1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 * 21 * $FreeBSD: head/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 313266 2017-02-05 02:47:34Z markj $ 22 */ 23 24 /* 25 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 26 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 28 */ 29 30 /* 31 * DTrace - Dynamic Tracing for Solaris 32 * 33 * This is the implementation of the Solaris Dynamic Tracing framework 34 * (DTrace). The user-visible interface to DTrace is described at length in 35 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 36 * library, the in-kernel DTrace framework, and the DTrace providers are 37 * described in the block comments in the <sys/dtrace.h> header file. The 38 * internal architecture of DTrace is described in the block comments in the 39 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 40 * implementation very much assume mastery of all of these sources; if one has 41 * an unanswered question about the implementation, one should consult them 42 * first. 43 * 44 * The functions here are ordered roughly as follows: 45 * 46 * - Probe context functions 47 * - Probe hashing functions 48 * - Non-probe context utility functions 49 * - Matching functions 50 * - Provider-to-Framework API functions 51 * - Probe management functions 52 * - DIF object functions 53 * - Format functions 54 * - Predicate functions 55 * - ECB functions 56 * - Buffer functions 57 * - Enabling functions 58 * - DOF functions 59 * - Anonymous enabling functions 60 * - Consumer state functions 61 * - Helper functions 62 * - Hook functions 63 * - Driver cookbook functions 64 * 65 * Each group of functions begins with a block comment labelled the "DTrace 66 * [Group] Functions", allowing one to find each block by searching forward 67 * on capital-f functions. 68 */ 69 #ifdef __NetBSD__ 70 #define __MUTEX_PRIVATE 71 #define __RWLOCK_PRIVATE 72 #include <sys/proc.h> 73 #endif 74 75 #include <sys/errno.h> 76 #ifndef illumos 77 #include <sys/time.h> 78 #endif 79 #include <sys/stat.h> 80 #include <sys/modctl.h> 81 #include <sys/conf.h> 82 #include <sys/systm.h> 83 #ifdef illumos 84 #include <sys/ddi.h> 85 #include <sys/sunddi.h> 86 #endif 87 #include <sys/cpuvar.h> 88 #include <sys/kmem.h> 89 #ifdef illumos 90 #include <sys/strsubr.h> 91 #endif 92 #include <sys/sysmacros.h> 93 #include <sys/dtrace_impl.h> 94 #include <sys/atomic.h> 95 #include <sys/cmn_err.h> 96 #ifdef illumos 97 #include <sys/mutex_impl.h> 98 #include <sys/rwlock_impl.h> 99 #endif 100 #include <sys/ctf_api.h> 101 #ifdef illumos 102 #include <sys/panic.h> 103 #include <sys/priv_impl.h> 104 #endif 105 #include <sys/policy.h> 106 #ifdef illumos 107 #include <sys/cred_impl.h> 108 #include <sys/procfs_isa.h> 109 #endif 110 #include <sys/taskq.h> 111 #ifdef illumos 112 #include <sys/mkdev.h> 113 #include <sys/kdi.h> 114 #endif 115 #include <sys/zone.h> 116 #include <sys/socket.h> 117 #include <netinet/in.h> 118 #include "strtolctype.h" 119 120 /* FreeBSD includes: */ 121 #ifdef __FreeBSD__ 122 #include <sys/callout.h> 123 #include <sys/ctype.h> 124 #include <sys/eventhandler.h> 125 #include <sys/limits.h> 126 #include <sys/linker.h> 127 #include <sys/kdb.h> 128 #include <sys/kernel.h> 129 #include <sys/malloc.h> 130 #include <sys/lock.h> 131 #include <sys/mutex.h> 132 #include <sys/ptrace.h> 133 #include <sys/random.h> 134 #include <sys/rwlock.h> 135 #include <sys/sx.h> 136 #include <sys/sysctl.h> 137 #endif 138 139 #ifdef __NetBSD__ 140 #include <sys/cred.h> 141 #include <sys/callout.h> 142 #include <sys/ctype.h> 143 #include <sys/kernel.h> 144 #include <sys/malloc.h> 145 #include <sys/lock.h> 146 #include <sys/mutex.h> 147 #include <sys/random.h> 148 #include <sys/rwlock.h> 149 #include <sys/sysctl.h> 150 #include <sys/mutex_impl.h> 151 #include <sys/rwlock_impl.h> 152 #include <sys/mkdev.h> 153 #include <sys/file.h> 154 #include <sys/filedesc.h> 155 #include <sys/vmem.h> 156 #include <sys/module.h> 157 #include <sys/cpu.h> 158 #endif 159 160 #ifndef illumos 161 162 #include <sys/dtrace_bsd.h> 163 164 #include "dtrace_xoroshiro128_plus.h" 165 166 #include <netinet/in.h> 167 168 #include "dtrace_cddl.h" 169 #include "dtrace_debug.c" 170 171 #ifdef __NetBSD__ 172 struct dtrace_state_worker *dtrace_state_worker_add(void (*fn)(dtrace_state_t *), 173 dtrace_state_t *state, hrtime_t interval); 174 void dtrace_state_worker_remove(struct dtrace_state_worker *w); 175 176 modctl_t *mod_nbsd; 177 178 #endif /* __NetBSD__ */ 179 180 #endif /* !illumos */ 181 182 183 /* 184 * DTrace Tunable Variables 185 * 186 * The following variables may be tuned by adding a line to /etc/system that 187 * includes both the name of the DTrace module ("dtrace") and the name of the 188 * variable. For example: 189 * 190 * set dtrace:dtrace_destructive_disallow = 1 191 * 192 * In general, the only variables that one should be tuning this way are those 193 * that affect system-wide DTrace behavior, and for which the default behavior 194 * is undesirable. Most of these variables are tunable on a per-consumer 195 * basis using DTrace options, and need not be tuned on a system-wide basis. 196 * When tuning these variables, avoid pathological values; while some attempt 197 * is made to verify the integrity of these variables, they are not considered 198 * part of the supported interface to DTrace, and they are therefore not 199 * checked comprehensively. Further, these variables should not be tuned 200 * dynamically via "mdb -kw" or other means; they should only be tuned via 201 * /etc/system. 202 */ 203 int dtrace_destructive_disallow = 0; 204 #ifndef illumos 205 /* Positive logic version of dtrace_destructive_disallow for loader tunable */ 206 int dtrace_allow_destructive = 1; 207 #endif 208 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 209 size_t dtrace_difo_maxsize = (256 * 1024); 210 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 211 size_t dtrace_statvar_maxsize = (16 * 1024); 212 size_t dtrace_actions_max = (16 * 1024); 213 size_t dtrace_retain_max = 1024; 214 dtrace_optval_t dtrace_helper_actions_max = 128; 215 dtrace_optval_t dtrace_helper_providers_max = 32; 216 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 217 size_t dtrace_strsize_default = 256; 218 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 219 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 220 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 221 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 222 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 223 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 224 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 225 dtrace_optval_t dtrace_nspec_default = 1; 226 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 227 dtrace_optval_t dtrace_stackframes_default = 20; 228 dtrace_optval_t dtrace_ustackframes_default = 20; 229 dtrace_optval_t dtrace_jstackframes_default = 50; 230 dtrace_optval_t dtrace_jstackstrsize_default = 512; 231 int dtrace_msgdsize_max = 128; 232 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 233 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 234 int dtrace_devdepth_max = 32; 235 int dtrace_err_verbose; 236 hrtime_t dtrace_deadman_interval = NANOSEC; 237 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 238 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 239 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 240 #ifndef illumos 241 int dtrace_memstr_max = 4096; 242 #endif 243 244 /* 245 * DTrace External Variables 246 * 247 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 248 * available to DTrace consumers via the backtick (`) syntax. One of these, 249 * dtrace_zero, is made deliberately so: it is provided as a source of 250 * well-known, zero-filled memory. While this variable is not documented, 251 * it is used by some translators as an implementation detail. 252 */ 253 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 254 255 /* 256 * DTrace Internal Variables 257 */ 258 #ifdef illumos 259 static dev_info_t *dtrace_devi; /* device info */ 260 #endif 261 #ifdef illumos 262 static vmem_t *dtrace_arena; /* probe ID arena */ 263 static vmem_t *dtrace_minor; /* minor number arena */ 264 #else 265 static taskq_t *dtrace_taskq; /* task queue */ 266 #ifdef __NetBSD__ 267 static vmem_t *dtrace_arena; /* probe ID arena */ 268 #else 269 static struct unrhdr *dtrace_arena; /* Probe ID number. */ 270 #endif 271 #endif 272 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 273 static int dtrace_nprobes; /* number of probes */ 274 static dtrace_provider_t *dtrace_provider; /* provider list */ 275 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 276 static int dtrace_opens; /* number of opens */ 277 static int dtrace_helpers; /* number of helpers */ 278 static int dtrace_getf; /* number of unpriv getf()s */ 279 #ifdef illumos 280 static void *dtrace_softstate; /* softstate pointer */ 281 #endif 282 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 283 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 284 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 285 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 286 static int dtrace_toxranges; /* number of toxic ranges */ 287 static int dtrace_toxranges_max; /* size of toxic range array */ 288 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 289 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 290 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 291 static kthread_t *dtrace_panicked; /* panicking thread */ 292 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 293 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 294 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 295 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 296 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 297 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 298 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 299 #ifdef __FreeBSD__ 300 static struct mtx dtrace_unr_mtx; 301 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF); 302 static eventhandler_tag dtrace_kld_load_tag; 303 static eventhandler_tag dtrace_kld_unload_try_tag; 304 #endif 305 306 /* 307 * DTrace Locking 308 * DTrace is protected by three (relatively coarse-grained) locks: 309 * 310 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 311 * including enabling state, probes, ECBs, consumer state, helper state, 312 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 313 * probe context is lock-free -- synchronization is handled via the 314 * dtrace_sync() cross call mechanism. 315 * 316 * (2) dtrace_provider_lock is required when manipulating provider state, or 317 * when provider state must be held constant. 318 * 319 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 320 * when meta provider state must be held constant. 321 * 322 * The lock ordering between these three locks is dtrace_meta_lock before 323 * dtrace_provider_lock before dtrace_lock. (In particular, there are 324 * several places where dtrace_provider_lock is held by the framework as it 325 * calls into the providers -- which then call back into the framework, 326 * grabbing dtrace_lock.) 327 * 328 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 329 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 330 * role as a coarse-grained lock; it is acquired before both of these locks. 331 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 332 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 333 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 334 * acquired _between_ dtrace_provider_lock and dtrace_lock. 335 */ 336 static kmutex_t dtrace_lock; /* probe state lock */ 337 static kmutex_t dtrace_provider_lock; /* provider state lock */ 338 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 339 340 #ifndef illumos 341 /* XXX FreeBSD hacks. */ 342 #ifdef __FreeBSD__ 343 static kmutex_t mod_lock; 344 #endif 345 346 #define cr_suid cr_svuid 347 #define cr_sgid cr_svgid 348 #define ipaddr_t in_addr_t 349 #define mod_modname pathname 350 #define vuprintf vprintf 351 #ifdef __NetBSD__ 352 #define ttoproc(_a) ((_a)->l_proc) 353 #else 354 #define ttoproc(_a) ((_a)->td_proc) 355 #endif 356 #define crgetzoneid(_a) 0 357 #define SNOCD 0 358 #define CPU_ON_INTR(_a) 0 359 360 #define PRIV_EFFECTIVE (1 << 0) 361 #define PRIV_DTRACE_KERNEL (1 << 1) 362 #define PRIV_DTRACE_PROC (1 << 2) 363 #define PRIV_DTRACE_USER (1 << 3) 364 #define PRIV_PROC_OWNER (1 << 4) 365 #define PRIV_PROC_ZONE (1 << 5) 366 #define PRIV_ALL ~0 367 368 SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information"); 369 SYSCTL_DECL(_debug_dtrace); 370 SYSCTL_DECL(_kern_dtrace); 371 #endif 372 373 #ifdef illumos 374 #define curcpu_id CPU->cpu_id 375 #endif 376 #ifdef __FreeBSD__ 377 #define curcpu_id curcpu 378 #endif 379 #ifdef __NetBSD__ 380 #define curcpu_id cpu_number() 381 #endif 382 383 384 /* 385 * DTrace Provider Variables 386 * 387 * These are the variables relating to DTrace as a provider (that is, the 388 * provider of the BEGIN, END, and ERROR probes). 389 */ 390 static dtrace_pattr_t dtrace_provider_attr = { 391 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 392 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 393 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 394 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 395 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 396 }; 397 398 static int 399 dtrace_nullop(void) 400 { 401 402 return 0; 403 } 404 405 static dtrace_pops_t dtrace_provider_ops = { 406 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop, 407 (void (*)(void *, modctl_t *))dtrace_nullop, 408 (int (*)(void *, dtrace_id_t, void *))dtrace_nullop, 409 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 410 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 411 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 412 NULL, 413 NULL, 414 NULL, 415 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 416 }; 417 418 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 419 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 420 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 421 422 /* 423 * DTrace Helper Tracing Variables 424 * 425 * These variables should be set dynamically to enable helper tracing. The 426 * only variables that should be set are dtrace_helptrace_enable (which should 427 * be set to a non-zero value to allocate helper tracing buffers on the next 428 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 429 * non-zero value to deallocate helper tracing buffers on the next close of 430 * /dev/dtrace). When (and only when) helper tracing is disabled, the 431 * buffer size may also be set via dtrace_helptrace_bufsize. 432 */ 433 int dtrace_helptrace_enable = 0; 434 int dtrace_helptrace_disable = 0; 435 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 436 uint32_t dtrace_helptrace_nlocals; 437 static dtrace_helptrace_t *dtrace_helptrace_buffer; 438 static uint32_t dtrace_helptrace_next = 0; 439 static int dtrace_helptrace_wrapped = 0; 440 441 /* 442 * DTrace Error Hashing 443 * 444 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 445 * table. This is very useful for checking coverage of tests that are 446 * expected to induce DIF or DOF processing errors, and may be useful for 447 * debugging problems in the DIF code generator or in DOF generation . The 448 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 449 */ 450 #ifdef DEBUG 451 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 452 static const char *dtrace_errlast; 453 static kthread_t *dtrace_errthread; 454 static kmutex_t dtrace_errlock; 455 #endif 456 457 /* 458 * DTrace Macros and Constants 459 * 460 * These are various macros that are useful in various spots in the 461 * implementation, along with a few random constants that have no meaning 462 * outside of the implementation. There is no real structure to this cpp 463 * mishmash -- but is there ever? 464 */ 465 #define DTRACE_HASHSTR(hash, probe) \ 466 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 467 468 #define DTRACE_HASHNEXT(hash, probe) \ 469 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 470 471 #define DTRACE_HASHPREV(hash, probe) \ 472 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 473 474 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 475 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 476 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 477 478 #define DTRACE_AGGHASHSIZE_SLEW 17 479 480 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 481 482 /* 483 * The key for a thread-local variable consists of the lower 61 bits of the 484 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 485 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 486 * equal to a variable identifier. This is necessary (but not sufficient) to 487 * assure that global associative arrays never collide with thread-local 488 * variables. To guarantee that they cannot collide, we must also define the 489 * order for keying dynamic variables. That order is: 490 * 491 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 492 * 493 * Because the variable-key and the tls-key are in orthogonal spaces, there is 494 * no way for a global variable key signature to match a thread-local key 495 * signature. 496 */ 497 #ifdef illumos 498 #define DTRACE_TLS_THRKEY(where) { \ 499 uint_t intr = 0; \ 500 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 501 for (; actv; actv >>= 1) \ 502 intr++; \ 503 ASSERT(intr < (1 << 3)); \ 504 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 505 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 506 } 507 #endif 508 #ifdef __FreeBSD__ 509 #define DTRACE_TLS_THRKEY(where) { \ 510 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \ 511 uint_t intr = 0; \ 512 uint_t actv = _c->cpu_intr_actv; \ 513 for (; actv; actv >>= 1) \ 514 intr++; \ 515 ASSERT(intr < (1 << 3)); \ 516 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \ 517 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 518 } 519 #endif 520 #ifdef __NetBSD__ 521 #define DTRACE_TLS_THRKEY(where) { \ 522 uint_t intr = 0; \ 523 (where) = ((curthread->l_lid + (curthread->l_proc->p_pid << 16) + \ 524 DIF_VARIABLE_MAX) & \ 525 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 526 } 527 #endif 528 529 #define DT_BSWAP_8(x) ((x) & 0xff) 530 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 531 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 532 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 533 534 #define DT_MASK_LO 0x00000000FFFFFFFFULL 535 536 #define DTRACE_STORE(type, tomax, offset, what) \ 537 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 538 539 #ifndef __x86 540 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 541 if (addr & (size - 1)) { \ 542 *flags |= CPU_DTRACE_BADALIGN; \ 543 cpu_core[curcpu_id].cpuc_dtrace_illval = addr; \ 544 return (0); \ 545 } 546 #else 547 #define DTRACE_ALIGNCHECK(addr, size, flags) 548 #endif 549 550 /* 551 * Test whether a range of memory starting at testaddr of size testsz falls 552 * within the range of memory described by addr, sz. We take care to avoid 553 * problems with overflow and underflow of the unsigned quantities, and 554 * disallow all negative sizes. Ranges of size 0 are allowed. 555 */ 556 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 557 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 558 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 559 (testaddr) + (testsz) >= (testaddr)) 560 561 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 562 do { \ 563 if ((remp) != NULL) { \ 564 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 565 } \ 566 _NOTE(CONSTCOND) } while (0) 567 568 569 /* 570 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 571 * alloc_sz on the righthand side of the comparison in order to avoid overflow 572 * or underflow in the comparison with it. This is simpler than the INRANGE 573 * check above, because we know that the dtms_scratch_ptr is valid in the 574 * range. Allocations of size zero are allowed. 575 */ 576 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 577 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 578 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 579 580 #define DTRACE_LOADFUNC(bits) \ 581 /*CSTYLED*/ \ 582 uint##bits##_t \ 583 dtrace_load##bits(uintptr_t addr) \ 584 { \ 585 size_t size = bits / NBBY; \ 586 /*CSTYLED*/ \ 587 uint##bits##_t rval; \ 588 int i; \ 589 volatile uint16_t *flags = (volatile uint16_t *) \ 590 &cpu_core[curcpu_id].cpuc_dtrace_flags; \ 591 \ 592 DTRACE_ALIGNCHECK(addr, size, flags); \ 593 \ 594 for (i = 0; i < dtrace_toxranges; i++) { \ 595 if (addr >= dtrace_toxrange[i].dtt_limit) \ 596 continue; \ 597 \ 598 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 599 continue; \ 600 \ 601 /* \ 602 * This address falls within a toxic region; return 0. \ 603 */ \ 604 *flags |= CPU_DTRACE_BADADDR; \ 605 cpu_core[curcpu_id].cpuc_dtrace_illval = addr; \ 606 return (0); \ 607 } \ 608 \ 609 *flags |= CPU_DTRACE_NOFAULT; \ 610 /*CSTYLED*/ \ 611 rval = *((volatile uint##bits##_t *)addr); \ 612 *flags &= ~CPU_DTRACE_NOFAULT; \ 613 \ 614 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 615 } 616 617 #ifdef _LP64 618 #define dtrace_loadptr dtrace_load64 619 #else 620 #define dtrace_loadptr dtrace_load32 621 #endif 622 623 #define DTRACE_DYNHASH_FREE 0 624 #define DTRACE_DYNHASH_SINK 1 625 #define DTRACE_DYNHASH_VALID 2 626 627 #define DTRACE_MATCH_FAIL -1 628 #define DTRACE_MATCH_NEXT 0 629 #define DTRACE_MATCH_DONE 1 630 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 631 #define DTRACE_STATE_ALIGN 64 632 633 #define DTRACE_FLAGS2FLT(flags) \ 634 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 635 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 636 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 637 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 638 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 639 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 640 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 641 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 642 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 643 DTRACEFLT_UNKNOWN) 644 645 #define DTRACEACT_ISSTRING(act) \ 646 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 647 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 648 649 /* Function prototype definitions: */ 650 static size_t dtrace_strlen(const char *, size_t); 651 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 652 static void dtrace_enabling_provide(dtrace_provider_t *); 653 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 654 static void dtrace_enabling_matchall(void); 655 static void dtrace_enabling_reap(void); 656 static dtrace_state_t *dtrace_anon_grab(void); 657 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 658 dtrace_state_t *, uint64_t, uint64_t); 659 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 660 static void dtrace_buffer_drop(dtrace_buffer_t *); 661 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 662 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 663 dtrace_state_t *, dtrace_mstate_t *); 664 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 665 dtrace_optval_t); 666 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 667 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 668 uint16_t dtrace_load16(uintptr_t); 669 uint32_t dtrace_load32(uintptr_t); 670 uint64_t dtrace_load64(uintptr_t); 671 uint8_t dtrace_load8(uintptr_t); 672 void dtrace_dynvar_clean(dtrace_dstate_t *); 673 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *, 674 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *); 675 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *); 676 static int dtrace_priv_proc(dtrace_state_t *); 677 static void dtrace_getf_barrier(void); 678 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 679 dtrace_mstate_t *, dtrace_vstate_t *); 680 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 681 dtrace_mstate_t *, dtrace_vstate_t *); 682 683 /* 684 * DTrace Probe Context Functions 685 * 686 * These functions are called from probe context. Because probe context is 687 * any context in which C may be called, arbitrarily locks may be held, 688 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 689 * As a result, functions called from probe context may only call other DTrace 690 * support functions -- they may not interact at all with the system at large. 691 * (Note that the ASSERT macro is made probe-context safe by redefining it in 692 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 693 * loads are to be performed from probe context, they _must_ be in terms of 694 * the safe dtrace_load*() variants. 695 * 696 * Some functions in this block are not actually called from probe context; 697 * for these functions, there will be a comment above the function reading 698 * "Note: not called from probe context." 699 */ 700 void 701 dtrace_panic(const char *format, ...) 702 { 703 va_list alist; 704 705 va_start(alist, format); 706 #ifndef illumos 707 vpanic(format, alist); 708 #else 709 dtrace_vpanic(format, alist); 710 #endif 711 va_end(alist); 712 } 713 714 int 715 dtrace_assfail(const char *a, const char *f, int l) 716 { 717 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 718 719 /* 720 * We just need something here that even the most clever compiler 721 * cannot optimize away. 722 */ 723 return (a[(uintptr_t)f]); 724 } 725 726 /* 727 * Atomically increment a specified error counter from probe context. 728 */ 729 static void 730 dtrace_error(uint32_t *counter) 731 { 732 /* 733 * Most counters stored to in probe context are per-CPU counters. 734 * However, there are some error conditions that are sufficiently 735 * arcane that they don't merit per-CPU storage. If these counters 736 * are incremented concurrently on different CPUs, scalability will be 737 * adversely affected -- but we don't expect them to be white-hot in a 738 * correctly constructed enabling... 739 */ 740 uint32_t oval, nval; 741 742 do { 743 oval = *counter; 744 745 if ((nval = oval + 1) == 0) { 746 /* 747 * If the counter would wrap, set it to 1 -- assuring 748 * that the counter is never zero when we have seen 749 * errors. (The counter must be 32-bits because we 750 * aren't guaranteed a 64-bit compare&swap operation.) 751 * To save this code both the infamy of being fingered 752 * by a priggish news story and the indignity of being 753 * the target of a neo-puritan witch trial, we're 754 * carefully avoiding any colorful description of the 755 * likelihood of this condition -- but suffice it to 756 * say that it is only slightly more likely than the 757 * overflow of predicate cache IDs, as discussed in 758 * dtrace_predicate_create(). 759 */ 760 nval = 1; 761 } 762 } while (dtrace_cas32(counter, oval, nval) != oval); 763 } 764 765 /* 766 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 767 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 768 */ 769 /* BEGIN CSTYLED */ 770 DTRACE_LOADFUNC(8) 771 DTRACE_LOADFUNC(16) 772 DTRACE_LOADFUNC(32) 773 DTRACE_LOADFUNC(64) 774 /* END CSTYLED */ 775 776 static int 777 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 778 { 779 if (dest < mstate->dtms_scratch_base) 780 return (0); 781 782 if (dest + size < dest) 783 return (0); 784 785 if (dest + size > mstate->dtms_scratch_ptr) 786 return (0); 787 788 return (1); 789 } 790 791 static int 792 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 793 dtrace_statvar_t **svars, int nsvars) 794 { 795 int i; 796 size_t maxglobalsize, maxlocalsize; 797 798 if (nsvars == 0) 799 return (0); 800 801 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 802 maxlocalsize = maxglobalsize * NCPU; 803 804 for (i = 0; i < nsvars; i++) { 805 dtrace_statvar_t *svar = svars[i]; 806 uint8_t scope; 807 size_t size; 808 809 if (svar == NULL || (size = svar->dtsv_size) == 0) 810 continue; 811 812 scope = svar->dtsv_var.dtdv_scope; 813 814 /* 815 * We verify that our size is valid in the spirit of providing 816 * defense in depth: we want to prevent attackers from using 817 * DTrace to escalate an orthogonal kernel heap corruption bug 818 * into the ability to store to arbitrary locations in memory. 819 */ 820 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 821 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 822 823 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 824 svar->dtsv_size)) { 825 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 826 svar->dtsv_size); 827 return (1); 828 } 829 } 830 831 return (0); 832 } 833 834 /* 835 * Check to see if the address is within a memory region to which a store may 836 * be issued. This includes the DTrace scratch areas, and any DTrace variable 837 * region. The caller of dtrace_canstore() is responsible for performing any 838 * alignment checks that are needed before stores are actually executed. 839 */ 840 static int 841 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 842 dtrace_vstate_t *vstate) 843 { 844 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 845 } 846 847 /* 848 * Implementation of dtrace_canstore which communicates the upper bound of the 849 * allowed memory region. 850 */ 851 static int 852 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 853 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 854 { 855 /* 856 * First, check to see if the address is in scratch space... 857 */ 858 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 859 mstate->dtms_scratch_size)) { 860 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 861 mstate->dtms_scratch_size); 862 return (1); 863 } 864 865 /* 866 * Now check to see if it's a dynamic variable. This check will pick 867 * up both thread-local variables and any global dynamically-allocated 868 * variables. 869 */ 870 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 871 vstate->dtvs_dynvars.dtds_size)) { 872 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 873 uintptr_t base = (uintptr_t)dstate->dtds_base + 874 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 875 uintptr_t chunkoffs; 876 dtrace_dynvar_t *dvar; 877 878 /* 879 * Before we assume that we can store here, we need to make 880 * sure that it isn't in our metadata -- storing to our 881 * dynamic variable metadata would corrupt our state. For 882 * the range to not include any dynamic variable metadata, 883 * it must: 884 * 885 * (1) Start above the hash table that is at the base of 886 * the dynamic variable space 887 * 888 * (2) Have a starting chunk offset that is beyond the 889 * dtrace_dynvar_t that is at the base of every chunk 890 * 891 * (3) Not span a chunk boundary 892 * 893 * (4) Not be in the tuple space of a dynamic variable 894 * 895 */ 896 if (addr < base) 897 return (0); 898 899 chunkoffs = (addr - base) % dstate->dtds_chunksize; 900 901 if (chunkoffs < sizeof (dtrace_dynvar_t)) 902 return (0); 903 904 if (chunkoffs + sz > dstate->dtds_chunksize) 905 return (0); 906 907 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 908 909 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 910 return (0); 911 912 if (chunkoffs < sizeof (dtrace_dynvar_t) + 913 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 914 return (0); 915 916 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 917 return (1); 918 } 919 920 /* 921 * Finally, check the static local and global variables. These checks 922 * take the longest, so we perform them last. 923 */ 924 if (dtrace_canstore_statvar(addr, sz, remain, 925 vstate->dtvs_locals, vstate->dtvs_nlocals)) 926 return (1); 927 928 if (dtrace_canstore_statvar(addr, sz, remain, 929 vstate->dtvs_globals, vstate->dtvs_nglobals)) 930 return (1); 931 932 return (0); 933 } 934 935 936 /* 937 * Convenience routine to check to see if the address is within a memory 938 * region in which a load may be issued given the user's privilege level; 939 * if not, it sets the appropriate error flags and loads 'addr' into the 940 * illegal value slot. 941 * 942 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 943 * appropriate memory access protection. 944 */ 945 static int 946 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 947 dtrace_vstate_t *vstate) 948 { 949 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 950 } 951 952 /* 953 * Implementation of dtrace_canload which communicates the uppoer bound of the 954 * allowed memory region. 955 */ 956 static int 957 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 958 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 959 { 960 volatile uintptr_t *illval = &cpu_core[curcpu_id].cpuc_dtrace_illval; 961 file_t *fp; 962 963 /* 964 * If we hold the privilege to read from kernel memory, then 965 * everything is readable. 966 */ 967 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 968 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 969 return (1); 970 } 971 972 /* 973 * You can obviously read that which you can store. 974 */ 975 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 976 return (1); 977 978 /* 979 * We're allowed to read from our own string table. 980 */ 981 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 982 mstate->dtms_difo->dtdo_strlen)) { 983 DTRACE_RANGE_REMAIN(remain, addr, 984 mstate->dtms_difo->dtdo_strtab, 985 mstate->dtms_difo->dtdo_strlen); 986 return (1); 987 } 988 989 if (vstate->dtvs_state != NULL && 990 dtrace_priv_proc(vstate->dtvs_state)) { 991 proc_t *p; 992 993 /* 994 * When we have privileges to the current process, there are 995 * several context-related kernel structures that are safe to 996 * read, even absent the privilege to read from kernel memory. 997 * These reads are safe because these structures contain only 998 * state that (1) we're permitted to read, (2) is harmless or 999 * (3) contains pointers to additional kernel state that we're 1000 * not permitted to read (and as such, do not present an 1001 * opportunity for privilege escalation). Finally (and 1002 * critically), because of the nature of their relation with 1003 * the current thread context, the memory associated with these 1004 * structures cannot change over the duration of probe context, 1005 * and it is therefore impossible for this memory to be 1006 * deallocated and reallocated as something else while it's 1007 * being operated upon. 1008 */ 1009 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 1010 DTRACE_RANGE_REMAIN(remain, addr, curthread, 1011 sizeof (kthread_t)); 1012 return (1); 1013 } 1014 1015 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 1016 sz, curthread->t_procp, sizeof (proc_t))) { 1017 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 1018 sizeof (proc_t)); 1019 return (1); 1020 } 1021 1022 #ifndef __NetBSD__ 1023 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 1024 curthread->t_cred, sizeof (cred_t))) { 1025 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 1026 sizeof (cred_t)); 1027 return (1); 1028 } 1029 #endif 1030 1031 #ifdef illumos 1032 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 1033 &(p->p_pidp->pid_id), sizeof (pid_t))) { 1034 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 1035 sizeof (pid_t)); 1036 return (1); 1037 } 1038 1039 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 1040 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 1041 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 1042 offsetof(cpu_t, cpu_pause_thread)); 1043 return (1); 1044 } 1045 #endif 1046 } 1047 1048 if ((fp = mstate->dtms_getf) != NULL) { 1049 uintptr_t psz = sizeof (void *); 1050 vnode_t *vp; 1051 vnodeops_t *op; 1052 1053 /* 1054 * When getf() returns a file_t, the enabling is implicitly 1055 * granted the (transient) right to read the returned file_t 1056 * as well as the v_path and v_op->vnop_name of the underlying 1057 * vnode. These accesses are allowed after a successful 1058 * getf() because the members that they refer to cannot change 1059 * once set -- and the barrier logic in the kernel's closef() 1060 * path assures that the file_t and its referenced vode_t 1061 * cannot themselves be stale (that is, it impossible for 1062 * either dtms_getf itself or its f_vnode member to reference 1063 * freed memory). 1064 */ 1065 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 1066 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 1067 return (1); 1068 } 1069 1070 if ((vp = fp->f_vnode) != NULL) { 1071 size_t slen; 1072 #ifdef illumos 1073 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 1074 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 1075 psz); 1076 return (1); 1077 } 1078 slen = strlen(vp->v_path) + 1; 1079 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 1080 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 1081 slen); 1082 return (1); 1083 } 1084 #endif 1085 1086 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 1087 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 1088 psz); 1089 return (1); 1090 } 1091 1092 #ifdef illumos 1093 if ((op = vp->v_op) != NULL && 1094 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 1095 DTRACE_RANGE_REMAIN(remain, addr, 1096 &op->vnop_name, psz); 1097 return (1); 1098 } 1099 1100 if (op != NULL && op->vnop_name != NULL && 1101 DTRACE_INRANGE(addr, sz, op->vnop_name, 1102 (slen = strlen(op->vnop_name) + 1))) { 1103 DTRACE_RANGE_REMAIN(remain, addr, 1104 op->vnop_name, slen); 1105 return (1); 1106 } 1107 #endif 1108 } 1109 } 1110 1111 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 1112 *illval = addr; 1113 return (0); 1114 } 1115 1116 /* 1117 * Convenience routine to check to see if a given string is within a memory 1118 * region in which a load may be issued given the user's privilege level; 1119 * this exists so that we don't need to issue unnecessary dtrace_strlen() 1120 * calls in the event that the user has all privileges. 1121 */ 1122 static int 1123 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 1124 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1125 { 1126 size_t rsize; 1127 1128 /* 1129 * If we hold the privilege to read from kernel memory, then 1130 * everything is readable. 1131 */ 1132 1133 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1134 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 1135 return (1); 1136 } 1137 1138 /* 1139 * Even if the caller is uninterested in querying the remaining valid 1140 * range, it is required to ensure that the access is allowed. 1141 */ 1142 if (remain == NULL) { 1143 remain = &rsize; 1144 } 1145 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 1146 size_t strsz; 1147 /* 1148 * Perform the strlen after determining the length of the 1149 * memory region which is accessible. This prevents timing 1150 * information from being used to find NULs in memory which is 1151 * not accessible to the caller. 1152 */ 1153 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 1154 MIN(sz, *remain)); 1155 if (strsz <= *remain) { 1156 return (1); 1157 } 1158 } 1159 1160 return (0); 1161 } 1162 1163 /* 1164 * Convenience routine to check to see if a given variable is within a memory 1165 * region in which a load may be issued given the user's privilege level. 1166 */ 1167 static int 1168 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 1169 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1170 { 1171 size_t sz; 1172 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1173 1174 /* 1175 * Calculate the max size before performing any checks since even 1176 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 1177 * return the max length via 'remain'. 1178 */ 1179 if (type->dtdt_kind == DIF_TYPE_STRING) { 1180 dtrace_state_t *state = vstate->dtvs_state; 1181 1182 if (state != NULL) { 1183 sz = state->dts_options[DTRACEOPT_STRSIZE]; 1184 } else { 1185 /* 1186 * In helper context, we have a NULL state; fall back 1187 * to using the system-wide default for the string size 1188 * in this case. 1189 */ 1190 sz = dtrace_strsize_default; 1191 } 1192 } else { 1193 sz = type->dtdt_size; 1194 } 1195 1196 /* 1197 * If we hold the privilege to read from kernel memory, then 1198 * everything is readable. 1199 */ 1200 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1201 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1202 return (1); 1203 } 1204 1205 if (type->dtdt_kind == DIF_TYPE_STRING) { 1206 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1207 vstate)); 1208 } 1209 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1210 vstate)); 1211 } 1212 1213 /* 1214 * Convert a string to a signed integer using safe loads. 1215 * 1216 * NOTE: This function uses various macros from strtolctype.h to manipulate 1217 * digit values, etc -- these have all been checked to ensure they make 1218 * no additional function calls. 1219 */ 1220 static int64_t 1221 dtrace_strtoll(char *input, int base, size_t limit) 1222 { 1223 uintptr_t pos = (uintptr_t)input; 1224 int64_t val = 0; 1225 int x; 1226 boolean_t neg = B_FALSE; 1227 char c, cc, ccc; 1228 uintptr_t end = pos + limit; 1229 1230 /* 1231 * Consume any whitespace preceding digits. 1232 */ 1233 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1234 pos++; 1235 1236 /* 1237 * Handle an explicit sign if one is present. 1238 */ 1239 if (c == '-' || c == '+') { 1240 if (c == '-') 1241 neg = B_TRUE; 1242 c = dtrace_load8(++pos); 1243 } 1244 1245 /* 1246 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1247 * if present. 1248 */ 1249 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1250 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1251 pos += 2; 1252 c = ccc; 1253 } 1254 1255 /* 1256 * Read in contiguous digits until the first non-digit character. 1257 */ 1258 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1259 c = dtrace_load8(++pos)) 1260 val = val * base + x; 1261 1262 return (neg ? -val : val); 1263 } 1264 1265 /* 1266 * Compare two strings using safe loads. 1267 */ 1268 static int 1269 dtrace_strncmp(char *s1, char *s2, size_t limit) 1270 { 1271 uint8_t c1, c2; 1272 volatile uint16_t *flags; 1273 1274 if (s1 == s2 || limit == 0) 1275 return (0); 1276 1277 flags = (volatile uint16_t *)&cpu_core[curcpu_id].cpuc_dtrace_flags; 1278 1279 do { 1280 if (s1 == NULL) { 1281 c1 = '\0'; 1282 } else { 1283 c1 = dtrace_load8((uintptr_t)s1++); 1284 } 1285 1286 if (s2 == NULL) { 1287 c2 = '\0'; 1288 } else { 1289 c2 = dtrace_load8((uintptr_t)s2++); 1290 } 1291 1292 if (c1 != c2) 1293 return (c1 - c2); 1294 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1295 1296 return (0); 1297 } 1298 1299 /* 1300 * Compute strlen(s) for a string using safe memory accesses. The additional 1301 * len parameter is used to specify a maximum length to ensure completion. 1302 */ 1303 static size_t 1304 dtrace_strlen(const char *s, size_t lim) 1305 { 1306 uint_t len; 1307 1308 for (len = 0; len != lim; len++) { 1309 if (dtrace_load8((uintptr_t)s++) == '\0') 1310 break; 1311 } 1312 1313 return (len); 1314 } 1315 1316 /* 1317 * Check if an address falls within a toxic region. 1318 */ 1319 static int 1320 dtrace_istoxic(uintptr_t kaddr, size_t size) 1321 { 1322 uintptr_t taddr, tsize; 1323 int i; 1324 1325 for (i = 0; i < dtrace_toxranges; i++) { 1326 taddr = dtrace_toxrange[i].dtt_base; 1327 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1328 1329 if (kaddr - taddr < tsize) { 1330 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1331 cpu_core[curcpu_id].cpuc_dtrace_illval = kaddr; 1332 return (1); 1333 } 1334 1335 if (taddr - kaddr < size) { 1336 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1337 cpu_core[curcpu_id].cpuc_dtrace_illval = taddr; 1338 return (1); 1339 } 1340 } 1341 1342 return (0); 1343 } 1344 1345 /* 1346 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1347 * memory specified by the DIF program. The dst is assumed to be safe memory 1348 * that we can store to directly because it is managed by DTrace. As with 1349 * standard bcopy, overlapping copies are handled properly. 1350 */ 1351 static void 1352 dtrace_bcopy(const void *src, void *dst, size_t len) 1353 { 1354 if (len != 0) { 1355 uint8_t *s1 = dst; 1356 const uint8_t *s2 = src; 1357 1358 if (s1 <= s2) { 1359 do { 1360 *s1++ = dtrace_load8((uintptr_t)s2++); 1361 } while (--len != 0); 1362 } else { 1363 s2 += len; 1364 s1 += len; 1365 1366 do { 1367 *--s1 = dtrace_load8((uintptr_t)--s2); 1368 } while (--len != 0); 1369 } 1370 } 1371 } 1372 1373 /* 1374 * Copy src to dst using safe memory accesses, up to either the specified 1375 * length, or the point that a nul byte is encountered. The src is assumed to 1376 * be unsafe memory specified by the DIF program. The dst is assumed to be 1377 * safe memory that we can store to directly because it is managed by DTrace. 1378 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1379 */ 1380 static void 1381 dtrace_strcpy(const void *src, void *dst, size_t len) 1382 { 1383 if (len != 0) { 1384 uint8_t *s1 = dst, c; 1385 const uint8_t *s2 = src; 1386 1387 do { 1388 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1389 } while (--len != 0 && c != '\0'); 1390 } 1391 } 1392 1393 /* 1394 * Copy src to dst, deriving the size and type from the specified (BYREF) 1395 * variable type. The src is assumed to be unsafe memory specified by the DIF 1396 * program. The dst is assumed to be DTrace variable memory that is of the 1397 * specified type; we assume that we can store to directly. 1398 */ 1399 static void 1400 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1401 { 1402 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1403 1404 if (type->dtdt_kind == DIF_TYPE_STRING) { 1405 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1406 } else { 1407 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1408 } 1409 } 1410 1411 /* 1412 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1413 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1414 * safe memory that we can access directly because it is managed by DTrace. 1415 */ 1416 static int 1417 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1418 { 1419 volatile uint16_t *flags; 1420 1421 flags = (volatile uint16_t *)&cpu_core[curcpu_id].cpuc_dtrace_flags; 1422 1423 if (s1 == s2) 1424 return (0); 1425 1426 if (s1 == NULL || s2 == NULL) 1427 return (1); 1428 1429 if (s1 != s2 && len != 0) { 1430 const uint8_t *ps1 = s1; 1431 const uint8_t *ps2 = s2; 1432 1433 do { 1434 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1435 return (1); 1436 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1437 } 1438 return (0); 1439 } 1440 1441 /* 1442 * Zero the specified region using a simple byte-by-byte loop. Note that this 1443 * is for safe DTrace-managed memory only. 1444 */ 1445 static void 1446 dtrace_bzero(void *dst, size_t len) 1447 { 1448 uchar_t *cp; 1449 1450 for (cp = dst; len != 0; len--) 1451 *cp++ = 0; 1452 } 1453 1454 static void 1455 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1456 { 1457 uint64_t result[2]; 1458 1459 result[0] = addend1[0] + addend2[0]; 1460 result[1] = addend1[1] + addend2[1] + 1461 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1462 1463 sum[0] = result[0]; 1464 sum[1] = result[1]; 1465 } 1466 1467 /* 1468 * Shift the 128-bit value in a by b. If b is positive, shift left. 1469 * If b is negative, shift right. 1470 */ 1471 static void 1472 dtrace_shift_128(uint64_t *a, int b) 1473 { 1474 uint64_t mask; 1475 1476 if (b == 0) 1477 return; 1478 1479 if (b < 0) { 1480 b = -b; 1481 if (b >= 64) { 1482 a[0] = a[1] >> (b - 64); 1483 a[1] = 0; 1484 } else { 1485 a[0] >>= b; 1486 mask = 1LL << (64 - b); 1487 mask -= 1; 1488 a[0] |= ((a[1] & mask) << (64 - b)); 1489 a[1] >>= b; 1490 } 1491 } else { 1492 if (b >= 64) { 1493 a[1] = a[0] << (b - 64); 1494 a[0] = 0; 1495 } else { 1496 a[1] <<= b; 1497 mask = a[0] >> (64 - b); 1498 a[1] |= mask; 1499 a[0] <<= b; 1500 } 1501 } 1502 } 1503 1504 /* 1505 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1506 * use native multiplication on those, and then re-combine into the 1507 * resulting 128-bit value. 1508 * 1509 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1510 * hi1 * hi2 << 64 + 1511 * hi1 * lo2 << 32 + 1512 * hi2 * lo1 << 32 + 1513 * lo1 * lo2 1514 */ 1515 static void 1516 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1517 { 1518 uint64_t hi1, hi2, lo1, lo2; 1519 uint64_t tmp[2]; 1520 1521 hi1 = factor1 >> 32; 1522 hi2 = factor2 >> 32; 1523 1524 lo1 = factor1 & DT_MASK_LO; 1525 lo2 = factor2 & DT_MASK_LO; 1526 1527 product[0] = lo1 * lo2; 1528 product[1] = hi1 * hi2; 1529 1530 tmp[0] = hi1 * lo2; 1531 tmp[1] = 0; 1532 dtrace_shift_128(tmp, 32); 1533 dtrace_add_128(product, tmp, product); 1534 1535 tmp[0] = hi2 * lo1; 1536 tmp[1] = 0; 1537 dtrace_shift_128(tmp, 32); 1538 dtrace_add_128(product, tmp, product); 1539 } 1540 1541 /* 1542 * This privilege check should be used by actions and subroutines to 1543 * verify that the user credentials of the process that enabled the 1544 * invoking ECB match the target credentials 1545 */ 1546 static int 1547 dtrace_priv_proc_common_user(dtrace_state_t *state) 1548 { 1549 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1550 1551 /* 1552 * We should always have a non-NULL state cred here, since if cred 1553 * is null (anonymous tracing), we fast-path bypass this routine. 1554 */ 1555 ASSERT(s_cr != NULL); 1556 1557 #ifdef __NetBSD__ 1558 if ((cr = CRED()) != NULL) { 1559 uid_t uid; 1560 gid_t gid; 1561 1562 uid = kauth_cred_getuid(s_cr); 1563 gid = kauth_cred_getgid(s_cr); 1564 1565 if (uid == kauth_cred_getuid(cr) && 1566 uid == kauth_cred_geteuid(cr) && 1567 uid == kauth_cred_getsvuid(cr) && 1568 gid == kauth_cred_getgid(cr) && 1569 gid == kauth_cred_getegid(cr) && 1570 gid == kauth_cred_getsvgid(cr)) 1571 return 1; 1572 } 1573 #else 1574 if ((cr = CRED()) != NULL && 1575 s_cr->cr_uid == cr->cr_uid && 1576 s_cr->cr_uid == cr->cr_ruid && 1577 s_cr->cr_uid == cr->cr_suid && 1578 s_cr->cr_gid == cr->cr_gid && 1579 s_cr->cr_gid == cr->cr_rgid && 1580 s_cr->cr_gid == cr->cr_sgid) 1581 return (1); 1582 #endif 1583 1584 return (0); 1585 } 1586 1587 /* 1588 * This privilege check should be used by actions and subroutines to 1589 * verify that the zone of the process that enabled the invoking ECB 1590 * matches the target credentials 1591 */ 1592 static int 1593 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1594 { 1595 #ifdef illumos 1596 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1597 1598 /* 1599 * We should always have a non-NULL state cred here, since if cred 1600 * is null (anonymous tracing), we fast-path bypass this routine. 1601 */ 1602 ASSERT(s_cr != NULL); 1603 1604 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1605 s_cr->cr_zone == cr->cr_zone) 1606 return (1); 1607 1608 return (0); 1609 #else 1610 return (1); 1611 #endif 1612 } 1613 1614 /* 1615 * This privilege check should be used by actions and subroutines to 1616 * verify that the process has not setuid or changed credentials. 1617 */ 1618 static int 1619 dtrace_priv_proc_common_nocd(void) 1620 { 1621 proc_t *proc; 1622 1623 if ((proc = ttoproc(curthread)) != NULL && 1624 !(proc->p_flag & SNOCD)) 1625 return (1); 1626 1627 return (0); 1628 } 1629 1630 static int 1631 dtrace_priv_proc_destructive(dtrace_state_t *state) 1632 { 1633 int action = state->dts_cred.dcr_action; 1634 1635 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1636 dtrace_priv_proc_common_zone(state) == 0) 1637 goto bad; 1638 1639 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1640 dtrace_priv_proc_common_user(state) == 0) 1641 goto bad; 1642 1643 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1644 dtrace_priv_proc_common_nocd() == 0) 1645 goto bad; 1646 1647 return (1); 1648 1649 bad: 1650 cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1651 1652 return (0); 1653 } 1654 1655 static int 1656 dtrace_priv_proc_control(dtrace_state_t *state) 1657 { 1658 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1659 return (1); 1660 1661 if (dtrace_priv_proc_common_zone(state) && 1662 dtrace_priv_proc_common_user(state) && 1663 dtrace_priv_proc_common_nocd()) 1664 return (1); 1665 1666 cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1667 1668 return (0); 1669 } 1670 1671 static int 1672 dtrace_priv_proc(dtrace_state_t *state) 1673 { 1674 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1675 return (1); 1676 1677 cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1678 1679 return (0); 1680 } 1681 1682 static int 1683 dtrace_priv_kernel(dtrace_state_t *state) 1684 { 1685 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1686 return (1); 1687 1688 cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1689 1690 return (0); 1691 } 1692 1693 static int 1694 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1695 { 1696 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1697 return (1); 1698 1699 cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1700 1701 return (0); 1702 } 1703 1704 /* 1705 * Determine if the dte_cond of the specified ECB allows for processing of 1706 * the current probe to continue. Note that this routine may allow continued 1707 * processing, but with access(es) stripped from the mstate's dtms_access 1708 * field. 1709 */ 1710 static int 1711 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1712 dtrace_ecb_t *ecb) 1713 { 1714 dtrace_probe_t *probe = ecb->dte_probe; 1715 dtrace_provider_t *prov = probe->dtpr_provider; 1716 dtrace_pops_t *pops = &prov->dtpv_pops; 1717 int mode = DTRACE_MODE_NOPRIV_DROP; 1718 1719 ASSERT(ecb->dte_cond); 1720 1721 #ifdef illumos 1722 if (pops->dtps_mode != NULL) { 1723 mode = pops->dtps_mode(prov->dtpv_arg, 1724 probe->dtpr_id, probe->dtpr_arg); 1725 1726 ASSERT((mode & DTRACE_MODE_USER) || 1727 (mode & DTRACE_MODE_KERNEL)); 1728 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1729 (mode & DTRACE_MODE_NOPRIV_DROP)); 1730 } 1731 1732 /* 1733 * If the dte_cond bits indicate that this consumer is only allowed to 1734 * see user-mode firings of this probe, call the provider's dtps_mode() 1735 * entry point to check that the probe was fired while in a user 1736 * context. If that's not the case, use the policy specified by the 1737 * provider to determine if we drop the probe or merely restrict 1738 * operation. 1739 */ 1740 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1741 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1742 1743 if (!(mode & DTRACE_MODE_USER)) { 1744 if (mode & DTRACE_MODE_NOPRIV_DROP) 1745 return (0); 1746 1747 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1748 } 1749 } 1750 #endif 1751 1752 /* 1753 * This is more subtle than it looks. We have to be absolutely certain 1754 * that CRED() isn't going to change out from under us so it's only 1755 * legit to examine that structure if we're in constrained situations. 1756 * Currently, the only times we'll this check is if a non-super-user 1757 * has enabled the profile or syscall providers -- providers that 1758 * allow visibility of all processes. For the profile case, the check 1759 * above will ensure that we're examining a user context. 1760 */ 1761 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1762 cred_t *cr; 1763 cred_t *s_cr = state->dts_cred.dcr_cred; 1764 proc_t *proc; 1765 1766 ASSERT(s_cr != NULL); 1767 1768 #ifdef __NetBSD__ 1769 uid_t uid = kauth_cred_getuid(s_cr); 1770 gid_t gid = kauth_cred_getgid(s_cr); 1771 1772 if ((cr = CRED()) == NULL || 1773 uid != kauth_cred_geteuid(cr) || 1774 uid != kauth_cred_getuid(cr) || 1775 uid != kauth_cred_getsvuid(cr) || 1776 gid != kauth_cred_getegid(cr) || 1777 gid != kauth_cred_getgid(cr) || 1778 gid != kauth_cred_getsvgid(cr) || 1779 (proc = ttoproc(curthread)) == NULL || 1780 (proc->p_flag & SNOCD)) { 1781 if (mode & DTRACE_MODE_NOPRIV_DROP) 1782 return (0); 1783 } 1784 #else /* __NetBSD__ */ 1785 if ((cr = CRED()) == NULL || 1786 s_cr->cr_uid != cr->cr_uid || 1787 s_cr->cr_uid != cr->cr_ruid || 1788 s_cr->cr_uid != cr->cr_suid || 1789 s_cr->cr_gid != cr->cr_gid || 1790 s_cr->cr_gid != cr->cr_rgid || 1791 s_cr->cr_gid != cr->cr_sgid || 1792 (proc = ttoproc(curthread)) == NULL || 1793 (proc->p_flag & SNOCD)) { 1794 if (mode & DTRACE_MODE_NOPRIV_DROP) 1795 return (0); 1796 1797 #ifdef illumos 1798 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1799 #endif 1800 } 1801 #endif /* __NetBSD__ */ 1802 } 1803 1804 #ifdef illumos 1805 /* 1806 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1807 * in our zone, check to see if our mode policy is to restrict rather 1808 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1809 * and DTRACE_ACCESS_ARGS 1810 */ 1811 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1812 cred_t *cr; 1813 cred_t *s_cr = state->dts_cred.dcr_cred; 1814 1815 ASSERT(s_cr != NULL); 1816 1817 if ((cr = CRED()) == NULL || 1818 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1819 if (mode & DTRACE_MODE_NOPRIV_DROP) 1820 return (0); 1821 1822 mstate->dtms_access &= 1823 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1824 } 1825 } 1826 #endif 1827 1828 return (1); 1829 } 1830 1831 /* 1832 * Note: not called from probe context. This function is called 1833 * asynchronously (and at a regular interval) from outside of probe context to 1834 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1835 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1836 */ 1837 void 1838 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1839 { 1840 dtrace_dynvar_t *dirty; 1841 dtrace_dstate_percpu_t *dcpu; 1842 dtrace_dynvar_t **rinsep; 1843 int i, j, work = 0; 1844 1845 for (i = 0; i < NCPU; i++) { 1846 dcpu = &dstate->dtds_percpu[i]; 1847 1848 rinsep = &dcpu->dtdsc_rinsing; 1849 1850 /* 1851 * If the dirty list is NULL, there is no dirty work to do. 1852 */ 1853 if (dcpu->dtdsc_dirty == NULL) 1854 continue; 1855 1856 if (dcpu->dtdsc_rinsing != NULL) { 1857 /* 1858 * If the rinsing list is non-NULL, then it is because 1859 * this CPU was selected to accept another CPU's 1860 * dirty list -- and since that time, dirty buffers 1861 * have accumulated. This is a highly unlikely 1862 * condition, but we choose to ignore the dirty 1863 * buffers -- they'll be picked up a future cleanse. 1864 */ 1865 continue; 1866 } 1867 1868 if (dcpu->dtdsc_clean != NULL) { 1869 /* 1870 * If the clean list is non-NULL, then we're in a 1871 * situation where a CPU has done deallocations (we 1872 * have a non-NULL dirty list) but no allocations (we 1873 * also have a non-NULL clean list). We can't simply 1874 * move the dirty list into the clean list on this 1875 * CPU, yet we also don't want to allow this condition 1876 * to persist, lest a short clean list prevent a 1877 * massive dirty list from being cleaned (which in 1878 * turn could lead to otherwise avoidable dynamic 1879 * drops). To deal with this, we look for some CPU 1880 * with a NULL clean list, NULL dirty list, and NULL 1881 * rinsing list -- and then we borrow this CPU to 1882 * rinse our dirty list. 1883 */ 1884 for (j = 0; j < NCPU; j++) { 1885 dtrace_dstate_percpu_t *rinser; 1886 1887 rinser = &dstate->dtds_percpu[j]; 1888 1889 if (rinser->dtdsc_rinsing != NULL) 1890 continue; 1891 1892 if (rinser->dtdsc_dirty != NULL) 1893 continue; 1894 1895 if (rinser->dtdsc_clean != NULL) 1896 continue; 1897 1898 rinsep = &rinser->dtdsc_rinsing; 1899 break; 1900 } 1901 1902 if (j == NCPU) { 1903 /* 1904 * We were unable to find another CPU that 1905 * could accept this dirty list -- we are 1906 * therefore unable to clean it now. 1907 */ 1908 dtrace_dynvar_failclean++; 1909 continue; 1910 } 1911 } 1912 1913 work = 1; 1914 1915 /* 1916 * Atomically move the dirty list aside. 1917 */ 1918 do { 1919 dirty = dcpu->dtdsc_dirty; 1920 1921 /* 1922 * Before we zap the dirty list, set the rinsing list. 1923 * (This allows for a potential assertion in 1924 * dtrace_dynvar(): if a free dynamic variable appears 1925 * on a hash chain, either the dirty list or the 1926 * rinsing list for some CPU must be non-NULL.) 1927 */ 1928 *rinsep = dirty; 1929 dtrace_membar_producer(); 1930 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1931 dirty, NULL) != dirty); 1932 } 1933 1934 if (!work) { 1935 /* 1936 * We have no work to do; we can simply return. 1937 */ 1938 return; 1939 } 1940 1941 dtrace_sync(); 1942 1943 for (i = 0; i < NCPU; i++) { 1944 dcpu = &dstate->dtds_percpu[i]; 1945 1946 if (dcpu->dtdsc_rinsing == NULL) 1947 continue; 1948 1949 /* 1950 * We are now guaranteed that no hash chain contains a pointer 1951 * into this dirty list; we can make it clean. 1952 */ 1953 ASSERT(dcpu->dtdsc_clean == NULL); 1954 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1955 dcpu->dtdsc_rinsing = NULL; 1956 } 1957 1958 /* 1959 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1960 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1961 * This prevents a race whereby a CPU incorrectly decides that 1962 * the state should be something other than DTRACE_DSTATE_CLEAN 1963 * after dtrace_dynvar_clean() has completed. 1964 */ 1965 dtrace_sync(); 1966 1967 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1968 } 1969 1970 /* 1971 * Depending on the value of the op parameter, this function looks-up, 1972 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1973 * allocation is requested, this function will return a pointer to a 1974 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1975 * variable can be allocated. If NULL is returned, the appropriate counter 1976 * will be incremented. 1977 */ 1978 dtrace_dynvar_t * 1979 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1980 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1981 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1982 { 1983 uint64_t hashval = DTRACE_DYNHASH_VALID; 1984 dtrace_dynhash_t *hash = dstate->dtds_hash; 1985 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1986 processorid_t me = curcpu_id, cpu = me; 1987 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1988 size_t bucket, ksize; 1989 size_t chunksize = dstate->dtds_chunksize; 1990 uintptr_t kdata, lock, nstate; 1991 uint_t i; 1992 1993 ASSERT(nkeys != 0); 1994 1995 /* 1996 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1997 * algorithm. For the by-value portions, we perform the algorithm in 1998 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1999 * bit, and seems to have only a minute effect on distribution. For 2000 * the by-reference data, we perform "One-at-a-time" iterating (safely) 2001 * over each referenced byte. It's painful to do this, but it's much 2002 * better than pathological hash distribution. The efficacy of the 2003 * hashing algorithm (and a comparison with other algorithms) may be 2004 * found by running the ::dtrace_dynstat MDB dcmd. 2005 */ 2006 for (i = 0; i < nkeys; i++) { 2007 if (key[i].dttk_size == 0) { 2008 uint64_t val = key[i].dttk_value; 2009 2010 hashval += (val >> 48) & 0xffff; 2011 hashval += (hashval << 10); 2012 hashval ^= (hashval >> 6); 2013 2014 hashval += (val >> 32) & 0xffff; 2015 hashval += (hashval << 10); 2016 hashval ^= (hashval >> 6); 2017 2018 hashval += (val >> 16) & 0xffff; 2019 hashval += (hashval << 10); 2020 hashval ^= (hashval >> 6); 2021 2022 hashval += val & 0xffff; 2023 hashval += (hashval << 10); 2024 hashval ^= (hashval >> 6); 2025 } else { 2026 /* 2027 * This is incredibly painful, but it beats the hell 2028 * out of the alternative. 2029 */ 2030 uint64_t j, size = key[i].dttk_size; 2031 uintptr_t base = (uintptr_t)key[i].dttk_value; 2032 2033 if (!dtrace_canload(base, size, mstate, vstate)) 2034 break; 2035 2036 for (j = 0; j < size; j++) { 2037 hashval += dtrace_load8(base + j); 2038 hashval += (hashval << 10); 2039 hashval ^= (hashval >> 6); 2040 } 2041 } 2042 } 2043 2044 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 2045 return (NULL); 2046 2047 hashval += (hashval << 3); 2048 hashval ^= (hashval >> 11); 2049 hashval += (hashval << 15); 2050 2051 /* 2052 * There is a remote chance (ideally, 1 in 2^31) that our hashval 2053 * comes out to be one of our two sentinel hash values. If this 2054 * actually happens, we set the hashval to be a value known to be a 2055 * non-sentinel value. 2056 */ 2057 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 2058 hashval = DTRACE_DYNHASH_VALID; 2059 2060 /* 2061 * Yes, it's painful to do a divide here. If the cycle count becomes 2062 * important here, tricks can be pulled to reduce it. (However, it's 2063 * critical that hash collisions be kept to an absolute minimum; 2064 * they're much more painful than a divide.) It's better to have a 2065 * solution that generates few collisions and still keeps things 2066 * relatively simple. 2067 */ 2068 bucket = hashval % dstate->dtds_hashsize; 2069 2070 if (op == DTRACE_DYNVAR_DEALLOC) { 2071 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 2072 2073 for (;;) { 2074 while ((lock = *lockp) & 1) 2075 continue; 2076 2077 if (dtrace_casptr((volatile void *)lockp, 2078 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock) 2079 break; 2080 } 2081 2082 dtrace_membar_producer(); 2083 } 2084 2085 top: 2086 prev = NULL; 2087 lock = hash[bucket].dtdh_lock; 2088 2089 dtrace_membar_consumer(); 2090 2091 start = hash[bucket].dtdh_chain; 2092 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 2093 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 2094 op != DTRACE_DYNVAR_DEALLOC)); 2095 2096 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 2097 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 2098 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 2099 2100 if (dvar->dtdv_hashval != hashval) { 2101 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 2102 /* 2103 * We've reached the sink, and therefore the 2104 * end of the hash chain; we can kick out of 2105 * the loop knowing that we have seen a valid 2106 * snapshot of state. 2107 */ 2108 ASSERT(dvar->dtdv_next == NULL); 2109 ASSERT(dvar == &dtrace_dynhash_sink); 2110 break; 2111 } 2112 2113 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 2114 /* 2115 * We've gone off the rails: somewhere along 2116 * the line, one of the members of this hash 2117 * chain was deleted. Note that we could also 2118 * detect this by simply letting this loop run 2119 * to completion, as we would eventually hit 2120 * the end of the dirty list. However, we 2121 * want to avoid running the length of the 2122 * dirty list unnecessarily (it might be quite 2123 * long), so we catch this as early as 2124 * possible by detecting the hash marker. In 2125 * this case, we simply set dvar to NULL and 2126 * break; the conditional after the loop will 2127 * send us back to top. 2128 */ 2129 dvar = NULL; 2130 break; 2131 } 2132 2133 goto next; 2134 } 2135 2136 if (dtuple->dtt_nkeys != nkeys) 2137 goto next; 2138 2139 for (i = 0; i < nkeys; i++, dkey++) { 2140 if (dkey->dttk_size != key[i].dttk_size) 2141 goto next; /* size or type mismatch */ 2142 2143 if (dkey->dttk_size != 0) { 2144 if (dtrace_bcmp( 2145 (void *)(uintptr_t)key[i].dttk_value, 2146 (void *)(uintptr_t)dkey->dttk_value, 2147 dkey->dttk_size)) 2148 goto next; 2149 } else { 2150 if (dkey->dttk_value != key[i].dttk_value) 2151 goto next; 2152 } 2153 } 2154 2155 if (op != DTRACE_DYNVAR_DEALLOC) 2156 return (dvar); 2157 2158 ASSERT(dvar->dtdv_next == NULL || 2159 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 2160 2161 if (prev != NULL) { 2162 ASSERT(hash[bucket].dtdh_chain != dvar); 2163 ASSERT(start != dvar); 2164 ASSERT(prev->dtdv_next == dvar); 2165 prev->dtdv_next = dvar->dtdv_next; 2166 } else { 2167 if (dtrace_casptr(&hash[bucket].dtdh_chain, 2168 start, dvar->dtdv_next) != start) { 2169 /* 2170 * We have failed to atomically swing the 2171 * hash table head pointer, presumably because 2172 * of a conflicting allocation on another CPU. 2173 * We need to reread the hash chain and try 2174 * again. 2175 */ 2176 goto top; 2177 } 2178 } 2179 2180 dtrace_membar_producer(); 2181 2182 /* 2183 * Now set the hash value to indicate that it's free. 2184 */ 2185 ASSERT(hash[bucket].dtdh_chain != dvar); 2186 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2187 2188 dtrace_membar_producer(); 2189 2190 /* 2191 * Set the next pointer to point at the dirty list, and 2192 * atomically swing the dirty pointer to the newly freed dvar. 2193 */ 2194 do { 2195 next = dcpu->dtdsc_dirty; 2196 dvar->dtdv_next = next; 2197 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 2198 2199 /* 2200 * Finally, unlock this hash bucket. 2201 */ 2202 ASSERT(hash[bucket].dtdh_lock == lock); 2203 ASSERT(lock & 1); 2204 hash[bucket].dtdh_lock++; 2205 2206 return (NULL); 2207 next: 2208 prev = dvar; 2209 continue; 2210 } 2211 2212 if (dvar == NULL) { 2213 /* 2214 * If dvar is NULL, it is because we went off the rails: 2215 * one of the elements that we traversed in the hash chain 2216 * was deleted while we were traversing it. In this case, 2217 * we assert that we aren't doing a dealloc (deallocs lock 2218 * the hash bucket to prevent themselves from racing with 2219 * one another), and retry the hash chain traversal. 2220 */ 2221 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 2222 goto top; 2223 } 2224 2225 if (op != DTRACE_DYNVAR_ALLOC) { 2226 /* 2227 * If we are not to allocate a new variable, we want to 2228 * return NULL now. Before we return, check that the value 2229 * of the lock word hasn't changed. If it has, we may have 2230 * seen an inconsistent snapshot. 2231 */ 2232 if (op == DTRACE_DYNVAR_NOALLOC) { 2233 if (hash[bucket].dtdh_lock != lock) 2234 goto top; 2235 } else { 2236 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2237 ASSERT(hash[bucket].dtdh_lock == lock); 2238 ASSERT(lock & 1); 2239 hash[bucket].dtdh_lock++; 2240 } 2241 2242 return (NULL); 2243 } 2244 2245 /* 2246 * We need to allocate a new dynamic variable. The size we need is the 2247 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2248 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2249 * the size of any referred-to data (dsize). We then round the final 2250 * size up to the chunksize for allocation. 2251 */ 2252 for (ksize = 0, i = 0; i < nkeys; i++) 2253 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2254 2255 /* 2256 * This should be pretty much impossible, but could happen if, say, 2257 * strange DIF specified the tuple. Ideally, this should be an 2258 * assertion and not an error condition -- but that requires that the 2259 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2260 * bullet-proof. (That is, it must not be able to be fooled by 2261 * malicious DIF.) Given the lack of backwards branches in DIF, 2262 * solving this would presumably not amount to solving the Halting 2263 * Problem -- but it still seems awfully hard. 2264 */ 2265 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2266 ksize + dsize > chunksize) { 2267 dcpu->dtdsc_drops++; 2268 return (NULL); 2269 } 2270 2271 nstate = DTRACE_DSTATE_EMPTY; 2272 2273 do { 2274 retry: 2275 free = dcpu->dtdsc_free; 2276 2277 if (free == NULL) { 2278 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2279 void *rval; 2280 2281 if (clean == NULL) { 2282 /* 2283 * We're out of dynamic variable space on 2284 * this CPU. Unless we have tried all CPUs, 2285 * we'll try to allocate from a different 2286 * CPU. 2287 */ 2288 switch (dstate->dtds_state) { 2289 case DTRACE_DSTATE_CLEAN: { 2290 void *sp = &dstate->dtds_state; 2291 2292 if (++cpu >= NCPU) 2293 cpu = 0; 2294 2295 if (dcpu->dtdsc_dirty != NULL && 2296 nstate == DTRACE_DSTATE_EMPTY) 2297 nstate = DTRACE_DSTATE_DIRTY; 2298 2299 if (dcpu->dtdsc_rinsing != NULL) 2300 nstate = DTRACE_DSTATE_RINSING; 2301 2302 dcpu = &dstate->dtds_percpu[cpu]; 2303 2304 if (cpu != me) 2305 goto retry; 2306 2307 (void) dtrace_cas32(sp, 2308 DTRACE_DSTATE_CLEAN, nstate); 2309 2310 /* 2311 * To increment the correct bean 2312 * counter, take another lap. 2313 */ 2314 goto retry; 2315 } 2316 2317 case DTRACE_DSTATE_DIRTY: 2318 dcpu->dtdsc_dirty_drops++; 2319 break; 2320 2321 case DTRACE_DSTATE_RINSING: 2322 dcpu->dtdsc_rinsing_drops++; 2323 break; 2324 2325 case DTRACE_DSTATE_EMPTY: 2326 dcpu->dtdsc_drops++; 2327 break; 2328 } 2329 2330 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2331 return (NULL); 2332 } 2333 2334 /* 2335 * The clean list appears to be non-empty. We want to 2336 * move the clean list to our free list; we start by 2337 * moving the clean pointer aside. 2338 */ 2339 if (dtrace_casptr(&dcpu->dtdsc_clean, 2340 clean, NULL) != clean) { 2341 /* 2342 * We are in one of two situations: 2343 * 2344 * (a) The clean list was switched to the 2345 * free list by another CPU. 2346 * 2347 * (b) The clean list was added to by the 2348 * cleansing cyclic. 2349 * 2350 * In either of these situations, we can 2351 * just reattempt the free list allocation. 2352 */ 2353 goto retry; 2354 } 2355 2356 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2357 2358 /* 2359 * Now we'll move the clean list to the free list. 2360 * It's impossible for this to fail: the only way 2361 * the free list can be updated is through this 2362 * code path, and only one CPU can own the clean list. 2363 * Thus, it would only be possible for this to fail if 2364 * this code were racing with dtrace_dynvar_clean(). 2365 * (That is, if dtrace_dynvar_clean() updated the clean 2366 * list, and we ended up racing to update the free 2367 * list.) This race is prevented by the dtrace_sync() 2368 * in dtrace_dynvar_clean() -- which flushes the 2369 * owners of the clean lists out before resetting 2370 * the clean lists. 2371 */ 2372 dcpu = &dstate->dtds_percpu[me]; 2373 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2374 ASSERT(rval == NULL); 2375 goto retry; 2376 } 2377 2378 dvar = free; 2379 new_free = dvar->dtdv_next; 2380 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2381 2382 /* 2383 * We have now allocated a new chunk. We copy the tuple keys into the 2384 * tuple array and copy any referenced key data into the data space 2385 * following the tuple array. As we do this, we relocate dttk_value 2386 * in the final tuple to point to the key data address in the chunk. 2387 */ 2388 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2389 dvar->dtdv_data = (void *)(kdata + ksize); 2390 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2391 2392 for (i = 0; i < nkeys; i++) { 2393 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2394 size_t kesize = key[i].dttk_size; 2395 2396 if (kesize != 0) { 2397 dtrace_bcopy( 2398 (const void *)(uintptr_t)key[i].dttk_value, 2399 (void *)kdata, kesize); 2400 dkey->dttk_value = kdata; 2401 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2402 } else { 2403 dkey->dttk_value = key[i].dttk_value; 2404 } 2405 2406 dkey->dttk_size = kesize; 2407 } 2408 2409 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2410 dvar->dtdv_hashval = hashval; 2411 dvar->dtdv_next = start; 2412 2413 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2414 return (dvar); 2415 2416 /* 2417 * The cas has failed. Either another CPU is adding an element to 2418 * this hash chain, or another CPU is deleting an element from this 2419 * hash chain. The simplest way to deal with both of these cases 2420 * (though not necessarily the most efficient) is to free our 2421 * allocated block and re-attempt it all. Note that the free is 2422 * to the dirty list and _not_ to the free list. This is to prevent 2423 * races with allocators, above. 2424 */ 2425 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2426 2427 dtrace_membar_producer(); 2428 2429 do { 2430 free = dcpu->dtdsc_dirty; 2431 dvar->dtdv_next = free; 2432 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2433 2434 goto top; 2435 } 2436 2437 /*ARGSUSED*/ 2438 static void 2439 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2440 { 2441 if ((int64_t)nval < (int64_t)*oval) 2442 *oval = nval; 2443 } 2444 2445 /*ARGSUSED*/ 2446 static void 2447 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2448 { 2449 if ((int64_t)nval > (int64_t)*oval) 2450 *oval = nval; 2451 } 2452 2453 static void 2454 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2455 { 2456 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2457 int64_t val = (int64_t)nval; 2458 2459 if (val < 0) { 2460 for (i = 0; i < zero; i++) { 2461 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2462 quanta[i] += incr; 2463 return; 2464 } 2465 } 2466 } else { 2467 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2468 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2469 quanta[i - 1] += incr; 2470 return; 2471 } 2472 } 2473 2474 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2475 return; 2476 } 2477 2478 ASSERT(0); 2479 } 2480 2481 static void 2482 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2483 { 2484 uint64_t arg = *lquanta++; 2485 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2486 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2487 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2488 int32_t val = (int32_t)nval, level; 2489 2490 ASSERT(step != 0); 2491 ASSERT(levels != 0); 2492 2493 if (val < base) { 2494 /* 2495 * This is an underflow. 2496 */ 2497 lquanta[0] += incr; 2498 return; 2499 } 2500 2501 level = (val - base) / step; 2502 2503 if (level < levels) { 2504 lquanta[level + 1] += incr; 2505 return; 2506 } 2507 2508 /* 2509 * This is an overflow. 2510 */ 2511 lquanta[levels + 1] += incr; 2512 } 2513 2514 static int 2515 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2516 uint16_t high, uint16_t nsteps, int64_t value) 2517 { 2518 int64_t this = 1, last, next; 2519 int base = 1, order; 2520 2521 ASSERT(factor <= nsteps); 2522 ASSERT(nsteps % factor == 0); 2523 2524 for (order = 0; order < low; order++) 2525 this *= factor; 2526 2527 /* 2528 * If our value is less than our factor taken to the power of the 2529 * low order of magnitude, it goes into the zeroth bucket. 2530 */ 2531 if (value < (last = this)) 2532 return (0); 2533 2534 for (this *= factor; order <= high; order++) { 2535 int nbuckets = this > nsteps ? nsteps : this; 2536 2537 if ((next = this * factor) < this) { 2538 /* 2539 * We should not generally get log/linear quantizations 2540 * with a high magnitude that allows 64-bits to 2541 * overflow, but we nonetheless protect against this 2542 * by explicitly checking for overflow, and clamping 2543 * our value accordingly. 2544 */ 2545 value = this - 1; 2546 } 2547 2548 if (value < this) { 2549 /* 2550 * If our value lies within this order of magnitude, 2551 * determine its position by taking the offset within 2552 * the order of magnitude, dividing by the bucket 2553 * width, and adding to our (accumulated) base. 2554 */ 2555 return (base + (value - last) / (this / nbuckets)); 2556 } 2557 2558 base += nbuckets - (nbuckets / factor); 2559 last = this; 2560 this = next; 2561 } 2562 2563 /* 2564 * Our value is greater than or equal to our factor taken to the 2565 * power of one plus the high magnitude -- return the top bucket. 2566 */ 2567 return (base); 2568 } 2569 2570 static void 2571 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2572 { 2573 uint64_t arg = *llquanta++; 2574 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2575 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2576 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2577 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2578 2579 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2580 low, high, nsteps, nval)] += incr; 2581 } 2582 2583 /*ARGSUSED*/ 2584 static void 2585 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2586 { 2587 data[0]++; 2588 data[1] += nval; 2589 } 2590 2591 /*ARGSUSED*/ 2592 static void 2593 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2594 { 2595 int64_t snval = (int64_t)nval; 2596 uint64_t tmp[2]; 2597 2598 data[0]++; 2599 data[1] += nval; 2600 2601 /* 2602 * What we want to say here is: 2603 * 2604 * data[2] += nval * nval; 2605 * 2606 * But given that nval is 64-bit, we could easily overflow, so 2607 * we do this as 128-bit arithmetic. 2608 */ 2609 if (snval < 0) 2610 snval = -snval; 2611 2612 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2613 dtrace_add_128(data + 2, tmp, data + 2); 2614 } 2615 2616 /*ARGSUSED*/ 2617 static void 2618 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2619 { 2620 *oval = *oval + 1; 2621 } 2622 2623 /*ARGSUSED*/ 2624 static void 2625 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2626 { 2627 *oval += nval; 2628 } 2629 2630 /* 2631 * Aggregate given the tuple in the principal data buffer, and the aggregating 2632 * action denoted by the specified dtrace_aggregation_t. The aggregation 2633 * buffer is specified as the buf parameter. This routine does not return 2634 * failure; if there is no space in the aggregation buffer, the data will be 2635 * dropped, and a corresponding counter incremented. 2636 */ 2637 static void 2638 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2639 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2640 { 2641 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2642 uint32_t i, ndx, size, fsize; 2643 uint32_t align = sizeof (uint64_t) - 1; 2644 dtrace_aggbuffer_t *agb; 2645 dtrace_aggkey_t *key; 2646 uint32_t hashval = 0, limit, isstr; 2647 caddr_t tomax, data, kdata; 2648 dtrace_actkind_t action; 2649 dtrace_action_t *act; 2650 uintptr_t offs; 2651 2652 if (buf == NULL) 2653 return; 2654 2655 if (!agg->dtag_hasarg) { 2656 /* 2657 * Currently, only quantize() and lquantize() take additional 2658 * arguments, and they have the same semantics: an increment 2659 * value that defaults to 1 when not present. If additional 2660 * aggregating actions take arguments, the setting of the 2661 * default argument value will presumably have to become more 2662 * sophisticated... 2663 */ 2664 arg = 1; 2665 } 2666 2667 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2668 size = rec->dtrd_offset - agg->dtag_base; 2669 fsize = size + rec->dtrd_size; 2670 2671 ASSERT(dbuf->dtb_tomax != NULL); 2672 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2673 2674 if ((tomax = buf->dtb_tomax) == NULL) { 2675 dtrace_buffer_drop(buf); 2676 return; 2677 } 2678 2679 /* 2680 * The metastructure is always at the bottom of the buffer. 2681 */ 2682 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2683 sizeof (dtrace_aggbuffer_t)); 2684 2685 if (buf->dtb_offset == 0) { 2686 /* 2687 * We just kludge up approximately 1/8th of the size to be 2688 * buckets. If this guess ends up being routinely 2689 * off-the-mark, we may need to dynamically readjust this 2690 * based on past performance. 2691 */ 2692 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2693 2694 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2695 (uintptr_t)tomax || hashsize == 0) { 2696 /* 2697 * We've been given a ludicrously small buffer; 2698 * increment our drop count and leave. 2699 */ 2700 dtrace_buffer_drop(buf); 2701 return; 2702 } 2703 2704 /* 2705 * And now, a pathetic attempt to try to get a an odd (or 2706 * perchance, a prime) hash size for better hash distribution. 2707 */ 2708 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2709 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2710 2711 agb->dtagb_hashsize = hashsize; 2712 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2713 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2714 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2715 2716 for (i = 0; i < agb->dtagb_hashsize; i++) 2717 agb->dtagb_hash[i] = NULL; 2718 } 2719 2720 ASSERT(agg->dtag_first != NULL); 2721 ASSERT(agg->dtag_first->dta_intuple); 2722 2723 /* 2724 * Calculate the hash value based on the key. Note that we _don't_ 2725 * include the aggid in the hashing (but we will store it as part of 2726 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2727 * algorithm: a simple, quick algorithm that has no known funnels, and 2728 * gets good distribution in practice. The efficacy of the hashing 2729 * algorithm (and a comparison with other algorithms) may be found by 2730 * running the ::dtrace_aggstat MDB dcmd. 2731 */ 2732 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2733 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2734 limit = i + act->dta_rec.dtrd_size; 2735 ASSERT(limit <= size); 2736 isstr = DTRACEACT_ISSTRING(act); 2737 2738 for (; i < limit; i++) { 2739 hashval += data[i]; 2740 hashval += (hashval << 10); 2741 hashval ^= (hashval >> 6); 2742 2743 if (isstr && data[i] == '\0') 2744 break; 2745 } 2746 } 2747 2748 hashval += (hashval << 3); 2749 hashval ^= (hashval >> 11); 2750 hashval += (hashval << 15); 2751 2752 /* 2753 * Yes, the divide here is expensive -- but it's generally the least 2754 * of the performance issues given the amount of data that we iterate 2755 * over to compute hash values, compare data, etc. 2756 */ 2757 ndx = hashval % agb->dtagb_hashsize; 2758 2759 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2760 ASSERT((caddr_t)key >= tomax); 2761 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2762 2763 if (hashval != key->dtak_hashval || key->dtak_size != size) 2764 continue; 2765 2766 kdata = key->dtak_data; 2767 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2768 2769 for (act = agg->dtag_first; act->dta_intuple; 2770 act = act->dta_next) { 2771 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2772 limit = i + act->dta_rec.dtrd_size; 2773 ASSERT(limit <= size); 2774 isstr = DTRACEACT_ISSTRING(act); 2775 2776 for (; i < limit; i++) { 2777 if (kdata[i] != data[i]) 2778 goto next; 2779 2780 if (isstr && data[i] == '\0') 2781 break; 2782 } 2783 } 2784 2785 if (action != key->dtak_action) { 2786 /* 2787 * We are aggregating on the same value in the same 2788 * aggregation with two different aggregating actions. 2789 * (This should have been picked up in the compiler, 2790 * so we may be dealing with errant or devious DIF.) 2791 * This is an error condition; we indicate as much, 2792 * and return. 2793 */ 2794 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2795 return; 2796 } 2797 2798 /* 2799 * This is a hit: we need to apply the aggregator to 2800 * the value at this key. 2801 */ 2802 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2803 return; 2804 next: 2805 continue; 2806 } 2807 2808 /* 2809 * We didn't find it. We need to allocate some zero-filled space, 2810 * link it into the hash table appropriately, and apply the aggregator 2811 * to the (zero-filled) value. 2812 */ 2813 offs = buf->dtb_offset; 2814 while (offs & (align - 1)) 2815 offs += sizeof (uint32_t); 2816 2817 /* 2818 * If we don't have enough room to both allocate a new key _and_ 2819 * its associated data, increment the drop count and return. 2820 */ 2821 if ((uintptr_t)tomax + offs + fsize > 2822 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2823 dtrace_buffer_drop(buf); 2824 return; 2825 } 2826 2827 /*CONSTCOND*/ 2828 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2829 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2830 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2831 2832 key->dtak_data = kdata = tomax + offs; 2833 buf->dtb_offset = offs + fsize; 2834 2835 /* 2836 * Now copy the data across. 2837 */ 2838 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2839 2840 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2841 kdata[i] = data[i]; 2842 2843 /* 2844 * Because strings are not zeroed out by default, we need to iterate 2845 * looking for actions that store strings, and we need to explicitly 2846 * pad these strings out with zeroes. 2847 */ 2848 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2849 int nul; 2850 2851 if (!DTRACEACT_ISSTRING(act)) 2852 continue; 2853 2854 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2855 limit = i + act->dta_rec.dtrd_size; 2856 ASSERT(limit <= size); 2857 2858 for (nul = 0; i < limit; i++) { 2859 if (nul) { 2860 kdata[i] = '\0'; 2861 continue; 2862 } 2863 2864 if (data[i] != '\0') 2865 continue; 2866 2867 nul = 1; 2868 } 2869 } 2870 2871 for (i = size; i < fsize; i++) 2872 kdata[i] = 0; 2873 2874 key->dtak_hashval = hashval; 2875 key->dtak_size = size; 2876 key->dtak_action = action; 2877 key->dtak_next = agb->dtagb_hash[ndx]; 2878 agb->dtagb_hash[ndx] = key; 2879 2880 /* 2881 * Finally, apply the aggregator. 2882 */ 2883 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2884 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2885 } 2886 2887 /* 2888 * Given consumer state, this routine finds a speculation in the INACTIVE 2889 * state and transitions it into the ACTIVE state. If there is no speculation 2890 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2891 * incremented -- it is up to the caller to take appropriate action. 2892 */ 2893 static int 2894 dtrace_speculation(dtrace_state_t *state) 2895 { 2896 int i = 0; 2897 dtrace_speculation_state_t current; 2898 uint32_t *stat = &state->dts_speculations_unavail, count; 2899 2900 while (i < state->dts_nspeculations) { 2901 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2902 2903 current = spec->dtsp_state; 2904 2905 if (current != DTRACESPEC_INACTIVE) { 2906 if (current == DTRACESPEC_COMMITTINGMANY || 2907 current == DTRACESPEC_COMMITTING || 2908 current == DTRACESPEC_DISCARDING) 2909 stat = &state->dts_speculations_busy; 2910 i++; 2911 continue; 2912 } 2913 2914 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2915 current, DTRACESPEC_ACTIVE) == current) 2916 return (i + 1); 2917 } 2918 2919 /* 2920 * We couldn't find a speculation. If we found as much as a single 2921 * busy speculation buffer, we'll attribute this failure as "busy" 2922 * instead of "unavail". 2923 */ 2924 do { 2925 count = *stat; 2926 } while (dtrace_cas32(stat, count, count + 1) != count); 2927 2928 return (0); 2929 } 2930 2931 /* 2932 * This routine commits an active speculation. If the specified speculation 2933 * is not in a valid state to perform a commit(), this routine will silently do 2934 * nothing. The state of the specified speculation is transitioned according 2935 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2936 */ 2937 static void 2938 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2939 dtrace_specid_t which) 2940 { 2941 dtrace_speculation_t *spec; 2942 dtrace_buffer_t *src, *dest; 2943 uintptr_t daddr, saddr, dlimit, slimit; 2944 dtrace_speculation_state_t current, new = 0; 2945 intptr_t offs; 2946 uint64_t timestamp; 2947 2948 if (which == 0) 2949 return; 2950 2951 if (which > state->dts_nspeculations) { 2952 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2953 return; 2954 } 2955 2956 spec = &state->dts_speculations[which - 1]; 2957 src = &spec->dtsp_buffer[cpu]; 2958 dest = &state->dts_buffer[cpu]; 2959 2960 do { 2961 current = spec->dtsp_state; 2962 2963 if (current == DTRACESPEC_COMMITTINGMANY) 2964 break; 2965 2966 switch (current) { 2967 case DTRACESPEC_INACTIVE: 2968 case DTRACESPEC_DISCARDING: 2969 return; 2970 2971 case DTRACESPEC_COMMITTING: 2972 /* 2973 * This is only possible if we are (a) commit()'ing 2974 * without having done a prior speculate() on this CPU 2975 * and (b) racing with another commit() on a different 2976 * CPU. There's nothing to do -- we just assert that 2977 * our offset is 0. 2978 */ 2979 ASSERT(src->dtb_offset == 0); 2980 return; 2981 2982 case DTRACESPEC_ACTIVE: 2983 new = DTRACESPEC_COMMITTING; 2984 break; 2985 2986 case DTRACESPEC_ACTIVEONE: 2987 /* 2988 * This speculation is active on one CPU. If our 2989 * buffer offset is non-zero, we know that the one CPU 2990 * must be us. Otherwise, we are committing on a 2991 * different CPU from the speculate(), and we must 2992 * rely on being asynchronously cleaned. 2993 */ 2994 if (src->dtb_offset != 0) { 2995 new = DTRACESPEC_COMMITTING; 2996 break; 2997 } 2998 /*FALLTHROUGH*/ 2999 3000 case DTRACESPEC_ACTIVEMANY: 3001 new = DTRACESPEC_COMMITTINGMANY; 3002 break; 3003 3004 default: 3005 ASSERT(0); 3006 } 3007 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3008 current, new) != current); 3009 3010 /* 3011 * We have set the state to indicate that we are committing this 3012 * speculation. Now reserve the necessary space in the destination 3013 * buffer. 3014 */ 3015 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 3016 sizeof (uint64_t), state, NULL)) < 0) { 3017 dtrace_buffer_drop(dest); 3018 goto out; 3019 } 3020 3021 /* 3022 * We have sufficient space to copy the speculative buffer into the 3023 * primary buffer. First, modify the speculative buffer, filling 3024 * in the timestamp of all entries with the current time. The data 3025 * must have the commit() time rather than the time it was traced, 3026 * so that all entries in the primary buffer are in timestamp order. 3027 */ 3028 timestamp = dtrace_gethrtime(); 3029 saddr = (uintptr_t)src->dtb_tomax; 3030 slimit = saddr + src->dtb_offset; 3031 while (saddr < slimit) { 3032 size_t size; 3033 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 3034 3035 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 3036 saddr += sizeof (dtrace_epid_t); 3037 continue; 3038 } 3039 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 3040 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 3041 3042 ASSERT3U(saddr + size, <=, slimit); 3043 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 3044 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 3045 3046 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 3047 3048 saddr += size; 3049 } 3050 3051 /* 3052 * Copy the buffer across. (Note that this is a 3053 * highly subobtimal bcopy(); in the unlikely event that this becomes 3054 * a serious performance issue, a high-performance DTrace-specific 3055 * bcopy() should obviously be invented.) 3056 */ 3057 daddr = (uintptr_t)dest->dtb_tomax + offs; 3058 dlimit = daddr + src->dtb_offset; 3059 saddr = (uintptr_t)src->dtb_tomax; 3060 3061 /* 3062 * First, the aligned portion. 3063 */ 3064 while (dlimit - daddr >= sizeof (uint64_t)) { 3065 *((uint64_t *)daddr) = *((uint64_t *)saddr); 3066 3067 daddr += sizeof (uint64_t); 3068 saddr += sizeof (uint64_t); 3069 } 3070 3071 /* 3072 * Now any left-over bit... 3073 */ 3074 while (dlimit - daddr) 3075 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 3076 3077 /* 3078 * Finally, commit the reserved space in the destination buffer. 3079 */ 3080 dest->dtb_offset = offs + src->dtb_offset; 3081 3082 out: 3083 /* 3084 * If we're lucky enough to be the only active CPU on this speculation 3085 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 3086 */ 3087 if (current == DTRACESPEC_ACTIVE || 3088 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 3089 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 3090 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 3091 3092 ASSERT(rval == DTRACESPEC_COMMITTING); 3093 } 3094 3095 src->dtb_offset = 0; 3096 src->dtb_xamot_drops += src->dtb_drops; 3097 src->dtb_drops = 0; 3098 } 3099 3100 /* 3101 * This routine discards an active speculation. If the specified speculation 3102 * is not in a valid state to perform a discard(), this routine will silently 3103 * do nothing. The state of the specified speculation is transitioned 3104 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 3105 */ 3106 static void 3107 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 3108 dtrace_specid_t which) 3109 { 3110 dtrace_speculation_t *spec; 3111 dtrace_speculation_state_t current, new = 0; 3112 dtrace_buffer_t *buf; 3113 3114 if (which == 0) 3115 return; 3116 3117 if (which > state->dts_nspeculations) { 3118 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3119 return; 3120 } 3121 3122 spec = &state->dts_speculations[which - 1]; 3123 buf = &spec->dtsp_buffer[cpu]; 3124 3125 do { 3126 current = spec->dtsp_state; 3127 3128 switch (current) { 3129 case DTRACESPEC_INACTIVE: 3130 case DTRACESPEC_COMMITTINGMANY: 3131 case DTRACESPEC_COMMITTING: 3132 case DTRACESPEC_DISCARDING: 3133 return; 3134 3135 case DTRACESPEC_ACTIVE: 3136 case DTRACESPEC_ACTIVEMANY: 3137 new = DTRACESPEC_DISCARDING; 3138 break; 3139 3140 case DTRACESPEC_ACTIVEONE: 3141 if (buf->dtb_offset != 0) { 3142 new = DTRACESPEC_INACTIVE; 3143 } else { 3144 new = DTRACESPEC_DISCARDING; 3145 } 3146 break; 3147 3148 default: 3149 ASSERT(0); 3150 } 3151 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3152 current, new) != current); 3153 3154 buf->dtb_offset = 0; 3155 buf->dtb_drops = 0; 3156 } 3157 3158 /* 3159 * Note: not called from probe context. This function is called 3160 * asynchronously from cross call context to clean any speculations that are 3161 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 3162 * transitioned back to the INACTIVE state until all CPUs have cleaned the 3163 * speculation. 3164 */ 3165 static void 3166 dtrace_speculation_clean_here(dtrace_state_t *state) 3167 { 3168 dtrace_icookie_t cookie; 3169 processorid_t cpu = curcpu_id; 3170 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 3171 dtrace_specid_t i; 3172 3173 cookie = dtrace_interrupt_disable(); 3174 3175 if (dest->dtb_tomax == NULL) { 3176 dtrace_interrupt_enable(cookie); 3177 return; 3178 } 3179 3180 for (i = 0; i < state->dts_nspeculations; i++) { 3181 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3182 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 3183 3184 if (src->dtb_tomax == NULL) 3185 continue; 3186 3187 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 3188 src->dtb_offset = 0; 3189 continue; 3190 } 3191 3192 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3193 continue; 3194 3195 if (src->dtb_offset == 0) 3196 continue; 3197 3198 dtrace_speculation_commit(state, cpu, i + 1); 3199 } 3200 3201 dtrace_interrupt_enable(cookie); 3202 } 3203 3204 /* 3205 * Note: not called from probe context. This function is called 3206 * asynchronously (and at a regular interval) to clean any speculations that 3207 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 3208 * is work to be done, it cross calls all CPUs to perform that work; 3209 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 3210 * INACTIVE state until they have been cleaned by all CPUs. 3211 */ 3212 static void 3213 dtrace_speculation_clean(dtrace_state_t *state) 3214 { 3215 int work = 0, rv; 3216 dtrace_specid_t i; 3217 3218 for (i = 0; i < state->dts_nspeculations; i++) { 3219 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3220 3221 ASSERT(!spec->dtsp_cleaning); 3222 3223 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 3224 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3225 continue; 3226 3227 work++; 3228 spec->dtsp_cleaning = 1; 3229 } 3230 3231 if (!work) 3232 return; 3233 3234 dtrace_xcall(DTRACE_CPUALL, 3235 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3236 3237 /* 3238 * We now know that all CPUs have committed or discarded their 3239 * speculation buffers, as appropriate. We can now set the state 3240 * to inactive. 3241 */ 3242 for (i = 0; i < state->dts_nspeculations; i++) { 3243 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3244 dtrace_speculation_state_t current, new; 3245 3246 if (!spec->dtsp_cleaning) 3247 continue; 3248 3249 current = spec->dtsp_state; 3250 ASSERT(current == DTRACESPEC_DISCARDING || 3251 current == DTRACESPEC_COMMITTINGMANY); 3252 3253 new = DTRACESPEC_INACTIVE; 3254 3255 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 3256 ASSERT(rv == current); 3257 spec->dtsp_cleaning = 0; 3258 } 3259 } 3260 3261 /* 3262 * Called as part of a speculate() to get the speculative buffer associated 3263 * with a given speculation. Returns NULL if the specified speculation is not 3264 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3265 * the active CPU is not the specified CPU -- the speculation will be 3266 * atomically transitioned into the ACTIVEMANY state. 3267 */ 3268 static dtrace_buffer_t * 3269 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3270 dtrace_specid_t which) 3271 { 3272 dtrace_speculation_t *spec; 3273 dtrace_speculation_state_t current, new = 0; 3274 dtrace_buffer_t *buf; 3275 3276 if (which == 0) 3277 return (NULL); 3278 3279 if (which > state->dts_nspeculations) { 3280 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3281 return (NULL); 3282 } 3283 3284 spec = &state->dts_speculations[which - 1]; 3285 buf = &spec->dtsp_buffer[cpuid]; 3286 3287 do { 3288 current = spec->dtsp_state; 3289 3290 switch (current) { 3291 case DTRACESPEC_INACTIVE: 3292 case DTRACESPEC_COMMITTINGMANY: 3293 case DTRACESPEC_DISCARDING: 3294 return (NULL); 3295 3296 case DTRACESPEC_COMMITTING: 3297 ASSERT(buf->dtb_offset == 0); 3298 return (NULL); 3299 3300 case DTRACESPEC_ACTIVEONE: 3301 /* 3302 * This speculation is currently active on one CPU. 3303 * Check the offset in the buffer; if it's non-zero, 3304 * that CPU must be us (and we leave the state alone). 3305 * If it's zero, assume that we're starting on a new 3306 * CPU -- and change the state to indicate that the 3307 * speculation is active on more than one CPU. 3308 */ 3309 if (buf->dtb_offset != 0) 3310 return (buf); 3311 3312 new = DTRACESPEC_ACTIVEMANY; 3313 break; 3314 3315 case DTRACESPEC_ACTIVEMANY: 3316 return (buf); 3317 3318 case DTRACESPEC_ACTIVE: 3319 new = DTRACESPEC_ACTIVEONE; 3320 break; 3321 3322 default: 3323 ASSERT(0); 3324 } 3325 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3326 current, new) != current); 3327 3328 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3329 return (buf); 3330 } 3331 3332 /* 3333 * Return a string. In the event that the user lacks the privilege to access 3334 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3335 * don't fail access checking. 3336 * 3337 * dtrace_dif_variable() uses this routine as a helper for various 3338 * builtin values such as 'execname' and 'probefunc.' 3339 */ 3340 uintptr_t 3341 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3342 dtrace_mstate_t *mstate) 3343 { 3344 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3345 uintptr_t ret; 3346 size_t strsz; 3347 3348 /* 3349 * The easy case: this probe is allowed to read all of memory, so 3350 * we can just return this as a vanilla pointer. 3351 */ 3352 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3353 return (addr); 3354 3355 /* 3356 * This is the tougher case: we copy the string in question from 3357 * kernel memory into scratch memory and return it that way: this 3358 * ensures that we won't trip up when access checking tests the 3359 * BYREF return value. 3360 */ 3361 strsz = dtrace_strlen((char *)addr, size) + 1; 3362 3363 if (mstate->dtms_scratch_ptr + strsz > 3364 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3365 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3366 return (0); 3367 } 3368 3369 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3370 strsz); 3371 ret = mstate->dtms_scratch_ptr; 3372 mstate->dtms_scratch_ptr += strsz; 3373 return (ret); 3374 } 3375 3376 /* 3377 * Return a string from a memoy address which is known to have one or 3378 * more concatenated, individually zero terminated, sub-strings. 3379 * In the event that the user lacks the privilege to access 3380 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3381 * don't fail access checking. 3382 * 3383 * dtrace_dif_variable() uses this routine as a helper for various 3384 * builtin values such as 'execargs'. 3385 */ 3386 static uintptr_t 3387 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state, 3388 dtrace_mstate_t *mstate) 3389 { 3390 char *p; 3391 size_t i; 3392 uintptr_t ret; 3393 3394 if (mstate->dtms_scratch_ptr + strsz > 3395 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3396 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3397 return (0); 3398 } 3399 3400 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3401 strsz); 3402 3403 /* Replace sub-string termination characters with a space. */ 3404 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1; 3405 p++, i++) 3406 if (*p == '\0') 3407 *p = ' '; 3408 3409 ret = mstate->dtms_scratch_ptr; 3410 mstate->dtms_scratch_ptr += strsz; 3411 return (ret); 3412 } 3413 3414 /* 3415 * This function implements the DIF emulator's variable lookups. The emulator 3416 * passes a reserved variable identifier and optional built-in array index. 3417 */ 3418 static uint64_t 3419 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3420 uint64_t ndx) 3421 { 3422 /* 3423 * If we're accessing one of the uncached arguments, we'll turn this 3424 * into a reference in the args array. 3425 */ 3426 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3427 ndx = v - DIF_VAR_ARG0; 3428 v = DIF_VAR_ARGS; 3429 } 3430 3431 switch (v) { 3432 case DIF_VAR_ARGS: 3433 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3434 if (ndx >= sizeof (mstate->dtms_arg) / 3435 sizeof (mstate->dtms_arg[0])) { 3436 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3437 dtrace_provider_t *pv; 3438 uint64_t val; 3439 3440 pv = mstate->dtms_probe->dtpr_provider; 3441 if (pv->dtpv_pops.dtps_getargval != NULL) 3442 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3443 mstate->dtms_probe->dtpr_id, 3444 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3445 else 3446 val = dtrace_getarg(ndx, aframes); 3447 3448 /* 3449 * This is regrettably required to keep the compiler 3450 * from tail-optimizing the call to dtrace_getarg(). 3451 * The condition always evaluates to true, but the 3452 * compiler has no way of figuring that out a priori. 3453 * (None of this would be necessary if the compiler 3454 * could be relied upon to _always_ tail-optimize 3455 * the call to dtrace_getarg() -- but it can't.) 3456 */ 3457 if (mstate->dtms_probe != NULL) 3458 return (val); 3459 3460 ASSERT(0); 3461 } 3462 3463 return (mstate->dtms_arg[ndx]); 3464 3465 #ifdef illumos 3466 case DIF_VAR_UREGS: { 3467 klwp_t *lwp; 3468 3469 if (!dtrace_priv_proc(state)) 3470 return (0); 3471 3472 if ((lwp = curthread->t_lwp) == NULL) { 3473 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3474 cpu_core[curcpu_id].cpuc_dtrace_illval = NULL; 3475 return (0); 3476 } 3477 3478 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3479 return (0); 3480 } 3481 #endif 3482 #ifdef __FreeBSD__ 3483 case DIF_VAR_UREGS: { 3484 struct trapframe *tframe; 3485 3486 if (!dtrace_priv_proc(state)) 3487 return (0); 3488 3489 if ((tframe = curthread->td_frame) == NULL) { 3490 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3491 cpu_core[curcpu].cpuc_dtrace_illval = 0; 3492 return (0); 3493 } 3494 3495 return (dtrace_getreg(tframe, ndx)); 3496 } 3497 #endif 3498 #ifdef __NetBSD__ 3499 case DIF_VAR_UREGS: { 3500 struct trapframe *tframe; 3501 3502 if (!dtrace_priv_proc(state)) 3503 return (0); 3504 3505 if ((tframe = lwp_trapframe(curlwp)) == NULL) { 3506 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3507 cpu_core[curcpu_id].cpuc_dtrace_illval = 0; 3508 return (0); 3509 } 3510 3511 return (dtrace_getreg(tframe, ndx)); 3512 } 3513 #endif 3514 3515 case DIF_VAR_CURTHREAD: 3516 if (!dtrace_priv_proc(state)) 3517 return (0); 3518 return ((uint64_t)(uintptr_t)curthread); 3519 3520 case DIF_VAR_TIMESTAMP: 3521 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3522 mstate->dtms_timestamp = dtrace_gethrtime(); 3523 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3524 } 3525 return (mstate->dtms_timestamp); 3526 3527 case DIF_VAR_VTIMESTAMP: 3528 ASSERT(dtrace_vtime_references != 0); 3529 return (curthread->t_dtrace_vtime); 3530 3531 case DIF_VAR_WALLTIMESTAMP: 3532 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3533 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3534 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3535 } 3536 return (mstate->dtms_walltimestamp); 3537 3538 #ifdef illumos 3539 case DIF_VAR_IPL: 3540 if (!dtrace_priv_kernel(state)) 3541 return (0); 3542 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3543 mstate->dtms_ipl = dtrace_getipl(); 3544 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3545 } 3546 return (mstate->dtms_ipl); 3547 #endif 3548 3549 case DIF_VAR_EPID: 3550 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3551 return (mstate->dtms_epid); 3552 3553 case DIF_VAR_ID: 3554 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3555 return (mstate->dtms_probe->dtpr_id); 3556 3557 case DIF_VAR_STACKDEPTH: 3558 if (!dtrace_priv_kernel(state)) 3559 return (0); 3560 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3561 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3562 3563 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3564 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3565 } 3566 return (mstate->dtms_stackdepth); 3567 3568 case DIF_VAR_USTACKDEPTH: 3569 if (!dtrace_priv_proc(state)) 3570 return (0); 3571 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3572 /* 3573 * See comment in DIF_VAR_PID. 3574 */ 3575 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3576 CPU_ON_INTR(CPU)) { 3577 mstate->dtms_ustackdepth = 0; 3578 } else { 3579 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3580 mstate->dtms_ustackdepth = 3581 dtrace_getustackdepth(); 3582 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3583 } 3584 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3585 } 3586 return (mstate->dtms_ustackdepth); 3587 3588 case DIF_VAR_CALLER: 3589 if (!dtrace_priv_kernel(state)) 3590 return (0); 3591 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3592 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3593 3594 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3595 /* 3596 * If this is an unanchored probe, we are 3597 * required to go through the slow path: 3598 * dtrace_caller() only guarantees correct 3599 * results for anchored probes. 3600 */ 3601 pc_t caller[2] = {0, 0}; 3602 3603 dtrace_getpcstack(caller, 2, aframes, 3604 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3605 mstate->dtms_caller = caller[1]; 3606 } else if ((mstate->dtms_caller = 3607 dtrace_caller(aframes)) == -1) { 3608 /* 3609 * We have failed to do this the quick way; 3610 * we must resort to the slower approach of 3611 * calling dtrace_getpcstack(). 3612 */ 3613 pc_t caller = 0; 3614 3615 dtrace_getpcstack(&caller, 1, aframes, NULL); 3616 mstate->dtms_caller = caller; 3617 } 3618 3619 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3620 } 3621 return (mstate->dtms_caller); 3622 3623 case DIF_VAR_UCALLER: 3624 if (!dtrace_priv_proc(state)) 3625 return (0); 3626 3627 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3628 uint64_t ustack[3]; 3629 3630 /* 3631 * dtrace_getupcstack() fills in the first uint64_t 3632 * with the current PID. The second uint64_t will 3633 * be the program counter at user-level. The third 3634 * uint64_t will contain the caller, which is what 3635 * we're after. 3636 */ 3637 ustack[2] = 0; 3638 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3639 dtrace_getupcstack(ustack, 3); 3640 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3641 mstate->dtms_ucaller = ustack[2]; 3642 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3643 } 3644 3645 return (mstate->dtms_ucaller); 3646 3647 case DIF_VAR_PROBEPROV: 3648 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3649 return (dtrace_dif_varstr( 3650 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3651 state, mstate)); 3652 3653 case DIF_VAR_PROBEMOD: 3654 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3655 return (dtrace_dif_varstr( 3656 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3657 state, mstate)); 3658 3659 case DIF_VAR_PROBEFUNC: 3660 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3661 return (dtrace_dif_varstr( 3662 (uintptr_t)mstate->dtms_probe->dtpr_func, 3663 state, mstate)); 3664 3665 case DIF_VAR_PROBENAME: 3666 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3667 return (dtrace_dif_varstr( 3668 (uintptr_t)mstate->dtms_probe->dtpr_name, 3669 state, mstate)); 3670 3671 case DIF_VAR_PID: 3672 if (!dtrace_priv_proc(state)) 3673 return (0); 3674 3675 #ifdef illumos 3676 /* 3677 * Note that we are assuming that an unanchored probe is 3678 * always due to a high-level interrupt. (And we're assuming 3679 * that there is only a single high level interrupt.) 3680 */ 3681 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3682 return (pid0.pid_id); 3683 3684 /* 3685 * It is always safe to dereference one's own t_procp pointer: 3686 * it always points to a valid, allocated proc structure. 3687 * Further, it is always safe to dereference the p_pidp member 3688 * of one's own proc structure. (These are truisms becuase 3689 * threads and processes don't clean up their own state -- 3690 * they leave that task to whomever reaps them.) 3691 */ 3692 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3693 #else 3694 return ((uint64_t)curproc->p_pid); 3695 #endif 3696 3697 case DIF_VAR_PPID: 3698 if (!dtrace_priv_proc(state)) 3699 return (0); 3700 3701 #ifdef illumos 3702 /* 3703 * See comment in DIF_VAR_PID. 3704 */ 3705 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3706 return (pid0.pid_id); 3707 3708 /* 3709 * It is always safe to dereference one's own t_procp pointer: 3710 * it always points to a valid, allocated proc structure. 3711 * (This is true because threads don't clean up their own 3712 * state -- they leave that task to whomever reaps them.) 3713 */ 3714 return ((uint64_t)curthread->t_procp->p_ppid); 3715 #else 3716 if (curproc->p_pid == proc0.p_pid) 3717 return (curproc->p_pid); 3718 else 3719 return (curproc->p_pptr->p_pid); 3720 #endif 3721 3722 case DIF_VAR_TID: 3723 #ifdef illumos 3724 /* 3725 * See comment in DIF_VAR_PID. 3726 */ 3727 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3728 return (0); 3729 #endif 3730 3731 return ((uint64_t)curthread->t_tid); 3732 3733 case DIF_VAR_EXECARGS: { 3734 #ifdef __FreeBSD__ 3735 struct pargs *p_args = curthread->td_proc->p_args; 3736 3737 if (p_args == NULL) 3738 return(0); 3739 3740 return (dtrace_dif_varstrz( 3741 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate)); 3742 #else 3743 return 0; 3744 #endif 3745 } 3746 3747 case DIF_VAR_EXECNAME: 3748 #ifdef illumos 3749 if (!dtrace_priv_proc(state)) 3750 return (0); 3751 3752 /* 3753 * See comment in DIF_VAR_PID. 3754 */ 3755 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3756 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3757 3758 /* 3759 * It is always safe to dereference one's own t_procp pointer: 3760 * it always points to a valid, allocated proc structure. 3761 * (This is true because threads don't clean up their own 3762 * state -- they leave that task to whomever reaps them.) 3763 */ 3764 return (dtrace_dif_varstr( 3765 (uintptr_t)curthread->t_procp->p_user.u_comm, 3766 state, mstate)); 3767 #else 3768 return (dtrace_dif_varstr( 3769 (uintptr_t) curproc->p_comm, state, mstate)); 3770 #endif 3771 3772 case DIF_VAR_ZONENAME: 3773 #ifdef illumos 3774 if (!dtrace_priv_proc(state)) 3775 return (0); 3776 3777 /* 3778 * See comment in DIF_VAR_PID. 3779 */ 3780 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3781 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3782 3783 /* 3784 * It is always safe to dereference one's own t_procp pointer: 3785 * it always points to a valid, allocated proc structure. 3786 * (This is true because threads don't clean up their own 3787 * state -- they leave that task to whomever reaps them.) 3788 */ 3789 return (dtrace_dif_varstr( 3790 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3791 state, mstate)); 3792 #else 3793 return (0); 3794 #endif 3795 3796 case DIF_VAR_UID: 3797 if (!dtrace_priv_proc(state)) 3798 return (0); 3799 3800 #ifdef illumos 3801 /* 3802 * See comment in DIF_VAR_PID. 3803 */ 3804 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3805 return ((uint64_t)p0.p_cred->cr_uid); 3806 3807 /* 3808 * It is always safe to dereference one's own t_procp pointer: 3809 * it always points to a valid, allocated proc structure. 3810 * (This is true because threads don't clean up their own 3811 * state -- they leave that task to whomever reaps them.) 3812 * 3813 * Additionally, it is safe to dereference one's own process 3814 * credential, since this is never NULL after process birth. 3815 */ 3816 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3817 #endif 3818 #ifdef __FreeBSD__ 3819 return ((uint64_t)curthread->td_ucred->cr_uid); 3820 #endif 3821 #ifdef __NetBSD__ 3822 return ((uint64_t)kauth_cred_getuid(curthread->t_procp->p_cred)); 3823 #endif 3824 3825 case DIF_VAR_GID: 3826 if (!dtrace_priv_proc(state)) 3827 return (0); 3828 3829 #ifdef illumos 3830 /* 3831 * See comment in DIF_VAR_PID. 3832 */ 3833 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3834 return ((uint64_t)p0.p_cred->cr_gid); 3835 3836 /* 3837 * It is always safe to dereference one's own t_procp pointer: 3838 * it always points to a valid, allocated proc structure. 3839 * (This is true because threads don't clean up their own 3840 * state -- they leave that task to whomever reaps them.) 3841 * 3842 * Additionally, it is safe to dereference one's own process 3843 * credential, since this is never NULL after process birth. 3844 */ 3845 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3846 #endif 3847 #ifdef __FreeBSD__ 3848 return ((uint64_t)curthread->td_ucred->cr_gid); 3849 #endif 3850 #ifdef __NetBSD__ 3851 return ((uint64_t)kauth_cred_getgid(curthread->t_procp->p_cred)); 3852 #endif 3853 3854 case DIF_VAR_ERRNO: { 3855 #ifdef illumos 3856 klwp_t *lwp; 3857 if (!dtrace_priv_proc(state)) 3858 return (0); 3859 3860 /* 3861 * See comment in DIF_VAR_PID. 3862 */ 3863 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3864 return (0); 3865 3866 /* 3867 * It is always safe to dereference one's own t_lwp pointer in 3868 * the event that this pointer is non-NULL. (This is true 3869 * because threads and lwps don't clean up their own state -- 3870 * they leave that task to whomever reaps them.) 3871 */ 3872 if ((lwp = curthread->t_lwp) == NULL) 3873 return (0); 3874 3875 return ((uint64_t)lwp->lwp_errno); 3876 #endif 3877 #ifdef __FreeBSD__ 3878 return (curthread->td_errno); 3879 #endif 3880 #ifdef __NetBSD__ 3881 return 0; /* XXX TBD errno support at lwp level? */ 3882 #endif 3883 } 3884 #ifndef illumos 3885 case DIF_VAR_CPU: { 3886 return curcpu_id; 3887 } 3888 #endif 3889 default: 3890 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3891 return (0); 3892 } 3893 } 3894 3895 3896 typedef enum dtrace_json_state { 3897 DTRACE_JSON_REST = 1, 3898 DTRACE_JSON_OBJECT, 3899 DTRACE_JSON_STRING, 3900 DTRACE_JSON_STRING_ESCAPE, 3901 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3902 DTRACE_JSON_COLON, 3903 DTRACE_JSON_COMMA, 3904 DTRACE_JSON_VALUE, 3905 DTRACE_JSON_IDENTIFIER, 3906 DTRACE_JSON_NUMBER, 3907 DTRACE_JSON_NUMBER_FRAC, 3908 DTRACE_JSON_NUMBER_EXP, 3909 DTRACE_JSON_COLLECT_OBJECT 3910 } dtrace_json_state_t; 3911 3912 /* 3913 * This function possesses just enough knowledge about JSON to extract a single 3914 * value from a JSON string and store it in the scratch buffer. It is able 3915 * to extract nested object values, and members of arrays by index. 3916 * 3917 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3918 * be looked up as we descend into the object tree. e.g. 3919 * 3920 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3921 * with nelems = 5. 3922 * 3923 * The run time of this function must be bounded above by strsize to limit the 3924 * amount of work done in probe context. As such, it is implemented as a 3925 * simple state machine, reading one character at a time using safe loads 3926 * until we find the requested element, hit a parsing error or run off the 3927 * end of the object or string. 3928 * 3929 * As there is no way for a subroutine to return an error without interrupting 3930 * clause execution, we simply return NULL in the event of a missing key or any 3931 * other error condition. Each NULL return in this function is commented with 3932 * the error condition it represents -- parsing or otherwise. 3933 * 3934 * The set of states for the state machine closely matches the JSON 3935 * specification (http://json.org/). Briefly: 3936 * 3937 * DTRACE_JSON_REST: 3938 * Skip whitespace until we find either a top-level Object, moving 3939 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3940 * 3941 * DTRACE_JSON_OBJECT: 3942 * Locate the next key String in an Object. Sets a flag to denote 3943 * the next String as a key string and moves to DTRACE_JSON_STRING. 3944 * 3945 * DTRACE_JSON_COLON: 3946 * Skip whitespace until we find the colon that separates key Strings 3947 * from their values. Once found, move to DTRACE_JSON_VALUE. 3948 * 3949 * DTRACE_JSON_VALUE: 3950 * Detects the type of the next value (String, Number, Identifier, Object 3951 * or Array) and routes to the states that process that type. Here we also 3952 * deal with the element selector list if we are requested to traverse down 3953 * into the object tree. 3954 * 3955 * DTRACE_JSON_COMMA: 3956 * Skip whitespace until we find the comma that separates key-value pairs 3957 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3958 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3959 * states return to this state at the end of their value, unless otherwise 3960 * noted. 3961 * 3962 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3963 * Processes a Number literal from the JSON, including any exponent 3964 * component that may be present. Numbers are returned as strings, which 3965 * may be passed to strtoll() if an integer is required. 3966 * 3967 * DTRACE_JSON_IDENTIFIER: 3968 * Processes a "true", "false" or "null" literal in the JSON. 3969 * 3970 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3971 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3972 * Processes a String literal from the JSON, whether the String denotes 3973 * a key, a value or part of a larger Object. Handles all escape sequences 3974 * present in the specification, including four-digit unicode characters, 3975 * but merely includes the escape sequence without converting it to the 3976 * actual escaped character. If the String is flagged as a key, we 3977 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3978 * 3979 * DTRACE_JSON_COLLECT_OBJECT: 3980 * This state collects an entire Object (or Array), correctly handling 3981 * embedded strings. If the full element selector list matches this nested 3982 * object, we return the Object in full as a string. If not, we use this 3983 * state to skip to the next value at this level and continue processing. 3984 * 3985 * NOTE: This function uses various macros from strtolctype.h to manipulate 3986 * digit values, etc -- these have all been checked to ensure they make 3987 * no additional function calls. 3988 */ 3989 static char * 3990 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3991 char *dest) 3992 { 3993 dtrace_json_state_t state = DTRACE_JSON_REST; 3994 int64_t array_elem = INT64_MIN; 3995 int64_t array_pos = 0; 3996 uint8_t escape_unicount = 0; 3997 boolean_t string_is_key = B_FALSE; 3998 boolean_t collect_object = B_FALSE; 3999 boolean_t found_key = B_FALSE; 4000 boolean_t in_array = B_FALSE; 4001 uint32_t braces = 0, brackets = 0; 4002 char *elem = elemlist; 4003 char *dd = dest; 4004 uintptr_t cur; 4005 4006 for (cur = json; cur < json + size; cur++) { 4007 char cc = dtrace_load8(cur); 4008 if (cc == '\0') 4009 return (NULL); 4010 4011 switch (state) { 4012 case DTRACE_JSON_REST: 4013 if (isspace(cc)) 4014 break; 4015 4016 if (cc == '{') { 4017 state = DTRACE_JSON_OBJECT; 4018 break; 4019 } 4020 4021 if (cc == '[') { 4022 in_array = B_TRUE; 4023 array_pos = 0; 4024 array_elem = dtrace_strtoll(elem, 10, size); 4025 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 4026 state = DTRACE_JSON_VALUE; 4027 break; 4028 } 4029 4030 /* 4031 * ERROR: expected to find a top-level object or array. 4032 */ 4033 return (NULL); 4034 case DTRACE_JSON_OBJECT: 4035 if (isspace(cc)) 4036 break; 4037 4038 if (cc == '"') { 4039 state = DTRACE_JSON_STRING; 4040 string_is_key = B_TRUE; 4041 break; 4042 } 4043 4044 /* 4045 * ERROR: either the object did not start with a key 4046 * string, or we've run off the end of the object 4047 * without finding the requested key. 4048 */ 4049 return (NULL); 4050 case DTRACE_JSON_STRING: 4051 if (cc == '\\') { 4052 *dd++ = '\\'; 4053 state = DTRACE_JSON_STRING_ESCAPE; 4054 break; 4055 } 4056 4057 if (cc == '"') { 4058 if (collect_object) { 4059 /* 4060 * We don't reset the dest here, as 4061 * the string is part of a larger 4062 * object being collected. 4063 */ 4064 *dd++ = cc; 4065 collect_object = B_FALSE; 4066 state = DTRACE_JSON_COLLECT_OBJECT; 4067 break; 4068 } 4069 *dd = '\0'; 4070 dd = dest; /* reset string buffer */ 4071 if (string_is_key) { 4072 if (dtrace_strncmp(dest, elem, 4073 size) == 0) 4074 found_key = B_TRUE; 4075 } else if (found_key) { 4076 if (nelems > 1) { 4077 /* 4078 * We expected an object, not 4079 * this string. 4080 */ 4081 return (NULL); 4082 } 4083 return (dest); 4084 } 4085 state = string_is_key ? DTRACE_JSON_COLON : 4086 DTRACE_JSON_COMMA; 4087 string_is_key = B_FALSE; 4088 break; 4089 } 4090 4091 *dd++ = cc; 4092 break; 4093 case DTRACE_JSON_STRING_ESCAPE: 4094 *dd++ = cc; 4095 if (cc == 'u') { 4096 escape_unicount = 0; 4097 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 4098 } else { 4099 state = DTRACE_JSON_STRING; 4100 } 4101 break; 4102 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 4103 if (!isxdigit(cc)) { 4104 /* 4105 * ERROR: invalid unicode escape, expected 4106 * four valid hexidecimal digits. 4107 */ 4108 return (NULL); 4109 } 4110 4111 *dd++ = cc; 4112 if (++escape_unicount == 4) 4113 state = DTRACE_JSON_STRING; 4114 break; 4115 case DTRACE_JSON_COLON: 4116 if (isspace(cc)) 4117 break; 4118 4119 if (cc == ':') { 4120 state = DTRACE_JSON_VALUE; 4121 break; 4122 } 4123 4124 /* 4125 * ERROR: expected a colon. 4126 */ 4127 return (NULL); 4128 case DTRACE_JSON_COMMA: 4129 if (isspace(cc)) 4130 break; 4131 4132 if (cc == ',') { 4133 if (in_array) { 4134 state = DTRACE_JSON_VALUE; 4135 if (++array_pos == array_elem) 4136 found_key = B_TRUE; 4137 } else { 4138 state = DTRACE_JSON_OBJECT; 4139 } 4140 break; 4141 } 4142 4143 /* 4144 * ERROR: either we hit an unexpected character, or 4145 * we reached the end of the object or array without 4146 * finding the requested key. 4147 */ 4148 return (NULL); 4149 case DTRACE_JSON_IDENTIFIER: 4150 if (islower(cc)) { 4151 *dd++ = cc; 4152 break; 4153 } 4154 4155 *dd = '\0'; 4156 dd = dest; /* reset string buffer */ 4157 4158 if (dtrace_strncmp(dest, "true", 5) == 0 || 4159 dtrace_strncmp(dest, "false", 6) == 0 || 4160 dtrace_strncmp(dest, "null", 5) == 0) { 4161 if (found_key) { 4162 if (nelems > 1) { 4163 /* 4164 * ERROR: We expected an object, 4165 * not this identifier. 4166 */ 4167 return (NULL); 4168 } 4169 return (dest); 4170 } else { 4171 cur--; 4172 state = DTRACE_JSON_COMMA; 4173 break; 4174 } 4175 } 4176 4177 /* 4178 * ERROR: we did not recognise the identifier as one 4179 * of those in the JSON specification. 4180 */ 4181 return (NULL); 4182 case DTRACE_JSON_NUMBER: 4183 if (cc == '.') { 4184 *dd++ = cc; 4185 state = DTRACE_JSON_NUMBER_FRAC; 4186 break; 4187 } 4188 4189 if (cc == 'x' || cc == 'X') { 4190 /* 4191 * ERROR: specification explicitly excludes 4192 * hexidecimal or octal numbers. 4193 */ 4194 return (NULL); 4195 } 4196 4197 /* FALLTHRU */ 4198 case DTRACE_JSON_NUMBER_FRAC: 4199 if (cc == 'e' || cc == 'E') { 4200 *dd++ = cc; 4201 state = DTRACE_JSON_NUMBER_EXP; 4202 break; 4203 } 4204 4205 if (cc == '+' || cc == '-') { 4206 /* 4207 * ERROR: expect sign as part of exponent only. 4208 */ 4209 return (NULL); 4210 } 4211 /* FALLTHRU */ 4212 case DTRACE_JSON_NUMBER_EXP: 4213 if (isdigit(cc) || cc == '+' || cc == '-') { 4214 *dd++ = cc; 4215 break; 4216 } 4217 4218 *dd = '\0'; 4219 dd = dest; /* reset string buffer */ 4220 if (found_key) { 4221 if (nelems > 1) { 4222 /* 4223 * ERROR: We expected an object, not 4224 * this number. 4225 */ 4226 return (NULL); 4227 } 4228 return (dest); 4229 } 4230 4231 cur--; 4232 state = DTRACE_JSON_COMMA; 4233 break; 4234 case DTRACE_JSON_VALUE: 4235 if (isspace(cc)) 4236 break; 4237 4238 if (cc == '{' || cc == '[') { 4239 if (nelems > 1 && found_key) { 4240 in_array = cc == '[' ? B_TRUE : B_FALSE; 4241 /* 4242 * If our element selector directs us 4243 * to descend into this nested object, 4244 * then move to the next selector 4245 * element in the list and restart the 4246 * state machine. 4247 */ 4248 while (*elem != '\0') 4249 elem++; 4250 elem++; /* skip the inter-element NUL */ 4251 nelems--; 4252 dd = dest; 4253 if (in_array) { 4254 state = DTRACE_JSON_VALUE; 4255 array_pos = 0; 4256 array_elem = dtrace_strtoll( 4257 elem, 10, size); 4258 found_key = array_elem == 0 ? 4259 B_TRUE : B_FALSE; 4260 } else { 4261 found_key = B_FALSE; 4262 state = DTRACE_JSON_OBJECT; 4263 } 4264 break; 4265 } 4266 4267 /* 4268 * Otherwise, we wish to either skip this 4269 * nested object or return it in full. 4270 */ 4271 if (cc == '[') 4272 brackets = 1; 4273 else 4274 braces = 1; 4275 *dd++ = cc; 4276 state = DTRACE_JSON_COLLECT_OBJECT; 4277 break; 4278 } 4279 4280 if (cc == '"') { 4281 state = DTRACE_JSON_STRING; 4282 break; 4283 } 4284 4285 if (islower(cc)) { 4286 /* 4287 * Here we deal with true, false and null. 4288 */ 4289 *dd++ = cc; 4290 state = DTRACE_JSON_IDENTIFIER; 4291 break; 4292 } 4293 4294 if (cc == '-' || isdigit(cc)) { 4295 *dd++ = cc; 4296 state = DTRACE_JSON_NUMBER; 4297 break; 4298 } 4299 4300 /* 4301 * ERROR: unexpected character at start of value. 4302 */ 4303 return (NULL); 4304 case DTRACE_JSON_COLLECT_OBJECT: 4305 if (cc == '\0') 4306 /* 4307 * ERROR: unexpected end of input. 4308 */ 4309 return (NULL); 4310 4311 *dd++ = cc; 4312 if (cc == '"') { 4313 collect_object = B_TRUE; 4314 state = DTRACE_JSON_STRING; 4315 break; 4316 } 4317 4318 if (cc == ']') { 4319 if (brackets-- == 0) { 4320 /* 4321 * ERROR: unbalanced brackets. 4322 */ 4323 return (NULL); 4324 } 4325 } else if (cc == '}') { 4326 if (braces-- == 0) { 4327 /* 4328 * ERROR: unbalanced braces. 4329 */ 4330 return (NULL); 4331 } 4332 } else if (cc == '{') { 4333 braces++; 4334 } else if (cc == '[') { 4335 brackets++; 4336 } 4337 4338 if (brackets == 0 && braces == 0) { 4339 if (found_key) { 4340 *dd = '\0'; 4341 return (dest); 4342 } 4343 dd = dest; /* reset string buffer */ 4344 state = DTRACE_JSON_COMMA; 4345 } 4346 break; 4347 } 4348 } 4349 return (NULL); 4350 } 4351 4352 /* 4353 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4354 * Notice that we don't bother validating the proper number of arguments or 4355 * their types in the tuple stack. This isn't needed because all argument 4356 * interpretation is safe because of our load safety -- the worst that can 4357 * happen is that a bogus program can obtain bogus results. 4358 */ 4359 static void 4360 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4361 dtrace_key_t *tupregs, int nargs, 4362 dtrace_mstate_t *mstate, dtrace_state_t *state) 4363 { 4364 volatile uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags; 4365 volatile uintptr_t *illval = &cpu_core[curcpu_id].cpuc_dtrace_illval; 4366 dtrace_vstate_t *vstate = &state->dts_vstate; 4367 4368 #ifdef illumos 4369 union { 4370 mutex_impl_t mi; 4371 uint64_t mx; 4372 } m; 4373 4374 union { 4375 krwlock_t ri; 4376 uintptr_t rw; 4377 } r; 4378 #endif 4379 #ifdef __FreeBSD__ 4380 struct thread *lowner; 4381 union { 4382 struct lock_object *li; 4383 uintptr_t lx; 4384 } l; 4385 #endif 4386 #ifdef __NetBSD__ 4387 union { 4388 kmutex_t mi; 4389 uint64_t mx; 4390 } m; 4391 4392 union { 4393 krwlock_t ri; 4394 uintptr_t rw; 4395 } r; 4396 #endif 4397 4398 switch (subr) { 4399 case DIF_SUBR_RAND: 4400 regs[rd] = dtrace_xoroshiro128_plus_next( 4401 state->dts_rstate[curcpu_id]); 4402 break; 4403 4404 #ifdef illumos 4405 case DIF_SUBR_MUTEX_OWNED: 4406 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4407 mstate, vstate)) { 4408 regs[rd] = 0; 4409 break; 4410 } 4411 4412 m.mx = dtrace_load64(tupregs[0].dttk_value); 4413 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4414 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4415 else 4416 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4417 break; 4418 4419 case DIF_SUBR_MUTEX_OWNER: 4420 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4421 mstate, vstate)) { 4422 regs[rd] = 0; 4423 break; 4424 } 4425 4426 m.mx = dtrace_load64(tupregs[0].dttk_value); 4427 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4428 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4429 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4430 else 4431 regs[rd] = 0; 4432 break; 4433 4434 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4435 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4436 mstate, vstate)) { 4437 regs[rd] = 0; 4438 break; 4439 } 4440 4441 m.mx = dtrace_load64(tupregs[0].dttk_value); 4442 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4443 break; 4444 4445 case DIF_SUBR_MUTEX_TYPE_SPIN: 4446 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4447 mstate, vstate)) { 4448 regs[rd] = 0; 4449 break; 4450 } 4451 4452 m.mx = dtrace_load64(tupregs[0].dttk_value); 4453 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4454 break; 4455 4456 case DIF_SUBR_RW_READ_HELD: { 4457 uintptr_t tmp; 4458 4459 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4460 mstate, vstate)) { 4461 regs[rd] = 0; 4462 break; 4463 } 4464 4465 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4466 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4467 break; 4468 } 4469 4470 case DIF_SUBR_RW_WRITE_HELD: 4471 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4472 mstate, vstate)) { 4473 regs[rd] = 0; 4474 break; 4475 } 4476 4477 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4478 regs[rd] = _RW_WRITE_HELD(&r.ri); 4479 break; 4480 4481 case DIF_SUBR_RW_ISWRITER: 4482 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4483 mstate, vstate)) { 4484 regs[rd] = 0; 4485 break; 4486 } 4487 4488 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4489 regs[rd] = _RW_ISWRITER(&r.ri); 4490 break; 4491 4492 #endif /* illumos */ 4493 #ifdef __FreeBSD__ 4494 case DIF_SUBR_MUTEX_OWNED: 4495 if (!dtrace_canload(tupregs[0].dttk_value, 4496 sizeof (struct lock_object), mstate, vstate)) { 4497 regs[rd] = 0; 4498 break; 4499 } 4500 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4501 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4502 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4503 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4504 break; 4505 4506 case DIF_SUBR_MUTEX_OWNER: 4507 if (!dtrace_canload(tupregs[0].dttk_value, 4508 sizeof (struct lock_object), mstate, vstate)) { 4509 regs[rd] = 0; 4510 break; 4511 } 4512 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4513 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4514 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4515 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4516 regs[rd] = (uintptr_t)lowner; 4517 break; 4518 4519 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4520 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4521 mstate, vstate)) { 4522 regs[rd] = 0; 4523 break; 4524 } 4525 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4526 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4527 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0; 4528 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4529 break; 4530 4531 case DIF_SUBR_MUTEX_TYPE_SPIN: 4532 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4533 mstate, vstate)) { 4534 regs[rd] = 0; 4535 break; 4536 } 4537 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4538 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4539 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0; 4540 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4541 break; 4542 4543 case DIF_SUBR_RW_READ_HELD: 4544 case DIF_SUBR_SX_SHARED_HELD: 4545 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4546 mstate, vstate)) { 4547 regs[rd] = 0; 4548 break; 4549 } 4550 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4551 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4552 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4553 lowner == NULL; 4554 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4555 break; 4556 4557 case DIF_SUBR_RW_WRITE_HELD: 4558 case DIF_SUBR_SX_EXCLUSIVE_HELD: 4559 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4560 mstate, vstate)) { 4561 regs[rd] = 0; 4562 break; 4563 } 4564 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4565 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4566 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4567 lowner != NULL; 4568 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4569 break; 4570 4571 case DIF_SUBR_RW_ISWRITER: 4572 case DIF_SUBR_SX_ISEXCLUSIVE: 4573 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4574 mstate, vstate)) { 4575 regs[rd] = 0; 4576 break; 4577 } 4578 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4579 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4580 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4581 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4582 regs[rd] = (lowner == curthread); 4583 break; 4584 4585 #endif /* __FreeBSD__ */ 4586 #ifdef __NetBSD__ 4587 case DIF_SUBR_MUTEX_OWNED: 4588 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4589 mstate, vstate)) { 4590 regs[rd] = 0; 4591 break; 4592 } 4593 4594 m.mx = dtrace_load64(tupregs[0].dttk_value); 4595 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4596 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4597 else 4598 regs[rd] = __SIMPLELOCK_LOCKED_P(&m.mi.mtx_lock); 4599 break; 4600 4601 case DIF_SUBR_MUTEX_OWNER: 4602 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4603 mstate, vstate)) { 4604 regs[rd] = 0; 4605 break; 4606 } 4607 4608 m.mx = dtrace_load64(tupregs[0].dttk_value); 4609 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4610 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4611 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4612 else 4613 regs[rd] = 0; 4614 break; 4615 4616 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4617 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4618 mstate, vstate)) { 4619 regs[rd] = 0; 4620 break; 4621 } 4622 4623 m.mx = dtrace_load64(tupregs[0].dttk_value); 4624 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4625 break; 4626 4627 case DIF_SUBR_MUTEX_TYPE_SPIN: 4628 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4629 mstate, vstate)) { 4630 regs[rd] = 0; 4631 break; 4632 } 4633 4634 m.mx = dtrace_load64(tupregs[0].dttk_value); 4635 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4636 break; 4637 4638 case DIF_SUBR_RW_READ_HELD: { 4639 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4640 mstate, vstate)) { 4641 regs[rd] = 0; 4642 break; 4643 } 4644 4645 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4646 regs[rd] = _RW_READ_HELD(&r.ri); 4647 break; 4648 } 4649 4650 case DIF_SUBR_RW_WRITE_HELD: 4651 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4652 mstate, vstate)) { 4653 regs[rd] = 0; 4654 break; 4655 } 4656 4657 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4658 regs[rd] = _RW_WRITE_HELD(&r.ri); 4659 break; 4660 4661 case DIF_SUBR_RW_ISWRITER: 4662 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4663 mstate, vstate)) { 4664 regs[rd] = 0; 4665 break; 4666 } 4667 4668 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4669 regs[rd] = _RW_ISWRITER(&r.ri); 4670 break; 4671 4672 #endif /* __NetBSD__ */ 4673 4674 case DIF_SUBR_BCOPY: { 4675 /* 4676 * We need to be sure that the destination is in the scratch 4677 * region -- no other region is allowed. 4678 */ 4679 uintptr_t src = tupregs[0].dttk_value; 4680 uintptr_t dest = tupregs[1].dttk_value; 4681 size_t size = tupregs[2].dttk_value; 4682 4683 if (!dtrace_inscratch(dest, size, mstate)) { 4684 *flags |= CPU_DTRACE_BADADDR; 4685 *illval = regs[rd]; 4686 break; 4687 } 4688 4689 if (!dtrace_canload(src, size, mstate, vstate)) { 4690 regs[rd] = 0; 4691 break; 4692 } 4693 4694 dtrace_bcopy((void *)src, (void *)dest, size); 4695 break; 4696 } 4697 4698 case DIF_SUBR_ALLOCA: 4699 case DIF_SUBR_COPYIN: { 4700 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4701 uint64_t size = 4702 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4703 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4704 4705 /* 4706 * This action doesn't require any credential checks since 4707 * probes will not activate in user contexts to which the 4708 * enabling user does not have permissions. 4709 */ 4710 4711 /* 4712 * Rounding up the user allocation size could have overflowed 4713 * a large, bogus allocation (like -1ULL) to 0. 4714 */ 4715 if (scratch_size < size || 4716 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4717 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4718 regs[rd] = 0; 4719 break; 4720 } 4721 4722 if (subr == DIF_SUBR_COPYIN) { 4723 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4724 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4725 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4726 } 4727 4728 mstate->dtms_scratch_ptr += scratch_size; 4729 regs[rd] = dest; 4730 break; 4731 } 4732 4733 case DIF_SUBR_COPYINTO: { 4734 uint64_t size = tupregs[1].dttk_value; 4735 uintptr_t dest = tupregs[2].dttk_value; 4736 4737 /* 4738 * This action doesn't require any credential checks since 4739 * probes will not activate in user contexts to which the 4740 * enabling user does not have permissions. 4741 */ 4742 if (!dtrace_inscratch(dest, size, mstate)) { 4743 *flags |= CPU_DTRACE_BADADDR; 4744 *illval = regs[rd]; 4745 break; 4746 } 4747 4748 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4749 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4750 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4751 break; 4752 } 4753 4754 case DIF_SUBR_COPYINSTR: { 4755 uintptr_t dest = mstate->dtms_scratch_ptr; 4756 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4757 4758 if (nargs > 1 && tupregs[1].dttk_value < size) 4759 size = tupregs[1].dttk_value + 1; 4760 4761 /* 4762 * This action doesn't require any credential checks since 4763 * probes will not activate in user contexts to which the 4764 * enabling user does not have permissions. 4765 */ 4766 if (!DTRACE_INSCRATCH(mstate, size)) { 4767 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4768 regs[rd] = 0; 4769 break; 4770 } 4771 4772 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4773 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4774 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4775 4776 ((char *)dest)[size - 1] = '\0'; 4777 mstate->dtms_scratch_ptr += size; 4778 regs[rd] = dest; 4779 break; 4780 } 4781 4782 #ifdef illumos 4783 case DIF_SUBR_MSGSIZE: 4784 case DIF_SUBR_MSGDSIZE: { 4785 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4786 uintptr_t wptr, rptr; 4787 size_t count = 0; 4788 int cont = 0; 4789 4790 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4791 4792 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4793 vstate)) { 4794 regs[rd] = 0; 4795 break; 4796 } 4797 4798 wptr = dtrace_loadptr(baddr + 4799 offsetof(mblk_t, b_wptr)); 4800 4801 rptr = dtrace_loadptr(baddr + 4802 offsetof(mblk_t, b_rptr)); 4803 4804 if (wptr < rptr) { 4805 *flags |= CPU_DTRACE_BADADDR; 4806 *illval = tupregs[0].dttk_value; 4807 break; 4808 } 4809 4810 daddr = dtrace_loadptr(baddr + 4811 offsetof(mblk_t, b_datap)); 4812 4813 baddr = dtrace_loadptr(baddr + 4814 offsetof(mblk_t, b_cont)); 4815 4816 /* 4817 * We want to prevent against denial-of-service here, 4818 * so we're only going to search the list for 4819 * dtrace_msgdsize_max mblks. 4820 */ 4821 if (cont++ > dtrace_msgdsize_max) { 4822 *flags |= CPU_DTRACE_ILLOP; 4823 break; 4824 } 4825 4826 if (subr == DIF_SUBR_MSGDSIZE) { 4827 if (dtrace_load8(daddr + 4828 offsetof(dblk_t, db_type)) != M_DATA) 4829 continue; 4830 } 4831 4832 count += wptr - rptr; 4833 } 4834 4835 if (!(*flags & CPU_DTRACE_FAULT)) 4836 regs[rd] = count; 4837 4838 break; 4839 } 4840 #endif 4841 4842 case DIF_SUBR_PROGENYOF: { 4843 pid_t pid = tupregs[0].dttk_value; 4844 proc_t *p; 4845 int rval = 0; 4846 4847 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4848 4849 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4850 #ifdef illumos 4851 if (p->p_pidp->pid_id == pid) { 4852 #else 4853 if (p->p_pid == pid) { 4854 #endif 4855 rval = 1; 4856 break; 4857 } 4858 } 4859 4860 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4861 4862 regs[rd] = rval; 4863 break; 4864 } 4865 4866 case DIF_SUBR_SPECULATION: 4867 regs[rd] = dtrace_speculation(state); 4868 break; 4869 4870 case DIF_SUBR_COPYOUT: { 4871 uintptr_t kaddr = tupregs[0].dttk_value; 4872 uintptr_t uaddr = tupregs[1].dttk_value; 4873 uint64_t size = tupregs[2].dttk_value; 4874 4875 if (!dtrace_destructive_disallow && 4876 dtrace_priv_proc_control(state) && 4877 !dtrace_istoxic(kaddr, size)) { 4878 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4879 dtrace_copyout(kaddr, uaddr, size, flags); 4880 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4881 } 4882 break; 4883 } 4884 4885 case DIF_SUBR_COPYOUTSTR: { 4886 uintptr_t kaddr = tupregs[0].dttk_value; 4887 uintptr_t uaddr = tupregs[1].dttk_value; 4888 uint64_t size = tupregs[2].dttk_value; 4889 size_t lim; 4890 4891 if (!dtrace_destructive_disallow && 4892 dtrace_priv_proc_control(state) && 4893 !dtrace_istoxic(kaddr, size) && 4894 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4895 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4896 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4897 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4898 } 4899 break; 4900 } 4901 4902 case DIF_SUBR_STRLEN: { 4903 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4904 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4905 size_t lim; 4906 4907 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4908 regs[rd] = 0; 4909 break; 4910 } 4911 4912 regs[rd] = dtrace_strlen((char *)addr, lim); 4913 break; 4914 } 4915 4916 case DIF_SUBR_STRCHR: 4917 case DIF_SUBR_STRRCHR: { 4918 /* 4919 * We're going to iterate over the string looking for the 4920 * specified character. We will iterate until we have reached 4921 * the string length or we have found the character. If this 4922 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4923 * of the specified character instead of the first. 4924 */ 4925 uintptr_t addr = tupregs[0].dttk_value; 4926 uintptr_t addr_limit; 4927 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4928 size_t lim; 4929 char c, target = (char)tupregs[1].dttk_value; 4930 4931 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4932 regs[rd] = 0; 4933 break; 4934 } 4935 addr_limit = addr + lim; 4936 4937 for (regs[rd] = 0; addr < addr_limit; addr++) { 4938 if ((c = dtrace_load8(addr)) == target) { 4939 regs[rd] = addr; 4940 4941 if (subr == DIF_SUBR_STRCHR) 4942 break; 4943 } 4944 4945 if (c == '\0') 4946 break; 4947 } 4948 break; 4949 } 4950 4951 case DIF_SUBR_STRSTR: 4952 case DIF_SUBR_INDEX: 4953 case DIF_SUBR_RINDEX: { 4954 /* 4955 * We're going to iterate over the string looking for the 4956 * specified string. We will iterate until we have reached 4957 * the string length or we have found the string. (Yes, this 4958 * is done in the most naive way possible -- but considering 4959 * that the string we're searching for is likely to be 4960 * relatively short, the complexity of Rabin-Karp or similar 4961 * hardly seems merited.) 4962 */ 4963 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4964 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4965 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4966 size_t len = dtrace_strlen(addr, size); 4967 size_t sublen = dtrace_strlen(substr, size); 4968 char *limit = addr + len, *orig = addr; 4969 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4970 int inc = 1; 4971 4972 regs[rd] = notfound; 4973 4974 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4975 regs[rd] = 0; 4976 break; 4977 } 4978 4979 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4980 vstate)) { 4981 regs[rd] = 0; 4982 break; 4983 } 4984 4985 /* 4986 * strstr() and index()/rindex() have similar semantics if 4987 * both strings are the empty string: strstr() returns a 4988 * pointer to the (empty) string, and index() and rindex() 4989 * both return index 0 (regardless of any position argument). 4990 */ 4991 if (sublen == 0 && len == 0) { 4992 if (subr == DIF_SUBR_STRSTR) 4993 regs[rd] = (uintptr_t)addr; 4994 else 4995 regs[rd] = 0; 4996 break; 4997 } 4998 4999 if (subr != DIF_SUBR_STRSTR) { 5000 if (subr == DIF_SUBR_RINDEX) { 5001 limit = orig - 1; 5002 addr += len; 5003 inc = -1; 5004 } 5005 5006 /* 5007 * Both index() and rindex() take an optional position 5008 * argument that denotes the starting position. 5009 */ 5010 if (nargs == 3) { 5011 int64_t pos = (int64_t)tupregs[2].dttk_value; 5012 5013 /* 5014 * If the position argument to index() is 5015 * negative, Perl implicitly clamps it at 5016 * zero. This semantic is a little surprising 5017 * given the special meaning of negative 5018 * positions to similar Perl functions like 5019 * substr(), but it appears to reflect a 5020 * notion that index() can start from a 5021 * negative index and increment its way up to 5022 * the string. Given this notion, Perl's 5023 * rindex() is at least self-consistent in 5024 * that it implicitly clamps positions greater 5025 * than the string length to be the string 5026 * length. Where Perl completely loses 5027 * coherence, however, is when the specified 5028 * substring is the empty string (""). In 5029 * this case, even if the position is 5030 * negative, rindex() returns 0 -- and even if 5031 * the position is greater than the length, 5032 * index() returns the string length. These 5033 * semantics violate the notion that index() 5034 * should never return a value less than the 5035 * specified position and that rindex() should 5036 * never return a value greater than the 5037 * specified position. (One assumes that 5038 * these semantics are artifacts of Perl's 5039 * implementation and not the results of 5040 * deliberate design -- it beggars belief that 5041 * even Larry Wall could desire such oddness.) 5042 * While in the abstract one would wish for 5043 * consistent position semantics across 5044 * substr(), index() and rindex() -- or at the 5045 * very least self-consistent position 5046 * semantics for index() and rindex() -- we 5047 * instead opt to keep with the extant Perl 5048 * semantics, in all their broken glory. (Do 5049 * we have more desire to maintain Perl's 5050 * semantics than Perl does? Probably.) 5051 */ 5052 if (subr == DIF_SUBR_RINDEX) { 5053 if (pos < 0) { 5054 if (sublen == 0) 5055 regs[rd] = 0; 5056 break; 5057 } 5058 5059 if (pos > len) 5060 pos = len; 5061 } else { 5062 if (pos < 0) 5063 pos = 0; 5064 5065 if (pos >= len) { 5066 if (sublen == 0) 5067 regs[rd] = len; 5068 break; 5069 } 5070 } 5071 5072 addr = orig + pos; 5073 } 5074 } 5075 5076 for (regs[rd] = notfound; addr != limit; addr += inc) { 5077 if (dtrace_strncmp(addr, substr, sublen) == 0) { 5078 if (subr != DIF_SUBR_STRSTR) { 5079 /* 5080 * As D index() and rindex() are 5081 * modeled on Perl (and not on awk), 5082 * we return a zero-based (and not a 5083 * one-based) index. (For you Perl 5084 * weenies: no, we're not going to add 5085 * $[ -- and shouldn't you be at a con 5086 * or something?) 5087 */ 5088 regs[rd] = (uintptr_t)(addr - orig); 5089 break; 5090 } 5091 5092 ASSERT(subr == DIF_SUBR_STRSTR); 5093 regs[rd] = (uintptr_t)addr; 5094 break; 5095 } 5096 } 5097 5098 break; 5099 } 5100 5101 case DIF_SUBR_STRTOK: { 5102 uintptr_t addr = tupregs[0].dttk_value; 5103 uintptr_t tokaddr = tupregs[1].dttk_value; 5104 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5105 uintptr_t limit, toklimit; 5106 size_t clim; 5107 uint8_t c = 0, tokmap[32]; /* 256 / 8 */ 5108 char *dest = (char *)mstate->dtms_scratch_ptr; 5109 int i; 5110 5111 /* 5112 * Check both the token buffer and (later) the input buffer, 5113 * since both could be non-scratch addresses. 5114 */ 5115 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 5116 regs[rd] = 0; 5117 break; 5118 } 5119 toklimit = tokaddr + clim; 5120 5121 if (!DTRACE_INSCRATCH(mstate, size)) { 5122 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5123 regs[rd] = 0; 5124 break; 5125 } 5126 5127 if (addr == 0) { 5128 /* 5129 * If the address specified is NULL, we use our saved 5130 * strtok pointer from the mstate. Note that this 5131 * means that the saved strtok pointer is _only_ 5132 * valid within multiple enablings of the same probe -- 5133 * it behaves like an implicit clause-local variable. 5134 */ 5135 addr = mstate->dtms_strtok; 5136 limit = mstate->dtms_strtok_limit; 5137 } else { 5138 /* 5139 * If the user-specified address is non-NULL we must 5140 * access check it. This is the only time we have 5141 * a chance to do so, since this address may reside 5142 * in the string table of this clause-- future calls 5143 * (when we fetch addr from mstate->dtms_strtok) 5144 * would fail this access check. 5145 */ 5146 if (!dtrace_strcanload(addr, size, &clim, mstate, 5147 vstate)) { 5148 regs[rd] = 0; 5149 break; 5150 } 5151 limit = addr + clim; 5152 } 5153 5154 /* 5155 * First, zero the token map, and then process the token 5156 * string -- setting a bit in the map for every character 5157 * found in the token string. 5158 */ 5159 for (i = 0; i < sizeof (tokmap); i++) 5160 tokmap[i] = 0; 5161 5162 for (; tokaddr < toklimit; tokaddr++) { 5163 if ((c = dtrace_load8(tokaddr)) == '\0') 5164 break; 5165 5166 ASSERT((c >> 3) < sizeof (tokmap)); 5167 tokmap[c >> 3] |= (1 << (c & 0x7)); 5168 } 5169 5170 for (; addr < limit; addr++) { 5171 /* 5172 * We're looking for a character that is _not_ 5173 * contained in the token string. 5174 */ 5175 if ((c = dtrace_load8(addr)) == '\0') 5176 break; 5177 5178 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 5179 break; 5180 } 5181 5182 if (c == '\0') { 5183 /* 5184 * We reached the end of the string without finding 5185 * any character that was not in the token string. 5186 * We return NULL in this case, and we set the saved 5187 * address to NULL as well. 5188 */ 5189 regs[rd] = 0; 5190 mstate->dtms_strtok = 0; 5191 mstate->dtms_strtok_limit = 0; 5192 break; 5193 } 5194 5195 /* 5196 * From here on, we're copying into the destination string. 5197 */ 5198 for (i = 0; addr < limit && i < size - 1; addr++) { 5199 if ((c = dtrace_load8(addr)) == '\0') 5200 break; 5201 5202 if (tokmap[c >> 3] & (1 << (c & 0x7))) 5203 break; 5204 5205 ASSERT(i < size); 5206 dest[i++] = c; 5207 } 5208 5209 ASSERT(i < size); 5210 dest[i] = '\0'; 5211 regs[rd] = (uintptr_t)dest; 5212 mstate->dtms_scratch_ptr += size; 5213 mstate->dtms_strtok = addr; 5214 mstate->dtms_strtok_limit = limit; 5215 break; 5216 } 5217 5218 case DIF_SUBR_SUBSTR: { 5219 uintptr_t s = tupregs[0].dttk_value; 5220 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5221 char *d = (char *)mstate->dtms_scratch_ptr; 5222 int64_t index = (int64_t)tupregs[1].dttk_value; 5223 int64_t remaining = (int64_t)tupregs[2].dttk_value; 5224 size_t len = dtrace_strlen((char *)s, size); 5225 int64_t i; 5226 5227 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5228 regs[rd] = 0; 5229 break; 5230 } 5231 5232 if (!DTRACE_INSCRATCH(mstate, size)) { 5233 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5234 regs[rd] = 0; 5235 break; 5236 } 5237 5238 if (nargs <= 2) 5239 remaining = (int64_t)size; 5240 5241 if (index < 0) { 5242 index += len; 5243 5244 if (index < 0 && index + remaining > 0) { 5245 remaining += index; 5246 index = 0; 5247 } 5248 } 5249 5250 if (index >= len || index < 0) { 5251 remaining = 0; 5252 } else if (remaining < 0) { 5253 remaining += len - index; 5254 } else if (index + remaining > size) { 5255 remaining = size - index; 5256 } 5257 5258 for (i = 0; i < remaining; i++) { 5259 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 5260 break; 5261 } 5262 5263 d[i] = '\0'; 5264 5265 mstate->dtms_scratch_ptr += size; 5266 regs[rd] = (uintptr_t)d; 5267 break; 5268 } 5269 5270 case DIF_SUBR_JSON: { 5271 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5272 uintptr_t json = tupregs[0].dttk_value; 5273 size_t jsonlen = dtrace_strlen((char *)json, size); 5274 uintptr_t elem = tupregs[1].dttk_value; 5275 size_t elemlen = dtrace_strlen((char *)elem, size); 5276 5277 char *dest = (char *)mstate->dtms_scratch_ptr; 5278 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 5279 char *ee = elemlist; 5280 int nelems = 1; 5281 uintptr_t cur; 5282 5283 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 5284 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 5285 regs[rd] = 0; 5286 break; 5287 } 5288 5289 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 5290 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5291 regs[rd] = 0; 5292 break; 5293 } 5294 5295 /* 5296 * Read the element selector and split it up into a packed list 5297 * of strings. 5298 */ 5299 for (cur = elem; cur < elem + elemlen; cur++) { 5300 char cc = dtrace_load8(cur); 5301 5302 if (cur == elem && cc == '[') { 5303 /* 5304 * If the first element selector key is 5305 * actually an array index then ignore the 5306 * bracket. 5307 */ 5308 continue; 5309 } 5310 5311 if (cc == ']') 5312 continue; 5313 5314 if (cc == '.' || cc == '[') { 5315 nelems++; 5316 cc = '\0'; 5317 } 5318 5319 *ee++ = cc; 5320 } 5321 *ee++ = '\0'; 5322 5323 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 5324 nelems, dest)) != 0) 5325 mstate->dtms_scratch_ptr += jsonlen + 1; 5326 break; 5327 } 5328 5329 case DIF_SUBR_TOUPPER: 5330 case DIF_SUBR_TOLOWER: { 5331 uintptr_t s = tupregs[0].dttk_value; 5332 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5333 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5334 size_t len = dtrace_strlen((char *)s, size); 5335 char lower, upper, convert; 5336 int64_t i; 5337 5338 if (subr == DIF_SUBR_TOUPPER) { 5339 lower = 'a'; 5340 upper = 'z'; 5341 convert = 'A'; 5342 } else { 5343 lower = 'A'; 5344 upper = 'Z'; 5345 convert = 'a'; 5346 } 5347 5348 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5349 regs[rd] = 0; 5350 break; 5351 } 5352 5353 if (!DTRACE_INSCRATCH(mstate, size)) { 5354 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5355 regs[rd] = 0; 5356 break; 5357 } 5358 5359 for (i = 0; i < size - 1; i++) { 5360 if ((c = dtrace_load8(s + i)) == '\0') 5361 break; 5362 5363 if (c >= lower && c <= upper) 5364 c = convert + (c - lower); 5365 5366 dest[i] = c; 5367 } 5368 5369 ASSERT(i < size); 5370 dest[i] = '\0'; 5371 regs[rd] = (uintptr_t)dest; 5372 mstate->dtms_scratch_ptr += size; 5373 break; 5374 } 5375 5376 #ifdef illumos 5377 case DIF_SUBR_GETMAJOR: 5378 #ifdef _LP64 5379 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 5380 #else 5381 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 5382 #endif 5383 break; 5384 5385 case DIF_SUBR_GETMINOR: 5386 #ifdef _LP64 5387 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 5388 #else 5389 regs[rd] = tupregs[0].dttk_value & MAXMIN; 5390 #endif 5391 break; 5392 5393 case DIF_SUBR_DDI_PATHNAME: { 5394 /* 5395 * This one is a galactic mess. We are going to roughly 5396 * emulate ddi_pathname(), but it's made more complicated 5397 * by the fact that we (a) want to include the minor name and 5398 * (b) must proceed iteratively instead of recursively. 5399 */ 5400 uintptr_t dest = mstate->dtms_scratch_ptr; 5401 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5402 char *start = (char *)dest, *end = start + size - 1; 5403 uintptr_t daddr = tupregs[0].dttk_value; 5404 int64_t minor = (int64_t)tupregs[1].dttk_value; 5405 char *s; 5406 int i, len, depth = 0; 5407 5408 /* 5409 * Due to all the pointer jumping we do and context we must 5410 * rely upon, we just mandate that the user must have kernel 5411 * read privileges to use this routine. 5412 */ 5413 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 5414 *flags |= CPU_DTRACE_KPRIV; 5415 *illval = daddr; 5416 regs[rd] = 0; 5417 } 5418 5419 if (!DTRACE_INSCRATCH(mstate, size)) { 5420 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5421 regs[rd] = 0; 5422 break; 5423 } 5424 5425 *end = '\0'; 5426 5427 /* 5428 * We want to have a name for the minor. In order to do this, 5429 * we need to walk the minor list from the devinfo. We want 5430 * to be sure that we don't infinitely walk a circular list, 5431 * so we check for circularity by sending a scout pointer 5432 * ahead two elements for every element that we iterate over; 5433 * if the list is circular, these will ultimately point to the 5434 * same element. You may recognize this little trick as the 5435 * answer to a stupid interview question -- one that always 5436 * seems to be asked by those who had to have it laboriously 5437 * explained to them, and who can't even concisely describe 5438 * the conditions under which one would be forced to resort to 5439 * this technique. Needless to say, those conditions are 5440 * found here -- and probably only here. Is this the only use 5441 * of this infamous trick in shipping, production code? If it 5442 * isn't, it probably should be... 5443 */ 5444 if (minor != -1) { 5445 uintptr_t maddr = dtrace_loadptr(daddr + 5446 offsetof(struct dev_info, devi_minor)); 5447 5448 uintptr_t next = offsetof(struct ddi_minor_data, next); 5449 uintptr_t name = offsetof(struct ddi_minor_data, 5450 d_minor) + offsetof(struct ddi_minor, name); 5451 uintptr_t dev = offsetof(struct ddi_minor_data, 5452 d_minor) + offsetof(struct ddi_minor, dev); 5453 uintptr_t scout; 5454 5455 if (maddr != NULL) 5456 scout = dtrace_loadptr(maddr + next); 5457 5458 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5459 uint64_t m; 5460 #ifdef _LP64 5461 m = dtrace_load64(maddr + dev) & MAXMIN64; 5462 #else 5463 m = dtrace_load32(maddr + dev) & MAXMIN; 5464 #endif 5465 if (m != minor) { 5466 maddr = dtrace_loadptr(maddr + next); 5467 5468 if (scout == NULL) 5469 continue; 5470 5471 scout = dtrace_loadptr(scout + next); 5472 5473 if (scout == NULL) 5474 continue; 5475 5476 scout = dtrace_loadptr(scout + next); 5477 5478 if (scout == NULL) 5479 continue; 5480 5481 if (scout == maddr) { 5482 *flags |= CPU_DTRACE_ILLOP; 5483 break; 5484 } 5485 5486 continue; 5487 } 5488 5489 /* 5490 * We have the minor data. Now we need to 5491 * copy the minor's name into the end of the 5492 * pathname. 5493 */ 5494 s = (char *)dtrace_loadptr(maddr + name); 5495 len = dtrace_strlen(s, size); 5496 5497 if (*flags & CPU_DTRACE_FAULT) 5498 break; 5499 5500 if (len != 0) { 5501 if ((end -= (len + 1)) < start) 5502 break; 5503 5504 *end = ':'; 5505 } 5506 5507 for (i = 1; i <= len; i++) 5508 end[i] = dtrace_load8((uintptr_t)s++); 5509 break; 5510 } 5511 } 5512 5513 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5514 ddi_node_state_t devi_state; 5515 5516 devi_state = dtrace_load32(daddr + 5517 offsetof(struct dev_info, devi_node_state)); 5518 5519 if (*flags & CPU_DTRACE_FAULT) 5520 break; 5521 5522 if (devi_state >= DS_INITIALIZED) { 5523 s = (char *)dtrace_loadptr(daddr + 5524 offsetof(struct dev_info, devi_addr)); 5525 len = dtrace_strlen(s, size); 5526 5527 if (*flags & CPU_DTRACE_FAULT) 5528 break; 5529 5530 if (len != 0) { 5531 if ((end -= (len + 1)) < start) 5532 break; 5533 5534 *end = '@'; 5535 } 5536 5537 for (i = 1; i <= len; i++) 5538 end[i] = dtrace_load8((uintptr_t)s++); 5539 } 5540 5541 /* 5542 * Now for the node name... 5543 */ 5544 s = (char *)dtrace_loadptr(daddr + 5545 offsetof(struct dev_info, devi_node_name)); 5546 5547 daddr = dtrace_loadptr(daddr + 5548 offsetof(struct dev_info, devi_parent)); 5549 5550 /* 5551 * If our parent is NULL (that is, if we're the root 5552 * node), we're going to use the special path 5553 * "devices". 5554 */ 5555 if (daddr == 0) 5556 s = "devices"; 5557 5558 len = dtrace_strlen(s, size); 5559 if (*flags & CPU_DTRACE_FAULT) 5560 break; 5561 5562 if ((end -= (len + 1)) < start) 5563 break; 5564 5565 for (i = 1; i <= len; i++) 5566 end[i] = dtrace_load8((uintptr_t)s++); 5567 *end = '/'; 5568 5569 if (depth++ > dtrace_devdepth_max) { 5570 *flags |= CPU_DTRACE_ILLOP; 5571 break; 5572 } 5573 } 5574 5575 if (end < start) 5576 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5577 5578 if (daddr == 0) { 5579 regs[rd] = (uintptr_t)end; 5580 mstate->dtms_scratch_ptr += size; 5581 } 5582 5583 break; 5584 } 5585 #endif 5586 5587 case DIF_SUBR_STRJOIN: { 5588 char *d = (char *)mstate->dtms_scratch_ptr; 5589 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5590 uintptr_t s1 = tupregs[0].dttk_value; 5591 uintptr_t s2 = tupregs[1].dttk_value; 5592 int i = 0, j = 0; 5593 size_t lim1, lim2; 5594 char c; 5595 5596 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5597 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5598 regs[rd] = 0; 5599 break; 5600 } 5601 5602 if (!DTRACE_INSCRATCH(mstate, size)) { 5603 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5604 regs[rd] = 0; 5605 break; 5606 } 5607 5608 for (;;) { 5609 if (i >= size) { 5610 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5611 regs[rd] = 0; 5612 break; 5613 } 5614 5615 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5616 if ((d[i++] = c) == '\0') { 5617 i--; 5618 break; 5619 } 5620 } 5621 5622 for (;;) { 5623 if (i >= size) { 5624 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5625 regs[rd] = 0; 5626 break; 5627 } 5628 5629 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5630 if ((d[i++] = c) == '\0') 5631 break; 5632 } 5633 5634 if (i < size) { 5635 mstate->dtms_scratch_ptr += i; 5636 regs[rd] = (uintptr_t)d; 5637 } 5638 5639 break; 5640 } 5641 5642 case DIF_SUBR_STRTOLL: { 5643 uintptr_t s = tupregs[0].dttk_value; 5644 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5645 size_t lim; 5646 int base = 10; 5647 5648 if (nargs > 1) { 5649 if ((base = tupregs[1].dttk_value) <= 1 || 5650 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5651 *flags |= CPU_DTRACE_ILLOP; 5652 break; 5653 } 5654 } 5655 5656 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5657 regs[rd] = INT64_MIN; 5658 break; 5659 } 5660 5661 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5662 break; 5663 } 5664 5665 case DIF_SUBR_LLTOSTR: { 5666 int64_t i = (int64_t)tupregs[0].dttk_value; 5667 uint64_t val, digit; 5668 uint64_t size = 65; /* enough room for 2^64 in binary */ 5669 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5670 int base = 10; 5671 5672 if (nargs > 1) { 5673 if ((base = tupregs[1].dttk_value) <= 1 || 5674 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5675 *flags |= CPU_DTRACE_ILLOP; 5676 break; 5677 } 5678 } 5679 5680 val = (base == 10 && i < 0) ? i * -1 : i; 5681 5682 if (!DTRACE_INSCRATCH(mstate, size)) { 5683 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5684 regs[rd] = 0; 5685 break; 5686 } 5687 5688 for (*end-- = '\0'; val; val /= base) { 5689 if ((digit = val % base) <= '9' - '0') { 5690 *end-- = '0' + digit; 5691 } else { 5692 *end-- = 'a' + (digit - ('9' - '0') - 1); 5693 } 5694 } 5695 5696 if (i == 0 && base == 16) 5697 *end-- = '0'; 5698 5699 if (base == 16) 5700 *end-- = 'x'; 5701 5702 if (i == 0 || base == 8 || base == 16) 5703 *end-- = '0'; 5704 5705 if (i < 0 && base == 10) 5706 *end-- = '-'; 5707 5708 regs[rd] = (uintptr_t)end + 1; 5709 mstate->dtms_scratch_ptr += size; 5710 break; 5711 } 5712 5713 case DIF_SUBR_HTONS: 5714 case DIF_SUBR_NTOHS: 5715 #if BYTE_ORDER == BIG_ENDIAN 5716 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5717 #else 5718 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5719 #endif 5720 break; 5721 5722 5723 case DIF_SUBR_HTONL: 5724 case DIF_SUBR_NTOHL: 5725 #if BYTE_ORDER == BIG_ENDIAN 5726 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5727 #else 5728 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5729 #endif 5730 break; 5731 5732 5733 case DIF_SUBR_HTONLL: 5734 case DIF_SUBR_NTOHLL: 5735 #if BYTE_ORDER == BIG_ENDIAN 5736 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5737 #else 5738 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5739 #endif 5740 break; 5741 5742 5743 case DIF_SUBR_DIRNAME: 5744 case DIF_SUBR_BASENAME: { 5745 char *dest = (char *)mstate->dtms_scratch_ptr; 5746 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5747 uintptr_t src = tupregs[0].dttk_value; 5748 int i, j, len = dtrace_strlen((char *)src, size); 5749 int lastbase = -1, firstbase = -1, lastdir = -1; 5750 int start, end; 5751 5752 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5753 regs[rd] = 0; 5754 break; 5755 } 5756 5757 if (!DTRACE_INSCRATCH(mstate, size)) { 5758 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5759 regs[rd] = 0; 5760 break; 5761 } 5762 5763 /* 5764 * The basename and dirname for a zero-length string is 5765 * defined to be "." 5766 */ 5767 if (len == 0) { 5768 len = 1; 5769 src = (uintptr_t)"."; 5770 } 5771 5772 /* 5773 * Start from the back of the string, moving back toward the 5774 * front until we see a character that isn't a slash. That 5775 * character is the last character in the basename. 5776 */ 5777 for (i = len - 1; i >= 0; i--) { 5778 if (dtrace_load8(src + i) != '/') 5779 break; 5780 } 5781 5782 if (i >= 0) 5783 lastbase = i; 5784 5785 /* 5786 * Starting from the last character in the basename, move 5787 * towards the front until we find a slash. The character 5788 * that we processed immediately before that is the first 5789 * character in the basename. 5790 */ 5791 for (; i >= 0; i--) { 5792 if (dtrace_load8(src + i) == '/') 5793 break; 5794 } 5795 5796 if (i >= 0) 5797 firstbase = i + 1; 5798 5799 /* 5800 * Now keep going until we find a non-slash character. That 5801 * character is the last character in the dirname. 5802 */ 5803 for (; i >= 0; i--) { 5804 if (dtrace_load8(src + i) != '/') 5805 break; 5806 } 5807 5808 if (i >= 0) 5809 lastdir = i; 5810 5811 ASSERT(!(lastbase == -1 && firstbase != -1)); 5812 ASSERT(!(firstbase == -1 && lastdir != -1)); 5813 5814 if (lastbase == -1) { 5815 /* 5816 * We didn't find a non-slash character. We know that 5817 * the length is non-zero, so the whole string must be 5818 * slashes. In either the dirname or the basename 5819 * case, we return '/'. 5820 */ 5821 ASSERT(firstbase == -1); 5822 firstbase = lastbase = lastdir = 0; 5823 } 5824 5825 if (firstbase == -1) { 5826 /* 5827 * The entire string consists only of a basename 5828 * component. If we're looking for dirname, we need 5829 * to change our string to be just "."; if we're 5830 * looking for a basename, we'll just set the first 5831 * character of the basename to be 0. 5832 */ 5833 if (subr == DIF_SUBR_DIRNAME) { 5834 ASSERT(lastdir == -1); 5835 src = (uintptr_t)"."; 5836 lastdir = 0; 5837 } else { 5838 firstbase = 0; 5839 } 5840 } 5841 5842 if (subr == DIF_SUBR_DIRNAME) { 5843 if (lastdir == -1) { 5844 /* 5845 * We know that we have a slash in the name -- 5846 * or lastdir would be set to 0, above. And 5847 * because lastdir is -1, we know that this 5848 * slash must be the first character. (That 5849 * is, the full string must be of the form 5850 * "/basename".) In this case, the last 5851 * character of the directory name is 0. 5852 */ 5853 lastdir = 0; 5854 } 5855 5856 start = 0; 5857 end = lastdir; 5858 } else { 5859 ASSERT(subr == DIF_SUBR_BASENAME); 5860 ASSERT(firstbase != -1 && lastbase != -1); 5861 start = firstbase; 5862 end = lastbase; 5863 } 5864 5865 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5866 dest[j] = dtrace_load8(src + i); 5867 5868 dest[j] = '\0'; 5869 regs[rd] = (uintptr_t)dest; 5870 mstate->dtms_scratch_ptr += size; 5871 break; 5872 } 5873 5874 case DIF_SUBR_GETF: { 5875 uintptr_t fd = tupregs[0].dttk_value; 5876 struct filedesc *fdp; 5877 file_t *fp; 5878 5879 if (!dtrace_priv_proc(state)) { 5880 regs[rd] = 0; 5881 break; 5882 } 5883 #ifdef __FreeBSD_ 5884 fdp = curproc->p_fd; 5885 FILEDESC_SLOCK(fdp); 5886 fp = fget_locked(fdp, fd); 5887 mstate->dtms_getf = fp; 5888 regs[rd] = (uintptr_t)fp; 5889 FILEDESC_SUNLOCK(fdp); 5890 #endif 5891 #ifdef __NetBSD__ 5892 regs[rd] = 0; 5893 #endif 5894 break; 5895 } 5896 case DIF_SUBR_CLEANPATH: { 5897 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5898 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5899 uintptr_t src = tupregs[0].dttk_value; 5900 size_t lim; 5901 int i = 0, j = 0; 5902 #ifdef illumos 5903 zone_t *z; 5904 #endif 5905 5906 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5907 regs[rd] = 0; 5908 break; 5909 } 5910 5911 if (!DTRACE_INSCRATCH(mstate, size)) { 5912 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5913 regs[rd] = 0; 5914 break; 5915 } 5916 5917 /* 5918 * Move forward, loading each character. 5919 */ 5920 do { 5921 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5922 next: 5923 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5924 break; 5925 5926 if (c != '/') { 5927 dest[j++] = c; 5928 continue; 5929 } 5930 5931 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5932 5933 if (c == '/') { 5934 /* 5935 * We have two slashes -- we can just advance 5936 * to the next character. 5937 */ 5938 goto next; 5939 } 5940 5941 if (c != '.') { 5942 /* 5943 * This is not "." and it's not ".." -- we can 5944 * just store the "/" and this character and 5945 * drive on. 5946 */ 5947 dest[j++] = '/'; 5948 dest[j++] = c; 5949 continue; 5950 } 5951 5952 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5953 5954 if (c == '/') { 5955 /* 5956 * This is a "/./" component. We're not going 5957 * to store anything in the destination buffer; 5958 * we're just going to go to the next component. 5959 */ 5960 goto next; 5961 } 5962 5963 if (c != '.') { 5964 /* 5965 * This is not ".." -- we can just store the 5966 * "/." and this character and continue 5967 * processing. 5968 */ 5969 dest[j++] = '/'; 5970 dest[j++] = '.'; 5971 dest[j++] = c; 5972 continue; 5973 } 5974 5975 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5976 5977 if (c != '/' && c != '\0') { 5978 /* 5979 * This is not ".." -- it's "..[mumble]". 5980 * We'll store the "/.." and this character 5981 * and continue processing. 5982 */ 5983 dest[j++] = '/'; 5984 dest[j++] = '.'; 5985 dest[j++] = '.'; 5986 dest[j++] = c; 5987 continue; 5988 } 5989 5990 /* 5991 * This is "/../" or "/..\0". We need to back up 5992 * our destination pointer until we find a "/". 5993 */ 5994 i--; 5995 while (j != 0 && dest[--j] != '/') 5996 continue; 5997 5998 if (c == '\0') 5999 dest[++j] = '/'; 6000 } while (c != '\0'); 6001 6002 dest[j] = '\0'; 6003 6004 #ifdef illumos 6005 if (mstate->dtms_getf != NULL && 6006 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 6007 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 6008 /* 6009 * If we've done a getf() as a part of this ECB and we 6010 * don't have kernel access (and we're not in the global 6011 * zone), check if the path we cleaned up begins with 6012 * the zone's root path, and trim it off if so. Note 6013 * that this is an output cleanliness issue, not a 6014 * security issue: knowing one's zone root path does 6015 * not enable privilege escalation. 6016 */ 6017 if (strstr(dest, z->zone_rootpath) == dest) 6018 dest += strlen(z->zone_rootpath) - 1; 6019 } 6020 #endif 6021 6022 regs[rd] = (uintptr_t)dest; 6023 mstate->dtms_scratch_ptr += size; 6024 break; 6025 } 6026 6027 case DIF_SUBR_INET_NTOA: 6028 case DIF_SUBR_INET_NTOA6: 6029 case DIF_SUBR_INET_NTOP: { 6030 size_t size; 6031 int af, argi, i; 6032 char *base, *end; 6033 6034 if (subr == DIF_SUBR_INET_NTOP) { 6035 af = (int)tupregs[0].dttk_value; 6036 argi = 1; 6037 } else { 6038 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 6039 argi = 0; 6040 } 6041 6042 if (af == AF_INET) { 6043 ipaddr_t ip4; 6044 uint8_t *ptr8, val; 6045 6046 if (!dtrace_canload(tupregs[argi].dttk_value, 6047 sizeof (ipaddr_t), mstate, vstate)) { 6048 regs[rd] = 0; 6049 break; 6050 } 6051 6052 /* 6053 * Safely load the IPv4 address. 6054 */ 6055 ip4 = dtrace_load32(tupregs[argi].dttk_value); 6056 6057 /* 6058 * Check an IPv4 string will fit in scratch. 6059 */ 6060 size = INET_ADDRSTRLEN; 6061 if (!DTRACE_INSCRATCH(mstate, size)) { 6062 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6063 regs[rd] = 0; 6064 break; 6065 } 6066 base = (char *)mstate->dtms_scratch_ptr; 6067 end = (char *)mstate->dtms_scratch_ptr + size - 1; 6068 6069 /* 6070 * Stringify as a dotted decimal quad. 6071 */ 6072 *end-- = '\0'; 6073 ptr8 = (uint8_t *)&ip4; 6074 for (i = 3; i >= 0; i--) { 6075 val = ptr8[i]; 6076 6077 if (val == 0) { 6078 *end-- = '0'; 6079 } else { 6080 for (; val; val /= 10) { 6081 *end-- = '0' + (val % 10); 6082 } 6083 } 6084 6085 if (i > 0) 6086 *end-- = '.'; 6087 } 6088 ASSERT(end + 1 >= base); 6089 6090 } else if (af == AF_INET6) { 6091 struct in6_addr ip6; 6092 int firstzero, tryzero, numzero, v6end; 6093 uint16_t val; 6094 const char digits[] = "0123456789abcdef"; 6095 6096 /* 6097 * Stringify using RFC 1884 convention 2 - 16 bit 6098 * hexadecimal values with a zero-run compression. 6099 * Lower case hexadecimal digits are used. 6100 * eg, fe80::214:4fff:fe0b:76c8. 6101 * The IPv4 embedded form is returned for inet_ntop, 6102 * just the IPv4 string is returned for inet_ntoa6. 6103 */ 6104 6105 if (!dtrace_canload(tupregs[argi].dttk_value, 6106 sizeof (struct in6_addr), mstate, vstate)) { 6107 regs[rd] = 0; 6108 break; 6109 } 6110 6111 /* 6112 * Safely load the IPv6 address. 6113 */ 6114 dtrace_bcopy( 6115 (void *)(uintptr_t)tupregs[argi].dttk_value, 6116 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 6117 6118 /* 6119 * Check an IPv6 string will fit in scratch. 6120 */ 6121 size = INET6_ADDRSTRLEN; 6122 if (!DTRACE_INSCRATCH(mstate, size)) { 6123 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6124 regs[rd] = 0; 6125 break; 6126 } 6127 base = (char *)mstate->dtms_scratch_ptr; 6128 end = (char *)mstate->dtms_scratch_ptr + size - 1; 6129 *end-- = '\0'; 6130 6131 /* 6132 * Find the longest run of 16 bit zero values 6133 * for the single allowed zero compression - "::". 6134 */ 6135 firstzero = -1; 6136 tryzero = -1; 6137 numzero = 1; 6138 for (i = 0; i < sizeof (struct in6_addr); i++) { 6139 #ifdef illumos 6140 if (ip6._S6_un._S6_u8[i] == 0 && 6141 #else 6142 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 6143 #endif 6144 tryzero == -1 && i % 2 == 0) { 6145 tryzero = i; 6146 continue; 6147 } 6148 6149 if (tryzero != -1 && 6150 #ifdef illumos 6151 (ip6._S6_un._S6_u8[i] != 0 || 6152 #else 6153 (ip6.__u6_addr.__u6_addr8[i] != 0 || 6154 #endif 6155 i == sizeof (struct in6_addr) - 1)) { 6156 6157 if (i - tryzero <= numzero) { 6158 tryzero = -1; 6159 continue; 6160 } 6161 6162 firstzero = tryzero; 6163 numzero = i - i % 2 - tryzero; 6164 tryzero = -1; 6165 6166 #ifdef illumos 6167 if (ip6._S6_un._S6_u8[i] == 0 && 6168 #else 6169 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 6170 #endif 6171 i == sizeof (struct in6_addr) - 1) 6172 numzero += 2; 6173 } 6174 } 6175 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 6176 6177 /* 6178 * Check for an IPv4 embedded address. 6179 */ 6180 v6end = sizeof (struct in6_addr) - 2; 6181 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 6182 IN6_IS_ADDR_V4COMPAT(&ip6)) { 6183 for (i = sizeof (struct in6_addr) - 1; 6184 i >= DTRACE_V4MAPPED_OFFSET; i--) { 6185 ASSERT(end >= base); 6186 6187 #ifdef illumos 6188 val = ip6._S6_un._S6_u8[i]; 6189 #else 6190 val = ip6.__u6_addr.__u6_addr8[i]; 6191 #endif 6192 6193 if (val == 0) { 6194 *end-- = '0'; 6195 } else { 6196 for (; val; val /= 10) { 6197 *end-- = '0' + val % 10; 6198 } 6199 } 6200 6201 if (i > DTRACE_V4MAPPED_OFFSET) 6202 *end-- = '.'; 6203 } 6204 6205 if (subr == DIF_SUBR_INET_NTOA6) 6206 goto inetout; 6207 6208 /* 6209 * Set v6end to skip the IPv4 address that 6210 * we have already stringified. 6211 */ 6212 v6end = 10; 6213 } 6214 6215 /* 6216 * Build the IPv6 string by working through the 6217 * address in reverse. 6218 */ 6219 for (i = v6end; i >= 0; i -= 2) { 6220 ASSERT(end >= base); 6221 6222 if (i == firstzero + numzero - 2) { 6223 *end-- = ':'; 6224 *end-- = ':'; 6225 i -= numzero - 2; 6226 continue; 6227 } 6228 6229 if (i < 14 && i != firstzero - 2) 6230 *end-- = ':'; 6231 6232 #ifdef illumos 6233 val = (ip6._S6_un._S6_u8[i] << 8) + 6234 ip6._S6_un._S6_u8[i + 1]; 6235 #else 6236 val = (ip6.__u6_addr.__u6_addr8[i] << 8) + 6237 ip6.__u6_addr.__u6_addr8[i + 1]; 6238 #endif 6239 6240 if (val == 0) { 6241 *end-- = '0'; 6242 } else { 6243 for (; val; val /= 16) { 6244 *end-- = digits[val % 16]; 6245 } 6246 } 6247 } 6248 ASSERT(end + 1 >= base); 6249 6250 } else { 6251 /* 6252 * The user didn't use AH_INET or AH_INET6. 6253 */ 6254 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6255 regs[rd] = 0; 6256 break; 6257 } 6258 6259 inetout: regs[rd] = (uintptr_t)end + 1; 6260 mstate->dtms_scratch_ptr += size; 6261 break; 6262 } 6263 6264 case DIF_SUBR_MEMREF: { 6265 uintptr_t size = 2 * sizeof(uintptr_t); 6266 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 6267 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size; 6268 6269 /* address and length */ 6270 memref[0] = tupregs[0].dttk_value; 6271 memref[1] = tupregs[1].dttk_value; 6272 6273 regs[rd] = (uintptr_t) memref; 6274 mstate->dtms_scratch_ptr += scratch_size; 6275 break; 6276 } 6277 6278 #ifndef illumos 6279 case DIF_SUBR_MEMSTR: { 6280 char *str = (char *)mstate->dtms_scratch_ptr; 6281 uintptr_t mem = tupregs[0].dttk_value; 6282 char c = tupregs[1].dttk_value; 6283 size_t size = tupregs[2].dttk_value; 6284 uint8_t n; 6285 int i; 6286 6287 regs[rd] = 0; 6288 6289 if (size == 0) 6290 break; 6291 6292 if (!dtrace_canload(mem, size - 1, mstate, vstate)) 6293 break; 6294 6295 if (!DTRACE_INSCRATCH(mstate, size)) { 6296 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6297 break; 6298 } 6299 6300 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) { 6301 *flags |= CPU_DTRACE_ILLOP; 6302 break; 6303 } 6304 6305 for (i = 0; i < size - 1; i++) { 6306 n = dtrace_load8(mem++); 6307 str[i] = (n == 0) ? c : n; 6308 } 6309 str[size - 1] = 0; 6310 6311 regs[rd] = (uintptr_t)str; 6312 mstate->dtms_scratch_ptr += size; 6313 break; 6314 } 6315 #endif 6316 } 6317 } 6318 6319 /* 6320 * Emulate the execution of DTrace IR instructions specified by the given 6321 * DIF object. This function is deliberately void of assertions as all of 6322 * the necessary checks are handled by a call to dtrace_difo_validate(). 6323 */ 6324 static uint64_t 6325 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 6326 dtrace_vstate_t *vstate, dtrace_state_t *state) 6327 { 6328 const dif_instr_t *text = difo->dtdo_buf; 6329 const uint_t textlen = difo->dtdo_len; 6330 const char *strtab = difo->dtdo_strtab; 6331 const uint64_t *inttab = difo->dtdo_inttab; 6332 6333 uint64_t rval = 0; 6334 dtrace_statvar_t *svar; 6335 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 6336 dtrace_difv_t *v; 6337 volatile uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags; 6338 volatile uintptr_t *illval = &cpu_core[curcpu_id].cpuc_dtrace_illval; 6339 6340 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 6341 uint64_t regs[DIF_DIR_NREGS]; 6342 uint64_t *tmp; 6343 6344 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 6345 int64_t cc_r; 6346 uint_t pc = 0, id, opc = 0; 6347 uint8_t ttop = 0; 6348 dif_instr_t instr; 6349 uint_t r1, r2, rd; 6350 6351 /* 6352 * We stash the current DIF object into the machine state: we need it 6353 * for subsequent access checking. 6354 */ 6355 mstate->dtms_difo = difo; 6356 6357 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 6358 6359 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 6360 opc = pc; 6361 6362 instr = text[pc++]; 6363 r1 = DIF_INSTR_R1(instr); 6364 r2 = DIF_INSTR_R2(instr); 6365 rd = DIF_INSTR_RD(instr); 6366 6367 switch (DIF_INSTR_OP(instr)) { 6368 case DIF_OP_OR: 6369 regs[rd] = regs[r1] | regs[r2]; 6370 break; 6371 case DIF_OP_XOR: 6372 regs[rd] = regs[r1] ^ regs[r2]; 6373 break; 6374 case DIF_OP_AND: 6375 regs[rd] = regs[r1] & regs[r2]; 6376 break; 6377 case DIF_OP_SLL: 6378 regs[rd] = regs[r1] << regs[r2]; 6379 break; 6380 case DIF_OP_SRL: 6381 regs[rd] = regs[r1] >> regs[r2]; 6382 break; 6383 case DIF_OP_SUB: 6384 regs[rd] = regs[r1] - regs[r2]; 6385 break; 6386 case DIF_OP_ADD: 6387 regs[rd] = regs[r1] + regs[r2]; 6388 break; 6389 case DIF_OP_MUL: 6390 regs[rd] = regs[r1] * regs[r2]; 6391 break; 6392 case DIF_OP_SDIV: 6393 if (regs[r2] == 0) { 6394 regs[rd] = 0; 6395 *flags |= CPU_DTRACE_DIVZERO; 6396 } else { 6397 regs[rd] = (int64_t)regs[r1] / 6398 (int64_t)regs[r2]; 6399 } 6400 break; 6401 6402 case DIF_OP_UDIV: 6403 if (regs[r2] == 0) { 6404 regs[rd] = 0; 6405 *flags |= CPU_DTRACE_DIVZERO; 6406 } else { 6407 regs[rd] = regs[r1] / regs[r2]; 6408 } 6409 break; 6410 6411 case DIF_OP_SREM: 6412 if (regs[r2] == 0) { 6413 regs[rd] = 0; 6414 *flags |= CPU_DTRACE_DIVZERO; 6415 } else { 6416 regs[rd] = (int64_t)regs[r1] % 6417 (int64_t)regs[r2]; 6418 } 6419 break; 6420 6421 case DIF_OP_UREM: 6422 if (regs[r2] == 0) { 6423 regs[rd] = 0; 6424 *flags |= CPU_DTRACE_DIVZERO; 6425 } else { 6426 regs[rd] = regs[r1] % regs[r2]; 6427 } 6428 break; 6429 6430 case DIF_OP_NOT: 6431 regs[rd] = ~regs[r1]; 6432 break; 6433 case DIF_OP_MOV: 6434 regs[rd] = regs[r1]; 6435 break; 6436 case DIF_OP_CMP: 6437 cc_r = regs[r1] - regs[r2]; 6438 cc_n = cc_r < 0; 6439 cc_z = cc_r == 0; 6440 cc_v = 0; 6441 cc_c = regs[r1] < regs[r2]; 6442 break; 6443 case DIF_OP_TST: 6444 cc_n = cc_v = cc_c = 0; 6445 cc_z = regs[r1] == 0; 6446 break; 6447 case DIF_OP_BA: 6448 pc = DIF_INSTR_LABEL(instr); 6449 break; 6450 case DIF_OP_BE: 6451 if (cc_z) 6452 pc = DIF_INSTR_LABEL(instr); 6453 break; 6454 case DIF_OP_BNE: 6455 if (cc_z == 0) 6456 pc = DIF_INSTR_LABEL(instr); 6457 break; 6458 case DIF_OP_BG: 6459 if ((cc_z | (cc_n ^ cc_v)) == 0) 6460 pc = DIF_INSTR_LABEL(instr); 6461 break; 6462 case DIF_OP_BGU: 6463 if ((cc_c | cc_z) == 0) 6464 pc = DIF_INSTR_LABEL(instr); 6465 break; 6466 case DIF_OP_BGE: 6467 if ((cc_n ^ cc_v) == 0) 6468 pc = DIF_INSTR_LABEL(instr); 6469 break; 6470 case DIF_OP_BGEU: 6471 if (cc_c == 0) 6472 pc = DIF_INSTR_LABEL(instr); 6473 break; 6474 case DIF_OP_BL: 6475 if (cc_n ^ cc_v) 6476 pc = DIF_INSTR_LABEL(instr); 6477 break; 6478 case DIF_OP_BLU: 6479 if (cc_c) 6480 pc = DIF_INSTR_LABEL(instr); 6481 break; 6482 case DIF_OP_BLE: 6483 if (cc_z | (cc_n ^ cc_v)) 6484 pc = DIF_INSTR_LABEL(instr); 6485 break; 6486 case DIF_OP_BLEU: 6487 if (cc_c | cc_z) 6488 pc = DIF_INSTR_LABEL(instr); 6489 break; 6490 case DIF_OP_RLDSB: 6491 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6492 break; 6493 /*FALLTHROUGH*/ 6494 case DIF_OP_LDSB: 6495 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 6496 break; 6497 case DIF_OP_RLDSH: 6498 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6499 break; 6500 /*FALLTHROUGH*/ 6501 case DIF_OP_LDSH: 6502 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 6503 break; 6504 case DIF_OP_RLDSW: 6505 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6506 break; 6507 /*FALLTHROUGH*/ 6508 case DIF_OP_LDSW: 6509 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 6510 break; 6511 case DIF_OP_RLDUB: 6512 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6513 break; 6514 /*FALLTHROUGH*/ 6515 case DIF_OP_LDUB: 6516 regs[rd] = dtrace_load8(regs[r1]); 6517 break; 6518 case DIF_OP_RLDUH: 6519 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6520 break; 6521 /*FALLTHROUGH*/ 6522 case DIF_OP_LDUH: 6523 regs[rd] = dtrace_load16(regs[r1]); 6524 break; 6525 case DIF_OP_RLDUW: 6526 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6527 break; 6528 /*FALLTHROUGH*/ 6529 case DIF_OP_LDUW: 6530 regs[rd] = dtrace_load32(regs[r1]); 6531 break; 6532 case DIF_OP_RLDX: 6533 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 6534 break; 6535 /*FALLTHROUGH*/ 6536 case DIF_OP_LDX: 6537 regs[rd] = dtrace_load64(regs[r1]); 6538 break; 6539 case DIF_OP_ULDSB: 6540 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6541 regs[rd] = (int8_t) 6542 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6543 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6544 break; 6545 case DIF_OP_ULDSH: 6546 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6547 regs[rd] = (int16_t) 6548 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6549 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6550 break; 6551 case DIF_OP_ULDSW: 6552 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6553 regs[rd] = (int32_t) 6554 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6555 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6556 break; 6557 case DIF_OP_ULDUB: 6558 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6559 regs[rd] = 6560 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6561 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6562 break; 6563 case DIF_OP_ULDUH: 6564 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6565 regs[rd] = 6566 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6567 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6568 break; 6569 case DIF_OP_ULDUW: 6570 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6571 regs[rd] = 6572 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6573 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6574 break; 6575 case DIF_OP_ULDX: 6576 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6577 regs[rd] = 6578 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 6579 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6580 break; 6581 case DIF_OP_RET: 6582 rval = regs[rd]; 6583 pc = textlen; 6584 break; 6585 case DIF_OP_NOP: 6586 break; 6587 case DIF_OP_SETX: 6588 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6589 break; 6590 case DIF_OP_SETS: 6591 regs[rd] = (uint64_t)(uintptr_t) 6592 (strtab + DIF_INSTR_STRING(instr)); 6593 break; 6594 case DIF_OP_SCMP: { 6595 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6596 uintptr_t s1 = regs[r1]; 6597 uintptr_t s2 = regs[r2]; 6598 size_t lim1, lim2; 6599 6600 if (s1 != 0 && 6601 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6602 break; 6603 if (s2 != 0 && 6604 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6605 break; 6606 6607 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6608 MIN(lim1, lim2)); 6609 6610 cc_n = cc_r < 0; 6611 cc_z = cc_r == 0; 6612 cc_v = cc_c = 0; 6613 break; 6614 } 6615 case DIF_OP_LDGA: 6616 regs[rd] = dtrace_dif_variable(mstate, state, 6617 r1, regs[r2]); 6618 break; 6619 case DIF_OP_LDGS: 6620 id = DIF_INSTR_VAR(instr); 6621 6622 if (id >= DIF_VAR_OTHER_UBASE) { 6623 uintptr_t a; 6624 6625 id -= DIF_VAR_OTHER_UBASE; 6626 svar = vstate->dtvs_globals[id]; 6627 ASSERT(svar != NULL); 6628 v = &svar->dtsv_var; 6629 6630 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6631 regs[rd] = svar->dtsv_data; 6632 break; 6633 } 6634 6635 a = (uintptr_t)svar->dtsv_data; 6636 6637 if (*(uint8_t *)a == UINT8_MAX) { 6638 /* 6639 * If the 0th byte is set to UINT8_MAX 6640 * then this is to be treated as a 6641 * reference to a NULL variable. 6642 */ 6643 regs[rd] = 0; 6644 } else { 6645 regs[rd] = a + sizeof (uint64_t); 6646 } 6647 6648 break; 6649 } 6650 6651 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6652 break; 6653 6654 case DIF_OP_STGS: 6655 id = DIF_INSTR_VAR(instr); 6656 6657 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6658 id -= DIF_VAR_OTHER_UBASE; 6659 6660 VERIFY(id < vstate->dtvs_nglobals); 6661 svar = vstate->dtvs_globals[id]; 6662 ASSERT(svar != NULL); 6663 v = &svar->dtsv_var; 6664 6665 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6666 uintptr_t a = (uintptr_t)svar->dtsv_data; 6667 size_t lim; 6668 6669 ASSERT(a != 0); 6670 ASSERT(svar->dtsv_size != 0); 6671 6672 if (regs[rd] == 0) { 6673 *(uint8_t *)a = UINT8_MAX; 6674 break; 6675 } else { 6676 *(uint8_t *)a = 0; 6677 a += sizeof (uint64_t); 6678 } 6679 if (!dtrace_vcanload( 6680 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6681 &lim, mstate, vstate)) 6682 break; 6683 6684 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6685 (void *)a, &v->dtdv_type, lim); 6686 break; 6687 } 6688 6689 svar->dtsv_data = regs[rd]; 6690 break; 6691 6692 case DIF_OP_LDTA: 6693 /* 6694 * There are no DTrace built-in thread-local arrays at 6695 * present. This opcode is saved for future work. 6696 */ 6697 *flags |= CPU_DTRACE_ILLOP; 6698 regs[rd] = 0; 6699 break; 6700 6701 case DIF_OP_LDLS: 6702 id = DIF_INSTR_VAR(instr); 6703 6704 if (id < DIF_VAR_OTHER_UBASE) { 6705 /* 6706 * For now, this has no meaning. 6707 */ 6708 regs[rd] = 0; 6709 break; 6710 } 6711 6712 id -= DIF_VAR_OTHER_UBASE; 6713 6714 ASSERT(id < vstate->dtvs_nlocals); 6715 ASSERT(vstate->dtvs_locals != NULL); 6716 6717 svar = vstate->dtvs_locals[id]; 6718 ASSERT(svar != NULL); 6719 v = &svar->dtsv_var; 6720 6721 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6722 uintptr_t a = (uintptr_t)svar->dtsv_data; 6723 size_t sz = v->dtdv_type.dtdt_size; 6724 size_t lim; 6725 6726 sz += sizeof (uint64_t); 6727 ASSERT(svar->dtsv_size == NCPU * sz); 6728 a += curcpu_id * sz; 6729 6730 if (*(uint8_t *)a == UINT8_MAX) { 6731 /* 6732 * If the 0th byte is set to UINT8_MAX 6733 * then this is to be treated as a 6734 * reference to a NULL variable. 6735 */ 6736 regs[rd] = 0; 6737 } else { 6738 regs[rd] = a + sizeof (uint64_t); 6739 } 6740 6741 break; 6742 } 6743 6744 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6745 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6746 regs[rd] = tmp[curcpu_id]; 6747 break; 6748 6749 case DIF_OP_STLS: 6750 id = DIF_INSTR_VAR(instr); 6751 6752 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6753 id -= DIF_VAR_OTHER_UBASE; 6754 VERIFY(id < vstate->dtvs_nlocals); 6755 6756 ASSERT(vstate->dtvs_locals != NULL); 6757 svar = vstate->dtvs_locals[id]; 6758 ASSERT(svar != NULL); 6759 v = &svar->dtsv_var; 6760 6761 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6762 uintptr_t a = (uintptr_t)svar->dtsv_data; 6763 size_t sz = v->dtdv_type.dtdt_size; 6764 size_t lim; 6765 6766 sz += sizeof (uint64_t); 6767 ASSERT(svar->dtsv_size == NCPU * sz); 6768 a += curcpu_id * sz; 6769 6770 if (regs[rd] == 0) { 6771 *(uint8_t *)a = UINT8_MAX; 6772 break; 6773 } else { 6774 *(uint8_t *)a = 0; 6775 a += sizeof (uint64_t); 6776 } 6777 6778 if (!dtrace_vcanload( 6779 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6780 &lim, mstate, vstate)) 6781 break; 6782 6783 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6784 (void *)a, &v->dtdv_type, lim); 6785 break; 6786 } 6787 6788 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6789 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6790 tmp[curcpu_id] = regs[rd]; 6791 break; 6792 6793 case DIF_OP_LDTS: { 6794 dtrace_dynvar_t *dvar; 6795 dtrace_key_t *key; 6796 6797 id = DIF_INSTR_VAR(instr); 6798 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6799 id -= DIF_VAR_OTHER_UBASE; 6800 v = &vstate->dtvs_tlocals[id]; 6801 6802 key = &tupregs[DIF_DTR_NREGS]; 6803 key[0].dttk_value = (uint64_t)id; 6804 key[0].dttk_size = 0; 6805 DTRACE_TLS_THRKEY(key[1].dttk_value); 6806 key[1].dttk_size = 0; 6807 6808 dvar = dtrace_dynvar(dstate, 2, key, 6809 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6810 mstate, vstate); 6811 6812 if (dvar == NULL) { 6813 regs[rd] = 0; 6814 break; 6815 } 6816 6817 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6818 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6819 } else { 6820 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6821 } 6822 6823 break; 6824 } 6825 6826 case DIF_OP_STTS: { 6827 dtrace_dynvar_t *dvar; 6828 dtrace_key_t *key; 6829 6830 id = DIF_INSTR_VAR(instr); 6831 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6832 id -= DIF_VAR_OTHER_UBASE; 6833 VERIFY(id < vstate->dtvs_ntlocals); 6834 6835 key = &tupregs[DIF_DTR_NREGS]; 6836 key[0].dttk_value = (uint64_t)id; 6837 key[0].dttk_size = 0; 6838 DTRACE_TLS_THRKEY(key[1].dttk_value); 6839 key[1].dttk_size = 0; 6840 v = &vstate->dtvs_tlocals[id]; 6841 6842 dvar = dtrace_dynvar(dstate, 2, key, 6843 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6844 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6845 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6846 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6847 6848 /* 6849 * Given that we're storing to thread-local data, 6850 * we need to flush our predicate cache. 6851 */ 6852 curthread->t_predcache = 0; 6853 6854 if (dvar == NULL) 6855 break; 6856 6857 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6858 size_t lim; 6859 6860 if (!dtrace_vcanload( 6861 (void *)(uintptr_t)regs[rd], 6862 &v->dtdv_type, &lim, mstate, vstate)) 6863 break; 6864 6865 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6866 dvar->dtdv_data, &v->dtdv_type, lim); 6867 } else { 6868 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6869 } 6870 6871 break; 6872 } 6873 6874 case DIF_OP_SRA: 6875 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6876 break; 6877 6878 case DIF_OP_CALL: 6879 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6880 regs, tupregs, ttop, mstate, state); 6881 break; 6882 6883 case DIF_OP_PUSHTR: 6884 if (ttop == DIF_DTR_NREGS) { 6885 *flags |= CPU_DTRACE_TUPOFLOW; 6886 break; 6887 } 6888 6889 if (r1 == DIF_TYPE_STRING) { 6890 /* 6891 * If this is a string type and the size is 0, 6892 * we'll use the system-wide default string 6893 * size. Note that we are _not_ looking at 6894 * the value of the DTRACEOPT_STRSIZE option; 6895 * had this been set, we would expect to have 6896 * a non-zero size value in the "pushtr". 6897 */ 6898 tupregs[ttop].dttk_size = 6899 dtrace_strlen((char *)(uintptr_t)regs[rd], 6900 regs[r2] ? regs[r2] : 6901 dtrace_strsize_default) + 1; 6902 } else { 6903 if (regs[r2] > LONG_MAX) { 6904 *flags |= CPU_DTRACE_ILLOP; 6905 break; 6906 } 6907 6908 tupregs[ttop].dttk_size = regs[r2]; 6909 } 6910 6911 tupregs[ttop++].dttk_value = regs[rd]; 6912 break; 6913 6914 case DIF_OP_PUSHTV: 6915 if (ttop == DIF_DTR_NREGS) { 6916 *flags |= CPU_DTRACE_TUPOFLOW; 6917 break; 6918 } 6919 6920 tupregs[ttop].dttk_value = regs[rd]; 6921 tupregs[ttop++].dttk_size = 0; 6922 break; 6923 6924 case DIF_OP_POPTS: 6925 if (ttop != 0) 6926 ttop--; 6927 break; 6928 6929 case DIF_OP_FLUSHTS: 6930 ttop = 0; 6931 break; 6932 6933 case DIF_OP_LDGAA: 6934 case DIF_OP_LDTAA: { 6935 dtrace_dynvar_t *dvar; 6936 dtrace_key_t *key = tupregs; 6937 uint_t nkeys = ttop; 6938 6939 id = DIF_INSTR_VAR(instr); 6940 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6941 id -= DIF_VAR_OTHER_UBASE; 6942 6943 key[nkeys].dttk_value = (uint64_t)id; 6944 key[nkeys++].dttk_size = 0; 6945 6946 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6947 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6948 key[nkeys++].dttk_size = 0; 6949 VERIFY(id < vstate->dtvs_ntlocals); 6950 v = &vstate->dtvs_tlocals[id]; 6951 } else { 6952 VERIFY(id < vstate->dtvs_nglobals); 6953 v = &vstate->dtvs_globals[id]->dtsv_var; 6954 } 6955 6956 dvar = dtrace_dynvar(dstate, nkeys, key, 6957 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6958 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6959 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6960 6961 if (dvar == NULL) { 6962 regs[rd] = 0; 6963 break; 6964 } 6965 6966 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6967 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6968 } else { 6969 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6970 } 6971 6972 break; 6973 } 6974 6975 case DIF_OP_STGAA: 6976 case DIF_OP_STTAA: { 6977 dtrace_dynvar_t *dvar; 6978 dtrace_key_t *key = tupregs; 6979 uint_t nkeys = ttop; 6980 6981 id = DIF_INSTR_VAR(instr); 6982 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6983 id -= DIF_VAR_OTHER_UBASE; 6984 6985 key[nkeys].dttk_value = (uint64_t)id; 6986 key[nkeys++].dttk_size = 0; 6987 6988 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6989 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6990 key[nkeys++].dttk_size = 0; 6991 v = &vstate->dtvs_tlocals[id]; 6992 } else { 6993 v = &vstate->dtvs_globals[id]->dtsv_var; 6994 } 6995 6996 dvar = dtrace_dynvar(dstate, nkeys, key, 6997 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6998 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6999 regs[rd] ? DTRACE_DYNVAR_ALLOC : 7000 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 7001 7002 if (dvar == NULL) 7003 break; 7004 7005 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 7006 size_t lim; 7007 7008 if (!dtrace_vcanload( 7009 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 7010 &lim, mstate, vstate)) 7011 break; 7012 7013 dtrace_vcopy((void *)(uintptr_t)regs[rd], 7014 dvar->dtdv_data, &v->dtdv_type, lim); 7015 } else { 7016 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 7017 } 7018 7019 break; 7020 } 7021 7022 case DIF_OP_ALLOCS: { 7023 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 7024 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 7025 7026 /* 7027 * Rounding up the user allocation size could have 7028 * overflowed large, bogus allocations (like -1ULL) to 7029 * 0. 7030 */ 7031 if (size < regs[r1] || 7032 !DTRACE_INSCRATCH(mstate, size)) { 7033 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 7034 regs[rd] = 0; 7035 break; 7036 } 7037 7038 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 7039 mstate->dtms_scratch_ptr += size; 7040 regs[rd] = ptr; 7041 break; 7042 } 7043 7044 case DIF_OP_COPYS: 7045 if (!dtrace_canstore(regs[rd], regs[r2], 7046 mstate, vstate)) { 7047 *flags |= CPU_DTRACE_BADADDR; 7048 *illval = regs[rd]; 7049 break; 7050 } 7051 7052 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 7053 break; 7054 7055 dtrace_bcopy((void *)(uintptr_t)regs[r1], 7056 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 7057 break; 7058 7059 case DIF_OP_STB: 7060 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 7061 *flags |= CPU_DTRACE_BADADDR; 7062 *illval = regs[rd]; 7063 break; 7064 } 7065 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 7066 break; 7067 7068 case DIF_OP_STH: 7069 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 7070 *flags |= CPU_DTRACE_BADADDR; 7071 *illval = regs[rd]; 7072 break; 7073 } 7074 if (regs[rd] & 1) { 7075 *flags |= CPU_DTRACE_BADALIGN; 7076 *illval = regs[rd]; 7077 break; 7078 } 7079 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 7080 break; 7081 7082 case DIF_OP_STW: 7083 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 7084 *flags |= CPU_DTRACE_BADADDR; 7085 *illval = regs[rd]; 7086 break; 7087 } 7088 if (regs[rd] & 3) { 7089 *flags |= CPU_DTRACE_BADALIGN; 7090 *illval = regs[rd]; 7091 break; 7092 } 7093 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 7094 break; 7095 7096 case DIF_OP_STX: 7097 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 7098 *flags |= CPU_DTRACE_BADADDR; 7099 *illval = regs[rd]; 7100 break; 7101 } 7102 if (regs[rd] & 7) { 7103 *flags |= CPU_DTRACE_BADALIGN; 7104 *illval = regs[rd]; 7105 break; 7106 } 7107 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 7108 break; 7109 } 7110 } 7111 7112 if (!(*flags & CPU_DTRACE_FAULT)) 7113 return (rval); 7114 7115 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 7116 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 7117 7118 return (0); 7119 } 7120 7121 static void 7122 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 7123 { 7124 dtrace_probe_t *probe = ecb->dte_probe; 7125 dtrace_provider_t *prov = probe->dtpr_provider; 7126 char c[DTRACE_FULLNAMELEN + 80], *str; 7127 const char *msg = "dtrace: breakpoint action at probe "; 7128 const char *ecbmsg = " (ecb "; 7129 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 7130 uintptr_t val = (uintptr_t)ecb; 7131 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 7132 7133 if (dtrace_destructive_disallow) 7134 return; 7135 7136 /* 7137 * It's impossible to be taking action on the NULL probe. 7138 */ 7139 ASSERT(probe != NULL); 7140 7141 /* 7142 * This is a poor man's (destitute man's?) snprintf(): we want to 7143 * print the provider name, module name, function name and name of 7144 * the probe, along with the hex address of the ECB with the breakpoint 7145 * action -- all of which we must place in the character buffer by 7146 * hand. 7147 */ 7148 while (*msg != '\0') 7149 c[i++] = *msg++; 7150 7151 for (str = prov->dtpv_name; *str != '\0'; str++) 7152 c[i++] = *str; 7153 c[i++] = ':'; 7154 7155 for (str = probe->dtpr_mod; *str != '\0'; str++) 7156 c[i++] = *str; 7157 c[i++] = ':'; 7158 7159 for (str = probe->dtpr_func; *str != '\0'; str++) 7160 c[i++] = *str; 7161 c[i++] = ':'; 7162 7163 for (str = probe->dtpr_name; *str != '\0'; str++) 7164 c[i++] = *str; 7165 7166 while (*ecbmsg != '\0') 7167 c[i++] = *ecbmsg++; 7168 7169 while (shift >= 0) { 7170 mask = (uintptr_t)0xf << shift; 7171 7172 if (val >= ((uintptr_t)1 << shift)) 7173 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 7174 shift -= 4; 7175 } 7176 7177 c[i++] = ')'; 7178 c[i] = '\0'; 7179 7180 #ifdef illumos 7181 debug_enter(c); 7182 #endif 7183 7184 #ifdef __FreeBSD__ 7185 kdb_enter(KDB_WHY_DTRACE, "breakpoint action"); 7186 #endif 7187 7188 #ifdef __NetBSD__ 7189 #ifdef DDB 7190 db_printf("%s\n", c); 7191 Debugger(); 7192 #else 7193 printf("%s ignored\n", c); 7194 #endif /* DDB */ 7195 #endif 7196 } 7197 7198 static void 7199 dtrace_action_panic(dtrace_ecb_t *ecb) 7200 { 7201 dtrace_probe_t *probe = ecb->dte_probe; 7202 7203 /* 7204 * It's impossible to be taking action on the NULL probe. 7205 */ 7206 ASSERT(probe != NULL); 7207 7208 if (dtrace_destructive_disallow) 7209 return; 7210 7211 if (dtrace_panicked != NULL) 7212 return; 7213 7214 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 7215 return; 7216 7217 /* 7218 * We won the right to panic. (We want to be sure that only one 7219 * thread calls panic() from dtrace_probe(), and that panic() is 7220 * called exactly once.) 7221 */ 7222 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 7223 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 7224 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 7225 } 7226 7227 static void 7228 dtrace_action_raise(uint64_t sig) 7229 { 7230 if (dtrace_destructive_disallow) 7231 return; 7232 7233 if (sig >= NSIG) { 7234 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 7235 return; 7236 } 7237 7238 #ifdef illumos 7239 /* 7240 * raise() has a queue depth of 1 -- we ignore all subsequent 7241 * invocations of the raise() action. 7242 */ 7243 if (curthread->t_dtrace_sig == 0) 7244 curthread->t_dtrace_sig = (uint8_t)sig; 7245 7246 curthread->t_sig_check = 1; 7247 aston(curthread); 7248 #endif 7249 7250 #ifdef __FreeBSD__ 7251 PROC_LOCK(p); 7252 kern_psignal(p, sig); 7253 PROC_UNLOCK(p); 7254 #endif 7255 7256 #ifdef __NetBSD__ 7257 struct proc *p = curproc; 7258 mutex_enter(&proc_lock); 7259 psignal(p, sig); 7260 mutex_exit(&proc_lock); 7261 #endif 7262 } 7263 7264 static void 7265 dtrace_action_stop(void) 7266 { 7267 if (dtrace_destructive_disallow) 7268 return; 7269 7270 #ifdef illumos 7271 if (!curthread->t_dtrace_stop) { 7272 curthread->t_dtrace_stop = 1; 7273 curthread->t_sig_check = 1; 7274 aston(curthread); 7275 } 7276 #endif 7277 7278 #ifdef __FreeBSD__ 7279 PROC_LOCK(p); 7280 kern_psignal(p, SIGSTOP); 7281 PROC_UNLOCK(p); 7282 #endif 7283 7284 #ifdef __NetBSD__ 7285 struct proc *p = curproc; 7286 mutex_enter(&proc_lock); 7287 psignal(p, SIGSTOP); 7288 mutex_exit(&proc_lock); 7289 #endif 7290 } 7291 7292 static void 7293 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 7294 { 7295 hrtime_t now; 7296 volatile uint16_t *flags; 7297 #ifdef illumos 7298 cpu_t *cpu = CPU; 7299 #else 7300 cpu_t *cpu = &solaris_cpu[curcpu_id]; 7301 #endif 7302 7303 if (dtrace_destructive_disallow) 7304 return; 7305 7306 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 7307 7308 now = dtrace_gethrtime(); 7309 7310 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 7311 /* 7312 * We need to advance the mark to the current time. 7313 */ 7314 cpu->cpu_dtrace_chillmark = now; 7315 cpu->cpu_dtrace_chilled = 0; 7316 } 7317 7318 /* 7319 * Now check to see if the requested chill time would take us over 7320 * the maximum amount of time allowed in the chill interval. (Or 7321 * worse, if the calculation itself induces overflow.) 7322 */ 7323 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 7324 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 7325 *flags |= CPU_DTRACE_ILLOP; 7326 return; 7327 } 7328 7329 while (dtrace_gethrtime() - now < val) 7330 continue; 7331 7332 /* 7333 * Normally, we assure that the value of the variable "timestamp" does 7334 * not change within an ECB. The presence of chill() represents an 7335 * exception to this rule, however. 7336 */ 7337 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 7338 cpu->cpu_dtrace_chilled += val; 7339 } 7340 7341 static void 7342 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 7343 uint64_t *buf, uint64_t arg) 7344 { 7345 int nframes = DTRACE_USTACK_NFRAMES(arg); 7346 int strsize = DTRACE_USTACK_STRSIZE(arg); 7347 uint64_t *pcs = &buf[1], *fps; 7348 char *str = (char *)&pcs[nframes]; 7349 int size, offs = 0, i, j; 7350 size_t rem; 7351 uintptr_t old = mstate->dtms_scratch_ptr, saved; 7352 uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags; 7353 char *sym; 7354 7355 /* 7356 * Should be taking a faster path if string space has not been 7357 * allocated. 7358 */ 7359 ASSERT(strsize != 0); 7360 7361 /* 7362 * We will first allocate some temporary space for the frame pointers. 7363 */ 7364 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 7365 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 7366 (nframes * sizeof (uint64_t)); 7367 7368 if (!DTRACE_INSCRATCH(mstate, size)) { 7369 /* 7370 * Not enough room for our frame pointers -- need to indicate 7371 * that we ran out of scratch space. 7372 */ 7373 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 7374 return; 7375 } 7376 7377 mstate->dtms_scratch_ptr += size; 7378 saved = mstate->dtms_scratch_ptr; 7379 7380 /* 7381 * Now get a stack with both program counters and frame pointers. 7382 */ 7383 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7384 dtrace_getufpstack(buf, fps, nframes + 1); 7385 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7386 7387 /* 7388 * If that faulted, we're cooked. 7389 */ 7390 if (*flags & CPU_DTRACE_FAULT) 7391 goto out; 7392 7393 /* 7394 * Now we want to walk up the stack, calling the USTACK helper. For 7395 * each iteration, we restore the scratch pointer. 7396 */ 7397 for (i = 0; i < nframes; i++) { 7398 mstate->dtms_scratch_ptr = saved; 7399 7400 if (offs >= strsize) 7401 break; 7402 7403 sym = (char *)(uintptr_t)dtrace_helper( 7404 DTRACE_HELPER_ACTION_USTACK, 7405 mstate, state, pcs[i], fps[i]); 7406 7407 /* 7408 * If we faulted while running the helper, we're going to 7409 * clear the fault and null out the corresponding string. 7410 */ 7411 if (*flags & CPU_DTRACE_FAULT) { 7412 *flags &= ~CPU_DTRACE_FAULT; 7413 str[offs++] = '\0'; 7414 continue; 7415 } 7416 7417 if (sym == NULL) { 7418 str[offs++] = '\0'; 7419 continue; 7420 } 7421 7422 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 7423 &(state->dts_vstate))) { 7424 str[offs++] = '\0'; 7425 continue; 7426 } 7427 7428 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7429 7430 /* 7431 * Now copy in the string that the helper returned to us. 7432 */ 7433 for (j = 0; offs + j < strsize && j < rem; j++) { 7434 if ((str[offs + j] = sym[j]) == '\0') 7435 break; 7436 } 7437 7438 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7439 7440 offs += j + 1; 7441 } 7442 7443 if (offs >= strsize) { 7444 /* 7445 * If we didn't have room for all of the strings, we don't 7446 * abort processing -- this needn't be a fatal error -- but we 7447 * still want to increment a counter (dts_stkstroverflows) to 7448 * allow this condition to be warned about. (If this is from 7449 * a jstack() action, it is easily tuned via jstackstrsize.) 7450 */ 7451 dtrace_error(&state->dts_stkstroverflows); 7452 } 7453 7454 while (offs < strsize) 7455 str[offs++] = '\0'; 7456 7457 out: 7458 mstate->dtms_scratch_ptr = old; 7459 } 7460 7461 static void 7462 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 7463 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 7464 { 7465 volatile uint16_t *flags; 7466 uint64_t val = *valp; 7467 size_t valoffs = *valoffsp; 7468 7469 flags = (volatile uint16_t *)&cpu_core[curcpu_id].cpuc_dtrace_flags; 7470 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 7471 7472 /* 7473 * If this is a string, we're going to only load until we find the zero 7474 * byte -- after which we'll store zero bytes. 7475 */ 7476 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 7477 char c = '\0' + 1; 7478 size_t s; 7479 7480 for (s = 0; s < size; s++) { 7481 if (c != '\0' && dtkind == DIF_TF_BYREF) { 7482 c = dtrace_load8(val++); 7483 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 7484 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7485 c = dtrace_fuword8((void *)(uintptr_t)val++); 7486 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7487 if (*flags & CPU_DTRACE_FAULT) 7488 break; 7489 } 7490 7491 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 7492 7493 if (c == '\0' && intuple) 7494 break; 7495 } 7496 } else { 7497 uint8_t c; 7498 while (valoffs < end) { 7499 if (dtkind == DIF_TF_BYREF) { 7500 c = dtrace_load8(val++); 7501 } else if (dtkind == DIF_TF_BYUREF) { 7502 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7503 c = dtrace_fuword8((void *)(uintptr_t)val++); 7504 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7505 if (*flags & CPU_DTRACE_FAULT) 7506 break; 7507 } 7508 7509 DTRACE_STORE(uint8_t, tomax, 7510 valoffs++, c); 7511 } 7512 } 7513 7514 *valp = val; 7515 *valoffsp = valoffs; 7516 } 7517 7518 /* 7519 * If you're looking for the epicenter of DTrace, you just found it. This 7520 * is the function called by the provider to fire a probe -- from which all 7521 * subsequent probe-context DTrace activity emanates. 7522 */ 7523 void 7524 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 7525 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 7526 { 7527 processorid_t cpuid; 7528 dtrace_icookie_t cookie; 7529 dtrace_probe_t *probe; 7530 dtrace_mstate_t mstate; 7531 dtrace_ecb_t *ecb; 7532 dtrace_action_t *act; 7533 intptr_t offs; 7534 size_t size; 7535 int vtime, onintr; 7536 volatile uint16_t *flags; 7537 hrtime_t now; 7538 7539 if (panicstr != NULL) 7540 return; 7541 7542 #ifdef illumos 7543 /* 7544 * Kick out immediately if this CPU is still being born (in which case 7545 * curthread will be set to -1) or the current thread can't allow 7546 * probes in its current context. 7547 */ 7548 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 7549 return; 7550 #endif 7551 7552 cookie = dtrace_interrupt_disable(); 7553 probe = dtrace_probes[id - 1]; 7554 cpuid = curcpu_id; 7555 onintr = CPU_ON_INTR(CPU); 7556 7557 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 7558 probe->dtpr_predcache == curthread->t_predcache) { 7559 /* 7560 * We have hit in the predicate cache; we know that 7561 * this predicate would evaluate to be false. 7562 */ 7563 dtrace_interrupt_enable(cookie); 7564 return; 7565 } 7566 7567 #ifdef illumos 7568 if (panic_quiesce) { 7569 #else 7570 if (panicstr != NULL) { 7571 #endif 7572 /* 7573 * We don't trace anything if we're panicking. 7574 */ 7575 dtrace_interrupt_enable(cookie); 7576 return; 7577 } 7578 7579 now = mstate.dtms_timestamp = dtrace_gethrtime(); 7580 mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP; 7581 vtime = dtrace_vtime_references != 0; 7582 7583 if (vtime && curthread->t_dtrace_start) 7584 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 7585 7586 mstate.dtms_difo = NULL; 7587 mstate.dtms_probe = probe; 7588 mstate.dtms_strtok = 0; 7589 mstate.dtms_arg[0] = arg0; 7590 mstate.dtms_arg[1] = arg1; 7591 mstate.dtms_arg[2] = arg2; 7592 mstate.dtms_arg[3] = arg3; 7593 mstate.dtms_arg[4] = arg4; 7594 7595 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 7596 7597 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 7598 dtrace_predicate_t *pred = ecb->dte_predicate; 7599 dtrace_state_t *state = ecb->dte_state; 7600 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 7601 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 7602 dtrace_vstate_t *vstate = &state->dts_vstate; 7603 dtrace_provider_t *prov = probe->dtpr_provider; 7604 uint64_t tracememsize = 0; 7605 int committed = 0; 7606 caddr_t tomax; 7607 7608 /* 7609 * A little subtlety with the following (seemingly innocuous) 7610 * declaration of the automatic 'val': by looking at the 7611 * code, you might think that it could be declared in the 7612 * action processing loop, below. (That is, it's only used in 7613 * the action processing loop.) However, it must be declared 7614 * out of that scope because in the case of DIF expression 7615 * arguments to aggregating actions, one iteration of the 7616 * action loop will use the last iteration's value. 7617 */ 7618 uint64_t val = 0; 7619 7620 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7621 mstate.dtms_getf = NULL; 7622 7623 *flags &= ~CPU_DTRACE_ERROR; 7624 7625 if (prov == dtrace_provider) { 7626 /* 7627 * If dtrace itself is the provider of this probe, 7628 * we're only going to continue processing the ECB if 7629 * arg0 (the dtrace_state_t) is equal to the ECB's 7630 * creating state. (This prevents disjoint consumers 7631 * from seeing one another's metaprobes.) 7632 */ 7633 if (arg0 != (uint64_t)(uintptr_t)state) 7634 continue; 7635 } 7636 7637 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7638 /* 7639 * We're not currently active. If our provider isn't 7640 * the dtrace pseudo provider, we're not interested. 7641 */ 7642 if (prov != dtrace_provider) 7643 continue; 7644 7645 /* 7646 * Now we must further check if we are in the BEGIN 7647 * probe. If we are, we will only continue processing 7648 * if we're still in WARMUP -- if one BEGIN enabling 7649 * has invoked the exit() action, we don't want to 7650 * evaluate subsequent BEGIN enablings. 7651 */ 7652 if (probe->dtpr_id == dtrace_probeid_begin && 7653 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7654 ASSERT(state->dts_activity == 7655 DTRACE_ACTIVITY_DRAINING); 7656 continue; 7657 } 7658 } 7659 7660 if (ecb->dte_cond) { 7661 /* 7662 * If the dte_cond bits indicate that this 7663 * consumer is only allowed to see user-mode firings 7664 * of this probe, call the provider's dtps_usermode() 7665 * entry point to check that the probe was fired 7666 * while in a user context. Skip this ECB if that's 7667 * not the case. 7668 */ 7669 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 7670 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 7671 probe->dtpr_id, probe->dtpr_arg) == 0) 7672 continue; 7673 7674 #ifdef illumos 7675 /* 7676 * This is more subtle than it looks. We have to be 7677 * absolutely certain that CRED() isn't going to 7678 * change out from under us so it's only legit to 7679 * examine that structure if we're in constrained 7680 * situations. Currently, the only times we'll this 7681 * check is if a non-super-user has enabled the 7682 * profile or syscall providers -- providers that 7683 * allow visibility of all processes. For the 7684 * profile case, the check above will ensure that 7685 * we're examining a user context. 7686 */ 7687 if (ecb->dte_cond & DTRACE_COND_OWNER) { 7688 cred_t *cr; 7689 cred_t *s_cr = 7690 ecb->dte_state->dts_cred.dcr_cred; 7691 proc_t *proc; 7692 7693 ASSERT(s_cr != NULL); 7694 7695 if ((cr = CRED()) == NULL || 7696 s_cr->cr_uid != cr->cr_uid || 7697 s_cr->cr_uid != cr->cr_ruid || 7698 s_cr->cr_uid != cr->cr_suid || 7699 s_cr->cr_gid != cr->cr_gid || 7700 s_cr->cr_gid != cr->cr_rgid || 7701 s_cr->cr_gid != cr->cr_sgid || 7702 (proc = ttoproc(curthread)) == NULL || 7703 (proc->p_flag & SNOCD)) 7704 continue; 7705 } 7706 7707 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 7708 cred_t *cr; 7709 cred_t *s_cr = 7710 ecb->dte_state->dts_cred.dcr_cred; 7711 7712 ASSERT(s_cr != NULL); 7713 7714 if ((cr = CRED()) == NULL || 7715 s_cr->cr_zone->zone_id != 7716 cr->cr_zone->zone_id) 7717 continue; 7718 } 7719 #endif 7720 } 7721 7722 if (now - state->dts_alive > dtrace_deadman_timeout) { 7723 /* 7724 * We seem to be dead. Unless we (a) have kernel 7725 * destructive permissions (b) have explicitly enabled 7726 * destructive actions and (c) destructive actions have 7727 * not been disabled, we're going to transition into 7728 * the KILLED state, from which no further processing 7729 * on this state will be performed. 7730 */ 7731 if (!dtrace_priv_kernel_destructive(state) || 7732 !state->dts_cred.dcr_destructive || 7733 dtrace_destructive_disallow) { 7734 void *activity = &state->dts_activity; 7735 dtrace_activity_t current; 7736 7737 do { 7738 current = state->dts_activity; 7739 } while (dtrace_cas32(activity, current, 7740 DTRACE_ACTIVITY_KILLED) != current); 7741 7742 continue; 7743 } 7744 } 7745 7746 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7747 ecb->dte_alignment, state, &mstate)) < 0) 7748 continue; 7749 7750 tomax = buf->dtb_tomax; 7751 ASSERT(tomax != NULL); 7752 7753 if (ecb->dte_size != 0) { 7754 dtrace_rechdr_t dtrh; 7755 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7756 mstate.dtms_timestamp = dtrace_gethrtime(); 7757 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7758 } 7759 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7760 dtrh.dtrh_epid = ecb->dte_epid; 7761 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7762 mstate.dtms_timestamp); 7763 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7764 } 7765 7766 mstate.dtms_epid = ecb->dte_epid; 7767 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7768 7769 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7770 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 7771 else 7772 mstate.dtms_access = 0; 7773 7774 if (pred != NULL) { 7775 dtrace_difo_t *dp = pred->dtp_difo; 7776 uint64_t rval; 7777 7778 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7779 7780 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7781 dtrace_cacheid_t cid = probe->dtpr_predcache; 7782 7783 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7784 /* 7785 * Update the predicate cache... 7786 */ 7787 ASSERT(cid == pred->dtp_cacheid); 7788 curthread->t_predcache = cid; 7789 } 7790 7791 continue; 7792 } 7793 } 7794 7795 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7796 act != NULL; act = act->dta_next) { 7797 size_t valoffs; 7798 dtrace_difo_t *dp; 7799 dtrace_recdesc_t *rec = &act->dta_rec; 7800 7801 size = rec->dtrd_size; 7802 valoffs = offs + rec->dtrd_offset; 7803 7804 if (DTRACEACT_ISAGG(act->dta_kind)) { 7805 uint64_t v = 0xbad; 7806 dtrace_aggregation_t *agg; 7807 7808 agg = (dtrace_aggregation_t *)act; 7809 7810 if ((dp = act->dta_difo) != NULL) 7811 v = dtrace_dif_emulate(dp, 7812 &mstate, vstate, state); 7813 7814 if (*flags & CPU_DTRACE_ERROR) 7815 continue; 7816 7817 /* 7818 * Note that we always pass the expression 7819 * value from the previous iteration of the 7820 * action loop. This value will only be used 7821 * if there is an expression argument to the 7822 * aggregating action, denoted by the 7823 * dtag_hasarg field. 7824 */ 7825 dtrace_aggregate(agg, buf, 7826 offs, aggbuf, v, val); 7827 continue; 7828 } 7829 7830 switch (act->dta_kind) { 7831 case DTRACEACT_STOP: 7832 if (dtrace_priv_proc_destructive(state)) 7833 dtrace_action_stop(); 7834 continue; 7835 7836 case DTRACEACT_BREAKPOINT: 7837 if (dtrace_priv_kernel_destructive(state)) 7838 dtrace_action_breakpoint(ecb); 7839 continue; 7840 7841 case DTRACEACT_PANIC: 7842 if (dtrace_priv_kernel_destructive(state)) 7843 dtrace_action_panic(ecb); 7844 continue; 7845 7846 case DTRACEACT_STACK: 7847 if (!dtrace_priv_kernel(state)) 7848 continue; 7849 7850 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7851 size / sizeof (pc_t), probe->dtpr_aframes, 7852 DTRACE_ANCHORED(probe) ? NULL : 7853 (uint32_t *)arg0); 7854 continue; 7855 7856 case DTRACEACT_JSTACK: 7857 case DTRACEACT_USTACK: 7858 if (!dtrace_priv_proc(state)) 7859 continue; 7860 7861 /* 7862 * See comment in DIF_VAR_PID. 7863 */ 7864 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7865 CPU_ON_INTR(CPU)) { 7866 int depth = DTRACE_USTACK_NFRAMES( 7867 rec->dtrd_arg) + 1; 7868 7869 dtrace_bzero((void *)(tomax + valoffs), 7870 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7871 + depth * sizeof (uint64_t)); 7872 7873 continue; 7874 } 7875 7876 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7877 curproc->p_dtrace_helpers != NULL) { 7878 /* 7879 * This is the slow path -- we have 7880 * allocated string space, and we're 7881 * getting the stack of a process that 7882 * has helpers. Call into a separate 7883 * routine to perform this processing. 7884 */ 7885 dtrace_action_ustack(&mstate, state, 7886 (uint64_t *)(tomax + valoffs), 7887 rec->dtrd_arg); 7888 continue; 7889 } 7890 7891 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7892 dtrace_getupcstack((uint64_t *) 7893 (tomax + valoffs), 7894 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7895 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7896 continue; 7897 7898 default: 7899 break; 7900 } 7901 7902 dp = act->dta_difo; 7903 ASSERT(dp != NULL); 7904 7905 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7906 7907 if (*flags & CPU_DTRACE_ERROR) 7908 continue; 7909 7910 switch (act->dta_kind) { 7911 case DTRACEACT_SPECULATE: { 7912 dtrace_rechdr_t *dtrh; 7913 7914 ASSERT(buf == &state->dts_buffer[cpuid]); 7915 buf = dtrace_speculation_buffer(state, 7916 cpuid, val); 7917 7918 if (buf == NULL) { 7919 *flags |= CPU_DTRACE_DROP; 7920 continue; 7921 } 7922 7923 offs = dtrace_buffer_reserve(buf, 7924 ecb->dte_needed, ecb->dte_alignment, 7925 state, NULL); 7926 7927 if (offs < 0) { 7928 *flags |= CPU_DTRACE_DROP; 7929 continue; 7930 } 7931 7932 tomax = buf->dtb_tomax; 7933 ASSERT(tomax != NULL); 7934 7935 if (ecb->dte_size == 0) 7936 continue; 7937 7938 ASSERT3U(ecb->dte_size, >=, 7939 sizeof (dtrace_rechdr_t)); 7940 dtrh = ((void *)(tomax + offs)); 7941 dtrh->dtrh_epid = ecb->dte_epid; 7942 /* 7943 * When the speculation is committed, all of 7944 * the records in the speculative buffer will 7945 * have their timestamps set to the commit 7946 * time. Until then, it is set to a sentinel 7947 * value, for debugability. 7948 */ 7949 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7950 continue; 7951 } 7952 7953 case DTRACEACT_PRINTM: { 7954 /* The DIF returns a 'memref'. */ 7955 uintptr_t *memref = (uintptr_t *)(uintptr_t) val; 7956 7957 /* Get the size from the memref. */ 7958 size = memref[1]; 7959 7960 /* 7961 * Check if the size exceeds the allocated 7962 * buffer size. 7963 */ 7964 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { 7965 /* Flag a drop! */ 7966 *flags |= CPU_DTRACE_DROP; 7967 continue; 7968 } 7969 7970 /* Store the size in the buffer first. */ 7971 DTRACE_STORE(uintptr_t, tomax, 7972 valoffs, size); 7973 7974 /* 7975 * Offset the buffer address to the start 7976 * of the data. 7977 */ 7978 valoffs += sizeof(uintptr_t); 7979 7980 /* 7981 * Reset to the memory address rather than 7982 * the memref array, then let the BYREF 7983 * code below do the work to store the 7984 * memory data in the buffer. 7985 */ 7986 val = memref[0]; 7987 break; 7988 } 7989 7990 case DTRACEACT_CHILL: 7991 if (dtrace_priv_kernel_destructive(state)) 7992 dtrace_action_chill(&mstate, val); 7993 continue; 7994 7995 case DTRACEACT_RAISE: 7996 if (dtrace_priv_proc_destructive(state)) 7997 dtrace_action_raise(val); 7998 continue; 7999 8000 case DTRACEACT_COMMIT: 8001 ASSERT(!committed); 8002 8003 /* 8004 * We need to commit our buffer state. 8005 */ 8006 if (ecb->dte_size) 8007 buf->dtb_offset = offs + ecb->dte_size; 8008 buf = &state->dts_buffer[cpuid]; 8009 dtrace_speculation_commit(state, cpuid, val); 8010 committed = 1; 8011 continue; 8012 8013 case DTRACEACT_DISCARD: 8014 dtrace_speculation_discard(state, cpuid, val); 8015 continue; 8016 8017 case DTRACEACT_DIFEXPR: 8018 case DTRACEACT_LIBACT: 8019 case DTRACEACT_PRINTF: 8020 case DTRACEACT_PRINTA: 8021 case DTRACEACT_SYSTEM: 8022 case DTRACEACT_FREOPEN: 8023 case DTRACEACT_TRACEMEM: 8024 break; 8025 8026 case DTRACEACT_TRACEMEM_DYNSIZE: 8027 tracememsize = val; 8028 break; 8029 8030 case DTRACEACT_SYM: 8031 case DTRACEACT_MOD: 8032 if (!dtrace_priv_kernel(state)) 8033 continue; 8034 break; 8035 8036 case DTRACEACT_USYM: 8037 case DTRACEACT_UMOD: 8038 case DTRACEACT_UADDR: { 8039 #ifdef illumos 8040 struct pid *pid = curthread->t_procp->p_pidp; 8041 #endif 8042 8043 if (!dtrace_priv_proc(state)) 8044 continue; 8045 8046 DTRACE_STORE(uint64_t, tomax, 8047 #ifdef illumos 8048 valoffs, (uint64_t)pid->pid_id); 8049 #else 8050 valoffs, (uint64_t) curproc->p_pid); 8051 #endif 8052 DTRACE_STORE(uint64_t, tomax, 8053 valoffs + sizeof (uint64_t), val); 8054 8055 continue; 8056 } 8057 8058 case DTRACEACT_EXIT: { 8059 /* 8060 * For the exit action, we are going to attempt 8061 * to atomically set our activity to be 8062 * draining. If this fails (either because 8063 * another CPU has beat us to the exit action, 8064 * or because our current activity is something 8065 * other than ACTIVE or WARMUP), we will 8066 * continue. This assures that the exit action 8067 * can be successfully recorded at most once 8068 * when we're in the ACTIVE state. If we're 8069 * encountering the exit() action while in 8070 * COOLDOWN, however, we want to honor the new 8071 * status code. (We know that we're the only 8072 * thread in COOLDOWN, so there is no race.) 8073 */ 8074 void *activity = &state->dts_activity; 8075 dtrace_activity_t current = state->dts_activity; 8076 8077 if (current == DTRACE_ACTIVITY_COOLDOWN) 8078 break; 8079 8080 if (current != DTRACE_ACTIVITY_WARMUP) 8081 current = DTRACE_ACTIVITY_ACTIVE; 8082 8083 if (dtrace_cas32(activity, current, 8084 DTRACE_ACTIVITY_DRAINING) != current) { 8085 *flags |= CPU_DTRACE_DROP; 8086 continue; 8087 } 8088 8089 break; 8090 } 8091 8092 default: 8093 ASSERT(0); 8094 } 8095 8096 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 8097 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 8098 uintptr_t end = valoffs + size; 8099 8100 if (tracememsize != 0 && 8101 valoffs + tracememsize < end) { 8102 end = valoffs + tracememsize; 8103 tracememsize = 0; 8104 } 8105 8106 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 8107 !dtrace_vcanload((void *)(uintptr_t)val, 8108 &dp->dtdo_rtype, NULL, &mstate, vstate)) 8109 continue; 8110 8111 dtrace_store_by_ref(dp, tomax, size, &valoffs, 8112 &val, end, act->dta_intuple, 8113 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 8114 DIF_TF_BYREF: DIF_TF_BYUREF); 8115 continue; 8116 } 8117 8118 switch (size) { 8119 case 0: 8120 break; 8121 8122 case sizeof (uint8_t): 8123 DTRACE_STORE(uint8_t, tomax, valoffs, val); 8124 break; 8125 case sizeof (uint16_t): 8126 DTRACE_STORE(uint16_t, tomax, valoffs, val); 8127 break; 8128 case sizeof (uint32_t): 8129 DTRACE_STORE(uint32_t, tomax, valoffs, val); 8130 break; 8131 case sizeof (uint64_t): 8132 DTRACE_STORE(uint64_t, tomax, valoffs, val); 8133 break; 8134 default: 8135 /* 8136 * Any other size should have been returned by 8137 * reference, not by value. 8138 */ 8139 ASSERT(0); 8140 break; 8141 } 8142 } 8143 8144 if (*flags & CPU_DTRACE_DROP) 8145 continue; 8146 8147 if (*flags & CPU_DTRACE_FAULT) { 8148 int ndx; 8149 dtrace_action_t *err; 8150 8151 buf->dtb_errors++; 8152 8153 if (probe->dtpr_id == dtrace_probeid_error) { 8154 /* 8155 * There's nothing we can do -- we had an 8156 * error on the error probe. We bump an 8157 * error counter to at least indicate that 8158 * this condition happened. 8159 */ 8160 dtrace_error(&state->dts_dblerrors); 8161 continue; 8162 } 8163 8164 if (vtime) { 8165 /* 8166 * Before recursing on dtrace_probe(), we 8167 * need to explicitly clear out our start 8168 * time to prevent it from being accumulated 8169 * into t_dtrace_vtime. 8170 */ 8171 curthread->t_dtrace_start = 0; 8172 } 8173 8174 /* 8175 * Iterate over the actions to figure out which action 8176 * we were processing when we experienced the error. 8177 * Note that act points _past_ the faulting action; if 8178 * act is ecb->dte_action, the fault was in the 8179 * predicate, if it's ecb->dte_action->dta_next it's 8180 * in action #1, and so on. 8181 */ 8182 for (err = ecb->dte_action, ndx = 0; 8183 err != act; err = err->dta_next, ndx++) 8184 continue; 8185 8186 dtrace_probe_error(state, ecb->dte_epid, ndx, 8187 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 8188 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 8189 cpu_core[cpuid].cpuc_dtrace_illval); 8190 8191 continue; 8192 } 8193 8194 if (!committed) 8195 buf->dtb_offset = offs + ecb->dte_size; 8196 } 8197 8198 if (vtime) 8199 curthread->t_dtrace_start = dtrace_gethrtime(); 8200 8201 dtrace_interrupt_enable(cookie); 8202 } 8203 8204 /* 8205 * DTrace Probe Hashing Functions 8206 * 8207 * The functions in this section (and indeed, the functions in remaining 8208 * sections) are not _called_ from probe context. (Any exceptions to this are 8209 * marked with a "Note:".) Rather, they are called from elsewhere in the 8210 * DTrace framework to look-up probes in, add probes to and remove probes from 8211 * the DTrace probe hashes. (Each probe is hashed by each element of the 8212 * probe tuple -- allowing for fast lookups, regardless of what was 8213 * specified.) 8214 */ 8215 static uint_t 8216 dtrace_hash_str(const char *p) 8217 { 8218 unsigned int g; 8219 uint_t hval = 0; 8220 8221 while (*p) { 8222 hval = (hval << 4) + *p++; 8223 if ((g = (hval & 0xf0000000)) != 0) 8224 hval ^= g >> 24; 8225 hval &= ~g; 8226 } 8227 return (hval); 8228 } 8229 8230 static dtrace_hash_t * 8231 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 8232 { 8233 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 8234 8235 hash->dth_stroffs = stroffs; 8236 hash->dth_nextoffs = nextoffs; 8237 hash->dth_prevoffs = prevoffs; 8238 8239 hash->dth_size = 1; 8240 hash->dth_mask = hash->dth_size - 1; 8241 8242 hash->dth_tab = kmem_zalloc(hash->dth_size * 8243 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 8244 8245 return (hash); 8246 } 8247 8248 static void 8249 dtrace_hash_destroy(dtrace_hash_t *hash) 8250 { 8251 #ifdef DEBUG 8252 int i; 8253 8254 for (i = 0; i < hash->dth_size; i++) 8255 ASSERT(hash->dth_tab[i] == NULL); 8256 #endif 8257 8258 kmem_free(hash->dth_tab, 8259 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 8260 kmem_free(hash, sizeof (dtrace_hash_t)); 8261 } 8262 8263 static void 8264 dtrace_hash_resize(dtrace_hash_t *hash) 8265 { 8266 int size = hash->dth_size, i, ndx; 8267 int new_size = hash->dth_size << 1; 8268 int new_mask = new_size - 1; 8269 dtrace_hashbucket_t **new_tab, *bucket, *next; 8270 8271 ASSERT((new_size & new_mask) == 0); 8272 8273 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 8274 8275 for (i = 0; i < size; i++) { 8276 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 8277 dtrace_probe_t *probe = bucket->dthb_chain; 8278 8279 ASSERT(probe != NULL); 8280 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 8281 8282 next = bucket->dthb_next; 8283 bucket->dthb_next = new_tab[ndx]; 8284 new_tab[ndx] = bucket; 8285 } 8286 } 8287 8288 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 8289 hash->dth_tab = new_tab; 8290 hash->dth_size = new_size; 8291 hash->dth_mask = new_mask; 8292 } 8293 8294 static void 8295 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 8296 { 8297 int hashval = DTRACE_HASHSTR(hash, new); 8298 int ndx = hashval & hash->dth_mask; 8299 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8300 dtrace_probe_t **nextp, **prevp; 8301 8302 for (; bucket != NULL; bucket = bucket->dthb_next) { 8303 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 8304 goto add; 8305 } 8306 8307 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 8308 dtrace_hash_resize(hash); 8309 dtrace_hash_add(hash, new); 8310 return; 8311 } 8312 8313 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 8314 bucket->dthb_next = hash->dth_tab[ndx]; 8315 hash->dth_tab[ndx] = bucket; 8316 hash->dth_nbuckets++; 8317 8318 add: 8319 nextp = DTRACE_HASHNEXT(hash, new); 8320 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 8321 *nextp = bucket->dthb_chain; 8322 8323 if (bucket->dthb_chain != NULL) { 8324 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 8325 ASSERT(*prevp == NULL); 8326 *prevp = new; 8327 } 8328 8329 bucket->dthb_chain = new; 8330 bucket->dthb_len++; 8331 } 8332 8333 static dtrace_probe_t * 8334 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 8335 { 8336 int hashval = DTRACE_HASHSTR(hash, template); 8337 int ndx = hashval & hash->dth_mask; 8338 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8339 8340 for (; bucket != NULL; bucket = bucket->dthb_next) { 8341 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8342 return (bucket->dthb_chain); 8343 } 8344 8345 return (NULL); 8346 } 8347 8348 static int 8349 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 8350 { 8351 int hashval = DTRACE_HASHSTR(hash, template); 8352 int ndx = hashval & hash->dth_mask; 8353 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8354 8355 for (; bucket != NULL; bucket = bucket->dthb_next) { 8356 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8357 return (bucket->dthb_len); 8358 } 8359 8360 return (0); 8361 } 8362 8363 static void 8364 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 8365 { 8366 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 8367 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8368 8369 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 8370 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 8371 8372 /* 8373 * Find the bucket that we're removing this probe from. 8374 */ 8375 for (; bucket != NULL; bucket = bucket->dthb_next) { 8376 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 8377 break; 8378 } 8379 8380 ASSERT(bucket != NULL); 8381 8382 if (*prevp == NULL) { 8383 if (*nextp == NULL) { 8384 /* 8385 * The removed probe was the only probe on this 8386 * bucket; we need to remove the bucket. 8387 */ 8388 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 8389 8390 ASSERT(bucket->dthb_chain == probe); 8391 ASSERT(b != NULL); 8392 8393 if (b == bucket) { 8394 hash->dth_tab[ndx] = bucket->dthb_next; 8395 } else { 8396 while (b->dthb_next != bucket) 8397 b = b->dthb_next; 8398 b->dthb_next = bucket->dthb_next; 8399 } 8400 8401 ASSERT(hash->dth_nbuckets > 0); 8402 hash->dth_nbuckets--; 8403 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 8404 return; 8405 } 8406 8407 bucket->dthb_chain = *nextp; 8408 } else { 8409 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 8410 } 8411 8412 if (*nextp != NULL) 8413 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 8414 } 8415 8416 /* 8417 * DTrace Utility Functions 8418 * 8419 * These are random utility functions that are _not_ called from probe context. 8420 */ 8421 static int 8422 dtrace_badattr(const dtrace_attribute_t *a) 8423 { 8424 return (a->dtat_name > DTRACE_STABILITY_MAX || 8425 a->dtat_data > DTRACE_STABILITY_MAX || 8426 a->dtat_class > DTRACE_CLASS_MAX); 8427 } 8428 8429 /* 8430 * Return a duplicate copy of a string. If the specified string is NULL, 8431 * this function returns a zero-length string. 8432 */ 8433 static char * 8434 dtrace_strdup(const char *str) 8435 { 8436 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 8437 8438 if (str != NULL) 8439 (void) strcpy(new, str); 8440 8441 return (new); 8442 } 8443 8444 #define DTRACE_ISALPHA(c) \ 8445 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 8446 8447 static int 8448 dtrace_badname(const char *s) 8449 { 8450 char c; 8451 8452 if (s == NULL || (c = *s++) == '\0') 8453 return (0); 8454 8455 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 8456 return (1); 8457 8458 while ((c = *s++) != '\0') { 8459 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 8460 c != '-' && c != '_' && c != '.' && c != '`') 8461 return (1); 8462 } 8463 8464 return (0); 8465 } 8466 8467 static void 8468 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 8469 { 8470 uint32_t priv; 8471 8472 #ifdef illumos 8473 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 8474 /* 8475 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 8476 */ 8477 priv = DTRACE_PRIV_ALL; 8478 } else { 8479 *uidp = crgetuid(cr); 8480 *zoneidp = crgetzoneid(cr); 8481 8482 priv = 0; 8483 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 8484 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 8485 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 8486 priv |= DTRACE_PRIV_USER; 8487 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 8488 priv |= DTRACE_PRIV_PROC; 8489 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 8490 priv |= DTRACE_PRIV_OWNER; 8491 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 8492 priv |= DTRACE_PRIV_ZONEOWNER; 8493 } 8494 #else 8495 priv = DTRACE_PRIV_ALL; 8496 *uidp = 0; 8497 *zoneidp = 0; 8498 #endif 8499 8500 *privp = priv; 8501 } 8502 8503 #ifdef DTRACE_ERRDEBUG 8504 static void 8505 dtrace_errdebug(const char *str) 8506 { 8507 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; 8508 int occupied = 0; 8509 8510 mutex_enter(&dtrace_errlock); 8511 dtrace_errlast = str; 8512 dtrace_errthread = curthread; 8513 8514 while (occupied++ < DTRACE_ERRHASHSZ) { 8515 if (dtrace_errhash[hval].dter_msg == str) { 8516 dtrace_errhash[hval].dter_count++; 8517 goto out; 8518 } 8519 8520 if (dtrace_errhash[hval].dter_msg != NULL) { 8521 hval = (hval + 1) % DTRACE_ERRHASHSZ; 8522 continue; 8523 } 8524 8525 dtrace_errhash[hval].dter_msg = str; 8526 dtrace_errhash[hval].dter_count = 1; 8527 goto out; 8528 } 8529 8530 panic("dtrace: undersized error hash"); 8531 out: 8532 mutex_exit(&dtrace_errlock); 8533 } 8534 #endif 8535 8536 /* 8537 * DTrace Matching Functions 8538 * 8539 * These functions are used to match groups of probes, given some elements of 8540 * a probe tuple, or some globbed expressions for elements of a probe tuple. 8541 */ 8542 static int 8543 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 8544 zoneid_t zoneid) 8545 { 8546 if (priv != DTRACE_PRIV_ALL) { 8547 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 8548 uint32_t match = priv & ppriv; 8549 8550 /* 8551 * No PRIV_DTRACE_* privileges... 8552 */ 8553 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 8554 DTRACE_PRIV_KERNEL)) == 0) 8555 return (0); 8556 8557 /* 8558 * No matching bits, but there were bits to match... 8559 */ 8560 if (match == 0 && ppriv != 0) 8561 return (0); 8562 8563 /* 8564 * Need to have permissions to the process, but don't... 8565 */ 8566 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 8567 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 8568 return (0); 8569 } 8570 8571 /* 8572 * Need to be in the same zone unless we possess the 8573 * privilege to examine all zones. 8574 */ 8575 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 8576 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 8577 return (0); 8578 } 8579 } 8580 8581 return (1); 8582 } 8583 8584 /* 8585 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 8586 * consists of input pattern strings and an ops-vector to evaluate them. 8587 * This function returns >0 for match, 0 for no match, and <0 for error. 8588 */ 8589 static int 8590 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 8591 uint32_t priv, uid_t uid, zoneid_t zoneid) 8592 { 8593 dtrace_provider_t *pvp = prp->dtpr_provider; 8594 int rv; 8595 8596 if (pvp->dtpv_defunct) 8597 return (0); 8598 8599 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 8600 return (rv); 8601 8602 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 8603 return (rv); 8604 8605 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 8606 return (rv); 8607 8608 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 8609 return (rv); 8610 8611 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 8612 return (0); 8613 8614 return (rv); 8615 } 8616 8617 /* 8618 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 8619 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 8620 * libc's version, the kernel version only applies to 8-bit ASCII strings. 8621 * In addition, all of the recursion cases except for '*' matching have been 8622 * unwound. For '*', we still implement recursive evaluation, but a depth 8623 * counter is maintained and matching is aborted if we recurse too deep. 8624 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 8625 */ 8626 static int 8627 dtrace_match_glob(const char *s, const char *p, int depth) 8628 { 8629 const char *olds; 8630 char s1, c; 8631 int gs; 8632 8633 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 8634 return (-1); 8635 8636 if (s == NULL) 8637 s = ""; /* treat NULL as empty string */ 8638 8639 top: 8640 olds = s; 8641 s1 = *s++; 8642 8643 if (p == NULL) 8644 return (0); 8645 8646 if ((c = *p++) == '\0') 8647 return (s1 == '\0'); 8648 8649 switch (c) { 8650 case '[': { 8651 int ok = 0, notflag = 0; 8652 char lc = '\0'; 8653 8654 if (s1 == '\0') 8655 return (0); 8656 8657 if (*p == '!') { 8658 notflag = 1; 8659 p++; 8660 } 8661 8662 if ((c = *p++) == '\0') 8663 return (0); 8664 8665 do { 8666 if (c == '-' && lc != '\0' && *p != ']') { 8667 if ((c = *p++) == '\0') 8668 return (0); 8669 if (c == '\\' && (c = *p++) == '\0') 8670 return (0); 8671 8672 if (notflag) { 8673 if (s1 < lc || s1 > c) 8674 ok++; 8675 else 8676 return (0); 8677 } else if (lc <= s1 && s1 <= c) 8678 ok++; 8679 8680 } else if (c == '\\' && (c = *p++) == '\0') 8681 return (0); 8682 8683 lc = c; /* save left-hand 'c' for next iteration */ 8684 8685 if (notflag) { 8686 if (s1 != c) 8687 ok++; 8688 else 8689 return (0); 8690 } else if (s1 == c) 8691 ok++; 8692 8693 if ((c = *p++) == '\0') 8694 return (0); 8695 8696 } while (c != ']'); 8697 8698 if (ok) 8699 goto top; 8700 8701 return (0); 8702 } 8703 8704 case '\\': 8705 if ((c = *p++) == '\0') 8706 return (0); 8707 /*FALLTHRU*/ 8708 8709 default: 8710 if (c != s1) 8711 return (0); 8712 /*FALLTHRU*/ 8713 8714 case '?': 8715 if (s1 != '\0') 8716 goto top; 8717 return (0); 8718 8719 case '*': 8720 while (*p == '*') 8721 p++; /* consecutive *'s are identical to a single one */ 8722 8723 if (*p == '\0') 8724 return (1); 8725 8726 for (s = olds; *s != '\0'; s++) { 8727 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8728 return (gs); 8729 } 8730 8731 return (0); 8732 } 8733 } 8734 8735 /*ARGSUSED*/ 8736 static int 8737 dtrace_match_string(const char *s, const char *p, int depth) 8738 { 8739 return (s != NULL && strcmp(s, p) == 0); 8740 } 8741 8742 /*ARGSUSED*/ 8743 static int 8744 dtrace_match_nul(const char *s, const char *p, int depth) 8745 { 8746 return (1); /* always match the empty pattern */ 8747 } 8748 8749 /*ARGSUSED*/ 8750 static int 8751 dtrace_match_nonzero(const char *s, const char *p, int depth) 8752 { 8753 return (s != NULL && s[0] != '\0'); 8754 } 8755 8756 static int 8757 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8758 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8759 { 8760 dtrace_probe_t template, *probe; 8761 dtrace_hash_t *hash = NULL; 8762 int len, rc, best = INT_MAX, nmatched = 0; 8763 dtrace_id_t i; 8764 8765 ASSERT(MUTEX_HELD(&dtrace_lock)); 8766 8767 /* 8768 * If the probe ID is specified in the key, just lookup by ID and 8769 * invoke the match callback once if a matching probe is found. 8770 */ 8771 if (pkp->dtpk_id != DTRACE_IDNONE) { 8772 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8773 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8774 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 8775 return (DTRACE_MATCH_FAIL); 8776 nmatched++; 8777 } 8778 return (nmatched); 8779 } 8780 8781 template.dtpr_mod = (char *)pkp->dtpk_mod; 8782 template.dtpr_func = (char *)pkp->dtpk_func; 8783 template.dtpr_name = (char *)pkp->dtpk_name; 8784 8785 /* 8786 * We want to find the most distinct of the module name, function 8787 * name, and name. So for each one that is not a glob pattern or 8788 * empty string, we perform a lookup in the corresponding hash and 8789 * use the hash table with the fewest collisions to do our search. 8790 */ 8791 if (pkp->dtpk_mmatch == &dtrace_match_string && 8792 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8793 best = len; 8794 hash = dtrace_bymod; 8795 } 8796 8797 if (pkp->dtpk_fmatch == &dtrace_match_string && 8798 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8799 best = len; 8800 hash = dtrace_byfunc; 8801 } 8802 8803 if (pkp->dtpk_nmatch == &dtrace_match_string && 8804 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8805 best = len; 8806 hash = dtrace_byname; 8807 } 8808 8809 /* 8810 * If we did not select a hash table, iterate over every probe and 8811 * invoke our callback for each one that matches our input probe key. 8812 */ 8813 if (hash == NULL) { 8814 for (i = 0; i < dtrace_nprobes; i++) { 8815 if ((probe = dtrace_probes[i]) == NULL || 8816 dtrace_match_probe(probe, pkp, priv, uid, 8817 zoneid) <= 0) 8818 continue; 8819 8820 nmatched++; 8821 8822 if ((rc = (*matched)(probe, arg)) != 8823 DTRACE_MATCH_NEXT) { 8824 if (rc == DTRACE_MATCH_FAIL) 8825 return (DTRACE_MATCH_FAIL); 8826 break; 8827 } 8828 } 8829 8830 return (nmatched); 8831 } 8832 8833 /* 8834 * If we selected a hash table, iterate over each probe of the same key 8835 * name and invoke the callback for every probe that matches the other 8836 * attributes of our input probe key. 8837 */ 8838 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8839 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8840 8841 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8842 continue; 8843 8844 nmatched++; 8845 8846 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 8847 if (rc == DTRACE_MATCH_FAIL) 8848 return (DTRACE_MATCH_FAIL); 8849 break; 8850 } 8851 } 8852 8853 return (nmatched); 8854 } 8855 8856 /* 8857 * Return the function pointer dtrace_probecmp() should use to compare the 8858 * specified pattern with a string. For NULL or empty patterns, we select 8859 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8860 * For non-empty non-glob strings, we use dtrace_match_string(). 8861 */ 8862 static dtrace_probekey_f * 8863 dtrace_probekey_func(const char *p) 8864 { 8865 char c; 8866 8867 if (p == NULL || *p == '\0') 8868 return (&dtrace_match_nul); 8869 8870 while ((c = *p++) != '\0') { 8871 if (c == '[' || c == '?' || c == '*' || c == '\\') 8872 return (&dtrace_match_glob); 8873 } 8874 8875 return (&dtrace_match_string); 8876 } 8877 8878 /* 8879 * Build a probe comparison key for use with dtrace_match_probe() from the 8880 * given probe description. By convention, a null key only matches anchored 8881 * probes: if each field is the empty string, reset dtpk_fmatch to 8882 * dtrace_match_nonzero(). 8883 */ 8884 static void 8885 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8886 { 8887 pkp->dtpk_prov = pdp->dtpd_provider; 8888 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8889 8890 pkp->dtpk_mod = pdp->dtpd_mod; 8891 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8892 8893 pkp->dtpk_func = pdp->dtpd_func; 8894 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8895 8896 pkp->dtpk_name = pdp->dtpd_name; 8897 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8898 8899 pkp->dtpk_id = pdp->dtpd_id; 8900 8901 if (pkp->dtpk_id == DTRACE_IDNONE && 8902 pkp->dtpk_pmatch == &dtrace_match_nul && 8903 pkp->dtpk_mmatch == &dtrace_match_nul && 8904 pkp->dtpk_fmatch == &dtrace_match_nul && 8905 pkp->dtpk_nmatch == &dtrace_match_nul) 8906 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8907 } 8908 8909 /* 8910 * DTrace Provider-to-Framework API Functions 8911 * 8912 * These functions implement much of the Provider-to-Framework API, as 8913 * described in <sys/dtrace.h>. The parts of the API not in this section are 8914 * the functions in the API for probe management (found below), and 8915 * dtrace_probe() itself (found above). 8916 */ 8917 8918 /* 8919 * Register the calling provider with the DTrace framework. This should 8920 * generally be called by DTrace providers in their attach(9E) entry point. 8921 */ 8922 int 8923 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8924 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8925 { 8926 dtrace_provider_t *provider; 8927 8928 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8929 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8930 "arguments", name ? name : "<NULL>"); 8931 return (EINVAL); 8932 } 8933 8934 if (name[0] == '\0' || dtrace_badname(name)) { 8935 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8936 "provider name", name); 8937 return (EINVAL); 8938 } 8939 8940 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8941 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8942 pops->dtps_destroy == NULL || 8943 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8944 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8945 "provider ops", name); 8946 return (EINVAL); 8947 } 8948 8949 if (dtrace_badattr(&pap->dtpa_provider) || 8950 dtrace_badattr(&pap->dtpa_mod) || 8951 dtrace_badattr(&pap->dtpa_func) || 8952 dtrace_badattr(&pap->dtpa_name) || 8953 dtrace_badattr(&pap->dtpa_args)) { 8954 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8955 "provider attributes", name); 8956 return (EINVAL); 8957 } 8958 8959 if (priv & ~DTRACE_PRIV_ALL) { 8960 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8961 "privilege attributes", name); 8962 return (EINVAL); 8963 } 8964 8965 if ((priv & DTRACE_PRIV_KERNEL) && 8966 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8967 pops->dtps_usermode == NULL) { 8968 cmn_err(CE_WARN, "failed to register provider '%s': need " 8969 "dtps_usermode() op for given privilege attributes", name); 8970 return (EINVAL); 8971 } 8972 8973 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8974 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8975 (void) strcpy(provider->dtpv_name, name); 8976 8977 provider->dtpv_attr = *pap; 8978 provider->dtpv_priv.dtpp_flags = priv; 8979 if (cr != NULL) { 8980 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8981 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8982 } 8983 provider->dtpv_pops = *pops; 8984 8985 if (pops->dtps_provide == NULL) { 8986 ASSERT(pops->dtps_provide_module != NULL); 8987 provider->dtpv_pops.dtps_provide = 8988 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop; 8989 } 8990 8991 if (pops->dtps_provide_module == NULL) { 8992 ASSERT(pops->dtps_provide != NULL); 8993 provider->dtpv_pops.dtps_provide_module = 8994 (void (*)(void *, modctl_t *))dtrace_nullop; 8995 } 8996 8997 if (pops->dtps_suspend == NULL) { 8998 ASSERT(pops->dtps_resume == NULL); 8999 provider->dtpv_pops.dtps_suspend = 9000 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 9001 provider->dtpv_pops.dtps_resume = 9002 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 9003 } 9004 9005 provider->dtpv_arg = arg; 9006 *idp = (dtrace_provider_id_t)provider; 9007 9008 if (pops == &dtrace_provider_ops) { 9009 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 9010 ASSERT(MUTEX_HELD(&dtrace_lock)); 9011 ASSERT(dtrace_anon.dta_enabling == NULL); 9012 9013 /* 9014 * We make sure that the DTrace provider is at the head of 9015 * the provider chain. 9016 */ 9017 provider->dtpv_next = dtrace_provider; 9018 dtrace_provider = provider; 9019 return (0); 9020 } 9021 9022 mutex_enter(&dtrace_provider_lock); 9023 mutex_enter(&dtrace_lock); 9024 9025 /* 9026 * If there is at least one provider registered, we'll add this 9027 * provider after the first provider. 9028 */ 9029 if (dtrace_provider != NULL) { 9030 provider->dtpv_next = dtrace_provider->dtpv_next; 9031 dtrace_provider->dtpv_next = provider; 9032 } else { 9033 dtrace_provider = provider; 9034 } 9035 9036 if (dtrace_retained != NULL) { 9037 dtrace_enabling_provide(provider); 9038 9039 /* 9040 * Now we need to call dtrace_enabling_matchall() -- which 9041 * will acquire cpu_lock and dtrace_lock. We therefore need 9042 * to drop all of our locks before calling into it... 9043 */ 9044 mutex_exit(&dtrace_lock); 9045 mutex_exit(&dtrace_provider_lock); 9046 dtrace_enabling_matchall(); 9047 9048 return (0); 9049 } 9050 9051 mutex_exit(&dtrace_lock); 9052 mutex_exit(&dtrace_provider_lock); 9053 9054 return (0); 9055 } 9056 9057 /* 9058 * Unregister the specified provider from the DTrace framework. This should 9059 * generally be called by DTrace providers in their detach(9E) entry point. 9060 */ 9061 int 9062 dtrace_unregister(dtrace_provider_id_t id) 9063 { 9064 dtrace_provider_t *old = (dtrace_provider_t *)id; 9065 dtrace_provider_t *prev = NULL; 9066 int i, self = 0, noreap = 0; 9067 dtrace_probe_t *probe, *first = NULL; 9068 9069 if (old->dtpv_pops.dtps_enable == 9070 (int (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 9071 /* 9072 * If DTrace itself is the provider, we're called with locks 9073 * already held. 9074 */ 9075 ASSERT(old == dtrace_provider); 9076 #ifdef illumos 9077 ASSERT(dtrace_devi != NULL); 9078 #endif 9079 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 9080 ASSERT(MUTEX_HELD(&dtrace_lock)); 9081 self = 1; 9082 9083 if (dtrace_provider->dtpv_next != NULL) { 9084 /* 9085 * There's another provider here; return failure. 9086 */ 9087 return (EBUSY); 9088 } 9089 } else { 9090 mutex_enter(&dtrace_provider_lock); 9091 #ifdef illumos 9092 mutex_enter(&mod_lock); 9093 #endif 9094 mutex_enter(&dtrace_lock); 9095 } 9096 9097 /* 9098 * If anyone has /dev/dtrace open, or if there are anonymous enabled 9099 * probes, we refuse to let providers slither away, unless this 9100 * provider has already been explicitly invalidated. 9101 */ 9102 if (!old->dtpv_defunct && 9103 (dtrace_opens || (dtrace_anon.dta_state != NULL && 9104 dtrace_anon.dta_state->dts_necbs > 0))) { 9105 if (!self) { 9106 mutex_exit(&dtrace_lock); 9107 #ifdef illumos 9108 mutex_exit(&mod_lock); 9109 #endif 9110 mutex_exit(&dtrace_provider_lock); 9111 } 9112 return (EBUSY); 9113 } 9114 9115 /* 9116 * Attempt to destroy the probes associated with this provider. 9117 */ 9118 for (i = 0; i < dtrace_nprobes; i++) { 9119 if ((probe = dtrace_probes[i]) == NULL) 9120 continue; 9121 9122 if (probe->dtpr_provider != old) 9123 continue; 9124 9125 if (probe->dtpr_ecb == NULL) 9126 continue; 9127 9128 /* 9129 * If we are trying to unregister a defunct provider, and the 9130 * provider was made defunct within the interval dictated by 9131 * dtrace_unregister_defunct_reap, we'll (asynchronously) 9132 * attempt to reap our enablings. To denote that the provider 9133 * should reattempt to unregister itself at some point in the 9134 * future, we will return a differentiable error code (EAGAIN 9135 * instead of EBUSY) in this case. 9136 */ 9137 if (dtrace_gethrtime() - old->dtpv_defunct > 9138 dtrace_unregister_defunct_reap) 9139 noreap = 1; 9140 9141 /* 9142 * We have at least one ECB; we can't remove this provider. 9143 */ 9144 if (!self) { 9145 mutex_exit(&dtrace_lock); 9146 #ifdef illumos 9147 mutex_exit(&mod_lock); 9148 #endif 9149 mutex_exit(&dtrace_provider_lock); 9150 } 9151 9152 if (noreap) 9153 return (EBUSY); 9154 9155 (void) taskq_dispatch(dtrace_taskq, 9156 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 9157 9158 return (EAGAIN); 9159 } 9160 9161 /* 9162 * All of the probes for this provider are disabled; we can safely 9163 * remove all of them from their hash chains and from the probe array. 9164 */ 9165 for (i = 0; i < dtrace_nprobes; i++) { 9166 if ((probe = dtrace_probes[i]) == NULL) 9167 continue; 9168 9169 if (probe->dtpr_provider != old) 9170 continue; 9171 9172 dtrace_probes[i] = NULL; 9173 9174 dtrace_hash_remove(dtrace_bymod, probe); 9175 dtrace_hash_remove(dtrace_byfunc, probe); 9176 dtrace_hash_remove(dtrace_byname, probe); 9177 9178 if (first == NULL) { 9179 first = probe; 9180 probe->dtpr_nextmod = NULL; 9181 } else { 9182 probe->dtpr_nextmod = first; 9183 first = probe; 9184 } 9185 } 9186 9187 /* 9188 * The provider's probes have been removed from the hash chains and 9189 * from the probe array. Now issue a dtrace_sync() to be sure that 9190 * everyone has cleared out from any probe array processing. 9191 */ 9192 dtrace_sync(); 9193 9194 for (probe = first; probe != NULL; probe = first) { 9195 first = probe->dtpr_nextmod; 9196 9197 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 9198 probe->dtpr_arg); 9199 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 9200 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 9201 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 9202 #ifdef illumos 9203 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 9204 #endif 9205 #ifdef __FreeBSD__ 9206 free_unr(dtrace_arena, probe->dtpr_id); 9207 #endif 9208 #ifdef __NetBSD__ 9209 vmem_free(dtrace_arena, (uintptr_t)(probe->dtpr_id), 1); 9210 #endif 9211 kmem_free(probe, sizeof (dtrace_probe_t)); 9212 } 9213 9214 if ((prev = dtrace_provider) == old) { 9215 #ifdef illumos 9216 ASSERT(self || dtrace_devi == NULL); 9217 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 9218 #endif 9219 dtrace_provider = old->dtpv_next; 9220 } else { 9221 while (prev != NULL && prev->dtpv_next != old) 9222 prev = prev->dtpv_next; 9223 9224 if (prev == NULL) { 9225 panic("attempt to unregister non-existent " 9226 "dtrace provider %p\n", (void *)id); 9227 } 9228 9229 prev->dtpv_next = old->dtpv_next; 9230 } 9231 9232 if (!self) { 9233 mutex_exit(&dtrace_lock); 9234 #ifdef illumos 9235 mutex_exit(&mod_lock); 9236 #endif 9237 mutex_exit(&dtrace_provider_lock); 9238 } 9239 9240 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 9241 kmem_free(old, sizeof (dtrace_provider_t)); 9242 9243 return (0); 9244 } 9245 9246 /* 9247 * Invalidate the specified provider. All subsequent probe lookups for the 9248 * specified provider will fail, but its probes will not be removed. 9249 */ 9250 void 9251 dtrace_invalidate(dtrace_provider_id_t id) 9252 { 9253 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 9254 9255 ASSERT(pvp->dtpv_pops.dtps_enable != 9256 (int (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9257 9258 mutex_enter(&dtrace_provider_lock); 9259 mutex_enter(&dtrace_lock); 9260 9261 pvp->dtpv_defunct = dtrace_gethrtime(); 9262 9263 mutex_exit(&dtrace_lock); 9264 mutex_exit(&dtrace_provider_lock); 9265 } 9266 9267 /* 9268 * Indicate whether or not DTrace has attached. 9269 */ 9270 int 9271 dtrace_attached(void) 9272 { 9273 /* 9274 * dtrace_provider will be non-NULL iff the DTrace driver has 9275 * attached. (It's non-NULL because DTrace is always itself a 9276 * provider.) 9277 */ 9278 return (dtrace_provider != NULL); 9279 } 9280 9281 /* 9282 * Remove all the unenabled probes for the given provider. This function is 9283 * not unlike dtrace_unregister(), except that it doesn't remove the provider 9284 * -- just as many of its associated probes as it can. 9285 */ 9286 int 9287 dtrace_condense(dtrace_provider_id_t id) 9288 { 9289 dtrace_provider_t *prov = (dtrace_provider_t *)id; 9290 int i; 9291 dtrace_probe_t *probe; 9292 9293 /* 9294 * Make sure this isn't the dtrace provider itself. 9295 */ 9296 ASSERT(prov->dtpv_pops.dtps_enable != 9297 (int (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9298 9299 mutex_enter(&dtrace_provider_lock); 9300 mutex_enter(&dtrace_lock); 9301 9302 /* 9303 * Attempt to destroy the probes associated with this provider. 9304 */ 9305 for (i = 0; i < dtrace_nprobes; i++) { 9306 if ((probe = dtrace_probes[i]) == NULL) 9307 continue; 9308 9309 if (probe->dtpr_provider != prov) 9310 continue; 9311 9312 if (probe->dtpr_ecb != NULL) 9313 continue; 9314 9315 dtrace_probes[i] = NULL; 9316 9317 dtrace_hash_remove(dtrace_bymod, probe); 9318 dtrace_hash_remove(dtrace_byfunc, probe); 9319 dtrace_hash_remove(dtrace_byname, probe); 9320 9321 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 9322 probe->dtpr_arg); 9323 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 9324 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 9325 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 9326 kmem_free(probe, sizeof (dtrace_probe_t)); 9327 #ifdef illumos 9328 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 9329 #endif 9330 #ifdef __FreeBSD__ 9331 free_unr(dtrace_arena, i + 1); 9332 #endif 9333 #ifdef __NetBSD__ 9334 vmem_free(dtrace_arena, ((uintptr_t)i + 1), 1); 9335 #endif 9336 } 9337 9338 mutex_exit(&dtrace_lock); 9339 mutex_exit(&dtrace_provider_lock); 9340 9341 return (0); 9342 } 9343 9344 /* 9345 * DTrace Probe Management Functions 9346 * 9347 * The functions in this section perform the DTrace probe management, 9348 * including functions to create probes, look-up probes, and call into the 9349 * providers to request that probes be provided. Some of these functions are 9350 * in the Provider-to-Framework API; these functions can be identified by the 9351 * fact that they are not declared "static". 9352 */ 9353 9354 /* 9355 * Create a probe with the specified module name, function name, and name. 9356 */ 9357 dtrace_id_t 9358 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 9359 const char *func, const char *name, int aframes, void *arg) 9360 { 9361 dtrace_probe_t *probe, **probes; 9362 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 9363 dtrace_id_t id; 9364 9365 if (provider == dtrace_provider) { 9366 ASSERT(MUTEX_HELD(&dtrace_lock)); 9367 } else { 9368 mutex_enter(&dtrace_lock); 9369 } 9370 9371 #ifdef illumos 9372 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 9373 VM_BESTFIT | VM_SLEEP); 9374 #endif 9375 #ifdef __FreeBSD__ 9376 id = alloc_unr(dtrace_arena); 9377 #endif 9378 #ifdef __NetBSD__ 9379 vmem_addr_t offset; 9380 if (vmem_alloc(dtrace_arena, 1, VM_BESTFIT | VM_SLEEP, &offset) != 0) 9381 ASSERT(0); 9382 id = (dtrace_id_t)(uintptr_t)offset; 9383 #endif 9384 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 9385 9386 probe->dtpr_id = id; 9387 probe->dtpr_gen = dtrace_probegen++; 9388 probe->dtpr_mod = dtrace_strdup(mod); 9389 probe->dtpr_func = dtrace_strdup(func); 9390 probe->dtpr_name = dtrace_strdup(name); 9391 probe->dtpr_arg = arg; 9392 probe->dtpr_aframes = aframes; 9393 probe->dtpr_provider = provider; 9394 9395 dtrace_hash_add(dtrace_bymod, probe); 9396 dtrace_hash_add(dtrace_byfunc, probe); 9397 dtrace_hash_add(dtrace_byname, probe); 9398 9399 if (id - 1 >= dtrace_nprobes) { 9400 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 9401 size_t nsize = osize << 1; 9402 9403 if (nsize == 0) { 9404 ASSERT(osize == 0); 9405 ASSERT(dtrace_probes == NULL); 9406 nsize = sizeof (dtrace_probe_t *); 9407 } 9408 9409 probes = kmem_zalloc(nsize, KM_SLEEP); 9410 9411 if (dtrace_probes == NULL) { 9412 ASSERT(osize == 0); 9413 dtrace_probes = probes; 9414 dtrace_nprobes = 1; 9415 } else { 9416 dtrace_probe_t **oprobes = dtrace_probes; 9417 9418 bcopy(oprobes, probes, osize); 9419 dtrace_membar_producer(); 9420 dtrace_probes = probes; 9421 9422 dtrace_sync(); 9423 9424 /* 9425 * All CPUs are now seeing the new probes array; we can 9426 * safely free the old array. 9427 */ 9428 kmem_free(oprobes, osize); 9429 dtrace_nprobes <<= 1; 9430 } 9431 9432 ASSERT(id - 1 < dtrace_nprobes); 9433 } 9434 9435 ASSERT(dtrace_probes[id - 1] == NULL); 9436 dtrace_probes[id - 1] = probe; 9437 9438 if (provider != dtrace_provider) 9439 mutex_exit(&dtrace_lock); 9440 9441 return (id); 9442 } 9443 9444 static dtrace_probe_t * 9445 dtrace_probe_lookup_id(dtrace_id_t id) 9446 { 9447 ASSERT(MUTEX_HELD(&dtrace_lock)); 9448 9449 if (id == 0 || id > dtrace_nprobes) 9450 return (NULL); 9451 9452 return (dtrace_probes[id - 1]); 9453 } 9454 9455 static int 9456 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 9457 { 9458 *((dtrace_id_t *)arg) = probe->dtpr_id; 9459 9460 return (DTRACE_MATCH_DONE); 9461 } 9462 9463 /* 9464 * Look up a probe based on provider and one or more of module name, function 9465 * name and probe name. 9466 */ 9467 dtrace_id_t 9468 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod, 9469 char *func, char *name) 9470 { 9471 dtrace_probekey_t pkey; 9472 dtrace_id_t id; 9473 int match; 9474 9475 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 9476 pkey.dtpk_pmatch = &dtrace_match_string; 9477 pkey.dtpk_mod = mod; 9478 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 9479 pkey.dtpk_func = func; 9480 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 9481 pkey.dtpk_name = name; 9482 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 9483 pkey.dtpk_id = DTRACE_IDNONE; 9484 9485 mutex_enter(&dtrace_lock); 9486 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 9487 dtrace_probe_lookup_match, &id); 9488 mutex_exit(&dtrace_lock); 9489 9490 ASSERT(match == 1 || match == 0); 9491 return (match ? id : 0); 9492 } 9493 9494 /* 9495 * Returns the probe argument associated with the specified probe. 9496 */ 9497 void * 9498 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 9499 { 9500 dtrace_probe_t *probe; 9501 void *rval = NULL; 9502 9503 mutex_enter(&dtrace_lock); 9504 9505 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 9506 probe->dtpr_provider == (dtrace_provider_t *)id) 9507 rval = probe->dtpr_arg; 9508 9509 mutex_exit(&dtrace_lock); 9510 9511 return (rval); 9512 } 9513 9514 /* 9515 * Copy a probe into a probe description. 9516 */ 9517 static void 9518 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 9519 { 9520 bzero(pdp, sizeof (dtrace_probedesc_t)); 9521 pdp->dtpd_id = prp->dtpr_id; 9522 9523 (void) strncpy(pdp->dtpd_provider, 9524 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 9525 9526 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 9527 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 9528 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 9529 } 9530 9531 /* 9532 * Called to indicate that a probe -- or probes -- should be provided by a 9533 * specfied provider. If the specified description is NULL, the provider will 9534 * be told to provide all of its probes. (This is done whenever a new 9535 * consumer comes along, or whenever a retained enabling is to be matched.) If 9536 * the specified description is non-NULL, the provider is given the 9537 * opportunity to dynamically provide the specified probe, allowing providers 9538 * to support the creation of probes on-the-fly. (So-called _autocreated_ 9539 * probes.) If the provider is NULL, the operations will be applied to all 9540 * providers; if the provider is non-NULL the operations will only be applied 9541 * to the specified provider. The dtrace_provider_lock must be held, and the 9542 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 9543 * will need to grab the dtrace_lock when it reenters the framework through 9544 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 9545 */ 9546 static void 9547 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 9548 { 9549 #ifdef illumos 9550 modctl_t *ctl; 9551 #endif 9552 #ifdef __NetBSD__ 9553 module_t *mod; 9554 #endif 9555 int all = 0; 9556 9557 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 9558 9559 if (prv == NULL) { 9560 all = 1; 9561 prv = dtrace_provider; 9562 } 9563 9564 do { 9565 /* 9566 * First, call the blanket provide operation. 9567 */ 9568 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 9569 9570 #ifdef illumos 9571 /* 9572 * Now call the per-module provide operation. We will grab 9573 * mod_lock to prevent the list from being modified. Note 9574 * that this also prevents the mod_busy bits from changing. 9575 * (mod_busy can only be changed with mod_lock held.) 9576 */ 9577 mutex_enter(&mod_lock); 9578 9579 ctl = &modules; 9580 do { 9581 if (ctl->mod_busy || ctl->mod_mp == NULL) 9582 continue; 9583 9584 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 9585 9586 } while ((ctl = ctl->mod_next) != &modules); 9587 9588 mutex_exit(&mod_lock); 9589 #endif 9590 #ifdef __NetBSD__ 9591 kernconfig_lock(); 9592 9593 /* Fake netbsd module first */ 9594 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, module_kernel()); 9595 9596 TAILQ_FOREACH(mod, &module_list, mod_chain) { 9597 if (module_source(mod) != MODULE_SOURCE_KERNEL) 9598 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, mod); 9599 } 9600 kernconfig_unlock(); 9601 #endif 9602 } while (all && (prv = prv->dtpv_next) != NULL); 9603 } 9604 9605 #ifdef illumos 9606 /* 9607 * Iterate over each probe, and call the Framework-to-Provider API function 9608 * denoted by offs. 9609 */ 9610 static void 9611 dtrace_probe_foreach(uintptr_t offs) 9612 { 9613 dtrace_provider_t *prov; 9614 void (*func)(void *, dtrace_id_t, void *); 9615 dtrace_probe_t *probe; 9616 dtrace_icookie_t cookie; 9617 int i; 9618 9619 /* 9620 * We disable interrupts to walk through the probe array. This is 9621 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 9622 * won't see stale data. 9623 */ 9624 cookie = dtrace_interrupt_disable(); 9625 9626 for (i = 0; i < dtrace_nprobes; i++) { 9627 if ((probe = dtrace_probes[i]) == NULL) 9628 continue; 9629 9630 if (probe->dtpr_ecb == NULL) { 9631 /* 9632 * This probe isn't enabled -- don't call the function. 9633 */ 9634 continue; 9635 } 9636 9637 prov = probe->dtpr_provider; 9638 func = *((void(**)(void *, dtrace_id_t, void *)) 9639 ((uintptr_t)&prov->dtpv_pops + offs)); 9640 9641 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 9642 } 9643 9644 dtrace_interrupt_enable(cookie); 9645 } 9646 #endif 9647 9648 static int 9649 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 9650 { 9651 dtrace_probekey_t pkey; 9652 uint32_t priv; 9653 uid_t uid; 9654 zoneid_t zoneid; 9655 9656 ASSERT(MUTEX_HELD(&dtrace_lock)); 9657 dtrace_ecb_create_cache = NULL; 9658 9659 if (desc == NULL) { 9660 /* 9661 * If we're passed a NULL description, we're being asked to 9662 * create an ECB with a NULL probe. 9663 */ 9664 (void) dtrace_ecb_create_enable(NULL, enab); 9665 return (0); 9666 } 9667 9668 dtrace_probekey(desc, &pkey); 9669 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 9670 &priv, &uid, &zoneid); 9671 9672 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 9673 enab)); 9674 } 9675 9676 /* 9677 * DTrace Helper Provider Functions 9678 */ 9679 static void 9680 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 9681 { 9682 attr->dtat_name = DOF_ATTR_NAME(dofattr); 9683 attr->dtat_data = DOF_ATTR_DATA(dofattr); 9684 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 9685 } 9686 9687 static void 9688 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 9689 const dof_provider_t *dofprov, char *strtab) 9690 { 9691 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 9692 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 9693 dofprov->dofpv_provattr); 9694 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 9695 dofprov->dofpv_modattr); 9696 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 9697 dofprov->dofpv_funcattr); 9698 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 9699 dofprov->dofpv_nameattr); 9700 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 9701 dofprov->dofpv_argsattr); 9702 } 9703 9704 static void 9705 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9706 { 9707 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9708 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9709 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 9710 dof_provider_t *provider; 9711 dof_probe_t *probe; 9712 uint32_t *off, *enoff; 9713 uint8_t *arg; 9714 char *strtab; 9715 uint_t i, nprobes; 9716 dtrace_helper_provdesc_t dhpv; 9717 dtrace_helper_probedesc_t dhpb; 9718 dtrace_meta_t *meta = dtrace_meta_pid; 9719 dtrace_mops_t *mops = &meta->dtm_mops; 9720 void *parg; 9721 9722 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9723 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9724 provider->dofpv_strtab * dof->dofh_secsize); 9725 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9726 provider->dofpv_probes * dof->dofh_secsize); 9727 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9728 provider->dofpv_prargs * dof->dofh_secsize); 9729 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9730 provider->dofpv_proffs * dof->dofh_secsize); 9731 9732 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9733 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 9734 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 9735 enoff = NULL; 9736 9737 /* 9738 * See dtrace_helper_provider_validate(). 9739 */ 9740 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 9741 provider->dofpv_prenoffs != DOF_SECT_NONE) { 9742 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9743 provider->dofpv_prenoffs * dof->dofh_secsize); 9744 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 9745 } 9746 9747 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 9748 9749 /* 9750 * Create the provider. 9751 */ 9752 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9753 9754 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 9755 return; 9756 9757 meta->dtm_count++; 9758 9759 /* 9760 * Create the probes. 9761 */ 9762 for (i = 0; i < nprobes; i++) { 9763 probe = (dof_probe_t *)(uintptr_t)(daddr + 9764 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9765 9766 /* See the check in dtrace_helper_provider_validate(). */ 9767 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) 9768 continue; 9769 9770 dhpb.dthpb_mod = dhp->dofhp_mod; 9771 dhpb.dthpb_func = strtab + probe->dofpr_func; 9772 dhpb.dthpb_name = strtab + probe->dofpr_name; 9773 dhpb.dthpb_base = probe->dofpr_addr; 9774 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9775 dhpb.dthpb_noffs = probe->dofpr_noffs; 9776 if (enoff != NULL) { 9777 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9778 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9779 } else { 9780 dhpb.dthpb_enoffs = NULL; 9781 dhpb.dthpb_nenoffs = 0; 9782 } 9783 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9784 dhpb.dthpb_nargc = probe->dofpr_nargc; 9785 dhpb.dthpb_xargc = probe->dofpr_xargc; 9786 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9787 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9788 9789 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9790 } 9791 } 9792 9793 static void 9794 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9795 { 9796 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9797 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9798 int i; 9799 9800 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9801 9802 for (i = 0; i < dof->dofh_secnum; i++) { 9803 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9804 dof->dofh_secoff + i * dof->dofh_secsize); 9805 9806 if (sec->dofs_type != DOF_SECT_PROVIDER) 9807 continue; 9808 9809 dtrace_helper_provide_one(dhp, sec, pid); 9810 } 9811 9812 /* 9813 * We may have just created probes, so we must now rematch against 9814 * any retained enablings. Note that this call will acquire both 9815 * cpu_lock and dtrace_lock; the fact that we are holding 9816 * dtrace_meta_lock now is what defines the ordering with respect to 9817 * these three locks. 9818 */ 9819 dtrace_enabling_matchall(); 9820 } 9821 9822 static void 9823 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9824 { 9825 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9826 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9827 dof_sec_t *str_sec; 9828 dof_provider_t *provider; 9829 char *strtab; 9830 dtrace_helper_provdesc_t dhpv; 9831 dtrace_meta_t *meta = dtrace_meta_pid; 9832 dtrace_mops_t *mops = &meta->dtm_mops; 9833 9834 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9835 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9836 provider->dofpv_strtab * dof->dofh_secsize); 9837 9838 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9839 9840 /* 9841 * Create the provider. 9842 */ 9843 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9844 9845 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9846 9847 meta->dtm_count--; 9848 } 9849 9850 static void 9851 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9852 { 9853 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9854 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9855 int i; 9856 9857 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9858 9859 for (i = 0; i < dof->dofh_secnum; i++) { 9860 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9861 dof->dofh_secoff + i * dof->dofh_secsize); 9862 9863 if (sec->dofs_type != DOF_SECT_PROVIDER) 9864 continue; 9865 9866 dtrace_helper_provider_remove_one(dhp, sec, pid); 9867 } 9868 } 9869 9870 /* 9871 * DTrace Meta Provider-to-Framework API Functions 9872 * 9873 * These functions implement the Meta Provider-to-Framework API, as described 9874 * in <sys/dtrace.h>. 9875 */ 9876 int 9877 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9878 dtrace_meta_provider_id_t *idp) 9879 { 9880 dtrace_meta_t *meta; 9881 dtrace_helpers_t *help, *next; 9882 int i; 9883 9884 *idp = DTRACE_METAPROVNONE; 9885 9886 /* 9887 * We strictly don't need the name, but we hold onto it for 9888 * debuggability. All hail error queues! 9889 */ 9890 if (name == NULL) { 9891 cmn_err(CE_WARN, "failed to register meta-provider: " 9892 "invalid name"); 9893 return (EINVAL); 9894 } 9895 9896 if (mops == NULL || 9897 mops->dtms_create_probe == NULL || 9898 mops->dtms_provide_pid == NULL || 9899 mops->dtms_remove_pid == NULL) { 9900 cmn_err(CE_WARN, "failed to register meta-register %s: " 9901 "invalid ops", name); 9902 return (EINVAL); 9903 } 9904 9905 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9906 meta->dtm_mops = *mops; 9907 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9908 (void) strcpy(meta->dtm_name, name); 9909 meta->dtm_arg = arg; 9910 9911 mutex_enter(&dtrace_meta_lock); 9912 mutex_enter(&dtrace_lock); 9913 9914 if (dtrace_meta_pid != NULL) { 9915 mutex_exit(&dtrace_lock); 9916 mutex_exit(&dtrace_meta_lock); 9917 cmn_err(CE_WARN, "failed to register meta-register %s: " 9918 "user-land meta-provider exists", name); 9919 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9920 kmem_free(meta, sizeof (dtrace_meta_t)); 9921 return (EINVAL); 9922 } 9923 9924 dtrace_meta_pid = meta; 9925 *idp = (dtrace_meta_provider_id_t)meta; 9926 9927 /* 9928 * If there are providers and probes ready to go, pass them 9929 * off to the new meta provider now. 9930 */ 9931 9932 help = dtrace_deferred_pid; 9933 dtrace_deferred_pid = NULL; 9934 9935 mutex_exit(&dtrace_lock); 9936 9937 while (help != NULL) { 9938 for (i = 0; i < help->dthps_nprovs; i++) { 9939 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9940 help->dthps_pid); 9941 } 9942 9943 next = help->dthps_next; 9944 help->dthps_next = NULL; 9945 help->dthps_prev = NULL; 9946 help->dthps_deferred = 0; 9947 help = next; 9948 } 9949 9950 mutex_exit(&dtrace_meta_lock); 9951 9952 return (0); 9953 } 9954 9955 int 9956 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9957 { 9958 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9959 9960 mutex_enter(&dtrace_meta_lock); 9961 mutex_enter(&dtrace_lock); 9962 9963 if (old == dtrace_meta_pid) { 9964 pp = &dtrace_meta_pid; 9965 } else { 9966 panic("attempt to unregister non-existent " 9967 "dtrace meta-provider %p\n", (void *)old); 9968 } 9969 9970 if (old->dtm_count != 0) { 9971 mutex_exit(&dtrace_lock); 9972 mutex_exit(&dtrace_meta_lock); 9973 return (EBUSY); 9974 } 9975 9976 *pp = NULL; 9977 9978 mutex_exit(&dtrace_lock); 9979 mutex_exit(&dtrace_meta_lock); 9980 9981 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9982 kmem_free(old, sizeof (dtrace_meta_t)); 9983 9984 return (0); 9985 } 9986 9987 9988 /* 9989 * DTrace DIF Object Functions 9990 */ 9991 static int 9992 dtrace_difo_err(uint_t pc, const char *format, ...) 9993 { 9994 if (dtrace_err_verbose) { 9995 va_list alist; 9996 9997 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9998 va_start(alist, format); 9999 (void) vuprintf(format, alist); 10000 va_end(alist); 10001 } 10002 10003 #ifdef DTRACE_ERRDEBUG 10004 dtrace_errdebug(format); 10005 #endif 10006 return (1); 10007 } 10008 10009 /* 10010 * Validate a DTrace DIF object by checking the IR instructions. The following 10011 * rules are currently enforced by dtrace_difo_validate(): 10012 * 10013 * 1. Each instruction must have a valid opcode 10014 * 2. Each register, string, variable, or subroutine reference must be valid 10015 * 3. No instruction can modify register %r0 (must be zero) 10016 * 4. All instruction reserved bits must be set to zero 10017 * 5. The last instruction must be a "ret" instruction 10018 * 6. All branch targets must reference a valid instruction _after_ the branch 10019 */ 10020 static int 10021 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 10022 cred_t *cr) 10023 { 10024 int err = 0, i; 10025 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 10026 int kcheckload; 10027 uint_t pc; 10028 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 10029 10030 kcheckload = cr == NULL || 10031 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 10032 10033 dp->dtdo_destructive = 0; 10034 10035 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 10036 dif_instr_t instr = dp->dtdo_buf[pc]; 10037 10038 uint_t r1 = DIF_INSTR_R1(instr); 10039 uint_t r2 = DIF_INSTR_R2(instr); 10040 uint_t rd = DIF_INSTR_RD(instr); 10041 uint_t rs = DIF_INSTR_RS(instr); 10042 uint_t label = DIF_INSTR_LABEL(instr); 10043 uint_t v = DIF_INSTR_VAR(instr); 10044 uint_t subr = DIF_INSTR_SUBR(instr); 10045 uint_t type = DIF_INSTR_TYPE(instr); 10046 uint_t op = DIF_INSTR_OP(instr); 10047 10048 switch (op) { 10049 case DIF_OP_OR: 10050 case DIF_OP_XOR: 10051 case DIF_OP_AND: 10052 case DIF_OP_SLL: 10053 case DIF_OP_SRL: 10054 case DIF_OP_SRA: 10055 case DIF_OP_SUB: 10056 case DIF_OP_ADD: 10057 case DIF_OP_MUL: 10058 case DIF_OP_SDIV: 10059 case DIF_OP_UDIV: 10060 case DIF_OP_SREM: 10061 case DIF_OP_UREM: 10062 case DIF_OP_COPYS: 10063 if (r1 >= nregs) 10064 err += efunc(pc, "invalid register %u\n", r1); 10065 if (r2 >= nregs) 10066 err += efunc(pc, "invalid register %u\n", r2); 10067 if (rd >= nregs) 10068 err += efunc(pc, "invalid register %u\n", rd); 10069 if (rd == 0) 10070 err += efunc(pc, "cannot write to %r0\n"); 10071 break; 10072 case DIF_OP_NOT: 10073 case DIF_OP_MOV: 10074 case DIF_OP_ALLOCS: 10075 if (r1 >= nregs) 10076 err += efunc(pc, "invalid register %u\n", r1); 10077 if (r2 != 0) 10078 err += efunc(pc, "non-zero reserved bits\n"); 10079 if (rd >= nregs) 10080 err += efunc(pc, "invalid register %u\n", rd); 10081 if (rd == 0) 10082 err += efunc(pc, "cannot write to %r0\n"); 10083 break; 10084 case DIF_OP_LDSB: 10085 case DIF_OP_LDSH: 10086 case DIF_OP_LDSW: 10087 case DIF_OP_LDUB: 10088 case DIF_OP_LDUH: 10089 case DIF_OP_LDUW: 10090 case DIF_OP_LDX: 10091 if (r1 >= nregs) 10092 err += efunc(pc, "invalid register %u\n", r1); 10093 if (r2 != 0) 10094 err += efunc(pc, "non-zero reserved bits\n"); 10095 if (rd >= nregs) 10096 err += efunc(pc, "invalid register %u\n", rd); 10097 if (rd == 0) 10098 err += efunc(pc, "cannot write to %r0\n"); 10099 if (kcheckload) 10100 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 10101 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 10102 break; 10103 case DIF_OP_RLDSB: 10104 case DIF_OP_RLDSH: 10105 case DIF_OP_RLDSW: 10106 case DIF_OP_RLDUB: 10107 case DIF_OP_RLDUH: 10108 case DIF_OP_RLDUW: 10109 case DIF_OP_RLDX: 10110 if (r1 >= nregs) 10111 err += efunc(pc, "invalid register %u\n", r1); 10112 if (r2 != 0) 10113 err += efunc(pc, "non-zero reserved bits\n"); 10114 if (rd >= nregs) 10115 err += efunc(pc, "invalid register %u\n", rd); 10116 if (rd == 0) 10117 err += efunc(pc, "cannot write to %r0\n"); 10118 break; 10119 case DIF_OP_ULDSB: 10120 case DIF_OP_ULDSH: 10121 case DIF_OP_ULDSW: 10122 case DIF_OP_ULDUB: 10123 case DIF_OP_ULDUH: 10124 case DIF_OP_ULDUW: 10125 case DIF_OP_ULDX: 10126 if (r1 >= nregs) 10127 err += efunc(pc, "invalid register %u\n", r1); 10128 if (r2 != 0) 10129 err += efunc(pc, "non-zero reserved bits\n"); 10130 if (rd >= nregs) 10131 err += efunc(pc, "invalid register %u\n", rd); 10132 if (rd == 0) 10133 err += efunc(pc, "cannot write to %r0\n"); 10134 break; 10135 case DIF_OP_STB: 10136 case DIF_OP_STH: 10137 case DIF_OP_STW: 10138 case DIF_OP_STX: 10139 if (r1 >= nregs) 10140 err += efunc(pc, "invalid register %u\n", r1); 10141 if (r2 != 0) 10142 err += efunc(pc, "non-zero reserved bits\n"); 10143 if (rd >= nregs) 10144 err += efunc(pc, "invalid register %u\n", rd); 10145 if (rd == 0) 10146 err += efunc(pc, "cannot write to 0 address\n"); 10147 break; 10148 case DIF_OP_CMP: 10149 case DIF_OP_SCMP: 10150 if (r1 >= nregs) 10151 err += efunc(pc, "invalid register %u\n", r1); 10152 if (r2 >= nregs) 10153 err += efunc(pc, "invalid register %u\n", r2); 10154 if (rd != 0) 10155 err += efunc(pc, "non-zero reserved bits\n"); 10156 break; 10157 case DIF_OP_TST: 10158 if (r1 >= nregs) 10159 err += efunc(pc, "invalid register %u\n", r1); 10160 if (r2 != 0 || rd != 0) 10161 err += efunc(pc, "non-zero reserved bits\n"); 10162 break; 10163 case DIF_OP_BA: 10164 case DIF_OP_BE: 10165 case DIF_OP_BNE: 10166 case DIF_OP_BG: 10167 case DIF_OP_BGU: 10168 case DIF_OP_BGE: 10169 case DIF_OP_BGEU: 10170 case DIF_OP_BL: 10171 case DIF_OP_BLU: 10172 case DIF_OP_BLE: 10173 case DIF_OP_BLEU: 10174 if (label >= dp->dtdo_len) { 10175 err += efunc(pc, "invalid branch target %u\n", 10176 label); 10177 } 10178 if (label <= pc) { 10179 err += efunc(pc, "backward branch to %u\n", 10180 label); 10181 } 10182 break; 10183 case DIF_OP_RET: 10184 if (r1 != 0 || r2 != 0) 10185 err += efunc(pc, "non-zero reserved bits\n"); 10186 if (rd >= nregs) 10187 err += efunc(pc, "invalid register %u\n", rd); 10188 break; 10189 case DIF_OP_NOP: 10190 case DIF_OP_POPTS: 10191 case DIF_OP_FLUSHTS: 10192 if (r1 != 0 || r2 != 0 || rd != 0) 10193 err += efunc(pc, "non-zero reserved bits\n"); 10194 break; 10195 case DIF_OP_SETX: 10196 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 10197 err += efunc(pc, "invalid integer ref %u\n", 10198 DIF_INSTR_INTEGER(instr)); 10199 } 10200 if (rd >= nregs) 10201 err += efunc(pc, "invalid register %u\n", rd); 10202 if (rd == 0) 10203 err += efunc(pc, "cannot write to %r0\n"); 10204 break; 10205 case DIF_OP_SETS: 10206 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 10207 err += efunc(pc, "invalid string ref %u\n", 10208 DIF_INSTR_STRING(instr)); 10209 } 10210 if (rd >= nregs) 10211 err += efunc(pc, "invalid register %u\n", rd); 10212 if (rd == 0) 10213 err += efunc(pc, "cannot write to %r0\n"); 10214 break; 10215 case DIF_OP_LDGA: 10216 case DIF_OP_LDTA: 10217 if (r1 > DIF_VAR_ARRAY_MAX) 10218 err += efunc(pc, "invalid array %u\n", r1); 10219 if (r2 >= nregs) 10220 err += efunc(pc, "invalid register %u\n", r2); 10221 if (rd >= nregs) 10222 err += efunc(pc, "invalid register %u\n", rd); 10223 if (rd == 0) 10224 err += efunc(pc, "cannot write to %r0\n"); 10225 break; 10226 case DIF_OP_LDGS: 10227 case DIF_OP_LDTS: 10228 case DIF_OP_LDLS: 10229 case DIF_OP_LDGAA: 10230 case DIF_OP_LDTAA: 10231 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 10232 err += efunc(pc, "invalid variable %u\n", v); 10233 if (rd >= nregs) 10234 err += efunc(pc, "invalid register %u\n", rd); 10235 if (rd == 0) 10236 err += efunc(pc, "cannot write to %r0\n"); 10237 break; 10238 case DIF_OP_STGS: 10239 case DIF_OP_STTS: 10240 case DIF_OP_STLS: 10241 case DIF_OP_STGAA: 10242 case DIF_OP_STTAA: 10243 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 10244 err += efunc(pc, "invalid variable %u\n", v); 10245 if (rs >= nregs) 10246 err += efunc(pc, "invalid register %u\n", rd); 10247 break; 10248 case DIF_OP_CALL: 10249 if (subr > DIF_SUBR_MAX) 10250 err += efunc(pc, "invalid subr %u\n", subr); 10251 if (rd >= nregs) 10252 err += efunc(pc, "invalid register %u\n", rd); 10253 if (rd == 0) 10254 err += efunc(pc, "cannot write to %r0\n"); 10255 10256 if (subr == DIF_SUBR_COPYOUT || 10257 subr == DIF_SUBR_COPYOUTSTR) { 10258 dp->dtdo_destructive = 1; 10259 } 10260 if (subr == DIF_SUBR_GETF) { 10261 /* 10262 * If we have a getf() we need to record that 10263 * in our state. Note that our state can be 10264 * NULL if this is a helper -- but in that 10265 * case, the call to getf() is itself illegal, 10266 * and will be caught (slightly later) when 10267 * the helper is validated. 10268 */ 10269 if (vstate->dtvs_state != NULL) 10270 vstate->dtvs_state->dts_getf++; 10271 } 10272 10273 break; 10274 case DIF_OP_PUSHTR: 10275 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 10276 err += efunc(pc, "invalid ref type %u\n", type); 10277 if (r2 >= nregs) 10278 err += efunc(pc, "invalid register %u\n", r2); 10279 if (rs >= nregs) 10280 err += efunc(pc, "invalid register %u\n", rs); 10281 break; 10282 case DIF_OP_PUSHTV: 10283 if (type != DIF_TYPE_CTF) 10284 err += efunc(pc, "invalid val type %u\n", type); 10285 if (r2 >= nregs) 10286 err += efunc(pc, "invalid register %u\n", r2); 10287 if (rs >= nregs) 10288 err += efunc(pc, "invalid register %u\n", rs); 10289 break; 10290 default: 10291 err += efunc(pc, "invalid opcode %u\n", 10292 DIF_INSTR_OP(instr)); 10293 } 10294 } 10295 10296 if (dp->dtdo_len != 0 && 10297 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 10298 err += efunc(dp->dtdo_len - 1, 10299 "expected 'ret' as last DIF instruction\n"); 10300 } 10301 10302 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 10303 /* 10304 * If we're not returning by reference, the size must be either 10305 * 0 or the size of one of the base types. 10306 */ 10307 switch (dp->dtdo_rtype.dtdt_size) { 10308 case 0: 10309 case sizeof (uint8_t): 10310 case sizeof (uint16_t): 10311 case sizeof (uint32_t): 10312 case sizeof (uint64_t): 10313 break; 10314 10315 default: 10316 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 10317 } 10318 } 10319 10320 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 10321 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 10322 dtrace_diftype_t *vt, *et; 10323 uint_t id, ndx; 10324 10325 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 10326 v->dtdv_scope != DIFV_SCOPE_THREAD && 10327 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 10328 err += efunc(i, "unrecognized variable scope %d\n", 10329 v->dtdv_scope); 10330 break; 10331 } 10332 10333 if (v->dtdv_kind != DIFV_KIND_ARRAY && 10334 v->dtdv_kind != DIFV_KIND_SCALAR) { 10335 err += efunc(i, "unrecognized variable type %d\n", 10336 v->dtdv_kind); 10337 break; 10338 } 10339 10340 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 10341 err += efunc(i, "%d exceeds variable id limit\n", id); 10342 break; 10343 } 10344 10345 if (id < DIF_VAR_OTHER_UBASE) 10346 continue; 10347 10348 /* 10349 * For user-defined variables, we need to check that this 10350 * definition is identical to any previous definition that we 10351 * encountered. 10352 */ 10353 ndx = id - DIF_VAR_OTHER_UBASE; 10354 10355 switch (v->dtdv_scope) { 10356 case DIFV_SCOPE_GLOBAL: 10357 if (maxglobal == -1 || ndx > maxglobal) 10358 maxglobal = ndx; 10359 10360 if (ndx < vstate->dtvs_nglobals) { 10361 dtrace_statvar_t *svar; 10362 10363 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 10364 existing = &svar->dtsv_var; 10365 } 10366 10367 break; 10368 10369 case DIFV_SCOPE_THREAD: 10370 if (maxtlocal == -1 || ndx > maxtlocal) 10371 maxtlocal = ndx; 10372 10373 if (ndx < vstate->dtvs_ntlocals) 10374 existing = &vstate->dtvs_tlocals[ndx]; 10375 break; 10376 10377 case DIFV_SCOPE_LOCAL: 10378 if (maxlocal == -1 || ndx > maxlocal) 10379 maxlocal = ndx; 10380 10381 if (ndx < vstate->dtvs_nlocals) { 10382 dtrace_statvar_t *svar; 10383 10384 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 10385 existing = &svar->dtsv_var; 10386 } 10387 10388 break; 10389 } 10390 10391 vt = &v->dtdv_type; 10392 10393 if (vt->dtdt_flags & DIF_TF_BYREF) { 10394 if (vt->dtdt_size == 0) { 10395 err += efunc(i, "zero-sized variable\n"); 10396 break; 10397 } 10398 10399 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 10400 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 10401 vt->dtdt_size > dtrace_statvar_maxsize) { 10402 err += efunc(i, "oversized by-ref static\n"); 10403 break; 10404 } 10405 } 10406 10407 if (existing == NULL || existing->dtdv_id == 0) 10408 continue; 10409 10410 ASSERT(existing->dtdv_id == v->dtdv_id); 10411 ASSERT(existing->dtdv_scope == v->dtdv_scope); 10412 10413 if (existing->dtdv_kind != v->dtdv_kind) 10414 err += efunc(i, "%d changed variable kind\n", id); 10415 10416 et = &existing->dtdv_type; 10417 10418 if (vt->dtdt_flags != et->dtdt_flags) { 10419 err += efunc(i, "%d changed variable type flags\n", id); 10420 break; 10421 } 10422 10423 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 10424 err += efunc(i, "%d changed variable type size\n", id); 10425 break; 10426 } 10427 } 10428 10429 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 10430 dif_instr_t instr = dp->dtdo_buf[pc]; 10431 10432 uint_t v = DIF_INSTR_VAR(instr); 10433 uint_t op = DIF_INSTR_OP(instr); 10434 10435 switch (op) { 10436 case DIF_OP_LDGS: 10437 case DIF_OP_LDGAA: 10438 case DIF_OP_STGS: 10439 case DIF_OP_STGAA: 10440 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 10441 err += efunc(pc, "invalid variable %u\n", v); 10442 break; 10443 case DIF_OP_LDTS: 10444 case DIF_OP_LDTAA: 10445 case DIF_OP_STTS: 10446 case DIF_OP_STTAA: 10447 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 10448 err += efunc(pc, "invalid variable %u\n", v); 10449 break; 10450 case DIF_OP_LDLS: 10451 case DIF_OP_STLS: 10452 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 10453 err += efunc(pc, "invalid variable %u\n", v); 10454 break; 10455 default: 10456 break; 10457 } 10458 } 10459 10460 return (err); 10461 } 10462 10463 /* 10464 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 10465 * are much more constrained than normal DIFOs. Specifically, they may 10466 * not: 10467 * 10468 * 1. Make calls to subroutines other than copyin(), copyinstr() or 10469 * miscellaneous string routines 10470 * 2. Access DTrace variables other than the args[] array, and the 10471 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 10472 * 3. Have thread-local variables. 10473 * 4. Have dynamic variables. 10474 */ 10475 static int 10476 dtrace_difo_validate_helper(dtrace_difo_t *dp) 10477 { 10478 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 10479 int err = 0; 10480 uint_t pc; 10481 10482 for (pc = 0; pc < dp->dtdo_len; pc++) { 10483 dif_instr_t instr = dp->dtdo_buf[pc]; 10484 10485 uint_t v = DIF_INSTR_VAR(instr); 10486 uint_t subr = DIF_INSTR_SUBR(instr); 10487 uint_t op = DIF_INSTR_OP(instr); 10488 10489 switch (op) { 10490 case DIF_OP_OR: 10491 case DIF_OP_XOR: 10492 case DIF_OP_AND: 10493 case DIF_OP_SLL: 10494 case DIF_OP_SRL: 10495 case DIF_OP_SRA: 10496 case DIF_OP_SUB: 10497 case DIF_OP_ADD: 10498 case DIF_OP_MUL: 10499 case DIF_OP_SDIV: 10500 case DIF_OP_UDIV: 10501 case DIF_OP_SREM: 10502 case DIF_OP_UREM: 10503 case DIF_OP_COPYS: 10504 case DIF_OP_NOT: 10505 case DIF_OP_MOV: 10506 case DIF_OP_RLDSB: 10507 case DIF_OP_RLDSH: 10508 case DIF_OP_RLDSW: 10509 case DIF_OP_RLDUB: 10510 case DIF_OP_RLDUH: 10511 case DIF_OP_RLDUW: 10512 case DIF_OP_RLDX: 10513 case DIF_OP_ULDSB: 10514 case DIF_OP_ULDSH: 10515 case DIF_OP_ULDSW: 10516 case DIF_OP_ULDUB: 10517 case DIF_OP_ULDUH: 10518 case DIF_OP_ULDUW: 10519 case DIF_OP_ULDX: 10520 case DIF_OP_STB: 10521 case DIF_OP_STH: 10522 case DIF_OP_STW: 10523 case DIF_OP_STX: 10524 case DIF_OP_ALLOCS: 10525 case DIF_OP_CMP: 10526 case DIF_OP_SCMP: 10527 case DIF_OP_TST: 10528 case DIF_OP_BA: 10529 case DIF_OP_BE: 10530 case DIF_OP_BNE: 10531 case DIF_OP_BG: 10532 case DIF_OP_BGU: 10533 case DIF_OP_BGE: 10534 case DIF_OP_BGEU: 10535 case DIF_OP_BL: 10536 case DIF_OP_BLU: 10537 case DIF_OP_BLE: 10538 case DIF_OP_BLEU: 10539 case DIF_OP_RET: 10540 case DIF_OP_NOP: 10541 case DIF_OP_POPTS: 10542 case DIF_OP_FLUSHTS: 10543 case DIF_OP_SETX: 10544 case DIF_OP_SETS: 10545 case DIF_OP_LDGA: 10546 case DIF_OP_LDLS: 10547 case DIF_OP_STGS: 10548 case DIF_OP_STLS: 10549 case DIF_OP_PUSHTR: 10550 case DIF_OP_PUSHTV: 10551 break; 10552 10553 case DIF_OP_LDGS: 10554 if (v >= DIF_VAR_OTHER_UBASE) 10555 break; 10556 10557 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 10558 break; 10559 10560 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 10561 v == DIF_VAR_PPID || v == DIF_VAR_TID || 10562 v == DIF_VAR_EXECARGS || 10563 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 10564 v == DIF_VAR_UID || v == DIF_VAR_GID) 10565 break; 10566 10567 err += efunc(pc, "illegal variable %u\n", v); 10568 break; 10569 10570 case DIF_OP_LDTA: 10571 case DIF_OP_LDTS: 10572 case DIF_OP_LDGAA: 10573 case DIF_OP_LDTAA: 10574 err += efunc(pc, "illegal dynamic variable load\n"); 10575 break; 10576 10577 case DIF_OP_STTS: 10578 case DIF_OP_STGAA: 10579 case DIF_OP_STTAA: 10580 err += efunc(pc, "illegal dynamic variable store\n"); 10581 break; 10582 10583 case DIF_OP_CALL: 10584 if (subr == DIF_SUBR_ALLOCA || 10585 subr == DIF_SUBR_BCOPY || 10586 subr == DIF_SUBR_COPYIN || 10587 subr == DIF_SUBR_COPYINTO || 10588 subr == DIF_SUBR_COPYINSTR || 10589 subr == DIF_SUBR_INDEX || 10590 subr == DIF_SUBR_INET_NTOA || 10591 subr == DIF_SUBR_INET_NTOA6 || 10592 subr == DIF_SUBR_INET_NTOP || 10593 subr == DIF_SUBR_JSON || 10594 subr == DIF_SUBR_LLTOSTR || 10595 subr == DIF_SUBR_STRTOLL || 10596 subr == DIF_SUBR_RINDEX || 10597 subr == DIF_SUBR_STRCHR || 10598 subr == DIF_SUBR_STRJOIN || 10599 subr == DIF_SUBR_STRRCHR || 10600 subr == DIF_SUBR_STRSTR || 10601 subr == DIF_SUBR_HTONS || 10602 subr == DIF_SUBR_HTONL || 10603 subr == DIF_SUBR_HTONLL || 10604 subr == DIF_SUBR_NTOHS || 10605 subr == DIF_SUBR_NTOHL || 10606 subr == DIF_SUBR_NTOHLL || 10607 subr == DIF_SUBR_MEMREF) 10608 break; 10609 10610 #if defined(__FreeBSD__) || defined(__NetBSD__) 10611 if (subr == DIF_SUBR_MEMSTR) 10612 break; 10613 #endif 10614 10615 err += efunc(pc, "invalid subr %u\n", subr); 10616 break; 10617 10618 default: 10619 err += efunc(pc, "invalid opcode %u\n", 10620 DIF_INSTR_OP(instr)); 10621 } 10622 } 10623 10624 return (err); 10625 } 10626 10627 /* 10628 * Returns 1 if the expression in the DIF object can be cached on a per-thread 10629 * basis; 0 if not. 10630 */ 10631 static int 10632 dtrace_difo_cacheable(dtrace_difo_t *dp) 10633 { 10634 int i; 10635 10636 if (dp == NULL) 10637 return (0); 10638 10639 for (i = 0; i < dp->dtdo_varlen; i++) { 10640 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10641 10642 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 10643 continue; 10644 10645 switch (v->dtdv_id) { 10646 case DIF_VAR_CURTHREAD: 10647 case DIF_VAR_PID: 10648 case DIF_VAR_TID: 10649 case DIF_VAR_EXECARGS: 10650 case DIF_VAR_EXECNAME: 10651 case DIF_VAR_ZONENAME: 10652 break; 10653 10654 default: 10655 return (0); 10656 } 10657 } 10658 10659 /* 10660 * This DIF object may be cacheable. Now we need to look for any 10661 * array loading instructions, any memory loading instructions, or 10662 * any stores to thread-local variables. 10663 */ 10664 for (i = 0; i < dp->dtdo_len; i++) { 10665 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 10666 10667 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 10668 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 10669 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 10670 op == DIF_OP_LDGA || op == DIF_OP_STTS) 10671 return (0); 10672 } 10673 10674 return (1); 10675 } 10676 10677 static void 10678 dtrace_difo_hold(dtrace_difo_t *dp) 10679 { 10680 int i; 10681 10682 ASSERT(MUTEX_HELD(&dtrace_lock)); 10683 10684 dp->dtdo_refcnt++; 10685 ASSERT(dp->dtdo_refcnt != 0); 10686 10687 /* 10688 * We need to check this DIF object for references to the variable 10689 * DIF_VAR_VTIMESTAMP. 10690 */ 10691 for (i = 0; i < dp->dtdo_varlen; i++) { 10692 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10693 10694 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10695 continue; 10696 10697 if (dtrace_vtime_references++ == 0) 10698 dtrace_vtime_enable(); 10699 } 10700 } 10701 10702 /* 10703 * This routine calculates the dynamic variable chunksize for a given DIF 10704 * object. The calculation is not fool-proof, and can probably be tricked by 10705 * malicious DIF -- but it works for all compiler-generated DIF. Because this 10706 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 10707 * if a dynamic variable size exceeds the chunksize. 10708 */ 10709 static void 10710 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10711 { 10712 uint64_t sval = 0; 10713 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 10714 const dif_instr_t *text = dp->dtdo_buf; 10715 uint_t pc, srd = 0; 10716 uint_t ttop = 0; 10717 size_t size, ksize; 10718 uint_t id, i; 10719 10720 for (pc = 0; pc < dp->dtdo_len; pc++) { 10721 dif_instr_t instr = text[pc]; 10722 uint_t op = DIF_INSTR_OP(instr); 10723 uint_t rd = DIF_INSTR_RD(instr); 10724 uint_t r1 = DIF_INSTR_R1(instr); 10725 uint_t nkeys = 0; 10726 uchar_t scope = 0; 10727 10728 dtrace_key_t *key = tupregs; 10729 10730 switch (op) { 10731 case DIF_OP_SETX: 10732 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 10733 srd = rd; 10734 continue; 10735 10736 case DIF_OP_STTS: 10737 key = &tupregs[DIF_DTR_NREGS]; 10738 key[0].dttk_size = 0; 10739 key[1].dttk_size = 0; 10740 nkeys = 2; 10741 scope = DIFV_SCOPE_THREAD; 10742 break; 10743 10744 case DIF_OP_STGAA: 10745 case DIF_OP_STTAA: 10746 nkeys = ttop; 10747 10748 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 10749 key[nkeys++].dttk_size = 0; 10750 10751 key[nkeys++].dttk_size = 0; 10752 10753 if (op == DIF_OP_STTAA) { 10754 scope = DIFV_SCOPE_THREAD; 10755 } else { 10756 scope = DIFV_SCOPE_GLOBAL; 10757 } 10758 10759 break; 10760 10761 case DIF_OP_PUSHTR: 10762 if (ttop == DIF_DTR_NREGS) 10763 return; 10764 10765 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10766 /* 10767 * If the register for the size of the "pushtr" 10768 * is %r0 (or the value is 0) and the type is 10769 * a string, we'll use the system-wide default 10770 * string size. 10771 */ 10772 tupregs[ttop++].dttk_size = 10773 dtrace_strsize_default; 10774 } else { 10775 if (srd == 0) 10776 return; 10777 10778 if (sval > LONG_MAX) 10779 return; 10780 10781 tupregs[ttop++].dttk_size = sval; 10782 } 10783 10784 break; 10785 10786 case DIF_OP_PUSHTV: 10787 if (ttop == DIF_DTR_NREGS) 10788 return; 10789 10790 tupregs[ttop++].dttk_size = 0; 10791 break; 10792 10793 case DIF_OP_FLUSHTS: 10794 ttop = 0; 10795 break; 10796 10797 case DIF_OP_POPTS: 10798 if (ttop != 0) 10799 ttop--; 10800 break; 10801 } 10802 10803 sval = 0; 10804 srd = 0; 10805 10806 if (nkeys == 0) 10807 continue; 10808 10809 /* 10810 * We have a dynamic variable allocation; calculate its size. 10811 */ 10812 for (ksize = 0, i = 0; i < nkeys; i++) 10813 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10814 10815 size = sizeof (dtrace_dynvar_t); 10816 size += sizeof (dtrace_key_t) * (nkeys - 1); 10817 size += ksize; 10818 10819 /* 10820 * Now we need to determine the size of the stored data. 10821 */ 10822 id = DIF_INSTR_VAR(instr); 10823 10824 for (i = 0; i < dp->dtdo_varlen; i++) { 10825 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10826 10827 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10828 size += v->dtdv_type.dtdt_size; 10829 break; 10830 } 10831 } 10832 10833 if (i == dp->dtdo_varlen) 10834 return; 10835 10836 /* 10837 * We have the size. If this is larger than the chunk size 10838 * for our dynamic variable state, reset the chunk size. 10839 */ 10840 size = P2ROUNDUP(size, sizeof (uint64_t)); 10841 10842 /* 10843 * Before setting the chunk size, check that we're not going 10844 * to set it to a negative value... 10845 */ 10846 if (size > LONG_MAX) 10847 return; 10848 10849 /* 10850 * ...and make certain that we didn't badly overflow. 10851 */ 10852 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10853 return; 10854 10855 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10856 vstate->dtvs_dynvars.dtds_chunksize = size; 10857 } 10858 } 10859 10860 static void 10861 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10862 { 10863 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10864 uint_t id; 10865 10866 ASSERT(MUTEX_HELD(&dtrace_lock)); 10867 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10868 10869 for (i = 0; i < dp->dtdo_varlen; i++) { 10870 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10871 dtrace_statvar_t *svar, ***svarp = NULL; 10872 size_t dsize = 0; 10873 uint8_t scope = v->dtdv_scope; 10874 int *np = NULL; 10875 10876 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10877 continue; 10878 10879 id -= DIF_VAR_OTHER_UBASE; 10880 10881 switch (scope) { 10882 case DIFV_SCOPE_THREAD: 10883 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10884 dtrace_difv_t *tlocals; 10885 10886 if ((ntlocals = (otlocals << 1)) == 0) 10887 ntlocals = 1; 10888 10889 osz = otlocals * sizeof (dtrace_difv_t); 10890 nsz = ntlocals * sizeof (dtrace_difv_t); 10891 10892 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10893 10894 if (osz != 0) { 10895 bcopy(vstate->dtvs_tlocals, 10896 tlocals, osz); 10897 kmem_free(vstate->dtvs_tlocals, osz); 10898 } 10899 10900 vstate->dtvs_tlocals = tlocals; 10901 vstate->dtvs_ntlocals = ntlocals; 10902 } 10903 10904 vstate->dtvs_tlocals[id] = *v; 10905 continue; 10906 10907 case DIFV_SCOPE_LOCAL: 10908 np = &vstate->dtvs_nlocals; 10909 svarp = &vstate->dtvs_locals; 10910 10911 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10912 dsize = NCPU * (v->dtdv_type.dtdt_size + 10913 sizeof (uint64_t)); 10914 else 10915 dsize = NCPU * sizeof (uint64_t); 10916 10917 break; 10918 10919 case DIFV_SCOPE_GLOBAL: 10920 np = &vstate->dtvs_nglobals; 10921 svarp = &vstate->dtvs_globals; 10922 10923 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10924 dsize = v->dtdv_type.dtdt_size + 10925 sizeof (uint64_t); 10926 10927 break; 10928 10929 default: 10930 ASSERT(0); 10931 } 10932 10933 while (id >= (oldsvars = *np)) { 10934 dtrace_statvar_t **statics; 10935 int newsvars, oldsize, newsize; 10936 10937 if ((newsvars = (oldsvars << 1)) == 0) 10938 newsvars = 1; 10939 10940 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10941 newsize = newsvars * sizeof (dtrace_statvar_t *); 10942 10943 statics = kmem_zalloc(newsize, KM_SLEEP); 10944 10945 if (oldsize != 0) { 10946 bcopy(*svarp, statics, oldsize); 10947 kmem_free(*svarp, oldsize); 10948 } 10949 10950 *svarp = statics; 10951 *np = newsvars; 10952 } 10953 10954 if ((svar = (*svarp)[id]) == NULL) { 10955 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10956 svar->dtsv_var = *v; 10957 10958 if ((svar->dtsv_size = dsize) != 0) { 10959 svar->dtsv_data = (uint64_t)(uintptr_t) 10960 kmem_zalloc(dsize, KM_SLEEP); 10961 } 10962 10963 (*svarp)[id] = svar; 10964 } 10965 10966 svar->dtsv_refcnt++; 10967 } 10968 10969 dtrace_difo_chunksize(dp, vstate); 10970 dtrace_difo_hold(dp); 10971 } 10972 10973 static dtrace_difo_t * 10974 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10975 { 10976 dtrace_difo_t *new; 10977 size_t sz; 10978 10979 ASSERT(dp->dtdo_buf != NULL); 10980 ASSERT(dp->dtdo_refcnt != 0); 10981 10982 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10983 10984 ASSERT(dp->dtdo_buf != NULL); 10985 sz = dp->dtdo_len * sizeof (dif_instr_t); 10986 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10987 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10988 new->dtdo_len = dp->dtdo_len; 10989 10990 if (dp->dtdo_strtab != NULL) { 10991 ASSERT(dp->dtdo_strlen != 0); 10992 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10993 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10994 new->dtdo_strlen = dp->dtdo_strlen; 10995 } 10996 10997 if (dp->dtdo_inttab != NULL) { 10998 ASSERT(dp->dtdo_intlen != 0); 10999 sz = dp->dtdo_intlen * sizeof (uint64_t); 11000 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 11001 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 11002 new->dtdo_intlen = dp->dtdo_intlen; 11003 } 11004 11005 if (dp->dtdo_vartab != NULL) { 11006 ASSERT(dp->dtdo_varlen != 0); 11007 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 11008 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 11009 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 11010 new->dtdo_varlen = dp->dtdo_varlen; 11011 } 11012 11013 dtrace_difo_init(new, vstate); 11014 return (new); 11015 } 11016 11017 static void 11018 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 11019 { 11020 int i; 11021 11022 ASSERT(dp->dtdo_refcnt == 0); 11023 11024 for (i = 0; i < dp->dtdo_varlen; i++) { 11025 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11026 dtrace_statvar_t *svar, **svarp = NULL; 11027 uint_t id; 11028 uint8_t scope = v->dtdv_scope; 11029 int *np = NULL; 11030 11031 switch (scope) { 11032 case DIFV_SCOPE_THREAD: 11033 continue; 11034 11035 case DIFV_SCOPE_LOCAL: 11036 np = &vstate->dtvs_nlocals; 11037 svarp = vstate->dtvs_locals; 11038 break; 11039 11040 case DIFV_SCOPE_GLOBAL: 11041 np = &vstate->dtvs_nglobals; 11042 svarp = vstate->dtvs_globals; 11043 break; 11044 11045 default: 11046 ASSERT(0); 11047 } 11048 11049 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 11050 continue; 11051 11052 id -= DIF_VAR_OTHER_UBASE; 11053 ASSERT(id < *np); 11054 11055 svar = svarp[id]; 11056 ASSERT(svar != NULL); 11057 ASSERT(svar->dtsv_refcnt > 0); 11058 11059 if (--svar->dtsv_refcnt > 0) 11060 continue; 11061 11062 if (svar->dtsv_size != 0) { 11063 ASSERT(svar->dtsv_data != 0); 11064 kmem_free((void *)(uintptr_t)svar->dtsv_data, 11065 svar->dtsv_size); 11066 } 11067 11068 kmem_free(svar, sizeof (dtrace_statvar_t)); 11069 svarp[id] = NULL; 11070 } 11071 11072 if (dp->dtdo_buf != NULL) 11073 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 11074 if (dp->dtdo_inttab != NULL) 11075 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 11076 if (dp->dtdo_strtab != NULL) 11077 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 11078 if (dp->dtdo_vartab != NULL) 11079 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 11080 11081 kmem_free(dp, sizeof (dtrace_difo_t)); 11082 } 11083 11084 static void 11085 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 11086 { 11087 int i; 11088 11089 ASSERT(MUTEX_HELD(&dtrace_lock)); 11090 ASSERT(dp->dtdo_refcnt != 0); 11091 11092 for (i = 0; i < dp->dtdo_varlen; i++) { 11093 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11094 11095 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 11096 continue; 11097 11098 ASSERT(dtrace_vtime_references > 0); 11099 if (--dtrace_vtime_references == 0) 11100 dtrace_vtime_disable(); 11101 } 11102 11103 if (--dp->dtdo_refcnt == 0) 11104 dtrace_difo_destroy(dp, vstate); 11105 } 11106 11107 /* 11108 * DTrace Format Functions 11109 */ 11110 static uint16_t 11111 dtrace_format_add(dtrace_state_t *state, char *str) 11112 { 11113 char *fmt, **new; 11114 uint16_t ndx, len = strlen(str) + 1; 11115 11116 fmt = kmem_zalloc(len, KM_SLEEP); 11117 bcopy(str, fmt, len); 11118 11119 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 11120 if (state->dts_formats[ndx] == NULL) { 11121 state->dts_formats[ndx] = fmt; 11122 return (ndx + 1); 11123 } 11124 } 11125 11126 if (state->dts_nformats == USHRT_MAX) { 11127 /* 11128 * This is only likely if a denial-of-service attack is being 11129 * attempted. As such, it's okay to fail silently here. 11130 */ 11131 kmem_free(fmt, len); 11132 return (0); 11133 } 11134 11135 /* 11136 * For simplicity, we always resize the formats array to be exactly the 11137 * number of formats. 11138 */ 11139 ndx = state->dts_nformats++; 11140 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 11141 11142 if (state->dts_formats != NULL) { 11143 ASSERT(ndx != 0); 11144 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 11145 kmem_free(state->dts_formats, ndx * sizeof (char *)); 11146 } 11147 11148 state->dts_formats = new; 11149 state->dts_formats[ndx] = fmt; 11150 11151 return (ndx + 1); 11152 } 11153 11154 static void 11155 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 11156 { 11157 char *fmt; 11158 11159 ASSERT(state->dts_formats != NULL); 11160 ASSERT(format <= state->dts_nformats); 11161 ASSERT(state->dts_formats[format - 1] != NULL); 11162 11163 fmt = state->dts_formats[format - 1]; 11164 kmem_free(fmt, strlen(fmt) + 1); 11165 state->dts_formats[format - 1] = NULL; 11166 } 11167 11168 static void 11169 dtrace_format_destroy(dtrace_state_t *state) 11170 { 11171 int i; 11172 11173 if (state->dts_nformats == 0) { 11174 ASSERT(state->dts_formats == NULL); 11175 return; 11176 } 11177 11178 ASSERT(state->dts_formats != NULL); 11179 11180 for (i = 0; i < state->dts_nformats; i++) { 11181 char *fmt = state->dts_formats[i]; 11182 11183 if (fmt == NULL) 11184 continue; 11185 11186 kmem_free(fmt, strlen(fmt) + 1); 11187 } 11188 11189 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 11190 state->dts_nformats = 0; 11191 state->dts_formats = NULL; 11192 } 11193 11194 /* 11195 * DTrace Predicate Functions 11196 */ 11197 static dtrace_predicate_t * 11198 dtrace_predicate_create(dtrace_difo_t *dp) 11199 { 11200 dtrace_predicate_t *pred; 11201 11202 ASSERT(MUTEX_HELD(&dtrace_lock)); 11203 ASSERT(dp->dtdo_refcnt != 0); 11204 11205 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 11206 pred->dtp_difo = dp; 11207 pred->dtp_refcnt = 1; 11208 11209 if (!dtrace_difo_cacheable(dp)) 11210 return (pred); 11211 11212 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 11213 /* 11214 * This is only theoretically possible -- we have had 2^32 11215 * cacheable predicates on this machine. We cannot allow any 11216 * more predicates to become cacheable: as unlikely as it is, 11217 * there may be a thread caching a (now stale) predicate cache 11218 * ID. (N.B.: the temptation is being successfully resisted to 11219 * have this cmn_err() "Holy shit -- we executed this code!") 11220 */ 11221 return (pred); 11222 } 11223 11224 pred->dtp_cacheid = dtrace_predcache_id++; 11225 11226 return (pred); 11227 } 11228 11229 static void 11230 dtrace_predicate_hold(dtrace_predicate_t *pred) 11231 { 11232 ASSERT(MUTEX_HELD(&dtrace_lock)); 11233 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 11234 ASSERT(pred->dtp_refcnt > 0); 11235 11236 pred->dtp_refcnt++; 11237 } 11238 11239 static void 11240 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 11241 { 11242 dtrace_difo_t *dp = pred->dtp_difo; 11243 11244 ASSERT(MUTEX_HELD(&dtrace_lock)); 11245 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 11246 ASSERT(pred->dtp_refcnt > 0); 11247 11248 if (--pred->dtp_refcnt == 0) { 11249 dtrace_difo_release(pred->dtp_difo, vstate); 11250 kmem_free(pred, sizeof (dtrace_predicate_t)); 11251 } 11252 } 11253 11254 /* 11255 * DTrace Action Description Functions 11256 */ 11257 static dtrace_actdesc_t * 11258 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 11259 uint64_t uarg, uint64_t arg) 11260 { 11261 dtrace_actdesc_t *act; 11262 11263 #ifdef illumos 11264 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 11265 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 11266 #endif 11267 11268 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 11269 act->dtad_kind = kind; 11270 act->dtad_ntuple = ntuple; 11271 act->dtad_uarg = uarg; 11272 act->dtad_arg = arg; 11273 act->dtad_refcnt = 1; 11274 11275 return (act); 11276 } 11277 11278 static void 11279 dtrace_actdesc_hold(dtrace_actdesc_t *act) 11280 { 11281 ASSERT(act->dtad_refcnt >= 1); 11282 act->dtad_refcnt++; 11283 } 11284 11285 static void 11286 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 11287 { 11288 dtrace_actkind_t kind = act->dtad_kind; 11289 dtrace_difo_t *dp; 11290 11291 ASSERT(act->dtad_refcnt >= 1); 11292 11293 if (--act->dtad_refcnt != 0) 11294 return; 11295 11296 if ((dp = act->dtad_difo) != NULL) 11297 dtrace_difo_release(dp, vstate); 11298 11299 if (DTRACEACT_ISPRINTFLIKE(kind)) { 11300 char *str = (char *)(uintptr_t)act->dtad_arg; 11301 11302 #ifdef illumos 11303 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 11304 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 11305 #endif 11306 11307 if (str != NULL) 11308 kmem_free(str, strlen(str) + 1); 11309 } 11310 11311 kmem_free(act, sizeof (dtrace_actdesc_t)); 11312 } 11313 11314 /* 11315 * DTrace ECB Functions 11316 */ 11317 static dtrace_ecb_t * 11318 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 11319 { 11320 dtrace_ecb_t *ecb; 11321 dtrace_epid_t epid; 11322 11323 ASSERT(MUTEX_HELD(&dtrace_lock)); 11324 11325 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 11326 ecb->dte_predicate = NULL; 11327 ecb->dte_probe = probe; 11328 11329 /* 11330 * The default size is the size of the default action: recording 11331 * the header. 11332 */ 11333 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 11334 ecb->dte_alignment = sizeof (dtrace_epid_t); 11335 11336 epid = state->dts_epid++; 11337 11338 if (epid - 1 >= state->dts_necbs) { 11339 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 11340 int necbs = state->dts_necbs << 1; 11341 11342 ASSERT(epid == state->dts_necbs + 1); 11343 11344 if (necbs == 0) { 11345 ASSERT(oecbs == NULL); 11346 necbs = 1; 11347 } 11348 11349 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 11350 11351 if (oecbs != NULL) 11352 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 11353 11354 dtrace_membar_producer(); 11355 state->dts_ecbs = ecbs; 11356 11357 if (oecbs != NULL) { 11358 /* 11359 * If this state is active, we must dtrace_sync() 11360 * before we can free the old dts_ecbs array: we're 11361 * coming in hot, and there may be active ring 11362 * buffer processing (which indexes into the dts_ecbs 11363 * array) on another CPU. 11364 */ 11365 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 11366 dtrace_sync(); 11367 11368 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 11369 } 11370 11371 dtrace_membar_producer(); 11372 state->dts_necbs = necbs; 11373 } 11374 11375 ecb->dte_state = state; 11376 11377 ASSERT(state->dts_ecbs[epid - 1] == NULL); 11378 dtrace_membar_producer(); 11379 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 11380 11381 return (ecb); 11382 } 11383 11384 static int 11385 dtrace_ecb_enable(dtrace_ecb_t *ecb) 11386 { 11387 dtrace_probe_t *probe = ecb->dte_probe; 11388 11389 ASSERT(MUTEX_HELD(&cpu_lock)); 11390 ASSERT(MUTEX_HELD(&dtrace_lock)); 11391 ASSERT(ecb->dte_next == NULL); 11392 11393 if (probe == NULL) { 11394 /* 11395 * This is the NULL probe -- there's nothing to do. 11396 */ 11397 return (0); 11398 } 11399 11400 if (probe->dtpr_ecb == NULL) { 11401 dtrace_provider_t *prov = probe->dtpr_provider; 11402 11403 /* 11404 * We're the first ECB on this probe. 11405 */ 11406 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 11407 11408 if (ecb->dte_predicate != NULL) 11409 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 11410 11411 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 11412 probe->dtpr_id, probe->dtpr_arg)); 11413 } else { 11414 /* 11415 * This probe is already active. Swing the last pointer to 11416 * point to the new ECB, and issue a dtrace_sync() to assure 11417 * that all CPUs have seen the change. 11418 */ 11419 ASSERT(probe->dtpr_ecb_last != NULL); 11420 probe->dtpr_ecb_last->dte_next = ecb; 11421 probe->dtpr_ecb_last = ecb; 11422 probe->dtpr_predcache = 0; 11423 11424 dtrace_sync(); 11425 return (0); 11426 } 11427 } 11428 11429 static int 11430 dtrace_ecb_resize(dtrace_ecb_t *ecb) 11431 { 11432 dtrace_action_t *act; 11433 uint32_t curneeded = UINT32_MAX; 11434 uint32_t aggbase = UINT32_MAX; 11435 11436 /* 11437 * If we record anything, we always record the dtrace_rechdr_t. (And 11438 * we always record it first.) 11439 */ 11440 ecb->dte_size = sizeof (dtrace_rechdr_t); 11441 ecb->dte_alignment = sizeof (dtrace_epid_t); 11442 11443 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11444 dtrace_recdesc_t *rec = &act->dta_rec; 11445 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 11446 11447 ecb->dte_alignment = MAX(ecb->dte_alignment, 11448 rec->dtrd_alignment); 11449 11450 if (DTRACEACT_ISAGG(act->dta_kind)) { 11451 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11452 11453 ASSERT(rec->dtrd_size != 0); 11454 ASSERT(agg->dtag_first != NULL); 11455 ASSERT(act->dta_prev->dta_intuple); 11456 ASSERT(aggbase != UINT32_MAX); 11457 ASSERT(curneeded != UINT32_MAX); 11458 11459 agg->dtag_base = aggbase; 11460 11461 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11462 rec->dtrd_offset = curneeded; 11463 if (curneeded + rec->dtrd_size < curneeded) 11464 return (EINVAL); 11465 curneeded += rec->dtrd_size; 11466 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 11467 11468 aggbase = UINT32_MAX; 11469 curneeded = UINT32_MAX; 11470 } else if (act->dta_intuple) { 11471 if (curneeded == UINT32_MAX) { 11472 /* 11473 * This is the first record in a tuple. Align 11474 * curneeded to be at offset 4 in an 8-byte 11475 * aligned block. 11476 */ 11477 ASSERT(act->dta_prev == NULL || 11478 !act->dta_prev->dta_intuple); 11479 ASSERT3U(aggbase, ==, UINT32_MAX); 11480 curneeded = P2PHASEUP(ecb->dte_size, 11481 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 11482 11483 aggbase = curneeded - sizeof (dtrace_aggid_t); 11484 ASSERT(IS_P2ALIGNED(aggbase, 11485 sizeof (uint64_t))); 11486 } 11487 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11488 rec->dtrd_offset = curneeded; 11489 if (curneeded + rec->dtrd_size < curneeded) 11490 return (EINVAL); 11491 curneeded += rec->dtrd_size; 11492 } else { 11493 /* tuples must be followed by an aggregation */ 11494 ASSERT(act->dta_prev == NULL || 11495 !act->dta_prev->dta_intuple); 11496 11497 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 11498 rec->dtrd_alignment); 11499 rec->dtrd_offset = ecb->dte_size; 11500 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 11501 return (EINVAL); 11502 ecb->dte_size += rec->dtrd_size; 11503 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 11504 } 11505 } 11506 11507 if ((act = ecb->dte_action) != NULL && 11508 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 11509 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 11510 /* 11511 * If the size is still sizeof (dtrace_rechdr_t), then all 11512 * actions store no data; set the size to 0. 11513 */ 11514 ecb->dte_size = 0; 11515 } 11516 11517 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 11518 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 11519 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 11520 ecb->dte_needed); 11521 return (0); 11522 } 11523 11524 static dtrace_action_t * 11525 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11526 { 11527 dtrace_aggregation_t *agg; 11528 size_t size = sizeof (uint64_t); 11529 int ntuple = desc->dtad_ntuple; 11530 dtrace_action_t *act; 11531 dtrace_recdesc_t *frec; 11532 dtrace_aggid_t aggid; 11533 dtrace_state_t *state = ecb->dte_state; 11534 11535 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 11536 agg->dtag_ecb = ecb; 11537 11538 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 11539 11540 switch (desc->dtad_kind) { 11541 case DTRACEAGG_MIN: 11542 agg->dtag_initial = INT64_MAX; 11543 agg->dtag_aggregate = dtrace_aggregate_min; 11544 break; 11545 11546 case DTRACEAGG_MAX: 11547 agg->dtag_initial = INT64_MIN; 11548 agg->dtag_aggregate = dtrace_aggregate_max; 11549 break; 11550 11551 case DTRACEAGG_COUNT: 11552 agg->dtag_aggregate = dtrace_aggregate_count; 11553 break; 11554 11555 case DTRACEAGG_QUANTIZE: 11556 agg->dtag_aggregate = dtrace_aggregate_quantize; 11557 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 11558 sizeof (uint64_t); 11559 break; 11560 11561 case DTRACEAGG_LQUANTIZE: { 11562 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 11563 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 11564 11565 agg->dtag_initial = desc->dtad_arg; 11566 agg->dtag_aggregate = dtrace_aggregate_lquantize; 11567 11568 if (step == 0 || levels == 0) 11569 goto err; 11570 11571 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 11572 break; 11573 } 11574 11575 case DTRACEAGG_LLQUANTIZE: { 11576 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 11577 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 11578 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 11579 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 11580 int64_t v; 11581 11582 agg->dtag_initial = desc->dtad_arg; 11583 agg->dtag_aggregate = dtrace_aggregate_llquantize; 11584 11585 if (factor < 2 || low >= high || nsteps < factor) 11586 goto err; 11587 11588 /* 11589 * Now check that the number of steps evenly divides a power 11590 * of the factor. (This assures both integer bucket size and 11591 * linearity within each magnitude.) 11592 */ 11593 for (v = factor; v < nsteps; v *= factor) 11594 continue; 11595 11596 if ((v % nsteps) || (nsteps % factor)) 11597 goto err; 11598 11599 size = (dtrace_aggregate_llquantize_bucket(factor, 11600 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 11601 break; 11602 } 11603 11604 case DTRACEAGG_AVG: 11605 agg->dtag_aggregate = dtrace_aggregate_avg; 11606 size = sizeof (uint64_t) * 2; 11607 break; 11608 11609 case DTRACEAGG_STDDEV: 11610 agg->dtag_aggregate = dtrace_aggregate_stddev; 11611 size = sizeof (uint64_t) * 4; 11612 break; 11613 11614 case DTRACEAGG_SUM: 11615 agg->dtag_aggregate = dtrace_aggregate_sum; 11616 break; 11617 11618 default: 11619 goto err; 11620 } 11621 11622 agg->dtag_action.dta_rec.dtrd_size = size; 11623 11624 if (ntuple == 0) 11625 goto err; 11626 11627 /* 11628 * We must make sure that we have enough actions for the n-tuple. 11629 */ 11630 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 11631 if (DTRACEACT_ISAGG(act->dta_kind)) 11632 break; 11633 11634 if (--ntuple == 0) { 11635 /* 11636 * This is the action with which our n-tuple begins. 11637 */ 11638 agg->dtag_first = act; 11639 goto success; 11640 } 11641 } 11642 11643 /* 11644 * This n-tuple is short by ntuple elements. Return failure. 11645 */ 11646 ASSERT(ntuple != 0); 11647 err: 11648 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11649 return (NULL); 11650 11651 success: 11652 /* 11653 * If the last action in the tuple has a size of zero, it's actually 11654 * an expression argument for the aggregating action. 11655 */ 11656 ASSERT(ecb->dte_action_last != NULL); 11657 act = ecb->dte_action_last; 11658 11659 if (act->dta_kind == DTRACEACT_DIFEXPR) { 11660 ASSERT(act->dta_difo != NULL); 11661 11662 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 11663 agg->dtag_hasarg = 1; 11664 } 11665 11666 /* 11667 * We need to allocate an id for this aggregation. 11668 */ 11669 11670 #ifdef illumos 11671 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 11672 VM_BESTFIT | VM_SLEEP); 11673 #endif 11674 #ifdef __FreeBSD__ 11675 aggid = alloc_unr(state->dts_aggid_arena); 11676 #endif 11677 #ifdef __NetBSD__ 11678 vmem_addr_t offset; 11679 11680 if (vmem_alloc(state->dts_aggid_arena, 1, VM_BESTFIT | VM_SLEEP, 11681 &offset) != 0) 11682 ASSERT(0); 11683 aggid = (dtrace_aggid_t)(uintptr_t)offset; 11684 #endif 11685 11686 if (aggid - 1 >= state->dts_naggregations) { 11687 dtrace_aggregation_t **oaggs = state->dts_aggregations; 11688 dtrace_aggregation_t **aggs; 11689 int naggs = state->dts_naggregations << 1; 11690 int onaggs = state->dts_naggregations; 11691 11692 ASSERT(aggid == state->dts_naggregations + 1); 11693 11694 if (naggs == 0) { 11695 ASSERT(oaggs == NULL); 11696 naggs = 1; 11697 } 11698 11699 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 11700 11701 if (oaggs != NULL) { 11702 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 11703 kmem_free(oaggs, onaggs * sizeof (*aggs)); 11704 } 11705 11706 state->dts_aggregations = aggs; 11707 state->dts_naggregations = naggs; 11708 } 11709 11710 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 11711 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 11712 11713 frec = &agg->dtag_first->dta_rec; 11714 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 11715 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 11716 11717 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 11718 ASSERT(!act->dta_intuple); 11719 act->dta_intuple = 1; 11720 } 11721 11722 return (&agg->dtag_action); 11723 } 11724 11725 static void 11726 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 11727 { 11728 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11729 dtrace_state_t *state = ecb->dte_state; 11730 dtrace_aggid_t aggid = agg->dtag_id; 11731 11732 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 11733 #ifdef illumos 11734 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 11735 #endif 11736 #ifdef __FreeBSD__ 11737 free_unr(state->dts_aggid_arena, aggid); 11738 #endif 11739 #ifdef __NetBSD__ 11740 vmem_free(state->dts_aggid_arena, (uintptr_t)aggid, 1); 11741 #endif 11742 11743 ASSERT(state->dts_aggregations[aggid - 1] == agg); 11744 state->dts_aggregations[aggid - 1] = NULL; 11745 11746 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11747 } 11748 11749 static int 11750 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11751 { 11752 dtrace_action_t *action, *last; 11753 dtrace_difo_t *dp = desc->dtad_difo; 11754 uint32_t size = 0, align = sizeof (uint8_t), mask; 11755 uint16_t format = 0; 11756 dtrace_recdesc_t *rec; 11757 dtrace_state_t *state = ecb->dte_state; 11758 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize; 11759 uint64_t arg = desc->dtad_arg; 11760 11761 ASSERT(MUTEX_HELD(&dtrace_lock)); 11762 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 11763 11764 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 11765 /* 11766 * If this is an aggregating action, there must be neither 11767 * a speculate nor a commit on the action chain. 11768 */ 11769 dtrace_action_t *act; 11770 11771 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11772 if (act->dta_kind == DTRACEACT_COMMIT) 11773 return (EINVAL); 11774 11775 if (act->dta_kind == DTRACEACT_SPECULATE) 11776 return (EINVAL); 11777 } 11778 11779 action = dtrace_ecb_aggregation_create(ecb, desc); 11780 11781 if (action == NULL) 11782 return (EINVAL); 11783 } else { 11784 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 11785 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11786 dp != NULL && dp->dtdo_destructive)) { 11787 state->dts_destructive = 1; 11788 } 11789 11790 switch (desc->dtad_kind) { 11791 case DTRACEACT_PRINTF: 11792 case DTRACEACT_PRINTA: 11793 case DTRACEACT_SYSTEM: 11794 case DTRACEACT_FREOPEN: 11795 case DTRACEACT_DIFEXPR: 11796 /* 11797 * We know that our arg is a string -- turn it into a 11798 * format. 11799 */ 11800 if (arg == 0) { 11801 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11802 desc->dtad_kind == DTRACEACT_DIFEXPR); 11803 format = 0; 11804 } else { 11805 ASSERT(arg != 0); 11806 #ifdef illumos 11807 ASSERT(arg > KERNELBASE); 11808 #endif 11809 format = dtrace_format_add(state, 11810 (char *)(uintptr_t)arg); 11811 } 11812 11813 /*FALLTHROUGH*/ 11814 case DTRACEACT_LIBACT: 11815 case DTRACEACT_TRACEMEM: 11816 case DTRACEACT_TRACEMEM_DYNSIZE: 11817 if (dp == NULL) 11818 return (EINVAL); 11819 11820 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11821 break; 11822 11823 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11824 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11825 return (EINVAL); 11826 11827 size = opt[DTRACEOPT_STRSIZE]; 11828 } 11829 11830 break; 11831 11832 case DTRACEACT_STACK: 11833 if ((nframes = arg) == 0) { 11834 nframes = opt[DTRACEOPT_STACKFRAMES]; 11835 ASSERT(nframes > 0); 11836 arg = nframes; 11837 } 11838 11839 size = nframes * sizeof (pc_t); 11840 break; 11841 11842 case DTRACEACT_JSTACK: 11843 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11844 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11845 11846 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11847 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11848 11849 arg = DTRACE_USTACK_ARG(nframes, strsize); 11850 11851 /*FALLTHROUGH*/ 11852 case DTRACEACT_USTACK: 11853 if (desc->dtad_kind != DTRACEACT_JSTACK && 11854 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11855 strsize = DTRACE_USTACK_STRSIZE(arg); 11856 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11857 ASSERT(nframes > 0); 11858 arg = DTRACE_USTACK_ARG(nframes, strsize); 11859 } 11860 11861 /* 11862 * Save a slot for the pid. 11863 */ 11864 size = (nframes + 1) * sizeof (uint64_t); 11865 size += DTRACE_USTACK_STRSIZE(arg); 11866 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11867 11868 break; 11869 11870 case DTRACEACT_SYM: 11871 case DTRACEACT_MOD: 11872 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11873 sizeof (uint64_t)) || 11874 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11875 return (EINVAL); 11876 break; 11877 11878 case DTRACEACT_USYM: 11879 case DTRACEACT_UMOD: 11880 case DTRACEACT_UADDR: 11881 if (dp == NULL || 11882 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11883 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11884 return (EINVAL); 11885 11886 /* 11887 * We have a slot for the pid, plus a slot for the 11888 * argument. To keep things simple (aligned with 11889 * bitness-neutral sizing), we store each as a 64-bit 11890 * quantity. 11891 */ 11892 size = 2 * sizeof (uint64_t); 11893 break; 11894 11895 case DTRACEACT_STOP: 11896 case DTRACEACT_BREAKPOINT: 11897 case DTRACEACT_PANIC: 11898 break; 11899 11900 case DTRACEACT_CHILL: 11901 case DTRACEACT_DISCARD: 11902 case DTRACEACT_RAISE: 11903 if (dp == NULL) 11904 return (EINVAL); 11905 break; 11906 11907 case DTRACEACT_EXIT: 11908 if (dp == NULL || 11909 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11910 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11911 return (EINVAL); 11912 break; 11913 11914 case DTRACEACT_SPECULATE: 11915 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11916 return (EINVAL); 11917 11918 if (dp == NULL) 11919 return (EINVAL); 11920 11921 state->dts_speculates = 1; 11922 break; 11923 11924 case DTRACEACT_PRINTM: 11925 size = dp->dtdo_rtype.dtdt_size; 11926 break; 11927 11928 case DTRACEACT_COMMIT: { 11929 dtrace_action_t *act = ecb->dte_action; 11930 11931 for (; act != NULL; act = act->dta_next) { 11932 if (act->dta_kind == DTRACEACT_COMMIT) 11933 return (EINVAL); 11934 } 11935 11936 if (dp == NULL) 11937 return (EINVAL); 11938 break; 11939 } 11940 11941 default: 11942 return (EINVAL); 11943 } 11944 11945 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11946 /* 11947 * If this is a data-storing action or a speculate, 11948 * we must be sure that there isn't a commit on the 11949 * action chain. 11950 */ 11951 dtrace_action_t *act = ecb->dte_action; 11952 11953 for (; act != NULL; act = act->dta_next) { 11954 if (act->dta_kind == DTRACEACT_COMMIT) 11955 return (EINVAL); 11956 } 11957 } 11958 11959 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11960 action->dta_rec.dtrd_size = size; 11961 } 11962 11963 action->dta_refcnt = 1; 11964 rec = &action->dta_rec; 11965 size = rec->dtrd_size; 11966 11967 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11968 if (!(size & mask)) { 11969 align = mask + 1; 11970 break; 11971 } 11972 } 11973 11974 action->dta_kind = desc->dtad_kind; 11975 11976 if ((action->dta_difo = dp) != NULL) 11977 dtrace_difo_hold(dp); 11978 11979 rec->dtrd_action = action->dta_kind; 11980 rec->dtrd_arg = arg; 11981 rec->dtrd_uarg = desc->dtad_uarg; 11982 rec->dtrd_alignment = (uint16_t)align; 11983 rec->dtrd_format = format; 11984 11985 if ((last = ecb->dte_action_last) != NULL) { 11986 ASSERT(ecb->dte_action != NULL); 11987 action->dta_prev = last; 11988 last->dta_next = action; 11989 } else { 11990 ASSERT(ecb->dte_action == NULL); 11991 ecb->dte_action = action; 11992 } 11993 11994 ecb->dte_action_last = action; 11995 11996 return (0); 11997 } 11998 11999 static void 12000 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 12001 { 12002 dtrace_action_t *act = ecb->dte_action, *next; 12003 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 12004 dtrace_difo_t *dp; 12005 uint16_t format; 12006 12007 if (act != NULL && act->dta_refcnt > 1) { 12008 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 12009 act->dta_refcnt--; 12010 } else { 12011 for (; act != NULL; act = next) { 12012 next = act->dta_next; 12013 ASSERT(next != NULL || act == ecb->dte_action_last); 12014 ASSERT(act->dta_refcnt == 1); 12015 12016 if ((format = act->dta_rec.dtrd_format) != 0) 12017 dtrace_format_remove(ecb->dte_state, format); 12018 12019 if ((dp = act->dta_difo) != NULL) 12020 dtrace_difo_release(dp, vstate); 12021 12022 if (DTRACEACT_ISAGG(act->dta_kind)) { 12023 dtrace_ecb_aggregation_destroy(ecb, act); 12024 } else { 12025 kmem_free(act, sizeof (dtrace_action_t)); 12026 } 12027 } 12028 } 12029 12030 ecb->dte_action = NULL; 12031 ecb->dte_action_last = NULL; 12032 ecb->dte_size = 0; 12033 } 12034 12035 static void 12036 dtrace_ecb_disable(dtrace_ecb_t *ecb) 12037 { 12038 /* 12039 * We disable the ECB by removing it from its probe. 12040 */ 12041 dtrace_ecb_t *pecb, *prev = NULL; 12042 dtrace_probe_t *probe = ecb->dte_probe; 12043 12044 ASSERT(MUTEX_HELD(&dtrace_lock)); 12045 12046 if (probe == NULL) { 12047 /* 12048 * This is the NULL probe; there is nothing to disable. 12049 */ 12050 return; 12051 } 12052 12053 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 12054 if (pecb == ecb) 12055 break; 12056 prev = pecb; 12057 } 12058 12059 ASSERT(pecb != NULL); 12060 12061 if (prev == NULL) { 12062 probe->dtpr_ecb = ecb->dte_next; 12063 } else { 12064 prev->dte_next = ecb->dte_next; 12065 } 12066 12067 if (ecb == probe->dtpr_ecb_last) { 12068 ASSERT(ecb->dte_next == NULL); 12069 probe->dtpr_ecb_last = prev; 12070 } 12071 12072 /* 12073 * The ECB has been disconnected from the probe; now sync to assure 12074 * that all CPUs have seen the change before returning. 12075 */ 12076 dtrace_sync(); 12077 12078 if (probe->dtpr_ecb == NULL) { 12079 /* 12080 * That was the last ECB on the probe; clear the predicate 12081 * cache ID for the probe, disable it and sync one more time 12082 * to assure that we'll never hit it again. 12083 */ 12084 dtrace_provider_t *prov = probe->dtpr_provider; 12085 12086 ASSERT(ecb->dte_next == NULL); 12087 ASSERT(probe->dtpr_ecb_last == NULL); 12088 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 12089 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 12090 probe->dtpr_id, probe->dtpr_arg); 12091 dtrace_sync(); 12092 } else { 12093 /* 12094 * There is at least one ECB remaining on the probe. If there 12095 * is _exactly_ one, set the probe's predicate cache ID to be 12096 * the predicate cache ID of the remaining ECB. 12097 */ 12098 ASSERT(probe->dtpr_ecb_last != NULL); 12099 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 12100 12101 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 12102 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 12103 12104 ASSERT(probe->dtpr_ecb->dte_next == NULL); 12105 12106 if (p != NULL) 12107 probe->dtpr_predcache = p->dtp_cacheid; 12108 } 12109 12110 ecb->dte_next = NULL; 12111 } 12112 } 12113 12114 static void 12115 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 12116 { 12117 dtrace_state_t *state = ecb->dte_state; 12118 dtrace_vstate_t *vstate = &state->dts_vstate; 12119 dtrace_predicate_t *pred; 12120 dtrace_epid_t epid = ecb->dte_epid; 12121 12122 ASSERT(MUTEX_HELD(&dtrace_lock)); 12123 ASSERT(ecb->dte_next == NULL); 12124 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 12125 12126 if ((pred = ecb->dte_predicate) != NULL) 12127 dtrace_predicate_release(pred, vstate); 12128 12129 dtrace_ecb_action_remove(ecb); 12130 12131 ASSERT(state->dts_ecbs[epid - 1] == ecb); 12132 state->dts_ecbs[epid - 1] = NULL; 12133 12134 kmem_free(ecb, sizeof (dtrace_ecb_t)); 12135 } 12136 12137 static dtrace_ecb_t * 12138 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 12139 dtrace_enabling_t *enab) 12140 { 12141 dtrace_ecb_t *ecb; 12142 dtrace_predicate_t *pred; 12143 dtrace_actdesc_t *act; 12144 dtrace_provider_t *prov; 12145 dtrace_ecbdesc_t *desc = enab->dten_current; 12146 12147 ASSERT(MUTEX_HELD(&dtrace_lock)); 12148 ASSERT(state != NULL); 12149 12150 ecb = dtrace_ecb_add(state, probe); 12151 ecb->dte_uarg = desc->dted_uarg; 12152 12153 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 12154 dtrace_predicate_hold(pred); 12155 ecb->dte_predicate = pred; 12156 } 12157 12158 if (probe != NULL) { 12159 /* 12160 * If the provider shows more leg than the consumer is old 12161 * enough to see, we need to enable the appropriate implicit 12162 * predicate bits to prevent the ecb from activating at 12163 * revealing times. 12164 * 12165 * Providers specifying DTRACE_PRIV_USER at register time 12166 * are stating that they need the /proc-style privilege 12167 * model to be enforced, and this is what DTRACE_COND_OWNER 12168 * and DTRACE_COND_ZONEOWNER will then do at probe time. 12169 */ 12170 prov = probe->dtpr_provider; 12171 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 12172 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 12173 ecb->dte_cond |= DTRACE_COND_OWNER; 12174 12175 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 12176 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 12177 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 12178 12179 /* 12180 * If the provider shows us kernel innards and the user 12181 * is lacking sufficient privilege, enable the 12182 * DTRACE_COND_USERMODE implicit predicate. 12183 */ 12184 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 12185 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 12186 ecb->dte_cond |= DTRACE_COND_USERMODE; 12187 } 12188 12189 if (dtrace_ecb_create_cache != NULL) { 12190 /* 12191 * If we have a cached ecb, we'll use its action list instead 12192 * of creating our own (saving both time and space). 12193 */ 12194 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 12195 dtrace_action_t *act = cached->dte_action; 12196 12197 if (act != NULL) { 12198 ASSERT(act->dta_refcnt > 0); 12199 act->dta_refcnt++; 12200 ecb->dte_action = act; 12201 ecb->dte_action_last = cached->dte_action_last; 12202 ecb->dte_needed = cached->dte_needed; 12203 ecb->dte_size = cached->dte_size; 12204 ecb->dte_alignment = cached->dte_alignment; 12205 } 12206 12207 return (ecb); 12208 } 12209 12210 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 12211 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 12212 dtrace_ecb_destroy(ecb); 12213 return (NULL); 12214 } 12215 } 12216 12217 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 12218 dtrace_ecb_destroy(ecb); 12219 return (NULL); 12220 } 12221 12222 return (dtrace_ecb_create_cache = ecb); 12223 } 12224 12225 static int 12226 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 12227 { 12228 dtrace_ecb_t *ecb; 12229 dtrace_enabling_t *enab = arg; 12230 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 12231 12232 ASSERT(state != NULL); 12233 12234 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 12235 /* 12236 * This probe was created in a generation for which this 12237 * enabling has previously created ECBs; we don't want to 12238 * enable it again, so just kick out. 12239 */ 12240 return (DTRACE_MATCH_NEXT); 12241 } 12242 12243 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 12244 return (DTRACE_MATCH_DONE); 12245 12246 if (dtrace_ecb_enable(ecb) < 0) 12247 return (DTRACE_MATCH_FAIL); 12248 12249 return (DTRACE_MATCH_NEXT); 12250 } 12251 12252 static dtrace_ecb_t * 12253 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 12254 { 12255 dtrace_ecb_t *ecb; 12256 12257 ASSERT(MUTEX_HELD(&dtrace_lock)); 12258 12259 if (id == 0 || id > state->dts_necbs) 12260 return (NULL); 12261 12262 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 12263 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 12264 12265 return (state->dts_ecbs[id - 1]); 12266 } 12267 12268 static dtrace_aggregation_t * 12269 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 12270 { 12271 dtrace_aggregation_t *agg; 12272 12273 ASSERT(MUTEX_HELD(&dtrace_lock)); 12274 12275 if (id == 0 || id > state->dts_naggregations) 12276 return (NULL); 12277 12278 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 12279 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 12280 agg->dtag_id == id); 12281 12282 return (state->dts_aggregations[id - 1]); 12283 } 12284 12285 /* 12286 * DTrace Buffer Functions 12287 * 12288 * The following functions manipulate DTrace buffers. Most of these functions 12289 * are called in the context of establishing or processing consumer state; 12290 * exceptions are explicitly noted. 12291 */ 12292 12293 /* 12294 * Note: called from cross call context. This function switches the two 12295 * buffers on a given CPU. The atomicity of this operation is assured by 12296 * disabling interrupts while the actual switch takes place; the disabling of 12297 * interrupts serializes the execution with any execution of dtrace_probe() on 12298 * the same CPU. 12299 */ 12300 static void 12301 dtrace_buffer_switch(dtrace_buffer_t *buf) 12302 { 12303 caddr_t tomax = buf->dtb_tomax; 12304 caddr_t xamot = buf->dtb_xamot; 12305 dtrace_icookie_t cookie; 12306 hrtime_t now; 12307 12308 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12309 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 12310 12311 cookie = dtrace_interrupt_disable(); 12312 now = dtrace_gethrtime(); 12313 buf->dtb_tomax = xamot; 12314 buf->dtb_xamot = tomax; 12315 buf->dtb_xamot_drops = buf->dtb_drops; 12316 buf->dtb_xamot_offset = buf->dtb_offset; 12317 buf->dtb_xamot_errors = buf->dtb_errors; 12318 buf->dtb_xamot_flags = buf->dtb_flags; 12319 buf->dtb_offset = 0; 12320 buf->dtb_drops = 0; 12321 buf->dtb_errors = 0; 12322 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 12323 buf->dtb_interval = now - buf->dtb_switched; 12324 buf->dtb_switched = now; 12325 dtrace_interrupt_enable(cookie); 12326 } 12327 12328 /* 12329 * Note: called from cross call context. This function activates a buffer 12330 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 12331 * is guaranteed by the disabling of interrupts. 12332 */ 12333 static void 12334 dtrace_buffer_activate(dtrace_state_t *state) 12335 { 12336 dtrace_buffer_t *buf; 12337 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 12338 12339 buf = &state->dts_buffer[curcpu_id]; 12340 12341 if (buf->dtb_tomax != NULL) { 12342 /* 12343 * We might like to assert that the buffer is marked inactive, 12344 * but this isn't necessarily true: the buffer for the CPU 12345 * that processes the BEGIN probe has its buffer activated 12346 * manually. In this case, we take the (harmless) action 12347 * re-clearing the bit INACTIVE bit. 12348 */ 12349 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 12350 } 12351 12352 dtrace_interrupt_enable(cookie); 12353 } 12354 12355 #ifdef __FreeBSD__ 12356 /* 12357 * Activate the specified per-CPU buffer. This is used instead of 12358 * dtrace_buffer_activate() when APs have not yet started, i.e. when 12359 * activating anonymous state. 12360 */ 12361 static void 12362 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu) 12363 { 12364 12365 if (state->dts_buffer[cpu].dtb_tomax != NULL) 12366 state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12367 } 12368 #endif 12369 12370 static int 12371 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 12372 processorid_t cpu, int *factor) 12373 { 12374 #ifdef illumos 12375 cpu_t *cp; 12376 #endif 12377 #ifdef __NetBSD__ 12378 CPU_INFO_ITERATOR cpuind; 12379 struct cpu_info *cinfo; 12380 #endif 12381 dtrace_buffer_t *buf; 12382 int allocated = 0, desired = 0; 12383 12384 #ifdef illumos 12385 ASSERT(MUTEX_HELD(&cpu_lock)); 12386 ASSERT(MUTEX_HELD(&dtrace_lock)); 12387 12388 *factor = 1; 12389 12390 if (size > dtrace_nonroot_maxsize && 12391 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 12392 return (EFBIG); 12393 12394 cp = cpu_list; 12395 12396 do { 12397 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12398 continue; 12399 12400 buf = &bufs[cp->cpu_id]; 12401 12402 /* 12403 * If there is already a buffer allocated for this CPU, it 12404 * is only possible that this is a DR event. In this case, 12405 */ 12406 if (buf->dtb_tomax != NULL) { 12407 ASSERT(buf->dtb_size == size); 12408 continue; 12409 } 12410 12411 ASSERT(buf->dtb_xamot == NULL); 12412 12413 if ((buf->dtb_tomax = kmem_zalloc(size, 12414 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12415 goto err; 12416 12417 buf->dtb_size = size; 12418 buf->dtb_flags = flags; 12419 buf->dtb_offset = 0; 12420 buf->dtb_drops = 0; 12421 12422 if (flags & DTRACEBUF_NOSWITCH) 12423 continue; 12424 12425 if ((buf->dtb_xamot = kmem_zalloc(size, 12426 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12427 goto err; 12428 } while ((cp = cp->cpu_next) != cpu_list); 12429 12430 return (0); 12431 12432 err: 12433 cp = cpu_list; 12434 12435 do { 12436 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12437 continue; 12438 12439 buf = &bufs[cp->cpu_id]; 12440 desired += 2; 12441 12442 if (buf->dtb_xamot != NULL) { 12443 ASSERT(buf->dtb_tomax != NULL); 12444 ASSERT(buf->dtb_size == size); 12445 kmem_free(buf->dtb_xamot, size); 12446 allocated++; 12447 } 12448 12449 if (buf->dtb_tomax != NULL) { 12450 ASSERT(buf->dtb_size == size); 12451 kmem_free(buf->dtb_tomax, size); 12452 allocated++; 12453 } 12454 12455 buf->dtb_tomax = NULL; 12456 buf->dtb_xamot = NULL; 12457 buf->dtb_size = 0; 12458 } while ((cp = cp->cpu_next) != cpu_list); 12459 #else 12460 12461 *factor = 1; 12462 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 12463 defined(__mips__) || defined(__powerpc__) || defined(__riscv__) 12464 /* 12465 * FreeBSD isn't good at limiting the amount of memory we 12466 * ask to malloc, so let's place a limit here before trying 12467 * to do something that might well end in tears at bedtime. 12468 */ 12469 if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1))) 12470 return (ENOMEM); 12471 #endif 12472 12473 ASSERT(MUTEX_HELD(&dtrace_lock)); 12474 #ifdef __NetBSD__ 12475 for (CPU_INFO_FOREACH(cpuind, cinfo)) 12476 #else 12477 CPU_FOREACH(i) 12478 #endif 12479 { 12480 #ifdef __NetBSD__ 12481 int i = cpu_index(cinfo); 12482 #endif 12483 if (cpu != DTRACE_CPUALL && cpu != i) 12484 continue; 12485 12486 buf = &bufs[i]; 12487 12488 /* 12489 * If there is already a buffer allocated for this CPU, it 12490 * is only possible that this is a DR event. In this case, 12491 * the buffer size must match our specified size. 12492 */ 12493 if (buf->dtb_tomax != NULL) { 12494 ASSERT(buf->dtb_size == size); 12495 continue; 12496 } 12497 12498 ASSERT(buf->dtb_xamot == NULL); 12499 12500 if ((buf->dtb_tomax = kmem_zalloc(size, 12501 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12502 goto err; 12503 12504 buf->dtb_size = size; 12505 buf->dtb_flags = flags; 12506 buf->dtb_offset = 0; 12507 buf->dtb_drops = 0; 12508 12509 if (flags & DTRACEBUF_NOSWITCH) 12510 continue; 12511 12512 if ((buf->dtb_xamot = kmem_zalloc(size, 12513 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12514 goto err; 12515 } 12516 12517 return (0); 12518 12519 err: 12520 /* 12521 * Error allocating memory, so free the buffers that were 12522 * allocated before the failed allocation. 12523 */ 12524 #ifdef __NetBSD__ 12525 for (CPU_INFO_FOREACH(cpuind, cinfo)) 12526 #else 12527 CPU_FOREACH(i) 12528 #endif 12529 { 12530 #ifdef __NetBSD__ 12531 int i = cpu_index(cinfo); 12532 #endif 12533 if (cpu != DTRACE_CPUALL && cpu != cpu_index(cinfo)) 12534 continue; 12535 12536 buf = &bufs[i]; 12537 desired += 2; 12538 12539 if (buf->dtb_xamot != NULL) { 12540 ASSERT(buf->dtb_tomax != NULL); 12541 ASSERT(buf->dtb_size == size); 12542 kmem_free(buf->dtb_xamot, size); 12543 allocated++; 12544 } 12545 12546 if (buf->dtb_tomax != NULL) { 12547 ASSERT(buf->dtb_size == size); 12548 kmem_free(buf->dtb_tomax, size); 12549 allocated++; 12550 } 12551 12552 buf->dtb_tomax = NULL; 12553 buf->dtb_xamot = NULL; 12554 buf->dtb_size = 0; 12555 12556 } 12557 #endif 12558 *factor = desired / (allocated > 0 ? allocated : 1); 12559 12560 return (ENOMEM); 12561 } 12562 12563 /* 12564 * Note: called from probe context. This function just increments the drop 12565 * count on a buffer. It has been made a function to allow for the 12566 * possibility of understanding the source of mysterious drop counts. (A 12567 * problem for which one may be particularly disappointed that DTrace cannot 12568 * be used to understand DTrace.) 12569 */ 12570 static void 12571 dtrace_buffer_drop(dtrace_buffer_t *buf) 12572 { 12573 buf->dtb_drops++; 12574 } 12575 12576 /* 12577 * Note: called from probe context. This function is called to reserve space 12578 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 12579 * mstate. Returns the new offset in the buffer, or a negative value if an 12580 * error has occurred. 12581 */ 12582 static intptr_t 12583 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 12584 dtrace_state_t *state, dtrace_mstate_t *mstate) 12585 { 12586 intptr_t offs = buf->dtb_offset, soffs; 12587 intptr_t woffs; 12588 caddr_t tomax; 12589 size_t total; 12590 12591 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 12592 return (-1); 12593 12594 if ((tomax = buf->dtb_tomax) == NULL) { 12595 dtrace_buffer_drop(buf); 12596 return (-1); 12597 } 12598 12599 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 12600 while (offs & (align - 1)) { 12601 /* 12602 * Assert that our alignment is off by a number which 12603 * is itself sizeof (uint32_t) aligned. 12604 */ 12605 ASSERT(!((align - (offs & (align - 1))) & 12606 (sizeof (uint32_t) - 1))); 12607 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12608 offs += sizeof (uint32_t); 12609 } 12610 12611 if ((soffs = offs + needed) > buf->dtb_size) { 12612 dtrace_buffer_drop(buf); 12613 return (-1); 12614 } 12615 12616 if (mstate == NULL) 12617 return (offs); 12618 12619 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 12620 mstate->dtms_scratch_size = buf->dtb_size - soffs; 12621 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12622 12623 return (offs); 12624 } 12625 12626 if (buf->dtb_flags & DTRACEBUF_FILL) { 12627 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 12628 (buf->dtb_flags & DTRACEBUF_FULL)) 12629 return (-1); 12630 goto out; 12631 } 12632 12633 total = needed + (offs & (align - 1)); 12634 12635 /* 12636 * For a ring buffer, life is quite a bit more complicated. Before 12637 * we can store any padding, we need to adjust our wrapping offset. 12638 * (If we've never before wrapped or we're not about to, no adjustment 12639 * is required.) 12640 */ 12641 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 12642 offs + total > buf->dtb_size) { 12643 woffs = buf->dtb_xamot_offset; 12644 12645 if (offs + total > buf->dtb_size) { 12646 /* 12647 * We can't fit in the end of the buffer. First, a 12648 * sanity check that we can fit in the buffer at all. 12649 */ 12650 if (total > buf->dtb_size) { 12651 dtrace_buffer_drop(buf); 12652 return (-1); 12653 } 12654 12655 /* 12656 * We're going to be storing at the top of the buffer, 12657 * so now we need to deal with the wrapped offset. We 12658 * only reset our wrapped offset to 0 if it is 12659 * currently greater than the current offset. If it 12660 * is less than the current offset, it is because a 12661 * previous allocation induced a wrap -- but the 12662 * allocation didn't subsequently take the space due 12663 * to an error or false predicate evaluation. In this 12664 * case, we'll just leave the wrapped offset alone: if 12665 * the wrapped offset hasn't been advanced far enough 12666 * for this allocation, it will be adjusted in the 12667 * lower loop. 12668 */ 12669 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 12670 if (woffs >= offs) 12671 woffs = 0; 12672 } else { 12673 woffs = 0; 12674 } 12675 12676 /* 12677 * Now we know that we're going to be storing to the 12678 * top of the buffer and that there is room for us 12679 * there. We need to clear the buffer from the current 12680 * offset to the end (there may be old gunk there). 12681 */ 12682 while (offs < buf->dtb_size) 12683 tomax[offs++] = 0; 12684 12685 /* 12686 * We need to set our offset to zero. And because we 12687 * are wrapping, we need to set the bit indicating as 12688 * much. We can also adjust our needed space back 12689 * down to the space required by the ECB -- we know 12690 * that the top of the buffer is aligned. 12691 */ 12692 offs = 0; 12693 total = needed; 12694 buf->dtb_flags |= DTRACEBUF_WRAPPED; 12695 } else { 12696 /* 12697 * There is room for us in the buffer, so we simply 12698 * need to check the wrapped offset. 12699 */ 12700 if (woffs < offs) { 12701 /* 12702 * The wrapped offset is less than the offset. 12703 * This can happen if we allocated buffer space 12704 * that induced a wrap, but then we didn't 12705 * subsequently take the space due to an error 12706 * or false predicate evaluation. This is 12707 * okay; we know that _this_ allocation isn't 12708 * going to induce a wrap. We still can't 12709 * reset the wrapped offset to be zero, 12710 * however: the space may have been trashed in 12711 * the previous failed probe attempt. But at 12712 * least the wrapped offset doesn't need to 12713 * be adjusted at all... 12714 */ 12715 goto out; 12716 } 12717 } 12718 12719 while (offs + total > woffs) { 12720 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 12721 size_t size; 12722 12723 if (epid == DTRACE_EPIDNONE) { 12724 size = sizeof (uint32_t); 12725 } else { 12726 ASSERT3U(epid, <=, state->dts_necbs); 12727 ASSERT(state->dts_ecbs[epid - 1] != NULL); 12728 12729 size = state->dts_ecbs[epid - 1]->dte_size; 12730 } 12731 12732 ASSERT(woffs + size <= buf->dtb_size); 12733 ASSERT(size != 0); 12734 12735 if (woffs + size == buf->dtb_size) { 12736 /* 12737 * We've reached the end of the buffer; we want 12738 * to set the wrapped offset to 0 and break 12739 * out. However, if the offs is 0, then we're 12740 * in a strange edge-condition: the amount of 12741 * space that we want to reserve plus the size 12742 * of the record that we're overwriting is 12743 * greater than the size of the buffer. This 12744 * is problematic because if we reserve the 12745 * space but subsequently don't consume it (due 12746 * to a failed predicate or error) the wrapped 12747 * offset will be 0 -- yet the EPID at offset 0 12748 * will not be committed. This situation is 12749 * relatively easy to deal with: if we're in 12750 * this case, the buffer is indistinguishable 12751 * from one that hasn't wrapped; we need only 12752 * finish the job by clearing the wrapped bit, 12753 * explicitly setting the offset to be 0, and 12754 * zero'ing out the old data in the buffer. 12755 */ 12756 if (offs == 0) { 12757 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 12758 buf->dtb_offset = 0; 12759 woffs = total; 12760 12761 while (woffs < buf->dtb_size) 12762 tomax[woffs++] = 0; 12763 } 12764 12765 woffs = 0; 12766 break; 12767 } 12768 12769 woffs += size; 12770 } 12771 12772 /* 12773 * We have a wrapped offset. It may be that the wrapped offset 12774 * has become zero -- that's okay. 12775 */ 12776 buf->dtb_xamot_offset = woffs; 12777 } 12778 12779 out: 12780 /* 12781 * Now we can plow the buffer with any necessary padding. 12782 */ 12783 while (offs & (align - 1)) { 12784 /* 12785 * Assert that our alignment is off by a number which 12786 * is itself sizeof (uint32_t) aligned. 12787 */ 12788 ASSERT(!((align - (offs & (align - 1))) & 12789 (sizeof (uint32_t) - 1))); 12790 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12791 offs += sizeof (uint32_t); 12792 } 12793 12794 if (buf->dtb_flags & DTRACEBUF_FILL) { 12795 if (offs + needed > buf->dtb_size - state->dts_reserve) { 12796 buf->dtb_flags |= DTRACEBUF_FULL; 12797 return (-1); 12798 } 12799 } 12800 12801 if (mstate == NULL) 12802 return (offs); 12803 12804 /* 12805 * For ring buffers and fill buffers, the scratch space is always 12806 * the inactive buffer. 12807 */ 12808 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 12809 mstate->dtms_scratch_size = buf->dtb_size; 12810 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12811 12812 return (offs); 12813 } 12814 12815 static void 12816 dtrace_buffer_polish(dtrace_buffer_t *buf) 12817 { 12818 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 12819 ASSERT(MUTEX_HELD(&dtrace_lock)); 12820 12821 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 12822 return; 12823 12824 /* 12825 * We need to polish the ring buffer. There are three cases: 12826 * 12827 * - The first (and presumably most common) is that there is no gap 12828 * between the buffer offset and the wrapped offset. In this case, 12829 * there is nothing in the buffer that isn't valid data; we can 12830 * mark the buffer as polished and return. 12831 * 12832 * - The second (less common than the first but still more common 12833 * than the third) is that there is a gap between the buffer offset 12834 * and the wrapped offset, and the wrapped offset is larger than the 12835 * buffer offset. This can happen because of an alignment issue, or 12836 * can happen because of a call to dtrace_buffer_reserve() that 12837 * didn't subsequently consume the buffer space. In this case, 12838 * we need to zero the data from the buffer offset to the wrapped 12839 * offset. 12840 * 12841 * - The third (and least common) is that there is a gap between the 12842 * buffer offset and the wrapped offset, but the wrapped offset is 12843 * _less_ than the buffer offset. This can only happen because a 12844 * call to dtrace_buffer_reserve() induced a wrap, but the space 12845 * was not subsequently consumed. In this case, we need to zero the 12846 * space from the offset to the end of the buffer _and_ from the 12847 * top of the buffer to the wrapped offset. 12848 */ 12849 if (buf->dtb_offset < buf->dtb_xamot_offset) { 12850 bzero(buf->dtb_tomax + buf->dtb_offset, 12851 buf->dtb_xamot_offset - buf->dtb_offset); 12852 } 12853 12854 if (buf->dtb_offset > buf->dtb_xamot_offset) { 12855 bzero(buf->dtb_tomax + buf->dtb_offset, 12856 buf->dtb_size - buf->dtb_offset); 12857 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 12858 } 12859 } 12860 12861 /* 12862 * This routine determines if data generated at the specified time has likely 12863 * been entirely consumed at user-level. This routine is called to determine 12864 * if an ECB on a defunct probe (but for an active enabling) can be safely 12865 * disabled and destroyed. 12866 */ 12867 static int 12868 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 12869 { 12870 int i; 12871 12872 for (i = 0; i < NCPU; i++) { 12873 dtrace_buffer_t *buf = &bufs[i]; 12874 12875 if (buf->dtb_size == 0) 12876 continue; 12877 12878 if (buf->dtb_flags & DTRACEBUF_RING) 12879 return (0); 12880 12881 if (!buf->dtb_switched && buf->dtb_offset != 0) 12882 return (0); 12883 12884 if (buf->dtb_switched - buf->dtb_interval < when) 12885 return (0); 12886 } 12887 12888 return (1); 12889 } 12890 12891 static void 12892 dtrace_buffer_free(dtrace_buffer_t *bufs) 12893 { 12894 int i; 12895 12896 for (i = 0; i < NCPU; i++) { 12897 dtrace_buffer_t *buf = &bufs[i]; 12898 12899 if (buf->dtb_tomax == NULL) { 12900 ASSERT(buf->dtb_xamot == NULL); 12901 ASSERT(buf->dtb_size == 0); 12902 continue; 12903 } 12904 12905 if (buf->dtb_xamot != NULL) { 12906 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12907 kmem_free(buf->dtb_xamot, buf->dtb_size); 12908 } 12909 12910 kmem_free(buf->dtb_tomax, buf->dtb_size); 12911 buf->dtb_size = 0; 12912 buf->dtb_tomax = NULL; 12913 buf->dtb_xamot = NULL; 12914 } 12915 } 12916 12917 /* 12918 * DTrace Enabling Functions 12919 */ 12920 static dtrace_enabling_t * 12921 dtrace_enabling_create(dtrace_vstate_t *vstate) 12922 { 12923 dtrace_enabling_t *enab; 12924 12925 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12926 enab->dten_vstate = vstate; 12927 12928 return (enab); 12929 } 12930 12931 static void 12932 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12933 { 12934 dtrace_ecbdesc_t **ndesc; 12935 size_t osize, nsize; 12936 12937 /* 12938 * We can't add to enablings after we've enabled them, or after we've 12939 * retained them. 12940 */ 12941 ASSERT(enab->dten_probegen == 0); 12942 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12943 12944 if (enab->dten_ndesc < enab->dten_maxdesc) { 12945 enab->dten_desc[enab->dten_ndesc++] = ecb; 12946 return; 12947 } 12948 12949 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12950 12951 if (enab->dten_maxdesc == 0) { 12952 enab->dten_maxdesc = 1; 12953 } else { 12954 enab->dten_maxdesc <<= 1; 12955 } 12956 12957 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12958 12959 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12960 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12961 bcopy(enab->dten_desc, ndesc, osize); 12962 if (enab->dten_desc != NULL) 12963 kmem_free(enab->dten_desc, osize); 12964 12965 enab->dten_desc = ndesc; 12966 enab->dten_desc[enab->dten_ndesc++] = ecb; 12967 } 12968 12969 static void 12970 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12971 dtrace_probedesc_t *pd) 12972 { 12973 dtrace_ecbdesc_t *new; 12974 dtrace_predicate_t *pred; 12975 dtrace_actdesc_t *act; 12976 12977 /* 12978 * We're going to create a new ECB description that matches the 12979 * specified ECB in every way, but has the specified probe description. 12980 */ 12981 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12982 12983 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12984 dtrace_predicate_hold(pred); 12985 12986 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12987 dtrace_actdesc_hold(act); 12988 12989 new->dted_action = ecb->dted_action; 12990 new->dted_pred = ecb->dted_pred; 12991 new->dted_probe = *pd; 12992 new->dted_uarg = ecb->dted_uarg; 12993 12994 dtrace_enabling_add(enab, new); 12995 } 12996 12997 static void 12998 dtrace_enabling_dump(dtrace_enabling_t *enab) 12999 { 13000 int i; 13001 13002 for (i = 0; i < enab->dten_ndesc; i++) { 13003 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 13004 13005 #ifdef __FreeBSD__ 13006 printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i, 13007 desc->dtpd_provider, desc->dtpd_mod, 13008 desc->dtpd_func, desc->dtpd_name); 13009 #else 13010 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 13011 desc->dtpd_provider, desc->dtpd_mod, 13012 desc->dtpd_func, desc->dtpd_name); 13013 #endif 13014 } 13015 } 13016 13017 static void 13018 dtrace_enabling_destroy(dtrace_enabling_t *enab) 13019 { 13020 int i; 13021 dtrace_ecbdesc_t *ep; 13022 dtrace_vstate_t *vstate = enab->dten_vstate; 13023 13024 ASSERT(MUTEX_HELD(&dtrace_lock)); 13025 13026 for (i = 0; i < enab->dten_ndesc; i++) { 13027 dtrace_actdesc_t *act, *next; 13028 dtrace_predicate_t *pred; 13029 13030 ep = enab->dten_desc[i]; 13031 13032 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 13033 dtrace_predicate_release(pred, vstate); 13034 13035 for (act = ep->dted_action; act != NULL; act = next) { 13036 next = act->dtad_next; 13037 dtrace_actdesc_release(act, vstate); 13038 } 13039 13040 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 13041 } 13042 13043 if (enab->dten_desc != NULL) 13044 kmem_free(enab->dten_desc, 13045 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 13046 13047 /* 13048 * If this was a retained enabling, decrement the dts_nretained count 13049 * and take it off of the dtrace_retained list. 13050 */ 13051 if (enab->dten_prev != NULL || enab->dten_next != NULL || 13052 dtrace_retained == enab) { 13053 ASSERT(enab->dten_vstate->dtvs_state != NULL); 13054 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 13055 enab->dten_vstate->dtvs_state->dts_nretained--; 13056 dtrace_retained_gen++; 13057 } 13058 13059 if (enab->dten_prev == NULL) { 13060 if (dtrace_retained == enab) { 13061 dtrace_retained = enab->dten_next; 13062 13063 if (dtrace_retained != NULL) 13064 dtrace_retained->dten_prev = NULL; 13065 } 13066 } else { 13067 ASSERT(enab != dtrace_retained); 13068 ASSERT(dtrace_retained != NULL); 13069 enab->dten_prev->dten_next = enab->dten_next; 13070 } 13071 13072 if (enab->dten_next != NULL) { 13073 ASSERT(dtrace_retained != NULL); 13074 enab->dten_next->dten_prev = enab->dten_prev; 13075 } 13076 13077 kmem_free(enab, sizeof (dtrace_enabling_t)); 13078 } 13079 13080 static int 13081 dtrace_enabling_retain(dtrace_enabling_t *enab) 13082 { 13083 dtrace_state_t *state; 13084 13085 ASSERT(MUTEX_HELD(&dtrace_lock)); 13086 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 13087 ASSERT(enab->dten_vstate != NULL); 13088 13089 state = enab->dten_vstate->dtvs_state; 13090 ASSERT(state != NULL); 13091 13092 /* 13093 * We only allow each state to retain dtrace_retain_max enablings. 13094 */ 13095 if (state->dts_nretained >= dtrace_retain_max) 13096 return (ENOSPC); 13097 13098 state->dts_nretained++; 13099 dtrace_retained_gen++; 13100 13101 if (dtrace_retained == NULL) { 13102 dtrace_retained = enab; 13103 return (0); 13104 } 13105 13106 enab->dten_next = dtrace_retained; 13107 dtrace_retained->dten_prev = enab; 13108 dtrace_retained = enab; 13109 13110 return (0); 13111 } 13112 13113 static int 13114 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 13115 dtrace_probedesc_t *create) 13116 { 13117 dtrace_enabling_t *new, *enab; 13118 int found = 0, err = ENOENT; 13119 13120 ASSERT(MUTEX_HELD(&dtrace_lock)); 13121 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 13122 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 13123 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 13124 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 13125 13126 new = dtrace_enabling_create(&state->dts_vstate); 13127 13128 /* 13129 * Iterate over all retained enablings, looking for enablings that 13130 * match the specified state. 13131 */ 13132 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13133 int i; 13134 13135 /* 13136 * dtvs_state can only be NULL for helper enablings -- and 13137 * helper enablings can't be retained. 13138 */ 13139 ASSERT(enab->dten_vstate->dtvs_state != NULL); 13140 13141 if (enab->dten_vstate->dtvs_state != state) 13142 continue; 13143 13144 /* 13145 * Now iterate over each probe description; we're looking for 13146 * an exact match to the specified probe description. 13147 */ 13148 for (i = 0; i < enab->dten_ndesc; i++) { 13149 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 13150 dtrace_probedesc_t *pd = &ep->dted_probe; 13151 13152 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 13153 continue; 13154 13155 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 13156 continue; 13157 13158 if (strcmp(pd->dtpd_func, match->dtpd_func)) 13159 continue; 13160 13161 if (strcmp(pd->dtpd_name, match->dtpd_name)) 13162 continue; 13163 13164 /* 13165 * We have a winning probe! Add it to our growing 13166 * enabling. 13167 */ 13168 found = 1; 13169 dtrace_enabling_addlike(new, ep, create); 13170 } 13171 } 13172 13173 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 13174 dtrace_enabling_destroy(new); 13175 return (err); 13176 } 13177 13178 return (0); 13179 } 13180 13181 static void 13182 dtrace_enabling_retract(dtrace_state_t *state) 13183 { 13184 dtrace_enabling_t *enab, *next; 13185 13186 ASSERT(MUTEX_HELD(&dtrace_lock)); 13187 13188 /* 13189 * Iterate over all retained enablings, destroy the enablings retained 13190 * for the specified state. 13191 */ 13192 for (enab = dtrace_retained; enab != NULL; enab = next) { 13193 next = enab->dten_next; 13194 13195 /* 13196 * dtvs_state can only be NULL for helper enablings -- and 13197 * helper enablings can't be retained. 13198 */ 13199 ASSERT(enab->dten_vstate->dtvs_state != NULL); 13200 13201 if (enab->dten_vstate->dtvs_state == state) { 13202 ASSERT(state->dts_nretained > 0); 13203 dtrace_enabling_destroy(enab); 13204 } 13205 } 13206 13207 ASSERT(state->dts_nretained == 0); 13208 } 13209 13210 static int 13211 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 13212 { 13213 int i = 0; 13214 int total_matched = 0, matched = 0; 13215 13216 ASSERT(MUTEX_HELD(&cpu_lock)); 13217 ASSERT(MUTEX_HELD(&dtrace_lock)); 13218 13219 for (i = 0; i < enab->dten_ndesc; i++) { 13220 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 13221 13222 enab->dten_current = ep; 13223 enab->dten_error = 0; 13224 13225 /* 13226 * If a provider failed to enable a probe then get out and 13227 * let the consumer know we failed. 13228 */ 13229 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 13230 return (EBUSY); 13231 13232 total_matched += matched; 13233 13234 if (enab->dten_error != 0) { 13235 /* 13236 * If we get an error half-way through enabling the 13237 * probes, we kick out -- perhaps with some number of 13238 * them enabled. Leaving enabled probes enabled may 13239 * be slightly confusing for user-level, but we expect 13240 * that no one will attempt to actually drive on in 13241 * the face of such errors. If this is an anonymous 13242 * enabling (indicated with a NULL nmatched pointer), 13243 * we cmn_err() a message. We aren't expecting to 13244 * get such an error -- such as it can exist at all, 13245 * it would be a result of corrupted DOF in the driver 13246 * properties. 13247 */ 13248 if (nmatched == NULL) { 13249 cmn_err(CE_WARN, "dtrace_enabling_match() " 13250 "error on %p: %d", (void *)ep, 13251 enab->dten_error); 13252 } 13253 13254 return (enab->dten_error); 13255 } 13256 } 13257 13258 enab->dten_probegen = dtrace_probegen; 13259 if (nmatched != NULL) 13260 *nmatched = total_matched; 13261 13262 return (0); 13263 } 13264 13265 static void 13266 dtrace_enabling_matchall(void) 13267 { 13268 dtrace_enabling_t *enab; 13269 13270 mutex_enter(&cpu_lock); 13271 mutex_enter(&dtrace_lock); 13272 13273 /* 13274 * Iterate over all retained enablings to see if any probes match 13275 * against them. We only perform this operation on enablings for which 13276 * we have sufficient permissions by virtue of being in the global zone 13277 * or in the same zone as the DTrace client. Because we can be called 13278 * after dtrace_detach() has been called, we cannot assert that there 13279 * are retained enablings. We can safely load from dtrace_retained, 13280 * however: the taskq_destroy() at the end of dtrace_detach() will 13281 * block pending our completion. 13282 */ 13283 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13284 #ifdef illumos 13285 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 13286 13287 if (INGLOBALZONE(curproc) || 13288 cr != NULL && getzoneid() == crgetzoneid(cr)) 13289 #endif 13290 (void) dtrace_enabling_match(enab, NULL); 13291 } 13292 13293 mutex_exit(&dtrace_lock); 13294 mutex_exit(&cpu_lock); 13295 } 13296 13297 /* 13298 * If an enabling is to be enabled without having matched probes (that is, if 13299 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 13300 * enabling must be _primed_ by creating an ECB for every ECB description. 13301 * This must be done to assure that we know the number of speculations, the 13302 * number of aggregations, the minimum buffer size needed, etc. before we 13303 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 13304 * enabling any probes, we create ECBs for every ECB decription, but with a 13305 * NULL probe -- which is exactly what this function does. 13306 */ 13307 static void 13308 dtrace_enabling_prime(dtrace_state_t *state) 13309 { 13310 dtrace_enabling_t *enab; 13311 int i; 13312 13313 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13314 ASSERT(enab->dten_vstate->dtvs_state != NULL); 13315 13316 if (enab->dten_vstate->dtvs_state != state) 13317 continue; 13318 13319 /* 13320 * We don't want to prime an enabling more than once, lest 13321 * we allow a malicious user to induce resource exhaustion. 13322 * (The ECBs that result from priming an enabling aren't 13323 * leaked -- but they also aren't deallocated until the 13324 * consumer state is destroyed.) 13325 */ 13326 if (enab->dten_primed) 13327 continue; 13328 13329 for (i = 0; i < enab->dten_ndesc; i++) { 13330 enab->dten_current = enab->dten_desc[i]; 13331 (void) dtrace_probe_enable(NULL, enab); 13332 } 13333 13334 enab->dten_primed = 1; 13335 } 13336 } 13337 13338 /* 13339 * Called to indicate that probes should be provided due to retained 13340 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 13341 * must take an initial lap through the enabling calling the dtps_provide() 13342 * entry point explicitly to allow for autocreated probes. 13343 */ 13344 static void 13345 dtrace_enabling_provide(dtrace_provider_t *prv) 13346 { 13347 int i, all = 0; 13348 dtrace_probedesc_t desc; 13349 dtrace_genid_t gen; 13350 13351 ASSERT(MUTEX_HELD(&dtrace_lock)); 13352 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 13353 13354 if (prv == NULL) { 13355 all = 1; 13356 prv = dtrace_provider; 13357 } 13358 13359 do { 13360 dtrace_enabling_t *enab; 13361 void *parg = prv->dtpv_arg; 13362 13363 retry: 13364 gen = dtrace_retained_gen; 13365 for (enab = dtrace_retained; enab != NULL; 13366 enab = enab->dten_next) { 13367 for (i = 0; i < enab->dten_ndesc; i++) { 13368 desc = enab->dten_desc[i]->dted_probe; 13369 mutex_exit(&dtrace_lock); 13370 prv->dtpv_pops.dtps_provide(parg, &desc); 13371 mutex_enter(&dtrace_lock); 13372 /* 13373 * Process the retained enablings again if 13374 * they have changed while we weren't holding 13375 * dtrace_lock. 13376 */ 13377 if (gen != dtrace_retained_gen) 13378 goto retry; 13379 } 13380 } 13381 } while (all && (prv = prv->dtpv_next) != NULL); 13382 13383 mutex_exit(&dtrace_lock); 13384 dtrace_probe_provide(NULL, all ? NULL : prv); 13385 mutex_enter(&dtrace_lock); 13386 } 13387 13388 /* 13389 * Called to reap ECBs that are attached to probes from defunct providers. 13390 */ 13391 static void 13392 dtrace_enabling_reap(void) 13393 { 13394 dtrace_provider_t *prov; 13395 dtrace_probe_t *probe; 13396 dtrace_ecb_t *ecb; 13397 hrtime_t when; 13398 int i; 13399 13400 mutex_enter(&cpu_lock); 13401 mutex_enter(&dtrace_lock); 13402 13403 for (i = 0; i < dtrace_nprobes; i++) { 13404 if ((probe = dtrace_probes[i]) == NULL) 13405 continue; 13406 13407 if (probe->dtpr_ecb == NULL) 13408 continue; 13409 13410 prov = probe->dtpr_provider; 13411 13412 if ((when = prov->dtpv_defunct) == 0) 13413 continue; 13414 13415 /* 13416 * We have ECBs on a defunct provider: we want to reap these 13417 * ECBs to allow the provider to unregister. The destruction 13418 * of these ECBs must be done carefully: if we destroy the ECB 13419 * and the consumer later wishes to consume an EPID that 13420 * corresponds to the destroyed ECB (and if the EPID metadata 13421 * has not been previously consumed), the consumer will abort 13422 * processing on the unknown EPID. To reduce (but not, sadly, 13423 * eliminate) the possibility of this, we will only destroy an 13424 * ECB for a defunct provider if, for the state that 13425 * corresponds to the ECB: 13426 * 13427 * (a) There is no speculative tracing (which can effectively 13428 * cache an EPID for an arbitrary amount of time). 13429 * 13430 * (b) The principal buffers have been switched twice since the 13431 * provider became defunct. 13432 * 13433 * (c) The aggregation buffers are of zero size or have been 13434 * switched twice since the provider became defunct. 13435 * 13436 * We use dts_speculates to determine (a) and call a function 13437 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 13438 * that as soon as we've been unable to destroy one of the ECBs 13439 * associated with the probe, we quit trying -- reaping is only 13440 * fruitful in as much as we can destroy all ECBs associated 13441 * with the defunct provider's probes. 13442 */ 13443 while ((ecb = probe->dtpr_ecb) != NULL) { 13444 dtrace_state_t *state = ecb->dte_state; 13445 dtrace_buffer_t *buf = state->dts_buffer; 13446 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 13447 13448 if (state->dts_speculates) 13449 break; 13450 13451 if (!dtrace_buffer_consumed(buf, when)) 13452 break; 13453 13454 if (!dtrace_buffer_consumed(aggbuf, when)) 13455 break; 13456 13457 dtrace_ecb_disable(ecb); 13458 ASSERT(probe->dtpr_ecb != ecb); 13459 dtrace_ecb_destroy(ecb); 13460 } 13461 } 13462 13463 mutex_exit(&dtrace_lock); 13464 mutex_exit(&cpu_lock); 13465 } 13466 /* 13467 * DTrace DOF Functions 13468 */ 13469 /*ARGSUSED*/ 13470 static void 13471 dtrace_dof_error(dof_hdr_t *dof, const char *str) 13472 { 13473 if (dtrace_err_verbose) 13474 cmn_err(CE_WARN, "failed to process DOF: %s", str); 13475 13476 #ifdef DTRACE_ERRDEBUG 13477 dtrace_errdebug(str); 13478 #endif 13479 } 13480 13481 /* 13482 * Create DOF out of a currently enabled state. Right now, we only create 13483 * DOF containing the run-time options -- but this could be expanded to create 13484 * complete DOF representing the enabled state. 13485 */ 13486 static dof_hdr_t * 13487 dtrace_dof_create(dtrace_state_t *state) 13488 { 13489 dof_hdr_t *dof; 13490 dof_sec_t *sec; 13491 dof_optdesc_t *opt; 13492 int i, len = sizeof (dof_hdr_t) + 13493 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 13494 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13495 13496 ASSERT(MUTEX_HELD(&dtrace_lock)); 13497 13498 dof = kmem_zalloc(len, KM_SLEEP); 13499 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 13500 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 13501 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 13502 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 13503 13504 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 13505 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 13506 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 13507 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 13508 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 13509 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 13510 13511 dof->dofh_flags = 0; 13512 dof->dofh_hdrsize = sizeof (dof_hdr_t); 13513 dof->dofh_secsize = sizeof (dof_sec_t); 13514 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 13515 dof->dofh_secoff = sizeof (dof_hdr_t); 13516 dof->dofh_loadsz = len; 13517 dof->dofh_filesz = len; 13518 dof->dofh_pad = 0; 13519 13520 /* 13521 * Fill in the option section header... 13522 */ 13523 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 13524 sec->dofs_type = DOF_SECT_OPTDESC; 13525 sec->dofs_align = sizeof (uint64_t); 13526 sec->dofs_flags = DOF_SECF_LOAD; 13527 sec->dofs_entsize = sizeof (dof_optdesc_t); 13528 13529 opt = (dof_optdesc_t *)((uintptr_t)sec + 13530 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 13531 13532 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 13533 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13534 13535 for (i = 0; i < DTRACEOPT_MAX; i++) { 13536 opt[i].dofo_option = i; 13537 opt[i].dofo_strtab = DOF_SECIDX_NONE; 13538 opt[i].dofo_value = state->dts_options[i]; 13539 } 13540 13541 return (dof); 13542 } 13543 13544 static dof_hdr_t * 13545 dtrace_dof_copyin(uintptr_t uarg, int *errp) 13546 { 13547 dof_hdr_t hdr, *dof; 13548 13549 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13550 13551 /* 13552 * First, we're going to copyin() the sizeof (dof_hdr_t). 13553 */ 13554 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 13555 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13556 *errp = EFAULT; 13557 return (NULL); 13558 } 13559 13560 /* 13561 * Now we'll allocate the entire DOF and copy it in -- provided 13562 * that the length isn't outrageous. 13563 */ 13564 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13565 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13566 *errp = E2BIG; 13567 return (NULL); 13568 } 13569 13570 if (hdr.dofh_loadsz < sizeof (hdr)) { 13571 dtrace_dof_error(&hdr, "invalid load size"); 13572 *errp = EINVAL; 13573 return (NULL); 13574 } 13575 13576 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 13577 13578 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 13579 dof->dofh_loadsz != hdr.dofh_loadsz) { 13580 kmem_free(dof, hdr.dofh_loadsz); 13581 *errp = EFAULT; 13582 return (NULL); 13583 } 13584 13585 return (dof); 13586 } 13587 13588 #ifdef __FreeBSD__ 13589 static dof_hdr_t * 13590 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp) 13591 { 13592 dof_hdr_t hdr, *dof; 13593 struct thread *td; 13594 size_t loadsz; 13595 13596 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13597 13598 td = curthread; 13599 13600 /* 13601 * First, we're going to copyin() the sizeof (dof_hdr_t). 13602 */ 13603 if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) { 13604 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13605 *errp = EFAULT; 13606 return (NULL); 13607 } 13608 13609 /* 13610 * Now we'll allocate the entire DOF and copy it in -- provided 13611 * that the length isn't outrageous. 13612 */ 13613 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13614 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13615 *errp = E2BIG; 13616 return (NULL); 13617 } 13618 loadsz = (size_t)hdr.dofh_loadsz; 13619 13620 if (loadsz < sizeof (hdr)) { 13621 dtrace_dof_error(&hdr, "invalid load size"); 13622 *errp = EINVAL; 13623 return (NULL); 13624 } 13625 13626 dof = kmem_alloc(loadsz, KM_SLEEP); 13627 13628 if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz || 13629 dof->dofh_loadsz != loadsz) { 13630 kmem_free(dof, hdr.dofh_loadsz); 13631 *errp = EFAULT; 13632 return (NULL); 13633 } 13634 13635 return (dof); 13636 } 13637 #endif /* __FreeBSD__ */ 13638 #ifdef __NetBSD__ 13639 static dof_hdr_t * 13640 dtrace_dof_copyin_pid(pid_t pid, const void *uarg, int *errp) 13641 { 13642 dof_hdr_t hdr, *dof; 13643 size_t loadsz; 13644 int err; 13645 13646 err = copyin_pid(pid, uarg, &hdr, sizeof(hdr)); 13647 if (err != 0) { 13648 *errp = err; 13649 return (NULL); 13650 } 13651 13652 /* 13653 * Now we'll allocate the entire DOF and copy it in -- provided 13654 * that the length isn't outrageous. 13655 */ 13656 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13657 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13658 *errp = E2BIG; 13659 return (NULL); 13660 } 13661 loadsz = (size_t)hdr.dofh_loadsz; 13662 13663 if (loadsz < sizeof (hdr)) { 13664 dtrace_dof_error(&hdr, "invalid load size"); 13665 *errp = EINVAL; 13666 return (NULL); 13667 } 13668 13669 dof = kmem_alloc(loadsz, KM_SLEEP); 13670 13671 err = copyin_pid(pid, uarg, dof, loadsz); 13672 if (err == 0 && dof->dofh_loadsz != loadsz) 13673 err = EFAULT; 13674 if (err != 0) { 13675 kmem_free(dof, loadsz); 13676 *errp = EFAULT; 13677 return (NULL); 13678 } 13679 13680 return (dof); 13681 } 13682 #endif 13683 13684 #ifdef __FreeBSD__ 13685 static __inline uchar_t 13686 dtrace_dof_char(char c) 13687 { 13688 13689 switch (c) { 13690 case '0': 13691 case '1': 13692 case '2': 13693 case '3': 13694 case '4': 13695 case '5': 13696 case '6': 13697 case '7': 13698 case '8': 13699 case '9': 13700 return (c - '0'); 13701 case 'A': 13702 case 'B': 13703 case 'C': 13704 case 'D': 13705 case 'E': 13706 case 'F': 13707 return (c - 'A' + 10); 13708 case 'a': 13709 case 'b': 13710 case 'c': 13711 case 'd': 13712 case 'e': 13713 case 'f': 13714 return (c - 'a' + 10); 13715 } 13716 /* Should not reach here. */ 13717 return (UCHAR_MAX); 13718 } 13719 #endif /* __FreeBSD__ */ 13720 13721 static dof_hdr_t * 13722 dtrace_dof_property(const char *name) 13723 { 13724 #ifdef illumos 13725 uchar_t *buf; 13726 uint64_t loadsz; 13727 unsigned int len, i; 13728 dof_hdr_t *dof = NULL; 13729 13730 /* 13731 * Unfortunately, array of values in .conf files are always (and 13732 * only) interpreted to be integer arrays. We must read our DOF 13733 * as an integer array, and then squeeze it into a byte array. 13734 */ 13735 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 13736 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 13737 return (NULL); 13738 13739 for (i = 0; i < len; i++) 13740 buf[i] = (uchar_t)(((int *)buf)[i]); 13741 13742 if (len < sizeof (dof_hdr_t)) { 13743 ddi_prop_free(buf); 13744 dtrace_dof_error(NULL, "truncated header"); 13745 return (NULL); 13746 } 13747 13748 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 13749 ddi_prop_free(buf); 13750 dtrace_dof_error(NULL, "truncated DOF"); 13751 return (NULL); 13752 } 13753 13754 if (loadsz >= dtrace_dof_maxsize) { 13755 ddi_prop_free(buf); 13756 dtrace_dof_error(NULL, "oversized DOF"); 13757 return (NULL); 13758 } 13759 13760 dof = kmem_alloc(loadsz, KM_SLEEP); 13761 bcopy(buf, dof, loadsz); 13762 ddi_prop_free(buf); 13763 13764 return (dof); 13765 #endif /* illumos */ 13766 #ifdef __FreeBSD__ 13767 uint8_t *dofbuf; 13768 u_char *data, *eol; 13769 caddr_t doffile; 13770 size_t bytes, len, i; 13771 dof_hdr_t *dof; 13772 u_char c1, c2; 13773 13774 dof = NULL; 13775 13776 doffile = preload_search_by_type("dtrace_dof"); 13777 if (doffile == NULL) 13778 return (NULL); 13779 13780 data = preload_fetch_addr(doffile); 13781 len = preload_fetch_size(doffile); 13782 for (;;) { 13783 /* Look for the end of the line. All lines end in a newline. */ 13784 eol = memchr(data, '\n', len); 13785 if (eol == NULL) 13786 return (NULL); 13787 13788 if (strncmp(name, data, strlen(name)) == 0) 13789 break; 13790 13791 eol++; /* skip past the newline */ 13792 len -= eol - data; 13793 data = eol; 13794 } 13795 13796 /* We've found the data corresponding to the specified key. */ 13797 13798 data += strlen(name) + 1; /* skip past the '=' */ 13799 len = eol - data; 13800 if (len % 2 != 0) { 13801 dtrace_dof_error(NULL, "invalid DOF encoding length"); 13802 goto doferr; 13803 } 13804 bytes = len / 2; 13805 if (bytes < sizeof(dof_hdr_t)) { 13806 dtrace_dof_error(NULL, "truncated header"); 13807 goto doferr; 13808 } 13809 13810 /* 13811 * Each byte is represented by the two ASCII characters in its hex 13812 * representation. 13813 */ 13814 dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK); 13815 for (i = 0; i < bytes; i++) { 13816 c1 = dtrace_dof_char(data[i * 2]); 13817 c2 = dtrace_dof_char(data[i * 2 + 1]); 13818 if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) { 13819 dtrace_dof_error(NULL, "invalid hex char in DOF"); 13820 goto doferr; 13821 } 13822 dofbuf[i] = c1 * 16 + c2; 13823 } 13824 13825 dof = (dof_hdr_t *)dofbuf; 13826 if (bytes < dof->dofh_loadsz) { 13827 dtrace_dof_error(NULL, "truncated DOF"); 13828 goto doferr; 13829 } 13830 13831 if (dof->dofh_loadsz >= dtrace_dof_maxsize) { 13832 dtrace_dof_error(NULL, "oversized DOF"); 13833 goto doferr; 13834 } 13835 13836 return (dof); 13837 13838 doferr: 13839 free(dof, M_SOLARIS); 13840 return (NULL); 13841 #endif /* __FreeBSD__ */ 13842 #ifdef __NetBSD__ 13843 return (NULL); 13844 #endif /* __NetBSD__ */ 13845 } 13846 13847 static void 13848 dtrace_dof_destroy(dof_hdr_t *dof) 13849 { 13850 kmem_free(dof, dof->dofh_loadsz); 13851 } 13852 13853 /* 13854 * Return the dof_sec_t pointer corresponding to a given section index. If the 13855 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 13856 * a type other than DOF_SECT_NONE is specified, the header is checked against 13857 * this type and NULL is returned if the types do not match. 13858 */ 13859 static dof_sec_t * 13860 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 13861 { 13862 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 13863 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 13864 13865 if (i >= dof->dofh_secnum) { 13866 dtrace_dof_error(dof, "referenced section index is invalid"); 13867 return (NULL); 13868 } 13869 13870 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 13871 dtrace_dof_error(dof, "referenced section is not loadable"); 13872 return (NULL); 13873 } 13874 13875 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 13876 dtrace_dof_error(dof, "referenced section is the wrong type"); 13877 return (NULL); 13878 } 13879 13880 return (sec); 13881 } 13882 13883 static dtrace_probedesc_t * 13884 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 13885 { 13886 dof_probedesc_t *probe; 13887 dof_sec_t *strtab; 13888 uintptr_t daddr = (uintptr_t)dof; 13889 uintptr_t str; 13890 size_t size; 13891 13892 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 13893 dtrace_dof_error(dof, "invalid probe section"); 13894 return (NULL); 13895 } 13896 13897 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13898 dtrace_dof_error(dof, "bad alignment in probe description"); 13899 return (NULL); 13900 } 13901 13902 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 13903 dtrace_dof_error(dof, "truncated probe description"); 13904 return (NULL); 13905 } 13906 13907 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 13908 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 13909 13910 if (strtab == NULL) 13911 return (NULL); 13912 13913 str = daddr + strtab->dofs_offset; 13914 size = strtab->dofs_size; 13915 13916 if (probe->dofp_provider >= strtab->dofs_size) { 13917 dtrace_dof_error(dof, "corrupt probe provider"); 13918 return (NULL); 13919 } 13920 13921 (void) strncpy(desc->dtpd_provider, 13922 (char *)(str + probe->dofp_provider), 13923 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 13924 13925 if (probe->dofp_mod >= strtab->dofs_size) { 13926 dtrace_dof_error(dof, "corrupt probe module"); 13927 return (NULL); 13928 } 13929 13930 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 13931 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 13932 13933 if (probe->dofp_func >= strtab->dofs_size) { 13934 dtrace_dof_error(dof, "corrupt probe function"); 13935 return (NULL); 13936 } 13937 13938 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 13939 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 13940 13941 if (probe->dofp_name >= strtab->dofs_size) { 13942 dtrace_dof_error(dof, "corrupt probe name"); 13943 return (NULL); 13944 } 13945 13946 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 13947 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 13948 13949 return (desc); 13950 } 13951 13952 static dtrace_difo_t * 13953 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13954 cred_t *cr) 13955 { 13956 dtrace_difo_t *dp; 13957 size_t ttl = 0; 13958 dof_difohdr_t *dofd; 13959 uintptr_t daddr = (uintptr_t)dof; 13960 size_t max = dtrace_difo_maxsize; 13961 int i, l, n; 13962 13963 static const struct { 13964 int section; 13965 int bufoffs; 13966 int lenoffs; 13967 int entsize; 13968 int align; 13969 const char *msg; 13970 } difo[] = { 13971 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 13972 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 13973 sizeof (dif_instr_t), "multiple DIF sections" }, 13974 13975 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 13976 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 13977 sizeof (uint64_t), "multiple integer tables" }, 13978 13979 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 13980 offsetof(dtrace_difo_t, dtdo_strlen), 0, 13981 sizeof (char), "multiple string tables" }, 13982 13983 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 13984 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 13985 sizeof (uint_t), "multiple variable tables" }, 13986 13987 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 13988 }; 13989 13990 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 13991 dtrace_dof_error(dof, "invalid DIFO header section"); 13992 return (NULL); 13993 } 13994 13995 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13996 dtrace_dof_error(dof, "bad alignment in DIFO header"); 13997 return (NULL); 13998 } 13999 14000 if (sec->dofs_size < sizeof (dof_difohdr_t) || 14001 sec->dofs_size % sizeof (dof_secidx_t)) { 14002 dtrace_dof_error(dof, "bad size in DIFO header"); 14003 return (NULL); 14004 } 14005 14006 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 14007 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 14008 14009 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 14010 dp->dtdo_rtype = dofd->dofd_rtype; 14011 14012 for (l = 0; l < n; l++) { 14013 dof_sec_t *subsec; 14014 void **bufp; 14015 uint32_t *lenp; 14016 14017 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 14018 dofd->dofd_links[l])) == NULL) 14019 goto err; /* invalid section link */ 14020 14021 if (ttl + subsec->dofs_size > max) { 14022 dtrace_dof_error(dof, "exceeds maximum size"); 14023 goto err; 14024 } 14025 14026 ttl += subsec->dofs_size; 14027 14028 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 14029 if (subsec->dofs_type != difo[i].section) 14030 continue; 14031 14032 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 14033 dtrace_dof_error(dof, "section not loaded"); 14034 goto err; 14035 } 14036 14037 if (subsec->dofs_align != difo[i].align) { 14038 dtrace_dof_error(dof, "bad alignment"); 14039 goto err; 14040 } 14041 14042 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 14043 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 14044 14045 if (*bufp != NULL) { 14046 dtrace_dof_error(dof, difo[i].msg); 14047 goto err; 14048 } 14049 14050 if (difo[i].entsize != subsec->dofs_entsize) { 14051 dtrace_dof_error(dof, "entry size mismatch"); 14052 goto err; 14053 } 14054 14055 if (subsec->dofs_entsize != 0 && 14056 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 14057 dtrace_dof_error(dof, "corrupt entry size"); 14058 goto err; 14059 } 14060 14061 *lenp = subsec->dofs_size; 14062 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 14063 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 14064 *bufp, subsec->dofs_size); 14065 14066 if (subsec->dofs_entsize != 0) 14067 *lenp /= subsec->dofs_entsize; 14068 14069 break; 14070 } 14071 14072 /* 14073 * If we encounter a loadable DIFO sub-section that is not 14074 * known to us, assume this is a broken program and fail. 14075 */ 14076 if (difo[i].section == DOF_SECT_NONE && 14077 (subsec->dofs_flags & DOF_SECF_LOAD)) { 14078 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 14079 goto err; 14080 } 14081 } 14082 14083 if (dp->dtdo_buf == NULL) { 14084 /* 14085 * We can't have a DIF object without DIF text. 14086 */ 14087 dtrace_dof_error(dof, "missing DIF text"); 14088 goto err; 14089 } 14090 14091 /* 14092 * Before we validate the DIF object, run through the variable table 14093 * looking for the strings -- if any of their size are under, we'll set 14094 * their size to be the system-wide default string size. Note that 14095 * this should _not_ happen if the "strsize" option has been set -- 14096 * in this case, the compiler should have set the size to reflect the 14097 * setting of the option. 14098 */ 14099 for (i = 0; i < dp->dtdo_varlen; i++) { 14100 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 14101 dtrace_diftype_t *t = &v->dtdv_type; 14102 14103 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 14104 continue; 14105 14106 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 14107 t->dtdt_size = dtrace_strsize_default; 14108 } 14109 14110 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 14111 goto err; 14112 14113 dtrace_difo_init(dp, vstate); 14114 return (dp); 14115 14116 err: 14117 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 14118 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 14119 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 14120 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 14121 14122 kmem_free(dp, sizeof (dtrace_difo_t)); 14123 return (NULL); 14124 } 14125 14126 static dtrace_predicate_t * 14127 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 14128 cred_t *cr) 14129 { 14130 dtrace_difo_t *dp; 14131 14132 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 14133 return (NULL); 14134 14135 return (dtrace_predicate_create(dp)); 14136 } 14137 14138 static dtrace_actdesc_t * 14139 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 14140 cred_t *cr) 14141 { 14142 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 14143 dof_actdesc_t *desc; 14144 dof_sec_t *difosec; 14145 size_t offs; 14146 uintptr_t daddr = (uintptr_t)dof; 14147 uint64_t arg; 14148 dtrace_actkind_t kind; 14149 14150 if (sec->dofs_type != DOF_SECT_ACTDESC) { 14151 dtrace_dof_error(dof, "invalid action section"); 14152 return (NULL); 14153 } 14154 14155 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 14156 dtrace_dof_error(dof, "truncated action description"); 14157 return (NULL); 14158 } 14159 14160 if (sec->dofs_align != sizeof (uint64_t)) { 14161 dtrace_dof_error(dof, "bad alignment in action description"); 14162 return (NULL); 14163 } 14164 14165 if (sec->dofs_size < sec->dofs_entsize) { 14166 dtrace_dof_error(dof, "section entry size exceeds total size"); 14167 return (NULL); 14168 } 14169 14170 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 14171 dtrace_dof_error(dof, "bad entry size in action description"); 14172 return (NULL); 14173 } 14174 14175 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 14176 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 14177 return (NULL); 14178 } 14179 14180 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 14181 desc = (dof_actdesc_t *)(daddr + 14182 (uintptr_t)sec->dofs_offset + offs); 14183 kind = (dtrace_actkind_t)desc->dofa_kind; 14184 14185 if ((DTRACEACT_ISPRINTFLIKE(kind) && 14186 (kind != DTRACEACT_PRINTA || 14187 desc->dofa_strtab != DOF_SECIDX_NONE)) || 14188 (kind == DTRACEACT_DIFEXPR && 14189 desc->dofa_strtab != DOF_SECIDX_NONE)) { 14190 dof_sec_t *strtab; 14191 char *str, *fmt; 14192 uint64_t i; 14193 14194 /* 14195 * The argument to these actions is an index into the 14196 * DOF string table. For printf()-like actions, this 14197 * is the format string. For print(), this is the 14198 * CTF type of the expression result. 14199 */ 14200 if ((strtab = dtrace_dof_sect(dof, 14201 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 14202 goto err; 14203 14204 str = (char *)((uintptr_t)dof + 14205 (uintptr_t)strtab->dofs_offset); 14206 14207 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 14208 if (str[i] == '\0') 14209 break; 14210 } 14211 14212 if (i >= strtab->dofs_size) { 14213 dtrace_dof_error(dof, "bogus format string"); 14214 goto err; 14215 } 14216 14217 if (i == desc->dofa_arg) { 14218 dtrace_dof_error(dof, "empty format string"); 14219 goto err; 14220 } 14221 14222 i -= desc->dofa_arg; 14223 fmt = kmem_alloc(i + 1, KM_SLEEP); 14224 bcopy(&str[desc->dofa_arg], fmt, i + 1); 14225 arg = (uint64_t)(uintptr_t)fmt; 14226 } else { 14227 if (kind == DTRACEACT_PRINTA) { 14228 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 14229 arg = 0; 14230 } else { 14231 arg = desc->dofa_arg; 14232 } 14233 } 14234 14235 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 14236 desc->dofa_uarg, arg); 14237 14238 if (last != NULL) { 14239 last->dtad_next = act; 14240 } else { 14241 first = act; 14242 } 14243 14244 last = act; 14245 14246 if (desc->dofa_difo == DOF_SECIDX_NONE) 14247 continue; 14248 14249 if ((difosec = dtrace_dof_sect(dof, 14250 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 14251 goto err; 14252 14253 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 14254 14255 if (act->dtad_difo == NULL) 14256 goto err; 14257 } 14258 14259 ASSERT(first != NULL); 14260 return (first); 14261 14262 err: 14263 for (act = first; act != NULL; act = next) { 14264 next = act->dtad_next; 14265 dtrace_actdesc_release(act, vstate); 14266 } 14267 14268 return (NULL); 14269 } 14270 14271 static dtrace_ecbdesc_t * 14272 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 14273 cred_t *cr) 14274 { 14275 dtrace_ecbdesc_t *ep; 14276 dof_ecbdesc_t *ecb; 14277 dtrace_probedesc_t *desc; 14278 dtrace_predicate_t *pred = NULL; 14279 14280 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 14281 dtrace_dof_error(dof, "truncated ECB description"); 14282 return (NULL); 14283 } 14284 14285 if (sec->dofs_align != sizeof (uint64_t)) { 14286 dtrace_dof_error(dof, "bad alignment in ECB description"); 14287 return (NULL); 14288 } 14289 14290 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 14291 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 14292 14293 if (sec == NULL) 14294 return (NULL); 14295 14296 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 14297 ep->dted_uarg = ecb->dofe_uarg; 14298 desc = &ep->dted_probe; 14299 14300 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 14301 goto err; 14302 14303 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 14304 if ((sec = dtrace_dof_sect(dof, 14305 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 14306 goto err; 14307 14308 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 14309 goto err; 14310 14311 ep->dted_pred.dtpdd_predicate = pred; 14312 } 14313 14314 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 14315 if ((sec = dtrace_dof_sect(dof, 14316 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 14317 goto err; 14318 14319 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 14320 14321 if (ep->dted_action == NULL) 14322 goto err; 14323 } 14324 14325 return (ep); 14326 14327 err: 14328 if (pred != NULL) 14329 dtrace_predicate_release(pred, vstate); 14330 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 14331 return (NULL); 14332 } 14333 14334 /* 14335 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 14336 * specified DOF. SETX relocations are computed using 'ubase', the base load 14337 * address of the object containing the DOF, and DOFREL relocations are relative 14338 * to the relocation offset within the DOF. 14339 */ 14340 static int 14341 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase, 14342 uint64_t udaddr) 14343 { 14344 uintptr_t daddr = (uintptr_t)dof; 14345 dof_relohdr_t *dofr = 14346 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 14347 dof_sec_t *ss, *rs, *ts; 14348 dof_relodesc_t *r; 14349 uint_t i, n; 14350 14351 if (sec->dofs_size < sizeof (dof_relohdr_t) || 14352 sec->dofs_align != sizeof (dof_secidx_t)) { 14353 dtrace_dof_error(dof, "invalid relocation header"); 14354 return (-1); 14355 } 14356 14357 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 14358 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 14359 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 14360 14361 if (ss == NULL || rs == NULL || ts == NULL) 14362 return (-1); /* dtrace_dof_error() has been called already */ 14363 14364 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 14365 rs->dofs_align != sizeof (uint64_t)) { 14366 dtrace_dof_error(dof, "invalid relocation section"); 14367 return (-1); 14368 } 14369 14370 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 14371 n = rs->dofs_size / rs->dofs_entsize; 14372 14373 for (i = 0; i < n; i++) { 14374 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 14375 14376 switch (r->dofr_type) { 14377 case DOF_RELO_NONE: 14378 break; 14379 case DOF_RELO_SETX: 14380 case DOF_RELO_DOFREL: 14381 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 14382 sizeof (uint64_t) > ts->dofs_size) { 14383 dtrace_dof_error(dof, "bad relocation offset"); 14384 return (-1); 14385 } 14386 14387 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 14388 dtrace_dof_error(dof, "misaligned setx relo"); 14389 return (-1); 14390 } 14391 14392 if (r->dofr_type == DOF_RELO_SETX) 14393 *(uint64_t *)taddr += ubase; 14394 else 14395 *(uint64_t *)taddr += 14396 udaddr + ts->dofs_offset + r->dofr_offset; 14397 break; 14398 default: 14399 dtrace_dof_error(dof, "invalid relocation type"); 14400 return (-1); 14401 } 14402 14403 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 14404 } 14405 14406 return (0); 14407 } 14408 14409 /* 14410 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 14411 * header: it should be at the front of a memory region that is at least 14412 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 14413 * size. It need not be validated in any other way. 14414 */ 14415 static int 14416 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 14417 dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes) 14418 { 14419 uint64_t len = dof->dofh_loadsz, seclen; 14420 uintptr_t daddr = (uintptr_t)dof; 14421 dtrace_ecbdesc_t *ep; 14422 dtrace_enabling_t *enab; 14423 uint_t i; 14424 14425 ASSERT(MUTEX_HELD(&dtrace_lock)); 14426 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 14427 14428 /* 14429 * Check the DOF header identification bytes. In addition to checking 14430 * valid settings, we also verify that unused bits/bytes are zeroed so 14431 * we can use them later without fear of regressing existing binaries. 14432 */ 14433 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 14434 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 14435 dtrace_dof_error(dof, "DOF magic string mismatch"); 14436 return (-1); 14437 } 14438 14439 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 14440 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 14441 dtrace_dof_error(dof, "DOF has invalid data model"); 14442 return (-1); 14443 } 14444 14445 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 14446 dtrace_dof_error(dof, "DOF encoding mismatch"); 14447 return (-1); 14448 } 14449 14450 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14451 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 14452 dtrace_dof_error(dof, "DOF version mismatch"); 14453 return (-1); 14454 } 14455 14456 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 14457 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 14458 return (-1); 14459 } 14460 14461 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 14462 dtrace_dof_error(dof, "DOF uses too many integer registers"); 14463 return (-1); 14464 } 14465 14466 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 14467 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 14468 return (-1); 14469 } 14470 14471 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 14472 if (dof->dofh_ident[i] != 0) { 14473 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 14474 return (-1); 14475 } 14476 } 14477 14478 if (dof->dofh_flags & ~DOF_FL_VALID) { 14479 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 14480 return (-1); 14481 } 14482 14483 if (dof->dofh_secsize == 0) { 14484 dtrace_dof_error(dof, "zero section header size"); 14485 return (-1); 14486 } 14487 14488 /* 14489 * Check that the section headers don't exceed the amount of DOF 14490 * data. Note that we cast the section size and number of sections 14491 * to uint64_t's to prevent possible overflow in the multiplication. 14492 */ 14493 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 14494 14495 if (dof->dofh_secoff > len || seclen > len || 14496 dof->dofh_secoff + seclen > len) { 14497 dtrace_dof_error(dof, "truncated section headers"); 14498 return (-1); 14499 } 14500 14501 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 14502 dtrace_dof_error(dof, "misaligned section headers"); 14503 return (-1); 14504 } 14505 14506 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 14507 dtrace_dof_error(dof, "misaligned section size"); 14508 return (-1); 14509 } 14510 14511 /* 14512 * Take an initial pass through the section headers to be sure that 14513 * the headers don't have stray offsets. If the 'noprobes' flag is 14514 * set, do not permit sections relating to providers, probes, or args. 14515 */ 14516 for (i = 0; i < dof->dofh_secnum; i++) { 14517 dof_sec_t *sec = (dof_sec_t *)(daddr + 14518 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14519 14520 if (noprobes) { 14521 switch (sec->dofs_type) { 14522 case DOF_SECT_PROVIDER: 14523 case DOF_SECT_PROBES: 14524 case DOF_SECT_PRARGS: 14525 case DOF_SECT_PROFFS: 14526 dtrace_dof_error(dof, "illegal sections " 14527 "for enabling"); 14528 return (-1); 14529 } 14530 } 14531 14532 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 14533 !(sec->dofs_flags & DOF_SECF_LOAD)) { 14534 dtrace_dof_error(dof, "loadable section with load " 14535 "flag unset"); 14536 return (-1); 14537 } 14538 14539 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14540 continue; /* just ignore non-loadable sections */ 14541 14542 if (!ISP2(sec->dofs_align)) { 14543 dtrace_dof_error(dof, "bad section alignment"); 14544 return (-1); 14545 } 14546 14547 if (sec->dofs_offset & (sec->dofs_align - 1)) { 14548 dtrace_dof_error(dof, "misaligned section"); 14549 return (-1); 14550 } 14551 14552 if (sec->dofs_offset > len || sec->dofs_size > len || 14553 sec->dofs_offset + sec->dofs_size > len) { 14554 dtrace_dof_error(dof, "corrupt section header"); 14555 return (-1); 14556 } 14557 14558 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 14559 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 14560 dtrace_dof_error(dof, "non-terminating string table"); 14561 return (-1); 14562 } 14563 } 14564 14565 /* 14566 * Take a second pass through the sections and locate and perform any 14567 * relocations that are present. We do this after the first pass to 14568 * be sure that all sections have had their headers validated. 14569 */ 14570 for (i = 0; i < dof->dofh_secnum; i++) { 14571 dof_sec_t *sec = (dof_sec_t *)(daddr + 14572 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14573 14574 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14575 continue; /* skip sections that are not loadable */ 14576 14577 switch (sec->dofs_type) { 14578 case DOF_SECT_URELHDR: 14579 if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0) 14580 return (-1); 14581 break; 14582 } 14583 } 14584 14585 if ((enab = *enabp) == NULL) 14586 enab = *enabp = dtrace_enabling_create(vstate); 14587 14588 for (i = 0; i < dof->dofh_secnum; i++) { 14589 dof_sec_t *sec = (dof_sec_t *)(daddr + 14590 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14591 14592 if (sec->dofs_type != DOF_SECT_ECBDESC) 14593 continue; 14594 14595 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 14596 dtrace_enabling_destroy(enab); 14597 *enabp = NULL; 14598 return (-1); 14599 } 14600 14601 dtrace_enabling_add(enab, ep); 14602 } 14603 14604 return (0); 14605 } 14606 14607 /* 14608 * Process DOF for any options. This routine assumes that the DOF has been 14609 * at least processed by dtrace_dof_slurp(). 14610 */ 14611 static int 14612 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 14613 { 14614 int i, rval; 14615 uint32_t entsize; 14616 size_t offs; 14617 dof_optdesc_t *desc; 14618 14619 for (i = 0; i < dof->dofh_secnum; i++) { 14620 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 14621 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14622 14623 if (sec->dofs_type != DOF_SECT_OPTDESC) 14624 continue; 14625 14626 if (sec->dofs_align != sizeof (uint64_t)) { 14627 dtrace_dof_error(dof, "bad alignment in " 14628 "option description"); 14629 return (EINVAL); 14630 } 14631 14632 if ((entsize = sec->dofs_entsize) == 0) { 14633 dtrace_dof_error(dof, "zeroed option entry size"); 14634 return (EINVAL); 14635 } 14636 14637 if (entsize < sizeof (dof_optdesc_t)) { 14638 dtrace_dof_error(dof, "bad option entry size"); 14639 return (EINVAL); 14640 } 14641 14642 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 14643 desc = (dof_optdesc_t *)((uintptr_t)dof + 14644 (uintptr_t)sec->dofs_offset + offs); 14645 14646 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 14647 dtrace_dof_error(dof, "non-zero option string"); 14648 return (EINVAL); 14649 } 14650 14651 if (desc->dofo_value == DTRACEOPT_UNSET) { 14652 dtrace_dof_error(dof, "unset option"); 14653 return (EINVAL); 14654 } 14655 14656 if ((rval = dtrace_state_option(state, 14657 desc->dofo_option, desc->dofo_value)) != 0) { 14658 dtrace_dof_error(dof, "rejected option"); 14659 return (rval); 14660 } 14661 } 14662 } 14663 14664 return (0); 14665 } 14666 14667 /* 14668 * DTrace Consumer State Functions 14669 */ 14670 static int 14671 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 14672 { 14673 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 14674 void *base; 14675 uintptr_t limit; 14676 dtrace_dynvar_t *dvar, *next, *start; 14677 int i; 14678 14679 ASSERT(MUTEX_HELD(&dtrace_lock)); 14680 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 14681 14682 bzero(dstate, sizeof (dtrace_dstate_t)); 14683 14684 if ((dstate->dtds_chunksize = chunksize) == 0) 14685 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 14686 14687 VERIFY(dstate->dtds_chunksize < LONG_MAX); 14688 14689 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 14690 size = min; 14691 14692 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 14693 return (ENOMEM); 14694 14695 dstate->dtds_size = size; 14696 dstate->dtds_base = base; 14697 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 14698 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 14699 14700 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 14701 14702 if (hashsize != 1 && (hashsize & 1)) 14703 hashsize--; 14704 14705 dstate->dtds_hashsize = hashsize; 14706 dstate->dtds_hash = dstate->dtds_base; 14707 14708 /* 14709 * Set all of our hash buckets to point to the single sink, and (if 14710 * it hasn't already been set), set the sink's hash value to be the 14711 * sink sentinel value. The sink is needed for dynamic variable 14712 * lookups to know that they have iterated over an entire, valid hash 14713 * chain. 14714 */ 14715 for (i = 0; i < hashsize; i++) 14716 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 14717 14718 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 14719 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 14720 14721 /* 14722 * Determine number of active CPUs. Divide free list evenly among 14723 * active CPUs. 14724 */ 14725 start = (dtrace_dynvar_t *) 14726 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 14727 limit = (uintptr_t)base + size; 14728 14729 VERIFY((uintptr_t)start < limit); 14730 VERIFY((uintptr_t)start >= (uintptr_t)base); 14731 14732 maxper = (limit - (uintptr_t)start) / NCPU; 14733 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 14734 14735 #ifdef illumos 14736 for (i = 0; i < NCPU; i++) 14737 #endif 14738 #ifdef __FreeBSD__ 14739 CPU_FOREACH(i) 14740 #endif 14741 #ifdef __NetBSD__ 14742 for (i = 0; i < NCPU; i++) 14743 #endif 14744 { 14745 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 14746 14747 /* 14748 * If we don't even have enough chunks to make it once through 14749 * NCPUs, we're just going to allocate everything to the first 14750 * CPU. And if we're on the last CPU, we're going to allocate 14751 * whatever is left over. In either case, we set the limit to 14752 * be the limit of the dynamic variable space. 14753 */ 14754 if (maxper == 0 || i == NCPU - 1) { 14755 limit = (uintptr_t)base + size; 14756 start = NULL; 14757 } else { 14758 limit = (uintptr_t)start + maxper; 14759 start = (dtrace_dynvar_t *)limit; 14760 } 14761 14762 VERIFY(limit <= (uintptr_t)base + size); 14763 14764 for (;;) { 14765 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 14766 dstate->dtds_chunksize); 14767 14768 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 14769 break; 14770 14771 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 14772 (uintptr_t)dvar <= (uintptr_t)base + size); 14773 dvar->dtdv_next = next; 14774 dvar = next; 14775 } 14776 14777 if (maxper == 0) 14778 break; 14779 } 14780 14781 return (0); 14782 } 14783 14784 static void 14785 dtrace_dstate_fini(dtrace_dstate_t *dstate) 14786 { 14787 ASSERT(MUTEX_HELD(&cpu_lock)); 14788 14789 if (dstate->dtds_base == NULL) 14790 return; 14791 14792 kmem_free(dstate->dtds_base, dstate->dtds_size); 14793 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 14794 } 14795 14796 static void 14797 dtrace_vstate_fini(dtrace_vstate_t *vstate) 14798 { 14799 /* 14800 * Logical XOR, where are you? 14801 */ 14802 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 14803 14804 if (vstate->dtvs_nglobals > 0) { 14805 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 14806 sizeof (dtrace_statvar_t *)); 14807 } 14808 14809 if (vstate->dtvs_ntlocals > 0) { 14810 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 14811 sizeof (dtrace_difv_t)); 14812 } 14813 14814 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 14815 14816 if (vstate->dtvs_nlocals > 0) { 14817 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 14818 sizeof (dtrace_statvar_t *)); 14819 } 14820 } 14821 14822 #ifdef __FreeBSD__ 14823 static void 14824 dtrace_state_clean(void *arg) 14825 { 14826 dtrace_state_t *state = arg; 14827 dtrace_optval_t *opt = state->dts_options; 14828 14829 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14830 return; 14831 14832 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14833 dtrace_speculation_clean(state); 14834 14835 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 14836 dtrace_state_clean, state); 14837 } 14838 14839 static void 14840 dtrace_state_deadman(void *arg) 14841 { 14842 dtrace_state_t *state = arg; 14843 hrtime_t now; 14844 14845 dtrace_sync(); 14846 14847 dtrace_debug_output(); 14848 14849 now = dtrace_gethrtime(); 14850 14851 if (state != dtrace_anon.dta_state && 14852 now - state->dts_laststatus >= dtrace_deadman_user) 14853 return; 14854 14855 /* 14856 * We must be sure that dts_alive never appears to be less than the 14857 * value upon entry to dtrace_state_deadman(), and because we lack a 14858 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14859 * store INT64_MAX to it, followed by a memory barrier, followed by 14860 * the new value. This assures that dts_alive never appears to be 14861 * less than its true value, regardless of the order in which the 14862 * stores to the underlying storage are issued. 14863 */ 14864 state->dts_alive = INT64_MAX; 14865 dtrace_membar_producer(); 14866 state->dts_alive = now; 14867 14868 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 14869 dtrace_state_deadman, state); 14870 } 14871 #else 14872 static void 14873 dtrace_state_clean(dtrace_state_t *state) 14874 { 14875 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14876 return; 14877 14878 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14879 dtrace_speculation_clean(state); 14880 } 14881 14882 static void 14883 dtrace_state_deadman(dtrace_state_t *state) 14884 { 14885 hrtime_t now; 14886 14887 dtrace_sync(); 14888 14889 now = dtrace_gethrtime(); 14890 14891 if (state != dtrace_anon.dta_state && 14892 now - state->dts_laststatus >= dtrace_deadman_user) 14893 return; 14894 14895 /* 14896 * We must be sure that dts_alive never appears to be less than the 14897 * value upon entry to dtrace_state_deadman(), and because we lack a 14898 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14899 * store INT64_MAX to it, followed by a memory barrier, followed by 14900 * the new value. This assures that dts_alive never appears to be 14901 * less than its true value, regardless of the order in which the 14902 * stores to the underlying storage are issued. 14903 */ 14904 state->dts_alive = INT64_MAX; 14905 dtrace_membar_producer(); 14906 state->dts_alive = now; 14907 } 14908 14909 #endif /* illumos */ 14910 14911 static dtrace_state_t * 14912 #ifdef illumos 14913 dtrace_state_create(dev_t *devp, cred_t *cr) 14914 #endif 14915 #ifdef __FreeBSD__ 14916 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused) 14917 #endif 14918 #ifdef __NetBSD__ 14919 dtrace_state_create(dev_t *devp, cred_t *cr) 14920 #endif 14921 { 14922 #ifdef illumos 14923 minor_t minor; 14924 major_t major; 14925 #else 14926 int m = 0; 14927 #endif 14928 #ifdef __FreeBSD__ 14929 cred_t *cr = NULL; 14930 #endif 14931 int cpu_it; 14932 char c[30]; 14933 dtrace_state_t *state; 14934 dtrace_optval_t *opt; 14935 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 14936 14937 ASSERT(MUTEX_HELD(&dtrace_lock)); 14938 ASSERT(MUTEX_HELD(&cpu_lock)); 14939 14940 #ifdef illumos 14941 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 14942 VM_BESTFIT | VM_SLEEP); 14943 14944 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 14945 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14946 return (NULL); 14947 } 14948 14949 state = ddi_get_soft_state(dtrace_softstate, minor); 14950 #endif 14951 #ifdef __FreeBSD__ 14952 if (dev != NULL) { 14953 cr = dev->si_cred; 14954 m = dev2unit(dev); 14955 } 14956 #endif 14957 #ifdef __NetBSD__ 14958 m = minor(*devp) & 0x0F; 14959 14960 /* Allocate memory for the state. */ 14961 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP); 14962 #endif 14963 14964 14965 state->dts_epid = DTRACE_EPIDNONE + 1; 14966 14967 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m); 14968 #ifdef illumos 14969 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 14970 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14971 14972 if (devp != NULL) { 14973 major = getemajor(*devp); 14974 } else { 14975 major = ddi_driver_major(dtrace_devi); 14976 } 14977 14978 state->dts_dev = makedevice(major, minor); 14979 14980 if (devp != NULL) 14981 *devp = state->dts_dev; 14982 #endif 14983 #ifdef __FreeBSD__ 14984 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx); 14985 state->dts_dev = dev; 14986 #endif 14987 #ifdef __NetBSD__ 14988 state->dts_aggid_arena = vmem_create(c, 1, INT_MAX, 1, 14989 NULL, NULL, NULL, 0, VM_SLEEP, IPL_NONE); 14990 state->dts_dev = *devp; 14991 #endif 14992 14993 /* 14994 * We allocate NCPU buffers. On the one hand, this can be quite 14995 * a bit of memory per instance (nearly 36K on a Starcat). On the 14996 * other hand, it saves an additional memory reference in the probe 14997 * path. 14998 */ 14999 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 15000 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 15001 15002 /* 15003 * Allocate and initialise the per-process per-CPU random state. 15004 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is 15005 * assumed to be seeded at this point (if from Fortuna seed file). 15006 */ 15007 (void) read_random(&state->dts_rstate[0], 2 * sizeof(uint64_t)); 15008 for (cpu_it = 1; cpu_it < NCPU; cpu_it++) { 15009 /* 15010 * Each CPU is assigned a 2^64 period, non-overlapping 15011 * subsequence. 15012 */ 15013 dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it-1], 15014 state->dts_rstate[cpu_it]); 15015 } 15016 15017 15018 #ifdef illumos 15019 state->dts_cleaner = CYCLIC_NONE; 15020 state->dts_deadman = CYCLIC_NONE; 15021 #endif 15022 #ifdef __FreeBSD__ 15023 callout_init(&state->dts_cleaner, 1); 15024 callout_init(&state->dts_deadman, 1); 15025 #endif 15026 #ifdef __NetBSD__ 15027 state->dts_cleaner = NULL; 15028 state->dts_deadman = NULL; 15029 #endif 15030 state->dts_vstate.dtvs_state = state; 15031 15032 for (i = 0; i < DTRACEOPT_MAX; i++) 15033 state->dts_options[i] = DTRACEOPT_UNSET; 15034 15035 /* 15036 * Set the default options. 15037 */ 15038 opt = state->dts_options; 15039 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 15040 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 15041 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 15042 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 15043 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 15044 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 15045 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 15046 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 15047 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 15048 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 15049 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 15050 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 15051 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 15052 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 15053 15054 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 15055 15056 /* 15057 * Depending on the user credentials, we set flag bits which alter probe 15058 * visibility or the amount of destructiveness allowed. In the case of 15059 * actual anonymous tracing, or the possession of all privileges, all of 15060 * the normal checks are bypassed. 15061 */ 15062 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 15063 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 15064 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 15065 } else { 15066 /* 15067 * Set up the credentials for this instantiation. We take a 15068 * hold on the credential to prevent it from disappearing on 15069 * us; this in turn prevents the zone_t referenced by this 15070 * credential from disappearing. This means that we can 15071 * examine the credential and the zone from probe context. 15072 */ 15073 crhold(cr); 15074 state->dts_cred.dcr_cred = cr; 15075 15076 /* 15077 * CRA_PROC means "we have *some* privilege for dtrace" and 15078 * unlocks the use of variables like pid, zonename, etc. 15079 */ 15080 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 15081 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 15082 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 15083 } 15084 15085 /* 15086 * dtrace_user allows use of syscall and profile providers. 15087 * If the user also has proc_owner and/or proc_zone, we 15088 * extend the scope to include additional visibility and 15089 * destructive power. 15090 */ 15091 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 15092 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 15093 state->dts_cred.dcr_visible |= 15094 DTRACE_CRV_ALLPROC; 15095 15096 state->dts_cred.dcr_action |= 15097 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 15098 } 15099 15100 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 15101 state->dts_cred.dcr_visible |= 15102 DTRACE_CRV_ALLZONE; 15103 15104 state->dts_cred.dcr_action |= 15105 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 15106 } 15107 15108 /* 15109 * If we have all privs in whatever zone this is, 15110 * we can do destructive things to processes which 15111 * have altered credentials. 15112 */ 15113 #ifdef illumos 15114 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 15115 cr->cr_zone->zone_privset)) { 15116 state->dts_cred.dcr_action |= 15117 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 15118 } 15119 #endif 15120 } 15121 15122 /* 15123 * Holding the dtrace_kernel privilege also implies that 15124 * the user has the dtrace_user privilege from a visibility 15125 * perspective. But without further privileges, some 15126 * destructive actions are not available. 15127 */ 15128 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 15129 /* 15130 * Make all probes in all zones visible. However, 15131 * this doesn't mean that all actions become available 15132 * to all zones. 15133 */ 15134 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 15135 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 15136 15137 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 15138 DTRACE_CRA_PROC; 15139 /* 15140 * Holding proc_owner means that destructive actions 15141 * for *this* zone are allowed. 15142 */ 15143 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 15144 state->dts_cred.dcr_action |= 15145 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 15146 15147 /* 15148 * Holding proc_zone means that destructive actions 15149 * for this user/group ID in all zones is allowed. 15150 */ 15151 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 15152 state->dts_cred.dcr_action |= 15153 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 15154 15155 #ifdef illumos 15156 /* 15157 * If we have all privs in whatever zone this is, 15158 * we can do destructive things to processes which 15159 * have altered credentials. 15160 */ 15161 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 15162 cr->cr_zone->zone_privset)) { 15163 state->dts_cred.dcr_action |= 15164 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 15165 } 15166 #endif 15167 } 15168 15169 /* 15170 * Holding the dtrace_proc privilege gives control over fasttrap 15171 * and pid providers. We need to grant wider destructive 15172 * privileges in the event that the user has proc_owner and/or 15173 * proc_zone. 15174 */ 15175 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 15176 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 15177 state->dts_cred.dcr_action |= 15178 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 15179 15180 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 15181 state->dts_cred.dcr_action |= 15182 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 15183 } 15184 } 15185 15186 return (state); 15187 } 15188 15189 static int 15190 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 15191 { 15192 dtrace_optval_t *opt = state->dts_options, size; 15193 processorid_t cpu = 0;; 15194 int flags = 0, rval, factor, divisor = 1; 15195 15196 ASSERT(MUTEX_HELD(&dtrace_lock)); 15197 ASSERT(MUTEX_HELD(&cpu_lock)); 15198 ASSERT(which < DTRACEOPT_MAX); 15199 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 15200 (state == dtrace_anon.dta_state && 15201 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 15202 15203 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 15204 return (0); 15205 15206 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 15207 cpu = opt[DTRACEOPT_CPU]; 15208 15209 if (which == DTRACEOPT_SPECSIZE) 15210 flags |= DTRACEBUF_NOSWITCH; 15211 15212 if (which == DTRACEOPT_BUFSIZE) { 15213 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 15214 flags |= DTRACEBUF_RING; 15215 15216 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 15217 flags |= DTRACEBUF_FILL; 15218 15219 if (state != dtrace_anon.dta_state || 15220 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 15221 flags |= DTRACEBUF_INACTIVE; 15222 } 15223 15224 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 15225 /* 15226 * The size must be 8-byte aligned. If the size is not 8-byte 15227 * aligned, drop it down by the difference. 15228 */ 15229 if (size & (sizeof (uint64_t) - 1)) 15230 size -= size & (sizeof (uint64_t) - 1); 15231 15232 if (size < state->dts_reserve) { 15233 /* 15234 * Buffers always must be large enough to accommodate 15235 * their prereserved space. We return E2BIG instead 15236 * of ENOMEM in this case to allow for user-level 15237 * software to differentiate the cases. 15238 */ 15239 return (E2BIG); 15240 } 15241 15242 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 15243 15244 if (rval != ENOMEM) { 15245 opt[which] = size; 15246 return (rval); 15247 } 15248 15249 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 15250 return (rval); 15251 15252 for (divisor = 2; divisor < factor; divisor <<= 1) 15253 continue; 15254 } 15255 15256 return (ENOMEM); 15257 } 15258 15259 static int 15260 dtrace_state_buffers(dtrace_state_t *state) 15261 { 15262 dtrace_speculation_t *spec = state->dts_speculations; 15263 int rval, i; 15264 15265 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 15266 DTRACEOPT_BUFSIZE)) != 0) 15267 return (rval); 15268 15269 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 15270 DTRACEOPT_AGGSIZE)) != 0) 15271 return (rval); 15272 15273 for (i = 0; i < state->dts_nspeculations; i++) { 15274 if ((rval = dtrace_state_buffer(state, 15275 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 15276 return (rval); 15277 } 15278 15279 return (0); 15280 } 15281 15282 static void 15283 dtrace_state_prereserve(dtrace_state_t *state) 15284 { 15285 dtrace_ecb_t *ecb; 15286 dtrace_probe_t *probe; 15287 15288 state->dts_reserve = 0; 15289 15290 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 15291 return; 15292 15293 /* 15294 * If our buffer policy is a "fill" buffer policy, we need to set the 15295 * prereserved space to be the space required by the END probes. 15296 */ 15297 probe = dtrace_probes[dtrace_probeid_end - 1]; 15298 ASSERT(probe != NULL); 15299 15300 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 15301 if (ecb->dte_state != state) 15302 continue; 15303 15304 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 15305 } 15306 } 15307 15308 static int 15309 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 15310 { 15311 dtrace_optval_t *opt = state->dts_options, sz, nspec; 15312 dtrace_speculation_t *spec; 15313 dtrace_buffer_t *buf; 15314 #ifdef illumos 15315 cyc_handler_t hdlr; 15316 cyc_time_t when; 15317 #endif 15318 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 15319 dtrace_icookie_t cookie; 15320 15321 mutex_enter(&cpu_lock); 15322 mutex_enter(&dtrace_lock); 15323 15324 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 15325 rval = EBUSY; 15326 goto out; 15327 } 15328 15329 /* 15330 * Before we can perform any checks, we must prime all of the 15331 * retained enablings that correspond to this state. 15332 */ 15333 dtrace_enabling_prime(state); 15334 15335 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 15336 rval = EACCES; 15337 goto out; 15338 } 15339 15340 dtrace_state_prereserve(state); 15341 15342 /* 15343 * Now we want to do is try to allocate our speculations. 15344 * We do not automatically resize the number of speculations; if 15345 * this fails, we will fail the operation. 15346 */ 15347 nspec = opt[DTRACEOPT_NSPEC]; 15348 ASSERT(nspec != DTRACEOPT_UNSET); 15349 15350 if (nspec > INT_MAX) { 15351 rval = ENOMEM; 15352 goto out; 15353 } 15354 15355 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 15356 KM_NOSLEEP | KM_NORMALPRI); 15357 15358 if (spec == NULL) { 15359 rval = ENOMEM; 15360 goto out; 15361 } 15362 15363 state->dts_speculations = spec; 15364 state->dts_nspeculations = (int)nspec; 15365 15366 for (i = 0; i < nspec; i++) { 15367 if ((buf = kmem_zalloc(bufsize, 15368 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 15369 rval = ENOMEM; 15370 goto err; 15371 } 15372 15373 spec[i].dtsp_buffer = buf; 15374 } 15375 15376 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 15377 if (dtrace_anon.dta_state == NULL) { 15378 rval = ENOENT; 15379 goto out; 15380 } 15381 15382 if (state->dts_necbs != 0) { 15383 rval = EALREADY; 15384 goto out; 15385 } 15386 15387 state->dts_anon = dtrace_anon_grab(); 15388 ASSERT(state->dts_anon != NULL); 15389 state = state->dts_anon; 15390 15391 /* 15392 * We want "grabanon" to be set in the grabbed state, so we'll 15393 * copy that option value from the grabbing state into the 15394 * grabbed state. 15395 */ 15396 state->dts_options[DTRACEOPT_GRABANON] = 15397 opt[DTRACEOPT_GRABANON]; 15398 15399 *cpu = dtrace_anon.dta_beganon; 15400 15401 /* 15402 * If the anonymous state is active (as it almost certainly 15403 * is if the anonymous enabling ultimately matched anything), 15404 * we don't allow any further option processing -- but we 15405 * don't return failure. 15406 */ 15407 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15408 goto out; 15409 } 15410 15411 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 15412 opt[DTRACEOPT_AGGSIZE] != 0) { 15413 if (state->dts_aggregations == NULL) { 15414 /* 15415 * We're not going to create an aggregation buffer 15416 * because we don't have any ECBs that contain 15417 * aggregations -- set this option to 0. 15418 */ 15419 opt[DTRACEOPT_AGGSIZE] = 0; 15420 } else { 15421 /* 15422 * If we have an aggregation buffer, we must also have 15423 * a buffer to use as scratch. 15424 */ 15425 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 15426 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 15427 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 15428 } 15429 } 15430 } 15431 15432 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 15433 opt[DTRACEOPT_SPECSIZE] != 0) { 15434 if (!state->dts_speculates) { 15435 /* 15436 * We're not going to create speculation buffers 15437 * because we don't have any ECBs that actually 15438 * speculate -- set the speculation size to 0. 15439 */ 15440 opt[DTRACEOPT_SPECSIZE] = 0; 15441 } 15442 } 15443 15444 /* 15445 * The bare minimum size for any buffer that we're actually going to 15446 * do anything to is sizeof (uint64_t). 15447 */ 15448 sz = sizeof (uint64_t); 15449 15450 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 15451 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 15452 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 15453 /* 15454 * A buffer size has been explicitly set to 0 (or to a size 15455 * that will be adjusted to 0) and we need the space -- we 15456 * need to return failure. We return ENOSPC to differentiate 15457 * it from failing to allocate a buffer due to failure to meet 15458 * the reserve (for which we return E2BIG). 15459 */ 15460 rval = ENOSPC; 15461 goto out; 15462 } 15463 15464 if ((rval = dtrace_state_buffers(state)) != 0) 15465 goto err; 15466 15467 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 15468 sz = dtrace_dstate_defsize; 15469 15470 do { 15471 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 15472 15473 if (rval == 0) 15474 break; 15475 15476 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 15477 goto err; 15478 } while (sz >>= 1); 15479 15480 opt[DTRACEOPT_DYNVARSIZE] = sz; 15481 15482 if (rval != 0) 15483 goto err; 15484 15485 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 15486 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 15487 15488 if (opt[DTRACEOPT_CLEANRATE] == 0) 15489 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15490 15491 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 15492 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 15493 15494 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 15495 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15496 15497 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 15498 #ifdef illumos 15499 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 15500 hdlr.cyh_arg = state; 15501 hdlr.cyh_level = CY_LOW_LEVEL; 15502 15503 when.cyt_when = 0; 15504 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 15505 15506 state->dts_cleaner = cyclic_add(&hdlr, &when); 15507 15508 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 15509 hdlr.cyh_arg = state; 15510 hdlr.cyh_level = CY_LOW_LEVEL; 15511 15512 when.cyt_when = 0; 15513 when.cyt_interval = dtrace_deadman_interval; 15514 15515 state->dts_deadman = cyclic_add(&hdlr, &when); 15516 #endif 15517 #ifdef __FreeBSD__ 15518 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 15519 dtrace_state_clean, state); 15520 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 15521 dtrace_state_deadman, state); 15522 #endif 15523 #ifdef __NetBSD__ 15524 state->dts_cleaner = dtrace_state_worker_add( 15525 dtrace_state_clean, state, opt[DTRACEOPT_CLEANRATE]); 15526 state->dts_deadman = dtrace_state_worker_add( 15527 dtrace_state_deadman, state, dtrace_deadman_interval); 15528 #endif 15529 15530 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 15531 15532 #ifdef illumos 15533 if (state->dts_getf != 0 && 15534 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15535 /* 15536 * We don't have kernel privs but we have at least one call 15537 * to getf(); we need to bump our zone's count, and (if 15538 * this is the first enabling to have an unprivileged call 15539 * to getf()) we need to hook into closef(). 15540 */ 15541 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 15542 15543 if (dtrace_getf++ == 0) { 15544 ASSERT(dtrace_closef == NULL); 15545 dtrace_closef = dtrace_getf_barrier; 15546 } 15547 } 15548 #endif 15549 15550 /* 15551 * Now it's time to actually fire the BEGIN probe. We need to disable 15552 * interrupts here both to record the CPU on which we fired the BEGIN 15553 * probe (the data from this CPU will be processed first at user 15554 * level) and to manually activate the buffer for this CPU. 15555 */ 15556 cookie = dtrace_interrupt_disable(); 15557 *cpu = curcpu_id; 15558 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 15559 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 15560 15561 dtrace_probe(dtrace_probeid_begin, 15562 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15563 dtrace_interrupt_enable(cookie); 15564 /* 15565 * We may have had an exit action from a BEGIN probe; only change our 15566 * state to ACTIVE if we're still in WARMUP. 15567 */ 15568 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 15569 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 15570 15571 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 15572 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 15573 15574 #ifdef __FreeBSD__ 15575 /* 15576 * We enable anonymous tracing before APs are started, so we must 15577 * activate buffers using the current CPU. 15578 */ 15579 if (state == dtrace_anon.dta_state) 15580 for (int i = 0; i < NCPU; i++) 15581 dtrace_buffer_activate_cpu(state, i); 15582 else 15583 dtrace_xcall(DTRACE_CPUALL, 15584 (dtrace_xcall_t)dtrace_buffer_activate, state); 15585 #else 15586 15587 /* 15588 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 15589 * want each CPU to transition its principal buffer out of the 15590 * INACTIVE state. Doing this assures that no CPU will suddenly begin 15591 * processing an ECB halfway down a probe's ECB chain; all CPUs will 15592 * atomically transition from processing none of a state's ECBs to 15593 * processing all of them. 15594 */ 15595 dtrace_xcall(DTRACE_CPUALL, 15596 (dtrace_xcall_t)dtrace_buffer_activate, state); 15597 #endif 15598 goto out; 15599 15600 err: 15601 dtrace_buffer_free(state->dts_buffer); 15602 dtrace_buffer_free(state->dts_aggbuffer); 15603 15604 if ((nspec = state->dts_nspeculations) == 0) { 15605 ASSERT(state->dts_speculations == NULL); 15606 goto out; 15607 } 15608 15609 spec = state->dts_speculations; 15610 ASSERT(spec != NULL); 15611 15612 for (i = 0; i < state->dts_nspeculations; i++) { 15613 if ((buf = spec[i].dtsp_buffer) == NULL) 15614 break; 15615 15616 dtrace_buffer_free(buf); 15617 kmem_free(buf, bufsize); 15618 } 15619 15620 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15621 state->dts_nspeculations = 0; 15622 state->dts_speculations = NULL; 15623 15624 out: 15625 mutex_exit(&dtrace_lock); 15626 mutex_exit(&cpu_lock); 15627 15628 return (rval); 15629 } 15630 15631 static int 15632 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 15633 { 15634 dtrace_icookie_t cookie; 15635 15636 ASSERT(MUTEX_HELD(&dtrace_lock)); 15637 15638 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 15639 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 15640 return (EINVAL); 15641 15642 /* 15643 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 15644 * to be sure that every CPU has seen it. See below for the details 15645 * on why this is done. 15646 */ 15647 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 15648 dtrace_sync(); 15649 15650 /* 15651 * By this point, it is impossible for any CPU to be still processing 15652 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 15653 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 15654 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 15655 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 15656 * iff we're in the END probe. 15657 */ 15658 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 15659 dtrace_sync(); 15660 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 15661 15662 /* 15663 * Finally, we can release the reserve and call the END probe. We 15664 * disable interrupts across calling the END probe to allow us to 15665 * return the CPU on which we actually called the END probe. This 15666 * allows user-land to be sure that this CPU's principal buffer is 15667 * processed last. 15668 */ 15669 state->dts_reserve = 0; 15670 15671 cookie = dtrace_interrupt_disable(); 15672 *cpu = curcpu_id; 15673 dtrace_probe(dtrace_probeid_end, 15674 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15675 dtrace_interrupt_enable(cookie); 15676 15677 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 15678 dtrace_sync(); 15679 15680 #ifdef illumos 15681 if (state->dts_getf != 0 && 15682 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15683 /* 15684 * We don't have kernel privs but we have at least one call 15685 * to getf(); we need to lower our zone's count, and (if 15686 * this is the last enabling to have an unprivileged call 15687 * to getf()) we need to clear the closef() hook. 15688 */ 15689 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 15690 ASSERT(dtrace_closef == dtrace_getf_barrier); 15691 ASSERT(dtrace_getf > 0); 15692 15693 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 15694 15695 if (--dtrace_getf == 0) 15696 dtrace_closef = NULL; 15697 } 15698 #endif 15699 15700 return (0); 15701 } 15702 15703 static int 15704 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 15705 dtrace_optval_t val) 15706 { 15707 ASSERT(MUTEX_HELD(&dtrace_lock)); 15708 15709 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15710 return (EBUSY); 15711 15712 if (option >= DTRACEOPT_MAX) 15713 return (EINVAL); 15714 15715 if (option != DTRACEOPT_CPU && val < 0) 15716 return (EINVAL); 15717 15718 switch (option) { 15719 case DTRACEOPT_DESTRUCTIVE: 15720 if (dtrace_destructive_disallow) 15721 return (EACCES); 15722 15723 state->dts_cred.dcr_destructive = 1; 15724 break; 15725 15726 case DTRACEOPT_BUFSIZE: 15727 case DTRACEOPT_DYNVARSIZE: 15728 case DTRACEOPT_AGGSIZE: 15729 case DTRACEOPT_SPECSIZE: 15730 case DTRACEOPT_STRSIZE: 15731 if (val < 0) 15732 return (EINVAL); 15733 15734 if (val >= LONG_MAX) { 15735 /* 15736 * If this is an otherwise negative value, set it to 15737 * the highest multiple of 128m less than LONG_MAX. 15738 * Technically, we're adjusting the size without 15739 * regard to the buffer resizing policy, but in fact, 15740 * this has no effect -- if we set the buffer size to 15741 * ~LONG_MAX and the buffer policy is ultimately set to 15742 * be "manual", the buffer allocation is guaranteed to 15743 * fail, if only because the allocation requires two 15744 * buffers. (We set the the size to the highest 15745 * multiple of 128m because it ensures that the size 15746 * will remain a multiple of a megabyte when 15747 * repeatedly halved -- all the way down to 15m.) 15748 */ 15749 val = LONG_MAX - (1 << 27) + 1; 15750 } 15751 } 15752 15753 state->dts_options[option] = val; 15754 15755 return (0); 15756 } 15757 15758 static void 15759 dtrace_state_destroy(dtrace_state_t *state) 15760 { 15761 dtrace_ecb_t *ecb; 15762 dtrace_vstate_t *vstate = &state->dts_vstate; 15763 #ifdef illumos 15764 minor_t minor = getminor(state->dts_dev); 15765 #endif 15766 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 15767 dtrace_speculation_t *spec = state->dts_speculations; 15768 int nspec = state->dts_nspeculations; 15769 uint32_t match; 15770 15771 ASSERT(MUTEX_HELD(&dtrace_lock)); 15772 ASSERT(MUTEX_HELD(&cpu_lock)); 15773 15774 /* 15775 * First, retract any retained enablings for this state. 15776 */ 15777 dtrace_enabling_retract(state); 15778 ASSERT(state->dts_nretained == 0); 15779 15780 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 15781 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 15782 /* 15783 * We have managed to come into dtrace_state_destroy() on a 15784 * hot enabling -- almost certainly because of a disorderly 15785 * shutdown of a consumer. (That is, a consumer that is 15786 * exiting without having called dtrace_stop().) In this case, 15787 * we're going to set our activity to be KILLED, and then 15788 * issue a sync to be sure that everyone is out of probe 15789 * context before we start blowing away ECBs. 15790 */ 15791 state->dts_activity = DTRACE_ACTIVITY_KILLED; 15792 dtrace_sync(); 15793 } 15794 15795 /* 15796 * Release the credential hold we took in dtrace_state_create(). 15797 */ 15798 if (state->dts_cred.dcr_cred != NULL) 15799 crfree(state->dts_cred.dcr_cred); 15800 15801 /* 15802 * Now we can safely disable and destroy any enabled probes. Because 15803 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 15804 * (especially if they're all enabled), we take two passes through the 15805 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 15806 * in the second we disable whatever is left over. 15807 */ 15808 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 15809 for (i = 0; i < state->dts_necbs; i++) { 15810 if ((ecb = state->dts_ecbs[i]) == NULL) 15811 continue; 15812 15813 if (match && ecb->dte_probe != NULL) { 15814 dtrace_probe_t *probe = ecb->dte_probe; 15815 dtrace_provider_t *prov = probe->dtpr_provider; 15816 15817 if (!(prov->dtpv_priv.dtpp_flags & match)) 15818 continue; 15819 } 15820 15821 dtrace_ecb_disable(ecb); 15822 dtrace_ecb_destroy(ecb); 15823 } 15824 15825 if (!match) 15826 break; 15827 } 15828 15829 /* 15830 * Before we free the buffers, perform one more sync to assure that 15831 * every CPU is out of probe context. 15832 */ 15833 dtrace_sync(); 15834 15835 dtrace_buffer_free(state->dts_buffer); 15836 dtrace_buffer_free(state->dts_aggbuffer); 15837 15838 for (i = 0; i < nspec; i++) 15839 dtrace_buffer_free(spec[i].dtsp_buffer); 15840 15841 #ifdef illumos 15842 if (state->dts_cleaner != CYCLIC_NONE) 15843 cyclic_remove(state->dts_cleaner); 15844 15845 if (state->dts_deadman != CYCLIC_NONE) 15846 cyclic_remove(state->dts_deadman); 15847 #endif 15848 #ifdef __FreeBSD__ 15849 callout_stop(&state->dts_cleaner); 15850 callout_drain(&state->dts_cleaner); 15851 callout_stop(&state->dts_deadman); 15852 callout_drain(&state->dts_deadman); 15853 #endif 15854 #ifdef __NetBSD__ 15855 if (state->dts_cleaner != NULL) 15856 dtrace_state_worker_remove(state->dts_cleaner); 15857 15858 if (state->dts_deadman != NULL) 15859 dtrace_state_worker_remove(state->dts_deadman); 15860 #endif 15861 15862 dtrace_dstate_fini(&vstate->dtvs_dynvars); 15863 dtrace_vstate_fini(vstate); 15864 if (state->dts_ecbs != NULL) 15865 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 15866 15867 if (state->dts_aggregations != NULL) { 15868 #ifdef DEBUG 15869 for (i = 0; i < state->dts_naggregations; i++) 15870 ASSERT(state->dts_aggregations[i] == NULL); 15871 #endif 15872 ASSERT(state->dts_naggregations > 0); 15873 kmem_free(state->dts_aggregations, 15874 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 15875 } 15876 15877 kmem_free(state->dts_buffer, bufsize); 15878 kmem_free(state->dts_aggbuffer, bufsize); 15879 15880 for (i = 0; i < nspec; i++) 15881 kmem_free(spec[i].dtsp_buffer, bufsize); 15882 15883 if (spec != NULL) 15884 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15885 15886 dtrace_format_destroy(state); 15887 15888 if (state->dts_aggid_arena != NULL) { 15889 #if defined(illumos) || defined(__NetBSD__) 15890 vmem_destroy(state->dts_aggid_arena); 15891 #else 15892 delete_unrhdr(state->dts_aggid_arena); 15893 #endif 15894 state->dts_aggid_arena = NULL; 15895 } 15896 #ifdef illumos 15897 ddi_soft_state_free(dtrace_softstate, minor); 15898 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 15899 #endif 15900 #ifdef __NetBSD__ 15901 kmem_free(state, sizeof(dtrace_state_t)); 15902 #endif 15903 } 15904 15905 /* 15906 * DTrace Anonymous Enabling Functions 15907 */ 15908 static dtrace_state_t * 15909 dtrace_anon_grab(void) 15910 { 15911 dtrace_state_t *state; 15912 15913 ASSERT(MUTEX_HELD(&dtrace_lock)); 15914 15915 if ((state = dtrace_anon.dta_state) == NULL) { 15916 ASSERT(dtrace_anon.dta_enabling == NULL); 15917 return (NULL); 15918 } 15919 15920 ASSERT(dtrace_anon.dta_enabling != NULL); 15921 ASSERT(dtrace_retained != NULL); 15922 15923 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 15924 dtrace_anon.dta_enabling = NULL; 15925 dtrace_anon.dta_state = NULL; 15926 15927 return (state); 15928 } 15929 15930 static void 15931 dtrace_anon_property(void) 15932 { 15933 int i, rv; 15934 dtrace_state_t *state; 15935 dof_hdr_t *dof; 15936 char c[32]; /* enough for "dof-data-" + digits */ 15937 15938 ASSERT(MUTEX_HELD(&dtrace_lock)); 15939 ASSERT(MUTEX_HELD(&cpu_lock)); 15940 15941 for (i = 0; ; i++) { 15942 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 15943 15944 dtrace_err_verbose = 1; 15945 15946 if ((dof = dtrace_dof_property(c)) == NULL) { 15947 dtrace_err_verbose = 0; 15948 break; 15949 } 15950 15951 #ifdef illumos 15952 /* 15953 * We want to create anonymous state, so we need to transition 15954 * the kernel debugger to indicate that DTrace is active. If 15955 * this fails (e.g. because the debugger has modified text in 15956 * some way), we won't continue with the processing. 15957 */ 15958 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15959 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 15960 "enabling ignored."); 15961 dtrace_dof_destroy(dof); 15962 break; 15963 } 15964 #endif 15965 15966 /* 15967 * If we haven't allocated an anonymous state, we'll do so now. 15968 */ 15969 if ((state = dtrace_anon.dta_state) == NULL) { 15970 state = dtrace_state_create(NULL, NULL); 15971 dtrace_anon.dta_state = state; 15972 15973 if (state == NULL) { 15974 /* 15975 * This basically shouldn't happen: the only 15976 * failure mode from dtrace_state_create() is a 15977 * failure of ddi_soft_state_zalloc() that 15978 * itself should never happen. Still, the 15979 * interface allows for a failure mode, and 15980 * we want to fail as gracefully as possible: 15981 * we'll emit an error message and cease 15982 * processing anonymous state in this case. 15983 */ 15984 cmn_err(CE_WARN, "failed to create " 15985 "anonymous state"); 15986 dtrace_dof_destroy(dof); 15987 break; 15988 } 15989 } 15990 15991 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 15992 &dtrace_anon.dta_enabling, 0, 0, B_TRUE); 15993 15994 if (rv == 0) 15995 rv = dtrace_dof_options(dof, state); 15996 15997 dtrace_err_verbose = 0; 15998 dtrace_dof_destroy(dof); 15999 16000 if (rv != 0) { 16001 /* 16002 * This is malformed DOF; chuck any anonymous state 16003 * that we created. 16004 */ 16005 ASSERT(dtrace_anon.dta_enabling == NULL); 16006 dtrace_state_destroy(state); 16007 dtrace_anon.dta_state = NULL; 16008 break; 16009 } 16010 16011 ASSERT(dtrace_anon.dta_enabling != NULL); 16012 } 16013 16014 if (dtrace_anon.dta_enabling != NULL) { 16015 int rval; 16016 16017 /* 16018 * dtrace_enabling_retain() can only fail because we are 16019 * trying to retain more enablings than are allowed -- but 16020 * we only have one anonymous enabling, and we are guaranteed 16021 * to be allowed at least one retained enabling; we assert 16022 * that dtrace_enabling_retain() returns success. 16023 */ 16024 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 16025 ASSERT(rval == 0); 16026 16027 dtrace_enabling_dump(dtrace_anon.dta_enabling); 16028 } 16029 } 16030 16031 /* 16032 * DTrace Helper Functions 16033 */ 16034 static void 16035 dtrace_helper_trace(dtrace_helper_action_t *helper, 16036 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 16037 { 16038 uint32_t size, next, nnext, i; 16039 dtrace_helptrace_t *ent, *buffer; 16040 uint16_t flags = cpu_core[curcpu_id].cpuc_dtrace_flags; 16041 16042 if ((buffer = dtrace_helptrace_buffer) == NULL) 16043 return; 16044 16045 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 16046 16047 /* 16048 * What would a tracing framework be without its own tracing 16049 * framework? (Well, a hell of a lot simpler, for starters...) 16050 */ 16051 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 16052 sizeof (uint64_t) - sizeof (uint64_t); 16053 16054 /* 16055 * Iterate until we can allocate a slot in the trace buffer. 16056 */ 16057 do { 16058 next = dtrace_helptrace_next; 16059 16060 if (next + size < dtrace_helptrace_bufsize) { 16061 nnext = next + size; 16062 } else { 16063 nnext = size; 16064 } 16065 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 16066 16067 /* 16068 * We have our slot; fill it in. 16069 */ 16070 if (nnext == size) { 16071 dtrace_helptrace_wrapped++; 16072 next = 0; 16073 } 16074 16075 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 16076 ent->dtht_helper = helper; 16077 ent->dtht_where = where; 16078 ent->dtht_nlocals = vstate->dtvs_nlocals; 16079 16080 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 16081 mstate->dtms_fltoffs : -1; 16082 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 16083 ent->dtht_illval = cpu_core[curcpu_id].cpuc_dtrace_illval; 16084 16085 for (i = 0; i < vstate->dtvs_nlocals; i++) { 16086 dtrace_statvar_t *svar; 16087 16088 if ((svar = vstate->dtvs_locals[i]) == NULL) 16089 continue; 16090 16091 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 16092 ent->dtht_locals[i] = 16093 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu_id]; 16094 } 16095 } 16096 16097 static uint64_t 16098 dtrace_helper(int which, dtrace_mstate_t *mstate, 16099 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 16100 { 16101 uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags; 16102 uint64_t sarg0 = mstate->dtms_arg[0]; 16103 uint64_t sarg1 = mstate->dtms_arg[1]; 16104 uint64_t rval = 0; 16105 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 16106 dtrace_helper_action_t *helper; 16107 dtrace_vstate_t *vstate; 16108 dtrace_difo_t *pred; 16109 int i, trace = dtrace_helptrace_buffer != NULL; 16110 16111 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 16112 16113 if (helpers == NULL) 16114 return (0); 16115 16116 if ((helper = helpers->dthps_actions[which]) == NULL) 16117 return (0); 16118 16119 vstate = &helpers->dthps_vstate; 16120 mstate->dtms_arg[0] = arg0; 16121 mstate->dtms_arg[1] = arg1; 16122 16123 /* 16124 * Now iterate over each helper. If its predicate evaluates to 'true', 16125 * we'll call the corresponding actions. Note that the below calls 16126 * to dtrace_dif_emulate() may set faults in machine state. This is 16127 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 16128 * the stored DIF offset with its own (which is the desired behavior). 16129 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 16130 * from machine state; this is okay, too. 16131 */ 16132 for (; helper != NULL; helper = helper->dtha_next) { 16133 if ((pred = helper->dtha_predicate) != NULL) { 16134 if (trace) 16135 dtrace_helper_trace(helper, mstate, vstate, 0); 16136 16137 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 16138 goto next; 16139 16140 if (*flags & CPU_DTRACE_FAULT) 16141 goto err; 16142 } 16143 16144 for (i = 0; i < helper->dtha_nactions; i++) { 16145 if (trace) 16146 dtrace_helper_trace(helper, 16147 mstate, vstate, i + 1); 16148 16149 rval = dtrace_dif_emulate(helper->dtha_actions[i], 16150 mstate, vstate, state); 16151 16152 if (*flags & CPU_DTRACE_FAULT) 16153 goto err; 16154 } 16155 16156 next: 16157 if (trace) 16158 dtrace_helper_trace(helper, mstate, vstate, 16159 DTRACE_HELPTRACE_NEXT); 16160 } 16161 16162 if (trace) 16163 dtrace_helper_trace(helper, mstate, vstate, 16164 DTRACE_HELPTRACE_DONE); 16165 16166 /* 16167 * Restore the arg0 that we saved upon entry. 16168 */ 16169 mstate->dtms_arg[0] = sarg0; 16170 mstate->dtms_arg[1] = sarg1; 16171 16172 return (rval); 16173 16174 err: 16175 if (trace) 16176 dtrace_helper_trace(helper, mstate, vstate, 16177 DTRACE_HELPTRACE_ERR); 16178 16179 /* 16180 * Restore the arg0 that we saved upon entry. 16181 */ 16182 mstate->dtms_arg[0] = sarg0; 16183 mstate->dtms_arg[1] = sarg1; 16184 16185 return (0); 16186 } 16187 16188 static void 16189 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 16190 dtrace_vstate_t *vstate) 16191 { 16192 int i; 16193 16194 if (helper->dtha_predicate != NULL) 16195 dtrace_difo_release(helper->dtha_predicate, vstate); 16196 16197 for (i = 0; i < helper->dtha_nactions; i++) { 16198 ASSERT(helper->dtha_actions[i] != NULL); 16199 dtrace_difo_release(helper->dtha_actions[i], vstate); 16200 } 16201 16202 kmem_free(helper->dtha_actions, 16203 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 16204 kmem_free(helper, sizeof (dtrace_helper_action_t)); 16205 } 16206 16207 static int 16208 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen) 16209 { 16210 proc_t *p = curproc; 16211 dtrace_vstate_t *vstate; 16212 int i; 16213 16214 if (help == NULL) 16215 help = p->p_dtrace_helpers; 16216 16217 ASSERT(MUTEX_HELD(&dtrace_lock)); 16218 16219 if (help == NULL || gen > help->dthps_generation) 16220 return (EINVAL); 16221 16222 vstate = &help->dthps_vstate; 16223 16224 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16225 dtrace_helper_action_t *last = NULL, *h, *next; 16226 16227 for (h = help->dthps_actions[i]; h != NULL; h = next) { 16228 next = h->dtha_next; 16229 16230 if (h->dtha_generation == gen) { 16231 if (last != NULL) { 16232 last->dtha_next = next; 16233 } else { 16234 help->dthps_actions[i] = next; 16235 } 16236 16237 dtrace_helper_action_destroy(h, vstate); 16238 } else { 16239 last = h; 16240 } 16241 } 16242 } 16243 16244 /* 16245 * Interate until we've cleared out all helper providers with the 16246 * given generation number. 16247 */ 16248 for (;;) { 16249 dtrace_helper_provider_t *prov; 16250 16251 /* 16252 * Look for a helper provider with the right generation. We 16253 * have to start back at the beginning of the list each time 16254 * because we drop dtrace_lock. It's unlikely that we'll make 16255 * more than two passes. 16256 */ 16257 for (i = 0; i < help->dthps_nprovs; i++) { 16258 prov = help->dthps_provs[i]; 16259 16260 if (prov->dthp_generation == gen) 16261 break; 16262 } 16263 16264 /* 16265 * If there were no matches, we're done. 16266 */ 16267 if (i == help->dthps_nprovs) 16268 break; 16269 16270 /* 16271 * Move the last helper provider into this slot. 16272 */ 16273 help->dthps_nprovs--; 16274 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 16275 help->dthps_provs[help->dthps_nprovs] = NULL; 16276 16277 mutex_exit(&dtrace_lock); 16278 16279 /* 16280 * If we have a meta provider, remove this helper provider. 16281 */ 16282 mutex_enter(&dtrace_meta_lock); 16283 if (dtrace_meta_pid != NULL) { 16284 ASSERT(dtrace_deferred_pid == NULL); 16285 dtrace_helper_provider_remove(&prov->dthp_prov, 16286 p->p_pid); 16287 } 16288 mutex_exit(&dtrace_meta_lock); 16289 16290 dtrace_helper_provider_destroy(prov); 16291 16292 mutex_enter(&dtrace_lock); 16293 } 16294 16295 return (0); 16296 } 16297 16298 static int 16299 dtrace_helper_validate(dtrace_helper_action_t *helper) 16300 { 16301 int err = 0, i; 16302 dtrace_difo_t *dp; 16303 16304 if ((dp = helper->dtha_predicate) != NULL) 16305 err += dtrace_difo_validate_helper(dp); 16306 16307 for (i = 0; i < helper->dtha_nactions; i++) 16308 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 16309 16310 return (err == 0); 16311 } 16312 16313 static int 16314 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep, 16315 dtrace_helpers_t *help) 16316 { 16317 dtrace_helper_action_t *helper, *last; 16318 dtrace_actdesc_t *act; 16319 dtrace_vstate_t *vstate; 16320 dtrace_predicate_t *pred; 16321 int count = 0, nactions = 0, i; 16322 16323 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 16324 return (EINVAL); 16325 16326 last = help->dthps_actions[which]; 16327 vstate = &help->dthps_vstate; 16328 16329 for (count = 0; last != NULL; last = last->dtha_next) { 16330 count++; 16331 if (last->dtha_next == NULL) 16332 break; 16333 } 16334 16335 /* 16336 * If we already have dtrace_helper_actions_max helper actions for this 16337 * helper action type, we'll refuse to add a new one. 16338 */ 16339 if (count >= dtrace_helper_actions_max) 16340 return (ENOSPC); 16341 16342 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 16343 helper->dtha_generation = help->dthps_generation; 16344 16345 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 16346 ASSERT(pred->dtp_difo != NULL); 16347 dtrace_difo_hold(pred->dtp_difo); 16348 helper->dtha_predicate = pred->dtp_difo; 16349 } 16350 16351 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 16352 if (act->dtad_kind != DTRACEACT_DIFEXPR) 16353 goto err; 16354 16355 if (act->dtad_difo == NULL) 16356 goto err; 16357 16358 nactions++; 16359 } 16360 16361 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 16362 (helper->dtha_nactions = nactions), KM_SLEEP); 16363 16364 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 16365 dtrace_difo_hold(act->dtad_difo); 16366 helper->dtha_actions[i++] = act->dtad_difo; 16367 } 16368 16369 if (!dtrace_helper_validate(helper)) 16370 goto err; 16371 16372 if (last == NULL) { 16373 help->dthps_actions[which] = helper; 16374 } else { 16375 last->dtha_next = helper; 16376 } 16377 16378 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 16379 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 16380 dtrace_helptrace_next = 0; 16381 } 16382 16383 return (0); 16384 err: 16385 dtrace_helper_action_destroy(helper, vstate); 16386 return (EINVAL); 16387 } 16388 16389 static void 16390 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 16391 dof_helper_t *dofhp) 16392 { 16393 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 16394 16395 mutex_enter(&dtrace_meta_lock); 16396 mutex_enter(&dtrace_lock); 16397 16398 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 16399 /* 16400 * If the dtrace module is loaded but not attached, or if 16401 * there aren't isn't a meta provider registered to deal with 16402 * these provider descriptions, we need to postpone creating 16403 * the actual providers until later. 16404 */ 16405 16406 if (help->dthps_next == NULL && help->dthps_prev == NULL && 16407 dtrace_deferred_pid != help) { 16408 help->dthps_deferred = 1; 16409 help->dthps_pid = p->p_pid; 16410 help->dthps_next = dtrace_deferred_pid; 16411 help->dthps_prev = NULL; 16412 if (dtrace_deferred_pid != NULL) 16413 dtrace_deferred_pid->dthps_prev = help; 16414 dtrace_deferred_pid = help; 16415 } 16416 16417 mutex_exit(&dtrace_lock); 16418 16419 } else if (dofhp != NULL) { 16420 /* 16421 * If the dtrace module is loaded and we have a particular 16422 * helper provider description, pass that off to the 16423 * meta provider. 16424 */ 16425 16426 mutex_exit(&dtrace_lock); 16427 16428 dtrace_helper_provide(dofhp, p->p_pid); 16429 16430 } else { 16431 /* 16432 * Otherwise, just pass all the helper provider descriptions 16433 * off to the meta provider. 16434 */ 16435 16436 int i; 16437 mutex_exit(&dtrace_lock); 16438 16439 for (i = 0; i < help->dthps_nprovs; i++) { 16440 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 16441 p->p_pid); 16442 } 16443 } 16444 16445 mutex_exit(&dtrace_meta_lock); 16446 } 16447 16448 static int 16449 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen) 16450 { 16451 dtrace_helper_provider_t *hprov, **tmp_provs; 16452 uint_t tmp_maxprovs, i; 16453 16454 ASSERT(MUTEX_HELD(&dtrace_lock)); 16455 ASSERT(help != NULL); 16456 16457 /* 16458 * If we already have dtrace_helper_providers_max helper providers, 16459 * we're refuse to add a new one. 16460 */ 16461 if (help->dthps_nprovs >= dtrace_helper_providers_max) 16462 return (ENOSPC); 16463 16464 /* 16465 * Check to make sure this isn't a duplicate. 16466 */ 16467 for (i = 0; i < help->dthps_nprovs; i++) { 16468 if (dofhp->dofhp_addr == 16469 help->dthps_provs[i]->dthp_prov.dofhp_addr) 16470 return (EALREADY); 16471 } 16472 16473 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 16474 hprov->dthp_prov = *dofhp; 16475 hprov->dthp_ref = 1; 16476 hprov->dthp_generation = gen; 16477 16478 /* 16479 * Allocate a bigger table for helper providers if it's already full. 16480 */ 16481 if (help->dthps_maxprovs == help->dthps_nprovs) { 16482 tmp_maxprovs = help->dthps_maxprovs; 16483 tmp_provs = help->dthps_provs; 16484 16485 if (help->dthps_maxprovs == 0) 16486 help->dthps_maxprovs = 2; 16487 else 16488 help->dthps_maxprovs *= 2; 16489 if (help->dthps_maxprovs > dtrace_helper_providers_max) 16490 help->dthps_maxprovs = dtrace_helper_providers_max; 16491 16492 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 16493 16494 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 16495 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16496 16497 if (tmp_provs != NULL) { 16498 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 16499 sizeof (dtrace_helper_provider_t *)); 16500 kmem_free(tmp_provs, tmp_maxprovs * 16501 sizeof (dtrace_helper_provider_t *)); 16502 } 16503 } 16504 16505 help->dthps_provs[help->dthps_nprovs] = hprov; 16506 help->dthps_nprovs++; 16507 16508 return (0); 16509 } 16510 16511 static void 16512 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 16513 { 16514 mutex_enter(&dtrace_lock); 16515 16516 if (--hprov->dthp_ref == 0) { 16517 dof_hdr_t *dof; 16518 mutex_exit(&dtrace_lock); 16519 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 16520 dtrace_dof_destroy(dof); 16521 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 16522 } else { 16523 mutex_exit(&dtrace_lock); 16524 } 16525 } 16526 16527 static int 16528 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 16529 { 16530 uintptr_t daddr = (uintptr_t)dof; 16531 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 16532 dof_provider_t *provider; 16533 dof_probe_t *probe; 16534 uint8_t *arg; 16535 char *strtab, *typestr; 16536 dof_stridx_t typeidx; 16537 size_t typesz; 16538 uint_t nprobes, j, k; 16539 16540 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 16541 16542 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 16543 dtrace_dof_error(dof, "misaligned section offset"); 16544 return (-1); 16545 } 16546 16547 /* 16548 * The section needs to be large enough to contain the DOF provider 16549 * structure appropriate for the given version. 16550 */ 16551 if (sec->dofs_size < 16552 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 16553 offsetof(dof_provider_t, dofpv_prenoffs) : 16554 sizeof (dof_provider_t))) { 16555 dtrace_dof_error(dof, "provider section too small"); 16556 return (-1); 16557 } 16558 16559 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 16560 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 16561 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 16562 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 16563 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 16564 16565 if (str_sec == NULL || prb_sec == NULL || 16566 arg_sec == NULL || off_sec == NULL) 16567 return (-1); 16568 16569 enoff_sec = NULL; 16570 16571 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 16572 provider->dofpv_prenoffs != DOF_SECT_NONE && 16573 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 16574 provider->dofpv_prenoffs)) == NULL) 16575 return (-1); 16576 16577 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 16578 16579 if (provider->dofpv_name >= str_sec->dofs_size || 16580 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 16581 dtrace_dof_error(dof, "invalid provider name"); 16582 return (-1); 16583 } 16584 16585 if (prb_sec->dofs_entsize == 0 || 16586 prb_sec->dofs_entsize > prb_sec->dofs_size) { 16587 dtrace_dof_error(dof, "invalid entry size"); 16588 return (-1); 16589 } 16590 16591 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 16592 dtrace_dof_error(dof, "misaligned entry size"); 16593 return (-1); 16594 } 16595 16596 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 16597 dtrace_dof_error(dof, "invalid entry size"); 16598 return (-1); 16599 } 16600 16601 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 16602 dtrace_dof_error(dof, "misaligned section offset"); 16603 return (-1); 16604 } 16605 16606 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 16607 dtrace_dof_error(dof, "invalid entry size"); 16608 return (-1); 16609 } 16610 16611 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 16612 16613 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 16614 16615 /* 16616 * Take a pass through the probes to check for errors. 16617 */ 16618 for (j = 0; j < nprobes; j++) { 16619 probe = (dof_probe_t *)(uintptr_t)(daddr + 16620 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 16621 16622 if (probe->dofpr_func >= str_sec->dofs_size) { 16623 dtrace_dof_error(dof, "invalid function name"); 16624 return (-1); 16625 } 16626 16627 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 16628 dtrace_dof_error(dof, "function name too long"); 16629 /* 16630 * Keep going if the function name is too long. 16631 * Unlike provider and probe names, we cannot reasonably 16632 * impose restrictions on function names, since they're 16633 * a property of the code being instrumented. We will 16634 * skip this probe in dtrace_helper_provide_one(). 16635 */ 16636 } 16637 16638 if (probe->dofpr_name >= str_sec->dofs_size || 16639 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 16640 dtrace_dof_error(dof, "invalid probe name"); 16641 return (-1); 16642 } 16643 16644 /* 16645 * The offset count must not wrap the index, and the offsets 16646 * must also not overflow the section's data. 16647 */ 16648 if (probe->dofpr_offidx + probe->dofpr_noffs < 16649 probe->dofpr_offidx || 16650 (probe->dofpr_offidx + probe->dofpr_noffs) * 16651 off_sec->dofs_entsize > off_sec->dofs_size) { 16652 dtrace_dof_error(dof, "invalid probe offset"); 16653 return (-1); 16654 } 16655 16656 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 16657 /* 16658 * If there's no is-enabled offset section, make sure 16659 * there aren't any is-enabled offsets. Otherwise 16660 * perform the same checks as for probe offsets 16661 * (immediately above). 16662 */ 16663 if (enoff_sec == NULL) { 16664 if (probe->dofpr_enoffidx != 0 || 16665 probe->dofpr_nenoffs != 0) { 16666 dtrace_dof_error(dof, "is-enabled " 16667 "offsets with null section"); 16668 return (-1); 16669 } 16670 } else if (probe->dofpr_enoffidx + 16671 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 16672 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 16673 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 16674 dtrace_dof_error(dof, "invalid is-enabled " 16675 "offset"); 16676 return (-1); 16677 } 16678 16679 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 16680 dtrace_dof_error(dof, "zero probe and " 16681 "is-enabled offsets"); 16682 return (-1); 16683 } 16684 } else if (probe->dofpr_noffs == 0) { 16685 dtrace_dof_error(dof, "zero probe offsets"); 16686 return (-1); 16687 } 16688 16689 if (probe->dofpr_argidx + probe->dofpr_xargc < 16690 probe->dofpr_argidx || 16691 (probe->dofpr_argidx + probe->dofpr_xargc) * 16692 arg_sec->dofs_entsize > arg_sec->dofs_size) { 16693 dtrace_dof_error(dof, "invalid args"); 16694 return (-1); 16695 } 16696 16697 typeidx = probe->dofpr_nargv; 16698 typestr = strtab + probe->dofpr_nargv; 16699 for (k = 0; k < probe->dofpr_nargc; k++) { 16700 if (typeidx >= str_sec->dofs_size) { 16701 dtrace_dof_error(dof, "bad " 16702 "native argument type"); 16703 return (-1); 16704 } 16705 16706 typesz = strlen(typestr) + 1; 16707 if (typesz > DTRACE_ARGTYPELEN) { 16708 dtrace_dof_error(dof, "native " 16709 "argument type too long"); 16710 return (-1); 16711 } 16712 typeidx += typesz; 16713 typestr += typesz; 16714 } 16715 16716 typeidx = probe->dofpr_xargv; 16717 typestr = strtab + probe->dofpr_xargv; 16718 for (k = 0; k < probe->dofpr_xargc; k++) { 16719 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 16720 dtrace_dof_error(dof, "bad " 16721 "native argument index"); 16722 return (-1); 16723 } 16724 16725 if (typeidx >= str_sec->dofs_size) { 16726 dtrace_dof_error(dof, "bad " 16727 "translated argument type"); 16728 return (-1); 16729 } 16730 16731 typesz = strlen(typestr) + 1; 16732 if (typesz > DTRACE_ARGTYPELEN) { 16733 dtrace_dof_error(dof, "translated argument " 16734 "type too long"); 16735 return (-1); 16736 } 16737 16738 typeidx += typesz; 16739 typestr += typesz; 16740 } 16741 } 16742 16743 return (0); 16744 } 16745 16746 static int 16747 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p) 16748 { 16749 dtrace_helpers_t *help; 16750 dtrace_vstate_t *vstate; 16751 dtrace_enabling_t *enab = NULL; 16752 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 16753 uintptr_t daddr = (uintptr_t)dof; 16754 16755 ASSERT(MUTEX_HELD(&dtrace_lock)); 16756 16757 if ((help = p->p_dtrace_helpers) == NULL) 16758 help = dtrace_helpers_create(p); 16759 16760 vstate = &help->dthps_vstate; 16761 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr, 16762 dhp->dofhp_dof, B_FALSE)) != 0) { 16763 dtrace_dof_destroy(dof); 16764 return (rv); 16765 } 16766 16767 /* 16768 * Look for helper providers and validate their descriptions. 16769 */ 16770 for (i = 0; i < dof->dofh_secnum; i++) { 16771 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 16772 dof->dofh_secoff + i * dof->dofh_secsize); 16773 16774 if (sec->dofs_type != DOF_SECT_PROVIDER) 16775 continue; 16776 16777 if (dtrace_helper_provider_validate(dof, sec) != 0) { 16778 dtrace_enabling_destroy(enab); 16779 dtrace_dof_destroy(dof); 16780 return (-1); 16781 } 16782 16783 nprovs++; 16784 } 16785 16786 /* 16787 * Now we need to walk through the ECB descriptions in the enabling. 16788 */ 16789 for (i = 0; i < enab->dten_ndesc; i++) { 16790 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 16791 dtrace_probedesc_t *desc = &ep->dted_probe; 16792 16793 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 16794 continue; 16795 16796 if (strcmp(desc->dtpd_mod, "helper") != 0) 16797 continue; 16798 16799 if (strcmp(desc->dtpd_func, "ustack") != 0) 16800 continue; 16801 16802 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 16803 ep, help)) != 0) { 16804 /* 16805 * Adding this helper action failed -- we are now going 16806 * to rip out the entire generation and return failure. 16807 */ 16808 (void) dtrace_helper_destroygen(help, 16809 help->dthps_generation); 16810 dtrace_enabling_destroy(enab); 16811 dtrace_dof_destroy(dof); 16812 return (-1); 16813 } 16814 16815 nhelpers++; 16816 } 16817 16818 if (nhelpers < enab->dten_ndesc) 16819 dtrace_dof_error(dof, "unmatched helpers"); 16820 16821 gen = help->dthps_generation++; 16822 dtrace_enabling_destroy(enab); 16823 16824 if (nprovs > 0) { 16825 /* 16826 * Now that this is in-kernel, we change the sense of the 16827 * members: dofhp_dof denotes the in-kernel copy of the DOF 16828 * and dofhp_addr denotes the address at user-level. 16829 */ 16830 dhp->dofhp_addr = dhp->dofhp_dof; 16831 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 16832 16833 if (dtrace_helper_provider_add(dhp, help, gen) == 0) { 16834 mutex_exit(&dtrace_lock); 16835 dtrace_helper_provider_register(p, help, dhp); 16836 mutex_enter(&dtrace_lock); 16837 16838 destroy = 0; 16839 } 16840 } 16841 16842 if (destroy) 16843 dtrace_dof_destroy(dof); 16844 16845 return (gen); 16846 } 16847 16848 static dtrace_helpers_t * 16849 dtrace_helpers_create(proc_t *p) 16850 { 16851 dtrace_helpers_t *help; 16852 16853 ASSERT(MUTEX_HELD(&dtrace_lock)); 16854 ASSERT(p->p_dtrace_helpers == NULL); 16855 16856 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 16857 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 16858 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 16859 16860 p->p_dtrace_helpers = help; 16861 dtrace_helpers++; 16862 16863 return (help); 16864 } 16865 16866 #ifdef illumos 16867 static 16868 #endif 16869 void 16870 dtrace_helpers_destroy(proc_t *p) 16871 { 16872 dtrace_helpers_t *help; 16873 dtrace_vstate_t *vstate; 16874 #ifdef illumos 16875 proc_t *p = curproc; 16876 #endif 16877 int i; 16878 16879 mutex_enter(&dtrace_lock); 16880 16881 ASSERT(p->p_dtrace_helpers != NULL); 16882 ASSERT(dtrace_helpers > 0); 16883 16884 help = p->p_dtrace_helpers; 16885 vstate = &help->dthps_vstate; 16886 16887 /* 16888 * We're now going to lose the help from this process. 16889 */ 16890 p->p_dtrace_helpers = NULL; 16891 dtrace_sync(); 16892 16893 /* 16894 * Destory the helper actions. 16895 */ 16896 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16897 dtrace_helper_action_t *h, *next; 16898 16899 for (h = help->dthps_actions[i]; h != NULL; h = next) { 16900 next = h->dtha_next; 16901 dtrace_helper_action_destroy(h, vstate); 16902 h = next; 16903 } 16904 } 16905 16906 mutex_exit(&dtrace_lock); 16907 16908 /* 16909 * Destroy the helper providers. 16910 */ 16911 if (help->dthps_maxprovs > 0) { 16912 mutex_enter(&dtrace_meta_lock); 16913 if (dtrace_meta_pid != NULL) { 16914 ASSERT(dtrace_deferred_pid == NULL); 16915 16916 for (i = 0; i < help->dthps_nprovs; i++) { 16917 dtrace_helper_provider_remove( 16918 &help->dthps_provs[i]->dthp_prov, p->p_pid); 16919 } 16920 } else { 16921 mutex_enter(&dtrace_lock); 16922 ASSERT(help->dthps_deferred == 0 || 16923 help->dthps_next != NULL || 16924 help->dthps_prev != NULL || 16925 help == dtrace_deferred_pid); 16926 16927 /* 16928 * Remove the helper from the deferred list. 16929 */ 16930 if (help->dthps_next != NULL) 16931 help->dthps_next->dthps_prev = help->dthps_prev; 16932 if (help->dthps_prev != NULL) 16933 help->dthps_prev->dthps_next = help->dthps_next; 16934 if (dtrace_deferred_pid == help) { 16935 dtrace_deferred_pid = help->dthps_next; 16936 ASSERT(help->dthps_prev == NULL); 16937 } 16938 16939 mutex_exit(&dtrace_lock); 16940 } 16941 16942 mutex_exit(&dtrace_meta_lock); 16943 16944 for (i = 0; i < help->dthps_nprovs; i++) { 16945 dtrace_helper_provider_destroy(help->dthps_provs[i]); 16946 } 16947 16948 kmem_free(help->dthps_provs, help->dthps_maxprovs * 16949 sizeof (dtrace_helper_provider_t *)); 16950 } 16951 16952 mutex_enter(&dtrace_lock); 16953 16954 dtrace_vstate_fini(&help->dthps_vstate); 16955 kmem_free(help->dthps_actions, 16956 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 16957 kmem_free(help, sizeof (dtrace_helpers_t)); 16958 16959 --dtrace_helpers; 16960 mutex_exit(&dtrace_lock); 16961 } 16962 16963 #ifdef illumos 16964 static 16965 #endif 16966 void 16967 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 16968 { 16969 dtrace_helpers_t *help, *newhelp; 16970 dtrace_helper_action_t *helper, *new, *last; 16971 dtrace_difo_t *dp; 16972 dtrace_vstate_t *vstate; 16973 int i, j, sz, hasprovs = 0; 16974 16975 mutex_enter(&dtrace_lock); 16976 ASSERT(from->p_dtrace_helpers != NULL); 16977 ASSERT(dtrace_helpers > 0); 16978 16979 help = from->p_dtrace_helpers; 16980 newhelp = dtrace_helpers_create(to); 16981 ASSERT(to->p_dtrace_helpers != NULL); 16982 16983 newhelp->dthps_generation = help->dthps_generation; 16984 vstate = &newhelp->dthps_vstate; 16985 16986 /* 16987 * Duplicate the helper actions. 16988 */ 16989 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16990 if ((helper = help->dthps_actions[i]) == NULL) 16991 continue; 16992 16993 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 16994 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 16995 KM_SLEEP); 16996 new->dtha_generation = helper->dtha_generation; 16997 16998 if ((dp = helper->dtha_predicate) != NULL) { 16999 dp = dtrace_difo_duplicate(dp, vstate); 17000 new->dtha_predicate = dp; 17001 } 17002 17003 new->dtha_nactions = helper->dtha_nactions; 17004 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 17005 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 17006 17007 for (j = 0; j < new->dtha_nactions; j++) { 17008 dtrace_difo_t *dp = helper->dtha_actions[j]; 17009 17010 ASSERT(dp != NULL); 17011 dp = dtrace_difo_duplicate(dp, vstate); 17012 new->dtha_actions[j] = dp; 17013 } 17014 17015 if (last != NULL) { 17016 last->dtha_next = new; 17017 } else { 17018 newhelp->dthps_actions[i] = new; 17019 } 17020 17021 last = new; 17022 } 17023 } 17024 17025 /* 17026 * Duplicate the helper providers and register them with the 17027 * DTrace framework. 17028 */ 17029 if (help->dthps_nprovs > 0) { 17030 newhelp->dthps_nprovs = help->dthps_nprovs; 17031 newhelp->dthps_maxprovs = help->dthps_nprovs; 17032 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 17033 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 17034 for (i = 0; i < newhelp->dthps_nprovs; i++) { 17035 newhelp->dthps_provs[i] = help->dthps_provs[i]; 17036 newhelp->dthps_provs[i]->dthp_ref++; 17037 } 17038 17039 hasprovs = 1; 17040 } 17041 17042 mutex_exit(&dtrace_lock); 17043 17044 if (hasprovs) 17045 dtrace_helper_provider_register(to, newhelp, NULL); 17046 } 17047 17048 /* 17049 * DTrace Hook Functions 17050 */ 17051 static void 17052 dtrace_module_loaded(modctl_t *ctl) 17053 { 17054 dtrace_provider_t *prv; 17055 17056 #ifdef __NetBSD__ 17057 /* 17058 * We have just one symbol table and CTF table for the entire 17059 * base kernel, so ignore any other built-in module entries. 17060 * This means that the module name for a given symbol will change 17061 * depending on whether the module is built-in or loaded separately. 17062 */ 17063 if (module_source(ctl) == MODULE_SOURCE_KERNEL && 17064 strcmp(module_name(ctl), "netbsd")) { 17065 return; 17066 } 17067 #endif 17068 17069 mutex_enter(&dtrace_provider_lock); 17070 #ifdef illumos 17071 mutex_enter(&mod_lock); 17072 #endif 17073 17074 #ifdef illumos 17075 ASSERT(ctl->mod_busy); 17076 #endif 17077 17078 /* 17079 * We're going to call each providers per-module provide operation 17080 * specifying only this module. 17081 */ 17082 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 17083 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 17084 17085 #ifdef illumos 17086 mutex_exit(&mod_lock); 17087 #endif 17088 mutex_exit(&dtrace_provider_lock); 17089 17090 /* 17091 * If we have any retained enablings, we need to match against them. 17092 * Enabling probes requires that cpu_lock be held, and we cannot hold 17093 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 17094 * module. (In particular, this happens when loading scheduling 17095 * classes.) So if we have any retained enablings, we need to dispatch 17096 * our task queue to do the match for us. 17097 */ 17098 mutex_enter(&dtrace_lock); 17099 17100 if (dtrace_retained == NULL) { 17101 mutex_exit(&dtrace_lock); 17102 return; 17103 } 17104 17105 (void) taskq_dispatch(dtrace_taskq, 17106 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 17107 17108 mutex_exit(&dtrace_lock); 17109 17110 /* 17111 * And now, for a little heuristic sleaze: in general, we want to 17112 * match modules as soon as they load. However, we cannot guarantee 17113 * this, because it would lead us to the lock ordering violation 17114 * outlined above. The common case, of course, is that cpu_lock is 17115 * _not_ held -- so we delay here for a clock tick, hoping that that's 17116 * long enough for the task queue to do its work. If it's not, it's 17117 * not a serious problem -- it just means that the module that we 17118 * just loaded may not be immediately instrumentable. 17119 */ 17120 delay(1); 17121 } 17122 17123 static void 17124 #ifndef __FreeBSD__ 17125 dtrace_module_unloaded(modctl_t *ctl) 17126 #else 17127 dtrace_module_unloaded(modctl_t *ctl, int *error) 17128 #endif 17129 { 17130 dtrace_probe_t template, *probe, *first, *next; 17131 dtrace_provider_t *prov; 17132 #ifndef illumos 17133 char modname[DTRACE_MODNAMELEN]; 17134 size_t len; 17135 #endif 17136 17137 #ifdef illumos 17138 template.dtpr_mod = ctl->mod_modname; 17139 #endif 17140 #ifdef __FreeBSD__ 17141 /* Handle the fact that ctl->filename may end in ".ko". */ 17142 strlcpy(modname, ctl->filename, sizeof(modname)); 17143 len = strlen(ctl->filename); 17144 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0) 17145 modname[len - 3] = '\0'; 17146 template.dtpr_mod = modname; 17147 #endif 17148 #ifdef __NetBSD__ 17149 if (module_source(ctl) == MODULE_SOURCE_KERNEL && 17150 strcmp(module_name(ctl), "netbsd")) { 17151 return; 17152 } 17153 17154 /* Handle the fact that ctl->filename may end in ".kmod". */ 17155 strlcpy(modname, module_name(ctl), sizeof(modname)); 17156 len = strlen(modname); 17157 if (len > 5 && strcmp(modname + len - 5, ".kmod") == 0) 17158 modname[len - 5] = '\0'; 17159 template.dtpr_mod = modname; 17160 17161 #endif 17162 17163 mutex_enter(&dtrace_provider_lock); 17164 #ifdef illumos 17165 mutex_enter(&mod_lock); 17166 #endif 17167 mutex_enter(&dtrace_lock); 17168 17169 #ifdef __FreeBSD__ 17170 if (ctl->nenabled > 0) { 17171 /* Don't allow unloads if a probe is enabled. */ 17172 mutex_exit(&dtrace_provider_lock); 17173 mutex_exit(&dtrace_lock); 17174 *error = -1; 17175 printf( 17176 "kldunload: attempt to unload module that has DTrace probes enabled\n"); 17177 return; 17178 } 17179 #endif 17180 17181 if (dtrace_bymod == NULL) { 17182 /* 17183 * The DTrace module is loaded (obviously) but not attached; 17184 * we don't have any work to do. 17185 */ 17186 mutex_exit(&dtrace_provider_lock); 17187 #ifdef illumos 17188 mutex_exit(&mod_lock); 17189 #endif 17190 mutex_exit(&dtrace_lock); 17191 return; 17192 } 17193 17194 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 17195 probe != NULL; probe = probe->dtpr_nextmod) { 17196 if (probe->dtpr_ecb != NULL) { 17197 mutex_exit(&dtrace_provider_lock); 17198 #ifdef illumos 17199 mutex_exit(&mod_lock); 17200 #endif 17201 mutex_exit(&dtrace_lock); 17202 17203 /* 17204 * This shouldn't _actually_ be possible -- we're 17205 * unloading a module that has an enabled probe in it. 17206 * (It's normally up to the provider to make sure that 17207 * this can't happen.) However, because dtps_enable() 17208 * doesn't have a failure mode, there can be an 17209 * enable/unload race. Upshot: we don't want to 17210 * assert, but we're not going to disable the 17211 * probe, either. 17212 */ 17213 if (dtrace_err_verbose) { 17214 #ifdef illumos 17215 cmn_err(CE_WARN, "unloaded module '%s' had " 17216 "enabled probes", ctl->mod_modname); 17217 #else 17218 cmn_err(CE_WARN, "unloaded module '%s' had " 17219 "enabled probes", modname); 17220 #endif 17221 } 17222 17223 return; 17224 } 17225 } 17226 17227 probe = first; 17228 17229 for (first = NULL; probe != NULL; probe = next) { 17230 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 17231 17232 dtrace_probes[probe->dtpr_id - 1] = NULL; 17233 17234 next = probe->dtpr_nextmod; 17235 dtrace_hash_remove(dtrace_bymod, probe); 17236 dtrace_hash_remove(dtrace_byfunc, probe); 17237 dtrace_hash_remove(dtrace_byname, probe); 17238 17239 if (first == NULL) { 17240 first = probe; 17241 probe->dtpr_nextmod = NULL; 17242 } else { 17243 probe->dtpr_nextmod = first; 17244 first = probe; 17245 } 17246 } 17247 17248 /* 17249 * We've removed all of the module's probes from the hash chains and 17250 * from the probe array. Now issue a dtrace_sync() to be sure that 17251 * everyone has cleared out from any probe array processing. 17252 */ 17253 dtrace_sync(); 17254 17255 for (probe = first; probe != NULL; probe = first) { 17256 first = probe->dtpr_nextmod; 17257 prov = probe->dtpr_provider; 17258 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 17259 probe->dtpr_arg); 17260 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 17261 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 17262 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 17263 #ifdef illumos 17264 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 17265 #endif 17266 #ifdef __FreeBSD__ 17267 free_unr(dtrace_arena, probe->dtpr_id); 17268 #endif 17269 #ifdef __NetBSD__ 17270 vmem_free(dtrace_arena, (uintptr_t)probe->dtpr_id, 1); 17271 #endif 17272 kmem_free(probe, sizeof (dtrace_probe_t)); 17273 } 17274 17275 mutex_exit(&dtrace_lock); 17276 #ifdef illumos 17277 mutex_exit(&mod_lock); 17278 #endif 17279 mutex_exit(&dtrace_provider_lock); 17280 } 17281 17282 #ifdef __FreeBSD__ 17283 static void 17284 dtrace_kld_load(void *arg __unused, linker_file_t lf) 17285 { 17286 17287 dtrace_module_loaded(lf); 17288 } 17289 17290 static void 17291 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error) 17292 { 17293 17294 if (*error != 0) 17295 /* We already have an error, so don't do anything. */ 17296 return; 17297 dtrace_module_unloaded(lf, error); 17298 } 17299 #endif 17300 17301 #ifdef illumos 17302 static void 17303 dtrace_suspend(void) 17304 { 17305 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 17306 } 17307 17308 static void 17309 dtrace_resume(void) 17310 { 17311 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 17312 } 17313 #endif 17314 17315 static int 17316 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 17317 { 17318 ASSERT(MUTEX_HELD(&cpu_lock)); 17319 mutex_enter(&dtrace_lock); 17320 17321 switch (what) { 17322 case CPU_CONFIG: { 17323 dtrace_state_t *state; 17324 dtrace_optval_t *opt, rs, c; 17325 17326 /* 17327 * For now, we only allocate a new buffer for anonymous state. 17328 */ 17329 if ((state = dtrace_anon.dta_state) == NULL) 17330 break; 17331 17332 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 17333 break; 17334 17335 opt = state->dts_options; 17336 c = opt[DTRACEOPT_CPU]; 17337 17338 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 17339 break; 17340 17341 /* 17342 * Regardless of what the actual policy is, we're going to 17343 * temporarily set our resize policy to be manual. We're 17344 * also going to temporarily set our CPU option to denote 17345 * the newly configured CPU. 17346 */ 17347 rs = opt[DTRACEOPT_BUFRESIZE]; 17348 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 17349 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 17350 17351 (void) dtrace_state_buffers(state); 17352 17353 opt[DTRACEOPT_BUFRESIZE] = rs; 17354 opt[DTRACEOPT_CPU] = c; 17355 17356 break; 17357 } 17358 17359 case CPU_UNCONFIG: 17360 /* 17361 * We don't free the buffer in the CPU_UNCONFIG case. (The 17362 * buffer will be freed when the consumer exits.) 17363 */ 17364 break; 17365 17366 default: 17367 break; 17368 } 17369 17370 mutex_exit(&dtrace_lock); 17371 return (0); 17372 } 17373 17374 #ifdef illumos 17375 static void 17376 dtrace_cpu_setup_initial(processorid_t cpu) 17377 { 17378 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 17379 } 17380 #endif 17381 17382 static void 17383 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 17384 { 17385 if (dtrace_toxranges >= dtrace_toxranges_max) { 17386 int osize, nsize; 17387 dtrace_toxrange_t *range; 17388 17389 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 17390 17391 if (osize == 0) { 17392 ASSERT(dtrace_toxrange == NULL); 17393 ASSERT(dtrace_toxranges_max == 0); 17394 dtrace_toxranges_max = 1; 17395 } else { 17396 dtrace_toxranges_max <<= 1; 17397 } 17398 17399 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 17400 range = kmem_zalloc(nsize, KM_SLEEP); 17401 17402 if (dtrace_toxrange != NULL) { 17403 ASSERT(osize != 0); 17404 bcopy(dtrace_toxrange, range, osize); 17405 kmem_free(dtrace_toxrange, osize); 17406 } 17407 17408 dtrace_toxrange = range; 17409 } 17410 17411 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); 17412 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); 17413 17414 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 17415 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 17416 dtrace_toxranges++; 17417 } 17418 17419 static void 17420 dtrace_getf_barrier() 17421 { 17422 #ifdef illumos 17423 /* 17424 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 17425 * that contain calls to getf(), this routine will be called on every 17426 * closef() before either the underlying vnode is released or the 17427 * file_t itself is freed. By the time we are here, it is essential 17428 * that the file_t can no longer be accessed from a call to getf() 17429 * in probe context -- that assures that a dtrace_sync() can be used 17430 * to clear out any enablings referring to the old structures. 17431 */ 17432 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 17433 kcred->cr_zone->zone_dtrace_getf != 0) 17434 dtrace_sync(); 17435 #endif 17436 } 17437 17438 /* 17439 * DTrace Driver Cookbook Functions 17440 */ 17441 #ifdef illumos 17442 /*ARGSUSED*/ 17443 static int 17444 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 17445 { 17446 dtrace_provider_id_t id; 17447 dtrace_state_t *state = NULL; 17448 dtrace_enabling_t *enab; 17449 17450 mutex_enter(&cpu_lock); 17451 mutex_enter(&dtrace_provider_lock); 17452 mutex_enter(&dtrace_lock); 17453 17454 if (ddi_soft_state_init(&dtrace_softstate, 17455 sizeof (dtrace_state_t), 0) != 0) { 17456 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 17457 mutex_exit(&cpu_lock); 17458 mutex_exit(&dtrace_provider_lock); 17459 mutex_exit(&dtrace_lock); 17460 return (DDI_FAILURE); 17461 } 17462 17463 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 17464 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 17465 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 17466 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 17467 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 17468 ddi_remove_minor_node(devi, NULL); 17469 ddi_soft_state_fini(&dtrace_softstate); 17470 mutex_exit(&cpu_lock); 17471 mutex_exit(&dtrace_provider_lock); 17472 mutex_exit(&dtrace_lock); 17473 return (DDI_FAILURE); 17474 } 17475 17476 ddi_report_dev(devi); 17477 dtrace_devi = devi; 17478 17479 dtrace_modload = dtrace_module_loaded; 17480 dtrace_modunload = dtrace_module_unloaded; 17481 dtrace_cpu_init = dtrace_cpu_setup_initial; 17482 dtrace_helpers_cleanup = dtrace_helpers_destroy; 17483 dtrace_helpers_fork = dtrace_helpers_duplicate; 17484 dtrace_cpustart_init = dtrace_suspend; 17485 dtrace_cpustart_fini = dtrace_resume; 17486 dtrace_debugger_init = dtrace_suspend; 17487 dtrace_debugger_fini = dtrace_resume; 17488 17489 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17490 17491 ASSERT(MUTEX_HELD(&cpu_lock)); 17492 17493 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 17494 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 17495 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 17496 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 17497 VM_SLEEP | VMC_IDENTIFIER); 17498 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 17499 1, INT_MAX, 0); 17500 17501 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 17502 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 17503 NULL, NULL, NULL, NULL, NULL, 0); 17504 17505 ASSERT(MUTEX_HELD(&cpu_lock)); 17506 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 17507 offsetof(dtrace_probe_t, dtpr_nextmod), 17508 offsetof(dtrace_probe_t, dtpr_prevmod)); 17509 17510 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 17511 offsetof(dtrace_probe_t, dtpr_nextfunc), 17512 offsetof(dtrace_probe_t, dtpr_prevfunc)); 17513 17514 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 17515 offsetof(dtrace_probe_t, dtpr_nextname), 17516 offsetof(dtrace_probe_t, dtpr_prevname)); 17517 17518 if (dtrace_retain_max < 1) { 17519 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 17520 "setting to 1", dtrace_retain_max); 17521 dtrace_retain_max = 1; 17522 } 17523 17524 /* 17525 * Now discover our toxic ranges. 17526 */ 17527 dtrace_toxic_ranges(dtrace_toxrange_add); 17528 17529 /* 17530 * Before we register ourselves as a provider to our own framework, 17531 * we would like to assert that dtrace_provider is NULL -- but that's 17532 * not true if we were loaded as a dependency of a DTrace provider. 17533 * Once we've registered, we can assert that dtrace_provider is our 17534 * pseudo provider. 17535 */ 17536 (void) dtrace_register("dtrace", &dtrace_provider_attr, 17537 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 17538 17539 ASSERT(dtrace_provider != NULL); 17540 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 17541 17542 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 17543 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 17544 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 17545 dtrace_provider, NULL, NULL, "END", 0, NULL); 17546 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 17547 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 17548 17549 dtrace_anon_property(); 17550 mutex_exit(&cpu_lock); 17551 17552 /* 17553 * If there are already providers, we must ask them to provide their 17554 * probes, and then match any anonymous enabling against them. Note 17555 * that there should be no other retained enablings at this time: 17556 * the only retained enablings at this time should be the anonymous 17557 * enabling. 17558 */ 17559 if (dtrace_anon.dta_enabling != NULL) { 17560 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 17561 17562 dtrace_enabling_provide(NULL); 17563 state = dtrace_anon.dta_state; 17564 17565 /* 17566 * We couldn't hold cpu_lock across the above call to 17567 * dtrace_enabling_provide(), but we must hold it to actually 17568 * enable the probes. We have to drop all of our locks, pick 17569 * up cpu_lock, and regain our locks before matching the 17570 * retained anonymous enabling. 17571 */ 17572 mutex_exit(&dtrace_lock); 17573 mutex_exit(&dtrace_provider_lock); 17574 17575 mutex_enter(&cpu_lock); 17576 mutex_enter(&dtrace_provider_lock); 17577 mutex_enter(&dtrace_lock); 17578 17579 if ((enab = dtrace_anon.dta_enabling) != NULL) 17580 (void) dtrace_enabling_match(enab, NULL); 17581 17582 mutex_exit(&cpu_lock); 17583 } 17584 17585 mutex_exit(&dtrace_lock); 17586 mutex_exit(&dtrace_provider_lock); 17587 17588 if (state != NULL) { 17589 /* 17590 * If we created any anonymous state, set it going now. 17591 */ 17592 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 17593 } 17594 17595 return (DDI_SUCCESS); 17596 } 17597 #endif 17598 17599 #ifdef __NetBSD__ 17600 static dev_type_open(dtrace_open); 17601 17602 /* Pseudo Device Entry points */ 17603 /* Just opens, clones to the fileops below */ 17604 const struct cdevsw dtrace_cdevsw = { 17605 .d_open = dtrace_open, 17606 .d_close = noclose, 17607 .d_read = noread, 17608 .d_write = nowrite, 17609 .d_ioctl = noioctl, 17610 .d_stop = nostop, 17611 .d_tty = notty, 17612 .d_poll = nopoll, 17613 .d_mmap = nommap, 17614 .d_kqfilter = nokqfilter, 17615 .d_discard = nodiscard, 17616 .d_flag = D_OTHER | D_MPSAFE 17617 }; 17618 17619 static int dtrace_ioctl(struct file *fp, u_long cmd, void *data); 17620 static int dtrace_close(struct file *fp); 17621 17622 static const struct fileops dtrace_fileops = { 17623 .fo_read = fbadop_read, 17624 .fo_write = fbadop_write, 17625 .fo_ioctl = dtrace_ioctl, 17626 .fo_fcntl = fnullop_fcntl, 17627 .fo_poll = fnullop_poll, 17628 .fo_stat = fbadop_stat, 17629 .fo_close = dtrace_close, 17630 .fo_kqfilter = fnullop_kqfilter, 17631 }; 17632 #endif 17633 17634 #ifndef illumos 17635 static void dtrace_dtr(void *); 17636 #endif 17637 17638 /*ARGSUSED*/ 17639 static int 17640 #ifdef illumos 17641 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 17642 #endif 17643 #ifdef __FreeBSD_ 17644 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 17645 #endif 17646 #ifdef __NetBSD__ 17647 dtrace_open(dev_t dev, int flags, int mode, struct lwp *l) 17648 #endif 17649 { 17650 dtrace_state_t *state; 17651 uint32_t priv; 17652 uid_t uid; 17653 zoneid_t zoneid; 17654 17655 #ifdef illumos 17656 if (getminor(*devp) == DTRACEMNRN_HELPER) 17657 return (0); 17658 17659 /* 17660 * If this wasn't an open with the "helper" minor, then it must be 17661 * the "dtrace" minor. 17662 */ 17663 if (getminor(*devp) == DTRACEMNRN_DTRACE) 17664 return (ENXIO); 17665 #endif 17666 #ifdef __FreeBSD__ 17667 cred_t *cred_p = NULL; 17668 cred_p = dev->si_cred; 17669 17670 17671 #endif 17672 #ifdef __NetBSD__ 17673 cred_t *cred_p = NULL; 17674 struct file *fp; 17675 int fd; 17676 int res; 17677 17678 if ((res = fd_allocfile(&fp, &fd)) != 0) 17679 return res; 17680 cred_p = l->l_cred; 17681 #endif 17682 17683 /* 17684 * If no DTRACE_PRIV_* bits are set in the credential, then the 17685 * caller lacks sufficient permission to do anything with DTrace. 17686 */ 17687 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 17688 if (priv == DTRACE_PRIV_NONE) { 17689 return (EACCES); 17690 } 17691 17692 /* 17693 * Ask all providers to provide all their probes. 17694 */ 17695 mutex_enter(&dtrace_provider_lock); 17696 dtrace_probe_provide(NULL, NULL); 17697 mutex_exit(&dtrace_provider_lock); 17698 17699 mutex_enter(&cpu_lock); 17700 mutex_enter(&dtrace_lock); 17701 dtrace_opens++; 17702 dtrace_membar_producer(); 17703 17704 #ifdef illumos 17705 /* 17706 * If the kernel debugger is active (that is, if the kernel debugger 17707 * modified text in some way), we won't allow the open. 17708 */ 17709 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 17710 dtrace_opens--; 17711 mutex_exit(&cpu_lock); 17712 mutex_exit(&dtrace_lock); 17713 return (EBUSY); 17714 } 17715 17716 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 17717 /* 17718 * If DTrace helper tracing is enabled, we need to allocate the 17719 * trace buffer and initialize the values. 17720 */ 17721 dtrace_helptrace_buffer = 17722 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 17723 dtrace_helptrace_next = 0; 17724 dtrace_helptrace_wrapped = 0; 17725 dtrace_helptrace_enable = 0; 17726 } 17727 state = dtrace_state_create(devp, cred_p); 17728 #endif 17729 #ifdef __FreeBSD__ 17730 state = dtrace_state_create(dev, NULL); 17731 devfs_set_cdevpriv(state, dtrace_dtr); 17732 #endif 17733 #ifdef __NetBSD__ 17734 state = dtrace_state_create(&dev, cred_p); 17735 #endif 17736 17737 mutex_exit(&cpu_lock); 17738 17739 if (state == NULL) { 17740 #ifdef illumos 17741 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17742 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17743 #else 17744 --dtrace_opens; 17745 #endif 17746 mutex_exit(&dtrace_lock); 17747 return (EAGAIN); 17748 } 17749 17750 mutex_exit(&dtrace_lock); 17751 17752 #ifdef __NetBSD__ 17753 return fd_clone(fp, fd, flags, &dtrace_fileops, state); 17754 #else 17755 return (0); 17756 #endif 17757 } 17758 17759 /*ARGSUSED*/ 17760 #ifdef illumos 17761 static int 17762 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 17763 #endif 17764 #ifdef __FreeBSD__ 17765 static void 17766 dtrace_dtr(void *data) 17767 #endif 17768 #ifdef __NetBSD__ 17769 static int 17770 dtrace_close(struct file *fp) 17771 #endif 17772 { 17773 #ifdef illumos 17774 minor_t minor = getminor(dev); 17775 dtrace_state_t *state; 17776 #endif 17777 dtrace_helptrace_t *buf = NULL; 17778 17779 #ifdef illumos 17780 if (minor == DTRACEMNRN_HELPER) 17781 return (0); 17782 17783 state = ddi_get_soft_state(dtrace_softstate, minor); 17784 #endif 17785 #ifdef __FreeBSD__ 17786 dtrace_state_t *state = data; 17787 #endif 17788 #ifdef __NetBSD__ 17789 dtrace_state_t *state = (dtrace_state_t *)fp->f_data; 17790 #endif 17791 17792 mutex_enter(&cpu_lock); 17793 mutex_enter(&dtrace_lock); 17794 17795 #if defined(illumos) || defined(__NetBSD__) 17796 if (state->dts_anon) 17797 #else 17798 if (state != NULL && state->dts_anon) 17799 #endif 17800 { 17801 /* 17802 * There is anonymous state. Destroy that first. 17803 */ 17804 ASSERT(dtrace_anon.dta_state == NULL); 17805 dtrace_state_destroy(state->dts_anon); 17806 } 17807 17808 if (dtrace_helptrace_disable) { 17809 /* 17810 * If we have been told to disable helper tracing, set the 17811 * buffer to NULL before calling into dtrace_state_destroy(); 17812 * we take advantage of its dtrace_sync() to know that no 17813 * CPU is in probe context with enabled helper tracing 17814 * after it returns. 17815 */ 17816 buf = dtrace_helptrace_buffer; 17817 dtrace_helptrace_buffer = NULL; 17818 } 17819 17820 #if defined(illumos) || defined(__NetBSD__) 17821 dtrace_state_destroy(state); 17822 #else 17823 if (state != NULL) { 17824 dtrace_state_destroy(state); 17825 kmem_free(state, 0); 17826 } 17827 #endif 17828 17829 ASSERT(dtrace_opens > 0); 17830 17831 #ifdef illumos 17832 /* 17833 * Only relinquish control of the kernel debugger interface when there 17834 * are no consumers and no anonymous enablings. 17835 */ 17836 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17837 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17838 #else 17839 --dtrace_opens; 17840 #endif 17841 17842 if (buf != NULL) { 17843 kmem_free(buf, dtrace_helptrace_bufsize); 17844 dtrace_helptrace_disable = 0; 17845 } 17846 17847 mutex_exit(&dtrace_lock); 17848 mutex_exit(&cpu_lock); 17849 17850 #if defined(illumos) || defined(__NetBSD__) 17851 return (0); 17852 #endif 17853 } 17854 17855 #ifdef illumos 17856 /*ARGSUSED*/ 17857 static int 17858 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 17859 { 17860 int rval; 17861 dof_helper_t help, *dhp = NULL; 17862 17863 switch (cmd) { 17864 case DTRACEHIOC_ADDDOF: 17865 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 17866 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 17867 return (EFAULT); 17868 } 17869 17870 dhp = &help; 17871 arg = (intptr_t)help.dofhp_dof; 17872 /*FALLTHROUGH*/ 17873 17874 case DTRACEHIOC_ADD: { 17875 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 17876 17877 if (dof == NULL) 17878 return (rval); 17879 17880 mutex_enter(&dtrace_lock); 17881 17882 /* 17883 * dtrace_helper_slurp() takes responsibility for the dof -- 17884 * it may free it now or it may save it and free it later. 17885 */ 17886 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 17887 *rv = rval; 17888 rval = 0; 17889 } else { 17890 rval = EINVAL; 17891 } 17892 17893 mutex_exit(&dtrace_lock); 17894 return (rval); 17895 } 17896 17897 case DTRACEHIOC_REMOVE: { 17898 mutex_enter(&dtrace_lock); 17899 rval = dtrace_helper_destroygen(NULL, arg); 17900 mutex_exit(&dtrace_lock); 17901 17902 return (rval); 17903 } 17904 17905 default: 17906 break; 17907 } 17908 17909 return (ENOTTY); 17910 } 17911 17912 /*ARGSUSED*/ 17913 static int 17914 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 17915 { 17916 minor_t minor = getminor(dev); 17917 dtrace_state_t *state; 17918 int rval; 17919 17920 if (minor == DTRACEMNRN_HELPER) 17921 return (dtrace_ioctl_helper(cmd, arg, rv)); 17922 17923 state = ddi_get_soft_state(dtrace_softstate, minor); 17924 17925 if (state->dts_anon) { 17926 ASSERT(dtrace_anon.dta_state == NULL); 17927 state = state->dts_anon; 17928 } 17929 17930 switch (cmd) { 17931 case DTRACEIOC_PROVIDER: { 17932 dtrace_providerdesc_t pvd; 17933 dtrace_provider_t *pvp; 17934 17935 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 17936 return (EFAULT); 17937 17938 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 17939 mutex_enter(&dtrace_provider_lock); 17940 17941 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 17942 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 17943 break; 17944 } 17945 17946 mutex_exit(&dtrace_provider_lock); 17947 17948 if (pvp == NULL) 17949 return (ESRCH); 17950 17951 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 17952 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 17953 17954 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 17955 return (EFAULT); 17956 17957 return (0); 17958 } 17959 17960 case DTRACEIOC_EPROBE: { 17961 dtrace_eprobedesc_t epdesc; 17962 dtrace_ecb_t *ecb; 17963 dtrace_action_t *act; 17964 void *buf; 17965 size_t size; 17966 uintptr_t dest; 17967 int nrecs; 17968 17969 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 17970 return (EFAULT); 17971 17972 mutex_enter(&dtrace_lock); 17973 17974 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 17975 mutex_exit(&dtrace_lock); 17976 return (EINVAL); 17977 } 17978 17979 if (ecb->dte_probe == NULL) { 17980 mutex_exit(&dtrace_lock); 17981 return (EINVAL); 17982 } 17983 17984 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 17985 epdesc.dtepd_uarg = ecb->dte_uarg; 17986 epdesc.dtepd_size = ecb->dte_size; 17987 17988 nrecs = epdesc.dtepd_nrecs; 17989 epdesc.dtepd_nrecs = 0; 17990 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17991 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17992 continue; 17993 17994 epdesc.dtepd_nrecs++; 17995 } 17996 17997 /* 17998 * Now that we have the size, we need to allocate a temporary 17999 * buffer in which to store the complete description. We need 18000 * the temporary buffer to be able to drop dtrace_lock() 18001 * across the copyout(), below. 18002 */ 18003 size = sizeof (dtrace_eprobedesc_t) + 18004 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 18005 18006 buf = kmem_alloc(size, KM_SLEEP); 18007 dest = (uintptr_t)buf; 18008 18009 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 18010 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 18011 18012 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 18013 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 18014 continue; 18015 18016 if (nrecs-- == 0) 18017 break; 18018 18019 bcopy(&act->dta_rec, (void *)dest, 18020 sizeof (dtrace_recdesc_t)); 18021 dest += sizeof (dtrace_recdesc_t); 18022 } 18023 18024 mutex_exit(&dtrace_lock); 18025 18026 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 18027 kmem_free(buf, size); 18028 return (EFAULT); 18029 } 18030 18031 kmem_free(buf, size); 18032 return (0); 18033 } 18034 18035 case DTRACEIOC_AGGDESC: { 18036 dtrace_aggdesc_t aggdesc; 18037 dtrace_action_t *act; 18038 dtrace_aggregation_t *agg; 18039 int nrecs; 18040 uint32_t offs; 18041 dtrace_recdesc_t *lrec; 18042 void *buf; 18043 size_t size; 18044 uintptr_t dest; 18045 18046 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 18047 return (EFAULT); 18048 18049 mutex_enter(&dtrace_lock); 18050 18051 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 18052 mutex_exit(&dtrace_lock); 18053 return (EINVAL); 18054 } 18055 18056 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 18057 18058 nrecs = aggdesc.dtagd_nrecs; 18059 aggdesc.dtagd_nrecs = 0; 18060 18061 offs = agg->dtag_base; 18062 lrec = &agg->dtag_action.dta_rec; 18063 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 18064 18065 for (act = agg->dtag_first; ; act = act->dta_next) { 18066 ASSERT(act->dta_intuple || 18067 DTRACEACT_ISAGG(act->dta_kind)); 18068 18069 /* 18070 * If this action has a record size of zero, it 18071 * denotes an argument to the aggregating action. 18072 * Because the presence of this record doesn't (or 18073 * shouldn't) affect the way the data is interpreted, 18074 * we don't copy it out to save user-level the 18075 * confusion of dealing with a zero-length record. 18076 */ 18077 if (act->dta_rec.dtrd_size == 0) { 18078 ASSERT(agg->dtag_hasarg); 18079 continue; 18080 } 18081 18082 aggdesc.dtagd_nrecs++; 18083 18084 if (act == &agg->dtag_action) 18085 break; 18086 } 18087 18088 /* 18089 * Now that we have the size, we need to allocate a temporary 18090 * buffer in which to store the complete description. We need 18091 * the temporary buffer to be able to drop dtrace_lock() 18092 * across the copyout(), below. 18093 */ 18094 size = sizeof (dtrace_aggdesc_t) + 18095 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 18096 18097 buf = kmem_alloc(size, KM_SLEEP); 18098 dest = (uintptr_t)buf; 18099 18100 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 18101 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 18102 18103 for (act = agg->dtag_first; ; act = act->dta_next) { 18104 dtrace_recdesc_t rec = act->dta_rec; 18105 18106 /* 18107 * See the comment in the above loop for why we pass 18108 * over zero-length records. 18109 */ 18110 if (rec.dtrd_size == 0) { 18111 ASSERT(agg->dtag_hasarg); 18112 continue; 18113 } 18114 18115 if (nrecs-- == 0) 18116 break; 18117 18118 rec.dtrd_offset -= offs; 18119 bcopy(&rec, (void *)dest, sizeof (rec)); 18120 dest += sizeof (dtrace_recdesc_t); 18121 18122 if (act == &agg->dtag_action) 18123 break; 18124 } 18125 18126 mutex_exit(&dtrace_lock); 18127 18128 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 18129 kmem_free(buf, size); 18130 return (EFAULT); 18131 } 18132 18133 kmem_free(buf, size); 18134 return (0); 18135 } 18136 18137 case DTRACEIOC_ENABLE: { 18138 dof_hdr_t *dof; 18139 dtrace_enabling_t *enab = NULL; 18140 dtrace_vstate_t *vstate; 18141 int err = 0; 18142 18143 *rv = 0; 18144 18145 /* 18146 * If a NULL argument has been passed, we take this as our 18147 * cue to reevaluate our enablings. 18148 */ 18149 if (arg == NULL) { 18150 dtrace_enabling_matchall(); 18151 18152 return (0); 18153 } 18154 18155 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 18156 return (rval); 18157 18158 mutex_enter(&cpu_lock); 18159 mutex_enter(&dtrace_lock); 18160 vstate = &state->dts_vstate; 18161 18162 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 18163 mutex_exit(&dtrace_lock); 18164 mutex_exit(&cpu_lock); 18165 dtrace_dof_destroy(dof); 18166 return (EBUSY); 18167 } 18168 18169 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 18170 mutex_exit(&dtrace_lock); 18171 mutex_exit(&cpu_lock); 18172 dtrace_dof_destroy(dof); 18173 return (EINVAL); 18174 } 18175 18176 if ((rval = dtrace_dof_options(dof, state)) != 0) { 18177 dtrace_enabling_destroy(enab); 18178 mutex_exit(&dtrace_lock); 18179 mutex_exit(&cpu_lock); 18180 dtrace_dof_destroy(dof); 18181 return (rval); 18182 } 18183 18184 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 18185 err = dtrace_enabling_retain(enab); 18186 } else { 18187 dtrace_enabling_destroy(enab); 18188 } 18189 18190 mutex_exit(&cpu_lock); 18191 mutex_exit(&dtrace_lock); 18192 dtrace_dof_destroy(dof); 18193 18194 return (err); 18195 } 18196 18197 case DTRACEIOC_REPLICATE: { 18198 dtrace_repldesc_t desc; 18199 dtrace_probedesc_t *match = &desc.dtrpd_match; 18200 dtrace_probedesc_t *create = &desc.dtrpd_create; 18201 int err; 18202 18203 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 18204 return (EFAULT); 18205 18206 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 18207 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 18208 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 18209 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 18210 18211 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 18212 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 18213 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 18214 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 18215 18216 mutex_enter(&dtrace_lock); 18217 err = dtrace_enabling_replicate(state, match, create); 18218 mutex_exit(&dtrace_lock); 18219 18220 return (err); 18221 } 18222 18223 case DTRACEIOC_PROBEMATCH: 18224 case DTRACEIOC_PROBES: { 18225 dtrace_probe_t *probe = NULL; 18226 dtrace_probedesc_t desc; 18227 dtrace_probekey_t pkey; 18228 dtrace_id_t i; 18229 int m = 0; 18230 uint32_t priv; 18231 uid_t uid; 18232 zoneid_t zoneid; 18233 18234 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 18235 return (EFAULT); 18236 18237 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 18238 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 18239 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 18240 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 18241 18242 /* 18243 * Before we attempt to match this probe, we want to give 18244 * all providers the opportunity to provide it. 18245 */ 18246 if (desc.dtpd_id == DTRACE_IDNONE) { 18247 mutex_enter(&dtrace_provider_lock); 18248 dtrace_probe_provide(&desc, NULL); 18249 mutex_exit(&dtrace_provider_lock); 18250 desc.dtpd_id++; 18251 } 18252 18253 if (cmd == DTRACEIOC_PROBEMATCH) { 18254 dtrace_probekey(&desc, &pkey); 18255 pkey.dtpk_id = DTRACE_IDNONE; 18256 } 18257 18258 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 18259 18260 mutex_enter(&dtrace_lock); 18261 18262 if (cmd == DTRACEIOC_PROBEMATCH) { 18263 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 18264 if ((probe = dtrace_probes[i - 1]) != NULL && 18265 (m = dtrace_match_probe(probe, &pkey, 18266 priv, uid, zoneid)) != 0) 18267 break; 18268 } 18269 18270 if (m < 0) { 18271 mutex_exit(&dtrace_lock); 18272 return (EINVAL); 18273 } 18274 18275 } else { 18276 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 18277 if ((probe = dtrace_probes[i - 1]) != NULL && 18278 dtrace_match_priv(probe, priv, uid, zoneid)) 18279 break; 18280 } 18281 } 18282 18283 if (probe == NULL) { 18284 mutex_exit(&dtrace_lock); 18285 return (ESRCH); 18286 } 18287 18288 dtrace_probe_description(probe, &desc); 18289 mutex_exit(&dtrace_lock); 18290 18291 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18292 return (EFAULT); 18293 18294 return (0); 18295 } 18296 18297 case DTRACEIOC_PROBEARG: { 18298 dtrace_argdesc_t desc; 18299 dtrace_probe_t *probe; 18300 dtrace_provider_t *prov; 18301 18302 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 18303 return (EFAULT); 18304 18305 if (desc.dtargd_id == DTRACE_IDNONE) 18306 return (EINVAL); 18307 18308 if (desc.dtargd_ndx == DTRACE_ARGNONE) 18309 return (EINVAL); 18310 18311 mutex_enter(&dtrace_provider_lock); 18312 mutex_enter(&mod_lock); 18313 mutex_enter(&dtrace_lock); 18314 18315 if (desc.dtargd_id > dtrace_nprobes) { 18316 mutex_exit(&dtrace_lock); 18317 mutex_exit(&mod_lock); 18318 mutex_exit(&dtrace_provider_lock); 18319 return (EINVAL); 18320 } 18321 18322 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 18323 mutex_exit(&dtrace_lock); 18324 mutex_exit(&mod_lock); 18325 mutex_exit(&dtrace_provider_lock); 18326 return (EINVAL); 18327 } 18328 18329 mutex_exit(&dtrace_lock); 18330 18331 prov = probe->dtpr_provider; 18332 18333 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 18334 /* 18335 * There isn't any typed information for this probe. 18336 * Set the argument number to DTRACE_ARGNONE. 18337 */ 18338 desc.dtargd_ndx = DTRACE_ARGNONE; 18339 } else { 18340 desc.dtargd_native[0] = '\0'; 18341 desc.dtargd_xlate[0] = '\0'; 18342 desc.dtargd_mapping = desc.dtargd_ndx; 18343 18344 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 18345 probe->dtpr_id, probe->dtpr_arg, &desc); 18346 } 18347 18348 mutex_exit(&mod_lock); 18349 mutex_exit(&dtrace_provider_lock); 18350 18351 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18352 return (EFAULT); 18353 18354 return (0); 18355 } 18356 18357 case DTRACEIOC_GO: { 18358 processorid_t cpuid; 18359 rval = dtrace_state_go(state, &cpuid); 18360 18361 if (rval != 0) 18362 return (rval); 18363 18364 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 18365 return (EFAULT); 18366 18367 return (0); 18368 } 18369 18370 case DTRACEIOC_STOP: { 18371 processorid_t cpuid; 18372 18373 mutex_enter(&dtrace_lock); 18374 rval = dtrace_state_stop(state, &cpuid); 18375 mutex_exit(&dtrace_lock); 18376 18377 if (rval != 0) 18378 return (rval); 18379 18380 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 18381 return (EFAULT); 18382 18383 return (0); 18384 } 18385 18386 case DTRACEIOC_DOFGET: { 18387 dof_hdr_t hdr, *dof; 18388 uint64_t len; 18389 18390 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 18391 return (EFAULT); 18392 18393 mutex_enter(&dtrace_lock); 18394 dof = dtrace_dof_create(state); 18395 mutex_exit(&dtrace_lock); 18396 18397 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 18398 rval = copyout(dof, (void *)arg, len); 18399 dtrace_dof_destroy(dof); 18400 18401 return (rval == 0 ? 0 : EFAULT); 18402 } 18403 18404 case DTRACEIOC_AGGSNAP: 18405 case DTRACEIOC_BUFSNAP: { 18406 dtrace_bufdesc_t desc; 18407 caddr_t cached; 18408 dtrace_buffer_t *buf; 18409 18410 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 18411 return (EFAULT); 18412 18413 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 18414 return (EINVAL); 18415 18416 mutex_enter(&dtrace_lock); 18417 18418 if (cmd == DTRACEIOC_BUFSNAP) { 18419 buf = &state->dts_buffer[desc.dtbd_cpu]; 18420 } else { 18421 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 18422 } 18423 18424 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 18425 size_t sz = buf->dtb_offset; 18426 18427 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 18428 mutex_exit(&dtrace_lock); 18429 return (EBUSY); 18430 } 18431 18432 /* 18433 * If this buffer has already been consumed, we're 18434 * going to indicate that there's nothing left here 18435 * to consume. 18436 */ 18437 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 18438 mutex_exit(&dtrace_lock); 18439 18440 desc.dtbd_size = 0; 18441 desc.dtbd_drops = 0; 18442 desc.dtbd_errors = 0; 18443 desc.dtbd_oldest = 0; 18444 sz = sizeof (desc); 18445 18446 if (copyout(&desc, (void *)arg, sz) != 0) 18447 return (EFAULT); 18448 18449 return (0); 18450 } 18451 18452 /* 18453 * If this is a ring buffer that has wrapped, we want 18454 * to copy the whole thing out. 18455 */ 18456 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 18457 dtrace_buffer_polish(buf); 18458 sz = buf->dtb_size; 18459 } 18460 18461 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 18462 mutex_exit(&dtrace_lock); 18463 return (EFAULT); 18464 } 18465 18466 desc.dtbd_size = sz; 18467 desc.dtbd_drops = buf->dtb_drops; 18468 desc.dtbd_errors = buf->dtb_errors; 18469 desc.dtbd_oldest = buf->dtb_xamot_offset; 18470 desc.dtbd_timestamp = dtrace_gethrtime(); 18471 18472 mutex_exit(&dtrace_lock); 18473 18474 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18475 return (EFAULT); 18476 18477 buf->dtb_flags |= DTRACEBUF_CONSUMED; 18478 18479 return (0); 18480 } 18481 18482 if (buf->dtb_tomax == NULL) { 18483 ASSERT(buf->dtb_xamot == NULL); 18484 mutex_exit(&dtrace_lock); 18485 return (ENOENT); 18486 } 18487 18488 cached = buf->dtb_tomax; 18489 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 18490 18491 dtrace_xcall(desc.dtbd_cpu, 18492 (dtrace_xcall_t)dtrace_buffer_switch, buf); 18493 18494 state->dts_errors += buf->dtb_xamot_errors; 18495 18496 /* 18497 * If the buffers did not actually switch, then the cross call 18498 * did not take place -- presumably because the given CPU is 18499 * not in the ready set. If this is the case, we'll return 18500 * ENOENT. 18501 */ 18502 if (buf->dtb_tomax == cached) { 18503 ASSERT(buf->dtb_xamot != cached); 18504 mutex_exit(&dtrace_lock); 18505 return (ENOENT); 18506 } 18507 18508 ASSERT(cached == buf->dtb_xamot); 18509 18510 /* 18511 * We have our snapshot; now copy it out. 18512 */ 18513 if (copyout(buf->dtb_xamot, desc.dtbd_data, 18514 buf->dtb_xamot_offset) != 0) { 18515 mutex_exit(&dtrace_lock); 18516 return (EFAULT); 18517 } 18518 18519 desc.dtbd_size = buf->dtb_xamot_offset; 18520 desc.dtbd_drops = buf->dtb_xamot_drops; 18521 desc.dtbd_errors = buf->dtb_xamot_errors; 18522 desc.dtbd_oldest = 0; 18523 desc.dtbd_timestamp = buf->dtb_switched; 18524 18525 mutex_exit(&dtrace_lock); 18526 18527 /* 18528 * Finally, copy out the buffer description. 18529 */ 18530 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18531 return (EFAULT); 18532 18533 return (0); 18534 } 18535 18536 case DTRACEIOC_CONF: { 18537 dtrace_conf_t conf; 18538 18539 bzero(&conf, sizeof (conf)); 18540 conf.dtc_difversion = DIF_VERSION; 18541 conf.dtc_difintregs = DIF_DIR_NREGS; 18542 conf.dtc_diftupregs = DIF_DTR_NREGS; 18543 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 18544 18545 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 18546 return (EFAULT); 18547 18548 return (0); 18549 } 18550 18551 case DTRACEIOC_STATUS: { 18552 dtrace_status_t stat; 18553 dtrace_dstate_t *dstate; 18554 int i, j; 18555 uint64_t nerrs; 18556 18557 /* 18558 * See the comment in dtrace_state_deadman() for the reason 18559 * for setting dts_laststatus to INT64_MAX before setting 18560 * it to the correct value. 18561 */ 18562 state->dts_laststatus = INT64_MAX; 18563 dtrace_membar_producer(); 18564 state->dts_laststatus = dtrace_gethrtime(); 18565 18566 bzero(&stat, sizeof (stat)); 18567 18568 mutex_enter(&dtrace_lock); 18569 18570 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 18571 mutex_exit(&dtrace_lock); 18572 return (ENOENT); 18573 } 18574 18575 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 18576 stat.dtst_exiting = 1; 18577 18578 nerrs = state->dts_errors; 18579 dstate = &state->dts_vstate.dtvs_dynvars; 18580 18581 for (i = 0; i < NCPU; i++) { 18582 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 18583 18584 stat.dtst_dyndrops += dcpu->dtdsc_drops; 18585 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 18586 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 18587 18588 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 18589 stat.dtst_filled++; 18590 18591 nerrs += state->dts_buffer[i].dtb_errors; 18592 18593 for (j = 0; j < state->dts_nspeculations; j++) { 18594 dtrace_speculation_t *spec; 18595 dtrace_buffer_t *buf; 18596 18597 spec = &state->dts_speculations[j]; 18598 buf = &spec->dtsp_buffer[i]; 18599 stat.dtst_specdrops += buf->dtb_xamot_drops; 18600 } 18601 } 18602 18603 stat.dtst_specdrops_busy = state->dts_speculations_busy; 18604 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 18605 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 18606 stat.dtst_dblerrors = state->dts_dblerrors; 18607 stat.dtst_killed = 18608 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 18609 stat.dtst_errors = nerrs; 18610 18611 mutex_exit(&dtrace_lock); 18612 18613 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 18614 return (EFAULT); 18615 18616 return (0); 18617 } 18618 18619 case DTRACEIOC_FORMAT: { 18620 dtrace_fmtdesc_t fmt; 18621 char *str; 18622 int len; 18623 18624 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 18625 return (EFAULT); 18626 18627 mutex_enter(&dtrace_lock); 18628 18629 if (fmt.dtfd_format == 0 || 18630 fmt.dtfd_format > state->dts_nformats) { 18631 mutex_exit(&dtrace_lock); 18632 return (EINVAL); 18633 } 18634 18635 /* 18636 * Format strings are allocated contiguously and they are 18637 * never freed; if a format index is less than the number 18638 * of formats, we can assert that the format map is non-NULL 18639 * and that the format for the specified index is non-NULL. 18640 */ 18641 ASSERT(state->dts_formats != NULL); 18642 str = state->dts_formats[fmt.dtfd_format - 1]; 18643 ASSERT(str != NULL); 18644 18645 len = strlen(str) + 1; 18646 18647 if (len > fmt.dtfd_length) { 18648 fmt.dtfd_length = len; 18649 18650 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 18651 mutex_exit(&dtrace_lock); 18652 return (EINVAL); 18653 } 18654 } else { 18655 if (copyout(str, fmt.dtfd_string, len) != 0) { 18656 mutex_exit(&dtrace_lock); 18657 return (EINVAL); 18658 } 18659 } 18660 18661 mutex_exit(&dtrace_lock); 18662 return (0); 18663 } 18664 18665 default: 18666 break; 18667 } 18668 18669 return (ENOTTY); 18670 } 18671 18672 /*ARGSUSED*/ 18673 static int 18674 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 18675 { 18676 dtrace_state_t *state; 18677 18678 switch (cmd) { 18679 case DDI_DETACH: 18680 break; 18681 18682 case DDI_SUSPEND: 18683 return (DDI_SUCCESS); 18684 18685 default: 18686 return (DDI_FAILURE); 18687 } 18688 18689 mutex_enter(&cpu_lock); 18690 mutex_enter(&dtrace_provider_lock); 18691 mutex_enter(&dtrace_lock); 18692 18693 ASSERT(dtrace_opens == 0); 18694 18695 if (dtrace_helpers > 0) { 18696 mutex_exit(&dtrace_provider_lock); 18697 mutex_exit(&dtrace_lock); 18698 mutex_exit(&cpu_lock); 18699 return (DDI_FAILURE); 18700 } 18701 18702 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 18703 mutex_exit(&dtrace_provider_lock); 18704 mutex_exit(&dtrace_lock); 18705 mutex_exit(&cpu_lock); 18706 return (DDI_FAILURE); 18707 } 18708 18709 dtrace_provider = NULL; 18710 18711 if ((state = dtrace_anon_grab()) != NULL) { 18712 /* 18713 * If there were ECBs on this state, the provider should 18714 * have not been allowed to detach; assert that there is 18715 * none. 18716 */ 18717 ASSERT(state->dts_necbs == 0); 18718 dtrace_state_destroy(state); 18719 18720 /* 18721 * If we're being detached with anonymous state, we need to 18722 * indicate to the kernel debugger that DTrace is now inactive. 18723 */ 18724 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 18725 } 18726 18727 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 18728 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 18729 dtrace_cpu_init = NULL; 18730 dtrace_helpers_cleanup = NULL; 18731 dtrace_helpers_fork = NULL; 18732 dtrace_cpustart_init = NULL; 18733 dtrace_cpustart_fini = NULL; 18734 dtrace_debugger_init = NULL; 18735 dtrace_debugger_fini = NULL; 18736 dtrace_modload = NULL; 18737 dtrace_modunload = NULL; 18738 18739 ASSERT(dtrace_getf == 0); 18740 ASSERT(dtrace_closef == NULL); 18741 18742 mutex_exit(&cpu_lock); 18743 18744 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 18745 dtrace_probes = NULL; 18746 dtrace_nprobes = 0; 18747 18748 dtrace_hash_destroy(dtrace_bymod); 18749 dtrace_hash_destroy(dtrace_byfunc); 18750 dtrace_hash_destroy(dtrace_byname); 18751 dtrace_bymod = NULL; 18752 dtrace_byfunc = NULL; 18753 dtrace_byname = NULL; 18754 18755 kmem_cache_destroy(dtrace_state_cache); 18756 vmem_destroy(dtrace_minor); 18757 vmem_destroy(dtrace_arena); 18758 18759 if (dtrace_toxrange != NULL) { 18760 kmem_free(dtrace_toxrange, 18761 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 18762 dtrace_toxrange = NULL; 18763 dtrace_toxranges = 0; 18764 dtrace_toxranges_max = 0; 18765 } 18766 18767 ddi_remove_minor_node(dtrace_devi, NULL); 18768 dtrace_devi = NULL; 18769 18770 ddi_soft_state_fini(&dtrace_softstate); 18771 18772 ASSERT(dtrace_vtime_references == 0); 18773 ASSERT(dtrace_opens == 0); 18774 ASSERT(dtrace_retained == NULL); 18775 18776 mutex_exit(&dtrace_lock); 18777 mutex_exit(&dtrace_provider_lock); 18778 18779 /* 18780 * We don't destroy the task queue until after we have dropped our 18781 * locks (taskq_destroy() may block on running tasks). To prevent 18782 * attempting to do work after we have effectively detached but before 18783 * the task queue has been destroyed, all tasks dispatched via the 18784 * task queue must check that DTrace is still attached before 18785 * performing any operation. 18786 */ 18787 taskq_destroy(dtrace_taskq); 18788 dtrace_taskq = NULL; 18789 18790 return (DDI_SUCCESS); 18791 } 18792 #endif 18793 18794 #ifdef illumos 18795 /*ARGSUSED*/ 18796 static int 18797 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 18798 { 18799 int error; 18800 18801 switch (infocmd) { 18802 case DDI_INFO_DEVT2DEVINFO: 18803 *result = (void *)dtrace_devi; 18804 error = DDI_SUCCESS; 18805 break; 18806 case DDI_INFO_DEVT2INSTANCE: 18807 *result = (void *)0; 18808 error = DDI_SUCCESS; 18809 break; 18810 default: 18811 error = DDI_FAILURE; 18812 } 18813 return (error); 18814 } 18815 #endif 18816 18817 #ifdef illumos 18818 static struct cb_ops dtrace_cb_ops = { 18819 dtrace_open, /* open */ 18820 dtrace_close, /* close */ 18821 nulldev, /* strategy */ 18822 nulldev, /* print */ 18823 nodev, /* dump */ 18824 nodev, /* read */ 18825 nodev, /* write */ 18826 dtrace_ioctl, /* ioctl */ 18827 nodev, /* devmap */ 18828 nodev, /* mmap */ 18829 nodev, /* segmap */ 18830 nochpoll, /* poll */ 18831 ddi_prop_op, /* cb_prop_op */ 18832 0, /* streamtab */ 18833 D_NEW | D_MP /* Driver compatibility flag */ 18834 }; 18835 18836 static struct dev_ops dtrace_ops = { 18837 DEVO_REV, /* devo_rev */ 18838 0, /* refcnt */ 18839 dtrace_info, /* get_dev_info */ 18840 nulldev, /* identify */ 18841 nulldev, /* probe */ 18842 dtrace_attach, /* attach */ 18843 dtrace_detach, /* detach */ 18844 nodev, /* reset */ 18845 &dtrace_cb_ops, /* driver operations */ 18846 NULL, /* bus operations */ 18847 nodev /* dev power */ 18848 }; 18849 18850 static struct modldrv modldrv = { 18851 &mod_driverops, /* module type (this is a pseudo driver) */ 18852 "Dynamic Tracing", /* name of module */ 18853 &dtrace_ops, /* driver ops */ 18854 }; 18855 18856 static struct modlinkage modlinkage = { 18857 MODREV_1, 18858 (void *)&modldrv, 18859 NULL 18860 }; 18861 18862 int 18863 _init(void) 18864 { 18865 return (mod_install(&modlinkage)); 18866 } 18867 18868 int 18869 _info(struct modinfo *modinfop) 18870 { 18871 return (mod_info(&modlinkage, modinfop)); 18872 } 18873 18874 int 18875 _fini(void) 18876 { 18877 return (mod_remove(&modlinkage)); 18878 } 18879 #endif 18880 18881 #ifdef __FreeBSD__ 18882 static d_ioctl_t dtrace_ioctl; 18883 static d_ioctl_t dtrace_ioctl_helper; 18884 static void dtrace_load(void *); 18885 static int dtrace_unload(void); 18886 static struct cdev *dtrace_dev; 18887 static struct cdev *helper_dev; 18888 18889 void dtrace_invop_init(void); 18890 void dtrace_invop_uninit(void); 18891 18892 static struct cdevsw dtrace_cdevsw = { 18893 .d_version = D_VERSION, 18894 .d_ioctl = dtrace_ioctl, 18895 .d_open = dtrace_open, 18896 .d_name = "dtrace", 18897 }; 18898 18899 static struct cdevsw helper_cdevsw = { 18900 .d_version = D_VERSION, 18901 .d_ioctl = dtrace_ioctl_helper, 18902 .d_name = "helper", 18903 }; 18904 #endif /* __FreeBSD__ */ 18905 18906 #ifdef __NetBSD__ 18907 void dtrace_invop_init(void); 18908 void dtrace_invop_uninit(void); 18909 18910 struct dtrace_state_worker { 18911 kmutex_t lock; 18912 kcondvar_t cv; 18913 void (*fn)(dtrace_state_t *); 18914 dtrace_state_t *state; 18915 int interval; 18916 lwp_t *lwp; 18917 bool exiting; 18918 }; 18919 18920 static void 18921 dtrace_state_worker_thread(void *vp) 18922 { 18923 struct dtrace_state_worker *w = vp; 18924 18925 mutex_enter(&w->lock); 18926 while (!w->exiting) { 18927 int error; 18928 18929 error = cv_timedwait(&w->cv, &w->lock, w->interval); 18930 if (error == EWOULDBLOCK) { 18931 mutex_exit(&w->lock); 18932 w->fn(w->state); 18933 mutex_enter(&w->lock); 18934 } 18935 } 18936 mutex_exit(&w->lock); 18937 kthread_exit(0); 18938 } 18939 18940 struct dtrace_state_worker * 18941 dtrace_state_worker_add(void (*fn)(dtrace_state_t *), dtrace_state_t *state, 18942 hrtime_t interval) 18943 { 18944 struct dtrace_state_worker *w; 18945 int error __diagused; 18946 18947 w = kmem_alloc(sizeof(*w), KM_SLEEP); 18948 mutex_init(&w->lock, "dtrace", MUTEX_DEFAULT, NULL); 18949 cv_init(&w->cv, "dtrace"); 18950 w->interval = ((uintmax_t)hz * interval) / NANOSEC; 18951 w->fn = fn; 18952 w->state = state; 18953 w->exiting = false; 18954 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_MUSTJOIN, NULL, 18955 dtrace_state_worker_thread, w, &w->lwp, "dtrace-state-worker"); 18956 KASSERT(error == 0); /* XXX */ 18957 return w; 18958 } 18959 18960 void 18961 dtrace_state_worker_remove(struct dtrace_state_worker *w) 18962 { 18963 int error __diagused; 18964 18965 KASSERT(!w->exiting); 18966 mutex_enter(&w->lock); 18967 w->exiting = true; 18968 cv_signal(&w->cv); 18969 mutex_exit(&w->lock); 18970 error = kthread_join(w->lwp); 18971 KASSERT(error == 0); 18972 cv_destroy(&w->cv); 18973 mutex_destroy(&w->lock); 18974 kmem_free(w, sizeof(*w)); 18975 } 18976 18977 #endif /* __NetBSD__ */ 18978 18979 static void dtrace_load(void *); 18980 static int dtrace_unload(void); 18981 18982 #include <dtrace_anon.c> 18983 #include <dtrace_ioctl.c> 18984 #include <dtrace_load.c> 18985 #include <dtrace_modevent.c> 18986 #include <dtrace_sysctl.c> 18987 #include <dtrace_unload.c> 18988 #include <dtrace_vtime.c> 18989 #include <dtrace_hacks.c> 18990 #include <dtrace_isa.c> 18991 18992 #ifdef __FreeBSD__ 18993 DEV_MODULE(dtrace, dtrace_modevent, NULL); 18994 MODULE_VERSION(dtrace, 1); 18995 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1); 18996 #endif /* __FreeBSD__ */ 18997 18998 #ifdef __NetBSD__ 18999 MODULE(MODULE_CLASS_MISC, dtrace, "solaris"); 19000 #endif /* __NetBSD__ */ 19001