL; 1251 buf->b_efunc = NULL; 1252 buf->b_private = NULL; 1253 buf->b_next = NULL; 1254 hdr->b_buf = buf; 1255 arc_get_data_buf(buf); 1256 hdr->b_datacnt = 1; 1257 hdr->b_flags = 0; 1258 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1259 (void) refcount_add(&hdr->b_refcnt, tag); 1260 1261 return (buf); 1262 } 1263 1264 static char *arc_onloan_tag = "onloan"; 1265 1266 /* 1267 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1268 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1269 * buffers must be returned to the arc before they can be used by the DMU or 1270 * freed. 1271 */ 1272 arc_buf_t * 1273 arc_loan_buf(spa_t *spa, int size) 1274 { 1275 arc_buf_t *buf; 1276 1277 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1278 1279 atomic_add_64(&arc_loaned_bytes, size); 1280 return (buf); 1281 } 1282 1283 /* 1284 * Return a loaned arc buffer to the arc. 1285 */ 1286 void 1287 arc_return_buf(arc_buf_t *buf, void *tag) 1288 { 1289 arc_buf_hdr_t *hdr = buf->b_hdr; 1290 1291 ASSERT(buf->b_data != NULL); 1292 (void) refcount_add(&hdr->b_refcnt, tag); 1293 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1294 1295 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1296 } 1297 1298 /* Detach an arc_buf from a dbuf (tag) */ 1299 void 1300 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1301 { 1302 arc_buf_hdr_t *hdr; 1303 1304 rw_enter(&buf->b_lock, RW_WRITER); 1305 ASSERT(buf->b_data != NULL); 1306 hdr = buf->b_hdr; 1307 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1308 (void) refcount_remove(&hdr->b_refcnt, tag); 1309 buf->b_efunc = NULL; 1310 buf->b_private = NULL; 1311 1312 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1313 rw_exit(&buf->b_lock); 1314 } 1315 1316 static arc_buf_t * 1317 arc_buf_clone(arc_buf_t *from) 1318 { 1319 arc_buf_t *buf; 1320 arc_buf_hdr_t *hdr = from->b_hdr; 1321 uint64_t size = hdr->b_size; 1322 1323 ASSERT(hdr->b_state != arc_anon); 1324 1325 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1326 buf->b_hdr = hdr; 1327 buf->b_data = NULL; 1328 buf->b_efunc = NULL; 1329 buf->b_private = NULL; 1330 buf->b_next = hdr->b_buf; 1331 hdr->b_buf = buf; 1332 arc_get_data_buf(buf); 1333 bcopy(from->b_data, buf->b_data, size); 1334 hdr->b_datacnt += 1; 1335 return (buf); 1336 } 1337 1338 void 1339 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1340 { 1341 arc_buf_hdr_t *hdr; 1342 kmutex_t *hash_lock; 1343 1344 /* 1345 * Check to see if this buffer is evicted. Callers 1346 * must verify b_data != NULL to know if the add_ref 1347 * was successful. 1348 */ 1349 rw_enter(&buf->b_lock, RW_READER); 1350 if (buf->b_data == NULL) { 1351 rw_exit(&buf->b_lock); 1352 return; 1353 } 1354 hdr = buf->b_hdr; 1355 ASSERT(hdr != NULL); 1356 hash_lock = HDR_LOCK(hdr); 1357 mutex_enter(hash_lock); 1358 rw_exit(&buf->b_lock); 1359 1360 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1361 add_reference(hdr, hash_lock, tag); 1362 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1363 arc_access(hdr, hash_lock); 1364 mutex_exit(hash_lock); 1365 ARCSTAT_BUMP(arcstat_hits); 1366 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1367 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1368 data, metadata, hits); 1369 } 1370 1371 /* 1372 * Free the arc data buffer. If it is an l2arc write in progress, 1373 * the buffer is placed on l2arc_free_on_write to be freed later. 1374 */ 1375 static void 1376 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1377 void *data, size_t size) 1378 { 1379 if (HDR_L2_WRITING(hdr)) { 1380 l2arc_data_free_t *df; 1381 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1382 df->l2df_data = data; 1383 df->l2df_size = size; 1384 df->l2df_func = free_func; 1385 mutex_enter(&l2arc_free_on_write_mtx); 1386 list_insert_head(l2arc_free_on_write, df); 1387 mutex_exit(&l2arc_free_on_write_mtx); 1388 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1389 } else { 1390 free_func(data, size); 1391 } 1392 } 1393 1394 static void 1395 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1396 { 1397 arc_buf_t **bufp; 1398 1399 /* free up data associated with the buf */ 1400 if (buf->b_data) { 1401 arc_state_t *state = buf->b_hdr->b_state; 1402 uint64_t size = buf->b_hdr->b_size; 1403 arc_buf_contents_t type = buf->b_hdr->b_type; 1404 1405 arc_cksum_verify(buf); 1406 1407 if (!recycle) { 1408 if (type == ARC_BUFC_METADATA) { 1409 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1410 buf->b_data, size); 1411 arc_space_return(size, ARC_SPACE_DATA); 1412 } else { 1413 ASSERT(type == ARC_BUFC_DATA); 1414 arc_buf_data_free(buf->b_hdr, 1415 zio_data_buf_free, buf->b_data, size); 1416 ARCSTAT_INCR(arcstat_data_size, -size); 1417 atomic_add_64(&arc_size, -size); 1418 } 1419 } 1420 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1421 uint64_t *cnt = &state->arcs_lsize[type]; 1422 1423 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1424 ASSERT(state != arc_anon); 1425 1426 ASSERT3U(*cnt, >=, size); 1427 atomic_add_64(cnt, -size); 1428 } 1429 ASSERT3U(state->arcs_size, >=, size); 1430 atomic_add_64(&state->arcs_size, -size); 1431 buf->b_data = NULL; 1432 ASSERT(buf->b_hdr->b_datacnt > 0); 1433 buf->b_hdr->b_datacnt -= 1; 1434 } 1435 1436 /* only remove the buf if requested */ 1437 if (!all) 1438 return; 1439 1440 /* remove the buf from the hdr list */ 1441 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1442 continue; 1443 *bufp = buf->b_next; 1444 1445 ASSERT(buf->b_efunc == NULL); 1446 1447 /* clean up the buf */ 1448 buf->b_hdr = NULL; 1449 kmem_cache_free(buf_cache, buf); 1450 } 1451 1452 static void 1453 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1454 { 1455 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1456 ASSERT3P(hdr->b_state, ==, arc_anon); 1457 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1458 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1459 1460 if (l2hdr != NULL) { 1461 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1462 /* 1463 * To prevent arc_free() and l2arc_evict() from 1464 * attempting to free the same buffer at the same time, 1465 * a FREE_IN_PROGRESS flag is given to arc_free() to 1466 * give it priority. l2arc_evict() can't destroy this 1467 * header while we are waiting on l2arc_buflist_mtx. 1468 * 1469 * The hdr may be removed from l2ad_buflist before we 1470 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1471 */ 1472 if (!buflist_held) { 1473 mutex_enter(&l2arc_buflist_mtx); 1474 l2hdr = hdr->b_l2hdr; 1475 } 1476 1477 if (l2hdr != NULL) { 1478 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1479 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1480 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1481 if (hdr->b_state == arc_l2c_only) 1482 l2arc_hdr_stat_remove(); 1483 hdr->b_l2hdr = NULL; 1484 } 1485 1486 if (!buflist_held) 1487 mutex_exit(&l2arc_buflist_mtx); 1488 } 1489 1490 if (!BUF_EMPTY(hdr)) { 1491 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1492 bzero(&hdr->b_dva, sizeof (dva_t)); 1493 hdr->b_birth = 0; 1494 hdr->b_cksum0 = 0; 1495 } 1496 while (hdr->b_buf) { 1497 arc_buf_t *buf = hdr->b_buf; 1498 1499 if (buf->b_efunc) { 1500 mutex_enter(&arc_eviction_mtx); 1501 rw_enter(&buf->b_lock, RW_WRITER); 1502 ASSERT(buf->b_hdr != NULL); 1503 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1504 hdr->b_buf = buf->b_next; 1505 buf->b_hdr = &arc_eviction_hdr; 1506 buf->b_next = arc_eviction_list; 1507 arc_eviction_list = buf; 1508 rw_exit(&buf->b_lock); 1509 mutex_exit(&arc_eviction_mtx); 1510 } else { 1511 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1512 } 1513 } 1514 if (hdr->b_freeze_cksum != NULL) { 1515 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1516 hdr->b_freeze_cksum = NULL; 1517 } 1518 1519 ASSERT(!list_link_active(&hdr->b_arc_node)); 1520 ASSERT3P(hdr->b_hash_next, ==, NULL); 1521 ASSERT3P(hdr->b_acb, ==, NULL); 1522 kmem_cache_free(hdr_cache, hdr); 1523 } 1524 1525 void 1526 arc_buf_free(arc_buf_t *buf, void *tag) 1527 { 1528 arc_buf_hdr_t *hdr = buf->b_hdr; 1529 int hashed = hdr->b_state != arc_anon; 1530 1531 ASSERT(buf->b_efunc == NULL); 1532 ASSERT(buf->b_data != NULL); 1533 1534 if (hashed) { 1535 kmutex_t *hash_lock = HDR_LOCK(hdr); 1536 1537 mutex_enter(hash_lock); 1538 (void) remove_reference(hdr, hash_lock, tag); 1539 if (hdr->b_datacnt > 1) { 1540 arc_buf_destroy(buf, FALSE, TRUE); 1541 } else { 1542 ASSERT(buf == hdr->b_buf); 1543 ASSERT(buf->b_efunc == NULL); 1544 hdr->b_flags |= ARC_BUF_AVAILABLE; 1545 } 1546 mutex_exit(hash_lock); 1547 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1548 int destroy_hdr; 1549 /* 1550 * We are in the middle of an async write. Don't destroy 1551 * this buffer unless the write completes before we finish 1552 * decrementing the reference count. 1553 */ 1554 mutex_enter(&arc_eviction_mtx); 1555 (void) remove_reference(hdr, NULL, tag); 1556 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1557 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1558 mutex_exit(&arc_eviction_mtx); 1559 if (destroy_hdr) 1560 arc_hdr_destroy(hdr); 1561 } else { 1562 if (remove_reference(hdr, NULL, tag) > 0) { 1563 ASSERT(HDR_IO_ERROR(hdr)); 1564 arc_buf_destroy(buf, FALSE, TRUE); 1565 } else { 1566 arc_hdr_destroy(hdr); 1567 } 1568 } 1569 } 1570 1571 int 1572 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1573 { 1574 arc_buf_hdr_t *hdr = buf->b_hdr; 1575 kmutex_t *hash_lock = HDR_LOCK(hdr); 1576 int no_callback = (buf->b_efunc == NULL); 1577 1578 if (hdr->b_state == arc_anon) { 1579 ASSERT(hdr->b_datacnt == 1); 1580 arc_buf_free(buf, tag); 1581 return (no_callback); 1582 } 1583 1584 mutex_enter(hash_lock); 1585 ASSERT(hdr->b_state != arc_anon); 1586 ASSERT(buf->b_data != NULL); 1587 1588 (void) remove_reference(hdr, hash_lock, tag); 1589 if (hdr->b_datacnt > 1) { 1590 if (no_callback) 1591 arc_buf_destroy(buf, FALSE, TRUE); 1592 } else if (no_callback) { 1593 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1594 ASSERT(buf->b_efunc == NULL); 1595 hdr->b_flags |= ARC_BUF_AVAILABLE; 1596 } 1597 ASSERT(no_callback || hdr->b_datacnt > 1 || 1598 refcount_is_zero(&hdr->b_refcnt)); 1599 mutex_exit(hash_lock); 1600 return (no_callback); 1601 } 1602 1603 int 1604 arc_buf_size(arc_buf_t *buf) 1605 { 1606 return (buf->b_hdr->b_size); 1607 } 1608 1609 /* 1610 * Evict buffers from list until we've removed the specified number of 1611 * bytes. Move the removed buffers to the appropriate evict state. 1612 * If the recycle flag is set, then attempt to "recycle" a buffer: 1613 * - look for a buffer to evict that is `bytes' long. 1614 * - return the data block from this buffer rather than freeing it. 1615 * This flag is used by callers that are trying to make space for a 1616 * new buffer in a full arc cache. 1617 * 1618 * This function makes a "best effort". It skips over any buffers 1619 * it can't get a hash_lock on, and so may not catch all candidates. 1620 * It may also return without evicting as much space as requested. 1621 */ 1622 static void * 1623 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1624 arc_buf_contents_t type) 1625 { 1626 arc_state_t *evicted_state; 1627 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1628 arc_buf_hdr_t *ab, *ab_prev = NULL; 1629 list_t *list = &state->arcs_list[type]; 1630 kmutex_t *hash_lock; 1631 boolean_t have_lock; 1632 void *stolen = NULL; 1633 1634 ASSERT(state == arc_mru || state == arc_mfu); 1635 1636 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1637 1638 mutex_enter(&state->arcs_mtx); 1639 mutex_enter(&evicted_state->arcs_mtx); 1640 1641 for (ab = list_tail(list); ab; ab = ab_prev) { 1642 ab_prev = list_prev(list, ab); 1643 /* prefetch buffers have a minimum lifespan */ 1644 if (HDR_IO_IN_PROGRESS(ab) || 1645 (spa && ab->b_spa != spa) || 1646 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1647 ddi_get_lbolt() - ab->b_arc_access < 1648 arc_min_prefetch_lifespan)) { 1649 skipped++; 1650 continue; 1651 } 1652 /* "lookahead" for better eviction candidate */ 1653 if (recycle && ab->b_size != bytes && 1654 ab_prev && ab_prev->b_size == bytes) 1655 continue; 1656 hash_lock = HDR_LOCK(ab); 1657 have_lock = MUTEX_HELD(hash_lock); 1658 if (have_lock || mutex_tryenter(hash_lock)) { 1659 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1660 ASSERT(ab->b_datacnt > 0); 1661 while (ab->b_buf) { 1662 arc_buf_t *buf = ab->b_buf; 1663 if (!rw_tryenter(&buf->b_lock, RW_WRITER)) { 1664 missed += 1; 1665 break; 1666 } 1667 if (buf->b_data) { 1668 bytes_evicted += ab->b_size; 1669 if (recycle && ab->b_type == type && 1670 ab->b_size == bytes && 1671 !HDR_L2_WRITING(ab)) { 1672 stolen = buf->b_data; 1673 recycle = FALSE; 1674 } 1675 } 1676 if (buf->b_efunc) { 1677 mutex_enter(&arc_eviction_mtx); 1678 arc_buf_destroy(buf, 1679 buf->b_data == stolen, FALSE); 1680 ab->b_buf = buf->b_next; 1681 buf->b_hdr = &arc_eviction_hdr; 1682 buf->b_next = arc_eviction_list; 1683 arc_eviction_list = buf; 1684 mutex_exit(&arc_eviction_mtx); 1685 rw_exit(&buf->b_lock); 1686 } else { 1687 rw_exit(&buf->b_lock); 1688 arc_buf_destroy(buf, 1689 buf->b_data == stolen, TRUE); 1690 } 1691 } 1692 1693 if (ab->b_l2hdr) { 1694 ARCSTAT_INCR(arcstat_evict_l2_cached, 1695 ab->b_size); 1696 } else { 1697 if (l2arc_write_eligible(ab->b_spa, ab)) { 1698 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1699 ab->b_size); 1700 } else { 1701 ARCSTAT_INCR( 1702 arcstat_evict_l2_ineligible, 1703 ab->b_size); 1704 } 1705 } 1706 1707 if (ab->b_datacnt == 0) { 1708 arc_change_state(evicted_state, ab, hash_lock); 1709 ASSERT(HDR_IN_HASH_TABLE(ab)); 1710 ab->b_flags |= ARC_IN_HASH_TABLE; 1711 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1712 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1713 } 1714 if (!have_lock) 1715 mutex_exit(hash_lock); 1716 if (bytes >= 0 && bytes_evicted >= bytes) 1717 break; 1718 } else { 1719 missed += 1; 1720 } 1721 } 1722 1723 mutex_exit(&evicted_state->arcs_mtx); 1724 mutex_exit(&state->arcs_mtx); 1725 1726 if (bytes_evicted < bytes) 1727 dprintf("only evicted %lld bytes from %x", 1728 (longlong_t)bytes_evicted, state); 1729 1730 if (skipped) 1731 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1732 1733 if (missed) 1734 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1735 1736 /* 1737 * We have just evicted some date into the ghost state, make 1738 * sure we also adjust the ghost state size if necessary. 1739 */ 1740 if (arc_no_grow && 1741 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1742 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1743 arc_mru_ghost->arcs_size - arc_c; 1744 1745 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1746 int64_t todelete = 1747 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1748 arc_evict_ghost(arc_mru_ghost, 0, todelete); 1749 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1750 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1751 arc_mru_ghost->arcs_size + 1752 arc_mfu_ghost->arcs_size - arc_c); 1753 arc_evict_ghost(arc_mfu_ghost, 0, todelete); 1754 } 1755 } 1756 1757 return (stolen); 1758 } 1759 1760 /* 1761 * Remove buffers from list until we've removed the specified number of 1762 * bytes. Destroy the buffers that are removed. 1763 */ 1764 static void 1765 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1766 { 1767 arc_buf_hdr_t *ab, *ab_prev; 1768 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1769 kmutex_t *hash_lock; 1770 uint64_t bytes_deleted = 0; 1771 uint64_t bufs_skipped = 0; 1772 boolean_t have_lock; 1773 1774 ASSERT(GHOST_STATE(state)); 1775 top: 1776 mutex_enter(&state->arcs_mtx); 1777 for (ab = list_tail(list); ab; ab = ab_prev) { 1778 ab_prev = list_prev(list, ab); 1779 if (spa && ab->b_spa != spa) 1780 continue; 1781 hash_lock = HDR_LOCK(ab); 1782 have_lock = MUTEX_HELD(hash_lock); 1783 if (have_lock || mutex_tryenter(hash_lock)) { 1784 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1785 ASSERT(ab->b_buf == NULL); 1786 ARCSTAT_BUMP(arcstat_deleted); 1787 bytes_deleted += ab->b_size; 1788 1789 if (ab->b_l2hdr != NULL) { 1790 /* 1791 * This buffer is cached on the 2nd Level ARC; 1792 * don't destroy the header. 1793 */ 1794 arc_change_state(arc_l2c_only, ab, hash_lock); 1795 if (!have_lock) 1796 mutex_exit(hash_lock); 1797 } else { 1798 arc_change_state(arc_anon, ab, hash_lock); 1799 if (!have_lock) 1800 mutex_exit(hash_lock); 1801 arc_hdr_destroy(ab); 1802 } 1803 1804 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1805 if (bytes >= 0 && bytes_deleted >= bytes) 1806 break; 1807 } else { 1808 if (bytes < 0) { 1809 mutex_exit(&state->arcs_mtx); 1810 mutex_enter(hash_lock); 1811 mutex_exit(hash_lock); 1812 goto top; 1813 } 1814 bufs_skipped += 1; 1815 } 1816 } 1817 mutex_exit(&state->arcs_mtx); 1818 1819 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1820 (bytes < 0 || bytes_deleted < bytes)) { 1821 list = &state->arcs_list[ARC_BUFC_METADATA]; 1822 goto top; 1823 } 1824 1825 if (bufs_skipped) { 1826 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1827 ASSERT(bytes >= 0); 1828 } 1829 1830 if (bytes_deleted < bytes) 1831 dprintf("only deleted %lld bytes from %p", 1832 (longlong_t)bytes_deleted, state); 1833 } 1834 1835 static void 1836 arc_adjust(void) 1837 { 1838 int64_t adjustment, delta; 1839 1840 /* 1841 * Adjust MRU size 1842 */ 1843 1844 adjustment = MIN(arc_size - arc_c, 1845 arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p); 1846 1847 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1848 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 1849 (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA); 1850 adjustment -= delta; 1851 } 1852 1853 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1854 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 1855 (void) arc_evict(arc_mru, 0, delta, FALSE, 1856 ARC_BUFC_METADATA); 1857 } 1858 1859 /* 1860 * Adjust MFU size 1861 */ 1862 1863 adjustment = arc_size - arc_c; 1864 1865 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1866 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 1867 (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA); 1868 adjustment -= delta; 1869 } 1870 1871 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1872 int64_t delta = MIN(adjustment, 1873 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 1874 (void) arc_evict(arc_mfu, 0, delta, FALSE, 1875 ARC_BUFC_METADATA); 1876 } 1877 1878 /* 1879 * Adjust ghost lists 1880 */ 1881 1882 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 1883 1884 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 1885 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 1886 arc_evict_ghost(arc_mru_ghost, 0, delta); 1887 } 1888 1889 adjustment = 1890 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 1891 1892 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 1893 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 1894 arc_evict_ghost(arc_mfu_ghost, 0, delta); 1895 } 1896 } 1897 1898 static void 1899 arc_do_user_evicts(void) 1900 { 1901 mutex_enter(&arc_eviction_mtx); 1902 while (arc_eviction_list != NULL) { 1903 arc_buf_t *buf = arc_eviction_list; 1904 arc_eviction_list = buf->b_next; 1905 rw_enter(&buf->b_lock, RW_WRITER); 1906 buf->b_hdr = NULL; 1907 rw_exit(&buf->b_lock); 1908 mutex_exit(&arc_eviction_mtx); 1909 1910 if (buf->b_efunc != NULL) 1911 VERIFY(buf->b_efunc(buf) == 0); 1912 1913 buf->b_efunc = NULL; 1914 buf->b_private = NULL; 1915 kmem_cache_free(buf_cache, buf); 1916 mutex_enter(&arc_eviction_mtx); 1917 } 1918 mutex_exit(&arc_eviction_mtx); 1919 } 1920 1921 /* 1922 * Flush all *evictable* data from the cache for the given spa. 1923 * NOTE: this will not touch "active" (i.e. referenced) data. 1924 */ 1925 void 1926 arc_flush(spa_t *spa) 1927 { 1928 uint64_t guid = 0; 1929 1930 if (spa) 1931 guid = spa_guid(spa); 1932 1933 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1934 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 1935 if (spa) 1936 break; 1937 } 1938 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1939 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 1940 if (spa) 1941 break; 1942 } 1943 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1944 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 1945 if (spa) 1946 break; 1947 } 1948 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1949 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 1950 if (spa) 1951 break; 1952 } 1953 1954 arc_evict_ghost(arc_mru_ghost, guid, -1); 1955 arc_evict_ghost(arc_mfu_ghost, guid, -1); 1956 1957 mutex_enter(&arc_reclaim_thr_lock); 1958 arc_do_user_evicts(); 1959 mutex_exit(&arc_reclaim_thr_lock); 1960 ASSERT(spa || arc_eviction_list == NULL); 1961 } 1962 1963 void 1964 arc_shrink(void) 1965 { 1966 if (arc_c > arc_c_min) { 1967 uint64_t to_free; 1968 1969 #ifdef _KERNEL 1970 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1971 #else 1972 to_free = arc_c >> arc_shrink_shift; 1973 #endif 1974 if (arc_c > arc_c_min + to_free) 1975 atomic_add_64(&arc_c, -to_free); 1976 else 1977 arc_c = arc_c_min; 1978 1979 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1980 if (arc_c > arc_size) 1981 arc_c = MAX(arc_size, arc_c_min); 1982 if (arc_p > arc_c) 1983 arc_p = (arc_c >> 1); 1984 ASSERT(arc_c >= arc_c_min); 1985 ASSERT((int64_t)arc_p >= 0); 1986 } 1987 1988 if (arc_size > arc_c) 1989 arc_adjust(); 1990 } 1991 1992 static int 1993 arc_reclaim_needed(void) 1994 { 1995 uint64_t extra; 1996 1997 #ifdef _KERNEL 1998 1999 if (needfree) 2000 return (1); 2001 2002 /* 2003 * take 'desfree' extra pages, so we reclaim sooner, rather than later 2004 */ 2005 extra = desfree; 2006 2007 /* 2008 * check that we're out of range of the pageout scanner. It starts to 2009 * schedule paging if freemem is less than lotsfree and needfree. 2010 * lotsfree is the high-water mark for pageout, and needfree is the 2011 * number of needed free pages. We add extra pages here to make sure 2012 * the scanner doesn't start up while we're freeing memory. 2013 */ 2014 if (freemem < lotsfree + needfree + extra) 2015 return (1); 2016 2017 /* 2018 * check to make sure that swapfs has enough space so that anon 2019 * reservations can still succeed. anon_resvmem() checks that the 2020 * availrmem is greater than swapfs_minfree, and the number of reserved 2021 * swap pages. We also add a bit of extra here just to prevent 2022 * circumstances from getting really dire. 2023 */ 2024 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2025 return (1); 2026 2027 #if defined(__i386) 2028 /* 2029 * If we're on an i386 platform, it's possible that we'll exhaust the 2030 * kernel heap space before we ever run out of available physical 2031 * memory. Most checks of the size of the heap_area compare against 2032 * tune.t_minarmem, which is the minimum available real memory that we 2033 * can have in the system. However, this is generally fixed at 25 pages 2034 * which is so low that it's useless. In this comparison, we seek to 2035 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2036 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2037 * free) 2038 */ 2039 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 2040 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 2041 return (1); 2042 #endif 2043 2044 #else 2045 if (spa_get_random(100) == 0) 2046 return (1); 2047 #endif 2048 return (0); 2049 } 2050 2051 static void 2052 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2053 { 2054 size_t i; 2055 kmem_cache_t *prev_cache = NULL; 2056 kmem_cache_t *prev_data_cache = NULL; 2057 extern kmem_cache_t *zio_buf_cache[]; 2058 extern kmem_cache_t *zio_data_buf_cache[]; 2059 2060 #ifdef _KERNEL 2061 if (arc_meta_used >= arc_meta_limit) { 2062 /* 2063 * We are exceeding our meta-data cache limit. 2064 * Purge some DNLC entries to release holds on meta-data. 2065 */ 2066 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2067 } 2068 #if defined(__i386) 2069 /* 2070 * Reclaim unused memory from all kmem caches. 2071 */ 2072 kmem_reap(); 2073 #endif 2074 #endif 2075 2076 /* 2077 * An aggressive reclamation will shrink the cache size as well as 2078 * reap free buffers from the arc kmem caches. 2079 */ 2080 if (strat == ARC_RECLAIM_AGGR) 2081 arc_shrink(); 2082 2083 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2084 if (zio_buf_cache[i] != prev_cache) { 2085 prev_cache = zio_buf_cache[i]; 2086 kmem_cache_reap_now(zio_buf_cache[i]); 2087 } 2088 if (zio_data_buf_cache[i] != prev_data_cache) { 2089 prev_data_cache = zio_data_buf_cache[i]; 2090 kmem_cache_reap_now(zio_data_buf_cache[i]); 2091 } 2092 } 2093 kmem_cache_reap_now(buf_cache); 2094 kmem_cache_reap_now(hdr_cache); 2095 } 2096 2097 static void 2098 arc_reclaim_thread(void) 2099 { 2100 clock_t growtime = 0; 2101 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2102 callb_cpr_t cpr; 2103 2104 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2105 2106 mutex_enter(&arc_reclaim_thr_lock); 2107 while (arc_thread_exit == 0) { 2108 if (arc_reclaim_needed()) { 2109 2110 if (arc_no_grow) { 2111 if (last_reclaim == ARC_RECLAIM_CONS) { 2112 last_reclaim = ARC_RECLAIM_AGGR; 2113 } else { 2114 last_reclaim = ARC_RECLAIM_CONS; 2115 } 2116 } else { 2117 arc_no_grow = TRUE; 2118 last_reclaim = ARC_RECLAIM_AGGR; 2119 membar_producer(); 2120 } 2121 2122 /* reset the growth delay for every reclaim */ 2123 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2124 2125 arc_kmem_reap_now(last_reclaim); 2126 arc_warm = B_TRUE; 2127 2128 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2129 arc_no_grow = FALSE; 2130 } 2131 2132 if (2 * arc_c < arc_size + 2133 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size) 2134 arc_adjust(); 2135 2136 if (arc_eviction_list != NULL) 2137 arc_do_user_evicts(); 2138 2139 /* block until needed, or one second, whichever is shorter */ 2140 CALLB_CPR_SAFE_BEGIN(&cpr); 2141 (void) cv_timedwait(&arc_reclaim_thr_cv, 2142 &arc_reclaim_thr_lock, (hz)); 2143 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2144 } 2145 2146 arc_thread_exit = 0; 2147 cv_broadcast(&arc_reclaim_thr_cv); 2148 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2149 thread_exit(); 2150 } 2151 2152 /* 2153 * Adapt arc info given the number of bytes we are trying to add and 2154 * the state that we are comming from. This function is only called 2155 * when we are adding new content to the cache. 2156 */ 2157 static void 2158 arc_adapt(int bytes, arc_state_t *state) 2159 { 2160 int mult; 2161 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2162 2163 if (state == arc_l2c_only) 2164 return; 2165 2166 ASSERT(bytes > 0); 2167 /* 2168 * Adapt the target size of the MRU list: 2169 * - if we just hit in the MRU ghost list, then increase 2170 * the target size of the MRU list. 2171 * - if we just hit in the MFU ghost list, then increase 2172 * the target size of the MFU list by decreasing the 2173 * target size of the MRU list. 2174 */ 2175 if (state == arc_mru_ghost) { 2176 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2177 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2178 2179 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2180 } else if (state == arc_mfu_ghost) { 2181 uint64_t delta; 2182 2183 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2184 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2185 2186 delta = MIN(bytes * mult, arc_p); 2187 arc_p = MAX(arc_p_min, arc_p - delta); 2188 } 2189 ASSERT((int64_t)arc_p >= 0); 2190 2191 if (arc_reclaim_needed()) { 2192 cv_signal(&arc_reclaim_thr_cv); 2193 return; 2194 } 2195 2196 if (arc_no_grow) 2197 return; 2198 2199 if (arc_c >= arc_c_max) 2200 return; 2201 2202 /* 2203 * If we're within (2 * maxblocksize) bytes of the target 2204 * cache size, increment the target cache size 2205 */ 2206 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2207 atomic_add_64(&arc_c, (int64_t)bytes); 2208 if (arc_c > arc_c_max) 2209 arc_c = arc_c_max; 2210 else if (state == arc_anon) 2211 atomic_add_64(&arc_p, (int64_t)bytes); 2212 if (arc_p > arc_c) 2213 arc_p = arc_c; 2214 } 2215 ASSERT((int64_t)arc_p >= 0); 2216 } 2217 2218 /* 2219 * Check if the cache has reached its limits and eviction is required 2220 * prior to insert. 2221 */ 2222 static int 2223 arc_evict_needed(arc_buf_contents_t type) 2224 { 2225 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2226 return (1); 2227 2228 #ifdef _KERNEL 2229 /* 2230 * If zio data pages are being allocated out of a separate heap segment, 2231 * then enforce that the size of available vmem for this area remains 2232 * above about 1/32nd free. 2233 */ 2234 if (type == ARC_BUFC_DATA && zio_arena != NULL && 2235 vmem_size(zio_arena, VMEM_FREE) < 2236 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 2237 return (1); 2238 #endif 2239 2240 if (arc_reclaim_needed()) 2241 return (1); 2242 2243 return (arc_size > arc_c); 2244 } 2245 2246 /* 2247 * The buffer, supplied as the first argument, needs a data block. 2248 * So, if we are at cache max, determine which cache should be victimized. 2249 * We have the following cases: 2250 * 2251 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2252 * In this situation if we're out of space, but the resident size of the MFU is 2253 * under the limit, victimize the MFU cache to satisfy this insertion request. 2254 * 2255 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2256 * Here, we've used up all of the available space for the MRU, so we need to 2257 * evict from our own cache instead. Evict from the set of resident MRU 2258 * entries. 2259 * 2260 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2261 * c minus p represents the MFU space in the cache, since p is the size of the 2262 * cache that is dedicated to the MRU. In this situation there's still space on 2263 * the MFU side, so the MRU side needs to be victimized. 2264 * 2265 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2266 * MFU's resident set is consuming more space than it has been allotted. In 2267 * this situation, we must victimize our own cache, the MFU, for this insertion. 2268 */ 2269 static void 2270 arc_get_data_buf(arc_buf_t *buf) 2271 { 2272 arc_state_t *state = buf->b_hdr->b_state; 2273 uint64_t size = buf->b_hdr->b_size; 2274 arc_buf_contents_t type = buf->b_hdr->b_type; 2275 2276 arc_adapt(size, state); 2277 2278 /* 2279 * We have not yet reached cache maximum size, 2280 * just allocate a new buffer. 2281 */ 2282 if (!arc_evict_needed(type)) { 2283 if (type == ARC_BUFC_METADATA) { 2284 buf->b_data = zio_buf_alloc(size); 2285 arc_space_consume(size, ARC_SPACE_DATA); 2286 } else { 2287 ASSERT(type == ARC_BUFC_DATA); 2288 buf->b_data = zio_data_buf_alloc(size); 2289 ARCSTAT_INCR(arcstat_data_size, size); 2290 atomic_add_64(&arc_size, size); 2291 } 2292 goto out; 2293 } 2294 2295 /* 2296 * If we are prefetching from the mfu ghost list, this buffer 2297 * will end up on the mru list; so steal space from there. 2298 */ 2299 if (state == arc_mfu_ghost) 2300 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2301 else if (state == arc_mru_ghost) 2302 state = arc_mru; 2303 2304 if (state == arc_mru || state == arc_anon) { 2305 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2306 state = (arc_mfu->arcs_lsize[type] >= size && 2307 arc_p > mru_used) ? arc_mfu : arc_mru; 2308 } else { 2309 /* MFU cases */ 2310 uint64_t mfu_space = arc_c - arc_p; 2311 state = (arc_mru->arcs_lsize[type] >= size && 2312 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2313 } 2314 if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) { 2315 if (type == ARC_BUFC_METADATA) { 2316 buf->b_data = zio_buf_alloc(size); 2317 arc_space_consume(size, ARC_SPACE_DATA); 2318 } else { 2319 ASSERT(type == ARC_BUFC_DATA); 2320 buf->b_data = zio_data_buf_alloc(size); 2321 ARCSTAT_INCR(arcstat_data_size, size); 2322 atomic_add_64(&arc_size, size); 2323 } 2324 ARCSTAT_BUMP(arcstat_recycle_miss); 2325 } 2326 ASSERT(buf->b_data != NULL); 2327 out: 2328 /* 2329 * Update the state size. Note that ghost states have a 2330 * "ghost size" and so don't need to be updated. 2331 */ 2332 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2333 arc_buf_hdr_t *hdr = buf->b_hdr; 2334 2335 atomic_add_64(&hdr->b_state->arcs_size, size); 2336 if (list_link_active(&hdr->b_arc_node)) { 2337 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2338 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2339 } 2340 /* 2341 * If we are growing the cache, and we are adding anonymous 2342 * data, and we have outgrown arc_p, update arc_p 2343 */ 2344 if (arc_size < arc_c && hdr->b_state == arc_anon && 2345 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2346 arc_p = MIN(arc_c, arc_p + size); 2347 } 2348 } 2349 2350 /* 2351 * This routine is called whenever a buffer is accessed. 2352 * NOTE: the hash lock is dropped in this function. 2353 */ 2354 static void 2355 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2356 { 2357 clock_t now; 2358 2359 ASSERT(MUTEX_HELD(hash_lock)); 2360 2361 if (buf->b_state == arc_anon) { 2362 /* 2363 * This buffer is not in the cache, and does not 2364 * appear in our "ghost" list. Add the new buffer 2365 * to the MRU state. 2366 */ 2367 2368 ASSERT(buf->b_arc_access == 0); 2369 buf->b_arc_access = ddi_get_lbolt(); 2370 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2371 arc_change_state(arc_mru, buf, hash_lock); 2372 2373 } else if (buf->b_state == arc_mru) { 2374 now = ddi_get_lbolt(); 2375 2376 /* 2377 * If this buffer is here because of a prefetch, then either: 2378 * - clear the flag if this is a "referencing" read 2379 * (any subsequent access will bump this into the MFU state). 2380 * or 2381 * - move the buffer to the head of the list if this is 2382 * another prefetch (to make it less likely to be evicted). 2383 */ 2384 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2385 if (refcount_count(&buf->b_refcnt) == 0) { 2386 ASSERT(list_link_active(&buf->b_arc_node)); 2387 } else { 2388 buf->b_flags &= ~ARC_PREFETCH; 2389 ARCSTAT_BUMP(arcstat_mru_hits); 2390 } 2391 buf->b_arc_access = now; 2392 return; 2393 } 2394 2395 /* 2396 * This buffer has been "accessed" only once so far, 2397 * but it is still in the cache. Move it to the MFU 2398 * state. 2399 */ 2400 if (now > buf->b_arc_access + ARC_MINTIME) { 2401 /* 2402 * More than 125ms have passed since we 2403 * instantiated this buffer. Move it to the 2404 * most frequently used state. 2405 */ 2406 buf->b_arc_access = now; 2407 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2408 arc_change_state(arc_mfu, buf, hash_lock); 2409 } 2410 ARCSTAT_BUMP(arcstat_mru_hits); 2411 } else if (buf->b_state == arc_mru_ghost) { 2412 arc_state_t *new_state; 2413 /* 2414 * This buffer has been "accessed" recently, but 2415 * was evicted from the cache. Move it to the 2416 * MFU state. 2417 */ 2418 2419 if (buf->b_flags & ARC_PREFETCH) { 2420 new_state = arc_mru; 2421 if (refcount_count(&buf->b_refcnt) > 0) 2422 buf->b_flags &= ~ARC_PREFETCH; 2423 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2424 } else { 2425 new_state = arc_mfu; 2426 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2427 } 2428 2429 buf->b_arc_access = ddi_get_lbolt(); 2430 arc_change_state(new_state, buf, hash_lock); 2431 2432 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2433 } else if (buf->b_state == arc_mfu) { 2434 /* 2435 * This buffer has been accessed more than once and is 2436 * still in the cache. Keep it in the MFU state. 2437 * 2438 * NOTE: an add_reference() that occurred when we did 2439 * the arc_read() will have kicked this off the list. 2440 * If it was a prefetch, we will explicitly move it to 2441 * the head of the list now. 2442 */ 2443 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2444 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2445 ASSERT(list_link_active(&buf->b_arc_node)); 2446 } 2447 ARCSTAT_BUMP(arcstat_mfu_hits); 2448 buf->b_arc_access = ddi_get_lbolt(); 2449 } else if (buf->b_state == arc_mfu_ghost) { 2450 arc_state_t *new_state = arc_mfu; 2451 /* 2452 * This buffer has been accessed more than once but has 2453 * been evicted from the cache. Move it back to the 2454 * MFU state. 2455 */ 2456 2457 if (buf->b_flags & ARC_PREFETCH) { 2458 /* 2459 * This is a prefetch access... 2460 * move this block back to the MRU state. 2461 */ 2462 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2463 new_state = arc_mru; 2464 } 2465 2466 buf->b_arc_access = ddi_get_lbolt(); 2467 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2468 arc_change_state(new_state, buf, hash_lock); 2469 2470 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2471 } else if (buf->b_state == arc_l2c_only) { 2472 /* 2473 * This buffer is on the 2nd Level ARC. 2474 */ 2475 2476 buf->b_arc_access = ddi_get_lbolt(); 2477 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2478 arc_change_state(arc_mfu, buf, hash_lock); 2479 } else { 2480 ASSERT(!"invalid arc state"); 2481 } 2482 } 2483 2484 /* a generic arc_done_func_t which you can use */ 2485 /* ARGSUSED */ 2486 void 2487 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2488 { 2489 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2490 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2491 } 2492 2493 /* a generic arc_done_func_t */ 2494 void 2495 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2496 { 2497 arc_buf_t **bufp = arg; 2498 if (zio && zio->io_error) { 2499 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2500 *bufp = NULL; 2501 } else { 2502 *bufp = buf; 2503 } 2504 } 2505 2506 static void 2507 arc_read_done(zio_t *zio) 2508 { 2509 arc_buf_hdr_t *hdr, *found; 2510 arc_buf_t *buf; 2511 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2512 kmutex_t *hash_lock; 2513 arc_callback_t *callback_list, *acb; 2514 int freeable = FALSE; 2515 2516 buf = zio->io_private; 2517 hdr = buf->b_hdr; 2518 2519 /* 2520 * The hdr was inserted into hash-table and removed from lists 2521 * prior to starting I/O. We should find this header, since 2522 * it's in the hash table, and it should be legit since it's 2523 * not possible to evict it during the I/O. The only possible 2524 * reason for it not to be found is if we were freed during the 2525 * read. 2526 */ 2527 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, 2528 &hash_lock); 2529 2530 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2531 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2532 (found == hdr && HDR_L2_READING(hdr))); 2533 2534 hdr->b_flags &= ~ARC_L2_EVICTED; 2535 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2536 hdr->b_flags &= ~ARC_L2CACHE; 2537 2538 /* byteswap if necessary */ 2539 callback_list = hdr->b_acb; 2540 ASSERT(callback_list != NULL); 2541 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2542 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2543 byteswap_uint64_array : 2544 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap; 2545 func(buf->b_data, hdr->b_size); 2546 } 2547 2548 arc_cksum_compute(buf, B_FALSE); 2549 2550 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2551 /* 2552 * Only call arc_access on anonymous buffers. This is because 2553 * if we've issued an I/O for an evicted buffer, we've already 2554 * called arc_access (to prevent any simultaneous readers from 2555 * getting confused). 2556 */ 2557 arc_access(hdr, hash_lock); 2558 } 2559 2560 /* create copies of the data buffer for the callers */ 2561 abuf = buf; 2562 for (acb = callback_list; acb; acb = acb->acb_next) { 2563 if (acb->acb_done) { 2564 if (abuf == NULL) 2565 abuf = arc_buf_clone(buf); 2566 acb->acb_buf = abuf; 2567 abuf = NULL; 2568 } 2569 } 2570 hdr->b_acb = NULL; 2571 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2572 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2573 if (abuf == buf) { 2574 ASSERT(buf->b_efunc == NULL); 2575 ASSERT(hdr->b_datacnt == 1); 2576 hdr->b_flags |= ARC_BUF_AVAILABLE; 2577 } 2578 2579 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2580 2581 if (zio->io_error != 0) { 2582 hdr->b_flags |= ARC_IO_ERROR; 2583 if (hdr->b_state != arc_anon) 2584 arc_change_state(arc_anon, hdr, hash_lock); 2585 if (HDR_IN_HASH_TABLE(hdr)) 2586 buf_hash_remove(hdr); 2587 freeable = refcount_is_zero(&hdr->b_refcnt); 2588 } 2589 2590 /* 2591 * Broadcast before we drop the hash_lock to avoid the possibility 2592 * that the hdr (and hence the cv) might be freed before we get to 2593 * the cv_broadcast(). 2594 */ 2595 cv_broadcast(&hdr->b_cv); 2596 2597 if (hash_lock) { 2598 mutex_exit(hash_lock); 2599 } else { 2600 /* 2601 * This block was freed while we waited for the read to 2602 * complete. It has been removed from the hash table and 2603 * moved to the anonymous state (so that it won't show up 2604 * in the cache). 2605 */ 2606 ASSERT3P(hdr->b_state, ==, arc_anon); 2607 freeable = refcount_is_zero(&hdr->b_refcnt); 2608 } 2609 2610 /* execute each callback and free its structure */ 2611 while ((acb = callback_list) != NULL) { 2612 if (acb->acb_done) 2613 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2614 2615 if (acb->acb_zio_dummy != NULL) { 2616 acb->acb_zio_dummy->io_error = zio->io_error; 2617 zio_nowait(acb->acb_zio_dummy); 2618 } 2619 2620 callback_list = acb->acb_next; 2621 kmem_free(acb, sizeof (arc_callback_t)); 2622 } 2623 2624 if (freeable) 2625 arc_hdr_destroy(hdr); 2626 } 2627 2628 /* 2629 * "Read" the block block at the specified DVA (in bp) via the 2630 * cache. If the block is found in the cache, invoke the provided 2631 * callback immediately and return. Note that the `zio' parameter 2632 * in the callback will be NULL in this case, since no IO was 2633 * required. If the block is not in the cache pass the read request 2634 * on to the spa with a substitute callback function, so that the 2635 * requested block will be added to the cache. 2636 * 2637 * If a read request arrives for a block that has a read in-progress, 2638 * either wait for the in-progress read to complete (and return the 2639 * results); or, if this is a read with a "done" func, add a record 2640 * to the read to invoke the "done" func when the read completes, 2641 * and return; or just return. 2642 * 2643 * arc_read_done() will invoke all the requested "done" functions 2644 * for readers of this block. 2645 * 2646 * Normal callers should use arc_read and pass the arc buffer and offset 2647 * for the bp. But if you know you don't need locking, you can use 2648 * arc_read_bp. 2649 */ 2650 int 2651 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf, 2652 arc_done_func_t *done, void *private, int priority, int zio_flags, 2653 uint32_t *arc_flags, const zbookmark_t *zb) 2654 { 2655 int err; 2656 2657 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); 2658 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); 2659 rw_enter(&pbuf->b_lock, RW_READER); 2660 2661 err = arc_read_nolock(pio, spa, bp, done, private, priority, 2662 zio_flags, arc_flags, zb); 2663 rw_exit(&pbuf->b_lock); 2664 2665 return (err); 2666 } 2667 2668 int 2669 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp, 2670 arc_done_func_t *done, void *private, int priority, int zio_flags, 2671 uint32_t *arc_flags, const zbookmark_t *zb) 2672 { 2673 arc_buf_hdr_t *hdr; 2674 arc_buf_t *buf; 2675 kmutex_t *hash_lock; 2676 zio_t *rzio; 2677 uint64_t guid = spa_guid(spa); 2678 2679 top: 2680 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), 2681 &hash_lock); 2682 if (hdr && hdr->b_datacnt > 0) { 2683 2684 *arc_flags |= ARC_CACHED; 2685 2686 if (HDR_IO_IN_PROGRESS(hdr)) { 2687 2688 if (*arc_flags & ARC_WAIT) { 2689 cv_wait(&hdr->b_cv, hash_lock); 2690 mutex_exit(hash_lock); 2691 goto top; 2692 } 2693 ASSERT(*arc_flags & ARC_NOWAIT); 2694 2695 if (done) { 2696 arc_callback_t *acb = NULL; 2697 2698 acb = kmem_zalloc(sizeof (arc_callback_t), 2699 KM_SLEEP); 2700 acb->acb_done = done; 2701 acb->acb_private = private; 2702 if (pio != NULL) 2703 acb->acb_zio_dummy = zio_null(pio, 2704 spa, NULL, NULL, NULL, zio_flags); 2705 2706 ASSERT(acb->acb_done != NULL); 2707 acb->acb_next = hdr->b_acb; 2708 hdr->b_acb = acb; 2709 add_reference(hdr, hash_lock, private); 2710 mutex_exit(hash_lock); 2711 return (0); 2712 } 2713 mutex_exit(hash_lock); 2714 return (0); 2715 } 2716 2717 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2718 2719 if (done) { 2720 add_reference(hdr, hash_lock, private); 2721 /* 2722 * If this block is already in use, create a new 2723 * copy of the data so that we will be guaranteed 2724 * that arc_release() will always succeed. 2725 */ 2726 buf = hdr->b_buf; 2727 ASSERT(buf); 2728 ASSERT(buf->b_data); 2729 if (HDR_BUF_AVAILABLE(hdr)) { 2730 ASSERT(buf->b_efunc == NULL); 2731 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2732 } else { 2733 buf = arc_buf_clone(buf); 2734 } 2735 2736 } else if (*arc_flags & ARC_PREFETCH && 2737 refcount_count(&hdr->b_refcnt) == 0) { 2738 hdr->b_flags |= ARC_PREFETCH; 2739 } 2740 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2741 arc_access(hdr, hash_lock); 2742 if (*arc_flags & ARC_L2CACHE) 2743 hdr->b_flags |= ARC_L2CACHE; 2744 mutex_exit(hash_lock); 2745 ARCSTAT_BUMP(arcstat_hits); 2746 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2747 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2748 data, metadata, hits); 2749 2750 if (done) 2751 done(NULL, buf, private); 2752 } else { 2753 uint64_t size = BP_GET_LSIZE(bp); 2754 arc_callback_t *acb; 2755 vdev_t *vd = NULL; 2756 uint64_t addr; 2757 boolean_t devw = B_FALSE; 2758 2759 if (hdr == NULL) { 2760 /* this block is not in the cache */ 2761 arc_buf_hdr_t *exists; 2762 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2763 buf = arc_buf_alloc(spa, size, private, type); 2764 hdr = buf->b_hdr; 2765 hdr->b_dva = *BP_IDENTITY(bp); 2766 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 2767 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2768 exists = buf_hash_insert(hdr, &hash_lock); 2769 if (exists) { 2770 /* somebody beat us to the hash insert */ 2771 mutex_exit(hash_lock); 2772 bzero(&hdr->b_dva, sizeof (dva_t)); 2773 hdr->b_birth = 0; 2774 hdr->b_cksum0 = 0; 2775 (void) arc_buf_remove_ref(buf, private); 2776 goto top; /* restart the IO request */ 2777 } 2778 /* if this is a prefetch, we don't have a reference */ 2779 if (*arc_flags & ARC_PREFETCH) { 2780 (void) remove_reference(hdr, hash_lock, 2781 private); 2782 hdr->b_flags |= ARC_PREFETCH; 2783 } 2784 if (*arc_flags & ARC_L2CACHE) 2785 hdr->b_flags |= ARC_L2CACHE; 2786 if (BP_GET_LEVEL(bp) > 0) 2787 hdr->b_flags |= ARC_INDIRECT; 2788 } else { 2789 /* this block is in the ghost cache */ 2790 ASSERT(GHOST_STATE(hdr->b_state)); 2791 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2792 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2793 ASSERT(hdr->b_buf == NULL); 2794 2795 /* if this is a prefetch, we don't have a reference */ 2796 if (*arc_flags & ARC_PREFETCH) 2797 hdr->b_flags |= ARC_PREFETCH; 2798 else 2799 add_reference(hdr, hash_lock, private); 2800 if (*arc_flags & ARC_L2CACHE) 2801 hdr->b_flags |= ARC_L2CACHE; 2802 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2803 buf->b_hdr = hdr; 2804 buf->b_data = NULL; 2805 buf->b_efunc = NULL; 2806 buf->b_private = NULL; 2807 buf->b_next = NULL; 2808 hdr->b_buf = buf; 2809 arc_get_data_buf(buf); 2810 ASSERT(hdr->b_datacnt == 0); 2811 hdr->b_datacnt = 1; 2812 } 2813 2814 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2815 acb->acb_done = done; 2816 acb->acb_private = private; 2817 2818 ASSERT(hdr->b_acb == NULL); 2819 hdr->b_acb = acb; 2820 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2821 2822 /* 2823 * If the buffer has been evicted, migrate it to a present state 2824 * before issuing the I/O. Once we drop the hash-table lock, 2825 * the header will be marked as I/O in progress and have an 2826 * attached buffer. At this point, anybody who finds this 2827 * buffer ought to notice that it's legit but has a pending I/O. 2828 */ 2829 2830 if (GHOST_STATE(hdr->b_state)) 2831 arc_access(hdr, hash_lock); 2832 2833 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2834 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2835 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 2836 addr = hdr->b_l2hdr->b_daddr; 2837 /* 2838 * Lock out device removal. 2839 */ 2840 if (vdev_is_dead(vd) || 2841 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2842 vd = NULL; 2843 } 2844 2845 mutex_exit(hash_lock); 2846 2847 ASSERT3U(hdr->b_size, ==, size); 2848 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 2849 uint64_t, size, zbookmark_t *, zb); 2850 ARCSTAT_BUMP(arcstat_misses); 2851 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2852 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2853 data, metadata, misses); 2854 2855 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 2856 /* 2857 * Read from the L2ARC if the following are true: 2858 * 1. The L2ARC vdev was previously cached. 2859 * 2. This buffer still has L2ARC metadata. 2860 * 3. This buffer isn't currently writing to the L2ARC. 2861 * 4. The L2ARC entry wasn't evicted, which may 2862 * also have invalidated the vdev. 2863 * 5. This isn't prefetch and l2arc_noprefetch is set. 2864 */ 2865 if (hdr->b_l2hdr != NULL && 2866 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 2867 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 2868 l2arc_read_callback_t *cb; 2869 2870 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2871 ARCSTAT_BUMP(arcstat_l2_hits); 2872 2873 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2874 KM_SLEEP); 2875 cb->l2rcb_buf = buf; 2876 cb->l2rcb_spa = spa; 2877 cb->l2rcb_bp = *bp; 2878 cb->l2rcb_zb = *zb; 2879 cb->l2rcb_flags = zio_flags; 2880 2881 /* 2882 * l2arc read. The SCL_L2ARC lock will be 2883 * released by l2arc_read_done(). 2884 */ 2885 rzio = zio_read_phys(pio, vd, addr, size, 2886 buf->b_data, ZIO_CHECKSUM_OFF, 2887 l2arc_read_done, cb, priority, zio_flags | 2888 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 2889 ZIO_FLAG_DONT_PROPAGATE | 2890 ZIO_FLAG_DONT_RETRY, B_FALSE); 2891 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2892 zio_t *, rzio); 2893 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 2894 2895 if (*arc_flags & ARC_NOWAIT) { 2896 zio_nowait(rzio); 2897 return (0); 2898 } 2899 2900 ASSERT(*arc_flags & ARC_WAIT); 2901 if (zio_wait(rzio) == 0) 2902 return (0); 2903 2904 /* l2arc read error; goto zio_read() */ 2905 } else { 2906 DTRACE_PROBE1(l2arc__miss, 2907 arc_buf_hdr_t *, hdr); 2908 ARCSTAT_BUMP(arcstat_l2_misses); 2909 if (HDR_L2_WRITING(hdr)) 2910 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2911 spa_config_exit(spa, SCL_L2ARC, vd); 2912 } 2913 } else { 2914 if (vd != NULL) 2915 spa_config_exit(spa, SCL_L2ARC, vd); 2916 if (l2arc_ndev != 0) { 2917 DTRACE_PROBE1(l2arc__miss, 2918 arc_buf_hdr_t *, hdr); 2919 ARCSTAT_BUMP(arcstat_l2_misses); 2920 } 2921 } 2922 2923 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2924 arc_read_done, buf, priority, zio_flags, zb); 2925 2926 if (*arc_flags & ARC_WAIT) 2927 return (zio_wait(rzio)); 2928 2929 ASSERT(*arc_flags & ARC_NOWAIT); 2930 zio_nowait(rzio); 2931 } 2932 return (0); 2933 } 2934 2935 void 2936 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2937 { 2938 ASSERT(buf->b_hdr != NULL); 2939 ASSERT(buf->b_hdr->b_state != arc_anon); 2940 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2941 ASSERT(buf->b_efunc == NULL); 2942 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 2943 2944 buf->b_efunc = func; 2945 buf->b_private = private; 2946 } 2947 2948 /* 2949 * This is used by the DMU to let the ARC know that a buffer is 2950 * being evicted, so the ARC should clean up. If this arc buf 2951 * is not yet in the evicted state, it will be put there. 2952 */ 2953 int 2954 arc_buf_evict(arc_buf_t *buf) 2955 { 2956 arc_buf_hdr_t *hdr; 2957 kmutex_t *hash_lock; 2958 arc_buf_t **bufp; 2959 2960 rw_enter(&buf->b_lock, RW_WRITER); 2961 hdr = buf->b_hdr; 2962 if (hdr == NULL) { 2963 /* 2964 * We are in arc_do_user_evicts(). 2965 */ 2966 ASSERT(buf->b_data == NULL); 2967 rw_exit(&buf->b_lock); 2968 return (0); 2969 } else if (buf->b_data == NULL) { 2970 arc_buf_t copy = *buf; /* structure assignment */ 2971 /* 2972 * We are on the eviction list; process this buffer now 2973 * but let arc_do_user_evicts() do the reaping. 2974 */ 2975 buf->b_efunc = NULL; 2976 rw_exit(&buf->b_lock); 2977 VERIFY(copy.b_efunc(©) == 0); 2978 return (1); 2979 } 2980 hash_lock = HDR_LOCK(hdr); 2981 mutex_enter(hash_lock); 2982 2983 ASSERT(buf->b_hdr == hdr); 2984 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2985 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2986 2987 /* 2988 * Pull this buffer off of the hdr 2989 */ 2990 bufp = &hdr->b_buf; 2991 while (*bufp != buf) 2992 bufp = &(*bufp)->b_next; 2993 *bufp = buf->b_next; 2994 2995 ASSERT(buf->b_data != NULL); 2996 arc_buf_destroy(buf, FALSE, FALSE); 2997 2998 if (hdr->b_datacnt == 0) { 2999 arc_state_t *old_state = hdr->b_state; 3000 arc_state_t *evicted_state; 3001 3002 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 3003 3004 evicted_state = 3005 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3006 3007 mutex_enter(&old_state->arcs_mtx); 3008 mutex_enter(&evicted_state->arcs_mtx); 3009 3010 arc_change_state(evicted_state, hdr, hash_lock); 3011 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3012 hdr->b_flags |= ARC_IN_HASH_TABLE; 3013 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3014 3015 mutex_exit(&evicted_state->arcs_mtx); 3016 mutex_exit(&old_state->arcs_mtx); 3017 } 3018 mutex_exit(hash_lock); 3019 rw_exit(&buf->b_lock); 3020 3021 VERIFY(buf->b_efunc(buf) == 0); 3022 buf->b_efunc = NULL; 3023 buf->b_private = NULL; 3024 buf->b_hdr = NULL; 3025 kmem_cache_free(buf_cache, buf); 3026 return (1); 3027 } 3028 3029 /* 3030 * Release this buffer from the cache. This must be done 3031 * after a read and prior to modifying the buffer contents. 3032 * If the buffer has more than one reference, we must make 3033 * a new hdr for the buffer. 3034 */ 3035 void 3036 arc_release(arc_buf_t *buf, void *tag) 3037 { 3038 arc_buf_hdr_t *hdr; 3039 kmutex_t *hash_lock; 3040 l2arc_buf_hdr_t *l2hdr; 3041 uint64_t buf_size; 3042 boolean_t released = B_FALSE; 3043 3044 rw_enter(&buf->b_lock, RW_WRITER); 3045 hdr = buf->b_hdr; 3046 3047 /* this buffer is not on any list */ 3048 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3049 3050 if (hdr->b_state == arc_anon) { 3051 /* this buffer is already released */ 3052 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 3053 ASSERT(BUF_EMPTY(hdr)); 3054 ASSERT(buf->b_efunc == NULL); 3055 arc_buf_thaw(buf); 3056 rw_exit(&buf->b_lock); 3057 released = B_TRUE; 3058 } else { 3059 hash_lock = HDR_LOCK(hdr); 3060 mutex_enter(hash_lock); 3061 } 3062 3063 l2hdr = hdr->b_l2hdr; 3064 if (l2hdr) { 3065 mutex_enter(&l2arc_buflist_mtx); 3066 hdr->b_l2hdr = NULL; 3067 buf_size = hdr->b_size; 3068 } 3069 3070 if (released) 3071 goto out; 3072 3073 /* 3074 * Do we have more than one buf? 3075 */ 3076 if (hdr->b_datacnt > 1) { 3077 arc_buf_hdr_t *nhdr; 3078 arc_buf_t **bufp; 3079 uint64_t blksz = hdr->b_size; 3080 uint64_t spa = hdr->b_spa; 3081 arc_buf_contents_t type = hdr->b_type; 3082 uint32_t flags = hdr->b_flags; 3083 3084 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3085 /* 3086 * Pull the data off of this buf and attach it to 3087 * a new anonymous buf. 3088 */ 3089 (void) remove_reference(hdr, hash_lock, tag); 3090 bufp = &hdr->b_buf; 3091 while (*bufp != buf) 3092 bufp = &(*bufp)->b_next; 3093 *bufp = (*bufp)->b_next; 3094 buf->b_next = NULL; 3095 3096 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3097 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3098 if (refcount_is_zero(&hdr->b_refcnt)) { 3099 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3100 ASSERT3U(*size, >=, hdr->b_size); 3101 atomic_add_64(size, -hdr->b_size); 3102 } 3103 hdr->b_datacnt -= 1; 3104 arc_cksum_verify(buf); 3105 3106 mutex_exit(hash_lock); 3107 3108 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3109 nhdr->b_size = blksz; 3110 nhdr->b_spa = spa; 3111 nhdr->b_type = type; 3112 nhdr->b_buf = buf; 3113 nhdr->b_state = arc_anon; 3114 nhdr->b_arc_access = 0; 3115 nhdr->b_flags = flags & ARC_L2_WRITING; 3116 nhdr->b_l2hdr = NULL; 3117 nhdr->b_datacnt = 1; 3118 nhdr->b_freeze_cksum = NULL; 3119 (void) refcount_add(&nhdr->b_refcnt, tag); 3120 buf->b_hdr = nhdr; 3121 rw_exit(&buf->b_lock); 3122 atomic_add_64(&arc_anon->arcs_size, blksz); 3123 } else { 3124 rw_exit(&buf->b_lock); 3125 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3126 ASSERT(!list_link_active(&hdr->b_arc_node)); 3127 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3128 arc_change_state(arc_anon, hdr, hash_lock); 3129 hdr->b_arc_access = 0; 3130 mutex_exit(hash_lock); 3131 3132 bzero(&hdr->b_dva, sizeof (dva_t)); 3133 hdr->b_birth = 0; 3134 hdr->b_cksum0 = 0; 3135 arc_buf_thaw(buf); 3136 } 3137 buf->b_efunc = NULL; 3138 buf->b_private = NULL; 3139 3140 out: 3141 if (l2hdr) { 3142 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3143 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3144 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3145 mutex_exit(&l2arc_buflist_mtx); 3146 } 3147 } 3148 3149 int 3150 arc_released(arc_buf_t *buf) 3151 { 3152 int released; 3153 3154 rw_enter(&buf->b_lock, RW_READER); 3155 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3156 rw_exit(&buf->b_lock); 3157 return (released); 3158 } 3159 3160 int 3161 arc_has_callback(arc_buf_t *buf) 3162 { 3163 int callback; 3164 3165 rw_enter(&buf->b_lock, RW_READER); 3166 callback = (buf->b_efunc != NULL); 3167 rw_exit(&buf->b_lock); 3168 return (callback); 3169 } 3170 3171 #ifdef ZFS_DEBUG 3172 int 3173 arc_referenced(arc_buf_t *buf) 3174 { 3175 int referenced; 3176 3177 rw_enter(&buf->b_lock, RW_READER); 3178 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3179 rw_exit(&buf->b_lock); 3180 return (referenced); 3181 } 3182 #endif 3183 3184 static void 3185 arc_write_ready(zio_t *zio) 3186 { 3187 arc_write_callback_t *callback = zio->io_private; 3188 arc_buf_t *buf = callback->awcb_buf; 3189 arc_buf_hdr_t *hdr = buf->b_hdr; 3190 3191 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3192 callback->awcb_ready(zio, buf, callback->awcb_private); 3193 3194 /* 3195 * If the IO is already in progress, then this is a re-write 3196 * attempt, so we need to thaw and re-compute the cksum. 3197 * It is the responsibility of the callback to handle the 3198 * accounting for any re-write attempt. 3199 */ 3200 if (HDR_IO_IN_PROGRESS(hdr)) { 3201 mutex_enter(&hdr->b_freeze_lock); 3202 if (hdr->b_freeze_cksum != NULL) { 3203 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3204 hdr->b_freeze_cksum = NULL; 3205 } 3206 mutex_exit(&hdr->b_freeze_lock); 3207 } 3208 arc_cksum_compute(buf, B_FALSE); 3209 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3210 } 3211 3212 static void 3213 arc_write_done(zio_t *zio) 3214 { 3215 arc_write_callback_t *callback = zio->io_private; 3216 arc_buf_t *buf = callback->awcb_buf; 3217 arc_buf_hdr_t *hdr = buf->b_hdr; 3218 3219 ASSERT(hdr->b_acb == NULL); 3220 3221 if (zio->io_error == 0) { 3222 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3223 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3224 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3225 } else { 3226 ASSERT(BUF_EMPTY(hdr)); 3227 } 3228 3229 /* 3230 * If the block to be written was all-zero, we may have 3231 * compressed it away. In this case no write was performed 3232 * so there will be no dva/birth-date/checksum. The buffer 3233 * must therefor remain anonymous (and uncached). 3234 */ 3235 if (!BUF_EMPTY(hdr)) { 3236 arc_buf_hdr_t *exists; 3237 kmutex_t *hash_lock; 3238 3239 ASSERT(zio->io_error == 0); 3240 3241 arc_cksum_verify(buf); 3242 3243 exists = buf_hash_insert(hdr, &hash_lock); 3244 if (exists) { 3245 /* 3246 * This can only happen if we overwrite for 3247 * sync-to-convergence, because we remove 3248 * buffers from the hash table when we arc_free(). 3249 */ 3250 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3251 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3252 panic("bad overwrite, hdr=%p exists=%p", 3253 (void *)hdr, (void *)exists); 3254 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3255 arc_change_state(arc_anon, exists, hash_lock); 3256 mutex_exit(hash_lock); 3257 arc_hdr_destroy(exists); 3258 exists = buf_hash_insert(hdr, &hash_lock); 3259 ASSERT3P(exists, ==, NULL); 3260 } else { 3261 /* Dedup */ 3262 ASSERT(hdr->b_datacnt == 1); 3263 ASSERT(hdr->b_state == arc_anon); 3264 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3265 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3266 } 3267 } 3268 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3269 /* if it's not anon, we are doing a scrub */ 3270 if (!exists && hdr->b_state == arc_anon) 3271 arc_access(hdr, hash_lock); 3272 mutex_exit(hash_lock); 3273 } else { 3274 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3275 } 3276 3277 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3278 callback->awcb_done(zio, buf, callback->awcb_private); 3279 3280 kmem_free(callback, sizeof (arc_write_callback_t)); 3281 } 3282 3283 zio_t * 3284 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3285 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp, 3286 arc_done_func_t *ready, arc_done_func_t *done, void *private, 3287 int priority, int zio_flags, const zbookmark_t *zb) 3288 { 3289 arc_buf_hdr_t *hdr = buf->b_hdr; 3290 arc_write_callback_t *callback; 3291 zio_t *zio; 3292 3293 ASSERT(ready != NULL); 3294 ASSERT(done != NULL); 3295 ASSERT(!HDR_IO_ERROR(hdr)); 3296 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3297 ASSERT(hdr->b_acb == NULL); 3298 if (l2arc) 3299 hdr->b_flags |= ARC_L2CACHE; 3300 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3301 callback->awcb_ready = ready; 3302 callback->awcb_done = done; 3303 callback->awcb_private = private; 3304 callback->awcb_buf = buf; 3305 3306 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3307 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3308 3309 return (zio); 3310 } 3311 3312 void 3313 arc_free(spa_t *spa, const blkptr_t *bp) 3314 { 3315 arc_buf_hdr_t *ab; 3316 kmutex_t *hash_lock; 3317 uint64_t guid = spa_guid(spa); 3318 3319 /* 3320 * If this buffer is in the cache, release it, so it can be re-used. 3321 */ 3322 ab = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), 3323 &hash_lock); 3324 if (ab != NULL) { 3325 if (ab->b_state != arc_anon) 3326 arc_change_state(arc_anon, ab, hash_lock); 3327 if (HDR_IO_IN_PROGRESS(ab)) { 3328 /* 3329 * This should only happen when we prefetch. 3330 */ 3331 ASSERT(ab->b_flags & ARC_PREFETCH); 3332 ASSERT3U(ab->b_datacnt, ==, 1); 3333 ab->b_flags |= ARC_FREED_IN_READ; 3334 if (HDR_IN_HASH_TABLE(ab)) 3335 buf_hash_remove(ab); 3336 ab->b_arc_access = 0; 3337 bzero(&ab->b_dva, sizeof (dva_t)); 3338 ab->b_birth = 0; 3339 ab->b_cksum0 = 0; 3340 ab->b_buf->b_efunc = NULL; 3341 ab->b_buf->b_private = NULL; 3342 mutex_exit(hash_lock); 3343 } else { 3344 ASSERT(refcount_is_zero(&ab->b_refcnt)); 3345 ab->b_flags |= ARC_FREE_IN_PROGRESS; 3346 mutex_exit(hash_lock); 3347 arc_hdr_destroy(ab); 3348 ARCSTAT_BUMP(arcstat_deleted); 3349 } 3350 } 3351 } 3352 3353 static int 3354 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg) 3355 { 3356 #ifdef _KERNEL 3357 uint64_t available_memory = ptob(freemem); 3358 static uint64_t page_load = 0; 3359 static uint64_t last_txg = 0; 3360 3361 available_memory = 3362 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3363 if (available_memory >= zfs_write_limit_max) 3364 return (0); 3365 3366 if (txg > last_txg) { 3367 last_txg = txg; 3368 page_load = 0; 3369 } 3370 /* 3371 * If we are in pageout, we know that memory is already tight, 3372 * the arc is already going to be evicting, so we just want to 3373 * continue to let page writes occur as quickly as possible. 3374 */ 3375 if (curproc == proc_pageout) { 3376 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3377 return (ERESTART); 3378 /* Note: reserve is inflated, so we deflate */ 3379 page_load += reserve / 8; 3380 return (0); 3381 } else if (page_load > 0 && arc_reclaim_needed()) { 3382 /* memory is low, delay before restarting */ 3383 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3384 return (EAGAIN); 3385 } 3386 page_load = 0; 3387 3388 if (arc_size > arc_c_min) { 3389 uint64_t evictable_memory = 3390 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3391 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3392 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3393 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3394 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3395 } 3396 3397 if (inflight_data > available_memory / 4) { 3398 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3399 return (ERESTART); 3400 } 3401 #endif 3402 return (0); 3403 } 3404 3405 void 3406 arc_tempreserve_clear(uint64_t reserve) 3407 { 3408 atomic_add_64(&arc_tempreserve, -reserve); 3409 ASSERT((int64_t)arc_tempreserve >= 0); 3410 } 3411 3412 int 3413 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3414 { 3415 int error; 3416 uint64_t anon_size; 3417 3418 #ifdef ZFS_DEBUG 3419 /* 3420 * Once in a while, fail for no reason. Everything should cope. 3421 */ 3422 if (spa_get_random(10000) == 0) { 3423 dprintf("forcing random failure\n"); 3424 return (ERESTART); 3425 } 3426 #endif 3427 if (reserve > arc_c/4 && !arc_no_grow) 3428 arc_c = MIN(arc_c_max, reserve * 4); 3429 if (reserve > arc_c) 3430 return (ENOMEM); 3431 3432 /* 3433 * Don't count loaned bufs as in flight dirty data to prevent long 3434 * network delays from blocking transactions that are ready to be 3435 * assigned to a txg. 3436 */ 3437 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3438 3439 /* 3440 * Writes will, almost always, require additional memory allocations 3441 * in order to compress/encrypt/etc the data. We therefor need to 3442 * make sure that there is sufficient available memory for this. 3443 */ 3444 if (error = arc_memory_throttle(reserve, anon_size, txg)) 3445 return (error); 3446 3447 /* 3448 * Throttle writes when the amount of dirty data in the cache 3449 * gets too large. We try to keep the cache less than half full 3450 * of dirty blocks so that our sync times don't grow too large. 3451 * Note: if two requests come in concurrently, we might let them 3452 * both succeed, when one of them should fail. Not a huge deal. 3453 */ 3454 3455 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3456 anon_size > arc_c / 4) { 3457 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3458 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3459 arc_tempreserve>>10, 3460 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3461 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3462 reserve>>10, arc_c>>10); 3463 return (ERESTART); 3464 } 3465 atomic_add_64(&arc_tempreserve, reserve); 3466 return (0); 3467 } 3468 3469 #if defined(__NetBSD__) && defined(_KERNEL) 3470 /* Reclaim hook registered to uvm for reclaiming KVM and memory */ 3471 static void 3472 arc_uvm_reclaim_hook(void) 3473 { 3474 3475 if (mutex_tryenter(&arc_reclaim_thr_lock)) { 3476 cv_broadcast(&arc_reclaim_thr_cv); 3477 mutex_exit(&arc_reclaim_thr_lock); 3478 } 3479 } 3480 3481 static int 3482 arc_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 3483 { 3484 3485 3486 if (mutex_tryenter(&arc_reclaim_thr_lock)) { 3487 cv_broadcast(&arc_reclaim_thr_cv); 3488 mutex_exit(&arc_reclaim_thr_lock); 3489 } 3490 3491 return CALLBACK_CHAIN_CONTINUE; 3492 } 3493 3494 #endif /* __NetBSD__ */ 3495 3496 void 3497 arc_init(void) 3498 { 3499 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3500 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3501 3502 /* Convert seconds to clock ticks */ 3503 arc_min_prefetch_lifespan = 1 * hz; 3504 3505 /* Start out with 1/8 of all memory */ 3506 arc_c = physmem * PAGESIZE / 8; 3507 3508 #ifdef _KERNEL 3509 /* 3510 * On architectures where the physical memory can be larger 3511 * than the addressable space (intel in 32-bit mode), we may 3512 * need to limit the cache to 1/8 of VM size. 3513 */ 3514 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3515 #endif 3516 3517 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3518 arc_c_min = MAX(arc_c / 4, 64<<20); 3519 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3520 if (arc_c * 8 >= 1<<30) 3521 arc_c_max = (arc_c * 8) - (1<<30); 3522 else 3523 arc_c_max = arc_c_min; 3524 arc_c_max = MAX(arc_c * 6, arc_c_max); 3525 3526 /* 3527 * Allow the tunables to override our calculations if they are 3528 * reasonable (ie. over 64MB) 3529 */ 3530 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3531 arc_c_max = zfs_arc_max; 3532 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3533 arc_c_min = zfs_arc_min; 3534 3535 arc_c = arc_c_max; 3536 arc_p = (arc_c >> 1); 3537 3538 /* limit meta-data to 1/4 of the arc capacity */ 3539 arc_meta_limit = arc_c_max / 4; 3540 3541 /* Allow the tunable to override if it is reasonable */ 3542 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3543 arc_meta_limit = zfs_arc_meta_limit; 3544 3545 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3546 arc_c_min = arc_meta_limit / 2; 3547 3548 if (zfs_arc_grow_retry > 0) 3549 arc_grow_retry = zfs_arc_grow_retry; 3550 3551 if (zfs_arc_shrink_shift > 0) 3552 arc_shrink_shift = zfs_arc_shrink_shift; 3553 3554 if (zfs_arc_p_min_shift > 0) 3555 arc_p_min_shift = zfs_arc_p_min_shift; 3556 3557 /* if kmem_flags are set, lets try to use less memory */ 3558 if (kmem_debugging()) 3559 arc_c = arc_c / 2; 3560 if (arc_c < arc_c_min) 3561 arc_c = arc_c_min; 3562 3563 arc_anon = &ARC_anon; 3564 arc_mru = &ARC_mru; 3565 arc_mru_ghost = &ARC_mru_ghost; 3566 arc_mfu = &ARC_mfu; 3567 arc_mfu_ghost = &ARC_mfu_ghost; 3568 arc_l2c_only = &ARC_l2c_only; 3569 arc_size = 0; 3570 3571 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3572 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3573 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3574 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3575 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3576 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3577 3578 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3579 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3580 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3581 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3582 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3583 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3584 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3585 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3586 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3587 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3588 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3589 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3590 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3591 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3592 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3593 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3594 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3595 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3596 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3597 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3598 3599 buf_init(); 3600 3601 arc_thread_exit = 0; 3602 arc_eviction_list = NULL; 3603 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3604 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3605 3606 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3607 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3608 3609 if (arc_ksp != NULL) { 3610 arc_ksp->ks_data = &arc_stats; 3611 kstat_install(arc_ksp); 3612 } 3613 3614 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3615 TS_RUN, maxclsyspri); 3616 3617 #if defined(__NetBSD__) && defined(_KERNEL) 3618 arc_hook.uvm_reclaim_hook = &arc_uvm_reclaim_hook; 3619 3620 uvm_reclaim_hook_add(&arc_hook); 3621 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback, 3622 &arc_kva_reclaim_entry, NULL, arc_kva_reclaim_callback); 3623 3624 #endif 3625 3626 arc_dead = FALSE; 3627 arc_warm = B_FALSE; 3628 3629 if (zfs_write_limit_max == 0) 3630 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3631 else 3632 zfs_write_limit_shift = 0; 3633 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3634 } 3635 3636 void 3637 arc_fini(void) 3638 { 3639 mutex_enter(&arc_reclaim_thr_lock); 3640 arc_thread_exit = 1; 3641 while (arc_thread_exit != 0) 3642 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3643 mutex_exit(&arc_reclaim_thr_lock); 3644 3645 arc_flush(NULL); 3646 3647 arc_dead = TRUE; 3648 3649 if (arc_ksp != NULL) { 3650 kstat_delete(arc_ksp); 3651 arc_ksp = NULL; 3652 } 3653 3654 mutex_destroy(&arc_eviction_mtx); 3655 mutex_destroy(&arc_reclaim_thr_lock); 3656 cv_destroy(&arc_reclaim_thr_cv); 3657 3658 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3659 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3660 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3661 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3662 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3663 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3664 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3665 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3666 3667 mutex_destroy(&arc_anon->arcs_mtx); 3668 mutex_destroy(&arc_mru->arcs_mtx); 3669 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3670 mutex_destroy(&arc_mfu->arcs_mtx); 3671 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3672 mutex_destroy(&arc_l2c_only->arcs_mtx); 3673 3674 mutex_destroy(&zfs_write_limit_lock); 3675 3676 #if defined(__NetBSD__) && defined(_KERNEL) 3677 uvm_reclaim_hook_del(&arc_hook); 3678 callback_unregister(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback, 3679 &arc_kva_reclaim_entry); 3680 #endif 3681 3682 buf_fini(); 3683 3684 ASSERT(arc_loaned_bytes == 0); 3685 } 3686 3687 /* 3688 * Level 2 ARC 3689 * 3690 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3691 * It uses dedicated storage devices to hold cached data, which are populated 3692 * using large infrequent writes. The main role of this cache is to boost 3693 * the performance of random read workloads. The intended L2ARC devices 3694 * include short-stroked disks, solid state disks, and other media with 3695 * substantially faster read latency than disk. 3696 * 3697 * +-----------------------+ 3698 * | ARC | 3699 * +-----------------------+ 3700 * | ^ ^ 3701 * | | | 3702 * l2arc_feed_thread() arc_read() 3703 * | | | 3704 * | l2arc read | 3705 * V | | 3706 * +---------------+ | 3707 * | L2ARC | | 3708 * +---------------+ | 3709 * | ^ | 3710 * l2arc_write() | | 3711 * | | | 3712 * V | | 3713 * +-------+ +-------+ 3714 * | vdev | | vdev | 3715 * | cache | | cache | 3716 * +-------+ +-------+ 3717 * +=========+ .-----. 3718 * : L2ARC : |-_____-| 3719 * : devices : | Disks | 3720 * +=========+ `-_____-' 3721 * 3722 * Read requests are satisfied from the following sources, in order: 3723 * 3724 * 1) ARC 3725 * 2) vdev cache of L2ARC devices 3726 * 3) L2ARC devices 3727 * 4) vdev cache of disks 3728 * 5) disks 3729 * 3730 * Some L2ARC device types exhibit extremely slow write performance. 3731 * To accommodate for this there are some significant differences between 3732 * the L2ARC and traditional cache design: 3733 * 3734 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3735 * the ARC behave as usual, freeing buffers and placing headers on ghost 3736 * lists. The ARC does not send buffers to the L2ARC during eviction as 3737 * this would add inflated write latencies for all ARC memory pressure. 3738 * 3739 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3740 * It does this by periodically scanning buffers from the eviction-end of 3741 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3742 * not already there. It scans until a headroom of buffers is satisfied, 3743 * which itself is a buffer for ARC eviction. The thread that does this is 3744 * l2arc_feed_thread(), illustrated below; example sizes are included to 3745 * provide a better sense of ratio than this diagram: 3746 * 3747 * head --> tail 3748 * +---------------------+----------+ 3749 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3750 * +---------------------+----------+ | o L2ARC eligible 3751 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3752 * +---------------------+----------+ | 3753 * 15.9 Gbytes ^ 32 Mbytes | 3754 * headroom | 3755 * l2arc_feed_thread() 3756 * | 3757 * l2arc write hand <--[oooo]--' 3758 * | 8 Mbyte 3759 * | write max 3760 * V 3761 * +==============================+ 3762 * L2ARC dev |####|#|###|###| |####| ... | 3763 * +==============================+ 3764 * 32 Gbytes 3765 * 3766 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3767 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3768 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3769 * safe to say that this is an uncommon case, since buffers at the end of 3770 * the ARC lists have moved there due to inactivity. 3771 * 3772 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3773 * then the L2ARC simply misses copying some buffers. This serves as a 3774 * pressure valve to prevent heavy read workloads from both stalling the ARC 3775 * with waits and clogging the L2ARC with writes. This also helps prevent 3776 * the potential for the L2ARC to churn if it attempts to cache content too 3777 * quickly, such as during backups of the entire pool. 3778 * 3779 * 5. After system boot and before the ARC has filled main memory, there are 3780 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3781 * lists can remain mostly static. Instead of searching from tail of these 3782 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3783 * for eligible buffers, greatly increasing its chance of finding them. 3784 * 3785 * The L2ARC device write speed is also boosted during this time so that 3786 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3787 * there are no L2ARC reads, and no fear of degrading read performance 3788 * through increased writes. 3789 * 3790 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3791 * the vdev queue can aggregate them into larger and fewer writes. Each 3792 * device is written to in a rotor fashion, sweeping writes through 3793 * available space then repeating. 3794 * 3795 * 7. The L2ARC does not store dirty content. It never needs to flush 3796 * write buffers back to disk based storage. 3797 * 3798 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3799 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3800 * 3801 * The performance of the L2ARC can be tweaked by a number of tunables, which 3802 * may be necessary for different workloads: 3803 * 3804 * l2arc_write_max max write bytes per interval 3805 * l2arc_write_boost extra write bytes during device warmup 3806 * l2arc_noprefetch skip caching prefetched buffers 3807 * l2arc_headroom number of max device writes to precache 3808 * l2arc_feed_secs seconds between L2ARC writing 3809 * 3810 * Tunables may be removed or added as future performance improvements are 3811 * integrated, and also may become zpool properties. 3812 * 3813 * There are three key functions that control how the L2ARC warms up: 3814 * 3815 * l2arc_write_eligible() check if a buffer is eligible to cache 3816 * l2arc_write_size() calculate how much to write 3817 * l2arc_write_interval() calculate sleep delay between writes 3818 * 3819 * These three functions determine what to write, how much, and how quickly 3820 * to send writes. 3821 */ 3822 3823 static boolean_t 3824 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 3825 { 3826 /* 3827 * A buffer is *not* eligible for the L2ARC if it: 3828 * 1. belongs to a different spa. 3829 * 2. is already cached on the L2ARC. 3830 * 3. has an I/O in progress (it may be an incomplete read). 3831 * 4. is flagged not eligible (zfs property). 3832 */ 3833 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 3834 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 3835 return (B_FALSE); 3836 3837 return (B_TRUE); 3838 } 3839 3840 static uint64_t 3841 l2arc_write_size(l2arc_dev_t *dev) 3842 { 3843 uint64_t size; 3844 3845 size = dev->l2ad_write; 3846 3847 if (arc_warm == B_FALSE) 3848 size += dev->l2ad_boost; 3849 3850 return (size); 3851 3852 } 3853 3854 static clock_t 3855 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 3856 { 3857 clock_t interval, next, now; 3858 3859 /* 3860 * If the ARC lists are busy, increase our write rate; if the 3861 * lists are stale, idle back. This is achieved by checking 3862 * how much we previously wrote - if it was more than half of 3863 * what we wanted, schedule the next write much sooner. 3864 */ 3865 if (l2arc_feed_again && wrote > (wanted / 2)) 3866 interval = (hz * l2arc_feed_min_ms) / 1000; 3867 else 3868 interval = hz * l2arc_feed_secs; 3869 3870 now = ddi_get_lbolt(); 3871 next = MAX(now, MIN(now + interval, began + interval)); 3872 3873 return (next); 3874 } 3875 3876 static void 3877 l2arc_hdr_stat_add(void) 3878 { 3879 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3880 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3881 } 3882 3883 static void 3884 l2arc_hdr_stat_remove(void) 3885 { 3886 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3887 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3888 } 3889 3890 /* 3891 * Cycle through L2ARC devices. This is how L2ARC load balances. 3892 * If a device is returned, this also returns holding the spa config lock. 3893 */ 3894 static l2arc_dev_t * 3895 l2arc_dev_get_next(void) 3896 { 3897 l2arc_dev_t *first, *next = NULL; 3898 3899 /* 3900 * Lock out the removal of spas (spa_namespace_lock), then removal 3901 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3902 * both locks will be dropped and a spa config lock held instead. 3903 */ 3904 mutex_enter(&spa_namespace_lock); 3905 mutex_enter(&l2arc_dev_mtx); 3906 3907 /* if there are no vdevs, there is nothing to do */ 3908 if (l2arc_ndev == 0) 3909 goto out; 3910 3911 first = NULL; 3912 next = l2arc_dev_last; 3913 do { 3914 /* loop around the list looking for a non-faulted vdev */ 3915 if (next == NULL) { 3916 next = list_head(l2arc_dev_list); 3917 } else { 3918 next = list_next(l2arc_dev_list, next); 3919 if (next == NULL) 3920 next = list_head(l2arc_dev_list); 3921 } 3922 3923 /* if we have come back to the start, bail out */ 3924 if (first == NULL) 3925 first = next; 3926 else if (next == first) 3927 break; 3928 3929 } while (vdev_is_dead(next->l2ad_vdev)); 3930 3931 /* if we were unable to find any usable vdevs, return NULL */ 3932 if (vdev_is_dead(next->l2ad_vdev)) 3933 next = NULL; 3934 3935 l2arc_dev_last = next; 3936 3937 out: 3938 mutex_exit(&l2arc_dev_mtx); 3939 3940 /* 3941 * Grab the config lock to prevent the 'next' device from being 3942 * removed while we are writing to it. 3943 */ 3944 if (next != NULL) 3945 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 3946 mutex_exit(&spa_namespace_lock); 3947 3948 return (next); 3949 } 3950 3951 /* 3952 * Free buffers that were tagged for destruction. 3953 */ 3954 static void 3955 l2arc_do_free_on_write() 3956 { 3957 list_t *buflist; 3958 l2arc_data_free_t *df, *df_prev; 3959 3960 mutex_enter(&l2arc_free_on_write_mtx); 3961 buflist = l2arc_free_on_write; 3962 3963 for (df = list_tail(buflist); df; df = df_prev) { 3964 df_prev = list_prev(buflist, df); 3965 ASSERT(df->l2df_data != NULL); 3966 ASSERT(df->l2df_func != NULL); 3967 df->l2df_func(df->l2df_data, df->l2df_size); 3968 list_remove(buflist, df); 3969 kmem_free(df, sizeof (l2arc_data_free_t)); 3970 } 3971 3972 mutex_exit(&l2arc_free_on_write_mtx); 3973 } 3974 3975 /* 3976 * A write to a cache device has completed. Update all headers to allow 3977 * reads from these buffers to begin. 3978 */ 3979 static void 3980 l2arc_write_done(zio_t *zio) 3981 { 3982 l2arc_write_callback_t *cb; 3983 l2arc_dev_t *dev; 3984 list_t *buflist; 3985 arc_buf_hdr_t *head, *ab, *ab_prev; 3986 l2arc_buf_hdr_t *abl2; 3987 kmutex_t *hash_lock; 3988 3989 cb = zio->io_private; 3990 ASSERT(cb != NULL); 3991 dev = cb->l2wcb_dev; 3992 ASSERT(dev != NULL); 3993 head = cb->l2wcb_head; 3994 ASSERT(head != NULL); 3995 buflist = dev->l2ad_buflist; 3996 ASSERT(buflist != NULL); 3997 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3998 l2arc_write_callback_t *, cb); 3999 4000 if (zio->io_error != 0) 4001 ARCSTAT_BUMP(arcstat_l2_writes_error); 4002 4003 mutex_enter(&l2arc_buflist_mtx); 4004 4005 /* 4006 * All writes completed, or an error was hit. 4007 */ 4008 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 4009 ab_prev = list_prev(buflist, ab); 4010 4011 hash_lock = HDR_LOCK(ab); 4012 if (!mutex_tryenter(hash_lock)) { 4013 /* 4014 * This buffer misses out. It may be in a stage 4015 * of eviction. Its ARC_L2_WRITING flag will be 4016 * left set, denying reads to this buffer. 4017 */ 4018 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 4019 continue; 4020 } 4021 4022 if (zio->io_error != 0) { 4023 /* 4024 * Error - drop L2ARC entry. 4025 */ 4026 list_remove(buflist, ab); 4027 abl2 = ab->b_l2hdr; 4028 ab->b_l2hdr = NULL; 4029 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4030 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4031 } 4032 4033 /* 4034 * Allow ARC to begin reads to this L2ARC entry. 4035 */ 4036 ab->b_flags &= ~ARC_L2_WRITING; 4037 4038 mutex_exit(hash_lock); 4039 } 4040 4041 atomic_inc_64(&l2arc_writes_done); 4042 list_remove(buflist, head); 4043 kmem_cache_free(hdr_cache, head); 4044 mutex_exit(&l2arc_buflist_mtx); 4045 4046 l2arc_do_free_on_write(); 4047 4048 kmem_free(cb, sizeof (l2arc_write_callback_t)); 4049 } 4050 4051 /* 4052 * A read to a cache device completed. Validate buffer contents before 4053 * handing over to the regular ARC routines. 4054 */ 4055 static void 4056 l2arc_read_done(zio_t *zio) 4057 { 4058 l2arc_read_callback_t *cb; 4059 arc_buf_hdr_t *hdr; 4060 arc_buf_t *buf; 4061 kmutex_t *hash_lock; 4062 int equal; 4063 4064 ASSERT(zio->io_vd != NULL); 4065 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4066 4067 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4068 4069 cb = zio->io_private; 4070 ASSERT(cb != NULL); 4071 buf = cb->l2rcb_buf; 4072 ASSERT(buf != NULL); 4073 hdr = buf->b_hdr; 4074 ASSERT(hdr != NULL); 4075 4076 hash_lock = HDR_LOCK(hdr); 4077 mutex_enter(hash_lock); 4078 4079 /* 4080 * Check this survived the L2ARC journey. 4081 */ 4082 equal = arc_cksum_equal(buf); 4083 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4084 mutex_exit(hash_lock); 4085 zio->io_private = buf; 4086 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4087 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4088 arc_read_done(zio); 4089 } else { 4090 mutex_exit(hash_lock); 4091 /* 4092 * Buffer didn't survive caching. Increment stats and 4093 * reissue to the original storage device. 4094 */ 4095 if (zio->io_error != 0) { 4096 ARCSTAT_BUMP(arcstat_l2_io_error); 4097 } else { 4098 zio->io_error = EIO; 4099 } 4100 if (!equal) 4101 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4102 4103 /* 4104 * If there's no waiter, issue an async i/o to the primary 4105 * storage now. If there *is* a waiter, the caller must 4106 * issue the i/o in a context where it's OK to block. 4107 */ 4108 if (zio->io_waiter == NULL) { 4109 zio_t *pio = zio_unique_parent(zio); 4110 4111 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4112 4113 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4114 buf->b_data, zio->io_size, arc_read_done, buf, 4115 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4116 } 4117 } 4118 4119 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4120 } 4121 4122 /* 4123 * This is the list priority from which the L2ARC will search for pages to 4124 * cache. This is used within loops (0..3) to cycle through lists in the 4125 * desired order. This order can have a significant effect on cache 4126 * performance. 4127 * 4128 * Currently the metadata lists are hit first, MFU then MRU, followed by 4129 * the data lists. This function returns a locked list, and also returns 4130 * the lock pointer. 4131 */ 4132 static list_t * 4133 l2arc_list_locked(int list_num, kmutex_t **lock) 4134 { 4135 list_t *list; 4136 4137 ASSERT(list_num >= 0 && list_num <= 3); 4138 4139 switch (list_num) { 4140 case 0: 4141 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4142 *lock = &arc_mfu->arcs_mtx; 4143 break; 4144 case 1: 4145 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4146 *lock = &arc_mru->arcs_mtx; 4147 break; 4148 case 2: 4149 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4150 *lock = &arc_mfu->arcs_mtx; 4151 break; 4152 case 3: 4153 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4154 *lock = &arc_mru->arcs_mtx; 4155 break; 4156 } 4157 4158 ASSERT(!(MUTEX_HELD(*lock))); 4159 mutex_enter(*lock); 4160 return (list); 4161 } 4162 4163 /* 4164 * Evict buffers from the device write hand to the distance specified in 4165 * bytes. This distance may span populated buffers, it may span nothing. 4166 * This is clearing a region on the L2ARC device ready for writing. 4167 * If the 'all' boolean is set, every buffer is evicted. 4168 */ 4169 static void 4170 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4171 { 4172 list_t *buflist; 4173 l2arc_buf_hdr_t *abl2; 4174 arc_buf_hdr_t *ab, *ab_prev; 4175 kmutex_t *hash_lock; 4176 uint64_t taddr; 4177 4178 buflist = dev->l2ad_buflist; 4179 4180 if (buflist == NULL) 4181 return; 4182 4183 if (!all && dev->l2ad_first) { 4184 /* 4185 * This is the first sweep through the device. There is 4186 * nothing to evict. 4187 */ 4188 return; 4189 } 4190 4191 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4192 /* 4193 * When nearing the end of the device, evict to the end 4194 * before the device write hand jumps to the start. 4195 */ 4196 taddr = dev->l2ad_end; 4197 } else { 4198 taddr = dev->l2ad_hand + distance; 4199 } 4200 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4201 uint64_t, taddr, boolean_t, all); 4202 4203 top: 4204 mutex_enter(&l2arc_buflist_mtx); 4205 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4206 ab_prev = list_prev(buflist, ab); 4207 4208 hash_lock = HDR_LOCK(ab); 4209 if (!mutex_tryenter(hash_lock)) { 4210 /* 4211 * Missed the hash lock. Retry. 4212 */ 4213 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4214 mutex_exit(&l2arc_buflist_mtx); 4215 mutex_enter(hash_lock); 4216 mutex_exit(hash_lock); 4217 goto top; 4218 } 4219 4220 if (HDR_L2_WRITE_HEAD(ab)) { 4221 /* 4222 * We hit a write head node. Leave it for 4223 * l2arc_write_done(). 4224 */ 4225 list_remove(buflist, ab); 4226 mutex_exit(hash_lock); 4227 continue; 4228 } 4229 4230 if (!all && ab->b_l2hdr != NULL && 4231 (ab->b_l2hdr->b_daddr > taddr || 4232 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4233 /* 4234 * We've evicted to the target address, 4235 * or the end of the device. 4236 */ 4237 mutex_exit(hash_lock); 4238 break; 4239 } 4240 4241 if (HDR_FREE_IN_PROGRESS(ab)) { 4242 /* 4243 * Already on the path to destruction. 4244 */ 4245 mutex_exit(hash_lock); 4246 continue; 4247 } 4248 4249 if (ab->b_state == arc_l2c_only) { 4250 ASSERT(!HDR_L2_READING(ab)); 4251 /* 4252 * This doesn't exist in the ARC. Destroy. 4253 * arc_hdr_destroy() will call list_remove() 4254 * and decrement arcstat_l2_size. 4255 */ 4256 arc_change_state(arc_anon, ab, hash_lock); 4257 arc_hdr_destroy(ab); 4258 } else { 4259 /* 4260 * Invalidate issued or about to be issued 4261 * reads, since we may be about to write 4262 * over this location. 4263 */ 4264 if (HDR_L2_READING(ab)) { 4265 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4266 ab->b_flags |= ARC_L2_EVICTED; 4267 } 4268 4269 /* 4270 * Tell ARC this no longer exists in L2ARC. 4271 */ 4272 if (ab->b_l2hdr != NULL) { 4273 abl2 = ab->b_l2hdr; 4274 ab->b_l2hdr = NULL; 4275 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4276 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4277 } 4278 list_remove(buflist, ab); 4279 4280 /* 4281 * This may have been leftover after a 4282 * failed write. 4283 */ 4284 ab->b_flags &= ~ARC_L2_WRITING; 4285 } 4286 mutex_exit(hash_lock); 4287 } 4288 mutex_exit(&l2arc_buflist_mtx); 4289 4290 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0); 4291 dev->l2ad_evict = taddr; 4292 } 4293 4294 /* 4295 * Find and write ARC buffers to the L2ARC device. 4296 * 4297 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4298 * for reading until they have completed writing. 4299 */ 4300 static uint64_t 4301 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4302 { 4303 arc_buf_hdr_t *ab, *ab_prev, *head; 4304 l2arc_buf_hdr_t *hdrl2; 4305 list_t *list; 4306 uint64_t passed_sz, write_sz, buf_sz, headroom; 4307 void *buf_data; 4308 kmutex_t *hash_lock, *list_lock; 4309 boolean_t have_lock, full; 4310 l2arc_write_callback_t *cb; 4311 zio_t *pio, *wzio; 4312 uint64_t guid = spa_guid(spa); 4313 4314 ASSERT(dev->l2ad_vdev != NULL); 4315 4316 pio = NULL; 4317 write_sz = 0; 4318 full = B_FALSE; 4319 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4320 head->b_flags |= ARC_L2_WRITE_HEAD; 4321 4322 /* 4323 * Copy buffers for L2ARC writing. 4324 */ 4325 mutex_enter(&l2arc_buflist_mtx); 4326 for (int try = 0; try <= 3; try++) { 4327 list = l2arc_list_locked(try, &list_lock); 4328 passed_sz = 0; 4329 4330 /* 4331 * L2ARC fast warmup. 4332 * 4333 * Until the ARC is warm and starts to evict, read from the 4334 * head of the ARC lists rather than the tail. 4335 */ 4336 headroom = target_sz * l2arc_headroom; 4337 if (arc_warm == B_FALSE) 4338 ab = list_head(list); 4339 else 4340 ab = list_tail(list); 4341 4342 for (; ab; ab = ab_prev) { 4343 if (arc_warm == B_FALSE) 4344 ab_prev = list_next(list, ab); 4345 else 4346 ab_prev = list_prev(list, ab); 4347 4348 hash_lock = HDR_LOCK(ab); 4349 have_lock = MUTEX_HELD(hash_lock); 4350 if (!have_lock && !mutex_tryenter(hash_lock)) { 4351 /* 4352 * Skip this buffer rather than waiting. 4353 */ 4354 continue; 4355 } 4356 4357 passed_sz += ab->b_size; 4358 if (passed_sz > headroom) { 4359 /* 4360 * Searched too far. 4361 */ 4362 mutex_exit(hash_lock); 4363 break; 4364 } 4365 4366 if (!l2arc_write_eligible(guid, ab)) { 4367 mutex_exit(hash_lock); 4368 continue; 4369 } 4370 4371 if ((write_sz + ab->b_size) > target_sz) { 4372 full = B_TRUE; 4373 mutex_exit(hash_lock); 4374 break; 4375 } 4376 4377 if (pio == NULL) { 4378 /* 4379 * Insert a dummy header on the buflist so 4380 * l2arc_write_done() can find where the 4381 * write buffers begin without searching. 4382 */ 4383 list_insert_head(dev->l2ad_buflist, head); 4384 4385 cb = kmem_alloc( 4386 sizeof (l2arc_write_callback_t), KM_SLEEP); 4387 cb->l2wcb_dev = dev; 4388 cb->l2wcb_head = head; 4389 pio = zio_root(spa, l2arc_write_done, cb, 4390 ZIO_FLAG_CANFAIL); 4391 } 4392 4393 /* 4394 * Create and add a new L2ARC header. 4395 */ 4396 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4397 hdrl2->b_dev = dev; 4398 hdrl2->b_daddr = dev->l2ad_hand; 4399 4400 ab->b_flags |= ARC_L2_WRITING; 4401 ab->b_l2hdr = hdrl2; 4402 list_insert_head(dev->l2ad_buflist, ab); 4403 buf_data = ab->b_buf->b_data; 4404 buf_sz = ab->b_size; 4405 4406 /* 4407 * Compute and store the buffer cksum before 4408 * writing. On debug the cksum is verified first. 4409 */ 4410 arc_cksum_verify(ab->b_buf); 4411 arc_cksum_compute(ab->b_buf, B_TRUE); 4412 4413 mutex_exit(hash_lock); 4414 4415 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4416 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4417 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4418 ZIO_FLAG_CANFAIL, B_FALSE); 4419 4420 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4421 zio_t *, wzio); 4422 (void) zio_nowait(wzio); 4423 4424 /* 4425 * Keep the clock hand suitably device-aligned. 4426 */ 4427 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4428 4429 write_sz += buf_sz; 4430 dev->l2ad_hand += buf_sz; 4431 } 4432 4433 mutex_exit(list_lock); 4434 4435 if (full == B_TRUE) 4436 break; 4437 } 4438 mutex_exit(&l2arc_buflist_mtx); 4439 4440 if (pio == NULL) { 4441 ASSERT3U(write_sz, ==, 0); 4442 kmem_cache_free(hdr_cache, head); 4443 return (0); 4444 } 4445 4446 ASSERT3U(write_sz, <=, target_sz); 4447 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4448 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz); 4449 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4450 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0); 4451 4452 /* 4453 * Bump device hand to the device start if it is approaching the end. 4454 * l2arc_evict() will already have evicted ahead for this case. 4455 */ 4456 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4457 vdev_space_update(dev->l2ad_vdev, 4458 dev->l2ad_end - dev->l2ad_hand, 0, 0); 4459 dev->l2ad_hand = dev->l2ad_start; 4460 dev->l2ad_evict = dev->l2ad_start; 4461 dev->l2ad_first = B_FALSE; 4462 } 4463 4464 dev->l2ad_writing = B_TRUE; 4465 (void) zio_wait(pio); 4466 dev->l2ad_writing = B_FALSE; 4467 4468 return (write_sz); 4469 } 4470 4471 /* 4472 * This thread feeds the L2ARC at regular intervals. This is the beating 4473 * heart of the L2ARC. 4474 */ 4475 static void 4476 l2arc_feed_thread(void) 4477 { 4478 callb_cpr_t cpr; 4479 l2arc_dev_t *dev; 4480 spa_t *spa; 4481 uint64_t size, wrote; 4482 clock_t begin, next = ddi_get_lbolt(); 4483 4484 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4485 4486 mutex_enter(&l2arc_feed_thr_lock); 4487 4488 while (l2arc_thread_exit == 0) { 4489 CALLB_CPR_SAFE_BEGIN(&cpr); 4490 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4491 (hz * l2arc_feed_secs)); 4492 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4493 next = ddi_get_lbolt(); 4494 4495 /* 4496 * Quick check for L2ARC devices. 4497 */ 4498 mutex_enter(&l2arc_dev_mtx); 4499 if (l2arc_ndev == 0) { 4500 mutex_exit(&l2arc_dev_mtx); 4501 continue; 4502 } 4503 mutex_exit(&l2arc_dev_mtx); 4504 begin = ddi_get_lbolt(); 4505 4506 /* 4507 * This selects the next l2arc device to write to, and in 4508 * doing so the next spa to feed from: dev->l2ad_spa. This 4509 * will return NULL if there are now no l2arc devices or if 4510 * they are all faulted. 4511 * 4512 * If a device is returned, its spa's config lock is also 4513 * held to prevent device removal. l2arc_dev_get_next() 4514 * will grab and release l2arc_dev_mtx. 4515 */ 4516 if ((dev = l2arc_dev_get_next()) == NULL) 4517 continue; 4518 4519 spa = dev->l2ad_spa; 4520 ASSERT(spa != NULL); 4521 4522 /* 4523 * Avoid contributing to memory pressure. 4524 */ 4525 if (arc_reclaim_needed()) { 4526 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4527 spa_config_exit(spa, SCL_L2ARC, dev); 4528 continue; 4529 } 4530 4531 ARCSTAT_BUMP(arcstat_l2_feeds); 4532 4533 size = l2arc_write_size(dev); 4534 4535 /* 4536 * Evict L2ARC buffers that will be overwritten. 4537 */ 4538 l2arc_evict(dev, size, B_FALSE); 4539 4540 /* 4541 * Write ARC buffers. 4542 */ 4543 wrote = l2arc_write_buffers(spa, dev, size); 4544 4545 /* 4546 * Calculate interval between writes. 4547 */ 4548 next = l2arc_write_interval(begin, size, wrote); 4549 spa_config_exit(spa, SCL_L2ARC, dev); 4550 } 4551 4552 l2arc_thread_exit = 0; 4553 cv_broadcast(&l2arc_feed_thr_cv); 4554 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4555 thread_exit(); 4556 } 4557 4558 boolean_t 4559 l2arc_vdev_present(vdev_t *vd) 4560 { 4561 l2arc_dev_t *dev; 4562 4563 mutex_enter(&l2arc_dev_mtx); 4564 for (dev = list_head(l2arc_dev_list); dev != NULL; 4565 dev = list_next(l2arc_dev_list, dev)) { 4566 if (dev->l2ad_vdev == vd) 4567 break; 4568 } 4569 mutex_exit(&l2arc_dev_mtx); 4570 4571 return (dev != NULL); 4572 } 4573 4574 /* 4575 * Add a vdev for use by the L2ARC. By this point the spa has already 4576 * validated the vdev and opened it. 4577 */ 4578 void 4579 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 4580 { 4581 l2arc_dev_t *adddev; 4582 4583 ASSERT(!l2arc_vdev_present(vd)); 4584 4585 /* 4586 * Create a new l2arc device entry. 4587 */ 4588 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4589 adddev->l2ad_spa = spa; 4590 adddev->l2ad_vdev = vd; 4591 adddev->l2ad_write = l2arc_write_max; 4592 adddev->l2ad_boost = l2arc_write_boost; 4593 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 4594 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 4595 adddev->l2ad_hand = adddev->l2ad_start; 4596 adddev->l2ad_evict = adddev->l2ad_start; 4597 adddev->l2ad_first = B_TRUE; 4598 adddev->l2ad_writing = B_FALSE; 4599 ASSERT3U(adddev->l2ad_write, >, 0); 4600 4601 /* 4602 * This is a list of all ARC buffers that are still valid on the 4603 * device. 4604 */ 4605 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4606 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4607 offsetof(arc_buf_hdr_t, b_l2node)); 4608 4609 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 4610 4611 /* 4612 * Add device to global list 4613 */ 4614 mutex_enter(&l2arc_dev_mtx); 4615 list_insert_head(l2arc_dev_list, adddev); 4616 atomic_inc_64(&l2arc_ndev); 4617 mutex_exit(&l2arc_dev_mtx); 4618 } 4619 4620 /* 4621 * Remove a vdev from the L2ARC. 4622 */ 4623 void 4624 l2arc_remove_vdev(vdev_t *vd) 4625 { 4626 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4627 4628 /* 4629 * Find the device by vdev 4630 */ 4631 mutex_enter(&l2arc_dev_mtx); 4632 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4633 nextdev = list_next(l2arc_dev_list, dev); 4634 if (vd == dev->l2ad_vdev) { 4635 remdev = dev; 4636 break; 4637 } 4638 } 4639 ASSERT(remdev != NULL); 4640 4641 /* 4642 * Remove device from global list 4643 */ 4644 list_remove(l2arc_dev_list, remdev); 4645 l2arc_dev_last = NULL; /* may have been invalidated */ 4646 atomic_dec_64(&l2arc_ndev); 4647 mutex_exit(&l2arc_dev_mtx); 4648 4649 /* 4650 * Clear all buflists and ARC references. L2ARC device flush. 4651 */ 4652 l2arc_evict(remdev, 0, B_TRUE); 4653 list_destroy(remdev->l2ad_buflist); 4654 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4655 kmem_free(remdev, sizeof (l2arc_dev_t)); 4656 } 4657 4658 void 4659 l2arc_init(void) 4660 { 4661 l2arc_thread_exit = 0; 4662 l2arc_ndev = 0; 4663 l2arc_writes_sent = 0; 4664 l2arc_writes_done = 0; 4665 4666 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4667 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4668 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4669 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4670 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4671 4672 l2arc_dev_list = &L2ARC_dev_list; 4673 l2arc_free_on_write = &L2ARC_free_on_write; 4674 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4675 offsetof(l2arc_dev_t, l2ad_node)); 4676 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4677 offsetof(l2arc_data_free_t, l2df_list_node)); 4678 } 4679 4680 void 4681 l2arc_fini(void) 4682 { 4683 /* 4684 * This is called from dmu_fini(), which is called from spa_fini(); 4685 * Because of this, we can assume that all l2arc devices have 4686 * already been removed when the pools themselves were removed. 4687 */ 4688 4689 l2arc_do_free_on_write(); 4690 4691 mutex_destroy(&l2arc_feed_thr_lock); 4692 cv_destroy(&l2arc_feed_thr_cv); 4693 mutex_destroy(&l2arc_dev_mtx); 4694 mutex_destroy(&l2arc_buflist_mtx); 4695 mutex_destroy(&l2arc_free_on_write_mtx); 4696 4697 list_destroy(l2arc_dev_list); 4698 list_destroy(l2arc_free_on_write); 4699 } 4700 4701 void 4702 l2arc_start(void) 4703 { 4704 if (!(spa_mode_global & FWRITE)) 4705 return; 4706 4707 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4708 TS_RUN, minclsyspri); 4709 } 4710 4711 void 4712 l2arc_stop(void) 4713 { 4714 if (!(spa_mode_global & FWRITE)) 4715 return; 4716 4717 mutex_enter(&l2arc_feed_thr_lock); 4718 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4719 l2arc_thread_exit = 1; 4720 while (l2arc_thread_exit != 0) 4721 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4722 mutex_exit(&l2arc_feed_thr_lock); 4723 } 4724