1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Arc buffers may have an associated eviction callback function. 103 * This function will be invoked prior to removing the buffer (e.g. 104 * in arc_do_user_evicts()). Note however that the data associated 105 * with the buffer may be evicted prior to the callback. The callback 106 * must be made with *no locks held* (to prevent deadlock). Additionally, 107 * the users of callbacks must ensure that their private data is 108 * protected from simultaneous callbacks from arc_clear_callback() 109 * and arc_do_user_evicts(). 110 * 111 * Note that the majority of the performance stats are manipulated 112 * with atomic operations. 113 * 114 * The L2ARC uses the l2ad_mtx on each vdev for the following: 115 * 116 * - L2ARC buflist creation 117 * - L2ARC buflist eviction 118 * - L2ARC write completion, which walks L2ARC buflists 119 * - ARC header destruction, as it removes from L2ARC buflists 120 * - ARC header release, as it removes from L2ARC buflists 121 */ 122 123 /* 124 * ARC operation: 125 * 126 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 127 * This structure can point either to a block that is still in the cache or to 128 * one that is only accessible in an L2 ARC device, or it can provide 129 * information about a block that was recently evicted. If a block is 130 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 131 * information to retrieve it from the L2ARC device. This information is 132 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 133 * that is in this state cannot access the data directly. 134 * 135 * Blocks that are actively being referenced or have not been evicted 136 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 137 * the arc_buf_hdr_t that will point to the data block in memory. A block can 138 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 139 * caches data in two ways -- in a list of arc buffers (arc_buf_t) and 140 * also in the arc_buf_hdr_t's private physical data block pointer (b_pdata). 141 * Each arc buffer (arc_buf_t) is being actively accessed by a specific ARC 142 * consumer, and always contains uncompressed data. The ARC will provide 143 * references to this data and will keep it cached until it is no longer in 144 * use. Typically, the arc will try to cache only the L1ARC's physical data 145 * block and will aggressively evict any arc_buf_t that is no longer referenced. 146 * The amount of memory consumed by the arc_buf_t's can be seen via the 147 * "overhead_size" kstat. 148 * 149 * 150 * arc_buf_hdr_t 151 * +-----------+ 152 * | | 153 * | | 154 * | | 155 * +-----------+ 156 * l2arc_buf_hdr_t| | 157 * | | 158 * +-----------+ 159 * l1arc_buf_hdr_t| | 160 * | | arc_buf_t 161 * | b_buf +------------>+---------+ arc_buf_t 162 * | | |b_next +---->+---------+ 163 * | b_pdata +-+ |---------| |b_next +-->NULL 164 * +-----------+ | | | +---------+ 165 * | |b_data +-+ | | 166 * | +---------+ | |b_data +-+ 167 * +->+------+ | +---------+ | 168 * (potentially) | | | | 169 * compressed | | | | 170 * data +------+ | v 171 * +->+------+ +------+ 172 * uncompressed | | | | 173 * data | | | | 174 * +------+ +------+ 175 * 176 * The L1ARC's data pointer, however, may or may not be uncompressed. The 177 * ARC has the ability to store the physical data (b_pdata) associated with 178 * the DVA of the arc_buf_hdr_t. Since the b_pdata is a copy of the on-disk 179 * physical block, it will match its on-disk compression characteristics. 180 * If the block on-disk is compressed, then the physical data block 181 * in the cache will also be compressed and vice-versa. This behavior 182 * can be disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 183 * compressed ARC functionality is disabled, the b_pdata will point to an 184 * uncompressed version of the on-disk data. 185 * 186 * When a consumer reads a block, the ARC must first look to see if the 187 * arc_buf_hdr_t is cached. If the hdr is cached and already has an arc_buf_t, 188 * then an additional arc_buf_t is allocated and the uncompressed data is 189 * bcopied from the existing arc_buf_t. If the hdr is cached but does not 190 * have an arc_buf_t, then the ARC allocates a new arc_buf_t and decompresses 191 * the b_pdata contents into the arc_buf_t's b_data. If the arc_buf_hdr_t's 192 * b_pdata is not compressed, then the block is shared with the newly 193 * allocated arc_buf_t. This block sharing only occurs with one arc_buf_t 194 * in the arc buffer chain. Sharing the block reduces the memory overhead 195 * required when the hdr is caching uncompressed blocks or the compressed 196 * arc functionality has been disabled via 'zfs_compressed_arc_enabled'. 197 * 198 * The diagram below shows an example of an uncompressed ARC hdr that is 199 * sharing its data with an arc_buf_t: 200 * 201 * arc_buf_hdr_t 202 * +-----------+ 203 * | | 204 * | | 205 * | | 206 * +-----------+ 207 * l2arc_buf_hdr_t| | 208 * | | 209 * +-----------+ 210 * l1arc_buf_hdr_t| | 211 * | | arc_buf_t (shared) 212 * | b_buf +------------>+---------+ arc_buf_t 213 * | | |b_next +---->+---------+ 214 * | b_pdata +-+ |---------| |b_next +-->NULL 215 * +-----------+ | | | +---------+ 216 * | |b_data +-+ | | 217 * | +---------+ | |b_data +-+ 218 * +->+------+ | +---------+ | 219 * | | | | 220 * uncompressed | | | | 221 * data +------+ | | 222 * ^ +->+------+ | 223 * | uncompressed | | | 224 * | data | | | 225 * | +------+ | 226 * +---------------------------------+ 227 * 228 * Writing to the arc requires that the ARC first discard the b_pdata 229 * since the physical block is about to be rewritten. The new data contents 230 * will be contained in the arc_buf_t (uncompressed). As the I/O pipeline 231 * performs the write, it may compress the data before writing it to disk. 232 * The ARC will be called with the transformed data and will bcopy the 233 * transformed on-disk block into a newly allocated b_pdata. 234 * 235 * When the L2ARC is in use, it will also take advantage of the b_pdata. The 236 * L2ARC will always write the contents of b_pdata to the L2ARC. This means 237 * that when compressed arc is enabled that the L2ARC blocks are identical 238 * to the on-disk block in the main data pool. This provides a significant 239 * advantage since the ARC can leverage the bp's checksum when reading from the 240 * L2ARC to determine if the contents are valid. However, if the compressed 241 * arc is disabled, then the L2ARC's block must be transformed to look 242 * like the physical block in the main data pool before comparing the 243 * checksum and determining its validity. 244 */ 245 246 #include <sys/spa.h> 247 #include <sys/zio.h> 248 #include <sys/spa_impl.h> 249 #include <sys/zio_compress.h> 250 #include <sys/zio_checksum.h> 251 #include <sys/zfs_context.h> 252 #include <sys/arc.h> 253 #include <sys/refcount.h> 254 #include <sys/vdev.h> 255 #include <sys/vdev_impl.h> 256 #include <sys/dsl_pool.h> 257 #include <sys/multilist.h> 258 #ifdef _KERNEL 259 #include <sys/dnlc.h> 260 #include <sys/racct.h> 261 #endif 262 #include <sys/callb.h> 263 #include <sys/kstat.h> 264 #include <sys/trim_map.h> 265 #include <zfs_fletcher.h> 266 #include <sys/sdt.h> 267 268 #include <machine/vmparam.h> 269 270 #ifdef illumos 271 #ifndef _KERNEL 272 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 273 boolean_t arc_watch = B_FALSE; 274 int arc_procfd; 275 #endif 276 #endif /* illumos */ 277 278 #ifdef __NetBSD__ 279 #include <uvm/uvm.h> 280 #ifndef btop 281 #define btop(x) ((x) / PAGE_SIZE) 282 #endif 283 #ifndef ptob 284 #define ptob(x) ((x) * PAGE_SIZE) 285 #endif 286 //#define needfree (uvm_availmem() < uvmexp.freetarg ? uvmexp.freetarg : 0) 287 #define buf_init arc_buf_init 288 #define freemem uvm_availmem(false) 289 #define minfree uvmexp.freemin 290 #define desfree uvmexp.freetarg 291 #define zfs_arc_free_target desfree 292 #define lotsfree (desfree * 2) 293 #define availrmem desfree 294 #define swapfs_minfree 0 295 #define swapfs_reserve 0 296 #undef curproc 297 #define curproc curlwp 298 #define proc_pageout uvm.pagedaemon_lwp 299 300 static void *zio_arena; 301 302 #include <sys/callback.h> 303 /* Structures used for memory and kva space reclaim. */ 304 static struct callback_entry arc_kva_reclaim_entry; 305 306 #endif /* __NetBSD__ */ 307 308 static kmutex_t arc_reclaim_lock; 309 static kcondvar_t arc_reclaim_thread_cv; 310 static boolean_t arc_reclaim_thread_exit; 311 static kcondvar_t arc_reclaim_waiters_cv; 312 313 #ifdef __FreeBSD__ 314 static kmutex_t arc_dnlc_evicts_lock; 315 static kcondvar_t arc_dnlc_evicts_cv; 316 static boolean_t arc_dnlc_evicts_thread_exit; 317 318 uint_t arc_reduce_dnlc_percent = 3; 319 #endif 320 321 /* 322 * The number of headers to evict in arc_evict_state_impl() before 323 * dropping the sublist lock and evicting from another sublist. A lower 324 * value means we're more likely to evict the "correct" header (i.e. the 325 * oldest header in the arc state), but comes with higher overhead 326 * (i.e. more invocations of arc_evict_state_impl()). 327 */ 328 int zfs_arc_evict_batch_limit = 10; 329 330 /* 331 * The number of sublists used for each of the arc state lists. If this 332 * is not set to a suitable value by the user, it will be configured to 333 * the number of CPUs on the system in arc_init(). 334 */ 335 int zfs_arc_num_sublists_per_state = 0; 336 337 /* number of seconds before growing cache again */ 338 static int arc_grow_retry = 60; 339 340 /* shift of arc_c for calculating overflow limit in arc_get_data_buf */ 341 int zfs_arc_overflow_shift = 8; 342 343 /* shift of arc_c for calculating both min and max arc_p */ 344 static int arc_p_min_shift = 4; 345 346 /* log2(fraction of arc to reclaim) */ 347 static int arc_shrink_shift = 7; 348 349 /* 350 * log2(fraction of ARC which must be free to allow growing). 351 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 352 * when reading a new block into the ARC, we will evict an equal-sized block 353 * from the ARC. 354 * 355 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 356 * we will still not allow it to grow. 357 */ 358 int arc_no_grow_shift = 5; 359 360 361 /* 362 * minimum lifespan of a prefetch block in clock ticks 363 * (initialized in arc_init()) 364 */ 365 static int arc_min_prefetch_lifespan; 366 367 /* 368 * If this percent of memory is free, don't throttle. 369 */ 370 int arc_lotsfree_percent = 10; 371 372 static int arc_dead; 373 extern boolean_t zfs_prefetch_disable; 374 375 /* 376 * The arc has filled available memory and has now warmed up. 377 */ 378 static boolean_t arc_warm; 379 380 /* 381 * These tunables are for performance analysis. 382 */ 383 uint64_t zfs_arc_max; 384 uint64_t zfs_arc_min; 385 uint64_t zfs_arc_meta_limit = 0; 386 uint64_t zfs_arc_meta_min = 0; 387 int zfs_arc_grow_retry = 0; 388 int zfs_arc_shrink_shift = 0; 389 int zfs_arc_p_min_shift = 0; 390 uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 391 392 /* Absolute min for arc min / max is 16MB. */ 393 static uint64_t arc_abs_min = 16 << 20; 394 395 boolean_t zfs_compressed_arc_enabled = B_TRUE; 396 397 #if defined(__FreeBSD__) && defined(_KERNEL) 398 u_int zfs_arc_free_target = 0; 399 400 static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS); 401 static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS); 402 static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS); 403 static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS); 404 405 static void 406 arc_free_target_init(void *unused __unused) 407 { 408 409 zfs_arc_free_target = vm_pageout_wakeup_thresh; 410 } 411 SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY, 412 arc_free_target_init, NULL); 413 414 TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit); 415 TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min); 416 TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift); 417 SYSCTL_DECL(_vfs_zfs); 418 SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN, 419 0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size"); 420 SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN, 421 0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size"); 422 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN, 423 &zfs_arc_average_blocksize, 0, 424 "ARC average blocksize"); 425 SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW, 426 &arc_shrink_shift, 0, 427 "log2(fraction of arc to reclaim)"); 428 SYSCTL_INT(_vfs_zfs, OID_AUTO, compressed_arc_enabled, CTLFLAG_RDTUN, 429 &zfs_compressed_arc_enabled, 0, "Enable compressed ARC"); 430 431 /* 432 * We don't have a tunable for arc_free_target due to the dependency on 433 * pagedaemon initialisation. 434 */ 435 SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target, 436 CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int), 437 sysctl_vfs_zfs_arc_free_target, "IU", 438 "Desired number of free pages below which ARC triggers reclaim"); 439 440 static int 441 sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS) 442 { 443 u_int val; 444 int err; 445 446 val = zfs_arc_free_target; 447 err = sysctl_handle_int(oidp, &val, 0, req); 448 if (err != 0 || req->newptr == NULL) 449 return (err); 450 451 if (val < minfree) 452 return (EINVAL); 453 if (val > vm_cnt.v_page_count) 454 return (EINVAL); 455 456 zfs_arc_free_target = val; 457 458 return (0); 459 } 460 461 /* 462 * Must be declared here, before the definition of corresponding kstat 463 * macro which uses the same names will confuse the compiler. 464 */ 465 SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit, 466 CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t), 467 sysctl_vfs_zfs_arc_meta_limit, "QU", 468 "ARC metadata limit"); 469 #endif 470 471 /* 472 * Note that buffers can be in one of 6 states: 473 * ARC_anon - anonymous (discussed below) 474 * ARC_mru - recently used, currently cached 475 * ARC_mru_ghost - recentely used, no longer in cache 476 * ARC_mfu - frequently used, currently cached 477 * ARC_mfu_ghost - frequently used, no longer in cache 478 * ARC_l2c_only - exists in L2ARC but not other states 479 * When there are no active references to the buffer, they are 480 * are linked onto a list in one of these arc states. These are 481 * the only buffers that can be evicted or deleted. Within each 482 * state there are multiple lists, one for meta-data and one for 483 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 484 * etc.) is tracked separately so that it can be managed more 485 * explicitly: favored over data, limited explicitly. 486 * 487 * Anonymous buffers are buffers that are not associated with 488 * a DVA. These are buffers that hold dirty block copies 489 * before they are written to stable storage. By definition, 490 * they are "ref'd" and are considered part of arc_mru 491 * that cannot be freed. Generally, they will aquire a DVA 492 * as they are written and migrate onto the arc_mru list. 493 * 494 * The ARC_l2c_only state is for buffers that are in the second 495 * level ARC but no longer in any of the ARC_m* lists. The second 496 * level ARC itself may also contain buffers that are in any of 497 * the ARC_m* states - meaning that a buffer can exist in two 498 * places. The reason for the ARC_l2c_only state is to keep the 499 * buffer header in the hash table, so that reads that hit the 500 * second level ARC benefit from these fast lookups. 501 */ 502 503 typedef struct arc_state { 504 /* 505 * list of evictable buffers 506 */ 507 multilist_t arcs_list[ARC_BUFC_NUMTYPES]; 508 /* 509 * total amount of evictable data in this state 510 */ 511 refcount_t arcs_esize[ARC_BUFC_NUMTYPES]; 512 /* 513 * total amount of data in this state; this includes: evictable, 514 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA. 515 */ 516 refcount_t arcs_size; 517 } arc_state_t; 518 519 /* The 6 states: */ 520 static arc_state_t ARC_anon; 521 static arc_state_t ARC_mru; 522 static arc_state_t ARC_mru_ghost; 523 static arc_state_t ARC_mfu; 524 static arc_state_t ARC_mfu_ghost; 525 static arc_state_t ARC_l2c_only; 526 527 typedef struct arc_stats { 528 kstat_named_t arcstat_hits; 529 kstat_named_t arcstat_misses; 530 kstat_named_t arcstat_demand_data_hits; 531 kstat_named_t arcstat_demand_data_misses; 532 kstat_named_t arcstat_demand_metadata_hits; 533 kstat_named_t arcstat_demand_metadata_misses; 534 kstat_named_t arcstat_prefetch_data_hits; 535 kstat_named_t arcstat_prefetch_data_misses; 536 kstat_named_t arcstat_prefetch_metadata_hits; 537 kstat_named_t arcstat_prefetch_metadata_misses; 538 kstat_named_t arcstat_mru_hits; 539 kstat_named_t arcstat_mru_ghost_hits; 540 kstat_named_t arcstat_mfu_hits; 541 kstat_named_t arcstat_mfu_ghost_hits; 542 kstat_named_t arcstat_allocated; 543 kstat_named_t arcstat_deleted; 544 /* 545 * Number of buffers that could not be evicted because the hash lock 546 * was held by another thread. The lock may not necessarily be held 547 * by something using the same buffer, since hash locks are shared 548 * by multiple buffers. 549 */ 550 kstat_named_t arcstat_mutex_miss; 551 /* 552 * Number of buffers skipped because they have I/O in progress, are 553 * indrect prefetch buffers that have not lived long enough, or are 554 * not from the spa we're trying to evict from. 555 */ 556 kstat_named_t arcstat_evict_skip; 557 /* 558 * Number of times arc_evict_state() was unable to evict enough 559 * buffers to reach it's target amount. 560 */ 561 kstat_named_t arcstat_evict_not_enough; 562 kstat_named_t arcstat_evict_l2_cached; 563 kstat_named_t arcstat_evict_l2_eligible; 564 kstat_named_t arcstat_evict_l2_ineligible; 565 kstat_named_t arcstat_evict_l2_skip; 566 kstat_named_t arcstat_hash_elements; 567 kstat_named_t arcstat_hash_elements_max; 568 kstat_named_t arcstat_hash_collisions; 569 kstat_named_t arcstat_hash_chains; 570 kstat_named_t arcstat_hash_chain_max; 571 kstat_named_t arcstat_p; 572 kstat_named_t arcstat_c; 573 kstat_named_t arcstat_c_min; 574 kstat_named_t arcstat_c_max; 575 kstat_named_t arcstat_size; 576 /* 577 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pdata. 578 * Note that the compressed bytes may match the uncompressed bytes 579 * if the block is either not compressed or compressed arc is disabled. 580 */ 581 kstat_named_t arcstat_compressed_size; 582 /* 583 * Uncompressed size of the data stored in b_pdata. If compressed 584 * arc is disabled then this value will be identical to the stat 585 * above. 586 */ 587 kstat_named_t arcstat_uncompressed_size; 588 /* 589 * Number of bytes stored in all the arc_buf_t's. This is classified 590 * as "overhead" since this data is typically short-lived and will 591 * be evicted from the arc when it becomes unreferenced unless the 592 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level 593 * values have been set (see comment in dbuf.c for more information). 594 */ 595 kstat_named_t arcstat_overhead_size; 596 /* 597 * Number of bytes consumed by internal ARC structures necessary 598 * for tracking purposes; these structures are not actually 599 * backed by ARC buffers. This includes arc_buf_hdr_t structures 600 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only 601 * caches), and arc_buf_t structures (allocated via arc_buf_t 602 * cache). 603 */ 604 kstat_named_t arcstat_hdr_size; 605 /* 606 * Number of bytes consumed by ARC buffers of type equal to 607 * ARC_BUFC_DATA. This is generally consumed by buffers backing 608 * on disk user data (e.g. plain file contents). 609 */ 610 kstat_named_t arcstat_data_size; 611 /* 612 * Number of bytes consumed by ARC buffers of type equal to 613 * ARC_BUFC_METADATA. This is generally consumed by buffers 614 * backing on disk data that is used for internal ZFS 615 * structures (e.g. ZAP, dnode, indirect blocks, etc). 616 */ 617 kstat_named_t arcstat_metadata_size; 618 /* 619 * Number of bytes consumed by various buffers and structures 620 * not actually backed with ARC buffers. This includes bonus 621 * buffers (allocated directly via zio_buf_* functions), 622 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t 623 * cache), and dnode_t structures (allocated via dnode_t cache). 624 */ 625 kstat_named_t arcstat_other_size; 626 /* 627 * Total number of bytes consumed by ARC buffers residing in the 628 * arc_anon state. This includes *all* buffers in the arc_anon 629 * state; e.g. data, metadata, evictable, and unevictable buffers 630 * are all included in this value. 631 */ 632 kstat_named_t arcstat_anon_size; 633 /* 634 * Number of bytes consumed by ARC buffers that meet the 635 * following criteria: backing buffers of type ARC_BUFC_DATA, 636 * residing in the arc_anon state, and are eligible for eviction 637 * (e.g. have no outstanding holds on the buffer). 638 */ 639 kstat_named_t arcstat_anon_evictable_data; 640 /* 641 * Number of bytes consumed by ARC buffers that meet the 642 * following criteria: backing buffers of type ARC_BUFC_METADATA, 643 * residing in the arc_anon state, and are eligible for eviction 644 * (e.g. have no outstanding holds on the buffer). 645 */ 646 kstat_named_t arcstat_anon_evictable_metadata; 647 /* 648 * Total number of bytes consumed by ARC buffers residing in the 649 * arc_mru state. This includes *all* buffers in the arc_mru 650 * state; e.g. data, metadata, evictable, and unevictable buffers 651 * are all included in this value. 652 */ 653 kstat_named_t arcstat_mru_size; 654 /* 655 * Number of bytes consumed by ARC buffers that meet the 656 * following criteria: backing buffers of type ARC_BUFC_DATA, 657 * residing in the arc_mru state, and are eligible for eviction 658 * (e.g. have no outstanding holds on the buffer). 659 */ 660 kstat_named_t arcstat_mru_evictable_data; 661 /* 662 * Number of bytes consumed by ARC buffers that meet the 663 * following criteria: backing buffers of type ARC_BUFC_METADATA, 664 * residing in the arc_mru state, and are eligible for eviction 665 * (e.g. have no outstanding holds on the buffer). 666 */ 667 kstat_named_t arcstat_mru_evictable_metadata; 668 /* 669 * Total number of bytes that *would have been* consumed by ARC 670 * buffers in the arc_mru_ghost state. The key thing to note 671 * here, is the fact that this size doesn't actually indicate 672 * RAM consumption. The ghost lists only consist of headers and 673 * don't actually have ARC buffers linked off of these headers. 674 * Thus, *if* the headers had associated ARC buffers, these 675 * buffers *would have* consumed this number of bytes. 676 */ 677 kstat_named_t arcstat_mru_ghost_size; 678 /* 679 * Number of bytes that *would have been* consumed by ARC 680 * buffers that are eligible for eviction, of type 681 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state. 682 */ 683 kstat_named_t arcstat_mru_ghost_evictable_data; 684 /* 685 * Number of bytes that *would have been* consumed by ARC 686 * buffers that are eligible for eviction, of type 687 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 688 */ 689 kstat_named_t arcstat_mru_ghost_evictable_metadata; 690 /* 691 * Total number of bytes consumed by ARC buffers residing in the 692 * arc_mfu state. This includes *all* buffers in the arc_mfu 693 * state; e.g. data, metadata, evictable, and unevictable buffers 694 * are all included in this value. 695 */ 696 kstat_named_t arcstat_mfu_size; 697 /* 698 * Number of bytes consumed by ARC buffers that are eligible for 699 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu 700 * state. 701 */ 702 kstat_named_t arcstat_mfu_evictable_data; 703 /* 704 * Number of bytes consumed by ARC buffers that are eligible for 705 * eviction, of type ARC_BUFC_METADATA, and reside in the 706 * arc_mfu state. 707 */ 708 kstat_named_t arcstat_mfu_evictable_metadata; 709 /* 710 * Total number of bytes that *would have been* consumed by ARC 711 * buffers in the arc_mfu_ghost state. See the comment above 712 * arcstat_mru_ghost_size for more details. 713 */ 714 kstat_named_t arcstat_mfu_ghost_size; 715 /* 716 * Number of bytes that *would have been* consumed by ARC 717 * buffers that are eligible for eviction, of type 718 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state. 719 */ 720 kstat_named_t arcstat_mfu_ghost_evictable_data; 721 /* 722 * Number of bytes that *would have been* consumed by ARC 723 * buffers that are eligible for eviction, of type 724 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 725 */ 726 kstat_named_t arcstat_mfu_ghost_evictable_metadata; 727 kstat_named_t arcstat_l2_hits; 728 kstat_named_t arcstat_l2_misses; 729 kstat_named_t arcstat_l2_feeds; 730 kstat_named_t arcstat_l2_rw_clash; 731 kstat_named_t arcstat_l2_read_bytes; 732 kstat_named_t arcstat_l2_write_bytes; 733 kstat_named_t arcstat_l2_writes_sent; 734 kstat_named_t arcstat_l2_writes_done; 735 kstat_named_t arcstat_l2_writes_error; 736 kstat_named_t arcstat_l2_writes_lock_retry; 737 kstat_named_t arcstat_l2_evict_lock_retry; 738 kstat_named_t arcstat_l2_evict_reading; 739 kstat_named_t arcstat_l2_evict_l1cached; 740 kstat_named_t arcstat_l2_free_on_write; 741 kstat_named_t arcstat_l2_abort_lowmem; 742 kstat_named_t arcstat_l2_cksum_bad; 743 kstat_named_t arcstat_l2_io_error; 744 kstat_named_t arcstat_l2_size; 745 kstat_named_t arcstat_l2_asize; 746 kstat_named_t arcstat_l2_hdr_size; 747 kstat_named_t arcstat_l2_write_trylock_fail; 748 kstat_named_t arcstat_l2_write_passed_headroom; 749 kstat_named_t arcstat_l2_write_spa_mismatch; 750 kstat_named_t arcstat_l2_write_in_l2; 751 kstat_named_t arcstat_l2_write_hdr_io_in_progress; 752 kstat_named_t arcstat_l2_write_not_cacheable; 753 kstat_named_t arcstat_l2_write_full; 754 kstat_named_t arcstat_l2_write_buffer_iter; 755 kstat_named_t arcstat_l2_write_pios; 756 kstat_named_t arcstat_l2_write_buffer_bytes_scanned; 757 kstat_named_t arcstat_l2_write_buffer_list_iter; 758 kstat_named_t arcstat_l2_write_buffer_list_null_iter; 759 kstat_named_t arcstat_memory_throttle_count; 760 kstat_named_t arcstat_meta_used; 761 kstat_named_t arcstat_meta_limit; 762 kstat_named_t arcstat_meta_max; 763 kstat_named_t arcstat_meta_min; 764 kstat_named_t arcstat_sync_wait_for_async; 765 kstat_named_t arcstat_demand_hit_predictive_prefetch; 766 } arc_stats_t; 767 768 static arc_stats_t arc_stats = { 769 { "hits", KSTAT_DATA_UINT64 }, 770 { "misses", KSTAT_DATA_UINT64 }, 771 { "demand_data_hits", KSTAT_DATA_UINT64 }, 772 { "demand_data_misses", KSTAT_DATA_UINT64 }, 773 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 774 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 775 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 776 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 777 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 778 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 779 { "mru_hits", KSTAT_DATA_UINT64 }, 780 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 781 { "mfu_hits", KSTAT_DATA_UINT64 }, 782 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 783 { "allocated", KSTAT_DATA_UINT64 }, 784 { "deleted", KSTAT_DATA_UINT64 }, 785 { "mutex_miss", KSTAT_DATA_UINT64 }, 786 { "evict_skip", KSTAT_DATA_UINT64 }, 787 { "evict_not_enough", KSTAT_DATA_UINT64 }, 788 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 789 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 790 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 791 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 792 { "hash_elements", KSTAT_DATA_UINT64 }, 793 { "hash_elements_max", KSTAT_DATA_UINT64 }, 794 { "hash_collisions", KSTAT_DATA_UINT64 }, 795 { "hash_chains", KSTAT_DATA_UINT64 }, 796 { "hash_chain_max", KSTAT_DATA_UINT64 }, 797 { "p", KSTAT_DATA_UINT64 }, 798 { "c", KSTAT_DATA_UINT64 }, 799 { "c_min", KSTAT_DATA_UINT64 }, 800 { "c_max", KSTAT_DATA_UINT64 }, 801 { "size", KSTAT_DATA_UINT64 }, 802 { "compressed_size", KSTAT_DATA_UINT64 }, 803 { "uncompressed_size", KSTAT_DATA_UINT64 }, 804 { "overhead_size", KSTAT_DATA_UINT64 }, 805 { "hdr_size", KSTAT_DATA_UINT64 }, 806 { "data_size", KSTAT_DATA_UINT64 }, 807 { "metadata_size", KSTAT_DATA_UINT64 }, 808 { "other_size", KSTAT_DATA_UINT64 }, 809 { "anon_size", KSTAT_DATA_UINT64 }, 810 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 811 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 812 { "mru_size", KSTAT_DATA_UINT64 }, 813 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 814 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 815 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 816 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 817 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 818 { "mfu_size", KSTAT_DATA_UINT64 }, 819 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 820 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 821 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 822 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 823 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 824 { "l2_hits", KSTAT_DATA_UINT64 }, 825 { "l2_misses", KSTAT_DATA_UINT64 }, 826 { "l2_feeds", KSTAT_DATA_UINT64 }, 827 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 828 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 829 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 830 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 831 { "l2_writes_done", KSTAT_DATA_UINT64 }, 832 { "l2_writes_error", KSTAT_DATA_UINT64 }, 833 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 834 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 835 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 836 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 837 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 838 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 839 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 840 { "l2_io_error", KSTAT_DATA_UINT64 }, 841 { "l2_size", KSTAT_DATA_UINT64 }, 842 { "l2_asize", KSTAT_DATA_UINT64 }, 843 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 844 { "l2_write_trylock_fail", KSTAT_DATA_UINT64 }, 845 { "l2_write_passed_headroom", KSTAT_DATA_UINT64 }, 846 { "l2_write_spa_mismatch", KSTAT_DATA_UINT64 }, 847 { "l2_write_in_l2", KSTAT_DATA_UINT64 }, 848 { "l2_write_io_in_progress", KSTAT_DATA_UINT64 }, 849 { "l2_write_not_cacheable", KSTAT_DATA_UINT64 }, 850 { "l2_write_full", KSTAT_DATA_UINT64 }, 851 { "l2_write_buffer_iter", KSTAT_DATA_UINT64 }, 852 { "l2_write_pios", KSTAT_DATA_UINT64 }, 853 { "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 }, 854 { "l2_write_buffer_list_iter", KSTAT_DATA_UINT64 }, 855 { "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 }, 856 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 857 { "arc_meta_used", KSTAT_DATA_UINT64 }, 858 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 859 { "arc_meta_max", KSTAT_DATA_UINT64 }, 860 { "arc_meta_min", KSTAT_DATA_UINT64 }, 861 { "sync_wait_for_async", KSTAT_DATA_UINT64 }, 862 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 863 }; 864 865 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 866 867 #define ARCSTAT_INCR(stat, val) \ 868 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 869 870 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 871 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 872 873 #define ARCSTAT_MAX(stat, val) { \ 874 uint64_t m; \ 875 while ((val) > (m = arc_stats.stat.value.ui64) && \ 876 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 877 continue; \ 878 } 879 880 #define ARCSTAT_MAXSTAT(stat) \ 881 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 882 883 /* 884 * We define a macro to allow ARC hits/misses to be easily broken down by 885 * two separate conditions, giving a total of four different subtypes for 886 * each of hits and misses (so eight statistics total). 887 */ 888 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 889 if (cond1) { \ 890 if (cond2) { \ 891 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 892 } else { \ 893 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 894 } \ 895 } else { \ 896 if (cond2) { \ 897 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 898 } else { \ 899 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 900 } \ 901 } 902 903 kstat_t *arc_ksp; 904 static arc_state_t *arc_anon; 905 static arc_state_t *arc_mru; 906 static arc_state_t *arc_mru_ghost; 907 static arc_state_t *arc_mfu; 908 static arc_state_t *arc_mfu_ghost; 909 static arc_state_t *arc_l2c_only; 910 911 /* 912 * There are several ARC variables that are critical to export as kstats -- 913 * but we don't want to have to grovel around in the kstat whenever we wish to 914 * manipulate them. For these variables, we therefore define them to be in 915 * terms of the statistic variable. This assures that we are not introducing 916 * the possibility of inconsistency by having shadow copies of the variables, 917 * while still allowing the code to be readable. 918 */ 919 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 920 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 921 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 922 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 923 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 924 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 925 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 926 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 927 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 928 929 /* compressed size of entire arc */ 930 #define arc_compressed_size ARCSTAT(arcstat_compressed_size) 931 /* uncompressed size of entire arc */ 932 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) 933 /* number of bytes in the arc from arc_buf_t's */ 934 #define arc_overhead_size ARCSTAT(arcstat_overhead_size) 935 936 static int arc_no_grow; /* Don't try to grow cache size */ 937 static uint64_t arc_tempreserve; 938 static uint64_t arc_loaned_bytes; 939 940 typedef struct arc_callback arc_callback_t; 941 942 struct arc_callback { 943 void *acb_private; 944 arc_done_func_t *acb_done; 945 arc_buf_t *acb_buf; 946 zio_t *acb_zio_dummy; 947 arc_callback_t *acb_next; 948 }; 949 950 typedef struct arc_write_callback arc_write_callback_t; 951 952 struct arc_write_callback { 953 void *awcb_private; 954 arc_done_func_t *awcb_ready; 955 arc_done_func_t *awcb_children_ready; 956 arc_done_func_t *awcb_physdone; 957 arc_done_func_t *awcb_done; 958 arc_buf_t *awcb_buf; 959 }; 960 961 /* 962 * ARC buffers are separated into multiple structs as a memory saving measure: 963 * - Common fields struct, always defined, and embedded within it: 964 * - L2-only fields, always allocated but undefined when not in L2ARC 965 * - L1-only fields, only allocated when in L1ARC 966 * 967 * Buffer in L1 Buffer only in L2 968 * +------------------------+ +------------------------+ 969 * | arc_buf_hdr_t | | arc_buf_hdr_t | 970 * | | | | 971 * | | | | 972 * | | | | 973 * +------------------------+ +------------------------+ 974 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t | 975 * | (undefined if L1-only) | | | 976 * +------------------------+ +------------------------+ 977 * | l1arc_buf_hdr_t | 978 * | | 979 * | | 980 * | | 981 * | | 982 * +------------------------+ 983 * 984 * Because it's possible for the L2ARC to become extremely large, we can wind 985 * up eating a lot of memory in L2ARC buffer headers, so the size of a header 986 * is minimized by only allocating the fields necessary for an L1-cached buffer 987 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and 988 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple 989 * words in pointers. arc_hdr_realloc() is used to switch a header between 990 * these two allocation states. 991 */ 992 typedef struct l1arc_buf_hdr { 993 kmutex_t b_freeze_lock; 994 zio_cksum_t *b_freeze_cksum; 995 #ifdef ZFS_DEBUG 996 /* 997 * used for debugging wtih kmem_flags - by allocating and freeing 998 * b_thawed when the buffer is thawed, we get a record of the stack 999 * trace that thawed it. 1000 */ 1001 void *b_thawed; 1002 #endif 1003 1004 arc_buf_t *b_buf; 1005 uint32_t b_bufcnt; 1006 /* for waiting on writes to complete */ 1007 kcondvar_t b_cv; 1008 uint8_t b_byteswap; 1009 1010 /* protected by arc state mutex */ 1011 arc_state_t *b_state; 1012 multilist_node_t b_arc_node; 1013 1014 /* updated atomically */ 1015 clock_t b_arc_access; 1016 1017 /* self protecting */ 1018 refcount_t b_refcnt; 1019 1020 arc_callback_t *b_acb; 1021 void *b_pdata; 1022 } l1arc_buf_hdr_t; 1023 1024 typedef struct l2arc_dev l2arc_dev_t; 1025 1026 typedef struct l2arc_buf_hdr { 1027 /* protected by arc_buf_hdr mutex */ 1028 l2arc_dev_t *b_dev; /* L2ARC device */ 1029 uint64_t b_daddr; /* disk address, offset byte */ 1030 1031 list_node_t b_l2node; 1032 } l2arc_buf_hdr_t; 1033 1034 struct arc_buf_hdr { 1035 /* protected by hash lock */ 1036 dva_t b_dva; 1037 uint64_t b_birth; 1038 1039 arc_buf_contents_t b_type; 1040 arc_buf_hdr_t *b_hash_next; 1041 arc_flags_t b_flags; 1042 1043 /* 1044 * This field stores the size of the data buffer after 1045 * compression, and is set in the arc's zio completion handlers. 1046 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes). 1047 * 1048 * While the block pointers can store up to 32MB in their psize 1049 * field, we can only store up to 32MB minus 512B. This is due 1050 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e. 1051 * a field of zeros represents 512B in the bp). We can't use a 1052 * bias of 1 since we need to reserve a psize of zero, here, to 1053 * represent holes and embedded blocks. 1054 * 1055 * This isn't a problem in practice, since the maximum size of a 1056 * buffer is limited to 16MB, so we never need to store 32MB in 1057 * this field. Even in the upstream illumos code base, the 1058 * maximum size of a buffer is limited to 16MB. 1059 */ 1060 uint16_t b_psize; 1061 1062 /* 1063 * This field stores the size of the data buffer before 1064 * compression, and cannot change once set. It is in units 1065 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes) 1066 */ 1067 uint16_t b_lsize; /* immutable */ 1068 uint64_t b_spa; /* immutable */ 1069 1070 /* L2ARC fields. Undefined when not in L2ARC. */ 1071 l2arc_buf_hdr_t b_l2hdr; 1072 /* L1ARC fields. Undefined when in l2arc_only state */ 1073 l1arc_buf_hdr_t b_l1hdr; 1074 }; 1075 1076 #if defined(__FreeBSD__) && defined(_KERNEL) 1077 static int 1078 sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS) 1079 { 1080 uint64_t val; 1081 int err; 1082 1083 val = arc_meta_limit; 1084 err = sysctl_handle_64(oidp, &val, 0, req); 1085 if (err != 0 || req->newptr == NULL) 1086 return (err); 1087 1088 if (val <= 0 || val > arc_c_max) 1089 return (EINVAL); 1090 1091 arc_meta_limit = val; 1092 return (0); 1093 } 1094 1095 static int 1096 sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS) 1097 { 1098 uint64_t val; 1099 int err; 1100 1101 val = zfs_arc_max; 1102 err = sysctl_handle_64(oidp, &val, 0, req); 1103 if (err != 0 || req->newptr == NULL) 1104 return (err); 1105 1106 if (zfs_arc_max == 0) { 1107 /* Loader tunable so blindly set */ 1108 zfs_arc_max = val; 1109 return (0); 1110 } 1111 1112 if (val < arc_abs_min || val > kmem_size()) 1113 return (EINVAL); 1114 if (val < arc_c_min) 1115 return (EINVAL); 1116 if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit) 1117 return (EINVAL); 1118 1119 arc_c_max = val; 1120 1121 arc_c = arc_c_max; 1122 arc_p = (arc_c >> 1); 1123 1124 if (zfs_arc_meta_limit == 0) { 1125 /* limit meta-data to 1/4 of the arc capacity */ 1126 arc_meta_limit = arc_c_max / 4; 1127 } 1128 1129 /* if kmem_flags are set, lets try to use less memory */ 1130 if (kmem_debugging()) 1131 arc_c = arc_c / 2; 1132 1133 zfs_arc_max = arc_c; 1134 1135 return (0); 1136 } 1137 1138 static int 1139 sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS) 1140 { 1141 uint64_t val; 1142 int err; 1143 1144 val = zfs_arc_min; 1145 err = sysctl_handle_64(oidp, &val, 0, req); 1146 if (err != 0 || req->newptr == NULL) 1147 return (err); 1148 1149 if (zfs_arc_min == 0) { 1150 /* Loader tunable so blindly set */ 1151 zfs_arc_min = val; 1152 return (0); 1153 } 1154 1155 if (val < arc_abs_min || val > arc_c_max) 1156 return (EINVAL); 1157 1158 arc_c_min = val; 1159 1160 if (zfs_arc_meta_min == 0) 1161 arc_meta_min = arc_c_min / 2; 1162 1163 if (arc_c < arc_c_min) 1164 arc_c = arc_c_min; 1165 1166 zfs_arc_min = arc_c_min; 1167 1168 return (0); 1169 } 1170 #endif 1171 1172 #define GHOST_STATE(state) \ 1173 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 1174 (state) == arc_l2c_only) 1175 1176 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 1177 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 1178 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 1179 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 1180 #define HDR_COMPRESSION_ENABLED(hdr) \ 1181 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 1182 1183 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 1184 #define HDR_L2_READING(hdr) \ 1185 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 1186 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 1187 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 1188 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 1189 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 1190 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 1191 1192 #define HDR_ISTYPE_METADATA(hdr) \ 1193 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 1194 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 1195 1196 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 1197 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 1198 1199 /* For storing compression mode in b_flags */ 1200 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 1201 1202 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 1203 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 1204 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 1205 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 1206 1207 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 1208 1209 /* 1210 * Other sizes 1211 */ 1212 1213 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 1214 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 1215 1216 /* 1217 * Hash table routines 1218 */ 1219 1220 #define HT_LOCK_PAD CACHE_LINE_SIZE 1221 1222 struct ht_lock { 1223 kmutex_t ht_lock; 1224 #ifdef _KERNEL 1225 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 1226 #endif 1227 }; 1228 1229 #define BUF_LOCKS 256 1230 typedef struct buf_hash_table { 1231 uint64_t ht_mask; 1232 arc_buf_hdr_t **ht_table; 1233 struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE); 1234 } buf_hash_table_t; 1235 1236 static buf_hash_table_t buf_hash_table; 1237 1238 #define BUF_HASH_INDEX(spa, dva, birth) \ 1239 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 1240 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 1241 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 1242 #define HDR_LOCK(hdr) \ 1243 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 1244 1245 uint64_t zfs_crc64_table[256]; 1246 1247 /* 1248 * Level 2 ARC 1249 */ 1250 1251 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 1252 #define L2ARC_HEADROOM 2 /* num of writes */ 1253 /* 1254 * If we discover during ARC scan any buffers to be compressed, we boost 1255 * our headroom for the next scanning cycle by this percentage multiple. 1256 */ 1257 #define L2ARC_HEADROOM_BOOST 200 1258 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 1259 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 1260 1261 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 1262 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 1263 1264 /* L2ARC Performance Tunables */ 1265 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 1266 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 1267 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 1268 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 1269 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 1270 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 1271 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 1272 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 1273 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 1274 1275 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW, 1276 &l2arc_write_max, 0, "max write size"); 1277 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW, 1278 &l2arc_write_boost, 0, "extra write during warmup"); 1279 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW, 1280 &l2arc_headroom, 0, "number of dev writes"); 1281 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW, 1282 &l2arc_feed_secs, 0, "interval seconds"); 1283 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW, 1284 &l2arc_feed_min_ms, 0, "min interval milliseconds"); 1285 1286 SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW, 1287 &l2arc_noprefetch, 0, "don't cache prefetch bufs"); 1288 SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW, 1289 &l2arc_feed_again, 0, "turbo warmup"); 1290 SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW, 1291 &l2arc_norw, 0, "no reads during writes"); 1292 1293 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD, 1294 &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state"); 1295 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD, 1296 &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, 1297 "size of anonymous state"); 1298 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD, 1299 &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0, 1300 "size of anonymous state"); 1301 1302 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD, 1303 &ARC_mru.arcs_size.rc_count, 0, "size of mru state"); 1304 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD, 1305 &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, 1306 "size of metadata in mru state"); 1307 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD, 1308 &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0, 1309 "size of data in mru state"); 1310 1311 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD, 1312 &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state"); 1313 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD, 1314 &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, 1315 "size of metadata in mru ghost state"); 1316 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD, 1317 &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0, 1318 "size of data in mru ghost state"); 1319 1320 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD, 1321 &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state"); 1322 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD, 1323 &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, 1324 "size of metadata in mfu state"); 1325 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD, 1326 &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0, 1327 "size of data in mfu state"); 1328 1329 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD, 1330 &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state"); 1331 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD, 1332 &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, 1333 "size of metadata in mfu ghost state"); 1334 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD, 1335 &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0, 1336 "size of data in mfu ghost state"); 1337 1338 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD, 1339 &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state"); 1340 1341 /* 1342 * L2ARC Internals 1343 */ 1344 struct l2arc_dev { 1345 vdev_t *l2ad_vdev; /* vdev */ 1346 spa_t *l2ad_spa; /* spa */ 1347 uint64_t l2ad_hand; /* next write location */ 1348 uint64_t l2ad_start; /* first addr on device */ 1349 uint64_t l2ad_end; /* last addr on device */ 1350 boolean_t l2ad_first; /* first sweep through */ 1351 boolean_t l2ad_writing; /* currently writing */ 1352 kmutex_t l2ad_mtx; /* lock for buffer list */ 1353 list_t l2ad_buflist; /* buffer list */ 1354 list_node_t l2ad_node; /* device list node */ 1355 refcount_t l2ad_alloc; /* allocated bytes */ 1356 }; 1357 1358 static list_t L2ARC_dev_list; /* device list */ 1359 static list_t *l2arc_dev_list; /* device list pointer */ 1360 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 1361 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 1362 static list_t L2ARC_free_on_write; /* free after write buf list */ 1363 static list_t *l2arc_free_on_write; /* free after write list ptr */ 1364 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 1365 static uint64_t l2arc_ndev; /* number of devices */ 1366 1367 typedef struct l2arc_read_callback { 1368 arc_buf_hdr_t *l2rcb_hdr; /* read buffer */ 1369 blkptr_t l2rcb_bp; /* original blkptr */ 1370 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 1371 int l2rcb_flags; /* original flags */ 1372 void *l2rcb_data; /* temporary buffer */ 1373 } l2arc_read_callback_t; 1374 1375 typedef struct l2arc_write_callback { 1376 l2arc_dev_t *l2wcb_dev; /* device info */ 1377 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 1378 } l2arc_write_callback_t; 1379 1380 typedef struct l2arc_data_free { 1381 /* protected by l2arc_free_on_write_mtx */ 1382 void *l2df_data; 1383 size_t l2df_size; 1384 arc_buf_contents_t l2df_type; 1385 list_node_t l2df_list_node; 1386 } l2arc_data_free_t; 1387 1388 static kmutex_t l2arc_feed_thr_lock; 1389 static kcondvar_t l2arc_feed_thr_cv; 1390 static uint8_t l2arc_thread_exit; 1391 1392 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 1393 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 1394 static void arc_hdr_free_pdata(arc_buf_hdr_t *hdr); 1395 static void arc_hdr_alloc_pdata(arc_buf_hdr_t *); 1396 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 1397 static boolean_t arc_is_overflowing(); 1398 static void arc_buf_watch(arc_buf_t *); 1399 1400 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 1401 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 1402 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1403 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1404 1405 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 1406 static void l2arc_read_done(zio_t *); 1407 1408 static void 1409 l2arc_trim(const arc_buf_hdr_t *hdr) 1410 { 1411 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 1412 1413 ASSERT(HDR_HAS_L2HDR(hdr)); 1414 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 1415 1416 if (HDR_GET_PSIZE(hdr) != 0) { 1417 trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr, 1418 HDR_GET_PSIZE(hdr), 0); 1419 } 1420 } 1421 1422 static uint64_t 1423 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 1424 { 1425 uint8_t *vdva = (uint8_t *)dva; 1426 uint64_t crc = -1ULL; 1427 int i; 1428 1429 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 1430 1431 for (i = 0; i < sizeof (dva_t); i++) 1432 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 1433 1434 crc ^= (spa>>8) ^ birth; 1435 1436 return (crc); 1437 } 1438 1439 #define HDR_EMPTY(hdr) \ 1440 ((hdr)->b_dva.dva_word[0] == 0 && \ 1441 (hdr)->b_dva.dva_word[1] == 0) 1442 1443 #define HDR_EQUAL(spa, dva, birth, hdr) \ 1444 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1445 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1446 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1447 1448 static void 1449 buf_discard_identity(arc_buf_hdr_t *hdr) 1450 { 1451 hdr->b_dva.dva_word[0] = 0; 1452 hdr->b_dva.dva_word[1] = 0; 1453 hdr->b_birth = 0; 1454 } 1455 1456 static arc_buf_hdr_t * 1457 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1458 { 1459 const dva_t *dva = BP_IDENTITY(bp); 1460 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1461 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1462 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1463 arc_buf_hdr_t *hdr; 1464 1465 mutex_enter(hash_lock); 1466 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1467 hdr = hdr->b_hash_next) { 1468 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1469 *lockp = hash_lock; 1470 return (hdr); 1471 } 1472 } 1473 mutex_exit(hash_lock); 1474 *lockp = NULL; 1475 return (NULL); 1476 } 1477 1478 /* 1479 * Insert an entry into the hash table. If there is already an element 1480 * equal to elem in the hash table, then the already existing element 1481 * will be returned and the new element will not be inserted. 1482 * Otherwise returns NULL. 1483 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1484 */ 1485 static arc_buf_hdr_t * 1486 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1487 { 1488 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1489 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1490 arc_buf_hdr_t *fhdr; 1491 uint32_t i; 1492 1493 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1494 ASSERT(hdr->b_birth != 0); 1495 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1496 1497 if (lockp != NULL) { 1498 *lockp = hash_lock; 1499 mutex_enter(hash_lock); 1500 } else { 1501 ASSERT(MUTEX_HELD(hash_lock)); 1502 } 1503 1504 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1505 fhdr = fhdr->b_hash_next, i++) { 1506 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1507 return (fhdr); 1508 } 1509 1510 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1511 buf_hash_table.ht_table[idx] = hdr; 1512 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1513 1514 /* collect some hash table performance data */ 1515 if (i > 0) { 1516 ARCSTAT_BUMP(arcstat_hash_collisions); 1517 if (i == 1) 1518 ARCSTAT_BUMP(arcstat_hash_chains); 1519 1520 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1521 } 1522 1523 ARCSTAT_BUMP(arcstat_hash_elements); 1524 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1525 1526 return (NULL); 1527 } 1528 1529 static void 1530 buf_hash_remove(arc_buf_hdr_t *hdr) 1531 { 1532 arc_buf_hdr_t *fhdr, **hdrp; 1533 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1534 1535 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1536 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1537 1538 hdrp = &buf_hash_table.ht_table[idx]; 1539 while ((fhdr = *hdrp) != hdr) { 1540 ASSERT3P(fhdr, !=, NULL); 1541 hdrp = &fhdr->b_hash_next; 1542 } 1543 *hdrp = hdr->b_hash_next; 1544 hdr->b_hash_next = NULL; 1545 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1546 1547 /* collect some hash table performance data */ 1548 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1549 1550 if (buf_hash_table.ht_table[idx] && 1551 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1552 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1553 } 1554 1555 /* 1556 * Global data structures and functions for the buf kmem cache. 1557 */ 1558 static kmem_cache_t *hdr_full_cache; 1559 static kmem_cache_t *hdr_l2only_cache; 1560 static kmem_cache_t *buf_cache; 1561 1562 static void 1563 buf_fini(void) 1564 { 1565 int i; 1566 1567 kmem_free(buf_hash_table.ht_table, 1568 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1569 for (i = 0; i < BUF_LOCKS; i++) 1570 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1571 kmem_cache_destroy(hdr_full_cache); 1572 kmem_cache_destroy(hdr_l2only_cache); 1573 kmem_cache_destroy(buf_cache); 1574 } 1575 1576 /* 1577 * Constructor callback - called when the cache is empty 1578 * and a new buf is requested. 1579 */ 1580 /* ARGSUSED */ 1581 static int 1582 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1583 { 1584 arc_buf_hdr_t *hdr = vbuf; 1585 1586 bzero(hdr, HDR_FULL_SIZE); 1587 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1588 refcount_create(&hdr->b_l1hdr.b_refcnt); 1589 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1590 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1591 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1592 1593 return (0); 1594 } 1595 1596 /* ARGSUSED */ 1597 static int 1598 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1599 { 1600 arc_buf_hdr_t *hdr = vbuf; 1601 1602 bzero(hdr, HDR_L2ONLY_SIZE); 1603 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1604 1605 return (0); 1606 } 1607 1608 /* ARGSUSED */ 1609 static int 1610 buf_cons(void *vbuf, void *unused, int kmflag) 1611 { 1612 arc_buf_t *buf = vbuf; 1613 1614 bzero(buf, sizeof (arc_buf_t)); 1615 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1616 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1617 1618 return (0); 1619 } 1620 1621 /* 1622 * Destructor callback - called when a cached buf is 1623 * no longer required. 1624 */ 1625 /* ARGSUSED */ 1626 static void 1627 hdr_full_dest(void *vbuf, void *unused) 1628 { 1629 arc_buf_hdr_t *hdr = vbuf; 1630 1631 ASSERT(HDR_EMPTY(hdr)); 1632 cv_destroy(&hdr->b_l1hdr.b_cv); 1633 refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1634 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1635 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1636 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1637 } 1638 1639 /* ARGSUSED */ 1640 static void 1641 hdr_l2only_dest(void *vbuf, void *unused) 1642 { 1643 arc_buf_hdr_t *hdr = vbuf; 1644 1645 ASSERT(HDR_EMPTY(hdr)); 1646 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1647 } 1648 1649 /* ARGSUSED */ 1650 static void 1651 buf_dest(void *vbuf, void *unused) 1652 { 1653 arc_buf_t *buf = vbuf; 1654 1655 mutex_destroy(&buf->b_evict_lock); 1656 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1657 } 1658 1659 /* 1660 * Reclaim callback -- invoked when memory is low. 1661 */ 1662 /* ARGSUSED */ 1663 static void 1664 hdr_recl(void *unused) 1665 { 1666 dprintf("hdr_recl called\n"); 1667 /* 1668 * umem calls the reclaim func when we destroy the buf cache, 1669 * which is after we do arc_fini(). 1670 */ 1671 if (!arc_dead) 1672 cv_signal(&arc_reclaim_thread_cv); 1673 } 1674 1675 static void 1676 buf_init(void) 1677 { 1678 uint64_t *ct; 1679 uint64_t hsize = 1ULL << 12; 1680 int i, j; 1681 1682 /* 1683 * The hash table is big enough to fill all of physical memory 1684 * with an average block size of zfs_arc_average_blocksize (default 8K). 1685 * By default, the table will take up 1686 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1687 */ 1688 while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE) 1689 hsize <<= 1; 1690 retry: 1691 buf_hash_table.ht_mask = hsize - 1; 1692 buf_hash_table.ht_table = 1693 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1694 if (buf_hash_table.ht_table == NULL) { 1695 ASSERT(hsize > (1ULL << 8)); 1696 hsize >>= 1; 1697 goto retry; 1698 } 1699 1700 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1701 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); 1702 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1703 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, 1704 NULL, NULL, 0); 1705 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1706 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1707 1708 for (i = 0; i < 256; i++) 1709 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1710 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1711 1712 for (i = 0; i < BUF_LOCKS; i++) { 1713 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1714 NULL, MUTEX_DEFAULT, NULL); 1715 } 1716 } 1717 1718 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1719 1720 static inline boolean_t 1721 arc_buf_is_shared(arc_buf_t *buf) 1722 { 1723 boolean_t shared = (buf->b_data != NULL && 1724 buf->b_data == buf->b_hdr->b_l1hdr.b_pdata); 1725 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1726 return (shared); 1727 } 1728 1729 static inline void 1730 arc_cksum_free(arc_buf_hdr_t *hdr) 1731 { 1732 ASSERT(HDR_HAS_L1HDR(hdr)); 1733 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1734 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1735 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1736 hdr->b_l1hdr.b_freeze_cksum = NULL; 1737 } 1738 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1739 } 1740 1741 static void 1742 arc_cksum_verify(arc_buf_t *buf) 1743 { 1744 arc_buf_hdr_t *hdr = buf->b_hdr; 1745 zio_cksum_t zc; 1746 1747 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1748 return; 1749 1750 ASSERT(HDR_HAS_L1HDR(hdr)); 1751 1752 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1753 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1754 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1755 return; 1756 } 1757 fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL, &zc); 1758 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1759 panic("buffer modified while frozen!"); 1760 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1761 } 1762 1763 static boolean_t 1764 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1765 { 1766 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp); 1767 boolean_t valid_cksum; 1768 1769 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1770 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1771 1772 /* 1773 * We rely on the blkptr's checksum to determine if the block 1774 * is valid or not. When compressed arc is enabled, the l2arc 1775 * writes the block to the l2arc just as it appears in the pool. 1776 * This allows us to use the blkptr's checksum to validate the 1777 * data that we just read off of the l2arc without having to store 1778 * a separate checksum in the arc_buf_hdr_t. However, if compressed 1779 * arc is disabled, then the data written to the l2arc is always 1780 * uncompressed and won't match the block as it exists in the main 1781 * pool. When this is the case, we must first compress it if it is 1782 * compressed on the main pool before we can validate the checksum. 1783 */ 1784 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) { 1785 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1786 uint64_t lsize = HDR_GET_LSIZE(hdr); 1787 uint64_t csize; 1788 1789 void *cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr)); 1790 csize = zio_compress_data(compress, zio->io_data, cbuf, lsize); 1791 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr)); 1792 if (csize < HDR_GET_PSIZE(hdr)) { 1793 /* 1794 * Compressed blocks are always a multiple of the 1795 * smallest ashift in the pool. Ideally, we would 1796 * like to round up the csize to the next 1797 * spa_min_ashift but that value may have changed 1798 * since the block was last written. Instead, 1799 * we rely on the fact that the hdr's psize 1800 * was set to the psize of the block when it was 1801 * last written. We set the csize to that value 1802 * and zero out any part that should not contain 1803 * data. 1804 */ 1805 bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize); 1806 csize = HDR_GET_PSIZE(hdr); 1807 } 1808 zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL); 1809 } 1810 1811 /* 1812 * Block pointers always store the checksum for the logical data. 1813 * If the block pointer has the gang bit set, then the checksum 1814 * it represents is for the reconstituted data and not for an 1815 * individual gang member. The zio pipeline, however, must be able to 1816 * determine the checksum of each of the gang constituents so it 1817 * treats the checksum comparison differently than what we need 1818 * for l2arc blocks. This prevents us from using the 1819 * zio_checksum_error() interface directly. Instead we must call the 1820 * zio_checksum_error_impl() so that we can ensure the checksum is 1821 * generated using the correct checksum algorithm and accounts for the 1822 * logical I/O size and not just a gang fragment. 1823 */ 1824 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1825 BP_GET_CHECKSUM(zio->io_bp), zio->io_data, zio->io_size, 1826 zio->io_offset, NULL) == 0); 1827 zio_pop_transforms(zio); 1828 return (valid_cksum); 1829 } 1830 1831 static void 1832 arc_cksum_compute(arc_buf_t *buf) 1833 { 1834 arc_buf_hdr_t *hdr = buf->b_hdr; 1835 1836 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1837 return; 1838 1839 ASSERT(HDR_HAS_L1HDR(hdr)); 1840 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1841 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1842 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1843 return; 1844 } 1845 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1846 KM_SLEEP); 1847 fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL, 1848 hdr->b_l1hdr.b_freeze_cksum); 1849 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1850 #ifdef illumos 1851 arc_buf_watch(buf); 1852 #endif 1853 } 1854 1855 #ifdef illumos 1856 #ifndef _KERNEL 1857 typedef struct procctl { 1858 long cmd; 1859 prwatch_t prwatch; 1860 } procctl_t; 1861 #endif 1862 1863 /* ARGSUSED */ 1864 static void 1865 arc_buf_unwatch(arc_buf_t *buf) 1866 { 1867 #ifndef _KERNEL 1868 if (arc_watch) { 1869 int result; 1870 procctl_t ctl; 1871 ctl.cmd = PCWATCH; 1872 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1873 ctl.prwatch.pr_size = 0; 1874 ctl.prwatch.pr_wflags = 0; 1875 result = write(arc_procfd, &ctl, sizeof (ctl)); 1876 ASSERT3U(result, ==, sizeof (ctl)); 1877 } 1878 #endif 1879 } 1880 1881 /* ARGSUSED */ 1882 static void 1883 arc_buf_watch(arc_buf_t *buf) 1884 { 1885 #ifndef _KERNEL 1886 if (arc_watch) { 1887 int result; 1888 procctl_t ctl; 1889 ctl.cmd = PCWATCH; 1890 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1891 ctl.prwatch.pr_size = HDR_GET_LSIZE(buf->b_hdr); 1892 ctl.prwatch.pr_wflags = WA_WRITE; 1893 result = write(arc_procfd, &ctl, sizeof (ctl)); 1894 ASSERT3U(result, ==, sizeof (ctl)); 1895 } 1896 #endif 1897 } 1898 #endif /* illumos */ 1899 1900 static arc_buf_contents_t 1901 arc_buf_type(arc_buf_hdr_t *hdr) 1902 { 1903 arc_buf_contents_t type; 1904 if (HDR_ISTYPE_METADATA(hdr)) { 1905 type = ARC_BUFC_METADATA; 1906 } else { 1907 type = ARC_BUFC_DATA; 1908 } 1909 VERIFY3U(hdr->b_type, ==, type); 1910 return (type); 1911 } 1912 1913 static uint32_t 1914 arc_bufc_to_flags(arc_buf_contents_t type) 1915 { 1916 switch (type) { 1917 case ARC_BUFC_DATA: 1918 /* metadata field is 0 if buffer contains normal data */ 1919 return (0); 1920 case ARC_BUFC_METADATA: 1921 return (ARC_FLAG_BUFC_METADATA); 1922 default: 1923 break; 1924 } 1925 panic("undefined ARC buffer type!"); 1926 return ((uint32_t)-1); 1927 } 1928 1929 void 1930 arc_buf_thaw(arc_buf_t *buf) 1931 { 1932 arc_buf_hdr_t *hdr = buf->b_hdr; 1933 1934 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1935 if (hdr->b_l1hdr.b_state != arc_anon) 1936 panic("modifying non-anon buffer!"); 1937 if (HDR_IO_IN_PROGRESS(hdr)) 1938 panic("modifying buffer while i/o in progress!"); 1939 arc_cksum_verify(buf); 1940 } 1941 1942 ASSERT(HDR_HAS_L1HDR(hdr)); 1943 arc_cksum_free(hdr); 1944 1945 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1946 #ifdef ZFS_DEBUG 1947 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1948 if (hdr->b_l1hdr.b_thawed != NULL) 1949 kmem_free(hdr->b_l1hdr.b_thawed, 1); 1950 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); 1951 } 1952 #endif 1953 1954 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1955 1956 #ifdef illumos 1957 arc_buf_unwatch(buf); 1958 #endif 1959 } 1960 1961 void 1962 arc_buf_freeze(arc_buf_t *buf) 1963 { 1964 arc_buf_hdr_t *hdr = buf->b_hdr; 1965 kmutex_t *hash_lock; 1966 1967 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1968 return; 1969 1970 hash_lock = HDR_LOCK(hdr); 1971 mutex_enter(hash_lock); 1972 1973 ASSERT(HDR_HAS_L1HDR(hdr)); 1974 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL || 1975 hdr->b_l1hdr.b_state == arc_anon); 1976 arc_cksum_compute(buf); 1977 mutex_exit(hash_lock); 1978 1979 } 1980 1981 /* 1982 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1983 * the following functions should be used to ensure that the flags are 1984 * updated in a thread-safe way. When manipulating the flags either 1985 * the hash_lock must be held or the hdr must be undiscoverable. This 1986 * ensures that we're not racing with any other threads when updating 1987 * the flags. 1988 */ 1989 static inline void 1990 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1991 { 1992 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1993 hdr->b_flags |= flags; 1994 } 1995 1996 static inline void 1997 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1998 { 1999 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2000 hdr->b_flags &= ~flags; 2001 } 2002 2003 /* 2004 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 2005 * done in a special way since we have to clear and set bits 2006 * at the same time. Consumers that wish to set the compression bits 2007 * must use this function to ensure that the flags are updated in 2008 * thread-safe manner. 2009 */ 2010 static void 2011 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 2012 { 2013 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2014 2015 /* 2016 * Holes and embedded blocks will always have a psize = 0 so 2017 * we ignore the compression of the blkptr and set the 2018 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF. 2019 * Holes and embedded blocks remain anonymous so we don't 2020 * want to uncompress them. Mark them as uncompressed. 2021 */ 2022 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 2023 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 2024 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 2025 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 2026 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 2027 } else { 2028 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 2029 HDR_SET_COMPRESS(hdr, cmp); 2030 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 2031 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 2032 } 2033 } 2034 2035 static int 2036 arc_decompress(arc_buf_t *buf) 2037 { 2038 arc_buf_hdr_t *hdr = buf->b_hdr; 2039 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 2040 int error; 2041 2042 if (arc_buf_is_shared(buf)) { 2043 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 2044 } else if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) { 2045 /* 2046 * The arc_buf_hdr_t is either not compressed or is 2047 * associated with an embedded block or a hole in which 2048 * case they remain anonymous. 2049 */ 2050 IMPLY(HDR_COMPRESSION_ENABLED(hdr), HDR_GET_PSIZE(hdr) == 0 || 2051 HDR_GET_PSIZE(hdr) == HDR_GET_LSIZE(hdr)); 2052 ASSERT(!HDR_SHARED_DATA(hdr)); 2053 bcopy(hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_LSIZE(hdr)); 2054 } else { 2055 ASSERT(!HDR_SHARED_DATA(hdr)); 2056 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 2057 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2058 hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_PSIZE(hdr), 2059 HDR_GET_LSIZE(hdr)); 2060 if (error != 0) { 2061 zfs_dbgmsg("hdr %p, compress %d, psize %d, lsize %d", 2062 hdr, HDR_GET_COMPRESS(hdr), HDR_GET_PSIZE(hdr), 2063 HDR_GET_LSIZE(hdr)); 2064 return (SET_ERROR(EIO)); 2065 } 2066 } 2067 if (bswap != DMU_BSWAP_NUMFUNCS) { 2068 ASSERT(!HDR_SHARED_DATA(hdr)); 2069 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2070 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2071 } 2072 arc_cksum_compute(buf); 2073 return (0); 2074 } 2075 2076 /* 2077 * Return the size of the block, b_pdata, that is stored in the arc_buf_hdr_t. 2078 */ 2079 static uint64_t 2080 arc_hdr_size(arc_buf_hdr_t *hdr) 2081 { 2082 uint64_t size; 2083 2084 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 2085 HDR_GET_PSIZE(hdr) > 0) { 2086 size = HDR_GET_PSIZE(hdr); 2087 } else { 2088 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 2089 size = HDR_GET_LSIZE(hdr); 2090 } 2091 return (size); 2092 } 2093 2094 /* 2095 * Increment the amount of evictable space in the arc_state_t's refcount. 2096 * We account for the space used by the hdr and the arc buf individually 2097 * so that we can add and remove them from the refcount individually. 2098 */ 2099 static void 2100 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2101 { 2102 arc_buf_contents_t type = arc_buf_type(hdr); 2103 uint64_t lsize = HDR_GET_LSIZE(hdr); 2104 2105 ASSERT(HDR_HAS_L1HDR(hdr)); 2106 2107 if (GHOST_STATE(state)) { 2108 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2109 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2110 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2111 (void) refcount_add_many(&state->arcs_esize[type], lsize, hdr); 2112 return; 2113 } 2114 2115 ASSERT(!GHOST_STATE(state)); 2116 if (hdr->b_l1hdr.b_pdata != NULL) { 2117 (void) refcount_add_many(&state->arcs_esize[type], 2118 arc_hdr_size(hdr), hdr); 2119 } 2120 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2121 buf = buf->b_next) { 2122 if (arc_buf_is_shared(buf)) { 2123 ASSERT(ARC_BUF_LAST(buf)); 2124 continue; 2125 } 2126 (void) refcount_add_many(&state->arcs_esize[type], lsize, buf); 2127 } 2128 } 2129 2130 /* 2131 * Decrement the amount of evictable space in the arc_state_t's refcount. 2132 * We account for the space used by the hdr and the arc buf individually 2133 * so that we can add and remove them from the refcount individually. 2134 */ 2135 static void 2136 arc_evitable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2137 { 2138 arc_buf_contents_t type = arc_buf_type(hdr); 2139 uint64_t lsize = HDR_GET_LSIZE(hdr); 2140 2141 ASSERT(HDR_HAS_L1HDR(hdr)); 2142 2143 if (GHOST_STATE(state)) { 2144 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2145 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2146 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2147 (void) refcount_remove_many(&state->arcs_esize[type], 2148 lsize, hdr); 2149 return; 2150 } 2151 2152 ASSERT(!GHOST_STATE(state)); 2153 if (hdr->b_l1hdr.b_pdata != NULL) { 2154 (void) refcount_remove_many(&state->arcs_esize[type], 2155 arc_hdr_size(hdr), hdr); 2156 } 2157 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2158 buf = buf->b_next) { 2159 if (arc_buf_is_shared(buf)) { 2160 ASSERT(ARC_BUF_LAST(buf)); 2161 continue; 2162 } 2163 (void) refcount_remove_many(&state->arcs_esize[type], 2164 lsize, buf); 2165 } 2166 } 2167 2168 /* 2169 * Add a reference to this hdr indicating that someone is actively 2170 * referencing that memory. When the refcount transitions from 0 to 1, 2171 * we remove it from the respective arc_state_t list to indicate that 2172 * it is not evictable. 2173 */ 2174 static void 2175 add_reference(arc_buf_hdr_t *hdr, void *tag) 2176 { 2177 ASSERT(HDR_HAS_L1HDR(hdr)); 2178 if (!MUTEX_HELD(HDR_LOCK(hdr))) { 2179 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2180 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2181 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2182 } 2183 2184 arc_state_t *state = hdr->b_l1hdr.b_state; 2185 2186 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2187 (state != arc_anon)) { 2188 /* We don't use the L2-only state list. */ 2189 if (state != arc_l2c_only) { 2190 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], 2191 hdr); 2192 arc_evitable_space_decrement(hdr, state); 2193 } 2194 /* remove the prefetch flag if we get a reference */ 2195 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2196 } 2197 } 2198 2199 /* 2200 * Remove a reference from this hdr. When the reference transitions from 2201 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2202 * list making it eligible for eviction. 2203 */ 2204 static int 2205 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2206 { 2207 int cnt; 2208 arc_state_t *state = hdr->b_l1hdr.b_state; 2209 2210 ASSERT(HDR_HAS_L1HDR(hdr)); 2211 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2212 ASSERT(!GHOST_STATE(state)); 2213 2214 /* 2215 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2216 * check to prevent usage of the arc_l2c_only list. 2217 */ 2218 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2219 (state != arc_anon)) { 2220 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2221 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2222 arc_evictable_space_increment(hdr, state); 2223 } 2224 return (cnt); 2225 } 2226 2227 /* 2228 * Move the supplied buffer to the indicated state. The hash lock 2229 * for the buffer must be held by the caller. 2230 */ 2231 static void 2232 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2233 kmutex_t *hash_lock) 2234 { 2235 arc_state_t *old_state; 2236 int64_t refcnt; 2237 uint32_t bufcnt; 2238 boolean_t update_old, update_new; 2239 arc_buf_contents_t buftype = arc_buf_type(hdr); 2240 2241 /* 2242 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2243 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2244 * L1 hdr doesn't always exist when we change state to arc_anon before 2245 * destroying a header, in which case reallocating to add the L1 hdr is 2246 * pointless. 2247 */ 2248 if (HDR_HAS_L1HDR(hdr)) { 2249 old_state = hdr->b_l1hdr.b_state; 2250 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt); 2251 bufcnt = hdr->b_l1hdr.b_bufcnt; 2252 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pdata != NULL); 2253 } else { 2254 old_state = arc_l2c_only; 2255 refcnt = 0; 2256 bufcnt = 0; 2257 update_old = B_FALSE; 2258 } 2259 update_new = update_old; 2260 2261 ASSERT(MUTEX_HELD(hash_lock)); 2262 ASSERT3P(new_state, !=, old_state); 2263 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2264 ASSERT(old_state != arc_anon || bufcnt <= 1); 2265 2266 /* 2267 * If this buffer is evictable, transfer it from the 2268 * old state list to the new state list. 2269 */ 2270 if (refcnt == 0) { 2271 if (old_state != arc_anon && old_state != arc_l2c_only) { 2272 ASSERT(HDR_HAS_L1HDR(hdr)); 2273 multilist_remove(&old_state->arcs_list[buftype], hdr); 2274 2275 if (GHOST_STATE(old_state)) { 2276 ASSERT0(bufcnt); 2277 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2278 update_old = B_TRUE; 2279 } 2280 arc_evitable_space_decrement(hdr, old_state); 2281 } 2282 if (new_state != arc_anon && new_state != arc_l2c_only) { 2283 2284 /* 2285 * An L1 header always exists here, since if we're 2286 * moving to some L1-cached state (i.e. not l2c_only or 2287 * anonymous), we realloc the header to add an L1hdr 2288 * beforehand. 2289 */ 2290 ASSERT(HDR_HAS_L1HDR(hdr)); 2291 multilist_insert(&new_state->arcs_list[buftype], hdr); 2292 2293 if (GHOST_STATE(new_state)) { 2294 ASSERT0(bufcnt); 2295 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2296 update_new = B_TRUE; 2297 } 2298 arc_evictable_space_increment(hdr, new_state); 2299 } 2300 } 2301 2302 ASSERT(!HDR_EMPTY(hdr)); 2303 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2304 buf_hash_remove(hdr); 2305 2306 /* adjust state sizes (ignore arc_l2c_only) */ 2307 2308 if (update_new && new_state != arc_l2c_only) { 2309 ASSERT(HDR_HAS_L1HDR(hdr)); 2310 if (GHOST_STATE(new_state)) { 2311 ASSERT0(bufcnt); 2312 2313 /* 2314 * When moving a header to a ghost state, we first 2315 * remove all arc buffers. Thus, we'll have a 2316 * bufcnt of zero, and no arc buffer to use for 2317 * the reference. As a result, we use the arc 2318 * header pointer for the reference. 2319 */ 2320 (void) refcount_add_many(&new_state->arcs_size, 2321 HDR_GET_LSIZE(hdr), hdr); 2322 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2323 } else { 2324 uint32_t buffers = 0; 2325 2326 /* 2327 * Each individual buffer holds a unique reference, 2328 * thus we must remove each of these references one 2329 * at a time. 2330 */ 2331 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2332 buf = buf->b_next) { 2333 ASSERT3U(bufcnt, !=, 0); 2334 buffers++; 2335 2336 /* 2337 * When the arc_buf_t is sharing the data 2338 * block with the hdr, the owner of the 2339 * reference belongs to the hdr. Only 2340 * add to the refcount if the arc_buf_t is 2341 * not shared. 2342 */ 2343 if (arc_buf_is_shared(buf)) { 2344 ASSERT(ARC_BUF_LAST(buf)); 2345 continue; 2346 } 2347 2348 (void) refcount_add_many(&new_state->arcs_size, 2349 HDR_GET_LSIZE(hdr), buf); 2350 } 2351 ASSERT3U(bufcnt, ==, buffers); 2352 2353 if (hdr->b_l1hdr.b_pdata != NULL) { 2354 (void) refcount_add_many(&new_state->arcs_size, 2355 arc_hdr_size(hdr), hdr); 2356 } else { 2357 ASSERT(GHOST_STATE(old_state)); 2358 } 2359 } 2360 } 2361 2362 if (update_old && old_state != arc_l2c_only) { 2363 ASSERT(HDR_HAS_L1HDR(hdr)); 2364 if (GHOST_STATE(old_state)) { 2365 ASSERT0(bufcnt); 2366 2367 /* 2368 * When moving a header off of a ghost state, 2369 * the header will not contain any arc buffers. 2370 * We use the arc header pointer for the reference 2371 * which is exactly what we did when we put the 2372 * header on the ghost state. 2373 */ 2374 2375 (void) refcount_remove_many(&old_state->arcs_size, 2376 HDR_GET_LSIZE(hdr), hdr); 2377 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2378 } else { 2379 uint32_t buffers = 0; 2380 2381 /* 2382 * Each individual buffer holds a unique reference, 2383 * thus we must remove each of these references one 2384 * at a time. 2385 */ 2386 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2387 buf = buf->b_next) { 2388 ASSERT3P(bufcnt, !=, 0); 2389 buffers++; 2390 2391 /* 2392 * When the arc_buf_t is sharing the data 2393 * block with the hdr, the owner of the 2394 * reference belongs to the hdr. Only 2395 * add to the refcount if the arc_buf_t is 2396 * not shared. 2397 */ 2398 if (arc_buf_is_shared(buf)) { 2399 ASSERT(ARC_BUF_LAST(buf)); 2400 continue; 2401 } 2402 2403 (void) refcount_remove_many( 2404 &old_state->arcs_size, HDR_GET_LSIZE(hdr), 2405 buf); 2406 } 2407 ASSERT3U(bufcnt, ==, buffers); 2408 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2409 (void) refcount_remove_many( 2410 &old_state->arcs_size, arc_hdr_size(hdr), hdr); 2411 } 2412 } 2413 2414 if (HDR_HAS_L1HDR(hdr)) 2415 hdr->b_l1hdr.b_state = new_state; 2416 2417 /* 2418 * L2 headers should never be on the L2 state list since they don't 2419 * have L1 headers allocated. 2420 */ 2421 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2422 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2423 } 2424 2425 void 2426 arc_space_consume(uint64_t space, arc_space_type_t type) 2427 { 2428 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2429 2430 switch (type) { 2431 case ARC_SPACE_DATA: 2432 ARCSTAT_INCR(arcstat_data_size, space); 2433 break; 2434 case ARC_SPACE_META: 2435 ARCSTAT_INCR(arcstat_metadata_size, space); 2436 break; 2437 case ARC_SPACE_OTHER: 2438 ARCSTAT_INCR(arcstat_other_size, space); 2439 break; 2440 case ARC_SPACE_HDRS: 2441 ARCSTAT_INCR(arcstat_hdr_size, space); 2442 break; 2443 case ARC_SPACE_L2HDRS: 2444 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 2445 break; 2446 } 2447 2448 if (type != ARC_SPACE_DATA) 2449 ARCSTAT_INCR(arcstat_meta_used, space); 2450 2451 atomic_add_64(&arc_size, space); 2452 } 2453 2454 void 2455 arc_space_return(uint64_t space, arc_space_type_t type) 2456 { 2457 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2458 2459 switch (type) { 2460 case ARC_SPACE_DATA: 2461 ARCSTAT_INCR(arcstat_data_size, -space); 2462 break; 2463 case ARC_SPACE_META: 2464 ARCSTAT_INCR(arcstat_metadata_size, -space); 2465 break; 2466 case ARC_SPACE_OTHER: 2467 ARCSTAT_INCR(arcstat_other_size, -space); 2468 break; 2469 case ARC_SPACE_HDRS: 2470 ARCSTAT_INCR(arcstat_hdr_size, -space); 2471 break; 2472 case ARC_SPACE_L2HDRS: 2473 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 2474 break; 2475 } 2476 2477 if (type != ARC_SPACE_DATA) { 2478 ASSERT(arc_meta_used >= space); 2479 if (arc_meta_max < arc_meta_used) 2480 arc_meta_max = arc_meta_used; 2481 ARCSTAT_INCR(arcstat_meta_used, -space); 2482 } 2483 2484 ASSERT(arc_size >= space); 2485 atomic_add_64(&arc_size, -space); 2486 } 2487 2488 /* 2489 * Allocate an initial buffer for this hdr, subsequent buffers will 2490 * use arc_buf_clone(). 2491 */ 2492 static arc_buf_t * 2493 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag) 2494 { 2495 arc_buf_t *buf; 2496 2497 ASSERT(HDR_HAS_L1HDR(hdr)); 2498 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2499 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2500 hdr->b_type == ARC_BUFC_METADATA); 2501 2502 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2503 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2504 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2505 2506 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2507 buf->b_hdr = hdr; 2508 buf->b_data = NULL; 2509 buf->b_next = NULL; 2510 2511 add_reference(hdr, tag); 2512 2513 /* 2514 * We're about to change the hdr's b_flags. We must either 2515 * hold the hash_lock or be undiscoverable. 2516 */ 2517 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2518 2519 /* 2520 * If the hdr's data can be shared (no byteswapping, hdr is 2521 * uncompressed, hdr's data is not currently being written to the 2522 * L2ARC write) then we share the data buffer and set the appropriate 2523 * bit in the hdr's b_flags to indicate the hdr is sharing it's 2524 * b_pdata with the arc_buf_t. Otherwise, we allocate a new buffer to 2525 * store the buf's data. 2526 */ 2527 if (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2528 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF && !HDR_L2_WRITING(hdr)) { 2529 buf->b_data = hdr->b_l1hdr.b_pdata; 2530 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2531 } else { 2532 buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2533 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2534 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2535 } 2536 VERIFY3P(buf->b_data, !=, NULL); 2537 2538 hdr->b_l1hdr.b_buf = buf; 2539 hdr->b_l1hdr.b_bufcnt += 1; 2540 2541 return (buf); 2542 } 2543 2544 /* 2545 * Used when allocating additional buffers. 2546 */ 2547 static arc_buf_t * 2548 arc_buf_clone(arc_buf_t *from) 2549 { 2550 arc_buf_t *buf; 2551 arc_buf_hdr_t *hdr = from->b_hdr; 2552 uint64_t size = HDR_GET_LSIZE(hdr); 2553 2554 ASSERT(HDR_HAS_L1HDR(hdr)); 2555 ASSERT(hdr->b_l1hdr.b_state != arc_anon); 2556 2557 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2558 buf->b_hdr = hdr; 2559 buf->b_data = NULL; 2560 buf->b_next = hdr->b_l1hdr.b_buf; 2561 hdr->b_l1hdr.b_buf = buf; 2562 buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2563 bcopy(from->b_data, buf->b_data, size); 2564 hdr->b_l1hdr.b_bufcnt += 1; 2565 2566 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2567 return (buf); 2568 } 2569 2570 static char *arc_onloan_tag = "onloan"; 2571 2572 /* 2573 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2574 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2575 * buffers must be returned to the arc before they can be used by the DMU or 2576 * freed. 2577 */ 2578 arc_buf_t * 2579 arc_loan_buf(spa_t *spa, int size) 2580 { 2581 arc_buf_t *buf; 2582 2583 buf = arc_alloc_buf(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 2584 2585 atomic_add_64(&arc_loaned_bytes, size); 2586 return (buf); 2587 } 2588 2589 /* 2590 * Return a loaned arc buffer to the arc. 2591 */ 2592 void 2593 arc_return_buf(arc_buf_t *buf, void *tag) 2594 { 2595 arc_buf_hdr_t *hdr = buf->b_hdr; 2596 2597 ASSERT3P(buf->b_data, !=, NULL); 2598 ASSERT(HDR_HAS_L1HDR(hdr)); 2599 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2600 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2601 2602 atomic_add_64(&arc_loaned_bytes, -HDR_GET_LSIZE(hdr)); 2603 } 2604 2605 /* Detach an arc_buf from a dbuf (tag) */ 2606 void 2607 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2608 { 2609 arc_buf_hdr_t *hdr = buf->b_hdr; 2610 2611 ASSERT3P(buf->b_data, !=, NULL); 2612 ASSERT(HDR_HAS_L1HDR(hdr)); 2613 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2614 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2615 2616 atomic_add_64(&arc_loaned_bytes, HDR_GET_LSIZE(hdr)); 2617 } 2618 2619 static void 2620 l2arc_free_data_on_write(void *data, size_t size, arc_buf_contents_t type) 2621 { 2622 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2623 2624 df->l2df_data = data; 2625 df->l2df_size = size; 2626 df->l2df_type = type; 2627 mutex_enter(&l2arc_free_on_write_mtx); 2628 list_insert_head(l2arc_free_on_write, df); 2629 mutex_exit(&l2arc_free_on_write_mtx); 2630 } 2631 2632 static void 2633 arc_hdr_free_on_write(arc_buf_hdr_t *hdr) 2634 { 2635 arc_state_t *state = hdr->b_l1hdr.b_state; 2636 arc_buf_contents_t type = arc_buf_type(hdr); 2637 uint64_t size = arc_hdr_size(hdr); 2638 2639 /* protected by hash lock, if in the hash table */ 2640 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2641 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2642 ASSERT(state != arc_anon && state != arc_l2c_only); 2643 2644 (void) refcount_remove_many(&state->arcs_esize[type], 2645 size, hdr); 2646 } 2647 (void) refcount_remove_many(&state->arcs_size, size, hdr); 2648 if (type == ARC_BUFC_METADATA) { 2649 arc_space_return(size, ARC_SPACE_META); 2650 } else { 2651 ASSERT(type == ARC_BUFC_DATA); 2652 arc_space_return(size, ARC_SPACE_DATA); 2653 } 2654 2655 l2arc_free_data_on_write(hdr->b_l1hdr.b_pdata, size, type); 2656 } 2657 2658 /* 2659 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2660 * data buffer, we transfer the refcount ownership to the hdr and update 2661 * the appropriate kstats. 2662 */ 2663 static void 2664 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2665 { 2666 arc_state_t *state = hdr->b_l1hdr.b_state; 2667 2668 ASSERT(!HDR_SHARED_DATA(hdr)); 2669 ASSERT(!arc_buf_is_shared(buf)); 2670 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2671 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2672 2673 /* 2674 * Start sharing the data buffer. We transfer the 2675 * refcount ownership to the hdr since it always owns 2676 * the refcount whenever an arc_buf_t is shared. 2677 */ 2678 refcount_transfer_ownership(&state->arcs_size, buf, hdr); 2679 hdr->b_l1hdr.b_pdata = buf->b_data; 2680 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2681 2682 /* 2683 * Since we've transferred ownership to the hdr we need 2684 * to increment its compressed and uncompressed kstats and 2685 * decrement the overhead size. 2686 */ 2687 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2688 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2689 ARCSTAT_INCR(arcstat_overhead_size, -HDR_GET_LSIZE(hdr)); 2690 } 2691 2692 static void 2693 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2694 { 2695 arc_state_t *state = hdr->b_l1hdr.b_state; 2696 2697 ASSERT(HDR_SHARED_DATA(hdr)); 2698 ASSERT(arc_buf_is_shared(buf)); 2699 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2700 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2701 2702 /* 2703 * We are no longer sharing this buffer so we need 2704 * to transfer its ownership to the rightful owner. 2705 */ 2706 refcount_transfer_ownership(&state->arcs_size, hdr, buf); 2707 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2708 hdr->b_l1hdr.b_pdata = NULL; 2709 2710 /* 2711 * Since the buffer is no longer shared between 2712 * the arc buf and the hdr, count it as overhead. 2713 */ 2714 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2715 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2716 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2717 } 2718 2719 /* 2720 * Free up buf->b_data and if 'remove' is set, then pull the 2721 * arc_buf_t off of the the arc_buf_hdr_t's list and free it. 2722 */ 2723 static void 2724 arc_buf_destroy_impl(arc_buf_t *buf, boolean_t remove) 2725 { 2726 arc_buf_t **bufp; 2727 arc_buf_hdr_t *hdr = buf->b_hdr; 2728 uint64_t size = HDR_GET_LSIZE(hdr); 2729 boolean_t destroyed_buf_is_shared = arc_buf_is_shared(buf); 2730 2731 /* 2732 * Free up the data associated with the buf but only 2733 * if we're not sharing this with the hdr. If we are sharing 2734 * it with the hdr, then hdr will have performed the allocation 2735 * so allow it to do the free. 2736 */ 2737 if (buf->b_data != NULL) { 2738 /* 2739 * We're about to change the hdr's b_flags. We must either 2740 * hold the hash_lock or be undiscoverable. 2741 */ 2742 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2743 2744 arc_cksum_verify(buf); 2745 #ifdef illumos 2746 arc_buf_unwatch(buf); 2747 #endif 2748 2749 if (destroyed_buf_is_shared) { 2750 ASSERT(ARC_BUF_LAST(buf)); 2751 ASSERT(HDR_SHARED_DATA(hdr)); 2752 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2753 } else { 2754 arc_free_data_buf(hdr, buf->b_data, size, buf); 2755 ARCSTAT_INCR(arcstat_overhead_size, -size); 2756 } 2757 buf->b_data = NULL; 2758 2759 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 2760 hdr->b_l1hdr.b_bufcnt -= 1; 2761 } 2762 2763 /* only remove the buf if requested */ 2764 if (!remove) 2765 return; 2766 2767 /* remove the buf from the hdr list */ 2768 arc_buf_t *lastbuf = NULL; 2769 bufp = &hdr->b_l1hdr.b_buf; 2770 while (*bufp != NULL) { 2771 if (*bufp == buf) 2772 *bufp = buf->b_next; 2773 2774 /* 2775 * If we've removed a buffer in the middle of 2776 * the list then update the lastbuf and update 2777 * bufp. 2778 */ 2779 if (*bufp != NULL) { 2780 lastbuf = *bufp; 2781 bufp = &(*bufp)->b_next; 2782 } 2783 } 2784 buf->b_next = NULL; 2785 ASSERT3P(lastbuf, !=, buf); 2786 2787 /* 2788 * If the current arc_buf_t is sharing its data 2789 * buffer with the hdr, then reassign the hdr's 2790 * b_pdata to share it with the new buffer at the end 2791 * of the list. The shared buffer is always the last one 2792 * on the hdr's buffer list. 2793 */ 2794 if (destroyed_buf_is_shared && lastbuf != NULL) { 2795 ASSERT(ARC_BUF_LAST(buf)); 2796 ASSERT(ARC_BUF_LAST(lastbuf)); 2797 VERIFY(!arc_buf_is_shared(lastbuf)); 2798 2799 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2800 arc_hdr_free_pdata(hdr); 2801 2802 /* 2803 * We must setup a new shared block between the 2804 * last buffer and the hdr. The data would have 2805 * been allocated by the arc buf so we need to transfer 2806 * ownership to the hdr since it's now being shared. 2807 */ 2808 arc_share_buf(hdr, lastbuf); 2809 } else if (HDR_SHARED_DATA(hdr)) { 2810 ASSERT(arc_buf_is_shared(lastbuf)); 2811 } 2812 2813 if (hdr->b_l1hdr.b_bufcnt == 0) 2814 arc_cksum_free(hdr); 2815 2816 /* clean up the buf */ 2817 buf->b_hdr = NULL; 2818 kmem_cache_free(buf_cache, buf); 2819 } 2820 2821 static void 2822 arc_hdr_alloc_pdata(arc_buf_hdr_t *hdr) 2823 { 2824 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2825 ASSERT(HDR_HAS_L1HDR(hdr)); 2826 ASSERT(!HDR_SHARED_DATA(hdr)); 2827 2828 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2829 hdr->b_l1hdr.b_pdata = arc_get_data_buf(hdr, arc_hdr_size(hdr), hdr); 2830 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2831 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2832 2833 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2834 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2835 } 2836 2837 static void 2838 arc_hdr_free_pdata(arc_buf_hdr_t *hdr) 2839 { 2840 ASSERT(HDR_HAS_L1HDR(hdr)); 2841 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2842 2843 /* 2844 * If the hdr is currently being written to the l2arc then 2845 * we defer freeing the data by adding it to the l2arc_free_on_write 2846 * list. The l2arc will free the data once it's finished 2847 * writing it to the l2arc device. 2848 */ 2849 if (HDR_L2_WRITING(hdr)) { 2850 arc_hdr_free_on_write(hdr); 2851 ARCSTAT_BUMP(arcstat_l2_free_on_write); 2852 } else { 2853 arc_free_data_buf(hdr, hdr->b_l1hdr.b_pdata, 2854 arc_hdr_size(hdr), hdr); 2855 } 2856 hdr->b_l1hdr.b_pdata = NULL; 2857 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2858 2859 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2860 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2861 } 2862 2863 static arc_buf_hdr_t * 2864 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 2865 enum zio_compress compress, arc_buf_contents_t type) 2866 { 2867 arc_buf_hdr_t *hdr; 2868 2869 ASSERT3U(lsize, >, 0); 2870 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 2871 2872 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 2873 ASSERT(HDR_EMPTY(hdr)); 2874 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2875 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL); 2876 HDR_SET_PSIZE(hdr, psize); 2877 HDR_SET_LSIZE(hdr, lsize); 2878 hdr->b_spa = spa; 2879 hdr->b_type = type; 2880 hdr->b_flags = 0; 2881 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 2882 arc_hdr_set_compress(hdr, compress); 2883 2884 hdr->b_l1hdr.b_state = arc_anon; 2885 hdr->b_l1hdr.b_arc_access = 0; 2886 hdr->b_l1hdr.b_bufcnt = 0; 2887 hdr->b_l1hdr.b_buf = NULL; 2888 2889 /* 2890 * Allocate the hdr's buffer. This will contain either 2891 * the compressed or uncompressed data depending on the block 2892 * it references and compressed arc enablement. 2893 */ 2894 arc_hdr_alloc_pdata(hdr); 2895 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2896 2897 return (hdr); 2898 } 2899 2900 /* 2901 * Transition between the two allocation states for the arc_buf_hdr struct. 2902 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 2903 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 2904 * version is used when a cache buffer is only in the L2ARC in order to reduce 2905 * memory usage. 2906 */ 2907 static arc_buf_hdr_t * 2908 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 2909 { 2910 ASSERT(HDR_HAS_L2HDR(hdr)); 2911 2912 arc_buf_hdr_t *nhdr; 2913 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 2914 2915 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 2916 (old == hdr_l2only_cache && new == hdr_full_cache)); 2917 2918 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 2919 2920 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 2921 buf_hash_remove(hdr); 2922 2923 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 2924 2925 if (new == hdr_full_cache) { 2926 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2927 /* 2928 * arc_access and arc_change_state need to be aware that a 2929 * header has just come out of L2ARC, so we set its state to 2930 * l2c_only even though it's about to change. 2931 */ 2932 nhdr->b_l1hdr.b_state = arc_l2c_only; 2933 2934 /* Verify previous threads set to NULL before freeing */ 2935 ASSERT3P(nhdr->b_l1hdr.b_pdata, ==, NULL); 2936 } else { 2937 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2938 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2939 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2940 2941 /* 2942 * If we've reached here, We must have been called from 2943 * arc_evict_hdr(), as such we should have already been 2944 * removed from any ghost list we were previously on 2945 * (which protects us from racing with arc_evict_state), 2946 * thus no locking is needed during this check. 2947 */ 2948 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 2949 2950 /* 2951 * A buffer must not be moved into the arc_l2c_only 2952 * state if it's not finished being written out to the 2953 * l2arc device. Otherwise, the b_l1hdr.b_pdata field 2954 * might try to be accessed, even though it was removed. 2955 */ 2956 VERIFY(!HDR_L2_WRITING(hdr)); 2957 VERIFY3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2958 2959 #ifdef ZFS_DEBUG 2960 if (hdr->b_l1hdr.b_thawed != NULL) { 2961 kmem_free(hdr->b_l1hdr.b_thawed, 1); 2962 hdr->b_l1hdr.b_thawed = NULL; 2963 } 2964 #endif 2965 2966 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2967 } 2968 /* 2969 * The header has been reallocated so we need to re-insert it into any 2970 * lists it was on. 2971 */ 2972 (void) buf_hash_insert(nhdr, NULL); 2973 2974 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 2975 2976 mutex_enter(&dev->l2ad_mtx); 2977 2978 /* 2979 * We must place the realloc'ed header back into the list at 2980 * the same spot. Otherwise, if it's placed earlier in the list, 2981 * l2arc_write_buffers() could find it during the function's 2982 * write phase, and try to write it out to the l2arc. 2983 */ 2984 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 2985 list_remove(&dev->l2ad_buflist, hdr); 2986 2987 mutex_exit(&dev->l2ad_mtx); 2988 2989 /* 2990 * Since we're using the pointer address as the tag when 2991 * incrementing and decrementing the l2ad_alloc refcount, we 2992 * must remove the old pointer (that we're about to destroy) and 2993 * add the new pointer to the refcount. Otherwise we'd remove 2994 * the wrong pointer address when calling arc_hdr_destroy() later. 2995 */ 2996 2997 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 2998 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr); 2999 3000 buf_discard_identity(hdr); 3001 kmem_cache_free(old, hdr); 3002 3003 return (nhdr); 3004 } 3005 3006 /* 3007 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3008 * The buf is returned thawed since we expect the consumer to modify it. 3009 */ 3010 arc_buf_t * 3011 arc_alloc_buf(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type) 3012 { 3013 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3014 ZIO_COMPRESS_OFF, type); 3015 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); 3016 arc_buf_t *buf = arc_buf_alloc_impl(hdr, tag); 3017 arc_buf_thaw(buf); 3018 return (buf); 3019 } 3020 3021 static void 3022 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3023 { 3024 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3025 l2arc_dev_t *dev = l2hdr->b_dev; 3026 uint64_t asize = arc_hdr_size(hdr); 3027 3028 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3029 ASSERT(HDR_HAS_L2HDR(hdr)); 3030 3031 list_remove(&dev->l2ad_buflist, hdr); 3032 3033 ARCSTAT_INCR(arcstat_l2_asize, -asize); 3034 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr)); 3035 3036 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3037 3038 (void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr); 3039 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3040 } 3041 3042 static void 3043 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3044 { 3045 if (HDR_HAS_L1HDR(hdr)) { 3046 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3047 hdr->b_l1hdr.b_bufcnt > 0); 3048 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3049 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3050 } 3051 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3052 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3053 3054 if (!HDR_EMPTY(hdr)) 3055 buf_discard_identity(hdr); 3056 3057 if (HDR_HAS_L2HDR(hdr)) { 3058 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3059 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3060 3061 if (!buflist_held) 3062 mutex_enter(&dev->l2ad_mtx); 3063 3064 /* 3065 * Even though we checked this conditional above, we 3066 * need to check this again now that we have the 3067 * l2ad_mtx. This is because we could be racing with 3068 * another thread calling l2arc_evict() which might have 3069 * destroyed this header's L2 portion as we were waiting 3070 * to acquire the l2ad_mtx. If that happens, we don't 3071 * want to re-destroy the header's L2 portion. 3072 */ 3073 if (HDR_HAS_L2HDR(hdr)) { 3074 l2arc_trim(hdr); 3075 arc_hdr_l2hdr_destroy(hdr); 3076 } 3077 3078 if (!buflist_held) 3079 mutex_exit(&dev->l2ad_mtx); 3080 } 3081 3082 if (HDR_HAS_L1HDR(hdr)) { 3083 arc_cksum_free(hdr); 3084 3085 while (hdr->b_l1hdr.b_buf != NULL) 3086 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf, B_TRUE); 3087 3088 #ifdef ZFS_DEBUG 3089 if (hdr->b_l1hdr.b_thawed != NULL) { 3090 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3091 hdr->b_l1hdr.b_thawed = NULL; 3092 } 3093 #endif 3094 3095 if (hdr->b_l1hdr.b_pdata != NULL) { 3096 arc_hdr_free_pdata(hdr); 3097 } 3098 } 3099 3100 ASSERT3P(hdr->b_hash_next, ==, NULL); 3101 if (HDR_HAS_L1HDR(hdr)) { 3102 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3103 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3104 kmem_cache_free(hdr_full_cache, hdr); 3105 } else { 3106 kmem_cache_free(hdr_l2only_cache, hdr); 3107 } 3108 } 3109 3110 void 3111 arc_buf_destroy(arc_buf_t *buf, void* tag) 3112 { 3113 arc_buf_hdr_t *hdr = buf->b_hdr; 3114 kmutex_t *hash_lock = HDR_LOCK(hdr); 3115 3116 if (hdr->b_l1hdr.b_state == arc_anon) { 3117 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3118 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3119 VERIFY0(remove_reference(hdr, NULL, tag)); 3120 arc_hdr_destroy(hdr); 3121 return; 3122 } 3123 3124 mutex_enter(hash_lock); 3125 ASSERT3P(hdr, ==, buf->b_hdr); 3126 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3127 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3128 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3129 ASSERT3P(buf->b_data, !=, NULL); 3130 3131 (void) remove_reference(hdr, hash_lock, tag); 3132 arc_buf_destroy_impl(buf, B_TRUE); 3133 mutex_exit(hash_lock); 3134 } 3135 3136 int32_t 3137 arc_buf_size(arc_buf_t *buf) 3138 { 3139 return (HDR_GET_LSIZE(buf->b_hdr)); 3140 } 3141 3142 /* 3143 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3144 * state of the header is dependent on its state prior to entering this 3145 * function. The following transitions are possible: 3146 * 3147 * - arc_mru -> arc_mru_ghost 3148 * - arc_mfu -> arc_mfu_ghost 3149 * - arc_mru_ghost -> arc_l2c_only 3150 * - arc_mru_ghost -> deleted 3151 * - arc_mfu_ghost -> arc_l2c_only 3152 * - arc_mfu_ghost -> deleted 3153 */ 3154 static int64_t 3155 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3156 { 3157 arc_state_t *evicted_state, *state; 3158 int64_t bytes_evicted = 0; 3159 3160 ASSERT(MUTEX_HELD(hash_lock)); 3161 ASSERT(HDR_HAS_L1HDR(hdr)); 3162 3163 state = hdr->b_l1hdr.b_state; 3164 if (GHOST_STATE(state)) { 3165 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3166 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3167 3168 /* 3169 * l2arc_write_buffers() relies on a header's L1 portion 3170 * (i.e. its b_pdata field) during its write phase. 3171 * Thus, we cannot push a header onto the arc_l2c_only 3172 * state (removing it's L1 piece) until the header is 3173 * done being written to the l2arc. 3174 */ 3175 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3176 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3177 return (bytes_evicted); 3178 } 3179 3180 ARCSTAT_BUMP(arcstat_deleted); 3181 bytes_evicted += HDR_GET_LSIZE(hdr); 3182 3183 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3184 3185 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 3186 if (HDR_HAS_L2HDR(hdr)) { 3187 ASSERT(hdr->b_l1hdr.b_pdata == NULL); 3188 /* 3189 * This buffer is cached on the 2nd Level ARC; 3190 * don't destroy the header. 3191 */ 3192 arc_change_state(arc_l2c_only, hdr, hash_lock); 3193 /* 3194 * dropping from L1+L2 cached to L2-only, 3195 * realloc to remove the L1 header. 3196 */ 3197 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3198 hdr_l2only_cache); 3199 } else { 3200 ASSERT(hdr->b_l1hdr.b_pdata == NULL); 3201 arc_change_state(arc_anon, hdr, hash_lock); 3202 arc_hdr_destroy(hdr); 3203 } 3204 return (bytes_evicted); 3205 } 3206 3207 ASSERT(state == arc_mru || state == arc_mfu); 3208 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3209 3210 /* prefetch buffers have a minimum lifespan */ 3211 if (HDR_IO_IN_PROGRESS(hdr) || 3212 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3213 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3214 arc_min_prefetch_lifespan)) { 3215 ARCSTAT_BUMP(arcstat_evict_skip); 3216 return (bytes_evicted); 3217 } 3218 3219 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 3220 while (hdr->b_l1hdr.b_buf) { 3221 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3222 if (!mutex_tryenter(&buf->b_evict_lock)) { 3223 ARCSTAT_BUMP(arcstat_mutex_miss); 3224 break; 3225 } 3226 if (buf->b_data != NULL) 3227 bytes_evicted += HDR_GET_LSIZE(hdr); 3228 mutex_exit(&buf->b_evict_lock); 3229 arc_buf_destroy_impl(buf, B_TRUE); 3230 } 3231 3232 if (HDR_HAS_L2HDR(hdr)) { 3233 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3234 } else { 3235 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3236 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3237 HDR_GET_LSIZE(hdr)); 3238 } else { 3239 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3240 HDR_GET_LSIZE(hdr)); 3241 } 3242 } 3243 3244 if (hdr->b_l1hdr.b_bufcnt == 0) { 3245 arc_cksum_free(hdr); 3246 3247 bytes_evicted += arc_hdr_size(hdr); 3248 3249 /* 3250 * If this hdr is being evicted and has a compressed 3251 * buffer then we discard it here before we change states. 3252 * This ensures that the accounting is updated correctly 3253 * in arc_free_data_buf(). 3254 */ 3255 arc_hdr_free_pdata(hdr); 3256 3257 arc_change_state(evicted_state, hdr, hash_lock); 3258 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3259 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3260 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3261 } 3262 3263 return (bytes_evicted); 3264 } 3265 3266 static uint64_t 3267 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3268 uint64_t spa, int64_t bytes) 3269 { 3270 multilist_sublist_t *mls; 3271 uint64_t bytes_evicted = 0; 3272 arc_buf_hdr_t *hdr; 3273 kmutex_t *hash_lock; 3274 int evict_count = 0; 3275 3276 ASSERT3P(marker, !=, NULL); 3277 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3278 3279 mls = multilist_sublist_lock(ml, idx); 3280 3281 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3282 hdr = multilist_sublist_prev(mls, marker)) { 3283 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3284 (evict_count >= zfs_arc_evict_batch_limit)) 3285 break; 3286 3287 /* 3288 * To keep our iteration location, move the marker 3289 * forward. Since we're not holding hdr's hash lock, we 3290 * must be very careful and not remove 'hdr' from the 3291 * sublist. Otherwise, other consumers might mistake the 3292 * 'hdr' as not being on a sublist when they call the 3293 * multilist_link_active() function (they all rely on 3294 * the hash lock protecting concurrent insertions and 3295 * removals). multilist_sublist_move_forward() was 3296 * specifically implemented to ensure this is the case 3297 * (only 'marker' will be removed and re-inserted). 3298 */ 3299 multilist_sublist_move_forward(mls, marker); 3300 3301 /* 3302 * The only case where the b_spa field should ever be 3303 * zero, is the marker headers inserted by 3304 * arc_evict_state(). It's possible for multiple threads 3305 * to be calling arc_evict_state() concurrently (e.g. 3306 * dsl_pool_close() and zio_inject_fault()), so we must 3307 * skip any markers we see from these other threads. 3308 */ 3309 if (hdr->b_spa == 0) 3310 continue; 3311 3312 /* we're only interested in evicting buffers of a certain spa */ 3313 if (spa != 0 && hdr->b_spa != spa) { 3314 ARCSTAT_BUMP(arcstat_evict_skip); 3315 continue; 3316 } 3317 3318 hash_lock = HDR_LOCK(hdr); 3319 3320 /* 3321 * We aren't calling this function from any code path 3322 * that would already be holding a hash lock, so we're 3323 * asserting on this assumption to be defensive in case 3324 * this ever changes. Without this check, it would be 3325 * possible to incorrectly increment arcstat_mutex_miss 3326 * below (e.g. if the code changed such that we called 3327 * this function with a hash lock held). 3328 */ 3329 ASSERT(!MUTEX_HELD(hash_lock)); 3330 3331 if (mutex_tryenter(hash_lock)) { 3332 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 3333 mutex_exit(hash_lock); 3334 3335 bytes_evicted += evicted; 3336 3337 /* 3338 * If evicted is zero, arc_evict_hdr() must have 3339 * decided to skip this header, don't increment 3340 * evict_count in this case. 3341 */ 3342 if (evicted != 0) 3343 evict_count++; 3344 3345 /* 3346 * If arc_size isn't overflowing, signal any 3347 * threads that might happen to be waiting. 3348 * 3349 * For each header evicted, we wake up a single 3350 * thread. If we used cv_broadcast, we could 3351 * wake up "too many" threads causing arc_size 3352 * to significantly overflow arc_c; since 3353 * arc_get_data_buf() doesn't check for overflow 3354 * when it's woken up (it doesn't because it's 3355 * possible for the ARC to be overflowing while 3356 * full of un-evictable buffers, and the 3357 * function should proceed in this case). 3358 * 3359 * If threads are left sleeping, due to not 3360 * using cv_broadcast, they will be woken up 3361 * just before arc_reclaim_thread() sleeps. 3362 */ 3363 mutex_enter(&arc_reclaim_lock); 3364 if (!arc_is_overflowing()) 3365 cv_signal(&arc_reclaim_waiters_cv); 3366 mutex_exit(&arc_reclaim_lock); 3367 } else { 3368 ARCSTAT_BUMP(arcstat_mutex_miss); 3369 } 3370 } 3371 3372 multilist_sublist_unlock(mls); 3373 3374 return (bytes_evicted); 3375 } 3376 3377 /* 3378 * Evict buffers from the given arc state, until we've removed the 3379 * specified number of bytes. Move the removed buffers to the 3380 * appropriate evict state. 3381 * 3382 * This function makes a "best effort". It skips over any buffers 3383 * it can't get a hash_lock on, and so, may not catch all candidates. 3384 * It may also return without evicting as much space as requested. 3385 * 3386 * If bytes is specified using the special value ARC_EVICT_ALL, this 3387 * will evict all available (i.e. unlocked and evictable) buffers from 3388 * the given arc state; which is used by arc_flush(). 3389 */ 3390 static uint64_t 3391 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 3392 arc_buf_contents_t type) 3393 { 3394 uint64_t total_evicted = 0; 3395 multilist_t *ml = &state->arcs_list[type]; 3396 int num_sublists; 3397 arc_buf_hdr_t **markers; 3398 3399 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3400 3401 num_sublists = multilist_get_num_sublists(ml); 3402 3403 /* 3404 * If we've tried to evict from each sublist, made some 3405 * progress, but still have not hit the target number of bytes 3406 * to evict, we want to keep trying. The markers allow us to 3407 * pick up where we left off for each individual sublist, rather 3408 * than starting from the tail each time. 3409 */ 3410 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 3411 for (int i = 0; i < num_sublists; i++) { 3412 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 3413 3414 /* 3415 * A b_spa of 0 is used to indicate that this header is 3416 * a marker. This fact is used in arc_adjust_type() and 3417 * arc_evict_state_impl(). 3418 */ 3419 markers[i]->b_spa = 0; 3420 3421 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3422 multilist_sublist_insert_tail(mls, markers[i]); 3423 multilist_sublist_unlock(mls); 3424 } 3425 3426 /* 3427 * While we haven't hit our target number of bytes to evict, or 3428 * we're evicting all available buffers. 3429 */ 3430 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 3431 /* 3432 * Start eviction using a randomly selected sublist, 3433 * this is to try and evenly balance eviction across all 3434 * sublists. Always starting at the same sublist 3435 * (e.g. index 0) would cause evictions to favor certain 3436 * sublists over others. 3437 */ 3438 int sublist_idx = multilist_get_random_index(ml); 3439 uint64_t scan_evicted = 0; 3440 3441 for (int i = 0; i < num_sublists; i++) { 3442 uint64_t bytes_remaining; 3443 uint64_t bytes_evicted; 3444 3445 if (bytes == ARC_EVICT_ALL) 3446 bytes_remaining = ARC_EVICT_ALL; 3447 else if (total_evicted < bytes) 3448 bytes_remaining = bytes - total_evicted; 3449 else 3450 break; 3451 3452 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 3453 markers[sublist_idx], spa, bytes_remaining); 3454 3455 scan_evicted += bytes_evicted; 3456 total_evicted += bytes_evicted; 3457 3458 /* we've reached the end, wrap to the beginning */ 3459 if (++sublist_idx >= num_sublists) 3460 sublist_idx = 0; 3461 } 3462 3463 /* 3464 * If we didn't evict anything during this scan, we have 3465 * no reason to believe we'll evict more during another 3466 * scan, so break the loop. 3467 */ 3468 if (scan_evicted == 0) { 3469 /* This isn't possible, let's make that obvious */ 3470 ASSERT3S(bytes, !=, 0); 3471 3472 /* 3473 * When bytes is ARC_EVICT_ALL, the only way to 3474 * break the loop is when scan_evicted is zero. 3475 * In that case, we actually have evicted enough, 3476 * so we don't want to increment the kstat. 3477 */ 3478 if (bytes != ARC_EVICT_ALL) { 3479 ASSERT3S(total_evicted, <, bytes); 3480 ARCSTAT_BUMP(arcstat_evict_not_enough); 3481 } 3482 3483 break; 3484 } 3485 } 3486 3487 for (int i = 0; i < num_sublists; i++) { 3488 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3489 multilist_sublist_remove(mls, markers[i]); 3490 multilist_sublist_unlock(mls); 3491 3492 kmem_cache_free(hdr_full_cache, markers[i]); 3493 } 3494 kmem_free(markers, sizeof (*markers) * num_sublists); 3495 3496 return (total_evicted); 3497 } 3498 3499 /* 3500 * Flush all "evictable" data of the given type from the arc state 3501 * specified. This will not evict any "active" buffers (i.e. referenced). 3502 * 3503 * When 'retry' is set to B_FALSE, the function will make a single pass 3504 * over the state and evict any buffers that it can. Since it doesn't 3505 * continually retry the eviction, it might end up leaving some buffers 3506 * in the ARC due to lock misses. 3507 * 3508 * When 'retry' is set to B_TRUE, the function will continually retry the 3509 * eviction until *all* evictable buffers have been removed from the 3510 * state. As a result, if concurrent insertions into the state are 3511 * allowed (e.g. if the ARC isn't shutting down), this function might 3512 * wind up in an infinite loop, continually trying to evict buffers. 3513 */ 3514 static uint64_t 3515 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 3516 boolean_t retry) 3517 { 3518 uint64_t evicted = 0; 3519 3520 while (refcount_count(&state->arcs_esize[type]) != 0) { 3521 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 3522 3523 if (!retry) 3524 break; 3525 } 3526 3527 return (evicted); 3528 } 3529 3530 /* 3531 * Evict the specified number of bytes from the state specified, 3532 * restricting eviction to the spa and type given. This function 3533 * prevents us from trying to evict more from a state's list than 3534 * is "evictable", and to skip evicting altogether when passed a 3535 * negative value for "bytes". In contrast, arc_evict_state() will 3536 * evict everything it can, when passed a negative value for "bytes". 3537 */ 3538 static uint64_t 3539 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 3540 arc_buf_contents_t type) 3541 { 3542 int64_t delta; 3543 3544 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) { 3545 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes); 3546 return (arc_evict_state(state, spa, delta, type)); 3547 } 3548 3549 return (0); 3550 } 3551 3552 /* 3553 * Evict metadata buffers from the cache, such that arc_meta_used is 3554 * capped by the arc_meta_limit tunable. 3555 */ 3556 static uint64_t 3557 arc_adjust_meta(void) 3558 { 3559 uint64_t total_evicted = 0; 3560 int64_t target; 3561 3562 /* 3563 * If we're over the meta limit, we want to evict enough 3564 * metadata to get back under the meta limit. We don't want to 3565 * evict so much that we drop the MRU below arc_p, though. If 3566 * we're over the meta limit more than we're over arc_p, we 3567 * evict some from the MRU here, and some from the MFU below. 3568 */ 3569 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 3570 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3571 refcount_count(&arc_mru->arcs_size) - arc_p)); 3572 3573 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3574 3575 /* 3576 * Similar to the above, we want to evict enough bytes to get us 3577 * below the meta limit, but not so much as to drop us below the 3578 * space alloted to the MFU (which is defined as arc_c - arc_p). 3579 */ 3580 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 3581 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p))); 3582 3583 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3584 3585 return (total_evicted); 3586 } 3587 3588 /* 3589 * Return the type of the oldest buffer in the given arc state 3590 * 3591 * This function will select a random sublist of type ARC_BUFC_DATA and 3592 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 3593 * is compared, and the type which contains the "older" buffer will be 3594 * returned. 3595 */ 3596 static arc_buf_contents_t 3597 arc_adjust_type(arc_state_t *state) 3598 { 3599 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 3600 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 3601 int data_idx = multilist_get_random_index(data_ml); 3602 int meta_idx = multilist_get_random_index(meta_ml); 3603 multilist_sublist_t *data_mls; 3604 multilist_sublist_t *meta_mls; 3605 arc_buf_contents_t type; 3606 arc_buf_hdr_t *data_hdr; 3607 arc_buf_hdr_t *meta_hdr; 3608 3609 /* 3610 * We keep the sublist lock until we're finished, to prevent 3611 * the headers from being destroyed via arc_evict_state(). 3612 */ 3613 data_mls = multilist_sublist_lock(data_ml, data_idx); 3614 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 3615 3616 /* 3617 * These two loops are to ensure we skip any markers that 3618 * might be at the tail of the lists due to arc_evict_state(). 3619 */ 3620 3621 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 3622 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 3623 if (data_hdr->b_spa != 0) 3624 break; 3625 } 3626 3627 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 3628 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 3629 if (meta_hdr->b_spa != 0) 3630 break; 3631 } 3632 3633 if (data_hdr == NULL && meta_hdr == NULL) { 3634 type = ARC_BUFC_DATA; 3635 } else if (data_hdr == NULL) { 3636 ASSERT3P(meta_hdr, !=, NULL); 3637 type = ARC_BUFC_METADATA; 3638 } else if (meta_hdr == NULL) { 3639 ASSERT3P(data_hdr, !=, NULL); 3640 type = ARC_BUFC_DATA; 3641 } else { 3642 ASSERT3P(data_hdr, !=, NULL); 3643 ASSERT3P(meta_hdr, !=, NULL); 3644 3645 /* The headers can't be on the sublist without an L1 header */ 3646 ASSERT(HDR_HAS_L1HDR(data_hdr)); 3647 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 3648 3649 if (data_hdr->b_l1hdr.b_arc_access < 3650 meta_hdr->b_l1hdr.b_arc_access) { 3651 type = ARC_BUFC_DATA; 3652 } else { 3653 type = ARC_BUFC_METADATA; 3654 } 3655 } 3656 3657 multilist_sublist_unlock(meta_mls); 3658 multilist_sublist_unlock(data_mls); 3659 3660 return (type); 3661 } 3662 3663 /* 3664 * Evict buffers from the cache, such that arc_size is capped by arc_c. 3665 */ 3666 static uint64_t 3667 arc_adjust(void) 3668 { 3669 uint64_t total_evicted = 0; 3670 uint64_t bytes; 3671 int64_t target; 3672 3673 /* 3674 * If we're over arc_meta_limit, we want to correct that before 3675 * potentially evicting data buffers below. 3676 */ 3677 total_evicted += arc_adjust_meta(); 3678 3679 /* 3680 * Adjust MRU size 3681 * 3682 * If we're over the target cache size, we want to evict enough 3683 * from the list to get back to our target size. We don't want 3684 * to evict too much from the MRU, such that it drops below 3685 * arc_p. So, if we're over our target cache size more than 3686 * the MRU is over arc_p, we'll evict enough to get back to 3687 * arc_p here, and then evict more from the MFU below. 3688 */ 3689 target = MIN((int64_t)(arc_size - arc_c), 3690 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3691 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p)); 3692 3693 /* 3694 * If we're below arc_meta_min, always prefer to evict data. 3695 * Otherwise, try to satisfy the requested number of bytes to 3696 * evict from the type which contains older buffers; in an 3697 * effort to keep newer buffers in the cache regardless of their 3698 * type. If we cannot satisfy the number of bytes from this 3699 * type, spill over into the next type. 3700 */ 3701 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && 3702 arc_meta_used > arc_meta_min) { 3703 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3704 total_evicted += bytes; 3705 3706 /* 3707 * If we couldn't evict our target number of bytes from 3708 * metadata, we try to get the rest from data. 3709 */ 3710 target -= bytes; 3711 3712 total_evicted += 3713 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3714 } else { 3715 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3716 total_evicted += bytes; 3717 3718 /* 3719 * If we couldn't evict our target number of bytes from 3720 * data, we try to get the rest from metadata. 3721 */ 3722 target -= bytes; 3723 3724 total_evicted += 3725 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3726 } 3727 3728 /* 3729 * Adjust MFU size 3730 * 3731 * Now that we've tried to evict enough from the MRU to get its 3732 * size back to arc_p, if we're still above the target cache 3733 * size, we evict the rest from the MFU. 3734 */ 3735 target = arc_size - arc_c; 3736 3737 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && 3738 arc_meta_used > arc_meta_min) { 3739 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3740 total_evicted += bytes; 3741 3742 /* 3743 * If we couldn't evict our target number of bytes from 3744 * metadata, we try to get the rest from data. 3745 */ 3746 target -= bytes; 3747 3748 total_evicted += 3749 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3750 } else { 3751 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3752 total_evicted += bytes; 3753 3754 /* 3755 * If we couldn't evict our target number of bytes from 3756 * data, we try to get the rest from data. 3757 */ 3758 target -= bytes; 3759 3760 total_evicted += 3761 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3762 } 3763 3764 /* 3765 * Adjust ghost lists 3766 * 3767 * In addition to the above, the ARC also defines target values 3768 * for the ghost lists. The sum of the mru list and mru ghost 3769 * list should never exceed the target size of the cache, and 3770 * the sum of the mru list, mfu list, mru ghost list, and mfu 3771 * ghost list should never exceed twice the target size of the 3772 * cache. The following logic enforces these limits on the ghost 3773 * caches, and evicts from them as needed. 3774 */ 3775 target = refcount_count(&arc_mru->arcs_size) + 3776 refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 3777 3778 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 3779 total_evicted += bytes; 3780 3781 target -= bytes; 3782 3783 total_evicted += 3784 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 3785 3786 /* 3787 * We assume the sum of the mru list and mfu list is less than 3788 * or equal to arc_c (we enforced this above), which means we 3789 * can use the simpler of the two equations below: 3790 * 3791 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 3792 * mru ghost + mfu ghost <= arc_c 3793 */ 3794 target = refcount_count(&arc_mru_ghost->arcs_size) + 3795 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 3796 3797 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 3798 total_evicted += bytes; 3799 3800 target -= bytes; 3801 3802 total_evicted += 3803 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 3804 3805 return (total_evicted); 3806 } 3807 3808 void 3809 arc_flush(spa_t *spa, boolean_t retry) 3810 { 3811 uint64_t guid = 0; 3812 3813 /* 3814 * If retry is B_TRUE, a spa must not be specified since we have 3815 * no good way to determine if all of a spa's buffers have been 3816 * evicted from an arc state. 3817 */ 3818 ASSERT(!retry || spa == 0); 3819 3820 if (spa != NULL) 3821 guid = spa_load_guid(spa); 3822 3823 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 3824 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 3825 3826 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 3827 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 3828 3829 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 3830 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 3831 3832 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 3833 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 3834 } 3835 3836 void 3837 arc_shrink(int64_t to_free) 3838 { 3839 if (arc_c > arc_c_min) { 3840 DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t, 3841 arc_c_min, uint64_t, arc_p, uint64_t, to_free); 3842 if (arc_c > arc_c_min + to_free) 3843 atomic_add_64(&arc_c, -to_free); 3844 else 3845 arc_c = arc_c_min; 3846 3847 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 3848 if (arc_c > arc_size) 3849 arc_c = MAX(arc_size, arc_c_min); 3850 if (arc_p > arc_c) 3851 arc_p = (arc_c >> 1); 3852 3853 DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t, 3854 arc_p); 3855 3856 ASSERT(arc_c >= arc_c_min); 3857 ASSERT((int64_t)arc_p >= 0); 3858 } 3859 3860 if (arc_size > arc_c) { 3861 DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size, 3862 uint64_t, arc_c); 3863 (void) arc_adjust(); 3864 } 3865 } 3866 3867 static long needfree = 0; 3868 3869 typedef enum free_memory_reason_t { 3870 FMR_UNKNOWN, 3871 FMR_NEEDFREE, 3872 FMR_LOTSFREE, 3873 FMR_SWAPFS_MINFREE, 3874 FMR_PAGES_PP_MAXIMUM, 3875 FMR_HEAP_ARENA, 3876 FMR_ZIO_ARENA, 3877 FMR_ZIO_FRAG, 3878 } free_memory_reason_t; 3879 3880 int64_t last_free_memory; 3881 free_memory_reason_t last_free_reason; 3882 3883 /* 3884 * Additional reserve of pages for pp_reserve. 3885 */ 3886 int64_t arc_pages_pp_reserve = 64; 3887 3888 /* 3889 * Additional reserve of pages for swapfs. 3890 */ 3891 int64_t arc_swapfs_reserve = 64; 3892 3893 /* 3894 * Return the amount of memory that can be consumed before reclaim will be 3895 * needed. Positive if there is sufficient free memory, negative indicates 3896 * the amount of memory that needs to be freed up. 3897 */ 3898 static int64_t 3899 arc_available_memory(void) 3900 { 3901 int64_t lowest = INT64_MAX; 3902 int64_t n; 3903 free_memory_reason_t r = FMR_UNKNOWN; 3904 3905 #ifdef _KERNEL 3906 if (needfree > 0) { 3907 n = PAGESIZE * (-needfree); 3908 if (n < lowest) { 3909 lowest = n; 3910 r = FMR_NEEDFREE; 3911 } 3912 } 3913 3914 /* 3915 * Cooperate with pagedaemon when it's time for it to scan 3916 * and reclaim some pages. 3917 */ 3918 n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target); 3919 if (n < lowest) { 3920 lowest = n; 3921 r = FMR_LOTSFREE; 3922 } 3923 3924 #ifdef illumos 3925 /* 3926 * check that we're out of range of the pageout scanner. It starts to 3927 * schedule paging if freemem is less than lotsfree and needfree. 3928 * lotsfree is the high-water mark for pageout, and needfree is the 3929 * number of needed free pages. We add extra pages here to make sure 3930 * the scanner doesn't start up while we're freeing memory. 3931 */ 3932 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 3933 if (n < lowest) { 3934 lowest = n; 3935 r = FMR_LOTSFREE; 3936 } 3937 3938 /* 3939 * check to make sure that swapfs has enough space so that anon 3940 * reservations can still succeed. anon_resvmem() checks that the 3941 * availrmem is greater than swapfs_minfree, and the number of reserved 3942 * swap pages. We also add a bit of extra here just to prevent 3943 * circumstances from getting really dire. 3944 */ 3945 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 3946 desfree - arc_swapfs_reserve); 3947 if (n < lowest) { 3948 lowest = n; 3949 r = FMR_SWAPFS_MINFREE; 3950 } 3951 3952 3953 /* 3954 * Check that we have enough availrmem that memory locking (e.g., via 3955 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 3956 * stores the number of pages that cannot be locked; when availrmem 3957 * drops below pages_pp_maximum, page locking mechanisms such as 3958 * page_pp_lock() will fail.) 3959 */ 3960 n = PAGESIZE * (availrmem - pages_pp_maximum - 3961 arc_pages_pp_reserve); 3962 if (n < lowest) { 3963 lowest = n; 3964 r = FMR_PAGES_PP_MAXIMUM; 3965 } 3966 3967 #endif /* illumos */ 3968 #if !defined(_LP64) 3969 /* 3970 * If we're on an i386 platform, it's possible that we'll exhaust the 3971 * kernel heap space before we ever run out of available physical 3972 * memory. Most checks of the size of the heap_area compare against 3973 * tune.t_minarmem, which is the minimum available real memory that we 3974 * can have in the system. However, this is generally fixed at 25 pages 3975 * which is so low that it's useless. In this comparison, we seek to 3976 * calculate the total heap-size, and reclaim if more than 3/4ths of the 3977 * heap is allocated. (Or, in the calculation, if less than 1/4th is 3978 * free) 3979 */ 3980 n = (int64_t)vmem_size(heap_arena, VMEM_FREE) - 3981 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2); 3982 if (n < lowest) { 3983 lowest = n; 3984 r = FMR_HEAP_ARENA; 3985 } 3986 #define zio_arena NULL 3987 #else 3988 #define zio_arena heap_arena 3989 #endif 3990 3991 /* 3992 * If zio data pages are being allocated out of a separate heap segment, 3993 * then enforce that the size of available vmem for this arena remains 3994 * above about 1/16th free. 3995 * 3996 * Note: The 1/16th arena free requirement was put in place 3997 * to aggressively evict memory from the arc in order to avoid 3998 * memory fragmentation issues. 3999 */ 4000 if (zio_arena != NULL) { 4001 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) - 4002 (vmem_size(zio_arena, VMEM_ALLOC) >> 4); 4003 if (n < lowest) { 4004 lowest = n; 4005 r = FMR_ZIO_ARENA; 4006 } 4007 } 4008 4009 #if __FreeBSD__ 4010 /* 4011 * Above limits know nothing about real level of KVA fragmentation. 4012 * Start aggressive reclamation if too little sequential KVA left. 4013 */ 4014 if (lowest > 0) { 4015 n = (vmem_size(heap_arena, VMEM_MAXFREE) < SPA_MAXBLOCKSIZE) ? 4016 -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) : 4017 INT64_MAX; 4018 if (n < lowest) { 4019 lowest = n; 4020 r = FMR_ZIO_FRAG; 4021 } 4022 } 4023 #endif 4024 4025 #else /* _KERNEL */ 4026 /* Every 100 calls, free a small amount */ 4027 if (spa_get_random(100) == 0) 4028 lowest = -1024; 4029 #endif /* _KERNEL */ 4030 4031 last_free_memory = lowest; 4032 last_free_reason = r; 4033 DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r); 4034 return (lowest); 4035 } 4036 4037 4038 /* 4039 * Determine if the system is under memory pressure and is asking 4040 * to reclaim memory. A return value of B_TRUE indicates that the system 4041 * is under memory pressure and that the arc should adjust accordingly. 4042 */ 4043 static boolean_t 4044 arc_reclaim_needed(void) 4045 { 4046 return (arc_available_memory() < 0); 4047 } 4048 4049 extern kmem_cache_t *zio_buf_cache[]; 4050 extern kmem_cache_t *zio_data_buf_cache[]; 4051 extern kmem_cache_t *range_seg_cache; 4052 4053 static __noinline void 4054 arc_kmem_reap_now(void) 4055 { 4056 size_t i; 4057 kmem_cache_t *prev_cache = NULL; 4058 kmem_cache_t *prev_data_cache = NULL; 4059 4060 DTRACE_PROBE(arc__kmem_reap_start); 4061 #ifdef _KERNEL 4062 if (arc_meta_used >= arc_meta_limit) { 4063 /* 4064 * We are exceeding our meta-data cache limit. 4065 * Purge some DNLC entries to release holds on meta-data. 4066 */ 4067 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 4068 } 4069 #if defined(__i386) 4070 /* 4071 * Reclaim unused memory from all kmem caches. 4072 */ 4073 kmem_reap(); 4074 #endif 4075 #endif 4076 4077 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4078 if (zio_buf_cache[i] != prev_cache) { 4079 prev_cache = zio_buf_cache[i]; 4080 kmem_cache_reap_now(zio_buf_cache[i]); 4081 } 4082 if (zio_data_buf_cache[i] != prev_data_cache) { 4083 prev_data_cache = zio_data_buf_cache[i]; 4084 kmem_cache_reap_now(zio_data_buf_cache[i]); 4085 } 4086 } 4087 kmem_cache_reap_now(buf_cache); 4088 kmem_cache_reap_now(hdr_full_cache); 4089 kmem_cache_reap_now(hdr_l2only_cache); 4090 kmem_cache_reap_now(range_seg_cache); 4091 4092 #ifdef illumos 4093 if (zio_arena != NULL) { 4094 /* 4095 * Ask the vmem arena to reclaim unused memory from its 4096 * quantum caches. 4097 */ 4098 vmem_qcache_reap(zio_arena); 4099 } 4100 #endif 4101 DTRACE_PROBE(arc__kmem_reap_end); 4102 } 4103 4104 /* 4105 * Threads can block in arc_get_data_buf() waiting for this thread to evict 4106 * enough data and signal them to proceed. When this happens, the threads in 4107 * arc_get_data_buf() are sleeping while holding the hash lock for their 4108 * particular arc header. Thus, we must be careful to never sleep on a 4109 * hash lock in this thread. This is to prevent the following deadlock: 4110 * 4111 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L", 4112 * waiting for the reclaim thread to signal it. 4113 * 4114 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter, 4115 * fails, and goes to sleep forever. 4116 * 4117 * This possible deadlock is avoided by always acquiring a hash lock 4118 * using mutex_tryenter() from arc_reclaim_thread(). 4119 */ 4120 static void 4121 arc_reclaim_thread(void *dummy __unused) 4122 { 4123 hrtime_t growtime = 0; 4124 callb_cpr_t cpr; 4125 4126 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG); 4127 4128 mutex_enter(&arc_reclaim_lock); 4129 while (!arc_reclaim_thread_exit) { 4130 uint64_t evicted = 0; 4131 4132 /* 4133 * This is necessary in order for the mdb ::arc dcmd to 4134 * show up to date information. Since the ::arc command 4135 * does not call the kstat's update function, without 4136 * this call, the command may show stale stats for the 4137 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4138 * with this change, the data might be up to 1 second 4139 * out of date; but that should suffice. The arc_state_t 4140 * structures can be queried directly if more accurate 4141 * information is needed. 4142 */ 4143 if (arc_ksp != NULL) 4144 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4145 4146 mutex_exit(&arc_reclaim_lock); 4147 4148 /* 4149 * We call arc_adjust() before (possibly) calling 4150 * arc_kmem_reap_now(), so that we can wake up 4151 * arc_get_data_buf() sooner. 4152 */ 4153 evicted = arc_adjust(); 4154 4155 int64_t free_memory = arc_available_memory(); 4156 if (free_memory < 0) { 4157 4158 arc_no_grow = B_TRUE; 4159 arc_warm = B_TRUE; 4160 4161 /* 4162 * Wait at least zfs_grow_retry (default 60) seconds 4163 * before considering growing. 4164 */ 4165 growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4166 4167 arc_kmem_reap_now(); 4168 4169 /* 4170 * If we are still low on memory, shrink the ARC 4171 * so that we have arc_shrink_min free space. 4172 */ 4173 free_memory = arc_available_memory(); 4174 4175 int64_t to_free = 4176 (arc_c >> arc_shrink_shift) - free_memory; 4177 if (to_free > 0) { 4178 #ifdef _KERNEL 4179 to_free = MAX(to_free, ptob(needfree)); 4180 #endif 4181 arc_shrink(to_free); 4182 } 4183 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4184 arc_no_grow = B_TRUE; 4185 } else if (gethrtime() >= growtime) { 4186 arc_no_grow = B_FALSE; 4187 } 4188 4189 mutex_enter(&arc_reclaim_lock); 4190 4191 /* 4192 * If evicted is zero, we couldn't evict anything via 4193 * arc_adjust(). This could be due to hash lock 4194 * collisions, but more likely due to the majority of 4195 * arc buffers being unevictable. Therefore, even if 4196 * arc_size is above arc_c, another pass is unlikely to 4197 * be helpful and could potentially cause us to enter an 4198 * infinite loop. 4199 */ 4200 if (arc_size <= arc_c || evicted == 0) { 4201 #ifdef _KERNEL 4202 needfree = 0; 4203 #endif 4204 /* 4205 * We're either no longer overflowing, or we 4206 * can't evict anything more, so we should wake 4207 * up any threads before we go to sleep. 4208 */ 4209 cv_broadcast(&arc_reclaim_waiters_cv); 4210 4211 /* 4212 * Block until signaled, or after one second (we 4213 * might need to perform arc_kmem_reap_now() 4214 * even if we aren't being signalled) 4215 */ 4216 CALLB_CPR_SAFE_BEGIN(&cpr); 4217 (void) cv_timedwait_hires(&arc_reclaim_thread_cv, 4218 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 4219 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock); 4220 } 4221 } 4222 4223 arc_reclaim_thread_exit = B_FALSE; 4224 cv_broadcast(&arc_reclaim_thread_cv); 4225 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */ 4226 thread_exit(); 4227 } 4228 4229 #ifdef __FreeBSD__ 4230 4231 static u_int arc_dnlc_evicts_arg; 4232 extern struct vfsops zfs_vfsops; 4233 4234 static void 4235 arc_dnlc_evicts_thread(void *dummy __unused) 4236 { 4237 callb_cpr_t cpr; 4238 u_int percent; 4239 4240 CALLB_CPR_INIT(&cpr, &arc_dnlc_evicts_lock, callb_generic_cpr, FTAG); 4241 4242 mutex_enter(&arc_dnlc_evicts_lock); 4243 while (!arc_dnlc_evicts_thread_exit) { 4244 CALLB_CPR_SAFE_BEGIN(&cpr); 4245 (void) cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock); 4246 CALLB_CPR_SAFE_END(&cpr, &arc_dnlc_evicts_lock); 4247 if (arc_dnlc_evicts_arg != 0) { 4248 percent = arc_dnlc_evicts_arg; 4249 mutex_exit(&arc_dnlc_evicts_lock); 4250 #ifdef _KERNEL 4251 vnlru_free(desiredvnodes * percent / 100, &zfs_vfsops); 4252 #endif 4253 mutex_enter(&arc_dnlc_evicts_lock); 4254 /* 4255 * Clear our token only after vnlru_free() 4256 * pass is done, to avoid false queueing of 4257 * the requests. 4258 */ 4259 arc_dnlc_evicts_arg = 0; 4260 } 4261 } 4262 arc_dnlc_evicts_thread_exit = FALSE; 4263 cv_broadcast(&arc_dnlc_evicts_cv); 4264 CALLB_CPR_EXIT(&cpr); 4265 thread_exit(); 4266 } 4267 4268 void 4269 dnlc_reduce_cache(void *arg) 4270 { 4271 u_int percent; 4272 4273 percent = (u_int)(uintptr_t)arg; 4274 mutex_enter(&arc_dnlc_evicts_lock); 4275 if (arc_dnlc_evicts_arg == 0) { 4276 arc_dnlc_evicts_arg = percent; 4277 cv_broadcast(&arc_dnlc_evicts_cv); 4278 } 4279 mutex_exit(&arc_dnlc_evicts_lock); 4280 } 4281 4282 #endif 4283 4284 /* 4285 * Adapt arc info given the number of bytes we are trying to add and 4286 * the state that we are comming from. This function is only called 4287 * when we are adding new content to the cache. 4288 */ 4289 static void 4290 arc_adapt(int bytes, arc_state_t *state) 4291 { 4292 int mult; 4293 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 4294 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size); 4295 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size); 4296 4297 if (state == arc_l2c_only) 4298 return; 4299 4300 ASSERT(bytes > 0); 4301 /* 4302 * Adapt the target size of the MRU list: 4303 * - if we just hit in the MRU ghost list, then increase 4304 * the target size of the MRU list. 4305 * - if we just hit in the MFU ghost list, then increase 4306 * the target size of the MFU list by decreasing the 4307 * target size of the MRU list. 4308 */ 4309 if (state == arc_mru_ghost) { 4310 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 4311 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 4312 4313 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 4314 } else if (state == arc_mfu_ghost) { 4315 uint64_t delta; 4316 4317 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 4318 mult = MIN(mult, 10); 4319 4320 delta = MIN(bytes * mult, arc_p); 4321 arc_p = MAX(arc_p_min, arc_p - delta); 4322 } 4323 ASSERT((int64_t)arc_p >= 0); 4324 4325 if (arc_reclaim_needed()) { 4326 cv_signal(&arc_reclaim_thread_cv); 4327 return; 4328 } 4329 4330 if (arc_no_grow) 4331 return; 4332 4333 if (arc_c >= arc_c_max) 4334 return; 4335 4336 /* 4337 * If we're within (2 * maxblocksize) bytes of the target 4338 * cache size, increment the target cache size 4339 */ 4340 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 4341 DTRACE_PROBE1(arc__inc_adapt, int, bytes); 4342 atomic_add_64(&arc_c, (int64_t)bytes); 4343 if (arc_c > arc_c_max) 4344 arc_c = arc_c_max; 4345 else if (state == arc_anon) 4346 atomic_add_64(&arc_p, (int64_t)bytes); 4347 if (arc_p > arc_c) 4348 arc_p = arc_c; 4349 } 4350 ASSERT((int64_t)arc_p >= 0); 4351 } 4352 4353 /* 4354 * Check if arc_size has grown past our upper threshold, determined by 4355 * zfs_arc_overflow_shift. 4356 */ 4357 static boolean_t 4358 arc_is_overflowing(void) 4359 { 4360 /* Always allow at least one block of overflow */ 4361 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, 4362 arc_c >> zfs_arc_overflow_shift); 4363 4364 return (arc_size >= arc_c + overflow); 4365 } 4366 4367 /* 4368 * Allocate a block and return it to the caller. If we are hitting the 4369 * hard limit for the cache size, we must sleep, waiting for the eviction 4370 * thread to catch up. If we're past the target size but below the hard 4371 * limit, we'll only signal the reclaim thread and continue on. 4372 */ 4373 static void * 4374 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4375 { 4376 void *datap = NULL; 4377 arc_state_t *state = hdr->b_l1hdr.b_state; 4378 arc_buf_contents_t type = arc_buf_type(hdr); 4379 4380 arc_adapt(size, state); 4381 4382 /* 4383 * If arc_size is currently overflowing, and has grown past our 4384 * upper limit, we must be adding data faster than the evict 4385 * thread can evict. Thus, to ensure we don't compound the 4386 * problem by adding more data and forcing arc_size to grow even 4387 * further past it's target size, we halt and wait for the 4388 * eviction thread to catch up. 4389 * 4390 * It's also possible that the reclaim thread is unable to evict 4391 * enough buffers to get arc_size below the overflow limit (e.g. 4392 * due to buffers being un-evictable, or hash lock collisions). 4393 * In this case, we want to proceed regardless if we're 4394 * overflowing; thus we don't use a while loop here. 4395 */ 4396 if (arc_is_overflowing()) { 4397 mutex_enter(&arc_reclaim_lock); 4398 4399 /* 4400 * Now that we've acquired the lock, we may no longer be 4401 * over the overflow limit, lets check. 4402 * 4403 * We're ignoring the case of spurious wake ups. If that 4404 * were to happen, it'd let this thread consume an ARC 4405 * buffer before it should have (i.e. before we're under 4406 * the overflow limit and were signalled by the reclaim 4407 * thread). As long as that is a rare occurrence, it 4408 * shouldn't cause any harm. 4409 */ 4410 if (arc_is_overflowing()) { 4411 cv_signal(&arc_reclaim_thread_cv); 4412 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock); 4413 } 4414 4415 mutex_exit(&arc_reclaim_lock); 4416 } 4417 4418 VERIFY3U(hdr->b_type, ==, type); 4419 if (type == ARC_BUFC_METADATA) { 4420 datap = zio_buf_alloc(size); 4421 arc_space_consume(size, ARC_SPACE_META); 4422 } else { 4423 ASSERT(type == ARC_BUFC_DATA); 4424 datap = zio_data_buf_alloc(size); 4425 arc_space_consume(size, ARC_SPACE_DATA); 4426 } 4427 4428 /* 4429 * Update the state size. Note that ghost states have a 4430 * "ghost size" and so don't need to be updated. 4431 */ 4432 if (!GHOST_STATE(state)) { 4433 4434 (void) refcount_add_many(&state->arcs_size, size, tag); 4435 4436 /* 4437 * If this is reached via arc_read, the link is 4438 * protected by the hash lock. If reached via 4439 * arc_buf_alloc, the header should not be accessed by 4440 * any other thread. And, if reached via arc_read_done, 4441 * the hash lock will protect it if it's found in the 4442 * hash table; otherwise no other thread should be 4443 * trying to [add|remove]_reference it. 4444 */ 4445 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4446 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4447 (void) refcount_add_many(&state->arcs_esize[type], 4448 size, tag); 4449 } 4450 4451 /* 4452 * If we are growing the cache, and we are adding anonymous 4453 * data, and we have outgrown arc_p, update arc_p 4454 */ 4455 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon && 4456 (refcount_count(&arc_anon->arcs_size) + 4457 refcount_count(&arc_mru->arcs_size) > arc_p)) 4458 arc_p = MIN(arc_c, arc_p + size); 4459 } 4460 ARCSTAT_BUMP(arcstat_allocated); 4461 return (datap); 4462 } 4463 4464 /* 4465 * Free the arc data buffer. 4466 */ 4467 static void 4468 arc_free_data_buf(arc_buf_hdr_t *hdr, void *data, uint64_t size, void *tag) 4469 { 4470 arc_state_t *state = hdr->b_l1hdr.b_state; 4471 arc_buf_contents_t type = arc_buf_type(hdr); 4472 4473 /* protected by hash lock, if in the hash table */ 4474 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4475 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4476 ASSERT(state != arc_anon && state != arc_l2c_only); 4477 4478 (void) refcount_remove_many(&state->arcs_esize[type], 4479 size, tag); 4480 } 4481 (void) refcount_remove_many(&state->arcs_size, size, tag); 4482 4483 VERIFY3U(hdr->b_type, ==, type); 4484 if (type == ARC_BUFC_METADATA) { 4485 zio_buf_free(data, size); 4486 arc_space_return(size, ARC_SPACE_META); 4487 } else { 4488 ASSERT(type == ARC_BUFC_DATA); 4489 zio_data_buf_free(data, size); 4490 arc_space_return(size, ARC_SPACE_DATA); 4491 } 4492 } 4493 4494 /* 4495 * This routine is called whenever a buffer is accessed. 4496 * NOTE: the hash lock is dropped in this function. 4497 */ 4498 static void 4499 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 4500 { 4501 clock_t now; 4502 4503 ASSERT(MUTEX_HELD(hash_lock)); 4504 ASSERT(HDR_HAS_L1HDR(hdr)); 4505 4506 if (hdr->b_l1hdr.b_state == arc_anon) { 4507 /* 4508 * This buffer is not in the cache, and does not 4509 * appear in our "ghost" list. Add the new buffer 4510 * to the MRU state. 4511 */ 4512 4513 ASSERT0(hdr->b_l1hdr.b_arc_access); 4514 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4515 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4516 arc_change_state(arc_mru, hdr, hash_lock); 4517 4518 } else if (hdr->b_l1hdr.b_state == arc_mru) { 4519 now = ddi_get_lbolt(); 4520 4521 /* 4522 * If this buffer is here because of a prefetch, then either: 4523 * - clear the flag if this is a "referencing" read 4524 * (any subsequent access will bump this into the MFU state). 4525 * or 4526 * - move the buffer to the head of the list if this is 4527 * another prefetch (to make it less likely to be evicted). 4528 */ 4529 if (HDR_PREFETCH(hdr)) { 4530 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4531 /* link protected by hash lock */ 4532 ASSERT(multilist_link_active( 4533 &hdr->b_l1hdr.b_arc_node)); 4534 } else { 4535 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4536 ARCSTAT_BUMP(arcstat_mru_hits); 4537 } 4538 hdr->b_l1hdr.b_arc_access = now; 4539 return; 4540 } 4541 4542 /* 4543 * This buffer has been "accessed" only once so far, 4544 * but it is still in the cache. Move it to the MFU 4545 * state. 4546 */ 4547 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { 4548 /* 4549 * More than 125ms have passed since we 4550 * instantiated this buffer. Move it to the 4551 * most frequently used state. 4552 */ 4553 hdr->b_l1hdr.b_arc_access = now; 4554 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4555 arc_change_state(arc_mfu, hdr, hash_lock); 4556 } 4557 ARCSTAT_BUMP(arcstat_mru_hits); 4558 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 4559 arc_state_t *new_state; 4560 /* 4561 * This buffer has been "accessed" recently, but 4562 * was evicted from the cache. Move it to the 4563 * MFU state. 4564 */ 4565 4566 if (HDR_PREFETCH(hdr)) { 4567 new_state = arc_mru; 4568 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) 4569 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4570 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4571 } else { 4572 new_state = arc_mfu; 4573 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4574 } 4575 4576 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4577 arc_change_state(new_state, hdr, hash_lock); 4578 4579 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 4580 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 4581 /* 4582 * This buffer has been accessed more than once and is 4583 * still in the cache. Keep it in the MFU state. 4584 * 4585 * NOTE: an add_reference() that occurred when we did 4586 * the arc_read() will have kicked this off the list. 4587 * If it was a prefetch, we will explicitly move it to 4588 * the head of the list now. 4589 */ 4590 if ((HDR_PREFETCH(hdr)) != 0) { 4591 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4592 /* link protected by hash_lock */ 4593 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 4594 } 4595 ARCSTAT_BUMP(arcstat_mfu_hits); 4596 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4597 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 4598 arc_state_t *new_state = arc_mfu; 4599 /* 4600 * This buffer has been accessed more than once but has 4601 * been evicted from the cache. Move it back to the 4602 * MFU state. 4603 */ 4604 4605 if (HDR_PREFETCH(hdr)) { 4606 /* 4607 * This is a prefetch access... 4608 * move this block back to the MRU state. 4609 */ 4610 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 4611 new_state = arc_mru; 4612 } 4613 4614 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4615 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4616 arc_change_state(new_state, hdr, hash_lock); 4617 4618 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 4619 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 4620 /* 4621 * This buffer is on the 2nd Level ARC. 4622 */ 4623 4624 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4625 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4626 arc_change_state(arc_mfu, hdr, hash_lock); 4627 } else { 4628 ASSERT(!"invalid arc state"); 4629 } 4630 } 4631 4632 /* a generic arc_done_func_t which you can use */ 4633 /* ARGSUSED */ 4634 void 4635 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 4636 { 4637 if (zio == NULL || zio->io_error == 0) 4638 bcopy(buf->b_data, arg, HDR_GET_LSIZE(buf->b_hdr)); 4639 arc_buf_destroy(buf, arg); 4640 } 4641 4642 /* a generic arc_done_func_t */ 4643 void 4644 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 4645 { 4646 arc_buf_t **bufp = arg; 4647 if (zio && zio->io_error) { 4648 arc_buf_destroy(buf, arg); 4649 *bufp = NULL; 4650 } else { 4651 *bufp = buf; 4652 ASSERT(buf->b_data); 4653 } 4654 } 4655 4656 static void 4657 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 4658 { 4659 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 4660 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 4661 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 4662 } else { 4663 if (HDR_COMPRESSION_ENABLED(hdr)) { 4664 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, 4665 BP_GET_COMPRESS(bp)); 4666 } 4667 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 4668 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 4669 } 4670 } 4671 4672 static void 4673 arc_read_done(zio_t *zio) 4674 { 4675 arc_buf_hdr_t *hdr = zio->io_private; 4676 arc_buf_t *abuf = NULL; /* buffer we're assigning to callback */ 4677 kmutex_t *hash_lock = NULL; 4678 arc_callback_t *callback_list, *acb; 4679 int freeable = B_FALSE; 4680 4681 /* 4682 * The hdr was inserted into hash-table and removed from lists 4683 * prior to starting I/O. We should find this header, since 4684 * it's in the hash table, and it should be legit since it's 4685 * not possible to evict it during the I/O. The only possible 4686 * reason for it not to be found is if we were freed during the 4687 * read. 4688 */ 4689 if (HDR_IN_HASH_TABLE(hdr)) { 4690 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 4691 ASSERT3U(hdr->b_dva.dva_word[0], ==, 4692 BP_IDENTITY(zio->io_bp)->dva_word[0]); 4693 ASSERT3U(hdr->b_dva.dva_word[1], ==, 4694 BP_IDENTITY(zio->io_bp)->dva_word[1]); 4695 4696 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 4697 &hash_lock); 4698 4699 ASSERT((found == hdr && 4700 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 4701 (found == hdr && HDR_L2_READING(hdr))); 4702 ASSERT3P(hash_lock, !=, NULL); 4703 } 4704 4705 if (zio->io_error == 0) { 4706 /* byteswap if necessary */ 4707 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 4708 if (BP_GET_LEVEL(zio->io_bp) > 0) { 4709 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 4710 } else { 4711 hdr->b_l1hdr.b_byteswap = 4712 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 4713 } 4714 } else { 4715 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 4716 } 4717 } 4718 4719 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 4720 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 4721 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 4722 4723 callback_list = hdr->b_l1hdr.b_acb; 4724 ASSERT3P(callback_list, !=, NULL); 4725 4726 if (hash_lock && zio->io_error == 0 && 4727 hdr->b_l1hdr.b_state == arc_anon) { 4728 /* 4729 * Only call arc_access on anonymous buffers. This is because 4730 * if we've issued an I/O for an evicted buffer, we've already 4731 * called arc_access (to prevent any simultaneous readers from 4732 * getting confused). 4733 */ 4734 arc_access(hdr, hash_lock); 4735 } 4736 4737 /* create copies of the data buffer for the callers */ 4738 for (acb = callback_list; acb; acb = acb->acb_next) { 4739 if (acb->acb_done != NULL) { 4740 /* 4741 * If we're here, then this must be a demand read 4742 * since prefetch requests don't have callbacks. 4743 * If a read request has a callback (i.e. acb_done is 4744 * not NULL), then we decompress the data for the 4745 * first request and clone the rest. This avoids 4746 * having to waste cpu resources decompressing data 4747 * that nobody is explicitly waiting to read. 4748 */ 4749 if (abuf == NULL) { 4750 acb->acb_buf = arc_buf_alloc_impl(hdr, 4751 acb->acb_private); 4752 if (zio->io_error == 0) { 4753 zio->io_error = 4754 arc_decompress(acb->acb_buf); 4755 } 4756 abuf = acb->acb_buf; 4757 } else { 4758 add_reference(hdr, acb->acb_private); 4759 acb->acb_buf = arc_buf_clone(abuf); 4760 } 4761 } 4762 } 4763 hdr->b_l1hdr.b_acb = NULL; 4764 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 4765 if (abuf == NULL) { 4766 /* 4767 * This buffer didn't have a callback so it must 4768 * be a prefetch. 4769 */ 4770 ASSERT(HDR_PREFETCH(hdr)); 4771 ASSERT0(hdr->b_l1hdr.b_bufcnt); 4772 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 4773 } 4774 4775 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 4776 callback_list != NULL); 4777 4778 if (zio->io_error == 0) { 4779 arc_hdr_verify(hdr, zio->io_bp); 4780 } else { 4781 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 4782 if (hdr->b_l1hdr.b_state != arc_anon) 4783 arc_change_state(arc_anon, hdr, hash_lock); 4784 if (HDR_IN_HASH_TABLE(hdr)) 4785 buf_hash_remove(hdr); 4786 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4787 } 4788 4789 /* 4790 * Broadcast before we drop the hash_lock to avoid the possibility 4791 * that the hdr (and hence the cv) might be freed before we get to 4792 * the cv_broadcast(). 4793 */ 4794 cv_broadcast(&hdr->b_l1hdr.b_cv); 4795 4796 if (hash_lock != NULL) { 4797 mutex_exit(hash_lock); 4798 } else { 4799 /* 4800 * This block was freed while we waited for the read to 4801 * complete. It has been removed from the hash table and 4802 * moved to the anonymous state (so that it won't show up 4803 * in the cache). 4804 */ 4805 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 4806 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4807 } 4808 4809 /* execute each callback and free its structure */ 4810 while ((acb = callback_list) != NULL) { 4811 if (acb->acb_done) 4812 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 4813 4814 if (acb->acb_zio_dummy != NULL) { 4815 acb->acb_zio_dummy->io_error = zio->io_error; 4816 zio_nowait(acb->acb_zio_dummy); 4817 } 4818 4819 callback_list = acb->acb_next; 4820 kmem_free(acb, sizeof (arc_callback_t)); 4821 } 4822 4823 if (freeable) 4824 arc_hdr_destroy(hdr); 4825 } 4826 4827 /* 4828 * "Read" the block at the specified DVA (in bp) via the 4829 * cache. If the block is found in the cache, invoke the provided 4830 * callback immediately and return. Note that the `zio' parameter 4831 * in the callback will be NULL in this case, since no IO was 4832 * required. If the block is not in the cache pass the read request 4833 * on to the spa with a substitute callback function, so that the 4834 * requested block will be added to the cache. 4835 * 4836 * If a read request arrives for a block that has a read in-progress, 4837 * either wait for the in-progress read to complete (and return the 4838 * results); or, if this is a read with a "done" func, add a record 4839 * to the read to invoke the "done" func when the read completes, 4840 * and return; or just return. 4841 * 4842 * arc_read_done() will invoke all the requested "done" functions 4843 * for readers of this block. 4844 */ 4845 int 4846 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 4847 void *private, zio_priority_t priority, int zio_flags, 4848 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 4849 { 4850 arc_buf_hdr_t *hdr = NULL; 4851 kmutex_t *hash_lock = NULL; 4852 zio_t *rzio; 4853 uint64_t guid = spa_load_guid(spa); 4854 4855 ASSERT(!BP_IS_EMBEDDED(bp) || 4856 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 4857 4858 top: 4859 if (!BP_IS_EMBEDDED(bp)) { 4860 /* 4861 * Embedded BP's have no DVA and require no I/O to "read". 4862 * Create an anonymous arc buf to back it. 4863 */ 4864 hdr = buf_hash_find(guid, bp, &hash_lock); 4865 } 4866 4867 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pdata != NULL) { 4868 arc_buf_t *buf = NULL; 4869 *arc_flags |= ARC_FLAG_CACHED; 4870 4871 if (HDR_IO_IN_PROGRESS(hdr)) { 4872 4873 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 4874 priority == ZIO_PRIORITY_SYNC_READ) { 4875 /* 4876 * This sync read must wait for an 4877 * in-progress async read (e.g. a predictive 4878 * prefetch). Async reads are queued 4879 * separately at the vdev_queue layer, so 4880 * this is a form of priority inversion. 4881 * Ideally, we would "inherit" the demand 4882 * i/o's priority by moving the i/o from 4883 * the async queue to the synchronous queue, 4884 * but there is currently no mechanism to do 4885 * so. Track this so that we can evaluate 4886 * the magnitude of this potential performance 4887 * problem. 4888 * 4889 * Note that if the prefetch i/o is already 4890 * active (has been issued to the device), 4891 * the prefetch improved performance, because 4892 * we issued it sooner than we would have 4893 * without the prefetch. 4894 */ 4895 DTRACE_PROBE1(arc__sync__wait__for__async, 4896 arc_buf_hdr_t *, hdr); 4897 ARCSTAT_BUMP(arcstat_sync_wait_for_async); 4898 } 4899 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 4900 arc_hdr_clear_flags(hdr, 4901 ARC_FLAG_PREDICTIVE_PREFETCH); 4902 } 4903 4904 if (*arc_flags & ARC_FLAG_WAIT) { 4905 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 4906 mutex_exit(hash_lock); 4907 goto top; 4908 } 4909 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 4910 4911 if (done) { 4912 arc_callback_t *acb = NULL; 4913 4914 acb = kmem_zalloc(sizeof (arc_callback_t), 4915 KM_SLEEP); 4916 acb->acb_done = done; 4917 acb->acb_private = private; 4918 if (pio != NULL) 4919 acb->acb_zio_dummy = zio_null(pio, 4920 spa, NULL, NULL, NULL, zio_flags); 4921 4922 ASSERT3P(acb->acb_done, !=, NULL); 4923 acb->acb_next = hdr->b_l1hdr.b_acb; 4924 hdr->b_l1hdr.b_acb = acb; 4925 mutex_exit(hash_lock); 4926 return (0); 4927 } 4928 mutex_exit(hash_lock); 4929 return (0); 4930 } 4931 4932 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 4933 hdr->b_l1hdr.b_state == arc_mfu); 4934 4935 if (done) { 4936 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 4937 /* 4938 * This is a demand read which does not have to 4939 * wait for i/o because we did a predictive 4940 * prefetch i/o for it, which has completed. 4941 */ 4942 DTRACE_PROBE1( 4943 arc__demand__hit__predictive__prefetch, 4944 arc_buf_hdr_t *, hdr); 4945 ARCSTAT_BUMP( 4946 arcstat_demand_hit_predictive_prefetch); 4947 arc_hdr_clear_flags(hdr, 4948 ARC_FLAG_PREDICTIVE_PREFETCH); 4949 } 4950 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp)); 4951 4952 /* 4953 * If this block is already in use, create a new 4954 * copy of the data so that we will be guaranteed 4955 * that arc_release() will always succeed. 4956 */ 4957 buf = hdr->b_l1hdr.b_buf; 4958 if (buf == NULL) { 4959 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 4960 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 4961 buf = arc_buf_alloc_impl(hdr, private); 4962 VERIFY0(arc_decompress(buf)); 4963 } else { 4964 add_reference(hdr, private); 4965 buf = arc_buf_clone(buf); 4966 } 4967 ASSERT3P(buf->b_data, !=, NULL); 4968 4969 } else if (*arc_flags & ARC_FLAG_PREFETCH && 4970 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4971 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 4972 } 4973 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 4974 arc_access(hdr, hash_lock); 4975 if (*arc_flags & ARC_FLAG_L2CACHE) 4976 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 4977 mutex_exit(hash_lock); 4978 ARCSTAT_BUMP(arcstat_hits); 4979 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 4980 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 4981 data, metadata, hits); 4982 4983 if (done) 4984 done(NULL, buf, private); 4985 } else { 4986 uint64_t lsize = BP_GET_LSIZE(bp); 4987 uint64_t psize = BP_GET_PSIZE(bp); 4988 arc_callback_t *acb; 4989 vdev_t *vd = NULL; 4990 uint64_t addr = 0; 4991 boolean_t devw = B_FALSE; 4992 uint64_t size; 4993 4994 if (hdr == NULL) { 4995 /* this block is not in the cache */ 4996 arc_buf_hdr_t *exists = NULL; 4997 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 4998 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 4999 BP_GET_COMPRESS(bp), type); 5000 5001 if (!BP_IS_EMBEDDED(bp)) { 5002 hdr->b_dva = *BP_IDENTITY(bp); 5003 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 5004 exists = buf_hash_insert(hdr, &hash_lock); 5005 } 5006 if (exists != NULL) { 5007 /* somebody beat us to the hash insert */ 5008 mutex_exit(hash_lock); 5009 buf_discard_identity(hdr); 5010 arc_hdr_destroy(hdr); 5011 goto top; /* restart the IO request */ 5012 } 5013 } else { 5014 /* 5015 * This block is in the ghost cache. If it was L2-only 5016 * (and thus didn't have an L1 hdr), we realloc the 5017 * header to add an L1 hdr. 5018 */ 5019 if (!HDR_HAS_L1HDR(hdr)) { 5020 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 5021 hdr_full_cache); 5022 } 5023 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 5024 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state)); 5025 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5026 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5027 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 5028 5029 /* 5030 * This is a delicate dance that we play here. 5031 * This hdr is in the ghost list so we access it 5032 * to move it out of the ghost list before we 5033 * initiate the read. If it's a prefetch then 5034 * it won't have a callback so we'll remove the 5035 * reference that arc_buf_alloc_impl() created. We 5036 * do this after we've called arc_access() to 5037 * avoid hitting an assert in remove_reference(). 5038 */ 5039 arc_access(hdr, hash_lock); 5040 arc_hdr_alloc_pdata(hdr); 5041 } 5042 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 5043 size = arc_hdr_size(hdr); 5044 5045 /* 5046 * If compression is enabled on the hdr, then will do 5047 * RAW I/O and will store the compressed data in the hdr's 5048 * data block. Otherwise, the hdr's data block will contain 5049 * the uncompressed data. 5050 */ 5051 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 5052 zio_flags |= ZIO_FLAG_RAW; 5053 } 5054 5055 if (*arc_flags & ARC_FLAG_PREFETCH) 5056 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5057 if (*arc_flags & ARC_FLAG_L2CACHE) 5058 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5059 if (BP_GET_LEVEL(bp) > 0) 5060 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 5061 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 5062 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 5063 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 5064 5065 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 5066 acb->acb_done = done; 5067 acb->acb_private = private; 5068 5069 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5070 hdr->b_l1hdr.b_acb = acb; 5071 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5072 5073 if (HDR_HAS_L2HDR(hdr) && 5074 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 5075 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 5076 addr = hdr->b_l2hdr.b_daddr; 5077 /* 5078 * Lock out device removal. 5079 */ 5080 if (vdev_is_dead(vd) || 5081 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 5082 vd = NULL; 5083 } 5084 5085 if (priority == ZIO_PRIORITY_ASYNC_READ) 5086 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5087 else 5088 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5089 5090 if (hash_lock != NULL) 5091 mutex_exit(hash_lock); 5092 5093 /* 5094 * At this point, we have a level 1 cache miss. Try again in 5095 * L2ARC if possible. 5096 */ 5097 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 5098 5099 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 5100 uint64_t, lsize, zbookmark_phys_t *, zb); 5101 ARCSTAT_BUMP(arcstat_misses); 5102 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5103 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5104 data, metadata, misses); 5105 #ifdef __FreeBSD__ 5106 #ifdef _KERNEL 5107 #ifdef RACCT 5108 if (racct_enable) { 5109 PROC_LOCK(curproc); 5110 racct_add_force(curproc, RACCT_READBPS, size); 5111 racct_add_force(curproc, RACCT_READIOPS, 1); 5112 PROC_UNLOCK(curproc); 5113 } 5114 #endif /* RACCT */ 5115 curthread->td_ru.ru_inblock++; 5116 #endif 5117 #endif 5118 5119 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 5120 /* 5121 * Read from the L2ARC if the following are true: 5122 * 1. The L2ARC vdev was previously cached. 5123 * 2. This buffer still has L2ARC metadata. 5124 * 3. This buffer isn't currently writing to the L2ARC. 5125 * 4. The L2ARC entry wasn't evicted, which may 5126 * also have invalidated the vdev. 5127 * 5. This isn't prefetch and l2arc_noprefetch is set. 5128 */ 5129 if (HDR_HAS_L2HDR(hdr) && 5130 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 5131 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 5132 l2arc_read_callback_t *cb; 5133 void* b_data; 5134 5135 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 5136 ARCSTAT_BUMP(arcstat_l2_hits); 5137 5138 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 5139 KM_SLEEP); 5140 cb->l2rcb_hdr = hdr; 5141 cb->l2rcb_bp = *bp; 5142 cb->l2rcb_zb = *zb; 5143 cb->l2rcb_flags = zio_flags; 5144 uint64_t asize = vdev_psize_to_asize(vd, size); 5145 if (asize != size) { 5146 b_data = zio_data_buf_alloc(asize); 5147 cb->l2rcb_data = b_data; 5148 } else { 5149 b_data = hdr->b_l1hdr.b_pdata; 5150 } 5151 5152 ASSERT(addr >= VDEV_LABEL_START_SIZE && 5153 addr + asize < vd->vdev_psize - 5154 VDEV_LABEL_END_SIZE); 5155 5156 /* 5157 * l2arc read. The SCL_L2ARC lock will be 5158 * released by l2arc_read_done(). 5159 * Issue a null zio if the underlying buffer 5160 * was squashed to zero size by compression. 5161 */ 5162 ASSERT3U(HDR_GET_COMPRESS(hdr), !=, 5163 ZIO_COMPRESS_EMPTY); 5164 rzio = zio_read_phys(pio, vd, addr, 5165 asize, b_data, 5166 ZIO_CHECKSUM_OFF, 5167 l2arc_read_done, cb, priority, 5168 zio_flags | ZIO_FLAG_DONT_CACHE | 5169 ZIO_FLAG_CANFAIL | 5170 ZIO_FLAG_DONT_PROPAGATE | 5171 ZIO_FLAG_DONT_RETRY, B_FALSE); 5172 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 5173 zio_t *, rzio); 5174 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 5175 5176 if (*arc_flags & ARC_FLAG_NOWAIT) { 5177 zio_nowait(rzio); 5178 return (0); 5179 } 5180 5181 ASSERT(*arc_flags & ARC_FLAG_WAIT); 5182 if (zio_wait(rzio) == 0) 5183 return (0); 5184 5185 /* l2arc read error; goto zio_read() */ 5186 } else { 5187 DTRACE_PROBE1(l2arc__miss, 5188 arc_buf_hdr_t *, hdr); 5189 ARCSTAT_BUMP(arcstat_l2_misses); 5190 if (HDR_L2_WRITING(hdr)) 5191 ARCSTAT_BUMP(arcstat_l2_rw_clash); 5192 spa_config_exit(spa, SCL_L2ARC, vd); 5193 } 5194 } else { 5195 if (vd != NULL) 5196 spa_config_exit(spa, SCL_L2ARC, vd); 5197 if (l2arc_ndev != 0) { 5198 DTRACE_PROBE1(l2arc__miss, 5199 arc_buf_hdr_t *, hdr); 5200 ARCSTAT_BUMP(arcstat_l2_misses); 5201 } 5202 } 5203 5204 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pdata, size, 5205 arc_read_done, hdr, priority, zio_flags, zb); 5206 5207 if (*arc_flags & ARC_FLAG_WAIT) 5208 return (zio_wait(rzio)); 5209 5210 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5211 zio_nowait(rzio); 5212 } 5213 return (0); 5214 } 5215 5216 /* 5217 * Notify the arc that a block was freed, and thus will never be used again. 5218 */ 5219 void 5220 arc_freed(spa_t *spa, const blkptr_t *bp) 5221 { 5222 arc_buf_hdr_t *hdr; 5223 kmutex_t *hash_lock; 5224 uint64_t guid = spa_load_guid(spa); 5225 5226 ASSERT(!BP_IS_EMBEDDED(bp)); 5227 5228 hdr = buf_hash_find(guid, bp, &hash_lock); 5229 if (hdr == NULL) 5230 return; 5231 5232 /* 5233 * We might be trying to free a block that is still doing I/O 5234 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 5235 * dmu_sync-ed block). If this block is being prefetched, then it 5236 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 5237 * until the I/O completes. A block may also have a reference if it is 5238 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 5239 * have written the new block to its final resting place on disk but 5240 * without the dedup flag set. This would have left the hdr in the MRU 5241 * state and discoverable. When the txg finally syncs it detects that 5242 * the block was overridden in open context and issues an override I/O. 5243 * Since this is a dedup block, the override I/O will determine if the 5244 * block is already in the DDT. If so, then it will replace the io_bp 5245 * with the bp from the DDT and allow the I/O to finish. When the I/O 5246 * reaches the done callback, dbuf_write_override_done, it will 5247 * check to see if the io_bp and io_bp_override are identical. 5248 * If they are not, then it indicates that the bp was replaced with 5249 * the bp in the DDT and the override bp is freed. This allows 5250 * us to arrive here with a reference on a block that is being 5251 * freed. So if we have an I/O in progress, or a reference to 5252 * this hdr, then we don't destroy the hdr. 5253 */ 5254 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 5255 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 5256 arc_change_state(arc_anon, hdr, hash_lock); 5257 arc_hdr_destroy(hdr); 5258 mutex_exit(hash_lock); 5259 } else { 5260 mutex_exit(hash_lock); 5261 } 5262 5263 } 5264 5265 /* 5266 * Release this buffer from the cache, making it an anonymous buffer. This 5267 * must be done after a read and prior to modifying the buffer contents. 5268 * If the buffer has more than one reference, we must make 5269 * a new hdr for the buffer. 5270 */ 5271 void 5272 arc_release(arc_buf_t *buf, void *tag) 5273 { 5274 arc_buf_hdr_t *hdr = buf->b_hdr; 5275 5276 /* 5277 * It would be nice to assert that if it's DMU metadata (level > 5278 * 0 || it's the dnode file), then it must be syncing context. 5279 * But we don't know that information at this level. 5280 */ 5281 5282 mutex_enter(&buf->b_evict_lock); 5283 5284 ASSERT(HDR_HAS_L1HDR(hdr)); 5285 5286 /* 5287 * We don't grab the hash lock prior to this check, because if 5288 * the buffer's header is in the arc_anon state, it won't be 5289 * linked into the hash table. 5290 */ 5291 if (hdr->b_l1hdr.b_state == arc_anon) { 5292 mutex_exit(&buf->b_evict_lock); 5293 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5294 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 5295 ASSERT(!HDR_HAS_L2HDR(hdr)); 5296 ASSERT(HDR_EMPTY(hdr)); 5297 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5298 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 5299 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 5300 5301 hdr->b_l1hdr.b_arc_access = 0; 5302 5303 /* 5304 * If the buf is being overridden then it may already 5305 * have a hdr that is not empty. 5306 */ 5307 buf_discard_identity(hdr); 5308 arc_buf_thaw(buf); 5309 5310 return; 5311 } 5312 5313 kmutex_t *hash_lock = HDR_LOCK(hdr); 5314 mutex_enter(hash_lock); 5315 5316 /* 5317 * This assignment is only valid as long as the hash_lock is 5318 * held, we must be careful not to reference state or the 5319 * b_state field after dropping the lock. 5320 */ 5321 arc_state_t *state = hdr->b_l1hdr.b_state; 5322 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 5323 ASSERT3P(state, !=, arc_anon); 5324 5325 /* this buffer is not on any list */ 5326 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0); 5327 5328 if (HDR_HAS_L2HDR(hdr)) { 5329 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5330 5331 /* 5332 * We have to recheck this conditional again now that 5333 * we're holding the l2ad_mtx to prevent a race with 5334 * another thread which might be concurrently calling 5335 * l2arc_evict(). In that case, l2arc_evict() might have 5336 * destroyed the header's L2 portion as we were waiting 5337 * to acquire the l2ad_mtx. 5338 */ 5339 if (HDR_HAS_L2HDR(hdr)) { 5340 l2arc_trim(hdr); 5341 arc_hdr_l2hdr_destroy(hdr); 5342 } 5343 5344 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5345 } 5346 5347 /* 5348 * Do we have more than one buf? 5349 */ 5350 if (hdr->b_l1hdr.b_bufcnt > 1) { 5351 arc_buf_hdr_t *nhdr; 5352 arc_buf_t **bufp; 5353 uint64_t spa = hdr->b_spa; 5354 uint64_t psize = HDR_GET_PSIZE(hdr); 5355 uint64_t lsize = HDR_GET_LSIZE(hdr); 5356 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 5357 arc_buf_contents_t type = arc_buf_type(hdr); 5358 VERIFY3U(hdr->b_type, ==, type); 5359 5360 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 5361 (void) remove_reference(hdr, hash_lock, tag); 5362 5363 if (arc_buf_is_shared(buf)) { 5364 ASSERT(HDR_SHARED_DATA(hdr)); 5365 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 5366 ASSERT(ARC_BUF_LAST(buf)); 5367 } 5368 5369 /* 5370 * Pull the data off of this hdr and attach it to 5371 * a new anonymous hdr. Also find the last buffer 5372 * in the hdr's buffer list. 5373 */ 5374 arc_buf_t *lastbuf = NULL; 5375 bufp = &hdr->b_l1hdr.b_buf; 5376 while (*bufp != NULL) { 5377 if (*bufp == buf) { 5378 *bufp = buf->b_next; 5379 } 5380 5381 /* 5382 * If we've removed a buffer in the middle of 5383 * the list then update the lastbuf and update 5384 * bufp. 5385 */ 5386 if (*bufp != NULL) { 5387 lastbuf = *bufp; 5388 bufp = &(*bufp)->b_next; 5389 } 5390 } 5391 buf->b_next = NULL; 5392 ASSERT3P(lastbuf, !=, buf); 5393 ASSERT3P(lastbuf, !=, NULL); 5394 5395 /* 5396 * If the current arc_buf_t and the hdr are sharing their data 5397 * buffer, then we must stop sharing that block, transfer 5398 * ownership and setup sharing with a new arc_buf_t at the end 5399 * of the hdr's b_buf list. 5400 */ 5401 if (arc_buf_is_shared(buf)) { 5402 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 5403 ASSERT(ARC_BUF_LAST(lastbuf)); 5404 VERIFY(!arc_buf_is_shared(lastbuf)); 5405 5406 /* 5407 * First, sever the block sharing relationship between 5408 * buf and the arc_buf_hdr_t. Then, setup a new 5409 * block sharing relationship with the last buffer 5410 * on the arc_buf_t list. 5411 */ 5412 arc_unshare_buf(hdr, buf); 5413 arc_share_buf(hdr, lastbuf); 5414 VERIFY3P(lastbuf->b_data, !=, NULL); 5415 } else if (HDR_SHARED_DATA(hdr)) { 5416 ASSERT(arc_buf_is_shared(lastbuf)); 5417 } 5418 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 5419 ASSERT3P(state, !=, arc_l2c_only); 5420 5421 (void) refcount_remove_many(&state->arcs_size, 5422 HDR_GET_LSIZE(hdr), buf); 5423 5424 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5425 ASSERT3P(state, !=, arc_l2c_only); 5426 (void) refcount_remove_many(&state->arcs_esize[type], 5427 HDR_GET_LSIZE(hdr), buf); 5428 } 5429 5430 hdr->b_l1hdr.b_bufcnt -= 1; 5431 arc_cksum_verify(buf); 5432 #ifdef illumos 5433 arc_buf_unwatch(buf); 5434 #endif 5435 5436 mutex_exit(hash_lock); 5437 5438 /* 5439 * Allocate a new hdr. The new hdr will contain a b_pdata 5440 * buffer which will be freed in arc_write(). 5441 */ 5442 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type); 5443 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 5444 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 5445 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt)); 5446 VERIFY3U(nhdr->b_type, ==, type); 5447 ASSERT(!HDR_SHARED_DATA(nhdr)); 5448 5449 nhdr->b_l1hdr.b_buf = buf; 5450 nhdr->b_l1hdr.b_bufcnt = 1; 5451 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 5452 buf->b_hdr = nhdr; 5453 5454 mutex_exit(&buf->b_evict_lock); 5455 (void) refcount_add_many(&arc_anon->arcs_size, 5456 HDR_GET_LSIZE(nhdr), buf); 5457 } else { 5458 mutex_exit(&buf->b_evict_lock); 5459 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 5460 /* protected by hash lock, or hdr is on arc_anon */ 5461 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 5462 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5463 arc_change_state(arc_anon, hdr, hash_lock); 5464 hdr->b_l1hdr.b_arc_access = 0; 5465 mutex_exit(hash_lock); 5466 5467 buf_discard_identity(hdr); 5468 arc_buf_thaw(buf); 5469 } 5470 } 5471 5472 int 5473 arc_released(arc_buf_t *buf) 5474 { 5475 int released; 5476 5477 mutex_enter(&buf->b_evict_lock); 5478 released = (buf->b_data != NULL && 5479 buf->b_hdr->b_l1hdr.b_state == arc_anon); 5480 mutex_exit(&buf->b_evict_lock); 5481 return (released); 5482 } 5483 5484 #ifdef ZFS_DEBUG 5485 int 5486 arc_referenced(arc_buf_t *buf) 5487 { 5488 int referenced; 5489 5490 mutex_enter(&buf->b_evict_lock); 5491 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 5492 mutex_exit(&buf->b_evict_lock); 5493 return (referenced); 5494 } 5495 #endif 5496 5497 static void 5498 arc_write_ready(zio_t *zio) 5499 { 5500 arc_write_callback_t *callback = zio->io_private; 5501 arc_buf_t *buf = callback->awcb_buf; 5502 arc_buf_hdr_t *hdr = buf->b_hdr; 5503 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp); 5504 5505 ASSERT(HDR_HAS_L1HDR(hdr)); 5506 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 5507 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 5508 5509 /* 5510 * If we're reexecuting this zio because the pool suspended, then 5511 * cleanup any state that was previously set the first time the 5512 * callback as invoked. 5513 */ 5514 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 5515 arc_cksum_free(hdr); 5516 #ifdef illumos 5517 arc_buf_unwatch(buf); 5518 #endif 5519 if (hdr->b_l1hdr.b_pdata != NULL) { 5520 if (arc_buf_is_shared(buf)) { 5521 ASSERT(HDR_SHARED_DATA(hdr)); 5522 5523 arc_unshare_buf(hdr, buf); 5524 } else { 5525 arc_hdr_free_pdata(hdr); 5526 } 5527 } 5528 } 5529 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 5530 ASSERT(!HDR_SHARED_DATA(hdr)); 5531 ASSERT(!arc_buf_is_shared(buf)); 5532 5533 callback->awcb_ready(zio, buf, callback->awcb_private); 5534 5535 if (HDR_IO_IN_PROGRESS(hdr)) 5536 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 5537 5538 arc_cksum_compute(buf); 5539 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5540 5541 enum zio_compress compress; 5542 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5543 compress = ZIO_COMPRESS_OFF; 5544 } else { 5545 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp)); 5546 compress = BP_GET_COMPRESS(zio->io_bp); 5547 } 5548 HDR_SET_PSIZE(hdr, psize); 5549 arc_hdr_set_compress(hdr, compress); 5550 5551 /* 5552 * If the hdr is compressed, then copy the compressed 5553 * zio contents into arc_buf_hdr_t. Otherwise, copy the original 5554 * data buf into the hdr. Ideally, we would like to always copy the 5555 * io_data into b_pdata but the user may have disabled compressed 5556 * arc thus the on-disk block may or may not match what we maintain 5557 * in the hdr's b_pdata field. 5558 */ 5559 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 5560 ASSERT(BP_GET_COMPRESS(zio->io_bp) != ZIO_COMPRESS_OFF); 5561 ASSERT3U(psize, >, 0); 5562 arc_hdr_alloc_pdata(hdr); 5563 bcopy(zio->io_data, hdr->b_l1hdr.b_pdata, psize); 5564 } else { 5565 ASSERT3P(buf->b_data, ==, zio->io_orig_data); 5566 ASSERT3U(zio->io_orig_size, ==, HDR_GET_LSIZE(hdr)); 5567 ASSERT3U(hdr->b_l1hdr.b_byteswap, ==, DMU_BSWAP_NUMFUNCS); 5568 ASSERT(!HDR_SHARED_DATA(hdr)); 5569 ASSERT(!arc_buf_is_shared(buf)); 5570 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5571 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 5572 5573 /* 5574 * This hdr is not compressed so we're able to share 5575 * the arc_buf_t data buffer with the hdr. 5576 */ 5577 arc_share_buf(hdr, buf); 5578 VERIFY0(bcmp(zio->io_orig_data, hdr->b_l1hdr.b_pdata, 5579 HDR_GET_LSIZE(hdr))); 5580 } 5581 arc_hdr_verify(hdr, zio->io_bp); 5582 } 5583 5584 static void 5585 arc_write_children_ready(zio_t *zio) 5586 { 5587 arc_write_callback_t *callback = zio->io_private; 5588 arc_buf_t *buf = callback->awcb_buf; 5589 5590 callback->awcb_children_ready(zio, buf, callback->awcb_private); 5591 } 5592 5593 /* 5594 * The SPA calls this callback for each physical write that happens on behalf 5595 * of a logical write. See the comment in dbuf_write_physdone() for details. 5596 */ 5597 static void 5598 arc_write_physdone(zio_t *zio) 5599 { 5600 arc_write_callback_t *cb = zio->io_private; 5601 if (cb->awcb_physdone != NULL) 5602 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 5603 } 5604 5605 static void 5606 arc_write_done(zio_t *zio) 5607 { 5608 arc_write_callback_t *callback = zio->io_private; 5609 arc_buf_t *buf = callback->awcb_buf; 5610 arc_buf_hdr_t *hdr = buf->b_hdr; 5611 5612 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5613 5614 if (zio->io_error == 0) { 5615 arc_hdr_verify(hdr, zio->io_bp); 5616 5617 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5618 buf_discard_identity(hdr); 5619 } else { 5620 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 5621 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 5622 } 5623 } else { 5624 ASSERT(HDR_EMPTY(hdr)); 5625 } 5626 5627 /* 5628 * If the block to be written was all-zero or compressed enough to be 5629 * embedded in the BP, no write was performed so there will be no 5630 * dva/birth/checksum. The buffer must therefore remain anonymous 5631 * (and uncached). 5632 */ 5633 if (!HDR_EMPTY(hdr)) { 5634 arc_buf_hdr_t *exists; 5635 kmutex_t *hash_lock; 5636 5637 ASSERT(zio->io_error == 0); 5638 5639 arc_cksum_verify(buf); 5640 5641 exists = buf_hash_insert(hdr, &hash_lock); 5642 if (exists != NULL) { 5643 /* 5644 * This can only happen if we overwrite for 5645 * sync-to-convergence, because we remove 5646 * buffers from the hash table when we arc_free(). 5647 */ 5648 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 5649 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5650 panic("bad overwrite, hdr=%p exists=%p", 5651 (void *)hdr, (void *)exists); 5652 ASSERT(refcount_is_zero( 5653 &exists->b_l1hdr.b_refcnt)); 5654 arc_change_state(arc_anon, exists, hash_lock); 5655 mutex_exit(hash_lock); 5656 arc_hdr_destroy(exists); 5657 exists = buf_hash_insert(hdr, &hash_lock); 5658 ASSERT3P(exists, ==, NULL); 5659 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 5660 /* nopwrite */ 5661 ASSERT(zio->io_prop.zp_nopwrite); 5662 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5663 panic("bad nopwrite, hdr=%p exists=%p", 5664 (void *)hdr, (void *)exists); 5665 } else { 5666 /* Dedup */ 5667 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 5668 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 5669 ASSERT(BP_GET_DEDUP(zio->io_bp)); 5670 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 5671 } 5672 } 5673 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5674 /* if it's not anon, we are doing a scrub */ 5675 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 5676 arc_access(hdr, hash_lock); 5677 mutex_exit(hash_lock); 5678 } else { 5679 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5680 } 5681 5682 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5683 callback->awcb_done(zio, buf, callback->awcb_private); 5684 5685 kmem_free(callback, sizeof (arc_write_callback_t)); 5686 } 5687 5688 zio_t * 5689 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 5690 boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready, 5691 arc_done_func_t *children_ready, arc_done_func_t *physdone, 5692 arc_done_func_t *done, void *private, zio_priority_t priority, 5693 int zio_flags, const zbookmark_phys_t *zb) 5694 { 5695 arc_buf_hdr_t *hdr = buf->b_hdr; 5696 arc_write_callback_t *callback; 5697 zio_t *zio; 5698 5699 ASSERT3P(ready, !=, NULL); 5700 ASSERT3P(done, !=, NULL); 5701 ASSERT(!HDR_IO_ERROR(hdr)); 5702 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5703 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5704 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 5705 if (l2arc) 5706 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5707 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 5708 callback->awcb_ready = ready; 5709 callback->awcb_children_ready = children_ready; 5710 callback->awcb_physdone = physdone; 5711 callback->awcb_done = done; 5712 callback->awcb_private = private; 5713 callback->awcb_buf = buf; 5714 5715 /* 5716 * The hdr's b_pdata is now stale, free it now. A new data block 5717 * will be allocated when the zio pipeline calls arc_write_ready(). 5718 */ 5719 if (hdr->b_l1hdr.b_pdata != NULL) { 5720 /* 5721 * If the buf is currently sharing the data block with 5722 * the hdr then we need to break that relationship here. 5723 * The hdr will remain with a NULL data pointer and the 5724 * buf will take sole ownership of the block. 5725 */ 5726 if (arc_buf_is_shared(buf)) { 5727 ASSERT(ARC_BUF_LAST(buf)); 5728 arc_unshare_buf(hdr, buf); 5729 } else { 5730 arc_hdr_free_pdata(hdr); 5731 } 5732 VERIFY3P(buf->b_data, !=, NULL); 5733 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 5734 } 5735 ASSERT(!arc_buf_is_shared(buf)); 5736 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 5737 5738 zio = zio_write(pio, spa, txg, bp, buf->b_data, HDR_GET_LSIZE(hdr), zp, 5739 arc_write_ready, 5740 (children_ready != NULL) ? arc_write_children_ready : NULL, 5741 arc_write_physdone, arc_write_done, callback, 5742 priority, zio_flags, zb); 5743 5744 return (zio); 5745 } 5746 5747 static int 5748 arc_memory_throttle(uint64_t reserve, uint64_t txg) 5749 { 5750 #ifdef _KERNEL 5751 uint64_t available_memory = ptob(freemem); 5752 static uint64_t page_load = 0; 5753 static uint64_t last_txg = 0; 5754 5755 #if !defined(_LP64) 5756 available_memory = 5757 MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE))); 5758 #endif 5759 5760 if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100) 5761 return (0); 5762 5763 if (txg > last_txg) { 5764 last_txg = txg; 5765 page_load = 0; 5766 } 5767 /* 5768 * If we are in pageout, we know that memory is already tight, 5769 * the arc is already going to be evicting, so we just want to 5770 * continue to let page writes occur as quickly as possible. 5771 */ 5772 if (curlwp == uvm.pagedaemon_lwp) { 5773 if (page_load > MAX(ptob(minfree), available_memory) / 4) 5774 return (SET_ERROR(ERESTART)); 5775 /* Note: reserve is inflated, so we deflate */ 5776 page_load += reserve / 8; 5777 return (0); 5778 } else if (page_load > 0 && arc_reclaim_needed()) { 5779 /* memory is low, delay before restarting */ 5780 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 5781 return (SET_ERROR(EAGAIN)); 5782 } 5783 page_load = 0; 5784 #endif 5785 return (0); 5786 } 5787 5788 void 5789 arc_tempreserve_clear(uint64_t reserve) 5790 { 5791 atomic_add_64(&arc_tempreserve, -reserve); 5792 ASSERT((int64_t)arc_tempreserve >= 0); 5793 } 5794 5795 int 5796 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 5797 { 5798 int error; 5799 uint64_t anon_size; 5800 5801 if (reserve > arc_c/4 && !arc_no_grow) { 5802 arc_c = MIN(arc_c_max, reserve * 4); 5803 DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c); 5804 } 5805 if (reserve > arc_c) 5806 return (SET_ERROR(ENOMEM)); 5807 5808 /* 5809 * Don't count loaned bufs as in flight dirty data to prevent long 5810 * network delays from blocking transactions that are ready to be 5811 * assigned to a txg. 5812 */ 5813 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) - 5814 arc_loaned_bytes), 0); 5815 5816 /* 5817 * Writes will, almost always, require additional memory allocations 5818 * in order to compress/encrypt/etc the data. We therefore need to 5819 * make sure that there is sufficient available memory for this. 5820 */ 5821 error = arc_memory_throttle(reserve, txg); 5822 if (error != 0) 5823 return (error); 5824 5825 /* 5826 * Throttle writes when the amount of dirty data in the cache 5827 * gets too large. We try to keep the cache less than half full 5828 * of dirty blocks so that our sync times don't grow too large. 5829 * Note: if two requests come in concurrently, we might let them 5830 * both succeed, when one of them should fail. Not a huge deal. 5831 */ 5832 5833 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 5834 anon_size > arc_c / 4) { 5835 uint64_t meta_esize = 5836 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5837 uint64_t data_esize = 5838 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5839 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 5840 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 5841 arc_tempreserve >> 10, meta_esize >> 10, 5842 data_esize >> 10, reserve >> 10, arc_c >> 10); 5843 return (SET_ERROR(ERESTART)); 5844 } 5845 atomic_add_64(&arc_tempreserve, reserve); 5846 return (0); 5847 } 5848 5849 static void 5850 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 5851 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 5852 { 5853 size->value.ui64 = refcount_count(&state->arcs_size); 5854 evict_data->value.ui64 = 5855 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 5856 evict_metadata->value.ui64 = 5857 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 5858 } 5859 5860 static int 5861 arc_kstat_update(kstat_t *ksp, int rw) 5862 { 5863 arc_stats_t *as = ksp->ks_data; 5864 5865 if (rw == KSTAT_WRITE) { 5866 return (EACCES); 5867 } else { 5868 arc_kstat_update_state(arc_anon, 5869 &as->arcstat_anon_size, 5870 &as->arcstat_anon_evictable_data, 5871 &as->arcstat_anon_evictable_metadata); 5872 arc_kstat_update_state(arc_mru, 5873 &as->arcstat_mru_size, 5874 &as->arcstat_mru_evictable_data, 5875 &as->arcstat_mru_evictable_metadata); 5876 arc_kstat_update_state(arc_mru_ghost, 5877 &as->arcstat_mru_ghost_size, 5878 &as->arcstat_mru_ghost_evictable_data, 5879 &as->arcstat_mru_ghost_evictable_metadata); 5880 arc_kstat_update_state(arc_mfu, 5881 &as->arcstat_mfu_size, 5882 &as->arcstat_mfu_evictable_data, 5883 &as->arcstat_mfu_evictable_metadata); 5884 arc_kstat_update_state(arc_mfu_ghost, 5885 &as->arcstat_mfu_ghost_size, 5886 &as->arcstat_mfu_ghost_evictable_data, 5887 &as->arcstat_mfu_ghost_evictable_metadata); 5888 } 5889 5890 return (0); 5891 } 5892 5893 /* 5894 * This function *must* return indices evenly distributed between all 5895 * sublists of the multilist. This is needed due to how the ARC eviction 5896 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 5897 * distributed between all sublists and uses this assumption when 5898 * deciding which sublist to evict from and how much to evict from it. 5899 */ 5900 unsigned int 5901 arc_state_multilist_index_func(multilist_t *ml, void *obj) 5902 { 5903 arc_buf_hdr_t *hdr = obj; 5904 5905 /* 5906 * We rely on b_dva to generate evenly distributed index 5907 * numbers using buf_hash below. So, as an added precaution, 5908 * let's make sure we never add empty buffers to the arc lists. 5909 */ 5910 ASSERT(!HDR_EMPTY(hdr)); 5911 5912 /* 5913 * The assumption here, is the hash value for a given 5914 * arc_buf_hdr_t will remain constant throughout it's lifetime 5915 * (i.e. it's b_spa, b_dva, and b_birth fields don't change). 5916 * Thus, we don't need to store the header's sublist index 5917 * on insertion, as this index can be recalculated on removal. 5918 * 5919 * Also, the low order bits of the hash value are thought to be 5920 * distributed evenly. Otherwise, in the case that the multilist 5921 * has a power of two number of sublists, each sublists' usage 5922 * would not be evenly distributed. 5923 */ 5924 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 5925 multilist_get_num_sublists(ml)); 5926 } 5927 5928 #ifdef _KERNEL 5929 #ifdef __FreeBSD__ 5930 static eventhandler_tag arc_event_lowmem = NULL; 5931 #endif 5932 5933 static void 5934 arc_lowmem(void *arg __unused, int howto __unused) 5935 { 5936 5937 mutex_enter(&arc_reclaim_lock); 5938 /* XXX: Memory deficit should be passed as argument. */ 5939 needfree = btoc(arc_c >> arc_shrink_shift); 5940 DTRACE_PROBE(arc__needfree); 5941 cv_signal(&arc_reclaim_thread_cv); 5942 5943 /* 5944 * It is unsafe to block here in arbitrary threads, because we can come 5945 * here from ARC itself and may hold ARC locks and thus risk a deadlock 5946 * with ARC reclaim thread. 5947 */ 5948 if (curlwp == uvm.pagedaemon_lwp) 5949 (void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock); 5950 mutex_exit(&arc_reclaim_lock); 5951 } 5952 #endif 5953 5954 static void 5955 arc_state_init(void) 5956 { 5957 arc_anon = &ARC_anon; 5958 arc_mru = &ARC_mru; 5959 arc_mru_ghost = &ARC_mru_ghost; 5960 arc_mfu = &ARC_mfu; 5961 arc_mfu_ghost = &ARC_mfu_ghost; 5962 arc_l2c_only = &ARC_l2c_only; 5963 5964 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 5965 sizeof (arc_buf_hdr_t), 5966 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5967 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5968 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 5969 sizeof (arc_buf_hdr_t), 5970 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5971 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5972 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 5973 sizeof (arc_buf_hdr_t), 5974 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5975 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5976 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 5977 sizeof (arc_buf_hdr_t), 5978 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5979 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5980 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 5981 sizeof (arc_buf_hdr_t), 5982 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5983 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5984 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 5985 sizeof (arc_buf_hdr_t), 5986 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5987 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5988 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 5989 sizeof (arc_buf_hdr_t), 5990 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5991 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5992 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 5993 sizeof (arc_buf_hdr_t), 5994 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5995 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5996 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 5997 sizeof (arc_buf_hdr_t), 5998 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5999 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 6000 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 6001 sizeof (arc_buf_hdr_t), 6002 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6003 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 6004 6005 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6006 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6007 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 6008 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 6009 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 6010 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 6011 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 6012 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 6013 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 6014 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 6015 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 6016 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 6017 6018 refcount_create(&arc_anon->arcs_size); 6019 refcount_create(&arc_mru->arcs_size); 6020 refcount_create(&arc_mru_ghost->arcs_size); 6021 refcount_create(&arc_mfu->arcs_size); 6022 refcount_create(&arc_mfu_ghost->arcs_size); 6023 refcount_create(&arc_l2c_only->arcs_size); 6024 } 6025 6026 static void 6027 arc_state_fini(void) 6028 { 6029 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6030 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6031 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 6032 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 6033 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 6034 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 6035 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 6036 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 6037 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 6038 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 6039 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 6040 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 6041 6042 refcount_destroy(&arc_anon->arcs_size); 6043 refcount_destroy(&arc_mru->arcs_size); 6044 refcount_destroy(&arc_mru_ghost->arcs_size); 6045 refcount_destroy(&arc_mfu->arcs_size); 6046 refcount_destroy(&arc_mfu_ghost->arcs_size); 6047 refcount_destroy(&arc_l2c_only->arcs_size); 6048 6049 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 6050 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 6051 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 6052 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 6053 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 6054 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 6055 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 6056 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 6057 } 6058 6059 uint64_t 6060 arc_max_bytes(void) 6061 { 6062 return (arc_c_max); 6063 } 6064 6065 void 6066 arc_init(void) 6067 { 6068 int i, prefetch_tunable_set = 0; 6069 6070 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 6071 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL); 6072 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL); 6073 6074 #ifdef __FreeBSD__ 6075 mutex_init(&arc_dnlc_evicts_lock, NULL, MUTEX_DEFAULT, NULL); 6076 cv_init(&arc_dnlc_evicts_cv, NULL, CV_DEFAULT, NULL); 6077 #endif 6078 6079 /* Convert seconds to clock ticks */ 6080 arc_min_prefetch_lifespan = 1 * hz; 6081 6082 /* Start out with 1/8 of all memory */ 6083 arc_c = kmem_size() / 8; 6084 6085 #ifdef illumos 6086 #ifdef _KERNEL 6087 /* 6088 * On architectures where the physical memory can be larger 6089 * than the addressable space (intel in 32-bit mode), we may 6090 * need to limit the cache to 1/8 of VM size. 6091 */ 6092 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 6093 #endif 6094 #endif /* illumos */ 6095 /* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */ 6096 arc_c_min = MAX(arc_c / 4, arc_abs_min); 6097 /* set max to 1/2 of all memory, or all but 1GB, whichever is more */ 6098 if (arc_c * 8 >= 1 << 30) 6099 arc_c_max = (arc_c * 8) - (1 << 30); 6100 else 6101 arc_c_max = arc_c_min; 6102 arc_c_max = MAX(arc_c * 5, arc_c_max); 6103 6104 /* 6105 * In userland, there's only the memory pressure that we artificially 6106 * create (see arc_available_memory()). Don't let arc_c get too 6107 * small, because it can cause transactions to be larger than 6108 * arc_c, causing arc_tempreserve_space() to fail. 6109 */ 6110 #ifndef _KERNEL 6111 arc_c_min = arc_c_max / 2; 6112 #endif 6113 6114 #ifdef _KERNEL 6115 /* 6116 * Allow the tunables to override our calculations if they are 6117 * reasonable. 6118 */ 6119 if (zfs_arc_max > arc_abs_min && zfs_arc_max < kmem_size()) { 6120 arc_c_max = zfs_arc_max; 6121 arc_c_min = MIN(arc_c_min, arc_c_max); 6122 } 6123 if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max) 6124 arc_c_min = zfs_arc_min; 6125 #endif 6126 6127 arc_c = arc_c_max; 6128 arc_p = (arc_c >> 1); 6129 arc_size = 0; 6130 6131 /* limit meta-data to 1/4 of the arc capacity */ 6132 arc_meta_limit = arc_c_max / 4; 6133 6134 /* Allow the tunable to override if it is reasonable */ 6135 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 6136 arc_meta_limit = zfs_arc_meta_limit; 6137 6138 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 6139 arc_c_min = arc_meta_limit / 2; 6140 6141 if (zfs_arc_meta_min > 0) { 6142 arc_meta_min = zfs_arc_meta_min; 6143 } else { 6144 arc_meta_min = arc_c_min / 2; 6145 } 6146 6147 if (zfs_arc_grow_retry > 0) 6148 arc_grow_retry = zfs_arc_grow_retry; 6149 6150 if (zfs_arc_shrink_shift > 0) 6151 arc_shrink_shift = zfs_arc_shrink_shift; 6152 6153 /* 6154 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 6155 */ 6156 if (arc_no_grow_shift >= arc_shrink_shift) 6157 arc_no_grow_shift = arc_shrink_shift - 1; 6158 6159 if (zfs_arc_p_min_shift > 0) 6160 arc_p_min_shift = zfs_arc_p_min_shift; 6161 6162 if (zfs_arc_num_sublists_per_state < 1) 6163 zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1); 6164 6165 /* if kmem_flags are set, lets try to use less memory */ 6166 if (kmem_debugging()) 6167 arc_c = arc_c / 2; 6168 if (arc_c < arc_c_min) 6169 arc_c = arc_c_min; 6170 6171 zfs_arc_min = arc_c_min; 6172 zfs_arc_max = arc_c_max; 6173 6174 arc_state_init(); 6175 buf_init(); 6176 6177 arc_reclaim_thread_exit = B_FALSE; 6178 #ifdef __FreeBSD__ 6179 arc_dnlc_evicts_thread_exit = FALSE; 6180 #endif 6181 6182 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 6183 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 6184 6185 if (arc_ksp != NULL) { 6186 arc_ksp->ks_data = &arc_stats; 6187 arc_ksp->ks_update = arc_kstat_update; 6188 kstat_install(arc_ksp); 6189 } 6190 6191 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 6192 TS_RUN, minclsyspri); 6193 6194 #ifdef __FreeBSD__ 6195 #ifdef _KERNEL 6196 arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL, 6197 EVENTHANDLER_PRI_FIRST); 6198 #endif 6199 6200 (void) thread_create(NULL, 0, arc_dnlc_evicts_thread, NULL, 0, &p0, 6201 TS_RUN, minclsyspri); 6202 #endif 6203 6204 arc_dead = B_FALSE; 6205 arc_warm = B_FALSE; 6206 6207 /* 6208 * Calculate maximum amount of dirty data per pool. 6209 * 6210 * If it has been set by /etc/system, take that. 6211 * Otherwise, use a percentage of physical memory defined by 6212 * zfs_dirty_data_max_percent (default 10%) with a cap at 6213 * zfs_dirty_data_max_max (default 4GB). 6214 */ 6215 if (zfs_dirty_data_max == 0) { 6216 zfs_dirty_data_max = ptob(physmem) * 6217 zfs_dirty_data_max_percent / 100; 6218 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 6219 zfs_dirty_data_max_max); 6220 } 6221 6222 #ifdef _KERNEL 6223 #ifdef __FreeBSD__ 6224 if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable)) 6225 prefetch_tunable_set = 1; 6226 6227 #ifdef __i386__ 6228 if (prefetch_tunable_set == 0) { 6229 printf("ZFS NOTICE: Prefetch is disabled by default on i386 " 6230 "-- to enable,\n"); 6231 printf(" add \"vfs.zfs.prefetch_disable=0\" " 6232 "to /boot/loader.conf.\n"); 6233 zfs_prefetch_disable = 1; 6234 } 6235 #else 6236 if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) && 6237 prefetch_tunable_set == 0) { 6238 printf("ZFS NOTICE: Prefetch is disabled by default if less " 6239 "than 4GB of RAM is present;\n" 6240 " to enable, add \"vfs.zfs.prefetch_disable=0\" " 6241 "to /boot/loader.conf.\n"); 6242 zfs_prefetch_disable = 1; 6243 } 6244 #endif 6245 #endif 6246 /* Warn about ZFS memory and address space requirements. */ 6247 if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) { 6248 printf("ZFS WARNING: Recommended minimum RAM size is 512MB; " 6249 "expect unstable behavior.\n"); 6250 } 6251 if (kmem_size() < 512 * (1 << 20)) { 6252 printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; " 6253 "expect unstable behavior.\n"); 6254 #ifdef __FreeBSD__ 6255 printf(" Consider tuning vm.kmem_size and " 6256 "vm.kmem_size_max\n"); 6257 printf(" in /boot/loader.conf.\n"); 6258 #endif 6259 } 6260 #endif 6261 } 6262 6263 void 6264 arc_fini(void) 6265 { 6266 mutex_enter(&arc_reclaim_lock); 6267 arc_reclaim_thread_exit = B_TRUE; 6268 /* 6269 * The reclaim thread will set arc_reclaim_thread_exit back to 6270 * B_FALSE when it is finished exiting; we're waiting for that. 6271 */ 6272 while (arc_reclaim_thread_exit) { 6273 cv_signal(&arc_reclaim_thread_cv); 6274 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock); 6275 } 6276 mutex_exit(&arc_reclaim_lock); 6277 6278 /* Use B_TRUE to ensure *all* buffers are evicted */ 6279 arc_flush(NULL, B_TRUE); 6280 6281 #ifdef __FreeBSD__ 6282 mutex_enter(&arc_dnlc_evicts_lock); 6283 arc_dnlc_evicts_thread_exit = TRUE; 6284 6285 /* 6286 * The user evicts thread will set arc_user_evicts_thread_exit 6287 * to FALSE when it is finished exiting; we're waiting for that. 6288 */ 6289 while (arc_dnlc_evicts_thread_exit) { 6290 cv_signal(&arc_dnlc_evicts_cv); 6291 cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock); 6292 } 6293 mutex_exit(&arc_dnlc_evicts_lock); 6294 6295 mutex_destroy(&arc_dnlc_evicts_lock); 6296 cv_destroy(&arc_dnlc_evicts_cv); 6297 #endif 6298 6299 arc_dead = B_TRUE; 6300 6301 if (arc_ksp != NULL) { 6302 kstat_delete(arc_ksp); 6303 arc_ksp = NULL; 6304 } 6305 6306 mutex_destroy(&arc_reclaim_lock); 6307 cv_destroy(&arc_reclaim_thread_cv); 6308 cv_destroy(&arc_reclaim_waiters_cv); 6309 6310 arc_state_fini(); 6311 buf_fini(); 6312 6313 ASSERT0(arc_loaned_bytes); 6314 6315 #ifdef __FreeBSD__ 6316 #ifdef _KERNEL 6317 if (arc_event_lowmem != NULL) 6318 EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem); 6319 #endif 6320 #endif 6321 } 6322 6323 /* 6324 * Level 2 ARC 6325 * 6326 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 6327 * It uses dedicated storage devices to hold cached data, which are populated 6328 * using large infrequent writes. The main role of this cache is to boost 6329 * the performance of random read workloads. The intended L2ARC devices 6330 * include short-stroked disks, solid state disks, and other media with 6331 * substantially faster read latency than disk. 6332 * 6333 * +-----------------------+ 6334 * | ARC | 6335 * +-----------------------+ 6336 * | ^ ^ 6337 * | | | 6338 * l2arc_feed_thread() arc_read() 6339 * | | | 6340 * | l2arc read | 6341 * V | | 6342 * +---------------+ | 6343 * | L2ARC | | 6344 * +---------------+ | 6345 * | ^ | 6346 * l2arc_write() | | 6347 * | | | 6348 * V | | 6349 * +-------+ +-------+ 6350 * | vdev | | vdev | 6351 * | cache | | cache | 6352 * +-------+ +-------+ 6353 * +=========+ .-----. 6354 * : L2ARC : |-_____-| 6355 * : devices : | Disks | 6356 * +=========+ `-_____-' 6357 * 6358 * Read requests are satisfied from the following sources, in order: 6359 * 6360 * 1) ARC 6361 * 2) vdev cache of L2ARC devices 6362 * 3) L2ARC devices 6363 * 4) vdev cache of disks 6364 * 5) disks 6365 * 6366 * Some L2ARC device types exhibit extremely slow write performance. 6367 * To accommodate for this there are some significant differences between 6368 * the L2ARC and traditional cache design: 6369 * 6370 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 6371 * the ARC behave as usual, freeing buffers and placing headers on ghost 6372 * lists. The ARC does not send buffers to the L2ARC during eviction as 6373 * this would add inflated write latencies for all ARC memory pressure. 6374 * 6375 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 6376 * It does this by periodically scanning buffers from the eviction-end of 6377 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 6378 * not already there. It scans until a headroom of buffers is satisfied, 6379 * which itself is a buffer for ARC eviction. If a compressible buffer is 6380 * found during scanning and selected for writing to an L2ARC device, we 6381 * temporarily boost scanning headroom during the next scan cycle to make 6382 * sure we adapt to compression effects (which might significantly reduce 6383 * the data volume we write to L2ARC). The thread that does this is 6384 * l2arc_feed_thread(), illustrated below; example sizes are included to 6385 * provide a better sense of ratio than this diagram: 6386 * 6387 * head --> tail 6388 * +---------------------+----------+ 6389 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 6390 * +---------------------+----------+ | o L2ARC eligible 6391 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 6392 * +---------------------+----------+ | 6393 * 15.9 Gbytes ^ 32 Mbytes | 6394 * headroom | 6395 * l2arc_feed_thread() 6396 * | 6397 * l2arc write hand <--[oooo]--' 6398 * | 8 Mbyte 6399 * | write max 6400 * V 6401 * +==============================+ 6402 * L2ARC dev |####|#|###|###| |####| ... | 6403 * +==============================+ 6404 * 32 Gbytes 6405 * 6406 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 6407 * evicted, then the L2ARC has cached a buffer much sooner than it probably 6408 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 6409 * safe to say that this is an uncommon case, since buffers at the end of 6410 * the ARC lists have moved there due to inactivity. 6411 * 6412 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 6413 * then the L2ARC simply misses copying some buffers. This serves as a 6414 * pressure valve to prevent heavy read workloads from both stalling the ARC 6415 * with waits and clogging the L2ARC with writes. This also helps prevent 6416 * the potential for the L2ARC to churn if it attempts to cache content too 6417 * quickly, such as during backups of the entire pool. 6418 * 6419 * 5. After system boot and before the ARC has filled main memory, there are 6420 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 6421 * lists can remain mostly static. Instead of searching from tail of these 6422 * lists as pictured, the l2arc_feed_thread() will search from the list heads 6423 * for eligible buffers, greatly increasing its chance of finding them. 6424 * 6425 * The L2ARC device write speed is also boosted during this time so that 6426 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 6427 * there are no L2ARC reads, and no fear of degrading read performance 6428 * through increased writes. 6429 * 6430 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 6431 * the vdev queue can aggregate them into larger and fewer writes. Each 6432 * device is written to in a rotor fashion, sweeping writes through 6433 * available space then repeating. 6434 * 6435 * 7. The L2ARC does not store dirty content. It never needs to flush 6436 * write buffers back to disk based storage. 6437 * 6438 * 8. If an ARC buffer is written (and dirtied) which also exists in the 6439 * L2ARC, the now stale L2ARC buffer is immediately dropped. 6440 * 6441 * The performance of the L2ARC can be tweaked by a number of tunables, which 6442 * may be necessary for different workloads: 6443 * 6444 * l2arc_write_max max write bytes per interval 6445 * l2arc_write_boost extra write bytes during device warmup 6446 * l2arc_noprefetch skip caching prefetched buffers 6447 * l2arc_headroom number of max device writes to precache 6448 * l2arc_headroom_boost when we find compressed buffers during ARC 6449 * scanning, we multiply headroom by this 6450 * percentage factor for the next scan cycle, 6451 * since more compressed buffers are likely to 6452 * be present 6453 * l2arc_feed_secs seconds between L2ARC writing 6454 * 6455 * Tunables may be removed or added as future performance improvements are 6456 * integrated, and also may become zpool properties. 6457 * 6458 * There are three key functions that control how the L2ARC warms up: 6459 * 6460 * l2arc_write_eligible() check if a buffer is eligible to cache 6461 * l2arc_write_size() calculate how much to write 6462 * l2arc_write_interval() calculate sleep delay between writes 6463 * 6464 * These three functions determine what to write, how much, and how quickly 6465 * to send writes. 6466 */ 6467 6468 static boolean_t 6469 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 6470 { 6471 /* 6472 * A buffer is *not* eligible for the L2ARC if it: 6473 * 1. belongs to a different spa. 6474 * 2. is already cached on the L2ARC. 6475 * 3. has an I/O in progress (it may be an incomplete read). 6476 * 4. is flagged not eligible (zfs property). 6477 */ 6478 if (hdr->b_spa != spa_guid) { 6479 ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch); 6480 return (B_FALSE); 6481 } 6482 if (HDR_HAS_L2HDR(hdr)) { 6483 ARCSTAT_BUMP(arcstat_l2_write_in_l2); 6484 return (B_FALSE); 6485 } 6486 if (HDR_IO_IN_PROGRESS(hdr)) { 6487 ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress); 6488 return (B_FALSE); 6489 } 6490 if (!HDR_L2CACHE(hdr)) { 6491 ARCSTAT_BUMP(arcstat_l2_write_not_cacheable); 6492 return (B_FALSE); 6493 } 6494 6495 return (B_TRUE); 6496 } 6497 6498 static uint64_t 6499 l2arc_write_size(void) 6500 { 6501 uint64_t size; 6502 6503 /* 6504 * Make sure our globals have meaningful values in case the user 6505 * altered them. 6506 */ 6507 size = l2arc_write_max; 6508 if (size == 0) { 6509 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 6510 "be greater than zero, resetting it to the default (%d)", 6511 L2ARC_WRITE_SIZE); 6512 size = l2arc_write_max = L2ARC_WRITE_SIZE; 6513 } 6514 6515 if (arc_warm == B_FALSE) 6516 size += l2arc_write_boost; 6517 6518 return (size); 6519 6520 } 6521 6522 static clock_t 6523 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 6524 { 6525 clock_t interval, next, now; 6526 6527 /* 6528 * If the ARC lists are busy, increase our write rate; if the 6529 * lists are stale, idle back. This is achieved by checking 6530 * how much we previously wrote - if it was more than half of 6531 * what we wanted, schedule the next write much sooner. 6532 */ 6533 if (l2arc_feed_again && wrote > (wanted / 2)) 6534 interval = (hz * l2arc_feed_min_ms) / 1000; 6535 else 6536 interval = hz * l2arc_feed_secs; 6537 6538 now = ddi_get_lbolt(); 6539 next = MAX(now, MIN(now + interval, began + interval)); 6540 6541 return (next); 6542 } 6543 6544 /* 6545 * Cycle through L2ARC devices. This is how L2ARC load balances. 6546 * If a device is returned, this also returns holding the spa config lock. 6547 */ 6548 static l2arc_dev_t * 6549 l2arc_dev_get_next(void) 6550 { 6551 l2arc_dev_t *first, *next = NULL; 6552 6553 /* 6554 * Lock out the removal of spas (spa_namespace_lock), then removal 6555 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 6556 * both locks will be dropped and a spa config lock held instead. 6557 */ 6558 mutex_enter(&spa_namespace_lock); 6559 mutex_enter(&l2arc_dev_mtx); 6560 6561 /* if there are no vdevs, there is nothing to do */ 6562 if (l2arc_ndev == 0) 6563 goto out; 6564 6565 first = NULL; 6566 next = l2arc_dev_last; 6567 do { 6568 /* loop around the list looking for a non-faulted vdev */ 6569 if (next == NULL) { 6570 next = list_head(l2arc_dev_list); 6571 } else { 6572 next = list_next(l2arc_dev_list, next); 6573 if (next == NULL) 6574 next = list_head(l2arc_dev_list); 6575 } 6576 6577 /* if we have come back to the start, bail out */ 6578 if (first == NULL) 6579 first = next; 6580 else if (next == first) 6581 break; 6582 6583 } while (vdev_is_dead(next->l2ad_vdev)); 6584 6585 /* if we were unable to find any usable vdevs, return NULL */ 6586 if (vdev_is_dead(next->l2ad_vdev)) 6587 next = NULL; 6588 6589 l2arc_dev_last = next; 6590 6591 out: 6592 mutex_exit(&l2arc_dev_mtx); 6593 6594 /* 6595 * Grab the config lock to prevent the 'next' device from being 6596 * removed while we are writing to it. 6597 */ 6598 if (next != NULL) 6599 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 6600 mutex_exit(&spa_namespace_lock); 6601 6602 return (next); 6603 } 6604 6605 /* 6606 * Free buffers that were tagged for destruction. 6607 */ 6608 static void 6609 l2arc_do_free_on_write() 6610 { 6611 list_t *buflist; 6612 l2arc_data_free_t *df, *df_prev; 6613 6614 mutex_enter(&l2arc_free_on_write_mtx); 6615 buflist = l2arc_free_on_write; 6616 6617 for (df = list_tail(buflist); df; df = df_prev) { 6618 df_prev = list_prev(buflist, df); 6619 ASSERT3P(df->l2df_data, !=, NULL); 6620 if (df->l2df_type == ARC_BUFC_METADATA) { 6621 zio_buf_free(df->l2df_data, df->l2df_size); 6622 } else { 6623 ASSERT(df->l2df_type == ARC_BUFC_DATA); 6624 zio_data_buf_free(df->l2df_data, df->l2df_size); 6625 } 6626 list_remove(buflist, df); 6627 kmem_free(df, sizeof (l2arc_data_free_t)); 6628 } 6629 6630 mutex_exit(&l2arc_free_on_write_mtx); 6631 } 6632 6633 /* 6634 * A write to a cache device has completed. Update all headers to allow 6635 * reads from these buffers to begin. 6636 */ 6637 static void 6638 l2arc_write_done(zio_t *zio) 6639 { 6640 l2arc_write_callback_t *cb; 6641 l2arc_dev_t *dev; 6642 list_t *buflist; 6643 arc_buf_hdr_t *head, *hdr, *hdr_prev; 6644 kmutex_t *hash_lock; 6645 int64_t bytes_dropped = 0; 6646 6647 cb = zio->io_private; 6648 ASSERT3P(cb, !=, NULL); 6649 dev = cb->l2wcb_dev; 6650 ASSERT3P(dev, !=, NULL); 6651 head = cb->l2wcb_head; 6652 ASSERT3P(head, !=, NULL); 6653 buflist = &dev->l2ad_buflist; 6654 ASSERT3P(buflist, !=, NULL); 6655 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 6656 l2arc_write_callback_t *, cb); 6657 6658 if (zio->io_error != 0) 6659 ARCSTAT_BUMP(arcstat_l2_writes_error); 6660 6661 /* 6662 * All writes completed, or an error was hit. 6663 */ 6664 top: 6665 mutex_enter(&dev->l2ad_mtx); 6666 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 6667 hdr_prev = list_prev(buflist, hdr); 6668 6669 hash_lock = HDR_LOCK(hdr); 6670 6671 /* 6672 * We cannot use mutex_enter or else we can deadlock 6673 * with l2arc_write_buffers (due to swapping the order 6674 * the hash lock and l2ad_mtx are taken). 6675 */ 6676 if (!mutex_tryenter(hash_lock)) { 6677 /* 6678 * Missed the hash lock. We must retry so we 6679 * don't leave the ARC_FLAG_L2_WRITING bit set. 6680 */ 6681 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 6682 6683 /* 6684 * We don't want to rescan the headers we've 6685 * already marked as having been written out, so 6686 * we reinsert the head node so we can pick up 6687 * where we left off. 6688 */ 6689 list_remove(buflist, head); 6690 list_insert_after(buflist, hdr, head); 6691 6692 mutex_exit(&dev->l2ad_mtx); 6693 6694 /* 6695 * We wait for the hash lock to become available 6696 * to try and prevent busy waiting, and increase 6697 * the chance we'll be able to acquire the lock 6698 * the next time around. 6699 */ 6700 mutex_enter(hash_lock); 6701 mutex_exit(hash_lock); 6702 goto top; 6703 } 6704 6705 /* 6706 * We could not have been moved into the arc_l2c_only 6707 * state while in-flight due to our ARC_FLAG_L2_WRITING 6708 * bit being set. Let's just ensure that's being enforced. 6709 */ 6710 ASSERT(HDR_HAS_L1HDR(hdr)); 6711 6712 if (zio->io_error != 0) { 6713 /* 6714 * Error - drop L2ARC entry. 6715 */ 6716 list_remove(buflist, hdr); 6717 l2arc_trim(hdr); 6718 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 6719 6720 ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr)); 6721 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr)); 6722 6723 bytes_dropped += arc_hdr_size(hdr); 6724 (void) refcount_remove_many(&dev->l2ad_alloc, 6725 arc_hdr_size(hdr), hdr); 6726 } 6727 6728 /* 6729 * Allow ARC to begin reads and ghost list evictions to 6730 * this L2ARC entry. 6731 */ 6732 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 6733 6734 mutex_exit(hash_lock); 6735 } 6736 6737 atomic_inc_64(&l2arc_writes_done); 6738 list_remove(buflist, head); 6739 ASSERT(!HDR_HAS_L1HDR(head)); 6740 kmem_cache_free(hdr_l2only_cache, head); 6741 mutex_exit(&dev->l2ad_mtx); 6742 6743 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 6744 6745 l2arc_do_free_on_write(); 6746 6747 kmem_free(cb, sizeof (l2arc_write_callback_t)); 6748 } 6749 6750 /* 6751 * A read to a cache device completed. Validate buffer contents before 6752 * handing over to the regular ARC routines. 6753 */ 6754 static void 6755 l2arc_read_done(zio_t *zio) 6756 { 6757 l2arc_read_callback_t *cb; 6758 arc_buf_hdr_t *hdr; 6759 kmutex_t *hash_lock; 6760 boolean_t valid_cksum; 6761 6762 ASSERT3P(zio->io_vd, !=, NULL); 6763 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 6764 6765 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 6766 6767 cb = zio->io_private; 6768 ASSERT3P(cb, !=, NULL); 6769 hdr = cb->l2rcb_hdr; 6770 ASSERT3P(hdr, !=, NULL); 6771 6772 hash_lock = HDR_LOCK(hdr); 6773 mutex_enter(hash_lock); 6774 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6775 6776 /* 6777 * If the data was read into a temporary buffer, 6778 * move it and free the buffer. 6779 */ 6780 if (cb->l2rcb_data != NULL) { 6781 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 6782 if (zio->io_error == 0) { 6783 bcopy(cb->l2rcb_data, hdr->b_l1hdr.b_pdata, 6784 arc_hdr_size(hdr)); 6785 } 6786 6787 /* 6788 * The following must be done regardless of whether 6789 * there was an error: 6790 * - free the temporary buffer 6791 * - point zio to the real ARC buffer 6792 * - set zio size accordingly 6793 * These are required because zio is either re-used for 6794 * an I/O of the block in the case of the error 6795 * or the zio is passed to arc_read_done() and it 6796 * needs real data. 6797 */ 6798 zio_data_buf_free(cb->l2rcb_data, zio->io_size); 6799 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 6800 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_pdata; 6801 } 6802 6803 ASSERT3P(zio->io_data, !=, NULL); 6804 6805 /* 6806 * Check this survived the L2ARC journey. 6807 */ 6808 ASSERT3P(zio->io_data, ==, hdr->b_l1hdr.b_pdata); 6809 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 6810 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 6811 6812 valid_cksum = arc_cksum_is_equal(hdr, zio); 6813 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 6814 mutex_exit(hash_lock); 6815 zio->io_private = hdr; 6816 arc_read_done(zio); 6817 } else { 6818 mutex_exit(hash_lock); 6819 /* 6820 * Buffer didn't survive caching. Increment stats and 6821 * reissue to the original storage device. 6822 */ 6823 if (zio->io_error != 0) { 6824 ARCSTAT_BUMP(arcstat_l2_io_error); 6825 } else { 6826 zio->io_error = SET_ERROR(EIO); 6827 } 6828 if (!valid_cksum) 6829 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 6830 6831 /* 6832 * If there's no waiter, issue an async i/o to the primary 6833 * storage now. If there *is* a waiter, the caller must 6834 * issue the i/o in a context where it's OK to block. 6835 */ 6836 if (zio->io_waiter == NULL) { 6837 zio_t *pio = zio_unique_parent(zio); 6838 6839 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 6840 6841 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp, 6842 hdr->b_l1hdr.b_pdata, zio->io_size, arc_read_done, 6843 hdr, zio->io_priority, cb->l2rcb_flags, 6844 &cb->l2rcb_zb)); 6845 } 6846 } 6847 6848 kmem_free(cb, sizeof (l2arc_read_callback_t)); 6849 } 6850 6851 /* 6852 * This is the list priority from which the L2ARC will search for pages to 6853 * cache. This is used within loops (0..3) to cycle through lists in the 6854 * desired order. This order can have a significant effect on cache 6855 * performance. 6856 * 6857 * Currently the metadata lists are hit first, MFU then MRU, followed by 6858 * the data lists. This function returns a locked list, and also returns 6859 * the lock pointer. 6860 */ 6861 static multilist_sublist_t * 6862 l2arc_sublist_lock(int list_num) 6863 { 6864 multilist_t *ml = NULL; 6865 unsigned int idx; 6866 6867 ASSERT(list_num >= 0 && list_num <= 3); 6868 6869 switch (list_num) { 6870 case 0: 6871 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 6872 break; 6873 case 1: 6874 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 6875 break; 6876 case 2: 6877 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 6878 break; 6879 case 3: 6880 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 6881 break; 6882 } 6883 6884 /* 6885 * Return a randomly-selected sublist. This is acceptable 6886 * because the caller feeds only a little bit of data for each 6887 * call (8MB). Subsequent calls will result in different 6888 * sublists being selected. 6889 */ 6890 idx = multilist_get_random_index(ml); 6891 return (multilist_sublist_lock(ml, idx)); 6892 } 6893 6894 /* 6895 * Evict buffers from the device write hand to the distance specified in 6896 * bytes. This distance may span populated buffers, it may span nothing. 6897 * This is clearing a region on the L2ARC device ready for writing. 6898 * If the 'all' boolean is set, every buffer is evicted. 6899 */ 6900 static void 6901 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 6902 { 6903 list_t *buflist; 6904 arc_buf_hdr_t *hdr, *hdr_prev; 6905 kmutex_t *hash_lock; 6906 uint64_t taddr; 6907 6908 buflist = &dev->l2ad_buflist; 6909 6910 if (!all && dev->l2ad_first) { 6911 /* 6912 * This is the first sweep through the device. There is 6913 * nothing to evict. 6914 */ 6915 return; 6916 } 6917 6918 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 6919 /* 6920 * When nearing the end of the device, evict to the end 6921 * before the device write hand jumps to the start. 6922 */ 6923 taddr = dev->l2ad_end; 6924 } else { 6925 taddr = dev->l2ad_hand + distance; 6926 } 6927 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 6928 uint64_t, taddr, boolean_t, all); 6929 6930 top: 6931 mutex_enter(&dev->l2ad_mtx); 6932 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 6933 hdr_prev = list_prev(buflist, hdr); 6934 6935 hash_lock = HDR_LOCK(hdr); 6936 6937 /* 6938 * We cannot use mutex_enter or else we can deadlock 6939 * with l2arc_write_buffers (due to swapping the order 6940 * the hash lock and l2ad_mtx are taken). 6941 */ 6942 if (!mutex_tryenter(hash_lock)) { 6943 /* 6944 * Missed the hash lock. Retry. 6945 */ 6946 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 6947 mutex_exit(&dev->l2ad_mtx); 6948 mutex_enter(hash_lock); 6949 mutex_exit(hash_lock); 6950 goto top; 6951 } 6952 6953 if (HDR_L2_WRITE_HEAD(hdr)) { 6954 /* 6955 * We hit a write head node. Leave it for 6956 * l2arc_write_done(). 6957 */ 6958 list_remove(buflist, hdr); 6959 mutex_exit(hash_lock); 6960 continue; 6961 } 6962 6963 if (!all && HDR_HAS_L2HDR(hdr) && 6964 (hdr->b_l2hdr.b_daddr >= taddr || 6965 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 6966 /* 6967 * We've evicted to the target address, 6968 * or the end of the device. 6969 */ 6970 mutex_exit(hash_lock); 6971 break; 6972 } 6973 6974 ASSERT(HDR_HAS_L2HDR(hdr)); 6975 if (!HDR_HAS_L1HDR(hdr)) { 6976 ASSERT(!HDR_L2_READING(hdr)); 6977 /* 6978 * This doesn't exist in the ARC. Destroy. 6979 * arc_hdr_destroy() will call list_remove() 6980 * and decrement arcstat_l2_size. 6981 */ 6982 arc_change_state(arc_anon, hdr, hash_lock); 6983 arc_hdr_destroy(hdr); 6984 } else { 6985 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 6986 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 6987 /* 6988 * Invalidate issued or about to be issued 6989 * reads, since we may be about to write 6990 * over this location. 6991 */ 6992 if (HDR_L2_READING(hdr)) { 6993 ARCSTAT_BUMP(arcstat_l2_evict_reading); 6994 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 6995 } 6996 6997 /* Ensure this header has finished being written */ 6998 ASSERT(!HDR_L2_WRITING(hdr)); 6999 7000 arc_hdr_l2hdr_destroy(hdr); 7001 } 7002 mutex_exit(hash_lock); 7003 } 7004 mutex_exit(&dev->l2ad_mtx); 7005 } 7006 7007 /* 7008 * Find and write ARC buffers to the L2ARC device. 7009 * 7010 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 7011 * for reading until they have completed writing. 7012 * The headroom_boost is an in-out parameter used to maintain headroom boost 7013 * state between calls to this function. 7014 * 7015 * Returns the number of bytes actually written (which may be smaller than 7016 * the delta by which the device hand has changed due to alignment). 7017 */ 7018 static uint64_t 7019 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 7020 { 7021 arc_buf_hdr_t *hdr, *hdr_prev, *head; 7022 uint64_t write_asize, write_psize, write_sz, headroom; 7023 boolean_t full; 7024 l2arc_write_callback_t *cb; 7025 zio_t *pio, *wzio; 7026 uint64_t guid = spa_load_guid(spa); 7027 int try; 7028 7029 ASSERT3P(dev->l2ad_vdev, !=, NULL); 7030 7031 pio = NULL; 7032 write_sz = write_asize = write_psize = 0; 7033 full = B_FALSE; 7034 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 7035 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 7036 7037 ARCSTAT_BUMP(arcstat_l2_write_buffer_iter); 7038 /* 7039 * Copy buffers for L2ARC writing. 7040 */ 7041 for (try = 0; try <= 3; try++) { 7042 multilist_sublist_t *mls = l2arc_sublist_lock(try); 7043 uint64_t passed_sz = 0; 7044 7045 ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter); 7046 7047 /* 7048 * L2ARC fast warmup. 7049 * 7050 * Until the ARC is warm and starts to evict, read from the 7051 * head of the ARC lists rather than the tail. 7052 */ 7053 if (arc_warm == B_FALSE) 7054 hdr = multilist_sublist_head(mls); 7055 else 7056 hdr = multilist_sublist_tail(mls); 7057 if (hdr == NULL) 7058 ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter); 7059 7060 headroom = target_sz * l2arc_headroom; 7061 if (zfs_compressed_arc_enabled) 7062 headroom = (headroom * l2arc_headroom_boost) / 100; 7063 7064 for (; hdr; hdr = hdr_prev) { 7065 kmutex_t *hash_lock; 7066 7067 if (arc_warm == B_FALSE) 7068 hdr_prev = multilist_sublist_next(mls, hdr); 7069 else 7070 hdr_prev = multilist_sublist_prev(mls, hdr); 7071 ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, 7072 HDR_GET_LSIZE(hdr)); 7073 7074 hash_lock = HDR_LOCK(hdr); 7075 if (!mutex_tryenter(hash_lock)) { 7076 ARCSTAT_BUMP(arcstat_l2_write_trylock_fail); 7077 /* 7078 * Skip this buffer rather than waiting. 7079 */ 7080 continue; 7081 } 7082 7083 passed_sz += HDR_GET_LSIZE(hdr); 7084 if (passed_sz > headroom) { 7085 /* 7086 * Searched too far. 7087 */ 7088 mutex_exit(hash_lock); 7089 ARCSTAT_BUMP(arcstat_l2_write_passed_headroom); 7090 break; 7091 } 7092 7093 if (!l2arc_write_eligible(guid, hdr)) { 7094 mutex_exit(hash_lock); 7095 continue; 7096 } 7097 7098 /* 7099 * We rely on the L1 portion of the header below, so 7100 * it's invalid for this header to have been evicted out 7101 * of the ghost cache, prior to being written out. The 7102 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 7103 */ 7104 ASSERT(HDR_HAS_L1HDR(hdr)); 7105 7106 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 7107 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 7108 ASSERT3U(arc_hdr_size(hdr), >, 0); 7109 uint64_t size = arc_hdr_size(hdr); 7110 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 7111 size); 7112 7113 if ((write_psize + asize) > target_sz) { 7114 full = B_TRUE; 7115 mutex_exit(hash_lock); 7116 ARCSTAT_BUMP(arcstat_l2_write_full); 7117 break; 7118 } 7119 7120 if (pio == NULL) { 7121 /* 7122 * Insert a dummy header on the buflist so 7123 * l2arc_write_done() can find where the 7124 * write buffers begin without searching. 7125 */ 7126 mutex_enter(&dev->l2ad_mtx); 7127 list_insert_head(&dev->l2ad_buflist, head); 7128 mutex_exit(&dev->l2ad_mtx); 7129 7130 cb = kmem_alloc( 7131 sizeof (l2arc_write_callback_t), KM_SLEEP); 7132 cb->l2wcb_dev = dev; 7133 cb->l2wcb_head = head; 7134 pio = zio_root(spa, l2arc_write_done, cb, 7135 ZIO_FLAG_CANFAIL); 7136 ARCSTAT_BUMP(arcstat_l2_write_pios); 7137 } 7138 7139 hdr->b_l2hdr.b_dev = dev; 7140 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 7141 arc_hdr_set_flags(hdr, 7142 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR); 7143 7144 mutex_enter(&dev->l2ad_mtx); 7145 list_insert_head(&dev->l2ad_buflist, hdr); 7146 mutex_exit(&dev->l2ad_mtx); 7147 7148 (void) refcount_add_many(&dev->l2ad_alloc, size, hdr); 7149 7150 /* 7151 * Normally the L2ARC can use the hdr's data, but if 7152 * we're sharing data between the hdr and one of its 7153 * bufs, L2ARC needs its own copy of the data so that 7154 * the ZIO below can't race with the buf consumer. To 7155 * ensure that this copy will be available for the 7156 * lifetime of the ZIO and be cleaned up afterwards, we 7157 * add it to the l2arc_free_on_write queue. 7158 */ 7159 void *to_write; 7160 if (!HDR_SHARED_DATA(hdr) && size == asize) { 7161 to_write = hdr->b_l1hdr.b_pdata; 7162 } else { 7163 arc_buf_contents_t type = arc_buf_type(hdr); 7164 if (type == ARC_BUFC_METADATA) { 7165 to_write = zio_buf_alloc(asize); 7166 } else { 7167 ASSERT3U(type, ==, ARC_BUFC_DATA); 7168 to_write = zio_data_buf_alloc(asize); 7169 } 7170 7171 bcopy(hdr->b_l1hdr.b_pdata, to_write, size); 7172 if (asize != size) 7173 bzero(to_write + size, asize - size); 7174 l2arc_free_data_on_write(to_write, asize, type); 7175 } 7176 wzio = zio_write_phys(pio, dev->l2ad_vdev, 7177 hdr->b_l2hdr.b_daddr, asize, to_write, 7178 ZIO_CHECKSUM_OFF, NULL, hdr, 7179 ZIO_PRIORITY_ASYNC_WRITE, 7180 ZIO_FLAG_CANFAIL, B_FALSE); 7181 7182 write_sz += HDR_GET_LSIZE(hdr); 7183 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 7184 zio_t *, wzio); 7185 7186 write_asize += size; 7187 write_psize += asize; 7188 dev->l2ad_hand += asize; 7189 7190 mutex_exit(hash_lock); 7191 7192 (void) zio_nowait(wzio); 7193 } 7194 7195 multilist_sublist_unlock(mls); 7196 7197 if (full == B_TRUE) 7198 break; 7199 } 7200 7201 /* No buffers selected for writing? */ 7202 if (pio == NULL) { 7203 ASSERT0(write_sz); 7204 ASSERT(!HDR_HAS_L1HDR(head)); 7205 kmem_cache_free(hdr_l2only_cache, head); 7206 return (0); 7207 } 7208 7209 ASSERT3U(write_psize, <=, target_sz); 7210 ARCSTAT_BUMP(arcstat_l2_writes_sent); 7211 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 7212 ARCSTAT_INCR(arcstat_l2_size, write_sz); 7213 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 7214 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 7215 7216 /* 7217 * Bump device hand to the device start if it is approaching the end. 7218 * l2arc_evict() will already have evicted ahead for this case. 7219 */ 7220 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 7221 dev->l2ad_hand = dev->l2ad_start; 7222 dev->l2ad_first = B_FALSE; 7223 } 7224 7225 dev->l2ad_writing = B_TRUE; 7226 (void) zio_wait(pio); 7227 dev->l2ad_writing = B_FALSE; 7228 7229 return (write_asize); 7230 } 7231 7232 /* 7233 * This thread feeds the L2ARC at regular intervals. This is the beating 7234 * heart of the L2ARC. 7235 */ 7236 static void 7237 l2arc_feed_thread(void *dummy __unused) 7238 { 7239 callb_cpr_t cpr; 7240 l2arc_dev_t *dev; 7241 spa_t *spa; 7242 uint64_t size, wrote; 7243 clock_t begin, next = ddi_get_lbolt() + hz; 7244 7245 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 7246 7247 mutex_enter(&l2arc_feed_thr_lock); 7248 7249 while (l2arc_thread_exit == 0) { 7250 CALLB_CPR_SAFE_BEGIN(&cpr); 7251 #ifdef __NetBSD__ 7252 clock_t now = ddi_get_lbolt(); 7253 if (next > now) 7254 (void) cv_timedwait(&l2arc_feed_thr_cv, 7255 &l2arc_feed_thr_lock, next - now); 7256 #else 7257 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 7258 next - ddi_get_lbolt()); 7259 #endif 7260 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 7261 next = ddi_get_lbolt() + hz; 7262 7263 /* 7264 * Quick check for L2ARC devices. 7265 */ 7266 mutex_enter(&l2arc_dev_mtx); 7267 if (l2arc_ndev == 0) { 7268 mutex_exit(&l2arc_dev_mtx); 7269 continue; 7270 } 7271 mutex_exit(&l2arc_dev_mtx); 7272 begin = ddi_get_lbolt(); 7273 7274 /* 7275 * This selects the next l2arc device to write to, and in 7276 * doing so the next spa to feed from: dev->l2ad_spa. This 7277 * will return NULL if there are now no l2arc devices or if 7278 * they are all faulted. 7279 * 7280 * If a device is returned, its spa's config lock is also 7281 * held to prevent device removal. l2arc_dev_get_next() 7282 * will grab and release l2arc_dev_mtx. 7283 */ 7284 if ((dev = l2arc_dev_get_next()) == NULL) 7285 continue; 7286 7287 spa = dev->l2ad_spa; 7288 ASSERT3P(spa, !=, NULL); 7289 7290 /* 7291 * If the pool is read-only then force the feed thread to 7292 * sleep a little longer. 7293 */ 7294 if (!spa_writeable(spa)) { 7295 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 7296 spa_config_exit(spa, SCL_L2ARC, dev); 7297 continue; 7298 } 7299 7300 /* 7301 * Avoid contributing to memory pressure. 7302 */ 7303 if (arc_reclaim_needed()) { 7304 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 7305 spa_config_exit(spa, SCL_L2ARC, dev); 7306 continue; 7307 } 7308 7309 ARCSTAT_BUMP(arcstat_l2_feeds); 7310 7311 size = l2arc_write_size(); 7312 7313 /* 7314 * Evict L2ARC buffers that will be overwritten. 7315 */ 7316 l2arc_evict(dev, size, B_FALSE); 7317 7318 /* 7319 * Write ARC buffers. 7320 */ 7321 wrote = l2arc_write_buffers(spa, dev, size); 7322 7323 /* 7324 * Calculate interval between writes. 7325 */ 7326 next = l2arc_write_interval(begin, size, wrote); 7327 spa_config_exit(spa, SCL_L2ARC, dev); 7328 } 7329 7330 l2arc_thread_exit = 0; 7331 cv_broadcast(&l2arc_feed_thr_cv); 7332 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 7333 thread_exit(); 7334 } 7335 7336 boolean_t 7337 l2arc_vdev_present(vdev_t *vd) 7338 { 7339 l2arc_dev_t *dev; 7340 7341 mutex_enter(&l2arc_dev_mtx); 7342 for (dev = list_head(l2arc_dev_list); dev != NULL; 7343 dev = list_next(l2arc_dev_list, dev)) { 7344 if (dev->l2ad_vdev == vd) 7345 break; 7346 } 7347 mutex_exit(&l2arc_dev_mtx); 7348 7349 return (dev != NULL); 7350 } 7351 7352 /* 7353 * Add a vdev for use by the L2ARC. By this point the spa has already 7354 * validated the vdev and opened it. 7355 */ 7356 void 7357 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 7358 { 7359 l2arc_dev_t *adddev; 7360 7361 ASSERT(!l2arc_vdev_present(vd)); 7362 7363 vdev_ashift_optimize(vd); 7364 7365 /* 7366 * Create a new l2arc device entry. 7367 */ 7368 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 7369 adddev->l2ad_spa = spa; 7370 adddev->l2ad_vdev = vd; 7371 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 7372 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 7373 adddev->l2ad_hand = adddev->l2ad_start; 7374 adddev->l2ad_first = B_TRUE; 7375 adddev->l2ad_writing = B_FALSE; 7376 7377 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 7378 /* 7379 * This is a list of all ARC buffers that are still valid on the 7380 * device. 7381 */ 7382 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 7383 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 7384 7385 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 7386 refcount_create(&adddev->l2ad_alloc); 7387 7388 /* 7389 * Add device to global list 7390 */ 7391 mutex_enter(&l2arc_dev_mtx); 7392 list_insert_head(l2arc_dev_list, adddev); 7393 atomic_inc_64(&l2arc_ndev); 7394 mutex_exit(&l2arc_dev_mtx); 7395 } 7396 7397 /* 7398 * Remove a vdev from the L2ARC. 7399 */ 7400 void 7401 l2arc_remove_vdev(vdev_t *vd) 7402 { 7403 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 7404 7405 /* 7406 * Find the device by vdev 7407 */ 7408 mutex_enter(&l2arc_dev_mtx); 7409 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 7410 nextdev = list_next(l2arc_dev_list, dev); 7411 if (vd == dev->l2ad_vdev) { 7412 remdev = dev; 7413 break; 7414 } 7415 } 7416 ASSERT3P(remdev, !=, NULL); 7417 7418 /* 7419 * Remove device from global list 7420 */ 7421 list_remove(l2arc_dev_list, remdev); 7422 l2arc_dev_last = NULL; /* may have been invalidated */ 7423 atomic_dec_64(&l2arc_ndev); 7424 mutex_exit(&l2arc_dev_mtx); 7425 7426 /* 7427 * Clear all buflists and ARC references. L2ARC device flush. 7428 */ 7429 l2arc_evict(remdev, 0, B_TRUE); 7430 list_destroy(&remdev->l2ad_buflist); 7431 mutex_destroy(&remdev->l2ad_mtx); 7432 refcount_destroy(&remdev->l2ad_alloc); 7433 kmem_free(remdev, sizeof (l2arc_dev_t)); 7434 } 7435 7436 void 7437 l2arc_init(void) 7438 { 7439 l2arc_thread_exit = 0; 7440 l2arc_ndev = 0; 7441 l2arc_writes_sent = 0; 7442 l2arc_writes_done = 0; 7443 7444 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 7445 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 7446 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 7447 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 7448 7449 l2arc_dev_list = &L2ARC_dev_list; 7450 l2arc_free_on_write = &L2ARC_free_on_write; 7451 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 7452 offsetof(l2arc_dev_t, l2ad_node)); 7453 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 7454 offsetof(l2arc_data_free_t, l2df_list_node)); 7455 } 7456 7457 void 7458 l2arc_fini(void) 7459 { 7460 /* 7461 * This is called from dmu_fini(), which is called from spa_fini(); 7462 * Because of this, we can assume that all l2arc devices have 7463 * already been removed when the pools themselves were removed. 7464 */ 7465 7466 l2arc_do_free_on_write(); 7467 7468 mutex_destroy(&l2arc_feed_thr_lock); 7469 cv_destroy(&l2arc_feed_thr_cv); 7470 mutex_destroy(&l2arc_dev_mtx); 7471 mutex_destroy(&l2arc_free_on_write_mtx); 7472 7473 list_destroy(l2arc_dev_list); 7474 list_destroy(l2arc_free_on_write); 7475 } 7476 7477 void 7478 l2arc_start(void) 7479 { 7480 if (!(spa_mode_global & FWRITE)) 7481 return; 7482 7483 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 7484 TS_RUN, minclsyspri); 7485 } 7486 7487 void 7488 l2arc_stop(void) 7489 { 7490 if (!(spa_mode_global & FWRITE)) 7491 return; 7492 7493 mutex_enter(&l2arc_feed_thr_lock); 7494 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 7495 l2arc_thread_exit = 1; 7496 while (l2arc_thread_exit != 0) 7497 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 7498 mutex_exit(&l2arc_feed_thr_lock); 7499 } 7500