xref: /netbsd-src/external/cddl/osnet/dist/uts/common/dtrace/dtrace.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD: src/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c,v 1.10.2.1 2009/08/03 08:13:06 kensmith Exp $
22  */
23 
24 /*
25  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 /* #pragma ident	"%Z%%M%	%I%	%E% SMI" */
30 
31 /*
32  * DTrace - Dynamic Tracing for Solaris
33  *
34  * This is the implementation of the Solaris Dynamic Tracing framework
35  * (DTrace).  The user-visible interface to DTrace is described at length in
36  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37  * library, the in-kernel DTrace framework, and the DTrace providers are
38  * described in the block comments in the <sys/dtrace.h> header file.  The
39  * internal architecture of DTrace is described in the block comments in the
40  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41  * implementation very much assume mastery of all of these sources; if one has
42  * an unanswered question about the implementation, one should consult them
43  * first.
44  *
45  * The functions here are ordered roughly as follows:
46  *
47  *   - Probe context functions
48  *   - Probe hashing functions
49  *   - Non-probe context utility functions
50  *   - Matching functions
51  *   - Provider-to-Framework API functions
52  *   - Probe management functions
53  *   - DIF object functions
54  *   - Format functions
55  *   - Predicate functions
56  *   - ECB functions
57  *   - Buffer functions
58  *   - Enabling functions
59  *   - DOF functions
60  *   - Anonymous enabling functions
61  *   - Consumer state functions
62  *   - Helper functions
63  *   - Hook functions
64  *   - Driver cookbook functions
65  *
66  * Each group of functions begins with a block comment labelled the "DTrace
67  * [Group] Functions", allowing one to find each block by searching forward
68  * on capital-f functions.
69  */
70 #if !defined(sun)
71 /* we need internal access to mutexes for state inspection */
72 #define	__MUTEX_PRIVATE
73 #define __RWLOCK_PRIVATE
74 #endif
75 
76 #include <sys/errno.h>
77 #if !defined(sun)
78 #include <sys/time.h>
79 #endif
80 #include <sys/stat.h>
81 #include <sys/conf.h>
82 #include <sys/systm.h>
83 #if defined(sun)
84 #include <sys/modctl.h>
85 #include <sys/ddi.h>
86 #include <sys/sunddi.h>
87 #endif
88 #include <sys/cpuvar.h>
89 #include <sys/kmem.h>
90 #if defined(sun)
91 #include <sys/strsubr.h>
92 #endif
93 #include <sys/sysmacros.h>
94 #include <sys/dtrace_impl.h>
95 #include <sys/atomic.h>
96 #include <sys/cmn_err.h>
97 #include <sys/mutex_impl.h>
98 #include <sys/rwlock_impl.h>
99 #include <sys/ctf_api.h>
100 #if defined(sun)
101 #include <sys/panic.h>
102 #include <sys/priv_impl.h>
103 #endif
104 #include <sys/policy.h>
105 #if defined(sun)
106 #include <sys/cred_impl.h>
107 #include <sys/procfs_isa.h>
108 #endif
109 #include <sys/taskq.h>
110 #if defined(sun)
111 #include <sys/mkdev.h>
112 #include <sys/kdi.h>
113 #endif
114 #include <sys/zone.h>
115 #include <sys/socket.h>
116 #include <netinet/in.h>
117 
118 /* FreeBSD includes: */
119 #if !defined(sun)
120 
121 #include <sys/ctype.h>
122 #include <sys/limits.h>
123 //#include <sys/kdb.h>
124 #include <sys/kernel.h>
125 #include <sys/malloc.h>
126 #include <sys/sysctl.h>
127 #include <sys/lock.h>
128 #include <sys/mutex.h>
129 #include <sys/rwlock.h>
130 //#include <sys/sx.h>
131 #include <sys/file.h>
132 #include <sys/filedesc.h>
133 #include <sys/dtrace_bsd.h>
134 #include <sys/vmem.h>
135 #include <sys/module.h>
136 #include <sys/cpu.h>
137 #include <netinet/in.h>
138 #include "dtrace_cddl.h"
139 #include "dtrace_debug.c"
140 #endif
141 
142 #if !defined(sun)
143 /* fake module entry for netbsd */
144 module_t *mod_nbsd = NULL;
145 #endif
146 
147 /*
148  * DTrace Tunable Variables
149  *
150  * The following variables may be tuned by adding a line to /etc/system that
151  * includes both the name of the DTrace module ("dtrace") and the name of the
152  * variable.  For example:
153  *
154  *   set dtrace:dtrace_destructive_disallow = 1
155  *
156  * In general, the only variables that one should be tuning this way are those
157  * that affect system-wide DTrace behavior, and for which the default behavior
158  * is undesirable.  Most of these variables are tunable on a per-consumer
159  * basis using DTrace options, and need not be tuned on a system-wide basis.
160  * When tuning these variables, avoid pathological values; while some attempt
161  * is made to verify the integrity of these variables, they are not considered
162  * part of the supported interface to DTrace, and they are therefore not
163  * checked comprehensively.  Further, these variables should not be tuned
164  * dynamically via "mdb -kw" or other means; they should only be tuned via
165  * /etc/system.
166  */
167 int		dtrace_destructive_disallow = 0;
168 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
169 size_t		dtrace_difo_maxsize = (256 * 1024);
170 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
171 size_t		dtrace_global_maxsize = (16 * 1024);
172 size_t		dtrace_actions_max = (16 * 1024);
173 size_t		dtrace_retain_max = 1024;
174 dtrace_optval_t	dtrace_helper_actions_max = 32;
175 dtrace_optval_t	dtrace_helper_providers_max = 32;
176 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
177 size_t		dtrace_strsize_default = 256;
178 dtrace_optval_t	dtrace_cleanrate_default = 99009900;		/* 101 hz */
179 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
180 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
181 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
182 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
183 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
184 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
185 dtrace_optval_t	dtrace_nspec_default = 1;
186 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
187 dtrace_optval_t dtrace_stackframes_default = 20;
188 dtrace_optval_t dtrace_ustackframes_default = 20;
189 dtrace_optval_t dtrace_jstackframes_default = 50;
190 dtrace_optval_t dtrace_jstackstrsize_default = 512;
191 int		dtrace_msgdsize_max = 128;
192 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
193 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
194 int		dtrace_devdepth_max = 32;
195 int		dtrace_err_verbose;
196 hrtime_t	dtrace_deadman_interval = NANOSEC;
197 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
198 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
199 
200 /*
201  * DTrace External Variables
202  *
203  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
204  * available to DTrace consumers via the backtick (`) syntax.  One of these,
205  * dtrace_zero, is made deliberately so:  it is provided as a source of
206  * well-known, zero-filled memory.  While this variable is not documented,
207  * it is used by some translators as an implementation detail.
208  */
209 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
210 
211 /*
212  * DTrace Internal Variables
213  */
214 #if defined(sun)
215 static dev_info_t	*dtrace_devi;		/* device info */
216 #endif
217 static vmem_t		*dtrace_arena;		/* probe ID arena */
218 #if defined(sun)
219 static vmem_t		*dtrace_minor;		/* minor number arena */
220 static taskq_t		*dtrace_taskq;		/* task queue */
221 #endif
222 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
223 int			dtrace_probes_size=0;	/* size for kmem_free */
224 static int		dtrace_nprobes;		/* number of probes */
225 static dtrace_provider_t *dtrace_provider;	/* provider list */
226 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
227 static int		dtrace_opens;		/* number of opens */
228 static int		dtrace_helpers;		/* number of helpers */
229 #if defined(sun)
230 static void		*dtrace_softstate;	/* softstate pointer */
231 #endif
232 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
233 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
234 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
235 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
236 static int		dtrace_toxranges;	/* number of toxic ranges */
237 static int		dtrace_toxranges_max;	/* size of toxic range array */
238 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
239 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
240 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
241 static kthread_t	*dtrace_panicked;	/* panicking thread */
242 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
243 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
244 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
245 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
246 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
247 #if !defined(sun)
248 int		dtrace_in_probe;	/* non-zero if executing a probe */
249 #if defined(__i386__) || defined(__amd64__)
250 uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
251 #endif
252 #endif
253 
254 /*
255  * DTrace Locking
256  * DTrace is protected by three (relatively coarse-grained) locks:
257  *
258  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
259  *     including enabling state, probes, ECBs, consumer state, helper state,
260  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
261  *     probe context is lock-free -- synchronization is handled via the
262  *     dtrace_sync() cross call mechanism.
263  *
264  * (2) dtrace_provider_lock is required when manipulating provider state, or
265  *     when provider state must be held constant.
266  *
267  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
268  *     when meta provider state must be held constant.
269  *
270  * The lock ordering between these three locks is dtrace_meta_lock before
271  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
272  * several places where dtrace_provider_lock is held by the framework as it
273  * calls into the providers -- which then call back into the framework,
274  * grabbing dtrace_lock.)
275  *
276  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
277  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
278  * role as a coarse-grained lock; it is acquired before both of these locks.
279  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
280  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
281  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
282  * acquired _between_ dtrace_provider_lock and dtrace_lock.
283  */
284 static kmutex_t		dtrace_lock;		/* probe state lock */
285 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
286 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
287 
288 #if !defined(sun)
289 /* XXX FreeBSD hacks. */
290 static kmutex_t		mod_lock;
291 
292 #define cr_suid		cr_svuid
293 #define cr_sgid		cr_svgid
294 #define	ipaddr_t	in_addr_t
295 #define mod_modname	pathname
296 #define vuprintf	vprintf
297 #define ttoproc(_a)	((_a)->l_proc)
298 #define crgetzoneid(_a)	0
299 //#define	NCPU		MAXCPUS
300 #define	NCPU		ncpu
301 #define SNOCD		0
302 #define CPU_ON_INTR(_a)	0
303 
304 #define PRIV_EFFECTIVE		(1 << 0)
305 #define PRIV_DTRACE_KERNEL	(1 << 1)
306 #define PRIV_DTRACE_PROC	(1 << 2)
307 #define PRIV_DTRACE_USER	(1 << 3)
308 #define PRIV_PROC_OWNER		(1 << 4)
309 #define PRIV_PROC_ZONE		(1 << 5)
310 #define PRIV_ALL		~0
311 
312 //SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
313 #endif
314 
315 #if defined(sun)
316 #define curcpu_id	CPU->cpu_id
317 #else
318 #define curcpu_id	cpu_number()
319 #endif
320 
321 
322 /*
323  * DTrace Provider Variables
324  *
325  * These are the variables relating to DTrace as a provider (that is, the
326  * provider of the BEGIN, END, and ERROR probes).
327  */
328 static dtrace_pattr_t	dtrace_provider_attr = {
329 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
330 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
331 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
332 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
333 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
334 };
335 
336 static void
337 dtrace_nullop(void)
338 {}
339 
340 static int
341 dtrace_enable_nullop(void)
342 {
343 	return (0);
344 }
345 
346 static dtrace_pops_t	dtrace_provider_ops = {
347 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
348 #if defined(sun)
349 	(void (*)(void *, modctl_t *))dtrace_nullop,
350 #else
351 	(void (*)(void *, dtrace_modctl_t *))dtrace_nullop,
352 #endif
353 	(int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
354 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
355 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
356 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
357 	NULL,
358 	NULL,
359 	NULL,
360 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
361 };
362 
363 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
364 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
365 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
366 
367 /*
368  * DTrace Helper Tracing Variables
369  */
370 uint32_t dtrace_helptrace_next = 0;
371 uint32_t dtrace_helptrace_nlocals;
372 char	*dtrace_helptrace_buffer;
373 int	dtrace_helptrace_bufsize = 512 * 1024;
374 
375 #ifdef DEBUG
376 int	dtrace_helptrace_enabled = 1;
377 #else
378 int	dtrace_helptrace_enabled = 0;
379 #endif
380 
381 /*
382  * DTrace Error Hashing
383  *
384  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
385  * table.  This is very useful for checking coverage of tests that are
386  * expected to induce DIF or DOF processing errors, and may be useful for
387  * debugging problems in the DIF code generator or in DOF generation .  The
388  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
389  */
390 #ifdef DEBUG
391 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
392 static const char *dtrace_errlast;
393 static kthread_t *dtrace_errthread;
394 static kmutex_t dtrace_errlock;
395 #endif
396 
397 /*
398  * DTrace Macros and Constants
399  *
400  * These are various macros that are useful in various spots in the
401  * implementation, along with a few random constants that have no meaning
402  * outside of the implementation.  There is no real structure to this cpp
403  * mishmash -- but is there ever?
404  */
405 #define	DTRACE_HASHSTR(hash, probe)	\
406 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
407 
408 #define	DTRACE_HASHNEXT(hash, probe)	\
409 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
410 
411 #define	DTRACE_HASHPREV(hash, probe)	\
412 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
413 
414 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
415 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
416 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
417 
418 #define	DTRACE_AGGHASHSIZE_SLEW		17
419 
420 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
421 
422 /*
423  * The key for a thread-local variable consists of the lower 61 bits of the
424  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
425  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
426  * equal to a variable identifier.  This is necessary (but not sufficient) to
427  * assure that global associative arrays never collide with thread-local
428  * variables.  To guarantee that they cannot collide, we must also define the
429  * order for keying dynamic variables.  That order is:
430  *
431  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
432  *
433  * Because the variable-key and the tls-key are in orthogonal spaces, there is
434  * no way for a global variable key signature to match a thread-local key
435  * signature.
436  */
437 #if defined(sun)
438 #define	DTRACE_TLS_THRKEY(where) { \
439 	uint_t intr = 0; \
440 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
441 	for (; actv; actv >>= 1) \
442 		intr++; \
443 	ASSERT(intr < (1 << 3)); \
444 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
445 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
446 }
447 #else
448 #define	DTRACE_TLS_THRKEY(where) { \
449 	uint_t intr = 0; \
450 	(where) = ((curthread->l_lid + (curthread->l_proc->p_pid << 16) + \
451 		    DIF_VARIABLE_MAX) & \
452 		    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
453 }
454 #if 0
455 #define	DTRACE_TLS_THRKEY(where) { \
456 	solaris_cpu_t *_c = &solaris_cpu[curcpu_id]; \
457 	uint_t intr = 0; \
458 	uint_t actv = _c->cpu_intr_actv; \
459 	for (; actv; actv >>= 1) \
460 		intr++; \
461 	ASSERT(intr < (1 << 3)); \
462 	(where) = ((curthread->l_lid + (curthread->l_proc->p_pid << 16) + \
463 		    DIF_VARIABLE_MAX) & \
464 		    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
465 }
466 #endif
467 #endif
468 
469 #define	DT_BSWAP_8(x)	((x) & 0xff)
470 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
471 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
472 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
473 
474 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
475 
476 #define	DTRACE_STORE(type, tomax, offset, what) \
477 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
478 
479 #ifndef __i386
480 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
481 	if (addr & (size - 1)) {					\
482 		*flags |= CPU_DTRACE_BADALIGN;				\
483 		cpu_core[curcpu_id].cpuc_dtrace_illval = addr;	\
484 		return (0);						\
485 	}
486 #else
487 #define	DTRACE_ALIGNCHECK(addr, size, flags)
488 #endif
489 
490 /*
491  * Test whether a range of memory starting at testaddr of size testsz falls
492  * within the range of memory described by addr, sz.  We take care to avoid
493  * problems with overflow and underflow of the unsigned quantities, and
494  * disallow all negative sizes.  Ranges of size 0 are allowed.
495  */
496 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
497 	((testaddr) - (baseaddr) < (basesz) && \
498 	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
499 	(testaddr) + (testsz) >= (testaddr))
500 
501 /*
502  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
503  * alloc_sz on the righthand side of the comparison in order to avoid overflow
504  * or underflow in the comparison with it.  This is simpler than the INRANGE
505  * check above, because we know that the dtms_scratch_ptr is valid in the
506  * range.  Allocations of size zero are allowed.
507  */
508 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
509 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
510 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
511 
512 #define	DTRACE_LOADFUNC(bits)						\
513 /*CSTYLED*/								\
514 uint##bits##_t								\
515 dtrace_load##bits(uintptr_t addr)					\
516 {									\
517 	size_t size = bits / NBBY;					\
518 	/*CSTYLED*/							\
519 	uint##bits##_t rval;						\
520 	int i;								\
521 	volatile uint16_t *flags = (volatile uint16_t *)		\
522 	    &cpu_core[curcpu_id].cpuc_dtrace_flags;			\
523 									\
524 	DTRACE_ALIGNCHECK(addr, size, flags);				\
525 									\
526 	for (i = 0; i < dtrace_toxranges; i++) {			\
527 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
528 			continue;					\
529 									\
530 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
531 			continue;					\
532 									\
533 		/*							\
534 		 * This address falls within a toxic region; return 0.	\
535 		 */							\
536 		*flags |= CPU_DTRACE_BADADDR;				\
537 		cpu_core[curcpu_id].cpuc_dtrace_illval = addr;		\
538 		return (0);						\
539 	}								\
540 									\
541 	*flags |= CPU_DTRACE_NOFAULT;					\
542 	/*CSTYLED*/							\
543 	rval = *((volatile uint##bits##_t *)addr);			\
544 	*flags &= ~CPU_DTRACE_NOFAULT;					\
545 									\
546 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
547 }
548 
549 #ifdef _LP64
550 #define	dtrace_loadptr	dtrace_load64
551 #else
552 #define	dtrace_loadptr	dtrace_load32
553 #endif
554 
555 #define	DTRACE_DYNHASH_FREE	0
556 #define	DTRACE_DYNHASH_SINK	1
557 #define	DTRACE_DYNHASH_VALID	2
558 
559 #define	DTRACE_MATCH_FAIL	-1
560 #define	DTRACE_MATCH_NEXT	0
561 #define	DTRACE_MATCH_DONE	1
562 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
563 #define	DTRACE_STATE_ALIGN	64
564 
565 #define	DTRACE_FLAGS2FLT(flags)						\
566 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
567 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
568 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
569 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
570 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
571 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
572 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
573 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
574 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
575 	DTRACEFLT_UNKNOWN)
576 
577 #define	DTRACEACT_ISSTRING(act)						\
578 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
579 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
580 
581 /* Function prototype definitions: */
582 static size_t dtrace_strlen(const char *, size_t);
583 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
584 static void dtrace_enabling_provide(dtrace_provider_t *);
585 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
586 static void dtrace_enabling_matchall(void);
587 static dtrace_state_t *dtrace_anon_grab(void);
588 #if defined(sun)
589 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
590     dtrace_state_t *, uint64_t, uint64_t);
591 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
592 #endif
593 static void dtrace_buffer_drop(dtrace_buffer_t *);
594 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
595     dtrace_state_t *, dtrace_mstate_t *);
596 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
597     dtrace_optval_t);
598 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
599 #if defined(sun)
600 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
601 #endif
602 uint16_t dtrace_load16(uintptr_t);
603 uint32_t dtrace_load32(uintptr_t);
604 uint64_t dtrace_load64(uintptr_t);
605 uint8_t dtrace_load8(uintptr_t);
606 void dtrace_dynvar_clean(dtrace_dstate_t *);
607 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
608     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
609 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
610 
611 /*
612  * DTrace Probe Context Functions
613  *
614  * These functions are called from probe context.  Because probe context is
615  * any context in which C may be called, arbitrarily locks may be held,
616  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
617  * As a result, functions called from probe context may only call other DTrace
618  * support functions -- they may not interact at all with the system at large.
619  * (Note that the ASSERT macro is made probe-context safe by redefining it in
620  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
621  * loads are to be performed from probe context, they _must_ be in terms of
622  * the safe dtrace_load*() variants.
623  *
624  * Some functions in this block are not actually called from probe context;
625  * for these functions, there will be a comment above the function reading
626  * "Note:  not called from probe context."
627  */
628 void
629 dtrace_panic(const char *format, ...)
630 {
631 	va_list alist;
632 
633 	va_start(alist, format);
634 	dtrace_vpanic(format, alist);
635 	va_end(alist);
636 }
637 
638 int
639 dtrace_assfail(const char *a, const char *f, int l)
640 {
641 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
642 
643 	/*
644 	 * We just need something here that even the most clever compiler
645 	 * cannot optimize away.
646 	 */
647 	return (a[(uintptr_t)f]);
648 }
649 
650 /*
651  * Atomically increment a specified error counter from probe context.
652  */
653 static void
654 dtrace_error(uint32_t *counter)
655 {
656 	/*
657 	 * Most counters stored to in probe context are per-CPU counters.
658 	 * However, there are some error conditions that are sufficiently
659 	 * arcane that they don't merit per-CPU storage.  If these counters
660 	 * are incremented concurrently on different CPUs, scalability will be
661 	 * adversely affected -- but we don't expect them to be white-hot in a
662 	 * correctly constructed enabling...
663 	 */
664 	uint32_t oval, nval;
665 
666 	do {
667 		oval = *counter;
668 
669 		if ((nval = oval + 1) == 0) {
670 			/*
671 			 * If the counter would wrap, set it to 1 -- assuring
672 			 * that the counter is never zero when we have seen
673 			 * errors.  (The counter must be 32-bits because we
674 			 * aren't guaranteed a 64-bit compare&swap operation.)
675 			 * To save this code both the infamy of being fingered
676 			 * by a priggish news story and the indignity of being
677 			 * the target of a neo-puritan witch trial, we're
678 			 * carefully avoiding any colorful description of the
679 			 * likelihood of this condition -- but suffice it to
680 			 * say that it is only slightly more likely than the
681 			 * overflow of predicate cache IDs, as discussed in
682 			 * dtrace_predicate_create().
683 			 */
684 			nval = 1;
685 		}
686 	} while (dtrace_cas32(counter, oval, nval) != oval);
687 }
688 
689 /*
690  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
691  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
692  */
693 DTRACE_LOADFUNC(8)
694 DTRACE_LOADFUNC(16)
695 DTRACE_LOADFUNC(32)
696 DTRACE_LOADFUNC(64)
697 
698 static int
699 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
700 {
701 	if (dest < mstate->dtms_scratch_base)
702 		return (0);
703 
704 	if (dest + size < dest)
705 		return (0);
706 
707 	if (dest + size > mstate->dtms_scratch_ptr)
708 		return (0);
709 
710 	return (1);
711 }
712 
713 static int
714 dtrace_canstore_statvar(uint64_t addr, size_t sz,
715     dtrace_statvar_t **svars, int nsvars)
716 {
717 	int i;
718 
719 	for (i = 0; i < nsvars; i++) {
720 		dtrace_statvar_t *svar = svars[i];
721 
722 		if (svar == NULL || svar->dtsv_size == 0)
723 			continue;
724 
725 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
726 			return (1);
727 	}
728 
729 	return (0);
730 }
731 
732 /*
733  * Check to see if the address is within a memory region to which a store may
734  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
735  * region.  The caller of dtrace_canstore() is responsible for performing any
736  * alignment checks that are needed before stores are actually executed.
737  */
738 static int
739 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
740     dtrace_vstate_t *vstate)
741 {
742 	/*
743 	 * First, check to see if the address is in scratch space...
744 	 */
745 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
746 	    mstate->dtms_scratch_size))
747 		return (1);
748 
749 	/*
750 	 * Now check to see if it's a dynamic variable.  This check will pick
751 	 * up both thread-local variables and any global dynamically-allocated
752 	 * variables.
753 	 */
754 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
755 	    vstate->dtvs_dynvars.dtds_size)) {
756 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
757 		uintptr_t base = (uintptr_t)dstate->dtds_base +
758 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
759 		uintptr_t chunkoffs;
760 
761 		/*
762 		 * Before we assume that we can store here, we need to make
763 		 * sure that it isn't in our metadata -- storing to our
764 		 * dynamic variable metadata would corrupt our state.  For
765 		 * the range to not include any dynamic variable metadata,
766 		 * it must:
767 		 *
768 		 *	(1) Start above the hash table that is at the base of
769 		 *	the dynamic variable space
770 		 *
771 		 *	(2) Have a starting chunk offset that is beyond the
772 		 *	dtrace_dynvar_t that is at the base of every chunk
773 		 *
774 		 *	(3) Not span a chunk boundary
775 		 *
776 		 */
777 		if (addr < base)
778 			return (0);
779 
780 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
781 
782 		if (chunkoffs < sizeof (dtrace_dynvar_t))
783 			return (0);
784 
785 		if (chunkoffs + sz > dstate->dtds_chunksize)
786 			return (0);
787 
788 		return (1);
789 	}
790 
791 	/*
792 	 * Finally, check the static local and global variables.  These checks
793 	 * take the longest, so we perform them last.
794 	 */
795 	if (dtrace_canstore_statvar(addr, sz,
796 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
797 		return (1);
798 
799 	if (dtrace_canstore_statvar(addr, sz,
800 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
801 		return (1);
802 
803 	return (0);
804 }
805 
806 
807 /*
808  * Convenience routine to check to see if the address is within a memory
809  * region in which a load may be issued given the user's privilege level;
810  * if not, it sets the appropriate error flags and loads 'addr' into the
811  * illegal value slot.
812  *
813  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
814  * appropriate memory access protection.
815  */
816 static int
817 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
818     dtrace_vstate_t *vstate)
819 {
820 	volatile uintptr_t *illval = &cpu_core[curcpu_id].cpuc_dtrace_illval;
821 
822 	/*
823 	 * If we hold the privilege to read from kernel memory, then
824 	 * everything is readable.
825 	 */
826 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
827 		return (1);
828 
829 	/*
830 	 * You can obviously read that which you can store.
831 	 */
832 	if (dtrace_canstore(addr, sz, mstate, vstate))
833 		return (1);
834 
835 	/*
836 	 * We're allowed to read from our own string table.
837 	 */
838 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
839 	    mstate->dtms_difo->dtdo_strlen))
840 		return (1);
841 
842 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
843 	*illval = addr;
844 	return (0);
845 }
846 
847 /*
848  * Convenience routine to check to see if a given string is within a memory
849  * region in which a load may be issued given the user's privilege level;
850  * this exists so that we don't need to issue unnecessary dtrace_strlen()
851  * calls in the event that the user has all privileges.
852  */
853 static int
854 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
855     dtrace_vstate_t *vstate)
856 {
857 	size_t strsz;
858 
859 	/*
860 	 * If we hold the privilege to read from kernel memory, then
861 	 * everything is readable.
862 	 */
863 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
864 		return (1);
865 
866 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
867 	if (dtrace_canload(addr, strsz, mstate, vstate))
868 		return (1);
869 
870 	return (0);
871 }
872 
873 /*
874  * Convenience routine to check to see if a given variable is within a memory
875  * region in which a load may be issued given the user's privilege level.
876  */
877 static int
878 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
879     dtrace_vstate_t *vstate)
880 {
881 	size_t sz;
882 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
883 
884 	/*
885 	 * If we hold the privilege to read from kernel memory, then
886 	 * everything is readable.
887 	 */
888 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
889 		return (1);
890 
891 	if (type->dtdt_kind == DIF_TYPE_STRING)
892 		sz = dtrace_strlen(src,
893 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
894 	else
895 		sz = type->dtdt_size;
896 
897 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
898 }
899 
900 /*
901  * Compare two strings using safe loads.
902  */
903 static int
904 dtrace_strncmp(char *s1, char *s2, size_t limit)
905 {
906 	uint8_t c1, c2;
907 	volatile uint16_t *flags;
908 
909 	if (s1 == s2 || limit == 0)
910 		return (0);
911 
912 	flags = (volatile uint16_t *)&cpu_core[curcpu_id].cpuc_dtrace_flags;
913 
914 	do {
915 		if (s1 == NULL) {
916 			c1 = '\0';
917 		} else {
918 			c1 = dtrace_load8((uintptr_t)s1++);
919 		}
920 
921 		if (s2 == NULL) {
922 			c2 = '\0';
923 		} else {
924 			c2 = dtrace_load8((uintptr_t)s2++);
925 		}
926 
927 		if (c1 != c2)
928 			return (c1 - c2);
929 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
930 
931 	return (0);
932 }
933 
934 /*
935  * Compute strlen(s) for a string using safe memory accesses.  The additional
936  * len parameter is used to specify a maximum length to ensure completion.
937  */
938 static size_t
939 dtrace_strlen(const char *s, size_t lim)
940 {
941 	uint_t len;
942 
943 	for (len = 0; len != lim; len++) {
944 		if (dtrace_load8((uintptr_t)s++) == '\0')
945 			break;
946 	}
947 
948 	return (len);
949 }
950 
951 /*
952  * Check if an address falls within a toxic region.
953  */
954 static int
955 dtrace_istoxic(uintptr_t kaddr, size_t size)
956 {
957 	uintptr_t taddr, tsize;
958 	int i;
959 
960 	for (i = 0; i < dtrace_toxranges; i++) {
961 		taddr = dtrace_toxrange[i].dtt_base;
962 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
963 
964 		if (kaddr - taddr < tsize) {
965 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
966 			cpu_core[curcpu_id].cpuc_dtrace_illval = kaddr;
967 			return (1);
968 		}
969 
970 		if (taddr - kaddr < size) {
971 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
972 			cpu_core[curcpu_id].cpuc_dtrace_illval = taddr;
973 			return (1);
974 		}
975 	}
976 
977 	return (0);
978 }
979 
980 /*
981  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
982  * memory specified by the DIF program.  The dst is assumed to be safe memory
983  * that we can store to directly because it is managed by DTrace.  As with
984  * standard bcopy, overlapping copies are handled properly.
985  */
986 static void
987 dtrace_bcopy(const void *src, void *dst, size_t len)
988 {
989 	if (len != 0) {
990 		uint8_t *s1 = dst;
991 		const uint8_t *s2 = src;
992 
993 		if (s1 <= s2) {
994 			do {
995 				*s1++ = dtrace_load8((uintptr_t)s2++);
996 			} while (--len != 0);
997 		} else {
998 			s2 += len;
999 			s1 += len;
1000 
1001 			do {
1002 				*--s1 = dtrace_load8((uintptr_t)--s2);
1003 			} while (--len != 0);
1004 		}
1005 	}
1006 }
1007 
1008 /*
1009  * Copy src to dst using safe memory accesses, up to either the specified
1010  * length, or the point that a nul byte is encountered.  The src is assumed to
1011  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1012  * safe memory that we can store to directly because it is managed by DTrace.
1013  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1014  */
1015 static void
1016 dtrace_strcpy(const void *src, void *dst, size_t len)
1017 {
1018 	if (len != 0) {
1019 		uint8_t *s1 = dst, c;
1020 		const uint8_t *s2 = src;
1021 
1022 		do {
1023 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1024 		} while (--len != 0 && c != '\0');
1025 	}
1026 }
1027 
1028 /*
1029  * Copy src to dst, deriving the size and type from the specified (BYREF)
1030  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1031  * program.  The dst is assumed to be DTrace variable memory that is of the
1032  * specified type; we assume that we can store to directly.
1033  */
1034 static void
1035 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1036 {
1037 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1038 
1039 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1040 		dtrace_strcpy(src, dst, type->dtdt_size);
1041 	} else {
1042 		dtrace_bcopy(src, dst, type->dtdt_size);
1043 	}
1044 }
1045 
1046 /*
1047  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1048  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1049  * safe memory that we can access directly because it is managed by DTrace.
1050  */
1051 static int
1052 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1053 {
1054 	volatile uint16_t *flags;
1055 
1056 	flags = (volatile uint16_t *)&cpu_core[curcpu_id].cpuc_dtrace_flags;
1057 
1058 	if (s1 == s2)
1059 		return (0);
1060 
1061 	if (s1 == NULL || s2 == NULL)
1062 		return (1);
1063 
1064 	if (s1 != s2 && len != 0) {
1065 		const uint8_t *ps1 = s1;
1066 		const uint8_t *ps2 = s2;
1067 
1068 		do {
1069 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1070 				return (1);
1071 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1072 	}
1073 	return (0);
1074 }
1075 
1076 /*
1077  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1078  * is for safe DTrace-managed memory only.
1079  */
1080 static void
1081 dtrace_bzero(void *dst, size_t len)
1082 {
1083 	uchar_t *cp;
1084 
1085 	for (cp = dst; len != 0; len--)
1086 		*cp++ = 0;
1087 }
1088 
1089 static void
1090 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1091 {
1092 	uint64_t result[2];
1093 
1094 	result[0] = addend1[0] + addend2[0];
1095 	result[1] = addend1[1] + addend2[1] +
1096 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1097 
1098 	sum[0] = result[0];
1099 	sum[1] = result[1];
1100 }
1101 
1102 /*
1103  * Shift the 128-bit value in a by b. If b is positive, shift left.
1104  * If b is negative, shift right.
1105  */
1106 static void
1107 dtrace_shift_128(uint64_t *a, int b)
1108 {
1109 	uint64_t mask;
1110 
1111 	if (b == 0)
1112 		return;
1113 
1114 	if (b < 0) {
1115 		b = -b;
1116 		if (b >= 64) {
1117 			a[0] = a[1] >> (b - 64);
1118 			a[1] = 0;
1119 		} else {
1120 			a[0] >>= b;
1121 			mask = 1LL << (64 - b);
1122 			mask -= 1;
1123 			a[0] |= ((a[1] & mask) << (64 - b));
1124 			a[1] >>= b;
1125 		}
1126 	} else {
1127 		if (b >= 64) {
1128 			a[1] = a[0] << (b - 64);
1129 			a[0] = 0;
1130 		} else {
1131 			a[1] <<= b;
1132 			mask = a[0] >> (64 - b);
1133 			a[1] |= mask;
1134 			a[0] <<= b;
1135 		}
1136 	}
1137 }
1138 
1139 /*
1140  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1141  * use native multiplication on those, and then re-combine into the
1142  * resulting 128-bit value.
1143  *
1144  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1145  *     hi1 * hi2 << 64 +
1146  *     hi1 * lo2 << 32 +
1147  *     hi2 * lo1 << 32 +
1148  *     lo1 * lo2
1149  */
1150 static void
1151 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1152 {
1153 	uint64_t hi1, hi2, lo1, lo2;
1154 	uint64_t tmp[2];
1155 
1156 	hi1 = factor1 >> 32;
1157 	hi2 = factor2 >> 32;
1158 
1159 	lo1 = factor1 & DT_MASK_LO;
1160 	lo2 = factor2 & DT_MASK_LO;
1161 
1162 	product[0] = lo1 * lo2;
1163 	product[1] = hi1 * hi2;
1164 
1165 	tmp[0] = hi1 * lo2;
1166 	tmp[1] = 0;
1167 	dtrace_shift_128(tmp, 32);
1168 	dtrace_add_128(product, tmp, product);
1169 
1170 	tmp[0] = hi2 * lo1;
1171 	tmp[1] = 0;
1172 	dtrace_shift_128(tmp, 32);
1173 	dtrace_add_128(product, tmp, product);
1174 }
1175 
1176 /*
1177  * This privilege check should be used by actions and subroutines to
1178  * verify that the user credentials of the process that enabled the
1179  * invoking ECB match the target credentials
1180  */
1181 static int
1182 dtrace_priv_proc_common_user(dtrace_state_t *state)
1183 {
1184 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1185 
1186 	/*
1187 	 * We should always have a non-NULL state cred here, since if cred
1188 	 * is null (anonymous tracing), we fast-path bypass this routine.
1189 	 */
1190 	ASSERT(s_cr != NULL);
1191 
1192 #if defined(sun)
1193 	if ((cr = CRED()) != NULL &&
1194 	    s_cr->cr_uid == cr->cr_uid &&
1195 	    s_cr->cr_uid == cr->cr_ruid &&
1196 	    s_cr->cr_uid == cr->cr_suid &&
1197 	    s_cr->cr_gid == cr->cr_gid &&
1198 	    s_cr->cr_gid == cr->cr_rgid &&
1199 	    s_cr->cr_gid == cr->cr_sgid)
1200 		return (1);
1201 #else
1202 	if ((cr = CRED()) != NULL) {
1203 	    uid_t uid;
1204 	    gid_t gid;
1205 
1206 	    uid = kauth_cred_getuid(s_cr);
1207 	    gid = kauth_cred_getgid(s_cr);
1208 
1209 		if (uid == kauth_cred_getuid(cr) &&
1210 		    uid == kauth_cred_geteuid(cr) &&
1211 		    uid == kauth_cred_getsvuid(cr) &&
1212 		    gid == kauth_cred_getgid(cr) &&
1213 		    gid == kauth_cred_getegid(cr) &&
1214 		    gid == kauth_cred_getsvgid(cr)) {
1215 			return 1;
1216 		}
1217 	}
1218 #endif
1219 
1220 	return (0);
1221 }
1222 
1223 /*
1224  * This privilege check should be used by actions and subroutines to
1225  * verify that the zone of the process that enabled the invoking ECB
1226  * matches the target credentials
1227  */
1228 static int
1229 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1230 {
1231 #if defined(sun)
1232 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1233 
1234 	/*
1235 	 * We should always have a non-NULL state cred here, since if cred
1236 	 * is null (anonymous tracing), we fast-path bypass this routine.
1237 	 */
1238 	ASSERT(s_cr != NULL);
1239 
1240 	if ((cr = CRED()) != NULL &&
1241 	    s_cr->cr_zone == cr->cr_zone)
1242 		return (1);
1243 
1244 	return (0);
1245 #else
1246 	return (1);
1247 #endif
1248 }
1249 
1250 /*
1251  * This privilege check should be used by actions and subroutines to
1252  * verify that the process has not setuid or changed credentials.
1253  */
1254 static int
1255 dtrace_priv_proc_common_nocd(void)
1256 {
1257 	proc_t *proc;
1258 
1259 	if ((proc = ttoproc(curthread)) != NULL &&
1260 	    !(proc->p_flag & SNOCD))
1261 		return (1);
1262 
1263 	return (0);
1264 }
1265 
1266 static int
1267 dtrace_priv_proc_destructive(dtrace_state_t *state)
1268 {
1269 	int action = state->dts_cred.dcr_action;
1270 
1271 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1272 	    dtrace_priv_proc_common_zone(state) == 0)
1273 		goto bad;
1274 
1275 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1276 	    dtrace_priv_proc_common_user(state) == 0)
1277 		goto bad;
1278 
1279 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1280 	    dtrace_priv_proc_common_nocd() == 0)
1281 		goto bad;
1282 
1283 	return (1);
1284 
1285 bad:
1286 	cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1287 
1288 	return (0);
1289 }
1290 
1291 static int
1292 dtrace_priv_proc_control(dtrace_state_t *state)
1293 {
1294 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1295 		return (1);
1296 
1297 	if (dtrace_priv_proc_common_zone(state) &&
1298 	    dtrace_priv_proc_common_user(state) &&
1299 	    dtrace_priv_proc_common_nocd())
1300 		return (1);
1301 
1302 	cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1303 
1304 	return (0);
1305 }
1306 
1307 static int
1308 dtrace_priv_proc(dtrace_state_t *state)
1309 {
1310 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1311 		return (1);
1312 
1313 	cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1314 
1315 	return (0);
1316 }
1317 
1318 static int
1319 dtrace_priv_kernel(dtrace_state_t *state)
1320 {
1321 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1322 		return (1);
1323 
1324 	cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1325 
1326 	return (0);
1327 }
1328 
1329 static int
1330 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1331 {
1332 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1333 		return (1);
1334 
1335 	cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1336 
1337 	return (0);
1338 }
1339 
1340 /*
1341  * Note:  not called from probe context.  This function is called
1342  * asynchronously (and at a regular interval) from outside of probe context to
1343  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1344  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1345  */
1346 void
1347 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1348 {
1349 	dtrace_dynvar_t *dirty;
1350 	dtrace_dstate_percpu_t *dcpu;
1351 	int i, work = 0;
1352 
1353 	for (i = 0; i < NCPU; i++) {
1354 		dcpu = &dstate->dtds_percpu[i];
1355 
1356 		ASSERT(dcpu->dtdsc_rinsing == NULL);
1357 
1358 		/*
1359 		 * If the dirty list is NULL, there is no dirty work to do.
1360 		 */
1361 		if (dcpu->dtdsc_dirty == NULL)
1362 			continue;
1363 
1364 		/*
1365 		 * If the clean list is non-NULL, then we're not going to do
1366 		 * any work for this CPU -- it means that there has not been
1367 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1368 		 * since the last time we cleaned house.
1369 		 */
1370 		if (dcpu->dtdsc_clean != NULL)
1371 			continue;
1372 
1373 		work = 1;
1374 
1375 		/*
1376 		 * Atomically move the dirty list aside.
1377 		 */
1378 		do {
1379 			dirty = dcpu->dtdsc_dirty;
1380 
1381 			/*
1382 			 * Before we zap the dirty list, set the rinsing list.
1383 			 * (This allows for a potential assertion in
1384 			 * dtrace_dynvar():  if a free dynamic variable appears
1385 			 * on a hash chain, either the dirty list or the
1386 			 * rinsing list for some CPU must be non-NULL.)
1387 			 */
1388 			dcpu->dtdsc_rinsing = dirty;
1389 			dtrace_membar_producer();
1390 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1391 		    dirty, NULL) != dirty);
1392 	}
1393 
1394 	if (!work) {
1395 		/*
1396 		 * We have no work to do; we can simply return.
1397 		 */
1398 		return;
1399 	}
1400 
1401 	dtrace_sync();
1402 
1403 	for (i = 0; i < NCPU; i++) {
1404 		dcpu = &dstate->dtds_percpu[i];
1405 
1406 		if (dcpu->dtdsc_rinsing == NULL)
1407 			continue;
1408 
1409 		/*
1410 		 * We are now guaranteed that no hash chain contains a pointer
1411 		 * into this dirty list; we can make it clean.
1412 		 */
1413 		ASSERT(dcpu->dtdsc_clean == NULL);
1414 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1415 		dcpu->dtdsc_rinsing = NULL;
1416 	}
1417 
1418 	/*
1419 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1420 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1421 	 * This prevents a race whereby a CPU incorrectly decides that
1422 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1423 	 * after dtrace_dynvar_clean() has completed.
1424 	 */
1425 	dtrace_sync();
1426 
1427 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1428 }
1429 
1430 /*
1431  * Depending on the value of the op parameter, this function looks-up,
1432  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1433  * allocation is requested, this function will return a pointer to a
1434  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1435  * variable can be allocated.  If NULL is returned, the appropriate counter
1436  * will be incremented.
1437  */
1438 dtrace_dynvar_t *
1439 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1440     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1441     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1442 {
1443 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1444 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1445 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1446 	processorid_t me = curcpu_id, cpu = me;
1447 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1448 	size_t bucket, ksize;
1449 	size_t chunksize = dstate->dtds_chunksize;
1450 	uintptr_t kdata, lock, nstate;
1451 	uint_t i;
1452 
1453 	ASSERT(nkeys != 0);
1454 
1455 	/*
1456 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1457 	 * algorithm.  For the by-value portions, we perform the algorithm in
1458 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1459 	 * bit, and seems to have only a minute effect on distribution.  For
1460 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1461 	 * over each referenced byte.  It's painful to do this, but it's much
1462 	 * better than pathological hash distribution.  The efficacy of the
1463 	 * hashing algorithm (and a comparison with other algorithms) may be
1464 	 * found by running the ::dtrace_dynstat MDB dcmd.
1465 	 */
1466 	for (i = 0; i < nkeys; i++) {
1467 		if (key[i].dttk_size == 0) {
1468 			uint64_t val = key[i].dttk_value;
1469 
1470 			hashval += (val >> 48) & 0xffff;
1471 			hashval += (hashval << 10);
1472 			hashval ^= (hashval >> 6);
1473 
1474 			hashval += (val >> 32) & 0xffff;
1475 			hashval += (hashval << 10);
1476 			hashval ^= (hashval >> 6);
1477 
1478 			hashval += (val >> 16) & 0xffff;
1479 			hashval += (hashval << 10);
1480 			hashval ^= (hashval >> 6);
1481 
1482 			hashval += val & 0xffff;
1483 			hashval += (hashval << 10);
1484 			hashval ^= (hashval >> 6);
1485 		} else {
1486 			/*
1487 			 * This is incredibly painful, but it beats the hell
1488 			 * out of the alternative.
1489 			 */
1490 			uint64_t j, size = key[i].dttk_size;
1491 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1492 
1493 			if (!dtrace_canload(base, size, mstate, vstate))
1494 				break;
1495 
1496 			for (j = 0; j < size; j++) {
1497 				hashval += dtrace_load8(base + j);
1498 				hashval += (hashval << 10);
1499 				hashval ^= (hashval >> 6);
1500 			}
1501 		}
1502 	}
1503 
1504 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1505 		return (NULL);
1506 
1507 	hashval += (hashval << 3);
1508 	hashval ^= (hashval >> 11);
1509 	hashval += (hashval << 15);
1510 
1511 	/*
1512 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1513 	 * comes out to be one of our two sentinel hash values.  If this
1514 	 * actually happens, we set the hashval to be a value known to be a
1515 	 * non-sentinel value.
1516 	 */
1517 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1518 		hashval = DTRACE_DYNHASH_VALID;
1519 
1520 	/*
1521 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1522 	 * important here, tricks can be pulled to reduce it.  (However, it's
1523 	 * critical that hash collisions be kept to an absolute minimum;
1524 	 * they're much more painful than a divide.)  It's better to have a
1525 	 * solution that generates few collisions and still keeps things
1526 	 * relatively simple.
1527 	 */
1528 	bucket = hashval % dstate->dtds_hashsize;
1529 
1530 	if (op == DTRACE_DYNVAR_DEALLOC) {
1531 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1532 
1533 		for (;;) {
1534 			while ((lock = *lockp) & 1)
1535 				continue;
1536 
1537 			if (dtrace_casptr((volatile void *)lockp,
1538 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1539 				break;
1540 		}
1541 
1542 		dtrace_membar_producer();
1543 	}
1544 
1545 top:
1546 	prev = NULL;
1547 	lock = hash[bucket].dtdh_lock;
1548 
1549 	dtrace_membar_consumer();
1550 
1551 	start = hash[bucket].dtdh_chain;
1552 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1553 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1554 	    op != DTRACE_DYNVAR_DEALLOC));
1555 
1556 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1557 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1558 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1559 
1560 		if (dvar->dtdv_hashval != hashval) {
1561 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1562 				/*
1563 				 * We've reached the sink, and therefore the
1564 				 * end of the hash chain; we can kick out of
1565 				 * the loop knowing that we have seen a valid
1566 				 * snapshot of state.
1567 				 */
1568 				ASSERT(dvar->dtdv_next == NULL);
1569 				ASSERT(dvar == &dtrace_dynhash_sink);
1570 				break;
1571 			}
1572 
1573 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1574 				/*
1575 				 * We've gone off the rails:  somewhere along
1576 				 * the line, one of the members of this hash
1577 				 * chain was deleted.  Note that we could also
1578 				 * detect this by simply letting this loop run
1579 				 * to completion, as we would eventually hit
1580 				 * the end of the dirty list.  However, we
1581 				 * want to avoid running the length of the
1582 				 * dirty list unnecessarily (it might be quite
1583 				 * long), so we catch this as early as
1584 				 * possible by detecting the hash marker.  In
1585 				 * this case, we simply set dvar to NULL and
1586 				 * break; the conditional after the loop will
1587 				 * send us back to top.
1588 				 */
1589 				dvar = NULL;
1590 				break;
1591 			}
1592 
1593 			goto next;
1594 		}
1595 
1596 		if (dtuple->dtt_nkeys != nkeys)
1597 			goto next;
1598 
1599 		for (i = 0; i < nkeys; i++, dkey++) {
1600 			if (dkey->dttk_size != key[i].dttk_size)
1601 				goto next; /* size or type mismatch */
1602 
1603 			if (dkey->dttk_size != 0) {
1604 				if (dtrace_bcmp(
1605 				    (void *)(uintptr_t)key[i].dttk_value,
1606 				    (void *)(uintptr_t)dkey->dttk_value,
1607 				    dkey->dttk_size))
1608 					goto next;
1609 			} else {
1610 				if (dkey->dttk_value != key[i].dttk_value)
1611 					goto next;
1612 			}
1613 		}
1614 
1615 		if (op != DTRACE_DYNVAR_DEALLOC)
1616 			return (dvar);
1617 
1618 		ASSERT(dvar->dtdv_next == NULL ||
1619 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1620 
1621 		if (prev != NULL) {
1622 			ASSERT(hash[bucket].dtdh_chain != dvar);
1623 			ASSERT(start != dvar);
1624 			ASSERT(prev->dtdv_next == dvar);
1625 			prev->dtdv_next = dvar->dtdv_next;
1626 		} else {
1627 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1628 			    start, dvar->dtdv_next) != start) {
1629 				/*
1630 				 * We have failed to atomically swing the
1631 				 * hash table head pointer, presumably because
1632 				 * of a conflicting allocation on another CPU.
1633 				 * We need to reread the hash chain and try
1634 				 * again.
1635 				 */
1636 				goto top;
1637 			}
1638 		}
1639 
1640 		dtrace_membar_producer();
1641 
1642 		/*
1643 		 * Now set the hash value to indicate that it's free.
1644 		 */
1645 		ASSERT(hash[bucket].dtdh_chain != dvar);
1646 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1647 
1648 		dtrace_membar_producer();
1649 
1650 		/*
1651 		 * Set the next pointer to point at the dirty list, and
1652 		 * atomically swing the dirty pointer to the newly freed dvar.
1653 		 */
1654 		do {
1655 			next = dcpu->dtdsc_dirty;
1656 			dvar->dtdv_next = next;
1657 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1658 
1659 		/*
1660 		 * Finally, unlock this hash bucket.
1661 		 */
1662 		ASSERT(hash[bucket].dtdh_lock == lock);
1663 		ASSERT(lock & 1);
1664 		hash[bucket].dtdh_lock++;
1665 
1666 		return (NULL);
1667 next:
1668 		prev = dvar;
1669 		continue;
1670 	}
1671 
1672 	if (dvar == NULL) {
1673 		/*
1674 		 * If dvar is NULL, it is because we went off the rails:
1675 		 * one of the elements that we traversed in the hash chain
1676 		 * was deleted while we were traversing it.  In this case,
1677 		 * we assert that we aren't doing a dealloc (deallocs lock
1678 		 * the hash bucket to prevent themselves from racing with
1679 		 * one another), and retry the hash chain traversal.
1680 		 */
1681 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1682 		goto top;
1683 	}
1684 
1685 	if (op != DTRACE_DYNVAR_ALLOC) {
1686 		/*
1687 		 * If we are not to allocate a new variable, we want to
1688 		 * return NULL now.  Before we return, check that the value
1689 		 * of the lock word hasn't changed.  If it has, we may have
1690 		 * seen an inconsistent snapshot.
1691 		 */
1692 		if (op == DTRACE_DYNVAR_NOALLOC) {
1693 			if (hash[bucket].dtdh_lock != lock)
1694 				goto top;
1695 		} else {
1696 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1697 			ASSERT(hash[bucket].dtdh_lock == lock);
1698 			ASSERT(lock & 1);
1699 			hash[bucket].dtdh_lock++;
1700 		}
1701 
1702 		return (NULL);
1703 	}
1704 
1705 	/*
1706 	 * We need to allocate a new dynamic variable.  The size we need is the
1707 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1708 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1709 	 * the size of any referred-to data (dsize).  We then round the final
1710 	 * size up to the chunksize for allocation.
1711 	 */
1712 	for (ksize = 0, i = 0; i < nkeys; i++)
1713 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1714 
1715 	/*
1716 	 * This should be pretty much impossible, but could happen if, say,
1717 	 * strange DIF specified the tuple.  Ideally, this should be an
1718 	 * assertion and not an error condition -- but that requires that the
1719 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1720 	 * bullet-proof.  (That is, it must not be able to be fooled by
1721 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1722 	 * solving this would presumably not amount to solving the Halting
1723 	 * Problem -- but it still seems awfully hard.
1724 	 */
1725 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1726 	    ksize + dsize > chunksize) {
1727 		dcpu->dtdsc_drops++;
1728 		return (NULL);
1729 	}
1730 
1731 	nstate = DTRACE_DSTATE_EMPTY;
1732 
1733 	do {
1734 retry:
1735 		free = dcpu->dtdsc_free;
1736 
1737 		if (free == NULL) {
1738 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1739 			void *rval;
1740 
1741 			if (clean == NULL) {
1742 				/*
1743 				 * We're out of dynamic variable space on
1744 				 * this CPU.  Unless we have tried all CPUs,
1745 				 * we'll try to allocate from a different
1746 				 * CPU.
1747 				 */
1748 				switch (dstate->dtds_state) {
1749 				case DTRACE_DSTATE_CLEAN: {
1750 					void *sp = &dstate->dtds_state;
1751 
1752 					if (++cpu >= NCPU)
1753 						cpu = 0;
1754 
1755 					if (dcpu->dtdsc_dirty != NULL &&
1756 					    nstate == DTRACE_DSTATE_EMPTY)
1757 						nstate = DTRACE_DSTATE_DIRTY;
1758 
1759 					if (dcpu->dtdsc_rinsing != NULL)
1760 						nstate = DTRACE_DSTATE_RINSING;
1761 
1762 					dcpu = &dstate->dtds_percpu[cpu];
1763 
1764 					if (cpu != me)
1765 						goto retry;
1766 
1767 					(void) dtrace_cas32(sp,
1768 					    DTRACE_DSTATE_CLEAN, nstate);
1769 
1770 					/*
1771 					 * To increment the correct bean
1772 					 * counter, take another lap.
1773 					 */
1774 					goto retry;
1775 				}
1776 
1777 				case DTRACE_DSTATE_DIRTY:
1778 					dcpu->dtdsc_dirty_drops++;
1779 					break;
1780 
1781 				case DTRACE_DSTATE_RINSING:
1782 					dcpu->dtdsc_rinsing_drops++;
1783 					break;
1784 
1785 				case DTRACE_DSTATE_EMPTY:
1786 					dcpu->dtdsc_drops++;
1787 					break;
1788 				}
1789 
1790 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1791 				return (NULL);
1792 			}
1793 
1794 			/*
1795 			 * The clean list appears to be non-empty.  We want to
1796 			 * move the clean list to the free list; we start by
1797 			 * moving the clean pointer aside.
1798 			 */
1799 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1800 			    clean, NULL) != clean) {
1801 				/*
1802 				 * We are in one of two situations:
1803 				 *
1804 				 *  (a)	The clean list was switched to the
1805 				 *	free list by another CPU.
1806 				 *
1807 				 *  (b)	The clean list was added to by the
1808 				 *	cleansing cyclic.
1809 				 *
1810 				 * In either of these situations, we can
1811 				 * just reattempt the free list allocation.
1812 				 */
1813 				goto retry;
1814 			}
1815 
1816 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1817 
1818 			/*
1819 			 * Now we'll move the clean list to the free list.
1820 			 * It's impossible for this to fail:  the only way
1821 			 * the free list can be updated is through this
1822 			 * code path, and only one CPU can own the clean list.
1823 			 * Thus, it would only be possible for this to fail if
1824 			 * this code were racing with dtrace_dynvar_clean().
1825 			 * (That is, if dtrace_dynvar_clean() updated the clean
1826 			 * list, and we ended up racing to update the free
1827 			 * list.)  This race is prevented by the dtrace_sync()
1828 			 * in dtrace_dynvar_clean() -- which flushes the
1829 			 * owners of the clean lists out before resetting
1830 			 * the clean lists.
1831 			 */
1832 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1833 			ASSERT(rval == NULL);
1834 			goto retry;
1835 		}
1836 
1837 		dvar = free;
1838 		new_free = dvar->dtdv_next;
1839 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1840 
1841 	/*
1842 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1843 	 * tuple array and copy any referenced key data into the data space
1844 	 * following the tuple array.  As we do this, we relocate dttk_value
1845 	 * in the final tuple to point to the key data address in the chunk.
1846 	 */
1847 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1848 	dvar->dtdv_data = (void *)(kdata + ksize);
1849 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1850 
1851 	for (i = 0; i < nkeys; i++) {
1852 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1853 		size_t kesize = key[i].dttk_size;
1854 
1855 		if (kesize != 0) {
1856 			dtrace_bcopy(
1857 			    (const void *)(uintptr_t)key[i].dttk_value,
1858 			    (void *)kdata, kesize);
1859 			dkey->dttk_value = kdata;
1860 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1861 		} else {
1862 			dkey->dttk_value = key[i].dttk_value;
1863 		}
1864 
1865 		dkey->dttk_size = kesize;
1866 	}
1867 
1868 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1869 	dvar->dtdv_hashval = hashval;
1870 	dvar->dtdv_next = start;
1871 
1872 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1873 		return (dvar);
1874 
1875 	/*
1876 	 * The cas has failed.  Either another CPU is adding an element to
1877 	 * this hash chain, or another CPU is deleting an element from this
1878 	 * hash chain.  The simplest way to deal with both of these cases
1879 	 * (though not necessarily the most efficient) is to free our
1880 	 * allocated block and tail-call ourselves.  Note that the free is
1881 	 * to the dirty list and _not_ to the free list.  This is to prevent
1882 	 * races with allocators, above.
1883 	 */
1884 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1885 
1886 	dtrace_membar_producer();
1887 
1888 	do {
1889 		free = dcpu->dtdsc_dirty;
1890 		dvar->dtdv_next = free;
1891 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1892 
1893 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1894 }
1895 
1896 /*ARGSUSED*/
1897 static void
1898 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1899 {
1900 	if ((int64_t)nval < (int64_t)*oval)
1901 		*oval = nval;
1902 }
1903 
1904 /*ARGSUSED*/
1905 static void
1906 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1907 {
1908 	if ((int64_t)nval > (int64_t)*oval)
1909 		*oval = nval;
1910 }
1911 
1912 static void
1913 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1914 {
1915 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1916 	int64_t val = (int64_t)nval;
1917 
1918 	if (val < 0) {
1919 		for (i = 0; i < zero; i++) {
1920 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1921 				quanta[i] += incr;
1922 				return;
1923 			}
1924 		}
1925 	} else {
1926 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1927 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1928 				quanta[i - 1] += incr;
1929 				return;
1930 			}
1931 		}
1932 
1933 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1934 		return;
1935 	}
1936 
1937 	ASSERT(0);
1938 }
1939 
1940 static void
1941 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1942 {
1943 	uint64_t arg = *lquanta++;
1944 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1945 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1946 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1947 	int32_t val = (int32_t)nval, level;
1948 
1949 	ASSERT(step != 0);
1950 	ASSERT(levels != 0);
1951 
1952 	if (val < base) {
1953 		/*
1954 		 * This is an underflow.
1955 		 */
1956 		lquanta[0] += incr;
1957 		return;
1958 	}
1959 
1960 	level = (val - base) / step;
1961 
1962 	if (level < levels) {
1963 		lquanta[level + 1] += incr;
1964 		return;
1965 	}
1966 
1967 	/*
1968 	 * This is an overflow.
1969 	 */
1970 	lquanta[levels + 1] += incr;
1971 }
1972 
1973 /*ARGSUSED*/
1974 static void
1975 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1976 {
1977 	data[0]++;
1978 	data[1] += nval;
1979 }
1980 
1981 /*ARGSUSED*/
1982 static void
1983 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1984 {
1985 	int64_t snval = (int64_t)nval;
1986 	uint64_t tmp[2];
1987 
1988 	data[0]++;
1989 	data[1] += nval;
1990 
1991 	/*
1992 	 * What we want to say here is:
1993 	 *
1994 	 * data[2] += nval * nval;
1995 	 *
1996 	 * But given that nval is 64-bit, we could easily overflow, so
1997 	 * we do this as 128-bit arithmetic.
1998 	 */
1999 	if (snval < 0)
2000 		snval = -snval;
2001 
2002 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2003 	dtrace_add_128(data + 2, tmp, data + 2);
2004 }
2005 
2006 /*ARGSUSED*/
2007 static void
2008 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2009 {
2010 	*oval = *oval + 1;
2011 }
2012 
2013 /*ARGSUSED*/
2014 static void
2015 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2016 {
2017 	*oval += nval;
2018 }
2019 
2020 /*
2021  * Aggregate given the tuple in the principal data buffer, and the aggregating
2022  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2023  * buffer is specified as the buf parameter.  This routine does not return
2024  * failure; if there is no space in the aggregation buffer, the data will be
2025  * dropped, and a corresponding counter incremented.
2026  */
2027 static void
2028 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2029     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2030 {
2031 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2032 	uint32_t i, ndx, size, fsize;
2033 	uint32_t align = sizeof (uint64_t) - 1;
2034 	dtrace_aggbuffer_t *agb;
2035 	dtrace_aggkey_t *key;
2036 	uint32_t hashval = 0, limit, isstr;
2037 	caddr_t tomax, data, kdata;
2038 	dtrace_actkind_t action;
2039 	dtrace_action_t *act;
2040 	uintptr_t offs;
2041 
2042 	if (buf == NULL)
2043 		return;
2044 
2045 	if (!agg->dtag_hasarg) {
2046 		/*
2047 		 * Currently, only quantize() and lquantize() take additional
2048 		 * arguments, and they have the same semantics:  an increment
2049 		 * value that defaults to 1 when not present.  If additional
2050 		 * aggregating actions take arguments, the setting of the
2051 		 * default argument value will presumably have to become more
2052 		 * sophisticated...
2053 		 */
2054 		arg = 1;
2055 	}
2056 
2057 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2058 	size = rec->dtrd_offset - agg->dtag_base;
2059 	fsize = size + rec->dtrd_size;
2060 
2061 	ASSERT(dbuf->dtb_tomax != NULL);
2062 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2063 
2064 	if ((tomax = buf->dtb_tomax) == NULL) {
2065 		dtrace_buffer_drop(buf);
2066 		return;
2067 	}
2068 
2069 	/*
2070 	 * The metastructure is always at the bottom of the buffer.
2071 	 */
2072 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2073 	    sizeof (dtrace_aggbuffer_t));
2074 
2075 	if (buf->dtb_offset == 0) {
2076 		/*
2077 		 * We just kludge up approximately 1/8th of the size to be
2078 		 * buckets.  If this guess ends up being routinely
2079 		 * off-the-mark, we may need to dynamically readjust this
2080 		 * based on past performance.
2081 		 */
2082 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2083 
2084 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2085 		    (uintptr_t)tomax || hashsize == 0) {
2086 			/*
2087 			 * We've been given a ludicrously small buffer;
2088 			 * increment our drop count and leave.
2089 			 */
2090 			dtrace_buffer_drop(buf);
2091 			return;
2092 		}
2093 
2094 		/*
2095 		 * And now, a pathetic attempt to try to get a an odd (or
2096 		 * perchance, a prime) hash size for better hash distribution.
2097 		 */
2098 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2099 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2100 
2101 		agb->dtagb_hashsize = hashsize;
2102 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2103 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2104 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2105 
2106 		for (i = 0; i < agb->dtagb_hashsize; i++)
2107 			agb->dtagb_hash[i] = NULL;
2108 	}
2109 
2110 	ASSERT(agg->dtag_first != NULL);
2111 	ASSERT(agg->dtag_first->dta_intuple);
2112 
2113 	/*
2114 	 * Calculate the hash value based on the key.  Note that we _don't_
2115 	 * include the aggid in the hashing (but we will store it as part of
2116 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2117 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2118 	 * gets good distribution in practice.  The efficacy of the hashing
2119 	 * algorithm (and a comparison with other algorithms) may be found by
2120 	 * running the ::dtrace_aggstat MDB dcmd.
2121 	 */
2122 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2123 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2124 		limit = i + act->dta_rec.dtrd_size;
2125 		ASSERT(limit <= size);
2126 		isstr = DTRACEACT_ISSTRING(act);
2127 
2128 		for (; i < limit; i++) {
2129 			hashval += data[i];
2130 			hashval += (hashval << 10);
2131 			hashval ^= (hashval >> 6);
2132 
2133 			if (isstr && data[i] == '\0')
2134 				break;
2135 		}
2136 	}
2137 
2138 	hashval += (hashval << 3);
2139 	hashval ^= (hashval >> 11);
2140 	hashval += (hashval << 15);
2141 
2142 	/*
2143 	 * Yes, the divide here is expensive -- but it's generally the least
2144 	 * of the performance issues given the amount of data that we iterate
2145 	 * over to compute hash values, compare data, etc.
2146 	 */
2147 	ndx = hashval % agb->dtagb_hashsize;
2148 
2149 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2150 		ASSERT((caddr_t)key >= tomax);
2151 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2152 
2153 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2154 			continue;
2155 
2156 		kdata = key->dtak_data;
2157 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2158 
2159 		for (act = agg->dtag_first; act->dta_intuple;
2160 		    act = act->dta_next) {
2161 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2162 			limit = i + act->dta_rec.dtrd_size;
2163 			ASSERT(limit <= size);
2164 			isstr = DTRACEACT_ISSTRING(act);
2165 
2166 			for (; i < limit; i++) {
2167 				if (kdata[i] != data[i])
2168 					goto next;
2169 
2170 				if (isstr && data[i] == '\0')
2171 					break;
2172 			}
2173 		}
2174 
2175 		if (action != key->dtak_action) {
2176 			/*
2177 			 * We are aggregating on the same value in the same
2178 			 * aggregation with two different aggregating actions.
2179 			 * (This should have been picked up in the compiler,
2180 			 * so we may be dealing with errant or devious DIF.)
2181 			 * This is an error condition; we indicate as much,
2182 			 * and return.
2183 			 */
2184 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2185 			return;
2186 		}
2187 
2188 		/*
2189 		 * This is a hit:  we need to apply the aggregator to
2190 		 * the value at this key.
2191 		 */
2192 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2193 		return;
2194 next:
2195 		continue;
2196 	}
2197 
2198 	/*
2199 	 * We didn't find it.  We need to allocate some zero-filled space,
2200 	 * link it into the hash table appropriately, and apply the aggregator
2201 	 * to the (zero-filled) value.
2202 	 */
2203 	offs = buf->dtb_offset;
2204 	while (offs & (align - 1))
2205 		offs += sizeof (uint32_t);
2206 
2207 	/*
2208 	 * If we don't have enough room to both allocate a new key _and_
2209 	 * its associated data, increment the drop count and return.
2210 	 */
2211 	if ((uintptr_t)tomax + offs + fsize >
2212 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2213 		dtrace_buffer_drop(buf);
2214 		return;
2215 	}
2216 
2217 	/*CONSTCOND*/
2218 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2219 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2220 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2221 
2222 	key->dtak_data = kdata = tomax + offs;
2223 	buf->dtb_offset = offs + fsize;
2224 
2225 	/*
2226 	 * Now copy the data across.
2227 	 */
2228 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2229 
2230 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2231 		kdata[i] = data[i];
2232 
2233 	/*
2234 	 * Because strings are not zeroed out by default, we need to iterate
2235 	 * looking for actions that store strings, and we need to explicitly
2236 	 * pad these strings out with zeroes.
2237 	 */
2238 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2239 		int nul;
2240 
2241 		if (!DTRACEACT_ISSTRING(act))
2242 			continue;
2243 
2244 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2245 		limit = i + act->dta_rec.dtrd_size;
2246 		ASSERT(limit <= size);
2247 
2248 		for (nul = 0; i < limit; i++) {
2249 			if (nul) {
2250 				kdata[i] = '\0';
2251 				continue;
2252 			}
2253 
2254 			if (data[i] != '\0')
2255 				continue;
2256 
2257 			nul = 1;
2258 		}
2259 	}
2260 
2261 	for (i = size; i < fsize; i++)
2262 		kdata[i] = 0;
2263 
2264 	key->dtak_hashval = hashval;
2265 	key->dtak_size = size;
2266 	key->dtak_action = action;
2267 	key->dtak_next = agb->dtagb_hash[ndx];
2268 	agb->dtagb_hash[ndx] = key;
2269 
2270 	/*
2271 	 * Finally, apply the aggregator.
2272 	 */
2273 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2274 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2275 }
2276 
2277 /*
2278  * Given consumer state, this routine finds a speculation in the INACTIVE
2279  * state and transitions it into the ACTIVE state.  If there is no speculation
2280  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2281  * incremented -- it is up to the caller to take appropriate action.
2282  */
2283 static int
2284 dtrace_speculation(dtrace_state_t *state)
2285 {
2286 	int i = 0;
2287 	dtrace_speculation_state_t current;
2288 	uint32_t *stat = &state->dts_speculations_unavail, count;
2289 
2290 	while (i < state->dts_nspeculations) {
2291 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2292 
2293 		current = spec->dtsp_state;
2294 
2295 		if (current != DTRACESPEC_INACTIVE) {
2296 			if (current == DTRACESPEC_COMMITTINGMANY ||
2297 			    current == DTRACESPEC_COMMITTING ||
2298 			    current == DTRACESPEC_DISCARDING)
2299 				stat = &state->dts_speculations_busy;
2300 			i++;
2301 			continue;
2302 		}
2303 
2304 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2305 		    current, DTRACESPEC_ACTIVE) == current)
2306 			return (i + 1);
2307 	}
2308 
2309 	/*
2310 	 * We couldn't find a speculation.  If we found as much as a single
2311 	 * busy speculation buffer, we'll attribute this failure as "busy"
2312 	 * instead of "unavail".
2313 	 */
2314 	do {
2315 		count = *stat;
2316 	} while (dtrace_cas32(stat, count, count + 1) != count);
2317 
2318 	return (0);
2319 }
2320 
2321 /*
2322  * This routine commits an active speculation.  If the specified speculation
2323  * is not in a valid state to perform a commit(), this routine will silently do
2324  * nothing.  The state of the specified speculation is transitioned according
2325  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2326  */
2327 static void
2328 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2329     dtrace_specid_t which)
2330 {
2331 	dtrace_speculation_t *spec;
2332 	dtrace_buffer_t *src, *dest;
2333 	uintptr_t daddr, saddr, dlimit;
2334 	dtrace_speculation_state_t current, new = 0;
2335 	intptr_t offs;
2336 
2337 	if (which == 0)
2338 		return;
2339 
2340 	if (which > state->dts_nspeculations) {
2341 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2342 		return;
2343 	}
2344 
2345 	spec = &state->dts_speculations[which - 1];
2346 	src = &spec->dtsp_buffer[cpu];
2347 	dest = &state->dts_buffer[cpu];
2348 
2349 	do {
2350 		current = spec->dtsp_state;
2351 
2352 		if (current == DTRACESPEC_COMMITTINGMANY)
2353 			break;
2354 
2355 		switch (current) {
2356 		case DTRACESPEC_INACTIVE:
2357 		case DTRACESPEC_DISCARDING:
2358 			return;
2359 
2360 		case DTRACESPEC_COMMITTING:
2361 			/*
2362 			 * This is only possible if we are (a) commit()'ing
2363 			 * without having done a prior speculate() on this CPU
2364 			 * and (b) racing with another commit() on a different
2365 			 * CPU.  There's nothing to do -- we just assert that
2366 			 * our offset is 0.
2367 			 */
2368 			ASSERT(src->dtb_offset == 0);
2369 			return;
2370 
2371 		case DTRACESPEC_ACTIVE:
2372 			new = DTRACESPEC_COMMITTING;
2373 			break;
2374 
2375 		case DTRACESPEC_ACTIVEONE:
2376 			/*
2377 			 * This speculation is active on one CPU.  If our
2378 			 * buffer offset is non-zero, we know that the one CPU
2379 			 * must be us.  Otherwise, we are committing on a
2380 			 * different CPU from the speculate(), and we must
2381 			 * rely on being asynchronously cleaned.
2382 			 */
2383 			if (src->dtb_offset != 0) {
2384 				new = DTRACESPEC_COMMITTING;
2385 				break;
2386 			}
2387 			/*FALLTHROUGH*/
2388 
2389 		case DTRACESPEC_ACTIVEMANY:
2390 			new = DTRACESPEC_COMMITTINGMANY;
2391 			break;
2392 
2393 		default:
2394 			ASSERT(0);
2395 		}
2396 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2397 	    current, new) != current);
2398 
2399 	/*
2400 	 * We have set the state to indicate that we are committing this
2401 	 * speculation.  Now reserve the necessary space in the destination
2402 	 * buffer.
2403 	 */
2404 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2405 	    sizeof (uint64_t), state, NULL)) < 0) {
2406 		dtrace_buffer_drop(dest);
2407 		goto out;
2408 	}
2409 
2410 	/*
2411 	 * We have the space; copy the buffer across.  (Note that this is a
2412 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2413 	 * a serious performance issue, a high-performance DTrace-specific
2414 	 * bcopy() should obviously be invented.)
2415 	 */
2416 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2417 	dlimit = daddr + src->dtb_offset;
2418 	saddr = (uintptr_t)src->dtb_tomax;
2419 
2420 	/*
2421 	 * First, the aligned portion.
2422 	 */
2423 	while (dlimit - daddr >= sizeof (uint64_t)) {
2424 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2425 
2426 		daddr += sizeof (uint64_t);
2427 		saddr += sizeof (uint64_t);
2428 	}
2429 
2430 	/*
2431 	 * Now any left-over bit...
2432 	 */
2433 	while (dlimit - daddr)
2434 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2435 
2436 	/*
2437 	 * Finally, commit the reserved space in the destination buffer.
2438 	 */
2439 	dest->dtb_offset = offs + src->dtb_offset;
2440 
2441 out:
2442 	/*
2443 	 * If we're lucky enough to be the only active CPU on this speculation
2444 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2445 	 */
2446 	if (current == DTRACESPEC_ACTIVE ||
2447 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2448 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2449 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2450 
2451 		ASSERT(rval == DTRACESPEC_COMMITTING);
2452 	}
2453 
2454 	src->dtb_offset = 0;
2455 	src->dtb_xamot_drops += src->dtb_drops;
2456 	src->dtb_drops = 0;
2457 }
2458 
2459 /*
2460  * This routine discards an active speculation.  If the specified speculation
2461  * is not in a valid state to perform a discard(), this routine will silently
2462  * do nothing.  The state of the specified speculation is transitioned
2463  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2464  */
2465 static void
2466 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2467     dtrace_specid_t which)
2468 {
2469 	dtrace_speculation_t *spec;
2470 	dtrace_speculation_state_t current, new = 0;
2471 	dtrace_buffer_t *buf;
2472 
2473 	if (which == 0)
2474 		return;
2475 
2476 	if (which > state->dts_nspeculations) {
2477 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2478 		return;
2479 	}
2480 
2481 	spec = &state->dts_speculations[which - 1];
2482 	buf = &spec->dtsp_buffer[cpu];
2483 
2484 	do {
2485 		current = spec->dtsp_state;
2486 
2487 		switch (current) {
2488 		case DTRACESPEC_INACTIVE:
2489 		case DTRACESPEC_COMMITTINGMANY:
2490 		case DTRACESPEC_COMMITTING:
2491 		case DTRACESPEC_DISCARDING:
2492 			return;
2493 
2494 		case DTRACESPEC_ACTIVE:
2495 		case DTRACESPEC_ACTIVEMANY:
2496 			new = DTRACESPEC_DISCARDING;
2497 			break;
2498 
2499 		case DTRACESPEC_ACTIVEONE:
2500 			if (buf->dtb_offset != 0) {
2501 				new = DTRACESPEC_INACTIVE;
2502 			} else {
2503 				new = DTRACESPEC_DISCARDING;
2504 			}
2505 			break;
2506 
2507 		default:
2508 			ASSERT(0);
2509 		}
2510 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2511 	    current, new) != current);
2512 
2513 	buf->dtb_offset = 0;
2514 	buf->dtb_drops = 0;
2515 }
2516 
2517 /*
2518  * Note:  not called from probe context.  This function is called
2519  * asynchronously from cross call context to clean any speculations that are
2520  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2521  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2522  * speculation.
2523  */
2524 static void
2525 dtrace_speculation_clean_here(dtrace_state_t *state)
2526 {
2527 	dtrace_icookie_t cookie;
2528 	processorid_t cpu = curcpu_id;
2529 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2530 	dtrace_specid_t i;
2531 
2532 	cookie = dtrace_interrupt_disable();
2533 
2534 	if (dest->dtb_tomax == NULL) {
2535 		dtrace_interrupt_enable(cookie);
2536 		return;
2537 	}
2538 
2539 	for (i = 0; i < state->dts_nspeculations; i++) {
2540 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2541 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2542 
2543 		if (src->dtb_tomax == NULL)
2544 			continue;
2545 
2546 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2547 			src->dtb_offset = 0;
2548 			continue;
2549 		}
2550 
2551 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2552 			continue;
2553 
2554 		if (src->dtb_offset == 0)
2555 			continue;
2556 
2557 		dtrace_speculation_commit(state, cpu, i + 1);
2558 	}
2559 
2560 	dtrace_interrupt_enable(cookie);
2561 }
2562 
2563 /*
2564  * Note:  not called from probe context.  This function is called
2565  * asynchronously (and at a regular interval) to clean any speculations that
2566  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2567  * is work to be done, it cross calls all CPUs to perform that work;
2568  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2569  * INACTIVE state until they have been cleaned by all CPUs.
2570  */
2571 static void
2572 dtrace_speculation_clean(dtrace_state_t *state)
2573 {
2574 	int work = 0, rv;
2575 	dtrace_specid_t i;
2576 
2577 	for (i = 0; i < state->dts_nspeculations; i++) {
2578 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2579 
2580 		ASSERT(!spec->dtsp_cleaning);
2581 
2582 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2583 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2584 			continue;
2585 
2586 		work++;
2587 		spec->dtsp_cleaning = 1;
2588 	}
2589 
2590 	if (!work)
2591 		return;
2592 
2593 	dtrace_xcall(DTRACE_CPUALL,
2594 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2595 
2596 	/*
2597 	 * We now know that all CPUs have committed or discarded their
2598 	 * speculation buffers, as appropriate.  We can now set the state
2599 	 * to inactive.
2600 	 */
2601 	for (i = 0; i < state->dts_nspeculations; i++) {
2602 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2603 		dtrace_speculation_state_t current, new;
2604 
2605 		if (!spec->dtsp_cleaning)
2606 			continue;
2607 
2608 		current = spec->dtsp_state;
2609 		ASSERT(current == DTRACESPEC_DISCARDING ||
2610 		    current == DTRACESPEC_COMMITTINGMANY);
2611 
2612 		new = DTRACESPEC_INACTIVE;
2613 
2614 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2615 		ASSERT(rv == current);
2616 		spec->dtsp_cleaning = 0;
2617 	}
2618 }
2619 
2620 /*
2621  * Called as part of a speculate() to get the speculative buffer associated
2622  * with a given speculation.  Returns NULL if the specified speculation is not
2623  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2624  * the active CPU is not the specified CPU -- the speculation will be
2625  * atomically transitioned into the ACTIVEMANY state.
2626  */
2627 static dtrace_buffer_t *
2628 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2629     dtrace_specid_t which)
2630 {
2631 	dtrace_speculation_t *spec;
2632 	dtrace_speculation_state_t current, new = 0;
2633 	dtrace_buffer_t *buf;
2634 
2635 	if (which == 0)
2636 		return (NULL);
2637 
2638 	if (which > state->dts_nspeculations) {
2639 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2640 		return (NULL);
2641 	}
2642 
2643 	spec = &state->dts_speculations[which - 1];
2644 	buf = &spec->dtsp_buffer[cpuid];
2645 
2646 	do {
2647 		current = spec->dtsp_state;
2648 
2649 		switch (current) {
2650 		case DTRACESPEC_INACTIVE:
2651 		case DTRACESPEC_COMMITTINGMANY:
2652 		case DTRACESPEC_DISCARDING:
2653 			return (NULL);
2654 
2655 		case DTRACESPEC_COMMITTING:
2656 			ASSERT(buf->dtb_offset == 0);
2657 			return (NULL);
2658 
2659 		case DTRACESPEC_ACTIVEONE:
2660 			/*
2661 			 * This speculation is currently active on one CPU.
2662 			 * Check the offset in the buffer; if it's non-zero,
2663 			 * that CPU must be us (and we leave the state alone).
2664 			 * If it's zero, assume that we're starting on a new
2665 			 * CPU -- and change the state to indicate that the
2666 			 * speculation is active on more than one CPU.
2667 			 */
2668 			if (buf->dtb_offset != 0)
2669 				return (buf);
2670 
2671 			new = DTRACESPEC_ACTIVEMANY;
2672 			break;
2673 
2674 		case DTRACESPEC_ACTIVEMANY:
2675 			return (buf);
2676 
2677 		case DTRACESPEC_ACTIVE:
2678 			new = DTRACESPEC_ACTIVEONE;
2679 			break;
2680 
2681 		default:
2682 			ASSERT(0);
2683 		}
2684 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2685 	    current, new) != current);
2686 
2687 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2688 	return (buf);
2689 }
2690 
2691 /*
2692  * Return a string.  In the event that the user lacks the privilege to access
2693  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2694  * don't fail access checking.
2695  *
2696  * dtrace_dif_variable() uses this routine as a helper for various
2697  * builtin values such as 'execname' and 'probefunc.'
2698  */
2699 uintptr_t
2700 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2701     dtrace_mstate_t *mstate)
2702 {
2703 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2704 	uintptr_t ret;
2705 	size_t strsz;
2706 
2707 	/*
2708 	 * The easy case: this probe is allowed to read all of memory, so
2709 	 * we can just return this as a vanilla pointer.
2710 	 */
2711 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2712 		return (addr);
2713 
2714 	/*
2715 	 * This is the tougher case: we copy the string in question from
2716 	 * kernel memory into scratch memory and return it that way: this
2717 	 * ensures that we won't trip up when access checking tests the
2718 	 * BYREF return value.
2719 	 */
2720 	strsz = dtrace_strlen((char *)addr, size) + 1;
2721 
2722 	if (mstate->dtms_scratch_ptr + strsz >
2723 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2724 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2725 		return (0);
2726 	}
2727 
2728 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2729 	    strsz);
2730 	ret = mstate->dtms_scratch_ptr;
2731 	mstate->dtms_scratch_ptr += strsz;
2732 	return (ret);
2733 }
2734 
2735 #ifdef notyet
2736 /*
2737  * Return a string from a memoy address which is known to have one or
2738  * more concatenated, individually zero terminated, sub-strings.
2739  * In the event that the user lacks the privilege to access
2740  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2741  * don't fail access checking.
2742  *
2743  * dtrace_dif_variable() uses this routine as a helper for various
2744  * builtin values such as 'execargs'.
2745  */
2746 static uintptr_t
2747 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2748     dtrace_mstate_t *mstate)
2749 {
2750 	char *p;
2751 	size_t i;
2752 	uintptr_t ret;
2753 
2754 	if (mstate->dtms_scratch_ptr + strsz >
2755 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2756 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2757 		return (0);
2758 	}
2759 
2760 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2761 	    strsz);
2762 
2763 	/* Replace sub-string termination characters with a space. */
2764 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2765 	    p++, i++)
2766 		if (*p == '\0')
2767 			*p = ' ';
2768 
2769 	ret = mstate->dtms_scratch_ptr;
2770 	mstate->dtms_scratch_ptr += strsz;
2771 	return (ret);
2772 }
2773 #endif
2774 
2775 /*
2776  * This function implements the DIF emulator's variable lookups.  The emulator
2777  * passes a reserved variable identifier and optional built-in array index.
2778  */
2779 static uint64_t
2780 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2781     uint64_t ndx)
2782 {
2783 	/*
2784 	 * If we're accessing one of the uncached arguments, we'll turn this
2785 	 * into a reference in the args array.
2786 	 */
2787 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2788 		ndx = v - DIF_VAR_ARG0;
2789 		v = DIF_VAR_ARGS;
2790 	}
2791 
2792 	switch (v) {
2793 	case DIF_VAR_ARGS:
2794 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2795 		if (ndx >= sizeof (mstate->dtms_arg) /
2796 		    sizeof (mstate->dtms_arg[0])) {
2797 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2798 			dtrace_provider_t *pv;
2799 			uint64_t val;
2800 
2801 			pv = mstate->dtms_probe->dtpr_provider;
2802 			if (pv->dtpv_pops.dtps_getargval != NULL)
2803 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2804 				    mstate->dtms_probe->dtpr_id,
2805 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2806 			else
2807 				val = dtrace_getarg(ndx, aframes);
2808 
2809 			/*
2810 			 * This is regrettably required to keep the compiler
2811 			 * from tail-optimizing the call to dtrace_getarg().
2812 			 * The condition always evaluates to true, but the
2813 			 * compiler has no way of figuring that out a priori.
2814 			 * (None of this would be necessary if the compiler
2815 			 * could be relied upon to _always_ tail-optimize
2816 			 * the call to dtrace_getarg() -- but it can't.)
2817 			 */
2818 			if (mstate->dtms_probe != NULL)
2819 				return (val);
2820 
2821 			ASSERT(0);
2822 		}
2823 
2824 		return (mstate->dtms_arg[ndx]);
2825 
2826 #if defined(sun)
2827 	case DIF_VAR_UREGS: {
2828 		klwp_t *lwp;
2829 
2830 		if (!dtrace_priv_proc(state))
2831 			return (0);
2832 
2833 		if ((lwp = curthread->t_lwp) == NULL) {
2834 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2835 			cpu_core[curcpu_id].cpuc_dtrace_illval = NULL;
2836 			return (0);
2837 		}
2838 
2839 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2840 		return (0);
2841 	}
2842 #endif
2843 
2844 	case DIF_VAR_CURTHREAD:
2845 		if (!dtrace_priv_kernel(state))
2846 			return (0);
2847 		return ((uint64_t)(uintptr_t)curthread);
2848 
2849 	case DIF_VAR_TIMESTAMP:
2850 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2851 			mstate->dtms_timestamp = dtrace_gethrtime();
2852 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2853 		}
2854 		return (mstate->dtms_timestamp);
2855 
2856 	case DIF_VAR_VTIMESTAMP:
2857 		ASSERT(dtrace_vtime_references != 0);
2858 		return (curthread->t_dtrace_vtime);
2859 
2860 	case DIF_VAR_WALLTIMESTAMP:
2861 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2862 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2863 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2864 		}
2865 		return (mstate->dtms_walltimestamp);
2866 
2867 #if defined(sun)
2868 	case DIF_VAR_IPL:
2869 		if (!dtrace_priv_kernel(state))
2870 			return (0);
2871 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2872 			mstate->dtms_ipl = dtrace_getipl();
2873 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2874 		}
2875 		return (mstate->dtms_ipl);
2876 #endif
2877 
2878 	case DIF_VAR_EPID:
2879 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2880 		return (mstate->dtms_epid);
2881 
2882 	case DIF_VAR_ID:
2883 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2884 		return (mstate->dtms_probe->dtpr_id);
2885 
2886 	case DIF_VAR_STACKDEPTH:
2887 		if (!dtrace_priv_kernel(state))
2888 			return (0);
2889 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2890 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2891 
2892 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2893 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2894 		}
2895 		return (mstate->dtms_stackdepth);
2896 
2897 #if defined(sun)
2898 	case DIF_VAR_USTACKDEPTH:
2899 		if (!dtrace_priv_proc(state))
2900 			return (0);
2901 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2902 			/*
2903 			 * See comment in DIF_VAR_PID.
2904 			 */
2905 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2906 			    CPU_ON_INTR(CPU)) {
2907 				mstate->dtms_ustackdepth = 0;
2908 			} else {
2909 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2910 				mstate->dtms_ustackdepth =
2911 				    dtrace_getustackdepth();
2912 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2913 			}
2914 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2915 		}
2916 		return (mstate->dtms_ustackdepth);
2917 #endif
2918 
2919 	case DIF_VAR_CALLER:
2920 		if (!dtrace_priv_kernel(state))
2921 			return (0);
2922 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2923 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2924 
2925 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2926 				/*
2927 				 * If this is an unanchored probe, we are
2928 				 * required to go through the slow path:
2929 				 * dtrace_caller() only guarantees correct
2930 				 * results for anchored probes.
2931 				 */
2932 				pc_t caller[2] = {0, 0};
2933 
2934 				dtrace_getpcstack(caller, 2, aframes,
2935 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2936 				mstate->dtms_caller = caller[1];
2937 			} else if ((mstate->dtms_caller =
2938 			    dtrace_caller(aframes)) == -1) {
2939 				/*
2940 				 * We have failed to do this the quick way;
2941 				 * we must resort to the slower approach of
2942 				 * calling dtrace_getpcstack().
2943 				 */
2944 				pc_t caller = 0;
2945 
2946 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2947 				mstate->dtms_caller = caller;
2948 			}
2949 
2950 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2951 		}
2952 		return (mstate->dtms_caller);
2953 
2954 #if defined(sun)
2955 	case DIF_VAR_UCALLER:
2956 		if (!dtrace_priv_proc(state))
2957 			return (0);
2958 
2959 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2960 			uint64_t ustack[3];
2961 
2962 			/*
2963 			 * dtrace_getupcstack() fills in the first uint64_t
2964 			 * with the current PID.  The second uint64_t will
2965 			 * be the program counter at user-level.  The third
2966 			 * uint64_t will contain the caller, which is what
2967 			 * we're after.
2968 			 */
2969 			ustack[2] = 0;
2970 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2971 			dtrace_getupcstack(ustack, 3);
2972 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2973 			mstate->dtms_ucaller = ustack[2];
2974 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2975 		}
2976 
2977 		return (mstate->dtms_ucaller);
2978 #endif
2979 
2980 	case DIF_VAR_PROBEPROV:
2981 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2982 		return (dtrace_dif_varstr(
2983 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2984 		    state, mstate));
2985 
2986 	case DIF_VAR_PROBEMOD:
2987 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2988 		return (dtrace_dif_varstr(
2989 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2990 		    state, mstate));
2991 
2992 	case DIF_VAR_PROBEFUNC:
2993 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2994 		return (dtrace_dif_varstr(
2995 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2996 		    state, mstate));
2997 
2998 	case DIF_VAR_PROBENAME:
2999 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3000 		return (dtrace_dif_varstr(
3001 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3002 		    state, mstate));
3003 
3004 	case DIF_VAR_PID:
3005 		if (!dtrace_priv_proc(state))
3006 			return (0);
3007 
3008 #if defined(sun)
3009 		/*
3010 		 * Note that we are assuming that an unanchored probe is
3011 		 * always due to a high-level interrupt.  (And we're assuming
3012 		 * that there is only a single high level interrupt.)
3013 		 */
3014 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3015 			return (pid0.pid_id);
3016 
3017 		/*
3018 		 * It is always safe to dereference one's own t_procp pointer:
3019 		 * it always points to a valid, allocated proc structure.
3020 		 * Further, it is always safe to dereference the p_pidp member
3021 		 * of one's own proc structure.  (These are truisms becuase
3022 		 * threads and processes don't clean up their own state --
3023 		 * they leave that task to whomever reaps them.)
3024 		 */
3025 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3026 #else
3027 		return ((uint64_t)curproc->p_pid);
3028 #endif
3029 
3030 	case DIF_VAR_PPID:
3031 		if (!dtrace_priv_proc(state))
3032 			return (0);
3033 
3034 #if defined(sun)
3035 		/*
3036 		 * See comment in DIF_VAR_PID.
3037 		 */
3038 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3039 			return (pid0.pid_id);
3040 
3041 		/*
3042 		 * It is always safe to dereference one's own t_procp pointer:
3043 		 * it always points to a valid, allocated proc structure.
3044 		 * (This is true because threads don't clean up their own
3045 		 * state -- they leave that task to whomever reaps them.)
3046 		 */
3047 		return ((uint64_t)curthread->t_procp->p_ppid);
3048 #else
3049 		return ((uint64_t)curproc->p_pptr->p_pid);
3050 #endif
3051 
3052 	case DIF_VAR_TID:
3053 #if defined(sun)
3054 		/*
3055 		 * See comment in DIF_VAR_PID.
3056 		 */
3057 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3058 			return (0);
3059 #endif
3060 
3061 		return ((uint64_t)curthread->t_tid);
3062 
3063 	case DIF_VAR_EXECARGS: {
3064 #if 0
3065 		struct pargs *p_args = curthread->td_proc->p_args;
3066 
3067 		if (p_args == NULL)
3068 			return(0);
3069 
3070 		return (dtrace_dif_varstrz(
3071 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3072 #endif
3073 		/* XXX FreeBSD extension */
3074 		return 0;
3075 	}
3076 
3077 	case DIF_VAR_EXECNAME:
3078 #if defined(sun)
3079 		if (!dtrace_priv_proc(state))
3080 			return (0);
3081 
3082 		/*
3083 		 * See comment in DIF_VAR_PID.
3084 		 */
3085 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3086 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3087 
3088 		/*
3089 		 * It is always safe to dereference one's own t_procp pointer:
3090 		 * it always points to a valid, allocated proc structure.
3091 		 * (This is true because threads don't clean up their own
3092 		 * state -- they leave that task to whomever reaps them.)
3093 		 */
3094 		return (dtrace_dif_varstr(
3095 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3096 		    state, mstate));
3097 #else
3098 		return (dtrace_dif_varstr(
3099 		    (uintptr_t) curthread->l_proc->p_comm, state, mstate));
3100 #endif
3101 
3102 	case DIF_VAR_ZONENAME:
3103 #if defined(sun)
3104 		if (!dtrace_priv_proc(state))
3105 			return (0);
3106 
3107 		/*
3108 		 * See comment in DIF_VAR_PID.
3109 		 */
3110 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3111 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3112 
3113 		/*
3114 		 * It is always safe to dereference one's own t_procp pointer:
3115 		 * it always points to a valid, allocated proc structure.
3116 		 * (This is true because threads don't clean up their own
3117 		 * state -- they leave that task to whomever reaps them.)
3118 		 */
3119 		return (dtrace_dif_varstr(
3120 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3121 		    state, mstate));
3122 #else
3123 		return (0);
3124 #endif
3125 
3126 	case DIF_VAR_UID:
3127 		if (!dtrace_priv_proc(state))
3128 			return (0);
3129 
3130 #if defined(sun)
3131 		/*
3132 		 * See comment in DIF_VAR_PID.
3133 		 */
3134 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3135 			return ((uint64_t)p0.p_cred->cr_uid);
3136 
3137 		/*
3138 		 * It is always safe to dereference one's own t_procp pointer:
3139 		 * it always points to a valid, allocated proc structure.
3140 		 * (This is true because threads don't clean up their own
3141 		 * state -- they leave that task to whomever reaps them.)
3142 		 *
3143 		 * Additionally, it is safe to dereference one's own process
3144 		 * credential, since this is never NULL after process birth.
3145 		 */
3146 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3147 #else
3148 		return (uint64_t)kauth_cred_getuid(curthread->t_procp->p_cred);
3149 #endif
3150 
3151 	case DIF_VAR_GID:
3152 		if (!dtrace_priv_proc(state))
3153 			return (0);
3154 
3155 #if defined(sun)
3156 		/*
3157 		 * See comment in DIF_VAR_PID.
3158 		 */
3159 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3160 			return ((uint64_t)p0.p_cred->cr_gid);
3161 
3162 		/*
3163 		 * It is always safe to dereference one's own t_procp pointer:
3164 		 * it always points to a valid, allocated proc structure.
3165 		 * (This is true because threads don't clean up their own
3166 		 * state -- they leave that task to whomever reaps them.)
3167 		 *
3168 		 * Additionally, it is safe to dereference one's own process
3169 		 * credential, since this is never NULL after process birth.
3170 		 */
3171 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3172 #else
3173 		return (uint64_t)kauth_cred_getgid(curthread->t_procp->p_cred);
3174 #endif
3175 
3176 	case DIF_VAR_ERRNO: {
3177 #if defined(sun)
3178 		klwp_t *lwp;
3179 		if (!dtrace_priv_proc(state))
3180 			return (0);
3181 
3182 		/*
3183 		 * See comment in DIF_VAR_PID.
3184 		 */
3185 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3186 			return (0);
3187 
3188 		/*
3189 		 * It is always safe to dereference one's own t_lwp pointer in
3190 		 * the event that this pointer is non-NULL.  (This is true
3191 		 * because threads and lwps don't clean up their own state --
3192 		 * they leave that task to whomever reaps them.)
3193 		 */
3194 		if ((lwp = curthread->t_lwp) == NULL)
3195 			return (0);
3196 
3197 		return ((uint64_t)lwp->lwp_errno);
3198 #else
3199 #if 0
3200 		return (curthread->l_errno);
3201 #else
3202 		return 0;	/* XXX TBD errno support at lwp level? */
3203 #endif
3204 #endif
3205 	}
3206 	default:
3207 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3208 		return (0);
3209 	}
3210 }
3211 
3212 /*
3213  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3214  * Notice that we don't bother validating the proper number of arguments or
3215  * their types in the tuple stack.  This isn't needed because all argument
3216  * interpretation is safe because of our load safety -- the worst that can
3217  * happen is that a bogus program can obtain bogus results.
3218  */
3219 static void
3220 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3221     dtrace_key_t *tupregs, int nargs,
3222     dtrace_mstate_t *mstate, dtrace_state_t *state)
3223 {
3224 	volatile uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags;
3225 	volatile uintptr_t *illval = &cpu_core[curcpu_id].cpuc_dtrace_illval;
3226 	dtrace_vstate_t *vstate = &state->dts_vstate;
3227 
3228 #if defined(sun)
3229 	union {
3230 		mutex_impl_t mi;
3231 		uint64_t mx;
3232 	} m;
3233 
3234 	union {
3235 		krwlock_t ri;
3236 		uintptr_t rw;
3237 	} r;
3238 #else
3239 	union {
3240 		kmutex_t mi;
3241 		uint64_t mx;
3242 	} m;
3243 
3244 	union {
3245 		krwlock_t ri;
3246 		uintptr_t rw;
3247 	} r;
3248 #endif
3249 
3250 	switch (subr) {
3251 	case DIF_SUBR_RAND:
3252 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3253 		break;
3254 
3255 #if defined(sun)
3256 	case DIF_SUBR_MUTEX_OWNED:
3257 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3258 		    mstate, vstate)) {
3259 			regs[rd] = 0;
3260 			break;
3261 		}
3262 
3263 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3264 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3265 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3266 		else
3267 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3268 		break;
3269 
3270 	case DIF_SUBR_MUTEX_OWNER:
3271 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3272 		    mstate, vstate)) {
3273 			regs[rd] = 0;
3274 			break;
3275 		}
3276 
3277 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3278 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3279 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3280 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3281 		else
3282 			regs[rd] = 0;
3283 		break;
3284 
3285 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3286 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3287 		    mstate, vstate)) {
3288 			regs[rd] = 0;
3289 			break;
3290 		}
3291 
3292 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3293 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3294 		break;
3295 
3296 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3297 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3298 		    mstate, vstate)) {
3299 			regs[rd] = 0;
3300 			break;
3301 		}
3302 
3303 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3304 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3305 		break;
3306 
3307 	case DIF_SUBR_RW_READ_HELD: {
3308 		uintptr_t tmp;
3309 
3310 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3311 		    mstate, vstate)) {
3312 			regs[rd] = 0;
3313 			break;
3314 		}
3315 
3316 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3317 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3318 		break;
3319 	}
3320 
3321 	case DIF_SUBR_RW_WRITE_HELD:
3322 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3323 		    mstate, vstate)) {
3324 			regs[rd] = 0;
3325 			break;
3326 		}
3327 
3328 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3329 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3330 		break;
3331 
3332 	case DIF_SUBR_RW_ISWRITER:
3333 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3334 		    mstate, vstate)) {
3335 			regs[rd] = 0;
3336 			break;
3337 		}
3338 
3339 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3340 		regs[rd] = _RW_ISWRITER(&r.ri);
3341 		break;
3342 
3343 #else
3344 	case DIF_SUBR_MUTEX_OWNED:
3345 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3346 		    mstate, vstate)) {
3347 			regs[rd] = 0;
3348 			break;
3349 		}
3350 
3351 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3352 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3353 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3354 		else
3355 			regs[rd] = __SIMPLELOCK_LOCKED_P(&m.mi.mtx_lock);
3356 		break;
3357 
3358 	case DIF_SUBR_MUTEX_OWNER:
3359 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3360 		    mstate, vstate)) {
3361 			regs[rd] = 0;
3362 			break;
3363 		}
3364 
3365 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3366 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3367 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3368 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3369 		else
3370 			regs[rd] = 0;
3371 		break;
3372 
3373 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3374 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3375 		    mstate, vstate)) {
3376 			regs[rd] = 0;
3377 			break;
3378 		}
3379 
3380 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3381 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3382 		break;
3383 
3384 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3385 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3386 		    mstate, vstate)) {
3387 			regs[rd] = 0;
3388 			break;
3389 		}
3390 
3391 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3392 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3393 		break;
3394 
3395 	case DIF_SUBR_RW_READ_HELD: {
3396 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3397 		    mstate, vstate)) {
3398 			regs[rd] = 0;
3399 			break;
3400 		}
3401 
3402 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3403 		regs[rd] = _RW_READ_HELD(&r.ri);
3404 		break;
3405 	}
3406 
3407 	case DIF_SUBR_RW_WRITE_HELD:
3408 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3409 		    mstate, vstate)) {
3410 			regs[rd] = 0;
3411 			break;
3412 		}
3413 
3414 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3415 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3416 		break;
3417 
3418 	case DIF_SUBR_RW_ISWRITER:
3419 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3420 		    mstate, vstate)) {
3421 			regs[rd] = 0;
3422 			break;
3423 		}
3424 
3425 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3426 		regs[rd] = _RW_ISWRITER(&r.ri);
3427 		break;
3428 
3429 #endif /* ! defined(sun) */
3430 
3431 	case DIF_SUBR_BCOPY: {
3432 		/*
3433 		 * We need to be sure that the destination is in the scratch
3434 		 * region -- no other region is allowed.
3435 		 */
3436 		uintptr_t src = tupregs[0].dttk_value;
3437 		uintptr_t dest = tupregs[1].dttk_value;
3438 		size_t size = tupregs[2].dttk_value;
3439 
3440 		if (!dtrace_inscratch(dest, size, mstate)) {
3441 			*flags |= CPU_DTRACE_BADADDR;
3442 			*illval = regs[rd];
3443 			break;
3444 		}
3445 
3446 		if (!dtrace_canload(src, size, mstate, vstate)) {
3447 			regs[rd] = 0;
3448 			break;
3449 		}
3450 
3451 		dtrace_bcopy((void *)src, (void *)dest, size);
3452 		break;
3453 	}
3454 
3455 	case DIF_SUBR_ALLOCA:
3456 	case DIF_SUBR_COPYIN: {
3457 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3458 		uint64_t size =
3459 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3460 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3461 
3462 		/*
3463 		 * This action doesn't require any credential checks since
3464 		 * probes will not activate in user contexts to which the
3465 		 * enabling user does not have permissions.
3466 		 */
3467 
3468 		/*
3469 		 * Rounding up the user allocation size could have overflowed
3470 		 * a large, bogus allocation (like -1ULL) to 0.
3471 		 */
3472 		if (scratch_size < size ||
3473 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3474 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3475 			regs[rd] = 0;
3476 			break;
3477 		}
3478 
3479 		if (subr == DIF_SUBR_COPYIN) {
3480 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3481 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3482 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3483 		}
3484 
3485 		mstate->dtms_scratch_ptr += scratch_size;
3486 		regs[rd] = dest;
3487 		break;
3488 	}
3489 
3490 	case DIF_SUBR_COPYINTO: {
3491 		uint64_t size = tupregs[1].dttk_value;
3492 		uintptr_t dest = tupregs[2].dttk_value;
3493 
3494 		/*
3495 		 * This action doesn't require any credential checks since
3496 		 * probes will not activate in user contexts to which the
3497 		 * enabling user does not have permissions.
3498 		 */
3499 		if (!dtrace_inscratch(dest, size, mstate)) {
3500 			*flags |= CPU_DTRACE_BADADDR;
3501 			*illval = regs[rd];
3502 			break;
3503 		}
3504 
3505 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3506 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3507 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3508 		break;
3509 	}
3510 
3511 	case DIF_SUBR_COPYINSTR: {
3512 		uintptr_t dest = mstate->dtms_scratch_ptr;
3513 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3514 
3515 		if (nargs > 1 && tupregs[1].dttk_value < size)
3516 			size = tupregs[1].dttk_value + 1;
3517 
3518 		/*
3519 		 * This action doesn't require any credential checks since
3520 		 * probes will not activate in user contexts to which the
3521 		 * enabling user does not have permissions.
3522 		 */
3523 		if (!DTRACE_INSCRATCH(mstate, size)) {
3524 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3525 			regs[rd] = 0;
3526 			break;
3527 		}
3528 
3529 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3530 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3531 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3532 
3533 		((char *)dest)[size - 1] = '\0';
3534 		mstate->dtms_scratch_ptr += size;
3535 		regs[rd] = dest;
3536 		break;
3537 	}
3538 
3539 #if defined(sun)
3540 	case DIF_SUBR_MSGSIZE:
3541 	case DIF_SUBR_MSGDSIZE: {
3542 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3543 		uintptr_t wptr, rptr;
3544 		size_t count = 0;
3545 		int cont = 0;
3546 
3547 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3548 
3549 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3550 			    vstate)) {
3551 				regs[rd] = 0;
3552 				break;
3553 			}
3554 
3555 			wptr = dtrace_loadptr(baddr +
3556 			    offsetof(mblk_t, b_wptr));
3557 
3558 			rptr = dtrace_loadptr(baddr +
3559 			    offsetof(mblk_t, b_rptr));
3560 
3561 			if (wptr < rptr) {
3562 				*flags |= CPU_DTRACE_BADADDR;
3563 				*illval = tupregs[0].dttk_value;
3564 				break;
3565 			}
3566 
3567 			daddr = dtrace_loadptr(baddr +
3568 			    offsetof(mblk_t, b_datap));
3569 
3570 			baddr = dtrace_loadptr(baddr +
3571 			    offsetof(mblk_t, b_cont));
3572 
3573 			/*
3574 			 * We want to prevent against denial-of-service here,
3575 			 * so we're only going to search the list for
3576 			 * dtrace_msgdsize_max mblks.
3577 			 */
3578 			if (cont++ > dtrace_msgdsize_max) {
3579 				*flags |= CPU_DTRACE_ILLOP;
3580 				break;
3581 			}
3582 
3583 			if (subr == DIF_SUBR_MSGDSIZE) {
3584 				if (dtrace_load8(daddr +
3585 				    offsetof(dblk_t, db_type)) != M_DATA)
3586 					continue;
3587 			}
3588 
3589 			count += wptr - rptr;
3590 		}
3591 
3592 		if (!(*flags & CPU_DTRACE_FAULT))
3593 			regs[rd] = count;
3594 
3595 		break;
3596 	}
3597 #endif
3598 
3599 	case DIF_SUBR_PROGENYOF: {
3600 		pid_t pid = tupregs[0].dttk_value;
3601 		proc_t *p;
3602 		int rval = 0;
3603 
3604 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3605 
3606 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3607 #if defined(sun)
3608 			if (p->p_pidp->pid_id == pid) {
3609 #else
3610 			if (p->p_pid == pid) {
3611 #endif
3612 				rval = 1;
3613 				break;
3614 			}
3615 		}
3616 
3617 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3618 
3619 		regs[rd] = rval;
3620 		break;
3621 	}
3622 
3623 	case DIF_SUBR_SPECULATION:
3624 		regs[rd] = dtrace_speculation(state);
3625 		break;
3626 
3627 	case DIF_SUBR_COPYOUT: {
3628 		uintptr_t kaddr = tupregs[0].dttk_value;
3629 		uintptr_t uaddr = tupregs[1].dttk_value;
3630 		uint64_t size = tupregs[2].dttk_value;
3631 
3632 		if (!dtrace_destructive_disallow &&
3633 		    dtrace_priv_proc_control(state) &&
3634 		    !dtrace_istoxic(kaddr, size)) {
3635 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3636 			dtrace_copyout(kaddr, uaddr, size, flags);
3637 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3638 		}
3639 		break;
3640 	}
3641 
3642 	case DIF_SUBR_COPYOUTSTR: {
3643 		uintptr_t kaddr = tupregs[0].dttk_value;
3644 		uintptr_t uaddr = tupregs[1].dttk_value;
3645 		uint64_t size = tupregs[2].dttk_value;
3646 
3647 		if (!dtrace_destructive_disallow &&
3648 		    dtrace_priv_proc_control(state) &&
3649 		    !dtrace_istoxic(kaddr, size)) {
3650 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3651 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3652 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3653 		}
3654 		break;
3655 	}
3656 
3657 	case DIF_SUBR_STRLEN: {
3658 		size_t sz;
3659 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3660 		sz = dtrace_strlen((char *)addr,
3661 		    state->dts_options[DTRACEOPT_STRSIZE]);
3662 
3663 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3664 			regs[rd] = 0;
3665 			break;
3666 		}
3667 
3668 		regs[rd] = sz;
3669 
3670 		break;
3671 	}
3672 
3673 	case DIF_SUBR_STRCHR:
3674 	case DIF_SUBR_STRRCHR: {
3675 		/*
3676 		 * We're going to iterate over the string looking for the
3677 		 * specified character.  We will iterate until we have reached
3678 		 * the string length or we have found the character.  If this
3679 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3680 		 * of the specified character instead of the first.
3681 		 */
3682 		uintptr_t saddr = tupregs[0].dttk_value;
3683 		uintptr_t addr = tupregs[0].dttk_value;
3684 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3685 		char c, target = (char)tupregs[1].dttk_value;
3686 
3687 		for (regs[rd] = 0; addr < limit; addr++) {
3688 			if ((c = dtrace_load8(addr)) == target) {
3689 				regs[rd] = addr;
3690 
3691 				if (subr == DIF_SUBR_STRCHR)
3692 					break;
3693 			}
3694 
3695 			if (c == '\0')
3696 				break;
3697 		}
3698 
3699 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3700 			regs[rd] = 0;
3701 			break;
3702 		}
3703 
3704 		break;
3705 	}
3706 
3707 	case DIF_SUBR_STRSTR:
3708 	case DIF_SUBR_INDEX:
3709 	case DIF_SUBR_RINDEX: {
3710 		/*
3711 		 * We're going to iterate over the string looking for the
3712 		 * specified string.  We will iterate until we have reached
3713 		 * the string length or we have found the string.  (Yes, this
3714 		 * is done in the most naive way possible -- but considering
3715 		 * that the string we're searching for is likely to be
3716 		 * relatively short, the complexity of Rabin-Karp or similar
3717 		 * hardly seems merited.)
3718 		 */
3719 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3720 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3721 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3722 		size_t len = dtrace_strlen(addr, size);
3723 		size_t sublen = dtrace_strlen(substr, size);
3724 		char *limit = addr + len, *orig = addr;
3725 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3726 		int inc = 1;
3727 
3728 		regs[rd] = notfound;
3729 
3730 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3731 			regs[rd] = 0;
3732 			break;
3733 		}
3734 
3735 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3736 		    vstate)) {
3737 			regs[rd] = 0;
3738 			break;
3739 		}
3740 
3741 		/*
3742 		 * strstr() and index()/rindex() have similar semantics if
3743 		 * both strings are the empty string: strstr() returns a
3744 		 * pointer to the (empty) string, and index() and rindex()
3745 		 * both return index 0 (regardless of any position argument).
3746 		 */
3747 		if (sublen == 0 && len == 0) {
3748 			if (subr == DIF_SUBR_STRSTR)
3749 				regs[rd] = (uintptr_t)addr;
3750 			else
3751 				regs[rd] = 0;
3752 			break;
3753 		}
3754 
3755 		if (subr != DIF_SUBR_STRSTR) {
3756 			if (subr == DIF_SUBR_RINDEX) {
3757 				limit = orig - 1;
3758 				addr += len;
3759 				inc = -1;
3760 			}
3761 
3762 			/*
3763 			 * Both index() and rindex() take an optional position
3764 			 * argument that denotes the starting position.
3765 			 */
3766 			if (nargs == 3) {
3767 				int64_t pos = (int64_t)tupregs[2].dttk_value;
3768 
3769 				/*
3770 				 * If the position argument to index() is
3771 				 * negative, Perl implicitly clamps it at
3772 				 * zero.  This semantic is a little surprising
3773 				 * given the special meaning of negative
3774 				 * positions to similar Perl functions like
3775 				 * substr(), but it appears to reflect a
3776 				 * notion that index() can start from a
3777 				 * negative index and increment its way up to
3778 				 * the string.  Given this notion, Perl's
3779 				 * rindex() is at least self-consistent in
3780 				 * that it implicitly clamps positions greater
3781 				 * than the string length to be the string
3782 				 * length.  Where Perl completely loses
3783 				 * coherence, however, is when the specified
3784 				 * substring is the empty string ("").  In
3785 				 * this case, even if the position is
3786 				 * negative, rindex() returns 0 -- and even if
3787 				 * the position is greater than the length,
3788 				 * index() returns the string length.  These
3789 				 * semantics violate the notion that index()
3790 				 * should never return a value less than the
3791 				 * specified position and that rindex() should
3792 				 * never return a value greater than the
3793 				 * specified position.  (One assumes that
3794 				 * these semantics are artifacts of Perl's
3795 				 * implementation and not the results of
3796 				 * deliberate design -- it beggars belief that
3797 				 * even Larry Wall could desire such oddness.)
3798 				 * While in the abstract one would wish for
3799 				 * consistent position semantics across
3800 				 * substr(), index() and rindex() -- or at the
3801 				 * very least self-consistent position
3802 				 * semantics for index() and rindex() -- we
3803 				 * instead opt to keep with the extant Perl
3804 				 * semantics, in all their broken glory.  (Do
3805 				 * we have more desire to maintain Perl's
3806 				 * semantics than Perl does?  Probably.)
3807 				 */
3808 				if (subr == DIF_SUBR_RINDEX) {
3809 					if (pos < 0) {
3810 						if (sublen == 0)
3811 							regs[rd] = 0;
3812 						break;
3813 					}
3814 
3815 					if (pos > len)
3816 						pos = len;
3817 				} else {
3818 					if (pos < 0)
3819 						pos = 0;
3820 
3821 					if (pos >= len) {
3822 						if (sublen == 0)
3823 							regs[rd] = len;
3824 						break;
3825 					}
3826 				}
3827 
3828 				addr = orig + pos;
3829 			}
3830 		}
3831 
3832 		for (regs[rd] = notfound; addr != limit; addr += inc) {
3833 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3834 				if (subr != DIF_SUBR_STRSTR) {
3835 					/*
3836 					 * As D index() and rindex() are
3837 					 * modeled on Perl (and not on awk),
3838 					 * we return a zero-based (and not a
3839 					 * one-based) index.  (For you Perl
3840 					 * weenies: no, we're not going to add
3841 					 * $[ -- and shouldn't you be at a con
3842 					 * or something?)
3843 					 */
3844 					regs[rd] = (uintptr_t)(addr - orig);
3845 					break;
3846 				}
3847 
3848 				ASSERT(subr == DIF_SUBR_STRSTR);
3849 				regs[rd] = (uintptr_t)addr;
3850 				break;
3851 			}
3852 		}
3853 
3854 		break;
3855 	}
3856 
3857 	case DIF_SUBR_STRTOK: {
3858 		uintptr_t addr = tupregs[0].dttk_value;
3859 		uintptr_t tokaddr = tupregs[1].dttk_value;
3860 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3861 		uintptr_t limit, toklimit = tokaddr + size;
3862 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3863 		char *dest = (char *)mstate->dtms_scratch_ptr;
3864 		int i;
3865 
3866 		/*
3867 		 * Check both the token buffer and (later) the input buffer,
3868 		 * since both could be non-scratch addresses.
3869 		 */
3870 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3871 			regs[rd] = 0;
3872 			break;
3873 		}
3874 
3875 		if (!DTRACE_INSCRATCH(mstate, size)) {
3876 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3877 			regs[rd] = 0;
3878 			break;
3879 		}
3880 
3881 		if (addr == 0) {
3882 			/*
3883 			 * If the address specified is NULL, we use our saved
3884 			 * strtok pointer from the mstate.  Note that this
3885 			 * means that the saved strtok pointer is _only_
3886 			 * valid within multiple enablings of the same probe --
3887 			 * it behaves like an implicit clause-local variable.
3888 			 */
3889 			addr = mstate->dtms_strtok;
3890 		} else {
3891 			/*
3892 			 * If the user-specified address is non-NULL we must
3893 			 * access check it.  This is the only time we have
3894 			 * a chance to do so, since this address may reside
3895 			 * in the string table of this clause-- future calls
3896 			 * (when we fetch addr from mstate->dtms_strtok)
3897 			 * would fail this access check.
3898 			 */
3899 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3900 				regs[rd] = 0;
3901 				break;
3902 			}
3903 		}
3904 
3905 		/*
3906 		 * First, zero the token map, and then process the token
3907 		 * string -- setting a bit in the map for every character
3908 		 * found in the token string.
3909 		 */
3910 		for (i = 0; i < sizeof (tokmap); i++)
3911 			tokmap[i] = 0;
3912 
3913 		for (; tokaddr < toklimit; tokaddr++) {
3914 			if ((c = dtrace_load8(tokaddr)) == '\0')
3915 				break;
3916 
3917 			ASSERT((c >> 3) < sizeof (tokmap));
3918 			tokmap[c >> 3] |= (1 << (c & 0x7));
3919 		}
3920 
3921 		for (limit = addr + size; addr < limit; addr++) {
3922 			/*
3923 			 * We're looking for a character that is _not_ contained
3924 			 * in the token string.
3925 			 */
3926 			if ((c = dtrace_load8(addr)) == '\0')
3927 				break;
3928 
3929 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3930 				break;
3931 		}
3932 
3933 		if (c == '\0') {
3934 			/*
3935 			 * We reached the end of the string without finding
3936 			 * any character that was not in the token string.
3937 			 * We return NULL in this case, and we set the saved
3938 			 * address to NULL as well.
3939 			 */
3940 			regs[rd] = 0;
3941 			mstate->dtms_strtok = 0;
3942 			break;
3943 		}
3944 
3945 		/*
3946 		 * From here on, we're copying into the destination string.
3947 		 */
3948 		for (i = 0; addr < limit && i < size - 1; addr++) {
3949 			if ((c = dtrace_load8(addr)) == '\0')
3950 				break;
3951 
3952 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3953 				break;
3954 
3955 			ASSERT(i < size);
3956 			dest[i++] = c;
3957 		}
3958 
3959 		ASSERT(i < size);
3960 		dest[i] = '\0';
3961 		regs[rd] = (uintptr_t)dest;
3962 		mstate->dtms_scratch_ptr += size;
3963 		mstate->dtms_strtok = addr;
3964 		break;
3965 	}
3966 
3967 	case DIF_SUBR_SUBSTR: {
3968 		uintptr_t s = tupregs[0].dttk_value;
3969 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3970 		char *d = (char *)mstate->dtms_scratch_ptr;
3971 		int64_t index = (int64_t)tupregs[1].dttk_value;
3972 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3973 		size_t len = dtrace_strlen((char *)s, size);
3974 		int64_t i = 0;
3975 
3976 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3977 			regs[rd] = 0;
3978 			break;
3979 		}
3980 
3981 		if (!DTRACE_INSCRATCH(mstate, size)) {
3982 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3983 			regs[rd] = 0;
3984 			break;
3985 		}
3986 
3987 		if (nargs <= 2)
3988 			remaining = (int64_t)size;
3989 
3990 		if (index < 0) {
3991 			index += len;
3992 
3993 			if (index < 0 && index + remaining > 0) {
3994 				remaining += index;
3995 				index = 0;
3996 			}
3997 		}
3998 
3999 		if (index >= len || index < 0) {
4000 			remaining = 0;
4001 		} else if (remaining < 0) {
4002 			remaining += len - index;
4003 		} else if (index + remaining > size) {
4004 			remaining = size - index;
4005 		}
4006 
4007 		for (i = 0; i < remaining; i++) {
4008 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4009 				break;
4010 		}
4011 
4012 		d[i] = '\0';
4013 
4014 		mstate->dtms_scratch_ptr += size;
4015 		regs[rd] = (uintptr_t)d;
4016 		break;
4017 	}
4018 
4019 #if defined(sun)
4020 	case DIF_SUBR_GETMAJOR:
4021 #ifdef _LP64
4022 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4023 #else
4024 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4025 #endif
4026 		break;
4027 
4028 	case DIF_SUBR_GETMINOR:
4029 #ifdef _LP64
4030 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4031 #else
4032 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4033 #endif
4034 		break;
4035 
4036 	case DIF_SUBR_DDI_PATHNAME: {
4037 		/*
4038 		 * This one is a galactic mess.  We are going to roughly
4039 		 * emulate ddi_pathname(), but it's made more complicated
4040 		 * by the fact that we (a) want to include the minor name and
4041 		 * (b) must proceed iteratively instead of recursively.
4042 		 */
4043 		uintptr_t dest = mstate->dtms_scratch_ptr;
4044 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4045 		char *start = (char *)dest, *end = start + size - 1;
4046 		uintptr_t daddr = tupregs[0].dttk_value;
4047 		int64_t minor = (int64_t)tupregs[1].dttk_value;
4048 		char *s;
4049 		int i, len, depth = 0;
4050 
4051 		/*
4052 		 * Due to all the pointer jumping we do and context we must
4053 		 * rely upon, we just mandate that the user must have kernel
4054 		 * read privileges to use this routine.
4055 		 */
4056 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4057 			*flags |= CPU_DTRACE_KPRIV;
4058 			*illval = daddr;
4059 			regs[rd] = 0;
4060 		}
4061 
4062 		if (!DTRACE_INSCRATCH(mstate, size)) {
4063 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4064 			regs[rd] = 0;
4065 			break;
4066 		}
4067 
4068 		*end = '\0';
4069 
4070 		/*
4071 		 * We want to have a name for the minor.  In order to do this,
4072 		 * we need to walk the minor list from the devinfo.  We want
4073 		 * to be sure that we don't infinitely walk a circular list,
4074 		 * so we check for circularity by sending a scout pointer
4075 		 * ahead two elements for every element that we iterate over;
4076 		 * if the list is circular, these will ultimately point to the
4077 		 * same element.  You may recognize this little trick as the
4078 		 * answer to a stupid interview question -- one that always
4079 		 * seems to be asked by those who had to have it laboriously
4080 		 * explained to them, and who can't even concisely describe
4081 		 * the conditions under which one would be forced to resort to
4082 		 * this technique.  Needless to say, those conditions are
4083 		 * found here -- and probably only here.  Is this the only use
4084 		 * of this infamous trick in shipping, production code?  If it
4085 		 * isn't, it probably should be...
4086 		 */
4087 		if (minor != -1) {
4088 			uintptr_t maddr = dtrace_loadptr(daddr +
4089 			    offsetof(struct dev_info, devi_minor));
4090 
4091 			uintptr_t next = offsetof(struct ddi_minor_data, next);
4092 			uintptr_t name = offsetof(struct ddi_minor_data,
4093 			    d_minor) + offsetof(struct ddi_minor, name);
4094 			uintptr_t dev = offsetof(struct ddi_minor_data,
4095 			    d_minor) + offsetof(struct ddi_minor, dev);
4096 			uintptr_t scout;
4097 
4098 			if (maddr != NULL)
4099 				scout = dtrace_loadptr(maddr + next);
4100 
4101 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4102 				uint64_t m;
4103 #ifdef _LP64
4104 				m = dtrace_load64(maddr + dev) & MAXMIN64;
4105 #else
4106 				m = dtrace_load32(maddr + dev) & MAXMIN;
4107 #endif
4108 				if (m != minor) {
4109 					maddr = dtrace_loadptr(maddr + next);
4110 
4111 					if (scout == NULL)
4112 						continue;
4113 
4114 					scout = dtrace_loadptr(scout + next);
4115 
4116 					if (scout == NULL)
4117 						continue;
4118 
4119 					scout = dtrace_loadptr(scout + next);
4120 
4121 					if (scout == NULL)
4122 						continue;
4123 
4124 					if (scout == maddr) {
4125 						*flags |= CPU_DTRACE_ILLOP;
4126 						break;
4127 					}
4128 
4129 					continue;
4130 				}
4131 
4132 				/*
4133 				 * We have the minor data.  Now we need to
4134 				 * copy the minor's name into the end of the
4135 				 * pathname.
4136 				 */
4137 				s = (char *)dtrace_loadptr(maddr + name);
4138 				len = dtrace_strlen(s, size);
4139 
4140 				if (*flags & CPU_DTRACE_FAULT)
4141 					break;
4142 
4143 				if (len != 0) {
4144 					if ((end -= (len + 1)) < start)
4145 						break;
4146 
4147 					*end = ':';
4148 				}
4149 
4150 				for (i = 1; i <= len; i++)
4151 					end[i] = dtrace_load8((uintptr_t)s++);
4152 				break;
4153 			}
4154 		}
4155 
4156 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4157 			ddi_node_state_t devi_state;
4158 
4159 			devi_state = dtrace_load32(daddr +
4160 			    offsetof(struct dev_info, devi_node_state));
4161 
4162 			if (*flags & CPU_DTRACE_FAULT)
4163 				break;
4164 
4165 			if (devi_state >= DS_INITIALIZED) {
4166 				s = (char *)dtrace_loadptr(daddr +
4167 				    offsetof(struct dev_info, devi_addr));
4168 				len = dtrace_strlen(s, size);
4169 
4170 				if (*flags & CPU_DTRACE_FAULT)
4171 					break;
4172 
4173 				if (len != 0) {
4174 					if ((end -= (len + 1)) < start)
4175 						break;
4176 
4177 					*end = '@';
4178 				}
4179 
4180 				for (i = 1; i <= len; i++)
4181 					end[i] = dtrace_load8((uintptr_t)s++);
4182 			}
4183 
4184 			/*
4185 			 * Now for the node name...
4186 			 */
4187 			s = (char *)dtrace_loadptr(daddr +
4188 			    offsetof(struct dev_info, devi_node_name));
4189 
4190 			daddr = dtrace_loadptr(daddr +
4191 			    offsetof(struct dev_info, devi_parent));
4192 
4193 			/*
4194 			 * If our parent is NULL (that is, if we're the root
4195 			 * node), we're going to use the special path
4196 			 * "devices".
4197 			 */
4198 			if (daddr == 0)
4199 				s = "devices";
4200 
4201 			len = dtrace_strlen(s, size);
4202 			if (*flags & CPU_DTRACE_FAULT)
4203 				break;
4204 
4205 			if ((end -= (len + 1)) < start)
4206 				break;
4207 
4208 			for (i = 1; i <= len; i++)
4209 				end[i] = dtrace_load8((uintptr_t)s++);
4210 			*end = '/';
4211 
4212 			if (depth++ > dtrace_devdepth_max) {
4213 				*flags |= CPU_DTRACE_ILLOP;
4214 				break;
4215 			}
4216 		}
4217 
4218 		if (end < start)
4219 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4220 
4221 		if (daddr == 0) {
4222 			regs[rd] = (uintptr_t)end;
4223 			mstate->dtms_scratch_ptr += size;
4224 		}
4225 
4226 		break;
4227 	}
4228 #endif
4229 
4230 	case DIF_SUBR_STRJOIN: {
4231 		char *d = (char *)mstate->dtms_scratch_ptr;
4232 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4233 		uintptr_t s1 = tupregs[0].dttk_value;
4234 		uintptr_t s2 = tupregs[1].dttk_value;
4235 		int i = 0;
4236 
4237 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4238 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4239 			regs[rd] = 0;
4240 			break;
4241 		}
4242 
4243 		if (!DTRACE_INSCRATCH(mstate, size)) {
4244 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4245 			regs[rd] = 0;
4246 			break;
4247 		}
4248 
4249 		for (;;) {
4250 			if (i >= size) {
4251 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4252 				regs[rd] = 0;
4253 				break;
4254 			}
4255 
4256 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4257 				i--;
4258 				break;
4259 			}
4260 		}
4261 
4262 		for (;;) {
4263 			if (i >= size) {
4264 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4265 				regs[rd] = 0;
4266 				break;
4267 			}
4268 
4269 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4270 				break;
4271 		}
4272 
4273 		if (i < size) {
4274 			mstate->dtms_scratch_ptr += i;
4275 			regs[rd] = (uintptr_t)d;
4276 		}
4277 
4278 		break;
4279 	}
4280 
4281 	case DIF_SUBR_LLTOSTR: {
4282 		int64_t i = (int64_t)tupregs[0].dttk_value;
4283 		int64_t val = i < 0 ? i * -1 : i;
4284 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
4285 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4286 
4287 		if (!DTRACE_INSCRATCH(mstate, size)) {
4288 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4289 			regs[rd] = 0;
4290 			break;
4291 		}
4292 
4293 		for (*end-- = '\0'; val; val /= 10)
4294 			*end-- = '0' + (val % 10);
4295 
4296 		if (i == 0)
4297 			*end-- = '0';
4298 
4299 		if (i < 0)
4300 			*end-- = '-';
4301 
4302 		regs[rd] = (uintptr_t)end + 1;
4303 		mstate->dtms_scratch_ptr += size;
4304 		break;
4305 	}
4306 
4307 	case DIF_SUBR_HTONS:
4308 	case DIF_SUBR_NTOHS:
4309 #if BYTE_ORDER == BIG_ENDIAN
4310 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4311 #else
4312 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4313 #endif
4314 		break;
4315 
4316 
4317 	case DIF_SUBR_HTONL:
4318 	case DIF_SUBR_NTOHL:
4319 #if BYTE_ORDER == BIG_ENDIAN
4320 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4321 #else
4322 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4323 #endif
4324 		break;
4325 
4326 
4327 	case DIF_SUBR_HTONLL:
4328 	case DIF_SUBR_NTOHLL:
4329 #if BYTE_ORDER == BIG_ENDIAN
4330 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4331 #else
4332 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4333 #endif
4334 		break;
4335 
4336 
4337 	case DIF_SUBR_DIRNAME:
4338 	case DIF_SUBR_BASENAME: {
4339 		char *dest = (char *)mstate->dtms_scratch_ptr;
4340 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4341 		uintptr_t src = tupregs[0].dttk_value;
4342 		int i, j, len = dtrace_strlen((char *)src, size);
4343 		int lastbase = -1, firstbase = -1, lastdir = -1;
4344 		int start, end;
4345 
4346 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4347 			regs[rd] = 0;
4348 			break;
4349 		}
4350 
4351 		if (!DTRACE_INSCRATCH(mstate, size)) {
4352 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4353 			regs[rd] = 0;
4354 			break;
4355 		}
4356 
4357 		/*
4358 		 * The basename and dirname for a zero-length string is
4359 		 * defined to be "."
4360 		 */
4361 		if (len == 0) {
4362 			len = 1;
4363 			src = (uintptr_t)".";
4364 		}
4365 
4366 		/*
4367 		 * Start from the back of the string, moving back toward the
4368 		 * front until we see a character that isn't a slash.  That
4369 		 * character is the last character in the basename.
4370 		 */
4371 		for (i = len - 1; i >= 0; i--) {
4372 			if (dtrace_load8(src + i) != '/')
4373 				break;
4374 		}
4375 
4376 		if (i >= 0)
4377 			lastbase = i;
4378 
4379 		/*
4380 		 * Starting from the last character in the basename, move
4381 		 * towards the front until we find a slash.  The character
4382 		 * that we processed immediately before that is the first
4383 		 * character in the basename.
4384 		 */
4385 		for (; i >= 0; i--) {
4386 			if (dtrace_load8(src + i) == '/')
4387 				break;
4388 		}
4389 
4390 		if (i >= 0)
4391 			firstbase = i + 1;
4392 
4393 		/*
4394 		 * Now keep going until we find a non-slash character.  That
4395 		 * character is the last character in the dirname.
4396 		 */
4397 		for (; i >= 0; i--) {
4398 			if (dtrace_load8(src + i) != '/')
4399 				break;
4400 		}
4401 
4402 		if (i >= 0)
4403 			lastdir = i;
4404 
4405 		ASSERT(!(lastbase == -1 && firstbase != -1));
4406 		ASSERT(!(firstbase == -1 && lastdir != -1));
4407 
4408 		if (lastbase == -1) {
4409 			/*
4410 			 * We didn't find a non-slash character.  We know that
4411 			 * the length is non-zero, so the whole string must be
4412 			 * slashes.  In either the dirname or the basename
4413 			 * case, we return '/'.
4414 			 */
4415 			ASSERT(firstbase == -1);
4416 			firstbase = lastbase = lastdir = 0;
4417 		}
4418 
4419 		if (firstbase == -1) {
4420 			/*
4421 			 * The entire string consists only of a basename
4422 			 * component.  If we're looking for dirname, we need
4423 			 * to change our string to be just "."; if we're
4424 			 * looking for a basename, we'll just set the first
4425 			 * character of the basename to be 0.
4426 			 */
4427 			if (subr == DIF_SUBR_DIRNAME) {
4428 				ASSERT(lastdir == -1);
4429 				src = (uintptr_t)".";
4430 				lastdir = 0;
4431 			} else {
4432 				firstbase = 0;
4433 			}
4434 		}
4435 
4436 		if (subr == DIF_SUBR_DIRNAME) {
4437 			if (lastdir == -1) {
4438 				/*
4439 				 * We know that we have a slash in the name --
4440 				 * or lastdir would be set to 0, above.  And
4441 				 * because lastdir is -1, we know that this
4442 				 * slash must be the first character.  (That
4443 				 * is, the full string must be of the form
4444 				 * "/basename".)  In this case, the last
4445 				 * character of the directory name is 0.
4446 				 */
4447 				lastdir = 0;
4448 			}
4449 
4450 			start = 0;
4451 			end = lastdir;
4452 		} else {
4453 			ASSERT(subr == DIF_SUBR_BASENAME);
4454 			ASSERT(firstbase != -1 && lastbase != -1);
4455 			start = firstbase;
4456 			end = lastbase;
4457 		}
4458 
4459 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4460 			dest[j] = dtrace_load8(src + i);
4461 
4462 		dest[j] = '\0';
4463 		regs[rd] = (uintptr_t)dest;
4464 		mstate->dtms_scratch_ptr += size;
4465 		break;
4466 	}
4467 
4468 	case DIF_SUBR_CLEANPATH: {
4469 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4470 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4471 		uintptr_t src = tupregs[0].dttk_value;
4472 		int i = 0, j = 0;
4473 
4474 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4475 			regs[rd] = 0;
4476 			break;
4477 		}
4478 
4479 		if (!DTRACE_INSCRATCH(mstate, size)) {
4480 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4481 			regs[rd] = 0;
4482 			break;
4483 		}
4484 
4485 		/*
4486 		 * Move forward, loading each character.
4487 		 */
4488 		do {
4489 			c = dtrace_load8(src + i++);
4490 next:
4491 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4492 				break;
4493 
4494 			if (c != '/') {
4495 				dest[j++] = c;
4496 				continue;
4497 			}
4498 
4499 			c = dtrace_load8(src + i++);
4500 
4501 			if (c == '/') {
4502 				/*
4503 				 * We have two slashes -- we can just advance
4504 				 * to the next character.
4505 				 */
4506 				goto next;
4507 			}
4508 
4509 			if (c != '.') {
4510 				/*
4511 				 * This is not "." and it's not ".." -- we can
4512 				 * just store the "/" and this character and
4513 				 * drive on.
4514 				 */
4515 				dest[j++] = '/';
4516 				dest[j++] = c;
4517 				continue;
4518 			}
4519 
4520 			c = dtrace_load8(src + i++);
4521 
4522 			if (c == '/') {
4523 				/*
4524 				 * This is a "/./" component.  We're not going
4525 				 * to store anything in the destination buffer;
4526 				 * we're just going to go to the next component.
4527 				 */
4528 				goto next;
4529 			}
4530 
4531 			if (c != '.') {
4532 				/*
4533 				 * This is not ".." -- we can just store the
4534 				 * "/." and this character and continue
4535 				 * processing.
4536 				 */
4537 				dest[j++] = '/';
4538 				dest[j++] = '.';
4539 				dest[j++] = c;
4540 				continue;
4541 			}
4542 
4543 			c = dtrace_load8(src + i++);
4544 
4545 			if (c != '/' && c != '\0') {
4546 				/*
4547 				 * This is not ".." -- it's "..[mumble]".
4548 				 * We'll store the "/.." and this character
4549 				 * and continue processing.
4550 				 */
4551 				dest[j++] = '/';
4552 				dest[j++] = '.';
4553 				dest[j++] = '.';
4554 				dest[j++] = c;
4555 				continue;
4556 			}
4557 
4558 			/*
4559 			 * This is "/../" or "/..\0".  We need to back up
4560 			 * our destination pointer until we find a "/".
4561 			 */
4562 			i--;
4563 			while (j != 0 && dest[--j] != '/')
4564 				continue;
4565 
4566 			if (c == '\0')
4567 				dest[++j] = '/';
4568 		} while (c != '\0');
4569 
4570 		dest[j] = '\0';
4571 		regs[rd] = (uintptr_t)dest;
4572 		mstate->dtms_scratch_ptr += size;
4573 		break;
4574 	}
4575 
4576 	case DIF_SUBR_INET_NTOA:
4577 	case DIF_SUBR_INET_NTOA6:
4578 	case DIF_SUBR_INET_NTOP: {
4579 		size_t size;
4580 		int af, argi, i;
4581 		char *base, *end;
4582 
4583 		if (subr == DIF_SUBR_INET_NTOP) {
4584 			af = (int)tupregs[0].dttk_value;
4585 			argi = 1;
4586 		} else {
4587 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4588 			argi = 0;
4589 		}
4590 
4591 		if (af == AF_INET) {
4592 			ipaddr_t ip4;
4593 			uint8_t *ptr8, val;
4594 
4595 			/*
4596 			 * Safely load the IPv4 address.
4597 			 */
4598 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4599 
4600 			/*
4601 			 * Check an IPv4 string will fit in scratch.
4602 			 */
4603 			size = INET_ADDRSTRLEN;
4604 			if (!DTRACE_INSCRATCH(mstate, size)) {
4605 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4606 				regs[rd] = 0;
4607 				break;
4608 			}
4609 			base = (char *)mstate->dtms_scratch_ptr;
4610 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4611 
4612 			/*
4613 			 * Stringify as a dotted decimal quad.
4614 			 */
4615 			*end-- = '\0';
4616 			ptr8 = (uint8_t *)&ip4;
4617 			for (i = 3; i >= 0; i--) {
4618 				val = ptr8[i];
4619 
4620 				if (val == 0) {
4621 					*end-- = '0';
4622 				} else {
4623 					for (; val; val /= 10) {
4624 						*end-- = '0' + (val % 10);
4625 					}
4626 				}
4627 
4628 				if (i > 0)
4629 					*end-- = '.';
4630 			}
4631 			ASSERT(end + 1 >= base);
4632 
4633 		} else if (af == AF_INET6) {
4634 			struct in6_addr ip6;
4635 			int firstzero, tryzero, numzero, v6end;
4636 			uint16_t val;
4637 			const char digits[] = "0123456789abcdef";
4638 
4639 			/*
4640 			 * Stringify using RFC 1884 convention 2 - 16 bit
4641 			 * hexadecimal values with a zero-run compression.
4642 			 * Lower case hexadecimal digits are used.
4643 			 * 	eg, fe80::214:4fff:fe0b:76c8.
4644 			 * The IPv4 embedded form is returned for inet_ntop,
4645 			 * just the IPv4 string is returned for inet_ntoa6.
4646 			 */
4647 
4648 			/*
4649 			 * Safely load the IPv6 address.
4650 			 */
4651 			dtrace_bcopy(
4652 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4653 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4654 
4655 			/*
4656 			 * Check an IPv6 string will fit in scratch.
4657 			 */
4658 			size = INET6_ADDRSTRLEN;
4659 			if (!DTRACE_INSCRATCH(mstate, size)) {
4660 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4661 				regs[rd] = 0;
4662 				break;
4663 			}
4664 			base = (char *)mstate->dtms_scratch_ptr;
4665 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4666 			*end-- = '\0';
4667 
4668 			/*
4669 			 * Find the longest run of 16 bit zero values
4670 			 * for the single allowed zero compression - "::".
4671 			 */
4672 			firstzero = -1;
4673 			tryzero = -1;
4674 			numzero = 1;
4675 			for (i = 0; i < sizeof (struct in6_addr); i++) {
4676 #if defined(sun)
4677 				if (ip6._S6_un._S6_u8[i] == 0 &&
4678 #else
4679 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4680 #endif
4681 				    tryzero == -1 && i % 2 == 0) {
4682 					tryzero = i;
4683 					continue;
4684 				}
4685 
4686 				if (tryzero != -1 &&
4687 #if defined(sun)
4688 				    (ip6._S6_un._S6_u8[i] != 0 ||
4689 #else
4690 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4691 #endif
4692 				    i == sizeof (struct in6_addr) - 1)) {
4693 
4694 					if (i - tryzero <= numzero) {
4695 						tryzero = -1;
4696 						continue;
4697 					}
4698 
4699 					firstzero = tryzero;
4700 					numzero = i - i % 2 - tryzero;
4701 					tryzero = -1;
4702 
4703 #if defined(sun)
4704 					if (ip6._S6_un._S6_u8[i] == 0 &&
4705 #else
4706 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4707 #endif
4708 					    i == sizeof (struct in6_addr) - 1)
4709 						numzero += 2;
4710 				}
4711 			}
4712 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4713 
4714 			/*
4715 			 * Check for an IPv4 embedded address.
4716 			 */
4717 			v6end = sizeof (struct in6_addr) - 2;
4718 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4719 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4720 				for (i = sizeof (struct in6_addr) - 1;
4721 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4722 					ASSERT(end >= base);
4723 
4724 #if defined(sun)
4725 					val = ip6._S6_un._S6_u8[i];
4726 #else
4727 					val = ip6.__u6_addr.__u6_addr8[i];
4728 #endif
4729 
4730 					if (val == 0) {
4731 						*end-- = '0';
4732 					} else {
4733 						for (; val; val /= 10) {
4734 							*end-- = '0' + val % 10;
4735 						}
4736 					}
4737 
4738 					if (i > DTRACE_V4MAPPED_OFFSET)
4739 						*end-- = '.';
4740 				}
4741 
4742 				if (subr == DIF_SUBR_INET_NTOA6)
4743 					goto inetout;
4744 
4745 				/*
4746 				 * Set v6end to skip the IPv4 address that
4747 				 * we have already stringified.
4748 				 */
4749 				v6end = 10;
4750 			}
4751 
4752 			/*
4753 			 * Build the IPv6 string by working through the
4754 			 * address in reverse.
4755 			 */
4756 			for (i = v6end; i >= 0; i -= 2) {
4757 				ASSERT(end >= base);
4758 
4759 				if (i == firstzero + numzero - 2) {
4760 					*end-- = ':';
4761 					*end-- = ':';
4762 					i -= numzero - 2;
4763 					continue;
4764 				}
4765 
4766 				if (i < 14 && i != firstzero - 2)
4767 					*end-- = ':';
4768 
4769 #if defined(sun)
4770 				val = (ip6._S6_un._S6_u8[i] << 8) +
4771 				    ip6._S6_un._S6_u8[i + 1];
4772 #else
4773 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4774 				    ip6.__u6_addr.__u6_addr8[i + 1];
4775 #endif
4776 
4777 				if (val == 0) {
4778 					*end-- = '0';
4779 				} else {
4780 					for (; val; val /= 16) {
4781 						*end-- = digits[val % 16];
4782 					}
4783 				}
4784 			}
4785 			ASSERT(end + 1 >= base);
4786 
4787 		} else {
4788 			/*
4789 			 * The user didn't use AH_INET or AH_INET6.
4790 			 */
4791 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4792 			regs[rd] = 0;
4793 			break;
4794 		}
4795 
4796 inetout:	regs[rd] = (uintptr_t)end + 1;
4797 		mstate->dtms_scratch_ptr += size;
4798 		break;
4799 	}
4800 
4801 	case DIF_SUBR_MEMREF: {
4802 		uintptr_t size = 2 * sizeof(uintptr_t);
4803 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4804 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4805 
4806 		/* address and length */
4807 		memref[0] = tupregs[0].dttk_value;
4808 		memref[1] = tupregs[1].dttk_value;
4809 
4810 		regs[rd] = (uintptr_t) memref;
4811 		mstate->dtms_scratch_ptr += scratch_size;
4812 		break;
4813 	}
4814 
4815 	case DIF_SUBR_TYPEREF: {
4816 		uintptr_t size = 4 * sizeof(uintptr_t);
4817 		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4818 		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4819 
4820 		/* address, num_elements, type_str, type_len */
4821 		typeref[0] = tupregs[0].dttk_value;
4822 		typeref[1] = tupregs[1].dttk_value;
4823 		typeref[2] = tupregs[2].dttk_value;
4824 		typeref[3] = tupregs[3].dttk_value;
4825 
4826 		regs[rd] = (uintptr_t) typeref;
4827 		mstate->dtms_scratch_ptr += scratch_size;
4828 		break;
4829 	}
4830 	}
4831 }
4832 
4833 /*
4834  * Emulate the execution of DTrace IR instructions specified by the given
4835  * DIF object.  This function is deliberately void of assertions as all of
4836  * the necessary checks are handled by a call to dtrace_difo_validate().
4837  */
4838 static uint64_t
4839 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4840     dtrace_vstate_t *vstate, dtrace_state_t *state)
4841 {
4842 	const dif_instr_t *text = difo->dtdo_buf;
4843 	const uint_t textlen = difo->dtdo_len;
4844 	const char *strtab = difo->dtdo_strtab;
4845 	const uint64_t *inttab = difo->dtdo_inttab;
4846 
4847 	uint64_t rval = 0;
4848 	dtrace_statvar_t *svar;
4849 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4850 	dtrace_difv_t *v;
4851 	volatile uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags;
4852 	volatile uintptr_t *illval = &cpu_core[curcpu_id].cpuc_dtrace_illval;
4853 
4854 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4855 	uint64_t regs[DIF_DIR_NREGS];
4856 	uint64_t *tmp;
4857 
4858 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4859 	int64_t cc_r;
4860 	uint_t pc = 0, id, opc = 0;
4861 	uint8_t ttop = 0;
4862 	dif_instr_t instr;
4863 	uint_t r1, r2, rd;
4864 
4865 	/*
4866 	 * We stash the current DIF object into the machine state: we need it
4867 	 * for subsequent access checking.
4868 	 */
4869 	mstate->dtms_difo = difo;
4870 
4871 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4872 
4873 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4874 		opc = pc;
4875 
4876 		instr = text[pc++];
4877 		r1 = DIF_INSTR_R1(instr);
4878 		r2 = DIF_INSTR_R2(instr);
4879 		rd = DIF_INSTR_RD(instr);
4880 
4881 		switch (DIF_INSTR_OP(instr)) {
4882 		case DIF_OP_OR:
4883 			regs[rd] = regs[r1] | regs[r2];
4884 			break;
4885 		case DIF_OP_XOR:
4886 			regs[rd] = regs[r1] ^ regs[r2];
4887 			break;
4888 		case DIF_OP_AND:
4889 			regs[rd] = regs[r1] & regs[r2];
4890 			break;
4891 		case DIF_OP_SLL:
4892 			regs[rd] = regs[r1] << regs[r2];
4893 			break;
4894 		case DIF_OP_SRL:
4895 			regs[rd] = regs[r1] >> regs[r2];
4896 			break;
4897 		case DIF_OP_SUB:
4898 			regs[rd] = regs[r1] - regs[r2];
4899 			break;
4900 		case DIF_OP_ADD:
4901 			regs[rd] = regs[r1] + regs[r2];
4902 			break;
4903 		case DIF_OP_MUL:
4904 			regs[rd] = regs[r1] * regs[r2];
4905 			break;
4906 		case DIF_OP_SDIV:
4907 			if (regs[r2] == 0) {
4908 				regs[rd] = 0;
4909 				*flags |= CPU_DTRACE_DIVZERO;
4910 			} else {
4911 				regs[rd] = (int64_t)regs[r1] /
4912 				    (int64_t)regs[r2];
4913 			}
4914 			break;
4915 
4916 		case DIF_OP_UDIV:
4917 			if (regs[r2] == 0) {
4918 				regs[rd] = 0;
4919 				*flags |= CPU_DTRACE_DIVZERO;
4920 			} else {
4921 				regs[rd] = regs[r1] / regs[r2];
4922 			}
4923 			break;
4924 
4925 		case DIF_OP_SREM:
4926 			if (regs[r2] == 0) {
4927 				regs[rd] = 0;
4928 				*flags |= CPU_DTRACE_DIVZERO;
4929 			} else {
4930 				regs[rd] = (int64_t)regs[r1] %
4931 				    (int64_t)regs[r2];
4932 			}
4933 			break;
4934 
4935 		case DIF_OP_UREM:
4936 			if (regs[r2] == 0) {
4937 				regs[rd] = 0;
4938 				*flags |= CPU_DTRACE_DIVZERO;
4939 			} else {
4940 				regs[rd] = regs[r1] % regs[r2];
4941 			}
4942 			break;
4943 
4944 		case DIF_OP_NOT:
4945 			regs[rd] = ~regs[r1];
4946 			break;
4947 		case DIF_OP_MOV:
4948 			regs[rd] = regs[r1];
4949 			break;
4950 		case DIF_OP_CMP:
4951 			cc_r = regs[r1] - regs[r2];
4952 			cc_n = cc_r < 0;
4953 			cc_z = cc_r == 0;
4954 			cc_v = 0;
4955 			cc_c = regs[r1] < regs[r2];
4956 			break;
4957 		case DIF_OP_TST:
4958 			cc_n = cc_v = cc_c = 0;
4959 			cc_z = regs[r1] == 0;
4960 			break;
4961 		case DIF_OP_BA:
4962 			pc = DIF_INSTR_LABEL(instr);
4963 			break;
4964 		case DIF_OP_BE:
4965 			if (cc_z)
4966 				pc = DIF_INSTR_LABEL(instr);
4967 			break;
4968 		case DIF_OP_BNE:
4969 			if (cc_z == 0)
4970 				pc = DIF_INSTR_LABEL(instr);
4971 			break;
4972 		case DIF_OP_BG:
4973 			if ((cc_z | (cc_n ^ cc_v)) == 0)
4974 				pc = DIF_INSTR_LABEL(instr);
4975 			break;
4976 		case DIF_OP_BGU:
4977 			if ((cc_c | cc_z) == 0)
4978 				pc = DIF_INSTR_LABEL(instr);
4979 			break;
4980 		case DIF_OP_BGE:
4981 			if ((cc_n ^ cc_v) == 0)
4982 				pc = DIF_INSTR_LABEL(instr);
4983 			break;
4984 		case DIF_OP_BGEU:
4985 			if (cc_c == 0)
4986 				pc = DIF_INSTR_LABEL(instr);
4987 			break;
4988 		case DIF_OP_BL:
4989 			if (cc_n ^ cc_v)
4990 				pc = DIF_INSTR_LABEL(instr);
4991 			break;
4992 		case DIF_OP_BLU:
4993 			if (cc_c)
4994 				pc = DIF_INSTR_LABEL(instr);
4995 			break;
4996 		case DIF_OP_BLE:
4997 			if (cc_z | (cc_n ^ cc_v))
4998 				pc = DIF_INSTR_LABEL(instr);
4999 			break;
5000 		case DIF_OP_BLEU:
5001 			if (cc_c | cc_z)
5002 				pc = DIF_INSTR_LABEL(instr);
5003 			break;
5004 		case DIF_OP_RLDSB:
5005 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5006 				*flags |= CPU_DTRACE_KPRIV;
5007 				*illval = regs[r1];
5008 				break;
5009 			}
5010 			/*FALLTHROUGH*/
5011 		case DIF_OP_LDSB:
5012 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5013 			break;
5014 		case DIF_OP_RLDSH:
5015 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5016 				*flags |= CPU_DTRACE_KPRIV;
5017 				*illval = regs[r1];
5018 				break;
5019 			}
5020 			/*FALLTHROUGH*/
5021 		case DIF_OP_LDSH:
5022 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5023 			break;
5024 		case DIF_OP_RLDSW:
5025 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5026 				*flags |= CPU_DTRACE_KPRIV;
5027 				*illval = regs[r1];
5028 				break;
5029 			}
5030 			/*FALLTHROUGH*/
5031 		case DIF_OP_LDSW:
5032 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5033 			break;
5034 		case DIF_OP_RLDUB:
5035 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5036 				*flags |= CPU_DTRACE_KPRIV;
5037 				*illval = regs[r1];
5038 				break;
5039 			}
5040 			/*FALLTHROUGH*/
5041 		case DIF_OP_LDUB:
5042 			regs[rd] = dtrace_load8(regs[r1]);
5043 			break;
5044 		case DIF_OP_RLDUH:
5045 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5046 				*flags |= CPU_DTRACE_KPRIV;
5047 				*illval = regs[r1];
5048 				break;
5049 			}
5050 			/*FALLTHROUGH*/
5051 		case DIF_OP_LDUH:
5052 			regs[rd] = dtrace_load16(regs[r1]);
5053 			break;
5054 		case DIF_OP_RLDUW:
5055 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5056 				*flags |= CPU_DTRACE_KPRIV;
5057 				*illval = regs[r1];
5058 				break;
5059 			}
5060 			/*FALLTHROUGH*/
5061 		case DIF_OP_LDUW:
5062 			regs[rd] = dtrace_load32(regs[r1]);
5063 			break;
5064 		case DIF_OP_RLDX:
5065 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5066 				*flags |= CPU_DTRACE_KPRIV;
5067 				*illval = regs[r1];
5068 				break;
5069 			}
5070 			/*FALLTHROUGH*/
5071 		case DIF_OP_LDX:
5072 			regs[rd] = dtrace_load64(regs[r1]);
5073 			break;
5074 		case DIF_OP_ULDSB:
5075 			regs[rd] = (int8_t)
5076 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5077 			break;
5078 		case DIF_OP_ULDSH:
5079 			regs[rd] = (int16_t)
5080 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5081 			break;
5082 		case DIF_OP_ULDSW:
5083 			regs[rd] = (int32_t)
5084 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5085 			break;
5086 		case DIF_OP_ULDUB:
5087 			regs[rd] =
5088 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5089 			break;
5090 		case DIF_OP_ULDUH:
5091 			regs[rd] =
5092 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5093 			break;
5094 		case DIF_OP_ULDUW:
5095 			regs[rd] =
5096 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5097 			break;
5098 		case DIF_OP_ULDX:
5099 			regs[rd] =
5100 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5101 			break;
5102 		case DIF_OP_RET:
5103 			rval = regs[rd];
5104 			pc = textlen;
5105 			break;
5106 		case DIF_OP_NOP:
5107 			break;
5108 		case DIF_OP_SETX:
5109 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5110 			break;
5111 		case DIF_OP_SETS:
5112 			regs[rd] = (uint64_t)(uintptr_t)
5113 			    (strtab + DIF_INSTR_STRING(instr));
5114 			break;
5115 		case DIF_OP_SCMP: {
5116 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5117 			uintptr_t s1 = regs[r1];
5118 			uintptr_t s2 = regs[r2];
5119 
5120 			if (s1 != 0 &&
5121 			    !dtrace_strcanload(s1, sz, mstate, vstate))
5122 				break;
5123 			if (s2 != 0 &&
5124 			    !dtrace_strcanload(s2, sz, mstate, vstate))
5125 				break;
5126 
5127 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5128 
5129 			cc_n = cc_r < 0;
5130 			cc_z = cc_r == 0;
5131 			cc_v = cc_c = 0;
5132 			break;
5133 		}
5134 		case DIF_OP_LDGA:
5135 			regs[rd] = dtrace_dif_variable(mstate, state,
5136 			    r1, regs[r2]);
5137 			break;
5138 		case DIF_OP_LDGS:
5139 			id = DIF_INSTR_VAR(instr);
5140 
5141 			if (id >= DIF_VAR_OTHER_UBASE) {
5142 				uintptr_t a;
5143 
5144 				id -= DIF_VAR_OTHER_UBASE;
5145 				svar = vstate->dtvs_globals[id];
5146 				ASSERT(svar != NULL);
5147 				v = &svar->dtsv_var;
5148 
5149 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5150 					regs[rd] = svar->dtsv_data;
5151 					break;
5152 				}
5153 
5154 				a = (uintptr_t)svar->dtsv_data;
5155 
5156 				if (*(uint8_t *)a == UINT8_MAX) {
5157 					/*
5158 					 * If the 0th byte is set to UINT8_MAX
5159 					 * then this is to be treated as a
5160 					 * reference to a NULL variable.
5161 					 */
5162 					regs[rd] = 0;
5163 				} else {
5164 					regs[rd] = a + sizeof (uint64_t);
5165 				}
5166 
5167 				break;
5168 			}
5169 
5170 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5171 			break;
5172 
5173 		case DIF_OP_STGS:
5174 			id = DIF_INSTR_VAR(instr);
5175 
5176 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5177 			id -= DIF_VAR_OTHER_UBASE;
5178 
5179 			svar = vstate->dtvs_globals[id];
5180 			ASSERT(svar != NULL);
5181 			v = &svar->dtsv_var;
5182 
5183 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5184 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5185 
5186 				ASSERT(a != 0);
5187 				ASSERT(svar->dtsv_size != 0);
5188 
5189 				if (regs[rd] == 0) {
5190 					*(uint8_t *)a = UINT8_MAX;
5191 					break;
5192 				} else {
5193 					*(uint8_t *)a = 0;
5194 					a += sizeof (uint64_t);
5195 				}
5196 				if (!dtrace_vcanload(
5197 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5198 				    mstate, vstate))
5199 					break;
5200 
5201 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5202 				    (void *)a, &v->dtdv_type);
5203 				break;
5204 			}
5205 
5206 			svar->dtsv_data = regs[rd];
5207 			break;
5208 
5209 		case DIF_OP_LDTA:
5210 			/*
5211 			 * There are no DTrace built-in thread-local arrays at
5212 			 * present.  This opcode is saved for future work.
5213 			 */
5214 			*flags |= CPU_DTRACE_ILLOP;
5215 			regs[rd] = 0;
5216 			break;
5217 
5218 		case DIF_OP_LDLS:
5219 			id = DIF_INSTR_VAR(instr);
5220 
5221 			if (id < DIF_VAR_OTHER_UBASE) {
5222 				/*
5223 				 * For now, this has no meaning.
5224 				 */
5225 				regs[rd] = 0;
5226 				break;
5227 			}
5228 
5229 			id -= DIF_VAR_OTHER_UBASE;
5230 
5231 			ASSERT(id < vstate->dtvs_nlocals);
5232 			ASSERT(vstate->dtvs_locals != NULL);
5233 
5234 			svar = vstate->dtvs_locals[id];
5235 			ASSERT(svar != NULL);
5236 			v = &svar->dtsv_var;
5237 
5238 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5239 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5240 				size_t sz = v->dtdv_type.dtdt_size;
5241 
5242 				sz += sizeof (uint64_t);
5243 				ASSERT(svar->dtsv_size == NCPU * sz);
5244 				a += curcpu_id * sz;
5245 
5246 				if (*(uint8_t *)a == UINT8_MAX) {
5247 					/*
5248 					 * If the 0th byte is set to UINT8_MAX
5249 					 * then this is to be treated as a
5250 					 * reference to a NULL variable.
5251 					 */
5252 					regs[rd] = 0;
5253 				} else {
5254 					regs[rd] = a + sizeof (uint64_t);
5255 				}
5256 
5257 				break;
5258 			}
5259 
5260 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5261 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5262 			regs[rd] = tmp[curcpu_id];
5263 			break;
5264 
5265 		case DIF_OP_STLS:
5266 			id = DIF_INSTR_VAR(instr);
5267 
5268 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5269 			id -= DIF_VAR_OTHER_UBASE;
5270 			ASSERT(id < vstate->dtvs_nlocals);
5271 
5272 			ASSERT(vstate->dtvs_locals != NULL);
5273 			svar = vstate->dtvs_locals[id];
5274 			ASSERT(svar != NULL);
5275 			v = &svar->dtsv_var;
5276 
5277 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5278 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5279 				size_t sz = v->dtdv_type.dtdt_size;
5280 
5281 				sz += sizeof (uint64_t);
5282 				ASSERT(svar->dtsv_size == NCPU * sz);
5283 				a += curcpu_id * sz;
5284 
5285 				if (regs[rd] == 0) {
5286 					*(uint8_t *)a = UINT8_MAX;
5287 					break;
5288 				} else {
5289 					*(uint8_t *)a = 0;
5290 					a += sizeof (uint64_t);
5291 				}
5292 
5293 				if (!dtrace_vcanload(
5294 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5295 				    mstate, vstate))
5296 					break;
5297 
5298 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5299 				    (void *)a, &v->dtdv_type);
5300 				break;
5301 			}
5302 
5303 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5304 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5305 			tmp[curcpu_id] = regs[rd];
5306 			break;
5307 
5308 		case DIF_OP_LDTS: {
5309 			dtrace_dynvar_t *dvar;
5310 			dtrace_key_t *key;
5311 
5312 			id = DIF_INSTR_VAR(instr);
5313 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5314 			id -= DIF_VAR_OTHER_UBASE;
5315 			v = &vstate->dtvs_tlocals[id];
5316 
5317 			key = &tupregs[DIF_DTR_NREGS];
5318 			key[0].dttk_value = (uint64_t)id;
5319 			key[0].dttk_size = 0;
5320 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5321 			key[1].dttk_size = 0;
5322 
5323 			dvar = dtrace_dynvar(dstate, 2, key,
5324 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5325 			    mstate, vstate);
5326 
5327 			if (dvar == NULL) {
5328 				regs[rd] = 0;
5329 				break;
5330 			}
5331 
5332 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5333 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5334 			} else {
5335 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5336 			}
5337 
5338 			break;
5339 		}
5340 
5341 		case DIF_OP_STTS: {
5342 			dtrace_dynvar_t *dvar;
5343 			dtrace_key_t *key;
5344 
5345 			id = DIF_INSTR_VAR(instr);
5346 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5347 			id -= DIF_VAR_OTHER_UBASE;
5348 
5349 			key = &tupregs[DIF_DTR_NREGS];
5350 			key[0].dttk_value = (uint64_t)id;
5351 			key[0].dttk_size = 0;
5352 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5353 			key[1].dttk_size = 0;
5354 			v = &vstate->dtvs_tlocals[id];
5355 
5356 			dvar = dtrace_dynvar(dstate, 2, key,
5357 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5358 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5359 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5360 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5361 
5362 			/*
5363 			 * Given that we're storing to thread-local data,
5364 			 * we need to flush our predicate cache.
5365 			 */
5366 			curthread->t_predcache = 0;
5367 
5368 			if (dvar == NULL)
5369 				break;
5370 
5371 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5372 				if (!dtrace_vcanload(
5373 				    (void *)(uintptr_t)regs[rd],
5374 				    &v->dtdv_type, mstate, vstate))
5375 					break;
5376 
5377 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5378 				    dvar->dtdv_data, &v->dtdv_type);
5379 			} else {
5380 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5381 			}
5382 
5383 			break;
5384 		}
5385 
5386 		case DIF_OP_SRA:
5387 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5388 			break;
5389 
5390 		case DIF_OP_CALL:
5391 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5392 			    regs, tupregs, ttop, mstate, state);
5393 			break;
5394 
5395 		case DIF_OP_PUSHTR:
5396 			if (ttop == DIF_DTR_NREGS) {
5397 				*flags |= CPU_DTRACE_TUPOFLOW;
5398 				break;
5399 			}
5400 
5401 			if (r1 == DIF_TYPE_STRING) {
5402 				/*
5403 				 * If this is a string type and the size is 0,
5404 				 * we'll use the system-wide default string
5405 				 * size.  Note that we are _not_ looking at
5406 				 * the value of the DTRACEOPT_STRSIZE option;
5407 				 * had this been set, we would expect to have
5408 				 * a non-zero size value in the "pushtr".
5409 				 */
5410 				tupregs[ttop].dttk_size =
5411 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5412 				    regs[r2] ? regs[r2] :
5413 				    dtrace_strsize_default) + 1;
5414 			} else {
5415 				tupregs[ttop].dttk_size = regs[r2];
5416 			}
5417 
5418 			tupregs[ttop++].dttk_value = regs[rd];
5419 			break;
5420 
5421 		case DIF_OP_PUSHTV:
5422 			if (ttop == DIF_DTR_NREGS) {
5423 				*flags |= CPU_DTRACE_TUPOFLOW;
5424 				break;
5425 			}
5426 
5427 			tupregs[ttop].dttk_value = regs[rd];
5428 			tupregs[ttop++].dttk_size = 0;
5429 			break;
5430 
5431 		case DIF_OP_POPTS:
5432 			if (ttop != 0)
5433 				ttop--;
5434 			break;
5435 
5436 		case DIF_OP_FLUSHTS:
5437 			ttop = 0;
5438 			break;
5439 
5440 		case DIF_OP_LDGAA:
5441 		case DIF_OP_LDTAA: {
5442 			dtrace_dynvar_t *dvar;
5443 			dtrace_key_t *key = tupregs;
5444 			uint_t nkeys = ttop;
5445 
5446 			id = DIF_INSTR_VAR(instr);
5447 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5448 			id -= DIF_VAR_OTHER_UBASE;
5449 
5450 			key[nkeys].dttk_value = (uint64_t)id;
5451 			key[nkeys++].dttk_size = 0;
5452 
5453 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5454 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5455 				key[nkeys++].dttk_size = 0;
5456 				v = &vstate->dtvs_tlocals[id];
5457 			} else {
5458 				v = &vstate->dtvs_globals[id]->dtsv_var;
5459 			}
5460 
5461 			dvar = dtrace_dynvar(dstate, nkeys, key,
5462 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5463 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5464 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5465 
5466 			if (dvar == NULL) {
5467 				regs[rd] = 0;
5468 				break;
5469 			}
5470 
5471 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5472 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5473 			} else {
5474 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5475 			}
5476 
5477 			break;
5478 		}
5479 
5480 		case DIF_OP_STGAA:
5481 		case DIF_OP_STTAA: {
5482 			dtrace_dynvar_t *dvar;
5483 			dtrace_key_t *key = tupregs;
5484 			uint_t nkeys = ttop;
5485 
5486 			id = DIF_INSTR_VAR(instr);
5487 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5488 			id -= DIF_VAR_OTHER_UBASE;
5489 
5490 			key[nkeys].dttk_value = (uint64_t)id;
5491 			key[nkeys++].dttk_size = 0;
5492 
5493 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5494 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5495 				key[nkeys++].dttk_size = 0;
5496 				v = &vstate->dtvs_tlocals[id];
5497 			} else {
5498 				v = &vstate->dtvs_globals[id]->dtsv_var;
5499 			}
5500 
5501 			dvar = dtrace_dynvar(dstate, nkeys, key,
5502 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5503 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5504 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5505 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5506 
5507 			if (dvar == NULL)
5508 				break;
5509 
5510 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5511 				if (!dtrace_vcanload(
5512 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5513 				    mstate, vstate))
5514 					break;
5515 
5516 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5517 				    dvar->dtdv_data, &v->dtdv_type);
5518 			} else {
5519 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5520 			}
5521 
5522 			break;
5523 		}
5524 
5525 		case DIF_OP_ALLOCS: {
5526 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5527 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5528 
5529 			/*
5530 			 * Rounding up the user allocation size could have
5531 			 * overflowed large, bogus allocations (like -1ULL) to
5532 			 * 0.
5533 			 */
5534 			if (size < regs[r1] ||
5535 			    !DTRACE_INSCRATCH(mstate, size)) {
5536 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5537 				regs[rd] = 0;
5538 				break;
5539 			}
5540 
5541 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5542 			mstate->dtms_scratch_ptr += size;
5543 			regs[rd] = ptr;
5544 			break;
5545 		}
5546 
5547 		case DIF_OP_COPYS:
5548 			if (!dtrace_canstore(regs[rd], regs[r2],
5549 			    mstate, vstate)) {
5550 				*flags |= CPU_DTRACE_BADADDR;
5551 				*illval = regs[rd];
5552 				break;
5553 			}
5554 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5555 				break;
5556 
5557 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5558 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5559 			break;
5560 
5561 		case DIF_OP_STB:
5562 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5563 				*flags |= CPU_DTRACE_BADADDR;
5564 				*illval = regs[rd];
5565 				break;
5566 			}
5567 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5568 			break;
5569 
5570 		case DIF_OP_STH:
5571 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5572 				*flags |= CPU_DTRACE_BADADDR;
5573 				*illval = regs[rd];
5574 				break;
5575 			}
5576 			if (regs[rd] & 1) {
5577 				*flags |= CPU_DTRACE_BADALIGN;
5578 				*illval = regs[rd];
5579 				break;
5580 			}
5581 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5582 			break;
5583 
5584 		case DIF_OP_STW:
5585 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5586 				*flags |= CPU_DTRACE_BADADDR;
5587 				*illval = regs[rd];
5588 				break;
5589 			}
5590 			if (regs[rd] & 3) {
5591 				*flags |= CPU_DTRACE_BADALIGN;
5592 				*illval = regs[rd];
5593 				break;
5594 			}
5595 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5596 			break;
5597 
5598 		case DIF_OP_STX:
5599 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5600 				*flags |= CPU_DTRACE_BADADDR;
5601 				*illval = regs[rd];
5602 				break;
5603 			}
5604 			if (regs[rd] & 7) {
5605 				*flags |= CPU_DTRACE_BADALIGN;
5606 				*illval = regs[rd];
5607 				break;
5608 			}
5609 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5610 			break;
5611 		}
5612 	}
5613 
5614 	if (!(*flags & CPU_DTRACE_FAULT))
5615 		return (rval);
5616 
5617 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5618 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5619 
5620 	return (0);
5621 }
5622 
5623 static void
5624 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5625 {
5626 	dtrace_probe_t *probe = ecb->dte_probe;
5627 	dtrace_provider_t *prov = probe->dtpr_provider;
5628 	char c[DTRACE_FULLNAMELEN + 80], *str;
5629 	const char *msg = "dtrace: breakpoint action at probe ";
5630 	const char *ecbmsg = " (ecb ";
5631 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5632 	uintptr_t val = (uintptr_t)ecb;
5633 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5634 
5635 	if (dtrace_destructive_disallow)
5636 		return;
5637 
5638 	/*
5639 	 * It's impossible to be taking action on the NULL probe.
5640 	 */
5641 	ASSERT(probe != NULL);
5642 
5643 	/*
5644 	 * This is a poor man's (destitute man's?) snprintf():  we want to
5645 	 * print the provider name, module name, function name and name of
5646 	 * the probe, along with the hex address of the ECB with the breakpoint
5647 	 * action -- all of which we must place in the character buffer by
5648 	 * hand.
5649 	 */
5650 	while (*msg != '\0')
5651 		c[i++] = *msg++;
5652 
5653 	for (str = prov->dtpv_name; *str != '\0'; str++)
5654 		c[i++] = *str;
5655 	c[i++] = ':';
5656 
5657 	for (str = probe->dtpr_mod; *str != '\0'; str++)
5658 		c[i++] = *str;
5659 	c[i++] = ':';
5660 
5661 	for (str = probe->dtpr_func; *str != '\0'; str++)
5662 		c[i++] = *str;
5663 	c[i++] = ':';
5664 
5665 	for (str = probe->dtpr_name; *str != '\0'; str++)
5666 		c[i++] = *str;
5667 
5668 	while (*ecbmsg != '\0')
5669 		c[i++] = *ecbmsg++;
5670 
5671 	while (shift >= 0) {
5672 		mask = (uintptr_t)0xf << shift;
5673 
5674 		if (val >= ((uintptr_t)1 << shift))
5675 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5676 		shift -= 4;
5677 	}
5678 
5679 	c[i++] = ')';
5680 	c[i] = '\0';
5681 
5682 #if defined(sun)
5683 	debug_enter(c);
5684 #else
5685 #ifdef DDB
5686 	db_printf("%s\n", c);
5687 	Debugger();
5688 #else
5689 	printf("%s ignored\n", c);
5690 #endif /* DDB */
5691 #endif
5692 }
5693 
5694 static void
5695 dtrace_action_panic(dtrace_ecb_t *ecb)
5696 {
5697 	dtrace_probe_t *probe = ecb->dte_probe;
5698 
5699 	/*
5700 	 * It's impossible to be taking action on the NULL probe.
5701 	 */
5702 	ASSERT(probe != NULL);
5703 
5704 	if (dtrace_destructive_disallow)
5705 		return;
5706 
5707 	if (dtrace_panicked != NULL)
5708 		return;
5709 
5710 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5711 		return;
5712 
5713 	/*
5714 	 * We won the right to panic.  (We want to be sure that only one
5715 	 * thread calls panic() from dtrace_probe(), and that panic() is
5716 	 * called exactly once.)
5717 	 */
5718 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5719 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5720 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5721 }
5722 
5723 static void
5724 dtrace_action_raise(uint64_t sig)
5725 {
5726 	if (dtrace_destructive_disallow)
5727 		return;
5728 
5729 	if (sig >= NSIG) {
5730 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5731 		return;
5732 	}
5733 
5734 #if defined(sun)
5735 	/*
5736 	 * raise() has a queue depth of 1 -- we ignore all subsequent
5737 	 * invocations of the raise() action.
5738 	 */
5739 	if (curthread->t_dtrace_sig == 0)
5740 		curthread->t_dtrace_sig = (uint8_t)sig;
5741 
5742 	curthread->t_sig_check = 1;
5743 	aston(curthread);
5744 #else
5745 	struct proc *p = curproc;
5746 	mutex_enter(proc_lock);
5747 	psignal(p, sig);
5748 	mutex_exit(proc_lock);
5749 #endif
5750 }
5751 
5752 static void
5753 dtrace_action_stop(void)
5754 {
5755 	if (dtrace_destructive_disallow)
5756 		return;
5757 
5758 #if defined(sun)
5759 	if (!curthread->t_dtrace_stop) {
5760 		curthread->t_dtrace_stop = 1;
5761 		curthread->t_sig_check = 1;
5762 		aston(curthread);
5763 	}
5764 #else
5765 	struct proc *p = curproc;
5766 	mutex_enter(proc_lock);
5767 	psignal(p, SIGSTOP);
5768 	mutex_exit(proc_lock);
5769 #endif
5770 }
5771 
5772 static void
5773 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5774 {
5775 #if 0	/* XXX TBD - needs solaris_cpu */
5776 	hrtime_t now;
5777 	volatile uint16_t *flags;
5778 #if defined(sun)
5779 	cpu_t *cpu = CPU;
5780 #else
5781 	cpu_t *cpu = &solaris_cpu[curcpu_id];
5782 #endif
5783 
5784 	if (dtrace_destructive_disallow)
5785 		return;
5786 
5787 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5788 
5789 	now = dtrace_gethrtime();
5790 
5791 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5792 		/*
5793 		 * We need to advance the mark to the current time.
5794 		 */
5795 		cpu->cpu_dtrace_chillmark = now;
5796 		cpu->cpu_dtrace_chilled = 0;
5797 	}
5798 
5799 	/*
5800 	 * Now check to see if the requested chill time would take us over
5801 	 * the maximum amount of time allowed in the chill interval.  (Or
5802 	 * worse, if the calculation itself induces overflow.)
5803 	 */
5804 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5805 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5806 		*flags |= CPU_DTRACE_ILLOP;
5807 		return;
5808 	}
5809 
5810 	while (dtrace_gethrtime() - now < val)
5811 		continue;
5812 
5813 	/*
5814 	 * Normally, we assure that the value of the variable "timestamp" does
5815 	 * not change within an ECB.  The presence of chill() represents an
5816 	 * exception to this rule, however.
5817 	 */
5818 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5819 	cpu->cpu_dtrace_chilled += val;
5820 #endif
5821 }
5822 
5823 #if defined(sun)
5824 static void
5825 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5826     uint64_t *buf, uint64_t arg)
5827 {
5828 	int nframes = DTRACE_USTACK_NFRAMES(arg);
5829 	int strsize = DTRACE_USTACK_STRSIZE(arg);
5830 	uint64_t *pcs = &buf[1], *fps;
5831 	char *str = (char *)&pcs[nframes];
5832 	int size, offs = 0, i, j;
5833 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5834 	uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags;
5835 	char *sym;
5836 
5837 	/*
5838 	 * Should be taking a faster path if string space has not been
5839 	 * allocated.
5840 	 */
5841 	ASSERT(strsize != 0);
5842 
5843 	/*
5844 	 * We will first allocate some temporary space for the frame pointers.
5845 	 */
5846 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5847 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5848 	    (nframes * sizeof (uint64_t));
5849 
5850 	if (!DTRACE_INSCRATCH(mstate, size)) {
5851 		/*
5852 		 * Not enough room for our frame pointers -- need to indicate
5853 		 * that we ran out of scratch space.
5854 		 */
5855 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5856 		return;
5857 	}
5858 
5859 	mstate->dtms_scratch_ptr += size;
5860 	saved = mstate->dtms_scratch_ptr;
5861 
5862 	/*
5863 	 * Now get a stack with both program counters and frame pointers.
5864 	 */
5865 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5866 	dtrace_getufpstack(buf, fps, nframes + 1);
5867 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5868 
5869 	/*
5870 	 * If that faulted, we're cooked.
5871 	 */
5872 	if (*flags & CPU_DTRACE_FAULT)
5873 		goto out;
5874 
5875 	/*
5876 	 * Now we want to walk up the stack, calling the USTACK helper.  For
5877 	 * each iteration, we restore the scratch pointer.
5878 	 */
5879 	for (i = 0; i < nframes; i++) {
5880 		mstate->dtms_scratch_ptr = saved;
5881 
5882 		if (offs >= strsize)
5883 			break;
5884 
5885 		sym = (char *)(uintptr_t)dtrace_helper(
5886 		    DTRACE_HELPER_ACTION_USTACK,
5887 		    mstate, state, pcs[i], fps[i]);
5888 
5889 		/*
5890 		 * If we faulted while running the helper, we're going to
5891 		 * clear the fault and null out the corresponding string.
5892 		 */
5893 		if (*flags & CPU_DTRACE_FAULT) {
5894 			*flags &= ~CPU_DTRACE_FAULT;
5895 			str[offs++] = '\0';
5896 			continue;
5897 		}
5898 
5899 		if (sym == NULL) {
5900 			str[offs++] = '\0';
5901 			continue;
5902 		}
5903 
5904 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5905 
5906 		/*
5907 		 * Now copy in the string that the helper returned to us.
5908 		 */
5909 		for (j = 0; offs + j < strsize; j++) {
5910 			if ((str[offs + j] = sym[j]) == '\0')
5911 				break;
5912 		}
5913 
5914 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5915 
5916 		offs += j + 1;
5917 	}
5918 
5919 	if (offs >= strsize) {
5920 		/*
5921 		 * If we didn't have room for all of the strings, we don't
5922 		 * abort processing -- this needn't be a fatal error -- but we
5923 		 * still want to increment a counter (dts_stkstroverflows) to
5924 		 * allow this condition to be warned about.  (If this is from
5925 		 * a jstack() action, it is easily tuned via jstackstrsize.)
5926 		 */
5927 		dtrace_error(&state->dts_stkstroverflows);
5928 	}
5929 
5930 	while (offs < strsize)
5931 		str[offs++] = '\0';
5932 
5933 out:
5934 	mstate->dtms_scratch_ptr = old;
5935 }
5936 #endif
5937 
5938 /*
5939  * If you're looking for the epicenter of DTrace, you just found it.  This
5940  * is the function called by the provider to fire a probe -- from which all
5941  * subsequent probe-context DTrace activity emanates.
5942  */
5943 void
5944 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5945     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5946 {
5947 	processorid_t cpuid;
5948 	dtrace_icookie_t cookie;
5949 	dtrace_probe_t *probe;
5950 	dtrace_mstate_t mstate;
5951 	dtrace_ecb_t *ecb;
5952 	dtrace_action_t *act;
5953 	intptr_t offs;
5954 	size_t size;
5955 	int vtime, onintr;
5956 	volatile uint16_t *flags;
5957 	hrtime_t now;
5958 
5959 #if defined(sun)
5960 	/*
5961 	 * Kick out immediately if this CPU is still being born (in which case
5962 	 * curthread will be set to -1) or the current thread can't allow
5963 	 * probes in its current context.
5964 	 */
5965 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5966 		return;
5967 #endif
5968 
5969 	cookie = dtrace_interrupt_disable();
5970 	probe = dtrace_probes[id - 1];
5971 	cpuid = curcpu_id;
5972 	onintr = CPU_ON_INTR(CPU);
5973 
5974 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5975 	    probe->dtpr_predcache == curthread->t_predcache) {
5976 		/*
5977 		 * We have hit in the predicate cache; we know that
5978 		 * this predicate would evaluate to be false.
5979 		 */
5980 		dtrace_interrupt_enable(cookie);
5981 		return;
5982 	}
5983 
5984 #if defined(sun)
5985 	if (panic_quiesce) {
5986 #else
5987 	if (panicstr != NULL) {
5988 #endif
5989 		/*
5990 		 * We don't trace anything if we're panicking.
5991 		 */
5992 		dtrace_interrupt_enable(cookie);
5993 		return;
5994 	}
5995 
5996 	now = dtrace_gethrtime();
5997 	vtime = dtrace_vtime_references != 0;
5998 
5999 	if (vtime && curthread->t_dtrace_start)
6000 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6001 
6002 	mstate.dtms_difo = NULL;
6003 	mstate.dtms_probe = probe;
6004 	mstate.dtms_strtok = 0;
6005 	mstate.dtms_arg[0] = arg0;
6006 	mstate.dtms_arg[1] = arg1;
6007 	mstate.dtms_arg[2] = arg2;
6008 	mstate.dtms_arg[3] = arg3;
6009 	mstate.dtms_arg[4] = arg4;
6010 
6011 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6012 
6013 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6014 		dtrace_predicate_t *pred = ecb->dte_predicate;
6015 		dtrace_state_t *state = ecb->dte_state;
6016 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6017 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6018 		dtrace_vstate_t *vstate = &state->dts_vstate;
6019 		dtrace_provider_t *prov = probe->dtpr_provider;
6020 		int committed = 0;
6021 		caddr_t tomax;
6022 
6023 		/*
6024 		 * A little subtlety with the following (seemingly innocuous)
6025 		 * declaration of the automatic 'val':  by looking at the
6026 		 * code, you might think that it could be declared in the
6027 		 * action processing loop, below.  (That is, it's only used in
6028 		 * the action processing loop.)  However, it must be declared
6029 		 * out of that scope because in the case of DIF expression
6030 		 * arguments to aggregating actions, one iteration of the
6031 		 * action loop will use the last iteration's value.
6032 		 */
6033 		uint64_t val = 0;
6034 
6035 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6036 		*flags &= ~CPU_DTRACE_ERROR;
6037 
6038 		if (prov == dtrace_provider) {
6039 			/*
6040 			 * If dtrace itself is the provider of this probe,
6041 			 * we're only going to continue processing the ECB if
6042 			 * arg0 (the dtrace_state_t) is equal to the ECB's
6043 			 * creating state.  (This prevents disjoint consumers
6044 			 * from seeing one another's metaprobes.)
6045 			 */
6046 			if (arg0 != (uint64_t)(uintptr_t)state)
6047 				continue;
6048 		}
6049 
6050 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6051 			/*
6052 			 * We're not currently active.  If our provider isn't
6053 			 * the dtrace pseudo provider, we're not interested.
6054 			 */
6055 			if (prov != dtrace_provider)
6056 				continue;
6057 
6058 			/*
6059 			 * Now we must further check if we are in the BEGIN
6060 			 * probe.  If we are, we will only continue processing
6061 			 * if we're still in WARMUP -- if one BEGIN enabling
6062 			 * has invoked the exit() action, we don't want to
6063 			 * evaluate subsequent BEGIN enablings.
6064 			 */
6065 			if (probe->dtpr_id == dtrace_probeid_begin &&
6066 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6067 				ASSERT(state->dts_activity ==
6068 				    DTRACE_ACTIVITY_DRAINING);
6069 				continue;
6070 			}
6071 		}
6072 
6073 		if (ecb->dte_cond) {
6074 			/*
6075 			 * If the dte_cond bits indicate that this
6076 			 * consumer is only allowed to see user-mode firings
6077 			 * of this probe, call the provider's dtps_usermode()
6078 			 * entry point to check that the probe was fired
6079 			 * while in a user context. Skip this ECB if that's
6080 			 * not the case.
6081 			 */
6082 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6083 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6084 			    probe->dtpr_id, probe->dtpr_arg) == 0)
6085 				continue;
6086 
6087 #if defined(sun)
6088 			/*
6089 			 * This is more subtle than it looks. We have to be
6090 			 * absolutely certain that CRED() isn't going to
6091 			 * change out from under us so it's only legit to
6092 			 * examine that structure if we're in constrained
6093 			 * situations. Currently, the only times we'll this
6094 			 * check is if a non-super-user has enabled the
6095 			 * profile or syscall providers -- providers that
6096 			 * allow visibility of all processes. For the
6097 			 * profile case, the check above will ensure that
6098 			 * we're examining a user context.
6099 			 */
6100 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6101 				cred_t *cr;
6102 				cred_t *s_cr =
6103 				    ecb->dte_state->dts_cred.dcr_cred;
6104 				proc_t *proc;
6105 
6106 				ASSERT(s_cr != NULL);
6107 
6108 				if ((cr = CRED()) == NULL ||
6109 				    s_cr->cr_uid != cr->cr_uid ||
6110 				    s_cr->cr_uid != cr->cr_ruid ||
6111 				    s_cr->cr_uid != cr->cr_suid ||
6112 				    s_cr->cr_gid != cr->cr_gid ||
6113 				    s_cr->cr_gid != cr->cr_rgid ||
6114 				    s_cr->cr_gid != cr->cr_sgid ||
6115 				    (proc = ttoproc(curthread)) == NULL ||
6116 				    (proc->p_flag & SNOCD))
6117 					continue;
6118 			}
6119 
6120 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6121 				cred_t *cr;
6122 				cred_t *s_cr =
6123 				    ecb->dte_state->dts_cred.dcr_cred;
6124 
6125 				ASSERT(s_cr != NULL);
6126 
6127 				if ((cr = CRED()) == NULL ||
6128 				    s_cr->cr_zone->zone_id !=
6129 				    cr->cr_zone->zone_id)
6130 					continue;
6131 			}
6132 #endif
6133 		}
6134 
6135 		if (now - state->dts_alive > dtrace_deadman_timeout) {
6136 			/*
6137 			 * We seem to be dead.  Unless we (a) have kernel
6138 			 * destructive permissions (b) have expicitly enabled
6139 			 * destructive actions and (c) destructive actions have
6140 			 * not been disabled, we're going to transition into
6141 			 * the KILLED state, from which no further processing
6142 			 * on this state will be performed.
6143 			 */
6144 			if (!dtrace_priv_kernel_destructive(state) ||
6145 			    !state->dts_cred.dcr_destructive ||
6146 			    dtrace_destructive_disallow) {
6147 				void *activity = &state->dts_activity;
6148 				dtrace_activity_t current;
6149 
6150 				do {
6151 					current = state->dts_activity;
6152 				} while (dtrace_cas32(activity, current,
6153 				    DTRACE_ACTIVITY_KILLED) != current);
6154 
6155 				continue;
6156 			}
6157 		}
6158 
6159 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6160 		    ecb->dte_alignment, state, &mstate)) < 0)
6161 			continue;
6162 
6163 		tomax = buf->dtb_tomax;
6164 		ASSERT(tomax != NULL);
6165 
6166 		if (ecb->dte_size != 0)
6167 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6168 
6169 		mstate.dtms_epid = ecb->dte_epid;
6170 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6171 
6172 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6173 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6174 		else
6175 			mstate.dtms_access = 0;
6176 
6177 		if (pred != NULL) {
6178 			dtrace_difo_t *dp = pred->dtp_difo;
6179 			int rval;
6180 
6181 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6182 
6183 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6184 				dtrace_cacheid_t cid = probe->dtpr_predcache;
6185 
6186 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6187 					/*
6188 					 * Update the predicate cache...
6189 					 */
6190 					ASSERT(cid == pred->dtp_cacheid);
6191 					curthread->t_predcache = cid;
6192 				}
6193 
6194 				continue;
6195 			}
6196 		}
6197 
6198 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6199 		    act != NULL; act = act->dta_next) {
6200 			size_t valoffs;
6201 			dtrace_difo_t *dp;
6202 			dtrace_recdesc_t *rec = &act->dta_rec;
6203 
6204 			size = rec->dtrd_size;
6205 			valoffs = offs + rec->dtrd_offset;
6206 
6207 			if (DTRACEACT_ISAGG(act->dta_kind)) {
6208 				uint64_t v = 0xbad;
6209 				dtrace_aggregation_t *agg;
6210 
6211 				agg = (dtrace_aggregation_t *)act;
6212 
6213 				if ((dp = act->dta_difo) != NULL)
6214 					v = dtrace_dif_emulate(dp,
6215 					    &mstate, vstate, state);
6216 
6217 				if (*flags & CPU_DTRACE_ERROR)
6218 					continue;
6219 
6220 				/*
6221 				 * Note that we always pass the expression
6222 				 * value from the previous iteration of the
6223 				 * action loop.  This value will only be used
6224 				 * if there is an expression argument to the
6225 				 * aggregating action, denoted by the
6226 				 * dtag_hasarg field.
6227 				 */
6228 				dtrace_aggregate(agg, buf,
6229 				    offs, aggbuf, v, val);
6230 				continue;
6231 			}
6232 
6233 			switch (act->dta_kind) {
6234 			case DTRACEACT_STOP:
6235 				if (dtrace_priv_proc_destructive(state))
6236 					dtrace_action_stop();
6237 				continue;
6238 
6239 			case DTRACEACT_BREAKPOINT:
6240 				if (dtrace_priv_kernel_destructive(state))
6241 					dtrace_action_breakpoint(ecb);
6242 				continue;
6243 
6244 			case DTRACEACT_PANIC:
6245 				if (dtrace_priv_kernel_destructive(state))
6246 					dtrace_action_panic(ecb);
6247 				continue;
6248 
6249 			case DTRACEACT_STACK:
6250 				if (!dtrace_priv_kernel(state))
6251 					continue;
6252 
6253 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6254 				    size / sizeof (pc_t), probe->dtpr_aframes,
6255 				    DTRACE_ANCHORED(probe) ? NULL :
6256 				    (uint32_t *)arg0);
6257 				continue;
6258 
6259 #if defined(sun)
6260 			case DTRACEACT_JSTACK:
6261 			case DTRACEACT_USTACK:
6262 				if (!dtrace_priv_proc(state))
6263 					continue;
6264 
6265 				/*
6266 				 * See comment in DIF_VAR_PID.
6267 				 */
6268 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6269 				    CPU_ON_INTR(CPU)) {
6270 					int depth = DTRACE_USTACK_NFRAMES(
6271 					    rec->dtrd_arg) + 1;
6272 
6273 					dtrace_bzero((void *)(tomax + valoffs),
6274 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6275 					    + depth * sizeof (uint64_t));
6276 
6277 					continue;
6278 				}
6279 
6280 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6281 				    curproc->p_dtrace_helpers != NULL) {
6282 					/*
6283 					 * This is the slow path -- we have
6284 					 * allocated string space, and we're
6285 					 * getting the stack of a process that
6286 					 * has helpers.  Call into a separate
6287 					 * routine to perform this processing.
6288 					 */
6289 					dtrace_action_ustack(&mstate, state,
6290 					    (uint64_t *)(tomax + valoffs),
6291 					    rec->dtrd_arg);
6292 					continue;
6293 				}
6294 
6295 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6296 				dtrace_getupcstack((uint64_t *)
6297 				    (tomax + valoffs),
6298 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6299 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6300 				continue;
6301 #endif
6302 
6303 			default:
6304 				break;
6305 			}
6306 
6307 			dp = act->dta_difo;
6308 			ASSERT(dp != NULL);
6309 
6310 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6311 
6312 			if (*flags & CPU_DTRACE_ERROR)
6313 				continue;
6314 
6315 			switch (act->dta_kind) {
6316 			case DTRACEACT_SPECULATE:
6317 				ASSERT(buf == &state->dts_buffer[cpuid]);
6318 				buf = dtrace_speculation_buffer(state,
6319 				    cpuid, val);
6320 
6321 				if (buf == NULL) {
6322 					*flags |= CPU_DTRACE_DROP;
6323 					continue;
6324 				}
6325 
6326 				offs = dtrace_buffer_reserve(buf,
6327 				    ecb->dte_needed, ecb->dte_alignment,
6328 				    state, NULL);
6329 
6330 				if (offs < 0) {
6331 					*flags |= CPU_DTRACE_DROP;
6332 					continue;
6333 				}
6334 
6335 				tomax = buf->dtb_tomax;
6336 				ASSERT(tomax != NULL);
6337 
6338 				if (ecb->dte_size != 0)
6339 					DTRACE_STORE(uint32_t, tomax, offs,
6340 					    ecb->dte_epid);
6341 				continue;
6342 
6343 			case DTRACEACT_PRINTM: {
6344 				/* The DIF returns a 'memref'. */
6345 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6346 
6347 				/* Get the size from the memref. */
6348 				size = memref[1];
6349 
6350 				/*
6351 				 * Check if the size exceeds the allocated
6352 				 * buffer size.
6353 				 */
6354 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6355 					/* Flag a drop! */
6356 					*flags |= CPU_DTRACE_DROP;
6357 					continue;
6358 				}
6359 
6360 				/* Store the size in the buffer first. */
6361 				DTRACE_STORE(uintptr_t, tomax,
6362 				    valoffs, size);
6363 
6364 				/*
6365 				 * Offset the buffer address to the start
6366 				 * of the data.
6367 				 */
6368 				valoffs += sizeof(uintptr_t);
6369 
6370 				/*
6371 				 * Reset to the memory address rather than
6372 				 * the memref array, then let the BYREF
6373 				 * code below do the work to store the
6374 				 * memory data in the buffer.
6375 				 */
6376 				val = memref[0];
6377 				break;
6378 			}
6379 
6380 			case DTRACEACT_PRINTT: {
6381 				/* The DIF returns a 'typeref'. */
6382 				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6383 				char c = '\0' + 1;
6384 				size_t s;
6385 
6386 				/*
6387 				 * Get the type string length and round it
6388 				 * up so that the data that follows is
6389 				 * aligned for easy access.
6390 				 */
6391 				size_t typs = strlen((char *) typeref[2]) + 1;
6392 				typs = roundup(typs,  sizeof(uintptr_t));
6393 
6394 				/*
6395 				 *Get the size from the typeref using the
6396 				 * number of elements and the type size.
6397 				 */
6398 				size = typeref[1] * typeref[3];
6399 
6400 				/*
6401 				 * Check if the size exceeds the allocated
6402 				 * buffer size.
6403 				 */
6404 				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6405 					/* Flag a drop! */
6406 					*flags |= CPU_DTRACE_DROP;
6407 
6408 				}
6409 
6410 				/* Store the size in the buffer first. */
6411 				DTRACE_STORE(uintptr_t, tomax,
6412 				    valoffs, size);
6413 				valoffs += sizeof(uintptr_t);
6414 
6415 				/* Store the type size in the buffer. */
6416 				DTRACE_STORE(uintptr_t, tomax,
6417 				    valoffs, typeref[3]);
6418 				valoffs += sizeof(uintptr_t);
6419 
6420 				val = typeref[2];
6421 
6422 				for (s = 0; s < typs; s++) {
6423 					if (c != '\0')
6424 						c = dtrace_load8(val++);
6425 
6426 					DTRACE_STORE(uint8_t, tomax,
6427 					    valoffs++, c);
6428 				}
6429 
6430 				/*
6431 				 * Reset to the memory address rather than
6432 				 * the typeref array, then let the BYREF
6433 				 * code below do the work to store the
6434 				 * memory data in the buffer.
6435 				 */
6436 				val = typeref[0];
6437 				break;
6438 			}
6439 
6440 			case DTRACEACT_CHILL:
6441 				if (dtrace_priv_kernel_destructive(state))
6442 					dtrace_action_chill(&mstate, val);
6443 				continue;
6444 
6445 			case DTRACEACT_RAISE:
6446 				if (dtrace_priv_proc_destructive(state))
6447 					dtrace_action_raise(val);
6448 				continue;
6449 
6450 			case DTRACEACT_COMMIT:
6451 				ASSERT(!committed);
6452 
6453 				/*
6454 				 * We need to commit our buffer state.
6455 				 */
6456 				if (ecb->dte_size)
6457 					buf->dtb_offset = offs + ecb->dte_size;
6458 				buf = &state->dts_buffer[cpuid];
6459 				dtrace_speculation_commit(state, cpuid, val);
6460 				committed = 1;
6461 				continue;
6462 
6463 			case DTRACEACT_DISCARD:
6464 				dtrace_speculation_discard(state, cpuid, val);
6465 				continue;
6466 
6467 			case DTRACEACT_DIFEXPR:
6468 			case DTRACEACT_LIBACT:
6469 			case DTRACEACT_PRINTF:
6470 			case DTRACEACT_PRINTA:
6471 			case DTRACEACT_SYSTEM:
6472 			case DTRACEACT_FREOPEN:
6473 				break;
6474 
6475 			case DTRACEACT_SYM:
6476 			case DTRACEACT_MOD:
6477 				if (!dtrace_priv_kernel(state))
6478 					continue;
6479 				break;
6480 
6481 			case DTRACEACT_USYM:
6482 			case DTRACEACT_UMOD:
6483 			case DTRACEACT_UADDR: {
6484 #if defined(sun)
6485 				struct pid *pid = curthread->t_procp->p_pidp;
6486 #endif
6487 				if (!dtrace_priv_proc(state))
6488 					continue;
6489 
6490 				DTRACE_STORE(uint64_t, tomax,
6491 #if defined(sun)
6492 				    valoffs, (uint64_t)pid->pid_id);
6493 #else
6494 				    valoffs, (uint64_t) curproc->p_pid);
6495 #endif
6496 				DTRACE_STORE(uint64_t, tomax,
6497 				    valoffs + sizeof (uint64_t), val);
6498 
6499 				continue;
6500 			}
6501 
6502 			case DTRACEACT_EXIT: {
6503 				/*
6504 				 * For the exit action, we are going to attempt
6505 				 * to atomically set our activity to be
6506 				 * draining.  If this fails (either because
6507 				 * another CPU has beat us to the exit action,
6508 				 * or because our current activity is something
6509 				 * other than ACTIVE or WARMUP), we will
6510 				 * continue.  This assures that the exit action
6511 				 * can be successfully recorded at most once
6512 				 * when we're in the ACTIVE state.  If we're
6513 				 * encountering the exit() action while in
6514 				 * COOLDOWN, however, we want to honor the new
6515 				 * status code.  (We know that we're the only
6516 				 * thread in COOLDOWN, so there is no race.)
6517 				 */
6518 				void *activity = &state->dts_activity;
6519 				dtrace_activity_t current = state->dts_activity;
6520 
6521 				if (current == DTRACE_ACTIVITY_COOLDOWN)
6522 					break;
6523 
6524 				if (current != DTRACE_ACTIVITY_WARMUP)
6525 					current = DTRACE_ACTIVITY_ACTIVE;
6526 
6527 				if (dtrace_cas32(activity, current,
6528 				    DTRACE_ACTIVITY_DRAINING) != current) {
6529 					*flags |= CPU_DTRACE_DROP;
6530 					continue;
6531 				}
6532 
6533 				break;
6534 			}
6535 
6536 			default:
6537 				ASSERT(0);
6538 			}
6539 
6540 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6541 				uintptr_t end = valoffs + size;
6542 
6543 				if (!dtrace_vcanload((void *)(uintptr_t)val,
6544 				    &dp->dtdo_rtype, &mstate, vstate))
6545 					continue;
6546 
6547 				/*
6548 				 * If this is a string, we're going to only
6549 				 * load until we find the zero byte -- after
6550 				 * which we'll store zero bytes.
6551 				 */
6552 				if (dp->dtdo_rtype.dtdt_kind ==
6553 				    DIF_TYPE_STRING) {
6554 					char c = '\0' + 1;
6555 					int intuple = act->dta_intuple;
6556 					size_t s;
6557 
6558 					for (s = 0; s < size; s++) {
6559 						if (c != '\0')
6560 							c = dtrace_load8(val++);
6561 
6562 						DTRACE_STORE(uint8_t, tomax,
6563 						    valoffs++, c);
6564 
6565 						if (c == '\0' && intuple)
6566 							break;
6567 					}
6568 
6569 					continue;
6570 				}
6571 
6572 				while (valoffs < end) {
6573 					DTRACE_STORE(uint8_t, tomax, valoffs++,
6574 					    dtrace_load8(val++));
6575 				}
6576 
6577 				continue;
6578 			}
6579 
6580 			switch (size) {
6581 			case 0:
6582 				break;
6583 
6584 			case sizeof (uint8_t):
6585 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6586 				break;
6587 			case sizeof (uint16_t):
6588 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6589 				break;
6590 			case sizeof (uint32_t):
6591 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6592 				break;
6593 			case sizeof (uint64_t):
6594 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6595 				break;
6596 			default:
6597 				/*
6598 				 * Any other size should have been returned by
6599 				 * reference, not by value.
6600 				 */
6601 				ASSERT(0);
6602 				break;
6603 			}
6604 		}
6605 
6606 		if (*flags & CPU_DTRACE_DROP)
6607 			continue;
6608 
6609 		if (*flags & CPU_DTRACE_FAULT) {
6610 			int ndx;
6611 			dtrace_action_t *err;
6612 
6613 			buf->dtb_errors++;
6614 
6615 			if (probe->dtpr_id == dtrace_probeid_error) {
6616 				/*
6617 				 * There's nothing we can do -- we had an
6618 				 * error on the error probe.  We bump an
6619 				 * error counter to at least indicate that
6620 				 * this condition happened.
6621 				 */
6622 				dtrace_error(&state->dts_dblerrors);
6623 				continue;
6624 			}
6625 
6626 			if (vtime) {
6627 				/*
6628 				 * Before recursing on dtrace_probe(), we
6629 				 * need to explicitly clear out our start
6630 				 * time to prevent it from being accumulated
6631 				 * into t_dtrace_vtime.
6632 				 */
6633 				curthread->t_dtrace_start = 0;
6634 			}
6635 
6636 			/*
6637 			 * Iterate over the actions to figure out which action
6638 			 * we were processing when we experienced the error.
6639 			 * Note that act points _past_ the faulting action; if
6640 			 * act is ecb->dte_action, the fault was in the
6641 			 * predicate, if it's ecb->dte_action->dta_next it's
6642 			 * in action #1, and so on.
6643 			 */
6644 			for (err = ecb->dte_action, ndx = 0;
6645 			    err != act; err = err->dta_next, ndx++)
6646 				continue;
6647 
6648 			dtrace_probe_error(state, ecb->dte_epid, ndx,
6649 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6650 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6651 			    cpu_core[cpuid].cpuc_dtrace_illval);
6652 
6653 			continue;
6654 		}
6655 
6656 		if (!committed)
6657 			buf->dtb_offset = offs + ecb->dte_size;
6658 	}
6659 
6660 	if (vtime)
6661 		curthread->t_dtrace_start = dtrace_gethrtime();
6662 
6663 	dtrace_interrupt_enable(cookie);
6664 }
6665 
6666 /*
6667  * DTrace Probe Hashing Functions
6668  *
6669  * The functions in this section (and indeed, the functions in remaining
6670  * sections) are not _called_ from probe context.  (Any exceptions to this are
6671  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6672  * DTrace framework to look-up probes in, add probes to and remove probes from
6673  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6674  * probe tuple -- allowing for fast lookups, regardless of what was
6675  * specified.)
6676  */
6677 static uint_t
6678 dtrace_hash_str(const char *p)
6679 {
6680 	unsigned int g;
6681 	uint_t hval = 0;
6682 
6683 	while (*p) {
6684 		hval = (hval << 4) + *p++;
6685 		if ((g = (hval & 0xf0000000)) != 0)
6686 			hval ^= g >> 24;
6687 		hval &= ~g;
6688 	}
6689 	return (hval);
6690 }
6691 
6692 static dtrace_hash_t *
6693 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6694 {
6695 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6696 
6697 	hash->dth_stroffs = stroffs;
6698 	hash->dth_nextoffs = nextoffs;
6699 	hash->dth_prevoffs = prevoffs;
6700 
6701 	hash->dth_size = 1;
6702 	hash->dth_mask = hash->dth_size - 1;
6703 
6704 	hash->dth_tab = kmem_zalloc(hash->dth_size *
6705 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6706 
6707 	return (hash);
6708 }
6709 
6710 static void
6711 dtrace_hash_destroy(dtrace_hash_t *hash)
6712 {
6713 #ifdef DEBUG
6714 	int i;
6715 
6716 	for (i = 0; i < hash->dth_size; i++)
6717 		ASSERT(hash->dth_tab[i] == NULL);
6718 #endif
6719 
6720 	kmem_free(hash->dth_tab,
6721 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6722 	kmem_free(hash, sizeof (dtrace_hash_t));
6723 }
6724 
6725 static void
6726 dtrace_hash_resize(dtrace_hash_t *hash)
6727 {
6728 	int size = hash->dth_size, i, ndx;
6729 	int new_size = hash->dth_size << 1;
6730 	int new_mask = new_size - 1;
6731 	dtrace_hashbucket_t **new_tab, *bucket, *next;
6732 
6733 	ASSERT((new_size & new_mask) == 0);
6734 
6735 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6736 
6737 	for (i = 0; i < size; i++) {
6738 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6739 			dtrace_probe_t *probe = bucket->dthb_chain;
6740 
6741 			ASSERT(probe != NULL);
6742 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6743 
6744 			next = bucket->dthb_next;
6745 			bucket->dthb_next = new_tab[ndx];
6746 			new_tab[ndx] = bucket;
6747 		}
6748 	}
6749 
6750 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6751 	hash->dth_tab = new_tab;
6752 	hash->dth_size = new_size;
6753 	hash->dth_mask = new_mask;
6754 }
6755 
6756 static void
6757 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6758 {
6759 	int hashval = DTRACE_HASHSTR(hash, new);
6760 	int ndx = hashval & hash->dth_mask;
6761 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6762 	dtrace_probe_t **nextp, **prevp;
6763 
6764 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6765 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6766 			goto add;
6767 	}
6768 
6769 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6770 		dtrace_hash_resize(hash);
6771 		dtrace_hash_add(hash, new);
6772 		return;
6773 	}
6774 
6775 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6776 	bucket->dthb_next = hash->dth_tab[ndx];
6777 	hash->dth_tab[ndx] = bucket;
6778 	hash->dth_nbuckets++;
6779 
6780 add:
6781 	nextp = DTRACE_HASHNEXT(hash, new);
6782 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6783 	*nextp = bucket->dthb_chain;
6784 
6785 	if (bucket->dthb_chain != NULL) {
6786 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6787 		ASSERT(*prevp == NULL);
6788 		*prevp = new;
6789 	}
6790 
6791 	bucket->dthb_chain = new;
6792 	bucket->dthb_len++;
6793 }
6794 
6795 static dtrace_probe_t *
6796 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6797 {
6798 	int hashval = DTRACE_HASHSTR(hash, template);
6799 	int ndx = hashval & hash->dth_mask;
6800 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6801 
6802 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6803 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6804 			return (bucket->dthb_chain);
6805 	}
6806 
6807 	return (NULL);
6808 }
6809 
6810 static int
6811 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6812 {
6813 	int hashval = DTRACE_HASHSTR(hash, template);
6814 	int ndx = hashval & hash->dth_mask;
6815 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6816 
6817 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6818 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6819 			return (bucket->dthb_len);
6820 	}
6821 
6822 	return (0);
6823 }
6824 
6825 static void
6826 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6827 {
6828 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6829 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6830 
6831 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6832 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6833 
6834 	/*
6835 	 * Find the bucket that we're removing this probe from.
6836 	 */
6837 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6838 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6839 			break;
6840 	}
6841 
6842 	ASSERT(bucket != NULL);
6843 
6844 	if (*prevp == NULL) {
6845 		if (*nextp == NULL) {
6846 			/*
6847 			 * The removed probe was the only probe on this
6848 			 * bucket; we need to remove the bucket.
6849 			 */
6850 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6851 
6852 			ASSERT(bucket->dthb_chain == probe);
6853 			ASSERT(b != NULL);
6854 
6855 			if (b == bucket) {
6856 				hash->dth_tab[ndx] = bucket->dthb_next;
6857 			} else {
6858 				while (b->dthb_next != bucket)
6859 					b = b->dthb_next;
6860 				b->dthb_next = bucket->dthb_next;
6861 			}
6862 
6863 			ASSERT(hash->dth_nbuckets > 0);
6864 			hash->dth_nbuckets--;
6865 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6866 			return;
6867 		}
6868 
6869 		bucket->dthb_chain = *nextp;
6870 	} else {
6871 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6872 	}
6873 
6874 	if (*nextp != NULL)
6875 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6876 }
6877 
6878 /*
6879  * DTrace Utility Functions
6880  *
6881  * These are random utility functions that are _not_ called from probe context.
6882  */
6883 static int
6884 dtrace_badattr(const dtrace_attribute_t *a)
6885 {
6886 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6887 	    a->dtat_data > DTRACE_STABILITY_MAX ||
6888 	    a->dtat_class > DTRACE_CLASS_MAX);
6889 }
6890 
6891 /*
6892  * Return a duplicate copy of a string.  If the specified string is NULL,
6893  * this function returns a zero-length string.
6894  */
6895 static char *
6896 dtrace_strdup(const char *str)
6897 {
6898 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6899 
6900 	if (str != NULL)
6901 		(void) strcpy(new, str);
6902 
6903 	return (new);
6904 }
6905 
6906 #define	DTRACE_ISALPHA(c)	\
6907 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6908 
6909 static int
6910 dtrace_badname(const char *s)
6911 {
6912 	char c;
6913 
6914 	if (s == NULL || (c = *s++) == '\0')
6915 		return (0);
6916 
6917 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6918 		return (1);
6919 
6920 	while ((c = *s++) != '\0') {
6921 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6922 		    c != '-' && c != '_' && c != '.' && c != '`')
6923 			return (1);
6924 	}
6925 
6926 	return (0);
6927 }
6928 
6929 static void
6930 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6931 {
6932 	uint32_t priv;
6933 
6934 #if defined(sun)
6935 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6936 		/*
6937 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter,
6938 		 * but for GCC they do.
6939 		 */
6940 		*uidp = 0;
6941 		*zoneidp = 0;
6942 
6943 		priv = DTRACE_PRIV_ALL;
6944 	} else {
6945 		*uidp = crgetuid(cr);
6946 		*zoneidp = crgetzoneid(cr);
6947 
6948 		priv = 0;
6949 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6950 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6951 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6952 			priv |= DTRACE_PRIV_USER;
6953 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6954 			priv |= DTRACE_PRIV_PROC;
6955 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6956 			priv |= DTRACE_PRIV_OWNER;
6957 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6958 			priv |= DTRACE_PRIV_ZONEOWNER;
6959 	}
6960 #else
6961 	priv = DTRACE_PRIV_ALL;
6962 	*uidp = 0;
6963 	*zoneidp = 0;
6964 #endif
6965 
6966 	*privp = priv;
6967 }
6968 
6969 #ifdef DTRACE_ERRDEBUG
6970 static void
6971 dtrace_errdebug(const char *str)
6972 {
6973 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
6974 	int occupied = 0;
6975 
6976 	mutex_enter(&dtrace_errlock);
6977 	dtrace_errlast = str;
6978 	dtrace_errthread = curthread;
6979 
6980 	while (occupied++ < DTRACE_ERRHASHSZ) {
6981 		if (dtrace_errhash[hval].dter_msg == str) {
6982 			dtrace_errhash[hval].dter_count++;
6983 			goto out;
6984 		}
6985 
6986 		if (dtrace_errhash[hval].dter_msg != NULL) {
6987 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6988 			continue;
6989 		}
6990 
6991 		dtrace_errhash[hval].dter_msg = str;
6992 		dtrace_errhash[hval].dter_count = 1;
6993 		goto out;
6994 	}
6995 
6996 	panic("dtrace: undersized error hash");
6997 out:
6998 	mutex_exit(&dtrace_errlock);
6999 }
7000 #endif
7001 
7002 /*
7003  * DTrace Matching Functions
7004  *
7005  * These functions are used to match groups of probes, given some elements of
7006  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7007  */
7008 static int
7009 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7010     zoneid_t zoneid)
7011 {
7012 	if (priv != DTRACE_PRIV_ALL) {
7013 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7014 		uint32_t match = priv & ppriv;
7015 
7016 		/*
7017 		 * No PRIV_DTRACE_* privileges...
7018 		 */
7019 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7020 		    DTRACE_PRIV_KERNEL)) == 0)
7021 			return (0);
7022 
7023 		/*
7024 		 * No matching bits, but there were bits to match...
7025 		 */
7026 		if (match == 0 && ppriv != 0)
7027 			return (0);
7028 
7029 		/*
7030 		 * Need to have permissions to the process, but don't...
7031 		 */
7032 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7033 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7034 			return (0);
7035 		}
7036 
7037 		/*
7038 		 * Need to be in the same zone unless we possess the
7039 		 * privilege to examine all zones.
7040 		 */
7041 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7042 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7043 			return (0);
7044 		}
7045 	}
7046 
7047 	return (1);
7048 }
7049 
7050 /*
7051  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7052  * consists of input pattern strings and an ops-vector to evaluate them.
7053  * This function returns >0 for match, 0 for no match, and <0 for error.
7054  */
7055 static int
7056 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7057     uint32_t priv, uid_t uid, zoneid_t zoneid)
7058 {
7059 	dtrace_provider_t *pvp = prp->dtpr_provider;
7060 	int rv;
7061 
7062 	if (pvp->dtpv_defunct)
7063 		return (0);
7064 
7065 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7066 		return (rv);
7067 
7068 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7069 		return (rv);
7070 
7071 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7072 		return (rv);
7073 
7074 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7075 		return (rv);
7076 
7077 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7078 		return (0);
7079 
7080 	return (rv);
7081 }
7082 
7083 /*
7084  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7085  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7086  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7087  * In addition, all of the recursion cases except for '*' matching have been
7088  * unwound.  For '*', we still implement recursive evaluation, but a depth
7089  * counter is maintained and matching is aborted if we recurse too deep.
7090  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7091  */
7092 static int
7093 dtrace_match_glob(const char *s, const char *p, int depth)
7094 {
7095 	const char *olds;
7096 	char s1, c;
7097 	int gs;
7098 
7099 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7100 		return (-1);
7101 
7102 	if (s == NULL)
7103 		s = ""; /* treat NULL as empty string */
7104 
7105 top:
7106 	olds = s;
7107 	s1 = *s++;
7108 
7109 	if (p == NULL)
7110 		return (0);
7111 
7112 	if ((c = *p++) == '\0')
7113 		return (s1 == '\0');
7114 
7115 	switch (c) {
7116 	case '[': {
7117 		int ok = 0, notflag = 0;
7118 		char lc = '\0';
7119 
7120 		if (s1 == '\0')
7121 			return (0);
7122 
7123 		if (*p == '!') {
7124 			notflag = 1;
7125 			p++;
7126 		}
7127 
7128 		if ((c = *p++) == '\0')
7129 			return (0);
7130 
7131 		do {
7132 			if (c == '-' && lc != '\0' && *p != ']') {
7133 				if ((c = *p++) == '\0')
7134 					return (0);
7135 				if (c == '\\' && (c = *p++) == '\0')
7136 					return (0);
7137 
7138 				if (notflag) {
7139 					if (s1 < lc || s1 > c)
7140 						ok++;
7141 					else
7142 						return (0);
7143 				} else if (lc <= s1 && s1 <= c)
7144 					ok++;
7145 
7146 			} else if (c == '\\' && (c = *p++) == '\0')
7147 				return (0);
7148 
7149 			lc = c; /* save left-hand 'c' for next iteration */
7150 
7151 			if (notflag) {
7152 				if (s1 != c)
7153 					ok++;
7154 				else
7155 					return (0);
7156 			} else if (s1 == c)
7157 				ok++;
7158 
7159 			if ((c = *p++) == '\0')
7160 				return (0);
7161 
7162 		} while (c != ']');
7163 
7164 		if (ok)
7165 			goto top;
7166 
7167 		return (0);
7168 	}
7169 
7170 	case '\\':
7171 		if ((c = *p++) == '\0')
7172 			return (0);
7173 		/*FALLTHRU*/
7174 
7175 	default:
7176 		if (c != s1)
7177 			return (0);
7178 		/*FALLTHRU*/
7179 
7180 	case '?':
7181 		if (s1 != '\0')
7182 			goto top;
7183 		return (0);
7184 
7185 	case '*':
7186 		while (*p == '*')
7187 			p++; /* consecutive *'s are identical to a single one */
7188 
7189 		if (*p == '\0')
7190 			return (1);
7191 
7192 		for (s = olds; *s != '\0'; s++) {
7193 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7194 				return (gs);
7195 		}
7196 
7197 		return (0);
7198 	}
7199 }
7200 
7201 /*ARGSUSED*/
7202 static int
7203 dtrace_match_string(const char *s, const char *p, int depth)
7204 {
7205 	return (s != NULL && strcmp(s, p) == 0);
7206 }
7207 
7208 /*ARGSUSED*/
7209 static int
7210 dtrace_match_nul(const char *s, const char *p, int depth)
7211 {
7212 	return (1); /* always match the empty pattern */
7213 }
7214 
7215 /*ARGSUSED*/
7216 static int
7217 dtrace_match_nonzero(const char *s, const char *p, int depth)
7218 {
7219 	return (s != NULL && s[0] != '\0');
7220 }
7221 
7222 static int
7223 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7224     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7225 {
7226 	dtrace_probe_t template, *probe;
7227 	dtrace_hash_t *hash = NULL;
7228 	int len, rc, best = INT_MAX, nmatched = 0;
7229 	dtrace_id_t i;
7230 
7231 	ASSERT(MUTEX_HELD(&dtrace_lock));
7232 
7233 	/*
7234 	 * If the probe ID is specified in the key, just lookup by ID and
7235 	 * invoke the match callback once if a matching probe is found.
7236 	 */
7237 	if (pkp->dtpk_id != DTRACE_IDNONE) {
7238 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7239 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7240 			if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
7241 				return (DTRACE_MATCH_FAIL);
7242 			nmatched++;
7243 		}
7244 		return (nmatched);
7245 	}
7246 
7247 	template.dtpr_mod = (char *)pkp->dtpk_mod;
7248 	template.dtpr_func = (char *)pkp->dtpk_func;
7249 	template.dtpr_name = (char *)pkp->dtpk_name;
7250 
7251 	/*
7252 	 * We want to find the most distinct of the module name, function
7253 	 * name, and name.  So for each one that is not a glob pattern or
7254 	 * empty string, we perform a lookup in the corresponding hash and
7255 	 * use the hash table with the fewest collisions to do our search.
7256 	 */
7257 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7258 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7259 		best = len;
7260 		hash = dtrace_bymod;
7261 	}
7262 
7263 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7264 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7265 		best = len;
7266 		hash = dtrace_byfunc;
7267 	}
7268 
7269 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7270 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7271 		best = len;
7272 		hash = dtrace_byname;
7273 	}
7274 
7275 	/*
7276 	 * If we did not select a hash table, iterate over every probe and
7277 	 * invoke our callback for each one that matches our input probe key.
7278 	 */
7279 	if (hash == NULL) {
7280 		for (i = 0; i < dtrace_nprobes; i++) {
7281 			if ((probe = dtrace_probes[i]) == NULL ||
7282 			    dtrace_match_probe(probe, pkp, priv, uid,
7283 			    zoneid) <= 0)
7284 				continue;
7285 
7286 			nmatched++;
7287 
7288 			if ((rc = (*matched)(probe, arg)) !=
7289 			    DTRACE_MATCH_NEXT) {
7290 				if (rc == DTRACE_MATCH_FAIL)
7291 					return (DTRACE_MATCH_FAIL);
7292 				break;
7293 			}
7294 		}
7295 
7296 		return (nmatched);
7297 	}
7298 
7299 	/*
7300 	 * If we selected a hash table, iterate over each probe of the same key
7301 	 * name and invoke the callback for every probe that matches the other
7302 	 * attributes of our input probe key.
7303 	 */
7304 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7305 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7306 
7307 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7308 			continue;
7309 
7310 		nmatched++;
7311 
7312 		if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7313 			if (rc == DTRACE_MATCH_FAIL)
7314 				return (DTRACE_MATCH_FAIL);
7315 			break;
7316 		}
7317 	}
7318 
7319 	return (nmatched);
7320 }
7321 
7322 /*
7323  * Return the function pointer dtrace_probecmp() should use to compare the
7324  * specified pattern with a string.  For NULL or empty patterns, we select
7325  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7326  * For non-empty non-glob strings, we use dtrace_match_string().
7327  */
7328 static dtrace_probekey_f *
7329 dtrace_probekey_func(const char *p)
7330 {
7331 	char c;
7332 
7333 	if (p == NULL || *p == '\0')
7334 		return (&dtrace_match_nul);
7335 
7336 	while ((c = *p++) != '\0') {
7337 		if (c == '[' || c == '?' || c == '*' || c == '\\')
7338 			return (&dtrace_match_glob);
7339 	}
7340 
7341 	return (&dtrace_match_string);
7342 }
7343 
7344 /*
7345  * Build a probe comparison key for use with dtrace_match_probe() from the
7346  * given probe description.  By convention, a null key only matches anchored
7347  * probes: if each field is the empty string, reset dtpk_fmatch to
7348  * dtrace_match_nonzero().
7349  */
7350 static void
7351 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7352 {
7353 	pkp->dtpk_prov = pdp->dtpd_provider;
7354 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7355 
7356 	pkp->dtpk_mod = pdp->dtpd_mod;
7357 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7358 
7359 	pkp->dtpk_func = pdp->dtpd_func;
7360 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7361 
7362 	pkp->dtpk_name = pdp->dtpd_name;
7363 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7364 
7365 	pkp->dtpk_id = pdp->dtpd_id;
7366 
7367 	if (pkp->dtpk_id == DTRACE_IDNONE &&
7368 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7369 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7370 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7371 	    pkp->dtpk_nmatch == &dtrace_match_nul)
7372 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7373 }
7374 
7375 /*
7376  * DTrace Provider-to-Framework API Functions
7377  *
7378  * These functions implement much of the Provider-to-Framework API, as
7379  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7380  * the functions in the API for probe management (found below), and
7381  * dtrace_probe() itself (found above).
7382  */
7383 
7384 /*
7385  * Register the calling provider with the DTrace framework.  This should
7386  * generally be called by DTrace providers in their attach(9E) entry point.
7387  */
7388 int
7389 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7390     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7391 {
7392 	dtrace_provider_t *provider;
7393 
7394 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7395 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7396 		    "arguments", name ? name : "<NULL>");
7397 		return (EINVAL);
7398 	}
7399 
7400 	if (name[0] == '\0' || dtrace_badname(name)) {
7401 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7402 		    "provider name", name);
7403 		return (EINVAL);
7404 	}
7405 
7406 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7407 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7408 	    pops->dtps_destroy == NULL ||
7409 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7410 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7411 		    "provider ops", name);
7412 		return (EINVAL);
7413 	}
7414 
7415 	if (dtrace_badattr(&pap->dtpa_provider) ||
7416 	    dtrace_badattr(&pap->dtpa_mod) ||
7417 	    dtrace_badattr(&pap->dtpa_func) ||
7418 	    dtrace_badattr(&pap->dtpa_name) ||
7419 	    dtrace_badattr(&pap->dtpa_args)) {
7420 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7421 		    "provider attributes", name);
7422 		return (EINVAL);
7423 	}
7424 
7425 	if (priv & ~DTRACE_PRIV_ALL) {
7426 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7427 		    "privilege attributes", name);
7428 		return (EINVAL);
7429 	}
7430 
7431 	if ((priv & DTRACE_PRIV_KERNEL) &&
7432 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7433 	    pops->dtps_usermode == NULL) {
7434 		cmn_err(CE_WARN, "failed to register provider '%s': need "
7435 		    "dtps_usermode() op for given privilege attributes", name);
7436 		return (EINVAL);
7437 	}
7438 
7439 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7440 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7441 	(void) strcpy(provider->dtpv_name, name);
7442 
7443 	provider->dtpv_attr = *pap;
7444 	provider->dtpv_priv.dtpp_flags = priv;
7445 	if (cr != NULL) {
7446 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7447 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7448 	}
7449 	provider->dtpv_pops = *pops;
7450 
7451 	if (pops->dtps_provide == NULL) {
7452 		ASSERT(pops->dtps_provide_module != NULL);
7453 		provider->dtpv_pops.dtps_provide =
7454 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
7455 	}
7456 
7457 	if (pops->dtps_provide_module == NULL) {
7458 		ASSERT(pops->dtps_provide != NULL);
7459 #if defined(sun)
7460 		provider->dtpv_pops.dtps_provide_module =
7461 		    (void (*)(void *, modctl_t *))dtrace_nullop;
7462 #else
7463 		provider->dtpv_pops.dtps_provide_module =
7464 		    (void (*)(void *, dtrace_modctl_t *))dtrace_nullop;
7465 #endif
7466 	}
7467 
7468 	if (pops->dtps_suspend == NULL) {
7469 		ASSERT(pops->dtps_resume == NULL);
7470 		provider->dtpv_pops.dtps_suspend =
7471 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7472 		provider->dtpv_pops.dtps_resume =
7473 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7474 	}
7475 
7476 	provider->dtpv_arg = arg;
7477 	*idp = (dtrace_provider_id_t)provider;
7478 
7479 	if (pops == &dtrace_provider_ops) {
7480 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7481 		ASSERT(MUTEX_HELD(&dtrace_lock));
7482 		ASSERT(dtrace_anon.dta_enabling == NULL);
7483 
7484 		/*
7485 		 * We make sure that the DTrace provider is at the head of
7486 		 * the provider chain.
7487 		 */
7488 		provider->dtpv_next = dtrace_provider;
7489 		dtrace_provider = provider;
7490 		return (0);
7491 	}
7492 
7493 	mutex_enter(&dtrace_provider_lock);
7494 	mutex_enter(&dtrace_lock);
7495 
7496 	/*
7497 	 * If there is at least one provider registered, we'll add this
7498 	 * provider after the first provider.
7499 	 */
7500 	if (dtrace_provider != NULL) {
7501 		provider->dtpv_next = dtrace_provider->dtpv_next;
7502 		dtrace_provider->dtpv_next = provider;
7503 	} else {
7504 		dtrace_provider = provider;
7505 	}
7506 
7507 	if (dtrace_retained != NULL) {
7508 		dtrace_enabling_provide(provider);
7509 
7510 		/*
7511 		 * Now we need to call dtrace_enabling_matchall() -- which
7512 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7513 		 * to drop all of our locks before calling into it...
7514 		 */
7515 		mutex_exit(&dtrace_lock);
7516 		mutex_exit(&dtrace_provider_lock);
7517 		dtrace_enabling_matchall();
7518 
7519 		return (0);
7520 	}
7521 
7522 	mutex_exit(&dtrace_lock);
7523 	mutex_exit(&dtrace_provider_lock);
7524 
7525 	return (0);
7526 }
7527 
7528 /*
7529  * Unregister the specified provider from the DTrace framework.  This should
7530  * generally be called by DTrace providers in their detach(9E) entry point.
7531  */
7532 int
7533 dtrace_unregister(dtrace_provider_id_t id)
7534 {
7535 	dtrace_provider_t *old = (dtrace_provider_t *)id;
7536 	dtrace_provider_t *prev = NULL;
7537 	int i, self = 0;
7538 	dtrace_probe_t *probe, *first = NULL;
7539 
7540 	if (old->dtpv_pops.dtps_enable ==
7541 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
7542 		/*
7543 		 * If DTrace itself is the provider, we're called with locks
7544 		 * already held.
7545 		 */
7546 		ASSERT(old == dtrace_provider);
7547 #if defined(sun)
7548 		ASSERT(dtrace_devi != NULL);
7549 #endif
7550 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7551 		ASSERT(MUTEX_HELD(&dtrace_lock));
7552 		self = 1;
7553 
7554 		if (dtrace_provider->dtpv_next != NULL) {
7555 			/*
7556 			 * There's another provider here; return failure.
7557 			 */
7558 			return (EBUSY);
7559 		}
7560 	} else {
7561 		mutex_enter(&dtrace_provider_lock);
7562 		mutex_enter(&mod_lock);
7563 		mutex_enter(&dtrace_lock);
7564 	}
7565 
7566 	/*
7567 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7568 	 * probes, we refuse to let providers slither away, unless this
7569 	 * provider has already been explicitly invalidated.
7570 	 */
7571 	if (!old->dtpv_defunct &&
7572 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7573 	    dtrace_anon.dta_state->dts_necbs > 0))) {
7574 		if (!self) {
7575 			mutex_exit(&dtrace_lock);
7576 			mutex_exit(&mod_lock);
7577 			mutex_exit(&dtrace_provider_lock);
7578 		}
7579 		return (EBUSY);
7580 	}
7581 
7582 	/*
7583 	 * Attempt to destroy the probes associated with this provider.
7584 	 */
7585 	for (i = 0; i < dtrace_nprobes; i++) {
7586 		if ((probe = dtrace_probes[i]) == NULL)
7587 			continue;
7588 
7589 		if (probe->dtpr_provider != old)
7590 			continue;
7591 
7592 		if (probe->dtpr_ecb == NULL)
7593 			continue;
7594 
7595 		/*
7596 		 * We have at least one ECB; we can't remove this provider.
7597 		 */
7598 		if (!self) {
7599 			mutex_exit(&dtrace_lock);
7600 			mutex_exit(&mod_lock);
7601 			mutex_exit(&dtrace_provider_lock);
7602 		}
7603 		return (EBUSY);
7604 	}
7605 
7606 	/*
7607 	 * All of the probes for this provider are disabled; we can safely
7608 	 * remove all of them from their hash chains and from the probe array.
7609 	 */
7610 	for (i = 0; i < dtrace_nprobes; i++) {
7611 		if ((probe = dtrace_probes[i]) == NULL)
7612 			continue;
7613 
7614 		if (probe->dtpr_provider != old)
7615 			continue;
7616 
7617 		dtrace_probes[i] = NULL;
7618 
7619 		dtrace_hash_remove(dtrace_bymod, probe);
7620 		dtrace_hash_remove(dtrace_byfunc, probe);
7621 		dtrace_hash_remove(dtrace_byname, probe);
7622 
7623 		if (first == NULL) {
7624 			first = probe;
7625 			probe->dtpr_nextmod = NULL;
7626 		} else {
7627 			probe->dtpr_nextmod = first;
7628 			first = probe;
7629 		}
7630 	}
7631 
7632 	/*
7633 	 * The provider's probes have been removed from the hash chains and
7634 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7635 	 * everyone has cleared out from any probe array processing.
7636 	 */
7637 	dtrace_sync();
7638 
7639 	for (probe = first; probe != NULL; probe = first) {
7640 		first = probe->dtpr_nextmod;
7641 
7642 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7643 		    probe->dtpr_arg);
7644 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7645 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7646 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7647 #if defined(sun)
7648 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7649 #else
7650 		vmem_free(dtrace_arena, (uintptr_t)(probe->dtpr_id), 1);
7651 #endif
7652 		kmem_free(probe, sizeof (dtrace_probe_t));
7653 	}
7654 
7655 	if ((prev = dtrace_provider) == old) {
7656 #if defined(sun)
7657 		ASSERT(self || dtrace_devi == NULL);
7658 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7659 #endif
7660 		dtrace_provider = old->dtpv_next;
7661 	} else {
7662 		while (prev != NULL && prev->dtpv_next != old)
7663 			prev = prev->dtpv_next;
7664 
7665 		if (prev == NULL) {
7666 			panic("attempt to unregister non-existent "
7667 			    "dtrace provider %p\n", (void *)id);
7668 		}
7669 
7670 		prev->dtpv_next = old->dtpv_next;
7671 	}
7672 
7673 	if (!self) {
7674 		mutex_exit(&dtrace_lock);
7675 		mutex_exit(&mod_lock);
7676 		mutex_exit(&dtrace_provider_lock);
7677 	}
7678 
7679 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7680 	kmem_free(old, sizeof (dtrace_provider_t));
7681 
7682 	return (0);
7683 }
7684 
7685 /*
7686  * Invalidate the specified provider.  All subsequent probe lookups for the
7687  * specified provider will fail, but its probes will not be removed.
7688  */
7689 void
7690 dtrace_invalidate(dtrace_provider_id_t id)
7691 {
7692 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7693 
7694 	ASSERT(pvp->dtpv_pops.dtps_enable !=
7695 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7696 
7697 	mutex_enter(&dtrace_provider_lock);
7698 	mutex_enter(&dtrace_lock);
7699 
7700 	pvp->dtpv_defunct = 1;
7701 
7702 	mutex_exit(&dtrace_lock);
7703 	mutex_exit(&dtrace_provider_lock);
7704 }
7705 
7706 /*
7707  * Indicate whether or not DTrace has attached.
7708  */
7709 int
7710 dtrace_attached(void)
7711 {
7712 	/*
7713 	 * dtrace_provider will be non-NULL iff the DTrace driver has
7714 	 * attached.  (It's non-NULL because DTrace is always itself a
7715 	 * provider.)
7716 	 */
7717 	return (dtrace_provider != NULL);
7718 }
7719 
7720 /*
7721  * Remove all the unenabled probes for the given provider.  This function is
7722  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7723  * -- just as many of its associated probes as it can.
7724  */
7725 int
7726 dtrace_condense(dtrace_provider_id_t id)
7727 {
7728 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7729 	int i;
7730 	dtrace_probe_t *probe;
7731 
7732 	/*
7733 	 * Make sure this isn't the dtrace provider itself.
7734 	 */
7735 	ASSERT(prov->dtpv_pops.dtps_enable !=
7736 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7737 
7738 	mutex_enter(&dtrace_provider_lock);
7739 	mutex_enter(&dtrace_lock);
7740 
7741 	/*
7742 	 * Attempt to destroy the probes associated with this provider.
7743 	 */
7744 	for (i = 0; i < dtrace_nprobes; i++) {
7745 		if ((probe = dtrace_probes[i]) == NULL)
7746 			continue;
7747 
7748 		if (probe->dtpr_provider != prov)
7749 			continue;
7750 
7751 		if (probe->dtpr_ecb != NULL)
7752 			continue;
7753 
7754 		dtrace_probes[i] = NULL;
7755 
7756 		dtrace_hash_remove(dtrace_bymod, probe);
7757 		dtrace_hash_remove(dtrace_byfunc, probe);
7758 		dtrace_hash_remove(dtrace_byname, probe);
7759 
7760 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7761 		    probe->dtpr_arg);
7762 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7763 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7764 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7765 		kmem_free(probe, sizeof (dtrace_probe_t));
7766 #if defined(sun)
7767 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7768 #else
7769 		vmem_free(dtrace_arena, ((uintptr_t)i + 1), 1);
7770 #endif
7771 	}
7772 
7773 	mutex_exit(&dtrace_lock);
7774 	mutex_exit(&dtrace_provider_lock);
7775 
7776 	return (0);
7777 }
7778 
7779 /*
7780  * DTrace Probe Management Functions
7781  *
7782  * The functions in this section perform the DTrace probe management,
7783  * including functions to create probes, look-up probes, and call into the
7784  * providers to request that probes be provided.  Some of these functions are
7785  * in the Provider-to-Framework API; these functions can be identified by the
7786  * fact that they are not declared "static".
7787  */
7788 
7789 /*
7790  * Create a probe with the specified module name, function name, and name.
7791  */
7792 dtrace_id_t
7793 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7794     const char *func, const char *name, int aframes, void *arg)
7795 {
7796 	dtrace_probe_t *probe, **probes;
7797 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7798 	dtrace_id_t id;
7799 	vmem_addr_t offset;
7800 
7801 	if (provider == dtrace_provider) {
7802 		ASSERT(MUTEX_HELD(&dtrace_lock));
7803 	} else {
7804 		mutex_enter(&dtrace_lock);
7805 	}
7806 
7807 	if (vmem_alloc(dtrace_arena, 1, VM_BESTFIT | VM_SLEEP, &offset) != 0)
7808 		ASSERT(0);
7809 	id = (dtrace_id_t)(uintptr_t)offset;
7810 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7811 
7812 	probe->dtpr_id = id;
7813 	probe->dtpr_gen = dtrace_probegen++;
7814 	probe->dtpr_mod = dtrace_strdup(mod);
7815 	probe->dtpr_func = dtrace_strdup(func);
7816 	probe->dtpr_name = dtrace_strdup(name);
7817 	probe->dtpr_arg = arg;
7818 	probe->dtpr_aframes = aframes;
7819 	probe->dtpr_provider = provider;
7820 
7821 	dtrace_hash_add(dtrace_bymod, probe);
7822 	dtrace_hash_add(dtrace_byfunc, probe);
7823 	dtrace_hash_add(dtrace_byname, probe);
7824 
7825 	if (id - 1 >= dtrace_nprobes) {
7826 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7827 		size_t nsize = osize << 1;
7828 
7829 		if (nsize == 0) {
7830 			ASSERT(osize == 0);
7831 			ASSERT(dtrace_probes == NULL);
7832 			nsize = sizeof (dtrace_probe_t *);
7833 		}
7834 
7835 		probes = kmem_zalloc(nsize, KM_SLEEP);
7836 		dtrace_probes_size = nsize;
7837 
7838 		if (dtrace_probes == NULL) {
7839 			ASSERT(osize == 0);
7840 			dtrace_probes = probes;
7841 			dtrace_nprobes = 1;
7842 		} else {
7843 			dtrace_probe_t **oprobes = dtrace_probes;
7844 
7845 			bcopy(oprobes, probes, osize);
7846 			dtrace_membar_producer();
7847 			dtrace_probes = probes;
7848 
7849 			dtrace_sync();
7850 
7851 			/*
7852 			 * All CPUs are now seeing the new probes array; we can
7853 			 * safely free the old array.
7854 			 */
7855 			kmem_free(oprobes, osize);
7856 			dtrace_nprobes <<= 1;
7857 		}
7858 
7859 		ASSERT(id - 1 < dtrace_nprobes);
7860 	}
7861 
7862 	ASSERT(dtrace_probes[id - 1] == NULL);
7863 	dtrace_probes[id - 1] = probe;
7864 
7865 	if (provider != dtrace_provider)
7866 		mutex_exit(&dtrace_lock);
7867 
7868 	return (id);
7869 }
7870 
7871 static dtrace_probe_t *
7872 dtrace_probe_lookup_id(dtrace_id_t id)
7873 {
7874 	ASSERT(MUTEX_HELD(&dtrace_lock));
7875 
7876 	if (id == 0 || id > dtrace_nprobes)
7877 		return (NULL);
7878 
7879 	return (dtrace_probes[id - 1]);
7880 }
7881 
7882 static int
7883 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7884 {
7885 	*((dtrace_id_t *)arg) = probe->dtpr_id;
7886 
7887 	return (DTRACE_MATCH_DONE);
7888 }
7889 
7890 /*
7891  * Look up a probe based on provider and one or more of module name, function
7892  * name and probe name.
7893  */
7894 dtrace_id_t
7895 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7896     char *func, char *name)
7897 {
7898 	dtrace_probekey_t pkey;
7899 	dtrace_id_t id;
7900 	int match;
7901 
7902 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7903 	pkey.dtpk_pmatch = &dtrace_match_string;
7904 	pkey.dtpk_mod = mod;
7905 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7906 	pkey.dtpk_func = func;
7907 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7908 	pkey.dtpk_name = name;
7909 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7910 	pkey.dtpk_id = DTRACE_IDNONE;
7911 
7912 	mutex_enter(&dtrace_lock);
7913 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7914 	    dtrace_probe_lookup_match, &id);
7915 	mutex_exit(&dtrace_lock);
7916 
7917 	ASSERT(match == 1 || match == 0);
7918 	return (match ? id : 0);
7919 }
7920 
7921 /*
7922  * Returns the probe argument associated with the specified probe.
7923  */
7924 void *
7925 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7926 {
7927 	dtrace_probe_t *probe;
7928 	void *rval = NULL;
7929 
7930 	mutex_enter(&dtrace_lock);
7931 
7932 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7933 	    probe->dtpr_provider == (dtrace_provider_t *)id)
7934 		rval = probe->dtpr_arg;
7935 
7936 	mutex_exit(&dtrace_lock);
7937 
7938 	return (rval);
7939 }
7940 
7941 /*
7942  * Copy a probe into a probe description.
7943  */
7944 static void
7945 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7946 {
7947 	bzero(pdp, sizeof (dtrace_probedesc_t));
7948 	pdp->dtpd_id = prp->dtpr_id;
7949 
7950 	(void) strncpy(pdp->dtpd_provider,
7951 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7952 
7953 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7954 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7955 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7956 }
7957 
7958 #ifdef notyet	/* XXX TBD */
7959 #if !defined(sun)
7960 static int
7961 dtrace_probe_provide_cb(linker_file_t lf, void *arg)
7962 {
7963 	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
7964 
7965 	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
7966 
7967 	return(0);
7968 }
7969 #endif
7970 #endif /* notyet */
7971 
7972 
7973 /*
7974  * Called to indicate that a probe -- or probes -- should be provided by a
7975  * specfied provider.  If the specified description is NULL, the provider will
7976  * be told to provide all of its probes.  (This is done whenever a new
7977  * consumer comes along, or whenever a retained enabling is to be matched.) If
7978  * the specified description is non-NULL, the provider is given the
7979  * opportunity to dynamically provide the specified probe, allowing providers
7980  * to support the creation of probes on-the-fly.  (So-called _autocreated_
7981  * probes.)  If the provider is NULL, the operations will be applied to all
7982  * providers; if the provider is non-NULL the operations will only be applied
7983  * to the specified provider.  The dtrace_provider_lock must be held, and the
7984  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7985  * will need to grab the dtrace_lock when it reenters the framework through
7986  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7987  */
7988 static void
7989 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7990 {
7991 #if defined(sun)
7992 	modctl_t *ctl;
7993 #else
7994 	module_t *mod;
7995 #endif
7996 	int all = 0;
7997 
7998 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7999 
8000 	if (prv == NULL) {
8001 		all = 1;
8002 		prv = dtrace_provider;
8003 	}
8004 
8005 	do {
8006 		/*
8007 		 * First, call the blanket provide operation.
8008 		 */
8009 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8010 
8011 		/*
8012 		 * Now call the per-module provide operation.  We will grab
8013 		 * mod_lock to prevent the list from being modified.  Note
8014 		 * that this also prevents the mod_busy bits from changing.
8015 		 * (mod_busy can only be changed with mod_lock held.)
8016 		 */
8017 		mutex_enter(&mod_lock);
8018 
8019 #if defined(sun)
8020 		ctl = &modules;
8021 		do {
8022 			if (ctl->mod_busy || ctl->mod_mp == NULL)
8023 				continue;
8024 
8025 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8026 
8027 		} while ((ctl = ctl->mod_next) != &modules);
8028 #else
8029 
8030 		/* Fake netbsd module first */
8031 		if (mod_nbsd == NULL) {
8032 		    mod_nbsd = kmem_zalloc(sizeof(*mod_nbsd), KM_SLEEP);
8033 		    mod_nbsd->mod_info = kmem_zalloc(sizeof(modinfo_t), KM_SLEEP);
8034 		    mod_nbsd->mod_refcnt = 1;
8035 		    *((char **)(intptr_t)&mod_nbsd->mod_info->mi_name) = __UNCONST("netbsd");
8036 		}
8037 
8038 		kernconfig_lock();
8039 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, mod_nbsd);
8040 		TAILQ_FOREACH(mod, &module_list, mod_chain) {
8041 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, mod);
8042 		}
8043 		kernconfig_unlock();
8044 #endif
8045 
8046 		mutex_exit(&mod_lock);
8047 	} while (all && (prv = prv->dtpv_next) != NULL);
8048 }
8049 
8050 #if defined(sun)
8051 /*
8052  * Iterate over each probe, and call the Framework-to-Provider API function
8053  * denoted by offs.
8054  */
8055 static void
8056 dtrace_probe_foreach(uintptr_t offs)
8057 {
8058 	dtrace_provider_t *prov;
8059 	void (*func)(void *, dtrace_id_t, void *);
8060 	dtrace_probe_t *probe;
8061 	dtrace_icookie_t cookie;
8062 	int i;
8063 
8064 	/*
8065 	 * We disable interrupts to walk through the probe array.  This is
8066 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8067 	 * won't see stale data.
8068 	 */
8069 	cookie = dtrace_interrupt_disable();
8070 
8071 	for (i = 0; i < dtrace_nprobes; i++) {
8072 		if ((probe = dtrace_probes[i]) == NULL)
8073 			continue;
8074 
8075 		if (probe->dtpr_ecb == NULL) {
8076 			/*
8077 			 * This probe isn't enabled -- don't call the function.
8078 			 */
8079 			continue;
8080 		}
8081 
8082 		prov = probe->dtpr_provider;
8083 		func = *((void(**)(void *, dtrace_id_t, void *))
8084 		    ((uintptr_t)&prov->dtpv_pops + offs));
8085 
8086 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8087 	}
8088 
8089 	dtrace_interrupt_enable(cookie);
8090 }
8091 #endif
8092 
8093 static int
8094 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8095 {
8096 	dtrace_probekey_t pkey;
8097 	uint32_t priv;
8098 	uid_t uid;
8099 	zoneid_t zoneid;
8100 
8101 	ASSERT(MUTEX_HELD(&dtrace_lock));
8102 	dtrace_ecb_create_cache = NULL;
8103 
8104 	if (desc == NULL) {
8105 		/*
8106 		 * If we're passed a NULL description, we're being asked to
8107 		 * create an ECB with a NULL probe.
8108 		 */
8109 		(void) dtrace_ecb_create_enable(NULL, enab);
8110 		return (0);
8111 	}
8112 
8113 	dtrace_probekey(desc, &pkey);
8114 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8115 	    &priv, &uid, &zoneid);
8116 
8117 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8118 	    enab));
8119 }
8120 
8121 /*
8122  * DTrace Helper Provider Functions
8123  */
8124 static void
8125 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8126 {
8127 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8128 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8129 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8130 }
8131 
8132 static void
8133 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8134     const dof_provider_t *dofprov, char *strtab)
8135 {
8136 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8137 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8138 	    dofprov->dofpv_provattr);
8139 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8140 	    dofprov->dofpv_modattr);
8141 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8142 	    dofprov->dofpv_funcattr);
8143 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8144 	    dofprov->dofpv_nameattr);
8145 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8146 	    dofprov->dofpv_argsattr);
8147 }
8148 
8149 static void
8150 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8151 {
8152 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8153 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8154 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8155 	dof_provider_t *provider;
8156 	dof_probe_t *probe;
8157 	uint32_t *off, *enoff;
8158 	uint8_t *arg;
8159 	char *strtab;
8160 	uint_t i, nprobes;
8161 	dtrace_helper_provdesc_t dhpv;
8162 	dtrace_helper_probedesc_t dhpb;
8163 	dtrace_meta_t *meta = dtrace_meta_pid;
8164 	dtrace_mops_t *mops = &meta->dtm_mops;
8165 	void *parg;
8166 
8167 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8168 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8169 	    provider->dofpv_strtab * dof->dofh_secsize);
8170 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8171 	    provider->dofpv_probes * dof->dofh_secsize);
8172 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8173 	    provider->dofpv_prargs * dof->dofh_secsize);
8174 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8175 	    provider->dofpv_proffs * dof->dofh_secsize);
8176 
8177 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8178 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8179 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8180 	enoff = NULL;
8181 
8182 	/*
8183 	 * See dtrace_helper_provider_validate().
8184 	 */
8185 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8186 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8187 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8188 		    provider->dofpv_prenoffs * dof->dofh_secsize);
8189 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8190 	}
8191 
8192 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8193 
8194 	/*
8195 	 * Create the provider.
8196 	 */
8197 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8198 
8199 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8200 		return;
8201 
8202 	meta->dtm_count++;
8203 
8204 	/*
8205 	 * Create the probes.
8206 	 */
8207 	for (i = 0; i < nprobes; i++) {
8208 		probe = (dof_probe_t *)(uintptr_t)(daddr +
8209 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8210 
8211 		dhpb.dthpb_mod = dhp->dofhp_mod;
8212 		dhpb.dthpb_func = strtab + probe->dofpr_func;
8213 		dhpb.dthpb_name = strtab + probe->dofpr_name;
8214 		dhpb.dthpb_base = probe->dofpr_addr;
8215 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8216 		dhpb.dthpb_noffs = probe->dofpr_noffs;
8217 		if (enoff != NULL) {
8218 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8219 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8220 		} else {
8221 			dhpb.dthpb_enoffs = NULL;
8222 			dhpb.dthpb_nenoffs = 0;
8223 		}
8224 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8225 		dhpb.dthpb_nargc = probe->dofpr_nargc;
8226 		dhpb.dthpb_xargc = probe->dofpr_xargc;
8227 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8228 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8229 
8230 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8231 	}
8232 }
8233 
8234 static void
8235 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8236 {
8237 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8238 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8239 	int i;
8240 
8241 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8242 
8243 	for (i = 0; i < dof->dofh_secnum; i++) {
8244 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8245 		    dof->dofh_secoff + i * dof->dofh_secsize);
8246 
8247 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8248 			continue;
8249 
8250 		dtrace_helper_provide_one(dhp, sec, pid);
8251 	}
8252 
8253 	/*
8254 	 * We may have just created probes, so we must now rematch against
8255 	 * any retained enablings.  Note that this call will acquire both
8256 	 * cpu_lock and dtrace_lock; the fact that we are holding
8257 	 * dtrace_meta_lock now is what defines the ordering with respect to
8258 	 * these three locks.
8259 	 */
8260 	dtrace_enabling_matchall();
8261 }
8262 
8263 #if defined(sun)
8264 static void
8265 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8266 {
8267 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8268 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8269 	dof_sec_t *str_sec;
8270 	dof_provider_t *provider;
8271 	char *strtab;
8272 	dtrace_helper_provdesc_t dhpv;
8273 	dtrace_meta_t *meta = dtrace_meta_pid;
8274 	dtrace_mops_t *mops = &meta->dtm_mops;
8275 
8276 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8277 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8278 	    provider->dofpv_strtab * dof->dofh_secsize);
8279 
8280 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8281 
8282 	/*
8283 	 * Create the provider.
8284 	 */
8285 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8286 
8287 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8288 
8289 	meta->dtm_count--;
8290 }
8291 
8292 static void
8293 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8294 {
8295 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8296 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8297 	int i;
8298 
8299 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8300 
8301 	for (i = 0; i < dof->dofh_secnum; i++) {
8302 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8303 		    dof->dofh_secoff + i * dof->dofh_secsize);
8304 
8305 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8306 			continue;
8307 
8308 		dtrace_helper_provider_remove_one(dhp, sec, pid);
8309 	}
8310 }
8311 #endif
8312 
8313 /*
8314  * DTrace Meta Provider-to-Framework API Functions
8315  *
8316  * These functions implement the Meta Provider-to-Framework API, as described
8317  * in <sys/dtrace.h>.
8318  */
8319 int
8320 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8321     dtrace_meta_provider_id_t *idp)
8322 {
8323 	dtrace_meta_t *meta;
8324 	dtrace_helpers_t *help, *next;
8325 	int i;
8326 
8327 	*idp = DTRACE_METAPROVNONE;
8328 
8329 	/*
8330 	 * We strictly don't need the name, but we hold onto it for
8331 	 * debuggability. All hail error queues!
8332 	 */
8333 	if (name == NULL) {
8334 		cmn_err(CE_WARN, "failed to register meta-provider: "
8335 		    "invalid name");
8336 		return (EINVAL);
8337 	}
8338 
8339 	if (mops == NULL ||
8340 	    mops->dtms_create_probe == NULL ||
8341 	    mops->dtms_provide_pid == NULL ||
8342 	    mops->dtms_remove_pid == NULL) {
8343 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8344 		    "invalid ops", name);
8345 		return (EINVAL);
8346 	}
8347 
8348 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8349 	meta->dtm_mops = *mops;
8350 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8351 	(void) strcpy(meta->dtm_name, name);
8352 	meta->dtm_arg = arg;
8353 
8354 	mutex_enter(&dtrace_meta_lock);
8355 	mutex_enter(&dtrace_lock);
8356 
8357 	if (dtrace_meta_pid != NULL) {
8358 		mutex_exit(&dtrace_lock);
8359 		mutex_exit(&dtrace_meta_lock);
8360 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8361 		    "user-land meta-provider exists", name);
8362 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8363 		kmem_free(meta, sizeof (dtrace_meta_t));
8364 		return (EINVAL);
8365 	}
8366 
8367 	dtrace_meta_pid = meta;
8368 	*idp = (dtrace_meta_provider_id_t)meta;
8369 
8370 	/*
8371 	 * If there are providers and probes ready to go, pass them
8372 	 * off to the new meta provider now.
8373 	 */
8374 
8375 	help = dtrace_deferred_pid;
8376 	dtrace_deferred_pid = NULL;
8377 
8378 	mutex_exit(&dtrace_lock);
8379 
8380 	while (help != NULL) {
8381 		for (i = 0; i < help->dthps_nprovs; i++) {
8382 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8383 			    help->dthps_pid);
8384 		}
8385 
8386 		next = help->dthps_next;
8387 		help->dthps_next = NULL;
8388 		help->dthps_prev = NULL;
8389 		help->dthps_deferred = 0;
8390 		help = next;
8391 	}
8392 
8393 	mutex_exit(&dtrace_meta_lock);
8394 
8395 	return (0);
8396 }
8397 
8398 int
8399 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8400 {
8401 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8402 
8403 	mutex_enter(&dtrace_meta_lock);
8404 	mutex_enter(&dtrace_lock);
8405 
8406 	if (old == dtrace_meta_pid) {
8407 		pp = &dtrace_meta_pid;
8408 	} else {
8409 		panic("attempt to unregister non-existent "
8410 		    "dtrace meta-provider %p\n", (void *)old);
8411 	}
8412 
8413 	if (old->dtm_count != 0) {
8414 		mutex_exit(&dtrace_lock);
8415 		mutex_exit(&dtrace_meta_lock);
8416 		return (EBUSY);
8417 	}
8418 
8419 	*pp = NULL;
8420 
8421 	mutex_exit(&dtrace_lock);
8422 	mutex_exit(&dtrace_meta_lock);
8423 
8424 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8425 	kmem_free(old, sizeof (dtrace_meta_t));
8426 
8427 	return (0);
8428 }
8429 
8430 
8431 /*
8432  * DTrace DIF Object Functions
8433  */
8434 static int
8435 dtrace_difo_err(uint_t pc, const char *format, ...)
8436 {
8437 	if (dtrace_err_verbose) {
8438 		va_list alist;
8439 
8440 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8441 		va_start(alist, format);
8442 		(void) vuprintf(format, alist);
8443 		va_end(alist);
8444 	}
8445 
8446 #ifdef DTRACE_ERRDEBUG
8447 	dtrace_errdebug(format);
8448 #endif
8449 	return (1);
8450 }
8451 
8452 /*
8453  * Validate a DTrace DIF object by checking the IR instructions.  The following
8454  * rules are currently enforced by dtrace_difo_validate():
8455  *
8456  * 1. Each instruction must have a valid opcode
8457  * 2. Each register, string, variable, or subroutine reference must be valid
8458  * 3. No instruction can modify register %r0 (must be zero)
8459  * 4. All instruction reserved bits must be set to zero
8460  * 5. The last instruction must be a "ret" instruction
8461  * 6. All branch targets must reference a valid instruction _after_ the branch
8462  */
8463 static int
8464 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8465     cred_t *cr)
8466 {
8467 	int err = 0, i;
8468 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8469 	int kcheckload;
8470 	uint_t pc;
8471 
8472 	kcheckload = cr == NULL ||
8473 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8474 
8475 	dp->dtdo_destructive = 0;
8476 
8477 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8478 		dif_instr_t instr = dp->dtdo_buf[pc];
8479 
8480 		uint_t r1 = DIF_INSTR_R1(instr);
8481 		uint_t r2 = DIF_INSTR_R2(instr);
8482 		uint_t rd = DIF_INSTR_RD(instr);
8483 		uint_t rs = DIF_INSTR_RS(instr);
8484 		uint_t label = DIF_INSTR_LABEL(instr);
8485 		uint_t v = DIF_INSTR_VAR(instr);
8486 		uint_t subr = DIF_INSTR_SUBR(instr);
8487 		uint_t type = DIF_INSTR_TYPE(instr);
8488 		uint_t op = DIF_INSTR_OP(instr);
8489 
8490 		switch (op) {
8491 		case DIF_OP_OR:
8492 		case DIF_OP_XOR:
8493 		case DIF_OP_AND:
8494 		case DIF_OP_SLL:
8495 		case DIF_OP_SRL:
8496 		case DIF_OP_SRA:
8497 		case DIF_OP_SUB:
8498 		case DIF_OP_ADD:
8499 		case DIF_OP_MUL:
8500 		case DIF_OP_SDIV:
8501 		case DIF_OP_UDIV:
8502 		case DIF_OP_SREM:
8503 		case DIF_OP_UREM:
8504 		case DIF_OP_COPYS:
8505 			if (r1 >= nregs)
8506 				err += efunc(pc, "invalid register %u\n", r1);
8507 			if (r2 >= nregs)
8508 				err += efunc(pc, "invalid register %u\n", r2);
8509 			if (rd >= nregs)
8510 				err += efunc(pc, "invalid register %u\n", rd);
8511 			if (rd == 0)
8512 				err += efunc(pc, "cannot write to %r0\n");
8513 			break;
8514 		case DIF_OP_NOT:
8515 		case DIF_OP_MOV:
8516 		case DIF_OP_ALLOCS:
8517 			if (r1 >= nregs)
8518 				err += efunc(pc, "invalid register %u\n", r1);
8519 			if (r2 != 0)
8520 				err += efunc(pc, "non-zero reserved bits\n");
8521 			if (rd >= nregs)
8522 				err += efunc(pc, "invalid register %u\n", rd);
8523 			if (rd == 0)
8524 				err += efunc(pc, "cannot write to %r0\n");
8525 			break;
8526 		case DIF_OP_LDSB:
8527 		case DIF_OP_LDSH:
8528 		case DIF_OP_LDSW:
8529 		case DIF_OP_LDUB:
8530 		case DIF_OP_LDUH:
8531 		case DIF_OP_LDUW:
8532 		case DIF_OP_LDX:
8533 			if (r1 >= nregs)
8534 				err += efunc(pc, "invalid register %u\n", r1);
8535 			if (r2 != 0)
8536 				err += efunc(pc, "non-zero reserved bits\n");
8537 			if (rd >= nregs)
8538 				err += efunc(pc, "invalid register %u\n", rd);
8539 			if (rd == 0)
8540 				err += efunc(pc, "cannot write to %r0\n");
8541 			if (kcheckload)
8542 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8543 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8544 			break;
8545 		case DIF_OP_RLDSB:
8546 		case DIF_OP_RLDSH:
8547 		case DIF_OP_RLDSW:
8548 		case DIF_OP_RLDUB:
8549 		case DIF_OP_RLDUH:
8550 		case DIF_OP_RLDUW:
8551 		case DIF_OP_RLDX:
8552 			if (r1 >= nregs)
8553 				err += efunc(pc, "invalid register %u\n", r1);
8554 			if (r2 != 0)
8555 				err += efunc(pc, "non-zero reserved bits\n");
8556 			if (rd >= nregs)
8557 				err += efunc(pc, "invalid register %u\n", rd);
8558 			if (rd == 0)
8559 				err += efunc(pc, "cannot write to %r0\n");
8560 			break;
8561 		case DIF_OP_ULDSB:
8562 		case DIF_OP_ULDSH:
8563 		case DIF_OP_ULDSW:
8564 		case DIF_OP_ULDUB:
8565 		case DIF_OP_ULDUH:
8566 		case DIF_OP_ULDUW:
8567 		case DIF_OP_ULDX:
8568 			if (r1 >= nregs)
8569 				err += efunc(pc, "invalid register %u\n", r1);
8570 			if (r2 != 0)
8571 				err += efunc(pc, "non-zero reserved bits\n");
8572 			if (rd >= nregs)
8573 				err += efunc(pc, "invalid register %u\n", rd);
8574 			if (rd == 0)
8575 				err += efunc(pc, "cannot write to %r0\n");
8576 			break;
8577 		case DIF_OP_STB:
8578 		case DIF_OP_STH:
8579 		case DIF_OP_STW:
8580 		case DIF_OP_STX:
8581 			if (r1 >= nregs)
8582 				err += efunc(pc, "invalid register %u\n", r1);
8583 			if (r2 != 0)
8584 				err += efunc(pc, "non-zero reserved bits\n");
8585 			if (rd >= nregs)
8586 				err += efunc(pc, "invalid register %u\n", rd);
8587 			if (rd == 0)
8588 				err += efunc(pc, "cannot write to 0 address\n");
8589 			break;
8590 		case DIF_OP_CMP:
8591 		case DIF_OP_SCMP:
8592 			if (r1 >= nregs)
8593 				err += efunc(pc, "invalid register %u\n", r1);
8594 			if (r2 >= nregs)
8595 				err += efunc(pc, "invalid register %u\n", r2);
8596 			if (rd != 0)
8597 				err += efunc(pc, "non-zero reserved bits\n");
8598 			break;
8599 		case DIF_OP_TST:
8600 			if (r1 >= nregs)
8601 				err += efunc(pc, "invalid register %u\n", r1);
8602 			if (r2 != 0 || rd != 0)
8603 				err += efunc(pc, "non-zero reserved bits\n");
8604 			break;
8605 		case DIF_OP_BA:
8606 		case DIF_OP_BE:
8607 		case DIF_OP_BNE:
8608 		case DIF_OP_BG:
8609 		case DIF_OP_BGU:
8610 		case DIF_OP_BGE:
8611 		case DIF_OP_BGEU:
8612 		case DIF_OP_BL:
8613 		case DIF_OP_BLU:
8614 		case DIF_OP_BLE:
8615 		case DIF_OP_BLEU:
8616 			if (label >= dp->dtdo_len) {
8617 				err += efunc(pc, "invalid branch target %u\n",
8618 				    label);
8619 			}
8620 			if (label <= pc) {
8621 				err += efunc(pc, "backward branch to %u\n",
8622 				    label);
8623 			}
8624 			break;
8625 		case DIF_OP_RET:
8626 			if (r1 != 0 || r2 != 0)
8627 				err += efunc(pc, "non-zero reserved bits\n");
8628 			if (rd >= nregs)
8629 				err += efunc(pc, "invalid register %u\n", rd);
8630 			break;
8631 		case DIF_OP_NOP:
8632 		case DIF_OP_POPTS:
8633 		case DIF_OP_FLUSHTS:
8634 			if (r1 != 0 || r2 != 0 || rd != 0)
8635 				err += efunc(pc, "non-zero reserved bits\n");
8636 			break;
8637 		case DIF_OP_SETX:
8638 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8639 				err += efunc(pc, "invalid integer ref %u\n",
8640 				    DIF_INSTR_INTEGER(instr));
8641 			}
8642 			if (rd >= nregs)
8643 				err += efunc(pc, "invalid register %u\n", rd);
8644 			if (rd == 0)
8645 				err += efunc(pc, "cannot write to %r0\n");
8646 			break;
8647 		case DIF_OP_SETS:
8648 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8649 				err += efunc(pc, "invalid string ref %u\n",
8650 				    DIF_INSTR_STRING(instr));
8651 			}
8652 			if (rd >= nregs)
8653 				err += efunc(pc, "invalid register %u\n", rd);
8654 			if (rd == 0)
8655 				err += efunc(pc, "cannot write to %r0\n");
8656 			break;
8657 		case DIF_OP_LDGA:
8658 		case DIF_OP_LDTA:
8659 			if (r1 > DIF_VAR_ARRAY_MAX)
8660 				err += efunc(pc, "invalid array %u\n", r1);
8661 			if (r2 >= nregs)
8662 				err += efunc(pc, "invalid register %u\n", r2);
8663 			if (rd >= nregs)
8664 				err += efunc(pc, "invalid register %u\n", rd);
8665 			if (rd == 0)
8666 				err += efunc(pc, "cannot write to %r0\n");
8667 			break;
8668 		case DIF_OP_LDGS:
8669 		case DIF_OP_LDTS:
8670 		case DIF_OP_LDLS:
8671 		case DIF_OP_LDGAA:
8672 		case DIF_OP_LDTAA:
8673 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8674 				err += efunc(pc, "invalid variable %u\n", v);
8675 			if (rd >= nregs)
8676 				err += efunc(pc, "invalid register %u\n", rd);
8677 			if (rd == 0)
8678 				err += efunc(pc, "cannot write to %r0\n");
8679 			break;
8680 		case DIF_OP_STGS:
8681 		case DIF_OP_STTS:
8682 		case DIF_OP_STLS:
8683 		case DIF_OP_STGAA:
8684 		case DIF_OP_STTAA:
8685 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8686 				err += efunc(pc, "invalid variable %u\n", v);
8687 			if (rs >= nregs)
8688 				err += efunc(pc, "invalid register %u\n", rd);
8689 			break;
8690 		case DIF_OP_CALL:
8691 			if (subr > DIF_SUBR_MAX)
8692 				err += efunc(pc, "invalid subr %u\n", subr);
8693 			if (rd >= nregs)
8694 				err += efunc(pc, "invalid register %u\n", rd);
8695 			if (rd == 0)
8696 				err += efunc(pc, "cannot write to %r0\n");
8697 
8698 			if (subr == DIF_SUBR_COPYOUT ||
8699 			    subr == DIF_SUBR_COPYOUTSTR) {
8700 				dp->dtdo_destructive = 1;
8701 			}
8702 			break;
8703 		case DIF_OP_PUSHTR:
8704 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8705 				err += efunc(pc, "invalid ref type %u\n", type);
8706 			if (r2 >= nregs)
8707 				err += efunc(pc, "invalid register %u\n", r2);
8708 			if (rs >= nregs)
8709 				err += efunc(pc, "invalid register %u\n", rs);
8710 			break;
8711 		case DIF_OP_PUSHTV:
8712 			if (type != DIF_TYPE_CTF)
8713 				err += efunc(pc, "invalid val type %u\n", type);
8714 			if (r2 >= nregs)
8715 				err += efunc(pc, "invalid register %u\n", r2);
8716 			if (rs >= nregs)
8717 				err += efunc(pc, "invalid register %u\n", rs);
8718 			break;
8719 		default:
8720 			err += efunc(pc, "invalid opcode %u\n",
8721 			    DIF_INSTR_OP(instr));
8722 		}
8723 	}
8724 
8725 	if (dp->dtdo_len != 0 &&
8726 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8727 		err += efunc(dp->dtdo_len - 1,
8728 		    "expected 'ret' as last DIF instruction\n");
8729 	}
8730 
8731 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8732 		/*
8733 		 * If we're not returning by reference, the size must be either
8734 		 * 0 or the size of one of the base types.
8735 		 */
8736 		switch (dp->dtdo_rtype.dtdt_size) {
8737 		case 0:
8738 		case sizeof (uint8_t):
8739 		case sizeof (uint16_t):
8740 		case sizeof (uint32_t):
8741 		case sizeof (uint64_t):
8742 			break;
8743 
8744 		default:
8745 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
8746 		}
8747 	}
8748 
8749 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8750 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8751 		dtrace_diftype_t *vt, *et;
8752 		uint_t id, ndx;
8753 
8754 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8755 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8756 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8757 			err += efunc(i, "unrecognized variable scope %d\n",
8758 			    v->dtdv_scope);
8759 			break;
8760 		}
8761 
8762 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8763 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8764 			err += efunc(i, "unrecognized variable type %d\n",
8765 			    v->dtdv_kind);
8766 			break;
8767 		}
8768 
8769 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8770 			err += efunc(i, "%d exceeds variable id limit\n", id);
8771 			break;
8772 		}
8773 
8774 		if (id < DIF_VAR_OTHER_UBASE)
8775 			continue;
8776 
8777 		/*
8778 		 * For user-defined variables, we need to check that this
8779 		 * definition is identical to any previous definition that we
8780 		 * encountered.
8781 		 */
8782 		ndx = id - DIF_VAR_OTHER_UBASE;
8783 
8784 		switch (v->dtdv_scope) {
8785 		case DIFV_SCOPE_GLOBAL:
8786 			if (ndx < vstate->dtvs_nglobals) {
8787 				dtrace_statvar_t *svar;
8788 
8789 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8790 					existing = &svar->dtsv_var;
8791 			}
8792 
8793 			break;
8794 
8795 		case DIFV_SCOPE_THREAD:
8796 			if (ndx < vstate->dtvs_ntlocals)
8797 				existing = &vstate->dtvs_tlocals[ndx];
8798 			break;
8799 
8800 		case DIFV_SCOPE_LOCAL:
8801 			if (ndx < vstate->dtvs_nlocals) {
8802 				dtrace_statvar_t *svar;
8803 
8804 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8805 					existing = &svar->dtsv_var;
8806 			}
8807 
8808 			break;
8809 		}
8810 
8811 		vt = &v->dtdv_type;
8812 
8813 		if (vt->dtdt_flags & DIF_TF_BYREF) {
8814 			if (vt->dtdt_size == 0) {
8815 				err += efunc(i, "zero-sized variable\n");
8816 				break;
8817 			}
8818 
8819 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8820 			    vt->dtdt_size > dtrace_global_maxsize) {
8821 				err += efunc(i, "oversized by-ref global\n");
8822 				break;
8823 			}
8824 		}
8825 
8826 		if (existing == NULL || existing->dtdv_id == 0)
8827 			continue;
8828 
8829 		ASSERT(existing->dtdv_id == v->dtdv_id);
8830 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8831 
8832 		if (existing->dtdv_kind != v->dtdv_kind)
8833 			err += efunc(i, "%d changed variable kind\n", id);
8834 
8835 		et = &existing->dtdv_type;
8836 
8837 		if (vt->dtdt_flags != et->dtdt_flags) {
8838 			err += efunc(i, "%d changed variable type flags\n", id);
8839 			break;
8840 		}
8841 
8842 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8843 			err += efunc(i, "%d changed variable type size\n", id);
8844 			break;
8845 		}
8846 	}
8847 
8848 	return (err);
8849 }
8850 
8851 #if defined(sun)
8852 /*
8853  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8854  * are much more constrained than normal DIFOs.  Specifically, they may
8855  * not:
8856  *
8857  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8858  *    miscellaneous string routines
8859  * 2. Access DTrace variables other than the args[] array, and the
8860  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8861  * 3. Have thread-local variables.
8862  * 4. Have dynamic variables.
8863  */
8864 static int
8865 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8866 {
8867 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8868 	int err = 0;
8869 	uint_t pc;
8870 
8871 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8872 		dif_instr_t instr = dp->dtdo_buf[pc];
8873 
8874 		uint_t v = DIF_INSTR_VAR(instr);
8875 		uint_t subr = DIF_INSTR_SUBR(instr);
8876 		uint_t op = DIF_INSTR_OP(instr);
8877 
8878 		switch (op) {
8879 		case DIF_OP_OR:
8880 		case DIF_OP_XOR:
8881 		case DIF_OP_AND:
8882 		case DIF_OP_SLL:
8883 		case DIF_OP_SRL:
8884 		case DIF_OP_SRA:
8885 		case DIF_OP_SUB:
8886 		case DIF_OP_ADD:
8887 		case DIF_OP_MUL:
8888 		case DIF_OP_SDIV:
8889 		case DIF_OP_UDIV:
8890 		case DIF_OP_SREM:
8891 		case DIF_OP_UREM:
8892 		case DIF_OP_COPYS:
8893 		case DIF_OP_NOT:
8894 		case DIF_OP_MOV:
8895 		case DIF_OP_RLDSB:
8896 		case DIF_OP_RLDSH:
8897 		case DIF_OP_RLDSW:
8898 		case DIF_OP_RLDUB:
8899 		case DIF_OP_RLDUH:
8900 		case DIF_OP_RLDUW:
8901 		case DIF_OP_RLDX:
8902 		case DIF_OP_ULDSB:
8903 		case DIF_OP_ULDSH:
8904 		case DIF_OP_ULDSW:
8905 		case DIF_OP_ULDUB:
8906 		case DIF_OP_ULDUH:
8907 		case DIF_OP_ULDUW:
8908 		case DIF_OP_ULDX:
8909 		case DIF_OP_STB:
8910 		case DIF_OP_STH:
8911 		case DIF_OP_STW:
8912 		case DIF_OP_STX:
8913 		case DIF_OP_ALLOCS:
8914 		case DIF_OP_CMP:
8915 		case DIF_OP_SCMP:
8916 		case DIF_OP_TST:
8917 		case DIF_OP_BA:
8918 		case DIF_OP_BE:
8919 		case DIF_OP_BNE:
8920 		case DIF_OP_BG:
8921 		case DIF_OP_BGU:
8922 		case DIF_OP_BGE:
8923 		case DIF_OP_BGEU:
8924 		case DIF_OP_BL:
8925 		case DIF_OP_BLU:
8926 		case DIF_OP_BLE:
8927 		case DIF_OP_BLEU:
8928 		case DIF_OP_RET:
8929 		case DIF_OP_NOP:
8930 		case DIF_OP_POPTS:
8931 		case DIF_OP_FLUSHTS:
8932 		case DIF_OP_SETX:
8933 		case DIF_OP_SETS:
8934 		case DIF_OP_LDGA:
8935 		case DIF_OP_LDLS:
8936 		case DIF_OP_STGS:
8937 		case DIF_OP_STLS:
8938 		case DIF_OP_PUSHTR:
8939 		case DIF_OP_PUSHTV:
8940 			break;
8941 
8942 		case DIF_OP_LDGS:
8943 			if (v >= DIF_VAR_OTHER_UBASE)
8944 				break;
8945 
8946 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8947 				break;
8948 
8949 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8950 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8951 			    v == DIF_VAR_EXECARGS ||
8952 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8953 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8954 				break;
8955 
8956 			err += efunc(pc, "illegal variable %u\n", v);
8957 			break;
8958 
8959 		case DIF_OP_LDTA:
8960 		case DIF_OP_LDTS:
8961 		case DIF_OP_LDGAA:
8962 		case DIF_OP_LDTAA:
8963 			err += efunc(pc, "illegal dynamic variable load\n");
8964 			break;
8965 
8966 		case DIF_OP_STTS:
8967 		case DIF_OP_STGAA:
8968 		case DIF_OP_STTAA:
8969 			err += efunc(pc, "illegal dynamic variable store\n");
8970 			break;
8971 
8972 		case DIF_OP_CALL:
8973 			if (subr == DIF_SUBR_ALLOCA ||
8974 			    subr == DIF_SUBR_BCOPY ||
8975 			    subr == DIF_SUBR_COPYIN ||
8976 			    subr == DIF_SUBR_COPYINTO ||
8977 			    subr == DIF_SUBR_COPYINSTR ||
8978 			    subr == DIF_SUBR_INDEX ||
8979 			    subr == DIF_SUBR_INET_NTOA ||
8980 			    subr == DIF_SUBR_INET_NTOA6 ||
8981 			    subr == DIF_SUBR_INET_NTOP ||
8982 			    subr == DIF_SUBR_LLTOSTR ||
8983 			    subr == DIF_SUBR_RINDEX ||
8984 			    subr == DIF_SUBR_STRCHR ||
8985 			    subr == DIF_SUBR_STRJOIN ||
8986 			    subr == DIF_SUBR_STRRCHR ||
8987 			    subr == DIF_SUBR_STRSTR ||
8988 			    subr == DIF_SUBR_HTONS ||
8989 			    subr == DIF_SUBR_HTONL ||
8990 			    subr == DIF_SUBR_HTONLL ||
8991 			    subr == DIF_SUBR_NTOHS ||
8992 			    subr == DIF_SUBR_NTOHL ||
8993 			    subr == DIF_SUBR_NTOHLL ||
8994 			    subr == DIF_SUBR_MEMREF ||
8995 			    subr == DIF_SUBR_TYPEREF)
8996 				break;
8997 
8998 			err += efunc(pc, "invalid subr %u\n", subr);
8999 			break;
9000 
9001 		default:
9002 			err += efunc(pc, "invalid opcode %u\n",
9003 			    DIF_INSTR_OP(instr));
9004 		}
9005 	}
9006 
9007 	return (err);
9008 }
9009 #endif
9010 
9011 /*
9012  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9013  * basis; 0 if not.
9014  */
9015 static int
9016 dtrace_difo_cacheable(dtrace_difo_t *dp)
9017 {
9018 	int i;
9019 
9020 	if (dp == NULL)
9021 		return (0);
9022 
9023 	for (i = 0; i < dp->dtdo_varlen; i++) {
9024 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9025 
9026 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9027 			continue;
9028 
9029 		switch (v->dtdv_id) {
9030 		case DIF_VAR_CURTHREAD:
9031 		case DIF_VAR_PID:
9032 		case DIF_VAR_TID:
9033 		case DIF_VAR_EXECARGS:
9034 		case DIF_VAR_EXECNAME:
9035 		case DIF_VAR_ZONENAME:
9036 			break;
9037 
9038 		default:
9039 			return (0);
9040 		}
9041 	}
9042 
9043 	/*
9044 	 * This DIF object may be cacheable.  Now we need to look for any
9045 	 * array loading instructions, any memory loading instructions, or
9046 	 * any stores to thread-local variables.
9047 	 */
9048 	for (i = 0; i < dp->dtdo_len; i++) {
9049 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9050 
9051 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9052 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9053 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9054 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9055 			return (0);
9056 	}
9057 
9058 	return (1);
9059 }
9060 
9061 static void
9062 dtrace_difo_hold(dtrace_difo_t *dp)
9063 {
9064 	int i;
9065 
9066 	ASSERT(MUTEX_HELD(&dtrace_lock));
9067 
9068 	dp->dtdo_refcnt++;
9069 	ASSERT(dp->dtdo_refcnt != 0);
9070 
9071 	/*
9072 	 * We need to check this DIF object for references to the variable
9073 	 * DIF_VAR_VTIMESTAMP.
9074 	 */
9075 	for (i = 0; i < dp->dtdo_varlen; i++) {
9076 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9077 
9078 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9079 			continue;
9080 
9081 		if (dtrace_vtime_references++ == 0)
9082 			dtrace_vtime_enable();
9083 	}
9084 }
9085 
9086 /*
9087  * This routine calculates the dynamic variable chunksize for a given DIF
9088  * object.  The calculation is not fool-proof, and can probably be tricked by
9089  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9090  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9091  * if a dynamic variable size exceeds the chunksize.
9092  */
9093 static void
9094 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9095 {
9096 	uint64_t sval = 0;
9097 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9098 	const dif_instr_t *text = dp->dtdo_buf;
9099 	uint_t pc, srd = 0;
9100 	uint_t ttop = 0;
9101 	size_t size, ksize;
9102 	uint_t id, i;
9103 
9104 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9105 		dif_instr_t instr = text[pc];
9106 		uint_t op = DIF_INSTR_OP(instr);
9107 		uint_t rd = DIF_INSTR_RD(instr);
9108 		uint_t r1 = DIF_INSTR_R1(instr);
9109 		uint_t nkeys = 0;
9110 		uchar_t scope = 0;
9111 
9112 		dtrace_key_t *key = tupregs;
9113 
9114 		switch (op) {
9115 		case DIF_OP_SETX:
9116 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9117 			srd = rd;
9118 			continue;
9119 
9120 		case DIF_OP_STTS:
9121 			key = &tupregs[DIF_DTR_NREGS];
9122 			key[0].dttk_size = 0;
9123 			key[1].dttk_size = 0;
9124 			nkeys = 2;
9125 			scope = DIFV_SCOPE_THREAD;
9126 			break;
9127 
9128 		case DIF_OP_STGAA:
9129 		case DIF_OP_STTAA:
9130 			nkeys = ttop;
9131 
9132 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9133 				key[nkeys++].dttk_size = 0;
9134 
9135 			key[nkeys++].dttk_size = 0;
9136 
9137 			if (op == DIF_OP_STTAA) {
9138 				scope = DIFV_SCOPE_THREAD;
9139 			} else {
9140 				scope = DIFV_SCOPE_GLOBAL;
9141 			}
9142 
9143 			break;
9144 
9145 		case DIF_OP_PUSHTR:
9146 			if (ttop == DIF_DTR_NREGS)
9147 				return;
9148 
9149 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9150 				/*
9151 				 * If the register for the size of the "pushtr"
9152 				 * is %r0 (or the value is 0) and the type is
9153 				 * a string, we'll use the system-wide default
9154 				 * string size.
9155 				 */
9156 				tupregs[ttop++].dttk_size =
9157 				    dtrace_strsize_default;
9158 			} else {
9159 				if (srd == 0)
9160 					return;
9161 
9162 				tupregs[ttop++].dttk_size = sval;
9163 			}
9164 
9165 			break;
9166 
9167 		case DIF_OP_PUSHTV:
9168 			if (ttop == DIF_DTR_NREGS)
9169 				return;
9170 
9171 			tupregs[ttop++].dttk_size = 0;
9172 			break;
9173 
9174 		case DIF_OP_FLUSHTS:
9175 			ttop = 0;
9176 			break;
9177 
9178 		case DIF_OP_POPTS:
9179 			if (ttop != 0)
9180 				ttop--;
9181 			break;
9182 		}
9183 
9184 		sval = 0;
9185 		srd = 0;
9186 
9187 		if (nkeys == 0)
9188 			continue;
9189 
9190 		/*
9191 		 * We have a dynamic variable allocation; calculate its size.
9192 		 */
9193 		for (ksize = 0, i = 0; i < nkeys; i++)
9194 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9195 
9196 		size = sizeof (dtrace_dynvar_t);
9197 		size += sizeof (dtrace_key_t) * (nkeys - 1);
9198 		size += ksize;
9199 
9200 		/*
9201 		 * Now we need to determine the size of the stored data.
9202 		 */
9203 		id = DIF_INSTR_VAR(instr);
9204 
9205 		for (i = 0; i < dp->dtdo_varlen; i++) {
9206 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9207 
9208 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9209 				size += v->dtdv_type.dtdt_size;
9210 				break;
9211 			}
9212 		}
9213 
9214 		if (i == dp->dtdo_varlen)
9215 			return;
9216 
9217 		/*
9218 		 * We have the size.  If this is larger than the chunk size
9219 		 * for our dynamic variable state, reset the chunk size.
9220 		 */
9221 		size = P2ROUNDUP(size, sizeof (uint64_t));
9222 
9223 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9224 			vstate->dtvs_dynvars.dtds_chunksize = size;
9225 	}
9226 }
9227 
9228 static void
9229 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9230 {
9231 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9232 	uint_t id;
9233 
9234 	ASSERT(MUTEX_HELD(&dtrace_lock));
9235 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9236 
9237 	for (i = 0; i < dp->dtdo_varlen; i++) {
9238 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9239 		dtrace_statvar_t *svar, ***svarp = NULL;
9240 		size_t dsize = 0;
9241 		uint8_t scope = v->dtdv_scope;
9242 		int *np = NULL;
9243 
9244 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9245 			continue;
9246 
9247 		id -= DIF_VAR_OTHER_UBASE;
9248 
9249 		switch (scope) {
9250 		case DIFV_SCOPE_THREAD:
9251 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9252 				dtrace_difv_t *tlocals;
9253 
9254 				if ((ntlocals = (otlocals << 1)) == 0)
9255 					ntlocals = 1;
9256 
9257 				osz = otlocals * sizeof (dtrace_difv_t);
9258 				nsz = ntlocals * sizeof (dtrace_difv_t);
9259 
9260 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9261 
9262 				if (osz != 0) {
9263 					bcopy(vstate->dtvs_tlocals,
9264 					    tlocals, osz);
9265 					kmem_free(vstate->dtvs_tlocals, osz);
9266 				}
9267 
9268 				vstate->dtvs_tlocals = tlocals;
9269 				vstate->dtvs_ntlocals = ntlocals;
9270 			}
9271 
9272 			vstate->dtvs_tlocals[id] = *v;
9273 			continue;
9274 
9275 		case DIFV_SCOPE_LOCAL:
9276 			np = &vstate->dtvs_nlocals;
9277 			svarp = &vstate->dtvs_locals;
9278 
9279 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9280 				dsize = NCPU * (v->dtdv_type.dtdt_size +
9281 				    sizeof (uint64_t));
9282 			else
9283 				dsize = NCPU * sizeof (uint64_t);
9284 
9285 			break;
9286 
9287 		case DIFV_SCOPE_GLOBAL:
9288 			np = &vstate->dtvs_nglobals;
9289 			svarp = &vstate->dtvs_globals;
9290 
9291 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9292 				dsize = v->dtdv_type.dtdt_size +
9293 				    sizeof (uint64_t);
9294 
9295 			break;
9296 
9297 		default:
9298 			ASSERT(0);
9299 		}
9300 
9301 		while (id >= (oldsvars = *np)) {
9302 			dtrace_statvar_t **statics;
9303 			int newsvars, oldsize, newsize;
9304 
9305 			if ((newsvars = (oldsvars << 1)) == 0)
9306 				newsvars = 1;
9307 
9308 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9309 			newsize = newsvars * sizeof (dtrace_statvar_t *);
9310 
9311 			statics = kmem_zalloc(newsize, KM_SLEEP);
9312 
9313 			if (oldsize != 0) {
9314 				bcopy(*svarp, statics, oldsize);
9315 				kmem_free(*svarp, oldsize);
9316 			}
9317 
9318 			*svarp = statics;
9319 			*np = newsvars;
9320 		}
9321 
9322 		if ((svar = (*svarp)[id]) == NULL) {
9323 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9324 			svar->dtsv_var = *v;
9325 
9326 			if ((svar->dtsv_size = dsize) != 0) {
9327 				svar->dtsv_data = (uint64_t)(uintptr_t)
9328 				    kmem_zalloc(dsize, KM_SLEEP);
9329 			}
9330 
9331 			(*svarp)[id] = svar;
9332 		}
9333 
9334 		svar->dtsv_refcnt++;
9335 	}
9336 
9337 	dtrace_difo_chunksize(dp, vstate);
9338 	dtrace_difo_hold(dp);
9339 }
9340 
9341 #if defined(sun)
9342 static dtrace_difo_t *
9343 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9344 {
9345 	dtrace_difo_t *new;
9346 	size_t sz;
9347 
9348 	ASSERT(dp->dtdo_buf != NULL);
9349 	ASSERT(dp->dtdo_refcnt != 0);
9350 
9351 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9352 
9353 	ASSERT(dp->dtdo_buf != NULL);
9354 	sz = dp->dtdo_len * sizeof (dif_instr_t);
9355 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9356 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9357 	new->dtdo_len = dp->dtdo_len;
9358 
9359 	if (dp->dtdo_strtab != NULL) {
9360 		ASSERT(dp->dtdo_strlen != 0);
9361 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9362 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9363 		new->dtdo_strlen = dp->dtdo_strlen;
9364 	}
9365 
9366 	if (dp->dtdo_inttab != NULL) {
9367 		ASSERT(dp->dtdo_intlen != 0);
9368 		sz = dp->dtdo_intlen * sizeof (uint64_t);
9369 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9370 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9371 		new->dtdo_intlen = dp->dtdo_intlen;
9372 	}
9373 
9374 	if (dp->dtdo_vartab != NULL) {
9375 		ASSERT(dp->dtdo_varlen != 0);
9376 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9377 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9378 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9379 		new->dtdo_varlen = dp->dtdo_varlen;
9380 	}
9381 
9382 	dtrace_difo_init(new, vstate);
9383 	return (new);
9384 }
9385 #endif
9386 
9387 static void
9388 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9389 {
9390 	int i;
9391 
9392 	ASSERT(dp->dtdo_refcnt == 0);
9393 
9394 	for (i = 0; i < dp->dtdo_varlen; i++) {
9395 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9396 		dtrace_statvar_t *svar, **svarp = NULL;
9397 		uint_t id;
9398 		uint8_t scope = v->dtdv_scope;
9399 		int *np = NULL;
9400 
9401 		switch (scope) {
9402 		case DIFV_SCOPE_THREAD:
9403 			continue;
9404 
9405 		case DIFV_SCOPE_LOCAL:
9406 			np = &vstate->dtvs_nlocals;
9407 			svarp = vstate->dtvs_locals;
9408 			break;
9409 
9410 		case DIFV_SCOPE_GLOBAL:
9411 			np = &vstate->dtvs_nglobals;
9412 			svarp = vstate->dtvs_globals;
9413 			break;
9414 
9415 		default:
9416 			ASSERT(0);
9417 		}
9418 
9419 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9420 			continue;
9421 
9422 		id -= DIF_VAR_OTHER_UBASE;
9423 		ASSERT(id < *np);
9424 
9425 		svar = svarp[id];
9426 		ASSERT(svar != NULL);
9427 		ASSERT(svar->dtsv_refcnt > 0);
9428 
9429 		if (--svar->dtsv_refcnt > 0)
9430 			continue;
9431 
9432 		if (svar->dtsv_size != 0) {
9433 			ASSERT(svar->dtsv_data != 0);
9434 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9435 			    svar->dtsv_size);
9436 		}
9437 
9438 		kmem_free(svar, sizeof (dtrace_statvar_t));
9439 		svarp[id] = NULL;
9440 	}
9441 
9442 	if (dp->dtdo_buf != NULL)
9443 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9444 	if (dp->dtdo_inttab != NULL)
9445 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9446 	if (dp->dtdo_strtab != NULL)
9447 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9448 	if (dp->dtdo_vartab != NULL)
9449 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9450 
9451 	kmem_free(dp, sizeof (dtrace_difo_t));
9452 }
9453 
9454 static void
9455 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9456 {
9457 	int i;
9458 
9459 	ASSERT(MUTEX_HELD(&dtrace_lock));
9460 	ASSERT(dp->dtdo_refcnt != 0);
9461 
9462 	for (i = 0; i < dp->dtdo_varlen; i++) {
9463 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9464 
9465 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9466 			continue;
9467 
9468 		ASSERT(dtrace_vtime_references > 0);
9469 		if (--dtrace_vtime_references == 0)
9470 			dtrace_vtime_disable();
9471 	}
9472 
9473 	if (--dp->dtdo_refcnt == 0)
9474 		dtrace_difo_destroy(dp, vstate);
9475 }
9476 
9477 /*
9478  * DTrace Format Functions
9479  */
9480 static uint16_t
9481 dtrace_format_add(dtrace_state_t *state, char *str)
9482 {
9483 	char *fmt, **new;
9484 	uint16_t ndx, len = strlen(str) + 1;
9485 
9486 	fmt = kmem_zalloc(len, KM_SLEEP);
9487 	bcopy(str, fmt, len);
9488 
9489 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9490 		if (state->dts_formats[ndx] == NULL) {
9491 			state->dts_formats[ndx] = fmt;
9492 			return (ndx + 1);
9493 		}
9494 	}
9495 
9496 	if (state->dts_nformats == USHRT_MAX) {
9497 		/*
9498 		 * This is only likely if a denial-of-service attack is being
9499 		 * attempted.  As such, it's okay to fail silently here.
9500 		 */
9501 		kmem_free(fmt, len);
9502 		return (0);
9503 	}
9504 
9505 	/*
9506 	 * For simplicity, we always resize the formats array to be exactly the
9507 	 * number of formats.
9508 	 */
9509 	ndx = state->dts_nformats++;
9510 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9511 
9512 	if (state->dts_formats != NULL) {
9513 		ASSERT(ndx != 0);
9514 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9515 		kmem_free(state->dts_formats, ndx * sizeof (char *));
9516 	}
9517 
9518 	state->dts_formats = new;
9519 	state->dts_formats[ndx] = fmt;
9520 
9521 	return (ndx + 1);
9522 }
9523 
9524 static void
9525 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9526 {
9527 	char *fmt;
9528 
9529 	ASSERT(state->dts_formats != NULL);
9530 	ASSERT(format <= state->dts_nformats);
9531 	ASSERT(state->dts_formats[format - 1] != NULL);
9532 
9533 	fmt = state->dts_formats[format - 1];
9534 	kmem_free(fmt, strlen(fmt) + 1);
9535 	state->dts_formats[format - 1] = NULL;
9536 }
9537 
9538 static void
9539 dtrace_format_destroy(dtrace_state_t *state)
9540 {
9541 	int i;
9542 
9543 	if (state->dts_nformats == 0) {
9544 		ASSERT(state->dts_formats == NULL);
9545 		return;
9546 	}
9547 
9548 	ASSERT(state->dts_formats != NULL);
9549 
9550 	for (i = 0; i < state->dts_nformats; i++) {
9551 		char *fmt = state->dts_formats[i];
9552 
9553 		if (fmt == NULL)
9554 			continue;
9555 
9556 		kmem_free(fmt, strlen(fmt) + 1);
9557 	}
9558 
9559 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9560 	state->dts_nformats = 0;
9561 	state->dts_formats = NULL;
9562 }
9563 
9564 /*
9565  * DTrace Predicate Functions
9566  */
9567 static dtrace_predicate_t *
9568 dtrace_predicate_create(dtrace_difo_t *dp)
9569 {
9570 	dtrace_predicate_t *pred;
9571 
9572 	ASSERT(MUTEX_HELD(&dtrace_lock));
9573 	ASSERT(dp->dtdo_refcnt != 0);
9574 
9575 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9576 	pred->dtp_difo = dp;
9577 	pred->dtp_refcnt = 1;
9578 
9579 	if (!dtrace_difo_cacheable(dp))
9580 		return (pred);
9581 
9582 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9583 		/*
9584 		 * This is only theoretically possible -- we have had 2^32
9585 		 * cacheable predicates on this machine.  We cannot allow any
9586 		 * more predicates to become cacheable:  as unlikely as it is,
9587 		 * there may be a thread caching a (now stale) predicate cache
9588 		 * ID. (N.B.: the temptation is being successfully resisted to
9589 		 * have this cmn_err() "Holy shit -- we executed this code!")
9590 		 */
9591 		return (pred);
9592 	}
9593 
9594 	pred->dtp_cacheid = dtrace_predcache_id++;
9595 
9596 	return (pred);
9597 }
9598 
9599 static void
9600 dtrace_predicate_hold(dtrace_predicate_t *pred)
9601 {
9602 	ASSERT(MUTEX_HELD(&dtrace_lock));
9603 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9604 	ASSERT(pred->dtp_refcnt > 0);
9605 
9606 	pred->dtp_refcnt++;
9607 }
9608 
9609 static void
9610 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9611 {
9612 	dtrace_difo_t *dp = pred->dtp_difo;
9613 
9614 	ASSERT(MUTEX_HELD(&dtrace_lock));
9615 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9616 	ASSERT(pred->dtp_refcnt > 0);
9617 
9618 	if (--pred->dtp_refcnt == 0) {
9619 		dtrace_difo_release(pred->dtp_difo, vstate);
9620 		kmem_free(pred, sizeof (dtrace_predicate_t));
9621 	}
9622 }
9623 
9624 /*
9625  * DTrace Action Description Functions
9626  */
9627 static dtrace_actdesc_t *
9628 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9629     uint64_t uarg, uint64_t arg)
9630 {
9631 	dtrace_actdesc_t *act;
9632 
9633 #if defined(sun)
9634 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9635 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9636 #endif
9637 
9638 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9639 	act->dtad_kind = kind;
9640 	act->dtad_ntuple = ntuple;
9641 	act->dtad_uarg = uarg;
9642 	act->dtad_arg = arg;
9643 	act->dtad_refcnt = 1;
9644 
9645 	return (act);
9646 }
9647 
9648 static void
9649 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9650 {
9651 	ASSERT(act->dtad_refcnt >= 1);
9652 	act->dtad_refcnt++;
9653 }
9654 
9655 static void
9656 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9657 {
9658 	dtrace_actkind_t kind = act->dtad_kind;
9659 	dtrace_difo_t *dp;
9660 
9661 	ASSERT(act->dtad_refcnt >= 1);
9662 
9663 	if (--act->dtad_refcnt != 0)
9664 		return;
9665 
9666 	if ((dp = act->dtad_difo) != NULL)
9667 		dtrace_difo_release(dp, vstate);
9668 
9669 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9670 		char *str = (char *)(uintptr_t)act->dtad_arg;
9671 
9672 #if defined(sun)
9673 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9674 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9675 #endif
9676 
9677 		if (str != NULL)
9678 			kmem_free(str, strlen(str) + 1);
9679 	}
9680 
9681 	kmem_free(act, sizeof (dtrace_actdesc_t));
9682 }
9683 
9684 /*
9685  * DTrace ECB Functions
9686  */
9687 static dtrace_ecb_t *
9688 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9689 {
9690 	dtrace_ecb_t *ecb;
9691 	dtrace_epid_t epid;
9692 
9693 	ASSERT(MUTEX_HELD(&dtrace_lock));
9694 
9695 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9696 	ecb->dte_predicate = NULL;
9697 	ecb->dte_probe = probe;
9698 
9699 	/*
9700 	 * The default size is the size of the default action: recording
9701 	 * the epid.
9702 	 */
9703 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9704 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9705 
9706 	epid = state->dts_epid++;
9707 
9708 	if (epid - 1 >= state->dts_necbs) {
9709 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9710 		int necbs = state->dts_necbs << 1;
9711 
9712 		ASSERT(epid == state->dts_necbs + 1);
9713 
9714 		if (necbs == 0) {
9715 			ASSERT(oecbs == NULL);
9716 			necbs = 1;
9717 		}
9718 
9719 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9720 
9721 		if (oecbs != NULL)
9722 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9723 
9724 		dtrace_membar_producer();
9725 		state->dts_ecbs = ecbs;
9726 
9727 		if (oecbs != NULL) {
9728 			/*
9729 			 * If this state is active, we must dtrace_sync()
9730 			 * before we can free the old dts_ecbs array:  we're
9731 			 * coming in hot, and there may be active ring
9732 			 * buffer processing (which indexes into the dts_ecbs
9733 			 * array) on another CPU.
9734 			 */
9735 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9736 				dtrace_sync();
9737 
9738 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9739 		}
9740 
9741 		dtrace_membar_producer();
9742 		state->dts_necbs = necbs;
9743 	}
9744 
9745 	ecb->dte_state = state;
9746 
9747 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9748 	dtrace_membar_producer();
9749 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9750 
9751 	return (ecb);
9752 }
9753 
9754 static int
9755 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9756 {
9757 	dtrace_probe_t *probe = ecb->dte_probe;
9758 
9759 	ASSERT(MUTEX_HELD(&cpu_lock));
9760 	ASSERT(MUTEX_HELD(&dtrace_lock));
9761 	ASSERT(ecb->dte_next == NULL);
9762 
9763 	if (probe == NULL) {
9764 		/*
9765 		 * This is the NULL probe -- there's nothing to do.
9766 		 */
9767 		return (0);
9768 	}
9769 
9770 	if (probe->dtpr_ecb == NULL) {
9771 		dtrace_provider_t *prov = probe->dtpr_provider;
9772 
9773 		/*
9774 		 * We're the first ECB on this probe.
9775 		 */
9776 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9777 
9778 		if (ecb->dte_predicate != NULL)
9779 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9780 
9781 		return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9782 		    probe->dtpr_id, probe->dtpr_arg));
9783 	} else {
9784 		/*
9785 		 * This probe is already active.  Swing the last pointer to
9786 		 * point to the new ECB, and issue a dtrace_sync() to assure
9787 		 * that all CPUs have seen the change.
9788 		 */
9789 		ASSERT(probe->dtpr_ecb_last != NULL);
9790 		probe->dtpr_ecb_last->dte_next = ecb;
9791 		probe->dtpr_ecb_last = ecb;
9792 		probe->dtpr_predcache = 0;
9793 
9794 		dtrace_sync();
9795 		return (0);
9796 	}
9797 }
9798 
9799 static void
9800 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9801 {
9802 	uint32_t maxalign = sizeof (dtrace_epid_t);
9803 	uint32_t align = sizeof (uint8_t), offs, diff;
9804 	dtrace_action_t *act;
9805 	int wastuple = 0;
9806 	uint32_t aggbase = UINT32_MAX;
9807 	dtrace_state_t *state = ecb->dte_state;
9808 
9809 	/*
9810 	 * If we record anything, we always record the epid.  (And we always
9811 	 * record it first.)
9812 	 */
9813 	offs = sizeof (dtrace_epid_t);
9814 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9815 
9816 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9817 		dtrace_recdesc_t *rec = &act->dta_rec;
9818 
9819 		if ((align = rec->dtrd_alignment) > maxalign)
9820 			maxalign = align;
9821 
9822 		if (!wastuple && act->dta_intuple) {
9823 			/*
9824 			 * This is the first record in a tuple.  Align the
9825 			 * offset to be at offset 4 in an 8-byte aligned
9826 			 * block.
9827 			 */
9828 			diff = offs + sizeof (dtrace_aggid_t);
9829 
9830 			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9831 				offs += sizeof (uint64_t) - diff;
9832 
9833 			aggbase = offs - sizeof (dtrace_aggid_t);
9834 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9835 		}
9836 
9837 		/*LINTED*/
9838 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9839 			/*
9840 			 * The current offset is not properly aligned; align it.
9841 			 */
9842 			offs += align - diff;
9843 		}
9844 
9845 		rec->dtrd_offset = offs;
9846 
9847 		if (offs + rec->dtrd_size > ecb->dte_needed) {
9848 			ecb->dte_needed = offs + rec->dtrd_size;
9849 
9850 			if (ecb->dte_needed > state->dts_needed)
9851 				state->dts_needed = ecb->dte_needed;
9852 		}
9853 
9854 		if (DTRACEACT_ISAGG(act->dta_kind)) {
9855 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9856 			dtrace_action_t *first = agg->dtag_first, *prev;
9857 
9858 			ASSERT(rec->dtrd_size != 0 && first != NULL);
9859 			ASSERT(wastuple);
9860 			ASSERT(aggbase != UINT32_MAX);
9861 
9862 			agg->dtag_base = aggbase;
9863 
9864 			while ((prev = first->dta_prev) != NULL &&
9865 			    DTRACEACT_ISAGG(prev->dta_kind)) {
9866 				agg = (dtrace_aggregation_t *)prev;
9867 				first = agg->dtag_first;
9868 			}
9869 
9870 			if (prev != NULL) {
9871 				offs = prev->dta_rec.dtrd_offset +
9872 				    prev->dta_rec.dtrd_size;
9873 			} else {
9874 				offs = sizeof (dtrace_epid_t);
9875 			}
9876 			wastuple = 0;
9877 		} else {
9878 			if (!act->dta_intuple)
9879 				ecb->dte_size = offs + rec->dtrd_size;
9880 
9881 			offs += rec->dtrd_size;
9882 		}
9883 
9884 		wastuple = act->dta_intuple;
9885 	}
9886 
9887 	if ((act = ecb->dte_action) != NULL &&
9888 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9889 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9890 		/*
9891 		 * If the size is still sizeof (dtrace_epid_t), then all
9892 		 * actions store no data; set the size to 0.
9893 		 */
9894 		ecb->dte_alignment = maxalign;
9895 		ecb->dte_size = 0;
9896 
9897 		/*
9898 		 * If the needed space is still sizeof (dtrace_epid_t), then
9899 		 * all actions need no additional space; set the needed
9900 		 * size to 0.
9901 		 */
9902 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9903 			ecb->dte_needed = 0;
9904 
9905 		return;
9906 	}
9907 
9908 	/*
9909 	 * Set our alignment, and make sure that the dte_size and dte_needed
9910 	 * are aligned to the size of an EPID.
9911 	 */
9912 	ecb->dte_alignment = maxalign;
9913 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9914 	    ~(sizeof (dtrace_epid_t) - 1);
9915 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9916 	    ~(sizeof (dtrace_epid_t) - 1);
9917 	ASSERT(ecb->dte_size <= ecb->dte_needed);
9918 }
9919 
9920 static dtrace_action_t *
9921 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9922 {
9923 	dtrace_aggregation_t *agg;
9924 	size_t size = sizeof (uint64_t);
9925 	int ntuple = desc->dtad_ntuple;
9926 	dtrace_action_t *act;
9927 	dtrace_recdesc_t *frec;
9928 	dtrace_aggid_t aggid;
9929 	dtrace_state_t *state = ecb->dte_state;
9930 	vmem_addr_t offset;
9931 
9932 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9933 	agg->dtag_ecb = ecb;
9934 
9935 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9936 
9937 	switch (desc->dtad_kind) {
9938 	case DTRACEAGG_MIN:
9939 		agg->dtag_initial = INT64_MAX;
9940 		agg->dtag_aggregate = dtrace_aggregate_min;
9941 		break;
9942 
9943 	case DTRACEAGG_MAX:
9944 		agg->dtag_initial = INT64_MIN;
9945 		agg->dtag_aggregate = dtrace_aggregate_max;
9946 		break;
9947 
9948 	case DTRACEAGG_COUNT:
9949 		agg->dtag_aggregate = dtrace_aggregate_count;
9950 		break;
9951 
9952 	case DTRACEAGG_QUANTIZE:
9953 		agg->dtag_aggregate = dtrace_aggregate_quantize;
9954 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9955 		    sizeof (uint64_t);
9956 		break;
9957 
9958 	case DTRACEAGG_LQUANTIZE: {
9959 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9960 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9961 
9962 		agg->dtag_initial = desc->dtad_arg;
9963 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9964 
9965 		if (step == 0 || levels == 0)
9966 			goto err;
9967 
9968 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9969 		break;
9970 	}
9971 
9972 	case DTRACEAGG_AVG:
9973 		agg->dtag_aggregate = dtrace_aggregate_avg;
9974 		size = sizeof (uint64_t) * 2;
9975 		break;
9976 
9977 	case DTRACEAGG_STDDEV:
9978 		agg->dtag_aggregate = dtrace_aggregate_stddev;
9979 		size = sizeof (uint64_t) * 4;
9980 		break;
9981 
9982 	case DTRACEAGG_SUM:
9983 		agg->dtag_aggregate = dtrace_aggregate_sum;
9984 		break;
9985 
9986 	default:
9987 		goto err;
9988 	}
9989 
9990 	agg->dtag_action.dta_rec.dtrd_size = size;
9991 
9992 	if (ntuple == 0)
9993 		goto err;
9994 
9995 	/*
9996 	 * We must make sure that we have enough actions for the n-tuple.
9997 	 */
9998 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9999 		if (DTRACEACT_ISAGG(act->dta_kind))
10000 			break;
10001 
10002 		if (--ntuple == 0) {
10003 			/*
10004 			 * This is the action with which our n-tuple begins.
10005 			 */
10006 			agg->dtag_first = act;
10007 			goto success;
10008 		}
10009 	}
10010 
10011 	/*
10012 	 * This n-tuple is short by ntuple elements.  Return failure.
10013 	 */
10014 	ASSERT(ntuple != 0);
10015 err:
10016 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10017 	return (NULL);
10018 
10019 success:
10020 	/*
10021 	 * If the last action in the tuple has a size of zero, it's actually
10022 	 * an expression argument for the aggregating action.
10023 	 */
10024 	ASSERT(ecb->dte_action_last != NULL);
10025 	act = ecb->dte_action_last;
10026 
10027 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10028 		ASSERT(act->dta_difo != NULL);
10029 
10030 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10031 			agg->dtag_hasarg = 1;
10032 	}
10033 
10034 	/*
10035 	 * We need to allocate an id for this aggregation.
10036 	 */
10037 	if (vmem_alloc(state->dts_aggid_arena, 1, VM_BESTFIT | VM_SLEEP,
10038 	    &offset) != 0)
10039 		ASSERT(0);
10040 	aggid = (dtrace_aggid_t)(uintptr_t)offset;
10041 
10042 
10043 	if (aggid - 1 >= state->dts_naggregations) {
10044 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10045 		dtrace_aggregation_t **aggs;
10046 		int naggs = state->dts_naggregations << 1;
10047 		int onaggs = state->dts_naggregations;
10048 
10049 		ASSERT(aggid == state->dts_naggregations + 1);
10050 
10051 		if (naggs == 0) {
10052 			ASSERT(oaggs == NULL);
10053 			naggs = 1;
10054 		}
10055 
10056 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10057 
10058 		if (oaggs != NULL) {
10059 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10060 			kmem_free(oaggs, onaggs * sizeof (*aggs));
10061 		}
10062 
10063 		state->dts_aggregations = aggs;
10064 		state->dts_naggregations = naggs;
10065 	}
10066 
10067 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10068 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10069 
10070 	frec = &agg->dtag_first->dta_rec;
10071 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10072 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10073 
10074 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10075 		ASSERT(!act->dta_intuple);
10076 		act->dta_intuple = 1;
10077 	}
10078 
10079 	return (&agg->dtag_action);
10080 }
10081 
10082 static void
10083 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10084 {
10085 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10086 	dtrace_state_t *state = ecb->dte_state;
10087 	dtrace_aggid_t aggid = agg->dtag_id;
10088 
10089 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10090 #if defined(sun)
10091 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10092 #else
10093 	vmem_free(state->dts_aggid_arena, (uintptr_t)aggid, 1);
10094 #endif
10095 
10096 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10097 	state->dts_aggregations[aggid - 1] = NULL;
10098 
10099 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10100 }
10101 
10102 static int
10103 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10104 {
10105 	dtrace_action_t *action, *last;
10106 	dtrace_difo_t *dp = desc->dtad_difo;
10107 	uint32_t size = 0, align = sizeof (uint8_t), mask;
10108 	uint16_t format = 0;
10109 	dtrace_recdesc_t *rec;
10110 	dtrace_state_t *state = ecb->dte_state;
10111 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10112 	uint64_t arg = desc->dtad_arg;
10113 
10114 	ASSERT(MUTEX_HELD(&dtrace_lock));
10115 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10116 
10117 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10118 		/*
10119 		 * If this is an aggregating action, there must be neither
10120 		 * a speculate nor a commit on the action chain.
10121 		 */
10122 		dtrace_action_t *act;
10123 
10124 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10125 			if (act->dta_kind == DTRACEACT_COMMIT)
10126 				return (EINVAL);
10127 
10128 			if (act->dta_kind == DTRACEACT_SPECULATE)
10129 				return (EINVAL);
10130 		}
10131 
10132 		action = dtrace_ecb_aggregation_create(ecb, desc);
10133 
10134 		if (action == NULL)
10135 			return (EINVAL);
10136 	} else {
10137 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10138 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10139 		    dp != NULL && dp->dtdo_destructive)) {
10140 			state->dts_destructive = 1;
10141 		}
10142 
10143 		switch (desc->dtad_kind) {
10144 		case DTRACEACT_PRINTF:
10145 		case DTRACEACT_PRINTA:
10146 		case DTRACEACT_SYSTEM:
10147 		case DTRACEACT_FREOPEN:
10148 			/*
10149 			 * We know that our arg is a string -- turn it into a
10150 			 * format.
10151 			 */
10152 			if (arg == 0) {
10153 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
10154 				format = 0;
10155 			} else {
10156 				ASSERT(arg != 0);
10157 #if defined(sun)
10158 				ASSERT(arg > KERNELBASE);
10159 #endif
10160 				format = dtrace_format_add(state,
10161 				    (char *)(uintptr_t)arg);
10162 			}
10163 
10164 			/*FALLTHROUGH*/
10165 		case DTRACEACT_LIBACT:
10166 		case DTRACEACT_DIFEXPR:
10167 			if (dp == NULL)
10168 				return (EINVAL);
10169 
10170 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10171 				break;
10172 
10173 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10174 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10175 					return (EINVAL);
10176 
10177 				size = opt[DTRACEOPT_STRSIZE];
10178 			}
10179 
10180 			break;
10181 
10182 		case DTRACEACT_STACK:
10183 			if ((nframes = arg) == 0) {
10184 				nframes = opt[DTRACEOPT_STACKFRAMES];
10185 				ASSERT(nframes > 0);
10186 				arg = nframes;
10187 			}
10188 
10189 			size = nframes * sizeof (pc_t);
10190 			break;
10191 
10192 		case DTRACEACT_JSTACK:
10193 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10194 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10195 
10196 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10197 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10198 
10199 			arg = DTRACE_USTACK_ARG(nframes, strsize);
10200 
10201 			/*FALLTHROUGH*/
10202 		case DTRACEACT_USTACK:
10203 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10204 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10205 				strsize = DTRACE_USTACK_STRSIZE(arg);
10206 				nframes = opt[DTRACEOPT_USTACKFRAMES];
10207 				ASSERT(nframes > 0);
10208 				arg = DTRACE_USTACK_ARG(nframes, strsize);
10209 			}
10210 
10211 			/*
10212 			 * Save a slot for the pid.
10213 			 */
10214 			size = (nframes + 1) * sizeof (uint64_t);
10215 			size += DTRACE_USTACK_STRSIZE(arg);
10216 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10217 
10218 			break;
10219 
10220 		case DTRACEACT_SYM:
10221 		case DTRACEACT_MOD:
10222 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10223 			    sizeof (uint64_t)) ||
10224 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10225 				return (EINVAL);
10226 			break;
10227 
10228 		case DTRACEACT_USYM:
10229 		case DTRACEACT_UMOD:
10230 		case DTRACEACT_UADDR:
10231 			if (dp == NULL ||
10232 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10233 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10234 				return (EINVAL);
10235 
10236 			/*
10237 			 * We have a slot for the pid, plus a slot for the
10238 			 * argument.  To keep things simple (aligned with
10239 			 * bitness-neutral sizing), we store each as a 64-bit
10240 			 * quantity.
10241 			 */
10242 			size = 2 * sizeof (uint64_t);
10243 			break;
10244 
10245 		case DTRACEACT_STOP:
10246 		case DTRACEACT_BREAKPOINT:
10247 		case DTRACEACT_PANIC:
10248 			break;
10249 
10250 		case DTRACEACT_CHILL:
10251 		case DTRACEACT_DISCARD:
10252 		case DTRACEACT_RAISE:
10253 			if (dp == NULL)
10254 				return (EINVAL);
10255 			break;
10256 
10257 		case DTRACEACT_EXIT:
10258 			if (dp == NULL ||
10259 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10260 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10261 				return (EINVAL);
10262 			break;
10263 
10264 		case DTRACEACT_SPECULATE:
10265 			if (ecb->dte_size > sizeof (dtrace_epid_t))
10266 				return (EINVAL);
10267 
10268 			if (dp == NULL)
10269 				return (EINVAL);
10270 
10271 			state->dts_speculates = 1;
10272 			break;
10273 
10274 		case DTRACEACT_PRINTM:
10275 		    	size = dp->dtdo_rtype.dtdt_size;
10276 			break;
10277 
10278 		case DTRACEACT_PRINTT:
10279 		    	size = dp->dtdo_rtype.dtdt_size;
10280 			break;
10281 
10282 		case DTRACEACT_COMMIT: {
10283 			dtrace_action_t *act = ecb->dte_action;
10284 
10285 			for (; act != NULL; act = act->dta_next) {
10286 				if (act->dta_kind == DTRACEACT_COMMIT)
10287 					return (EINVAL);
10288 			}
10289 
10290 			if (dp == NULL)
10291 				return (EINVAL);
10292 			break;
10293 		}
10294 
10295 		default:
10296 			return (EINVAL);
10297 		}
10298 
10299 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10300 			/*
10301 			 * If this is a data-storing action or a speculate,
10302 			 * we must be sure that there isn't a commit on the
10303 			 * action chain.
10304 			 */
10305 			dtrace_action_t *act = ecb->dte_action;
10306 
10307 			for (; act != NULL; act = act->dta_next) {
10308 				if (act->dta_kind == DTRACEACT_COMMIT)
10309 					return (EINVAL);
10310 			}
10311 		}
10312 
10313 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10314 		action->dta_rec.dtrd_size = size;
10315 	}
10316 
10317 	action->dta_refcnt = 1;
10318 	rec = &action->dta_rec;
10319 	size = rec->dtrd_size;
10320 
10321 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10322 		if (!(size & mask)) {
10323 			align = mask + 1;
10324 			break;
10325 		}
10326 	}
10327 
10328 	action->dta_kind = desc->dtad_kind;
10329 
10330 	if ((action->dta_difo = dp) != NULL)
10331 		dtrace_difo_hold(dp);
10332 
10333 	rec->dtrd_action = action->dta_kind;
10334 	rec->dtrd_arg = arg;
10335 	rec->dtrd_uarg = desc->dtad_uarg;
10336 	rec->dtrd_alignment = (uint16_t)align;
10337 	rec->dtrd_format = format;
10338 
10339 	if ((last = ecb->dte_action_last) != NULL) {
10340 		ASSERT(ecb->dte_action != NULL);
10341 		action->dta_prev = last;
10342 		last->dta_next = action;
10343 	} else {
10344 		ASSERT(ecb->dte_action == NULL);
10345 		ecb->dte_action = action;
10346 	}
10347 
10348 	ecb->dte_action_last = action;
10349 
10350 	return (0);
10351 }
10352 
10353 static void
10354 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10355 {
10356 	dtrace_action_t *act = ecb->dte_action, *next;
10357 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10358 	dtrace_difo_t *dp;
10359 	uint16_t format;
10360 
10361 	if (act != NULL && act->dta_refcnt > 1) {
10362 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10363 		act->dta_refcnt--;
10364 	} else {
10365 		for (; act != NULL; act = next) {
10366 			next = act->dta_next;
10367 			ASSERT(next != NULL || act == ecb->dte_action_last);
10368 			ASSERT(act->dta_refcnt == 1);
10369 
10370 			if ((format = act->dta_rec.dtrd_format) != 0)
10371 				dtrace_format_remove(ecb->dte_state, format);
10372 
10373 			if ((dp = act->dta_difo) != NULL)
10374 				dtrace_difo_release(dp, vstate);
10375 
10376 			if (DTRACEACT_ISAGG(act->dta_kind)) {
10377 				dtrace_ecb_aggregation_destroy(ecb, act);
10378 			} else {
10379 				kmem_free(act, sizeof (dtrace_action_t));
10380 			}
10381 		}
10382 	}
10383 
10384 	ecb->dte_action = NULL;
10385 	ecb->dte_action_last = NULL;
10386 	ecb->dte_size = sizeof (dtrace_epid_t);
10387 }
10388 
10389 static void
10390 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10391 {
10392 	/*
10393 	 * We disable the ECB by removing it from its probe.
10394 	 */
10395 	dtrace_ecb_t *pecb, *prev = NULL;
10396 	dtrace_probe_t *probe = ecb->dte_probe;
10397 
10398 	ASSERT(MUTEX_HELD(&dtrace_lock));
10399 
10400 	if (probe == NULL) {
10401 		/*
10402 		 * This is the NULL probe; there is nothing to disable.
10403 		 */
10404 		return;
10405 	}
10406 
10407 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10408 		if (pecb == ecb)
10409 			break;
10410 		prev = pecb;
10411 	}
10412 
10413 	ASSERT(pecb != NULL);
10414 
10415 	if (prev == NULL) {
10416 		probe->dtpr_ecb = ecb->dte_next;
10417 	} else {
10418 		prev->dte_next = ecb->dte_next;
10419 	}
10420 
10421 	if (ecb == probe->dtpr_ecb_last) {
10422 		ASSERT(ecb->dte_next == NULL);
10423 		probe->dtpr_ecb_last = prev;
10424 	}
10425 
10426 	/*
10427 	 * The ECB has been disconnected from the probe; now sync to assure
10428 	 * that all CPUs have seen the change before returning.
10429 	 */
10430 	dtrace_sync();
10431 
10432 	if (probe->dtpr_ecb == NULL) {
10433 		/*
10434 		 * That was the last ECB on the probe; clear the predicate
10435 		 * cache ID for the probe, disable it and sync one more time
10436 		 * to assure that we'll never hit it again.
10437 		 */
10438 		dtrace_provider_t *prov = probe->dtpr_provider;
10439 
10440 		ASSERT(ecb->dte_next == NULL);
10441 		ASSERT(probe->dtpr_ecb_last == NULL);
10442 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10443 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10444 		    probe->dtpr_id, probe->dtpr_arg);
10445 		dtrace_sync();
10446 	} else {
10447 		/*
10448 		 * There is at least one ECB remaining on the probe.  If there
10449 		 * is _exactly_ one, set the probe's predicate cache ID to be
10450 		 * the predicate cache ID of the remaining ECB.
10451 		 */
10452 		ASSERT(probe->dtpr_ecb_last != NULL);
10453 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10454 
10455 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10456 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10457 
10458 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10459 
10460 			if (p != NULL)
10461 				probe->dtpr_predcache = p->dtp_cacheid;
10462 		}
10463 
10464 		ecb->dte_next = NULL;
10465 	}
10466 }
10467 
10468 static void
10469 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10470 {
10471 	dtrace_state_t *state = ecb->dte_state;
10472 	dtrace_vstate_t *vstate = &state->dts_vstate;
10473 	dtrace_predicate_t *pred;
10474 	dtrace_epid_t epid = ecb->dte_epid;
10475 
10476 	ASSERT(MUTEX_HELD(&dtrace_lock));
10477 	ASSERT(ecb->dte_next == NULL);
10478 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10479 
10480 	if ((pred = ecb->dte_predicate) != NULL)
10481 		dtrace_predicate_release(pred, vstate);
10482 
10483 	dtrace_ecb_action_remove(ecb);
10484 
10485 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10486 	state->dts_ecbs[epid - 1] = NULL;
10487 
10488 	kmem_free(ecb, sizeof (dtrace_ecb_t));
10489 }
10490 
10491 static dtrace_ecb_t *
10492 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10493     dtrace_enabling_t *enab)
10494 {
10495 	dtrace_ecb_t *ecb;
10496 	dtrace_predicate_t *pred;
10497 	dtrace_actdesc_t *act;
10498 	dtrace_provider_t *prov;
10499 	dtrace_ecbdesc_t *desc = enab->dten_current;
10500 
10501 	ASSERT(MUTEX_HELD(&dtrace_lock));
10502 	ASSERT(state != NULL);
10503 
10504 	ecb = dtrace_ecb_add(state, probe);
10505 	ecb->dte_uarg = desc->dted_uarg;
10506 
10507 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10508 		dtrace_predicate_hold(pred);
10509 		ecb->dte_predicate = pred;
10510 	}
10511 
10512 	if (probe != NULL) {
10513 		/*
10514 		 * If the provider shows more leg than the consumer is old
10515 		 * enough to see, we need to enable the appropriate implicit
10516 		 * predicate bits to prevent the ecb from activating at
10517 		 * revealing times.
10518 		 *
10519 		 * Providers specifying DTRACE_PRIV_USER at register time
10520 		 * are stating that they need the /proc-style privilege
10521 		 * model to be enforced, and this is what DTRACE_COND_OWNER
10522 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10523 		 */
10524 		prov = probe->dtpr_provider;
10525 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10526 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10527 			ecb->dte_cond |= DTRACE_COND_OWNER;
10528 
10529 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10530 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10531 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10532 
10533 		/*
10534 		 * If the provider shows us kernel innards and the user
10535 		 * is lacking sufficient privilege, enable the
10536 		 * DTRACE_COND_USERMODE implicit predicate.
10537 		 */
10538 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10539 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10540 			ecb->dte_cond |= DTRACE_COND_USERMODE;
10541 	}
10542 
10543 	if (dtrace_ecb_create_cache != NULL) {
10544 		/*
10545 		 * If we have a cached ecb, we'll use its action list instead
10546 		 * of creating our own (saving both time and space).
10547 		 */
10548 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10549 		dtrace_action_t *xact = cached->dte_action;
10550 
10551 		if (xact != NULL) {
10552 			ASSERT(xact->dta_refcnt > 0);
10553 			xact->dta_refcnt++;
10554 			ecb->dte_action = xact;
10555 			ecb->dte_action_last = cached->dte_action_last;
10556 			ecb->dte_needed = cached->dte_needed;
10557 			ecb->dte_size = cached->dte_size;
10558 			ecb->dte_alignment = cached->dte_alignment;
10559 		}
10560 
10561 		return (ecb);
10562 	}
10563 
10564 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10565 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10566 			dtrace_ecb_destroy(ecb);
10567 			return (NULL);
10568 		}
10569 	}
10570 
10571 	dtrace_ecb_resize(ecb);
10572 
10573 	return (dtrace_ecb_create_cache = ecb);
10574 }
10575 
10576 static int
10577 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10578 {
10579 	dtrace_ecb_t *ecb;
10580 	dtrace_enabling_t *enab = arg;
10581 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10582 
10583 	ASSERT(state != NULL);
10584 
10585 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10586 		/*
10587 		 * This probe was created in a generation for which this
10588 		 * enabling has previously created ECBs; we don't want to
10589 		 * enable it again, so just kick out.
10590 		 */
10591 		return (DTRACE_MATCH_NEXT);
10592 	}
10593 
10594 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10595 		return (DTRACE_MATCH_DONE);
10596 
10597 	if (dtrace_ecb_enable(ecb) < 0)
10598 		return (DTRACE_MATCH_FAIL);
10599 
10600 	return (DTRACE_MATCH_NEXT);
10601 }
10602 
10603 static dtrace_ecb_t *
10604 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10605 {
10606 	dtrace_ecb_t *ecb;
10607 
10608 	ASSERT(MUTEX_HELD(&dtrace_lock));
10609 
10610 	if (id == 0 || id > state->dts_necbs)
10611 		return (NULL);
10612 
10613 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10614 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10615 
10616 	return (state->dts_ecbs[id - 1]);
10617 }
10618 
10619 static dtrace_aggregation_t *
10620 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10621 {
10622 	dtrace_aggregation_t *agg;
10623 
10624 	ASSERT(MUTEX_HELD(&dtrace_lock));
10625 
10626 	if (id == 0 || id > state->dts_naggregations)
10627 		return (NULL);
10628 
10629 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10630 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10631 	    agg->dtag_id == id);
10632 
10633 	return (state->dts_aggregations[id - 1]);
10634 }
10635 
10636 /*
10637  * DTrace Buffer Functions
10638  *
10639  * The following functions manipulate DTrace buffers.  Most of these functions
10640  * are called in the context of establishing or processing consumer state;
10641  * exceptions are explicitly noted.
10642  */
10643 
10644 /*
10645  * Note:  called from cross call context.  This function switches the two
10646  * buffers on a given CPU.  The atomicity of this operation is assured by
10647  * disabling interrupts while the actual switch takes place; the disabling of
10648  * interrupts serializes the execution with any execution of dtrace_probe() on
10649  * the same CPU.
10650  */
10651 static void
10652 dtrace_buffer_switch(dtrace_buffer_t *buf)
10653 {
10654 	caddr_t tomax = buf->dtb_tomax;
10655 	caddr_t xamot = buf->dtb_xamot;
10656 	dtrace_icookie_t cookie;
10657 
10658 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10659 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10660 
10661 	cookie = dtrace_interrupt_disable();
10662 	buf->dtb_tomax = xamot;
10663 	buf->dtb_xamot = tomax;
10664 	buf->dtb_xamot_drops = buf->dtb_drops;
10665 	buf->dtb_xamot_offset = buf->dtb_offset;
10666 	buf->dtb_xamot_errors = buf->dtb_errors;
10667 	buf->dtb_xamot_flags = buf->dtb_flags;
10668 	buf->dtb_offset = 0;
10669 	buf->dtb_drops = 0;
10670 	buf->dtb_errors = 0;
10671 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10672 	dtrace_interrupt_enable(cookie);
10673 }
10674 
10675 /*
10676  * Note:  called from cross call context.  This function activates a buffer
10677  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10678  * is guaranteed by the disabling of interrupts.
10679  */
10680 static void
10681 dtrace_buffer_activate(dtrace_state_t *state)
10682 {
10683 	dtrace_buffer_t *buf;
10684 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10685 
10686 	buf = &state->dts_buffer[curcpu_id];
10687 
10688 	if (buf->dtb_tomax != NULL) {
10689 		/*
10690 		 * We might like to assert that the buffer is marked inactive,
10691 		 * but this isn't necessarily true:  the buffer for the CPU
10692 		 * that processes the BEGIN probe has its buffer activated
10693 		 * manually.  In this case, we take the (harmless) action
10694 		 * re-clearing the bit INACTIVE bit.
10695 		 */
10696 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10697 	}
10698 
10699 	dtrace_interrupt_enable(cookie);
10700 }
10701 
10702 static int
10703 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10704     processorid_t cpu)
10705 {
10706 #if defined(sun)
10707 	cpu_t *cp;
10708 #else
10709 	CPU_INFO_ITERATOR cpuind;
10710 	struct cpu_info *cinfo;
10711 #endif
10712 	dtrace_buffer_t *buf;
10713 
10714 #if defined(sun)
10715 	ASSERT(MUTEX_HELD(&cpu_lock));
10716 	ASSERT(MUTEX_HELD(&dtrace_lock));
10717 
10718 	if (size > dtrace_nonroot_maxsize &&
10719 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10720 		return (EFBIG);
10721 
10722 	cp = cpu_list;
10723 
10724 	do {
10725 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10726 			continue;
10727 
10728 		buf = &bufs[cp->cpu_id];
10729 
10730 		/*
10731 		 * If there is already a buffer allocated for this CPU, it
10732 		 * is only possible that this is a DR event.  In this case,
10733 		 */
10734 		if (buf->dtb_tomax != NULL) {
10735 			ASSERT(buf->dtb_size == size);
10736 			continue;
10737 		}
10738 
10739 		ASSERT(buf->dtb_xamot == NULL);
10740 
10741 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10742 			goto err;
10743 
10744 		buf->dtb_size = size;
10745 		buf->dtb_flags = flags;
10746 		buf->dtb_offset = 0;
10747 		buf->dtb_drops = 0;
10748 
10749 		if (flags & DTRACEBUF_NOSWITCH)
10750 			continue;
10751 
10752 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10753 			goto err;
10754 	} while ((cp = cp->cpu_next) != cpu_list);
10755 
10756 	return (0);
10757 
10758 err:
10759 	cp = cpu_list;
10760 
10761 	do {
10762 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10763 			continue;
10764 
10765 		buf = &bufs[cp->cpu_id];
10766 
10767 		if (buf->dtb_xamot != NULL) {
10768 			ASSERT(buf->dtb_tomax != NULL);
10769 			ASSERT(buf->dtb_size == size);
10770 			kmem_free(buf->dtb_xamot, size);
10771 		}
10772 
10773 		if (buf->dtb_tomax != NULL) {
10774 			ASSERT(buf->dtb_size == size);
10775 			kmem_free(buf->dtb_tomax, size);
10776 		}
10777 
10778 		buf->dtb_tomax = NULL;
10779 		buf->dtb_xamot = NULL;
10780 		buf->dtb_size = 0;
10781 	} while ((cp = cp->cpu_next) != cpu_list);
10782 
10783 	return (ENOMEM);
10784 #else
10785 
10786 #if defined(__amd64__)
10787 	/*
10788 	 * FreeBSD isn't good at limiting the amount of memory we
10789 	 * ask to malloc, so let's place a limit here before trying
10790 	 * to do something that might well end in tears at bedtime.
10791 	 */
10792 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10793 		return(ENOMEM);
10794 #endif
10795 
10796 	ASSERT(MUTEX_HELD(&dtrace_lock));
10797 	for (CPU_INFO_FOREACH(cpuind, cinfo)) {
10798 		if (cpu != DTRACE_CPUALL && cpu != cpu_index(cinfo))
10799 			continue;
10800 
10801 		buf = &bufs[cpu_index(cinfo)];
10802 
10803 		/*
10804 		 * If there is already a buffer allocated for this CPU, it
10805 		 * is only possible that this is a DR event.  In this case,
10806 		 * the buffer size must match our specified size.
10807 		 */
10808 		if (buf->dtb_tomax != NULL) {
10809 			ASSERT(buf->dtb_size == size);
10810 			continue;
10811 		}
10812 
10813 		ASSERT(buf->dtb_xamot == NULL);
10814 
10815 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10816 			goto err;
10817 
10818 		buf->dtb_size = size;
10819 		buf->dtb_flags = flags;
10820 		buf->dtb_offset = 0;
10821 		buf->dtb_drops = 0;
10822 
10823 		if (flags & DTRACEBUF_NOSWITCH)
10824 			continue;
10825 
10826 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10827 			goto err;
10828 	}
10829 
10830 	return (0);
10831 
10832 err:
10833 	/*
10834 	 * Error allocating memory, so free the buffers that were
10835 	 * allocated before the failed allocation.
10836 	 */
10837 	for (CPU_INFO_FOREACH(cpuind, cinfo)) {
10838 		if (cpu != DTRACE_CPUALL && cpu != cpu_index(cinfo))
10839 			continue;
10840 
10841 		buf = &bufs[cpu_index(cinfo)];
10842 
10843 		if (buf->dtb_xamot != NULL) {
10844 			ASSERT(buf->dtb_tomax != NULL);
10845 			ASSERT(buf->dtb_size == size);
10846 			kmem_free(buf->dtb_xamot, size);
10847 		}
10848 
10849 		if (buf->dtb_tomax != NULL) {
10850 			ASSERT(buf->dtb_size == size);
10851 			kmem_free(buf->dtb_tomax, size);
10852 		}
10853 
10854 		buf->dtb_tomax = NULL;
10855 		buf->dtb_xamot = NULL;
10856 		buf->dtb_size = 0;
10857 
10858 	}
10859 
10860 	return (ENOMEM);
10861 #endif
10862 }
10863 
10864 /*
10865  * Note:  called from probe context.  This function just increments the drop
10866  * count on a buffer.  It has been made a function to allow for the
10867  * possibility of understanding the source of mysterious drop counts.  (A
10868  * problem for which one may be particularly disappointed that DTrace cannot
10869  * be used to understand DTrace.)
10870  */
10871 static void
10872 dtrace_buffer_drop(dtrace_buffer_t *buf)
10873 {
10874 	buf->dtb_drops++;
10875 }
10876 
10877 /*
10878  * Note:  called from probe context.  This function is called to reserve space
10879  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10880  * mstate.  Returns the new offset in the buffer, or a negative value if an
10881  * error has occurred.
10882  */
10883 static intptr_t
10884 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10885     dtrace_state_t *state, dtrace_mstate_t *mstate)
10886 {
10887 	intptr_t offs = buf->dtb_offset, soffs;
10888 	intptr_t woffs;
10889 	caddr_t tomax;
10890 	size_t total;
10891 
10892 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10893 		return (-1);
10894 
10895 	if ((tomax = buf->dtb_tomax) == NULL) {
10896 		dtrace_buffer_drop(buf);
10897 		return (-1);
10898 	}
10899 
10900 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10901 		while (offs & (align - 1)) {
10902 			/*
10903 			 * Assert that our alignment is off by a number which
10904 			 * is itself sizeof (uint32_t) aligned.
10905 			 */
10906 			ASSERT(!((align - (offs & (align - 1))) &
10907 			    (sizeof (uint32_t) - 1)));
10908 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10909 			offs += sizeof (uint32_t);
10910 		}
10911 
10912 		if ((soffs = offs + needed) > buf->dtb_size) {
10913 			dtrace_buffer_drop(buf);
10914 			return (-1);
10915 		}
10916 
10917 		if (mstate == NULL)
10918 			return (offs);
10919 
10920 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10921 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10922 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10923 
10924 		return (offs);
10925 	}
10926 
10927 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10928 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10929 		    (buf->dtb_flags & DTRACEBUF_FULL))
10930 			return (-1);
10931 		goto out;
10932 	}
10933 
10934 	total = needed + (offs & (align - 1));
10935 
10936 	/*
10937 	 * For a ring buffer, life is quite a bit more complicated.  Before
10938 	 * we can store any padding, we need to adjust our wrapping offset.
10939 	 * (If we've never before wrapped or we're not about to, no adjustment
10940 	 * is required.)
10941 	 */
10942 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10943 	    offs + total > buf->dtb_size) {
10944 		woffs = buf->dtb_xamot_offset;
10945 
10946 		if (offs + total > buf->dtb_size) {
10947 			/*
10948 			 * We can't fit in the end of the buffer.  First, a
10949 			 * sanity check that we can fit in the buffer at all.
10950 			 */
10951 			if (total > buf->dtb_size) {
10952 				dtrace_buffer_drop(buf);
10953 				return (-1);
10954 			}
10955 
10956 			/*
10957 			 * We're going to be storing at the top of the buffer,
10958 			 * so now we need to deal with the wrapped offset.  We
10959 			 * only reset our wrapped offset to 0 if it is
10960 			 * currently greater than the current offset.  If it
10961 			 * is less than the current offset, it is because a
10962 			 * previous allocation induced a wrap -- but the
10963 			 * allocation didn't subsequently take the space due
10964 			 * to an error or false predicate evaluation.  In this
10965 			 * case, we'll just leave the wrapped offset alone: if
10966 			 * the wrapped offset hasn't been advanced far enough
10967 			 * for this allocation, it will be adjusted in the
10968 			 * lower loop.
10969 			 */
10970 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10971 				if (woffs >= offs)
10972 					woffs = 0;
10973 			} else {
10974 				woffs = 0;
10975 			}
10976 
10977 			/*
10978 			 * Now we know that we're going to be storing to the
10979 			 * top of the buffer and that there is room for us
10980 			 * there.  We need to clear the buffer from the current
10981 			 * offset to the end (there may be old gunk there).
10982 			 */
10983 			while (offs < buf->dtb_size)
10984 				tomax[offs++] = 0;
10985 
10986 			/*
10987 			 * We need to set our offset to zero.  And because we
10988 			 * are wrapping, we need to set the bit indicating as
10989 			 * much.  We can also adjust our needed space back
10990 			 * down to the space required by the ECB -- we know
10991 			 * that the top of the buffer is aligned.
10992 			 */
10993 			offs = 0;
10994 			total = needed;
10995 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10996 		} else {
10997 			/*
10998 			 * There is room for us in the buffer, so we simply
10999 			 * need to check the wrapped offset.
11000 			 */
11001 			if (woffs < offs) {
11002 				/*
11003 				 * The wrapped offset is less than the offset.
11004 				 * This can happen if we allocated buffer space
11005 				 * that induced a wrap, but then we didn't
11006 				 * subsequently take the space due to an error
11007 				 * or false predicate evaluation.  This is
11008 				 * okay; we know that _this_ allocation isn't
11009 				 * going to induce a wrap.  We still can't
11010 				 * reset the wrapped offset to be zero,
11011 				 * however: the space may have been trashed in
11012 				 * the previous failed probe attempt.  But at
11013 				 * least the wrapped offset doesn't need to
11014 				 * be adjusted at all...
11015 				 */
11016 				goto out;
11017 			}
11018 		}
11019 
11020 		while (offs + total > woffs) {
11021 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11022 			size_t size;
11023 
11024 			if (epid == DTRACE_EPIDNONE) {
11025 				size = sizeof (uint32_t);
11026 			} else {
11027 				ASSERT(epid <= state->dts_necbs);
11028 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11029 
11030 				size = state->dts_ecbs[epid - 1]->dte_size;
11031 			}
11032 
11033 			ASSERT(woffs + size <= buf->dtb_size);
11034 			ASSERT(size != 0);
11035 
11036 			if (woffs + size == buf->dtb_size) {
11037 				/*
11038 				 * We've reached the end of the buffer; we want
11039 				 * to set the wrapped offset to 0 and break
11040 				 * out.  However, if the offs is 0, then we're
11041 				 * in a strange edge-condition:  the amount of
11042 				 * space that we want to reserve plus the size
11043 				 * of the record that we're overwriting is
11044 				 * greater than the size of the buffer.  This
11045 				 * is problematic because if we reserve the
11046 				 * space but subsequently don't consume it (due
11047 				 * to a failed predicate or error) the wrapped
11048 				 * offset will be 0 -- yet the EPID at offset 0
11049 				 * will not be committed.  This situation is
11050 				 * relatively easy to deal with:  if we're in
11051 				 * this case, the buffer is indistinguishable
11052 				 * from one that hasn't wrapped; we need only
11053 				 * finish the job by clearing the wrapped bit,
11054 				 * explicitly setting the offset to be 0, and
11055 				 * zero'ing out the old data in the buffer.
11056 				 */
11057 				if (offs == 0) {
11058 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11059 					buf->dtb_offset = 0;
11060 					woffs = total;
11061 
11062 					while (woffs < buf->dtb_size)
11063 						tomax[woffs++] = 0;
11064 				}
11065 
11066 				woffs = 0;
11067 				break;
11068 			}
11069 
11070 			woffs += size;
11071 		}
11072 
11073 		/*
11074 		 * We have a wrapped offset.  It may be that the wrapped offset
11075 		 * has become zero -- that's okay.
11076 		 */
11077 		buf->dtb_xamot_offset = woffs;
11078 	}
11079 
11080 out:
11081 	/*
11082 	 * Now we can plow the buffer with any necessary padding.
11083 	 */
11084 	while (offs & (align - 1)) {
11085 		/*
11086 		 * Assert that our alignment is off by a number which
11087 		 * is itself sizeof (uint32_t) aligned.
11088 		 */
11089 		ASSERT(!((align - (offs & (align - 1))) &
11090 		    (sizeof (uint32_t) - 1)));
11091 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11092 		offs += sizeof (uint32_t);
11093 	}
11094 
11095 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11096 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11097 			buf->dtb_flags |= DTRACEBUF_FULL;
11098 			return (-1);
11099 		}
11100 	}
11101 
11102 	if (mstate == NULL)
11103 		return (offs);
11104 
11105 	/*
11106 	 * For ring buffers and fill buffers, the scratch space is always
11107 	 * the inactive buffer.
11108 	 */
11109 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11110 	mstate->dtms_scratch_size = buf->dtb_size;
11111 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11112 
11113 	return (offs);
11114 }
11115 
11116 static void
11117 dtrace_buffer_polish(dtrace_buffer_t *buf)
11118 {
11119 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11120 	ASSERT(MUTEX_HELD(&dtrace_lock));
11121 
11122 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11123 		return;
11124 
11125 	/*
11126 	 * We need to polish the ring buffer.  There are three cases:
11127 	 *
11128 	 * - The first (and presumably most common) is that there is no gap
11129 	 *   between the buffer offset and the wrapped offset.  In this case,
11130 	 *   there is nothing in the buffer that isn't valid data; we can
11131 	 *   mark the buffer as polished and return.
11132 	 *
11133 	 * - The second (less common than the first but still more common
11134 	 *   than the third) is that there is a gap between the buffer offset
11135 	 *   and the wrapped offset, and the wrapped offset is larger than the
11136 	 *   buffer offset.  This can happen because of an alignment issue, or
11137 	 *   can happen because of a call to dtrace_buffer_reserve() that
11138 	 *   didn't subsequently consume the buffer space.  In this case,
11139 	 *   we need to zero the data from the buffer offset to the wrapped
11140 	 *   offset.
11141 	 *
11142 	 * - The third (and least common) is that there is a gap between the
11143 	 *   buffer offset and the wrapped offset, but the wrapped offset is
11144 	 *   _less_ than the buffer offset.  This can only happen because a
11145 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11146 	 *   was not subsequently consumed.  In this case, we need to zero the
11147 	 *   space from the offset to the end of the buffer _and_ from the
11148 	 *   top of the buffer to the wrapped offset.
11149 	 */
11150 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11151 		bzero(buf->dtb_tomax + buf->dtb_offset,
11152 		    buf->dtb_xamot_offset - buf->dtb_offset);
11153 	}
11154 
11155 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11156 		bzero(buf->dtb_tomax + buf->dtb_offset,
11157 		    buf->dtb_size - buf->dtb_offset);
11158 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11159 	}
11160 }
11161 
11162 static void
11163 dtrace_buffer_free(dtrace_buffer_t *bufs)
11164 {
11165 	int i;
11166 
11167 	for (i = 0; i < NCPU; i++) {
11168 		dtrace_buffer_t *buf = &bufs[i];
11169 
11170 		if (buf->dtb_tomax == NULL) {
11171 			ASSERT(buf->dtb_xamot == NULL);
11172 			ASSERT(buf->dtb_size == 0);
11173 			continue;
11174 		}
11175 
11176 		if (buf->dtb_xamot != NULL) {
11177 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11178 			kmem_free(buf->dtb_xamot, buf->dtb_size);
11179 		}
11180 
11181 		kmem_free(buf->dtb_tomax, buf->dtb_size);
11182 		buf->dtb_size = 0;
11183 		buf->dtb_tomax = NULL;
11184 		buf->dtb_xamot = NULL;
11185 	}
11186 }
11187 
11188 /*
11189  * DTrace Enabling Functions
11190  */
11191 static dtrace_enabling_t *
11192 dtrace_enabling_create(dtrace_vstate_t *vstate)
11193 {
11194 	dtrace_enabling_t *enab;
11195 
11196 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11197 	enab->dten_vstate = vstate;
11198 
11199 	return (enab);
11200 }
11201 
11202 static void
11203 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11204 {
11205 	dtrace_ecbdesc_t **ndesc;
11206 	size_t osize, nsize;
11207 
11208 	/*
11209 	 * We can't add to enablings after we've enabled them, or after we've
11210 	 * retained them.
11211 	 */
11212 	ASSERT(enab->dten_probegen == 0);
11213 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11214 
11215 	if (enab->dten_ndesc < enab->dten_maxdesc) {
11216 		enab->dten_desc[enab->dten_ndesc++] = ecb;
11217 		return;
11218 	}
11219 
11220 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11221 
11222 	if (enab->dten_maxdesc == 0) {
11223 		enab->dten_maxdesc = 1;
11224 	} else {
11225 		enab->dten_maxdesc <<= 1;
11226 	}
11227 
11228 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11229 
11230 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11231 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11232 	bcopy(enab->dten_desc, ndesc, osize);
11233 	if (enab->dten_desc != NULL)
11234 		kmem_free(enab->dten_desc, osize);
11235 
11236 	enab->dten_desc = ndesc;
11237 	enab->dten_desc[enab->dten_ndesc++] = ecb;
11238 }
11239 
11240 static void
11241 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11242     dtrace_probedesc_t *pd)
11243 {
11244 	dtrace_ecbdesc_t *new;
11245 	dtrace_predicate_t *pred;
11246 	dtrace_actdesc_t *act;
11247 
11248 	/*
11249 	 * We're going to create a new ECB description that matches the
11250 	 * specified ECB in every way, but has the specified probe description.
11251 	 */
11252 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11253 
11254 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11255 		dtrace_predicate_hold(pred);
11256 
11257 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11258 		dtrace_actdesc_hold(act);
11259 
11260 	new->dted_action = ecb->dted_action;
11261 	new->dted_pred = ecb->dted_pred;
11262 	new->dted_probe = *pd;
11263 	new->dted_uarg = ecb->dted_uarg;
11264 
11265 	dtrace_enabling_add(enab, new);
11266 }
11267 
11268 static void
11269 dtrace_enabling_dump(dtrace_enabling_t *enab)
11270 {
11271 	int i;
11272 
11273 	for (i = 0; i < enab->dten_ndesc; i++) {
11274 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11275 
11276 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11277 		    desc->dtpd_provider, desc->dtpd_mod,
11278 		    desc->dtpd_func, desc->dtpd_name);
11279 	}
11280 }
11281 
11282 static void
11283 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11284 {
11285 	int i;
11286 	dtrace_ecbdesc_t *ep;
11287 	dtrace_vstate_t *vstate = enab->dten_vstate;
11288 
11289 	ASSERT(MUTEX_HELD(&dtrace_lock));
11290 
11291 	for (i = 0; i < enab->dten_ndesc; i++) {
11292 		dtrace_actdesc_t *act, *next;
11293 		dtrace_predicate_t *pred;
11294 
11295 		ep = enab->dten_desc[i];
11296 
11297 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11298 			dtrace_predicate_release(pred, vstate);
11299 
11300 		for (act = ep->dted_action; act != NULL; act = next) {
11301 			next = act->dtad_next;
11302 			dtrace_actdesc_release(act, vstate);
11303 		}
11304 
11305 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11306 	}
11307 
11308 	if (enab->dten_desc != NULL)
11309 		kmem_free(enab->dten_desc,
11310 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11311 
11312 	/*
11313 	 * If this was a retained enabling, decrement the dts_nretained count
11314 	 * and take it off of the dtrace_retained list.
11315 	 */
11316 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11317 	    dtrace_retained == enab) {
11318 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11319 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11320 		enab->dten_vstate->dtvs_state->dts_nretained--;
11321 	}
11322 
11323 	if (enab->dten_prev == NULL) {
11324 		if (dtrace_retained == enab) {
11325 			dtrace_retained = enab->dten_next;
11326 
11327 			if (dtrace_retained != NULL)
11328 				dtrace_retained->dten_prev = NULL;
11329 		}
11330 	} else {
11331 		ASSERT(enab != dtrace_retained);
11332 		ASSERT(dtrace_retained != NULL);
11333 		enab->dten_prev->dten_next = enab->dten_next;
11334 	}
11335 
11336 	if (enab->dten_next != NULL) {
11337 		ASSERT(dtrace_retained != NULL);
11338 		enab->dten_next->dten_prev = enab->dten_prev;
11339 	}
11340 
11341 	kmem_free(enab, sizeof (dtrace_enabling_t));
11342 }
11343 
11344 static int
11345 dtrace_enabling_retain(dtrace_enabling_t *enab)
11346 {
11347 	dtrace_state_t *state;
11348 
11349 	ASSERT(MUTEX_HELD(&dtrace_lock));
11350 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11351 	ASSERT(enab->dten_vstate != NULL);
11352 
11353 	state = enab->dten_vstate->dtvs_state;
11354 	ASSERT(state != NULL);
11355 
11356 	/*
11357 	 * We only allow each state to retain dtrace_retain_max enablings.
11358 	 */
11359 	if (state->dts_nretained >= dtrace_retain_max)
11360 		return (ENOSPC);
11361 
11362 	state->dts_nretained++;
11363 
11364 	if (dtrace_retained == NULL) {
11365 		dtrace_retained = enab;
11366 		return (0);
11367 	}
11368 
11369 	enab->dten_next = dtrace_retained;
11370 	dtrace_retained->dten_prev = enab;
11371 	dtrace_retained = enab;
11372 
11373 	return (0);
11374 }
11375 
11376 static int
11377 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11378     dtrace_probedesc_t *create)
11379 {
11380 	dtrace_enabling_t *new, *enab;
11381 	int found = 0, err = ENOENT;
11382 
11383 	ASSERT(MUTEX_HELD(&dtrace_lock));
11384 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11385 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11386 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11387 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11388 
11389 	new = dtrace_enabling_create(&state->dts_vstate);
11390 
11391 	/*
11392 	 * Iterate over all retained enablings, looking for enablings that
11393 	 * match the specified state.
11394 	 */
11395 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11396 		int i;
11397 
11398 		/*
11399 		 * dtvs_state can only be NULL for helper enablings -- and
11400 		 * helper enablings can't be retained.
11401 		 */
11402 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11403 
11404 		if (enab->dten_vstate->dtvs_state != state)
11405 			continue;
11406 
11407 		/*
11408 		 * Now iterate over each probe description; we're looking for
11409 		 * an exact match to the specified probe description.
11410 		 */
11411 		for (i = 0; i < enab->dten_ndesc; i++) {
11412 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11413 			dtrace_probedesc_t *pd = &ep->dted_probe;
11414 
11415 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11416 				continue;
11417 
11418 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11419 				continue;
11420 
11421 			if (strcmp(pd->dtpd_func, match->dtpd_func))
11422 				continue;
11423 
11424 			if (strcmp(pd->dtpd_name, match->dtpd_name))
11425 				continue;
11426 
11427 			/*
11428 			 * We have a winning probe!  Add it to our growing
11429 			 * enabling.
11430 			 */
11431 			found = 1;
11432 			dtrace_enabling_addlike(new, ep, create);
11433 		}
11434 	}
11435 
11436 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11437 		dtrace_enabling_destroy(new);
11438 		return (err);
11439 	}
11440 
11441 	return (0);
11442 }
11443 
11444 static void
11445 dtrace_enabling_retract(dtrace_state_t *state)
11446 {
11447 	dtrace_enabling_t *enab, *next;
11448 
11449 	ASSERT(MUTEX_HELD(&dtrace_lock));
11450 
11451 	/*
11452 	 * Iterate over all retained enablings, destroy the enablings retained
11453 	 * for the specified state.
11454 	 */
11455 	for (enab = dtrace_retained; enab != NULL; enab = next) {
11456 		next = enab->dten_next;
11457 
11458 		/*
11459 		 * dtvs_state can only be NULL for helper enablings -- and
11460 		 * helper enablings can't be retained.
11461 		 */
11462 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11463 
11464 		if (enab->dten_vstate->dtvs_state == state) {
11465 			ASSERT(state->dts_nretained > 0);
11466 			dtrace_enabling_destroy(enab);
11467 		}
11468 	}
11469 
11470 	ASSERT(state->dts_nretained == 0);
11471 }
11472 
11473 static int
11474 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11475 {
11476 	int i = 0;
11477 	int total_matched = 0, matched = 0;
11478 
11479 	ASSERT(MUTEX_HELD(&cpu_lock));
11480 	ASSERT(MUTEX_HELD(&dtrace_lock));
11481 
11482 	for (i = 0; i < enab->dten_ndesc; i++) {
11483 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11484 
11485 		enab->dten_current = ep;
11486 		enab->dten_error = 0;
11487 
11488 		/*
11489 		 * If a provider failed to enable a probe then get out and
11490 		 * let the consumer know we failed.
11491 		 */
11492 		if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11493 			return (EBUSY);
11494 
11495 		total_matched += matched;
11496 
11497 		if (enab->dten_error != 0) {
11498 			/*
11499 			 * If we get an error half-way through enabling the
11500 			 * probes, we kick out -- perhaps with some number of
11501 			 * them enabled.  Leaving enabled probes enabled may
11502 			 * be slightly confusing for user-level, but we expect
11503 			 * that no one will attempt to actually drive on in
11504 			 * the face of such errors.  If this is an anonymous
11505 			 * enabling (indicated with a NULL nmatched pointer),
11506 			 * we cmn_err() a message.  We aren't expecting to
11507 			 * get such an error -- such as it can exist at all,
11508 			 * it would be a result of corrupted DOF in the driver
11509 			 * properties.
11510 			 */
11511 			if (nmatched == NULL) {
11512 				cmn_err(CE_WARN, "dtrace_enabling_match() "
11513 				    "error on %p: %d", (void *)ep,
11514 				    enab->dten_error);
11515 			}
11516 
11517 			return (enab->dten_error);
11518 		}
11519 	}
11520 
11521 	enab->dten_probegen = dtrace_probegen;
11522 	if (nmatched != NULL)
11523 		*nmatched = total_matched;
11524 
11525 	return (0);
11526 }
11527 
11528 static void
11529 dtrace_enabling_matchall(void)
11530 {
11531 	dtrace_enabling_t *enab;
11532 
11533 	mutex_enter(&cpu_lock);
11534 	mutex_enter(&dtrace_lock);
11535 
11536 	/*
11537 	 * Iterate over all retained enablings to see if any probes match
11538 	 * against them.  We only perform this operation on enablings for which
11539 	 * we have sufficient permissions by virtue of being in the global zone
11540 	 * or in the same zone as the DTrace client.  Because we can be called
11541 	 * after dtrace_detach() has been called, we cannot assert that there
11542 	 * are retained enablings.  We can safely load from dtrace_retained,
11543 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11544 	 * block pending our completion.
11545 	 */
11546 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11547 #if defined(sun)
11548 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11549 
11550 		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11551 #endif
11552 			(void) dtrace_enabling_match(enab, NULL);
11553 	}
11554 
11555 	mutex_exit(&dtrace_lock);
11556 	mutex_exit(&cpu_lock);
11557 }
11558 
11559 /*
11560  * If an enabling is to be enabled without having matched probes (that is, if
11561  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11562  * enabling must be _primed_ by creating an ECB for every ECB description.
11563  * This must be done to assure that we know the number of speculations, the
11564  * number of aggregations, the minimum buffer size needed, etc. before we
11565  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11566  * enabling any probes, we create ECBs for every ECB decription, but with a
11567  * NULL probe -- which is exactly what this function does.
11568  */
11569 static void
11570 dtrace_enabling_prime(dtrace_state_t *state)
11571 {
11572 	dtrace_enabling_t *enab;
11573 	int i;
11574 
11575 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11576 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11577 
11578 		if (enab->dten_vstate->dtvs_state != state)
11579 			continue;
11580 
11581 		/*
11582 		 * We don't want to prime an enabling more than once, lest
11583 		 * we allow a malicious user to induce resource exhaustion.
11584 		 * (The ECBs that result from priming an enabling aren't
11585 		 * leaked -- but they also aren't deallocated until the
11586 		 * consumer state is destroyed.)
11587 		 */
11588 		if (enab->dten_primed)
11589 			continue;
11590 
11591 		for (i = 0; i < enab->dten_ndesc; i++) {
11592 			enab->dten_current = enab->dten_desc[i];
11593 			(void) dtrace_probe_enable(NULL, enab);
11594 		}
11595 
11596 		enab->dten_primed = 1;
11597 	}
11598 }
11599 
11600 /*
11601  * Called to indicate that probes should be provided due to retained
11602  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11603  * must take an initial lap through the enabling calling the dtps_provide()
11604  * entry point explicitly to allow for autocreated probes.
11605  */
11606 static void
11607 dtrace_enabling_provide(dtrace_provider_t *prv)
11608 {
11609 	int i, all = 0;
11610 	dtrace_probedesc_t desc;
11611 
11612 	ASSERT(MUTEX_HELD(&dtrace_lock));
11613 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11614 
11615 	if (prv == NULL) {
11616 		all = 1;
11617 		prv = dtrace_provider;
11618 	}
11619 
11620 	do {
11621 		dtrace_enabling_t *enab = dtrace_retained;
11622 		void *parg = prv->dtpv_arg;
11623 
11624 		for (; enab != NULL; enab = enab->dten_next) {
11625 			for (i = 0; i < enab->dten_ndesc; i++) {
11626 				desc = enab->dten_desc[i]->dted_probe;
11627 				mutex_exit(&dtrace_lock);
11628 				prv->dtpv_pops.dtps_provide(parg, &desc);
11629 				mutex_enter(&dtrace_lock);
11630 			}
11631 		}
11632 	} while (all && (prv = prv->dtpv_next) != NULL);
11633 
11634 	mutex_exit(&dtrace_lock);
11635 	dtrace_probe_provide(NULL, all ? NULL : prv);
11636 	mutex_enter(&dtrace_lock);
11637 }
11638 
11639 /*
11640  * DTrace DOF Functions
11641  */
11642 /*ARGSUSED*/
11643 static void
11644 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11645 {
11646 	if (dtrace_err_verbose)
11647 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11648 
11649 #ifdef DTRACE_ERRDEBUG
11650 	dtrace_errdebug(str);
11651 #endif
11652 }
11653 
11654 /*
11655  * Create DOF out of a currently enabled state.  Right now, we only create
11656  * DOF containing the run-time options -- but this could be expanded to create
11657  * complete DOF representing the enabled state.
11658  */
11659 static dof_hdr_t *
11660 dtrace_dof_create(dtrace_state_t *state)
11661 {
11662 	dof_hdr_t *dof;
11663 	dof_sec_t *sec;
11664 	dof_optdesc_t *opt;
11665 	int i, len = sizeof (dof_hdr_t) +
11666 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11667 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11668 
11669 	ASSERT(MUTEX_HELD(&dtrace_lock));
11670 
11671 	dof = kmem_zalloc(len, KM_SLEEP);
11672 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11673 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11674 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11675 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11676 
11677 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11678 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11679 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11680 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11681 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11682 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11683 
11684 	dof->dofh_flags = 0;
11685 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11686 	dof->dofh_secsize = sizeof (dof_sec_t);
11687 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11688 	dof->dofh_secoff = sizeof (dof_hdr_t);
11689 	dof->dofh_loadsz = len;
11690 	dof->dofh_filesz = len;
11691 	dof->dofh_pad = 0;
11692 
11693 	/*
11694 	 * Fill in the option section header...
11695 	 */
11696 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11697 	sec->dofs_type = DOF_SECT_OPTDESC;
11698 	sec->dofs_align = sizeof (uint64_t);
11699 	sec->dofs_flags = DOF_SECF_LOAD;
11700 	sec->dofs_entsize = sizeof (dof_optdesc_t);
11701 
11702 	opt = (dof_optdesc_t *)((uintptr_t)sec +
11703 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11704 
11705 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11706 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11707 
11708 	for (i = 0; i < DTRACEOPT_MAX; i++) {
11709 		opt[i].dofo_option = i;
11710 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11711 		opt[i].dofo_value = state->dts_options[i];
11712 	}
11713 
11714 	return (dof);
11715 }
11716 
11717 static dof_hdr_t *
11718 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11719 {
11720 	dof_hdr_t hdr, *dof;
11721 
11722 	ASSERT(!MUTEX_HELD(&dtrace_lock));
11723 
11724 	/*
11725 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11726 	 */
11727 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11728 		dtrace_dof_error(NULL, "failed to copyin DOF header");
11729 		*errp = EFAULT;
11730 		return (NULL);
11731 	}
11732 
11733 	/*
11734 	 * Now we'll allocate the entire DOF and copy it in -- provided
11735 	 * that the length isn't outrageous.
11736 	 */
11737 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11738 		dtrace_dof_error(&hdr, "load size exceeds maximum");
11739 		*errp = E2BIG;
11740 		return (NULL);
11741 	}
11742 
11743 	if (hdr.dofh_loadsz < sizeof (hdr)) {
11744 		dtrace_dof_error(&hdr, "invalid load size");
11745 		*errp = EINVAL;
11746 		return (NULL);
11747 	}
11748 
11749 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11750 
11751 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
11752 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
11753 		kmem_free(dof, hdr.dofh_loadsz);
11754 		*errp = EFAULT;
11755 		return (NULL);
11756 	}
11757 
11758 	return (dof);
11759 }
11760 
11761 #if !defined(sun)
11762 static __inline uchar_t
11763 dtrace_dof_char(char c) {
11764 	switch (c) {
11765 	case '0':
11766 	case '1':
11767 	case '2':
11768 	case '3':
11769 	case '4':
11770 	case '5':
11771 	case '6':
11772 	case '7':
11773 	case '8':
11774 	case '9':
11775 		return (c - '0');
11776 	case 'A':
11777 	case 'B':
11778 	case 'C':
11779 	case 'D':
11780 	case 'E':
11781 	case 'F':
11782 		return (c - 'A' + 10);
11783 	case 'a':
11784 	case 'b':
11785 	case 'c':
11786 	case 'd':
11787 	case 'e':
11788 	case 'f':
11789 		return (c - 'a' + 10);
11790 	}
11791 	/* Should not reach here. */
11792 	return (0);
11793 }
11794 #endif
11795 
11796 static dof_hdr_t *
11797 dtrace_dof_property(const char *name)
11798 {
11799 	dof_hdr_t *dof = NULL;
11800 #if defined(sun)
11801 	uchar_t *buf;
11802 	uint64_t loadsz;
11803 	unsigned int len, i;
11804 
11805 	/*
11806 	 * Unfortunately, array of values in .conf files are always (and
11807 	 * only) interpreted to be integer arrays.  We must read our DOF
11808 	 * as an integer array, and then squeeze it into a byte array.
11809 	 */
11810 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11811 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11812 		return (NULL);
11813 
11814 	for (i = 0; i < len; i++)
11815 		buf[i] = (uchar_t)(((int *)buf)[i]);
11816 
11817 	if (len < sizeof (dof_hdr_t)) {
11818 		ddi_prop_free(buf);
11819 		dtrace_dof_error(NULL, "truncated header");
11820 		return (NULL);
11821 	}
11822 
11823 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11824 		ddi_prop_free(buf);
11825 		dtrace_dof_error(NULL, "truncated DOF");
11826 		return (NULL);
11827 	}
11828 
11829 	if (loadsz >= dtrace_dof_maxsize) {
11830 		ddi_prop_free(buf);
11831 		dtrace_dof_error(NULL, "oversized DOF");
11832 		return (NULL);
11833 	}
11834 
11835 	dof = kmem_alloc(loadsz, KM_SLEEP);
11836 	bcopy(buf, dof, loadsz);
11837 	ddi_prop_free(buf);
11838 #else
11839 	printf("dtrace: XXX %s not implemented (name=%s)\n", __func__, name);
11840 #if 0	/* XXX TBD dtrace_dof_provide */
11841 	char *p;
11842 	char *p_env;
11843 
11844 	if ((p_env = getenv(name)) == NULL)
11845 		return (NULL);
11846 
11847 	len = strlen(p_env) / 2;
11848 
11849 	buf = kmem_alloc(len, KM_SLEEP);
11850 
11851 	dof = (dof_hdr_t *) buf;
11852 
11853 	p = p_env;
11854 
11855 	for (i = 0; i < len; i++) {
11856 		buf[i] = (dtrace_dof_char(p[0]) << 4) |
11857 		     dtrace_dof_char(p[1]);
11858 		p += 2;
11859 	}
11860 
11861 	freeenv(p_env);
11862 
11863 	if (len < sizeof (dof_hdr_t)) {
11864 		kmem_free(buf, len);
11865 		dtrace_dof_error(NULL, "truncated header");
11866 		return (NULL);
11867 	}
11868 
11869 	if (len < (loadsz = dof->dofh_loadsz)) {
11870 		kmem_free(buf, len);
11871 		dtrace_dof_error(NULL, "truncated DOF");
11872 		return (NULL);
11873 	}
11874 
11875 	if (loadsz >= dtrace_dof_maxsize) {
11876 		kmem_free(buf, len);
11877 		dtrace_dof_error(NULL, "oversized DOF");
11878 		return (NULL);
11879 	}
11880 #endif
11881 #endif
11882 
11883 	return (dof);
11884 }
11885 
11886 static void
11887 dtrace_dof_destroy(dof_hdr_t *dof)
11888 {
11889 	kmem_free(dof, dof->dofh_loadsz);
11890 }
11891 
11892 /*
11893  * Return the dof_sec_t pointer corresponding to a given section index.  If the
11894  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11895  * a type other than DOF_SECT_NONE is specified, the header is checked against
11896  * this type and NULL is returned if the types do not match.
11897  */
11898 static dof_sec_t *
11899 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11900 {
11901 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11902 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11903 
11904 	if (i >= dof->dofh_secnum) {
11905 		dtrace_dof_error(dof, "referenced section index is invalid");
11906 		return (NULL);
11907 	}
11908 
11909 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11910 		dtrace_dof_error(dof, "referenced section is not loadable");
11911 		return (NULL);
11912 	}
11913 
11914 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11915 		dtrace_dof_error(dof, "referenced section is the wrong type");
11916 		return (NULL);
11917 	}
11918 
11919 	return (sec);
11920 }
11921 
11922 static dtrace_probedesc_t *
11923 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11924 {
11925 	dof_probedesc_t *probe;
11926 	dof_sec_t *strtab;
11927 	uintptr_t daddr = (uintptr_t)dof;
11928 	uintptr_t str;
11929 	size_t size;
11930 
11931 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11932 		dtrace_dof_error(dof, "invalid probe section");
11933 		return (NULL);
11934 	}
11935 
11936 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11937 		dtrace_dof_error(dof, "bad alignment in probe description");
11938 		return (NULL);
11939 	}
11940 
11941 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11942 		dtrace_dof_error(dof, "truncated probe description");
11943 		return (NULL);
11944 	}
11945 
11946 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11947 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11948 
11949 	if (strtab == NULL)
11950 		return (NULL);
11951 
11952 	str = daddr + strtab->dofs_offset;
11953 	size = strtab->dofs_size;
11954 
11955 	if (probe->dofp_provider >= strtab->dofs_size) {
11956 		dtrace_dof_error(dof, "corrupt probe provider");
11957 		return (NULL);
11958 	}
11959 
11960 	(void) strncpy(desc->dtpd_provider,
11961 	    (char *)(str + probe->dofp_provider),
11962 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11963 
11964 	if (probe->dofp_mod >= strtab->dofs_size) {
11965 		dtrace_dof_error(dof, "corrupt probe module");
11966 		return (NULL);
11967 	}
11968 
11969 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11970 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11971 
11972 	if (probe->dofp_func >= strtab->dofs_size) {
11973 		dtrace_dof_error(dof, "corrupt probe function");
11974 		return (NULL);
11975 	}
11976 
11977 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11978 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11979 
11980 	if (probe->dofp_name >= strtab->dofs_size) {
11981 		dtrace_dof_error(dof, "corrupt probe name");
11982 		return (NULL);
11983 	}
11984 
11985 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11986 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11987 
11988 	return (desc);
11989 }
11990 
11991 static dtrace_difo_t *
11992 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11993     cred_t *cr)
11994 {
11995 	dtrace_difo_t *dp;
11996 	size_t ttl = 0;
11997 	dof_difohdr_t *dofd;
11998 	uintptr_t daddr = (uintptr_t)dof;
11999 	size_t maxx = dtrace_difo_maxsize;
12000 	int i, l, n;
12001 
12002 	static const struct {
12003 		int section;
12004 		int bufoffs;
12005 		int lenoffs;
12006 		int entsize;
12007 		int align;
12008 		const char *msg;
12009 	} difo[] = {
12010 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12011 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12012 		sizeof (dif_instr_t), "multiple DIF sections" },
12013 
12014 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12015 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12016 		sizeof (uint64_t), "multiple integer tables" },
12017 
12018 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12019 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12020 		sizeof (char), "multiple string tables" },
12021 
12022 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12023 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12024 		sizeof (uint_t), "multiple variable tables" },
12025 
12026 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12027 	};
12028 
12029 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12030 		dtrace_dof_error(dof, "invalid DIFO header section");
12031 		return (NULL);
12032 	}
12033 
12034 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12035 		dtrace_dof_error(dof, "bad alignment in DIFO header");
12036 		return (NULL);
12037 	}
12038 
12039 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12040 	    sec->dofs_size % sizeof (dof_secidx_t)) {
12041 		dtrace_dof_error(dof, "bad size in DIFO header");
12042 		return (NULL);
12043 	}
12044 
12045 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12046 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12047 
12048 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12049 	dp->dtdo_rtype = dofd->dofd_rtype;
12050 
12051 	for (l = 0; l < n; l++) {
12052 		dof_sec_t *subsec;
12053 		void **bufp;
12054 		uint32_t *lenp;
12055 
12056 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12057 		    dofd->dofd_links[l])) == NULL)
12058 			goto err; /* invalid section link */
12059 
12060 		if (ttl + subsec->dofs_size > maxx) {
12061 			dtrace_dof_error(dof, "exceeds maximum size");
12062 			goto err;
12063 		}
12064 
12065 		ttl += subsec->dofs_size;
12066 
12067 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12068 			if (subsec->dofs_type != difo[i].section)
12069 				continue;
12070 
12071 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12072 				dtrace_dof_error(dof, "section not loaded");
12073 				goto err;
12074 			}
12075 
12076 			if (subsec->dofs_align != difo[i].align) {
12077 				dtrace_dof_error(dof, "bad alignment");
12078 				goto err;
12079 			}
12080 
12081 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12082 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12083 
12084 			if (*bufp != NULL) {
12085 				dtrace_dof_error(dof, difo[i].msg);
12086 				goto err;
12087 			}
12088 
12089 			if (difo[i].entsize != subsec->dofs_entsize) {
12090 				dtrace_dof_error(dof, "entry size mismatch");
12091 				goto err;
12092 			}
12093 
12094 			if (subsec->dofs_entsize != 0 &&
12095 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12096 				dtrace_dof_error(dof, "corrupt entry size");
12097 				goto err;
12098 			}
12099 
12100 			*lenp = subsec->dofs_size;
12101 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12102 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12103 			    *bufp, subsec->dofs_size);
12104 
12105 			if (subsec->dofs_entsize != 0)
12106 				*lenp /= subsec->dofs_entsize;
12107 
12108 			break;
12109 		}
12110 
12111 		/*
12112 		 * If we encounter a loadable DIFO sub-section that is not
12113 		 * known to us, assume this is a broken program and fail.
12114 		 */
12115 		if (difo[i].section == DOF_SECT_NONE &&
12116 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12117 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12118 			goto err;
12119 		}
12120 	}
12121 
12122 	if (dp->dtdo_buf == NULL) {
12123 		/*
12124 		 * We can't have a DIF object without DIF text.
12125 		 */
12126 		dtrace_dof_error(dof, "missing DIF text");
12127 		goto err;
12128 	}
12129 
12130 	/*
12131 	 * Before we validate the DIF object, run through the variable table
12132 	 * looking for the strings -- if any of their size are under, we'll set
12133 	 * their size to be the system-wide default string size.  Note that
12134 	 * this should _not_ happen if the "strsize" option has been set --
12135 	 * in this case, the compiler should have set the size to reflect the
12136 	 * setting of the option.
12137 	 */
12138 	for (i = 0; i < dp->dtdo_varlen; i++) {
12139 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12140 		dtrace_diftype_t *t = &v->dtdv_type;
12141 
12142 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12143 			continue;
12144 
12145 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12146 			t->dtdt_size = dtrace_strsize_default;
12147 	}
12148 
12149 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12150 		goto err;
12151 
12152 	dtrace_difo_init(dp, vstate);
12153 	return (dp);
12154 
12155 err:
12156 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12157 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12158 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12159 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12160 
12161 	kmem_free(dp, sizeof (dtrace_difo_t));
12162 	return (NULL);
12163 }
12164 
12165 static dtrace_predicate_t *
12166 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12167     cred_t *cr)
12168 {
12169 	dtrace_difo_t *dp;
12170 
12171 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12172 		return (NULL);
12173 
12174 	return (dtrace_predicate_create(dp));
12175 }
12176 
12177 static dtrace_actdesc_t *
12178 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12179     cred_t *cr)
12180 {
12181 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12182 	dof_actdesc_t *desc;
12183 	dof_sec_t *difosec;
12184 	size_t offs;
12185 	uintptr_t daddr = (uintptr_t)dof;
12186 	uint64_t arg;
12187 	dtrace_actkind_t kind;
12188 
12189 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12190 		dtrace_dof_error(dof, "invalid action section");
12191 		return (NULL);
12192 	}
12193 
12194 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12195 		dtrace_dof_error(dof, "truncated action description");
12196 		return (NULL);
12197 	}
12198 
12199 	if (sec->dofs_align != sizeof (uint64_t)) {
12200 		dtrace_dof_error(dof, "bad alignment in action description");
12201 		return (NULL);
12202 	}
12203 
12204 	if (sec->dofs_size < sec->dofs_entsize) {
12205 		dtrace_dof_error(dof, "section entry size exceeds total size");
12206 		return (NULL);
12207 	}
12208 
12209 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12210 		dtrace_dof_error(dof, "bad entry size in action description");
12211 		return (NULL);
12212 	}
12213 
12214 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12215 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12216 		return (NULL);
12217 	}
12218 
12219 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12220 		desc = (dof_actdesc_t *)(daddr +
12221 		    (uintptr_t)sec->dofs_offset + offs);
12222 		kind = (dtrace_actkind_t)desc->dofa_kind;
12223 
12224 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
12225 		    (kind != DTRACEACT_PRINTA ||
12226 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12227 			dof_sec_t *strtab;
12228 			char *str, *fmt;
12229 			uint64_t i;
12230 
12231 			/*
12232 			 * printf()-like actions must have a format string.
12233 			 */
12234 			if ((strtab = dtrace_dof_sect(dof,
12235 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12236 				goto err;
12237 
12238 			str = (char *)((uintptr_t)dof +
12239 			    (uintptr_t)strtab->dofs_offset);
12240 
12241 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12242 				if (str[i] == '\0')
12243 					break;
12244 			}
12245 
12246 			if (i >= strtab->dofs_size) {
12247 				dtrace_dof_error(dof, "bogus format string");
12248 				goto err;
12249 			}
12250 
12251 			if (i == desc->dofa_arg) {
12252 				dtrace_dof_error(dof, "empty format string");
12253 				goto err;
12254 			}
12255 
12256 			i -= desc->dofa_arg;
12257 			fmt = kmem_alloc(i + 1, KM_SLEEP);
12258 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12259 			arg = (uint64_t)(uintptr_t)fmt;
12260 		} else {
12261 			if (kind == DTRACEACT_PRINTA) {
12262 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12263 				arg = 0;
12264 			} else {
12265 				arg = desc->dofa_arg;
12266 			}
12267 		}
12268 
12269 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12270 		    desc->dofa_uarg, arg);
12271 
12272 		if (last != NULL) {
12273 			last->dtad_next = act;
12274 		} else {
12275 			first = act;
12276 		}
12277 
12278 		last = act;
12279 
12280 		if (desc->dofa_difo == DOF_SECIDX_NONE)
12281 			continue;
12282 
12283 		if ((difosec = dtrace_dof_sect(dof,
12284 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12285 			goto err;
12286 
12287 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12288 
12289 		if (act->dtad_difo == NULL)
12290 			goto err;
12291 	}
12292 
12293 	ASSERT(first != NULL);
12294 	return (first);
12295 
12296 err:
12297 	for (act = first; act != NULL; act = next) {
12298 		next = act->dtad_next;
12299 		dtrace_actdesc_release(act, vstate);
12300 	}
12301 
12302 	return (NULL);
12303 }
12304 
12305 static dtrace_ecbdesc_t *
12306 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12307     cred_t *cr)
12308 {
12309 	dtrace_ecbdesc_t *ep;
12310 	dof_ecbdesc_t *ecb;
12311 	dtrace_probedesc_t *desc;
12312 	dtrace_predicate_t *pred = NULL;
12313 
12314 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12315 		dtrace_dof_error(dof, "truncated ECB description");
12316 		return (NULL);
12317 	}
12318 
12319 	if (sec->dofs_align != sizeof (uint64_t)) {
12320 		dtrace_dof_error(dof, "bad alignment in ECB description");
12321 		return (NULL);
12322 	}
12323 
12324 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12325 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12326 
12327 	if (sec == NULL)
12328 		return (NULL);
12329 
12330 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12331 	ep->dted_uarg = ecb->dofe_uarg;
12332 	desc = &ep->dted_probe;
12333 
12334 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12335 		goto err;
12336 
12337 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12338 		if ((sec = dtrace_dof_sect(dof,
12339 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12340 			goto err;
12341 
12342 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12343 			goto err;
12344 
12345 		ep->dted_pred.dtpdd_predicate = pred;
12346 	}
12347 
12348 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12349 		if ((sec = dtrace_dof_sect(dof,
12350 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12351 			goto err;
12352 
12353 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12354 
12355 		if (ep->dted_action == NULL)
12356 			goto err;
12357 	}
12358 
12359 	return (ep);
12360 
12361 err:
12362 	if (pred != NULL)
12363 		dtrace_predicate_release(pred, vstate);
12364 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12365 	return (NULL);
12366 }
12367 
12368 /*
12369  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12370  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12371  * site of any user SETX relocations to account for load object base address.
12372  * In the future, if we need other relocations, this function can be extended.
12373  */
12374 static int
12375 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12376 {
12377 	uintptr_t daddr = (uintptr_t)dof;
12378 	dof_relohdr_t *dofr =
12379 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12380 	dof_sec_t *ss, *rs, *ts;
12381 	dof_relodesc_t *r;
12382 	uint_t i, n;
12383 
12384 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12385 	    sec->dofs_align != sizeof (dof_secidx_t)) {
12386 		dtrace_dof_error(dof, "invalid relocation header");
12387 		return (-1);
12388 	}
12389 
12390 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12391 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12392 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12393 
12394 	if (ss == NULL || rs == NULL || ts == NULL)
12395 		return (-1); /* dtrace_dof_error() has been called already */
12396 
12397 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12398 	    rs->dofs_align != sizeof (uint64_t)) {
12399 		dtrace_dof_error(dof, "invalid relocation section");
12400 		return (-1);
12401 	}
12402 
12403 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12404 	n = rs->dofs_size / rs->dofs_entsize;
12405 
12406 	for (i = 0; i < n; i++) {
12407 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12408 
12409 		switch (r->dofr_type) {
12410 		case DOF_RELO_NONE:
12411 			break;
12412 		case DOF_RELO_SETX:
12413 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12414 			    sizeof (uint64_t) > ts->dofs_size) {
12415 				dtrace_dof_error(dof, "bad relocation offset");
12416 				return (-1);
12417 			}
12418 
12419 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12420 				dtrace_dof_error(dof, "misaligned setx relo");
12421 				return (-1);
12422 			}
12423 
12424 			*(uint64_t *)taddr += ubase;
12425 			break;
12426 		default:
12427 			dtrace_dof_error(dof, "invalid relocation type");
12428 			return (-1);
12429 		}
12430 
12431 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12432 	}
12433 
12434 	return (0);
12435 }
12436 
12437 /*
12438  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12439  * header:  it should be at the front of a memory region that is at least
12440  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12441  * size.  It need not be validated in any other way.
12442  */
12443 static int
12444 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12445     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12446 {
12447 	uint64_t len = dof->dofh_loadsz, seclen;
12448 	uintptr_t daddr = (uintptr_t)dof;
12449 	dtrace_ecbdesc_t *ep;
12450 	dtrace_enabling_t *enab;
12451 	uint_t i;
12452 
12453 	ASSERT(MUTEX_HELD(&dtrace_lock));
12454 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12455 
12456 	/*
12457 	 * Check the DOF header identification bytes.  In addition to checking
12458 	 * valid settings, we also verify that unused bits/bytes are zeroed so
12459 	 * we can use them later without fear of regressing existing binaries.
12460 	 */
12461 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12462 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12463 		dtrace_dof_error(dof, "DOF magic string mismatch");
12464 		return (-1);
12465 	}
12466 
12467 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12468 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12469 		dtrace_dof_error(dof, "DOF has invalid data model");
12470 		return (-1);
12471 	}
12472 
12473 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12474 		dtrace_dof_error(dof, "DOF encoding mismatch");
12475 		return (-1);
12476 	}
12477 
12478 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12479 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12480 		dtrace_dof_error(dof, "DOF version mismatch");
12481 		return (-1);
12482 	}
12483 
12484 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12485 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12486 		return (-1);
12487 	}
12488 
12489 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12490 		dtrace_dof_error(dof, "DOF uses too many integer registers");
12491 		return (-1);
12492 	}
12493 
12494 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12495 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12496 		return (-1);
12497 	}
12498 
12499 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12500 		if (dof->dofh_ident[i] != 0) {
12501 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12502 			return (-1);
12503 		}
12504 	}
12505 
12506 	if (dof->dofh_flags & ~DOF_FL_VALID) {
12507 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12508 		return (-1);
12509 	}
12510 
12511 	if (dof->dofh_secsize == 0) {
12512 		dtrace_dof_error(dof, "zero section header size");
12513 		return (-1);
12514 	}
12515 
12516 	/*
12517 	 * Check that the section headers don't exceed the amount of DOF
12518 	 * data.  Note that we cast the section size and number of sections
12519 	 * to uint64_t's to prevent possible overflow in the multiplication.
12520 	 */
12521 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12522 
12523 	if (dof->dofh_secoff > len || seclen > len ||
12524 	    dof->dofh_secoff + seclen > len) {
12525 		dtrace_dof_error(dof, "truncated section headers");
12526 		return (-1);
12527 	}
12528 
12529 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12530 		dtrace_dof_error(dof, "misaligned section headers");
12531 		return (-1);
12532 	}
12533 
12534 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12535 		dtrace_dof_error(dof, "misaligned section size");
12536 		return (-1);
12537 	}
12538 
12539 	/*
12540 	 * Take an initial pass through the section headers to be sure that
12541 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12542 	 * set, do not permit sections relating to providers, probes, or args.
12543 	 */
12544 	for (i = 0; i < dof->dofh_secnum; i++) {
12545 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12546 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12547 
12548 		if (noprobes) {
12549 			switch (sec->dofs_type) {
12550 			case DOF_SECT_PROVIDER:
12551 			case DOF_SECT_PROBES:
12552 			case DOF_SECT_PRARGS:
12553 			case DOF_SECT_PROFFS:
12554 				dtrace_dof_error(dof, "illegal sections "
12555 				    "for enabling");
12556 				return (-1);
12557 			}
12558 		}
12559 
12560 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
12561 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
12562 			dtrace_dof_error(dof, "loadable section with load "
12563 			    "flag unset");
12564 			return (-1);
12565 		}
12566 
12567 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12568 			continue; /* just ignore non-loadable sections */
12569 
12570 		if (sec->dofs_align & (sec->dofs_align - 1)) {
12571 			dtrace_dof_error(dof, "bad section alignment");
12572 			return (-1);
12573 		}
12574 
12575 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12576 			dtrace_dof_error(dof, "misaligned section");
12577 			return (-1);
12578 		}
12579 
12580 		if (sec->dofs_offset > len || sec->dofs_size > len ||
12581 		    sec->dofs_offset + sec->dofs_size > len) {
12582 			dtrace_dof_error(dof, "corrupt section header");
12583 			return (-1);
12584 		}
12585 
12586 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12587 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12588 			dtrace_dof_error(dof, "non-terminating string table");
12589 			return (-1);
12590 		}
12591 	}
12592 
12593 	/*
12594 	 * Take a second pass through the sections and locate and perform any
12595 	 * relocations that are present.  We do this after the first pass to
12596 	 * be sure that all sections have had their headers validated.
12597 	 */
12598 	for (i = 0; i < dof->dofh_secnum; i++) {
12599 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12600 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12601 
12602 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12603 			continue; /* skip sections that are not loadable */
12604 
12605 		switch (sec->dofs_type) {
12606 		case DOF_SECT_URELHDR:
12607 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12608 				return (-1);
12609 			break;
12610 		}
12611 	}
12612 
12613 	if ((enab = *enabp) == NULL)
12614 		enab = *enabp = dtrace_enabling_create(vstate);
12615 
12616 	for (i = 0; i < dof->dofh_secnum; i++) {
12617 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12618 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12619 
12620 		if (sec->dofs_type != DOF_SECT_ECBDESC)
12621 			continue;
12622 
12623 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12624 			dtrace_enabling_destroy(enab);
12625 			*enabp = NULL;
12626 			return (-1);
12627 		}
12628 
12629 		dtrace_enabling_add(enab, ep);
12630 	}
12631 
12632 	return (0);
12633 }
12634 
12635 /*
12636  * Process DOF for any options.  This routine assumes that the DOF has been
12637  * at least processed by dtrace_dof_slurp().
12638  */
12639 static int
12640 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12641 {
12642 	int i, rval;
12643 	uint32_t entsize;
12644 	size_t offs;
12645 	dof_optdesc_t *desc;
12646 
12647 	for (i = 0; i < dof->dofh_secnum; i++) {
12648 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12649 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12650 
12651 		if (sec->dofs_type != DOF_SECT_OPTDESC)
12652 			continue;
12653 
12654 		if (sec->dofs_align != sizeof (uint64_t)) {
12655 			dtrace_dof_error(dof, "bad alignment in "
12656 			    "option description");
12657 			return (EINVAL);
12658 		}
12659 
12660 		if ((entsize = sec->dofs_entsize) == 0) {
12661 			dtrace_dof_error(dof, "zeroed option entry size");
12662 			return (EINVAL);
12663 		}
12664 
12665 		if (entsize < sizeof (dof_optdesc_t)) {
12666 			dtrace_dof_error(dof, "bad option entry size");
12667 			return (EINVAL);
12668 		}
12669 
12670 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12671 			desc = (dof_optdesc_t *)((uintptr_t)dof +
12672 			    (uintptr_t)sec->dofs_offset + offs);
12673 
12674 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12675 				dtrace_dof_error(dof, "non-zero option string");
12676 				return (EINVAL);
12677 			}
12678 
12679 			if (desc->dofo_value == DTRACEOPT_UNSET) {
12680 				dtrace_dof_error(dof, "unset option");
12681 				return (EINVAL);
12682 			}
12683 
12684 			if ((rval = dtrace_state_option(state,
12685 			    desc->dofo_option, desc->dofo_value)) != 0) {
12686 				dtrace_dof_error(dof, "rejected option");
12687 				return (rval);
12688 			}
12689 		}
12690 	}
12691 
12692 	return (0);
12693 }
12694 
12695 /*
12696  * DTrace Consumer State Functions
12697  */
12698 static int
12699 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12700 {
12701 	size_t hashsize, maxper, minn, chunksize = dstate->dtds_chunksize;
12702 	void *base;
12703 	uintptr_t limit;
12704 	dtrace_dynvar_t *dvar, *next, *start;
12705 	int i;
12706 
12707 	ASSERT(MUTEX_HELD(&dtrace_lock));
12708 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12709 
12710 	bzero(dstate, sizeof (dtrace_dstate_t));
12711 
12712 	if ((dstate->dtds_chunksize = chunksize) == 0)
12713 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12714 
12715 	if (size < (minn = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12716 		size = minn;
12717 
12718 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12719 		return (ENOMEM);
12720 
12721 	dstate->dtds_size = size;
12722 	dstate->dtds_base = base;
12723 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12724 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12725 
12726 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12727 
12728 	if (hashsize != 1 && (hashsize & 1))
12729 		hashsize--;
12730 
12731 	dstate->dtds_hashsize = hashsize;
12732 	dstate->dtds_hash = dstate->dtds_base;
12733 
12734 	/*
12735 	 * Set all of our hash buckets to point to the single sink, and (if
12736 	 * it hasn't already been set), set the sink's hash value to be the
12737 	 * sink sentinel value.  The sink is needed for dynamic variable
12738 	 * lookups to know that they have iterated over an entire, valid hash
12739 	 * chain.
12740 	 */
12741 	for (i = 0; i < hashsize; i++)
12742 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12743 
12744 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12745 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12746 
12747 	/*
12748 	 * Determine number of active CPUs.  Divide free list evenly among
12749 	 * active CPUs.
12750 	 */
12751 	start = (dtrace_dynvar_t *)
12752 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12753 	limit = (uintptr_t)base + size;
12754 
12755 	maxper = (limit - (uintptr_t)start) / NCPU;
12756 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12757 
12758 	for (i = 0; i < NCPU; i++) {
12759 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12760 
12761 		/*
12762 		 * If we don't even have enough chunks to make it once through
12763 		 * NCPUs, we're just going to allocate everything to the first
12764 		 * CPU.  And if we're on the last CPU, we're going to allocate
12765 		 * whatever is left over.  In either case, we set the limit to
12766 		 * be the limit of the dynamic variable space.
12767 		 */
12768 		if (maxper == 0 || i == NCPU - 1) {
12769 			limit = (uintptr_t)base + size;
12770 			start = NULL;
12771 		} else {
12772 			limit = (uintptr_t)start + maxper;
12773 			start = (dtrace_dynvar_t *)limit;
12774 		}
12775 
12776 		ASSERT(limit <= (uintptr_t)base + size);
12777 
12778 		for (;;) {
12779 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12780 			    dstate->dtds_chunksize);
12781 
12782 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12783 				break;
12784 
12785 			dvar->dtdv_next = next;
12786 			dvar = next;
12787 		}
12788 
12789 		if (maxper == 0)
12790 			break;
12791 	}
12792 
12793 	return (0);
12794 }
12795 
12796 static void
12797 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12798 {
12799 	ASSERT(MUTEX_HELD(&cpu_lock));
12800 
12801 	if (dstate->dtds_base == NULL)
12802 		return;
12803 
12804 	kmem_free(dstate->dtds_base, dstate->dtds_size);
12805 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12806 }
12807 
12808 static void
12809 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12810 {
12811 	/*
12812 	 * Logical XOR, where are you?
12813 	 */
12814 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12815 
12816 	if (vstate->dtvs_nglobals > 0) {
12817 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12818 		    sizeof (dtrace_statvar_t *));
12819 	}
12820 
12821 	if (vstate->dtvs_ntlocals > 0) {
12822 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12823 		    sizeof (dtrace_difv_t));
12824 	}
12825 
12826 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12827 
12828 	if (vstate->dtvs_nlocals > 0) {
12829 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12830 		    sizeof (dtrace_statvar_t *));
12831 	}
12832 }
12833 
12834 static void
12835 dtrace_state_clean(dtrace_state_t *state)
12836 {
12837 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12838 		return;
12839 
12840 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12841 	dtrace_speculation_clean(state);
12842 }
12843 
12844 static void
12845 dtrace_state_deadman(dtrace_state_t *state)
12846 {
12847 	hrtime_t now;
12848 
12849 	dtrace_sync();
12850 
12851 	now = dtrace_gethrtime();
12852 
12853 	if (state != dtrace_anon.dta_state &&
12854 	    now - state->dts_laststatus >= dtrace_deadman_user)
12855 		return;
12856 
12857 	/*
12858 	 * We must be sure that dts_alive never appears to be less than the
12859 	 * value upon entry to dtrace_state_deadman(), and because we lack a
12860 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12861 	 * store INT64_MAX to it, followed by a memory barrier, followed by
12862 	 * the new value.  This assures that dts_alive never appears to be
12863 	 * less than its true value, regardless of the order in which the
12864 	 * stores to the underlying storage are issued.
12865 	 */
12866 	state->dts_alive = INT64_MAX;
12867 	dtrace_membar_producer();
12868 	state->dts_alive = now;
12869 }
12870 
12871 #if !defined(sun)
12872 struct dtrace_state_worker *dtrace_state_worker_add(void (*)(dtrace_state_t *),
12873     dtrace_state_t *, hrtime_t);
12874 void dtrace_state_worker_remove(struct dtrace_state_worker *);
12875 #endif
12876 
12877 static dtrace_state_t *
12878 #if defined(sun)
12879 dtrace_state_create(dev_t *devp, cred_t *cr)
12880 #else
12881 dtrace_state_create(dev_t dev, cred_t *cr)
12882 #endif
12883 {
12884 #if defined(sun)
12885 	minor_t minor;
12886 	major_t major;
12887 #else
12888 	int m = 0;
12889 #endif
12890 	char c[30];
12891 	dtrace_state_t *state;
12892 	dtrace_optval_t *opt;
12893 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12894 
12895 	ASSERT(MUTEX_HELD(&dtrace_lock));
12896 	ASSERT(MUTEX_HELD(&cpu_lock));
12897 
12898 #if defined(sun)
12899 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12900 	    VM_BESTFIT | VM_SLEEP);
12901 
12902 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12903 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12904 		return (NULL);
12905 	}
12906 
12907 	state = ddi_get_soft_state(dtrace_softstate, minor);
12908 #else
12909 	m = minor(dev) & 0x0F;
12910 
12911 	/* Allocate memory for the state. */
12912 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
12913 #endif
12914 
12915 	state->dts_epid = DTRACE_EPIDNONE + 1;
12916 
12917 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
12918 #if defined(sun)
12919 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12920 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12921 
12922 	if (devp != NULL) {
12923 		major = getemajor(*devp);
12924 	} else {
12925 		major = ddi_driver_major(dtrace_devi);
12926 	}
12927 
12928 	state->dts_dev = makedevice(major, minor);
12929 
12930 	if (devp != NULL)
12931 		*devp = state->dts_dev;
12932 #else
12933 	state->dts_aggid_arena = vmem_create(c, 1, INT_MAX, 1,
12934 	    NULL, NULL, NULL, 0, VM_SLEEP, IPL_NONE);
12935 	state->dts_dev = dev;
12936 #endif
12937 
12938 	/*
12939 	 * We allocate NCPU buffers.  On the one hand, this can be quite
12940 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12941 	 * other hand, it saves an additional memory reference in the probe
12942 	 * path.
12943 	 */
12944 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12945 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12946 
12947 #if defined(sun)
12948 	state->dts_cleaner = CYCLIC_NONE;
12949 	state->dts_deadman = CYCLIC_NONE;
12950 #else
12951 	state->dts_cleaner = NULL;
12952 	state->dts_deadman = NULL;
12953 #endif
12954 	state->dts_vstate.dtvs_state = state;
12955 
12956 	for (i = 0; i < DTRACEOPT_MAX; i++)
12957 		state->dts_options[i] = DTRACEOPT_UNSET;
12958 
12959 	/*
12960 	 * Set the default options.
12961 	 */
12962 	opt = state->dts_options;
12963 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12964 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12965 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12966 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12967 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12968 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12969 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12970 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12971 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12972 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12973 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12974 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12975 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12976 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12977 
12978 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12979 
12980 	/*
12981 	 * Depending on the user credentials, we set flag bits which alter probe
12982 	 * visibility or the amount of destructiveness allowed.  In the case of
12983 	 * actual anonymous tracing, or the possession of all privileges, all of
12984 	 * the normal checks are bypassed.
12985 	 */
12986 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12987 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12988 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12989 	} else {
12990 		/*
12991 		 * Set up the credentials for this instantiation.  We take a
12992 		 * hold on the credential to prevent it from disappearing on
12993 		 * us; this in turn prevents the zone_t referenced by this
12994 		 * credential from disappearing.  This means that we can
12995 		 * examine the credential and the zone from probe context.
12996 		 */
12997 #if defined(sun)
12998 		crhold(cr);
12999 #else
13000 		kauth_cred_hold(cr);
13001 #endif
13002 		state->dts_cred.dcr_cred = cr;
13003 
13004 		/*
13005 		 * CRA_PROC means "we have *some* privilege for dtrace" and
13006 		 * unlocks the use of variables like pid, zonename, etc.
13007 		 */
13008 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13009 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13010 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13011 		}
13012 
13013 		/*
13014 		 * dtrace_user allows use of syscall and profile providers.
13015 		 * If the user also has proc_owner and/or proc_zone, we
13016 		 * extend the scope to include additional visibility and
13017 		 * destructive power.
13018 		 */
13019 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13020 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13021 				state->dts_cred.dcr_visible |=
13022 				    DTRACE_CRV_ALLPROC;
13023 
13024 				state->dts_cred.dcr_action |=
13025 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13026 			}
13027 
13028 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13029 				state->dts_cred.dcr_visible |=
13030 				    DTRACE_CRV_ALLZONE;
13031 
13032 				state->dts_cred.dcr_action |=
13033 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13034 			}
13035 
13036 			/*
13037 			 * If we have all privs in whatever zone this is,
13038 			 * we can do destructive things to processes which
13039 			 * have altered credentials.
13040 			 */
13041 #if defined(sun)
13042 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13043 			    cr->cr_zone->zone_privset)) {
13044 				state->dts_cred.dcr_action |=
13045 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13046 			}
13047 #endif
13048 		}
13049 
13050 		/*
13051 		 * Holding the dtrace_kernel privilege also implies that
13052 		 * the user has the dtrace_user privilege from a visibility
13053 		 * perspective.  But without further privileges, some
13054 		 * destructive actions are not available.
13055 		 */
13056 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13057 			/*
13058 			 * Make all probes in all zones visible.  However,
13059 			 * this doesn't mean that all actions become available
13060 			 * to all zones.
13061 			 */
13062 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13063 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13064 
13065 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13066 			    DTRACE_CRA_PROC;
13067 			/*
13068 			 * Holding proc_owner means that destructive actions
13069 			 * for *this* zone are allowed.
13070 			 */
13071 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13072 				state->dts_cred.dcr_action |=
13073 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13074 
13075 			/*
13076 			 * Holding proc_zone means that destructive actions
13077 			 * for this user/group ID in all zones is allowed.
13078 			 */
13079 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13080 				state->dts_cred.dcr_action |=
13081 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13082 
13083 #if defined(sun)
13084 			/*
13085 			 * If we have all privs in whatever zone this is,
13086 			 * we can do destructive things to processes which
13087 			 * have altered credentials.
13088 			 */
13089 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13090 			    cr->cr_zone->zone_privset)) {
13091 				state->dts_cred.dcr_action |=
13092 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13093 			}
13094 #endif
13095 		}
13096 
13097 		/*
13098 		 * Holding the dtrace_proc privilege gives control over fasttrap
13099 		 * and pid providers.  We need to grant wider destructive
13100 		 * privileges in the event that the user has proc_owner and/or
13101 		 * proc_zone.
13102 		 */
13103 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13104 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13105 				state->dts_cred.dcr_action |=
13106 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13107 
13108 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13109 				state->dts_cred.dcr_action |=
13110 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13111 		}
13112 	}
13113 
13114 	return (state);
13115 }
13116 
13117 static int
13118 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13119 {
13120 	dtrace_optval_t *opt = state->dts_options, size;
13121 	processorid_t cpu = 0;;
13122 	int flags = 0, rval;
13123 
13124 	ASSERT(MUTEX_HELD(&dtrace_lock));
13125 	ASSERT(MUTEX_HELD(&cpu_lock));
13126 	ASSERT(which < DTRACEOPT_MAX);
13127 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13128 	    (state == dtrace_anon.dta_state &&
13129 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13130 
13131 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13132 		return (0);
13133 
13134 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13135 		cpu = opt[DTRACEOPT_CPU];
13136 
13137 	if (which == DTRACEOPT_SPECSIZE)
13138 		flags |= DTRACEBUF_NOSWITCH;
13139 
13140 	if (which == DTRACEOPT_BUFSIZE) {
13141 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13142 			flags |= DTRACEBUF_RING;
13143 
13144 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13145 			flags |= DTRACEBUF_FILL;
13146 
13147 		if (state != dtrace_anon.dta_state ||
13148 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13149 			flags |= DTRACEBUF_INACTIVE;
13150 	}
13151 
13152 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13153 		/*
13154 		 * The size must be 8-byte aligned.  If the size is not 8-byte
13155 		 * aligned, drop it down by the difference.
13156 		 */
13157 		if (size & (sizeof (uint64_t) - 1))
13158 			size -= size & (sizeof (uint64_t) - 1);
13159 
13160 		if (size < state->dts_reserve) {
13161 			/*
13162 			 * Buffers always must be large enough to accommodate
13163 			 * their prereserved space.  We return E2BIG instead
13164 			 * of ENOMEM in this case to allow for user-level
13165 			 * software to differentiate the cases.
13166 			 */
13167 			return (E2BIG);
13168 		}
13169 
13170 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13171 
13172 		if (rval != ENOMEM) {
13173 			opt[which] = size;
13174 			return (rval);
13175 		}
13176 
13177 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13178 			return (rval);
13179 	}
13180 
13181 	return (ENOMEM);
13182 }
13183 
13184 static int
13185 dtrace_state_buffers(dtrace_state_t *state)
13186 {
13187 	dtrace_speculation_t *spec = state->dts_speculations;
13188 	int rval, i;
13189 
13190 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13191 	    DTRACEOPT_BUFSIZE)) != 0)
13192 		return (rval);
13193 
13194 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13195 	    DTRACEOPT_AGGSIZE)) != 0)
13196 		return (rval);
13197 
13198 	for (i = 0; i < state->dts_nspeculations; i++) {
13199 		if ((rval = dtrace_state_buffer(state,
13200 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13201 			return (rval);
13202 	}
13203 
13204 	return (0);
13205 }
13206 
13207 static void
13208 dtrace_state_prereserve(dtrace_state_t *state)
13209 {
13210 	dtrace_ecb_t *ecb;
13211 	dtrace_probe_t *probe;
13212 
13213 	state->dts_reserve = 0;
13214 
13215 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13216 		return;
13217 
13218 	/*
13219 	 * If our buffer policy is a "fill" buffer policy, we need to set the
13220 	 * prereserved space to be the space required by the END probes.
13221 	 */
13222 	probe = dtrace_probes[dtrace_probeid_end - 1];
13223 	ASSERT(probe != NULL);
13224 
13225 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13226 		if (ecb->dte_state != state)
13227 			continue;
13228 
13229 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13230 	}
13231 }
13232 
13233 static int
13234 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13235 {
13236 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13237 	dtrace_speculation_t *spec;
13238 	dtrace_buffer_t *buf;
13239 #if defined(sun)
13240 	cyc_handler_t hdlr;
13241 	cyc_time_t when;
13242 #endif
13243 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13244 	dtrace_icookie_t cookie;
13245 
13246 	mutex_enter(&cpu_lock);
13247 	mutex_enter(&dtrace_lock);
13248 
13249 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13250 		rval = EBUSY;
13251 		goto out;
13252 	}
13253 
13254 	/*
13255 	 * Before we can perform any checks, we must prime all of the
13256 	 * retained enablings that correspond to this state.
13257 	 */
13258 	dtrace_enabling_prime(state);
13259 
13260 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13261 		rval = EACCES;
13262 		goto out;
13263 	}
13264 
13265 	dtrace_state_prereserve(state);
13266 
13267 	/*
13268 	 * Now we want to do is try to allocate our speculations.
13269 	 * We do not automatically resize the number of speculations; if
13270 	 * this fails, we will fail the operation.
13271 	 */
13272 	nspec = opt[DTRACEOPT_NSPEC];
13273 	ASSERT(nspec != DTRACEOPT_UNSET);
13274 
13275 	if (nspec > INT_MAX) {
13276 		rval = ENOMEM;
13277 		goto out;
13278 	}
13279 
13280 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13281 
13282 	if (spec == NULL) {
13283 		rval = ENOMEM;
13284 		goto out;
13285 	}
13286 
13287 	state->dts_speculations = spec;
13288 	state->dts_nspeculations = (int)nspec;
13289 
13290 	for (i = 0; i < nspec; i++) {
13291 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13292 			rval = ENOMEM;
13293 			goto err;
13294 		}
13295 
13296 		spec[i].dtsp_buffer = buf;
13297 	}
13298 
13299 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13300 		if (dtrace_anon.dta_state == NULL) {
13301 			rval = ENOENT;
13302 			goto out;
13303 		}
13304 
13305 		if (state->dts_necbs != 0) {
13306 			rval = EALREADY;
13307 			goto out;
13308 		}
13309 
13310 		state->dts_anon = dtrace_anon_grab();
13311 		ASSERT(state->dts_anon != NULL);
13312 		state = state->dts_anon;
13313 
13314 		/*
13315 		 * We want "grabanon" to be set in the grabbed state, so we'll
13316 		 * copy that option value from the grabbing state into the
13317 		 * grabbed state.
13318 		 */
13319 		state->dts_options[DTRACEOPT_GRABANON] =
13320 		    opt[DTRACEOPT_GRABANON];
13321 
13322 		*cpu = dtrace_anon.dta_beganon;
13323 
13324 		/*
13325 		 * If the anonymous state is active (as it almost certainly
13326 		 * is if the anonymous enabling ultimately matched anything),
13327 		 * we don't allow any further option processing -- but we
13328 		 * don't return failure.
13329 		 */
13330 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13331 			goto out;
13332 	}
13333 
13334 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13335 	    opt[DTRACEOPT_AGGSIZE] != 0) {
13336 		if (state->dts_aggregations == NULL) {
13337 			/*
13338 			 * We're not going to create an aggregation buffer
13339 			 * because we don't have any ECBs that contain
13340 			 * aggregations -- set this option to 0.
13341 			 */
13342 			opt[DTRACEOPT_AGGSIZE] = 0;
13343 		} else {
13344 			/*
13345 			 * If we have an aggregation buffer, we must also have
13346 			 * a buffer to use as scratch.
13347 			 */
13348 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13349 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13350 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13351 			}
13352 		}
13353 	}
13354 
13355 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13356 	    opt[DTRACEOPT_SPECSIZE] != 0) {
13357 		if (!state->dts_speculates) {
13358 			/*
13359 			 * We're not going to create speculation buffers
13360 			 * because we don't have any ECBs that actually
13361 			 * speculate -- set the speculation size to 0.
13362 			 */
13363 			opt[DTRACEOPT_SPECSIZE] = 0;
13364 		}
13365 	}
13366 
13367 	/*
13368 	 * The bare minimum size for any buffer that we're actually going to
13369 	 * do anything to is sizeof (uint64_t).
13370 	 */
13371 	sz = sizeof (uint64_t);
13372 
13373 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13374 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13375 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13376 		/*
13377 		 * A buffer size has been explicitly set to 0 (or to a size
13378 		 * that will be adjusted to 0) and we need the space -- we
13379 		 * need to return failure.  We return ENOSPC to differentiate
13380 		 * it from failing to allocate a buffer due to failure to meet
13381 		 * the reserve (for which we return E2BIG).
13382 		 */
13383 		rval = ENOSPC;
13384 		goto out;
13385 	}
13386 
13387 	if ((rval = dtrace_state_buffers(state)) != 0)
13388 		goto err;
13389 
13390 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13391 		sz = dtrace_dstate_defsize;
13392 
13393 	do {
13394 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13395 
13396 		if (rval == 0)
13397 			break;
13398 
13399 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13400 			goto err;
13401 	} while (sz >>= 1);
13402 
13403 	opt[DTRACEOPT_DYNVARSIZE] = sz;
13404 
13405 	if (rval != 0)
13406 		goto err;
13407 
13408 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13409 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13410 
13411 	if (opt[DTRACEOPT_CLEANRATE] == 0)
13412 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13413 
13414 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13415 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13416 
13417 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13418 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13419 
13420 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13421 #if defined(sun)
13422 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13423 	hdlr.cyh_arg = state;
13424 	hdlr.cyh_level = CY_LOW_LEVEL;
13425 
13426 	when.cyt_when = 0;
13427 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13428 
13429 	state->dts_cleaner = cyclic_add(&hdlr, &when);
13430 
13431 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13432 	hdlr.cyh_arg = state;
13433 	hdlr.cyh_level = CY_LOW_LEVEL;
13434 
13435 	when.cyt_when = 0;
13436 	when.cyt_interval = dtrace_deadman_interval;
13437 
13438 	state->dts_deadman = cyclic_add(&hdlr, &when);
13439 #else
13440 	state->dts_cleaner = dtrace_state_worker_add(
13441 	    dtrace_state_clean, state, opt[DTRACEOPT_CLEANRATE]);
13442 	state->dts_deadman = dtrace_state_worker_add(
13443 	    dtrace_state_deadman, state, dtrace_deadman_interval);
13444 #endif
13445 
13446 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13447 
13448 	/*
13449 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13450 	 * interrupts here both to record the CPU on which we fired the BEGIN
13451 	 * probe (the data from this CPU will be processed first at user
13452 	 * level) and to manually activate the buffer for this CPU.
13453 	 */
13454 	cookie = dtrace_interrupt_disable();
13455 	*cpu = curcpu_id;
13456 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13457 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13458 
13459 	dtrace_probe(dtrace_probeid_begin,
13460 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13461 	dtrace_interrupt_enable(cookie);
13462 	/*
13463 	 * We may have had an exit action from a BEGIN probe; only change our
13464 	 * state to ACTIVE if we're still in WARMUP.
13465 	 */
13466 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13467 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13468 
13469 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13470 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13471 
13472 	/*
13473 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13474 	 * want each CPU to transition its principal buffer out of the
13475 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13476 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13477 	 * atomically transition from processing none of a state's ECBs to
13478 	 * processing all of them.
13479 	 */
13480 	dtrace_xcall(DTRACE_CPUALL,
13481 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13482 	goto out;
13483 
13484 err:
13485 	dtrace_buffer_free(state->dts_buffer);
13486 	dtrace_buffer_free(state->dts_aggbuffer);
13487 
13488 	if ((nspec = state->dts_nspeculations) == 0) {
13489 		ASSERT(state->dts_speculations == NULL);
13490 		goto out;
13491 	}
13492 
13493 	spec = state->dts_speculations;
13494 	ASSERT(spec != NULL);
13495 
13496 	for (i = 0; i < state->dts_nspeculations; i++) {
13497 		if ((buf = spec[i].dtsp_buffer) == NULL)
13498 			break;
13499 
13500 		dtrace_buffer_free(buf);
13501 		kmem_free(buf, bufsize);
13502 	}
13503 
13504 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13505 	state->dts_nspeculations = 0;
13506 	state->dts_speculations = NULL;
13507 
13508 out:
13509 	mutex_exit(&dtrace_lock);
13510 	mutex_exit(&cpu_lock);
13511 
13512 	return (rval);
13513 }
13514 
13515 static int
13516 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13517 {
13518 	dtrace_icookie_t cookie;
13519 
13520 	ASSERT(MUTEX_HELD(&dtrace_lock));
13521 
13522 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13523 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13524 		return (EINVAL);
13525 
13526 	/*
13527 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13528 	 * to be sure that every CPU has seen it.  See below for the details
13529 	 * on why this is done.
13530 	 */
13531 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13532 	dtrace_sync();
13533 
13534 	/*
13535 	 * By this point, it is impossible for any CPU to be still processing
13536 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13537 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13538 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13539 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13540 	 * iff we're in the END probe.
13541 	 */
13542 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13543 	dtrace_sync();
13544 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13545 
13546 	/*
13547 	 * Finally, we can release the reserve and call the END probe.  We
13548 	 * disable interrupts across calling the END probe to allow us to
13549 	 * return the CPU on which we actually called the END probe.  This
13550 	 * allows user-land to be sure that this CPU's principal buffer is
13551 	 * processed last.
13552 	 */
13553 	state->dts_reserve = 0;
13554 
13555 	cookie = dtrace_interrupt_disable();
13556 	*cpu = curcpu_id;
13557 	dtrace_probe(dtrace_probeid_end,
13558 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13559 	dtrace_interrupt_enable(cookie);
13560 
13561 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13562 	dtrace_sync();
13563 
13564 	return (0);
13565 }
13566 
13567 static int
13568 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13569     dtrace_optval_t val)
13570 {
13571 	ASSERT(MUTEX_HELD(&dtrace_lock));
13572 
13573 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13574 		return (EBUSY);
13575 
13576 	if (option >= DTRACEOPT_MAX)
13577 		return (EINVAL);
13578 
13579 	if (option != DTRACEOPT_CPU && val < 0)
13580 		return (EINVAL);
13581 
13582 	switch (option) {
13583 	case DTRACEOPT_DESTRUCTIVE:
13584 		if (dtrace_destructive_disallow)
13585 			return (EACCES);
13586 
13587 		state->dts_cred.dcr_destructive = 1;
13588 		break;
13589 
13590 	case DTRACEOPT_BUFSIZE:
13591 	case DTRACEOPT_DYNVARSIZE:
13592 	case DTRACEOPT_AGGSIZE:
13593 	case DTRACEOPT_SPECSIZE:
13594 	case DTRACEOPT_STRSIZE:
13595 		if (val < 0)
13596 			return (EINVAL);
13597 
13598 		if (val >= LONG_MAX) {
13599 			/*
13600 			 * If this is an otherwise negative value, set it to
13601 			 * the highest multiple of 128m less than LONG_MAX.
13602 			 * Technically, we're adjusting the size without
13603 			 * regard to the buffer resizing policy, but in fact,
13604 			 * this has no effect -- if we set the buffer size to
13605 			 * ~LONG_MAX and the buffer policy is ultimately set to
13606 			 * be "manual", the buffer allocation is guaranteed to
13607 			 * fail, if only because the allocation requires two
13608 			 * buffers.  (We set the the size to the highest
13609 			 * multiple of 128m because it ensures that the size
13610 			 * will remain a multiple of a megabyte when
13611 			 * repeatedly halved -- all the way down to 15m.)
13612 			 */
13613 			val = LONG_MAX - (1 << 27) + 1;
13614 		}
13615 	}
13616 
13617 	state->dts_options[option] = val;
13618 
13619 	return (0);
13620 }
13621 
13622 static void
13623 dtrace_state_destroy(dtrace_state_t *state)
13624 {
13625 	dtrace_ecb_t *ecb;
13626 	dtrace_vstate_t *vstate = &state->dts_vstate;
13627 #if defined(sun)
13628 	minor_t minor = getminor(state->dts_dev);
13629 #endif
13630 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13631 	dtrace_speculation_t *spec = state->dts_speculations;
13632 	int nspec = state->dts_nspeculations;
13633 	uint32_t match;
13634 
13635 	ASSERT(MUTEX_HELD(&dtrace_lock));
13636 	ASSERT(MUTEX_HELD(&cpu_lock));
13637 
13638 	/*
13639 	 * First, retract any retained enablings for this state.
13640 	 */
13641 	dtrace_enabling_retract(state);
13642 	ASSERT(state->dts_nretained == 0);
13643 
13644 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13645 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13646 		/*
13647 		 * We have managed to come into dtrace_state_destroy() on a
13648 		 * hot enabling -- almost certainly because of a disorderly
13649 		 * shutdown of a consumer.  (That is, a consumer that is
13650 		 * exiting without having called dtrace_stop().) In this case,
13651 		 * we're going to set our activity to be KILLED, and then
13652 		 * issue a sync to be sure that everyone is out of probe
13653 		 * context before we start blowing away ECBs.
13654 		 */
13655 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13656 		dtrace_sync();
13657 	}
13658 
13659 	/*
13660 	 * Release the credential hold we took in dtrace_state_create().
13661 	 */
13662 	if (state->dts_cred.dcr_cred != NULL) {
13663 #if defined(sun)
13664 		crfree(state->dts_cred.dcr_cred);
13665 #else
13666 		kauth_cred_free(state->dts_cred.dcr_cred);
13667 #endif
13668 	}
13669 
13670 	/*
13671 	 * Now we can safely disable and destroy any enabled probes.  Because
13672 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13673 	 * (especially if they're all enabled), we take two passes through the
13674 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13675 	 * in the second we disable whatever is left over.
13676 	 */
13677 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13678 		for (i = 0; i < state->dts_necbs; i++) {
13679 			if ((ecb = state->dts_ecbs[i]) == NULL)
13680 				continue;
13681 
13682 			if (match && ecb->dte_probe != NULL) {
13683 				dtrace_probe_t *probe = ecb->dte_probe;
13684 				dtrace_provider_t *prov = probe->dtpr_provider;
13685 
13686 				if (!(prov->dtpv_priv.dtpp_flags & match))
13687 					continue;
13688 			}
13689 
13690 			dtrace_ecb_disable(ecb);
13691 			dtrace_ecb_destroy(ecb);
13692 		}
13693 
13694 		if (!match)
13695 			break;
13696 	}
13697 
13698 	/*
13699 	 * Before we free the buffers, perform one more sync to assure that
13700 	 * every CPU is out of probe context.
13701 	 */
13702 	dtrace_sync();
13703 
13704 	dtrace_buffer_free(state->dts_buffer);
13705 	dtrace_buffer_free(state->dts_aggbuffer);
13706 
13707 	for (i = 0; i < nspec; i++)
13708 		dtrace_buffer_free(spec[i].dtsp_buffer);
13709 
13710 #if defined(sun)
13711 	if (state->dts_cleaner != CYCLIC_NONE)
13712 		cyclic_remove(state->dts_cleaner);
13713 
13714 	if (state->dts_deadman != CYCLIC_NONE)
13715 		cyclic_remove(state->dts_deadman);
13716 #else
13717 	if (state->dts_cleaner != NULL)
13718 		dtrace_state_worker_remove(state->dts_cleaner);
13719 
13720 	if (state->dts_deadman != NULL)
13721 		dtrace_state_worker_remove(state->dts_deadman);
13722 #endif
13723 
13724 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13725 	dtrace_vstate_fini(vstate);
13726 	if (state->dts_ecbs != NULL)
13727 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13728 
13729 	if (state->dts_aggregations != NULL) {
13730 #ifdef DEBUG
13731 		for (i = 0; i < state->dts_naggregations; i++)
13732 			ASSERT(state->dts_aggregations[i] == NULL);
13733 #endif
13734 		ASSERT(state->dts_naggregations > 0);
13735 		kmem_free(state->dts_aggregations,
13736 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13737 	}
13738 
13739 	kmem_free(state->dts_buffer, bufsize);
13740 	kmem_free(state->dts_aggbuffer, bufsize);
13741 
13742 	for (i = 0; i < nspec; i++)
13743 		kmem_free(spec[i].dtsp_buffer, bufsize);
13744 
13745 	if (spec != NULL)
13746 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13747 
13748 	dtrace_format_destroy(state);
13749 
13750 	if (state->dts_aggid_arena != NULL) {
13751 		vmem_destroy(state->dts_aggid_arena);
13752 		state->dts_aggid_arena = NULL;
13753 	}
13754 #if defined(sun)
13755 	ddi_soft_state_free(dtrace_softstate, minor);
13756 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13757 #else
13758 	kmem_free(state, sizeof(dtrace_state_t));
13759 #endif
13760 }
13761 
13762 /*
13763  * DTrace Anonymous Enabling Functions
13764  */
13765 static dtrace_state_t *
13766 dtrace_anon_grab(void)
13767 {
13768 	dtrace_state_t *state;
13769 
13770 	ASSERT(MUTEX_HELD(&dtrace_lock));
13771 
13772 	if ((state = dtrace_anon.dta_state) == NULL) {
13773 		ASSERT(dtrace_anon.dta_enabling == NULL);
13774 		return (NULL);
13775 	}
13776 
13777 	ASSERT(dtrace_anon.dta_enabling != NULL);
13778 	ASSERT(dtrace_retained != NULL);
13779 
13780 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13781 	dtrace_anon.dta_enabling = NULL;
13782 	dtrace_anon.dta_state = NULL;
13783 
13784 	return (state);
13785 }
13786 
13787 static void
13788 dtrace_anon_property(void)
13789 {
13790 	int i, rv;
13791 	dtrace_state_t *state;
13792 	dof_hdr_t *dof;
13793 	char c[32];		/* enough for "dof-data-" + digits */
13794 
13795 	ASSERT(MUTEX_HELD(&dtrace_lock));
13796 	ASSERT(MUTEX_HELD(&cpu_lock));
13797 
13798 	for (i = 0; ; i++) {
13799 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13800 
13801 		dtrace_err_verbose = 1;
13802 
13803 		if ((dof = dtrace_dof_property(c)) == NULL) {
13804 			dtrace_err_verbose = 0;
13805 			break;
13806 		}
13807 
13808 #if defined(sun)
13809 		/*
13810 		 * We want to create anonymous state, so we need to transition
13811 		 * the kernel debugger to indicate that DTrace is active.  If
13812 		 * this fails (e.g. because the debugger has modified text in
13813 		 * some way), we won't continue with the processing.
13814 		 */
13815 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13816 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13817 			    "enabling ignored.");
13818 			dtrace_dof_destroy(dof);
13819 			break;
13820 		}
13821 #endif
13822 
13823 		/*
13824 		 * If we haven't allocated an anonymous state, we'll do so now.
13825 		 */
13826 		if ((state = dtrace_anon.dta_state) == NULL) {
13827 #if defined(sun)
13828 			state = dtrace_state_create(NULL, NULL);
13829 #endif
13830 			dtrace_anon.dta_state = state;
13831 
13832 			if (state == NULL) {
13833 				/*
13834 				 * This basically shouldn't happen:  the only
13835 				 * failure mode from dtrace_state_create() is a
13836 				 * failure of ddi_soft_state_zalloc() that
13837 				 * itself should never happen.  Still, the
13838 				 * interface allows for a failure mode, and
13839 				 * we want to fail as gracefully as possible:
13840 				 * we'll emit an error message and cease
13841 				 * processing anonymous state in this case.
13842 				 */
13843 				cmn_err(CE_WARN, "failed to create "
13844 				    "anonymous state");
13845 				dtrace_dof_destroy(dof);
13846 				break;
13847 			}
13848 		}
13849 
13850 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13851 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13852 
13853 		if (rv == 0)
13854 			rv = dtrace_dof_options(dof, state);
13855 
13856 		dtrace_err_verbose = 0;
13857 		dtrace_dof_destroy(dof);
13858 
13859 		if (rv != 0) {
13860 			/*
13861 			 * This is malformed DOF; chuck any anonymous state
13862 			 * that we created.
13863 			 */
13864 			ASSERT(dtrace_anon.dta_enabling == NULL);
13865 			dtrace_state_destroy(state);
13866 			dtrace_anon.dta_state = NULL;
13867 			break;
13868 		}
13869 
13870 		ASSERT(dtrace_anon.dta_enabling != NULL);
13871 	}
13872 
13873 	if (dtrace_anon.dta_enabling != NULL) {
13874 		int rval;
13875 
13876 		/*
13877 		 * dtrace_enabling_retain() can only fail because we are
13878 		 * trying to retain more enablings than are allowed -- but
13879 		 * we only have one anonymous enabling, and we are guaranteed
13880 		 * to be allowed at least one retained enabling; we assert
13881 		 * that dtrace_enabling_retain() returns success.
13882 		 */
13883 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13884 		ASSERT(rval == 0);
13885 
13886 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13887 	}
13888 }
13889 
13890 #if defined(sun)
13891 /*
13892  * DTrace Helper Functions
13893  */
13894 static void
13895 dtrace_helper_trace(dtrace_helper_action_t *helper,
13896     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13897 {
13898 	uint32_t size, next, nnext, i;
13899 	dtrace_helptrace_t *ent;
13900 	uint16_t flags = cpu_core[curcpu_id].cpuc_dtrace_flags;
13901 
13902 	if (!dtrace_helptrace_enabled)
13903 		return;
13904 
13905 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13906 
13907 	/*
13908 	 * What would a tracing framework be without its own tracing
13909 	 * framework?  (Well, a hell of a lot simpler, for starters...)
13910 	 */
13911 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13912 	    sizeof (uint64_t) - sizeof (uint64_t);
13913 
13914 	/*
13915 	 * Iterate until we can allocate a slot in the trace buffer.
13916 	 */
13917 	do {
13918 		next = dtrace_helptrace_next;
13919 
13920 		if (next + size < dtrace_helptrace_bufsize) {
13921 			nnext = next + size;
13922 		} else {
13923 			nnext = size;
13924 		}
13925 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13926 
13927 	/*
13928 	 * We have our slot; fill it in.
13929 	 */
13930 	if (nnext == size)
13931 		next = 0;
13932 
13933 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13934 	ent->dtht_helper = helper;
13935 	ent->dtht_where = where;
13936 	ent->dtht_nlocals = vstate->dtvs_nlocals;
13937 
13938 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13939 	    mstate->dtms_fltoffs : -1;
13940 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13941 	ent->dtht_illval = cpu_core[curcpu_id].cpuc_dtrace_illval;
13942 
13943 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13944 		dtrace_statvar_t *svar;
13945 
13946 		if ((svar = vstate->dtvs_locals[i]) == NULL)
13947 			continue;
13948 
13949 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13950 		ent->dtht_locals[i] =
13951 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu_id];
13952 	}
13953 }
13954 #endif
13955 
13956 #if defined(sun)
13957 static uint64_t
13958 dtrace_helper(int which, dtrace_mstate_t *mstate,
13959     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13960 {
13961 	uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags;
13962 	uint64_t sarg0 = mstate->dtms_arg[0];
13963 	uint64_t sarg1 = mstate->dtms_arg[1];
13964 	uint64_t rval;
13965 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13966 	dtrace_helper_action_t *helper;
13967 	dtrace_vstate_t *vstate;
13968 	dtrace_difo_t *pred;
13969 	int i, trace = dtrace_helptrace_enabled;
13970 
13971 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13972 
13973 	if (helpers == NULL)
13974 		return (0);
13975 
13976 	if ((helper = helpers->dthps_actions[which]) == NULL)
13977 		return (0);
13978 
13979 	vstate = &helpers->dthps_vstate;
13980 	mstate->dtms_arg[0] = arg0;
13981 	mstate->dtms_arg[1] = arg1;
13982 
13983 	/*
13984 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13985 	 * we'll call the corresponding actions.  Note that the below calls
13986 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13987 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13988 	 * the stored DIF offset with its own (which is the desired behavior).
13989 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13990 	 * from machine state; this is okay, too.
13991 	 */
13992 	for (; helper != NULL; helper = helper->dtha_next) {
13993 		if ((pred = helper->dtha_predicate) != NULL) {
13994 			if (trace)
13995 				dtrace_helper_trace(helper, mstate, vstate, 0);
13996 
13997 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13998 				goto next;
13999 
14000 			if (*flags & CPU_DTRACE_FAULT)
14001 				goto err;
14002 		}
14003 
14004 		for (i = 0; i < helper->dtha_nactions; i++) {
14005 			if (trace)
14006 				dtrace_helper_trace(helper,
14007 				    mstate, vstate, i + 1);
14008 
14009 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14010 			    mstate, vstate, state);
14011 
14012 			if (*flags & CPU_DTRACE_FAULT)
14013 				goto err;
14014 		}
14015 
14016 next:
14017 		if (trace)
14018 			dtrace_helper_trace(helper, mstate, vstate,
14019 			    DTRACE_HELPTRACE_NEXT);
14020 	}
14021 
14022 	if (trace)
14023 		dtrace_helper_trace(helper, mstate, vstate,
14024 		    DTRACE_HELPTRACE_DONE);
14025 
14026 	/*
14027 	 * Restore the arg0 that we saved upon entry.
14028 	 */
14029 	mstate->dtms_arg[0] = sarg0;
14030 	mstate->dtms_arg[1] = sarg1;
14031 
14032 	return (rval);
14033 
14034 err:
14035 	if (trace)
14036 		dtrace_helper_trace(helper, mstate, vstate,
14037 		    DTRACE_HELPTRACE_ERR);
14038 
14039 	/*
14040 	 * Restore the arg0 that we saved upon entry.
14041 	 */
14042 	mstate->dtms_arg[0] = sarg0;
14043 	mstate->dtms_arg[1] = sarg1;
14044 
14045 	return (0);
14046 }
14047 
14048 static void
14049 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14050     dtrace_vstate_t *vstate)
14051 {
14052 	int i;
14053 
14054 	if (helper->dtha_predicate != NULL)
14055 		dtrace_difo_release(helper->dtha_predicate, vstate);
14056 
14057 	for (i = 0; i < helper->dtha_nactions; i++) {
14058 		ASSERT(helper->dtha_actions[i] != NULL);
14059 		dtrace_difo_release(helper->dtha_actions[i], vstate);
14060 	}
14061 
14062 	kmem_free(helper->dtha_actions,
14063 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14064 	kmem_free(helper, sizeof (dtrace_helper_action_t));
14065 }
14066 
14067 static int
14068 dtrace_helper_destroygen(int gen)
14069 {
14070 	proc_t *p = curproc;
14071 	dtrace_helpers_t *help = p->p_dtrace_helpers;
14072 	dtrace_vstate_t *vstate;
14073 	int i;
14074 
14075 	ASSERT(MUTEX_HELD(&dtrace_lock));
14076 
14077 	if (help == NULL || gen > help->dthps_generation)
14078 		return (EINVAL);
14079 
14080 	vstate = &help->dthps_vstate;
14081 
14082 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14083 		dtrace_helper_action_t *last = NULL, *h, *next;
14084 
14085 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14086 			next = h->dtha_next;
14087 
14088 			if (h->dtha_generation == gen) {
14089 				if (last != NULL) {
14090 					last->dtha_next = next;
14091 				} else {
14092 					help->dthps_actions[i] = next;
14093 				}
14094 
14095 				dtrace_helper_action_destroy(h, vstate);
14096 			} else {
14097 				last = h;
14098 			}
14099 		}
14100 	}
14101 
14102 	/*
14103 	 * Interate until we've cleared out all helper providers with the
14104 	 * given generation number.
14105 	 */
14106 	for (;;) {
14107 		dtrace_helper_provider_t *prov;
14108 
14109 		/*
14110 		 * Look for a helper provider with the right generation. We
14111 		 * have to start back at the beginning of the list each time
14112 		 * because we drop dtrace_lock. It's unlikely that we'll make
14113 		 * more than two passes.
14114 		 */
14115 		for (i = 0; i < help->dthps_nprovs; i++) {
14116 			prov = help->dthps_provs[i];
14117 
14118 			if (prov->dthp_generation == gen)
14119 				break;
14120 		}
14121 
14122 		/*
14123 		 * If there were no matches, we're done.
14124 		 */
14125 		if (i == help->dthps_nprovs)
14126 			break;
14127 
14128 		/*
14129 		 * Move the last helper provider into this slot.
14130 		 */
14131 		help->dthps_nprovs--;
14132 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14133 		help->dthps_provs[help->dthps_nprovs] = NULL;
14134 
14135 		mutex_exit(&dtrace_lock);
14136 
14137 		/*
14138 		 * If we have a meta provider, remove this helper provider.
14139 		 */
14140 		mutex_enter(&dtrace_meta_lock);
14141 		if (dtrace_meta_pid != NULL) {
14142 			ASSERT(dtrace_deferred_pid == NULL);
14143 			dtrace_helper_provider_remove(&prov->dthp_prov,
14144 			    p->p_pid);
14145 		}
14146 		mutex_exit(&dtrace_meta_lock);
14147 
14148 		dtrace_helper_provider_destroy(prov);
14149 
14150 		mutex_enter(&dtrace_lock);
14151 	}
14152 
14153 	return (0);
14154 }
14155 #endif
14156 
14157 #if defined(sun)
14158 static int
14159 dtrace_helper_validate(dtrace_helper_action_t *helper)
14160 {
14161 	int err = 0, i;
14162 	dtrace_difo_t *dp;
14163 
14164 	if ((dp = helper->dtha_predicate) != NULL)
14165 		err += dtrace_difo_validate_helper(dp);
14166 
14167 	for (i = 0; i < helper->dtha_nactions; i++)
14168 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14169 
14170 	return (err == 0);
14171 }
14172 #endif
14173 
14174 #if defined(sun)
14175 static int
14176 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14177 {
14178 	dtrace_helpers_t *help;
14179 	dtrace_helper_action_t *helper, *last;
14180 	dtrace_actdesc_t *act;
14181 	dtrace_vstate_t *vstate;
14182 	dtrace_predicate_t *pred;
14183 	int count = 0, nactions = 0, i;
14184 
14185 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14186 		return (EINVAL);
14187 
14188 	help = curproc->p_dtrace_helpers;
14189 	last = help->dthps_actions[which];
14190 	vstate = &help->dthps_vstate;
14191 
14192 	for (count = 0; last != NULL; last = last->dtha_next) {
14193 		count++;
14194 		if (last->dtha_next == NULL)
14195 			break;
14196 	}
14197 
14198 	/*
14199 	 * If we already have dtrace_helper_actions_max helper actions for this
14200 	 * helper action type, we'll refuse to add a new one.
14201 	 */
14202 	if (count >= dtrace_helper_actions_max)
14203 		return (ENOSPC);
14204 
14205 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14206 	helper->dtha_generation = help->dthps_generation;
14207 
14208 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14209 		ASSERT(pred->dtp_difo != NULL);
14210 		dtrace_difo_hold(pred->dtp_difo);
14211 		helper->dtha_predicate = pred->dtp_difo;
14212 	}
14213 
14214 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14215 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14216 			goto err;
14217 
14218 		if (act->dtad_difo == NULL)
14219 			goto err;
14220 
14221 		nactions++;
14222 	}
14223 
14224 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14225 	    (helper->dtha_nactions = nactions), KM_SLEEP);
14226 
14227 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14228 		dtrace_difo_hold(act->dtad_difo);
14229 		helper->dtha_actions[i++] = act->dtad_difo;
14230 	}
14231 
14232 	if (!dtrace_helper_validate(helper))
14233 		goto err;
14234 
14235 	if (last == NULL) {
14236 		help->dthps_actions[which] = helper;
14237 	} else {
14238 		last->dtha_next = helper;
14239 	}
14240 
14241 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14242 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14243 		dtrace_helptrace_next = 0;
14244 	}
14245 
14246 	return (0);
14247 err:
14248 	dtrace_helper_action_destroy(helper, vstate);
14249 	return (EINVAL);
14250 }
14251 
14252 static void
14253 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14254     dof_helper_t *dofhp)
14255 {
14256 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14257 
14258 	mutex_enter(&dtrace_meta_lock);
14259 	mutex_enter(&dtrace_lock);
14260 
14261 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14262 		/*
14263 		 * If the dtrace module is loaded but not attached, or if
14264 		 * there aren't isn't a meta provider registered to deal with
14265 		 * these provider descriptions, we need to postpone creating
14266 		 * the actual providers until later.
14267 		 */
14268 
14269 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14270 		    dtrace_deferred_pid != help) {
14271 			help->dthps_deferred = 1;
14272 			help->dthps_pid = p->p_pid;
14273 			help->dthps_next = dtrace_deferred_pid;
14274 			help->dthps_prev = NULL;
14275 			if (dtrace_deferred_pid != NULL)
14276 				dtrace_deferred_pid->dthps_prev = help;
14277 			dtrace_deferred_pid = help;
14278 		}
14279 
14280 		mutex_exit(&dtrace_lock);
14281 
14282 	} else if (dofhp != NULL) {
14283 		/*
14284 		 * If the dtrace module is loaded and we have a particular
14285 		 * helper provider description, pass that off to the
14286 		 * meta provider.
14287 		 */
14288 
14289 		mutex_exit(&dtrace_lock);
14290 
14291 		dtrace_helper_provide(dofhp, p->p_pid);
14292 
14293 	} else {
14294 		/*
14295 		 * Otherwise, just pass all the helper provider descriptions
14296 		 * off to the meta provider.
14297 		 */
14298 
14299 		int i;
14300 		mutex_exit(&dtrace_lock);
14301 
14302 		for (i = 0; i < help->dthps_nprovs; i++) {
14303 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14304 			    p->p_pid);
14305 		}
14306 	}
14307 
14308 	mutex_exit(&dtrace_meta_lock);
14309 }
14310 
14311 static int
14312 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14313 {
14314 	dtrace_helpers_t *help;
14315 	dtrace_helper_provider_t *hprov, **tmp_provs;
14316 	uint_t tmp_maxprovs, i;
14317 
14318 	ASSERT(MUTEX_HELD(&dtrace_lock));
14319 
14320 	help = curproc->p_dtrace_helpers;
14321 	ASSERT(help != NULL);
14322 
14323 	/*
14324 	 * If we already have dtrace_helper_providers_max helper providers,
14325 	 * we're refuse to add a new one.
14326 	 */
14327 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14328 		return (ENOSPC);
14329 
14330 	/*
14331 	 * Check to make sure this isn't a duplicate.
14332 	 */
14333 	for (i = 0; i < help->dthps_nprovs; i++) {
14334 		if (dofhp->dofhp_addr ==
14335 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14336 			return (EALREADY);
14337 	}
14338 
14339 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14340 	hprov->dthp_prov = *dofhp;
14341 	hprov->dthp_ref = 1;
14342 	hprov->dthp_generation = gen;
14343 
14344 	/*
14345 	 * Allocate a bigger table for helper providers if it's already full.
14346 	 */
14347 	if (help->dthps_maxprovs == help->dthps_nprovs) {
14348 		tmp_maxprovs = help->dthps_maxprovs;
14349 		tmp_provs = help->dthps_provs;
14350 
14351 		if (help->dthps_maxprovs == 0)
14352 			help->dthps_maxprovs = 2;
14353 		else
14354 			help->dthps_maxprovs *= 2;
14355 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14356 			help->dthps_maxprovs = dtrace_helper_providers_max;
14357 
14358 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14359 
14360 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14361 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14362 
14363 		if (tmp_provs != NULL) {
14364 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14365 			    sizeof (dtrace_helper_provider_t *));
14366 			kmem_free(tmp_provs, tmp_maxprovs *
14367 			    sizeof (dtrace_helper_provider_t *));
14368 		}
14369 	}
14370 
14371 	help->dthps_provs[help->dthps_nprovs] = hprov;
14372 	help->dthps_nprovs++;
14373 
14374 	return (0);
14375 }
14376 
14377 static void
14378 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14379 {
14380 	mutex_enter(&dtrace_lock);
14381 
14382 	if (--hprov->dthp_ref == 0) {
14383 		dof_hdr_t *dof;
14384 		mutex_exit(&dtrace_lock);
14385 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14386 		dtrace_dof_destroy(dof);
14387 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14388 	} else {
14389 		mutex_exit(&dtrace_lock);
14390 	}
14391 }
14392 
14393 static int
14394 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14395 {
14396 	uintptr_t daddr = (uintptr_t)dof;
14397 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14398 	dof_provider_t *provider;
14399 	dof_probe_t *probe;
14400 	uint8_t *arg;
14401 	char *strtab, *typestr;
14402 	dof_stridx_t typeidx;
14403 	size_t typesz;
14404 	uint_t nprobes, j, k;
14405 
14406 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14407 
14408 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14409 		dtrace_dof_error(dof, "misaligned section offset");
14410 		return (-1);
14411 	}
14412 
14413 	/*
14414 	 * The section needs to be large enough to contain the DOF provider
14415 	 * structure appropriate for the given version.
14416 	 */
14417 	if (sec->dofs_size <
14418 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14419 	    offsetof(dof_provider_t, dofpv_prenoffs) :
14420 	    sizeof (dof_provider_t))) {
14421 		dtrace_dof_error(dof, "provider section too small");
14422 		return (-1);
14423 	}
14424 
14425 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14426 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14427 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14428 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14429 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14430 
14431 	if (str_sec == NULL || prb_sec == NULL ||
14432 	    arg_sec == NULL || off_sec == NULL)
14433 		return (-1);
14434 
14435 	enoff_sec = NULL;
14436 
14437 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14438 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14439 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14440 	    provider->dofpv_prenoffs)) == NULL)
14441 		return (-1);
14442 
14443 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14444 
14445 	if (provider->dofpv_name >= str_sec->dofs_size ||
14446 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14447 		dtrace_dof_error(dof, "invalid provider name");
14448 		return (-1);
14449 	}
14450 
14451 	if (prb_sec->dofs_entsize == 0 ||
14452 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14453 		dtrace_dof_error(dof, "invalid entry size");
14454 		return (-1);
14455 	}
14456 
14457 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14458 		dtrace_dof_error(dof, "misaligned entry size");
14459 		return (-1);
14460 	}
14461 
14462 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14463 		dtrace_dof_error(dof, "invalid entry size");
14464 		return (-1);
14465 	}
14466 
14467 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14468 		dtrace_dof_error(dof, "misaligned section offset");
14469 		return (-1);
14470 	}
14471 
14472 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14473 		dtrace_dof_error(dof, "invalid entry size");
14474 		return (-1);
14475 	}
14476 
14477 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14478 
14479 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14480 
14481 	/*
14482 	 * Take a pass through the probes to check for errors.
14483 	 */
14484 	for (j = 0; j < nprobes; j++) {
14485 		probe = (dof_probe_t *)(uintptr_t)(daddr +
14486 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14487 
14488 		if (probe->dofpr_func >= str_sec->dofs_size) {
14489 			dtrace_dof_error(dof, "invalid function name");
14490 			return (-1);
14491 		}
14492 
14493 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14494 			dtrace_dof_error(dof, "function name too long");
14495 			return (-1);
14496 		}
14497 
14498 		if (probe->dofpr_name >= str_sec->dofs_size ||
14499 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14500 			dtrace_dof_error(dof, "invalid probe name");
14501 			return (-1);
14502 		}
14503 
14504 		/*
14505 		 * The offset count must not wrap the index, and the offsets
14506 		 * must also not overflow the section's data.
14507 		 */
14508 		if (probe->dofpr_offidx + probe->dofpr_noffs <
14509 		    probe->dofpr_offidx ||
14510 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14511 		    off_sec->dofs_entsize > off_sec->dofs_size) {
14512 			dtrace_dof_error(dof, "invalid probe offset");
14513 			return (-1);
14514 		}
14515 
14516 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14517 			/*
14518 			 * If there's no is-enabled offset section, make sure
14519 			 * there aren't any is-enabled offsets. Otherwise
14520 			 * perform the same checks as for probe offsets
14521 			 * (immediately above).
14522 			 */
14523 			if (enoff_sec == NULL) {
14524 				if (probe->dofpr_enoffidx != 0 ||
14525 				    probe->dofpr_nenoffs != 0) {
14526 					dtrace_dof_error(dof, "is-enabled "
14527 					    "offsets with null section");
14528 					return (-1);
14529 				}
14530 			} else if (probe->dofpr_enoffidx +
14531 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14532 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14533 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14534 				dtrace_dof_error(dof, "invalid is-enabled "
14535 				    "offset");
14536 				return (-1);
14537 			}
14538 
14539 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14540 				dtrace_dof_error(dof, "zero probe and "
14541 				    "is-enabled offsets");
14542 				return (-1);
14543 			}
14544 		} else if (probe->dofpr_noffs == 0) {
14545 			dtrace_dof_error(dof, "zero probe offsets");
14546 			return (-1);
14547 		}
14548 
14549 		if (probe->dofpr_argidx + probe->dofpr_xargc <
14550 		    probe->dofpr_argidx ||
14551 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14552 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14553 			dtrace_dof_error(dof, "invalid args");
14554 			return (-1);
14555 		}
14556 
14557 		typeidx = probe->dofpr_nargv;
14558 		typestr = strtab + probe->dofpr_nargv;
14559 		for (k = 0; k < probe->dofpr_nargc; k++) {
14560 			if (typeidx >= str_sec->dofs_size) {
14561 				dtrace_dof_error(dof, "bad "
14562 				    "native argument type");
14563 				return (-1);
14564 			}
14565 
14566 			typesz = strlen(typestr) + 1;
14567 			if (typesz > DTRACE_ARGTYPELEN) {
14568 				dtrace_dof_error(dof, "native "
14569 				    "argument type too long");
14570 				return (-1);
14571 			}
14572 			typeidx += typesz;
14573 			typestr += typesz;
14574 		}
14575 
14576 		typeidx = probe->dofpr_xargv;
14577 		typestr = strtab + probe->dofpr_xargv;
14578 		for (k = 0; k < probe->dofpr_xargc; k++) {
14579 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14580 				dtrace_dof_error(dof, "bad "
14581 				    "native argument index");
14582 				return (-1);
14583 			}
14584 
14585 			if (typeidx >= str_sec->dofs_size) {
14586 				dtrace_dof_error(dof, "bad "
14587 				    "translated argument type");
14588 				return (-1);
14589 			}
14590 
14591 			typesz = strlen(typestr) + 1;
14592 			if (typesz > DTRACE_ARGTYPELEN) {
14593 				dtrace_dof_error(dof, "translated argument "
14594 				    "type too long");
14595 				return (-1);
14596 			}
14597 
14598 			typeidx += typesz;
14599 			typestr += typesz;
14600 		}
14601 	}
14602 
14603 	return (0);
14604 }
14605 
14606 static int
14607 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14608 {
14609 	dtrace_helpers_t *help;
14610 	dtrace_vstate_t *vstate;
14611 	dtrace_enabling_t *enab = NULL;
14612 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14613 	uintptr_t daddr = (uintptr_t)dof;
14614 
14615 	ASSERT(MUTEX_HELD(&dtrace_lock));
14616 
14617 	if ((help = curproc->p_dtrace_helpers) == NULL)
14618 		help = dtrace_helpers_create(curproc);
14619 
14620 	vstate = &help->dthps_vstate;
14621 
14622 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14623 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14624 		dtrace_dof_destroy(dof);
14625 		return (rv);
14626 	}
14627 
14628 	/*
14629 	 * Look for helper providers and validate their descriptions.
14630 	 */
14631 	if (dhp != NULL) {
14632 		for (i = 0; i < dof->dofh_secnum; i++) {
14633 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14634 			    dof->dofh_secoff + i * dof->dofh_secsize);
14635 
14636 			if (sec->dofs_type != DOF_SECT_PROVIDER)
14637 				continue;
14638 
14639 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14640 				dtrace_enabling_destroy(enab);
14641 				dtrace_dof_destroy(dof);
14642 				return (-1);
14643 			}
14644 
14645 			nprovs++;
14646 		}
14647 	}
14648 
14649 	/*
14650 	 * Now we need to walk through the ECB descriptions in the enabling.
14651 	 */
14652 	for (i = 0; i < enab->dten_ndesc; i++) {
14653 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14654 		dtrace_probedesc_t *desc = &ep->dted_probe;
14655 
14656 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14657 			continue;
14658 
14659 		if (strcmp(desc->dtpd_mod, "helper") != 0)
14660 			continue;
14661 
14662 		if (strcmp(desc->dtpd_func, "ustack") != 0)
14663 			continue;
14664 
14665 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14666 		    ep)) != 0) {
14667 			/*
14668 			 * Adding this helper action failed -- we are now going
14669 			 * to rip out the entire generation and return failure.
14670 			 */
14671 			(void) dtrace_helper_destroygen(help->dthps_generation);
14672 			dtrace_enabling_destroy(enab);
14673 			dtrace_dof_destroy(dof);
14674 			return (-1);
14675 		}
14676 
14677 		nhelpers++;
14678 	}
14679 
14680 	if (nhelpers < enab->dten_ndesc)
14681 		dtrace_dof_error(dof, "unmatched helpers");
14682 
14683 	gen = help->dthps_generation++;
14684 	dtrace_enabling_destroy(enab);
14685 
14686 	if (dhp != NULL && nprovs > 0) {
14687 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14688 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14689 			mutex_exit(&dtrace_lock);
14690 			dtrace_helper_provider_register(curproc, help, dhp);
14691 			mutex_enter(&dtrace_lock);
14692 
14693 			destroy = 0;
14694 		}
14695 	}
14696 
14697 	if (destroy)
14698 		dtrace_dof_destroy(dof);
14699 
14700 	return (gen);
14701 }
14702 
14703 static dtrace_helpers_t *
14704 dtrace_helpers_create(proc_t *p)
14705 {
14706 	dtrace_helpers_t *help;
14707 
14708 	ASSERT(MUTEX_HELD(&dtrace_lock));
14709 	ASSERT(p->p_dtrace_helpers == NULL);
14710 
14711 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14712 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14713 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14714 
14715 	p->p_dtrace_helpers = help;
14716 	dtrace_helpers++;
14717 
14718 	return (help);
14719 }
14720 
14721 static void
14722 dtrace_helpers_destroy(void)
14723 {
14724 	dtrace_helpers_t *help;
14725 	dtrace_vstate_t *vstate;
14726 	proc_t *p = curproc;
14727 	int i;
14728 
14729 	mutex_enter(&dtrace_lock);
14730 
14731 	ASSERT(p->p_dtrace_helpers != NULL);
14732 	ASSERT(dtrace_helpers > 0);
14733 
14734 	help = p->p_dtrace_helpers;
14735 	vstate = &help->dthps_vstate;
14736 
14737 	/*
14738 	 * We're now going to lose the help from this process.
14739 	 */
14740 	p->p_dtrace_helpers = NULL;
14741 	dtrace_sync();
14742 
14743 	/*
14744 	 * Destory the helper actions.
14745 	 */
14746 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14747 		dtrace_helper_action_t *h, *next;
14748 
14749 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14750 			next = h->dtha_next;
14751 			dtrace_helper_action_destroy(h, vstate);
14752 			h = next;
14753 		}
14754 	}
14755 
14756 	mutex_exit(&dtrace_lock);
14757 
14758 	/*
14759 	 * Destroy the helper providers.
14760 	 */
14761 	if (help->dthps_maxprovs > 0) {
14762 		mutex_enter(&dtrace_meta_lock);
14763 		if (dtrace_meta_pid != NULL) {
14764 			ASSERT(dtrace_deferred_pid == NULL);
14765 
14766 			for (i = 0; i < help->dthps_nprovs; i++) {
14767 				dtrace_helper_provider_remove(
14768 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14769 			}
14770 		} else {
14771 			mutex_enter(&dtrace_lock);
14772 			ASSERT(help->dthps_deferred == 0 ||
14773 			    help->dthps_next != NULL ||
14774 			    help->dthps_prev != NULL ||
14775 			    help == dtrace_deferred_pid);
14776 
14777 			/*
14778 			 * Remove the helper from the deferred list.
14779 			 */
14780 			if (help->dthps_next != NULL)
14781 				help->dthps_next->dthps_prev = help->dthps_prev;
14782 			if (help->dthps_prev != NULL)
14783 				help->dthps_prev->dthps_next = help->dthps_next;
14784 			if (dtrace_deferred_pid == help) {
14785 				dtrace_deferred_pid = help->dthps_next;
14786 				ASSERT(help->dthps_prev == NULL);
14787 			}
14788 
14789 			mutex_exit(&dtrace_lock);
14790 		}
14791 
14792 		mutex_exit(&dtrace_meta_lock);
14793 
14794 		for (i = 0; i < help->dthps_nprovs; i++) {
14795 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14796 		}
14797 
14798 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14799 		    sizeof (dtrace_helper_provider_t *));
14800 	}
14801 
14802 	mutex_enter(&dtrace_lock);
14803 
14804 	dtrace_vstate_fini(&help->dthps_vstate);
14805 	kmem_free(help->dthps_actions,
14806 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14807 	kmem_free(help, sizeof (dtrace_helpers_t));
14808 
14809 	--dtrace_helpers;
14810 	mutex_exit(&dtrace_lock);
14811 }
14812 
14813 static void
14814 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14815 {
14816 	dtrace_helpers_t *help, *newhelp;
14817 	dtrace_helper_action_t *helper, *new, *last;
14818 	dtrace_difo_t *dp;
14819 	dtrace_vstate_t *vstate;
14820 	int i, j, sz, hasprovs = 0;
14821 
14822 	mutex_enter(&dtrace_lock);
14823 	ASSERT(from->p_dtrace_helpers != NULL);
14824 	ASSERT(dtrace_helpers > 0);
14825 
14826 	help = from->p_dtrace_helpers;
14827 	newhelp = dtrace_helpers_create(to);
14828 	ASSERT(to->p_dtrace_helpers != NULL);
14829 
14830 	newhelp->dthps_generation = help->dthps_generation;
14831 	vstate = &newhelp->dthps_vstate;
14832 
14833 	/*
14834 	 * Duplicate the helper actions.
14835 	 */
14836 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14837 		if ((helper = help->dthps_actions[i]) == NULL)
14838 			continue;
14839 
14840 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14841 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14842 			    KM_SLEEP);
14843 			new->dtha_generation = helper->dtha_generation;
14844 
14845 			if ((dp = helper->dtha_predicate) != NULL) {
14846 				dp = dtrace_difo_duplicate(dp, vstate);
14847 				new->dtha_predicate = dp;
14848 			}
14849 
14850 			new->dtha_nactions = helper->dtha_nactions;
14851 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14852 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14853 
14854 			for (j = 0; j < new->dtha_nactions; j++) {
14855 				dtrace_difo_t *dp = helper->dtha_actions[j];
14856 
14857 				ASSERT(dp != NULL);
14858 				dp = dtrace_difo_duplicate(dp, vstate);
14859 				new->dtha_actions[j] = dp;
14860 			}
14861 
14862 			if (last != NULL) {
14863 				last->dtha_next = new;
14864 			} else {
14865 				newhelp->dthps_actions[i] = new;
14866 			}
14867 
14868 			last = new;
14869 		}
14870 	}
14871 
14872 	/*
14873 	 * Duplicate the helper providers and register them with the
14874 	 * DTrace framework.
14875 	 */
14876 	if (help->dthps_nprovs > 0) {
14877 		newhelp->dthps_nprovs = help->dthps_nprovs;
14878 		newhelp->dthps_maxprovs = help->dthps_nprovs;
14879 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14880 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14881 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14882 			newhelp->dthps_provs[i] = help->dthps_provs[i];
14883 			newhelp->dthps_provs[i]->dthp_ref++;
14884 		}
14885 
14886 		hasprovs = 1;
14887 	}
14888 
14889 	mutex_exit(&dtrace_lock);
14890 
14891 	if (hasprovs)
14892 		dtrace_helper_provider_register(to, newhelp, NULL);
14893 }
14894 #endif
14895 
14896 #if defined(sun)
14897 /*
14898  * DTrace Hook Functions
14899  */
14900 static void
14901 dtrace_module_loaded(modctl_t *ctl)
14902 {
14903 	dtrace_provider_t *prv;
14904 
14905 	mutex_enter(&dtrace_provider_lock);
14906 	mutex_enter(&mod_lock);
14907 
14908 	ASSERT(ctl->mod_busy);
14909 
14910 	/*
14911 	 * We're going to call each providers per-module provide operation
14912 	 * specifying only this module.
14913 	 */
14914 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14915 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14916 
14917 	mutex_exit(&mod_lock);
14918 	mutex_exit(&dtrace_provider_lock);
14919 
14920 	/*
14921 	 * If we have any retained enablings, we need to match against them.
14922 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14923 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14924 	 * module.  (In particular, this happens when loading scheduling
14925 	 * classes.)  So if we have any retained enablings, we need to dispatch
14926 	 * our task queue to do the match for us.
14927 	 */
14928 	mutex_enter(&dtrace_lock);
14929 
14930 	if (dtrace_retained == NULL) {
14931 		mutex_exit(&dtrace_lock);
14932 		return;
14933 	}
14934 
14935 	(void) taskq_dispatch(dtrace_taskq,
14936 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14937 
14938 	mutex_exit(&dtrace_lock);
14939 
14940 	/*
14941 	 * And now, for a little heuristic sleaze:  in general, we want to
14942 	 * match modules as soon as they load.  However, we cannot guarantee
14943 	 * this, because it would lead us to the lock ordering violation
14944 	 * outlined above.  The common case, of course, is that cpu_lock is
14945 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14946 	 * long enough for the task queue to do its work.  If it's not, it's
14947 	 * not a serious problem -- it just means that the module that we
14948 	 * just loaded may not be immediately instrumentable.
14949 	 */
14950 	xdelay(1);
14951 }
14952 
14953 static void
14954 dtrace_module_unloaded(modctl_t *ctl)
14955 {
14956 	dtrace_probe_t template, *probe, *first, *next;
14957 	dtrace_provider_t *prov;
14958 
14959 	template.dtpr_mod = ctl->mod_modname;
14960 
14961 	mutex_enter(&dtrace_provider_lock);
14962 	mutex_enter(&mod_lock);
14963 	mutex_enter(&dtrace_lock);
14964 
14965 	if (dtrace_bymod == NULL) {
14966 		/*
14967 		 * The DTrace module is loaded (obviously) but not attached;
14968 		 * we don't have any work to do.
14969 		 */
14970 		mutex_exit(&dtrace_provider_lock);
14971 		mutex_exit(&mod_lock);
14972 		mutex_exit(&dtrace_lock);
14973 		return;
14974 	}
14975 
14976 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14977 	    probe != NULL; probe = probe->dtpr_nextmod) {
14978 		if (probe->dtpr_ecb != NULL) {
14979 			mutex_exit(&dtrace_provider_lock);
14980 			mutex_exit(&mod_lock);
14981 			mutex_exit(&dtrace_lock);
14982 
14983 			/*
14984 			 * This shouldn't _actually_ be possible -- we're
14985 			 * unloading a module that has an enabled probe in it.
14986 			 * (It's normally up to the provider to make sure that
14987 			 * this can't happen.)  However, because dtps_enable()
14988 			 * doesn't have a failure mode, there can be an
14989 			 * enable/unload race.  Upshot:  we don't want to
14990 			 * assert, but we're not going to disable the
14991 			 * probe, either.
14992 			 */
14993 			if (dtrace_err_verbose) {
14994 				cmn_err(CE_WARN, "unloaded module '%s' had "
14995 				    "enabled probes", ctl->mod_modname);
14996 			}
14997 
14998 			return;
14999 		}
15000 	}
15001 
15002 	probe = first;
15003 
15004 	for (first = NULL; probe != NULL; probe = next) {
15005 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15006 
15007 		dtrace_probes[probe->dtpr_id - 1] = NULL;
15008 
15009 		next = probe->dtpr_nextmod;
15010 		dtrace_hash_remove(dtrace_bymod, probe);
15011 		dtrace_hash_remove(dtrace_byfunc, probe);
15012 		dtrace_hash_remove(dtrace_byname, probe);
15013 
15014 		if (first == NULL) {
15015 			first = probe;
15016 			probe->dtpr_nextmod = NULL;
15017 		} else {
15018 			probe->dtpr_nextmod = first;
15019 			first = probe;
15020 		}
15021 	}
15022 
15023 	/*
15024 	 * We've removed all of the module's probes from the hash chains and
15025 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15026 	 * everyone has cleared out from any probe array processing.
15027 	 */
15028 	dtrace_sync();
15029 
15030 	for (probe = first; probe != NULL; probe = first) {
15031 		first = probe->dtpr_nextmod;
15032 		prov = probe->dtpr_provider;
15033 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15034 		    probe->dtpr_arg);
15035 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15036 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15037 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15038 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15039 		kmem_free(probe, sizeof (dtrace_probe_t));
15040 	}
15041 
15042 	mutex_exit(&dtrace_lock);
15043 	mutex_exit(&mod_lock);
15044 	mutex_exit(&dtrace_provider_lock);
15045 }
15046 
15047 static void
15048 dtrace_suspend(void)
15049 {
15050 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15051 }
15052 
15053 static void
15054 dtrace_resume(void)
15055 {
15056 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15057 }
15058 #endif
15059 
15060 static int
15061 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15062 {
15063 	ASSERT(MUTEX_HELD(&cpu_lock));
15064 	mutex_enter(&dtrace_lock);
15065 
15066 	switch (what) {
15067 	case CPU_CONFIG: {
15068 		dtrace_state_t *state;
15069 		dtrace_optval_t *opt, rs, c;
15070 
15071 		/*
15072 		 * For now, we only allocate a new buffer for anonymous state.
15073 		 */
15074 		if ((state = dtrace_anon.dta_state) == NULL)
15075 			break;
15076 
15077 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15078 			break;
15079 
15080 		opt = state->dts_options;
15081 		c = opt[DTRACEOPT_CPU];
15082 
15083 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15084 			break;
15085 
15086 		/*
15087 		 * Regardless of what the actual policy is, we're going to
15088 		 * temporarily set our resize policy to be manual.  We're
15089 		 * also going to temporarily set our CPU option to denote
15090 		 * the newly configured CPU.
15091 		 */
15092 		rs = opt[DTRACEOPT_BUFRESIZE];
15093 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15094 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15095 
15096 		(void) dtrace_state_buffers(state);
15097 
15098 		opt[DTRACEOPT_BUFRESIZE] = rs;
15099 		opt[DTRACEOPT_CPU] = c;
15100 
15101 		break;
15102 	}
15103 
15104 	case CPU_UNCONFIG:
15105 		/*
15106 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15107 		 * buffer will be freed when the consumer exits.)
15108 		 */
15109 		break;
15110 
15111 	default:
15112 		break;
15113 	}
15114 
15115 	mutex_exit(&dtrace_lock);
15116 	return (0);
15117 }
15118 
15119 #if defined(sun)
15120 static void
15121 dtrace_cpu_setup_initial(processorid_t cpu)
15122 {
15123 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15124 }
15125 #endif
15126 
15127 static void
15128 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15129 {
15130 	if (dtrace_toxranges >= dtrace_toxranges_max) {
15131 		int osize, nsize;
15132 		dtrace_toxrange_t *range;
15133 
15134 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15135 
15136 		if (osize == 0) {
15137 			ASSERT(dtrace_toxrange == NULL);
15138 			ASSERT(dtrace_toxranges_max == 0);
15139 			dtrace_toxranges_max = 1;
15140 		} else {
15141 			dtrace_toxranges_max <<= 1;
15142 		}
15143 
15144 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15145 		range = kmem_zalloc(nsize, KM_SLEEP);
15146 
15147 		if (dtrace_toxrange != NULL) {
15148 			ASSERT(osize != 0);
15149 			bcopy(dtrace_toxrange, range, osize);
15150 			kmem_free(dtrace_toxrange, osize);
15151 		}
15152 
15153 		dtrace_toxrange = range;
15154 	}
15155 
15156 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15157 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15158 
15159 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15160 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15161 	dtrace_toxranges++;
15162 }
15163 
15164 /*
15165  * DTrace Driver Cookbook Functions
15166  */
15167 #if defined(sun)
15168 /*ARGSUSED*/
15169 static int
15170 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15171 {
15172 	dtrace_provider_id_t id;
15173 	dtrace_state_t *state = NULL;
15174 	dtrace_enabling_t *enab;
15175 
15176 	mutex_enter(&cpu_lock);
15177 	mutex_enter(&dtrace_provider_lock);
15178 	mutex_enter(&dtrace_lock);
15179 
15180 	if (ddi_soft_state_init(&dtrace_softstate,
15181 	    sizeof (dtrace_state_t), 0) != 0) {
15182 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15183 		mutex_exit(&cpu_lock);
15184 		mutex_exit(&dtrace_provider_lock);
15185 		mutex_exit(&dtrace_lock);
15186 		return (DDI_FAILURE);
15187 	}
15188 
15189 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15190 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15191 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15192 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15193 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15194 		ddi_remove_minor_node(devi, NULL);
15195 		ddi_soft_state_fini(&dtrace_softstate);
15196 		mutex_exit(&cpu_lock);
15197 		mutex_exit(&dtrace_provider_lock);
15198 		mutex_exit(&dtrace_lock);
15199 		return (DDI_FAILURE);
15200 	}
15201 
15202 	ddi_report_dev(devi);
15203 	dtrace_devi = devi;
15204 
15205 	dtrace_modload = dtrace_module_loaded;
15206 	dtrace_modunload = dtrace_module_unloaded;
15207 	dtrace_cpu_init = dtrace_cpu_setup_initial;
15208 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15209 	dtrace_helpers_fork = dtrace_helpers_duplicate;
15210 	dtrace_cpustart_init = dtrace_suspend;
15211 	dtrace_cpustart_fini = dtrace_resume;
15212 	dtrace_debugger_init = dtrace_suspend;
15213 	dtrace_debugger_fini = dtrace_resume;
15214 
15215 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15216 
15217 	ASSERT(MUTEX_HELD(&cpu_lock));
15218 
15219 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15220 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15221 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15222 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15223 	    VM_SLEEP | VMC_IDENTIFIER);
15224 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15225 	    1, INT_MAX, 0);
15226 
15227 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15228 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15229 	    NULL, NULL, NULL, NULL, NULL, 0);
15230 
15231 	ASSERT(MUTEX_HELD(&cpu_lock));
15232 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15233 	    offsetof(dtrace_probe_t, dtpr_nextmod),
15234 	    offsetof(dtrace_probe_t, dtpr_prevmod));
15235 
15236 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15237 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15238 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15239 
15240 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15241 	    offsetof(dtrace_probe_t, dtpr_nextname),
15242 	    offsetof(dtrace_probe_t, dtpr_prevname));
15243 
15244 	if (dtrace_retain_max < 1) {
15245 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15246 		    "setting to 1", dtrace_retain_max);
15247 		dtrace_retain_max = 1;
15248 	}
15249 
15250 	/*
15251 	 * Now discover our toxic ranges.
15252 	 */
15253 	dtrace_toxic_ranges(dtrace_toxrange_add);
15254 
15255 	/*
15256 	 * Before we register ourselves as a provider to our own framework,
15257 	 * we would like to assert that dtrace_provider is NULL -- but that's
15258 	 * not true if we were loaded as a dependency of a DTrace provider.
15259 	 * Once we've registered, we can assert that dtrace_provider is our
15260 	 * pseudo provider.
15261 	 */
15262 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15263 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15264 
15265 	ASSERT(dtrace_provider != NULL);
15266 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15267 
15268 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15269 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15270 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15271 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15272 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15273 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15274 
15275 	dtrace_anon_property();
15276 	mutex_exit(&cpu_lock);
15277 
15278 	/*
15279 	 * If DTrace helper tracing is enabled, we need to allocate the
15280 	 * trace buffer and initialize the values.
15281 	 */
15282 	if (dtrace_helptrace_enabled) {
15283 		ASSERT(dtrace_helptrace_buffer == NULL);
15284 		dtrace_helptrace_buffer =
15285 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15286 		dtrace_helptrace_next = 0;
15287 	}
15288 
15289 	/*
15290 	 * If there are already providers, we must ask them to provide their
15291 	 * probes, and then match any anonymous enabling against them.  Note
15292 	 * that there should be no other retained enablings at this time:
15293 	 * the only retained enablings at this time should be the anonymous
15294 	 * enabling.
15295 	 */
15296 	if (dtrace_anon.dta_enabling != NULL) {
15297 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15298 
15299 		dtrace_enabling_provide(NULL);
15300 		state = dtrace_anon.dta_state;
15301 
15302 		/*
15303 		 * We couldn't hold cpu_lock across the above call to
15304 		 * dtrace_enabling_provide(), but we must hold it to actually
15305 		 * enable the probes.  We have to drop all of our locks, pick
15306 		 * up cpu_lock, and regain our locks before matching the
15307 		 * retained anonymous enabling.
15308 		 */
15309 		mutex_exit(&dtrace_lock);
15310 		mutex_exit(&dtrace_provider_lock);
15311 
15312 		mutex_enter(&cpu_lock);
15313 		mutex_enter(&dtrace_provider_lock);
15314 		mutex_enter(&dtrace_lock);
15315 
15316 		if ((enab = dtrace_anon.dta_enabling) != NULL)
15317 			(void) dtrace_enabling_match(enab, NULL);
15318 
15319 		mutex_exit(&cpu_lock);
15320 	}
15321 
15322 	mutex_exit(&dtrace_lock);
15323 	mutex_exit(&dtrace_provider_lock);
15324 
15325 	if (state != NULL) {
15326 		/*
15327 		 * If we created any anonymous state, set it going now.
15328 		 */
15329 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15330 	}
15331 
15332 	return (DDI_SUCCESS);
15333 }
15334 #endif
15335 
15336 #if !defined(sun)
15337 #if __FreeBSD_version >= 800039
15338 static void
15339 dtrace_dtr(void *data __unused)
15340 {
15341 }
15342 #endif
15343 #endif
15344 
15345 #if !defined(sun)
15346 static dev_type_open(dtrace_open);
15347 
15348 /* Pseudo Device Entry points */
15349 /* Just opens, clones to the fileops below */
15350 const struct cdevsw dtrace_cdevsw = {
15351 	dtrace_open, noclose, noread, nowrite, noioctl,
15352 	nostop, notty, nopoll, nommap, nokqfilter,
15353 	D_OTHER | D_MPSAFE
15354 };
15355 
15356 static int dtrace_ioctl(struct file *fp, u_long cmd, void *data);
15357 static int dtrace_close(struct file *fp);
15358 
15359 static const struct fileops dtrace_fileops = {
15360 	.fo_read = fbadop_read,
15361 	.fo_write = fbadop_write,
15362 	.fo_ioctl = dtrace_ioctl,
15363 	.fo_fcntl = fnullop_fcntl,
15364 	.fo_poll = fnullop_poll,
15365 	.fo_stat = fbadop_stat,
15366 	.fo_close = dtrace_close,
15367 	.fo_kqfilter = fnullop_kqfilter,
15368 };
15369 #endif
15370 
15371 /*ARGSUSED*/
15372 static int
15373 #if defined(sun)
15374 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15375 #else
15376 dtrace_open(dev_t dev, int flags, int mode, struct lwp *l)
15377 #endif
15378 {
15379 	dtrace_state_t *state;
15380 	uint32_t priv;
15381 	uid_t uid;
15382 	zoneid_t zoneid;
15383 
15384 #if defined(sun)
15385 	if (getminor(*devp) == DTRACEMNRN_HELPER)
15386 		return (0);
15387 
15388 	/*
15389 	 * If this wasn't an open with the "helper" minor, then it must be
15390 	 * the "dtrace" minor.
15391 	 */
15392 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15393 #else
15394 	cred_t *cred_p = NULL;
15395 	struct file *fp;
15396 	int fd;
15397 	int res;
15398 
15399 	if ((res = fd_allocfile(&fp, &fd)) != 0)
15400 		return res;
15401 #if 0
15402 #if __FreeBSD_version < 800039
15403 	/*
15404 	 * The first minor device is the one that is cloned so there is
15405 	 * nothing more to do here.
15406 	 */
15407 	if (dev2unit(dev) == 0)
15408 		return 0;
15409 
15410 	/*
15411 	 * Devices are cloned, so if the DTrace state has already
15412 	 * been allocated, that means this device belongs to a
15413 	 * different client. Each client should open '/dev/dtrace'
15414 	 * to get a cloned device.
15415 	 */
15416 	if (dev->si_drv1 != NULL)
15417 		return (EBUSY);
15418 #endif
15419 
15420 	cred_p = dev->si_cred;
15421 #endif
15422 	cred_p = l->l_cred;
15423 #endif
15424 
15425 	/*
15426 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15427 	 * caller lacks sufficient permission to do anything with DTrace.
15428 	 */
15429 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15430 	if (priv == DTRACE_PRIV_NONE) {
15431 		return (EACCES);
15432 	}
15433 
15434 	/*
15435 	 * Ask all providers to provide all their probes.
15436 	 */
15437 	mutex_enter(&dtrace_provider_lock);
15438 	dtrace_probe_provide(NULL, NULL);
15439 	mutex_exit(&dtrace_provider_lock);
15440 
15441 	mutex_enter(&cpu_lock);
15442 	mutex_enter(&dtrace_lock);
15443 	dtrace_opens++;
15444 	dtrace_membar_producer();
15445 
15446 #if defined(sun)
15447 	/*
15448 	 * If the kernel debugger is active (that is, if the kernel debugger
15449 	 * modified text in some way), we won't allow the open.
15450 	 */
15451 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15452 		dtrace_opens--;
15453 		mutex_exit(&cpu_lock);
15454 		mutex_exit(&dtrace_lock);
15455 		return (EBUSY);
15456 	}
15457 
15458 	state = dtrace_state_create(devp, cred_p);
15459 #else
15460 	state = dtrace_state_create(dev, cred_p);
15461 #endif
15462 
15463 	mutex_exit(&cpu_lock);
15464 
15465 	if (state == NULL) {
15466 #if defined(sun)
15467 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15468 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15469 #else
15470 		--dtrace_opens;
15471 #endif
15472 		mutex_exit(&dtrace_lock);
15473 		return (EAGAIN);
15474 	}
15475 
15476 	mutex_exit(&dtrace_lock);
15477 
15478 #if defined(sun)
15479 	return (0);
15480 #else
15481 	return fd_clone(fp, fd, flags, &dtrace_fileops, state);
15482 #endif
15483 }
15484 
15485 /*ARGSUSED*/
15486 static int
15487 #if defined(sun)
15488 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15489 #else
15490 dtrace_close(struct file *fp)
15491 #endif
15492 {
15493 #if defined(sun)
15494 	minor_t minor = getminor(dev);
15495 	dtrace_state_t *state;
15496 
15497 	if (minor == DTRACEMNRN_HELPER)
15498 		return (0);
15499 
15500 	state = ddi_get_soft_state(dtrace_softstate, minor);
15501 #else
15502 	dtrace_state_t *state = (dtrace_state_t *)fp->f_data;
15503 #endif
15504 
15505 	mutex_enter(&cpu_lock);
15506 	mutex_enter(&dtrace_lock);
15507 
15508 	if (state != NULL) {
15509 		if (state->dts_anon) {
15510 			/*
15511 			 * There is anonymous state. Destroy that first.
15512 			 */
15513 			ASSERT(dtrace_anon.dta_state == NULL);
15514 			dtrace_state_destroy(state->dts_anon);
15515 		}
15516 
15517 		dtrace_state_destroy(state);
15518 
15519 #if !defined(sun)
15520 		fp->f_data = NULL;
15521 #endif
15522 	}
15523 
15524 	ASSERT(dtrace_opens > 0);
15525 #if defined(sun)
15526 	/*
15527 	 * Only relinquish control of the kernel debugger interface when there
15528 	 * are no consumers and no anonymous enablings.
15529 	 */
15530 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15531 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15532 #else
15533 	--dtrace_opens;
15534 #endif
15535 
15536 	mutex_exit(&dtrace_lock);
15537 	mutex_exit(&cpu_lock);
15538 
15539 	return (0);
15540 }
15541 
15542 #if defined(sun)
15543 /*ARGSUSED*/
15544 static int
15545 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15546 {
15547 	int rval;
15548 	dof_helper_t help, *dhp = NULL;
15549 
15550 	switch (cmd) {
15551 	case DTRACEHIOC_ADDDOF:
15552 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15553 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15554 			return (EFAULT);
15555 		}
15556 
15557 		dhp = &help;
15558 		arg = (intptr_t)help.dofhp_dof;
15559 		/*FALLTHROUGH*/
15560 
15561 	case DTRACEHIOC_ADD: {
15562 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15563 
15564 		if (dof == NULL)
15565 			return (rval);
15566 
15567 		mutex_enter(&dtrace_lock);
15568 
15569 		/*
15570 		 * dtrace_helper_slurp() takes responsibility for the dof --
15571 		 * it may free it now or it may save it and free it later.
15572 		 */
15573 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15574 			*rv = rval;
15575 			rval = 0;
15576 		} else {
15577 			rval = EINVAL;
15578 		}
15579 
15580 		mutex_exit(&dtrace_lock);
15581 		return (rval);
15582 	}
15583 
15584 	case DTRACEHIOC_REMOVE: {
15585 		mutex_enter(&dtrace_lock);
15586 		rval = dtrace_helper_destroygen(arg);
15587 		mutex_exit(&dtrace_lock);
15588 
15589 		return (rval);
15590 	}
15591 
15592 	default:
15593 		break;
15594 	}
15595 
15596 	return (ENOTTY);
15597 }
15598 
15599 /*ARGSUSED*/
15600 static int
15601 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15602 {
15603 	minor_t minor = getminor(dev);
15604 	dtrace_state_t *state;
15605 	int rval;
15606 
15607 	if (minor == DTRACEMNRN_HELPER)
15608 		return (dtrace_ioctl_helper(cmd, arg, rv));
15609 
15610 	state = ddi_get_soft_state(dtrace_softstate, minor);
15611 
15612 	if (state->dts_anon) {
15613 		ASSERT(dtrace_anon.dta_state == NULL);
15614 		state = state->dts_anon;
15615 	}
15616 
15617 	switch (cmd) {
15618 	case DTRACEIOC_PROVIDER: {
15619 		dtrace_providerdesc_t pvd;
15620 		dtrace_provider_t *pvp;
15621 
15622 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15623 			return (EFAULT);
15624 
15625 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15626 		mutex_enter(&dtrace_provider_lock);
15627 
15628 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15629 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15630 				break;
15631 		}
15632 
15633 		mutex_exit(&dtrace_provider_lock);
15634 
15635 		if (pvp == NULL)
15636 			return (ESRCH);
15637 
15638 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15639 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15640 
15641 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15642 			return (EFAULT);
15643 
15644 		return (0);
15645 	}
15646 
15647 	case DTRACEIOC_EPROBE: {
15648 		dtrace_eprobedesc_t epdesc;
15649 		dtrace_ecb_t *ecb;
15650 		dtrace_action_t *act;
15651 		void *buf;
15652 		size_t size;
15653 		uintptr_t dest;
15654 		int nrecs;
15655 
15656 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15657 			return (EFAULT);
15658 
15659 		mutex_enter(&dtrace_lock);
15660 
15661 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15662 			mutex_exit(&dtrace_lock);
15663 			return (EINVAL);
15664 		}
15665 
15666 		if (ecb->dte_probe == NULL) {
15667 			mutex_exit(&dtrace_lock);
15668 			return (EINVAL);
15669 		}
15670 
15671 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15672 		epdesc.dtepd_uarg = ecb->dte_uarg;
15673 		epdesc.dtepd_size = ecb->dte_size;
15674 
15675 		nrecs = epdesc.dtepd_nrecs;
15676 		epdesc.dtepd_nrecs = 0;
15677 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15678 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15679 				continue;
15680 
15681 			epdesc.dtepd_nrecs++;
15682 		}
15683 
15684 		/*
15685 		 * Now that we have the size, we need to allocate a temporary
15686 		 * buffer in which to store the complete description.  We need
15687 		 * the temporary buffer to be able to drop dtrace_lock()
15688 		 * across the copyout(), below.
15689 		 */
15690 		size = sizeof (dtrace_eprobedesc_t) +
15691 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15692 
15693 		buf = kmem_alloc(size, KM_SLEEP);
15694 		dest = (uintptr_t)buf;
15695 
15696 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15697 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15698 
15699 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15700 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15701 				continue;
15702 
15703 			if (nrecs-- == 0)
15704 				break;
15705 
15706 			bcopy(&act->dta_rec, (void *)dest,
15707 			    sizeof (dtrace_recdesc_t));
15708 			dest += sizeof (dtrace_recdesc_t);
15709 		}
15710 
15711 		mutex_exit(&dtrace_lock);
15712 
15713 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15714 			kmem_free(buf, size);
15715 			return (EFAULT);
15716 		}
15717 
15718 		kmem_free(buf, size);
15719 		return (0);
15720 	}
15721 
15722 	case DTRACEIOC_AGGDESC: {
15723 		dtrace_aggdesc_t aggdesc;
15724 		dtrace_action_t *act;
15725 		dtrace_aggregation_t *agg;
15726 		int nrecs;
15727 		uint32_t offs;
15728 		dtrace_recdesc_t *lrec;
15729 		void *buf;
15730 		size_t size;
15731 		uintptr_t dest;
15732 
15733 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15734 			return (EFAULT);
15735 
15736 		mutex_enter(&dtrace_lock);
15737 
15738 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15739 			mutex_exit(&dtrace_lock);
15740 			return (EINVAL);
15741 		}
15742 
15743 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15744 
15745 		nrecs = aggdesc.dtagd_nrecs;
15746 		aggdesc.dtagd_nrecs = 0;
15747 
15748 		offs = agg->dtag_base;
15749 		lrec = &agg->dtag_action.dta_rec;
15750 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15751 
15752 		for (act = agg->dtag_first; ; act = act->dta_next) {
15753 			ASSERT(act->dta_intuple ||
15754 			    DTRACEACT_ISAGG(act->dta_kind));
15755 
15756 			/*
15757 			 * If this action has a record size of zero, it
15758 			 * denotes an argument to the aggregating action.
15759 			 * Because the presence of this record doesn't (or
15760 			 * shouldn't) affect the way the data is interpreted,
15761 			 * we don't copy it out to save user-level the
15762 			 * confusion of dealing with a zero-length record.
15763 			 */
15764 			if (act->dta_rec.dtrd_size == 0) {
15765 				ASSERT(agg->dtag_hasarg);
15766 				continue;
15767 			}
15768 
15769 			aggdesc.dtagd_nrecs++;
15770 
15771 			if (act == &agg->dtag_action)
15772 				break;
15773 		}
15774 
15775 		/*
15776 		 * Now that we have the size, we need to allocate a temporary
15777 		 * buffer in which to store the complete description.  We need
15778 		 * the temporary buffer to be able to drop dtrace_lock()
15779 		 * across the copyout(), below.
15780 		 */
15781 		size = sizeof (dtrace_aggdesc_t) +
15782 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15783 
15784 		buf = kmem_alloc(size, KM_SLEEP);
15785 		dest = (uintptr_t)buf;
15786 
15787 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15788 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15789 
15790 		for (act = agg->dtag_first; ; act = act->dta_next) {
15791 			dtrace_recdesc_t rec = act->dta_rec;
15792 
15793 			/*
15794 			 * See the comment in the above loop for why we pass
15795 			 * over zero-length records.
15796 			 */
15797 			if (rec.dtrd_size == 0) {
15798 				ASSERT(agg->dtag_hasarg);
15799 				continue;
15800 			}
15801 
15802 			if (nrecs-- == 0)
15803 				break;
15804 
15805 			rec.dtrd_offset -= offs;
15806 			bcopy(&rec, (void *)dest, sizeof (rec));
15807 			dest += sizeof (dtrace_recdesc_t);
15808 
15809 			if (act == &agg->dtag_action)
15810 				break;
15811 		}
15812 
15813 		mutex_exit(&dtrace_lock);
15814 
15815 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15816 			kmem_free(buf, size);
15817 			return (EFAULT);
15818 		}
15819 
15820 		kmem_free(buf, size);
15821 		return (0);
15822 	}
15823 
15824 	case DTRACEIOC_ENABLE: {
15825 		dof_hdr_t *dof;
15826 		dtrace_enabling_t *enab = NULL;
15827 		dtrace_vstate_t *vstate;
15828 		int err = 0;
15829 
15830 		*rv = 0;
15831 
15832 		/*
15833 		 * If a NULL argument has been passed, we take this as our
15834 		 * cue to reevaluate our enablings.
15835 		 */
15836 		if (arg == NULL) {
15837 			dtrace_enabling_matchall();
15838 
15839 			return (0);
15840 		}
15841 
15842 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15843 			return (rval);
15844 
15845 		mutex_enter(&cpu_lock);
15846 		mutex_enter(&dtrace_lock);
15847 		vstate = &state->dts_vstate;
15848 
15849 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15850 			mutex_exit(&dtrace_lock);
15851 			mutex_exit(&cpu_lock);
15852 			dtrace_dof_destroy(dof);
15853 			return (EBUSY);
15854 		}
15855 
15856 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15857 			mutex_exit(&dtrace_lock);
15858 			mutex_exit(&cpu_lock);
15859 			dtrace_dof_destroy(dof);
15860 			return (EINVAL);
15861 		}
15862 
15863 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15864 			dtrace_enabling_destroy(enab);
15865 			mutex_exit(&dtrace_lock);
15866 			mutex_exit(&cpu_lock);
15867 			dtrace_dof_destroy(dof);
15868 			return (rval);
15869 		}
15870 
15871 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15872 			err = dtrace_enabling_retain(enab);
15873 		} else {
15874 			dtrace_enabling_destroy(enab);
15875 		}
15876 
15877 		mutex_exit(&cpu_lock);
15878 		mutex_exit(&dtrace_lock);
15879 		dtrace_dof_destroy(dof);
15880 
15881 		return (err);
15882 	}
15883 
15884 	case DTRACEIOC_REPLICATE: {
15885 		dtrace_repldesc_t desc;
15886 		dtrace_probedesc_t *match = &desc.dtrpd_match;
15887 		dtrace_probedesc_t *create = &desc.dtrpd_create;
15888 		int err;
15889 
15890 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15891 			return (EFAULT);
15892 
15893 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15894 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15895 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15896 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15897 
15898 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15899 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15900 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15901 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15902 
15903 		mutex_enter(&dtrace_lock);
15904 		err = dtrace_enabling_replicate(state, match, create);
15905 		mutex_exit(&dtrace_lock);
15906 
15907 		return (err);
15908 	}
15909 
15910 	case DTRACEIOC_PROBEMATCH:
15911 	case DTRACEIOC_PROBES: {
15912 		dtrace_probe_t *probe = NULL;
15913 		dtrace_probedesc_t desc;
15914 		dtrace_probekey_t pkey;
15915 		dtrace_id_t i;
15916 		int m = 0;
15917 		uint32_t priv;
15918 		uid_t uid;
15919 		zoneid_t zoneid;
15920 
15921 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15922 			return (EFAULT);
15923 
15924 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15925 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15926 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15927 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15928 
15929 		/*
15930 		 * Before we attempt to match this probe, we want to give
15931 		 * all providers the opportunity to provide it.
15932 		 */
15933 		if (desc.dtpd_id == DTRACE_IDNONE) {
15934 			mutex_enter(&dtrace_provider_lock);
15935 			dtrace_probe_provide(&desc, NULL);
15936 			mutex_exit(&dtrace_provider_lock);
15937 			desc.dtpd_id++;
15938 		}
15939 
15940 		if (cmd == DTRACEIOC_PROBEMATCH)  {
15941 			dtrace_probekey(&desc, &pkey);
15942 			pkey.dtpk_id = DTRACE_IDNONE;
15943 		}
15944 
15945 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15946 
15947 		mutex_enter(&dtrace_lock);
15948 
15949 		if (cmd == DTRACEIOC_PROBEMATCH) {
15950 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15951 				if ((probe = dtrace_probes[i - 1]) != NULL &&
15952 				    (m = dtrace_match_probe(probe, &pkey,
15953 				    priv, uid, zoneid)) != 0)
15954 					break;
15955 			}
15956 
15957 			if (m < 0) {
15958 				mutex_exit(&dtrace_lock);
15959 				return (EINVAL);
15960 			}
15961 
15962 		} else {
15963 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15964 				if ((probe = dtrace_probes[i - 1]) != NULL &&
15965 				    dtrace_match_priv(probe, priv, uid, zoneid))
15966 					break;
15967 			}
15968 		}
15969 
15970 		if (probe == NULL) {
15971 			mutex_exit(&dtrace_lock);
15972 			return (ESRCH);
15973 		}
15974 
15975 		dtrace_probe_description(probe, &desc);
15976 		mutex_exit(&dtrace_lock);
15977 
15978 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15979 			return (EFAULT);
15980 
15981 		return (0);
15982 	}
15983 
15984 	case DTRACEIOC_PROBEARG: {
15985 		dtrace_argdesc_t desc;
15986 		dtrace_probe_t *probe;
15987 		dtrace_provider_t *prov;
15988 
15989 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15990 			return (EFAULT);
15991 
15992 		if (desc.dtargd_id == DTRACE_IDNONE)
15993 			return (EINVAL);
15994 
15995 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15996 			return (EINVAL);
15997 
15998 		mutex_enter(&dtrace_provider_lock);
15999 		mutex_enter(&mod_lock);
16000 		mutex_enter(&dtrace_lock);
16001 
16002 		if (desc.dtargd_id > dtrace_nprobes) {
16003 			mutex_exit(&dtrace_lock);
16004 			mutex_exit(&mod_lock);
16005 			mutex_exit(&dtrace_provider_lock);
16006 			return (EINVAL);
16007 		}
16008 
16009 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16010 			mutex_exit(&dtrace_lock);
16011 			mutex_exit(&mod_lock);
16012 			mutex_exit(&dtrace_provider_lock);
16013 			return (EINVAL);
16014 		}
16015 
16016 		mutex_exit(&dtrace_lock);
16017 
16018 		prov = probe->dtpr_provider;
16019 
16020 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16021 			/*
16022 			 * There isn't any typed information for this probe.
16023 			 * Set the argument number to DTRACE_ARGNONE.
16024 			 */
16025 			desc.dtargd_ndx = DTRACE_ARGNONE;
16026 		} else {
16027 			desc.dtargd_native[0] = '\0';
16028 			desc.dtargd_xlate[0] = '\0';
16029 			desc.dtargd_mapping = desc.dtargd_ndx;
16030 
16031 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16032 			    probe->dtpr_id, probe->dtpr_arg, &desc);
16033 		}
16034 
16035 		mutex_exit(&mod_lock);
16036 		mutex_exit(&dtrace_provider_lock);
16037 
16038 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16039 			return (EFAULT);
16040 
16041 		return (0);
16042 	}
16043 
16044 	case DTRACEIOC_GO: {
16045 		processorid_t cpuid;
16046 		rval = dtrace_state_go(state, &cpuid);
16047 
16048 		if (rval != 0)
16049 			return (rval);
16050 
16051 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16052 			return (EFAULT);
16053 
16054 		return (0);
16055 	}
16056 
16057 	case DTRACEIOC_STOP: {
16058 		processorid_t cpuid;
16059 
16060 		mutex_enter(&dtrace_lock);
16061 		rval = dtrace_state_stop(state, &cpuid);
16062 		mutex_exit(&dtrace_lock);
16063 
16064 		if (rval != 0)
16065 			return (rval);
16066 
16067 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16068 			return (EFAULT);
16069 
16070 		return (0);
16071 	}
16072 
16073 	case DTRACEIOC_DOFGET: {
16074 		dof_hdr_t hdr, *dof;
16075 		uint64_t len;
16076 
16077 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16078 			return (EFAULT);
16079 
16080 		mutex_enter(&dtrace_lock);
16081 		dof = dtrace_dof_create(state);
16082 		mutex_exit(&dtrace_lock);
16083 
16084 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16085 		rval = copyout(dof, (void *)arg, len);
16086 		dtrace_dof_destroy(dof);
16087 
16088 		return (rval == 0 ? 0 : EFAULT);
16089 	}
16090 
16091 	case DTRACEIOC_AGGSNAP:
16092 	case DTRACEIOC_BUFSNAP: {
16093 		dtrace_bufdesc_t desc;
16094 		caddr_t cached;
16095 		dtrace_buffer_t *buf;
16096 
16097 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16098 			return (EFAULT);
16099 
16100 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16101 			return (EINVAL);
16102 
16103 		mutex_enter(&dtrace_lock);
16104 
16105 		if (cmd == DTRACEIOC_BUFSNAP) {
16106 			buf = &state->dts_buffer[desc.dtbd_cpu];
16107 		} else {
16108 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16109 		}
16110 
16111 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16112 			size_t sz = buf->dtb_offset;
16113 
16114 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16115 				mutex_exit(&dtrace_lock);
16116 				return (EBUSY);
16117 			}
16118 
16119 			/*
16120 			 * If this buffer has already been consumed, we're
16121 			 * going to indicate that there's nothing left here
16122 			 * to consume.
16123 			 */
16124 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16125 				mutex_exit(&dtrace_lock);
16126 
16127 				desc.dtbd_size = 0;
16128 				desc.dtbd_drops = 0;
16129 				desc.dtbd_errors = 0;
16130 				desc.dtbd_oldest = 0;
16131 				sz = sizeof (desc);
16132 
16133 				if (copyout(&desc, (void *)arg, sz) != 0)
16134 					return (EFAULT);
16135 
16136 				return (0);
16137 			}
16138 
16139 			/*
16140 			 * If this is a ring buffer that has wrapped, we want
16141 			 * to copy the whole thing out.
16142 			 */
16143 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16144 				dtrace_buffer_polish(buf);
16145 				sz = buf->dtb_size;
16146 			}
16147 
16148 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16149 				mutex_exit(&dtrace_lock);
16150 				return (EFAULT);
16151 			}
16152 
16153 			desc.dtbd_size = sz;
16154 			desc.dtbd_drops = buf->dtb_drops;
16155 			desc.dtbd_errors = buf->dtb_errors;
16156 			desc.dtbd_oldest = buf->dtb_xamot_offset;
16157 
16158 			mutex_exit(&dtrace_lock);
16159 
16160 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16161 				return (EFAULT);
16162 
16163 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16164 
16165 			return (0);
16166 		}
16167 
16168 		if (buf->dtb_tomax == NULL) {
16169 			ASSERT(buf->dtb_xamot == NULL);
16170 			mutex_exit(&dtrace_lock);
16171 			return (ENOENT);
16172 		}
16173 
16174 		cached = buf->dtb_tomax;
16175 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16176 
16177 		dtrace_xcall(desc.dtbd_cpu,
16178 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16179 
16180 		state->dts_errors += buf->dtb_xamot_errors;
16181 
16182 		/*
16183 		 * If the buffers did not actually switch, then the cross call
16184 		 * did not take place -- presumably because the given CPU is
16185 		 * not in the ready set.  If this is the case, we'll return
16186 		 * ENOENT.
16187 		 */
16188 		if (buf->dtb_tomax == cached) {
16189 			ASSERT(buf->dtb_xamot != cached);
16190 			mutex_exit(&dtrace_lock);
16191 			return (ENOENT);
16192 		}
16193 
16194 		ASSERT(cached == buf->dtb_xamot);
16195 
16196 		/*
16197 		 * We have our snapshot; now copy it out.
16198 		 */
16199 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16200 		    buf->dtb_xamot_offset) != 0) {
16201 			mutex_exit(&dtrace_lock);
16202 			return (EFAULT);
16203 		}
16204 
16205 		desc.dtbd_size = buf->dtb_xamot_offset;
16206 		desc.dtbd_drops = buf->dtb_xamot_drops;
16207 		desc.dtbd_errors = buf->dtb_xamot_errors;
16208 		desc.dtbd_oldest = 0;
16209 
16210 		mutex_exit(&dtrace_lock);
16211 
16212 		/*
16213 		 * Finally, copy out the buffer description.
16214 		 */
16215 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16216 			return (EFAULT);
16217 
16218 		return (0);
16219 	}
16220 
16221 	case DTRACEIOC_CONF: {
16222 		dtrace_conf_t conf;
16223 
16224 		bzero(&conf, sizeof (conf));
16225 		conf.dtc_difversion = DIF_VERSION;
16226 		conf.dtc_difintregs = DIF_DIR_NREGS;
16227 		conf.dtc_diftupregs = DIF_DTR_NREGS;
16228 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16229 
16230 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16231 			return (EFAULT);
16232 
16233 		return (0);
16234 	}
16235 
16236 	case DTRACEIOC_STATUS: {
16237 		dtrace_status_t stat;
16238 		dtrace_dstate_t *dstate;
16239 		int i, j;
16240 		uint64_t nerrs;
16241 
16242 		/*
16243 		 * See the comment in dtrace_state_deadman() for the reason
16244 		 * for setting dts_laststatus to INT64_MAX before setting
16245 		 * it to the correct value.
16246 		 */
16247 		state->dts_laststatus = INT64_MAX;
16248 		dtrace_membar_producer();
16249 		state->dts_laststatus = dtrace_gethrtime();
16250 
16251 		bzero(&stat, sizeof (stat));
16252 
16253 		mutex_enter(&dtrace_lock);
16254 
16255 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16256 			mutex_exit(&dtrace_lock);
16257 			return (ENOENT);
16258 		}
16259 
16260 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16261 			stat.dtst_exiting = 1;
16262 
16263 		nerrs = state->dts_errors;
16264 		dstate = &state->dts_vstate.dtvs_dynvars;
16265 
16266 		for (i = 0; i < NCPU; i++) {
16267 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16268 
16269 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16270 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16271 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16272 
16273 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16274 				stat.dtst_filled++;
16275 
16276 			nerrs += state->dts_buffer[i].dtb_errors;
16277 
16278 			for (j = 0; j < state->dts_nspeculations; j++) {
16279 				dtrace_speculation_t *spec;
16280 				dtrace_buffer_t *buf;
16281 
16282 				spec = &state->dts_speculations[j];
16283 				buf = &spec->dtsp_buffer[i];
16284 				stat.dtst_specdrops += buf->dtb_xamot_drops;
16285 			}
16286 		}
16287 
16288 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16289 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16290 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16291 		stat.dtst_dblerrors = state->dts_dblerrors;
16292 		stat.dtst_killed =
16293 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16294 		stat.dtst_errors = nerrs;
16295 
16296 		mutex_exit(&dtrace_lock);
16297 
16298 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16299 			return (EFAULT);
16300 
16301 		return (0);
16302 	}
16303 
16304 	case DTRACEIOC_FORMAT: {
16305 		dtrace_fmtdesc_t fmt;
16306 		char *str;
16307 		int len;
16308 
16309 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16310 			return (EFAULT);
16311 
16312 		mutex_enter(&dtrace_lock);
16313 
16314 		if (fmt.dtfd_format == 0 ||
16315 		    fmt.dtfd_format > state->dts_nformats) {
16316 			mutex_exit(&dtrace_lock);
16317 			return (EINVAL);
16318 		}
16319 
16320 		/*
16321 		 * Format strings are allocated contiguously and they are
16322 		 * never freed; if a format index is less than the number
16323 		 * of formats, we can assert that the format map is non-NULL
16324 		 * and that the format for the specified index is non-NULL.
16325 		 */
16326 		ASSERT(state->dts_formats != NULL);
16327 		str = state->dts_formats[fmt.dtfd_format - 1];
16328 		ASSERT(str != NULL);
16329 
16330 		len = strlen(str) + 1;
16331 
16332 		if (len > fmt.dtfd_length) {
16333 			fmt.dtfd_length = len;
16334 
16335 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16336 				mutex_exit(&dtrace_lock);
16337 				return (EINVAL);
16338 			}
16339 		} else {
16340 			if (copyout(str, fmt.dtfd_string, len) != 0) {
16341 				mutex_exit(&dtrace_lock);
16342 				return (EINVAL);
16343 			}
16344 		}
16345 
16346 		mutex_exit(&dtrace_lock);
16347 		return (0);
16348 	}
16349 
16350 	default:
16351 		break;
16352 	}
16353 
16354 	return (ENOTTY);
16355 }
16356 
16357 /*ARGSUSED*/
16358 static int
16359 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16360 {
16361 	dtrace_state_t *state;
16362 
16363 	switch (cmd) {
16364 	case DDI_DETACH:
16365 		break;
16366 
16367 	case DDI_SUSPEND:
16368 		return (DDI_SUCCESS);
16369 
16370 	default:
16371 		return (DDI_FAILURE);
16372 	}
16373 
16374 	mutex_enter(&cpu_lock);
16375 	mutex_enter(&dtrace_provider_lock);
16376 	mutex_enter(&dtrace_lock);
16377 
16378 	ASSERT(dtrace_opens == 0);
16379 
16380 	if (dtrace_helpers > 0) {
16381 		mutex_exit(&dtrace_provider_lock);
16382 		mutex_exit(&dtrace_lock);
16383 		mutex_exit(&cpu_lock);
16384 		return (DDI_FAILURE);
16385 	}
16386 
16387 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16388 		mutex_exit(&dtrace_provider_lock);
16389 		mutex_exit(&dtrace_lock);
16390 		mutex_exit(&cpu_lock);
16391 		return (DDI_FAILURE);
16392 	}
16393 
16394 	dtrace_provider = NULL;
16395 
16396 	if ((state = dtrace_anon_grab()) != NULL) {
16397 		/*
16398 		 * If there were ECBs on this state, the provider should
16399 		 * have not been allowed to detach; assert that there is
16400 		 * none.
16401 		 */
16402 		ASSERT(state->dts_necbs == 0);
16403 		dtrace_state_destroy(state);
16404 
16405 		/*
16406 		 * If we're being detached with anonymous state, we need to
16407 		 * indicate to the kernel debugger that DTrace is now inactive.
16408 		 */
16409 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16410 	}
16411 
16412 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16413 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16414 	dtrace_cpu_init = NULL;
16415 	dtrace_helpers_cleanup = NULL;
16416 	dtrace_helpers_fork = NULL;
16417 	dtrace_cpustart_init = NULL;
16418 	dtrace_cpustart_fini = NULL;
16419 	dtrace_debugger_init = NULL;
16420 	dtrace_debugger_fini = NULL;
16421 	dtrace_modload = NULL;
16422 	dtrace_modunload = NULL;
16423 
16424 	mutex_exit(&cpu_lock);
16425 
16426 	if (dtrace_helptrace_enabled) {
16427 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16428 		dtrace_helptrace_buffer = NULL;
16429 	}
16430 
16431 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16432 	dtrace_probes = NULL;
16433 	dtrace_nprobes = 0;
16434 
16435 	dtrace_hash_destroy(dtrace_bymod);
16436 	dtrace_hash_destroy(dtrace_byfunc);
16437 	dtrace_hash_destroy(dtrace_byname);
16438 	dtrace_bymod = NULL;
16439 	dtrace_byfunc = NULL;
16440 	dtrace_byname = NULL;
16441 
16442 	kmem_cache_destroy(dtrace_state_cache);
16443 	vmem_destroy(dtrace_minor);
16444 	vmem_destroy(dtrace_arena);
16445 
16446 	if (dtrace_toxrange != NULL) {
16447 		kmem_free(dtrace_toxrange,
16448 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16449 		dtrace_toxrange = NULL;
16450 		dtrace_toxranges = 0;
16451 		dtrace_toxranges_max = 0;
16452 	}
16453 
16454 	ddi_remove_minor_node(dtrace_devi, NULL);
16455 	dtrace_devi = NULL;
16456 
16457 	ddi_soft_state_fini(&dtrace_softstate);
16458 
16459 	ASSERT(dtrace_vtime_references == 0);
16460 	ASSERT(dtrace_opens == 0);
16461 	ASSERT(dtrace_retained == NULL);
16462 
16463 	mutex_exit(&dtrace_lock);
16464 	mutex_exit(&dtrace_provider_lock);
16465 
16466 	/*
16467 	 * We don't destroy the task queue until after we have dropped our
16468 	 * locks (taskq_destroy() may block on running tasks).  To prevent
16469 	 * attempting to do work after we have effectively detached but before
16470 	 * the task queue has been destroyed, all tasks dispatched via the
16471 	 * task queue must check that DTrace is still attached before
16472 	 * performing any operation.
16473 	 */
16474 	taskq_destroy(dtrace_taskq);
16475 	dtrace_taskq = NULL;
16476 
16477 	return (DDI_SUCCESS);
16478 }
16479 #endif
16480 
16481 #if defined(sun)
16482 /*ARGSUSED*/
16483 static int
16484 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16485 {
16486 	int error;
16487 
16488 	switch (infocmd) {
16489 	case DDI_INFO_DEVT2DEVINFO:
16490 		*result = (void *)dtrace_devi;
16491 		error = DDI_SUCCESS;
16492 		break;
16493 	case DDI_INFO_DEVT2INSTANCE:
16494 		*result = (void *)0;
16495 		error = DDI_SUCCESS;
16496 		break;
16497 	default:
16498 		error = DDI_FAILURE;
16499 	}
16500 	return (error);
16501 }
16502 #endif
16503 
16504 #if defined(sun)
16505 static struct cb_ops dtrace_cb_ops = {
16506 	dtrace_open,		/* open */
16507 	dtrace_close,		/* close */
16508 	nulldev,		/* strategy */
16509 	nulldev,		/* print */
16510 	nodev,			/* dump */
16511 	nodev,			/* read */
16512 	nodev,			/* write */
16513 	dtrace_ioctl,		/* ioctl */
16514 	nodev,			/* devmap */
16515 	nodev,			/* mmap */
16516 	nodev,			/* segmap */
16517 	nochpoll,		/* poll */
16518 	ddi_prop_op,		/* cb_prop_op */
16519 	0,			/* streamtab  */
16520 	D_NEW | D_MP		/* Driver compatibility flag */
16521 };
16522 
16523 static struct dev_ops dtrace_ops = {
16524 	DEVO_REV,		/* devo_rev */
16525 	0,			/* refcnt */
16526 	dtrace_info,		/* get_dev_info */
16527 	nulldev,		/* identify */
16528 	nulldev,		/* probe */
16529 	dtrace_attach,		/* attach */
16530 	dtrace_detach,		/* detach */
16531 	nodev,			/* reset */
16532 	&dtrace_cb_ops,		/* driver operations */
16533 	NULL,			/* bus operations */
16534 	nodev			/* dev power */
16535 };
16536 
16537 static struct modldrv modldrv = {
16538 	&mod_driverops,		/* module type (this is a pseudo driver) */
16539 	"Dynamic Tracing",	/* name of module */
16540 	&dtrace_ops,		/* driver ops */
16541 };
16542 
16543 static struct modlinkage modlinkage = {
16544 	MODREV_1,
16545 	(void *)&modldrv,
16546 	NULL
16547 };
16548 
16549 int
16550 _init(void)
16551 {
16552 	return (mod_install(&modlinkage));
16553 }
16554 
16555 int
16556 _info(struct modinfo *modinfop)
16557 {
16558 	return (mod_info(&modlinkage, modinfop));
16559 }
16560 
16561 int
16562 _fini(void)
16563 {
16564 	return (mod_remove(&modlinkage));
16565 }
16566 #else
16567 
16568 #if 0
16569 static d_ioctl_t	dtrace_ioctl;
16570 static void		dtrace_load(void *);
16571 static int		dtrace_unload(void);
16572 #if __FreeBSD_version < 800039
16573 static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16574 static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16575 static eventhandler_tag	eh_tag;			/* Event handler tag. */
16576 #else
16577 static struct cdev	*dtrace_dev;
16578 #endif
16579 
16580 void dtrace_invop_init(void);
16581 void dtrace_invop_uninit(void);
16582 
16583 static struct cdevsw dtrace_cdevsw = {
16584 	.d_version	= D_VERSION,
16585 	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16586 	.d_close	= dtrace_close,
16587 	.d_ioctl	= dtrace_ioctl,
16588 	.d_open		= dtrace_open,
16589 	.d_name		= "dtrace",
16590 };
16591 #endif
16592 void dtrace_invop_init(void);
16593 void dtrace_invop_uninit(void);
16594 
16595 static void		dtrace_load(void *);
16596 static int		dtrace_unload(void);
16597 
16598 #include <dtrace_anon.c>
16599 #include <dtrace_ioctl.c>
16600 #include <dtrace_load.c>
16601 #include <dtrace_modevent.c>
16602 #include <dtrace_sysctl.c>
16603 #include <dtrace_unload.c>
16604 #include <dtrace_vtime.c>
16605 #include <dtrace_hacks.c>
16606 #if defined(__i386__) || defined(__x86_64__) || defined(__arm__)
16607 #include <dtrace_isa.c>
16608 #endif
16609 
16610 MODULE(MODULE_CLASS_DRIVER, dtrace, "solaris");
16611 
16612 #if 0
16613 DEV_MODULE(dtrace, dtrace_modevent, NULL);
16614 MODULE_VERSION(dtrace, 1);
16615 MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16616 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16617 #endif
16618 #endif
16619 
16620 #if !defined(sun)
16621 #undef mutex_init
16622 
16623 struct dtrace_state_worker {
16624 	kmutex_t lock;
16625 	kcondvar_t cv;
16626 	void (*fn)(dtrace_state_t *);
16627 	dtrace_state_t *state;
16628 	int interval;
16629 	lwp_t *lwp;
16630 	bool exiting;
16631 };
16632 
16633 static void
16634 dtrace_state_worker_thread(void *vp)
16635 {
16636 	struct dtrace_state_worker *w = vp;
16637 
16638 	mutex_enter(&w->lock);
16639 	while (!w->exiting) {
16640 		int error;
16641 
16642 		error = cv_timedwait(&w->cv, &w->lock, w->interval);
16643 		if (error == EWOULDBLOCK) {
16644 			mutex_exit(&w->lock);
16645 			w->fn(w->state);
16646 			mutex_enter(&w->lock);
16647 		}
16648 	}
16649 	mutex_exit(&w->lock);
16650 	kthread_exit(0);
16651 }
16652 
16653 struct dtrace_state_worker *
16654 dtrace_state_worker_add(void (*fn)(dtrace_state_t *), dtrace_state_t *state,
16655     hrtime_t interval)
16656 {
16657 	struct dtrace_state_worker *w;
16658 	int error __diagused;
16659 
16660 	w = kmem_alloc(sizeof(*w), KM_SLEEP);
16661 	mutex_init(&w->lock, MUTEX_DEFAULT, IPL_NONE);
16662 	cv_init(&w->cv, "dtrace");
16663 	w->interval = ((uintmax_t)hz * interval) / NANOSEC,
16664 	w->fn = fn;
16665 	w->state = state;
16666 	w->exiting = false;
16667 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_MUSTJOIN, NULL,
16668 	    dtrace_state_worker_thread, w, &w->lwp, "dtrace-state-worker");
16669 	KASSERT(error == 0); /* XXX */
16670 	return w;
16671 }
16672 
16673 void
16674 dtrace_state_worker_remove(struct dtrace_state_worker *w)
16675 {
16676 	int error __diagused;
16677 
16678 	KASSERT(!w->exiting);
16679 	mutex_enter(&w->lock);
16680 	w->exiting = true;
16681 	cv_signal(&w->cv);
16682 	mutex_exit(&w->lock);
16683 	error = kthread_join(w->lwp);
16684 	KASSERT(error == 0);
16685 	cv_destroy(&w->cv);
16686 	mutex_destroy(&w->lock);
16687 	kmem_free(w, sizeof(*w));
16688 }
16689 #endif
16690